|
1 | 1 | import keras |
2 | 2 | import pytest |
3 | 3 |
|
4 | | -# Import the dispatch functions |
5 | | -from bayesflow.utils import find_network, find_permutation, find_pooling, find_recurrent_net |
6 | | -from tests.utils import assert_allclose |
| 4 | +from bayesflow.utils import find_inference_network, find_distribution, find_summary_network |
7 | 5 |
|
8 | | -# --- Tests for find_network.py --- |
9 | 6 |
|
| 7 | +# --- Tests for find_inference_network.py --- |
10 | 8 |
|
11 | | -class DummyMLP: |
12 | | - def __init__(self, *args, **kwargs): |
13 | | - self.args = args |
14 | | - self.kwargs = kwargs |
15 | 9 |
|
| 10 | +class DummyInferenceNetwork: |
| 11 | + def __init__(self, *a, **kw): |
| 12 | + self.args = a |
| 13 | + self.kwargs = kw |
16 | 14 |
|
17 | | -def test_find_network_with_string(monkeypatch): |
18 | | - # Monkeypatch the MLP entry in bayesflow.networks |
19 | | - monkeypatch.setattr("bayesflow.networks.MLP", DummyMLP) |
20 | | - |
21 | | - net = find_network("mlp", 1, key="value") |
22 | | - assert isinstance(net, DummyMLP) |
23 | | - assert net.args == (1,) |
24 | | - assert net.kwargs == {"key": "value"} |
25 | 15 |
|
| 16 | +@pytest.mark.parametrize( |
| 17 | + "name,expected_class_path", |
| 18 | + [ |
| 19 | + ("coupling_flow", "bayesflow.networks.CouplingFlow"), |
| 20 | + ("flow_matching", "bayesflow.networks.FlowMatching"), |
| 21 | + ("consistency_model", "bayesflow.networks.ConsistencyModel"), |
| 22 | + ], |
| 23 | +) |
| 24 | +def test_find_inference_network_by_name(monkeypatch, name, expected_class_path): |
| 25 | + # patch the expected class in bayesflow.networks |
| 26 | + components = expected_class_path.split(".") |
| 27 | + module_path = ".".join(components[:-1]) |
| 28 | + class_name = components[-1] |
26 | 29 |
|
27 | | -def test_find_network_with_type(): |
28 | | - class CustomNet: |
29 | | - def __init__(self, x): |
30 | | - self.x = x |
| 30 | + dummy_cls = DummyInferenceNetwork |
| 31 | + monkeypatch.setattr(f"{module_path}.{class_name}", dummy_cls) |
31 | 32 |
|
32 | | - net = find_network(CustomNet, 42) |
33 | | - assert isinstance(net, CustomNet) |
34 | | - assert net.x == 42 |
| 33 | + net = find_inference_network(name, 1, key="val") |
| 34 | + assert isinstance(net, DummyInferenceNetwork) |
| 35 | + assert net.args == (1,) |
| 36 | + assert net.kwargs == {"key": "val"} |
35 | 37 |
|
36 | 38 |
|
37 | | -def test_find_network_with_keras_layer(): |
| 39 | +def test_find_inference_network_by_keras_layer(): |
38 | 40 | layer = keras.layers.Dense(10) |
39 | | - returned = find_network(layer) |
40 | | - assert returned is layer |
41 | | - |
42 | | - |
43 | | -def test_find_network_invalid_type(): |
44 | | - with pytest.raises(TypeError): |
45 | | - find_network(123) |
| 41 | + result = find_inference_network(layer) |
| 42 | + assert result is layer |
46 | 43 |
|
47 | 44 |
|
48 | | -# --- Tests for find_permutation.py --- |
| 45 | +def test_find_inference_network_by_keras_model(): |
| 46 | + model = keras.models.Sequential() |
| 47 | + result = find_inference_network(model) |
| 48 | + assert result is model |
49 | 49 |
|
50 | 50 |
|
51 | | -class DummyRandomPermutation: |
52 | | - def __init__(self, *args, **kwargs): |
53 | | - self.args = args |
