diff --git a/MRPC Confirmation.ipynb b/MRPC Confirmation.ipynb new file mode 100644 index 0000000..77656ad --- /dev/null +++ b/MRPC Confirmation.ipynb @@ -0,0 +1,25703 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import json\n", + "import matplotlib.pyplot as plt\n", + "from tqdm.notebook import tqdm\n", + "import logging\n", + "import transformers\n", + "from bert_score import score" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_path ='outputs'\n", + "MODEL_NAMES =[ 'T0_3B' ,'t5-base', 'gpt-neo-1.3B', 'gpt2']\n", + "TEMPERATURES = [ 5, 2, 1]\n", + "REPS = [1,1.5,2]\n", + "LENGTHS = [1,1.5,2]\n", + "MIN_LENGTHS = [1,30,50,100]\n", + "BEAMS = [5,10]" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2e9d7a19d0a240f39e70c7c047782f8b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, description='model names', max=4.0, style=ProgressStyle(description_wi…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2bb14b57d568431b80e448736762b5df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, description='temps', max=3.0, style=ProgressStyle(description_width='i…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "40dc0ae8f36d4654a7541e5a8bd77529", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, description='temps', max=3.0, style=ProgressStyle(description_width='i…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "235c12c85efe49f78edaa198db0a7a98", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, description='temps', max=3.0, style=ProgressStyle(description_width='i…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "86a8b102f94749a7b0536f0ab01053cb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, description='temps', max=3.0, style=ProgressStyle(description_width='i…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "final_dic = {\n", + " \"names\" : [],\n", + " \"temps\" : [],\n", + " \"reps\" : [],\n", + " \"lengths\" : [],\n", + " \"min_lengths\" : [],\n", + " \"beams\":[],\n", + " \"all_conf_answers\" : [],\n", + " \"all_conf_prompts\":[],\n", + " \"para_answers\":[],\n", + " \"para_prompts\":[],\n", + " \n", + "}\n", + "for model in tqdm(MODEL_NAMES,'model names'):\n", + " for temp in tqdm(TEMPERATURES,'temps') :\n", + " for rep in REPS:\n", + " for lenght in LENGTHS:\n", + " for min_length in MIN_LENGTHS:\n", + " for beam in BEAMS:\n", + " file_name = '{}_generation_t{}_rp{}_lp{}_ml{}_nb{}_{}'.format(model,temp,rep,lenght,min_length,beam,beam)\n", + " file_path = os.path.join(data_path,file_name,'mrpc-confirmation.json')\n", + " if os.path.exists(file_path):\n", + " with open(file_path,'r') as file:\n", + " file = json.load(file)\n", + " final_dic[\"names\"].append(model)\n", + " final_dic[\"temps\"].append(temp)\n", + " final_dic[\"reps\"].append(rep)\n", + " final_dic[\"lengths\"].append(lenght)\n", + " final_dic[\"min_lengths\"].append(min_length)\n", + " final_dic[\"beams\"].append(beam)\n", + " final_dic[\"all_conf_answers\"].append(file[\"conf answers\"])\n", + " final_dic[\"all_conf_prompts\"].append(file[\"conf prompts\"])\n", + " final_dic[\"para_answers\"].append(file[\"para answers\"])\n", + " final_dic[\"para_prompts\"].append(file[\"para prompts\"])\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# RQ 1: Which models generates valide paraphrases?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Experiment description: \n", + "For all the sentences compute the BertScore average between prompt and answer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e767e51cd55a40578605d21e0ac517b8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=1.0, bar_style='info', layout=Layout(width='20px'), max=1.0), HTML(value=''…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-----------------------------------\n", + "Model Name T0_3B\n", + "prompts\n", + " Sentence: He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . \n", + "anwsers\n", + " The boss said the foodservice pie business does not fit into company's long-term strategy.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2b71cb4d259c4ecab14c811089f5cf92", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2fa8f380c738469c9a412e988c897394", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.36 seconds, 21.78 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6cf6739a8fa34ab787088c514cdce7fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "389979cb8efb4696af312051255bdf7e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.39 seconds, 16.69 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "df6624abeefc4a5dbb2f0d9976c97776", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb26f04bb0c64dd1be7e6682c1759c69", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.23 seconds, 18.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d414d9b70e3445408ac68ee0b611e6af", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d2c4ed6bb80b41708f8ecca21179c003", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.90 seconds, 14.73 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0131bc19be034a70aacae635d66b4b7a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "99086b939f0045de9f097140d4ccd79d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.15 seconds, 11.66 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c8da8dd31434a78be7a01229b259c0e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05d8ac59caff4bb0aa323f003dc35621", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.15 seconds, 12.54 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c201b1a8a034791b6bf949fa8a2f8ba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0b876aed17384d63940a18bafe7dce25", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.94 seconds, 8.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6af261eb124f41ed9aaed1b70c5ceca8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e396d765b894125a178cce2208c64d5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.95 seconds, 9.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31fe3493223e4e1484d6c822009430df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1fef122c7869414c801197f3ea5cdd56", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.86 seconds, 19.55 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c691db0f0204c5ab2e77ca90fcafa1f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a86222633870495db8ae041bca86332b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.39 seconds, 15.33 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1793d3b7345148698882197c09d08cbb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "816d06cf00974018951b3d163429a92d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.24 seconds, 18.12 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "63f39eb452a04449914cf0e8cdbc9879", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c27ac4fa373d49a49624902f6fd4e871", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.10 seconds, 15.71 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afcd6cdb7443480a9e1954695d5809ce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c4bf6489457f4ef6977bb7d318dfcd5d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.97 seconds, 11.92 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e1a7b56a4cb44eebe9d1ee57205743b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dbd07fd8444a449bbb88334f0bd79e0e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.03 seconds, 13.54 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "247f6bad622244879855b951d4c95710", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9a421c111e384ec88e6492e72a211f57", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.53 seconds, 9.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1908d8d8155b4052b01d381052e5510b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e025b4a53e64956bd0799dbc64f7177", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.53 seconds, 9.73 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8b9f4d6b7e5445529218c995bb9895a6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a3a4201d4d8a4d26ba2fc2bd049d7274", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.23 seconds, 22.46 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "140b751f38ec453da6f8398dc0f79ba2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e9f785d09edb44dc8cf85a5fdf7e1885", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.64 seconds, 16.32 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6f48021d0a6140f2acd35ff4fbf30e37", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "48a957016786471c96f72fa7c99e6308", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.86 seconds, 19.54 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "42ed3f8598e7465da8bd5723f83fe678", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "116c3473a7fd4b7893f43b133cb3445a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.23 seconds, 15.54 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "729bb354720a459c9d1729124b8ba627", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aaf1a6d4f70c45509d3f193c1ae08aad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.13 seconds, 11.69 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "deab41b82409469b90995bd4a7a5961c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6aaba3de97a43238ae236c596608bf0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.28 seconds, 13.30 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "35f423bd327743fabb5cfe50754fe7c7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c35590b0c81b4ccea63ddef90bcf2d5e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.74 seconds, 8.85 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c64b64aa33747ba8fff49356e81d4ad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1e66e740812b45f99351e00717da14a3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.56 seconds, 8.81 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2325fb0389d94e3994bf18432b28e87d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91477fa9ff2f4c91827dd823545af037", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.27 seconds, 22.26 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65574de966094f02ae12f8643d8adbd2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "552766e2c6f94d05b3472022a72e2a56", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.57 seconds, 16.42 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5669f219db8446c4b979566d4c79cb30", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c5df3f03fd7643ef9081d7cb542a1e13", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.86 seconds, 19.56 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c3288c1cc1794d3990bc8345177ac7d3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba1d77cf2c9a42b0a6b5ac4dafb8d43f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.81 seconds, 16.09 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a0196ff5e5943d2bc93252a301cccb4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2bd2352aa4a1462cb85a9bd6797b6674", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.73 seconds, 14.12 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e246743f02d7485c8ac4c7dec9c5b4ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3b764f7245d5403485119de4518bea4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.19 seconds, 12.51 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "176a4a156f2b4a2384c83542f36ad7e2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f55086e77a534ab18fa7645bbaba3437", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.11 seconds, 8.55 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "62fe3baa7dc84e499568f8a04034626c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eeee1f6165db4c488a2708e7b09323f4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.80 seconds, 9.60 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "93619b50650b4d288afbaba4748b081a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e00f2026f95449ae9614348e7e5c989e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.16 seconds, 22.86 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8681967f193143cdb3ad3328cf64e5fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fd5135eb57a4449d93bcae29abb0b645", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.88 seconds, 16.00 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "57c41a5288f2414799b1acc1caae9f93", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4efb71a2a7084a79a0f1d189e0334c92", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.03 seconds, 18.88 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "87146644e6db44f2b0db045c9036c5ed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aa7cde1dba144f458bb1046ecd72126b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.08 seconds, 15.73 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b190eac3a9314af88fe41103fc56172d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb0e66da44f4440d95571ddac96c91ad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.24 seconds, 13.13 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "13b7969eb42345619cb686258c8c812a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d52efab5c22648cdbb62cc82aea2e10c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.31 seconds, 13.28 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6d2369b05db945c7a45ce15928bc1b49", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ae4a7458bf454cadaa9d1fbc47ca08ba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.82 seconds, 8.78 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc46051b9e0c4fde816a275421f18943", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41b4910528804ca78a60d44cdbd92a8d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.83 seconds, 9.58 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05820b84fee74a9db873b88c805164b1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "389f798fcfc14204ab41f6e931172ab0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.91 seconds, 19.33 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "539fc510c3104abd8d65ac1acdd57ae7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6a40114a0b974a959b7d1ffd532a91dd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.31 seconds, 16.