|
| 1 | +import argparse |
| 2 | +import json |
| 3 | +import datetime |
| 4 | + |
| 5 | +from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
| 6 | + |
| 7 | +def get_args(): |
| 8 | + parser = argparse.ArgumentParser() |
| 9 | + parser.add_argument("--checkpoint", type=str, help="Checkpoint path", required=True) |
| 10 | + parser.add_argument("--parallelize", action="store_true") |
| 11 | + parser.add_argument("--global-step", type=str, default=None) |
| 12 | + parser.add_argument("--generate-max-length", type=int, default=50, help="max generation length") |
| 13 | + parser.add_argument("--greedy", action="store_true") |
| 14 | + parser.add_argument("--top-k", type=int, default=0) |
| 15 | + |
| 16 | + return parser.parse_args() |
| 17 | + |
| 18 | +def generate_from_text(model, text, tokenizer, max_length=200, greedy=False, top_k=0): |
| 19 | + input_ids = tokenizer.encode(text, return_tensors='pt').to("cuda:0") |
| 20 | + max_length = input_ids.size(-1) + max_length |
| 21 | + |
| 22 | + greedy_output = model.generate( |
| 23 | + input_ids.to('cuda:0'), |
| 24 | + max_length=max_length, |
| 25 | + do_sample=not greedy, |
| 26 | + top_k=None if greedy else top_k, |
| 27 | + ) |
| 28 | + return { |
| 29 | + "inputs": text, |
| 30 | + "outputs": tokenizer.decode(greedy_output, skip_special_tokens=True) |
| 31 | + } |
| 32 | + |
| 33 | +def main(args): |
| 34 | + print(f"Loading model", flush=True) |
| 35 | + |
| 36 | + tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom", padding_side="left") |
| 37 | + |
| 38 | + print("Loaded tokenizer !") |
| 39 | + start = datetime.datetime.now() |
| 40 | + model = AutoModelForCausalLM.from_pretrained( |
| 41 | + args.checkpoint, |
| 42 | + device_map="auto" if args.parallelize else None, |
| 43 | + torch_dtype=torch.bfloat16, |
| 44 | + revision="gs{}".format(args.global_step) if args.global_step else None |
| 45 | + ) |
| 46 | + model.eval() |
| 47 | + print(f"Loaded model in {datetime.datetime.now() - start}") |
| 48 | + |
| 49 | + while True: |
| 50 | + text = '' |
| 51 | + while True: |
| 52 | + dummy = input('''Enter the paragraph :''')+'\n' |
| 53 | + if dummy=='\n': |
| 54 | + break |
| 55 | + text += dummy |
| 56 | + output = generate_from_text(model, text, tokenizer, max_length=args.generate_max_length, greedy=args.greedy, top_k=args.top_k) |
| 57 | + print(json.dumps(output, indent=2)) |
0 commit comments