@@ -133,29 +133,7 @@ vimp_precompute.hyp_test_
133133# # -------------------------------------------------------------
134134# # get variable importance estimates using cross-validation
135135# # -------------------------------------------------------------
136- np.random.seed(5678 )
137- folds_inner_1 = np.random.choice(a = np.arange(5 ), size = np.sum(folds_outer == 1 ), replace = True )
138- folds_inner_0 = np.random.choice(a = np.arange(5 ), size = np.sum(folds_outer == 0 ), replace = True )
139- folds = [folds_outer, folds_inner_1, folds_inner_0]
140- x_1, y_1 = x[folds_outer == 1 , :], y[folds_outer == 1 ]
141- x_0, y_0 = x[folds_outer == 0 , :], y[folds_outer == 0 ]
142- preds_f = np.empty((y_1.shape[0 ],))
143- preds_f.fill(np.nan)
144- preds_r = np.empty((y_0.shape[0 ],))
145- preds_r.fill(np.nan)
146- for v in range (5 ):
147- fold_cond_1 = np.flatnonzero(folds_inner_1 == v)
148- fold_cond_0 = np.flatnonzero(folds_inner_0 == v)
149- x_train_0, y_train_0 = x_0[folds_inner_0 != v, :], y_0[folds_inner_0 != v]
150- x_test_0, y_test_0 = x_0[folds_inner_0 == v, :], y_0[folds_inner_0 == v]
151- x_train_1, y_train_1 = x_1[folds_inner_1 != v, :], y_1[folds_inner_1 != v]
152- x_test_1, y_test_1 = x_1[folds_inner_1 == v, :], y_1[folds_inner_1 == v]
153- cv_full.fit(x_train_1, np.ravel(y_train_1))
154- preds_v_1 = cv_full.predict(x_test_1)
155- cv_full.fit(x_train_0[:, np.delete(np.arange(p), 1 )], np.ravel(y_train_0))
156- preds_v_0 = cv_full.predict(x_test_0[:, np.delete(np.arange(p), 1 )])
157- preds_f[fold_cond_1] = preds_v_1
158- preds_r[fold_cond_0] = preds_v_0
136+ np.random.seed(12345 )
159137# # set up the vimp object
160138vimp_cv = vimpy.cv_vim(y = y, x = x, s = 1 , pred_func = cv_full, V = 5 , measure_type = " r_squared" )
161139# # get the point estimate
0 commit comments