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8ed4976651964d0b8e34247860c5bf96", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "faff44430e444122b7e465f1f4b5fcd5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.93 seconds, 19.26 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ffba833b280f47218460e9a9485df5ed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c17b403e7044abea319c410402cc643", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.54 seconds, 15.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2e5eb6b2794b4b84af289e651114dadb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4b55cba88c874b77898ed38157819fc2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.64 seconds, 12.43 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "144ad68661674c59867c3b5e1a90f15a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10337510c6684b5da1f2aa4fa9a62a7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.49 seconds, 13.11 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dcf8b823b045441a80d4d4804927868b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cf61a7ffd9164a59bbd025ea155fabcb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.23 seconds, 7.18 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e075daef06064ddd9383925a3d033b2f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0bf2efdecf114c349585312c9e437025", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 23.55 seconds, 8.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "169bb07ae8804c63ab75b21ca82f03d5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8ef45b4a15934f84a321c4150ec03223", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.97 seconds, 19.13 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8ae8e2362cf44c79b9de1d58c884d0f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "04c756cfe193419a99d9a3e17f58a5c1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.82 seconds, 19.36 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bacd43088f6640738c4f9bafeb28687f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e9330c1b31145d5809d41f6eb8b8f69", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.36 seconds, 21.81 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d0adfae3f65447e5883455f74b02a24e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dacc8b44c137407a939ce9dc44a7baa4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.62 seconds, 16.34 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "411d3cbb9f3e4ce0b579e793aa2abb14", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f4af50c45edf49029d73ef311b367ba1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.56 seconds, 11.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8bcd4974cbe142548ca21a1d5cd126a6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "311d69294f0f4f07b51bb38b8adc0685", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.98 seconds, 12.69 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "75844bd2404b46e3ba845e8ee0e97fc6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f5aa6299526544f3a03f76834f3de3d8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.67 seconds, 8.14 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "138421e8b57445a6b47bfb64ef66b620", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91924675f97a4b2fa32c8732a5d36fad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.21 seconds, 9.40 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2d96cafd42194ff0ba144d61f418b257", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4c4423845ee940a4863963f2b3946a7e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.83 seconds, 19.66 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9513a405c9a648d6a2e7170d59c6d9c3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c16a362f88114009bc48becaae24c8c6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.58 seconds, 19.84 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "da6820f396ff432d847e671fa8b2db7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "76951c00b3e54c11a8e3640eb0fbc542", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.30 seconds, 22.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "115f45abfc8d4aa0b92c590a5a2ad249", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9a0039df87d1484dbd707b03af603b6a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.50 seconds, 16.52 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "98ac4c0c482349cb96b41643ad0d267e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1522eb97cbd743998fb2b3326e2a293e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.99 seconds, 11.90 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2bb12f641519443298cfe3c1c6e9902d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6038aa55508f4fb4856d986c7d5a0d7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.65 seconds, 12.97 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bf39cd7d8b2a403c8434036c39b4d18a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1e1aa186ab46420e81d23d5e1162265d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.43 seconds, 8.31 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f5f658d3dee4fd29d5c943133b8aa9f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9227fcc8a3ad4bd9955c5e82211d6fd6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.06 seconds, 9.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "69880f523e784a6687ac9b19a80fc3d4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2aa81ba2c67241df97faf64795028707", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.78 seconds, 19.88 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bdb58a4a1896428cbafea56f4ae03949", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e05ecd8195c480587a864dc05d23a24", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.93 seconds, 19.14 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "83a9ffc484d640f78f74b68f7d1a8c4c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "80d6ab1fb6c54641a827224c92dd4925", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.33 seconds, 21.93 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1b484b99e8d5440e944134d8048998aa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8a941587f1084cc3b7c2e09a16d7eaad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.55 seconds, 16.44 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ea6ee170a91843f78b0f5aaf30fd6c3f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cfe8a637586c4d8a9ea627d3da96de04", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.44 seconds, 11.25 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f9d8aafe44a14ce3ba047ed266c16334", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5e63826d4542419683a37ecfe923a2e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.19 seconds, 12.51 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4b8d3d2a4f104e3682ad486cbc3f47f6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c94e162d4154496ac7d6448aa1fce21", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.73 seconds, 8.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "61c86e37535f4d959d26e8b82d38d6ff", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bca5ea15be024f449c7f82c6c1c609c5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.57 seconds, 9.71 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "667f94b8481a4d1bbc27e550e9da0440", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6165c52aec23465ba043d7ce91e0e3e2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.74 seconds, 34.73 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "82454666baf04464ad2ac9a1d42589b9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7f3e212fe2684cfeb4eed7e63703e182", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.73 seconds, 33.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e888f583bff3405cbeb747ed966ce24e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "18fb3595a9ac4b5d820395a00ea99d0c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.23 seconds, 29.37 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2f592f1e1c8b4568ac33410651341723", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7039199473340f0b258710b6d33428a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.06 seconds, 31.34 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6bf6183285d846b3a6f53d336f052b11", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d17ab6ccab944dbe8d0baf6b01cb098b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.13 seconds, 11.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "840302afb0b24c91b530bc0515916539", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b2e586b87414488b910c1d4d7dcc52e6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.20 seconds, 14.39 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1e79c5374952430aaa982b8ab02935ee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a58951e215624ab4bab868bdb5c63223", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.42 seconds, 9.12 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1fe80018793d4900a7656bf3b3f0e108", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8328705debf84d0da554781b8c9f5b18", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.56 seconds, 10.24 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba892d22b9fc4c84ac39a63729459f68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4539a53c91404ef8b782cae0fe38794a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.73 seconds, 34.75 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d725d350af8f4edd9a30f336a48713cf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "95a5ca2d26294792a86aab59f182654d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.71 seconds, 33.28 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7b17ffc5d4b742f1a63c2268bc7a536b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7cae4e6bbf51451bb106a50bc24aa333", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.07 seconds, 30.99 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b3a41ddabd9e4f7faa3278fb9b7c74b2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fd4e191454ea44f99f5c740ba71dbb49", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.01 seconds, 31.60 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e8b7458c737a4784b4e04cda99aa1474", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d4c3113beb094562825b5537a830dfab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.80 seconds, 12.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3cedec230a89443da615be650458cc03", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec96f87e47b94597a5892897a71db21f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.20 seconds, 14.39 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8616ec1cc864c83ae5abf9b324059a9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3630eb5b67e441b29334d721f984ad29", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.76 seconds, 8.83 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a72be3e6b90147b39d94b644f83f46c3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8c04dee35cf24336a3c2a8c732cecee3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.48 seconds, 10.28 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2783a9faef144aabbcd4619ecf58c674", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e75a72ffb633467c8d846d88b2ea322b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.86 seconds, 33.24 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6cf3e059a8104e939c97826cae4a1a68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "071da0389ac9408693590c4373e2556d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.71 seconds, 33.26 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ecc3acd9c59e4f6ea5c3a199c2f9b250", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dc6c2aa39960481bbde6066d2a1515db", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.06 seconds, 31.04 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3b07ba08e34b47e6b43901f856eccfbb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "090efb4f3a0540299355061023ccd0e8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.85 seconds, 32.47 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47bf93087e3c4cf2b9f7792760e2e93a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0736710bcb4540ea8b2958114e944447", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.97 seconds, 11.92 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0385ac4fb41141e493b6e78fa758fb34", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05c21d374d9741e6b3ebbe5fa0272e09", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.53 seconds, 14.04 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "96178ff034204ad6934c1cc18960cba6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7f503c81714747b3a87bf605cac8c394", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.36 seconds, 9.