Skip to content

Commit 3ea4a23

Browse files
committed
update: remove todos (create a new branch)
1 parent 783c119 commit 3ea4a23

File tree

1 file changed

+3
-189
lines changed

1 file changed

+3
-189
lines changed

src/postprocess/scripts/postprocessing_template.ipynb

Lines changed: 3 additions & 189 deletions
Original file line numberDiff line numberDiff line change
@@ -93,9 +93,7 @@
9393
"outputs": [],
9494
"source": [
9595
"files_watch_summary = data_access.summarise_files_in_directory(cfg)\n",
96-
"files_watch_summary\n",
97-
"\n",
98-
"# TODO: fix this warning []"
96+
"files_watch_summary"
9997
]
10098
},
10199
{
@@ -183,14 +181,6 @@
183181
"raw_data_full.head()"
184182
]
185183
},
186-
{
187-
"cell_type": "markdown",
188-
"id": "627b216b-03c1-4e05-a2d9-619710b35445",
189-
"metadata": {},
190-
"source": [
191-
"Note: The first value in the `timeDifference` column is `NaN` because [TODO:]"
192-
]
193-
},
194184
{
195185
"cell_type": "markdown",
196186
"id": "312181a7-80e7-4e04-a617-cae3f6d803c7",
@@ -233,68 +223,14 @@
233223
"## Visualization"
234224
]
235225
},
236-
{
237-
"cell_type": "markdown",
238-
"id": "d41ffd18-652e-4e98-921c-5753aca89ce3",
239-
"metadata": {},
240-
"source": [
241-
"Coarse overview of time-series\n",
242-
"TODO"
243-
]
244-
},
245226
{
246227
"cell_type": "code",
247228
"execution_count": null,
248229
"id": "cc0e2a43-2484-4c57-9dc7-87f3102d1ea7",
249230
"metadata": {},
250231
"outputs": [],
251232
"source": [
252-
"reporting.plotly_data(raw_data_trimmed, cfg)\n",
253-
"\n",
254-
"#TODO 4 second bins (efficiency)"
255-
]
256-
},
257-
{
258-
"cell_type": "code",
259-
"execution_count": null,
260-
"id": "4d13fd7b-a6c0-4009-a0d2-0cd497b4be5e",
261-
"metadata": {},
262-
"outputs": [],
263-
"source": [
264-
"# Datashader\n",
265-
"import xarray as xr\n",
266-
"import datashader as ds\n",
267-
"import datashader.transfer_functions as tf\n",
268-
"\n",
269-
"\n",
270-
"def get_ds_aggs(df, name_y, h=1500, w=4000):\n",
271-
" # datashader does not have native date support -- convert time to int\n",
272-
" d = df.copy()\n",
273-
" d.loc[:, \"ITime\"] = d[\"time\"].astype(\"int64\")\n",
274-
" d.sort_values(\"ITime\", inplace=True)\n",
275-
" dx_min = d[\"ITime\"].min() # For manual scaling of img\n",
276-
" dx_max = d[\"ITime\"].max()\n",
277-
" dy_min = d[name_y].min() - 2\n",
278-
" dy_max = d[name_y].max() + 2\n",
279-
"\n",
280-
" # For multiple plots (each HR timeseries), cvs must be same size\n",
281-
" cvs = ds.Canvas(\n",
282-
" x_range=(dx_min, dx_max), y_range=(dy_min, dy_max), plot_height=h, plot_width=w\n",
283-
" )\n",
284-
" aggs = {}\n",
285-
" for c in d[\"watchId\"].unique():\n",
286-
" aggs[c] = cvs.line(d[d[\"watchId\"] == c], \"ITime\", name_y)\n",
287-
" return aggs\n",
288-
"\n",
289-
"\n",
290-
"def plot_raw_individual_watches(df, config_dat, value=\"heartRate\"):\n",
291-
" dir_fig_out = config_dat[\"directories\"][\"figures\"]\n",
292-
" df_agg = get_ds_aggs(df, value)\n",
293-
" for w in df_agg.keys():\n",
294-
" img = tf.shade(df_agg[w])\n",
295-
" ds.utils.export_image(img, dir_fig_out + f\"fig_raw_{value}_{w}\")\n",
296-
"\n",
297-
"plot_raw_individual_watches(raw_data_trimmed, cfg, value=\"ppgRaw\")"
233+
"reporting.plotly_data(raw_data_trimmed, cfg)"
298234
]
299235
},
300236
{
@@ -353,8 +289,7 @@
353289
"metadata": {},
354290
"outputs": [],
355291
"source": [
356-
