@@ -46,10 +46,11 @@ def cv_predictiveness(x, y, S, measure, pred_func, V = 5, stratified = True, na_
4646 if ensemble :
4747 preds_v = np .mean (pred_func .transform (x_train [:, S ]))
4848 else :
49- if measure .__name__ in ["r_squared" ]:
50- preds_v = pred_func .predict (x_train [:, S ])
51- else :
49+ try :
5250 preds_v = pred_func .predict_proba (x_train [:, S ])[:, 1 ]
51+ except AttributeError :
52+ preds_v = pred_func .predict (x_train [:, S ])
53+
5354 preds [cc_cond ] = preds_v
5455 vs [0 ] = measure (y_train , preds_v )
5556 ics [cc_cond ] = compute_ic (y_train , preds_v , measure .__name__ )
@@ -62,10 +63,11 @@ def cv_predictiveness(x, y, S, measure, pred_func, V = 5, stratified = True, na_
6263 if ensemble :
6364 preds_v = np .mean (pred_func .transform (x_test [:, S ]))
6465 else :
65- if measure .__name__ in ["r_squared" ]:
66- preds_v = pred_func .predict (x_test [:, S ])
67- else :
66+ try :
6867 preds_v = pred_func .predict_proba (x_test [:, S ])[:, 1 ]
68+ except AttributeError :
69+ preds_v = pred_func .predict (x_test [:, S ])
70+
6971 preds [cc_cond [fold_cond ]] = preds_v
7072 vs [v ] = measure (y_test , preds_v )
7173 ics [cc_cond [fold_cond ]] = compute_ic (y_test , preds_v , measure .__name__ )
0 commit comments