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "482949c850324ea1ae814fad7c2957e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "34b300b9f703408ca2c560f57643b671", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.42 seconds, 10.31 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91c71652b97d43bd8e9346a81536e475", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7ea4147cf5034e528ea7c43f8fadbd4e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.65 seconds, 35.86 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5d9a2cc031de46daa72b6c2acac809a4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6eacc5df58284e03b69f1ade44351c7a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.81 seconds, 39.52 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c2a16a8abac24f0fb07c88df7aa615a0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fd7ae0be1094a40a9501e4d74b31b54", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.80 seconds, 33.95 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fe832427943e4a52946a40ed0b4b555e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0ba824010f5848e7b0b29ebe9626ca9f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.25 seconds, 36.16 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fbf6a91f37e487682be04fc8a19b90e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65dc5c382d804d6088bf9a525a91cc6a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.26 seconds, 13.08 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9c3c99aef3384d619e8052da45c4c483", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8f1de588bec04e0890dff8c9b8e47949", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.59 seconds, 15.09 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "07511605c76d4d12a8f58e713d56dd46", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7b24315ed32041a2a721305b7c0bdb5d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.36 seconds, 9.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d95d888bff24792839a6eb187385332", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c11ab229b57d4b74a1614b747538b168", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.85 seconds, 9.57 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6199d83ca7cb437f83bdd0976dbe211f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "af8afee92ec74deebd371716d859a90e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.57 seconds, 36.90 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d04bcd05650645d4ba7e7e0675f1a5a4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f14dff657cca4518a7a9bce1e537bcb9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.79 seconds, 39.63 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "56ae01d16ed5429f9a77679d119bf554", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1d3731d011aa4c0f90fec80aa566fc9b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.74 seconds, 34.61 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7407dde67ad24f34aeb1174817d0627f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "451fed2a5bf04fd584585ff5fa68372c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.46 seconds, 34.79 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "689ba60ced4e457ca9da4122ce3ea3a9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "acb477e51f3443959090b181cfcc0c89", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.18 seconds, 13.23 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6151f151b5954174a892991c3849673f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9152bad7b0e14a5a81b9a675a091fc51", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.46 seconds, 14.11 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "947eb2c06d7c4cbf9a3291b34a63e840", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "211bd9fbe5444a3d8150633358c74566", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.62 seconds, 8.94 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d2d88493225d41a9b970967e40918aba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "899067d8fae1439eb7267b8ccf3a94e3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.76 seconds, 9.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0654cd2d874341a28c12e06c084716c6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a98aea67102b4b988ff3837f434098e6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.72 seconds, 34.91 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "278b7007ba7a4d9c94373c98a43bf128", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60ca8a6c60d34c3ba6bf70c13ab21fbd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.97 seconds, 38.21 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c155748a9404d22ba0b9c6befc7af16", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f2b4da88a3384883a2a84d88e0025d13", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.82 seconds, 33.65 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "772c3edf30284e09b2a735dd06740764", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ef0a1589486a4ae1b83fff224d13918a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.39 seconds, 35.23 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8e3e6f88665645e2841690437abf8417", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7f84a4d171a14a21951a29f0193a115a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.42 seconds, 12.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a48659ed30d840dc9cf1658e75785dd9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1841d997688f4ffb9ab3d98730934292", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.87 seconds, 14.76 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "839aebc69e874f48ba26a8ea7f5a67be", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6ce04207c2a14e79a7ed8f4543ed22e3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.64 seconds, 8.93 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0cb581acd6c94578ba0fede3eb84c336", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f7852419f70b4440b871b6def3cd1a67", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.78 seconds, 9.61 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7e061e897db74a72a3bb2e14fd91bbd2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a55fac7d8d394571a7bd300970dbe550", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.64 seconds, 36.04 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f9391b257e4c4c2888618903260c69cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "53fabb7f60474b23bf82ad8f050f5cb7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.05 seconds, 37.62 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8f3a7d8a570e45ccb4690b26bd3ce935", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5491c1150a3c48d3b43eefa161756078", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.74 seconds, 34.63 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4e2edecabe2c4c95a318fea1093c1af4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "22e24abed69843c4871ea6da343c5641", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.32 seconds, 35.71 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3543dc903ab4e059467577f7842e441", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "24287391dada4939ade5f97104b04bb3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.97 seconds, 13.64 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "845cbde7798046b2a28f25fad4ab2e6b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0636ab84cbcf4693930da7c55652cdfb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.91 seconds, 15.95 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "71f5f673b196436f938fffd50a6e9871", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "03d0d0343c56469bb42d27b8eae16535", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.93 seconds, 8.70 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d5c241b0e8734d038d106a41da71e3ac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41f73966db8b44adb781d6e898bd3b50", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.72 seconds, 10.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "363c3bbe98994a22be272c893a501d4e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fcc1874829a04e3c96f2856da8dfb205", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.62 seconds, 36.20 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2b00de33575c4317a315469d79effd37", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "318d654a6df542da8f2de68865eb5df1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.01 seconds, 37.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "01d3e6c593d646a29aeeddc56e6d254a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1135f160c1d04211a81b071aad8f4acd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.74 seconds, 34.65 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bd2c3f9069cf430ba394fb1f6454608d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9cd2f81b3f8b46f78a423a835cfa8683", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.33 seconds, 35.63 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8621337d205f4c30ad9364a7b534a6bd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7b0d3eeda7e34689bf78042c819fa07d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.83 seconds, 13.92 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "84c455cbc6b746d795afa3220788630e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "87b8fc0d43a149eda3b08997fa469f4c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.88 seconds, 15.99 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f527327a6c245368335a2f9fd2ea36d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee329b3765104983930156cddcecc9d9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.76 seconds, 8.83 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0e6bd1eabb0747f9a0f394a3db2dc1d0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2dad6fcef4b54637ac0dc49550b5bf6b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.28 seconds, 9.86 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c194215459344ffaa899d719c1854596", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9369cfc572e44adfac6961d2959ec28b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.73 seconds, 34.74 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0469d5d2d1524f7da7c52d196f7227d6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05d1f627349d44ad879a36589b3a6363", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.06 seconds, 37.52 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fdddc3f3855947cd8af3309658de2ab7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d42814a525d143b3916ef22efb395886", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.72 seconds, 34.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f10b2009f6ac4238952d68487cbfe50e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c61a34f329a44a19ad17b709f0ce4cde", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.71 seconds, 33.29 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "600b9c8313294e518af27ca780dd2b75", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7754f6584f2d4dcb9d7bb4ec32090b6e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.19 seconds, 13.21 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f76b8613142b4ac886384463bc95a693", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "144dd05f217746d0a97948c0252f9645", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.84 seconds, 16.05 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "44f30c791acc41dba09fda8edbfae6e8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f2cff8ec238d42628e836e9650cd24ff", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.69 seconds, 8.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "92165a2ea9de44c1bdf5b2e706fd14eb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c6b1770f4bb7409db4e593c686dc2a4d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.01 seconds, 9.50 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cae5c7fafb9c4130ab5d7dd39ebefa0f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a7fb41b9dcc9472bb5d8ee050d78c4af", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.38 seconds, 68.78 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f2f3dc9ac05c4e8e9fce3b58cd35fb72", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba4dffd6f8474bf18abe5bb8f3da2ad5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.42 seconds, 133.37 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7ffabbbd5e974ff185358ef35104d3f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "07651e86ecb7420cbb2497d182efe59f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.54 seconds, 61.