54 | | - self.kwargs = kwargs |
| 51 | +def test_find_inference_network_unknown_name(): |
| 52 | + with pytest.raises(ValueError): |
| 53 | + find_inference_network("unknown_network_name") |
55 | 54 |
|
56 | 55 |
|
57 | | -class DummySwap: |
58 | | - def __init__(self, *args, **kwargs): |
59 | | - self.args = args |
60 | | - self.kwargs = kwargs |
| 56 | +def test_find_inference_network_invalid_type(): |
| 57 | + with pytest.raises(TypeError): |
| 58 | + find_inference_network(12345) |
61 | 59 |
|
62 | 60 |
|
63 | | -class DummyOrthogonalPermutation: |
64 | | - def __init__(self, *args, **kwargs): |
65 | | - self.args = args |
66 | | - self.kwargs = kwargs |
| 61 | +# --- Tests for find_distribution.py --- |
67 | 62 |
|
68 | 63 |
|
69 | | -def test_find_permutation_random(monkeypatch): |
70 | | - type("dummy_mod", (), {"RandomPermutation": DummyRandomPermutation}) |
71 | | - monkeypatch.setattr("bayesflow.networks.coupling_flow.permutations.RandomPermutation", DummyRandomPermutation) |
72 | | - perm = find_permutation("random", 99, flag=True) |
73 | | - assert isinstance(perm, DummyRandomPermutation) |
74 | | - assert perm.args == (99,) |
75 | | - assert perm.kwargs == {"flag": True} |
| 64 | +class DummyDistribution: |
| 65 | + def __init__(self, *a, **kw): |
| 66 | + self.args = a |
| 67 | + self.kwargs = kw |
76 | 68 |
|
77 | 69 |
|
78 | 70 | @pytest.mark.parametrize( |
79 | | - "name,dummy_cls", |
80 | | - [("swap", DummySwap), ("learnable", DummyOrthogonalPermutation), ("orthogonal", DummyOrthogonalPermutation)], |
| 71 | + "name, expected_class_path", |
| 72 | + [ |
| 73 | + ("normal", "bayesflow.distributions.DiagonalNormal"), |
| 74 | + ("student", "bayesflow.distributions.DiagonalStudentT"), |
| 75 | + ("student-t", "bayesflow.distributions.DiagonalStudentT"), |
| 76 | + ("student_t", "bayesflow.distributions.DiagonalStudentT"), |
| 77 | + ], |
81 | 78 | ) |
82 | | -def test_find_permutation_by_name(monkeypatch, name, dummy_cls): |
83 | | - # Inject dummy classes for each permutation type |
84 | | - if name == "swap": |
85 | | - monkeypatch.setattr("bayesflow.networks.coupling_flow.permutations.Swap", dummy_cls) |
86 | | - else: |
87 | | - monkeypatch.setattr("bayesflow.networks.coupling_flow.permutations.OrthogonalPermutation", dummy_cls) |
88 | | - perm = find_permutation(name, "a", b="c") |
89 | | - assert isinstance(perm, dummy_cls) |
90 | | - assert perm.args == ("a",) |
91 | | - assert perm.kwargs == {"b": "c"} |
92 | | - |
| 79 | +def test_find_distribution_by_name(monkeypatch, name, expected_class_path): |
| 80 | + components = expected_class_path.split(".") |
| 81 | + module_path = ".".join(components[:-1]) |
| 82 | + class_name = components[-1] |
93 | 83 |
|
94 | | -def test_find_permutation_with_keras_layer(): |
95 | | - layer = keras.layers.Activation("relu") |
96 | | - perm = find_permutation(layer) |
97 | | - assert perm is layer |
| 84 | + dummy_cls = DummyDistribution |
| 85 | + monkeypatch.setattr(f"{module_path}.{class_name}", dummy_cls) |
98 | 86 |
|
| 87 | + dist = find_distribution(name, 10, a=5) |
| 88 | + assert isinstance(dist, DummyDistribution) |
| 89 | + assert dist.args == (10,) |
| 90 | + assert dist.kwargs == {"a": 5} |
99 | 91 |
|
