|
24 | 24 | "metadata": {}, |
25 | 25 | "outputs": [], |
26 | 26 | "source": [ |
27 | | - "OUTPUT_FOLDER = \"/mnt/colab_public/datasets/joao/mteb_results/\"\n", |
| 27 | + "OUTPUT_FOLDER = \"./mteb_results/\"\n", |
28 | 28 | "DEVICE = \"cuda:0\"\n", |
29 | 29 | "BATCH_SIZE=32\n", |
30 | 30 | "MAX_INPUT_LEN = 10000\n", |
|
57 | 57 | " super().__init__()\n", |
58 | 58 | "\n", |
59 | 59 | " self.model_name = model_name\n", |
60 | | - " self.tokenizer = prepare_tokenizer(model_name)\n", |
| 60 | + " self.tokenizer = prepare_tokenizer(model_name, use_auth_token=True)\n", |
61 | 61 | " self.encoder = AutoModel.from_pretrained(model_name, use_auth_token=True).to(DEVICE).eval()\n", |
62 | 62 | " self.device = device\n", |
63 | 63 | " self.max_input_len = max_input_len\n", |
|
88 | 88 | "\n", |
89 | 89 | " return [emb.squeeze().numpy() for emb in input_sentences_embedding]\n", |
90 | 90 | "\n", |
91 | | - "class BigCodeEncoder(BaseEncoder):\n", |
| 91 | + "class StarEncoder(BaseEncoder):\n", |
92 | 92 | "\n", |
93 | 93 | " def __init__(self, device, max_input_len, maximum_token_len):\n", |
94 | | - " super().__init__(device, max_input_len, maximum_token_len, model_name = \"bigcode/bigcode-encoder\")\n", |
| 94 | + " super().__init__(device, max_input_len, maximum_token_len, model_name = \"bigcode/starencoder\")\n", |
95 | 95 | " \n", |
96 | 96 | " def forward(self, input_sentences):\n", |
97 | 97 | "\n", |
|
152 | 152 | ], |
153 | 153 | "source": [ |
154 | 154 | "codebert = CodeBERT(DEVICE, MAX_INPUT_LEN, MAX_TOKEN_LEN)\n", |
155 | | - "bigcode_model = BigCodeEncoder(DEVICE, MAX_INPUT_LEN, MAX_TOKEN_LEN)" |
| 155 | + "starencoder = StarEncoder(DEVICE, MAX_INPUT_LEN, MAX_TOKEN_LEN)" |
156 | 156 | ] |
157 | 157 | }, |
158 | 158 | { |
|
167 | 167 | "]\n", |
168 | 168 | "\n", |
169 | 169 | "codebert_embeddings = codebert.encode(input_sentences)\n", |
170 | | - "bigcode_model_embeddings = bigcode_model.encode(input_sentences)\n" |
| 170 | + "starencoder_embeddings = starencoder.encode(input_sentences)\n" |
171 | 171 | ] |
172 | 172 | }, |
173 | 173 | { |
|
202 | 202 | } |
203 | 203 | ], |
204 | 204 | "source": [ |
205 | | - "results_bigcode_encoder = evaluation.run(\n", |
206 | | - " bigcode_model, \n", |
207 | | - " output_folder=os.path.join(OUTPUT_FOLDER, \"bigcode_encoder\"), \n", |
| 205 | + "results_starencoder = evaluation.run(\n", |
| 206 | + " starencoder, \n", |
| 207 | + " output_folder=os.path.join(OUTPUT_FOLDER, \"starencoder\"), \n", |
208 | 208 | " batch_size=BATCH_SIZE, \n", |
209 | 209 | " overwrite_results=True,)\n", |
210 | 210 | "\n", |
211 | | - "results_bigcode_encoder" |
| 211 | + "results_starencoder" |
212 | 212 | ] |
213 | 213 | }, |
214 | 214 | { |
|
0 commit comments