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f4fb7c4d4e2e45668335113ec32d0783", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "802d8e429a1244e286b36c38db0b69c1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.68 seconds, 113.33 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ab3fc37327d04bd5999c14a33e5482e9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "652a482e7ccb4c4fa70c3783238a1baa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.66 seconds, 16.79 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d4662de1b1f648e987e2d085a420235d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65e26c2fb59e4ff99c3c41e1106f53bc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.25 seconds, 30.41 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9468c8f1750d42efaa6a5bad8a2caef4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "34d0559e5c924d559690c2bfe8b8360a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.72 seconds, 12.31 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c85de24ded94d12a113ab264ac503eb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "29904f3c6bd54a6ab5938753c7bcf6f5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.98 seconds, 15.85 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1476f410762a40ca94c0afa4bb5d1822", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "728d1d2b5530400ea6408d350088bd12", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.45 seconds, 65.74 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a8bfc7f29d3a4f09bafc6ce26f7085c9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "599acba6cb3047a1aad847518b8e24c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.39 seconds, 136.50 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "39aa6c3969f047538e886fc6288ad1d7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa63e4a1056c45f8868c7b4d629ff476", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.63 seconds, 58.20 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e482e82955a4432a238bfdc5c71d5ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dba825de70e749dbbbec6de24e609266", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.64 seconds, 115.70 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "03e284855ae54152b2a113b28562ed34", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "058450823dcb4e1e8bcaa0b274673d30", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.57 seconds, 17.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "957154a616d54597af1242c2303dd672", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bd2264048eb74e07addd5d73abe530ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.28 seconds, 30.24 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b5570abbc886430d8ff5e358c274f12a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5312d06d9fac4829aedb4ed3fa5e669e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.70 seconds, 12.34 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f783c52ea0984f91ab36f7ac542302b1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3f9cce21fc644286a0b545eac0f77a6c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.53 seconds, 16.47 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d2b4fa860a2142f8b3787cd95b1b436f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "caa3bd84f61c4477b2fd91d2a02b54c0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.40 seconds, 67.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41c6439061c6415aad380c0de02eb7d9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "66386f3ae8084ecca20cf00175d75ac8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.38 seconds, 138.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "727bdc613cc8444ca00b426d05cd430a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "642be9b4cad54824970c3ba75943bcfa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.70 seconds, 55.87 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e60a75e48534cb49d1e3ec797758397", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "85ec36cc9675414bb513933626b0bf69", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.79 seconds, 106.31 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "54c73f951ba74627ab172d6d3cb7a8e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a2db208591c4b81979f010277074dce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.46 seconds, 17.41 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bd0297a5f5de415ca07b7ff6c4348b8e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bde1ce37e3224f1faf69b4545f236aa1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.99 seconds, 27.19 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "285bbdecac434a378b66a124416d1eba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7ce76464dbdb4f74b157f11407819968", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.67 seconds, 12.39 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bca19240cf10453880d1cc7911388a8b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6074420906ba482b852fb11e5a5f7024", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.08 seconds, 15.73 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e3dcae68a31e4cd68d952d677b22e680", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "22f9b9daad4d4596b47d6ac2a6d09af7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.42 seconds, 66.97 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91669c9ec1c84bd8a7a9b6b5fd992479", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4fa0fb12a9bb4b4a80b9bfc923b59537", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.43 seconds, 132.50 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "55d1eb6e3e844eaaac3872aff3b37ed6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee95e89a6e85457794b92488376b6617", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.51 seconds, 37.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c669b6ea010e4b6481495f4d20098db3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "821fdeda19314e0ba39272271d1d0669", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.45 seconds, 77.48 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e1569a5b37a54edeb8dde731998773d8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1de5ab7821a04318acd89a10c709eb12", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.40 seconds, 21.59 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a782a9a484b04a2c8e56eb38d1eb77ce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a30f315f56bb4c01a5ab379a6e1c9694", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.37 seconds, 35.38 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "629b365029c04940866280e3fc21c999", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8088f445e5a14ef7bf57278cc6c867dd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.84 seconds, 13.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6cc22be1ae7046f09b939f233cdab851", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ca6d08559aaa48c6a141d24ff04f4f88", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.65 seconds, 17.84 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ff9ec4360a7d44b4994e2154a4118d54", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2e692083c72b4288bdab38566374a48f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.44 seconds, 66.04 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ce1087c70dee430db60f4a3ecc44d7ba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6b4eaa448124ff9bffb6effd66b8504", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.61 seconds, 117.92 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de6dce9cd6164b4e81adb1778167d50c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "89d23483e36945598c29eff1a5fb2069", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.51 seconds, 37.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0dbaacfdf60e45d1838e6cf495f580db", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1402e4ed346c48279948db57e85afe3e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.86 seconds, 66.49 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "45485028c4824c939aac74f60c0dd395", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba40ff392be94fd79629e6124eec6367", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.51 seconds, 21.06 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a533c94f7cf14864abc20f7e1dee389c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "39485f25eb3148759cbd2d001999133a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.92 seconds, 32.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9a573bfe67724d62a13edb0450379350", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47ebb9e59cfb406480deca5d5f0dfc6d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.69 seconds, 14.19 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a5d1aa219e944656bc87b38bb75bc07a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de4c91fb322d40649b15ba4442f051e1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.03 seconds, 18.95 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5ed7398a5bb74901a573511cd8a955ed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6eb08c653393488794693cef189201ef", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.40 seconds, 67.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e90b46e794b4e34aa89945d07d6fdaf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1bb2f4af6898446093e52d22fda57910", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.41 seconds, 134.31 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e9a6bc0e867c4d1db17654edec55f398", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9653f29bcfe0447486c7bba8154606f9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.24 seconds, 42.46 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee05195559e7457597925c140bf03dab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc7a956843704aff812ca293d96f4f41", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.55 seconds, 74.62 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "58a074874ab9471299feb5173e1587a2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "89c84e33da4d4f0ca8c0f01333789e25", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.53 seconds, 17.18 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1986ac710f90484894a47d5cd132739f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d093e53a71c64b59a7dc5a10743e5627", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.10 seconds, 31.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "76118cea656c48b59accd52122d17a03", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "18e5b2561d4d4a658624ed4981aac0df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.88 seconds, 13.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4be3ab3db60c499a9642ecb80f681300", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8e59d7b525b8450f812dcc2f5e179861", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.24 seconds, 18.55 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "23a57e871b9d4bfabe682ad0ad12f898", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f31ebe4f3c924586bfe47a447c30db90", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.44 seconds, 66.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8b789aa3ddf742e39d4a1df755aec5b5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "59b87f7cd47743d082e419902da1d43f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.77 seconds, 107.36 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f047b99e06714c94b0d8c97a85fa9d68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "74b5d01cc8ed4042bbe78ad26ffaa772", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.28 seconds, 41.64 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6cdf647ec64b44aca356889de66cecac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79923a72bff04f9e938be535fafa285c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.29 seconds, 82.98 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2b0149682b4a4b57a1da2956cf8fbccd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "76193e74fb464b4d942841b60c711be1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.22 seconds, 18.18 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f84938a541614258b2269c88692a9a88", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a1896704c21483589455ac7e2ba8d2d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.75 seconds, 33.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aaac7c9896f148d5b26d99a7ac5d982f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10eb6535052d4150b3e10a6801ca2152", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.37 seconds, 7.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6f21aa15dcda45989bf9e8147db70718", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "67e38d5f3b904fbc93d73192b7c21ced", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.06 seconds, 17.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee898973b0e140c788203ed1c0016633", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fcb31c5236b3427c824b4ef3c3029d51", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.46 seconds, 65.08 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eef1cc145c384d589fb7299e5503cb82", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "86c5df1e39564be09e68e4b0ba3b6961", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.43 seconds, 133.