100 | | -def test_find_permutation_with_none(): |
101 | | - res = find_permutation(None) |
102 | | - assert res is None |
103 | | - |
104 | | - |
105 | | -def test_find_permutation_invalid_type(): |
106 | | - with pytest.raises(TypeError): |
107 | | - find_permutation(3.14) |
108 | 92 |
|
| 93 | +def test_find_distribution_none_returns_none(): |
| 94 | + assert find_distribution(None) is None |
109 | 95 |
|
110 | | -# --- Tests for find_pooling.py --- |
111 | 96 |
|
| 97 | +def test_find_distribution_with_keras_layer(): |
| 98 | + layer = keras.layers.Dense(3) |
| 99 | + result = find_distribution(layer) |
| 100 | + assert result is layer |
112 | 101 |
|
113 | | -def dummy_pooling_constructor(*args, **kwargs): |
114 | | - return {"args": args, "kwargs": kwargs} |
115 | 102 |
|
| 103 | +def test_find_distribution_mixture_raises(): |
| 104 | + with pytest.raises(ValueError): |
| 105 | + find_distribution("mixture") |
116 | 106 |
|
117 | | -def test_find_pooling_mean(): |
118 | | - pooling = find_pooling("mean") |
119 | | - # Check that a keras Lambda layer is returned |
120 | | - assert isinstance(pooling, keras.layers.Lambda) |
121 | | - # Test that the lambda function produces a mean when applied to a sample tensor. |
122 | | - |
123 | | - sample = keras.ops.convert_to_tensor([[1, 2], [3, 4]]) |
124 | | - # Keras Lambda layers expect tensors via call(), here we simply call the layer's function. |
125 | | - result = pooling.call(sample) |
126 | | - assert_allclose(result, keras.ops.mean(sample, axis=-2)) |
127 | | - |
128 | | - |
129 | | -@pytest.mark.parametrize("name,func", [("max", keras.ops.max), ("min", keras.ops.min)]) |
130 | | -def test_find_pooling_max_min(name, func): |
131 | | - pooling = find_pooling(name) |
132 | | - assert isinstance(pooling, keras.layers.Lambda) |
133 | | - |
134 | | - sample = keras.ops.convert_to_tensor([[1, 2], [3, 4]]) |
135 | | - result = pooling.call(sample) |
136 | | - assert_allclose(result, func(sample, axis=-2)) |
137 | | - |
138 | | - |
139 | | -def test_find_pooling_learnable(monkeypatch): |
140 | | - # Monkey patch the PoolingByMultiHeadAttention in its module |
141 | | - class DummyPoolingAttention: |
142 | | - def __init__(self, *args, **kwargs): |
143 | | - self.args = args |
144 | | - self.kwargs = kwargs |
145 | | - |
146 | | - monkeypatch.setattr("bayesflow.networks.transformers.pma.PoolingByMultiHeadAttention", DummyPoolingAttention) |
147 | | - pooling = find_pooling("learnable", 7, option="test") |
148 | | - assert isinstance(pooling, DummyPoolingAttention) |
149 | | - assert pooling.args == (7,) |
150 | | - assert pooling.kwargs == {"option": "test"} |
151 | 107 |
|
| 108 | +def test_find_distribution_invalid_name(): |
| 109 | + with pytest.raises(ValueError): |
| 110 | + find_distribution("invalid_name") |
152 | 111 |
|
153 | | -def test_find_pooling_with_constructor(): |
154 | | - # Passing a type should result in an instance. |
155 | | - class DummyPooling: |
156 | | - def __init__(self, data): |
157 | | - self.data = data |
158 | 112 |
|
159 | | - pooling = find_pooling(DummyPooling, "dummy") |
160 | | - assert isinstance(pooling, DummyPooling) |
161 | | - assert pooling.data == "dummy" |
| 113 | +def test_find_distribution_invalid_type(): |
