Skip to content

Commit e32b1fb

Browse files
Albert Alonsofmfn
authored andcommitted
Apply a 81 char limit on the docs length.
1 parent c691ef1 commit e32b1fb

File tree

1 file changed

+25
-16
lines changed

1 file changed

+25
-16
lines changed

bayes_opt/bayesian_optimization.py

Lines changed: 25 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -64,20 +64,23 @@ def dispatch(self, event):
6464

6565
class BayesianOptimization(Observable):
6666
"""
67-
This class takes the function to optimize as well as the parameters bounds in order to
68-
find which values for the parameters yield the maximum value using bayesian optimization.
67+
This class takes the function to optimize as well as the parameters bounds
68+
in order to find which values for the parameters yield the maximum value
69+
using bayesian optimization.
6970
7071
Parameters
7172
----------
7273
f: function
7374
Function to be maximized.
7475
7576
pbounds: dict
76-
Dictionary with parameters names as keys and a tuple with minimum and maximum values.
77+
Dictionary with parameters names as keys and a tuple with minimum
78+
and maximum values.
7779
7880
random_state: int or numpy.random.RandomState, optional(default=None)
79-
If the value is an integer, it is used as the seed for creating a numpy.random.RandomState.
80-
Otherwise the random state provieded it is used. When set to None, an unseeded random state is generated.
81+
If the value is an integer, it is used as the seed for creating a
82+
numpy.random.RandomState. Otherwise the random state provieded it is used.
83+
When set to None, an unseeded random state is generated.
8184
8285
verbose: int, optional(default=2)
8386
The level of verbosity.
@@ -88,24 +91,24 @@ class BayesianOptimization(Observable):
8891
Methods
8992
-------
9093
probe()
91-
Evaluates the function on the given points. Can be used to guide the optimizer.
94+
Evaluates the function on the given points.
95+
Can be used to guide the optimizer.
9296
9397
maximize()
94-
Tries to find the parameters that yield the maximum value for the given function.
98+
Tries to find the parameters that yield the maximum value for the
99+
given function.
95100
96101
set_bounds()
97102
Allows changing the lower and upper searching bounds
98103
"""
99104
def __init__(self, f, pbounds, random_state=None, verbose=2,
100105
bounds_transformer=None):
101-
""""""
102106
self._random_state = ensure_rng(random_state)
103107

104108
# Data structure containing the function to be optimized, the bounds of
105109
# its domain, and a record of the evaluations we have done so far
106110
self._space = TargetSpace(f, pbounds, random_state)
107111

108-
# queue
109112
self._queue = Queue()
110113

111114
# Internal GP regressor
@@ -151,8 +154,8 @@ def probe(self, params, lazy=True):
151154
The parameters where the optimizer will evaluate the function.
152155
153156
lazy: bool, optional(default=True)
154-
If True, the optimizer will evaluate the points when calling maximize().
155-
Otherwise it will evaluate it at the moment.
157+
If True, the optimizer will evaluate the points when calling
158+
maximize(). Otherwise it will evaluate it at the moment.
156159
"""
157160
if lazy:
158161
self._queue.add(params)
@@ -207,15 +210,18 @@ def maximize(self,
207210
xi=0.0,
208211
**gp_params):
209212
"""
210-
Probes the target space to find the parameters that yield the maximum value for the given function.
213+
Probes the target space to find the parameters that yield the maximum
214+
value for the given function.
211215
212216
Parameters
213217
----------
214218
init_points : int, optional(default=5)
215-
Number of iterations before the explorations starts the exploration for the maximum.
219+
Number of iterations before the explorations starts the exploration
220+
for the maximum.
216221
217222
n_iter: int, optional(default=25)
218-
Number of iterations where the method attempts to find the maximum value.
223+
Number of iterations where the method attempts to find the maximum
224+
value.
219225
220226
acq: {'ucb', 'ei', 'poi'}
221227
The acquisition method used.
@@ -226,13 +232,15 @@ def maximize(self,
226232
kappa: float, optional(default=2.576)
227233
Parameter to indicate how closed are the next parameters sampled.
228234
Higher value = favors spaces that are least explored.
229-
Lower value = favors spaces where the regression function is the highest.
235+
Lower value = favors spaces where the regression function is the
236+
highest.
230237
231238
kappa_decay: float, optional(default=1)
232239
`kappa` is multiplied by this factor every iteration.
233240
234241
kappa_decay_delay: int, optional(default=0)
235-
Number of iterations that must have passed before applying the decay to `kappa`.
242+
Number of iterations that must have passed before applying the decay
243+
to `kappa`.
236244
237245
xi: float, optional(default=0.0)
238246
[unused]
@@ -276,4 +284,5 @@ def set_bounds(self, new_bounds):
276284
self._space.set_bounds(new_bounds)
277285

278286
def set_gp_params(self, **params):
287+
"""Set parameters to the internal Gaussian Process Regressor"""
279288
self._gp.set_params(**params)

0 commit comments

Comments
 (0)