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f0f990d5b3714375be9ad1eeb145ec50", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "62fecd62ad2f4513aad58d4026ddebb3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.41 seconds, 39.45 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c73269368d484219aaca9b1b4b20f2d7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fbb38e6e9aa946d28ba73bacced00cf0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.34 seconds, 81.34 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c44f82227374ad7b6513fc051dfeafa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "85ad58a417e44bfa886515800ef93d16", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.17 seconds, 18.38 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5df78c920184412bac34c5550bc0a1d3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a584235a75a843138e1c8ddbf63740d5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.40 seconds, 35.21 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "daaa522c967e4215b23c10dd15077785", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c527f1b551184667b5a20c3099543861", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.71 seconds, 7.48 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cdf0bffd3c8f43a5b321ec062a3d0fa2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "74c8e4dcb10e4cc29e6a83a5351f8505", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.29 seconds, 18.46 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7989bb61eb074d4f9e85f31cb4322901", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "149d4101684546abb6194c96f63b14da", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.40 seconds, 67.64 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d6ce8ea88913496dbf6a7051a7e77ab0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "71f66048a505455c8ad957c1ee241932", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.46 seconds, 129.86 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "285adf265cbe46f382acc56d382bdcb7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "62c4ab0f330c4637af7755fee90a5c26", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.26 seconds, 42.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e4a7eefda7c5457ebf6e2ea9a520235c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "73d2ca65e5a142639a9159892d80df83", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.43 seconds, 78.05 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb262d35b59245ebaee6cc3db1ec135b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "83865fa1c0804d8eb859a357092ac477", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 4.88 seconds, 19.46 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "57356b5dc5a54f4a88694434f9fd1239", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "acf3b02fd7b44590beebd78a7c1c1b8b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.57 seconds, 34.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e3aa424d843e474abf708131cd59d2b9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4e6c1bcbb1d94a46ad88ba9f2319b6b5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.26 seconds, 7.75 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "74f6a4d69a4c4a98969c6c2a849b8a6f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4fb8021ba77241ffaf1ab9b085b4654f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.71 seconds, 17.74 sentences/sec\n", + "-----------------------------------\n", + "Model Name t5-base\n", + "prompts\n", + " Sentence: He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . \n", + "anwsers\n", + " False\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de509d7dae304b61bfb892db9c6ac46c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f08c9b7203754e06851a7a085bed3741", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.97 seconds, 48.34 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c277d47f0e9415998128cf90e28a6e4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "324b0ba0b36b4488b98a6a404030af1e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.04 seconds, 37.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "66f8e1a7f4f043ab80d9068050be2c78", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "015e70c9dbde487dac57bcbe74adacfe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.47 seconds, 11.22 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "abc329be62a14ba4909f7a7990a0d819", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f02864da910741309d7943ca4537e868", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.08 seconds, 13.50 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "18b0db61be674274a2d4efe1323235c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "391f1056805040458d94f527b178a5ca", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.46 seconds, 11.23 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd9fb1f5755d4fb68ee6a9ecc4dacf95", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d617892f18ed49038f65d553aa5982c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.61 seconds, 12.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a796b70a18a644af8d218391b80e17df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8de202081414460aa1e05df6e0afdc0b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.86 seconds, 9.64 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec6afab990424c03bcd9e02ce59e3cad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d9b4eed4cb634d8f95159b9c979a9360", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.45 seconds, 9.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10620ec26e974b838e40f096d4aab094", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "643dca594a3d4708abc1700d75c6fa90", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.97 seconds, 48.27 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "867c5226af69498c9d2bcebb7ba61ec3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb36360df01546f9beba7585d254aa4e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.05 seconds, 37.63 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d611c1e536e543ea80c94cfff0e4466d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "022779a3d7374d26b948f8a3e1192424", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.44 seconds, 11.26 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0c33e8acfa6b4b01a0a77f4d501e5484", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "04243f994a7a4a92994113a5937a2d3a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.88 seconds, 12.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1075e9df6f3949dfb6108779c5cb6662", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "434cfe3530fb4dc7a3cb13f0d1b7dc39", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.23 seconds, 11.55 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a3d69469c784ea2891e2155713ebb90", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "305afab0b3204ddb97b3771641bf289e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 16.07 seconds, 11.82 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f2873f59d5484f2ab47df0f17077f5fc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c7e6895c243f4b8cbf58616e8c9154d0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.42 seconds, 9.11 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c026d6d4d4b3469caaf514ff828bbb2b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "06f6b1df71ad4ddbb17904087dac156b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.83 seconds, 8.70 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "267d7eadaefb43feb4d87bc544262732", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fbd8d156a20c4197ab1dfadc982bb3a5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.00 seconds, 47.42 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "186cfbcb0e554d05ae37379f6c6bc530", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "96928724cb6b467c86adbf32fb43352a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.71 seconds, 33.25 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a88c5b6c96c74b98bfcc05e179d22e1e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "221067cba526423caf96bdb3dca9562e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.91 seconds, 7.98 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "21dc40b9392a4e22bfc2945a98c64b03", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "780c7f260d9a4bb7800b7789b8c25cad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 17.37 seconds, 10.94 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "843b8bf6d5de4dce8cb5262163c7ec96", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "520b21544ee740c296862e8798290090", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.24 seconds, 8.45 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1ce8b4980544ab495e84893f0bfa7b2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ac38574e988c4494912a69ac28b3eef3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.14 seconds, 10.47 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ffdbbbcc02834c4c82e707d7e310fbd6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "076f37a38ffc47cbb89f02bb0fff6849", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.64 seconds, 8.93 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d14c97b37cba47da83ad707b8e296695", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c06d7a332064d2c98d5e1ca26570c35", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.66 seconds, 9.67 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "610f83e211dc414dab0c41d9e5f51fa0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a218aff47e84f40b9972fa41ac753df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.48 seconds, 64.21 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b39d16d8b6d945beaf75d5420076b7c8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fec8ef472be94d6e9e4c9e7903cd9320", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.85 seconds, 49.33 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b8cd912a49014938b6643625fa08ac9a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8fe6f871a734a03b80cbca1c1a5362f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.34 seconds, 11.39 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "28472058774242a192e2561c33d68adb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afc359ba25354af087e4fdde9bd5e058", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.12 seconds, 17.08 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b16212f6e0964268842387eef1c10514", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a14779e332aa4dfe9b9810be3aefc349", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.28 seconds, 13.05 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "61f1572222744b7ba883b1c29372e7a6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d074869c4a4e44f496ec19d6c613dea9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.06 seconds, 13.51 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91573a1be259400db475dee3bd7c02fd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4f202edc4b8c40c0bc73b970bc7d884a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.09 seconds, 8.57 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5dfd0d12dede49ee97e8c391f7d042a0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9d40de0d5cb2443c8c1beb27ae876fc4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.21 seconds, 9.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "964fb20ebb284b0b82405b6f122f5f6d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e583af6712f14cee9147f9c64607a53d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.44 seconds, 65.86 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "584f5fde395c4d76a88bebe32435417e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a2e6fb66b6b84408885cc14e4fb61e70", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.56 seconds, 53.39 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "16cac60b17d94935bbc5cd28d5e07733", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6aceff130d646deb0409ed5ba603cb9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.98 seconds, 13.60 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "34b01bfa3ac0482489804a4fa505b517", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5f58a6d324b34f3c97bf9957543ba6d8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.72 seconds, 19.55 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "06ce7a4c313b43eb81c04a30366201fa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "96f5792355854220b12c9633bcb7c136", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.43 seconds, 14.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "764766564f454aec8feb528162ec25cd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7490010338b7497f8fb3221dff43c41b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.42 seconds, 14.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4c239faabe8645ad9f1a7d4c92a294fa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "554e028427a6444899ec9afbe929b08c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.12 seconds, 9.38 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e9783e8de057462f93ba5839294bc2b8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a9e1c2d623a74c50bb5f21d40952edaa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.33 seconds, 10.37 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5dd7e111ff24463d8652cb35a03d67f0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0a43c0b354954d0694a545556076cdc8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.44 seconds, 65.