|
| 1 | +import keras |
| 2 | +import pytest |
| 3 | + |
| 4 | + |
| 5 | +@pytest.fixture |
| 6 | +def simple_diffusion_model(): |
| 7 | + """Create a simple diffusion model for testing compositional sampling.""" |
| 8 | + from bayesflow.networks.diffusion_model import DiffusionModel |
| 9 | + from bayesflow.networks import MLP |
| 10 | + |
| 11 | + return DiffusionModel( |
| 12 | + subnet=MLP(widths=[32, 32]), |
| 13 | + noise_schedule="cosine", |
| 14 | + prediction_type="noise", |
| 15 | + loss_type="noise", |
| 16 | + ) |
| 17 | + |
| 18 | + |
| 19 | +@pytest.fixture |
| 20 | +def compositional_conditions(): |
| 21 | + """Create test conditions for compositional sampling.""" |
| 22 | + batch_size = 2 |
| 23 | + n_compositional = 3 |
| 24 | + n_samples = 4 |
| 25 | + condition_dim = 5 |
| 26 | + |
| 27 | + return keras.random.normal((batch_size, n_compositional, n_samples, condition_dim)) |
| 28 | + |
| 29 | + |
| 30 | +@pytest.fixture |
| 31 | +def compositional_state(): |
| 32 | + """Create test state for compositional sampling.""" |
| 33 | + batch_size = 2 |
| 34 | + n_samples = 4 |
| 35 | + param_dim = 3 |
| 36 | + |
| 37 | + return keras.random.normal((batch_size, n_samples, param_dim)) |
| 38 | + |
| 39 | + |
| 40 | +@pytest.fixture |
| 41 | +def mock_prior_score(): |
| 42 | + """Create a mock prior score function for testing.""" |
| 43 | + |
| 44 | + def prior_score_fn(theta): |
| 45 | + # Simple quadratic prior: -0.5 * ||theta||^2 |
| 46 | + return -theta |
| 47 | + |
| 48 | + return prior_score_fn |
| 49 | + |
| 50 | + |
| 51 | +def test_compositional_score_shape( |
| 52 | + simple_diffusion_model, compositional_state, compositional_conditions, mock_prior_score |
| 53 | +): |
| 54 | + """Test that compositional score returns correct shapes.""" |
| 55 | + # Build the model |
| 56 | + state_shape = keras.ops.shape(compositional_state) |
| 57 | + conditions_shape = keras.ops.shape(compositional_conditions) |
| 58 | + simple_diffusion_model.build(state_shape, conditions_shape) |
| 59 | + |
| 60 | + time = 0.5 |
| 61 | + |
| 62 | + score = simple_diffusion_model.compositional_score( |
| 63 | + xz=compositional_state, |
| 64 | + time=time, |
| 65 | + conditions=compositional_conditions, |
| 66 | + compute_prior_score=mock_prior_score, |
| 67 | + training=False, |
| 68 | + ) |
| 69 | + |
| 70 | + expected_shape = keras.ops.shape(compositional_state) |
| 71 | + actual_shape = keras.ops.shape(score) |
| 72 | + |
| 73 | + assert keras.ops.all(keras.ops.equal(expected_shape, actual_shape)), ( |
| 74 | + f"Expected shape {expected_shape}, got {actual_shape}" |
| 75 | + ) |
| 76 | + |
| 77 | + |
| 78 | +def test_compositional_score_no_conditions_raises_error(simple_diffusion_model, compositional_state, mock_prior_score): |
| 79 | + """Test that compositional score raises error when conditions is None.""" |
| 80 | + simple_diffusion_model.build(keras.ops.shape(compositional_state), None) |
| 81 | + |
| 82 | + with pytest.raises(ValueError, match="Conditions are required for compositional sampling"): |
| 83 | + simple_diffusion_model.compositional_score( |
| 84 | + xz=compositional_state, time=0.5, conditions=None, compute_prior_score=mock_prior_score, training=False |
| 85 | + ) |
| 86 | + |
| 87 | + |
| 88 | +def test_inverse_compositional_basic( |
| 89 | + simple_diffusion_model, compositional_state, compositional_conditions, mock_prior_score |
| 90 | +): |
| 91 | + """Test basic compositional inverse sampling.""" |
| 92 | + state_shape = keras.ops.shape(compositional_state) |
| 93 | + conditions_shape = keras.ops.shape(compositional_conditions) |