"resampled_data_HR_1000ms.reset_index('time', inplace=True)\n",
357-
"# TODO: fix plotting for resampled df\n"
292+
"resampled_data_HR_1000ms.reset_index('time', inplace=True)"
358293
]
359294
},
360295
{
@@ -366,127 +301,6 @@
366301
"source": [
367302
"reporting.plotly_data(resampled_data_HR_1000ms, cfg)"
368303
]
369-
},
370-
{
371-
"cell_type": "markdown",
372-
"id": "641e0d26-9d39-4193-b171-c02594c5b1e4",
373-
"metadata": {},
374-
"source": [
375-
"## PPG processing"
376-
]
377-
},
378-
{
379-
"cell_type": "markdown",
380-
"id": "a1499ff5-7484-420d-a066-df4f5f4ce386",
381-
"metadata": {},
382-
"source": []
383-
},
384-
{
385-
"cell_type": "code",
386-
"execution_count": null,
387-
"id": "2f8516d3-16a6-4709-8f45-259e92292814",
388-
"metadata": {},
389-
"outputs": [],
390-
"source": [
391-
"raw_data_trimmed.reset_index(inplace=True) # TODO: Fix in resample_PPG()\n",
392-
"\n",
393-
"resampled_data_PPG_25ms = pipelines.resample_PPG(\n",
394-
" raw_data_trimmed, cfg, save_data=True\n",
395-
")\n",
396-
"# TODO: Fix warning"
397-
]
398-
},
399-
{
400-
"cell_type": "code",
401-
"execution_count": null,
402-
"id": "9438a7c7-d6b4-4edf-b043-9e85152496f1",
403-
"metadata": {},
404-
"outputs": [],
405-
"source": [
406-
"resampled_data_PPG_25ms\n",
407-
"\n",
408-
"# Plot output -- compare to original signal"
409-
]
410-
},
411-
{
412-
"cell_type": "markdown",
413-
"id": "5b2d351a-eddd-4b9b-99dd-fe42f06cedbb",
414-
"metadata": {},
415-
"source": [
416-
"## Peak finding"
417-
]
418-
},
419-
{
420-
"cell_type": "code",
421-
"execution_count": null,
422-
"id": "443249d5-bb91-4a29-af75-ecbf77d1fe2e",
423-
"metadata": {},
424-
"outputs": [],
425-
"source": [
426-
"PPG_peaks = pipelines.PPG_find_peaks(resampled_data_PPG_25ms, cfg)\n",
427-
"PPG_peaks"
428-
]
429-
},
430-
{
431-
"cell_type": "code",
432-
"execution_count": null,
433-
"id": "7c5b1cd2-fd19-4486-ace3-e693362c101d",
434-
"metadata": {},
435-
"outputs": [],
436-
"source": []
437-
},
438-
{
439-
"cell_type": "code",
440-
"execution_count": null,
441-
"id": "dc5c7797-36fd-44b6-ac4d-c785281ac712",
442-
"metadata": {},
443-
"outputs": [],
444-
"source": [
445-
"PPG_peaks['PPG_PeaksAlt'] = PPG_peaks['PPG_Peaks'] * PPG_peaks['PPG_Clean'].std() * 3\n",
446-
"PPG_peaks.loc[PPG_peaks['watchId'] == 'W020', ['PPG_Clean', 'PPG_PeaksAlt']].plot(figsize=(1000,5))"
447-
]
448-
},
449-
{
450-
"cell_type": "markdown",
451-
"id": "a6d60aac-c751-41bf-99ee-d83a1ba65afd",
452-
"metadata": {},
453-
"source": [
454-
"TODO:\n",
455-
"\n",
456-
"Plot comparison of PPG HR and heartRate (from bangle)\n",
457-
"\n",
458-
"more meaningful function names\n",
459-
"\n",
460-
"consistent index axis names\n",
461-
"\n",
462-
"rename plot_raw_data? generalize to any data? also handle resampling.\n",
463-
"\n",
464-
"final data frame PPG-based HRV"
465-
]
466-
},
467-
{
468-
"cell_type": "markdown",
469-
"id": "f7c75b73-6ae5-4b59-af15-8a2b92406121",
470-
"metadata": {},
471-
"source": [
472-
"# More"
473-
]
474-
},
475-
{
476-
"cell_type": "markdown",
477-
"id": "608562f5-85c4-461a-bf70-b0c8172276a4",
478-
"metadata": {},
479-
"source": [
480-
"## Read processed data"
481-
]
482-
},
483-
{
484-
"cell_type": "code",
485-
"execution_count": null,
486-
"id": "560ed64e-8bd7-4b40-bdce-6690ecdb8b1f",
487-
"metadata": {},
488-
"outputs": [],
489-
"source": []
490304
}
491305
],
492306
"metadata": {

0 commit comments

Comments
 (0)