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "304db4c55b774fe9bb9594aed6ae3fb7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a4284d3808234ef9b47d1287d0980251", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.55 seconds, 53.45 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "774fb6e642d74e91b3e8e581b22b43e4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c826152d93c4e8d9a0d81237172a617", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.03 seconds, 13.52 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f5c361e9d1d448579026790cc7502b02", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d0af9cf2174433582e9bb5f68189c0d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.90 seconds, 19.19 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd779a8315954f7b9daf2f69ec6e241a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8a980a89df6440008f912d8e9f759617", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.79 seconds, 13.99 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1fa6118f094b4f468dd1c78536279702", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "66332dd720e1480f89ff8fce50f0a4ba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.08 seconds, 13.49 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e58a1d9e9370413087a9e1532e934cee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "608eb7d1f8ce4bb298bff7114323c54a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.01 seconds, 9.49 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fec0e5e4b4c4784a1a18d2cbe2bca2b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8606530076c466995740252abbe8f5d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.51 seconds, 10.27 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5fab9e2006624fbaa3d5c2fde13df921", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de8fd76dfa8045579b1be5058be8473e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.67 seconds, 56.79 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a84bf10fdb3d477390ae2dc3d7dbdf15", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d1d99f4690a0475f9d16f7092f39720b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.09 seconds, 61.52 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5cf97e29c69e4df38582372dbc6ea844", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31ff9237e72b422ebd4b56bcd765bf8b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.33 seconds, 17.84 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2b5dfff96ee54df79c4189c2d936b1c9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cf722de91f614d77ace7e913baa26a7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.44 seconds, 20.14 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9003c4a6be43435e8270e1e942adf4bc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e52f46b7551b4afcaffaee469f5a5fc0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.12 seconds, 15.53 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ad30b177e18f495aac42b8202261f1cd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "991e1f0d407b49d48386584edb8bfc5c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.50 seconds, 14.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "356b625bc1c84cb9905dedb321c69f85", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a903e8b0ab33475f9f6cd25d243fcc22", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.16 seconds, 10.37 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "35d75e5ff30244faafe89568a9ba6e14", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "84371e1438924cb7bcd4b21a9ece96d3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.96 seconds, 10.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4f971f9324694c19b85746f9ad31d5d9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fe3449f824294c12b07edb0d0f658534", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.67 seconds, 57.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7d1f8b844d624adbb2a147cd86cfa2b7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c977e0a8928f4494b52ac87d2957e3ef", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.20 seconds, 59.37 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fcb79ddf7354477cbfc8667a3e7410ee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afb81ae66c284c7589e9cd8d6ddd9dfa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.52 seconds, 17.20 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4897653fda8a4ab6aa13eb53e3a62135", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "468f0d6db1eb474d8b083d433ca4d426", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 10.11 seconds, 18.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "678c8f026d52400f91b75ec60a4a5db6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2cbd02ecf74248639716fdf85b64d003", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.52 seconds, 14.57 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "45d3e7f7010946949b3a9cee63674066", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d1e62eb0914a46e799357f003dfe9d1f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.80 seconds, 12.83 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fd879cdd24604969b8dc9599513ea375", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1131fd8fb15343d786d3829d3f3614f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.52 seconds, 9.98 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f74b16a19ee6490986d8a63f9131a279", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "300762fddf0242eea9d348dd37cf3f64", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.87 seconds, 10.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "739f570b4c9b45cb8095705aebce8499", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e3499473845b413783b7849925386085", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.76 seconds, 53.92 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "299d2bd4d7e84e0abf8b87c2ddd748e9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e97ef0da6ba142d8902a9661dd5fae6e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 3.61 seconds, 52.67 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b187ee99805e4ba88845aaae76c00cd7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9821efb04d1f40fa83488936e9bbec36", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 5.54 seconds, 17.15 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "705bec2e41994d98a2c9943921d8d30b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "45d9ddd2bd954c078640dadd6d408d59", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.29 seconds, 20.46 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c74fd0eb3a4b41fb833f98e9cba4ab19", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ffe8e808d802431c867b01f8f7989424", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.13 seconds, 15.49 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cade86f3b4aa499b8bf321bd65a321f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "319acfe67af84c789868676648d6e2bd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.24 seconds, 14.35 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "85c72ba459994384be8eb12f37ca3b10", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "90bebf71058d4bfe8b69cfded3628e4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.16 seconds, 10.37 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2676afde45a2492a8448411c136e3fe3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "67fb6b1fe380418392d76548036d4b91", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.35 seconds, 10.36 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bc680812db7247d09bd5369988f72c28", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c0706eeddd6c419d93cf3bd56767fe25", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.19 seconds, 79.62 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "060eb0515b3e410db3c78541faaccc88", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "106d57cce9f44dc7a18571d85566e121", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.71 seconds, 111.12 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c134d69d13e0458786aa42c794168bbb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6bf2b7ff259c415fa88e5d0156925df6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.56 seconds, 14.49 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3ddfbddda434a3fa71d32724c934596", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "50b6f7f4b9344a79bdcc2760d83b7ca9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.99 seconds, 12.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f9d57ad8ec2645279350cd8933a781db", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8e54795f72f041ff9b60ecdab8bc0906", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.21 seconds, 6.69 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3f14339a2a74b329cd2dbec7950f881", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e4c13d0b49a2470a9c365f58cd6d982a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.52 seconds, 8.83 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c39362f6dbda495da5ea58ef875f8267", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6f8a8a06f7545aa87524730a3faa600", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 33.86 seconds, 2.81 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0b35132ef38b44f5bdddbff873e2cb51", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6a5309babce246e689d581e0551d6e69", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.23 seconds, 8.95 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "685e1dba01ab4036a56815e84c3da75f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "76d29e2d19c64e55b218dd5796ac01de", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.21 seconds, 78.68 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2d1631c6c16d477791a738c063f107c8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3eeefcf689b945eca77214a4789d1550", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.67 seconds, 113.61 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9ba02d93075548b4b0d69e55893c1741", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cfa69247e2924c9e9d243851e372cffb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.81 seconds, 13.95 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1ffa33680bb4dbb9eb8e33284dca1eb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "218264bbeb6648cfaac059cff0dfd70e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.93 seconds, 11.93 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5aa9b04bf364417e9c373f6d18e5db95", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "57719d22e0754feb99e82f4d296804dd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.88 seconds, 8.00 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c70f2bfc04a54d64aacbea56c459853d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "68da7e7e019d4023a525a75eb60eccdb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.88 seconds, 9.10 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2c5f1fde403d44e3b3a022a4b0f11ef2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "af1c63142e294dc085d4ae9c31c625fb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 30.50 seconds, 3.11 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a964985fe2f1433caf80d4c6ce24235f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "20e0f7c3aa57495ba709735ad5a16323", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.65 seconds, 9.20 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c0230ae9c54b4c48892c343b01ea6f8f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "622f0ca69e094596b2af5b305ce6f816", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.29 seconds, 73.57 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e32643c3a89442496975057f4d06cd0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bc340e9497b54326bd88e5dbeeab734b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.86 seconds, 102.01 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "67a2bb756d114c0dbdf9fc7229113888", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d5bb1eda3cdc4b3483c1401ddc1c4c13", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.07 seconds, 13.43 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47727c9947934e55ba94d52f82da1add", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6dc526d3f6cc48b3bc3b375da0e8fffa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.94 seconds, 13.63 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5afffaa73d9b4e2eb4e8b545a4d2ab26", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cafc7cc6446440c29549ecad296703cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 12.25 seconds, 7.76 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9ab00e3e689649ce89f6e4eb98c8d249", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a794f21c293b499bb5ef3f4a91f47318", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.67 seconds, 8.