|
1 | 1 | import pytest |
2 | 2 |
|
| 3 | +import keras |
3 | 4 |
|
4 | | -@pytest.fixture() |
5 | | -def inference_network(): |
6 | | - from bayesflow.networks import CouplingFlow |
| 5 | +from bayesflow.utils.serialization import serializable |
7 | 6 |
|
8 | | - return CouplingFlow(depth=2) |
9 | 7 |
|
| 8 | +@pytest.fixture(params=["coupling_flow", "flow_matching"]) |
| 9 | +def inference_network(request): |
| 10 | + if request.param == "coupling_flow": |
| 11 | + from bayesflow.networks import CouplingFlow |
10 | 12 |
|
11 | | -@pytest.fixture() |
12 | | -def summary_network(): |
13 | | - from bayesflow.networks import TimeSeriesTransformer |
| 13 | + return CouplingFlow(depth=2) |
14 | 14 |
|
15 | | - return TimeSeriesTransformer(embed_dims=(8, 8), mlp_widths=(32, 32), mlp_depths=(1, 1)) |
| 15 | + elif request.param == "flow_matching": |
| 16 | + from bayesflow.networks import FlowMatching |
| 17 | + |
| 18 | + return FlowMatching(subnet_kwargs=dict(widths=(32, 32)), use_optimal_transport=False) |
| 19 | + |
| 20 | + |
| 21 | +@pytest.fixture(params=["time_series_transformer", "fusion_transformer", "time_series_network", "custom"]) |
| 22 | +def summary_network(request): |
| 23 | + if request.param == "time_series_transformer": |
| 24 | + from bayesflow.networks import TimeSeriesTransformer |
| 25 | + |
| 26 | + return TimeSeriesTransformer(embed_dims=(8, 8), mlp_widths=(16, 8), mlp_depths=(1, 1)) |
| 27 | + |
| 28 | + elif request.param == "fusion_transformer": |
| 29 | + from bayesflow.networks import FusionTransformer |
| 30 | + |
| 31 | + return FusionTransformer( |
| 32 | + embed_dims=(8, 8), mlp_widths=(8, 16), mlp_depths=(2, 1), template_dim=8, bidirectional=False |
| 33 | + ) |
| 34 | + |
| 35 | + elif request.param == "time_series_network": |
| 36 | + from bayesflow.networks import TimeSeriesNetwork |
| 37 | + |
| 38 | + return TimeSeriesNetwork(filters=4, skip_steps=2) |
| 39 | + |
| 40 | + elif request.param == "custom": |
| 41 | + from bayesflow.networks import SummaryNetwork |
| 42 | + |
| 43 | + @serializable |
| 44 | + class Custom(SummaryNetwork): |
| 45 | + def __init__(self, **kwargs): |
| 46 | + super().__init__(**kwargs) |
| 47 | + self.inner = keras.Sequential([keras.layers.LSTM(8), keras.layers.Dense(4)]) |
| 48 | + |
| 49 | + def call(self, x, **kwargs): |
| 50 | + return self.inner(x, training=kwargs.get("stage") == "training") |
| 51 | + |
| 52 | + return Custom() |
0 commit comments