| 94 | + simple_diffusion_model.build(state_shape, conditions_shape) |
| 95 | + |
| 96 | + # Test inverse sampling with ODE method |
| 97 | + result = simple_diffusion_model._inverse_compositional( |
| 98 | + z=compositional_state, |
| 99 | + conditions=compositional_conditions, |
| 100 | + compute_prior_score=mock_prior_score, |
| 101 | + density=False, |
| 102 | + training=False, |
| 103 | + method="euler", |
| 104 | + steps=5, |
| 105 | + start_time=1.0, |
| 106 | + stop_time=0.0, |
| 107 | + ) |
| 108 | + |
| 109 | + expected_shape = keras.ops.shape(compositional_state) |
| 110 | + actual_shape = keras.ops.shape(result) |
| 111 | + |
| 112 | + assert keras.ops.all(keras.ops.equal(expected_shape, actual_shape)), ( |
| 113 | + f"Expected shape {expected_shape}, got {actual_shape}" |
| 114 | + ) |
| 115 | + |
| 116 | + |
| 117 | +def test_inverse_compositional_euler_maruyama_with_corrector( |
| 118 | + simple_diffusion_model, compositional_state, compositional_conditions, mock_prior_score |
| 119 | +): |
| 120 | + """Test compositional inverse sampling with Euler-Maruyama and corrector steps.""" |
| 121 | + state_shape = keras.ops.shape(compositional_state) |
| 122 | + conditions_shape = keras.ops.shape(compositional_conditions) |
| 123 | + simple_diffusion_model.build(state_shape, conditions_shape) |
| 124 | + |
| 125 | + result = simple_diffusion_model._inverse_compositional( |
| 126 | + z=compositional_state, |
| 127 | + conditions=compositional_conditions, |
| 128 | + compute_prior_score=mock_prior_score, |
| 129 | + density=False, |
| 130 | + training=False, |
| 131 | + method="euler_maruyama", |
| 132 | + steps=5, |
| 133 | + corrector_steps=2, |
| 134 | + start_time=1.0, |
| 135 | + stop_time=0.0, |
| 136 | + ) |
| 137 | + |
| 138 | + expected_shape = keras.ops.shape(compositional_state) |
| 139 | + actual_shape = keras.ops.shape(result) |
| 140 | + |
| 141 | + assert keras.ops.all(keras.ops.equal(expected_shape, actual_shape)), ( |
| 142 | + f"Expected shape {expected_shape}, got {actual_shape}" |
| 143 | + ) |
| 144 | + |
| 145 | + |
| 146 | +@pytest.mark.parametrize("noise_schedule_name", ["cosine", "edm"]) |
| 147 | +def test_compositional_sampling_with_different_schedules( |
| 148 | + noise_schedule_name, compositional_state, compositional_conditions, mock_prior_score |
| 149 | +): |
| 150 | + """Test compositional sampling with different noise schedules.""" |
| 151 | + from bayesflow.networks.diffusion_model import DiffusionModel |
| 152 | + from bayesflow.networks import MLP |
| 153 | + |
| 154 | + diffusion_model = DiffusionModel( |
| 155 | + subnet=MLP(widths=[32, 32]), |
| 156 | + noise_schedule=noise_schedule_name, |
| 157 | + prediction_type="noise", |
| 158 | + loss_type="noise", |
| 159 | + ) |
| 160 | + |
| 161 | + state_shape = keras.ops.shape(compositional_state) |
| 162 | + conditions_shape = keras.ops.shape(compositional_conditions) |
| 163 | + diffusion_model.build(state_shape, conditions_shape) |
| 164 | + |
| 165 | + score = diffusion_model.compositional_score( |
| 166 | + xz=compositional_state, |
| 167 | + time=0.5, |
| 168 | + conditions=compositional_conditions, |
| 169 | + compute_prior_score=mock_prior_score, |
| 170 | + training=False, |
| 171 | + ) |
| 172 | + |
| 173 | + expected_shape = keras.ops.shape(compositional_state) |
| 174 | + actual_shape = keras.ops.shape(score) |
| 175 | + |
| 176 | + assert keras.ops.all(keras.ops.equal(expected_shape, actual_shape)), ( |
| 177 | + f"Expected shape {expected_shape}, got {actual_shape}" |
| 178 | + ) |
0 commit comments