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "239da1ca2cc74b4fa3b9c50170128d5c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ca8d305f64544d0aa019a905628f62fa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 30.92 seconds, 3.07 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4368ebf174f341e8bacc54d0d2657f44", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "312d1686a61e466da4007f1b77e94958", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.92 seconds, 9.08 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "07e5618488744db799604581a67bf111", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "97aa84e1a4a74a88a9deddc801b38667", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.36 seconds, 70.03 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba6b3a74cf184a35b58c3ea429789b52", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e7b368fb2c634ee9994eebf8b17acf04", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.16 seconds, 87.79 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a096fc22d1a049e88256c8d199e04da5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ea0d60b89a4a4f729eb88b7ef73079b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.43 seconds, 12.79 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "974d21bb6e774d29b8f2a894a63c57e8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e252cacd435b42398c3a5ea8f8ac797a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.15 seconds, 14.45 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ffd85ffc5794ce58d6a4f361aa6ac32", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fcd665e764744360881f0b71ea7c6449", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.83 seconds, 12.13 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "153b553154cf42b79743a5e35e907f61", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1d6db57da11f4adba656b5436c116688", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 24.05 seconds, 7.90 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "006e47027ca647e4807be13b4b4e4002", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "883aed8d09d2428bba675b32a386f87a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.92 seconds, 5.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5d7ec370abf84b498da987575be20b9c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3dbd049d8564431395ff094383b60fb3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 28.06 seconds, 6.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d39ded3af2aa4b4b8e18b9663b63fcd3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "213567c626b54806886f8936204760af", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.38 seconds, 69.03 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "480ba56664ba4b3793e707ab33a59fe6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5868baba25c44bcda2287ca87f2f17c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.00 seconds, 94.78 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8d0d3629e42448bdb20df7ee81b8232f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d4bb02c39b4248beaa3f147fc81bc3d0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.08 seconds, 11.75 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9de96cbefc6642a89fc38b181db191d4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f483927fc26d485899e64391be55d4c5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.07 seconds, 12.61 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4bfc5a16249a432aad4b909f79320861", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "001dc7bf26954965926c1483a926a51e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.68 seconds, 10.94 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "159e3d81b6844b7faee8c22ff5404471", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "43b4af0567e44434bb531e80c76f4d6c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 25.11 seconds, 7.57 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bdff763c76904012990e5955e2dcf19f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "90b540ae89574ee393964b70f2b0fe21", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.26 seconds, 4.93 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5b49eeedca564db0bf9379a4355ab8a1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7fc35de588774880afb26499b5238ffd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 32.09 seconds, 5.92 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65d67cbc416740548bf3a5e84576cdc2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "55b3a8e2855b4db29c185526fce70473", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.37 seconds, 69.11 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0fdf6c59c5694a6d91fecdc5b01d9b29", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "88473122b63847a3b7c9d40c5393d53f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.93 seconds, 98.45 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e794379ca4d74436a67c2bd34972d917", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cfa4b50b82c14dc8b7c7d8c8cfd1b11b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.24 seconds, 11.54 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3ae48a43e1de4b3fb6a4d0f17b01a53a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b92340e1968c4b77a94feca1cbbf9296", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.29 seconds, 13.30 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "35b51a3dcacd47d09b7ee97929bce936", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "006e361dd485401e8cd3aeff360546a5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.88 seconds, 10.70 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3c23fb3270af406ab202c90e72da8482", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "92080a0555514b8fb2f5edea51ac80e9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 25.14 seconds, 7.56 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5053203077074291b7efaa6534f2978f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "32d1c0aea3014d2588c4737ec93f8a5e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.99 seconds, 4.75 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e37fe9cf69a4f178be763c8f5277d12", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c9c7861b2d214ea781c6e5f3f747b26c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 31.38 seconds, 6.05 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6bda75805e604984b6e8bfde82f402c8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e71fc241ff3544d7a87a71ba989057f9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.29 seconds, 73.44 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4b88f0e3e2e241a789acd16c1cd5fc51", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1ab60ba3044240c8aade50e4e1c2915a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.84 seconds, 103.12 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "03d401b1cd474024aba21e17dde78a1c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1715a2a88fc64b77965a54d6b7244e7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.52 seconds, 11.16 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec9b20b02a6146aba51c191680fb7222", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cd40734ceb22433db75abbde299ae3cd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 17.84 seconds, 10.65 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "094444ba4ecf4be1b39e2abc859e2e57", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "480251cb894542ae9c30c6cdf98c78c6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 13.87 seconds, 6.85 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7b0e24a901c41dd89af684f064ee518", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1f50b819a5624bb28cb301c0c58de86e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 17.67 seconds, 10.75 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "488c98989b364f5f8ab2e5bb1693de57", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d388733407ea44628034b87c2621c98e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.10 seconds, 6.74 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c60291fd0b0e4d43aa94e9da0cfdd96b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3f654b3499754dc59ad0fc3e54ea1f95", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 19.99 seconds, 9.50 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d11e4451c3b04593a89bc6bbc244b34d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91f3addd0172436a9edcfefc70e3a0f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.25 seconds, 75.99 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b4ef1e0019784ce984ddc2a729fef326", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e061401a9d1458fad82fcbea8c87591", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.84 seconds, 103.14 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "21dce4acc5b44b9a926bfe8428090eb9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dae845723d3c466cb35e14f467f78046", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.37 seconds, 11.35 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9926a16325924d5091ba9f09ff303948", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "346e056658e648ab9ed359daff55aafa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.42 seconds, 10.32 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bc77fe8f4be34a5c8272498a27624757", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4735360b353344c3b15a818fe67dee3f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 14.71 seconds, 6.46 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8ddacfb3cf344bfd865a65b8bfa4826a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a9c2edea3e1942d0ada116bc1a5bca76", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.30 seconds, 9.36 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ff9f85443fe445019ff0d70f4bf325e8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "495fcaf3a86e42e4b967149888eebde0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.31 seconds, 6.20 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "36b90abd72f849b0b78d8afc7425bf32", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "63210a942b2c49c2b6fc7c409b93d260", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 20.81 seconds, 9.13 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "77900e90ce9e40f28d6a616a5292ae7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8bb5962a980c491097c45aec9a3ae6b5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.24 seconds, 76.77 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f4a061cec57048f5b2a8c3c3b0c09e19", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9982063268954cc59ce5646188026e96", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 2.07 seconds, 91.80 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a55f9c6c9fce4479a6e30bea18aeed37", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb91f23fc22540ec9ef6ab050c98210a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.50 seconds, 11.18 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5154d9c9125e434f8f9c11c54adb0aaf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "04b76564887945bda31fcee78cb83221", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 18.04 seconds, 10.53 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "422e1ebc59e948c0a4a182093137e69d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a16d2db07f0e47b5863d82c83852e78c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.25 seconds, 6.23 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0f04c50d9f604c98a88f35cb20052e98", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bec4528fecf44f78be74f17ef2620ee0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 28.73 seconds, 6.61 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f9afb4e995024bd499e6bea10c817afa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1e0c6797093647b98c45f4bd9e1b6b40", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 15.97 seconds, 5.95 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fdf279ed61924203b262c15898f4eabe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b32848ad17bd4f93991657068bc6557d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 21.55 seconds, 8.82 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7a6680e6b5df45ce850c310e51823407", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "82b2e46b0ff64a3286d08f470f2060cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 0.97 seconds, 97.54 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "33d4910d574d45368f924931c29a6759", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b7aaec40505b471bbd0f043a100f747a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.05 seconds, 181.02 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cfa35f6bff35453b8d0340f48f9cedf0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "16988e7df2e64b8e92f2ac2b1efbd408", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.62 seconds, 14.35 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7a6d187384004101a68150d95688535b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b80f1d49b4a44572bdf61c20c28c619f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.86 seconds, 27.70 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cd00685072fb4c56bc28c2f70b206905", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a2ef79ca93b84ff2810c5fb6481604ac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.47 seconds, 12.72 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d4dcd281efa4bf0a55cc7c172ba4f58", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c11e498fd8db470caa28e4a5f864a671", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 8.87 seconds, 21.43 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d4f4631af2f742d8bbfb22cc0b059803", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05da305e0e14403b978f5b9efd57f101", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.56 seconds, 8.22 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8a3f9a443e346b892f5baab7a0c2c0a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c97bd44e9d6341ada82a2e6e1a96a29f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 29.02 