| 114 | + with pytest.raises(TypeError): |
| 115 | + find_distribution(3.14) |
162 | 116 |
|
163 | 117 |
|
164 | | -def test_find_pooling_with_keras_layer(): |
165 | | - layer = keras.layers.ReLU() |
166 | | - pooling = find_pooling(layer) |
167 | | - assert pooling is layer |
| 118 | +# --- Tests for find_summary_network.py --- |
168 | 119 |
|
169 | 120 |
|
170 | | -def test_find_pooling_invalid_type(): |
171 | | - with pytest.raises(TypeError): |
172 | | - find_pooling(123) |
| 121 | +class DummySummaryNetwork: |
| 122 | + def __init__(self, *a, **kw): |
| 123 | + self.args = a |
| 124 | + self.kwargs = kw |
173 | 125 |
|
174 | 126 |
|
175 | | -# --- Tests for find_recurrent_net.py --- |
| 127 | +@pytest.mark.parametrize( |
| 128 | + "name,expected_class_path", |
| 129 | + [ |
| 130 | + ("deep_set", "bayesflow.networks.DeepSet"), |
| 131 | + ("set_transformer", "bayesflow.networks.SetTransformer"), |
| 132 | + ("fusion_transformer", "bayesflow.networks.FusionTransformer"), |
| 133 | + ("time_series_transformer", "bayesflow.networks.TimeSeriesTransformer"), |
| 134 | + ("time_series_network", "bayesflow.networks.TimeSeriesNetwork"), |
| 135 | + ], |
| 136 | +) |
| 137 | +def test_find_summary_network_by_name(monkeypatch, name, expected_class_path): |
| 138 | + components = expected_class_path.split(".") |
| 139 | + module_path = ".".join(components[:-1]) |
| 140 | + class_name = components[-1] |
176 | 141 |
|
| 142 | + dummy_cls = DummySummaryNetwork |
| 143 | + monkeypatch.setattr(f"{module_path}.{class_name}", dummy_cls) |
177 | 144 |
|
178 | | -def test_find_recurrent_net_lstm(): |
179 | | - constructor = find_recurrent_net("lstm") |
180 | | - assert constructor is keras.layers.LSTM |
| 145 | + net = find_summary_network(name, 22, flag=True) |
| 146 | + assert isinstance(net, DummySummaryNetwork) |
| 147 | + assert net.args == (22,) |
| 148 | + assert net.kwargs == {"flag": True} |
181 | 149 |
|
182 | 150 |
|
183 | | -def test_find_recurrent_net_gru(): |
184 | | - constructor = find_recurrent_net("gru") |
185 | | - assert constructor is keras.layers.GRU |
| 151 | +def test_find_summary_network_by_keras_layer(): |
| 152 | + layer = keras.layers.Dense(1) |
| 153 | + out = find_summary_network(layer) |
| 154 | + assert out is layer |
186 | 155 |
|
187 | 156 |
|
188 | | -def test_find_recurrent_net_with_keras_layer(): |
189 | | - layer = keras.layers.SimpleRNN(5) |
190 | | - net = find_recurrent_net(layer) |
191 | | - assert net is layer |
| 157 | +def test_find_summary_network_by_keras_model(): |
| 158 | + model = keras.models.Sequential() |
| 159 | + out = find_summary_network(model) |
| 160 | + assert out is model |
192 | 161 |
|
193 | 162 |
|
194 | | -def test_find_recurrent_net_invalid_name(): |
| 163 | +def test_find_summary_network_unknown_name(): |
195 | 164 | with pytest.raises(ValueError): |
196 | | - find_recurrent_net("invalid_net") |
| 165 | + find_summary_network("unknown_summary_net") |
197 | 166 |
|
198 | 167 |
|
199 | | -def test_find_recurrent_net_invalid_type(): |
| 168 | +def test_find_summary_network_invalid_type(): |
200 | 169 | with pytest.raises(TypeError): |
201 | | - find_recurrent_net(3.1415) |
| 170 | + find_summary_network(0.1234) |
0 commit comments