|
| 1 | + |
| 2 | +# usage: |
| 3 | +# deepspeed --num_gpus 1 bloom-inference.py --name bigscience/bloom-350m |
| 4 | +# |
| 5 | + |
| 6 | +#import glob |
| 7 | +from argparse import ArgumentParser |
| 8 | +from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig |
| 9 | +from transformers.deepspeed import HfDeepSpeedConfig |
| 10 | +from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock |
| 11 | +import deepspeed |
| 12 | +import io |
| 13 | +import json |
| 14 | +import os |
| 15 | +import torch |
| 16 | +import torch.distributed as dist |
| 17 | + |
| 18 | +parser = ArgumentParser() |
| 19 | + |
| 20 | +parser.add_argument("--name", required=True, type=str) |
| 21 | +parser.add_argument("--local_rank", required=False, type=int) |
| 22 | +parser.add_argument("--deepspeed", action="store_true") |
| 23 | +args = parser.parse_args() |
| 24 | + |
| 25 | +local_rank = int(os.getenv('LOCAL_RANK', '0')) |
| 26 | +world_size = int(os.getenv('WORLD_SIZE', '1')) |
| 27 | + |
| 28 | +def get_checkpoint_files(pretrained_model_name_or_path): |
| 29 | + # XXX: I just hacked this one together to automatically handle the fetching of the model file or |
| 30 | + # shards into cache and returning the cached entries - note that I removed most arguments |
| 31 | + |
| 32 | + from transformers.utils import WEIGHTS_NAME, WEIGHTS_INDEX_NAME, cached_path, hf_bucket_url |
| 33 | + |
| 34 | + cache_dir = None |
| 35 | + is_sharded = False |
| 36 | + filename = WEIGHTS_NAME |
| 37 | + archive_file = hf_bucket_url(pretrained_model_name_or_path, filename=filename) |
| 38 | + |
| 39 | + try: |
| 40 | + resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) |
| 41 | + return [resolved_archive_file] |
| 42 | + |
| 43 | + except EntryNotFoundError: |
| 44 | + if filename == WEIGHTS_NAME: |
| 45 | + # Maybe the checkpoint is sharded, we try to grab the index name in this case. |
| 46 | + archive_file = hf_bucket_url( |
| 47 | + pretrained_model_name_or_path, |
| 48 | + filename=WEIGHTS_INDEX_NAME, |
| 49 | + ) |
| 50 | + resolved_archive_file = cached_path( |
| 51 | + archive_file, |
| 52 | + cache_dir=cache_dir, |
| 53 | + ) |
| 54 | + is_sharded = True |
| 55 | + |
| 56 | + if is_sharded: |
| 57 | + # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. |
| 58 | + resolved_archive_file, sharded_metadata = get_checkpoint_shard_files( |
| 59 | + pretrained_model_name_or_path, |
| 60 | + resolved_archive_file, |
| 61 | + cache_dir=cache_dir, |
| 62 | + ) |
| 63 | + |
| 64 | + return resolved_archive_file |
| 65 | + |
| 66 | + |
| 67 | +model_name = args.name |
| 68 | + |
| 69 | +tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 70 | +config = AutoConfig.from_pretrained(model_name) |
| 71 | +model_hidden_size = config.hidden_size |
| 72 | +train_batch_size = 1 * world_size |
| 73 | +model = AutoModelForCausalLM.from_config(config) |
| 74 | + |
| 75 | +ds_config = { |
| 76 | + "fp16": { |
| 77 | + "enabled": model.dtype == torch.float16, |
| 78 | + }, |
| 79 | + "bf16": { |
| 80 | + "enabled": model.dtype == torch.bfloat16, |
| 81 | + }, |
| 82 | + "zero_optimization": { |
| 83 | + "stage": 3, |
| 84 | + "offload_param": { |
| 85 | + "device": "cpu", |
| 86 | + "pin_memory": True |
| 87 | + }, |
| 88 | + "overlap_comm": True, |
| 89 | + "contiguous_gradients": True, |
| 90 | + "reduce_bucket_size": model_hidden_size * model_hidden_size, |
| 91 | + "stage3_prefetch_bucket_size": 0.9 * model_hidden_size * model_hidden_size, |
| 92 | + "stage3_param_persistence_threshold": 0 |
| 93 | + }, |
| 94 | + "steps_per_print": 2000, |
| 95 | + "train_batch_size": train_batch_size, |
| 96 | + "train_micro_batch_size_per_gpu": 1, |
| 97 | + "wall_clock_breakdown": False |
| 98 | +} |
| 99 | + |
| 100 | +dschf = HfDeepSpeedConfig(ds_config) |
| 101 | + |
| 102 | +model = model.eval() |
| 103 | +ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0] |
| 104 | +ds_engine.module.eval() |
| 105 | +model = ds_engine.module |
| 106 | + |
| 107 | + |
| 108 | + |
| 109 | +checkpoints_json = "checkpoints.json" |
| 110 | +with io.open(checkpoints_json, 'w', encoding='utf-8') as f: |
| 111 | + |
| 112 | + #checkpoint_files = glob.glob(f"args.checkpoint_dir/*bin") |
| 113 | + checkpoint_files = get_checkpoint_files(model_name) |
| 114 | + |
| 115 | + print("Checkpoint files:", checkpoint_files) |
| 116 | + |
| 117 | + data = { |
| 118 | + "type": "BLOOM-176B", |
| 119 | + "checkpoints": checkpoint_files, |
| 120 | + "version": 1.0 |
| 121 | + } |
| 122 | + json.dump(data, f) |
| 123 | + |
| 124 | + |
| 125 | +model = deepspeed.init_inference(model, |
| 126 | + mp_size=1, |
| 127 | + dtype=torch.half, |
| 128 | + checkpoint=checkpoints_json, |
| 129 | + #injection_policy={BloomBlock: ('self_attention.dense', 'mlp.dense_4h_to_h')} |
| 130 | + replace_with_kernel_inject=True |
| 131 | + ) |
| 132 | +model = model.module |
| 133 | + |
| 134 | +text_in = 'DeepSpeed is' |
| 135 | + |
| 136 | +tokens = tokenizer(text_in, return_tensors="pt") |
| 137 | + |
| 138 | +for t in tokens: |
| 139 | + if torch.is_tensor(tokens[t]): |
| 140 | + tokens[t] = tokens[t].to(torch.cuda.current_device()) |
| 141 | + |
| 142 | +with torch.no_grad(): |
| 143 | + gen_tokens = model.generate( |
| 144 | + **tokens, |
| 145 | + min_length=50, |
| 146 | + max_length=50, |
| 147 | + do_sample=False, |
| 148 | + ) |
| 149 | + |
| 150 | + |
| 151 | +text_out = tokenizer.batch_decode(gen_tokens)[0] |
| 152 | + |
| 153 | +print(f"in={text_in}\nout={text_out}") |
0 commit comments