seconds, 6.55 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f4c359cceb784ac6b17c6e9d6982e124", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d575ac5caf24a3d884aa82788895094", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.05 seconds, 90.89 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31de60b77d5146bea549f1a5890f0d3a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cff5fb2082974a71a6e60d10539b9be1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.07 seconds, 177.00 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "26f5f8fb53014325a9cf7490edb27ab1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "318a5a8c2c474999b0f9fc0a5721de66", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.64 seconds, 14.32 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "58e76f0d84bb4680ab7ee5aaeb29d153", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6fa711d1e7d541e39dbd0aa83dba3fc0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.99 seconds, 27.17 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1cc0b7c12a694104a94280bf76643347", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2f6b1313970e42558bd59e50a8947d3b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.49 seconds, 12.69 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "12c82ee760dc4047a5e39e81705d5571", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "479e561d226f482abbbde3668e662b7c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 9.09 seconds, 20.91 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6988b051de9449eb0c5e6dd23d05044", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "450a47979c4b4c2e865c79f1b7c89cc7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 11.88 seconds, 8.00 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8c58d0d408f47d4b3cf234e79d80309", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "45432b40477843b8bf1ffe5166432e8c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 34.00 seconds, 5.59 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8e27819c913543e997994c6b6169ce25", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5696cfd1bc4842b4829d90a56a18c89f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.40 seconds, 67.90 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "337b88a1e7004e939748e1c0a05c695f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec16d77380824bf29dcd25565ad6b208", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 1.08 seconds, 176.43 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ee5bf5b442d46d48ea2c235a0628318", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aced4ff6fd97481185fdf15a3d6f1167", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 6.68 seconds, 14.22 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "999a99c9715a497f996989b7754193f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "731a082c854d4a3a9f69bbe63c875e9a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.49 seconds, 25.35 sentences/sec\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_transform.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n", + "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating scores...\n", + "computing bert embedding.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91992c77faad4cb685aa3281c9c51461", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "computing greedy matching.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d17c266afed14d3690fdc382bc890d18", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "done in 7.70 seconds, 12.34 sentences/sec\n" + ] + } + ], + "source": [ + "prev = ''\n", + "final_dic['P']= []\n", + "final_dic['R']= []\n", + "final_dic['F1']= []\n", + "for index, (prompts,anwsers) in tqdm(enumerate(zip(final_dic[\"para_prompts\"],final_dic[\"para_answers\"]))):\n", + " if final_dic[\"names\"][index] != prev:\n", + " print('-----------------------------------')\n", + " print('Model Name',final_dic[\"names\"][index] )\n", + " print('prompts\\n',prompts[0][0].split('\\n')[0])\n", + " print('anwsers\\n',anwsers[0][0])\n", + " prev = final_dic[\"names\"][index]\n", + " refs = sum(prompts,[])\n", + " refs = [ref.split('\\n')[0] for ref in refs]\n", + " cands = sum(anwsers,[])\n", + " P, R, F1 = score(cands, refs, model_type = 'distilbert-base-uncased', verbose=True)\n", + " final_dic['P'].append(P)\n", + " final_dic['R'].append(R)\n", + " final_dic['F1'].append(F1)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "All arrays must be of the same length", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfinal_dic\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, index, columns, dtype, copy)\u001b[0m\n\u001b[1;32m 612\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 613\u001b[0m \u001b[0;31m# GH#38939 de facto copy defaults to False only in non-dict cases\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 614\u001b[0;31m \u001b[0mmgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict_to_mgr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtyp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmanager\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 615\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMaskedArray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 616\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmrecords\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mmrecords\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pandas/core/internals/construction.py\u001b[0m in \u001b[0;36mdict_to_mgr\u001b[0;34m(data, index, columns, dtype, typ, copy)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;31m# TODO: can we get rid of the dt64tz special case above?\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 464\u001b[0;31m return arrays_to_mgr(\n\u001b[0m\u001b[1;32m 465\u001b[0m \u001b[0marrays\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_names\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtyp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtyp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconsolidate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 466\u001b[0m )\n", + "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pandas/core/internals/construction.py\u001b[0m in \u001b[0;36marrays_to_mgr\u001b[0;34m(arrays, arr_names, index, columns, dtype, verify_integrity, typ, consolidate)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;31m# figure out the index, if necessary\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_extract_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marrays\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 120\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mensure_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pandas/core/internals/construction.py\u001b[0m in \u001b[0;36m_extract_index\u001b[0;34m(data)\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[0mlengths\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mraw_lengths\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 634\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlengths\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 635\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"All arrays must be of the same length\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 637\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhave_dicts\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: All arrays must be of the same length" + ] + } + ], + "source": [ + "df = pd.DataFrame(final_dic)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_figwidth\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m11.7\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Metric {}'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmetric\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatterplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetric\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"beams\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"names\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mstyle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"names\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAHwCAYAAABJ1syOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWIUlEQVR4nO3db4yl9Xnf4e9tCEljbJC8m8oGYlC9xCZOWrsj6sqVgmqnBV4sUhNZUFkOEfW+KW6aWFFJkzoWqaImThPVFYmDU8uxnUCJFVmrBAspKZal1FgsIqUBSrTBDiyOwuI/tKljY+q7L84hjNe7O2dmZ2bZ29clrTTnnN+cc6/00+xnn3nOeaq7AwAA07zodA8AAAA7QegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXYAXqKr6t1X1G6d7DoAzldAF2ISq+mxVPVNVe465//6q6qq6eIXnuKKqjmy0rrt/vrv/xRZm/ERVfaWq/qqqnqqq362ql2/2eQDOdEIXYPM+k+S6525U1fcl+c7tfIGqOvsUn+LG7j43yauSnJvkl059KoAzi9AF2LwPJ3nbuts/kuRD6xdU1bdX1S9V1WNV9ZdV9b6q+ltV9eIkH0/yiuUR17+qqldU1bur6qNV9ZGq+t9Jrl/e95F1z/mPquq/V9WXqurxqrp+o0G7+0tJPpbk723D3xvgjCJ0ATbvniQvrarXVNVZSa5N8pFj1vyHJJdmEZivSnJBknd19/9NclWSz3X3ucs/n1t+zzVJPprk/CS/tf7JquqVWQTyf06yd/m8f7zRoFX1siT/LMnhrfxFAc5kQhdga547qvuDSR5O8sRzD1RVJTmQ5Me7+wvd/X+S/HwWQXwyn+ruj3X317v7r4957J8n+YPuvq27v9bdn+/uk4Xue6vq6SRPJdmT5B2b+tsBDHCq54ABfKv6cJJPJrkkx5y2kMUR1+9Mct+ieZMkleSsDZ7z8ZM8dlGSP9vEfP+qu39jef7w7yW5MMljm/h+gDOeI7oAW9Ddf57Fm9KuTvK7xzz8VJK/TvK93X3+8s95yzeHJUmf6GlP8pKPJ/k7W5jzfyb590luqXXVDfCtQOgCbN0NSf7x8rzbv9HdX0/y/iS/UlXflSRVdUFV/dPlkr9M8rKqOm8Tr/VbSd5cVW+pqrOr6mVVteobzH4zyd9Osn8TrwdwxhO6AFvU3X/W3YdO8PC/yeINYPcsP0XhD5J8z/L7/leS25I8uvwEhVes8FqPZXH0+J1JvpDFG9H+7opzPpPkPyX5d6usB5iiuk/2mzIAADgzOaILAMBIG4ZuVX2gqp6sqj85weNVVe+tqsNV9UBVvX77xwQAgM1Z5YjuB5NceZLHr0qyb/nnQJJfO/WxAADg1GwYut39ySze+HAi1yT5UC/ck+T8qnr5dg0IAABbsR0XjLgg3/gh50eW9/3FsQur6kAWR33z4he/+O+/+tWv3oaXBwBgqvvuu++p7t67le/d1SujdfetSW5NkrW1tT506ESfygMAAElV/flWv3c7PnXhiSwuTfmcC7Pumu8AAHA6bEfoHkzytuWnL7whydPd/U2nLQAAwG7a8NSFqrotyRVJ9lTVkSQ/m+TbkqS735fkziyu1nM4yZeT/OhODQsAAKvaMHS7+7oNHu8k/3LbJgIAgG3gymgAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjLRS6FbVlVX1SFUdrqqbjvP4d1fV3VV1f1U9UFVXb/+oAACwug1Dt6rOSnJLkquSXJbkuqq67JhlP5Pkju5+XZJrk/zqdg8KAACbscoR3cuTHO7uR7v7mSS3J7nmmDWd5KXLr89L8rntGxEAADZvldC9IMnj624fWd633ruTvLWqjiS5M8k7jvdEVXWgqg5V1aGjR49uYVwAAFjNdr0Z7bokH+zuC5NcneTDVfVNz93dt3b3Wnev7d27d5teGgAAvtkqoftEkovW3b5wed96NyS5I0m6+1NJviPJnu0YEAAAtmKV0L03yb6quqSqzsnizWYHj1nzWJI3JUlVvSaL0HVuAgAAp82Godvdzya5McldSR7O4tMVHqyqm6tq/3LZO5O8var+R5Lbklzf3b1TQwMAwEbOXmVRd9+ZxZvM1t/3rnVfP5Tkjds7GgAAbJ0rowEAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAw0kqhW1VXVtUjVXW4qm46wZq3VNVDVfVgVf329o4JAACbc/ZGC6rqrCS3JPnBJEeS3FtVB7v7oXVr9iX5qSRv7O4vVtV37dTAAACwilWO6F6e5HB3P9rdzyS5Pck1x6x5e5JbuvuLSdLdT27vmAAAsDmrhO4FSR5fd/vI8r71Lk1yaVX9UVXdU1VXHu+JqupAVR2qqkNHjx7d2sQAALCC7Xoz2tlJ9iW5Isl1Sd5fVecfu6i7b+3ute5e27t37za9NAAAfLNVQveJJBetu33h8r71jiQ52N1f6+7PJPnTLMIXAABOi1VC994k+6rqkqo6J8m1SQ4es+ZjWRzNTVXtyeJUhke3cU4AANiUDUO3u59NcmOSu5I8nOSO7n6wqm6uqv3LZXcl+XxVPZTk7iQ/2d2f36mhAQBgI9Xdp+WF19bW+tChQ6fltQEAODNU1X3dvbaV73VlNAAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGWil0q+rKqnqkqg5X1U0nWfdDVdVVtbZ9IwIAwOZtGLpVdVaSW5JcleSyJNdV1WXHWfeSJD+W5NPbPSQAAGzWKkd0L09yuLsf7e5nktye5JrjrPu5JL+Q5CvbOB8AAGzJKqF7QZLH190+srzvb1TV65Nc1N2/f7InqqoDVXWoqg4dPXp008MCAMCqTvnNaFX1oiS/nOSdG63t7lu7e6271/bu3XuqLw0AACe0Sug+keSidbcvXN73nJckeW2ST1TVZ5O8IclBb0gDAOB0WiV0702yr6ouqapzklyb5OBzD3b30929p7sv7u6Lk9yTZH93H9qRiQEAYAUbhm53P5vkxiR3JXk4yR3d/WBV3VxV+3d6QAAA2IqzV1nU3XcmufOY+951grVXnPpYAABwalwZDQCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRVgrdqrqyqh6pqsNVddNxHv+Jqnqoqh6oqj+sqldu/6gAALC6DUO3qs5KckuSq5JcluS6qrrsmGX3J1nr7u9P8tEkv7jdgwIAwGasckT38iSHu/vR7n4mye1Jrlm/oLvv7u4vL2/ek+TC7R0TAAA2Z5XQvSDJ4+tuH1nedyI3JPn48R6oqgNVdaiqDh09enT1KQEAYJO29c1oVfXWJGtJ3nO8x7v71u5e6+61vXv3budLAwDANzh7hTVPJLlo3e0Ll/d9g6p6c5KfTvID3f3V7RkPAAC2ZpUjuvcm2VdVl1TVOUmuTXJw/YKqel2SX0+yv7uf3P4xAQBgczYM3e5+NsmNSe5K8nCSO7r7waq6uar2L5e9J8m5SX6nqv64qg6e4OkAAGBXrHLqQrr7ziR3HnPfu9Z9/eZtngsAAE6JK6MBADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMJLQBQBgJKELAMBIQhcAgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGAkoQsAwEhCFwCAkYQuAAAjCV0AAEYSugAAjCR0AQAYSegCADCS0AUAYCShCwDASEIXAICRhC4AACMJXQAARhK6AACMJHQBABhJ6AIAMNJKoVtVV1bVI1V1uKpuOs7j315V/3X5+Ker6uLtHhQAADZjw9CtqrOS3JLkqiSXJbmuqi47ZtkNSb7Y3a9K8itJfmG7BwUAgM1Y5Yju5UkOd/ej3f1MktuTXHPMmmuS/Oby648meVNV1faNCQAAm3P2CmsuSPL4uttHkvyDE63p7mer6ukkL0vy1PpFVXUgyYHlza9W1Z9sZWjG2ZNj9grfkuwDnmMvkNgHPO97tvqNq4TutunuW5PcmiRVdai713bz9XlhshdI7AOeZy+Q2Ac8r6oObfV7Vzl14YkkF627feHyvuOuqaqzk5yX5PNbHQoAAE7VKqF7b5J9VXVJVZ2T5NokB49ZczDJjyy//uEk/627e/vGBACAzdnw1IXlObc3JrkryVlJPtDdD1bVzUkOdffBJP8lyYer6nCSL2QRwxu59RTmZhZ7gcQ+4Hn2Aol9wPO2vBfKgVcAACZyZTQAAEYSugAAjLTjoevywSQr7YOfqKqHquqBqvrDqnrl6ZiTnbfRXli37oeqqqvKxwsNtMo+qKq3LH8uPFhVv73bM7I7Vvj34bur6u6qun/5b8TVp2NOdlZVfaCqnjzRNRZq4b3LffJAVb1+lefd0dB1+WCSlffB/UnWuvv7s7i63i/u7pTshhX3QqrqJUl+LMmnd3dCdsMq+6Cq9iX5qSRv7O7vTfKvd31QdtyKPxN+Jskd3f26LN7s/qu7OyW75INJrjzJ41cl2bf8cyDJr63ypDt9RNflg0lW2AfdfXd3f3l5854sPq+ZeVb5mZAkP5fFf3q/spvDsWtW2QdvT3JLd38xSbr7yV2ekd2xyl7oJC9dfn1eks/t4nzsku7+ZBaf3HUi1yT5UC/ck+T8qnr5Rs+706F7vMsHX3CiNd39bJLnLh/MHKvsg/VuSPLxHZ2I02XDvbD8ddRF3f37uzkYu2qVnwmXJrm0qv6oqu6pqpMd6eHMtcpeeHeSt1bVkSR3JnnH7ozGC8xmWyLJLl8CGDZSVW9NspbkB073LOy+qnpRkl9Ocv1pHoXT7+wsfkV5RRa/4flkVX1fd3/ptE7F6XBdkg9293+sqn+Yxef2v7a7v366B+OFb6eP6Lp8MMlq+yBV9eYkP51kf3d/dZdmY3dttBdekuS1ST5RVZ9N8oYkB70hbZxVfiYcSXKwu7/W3Z9J8qdZhC+zrLIXbkhyR5J096eSfEeSPbsyHS8kK7XEsXY6dF0+mGSFfVBVr0vy61lErnPx5jrpXujup7t7T3df3N0XZ3G+9v7uPnR6xmWHrPJvw8eyOJqbqtqTxakMj+7mkOyKVfbCY0nelCRV9ZosQvfork7JC8HBJG9bfvrCG5I83d1/sdE37eipCzt4+WDOICvug/ckOTfJ7yzfi/hYd+8/bUOzI1bcCwy34j64K8k/qaqHkvy/JD/Z3X7bN8yKe+GdSd5fVT+exRvTrndAbJ6qui2L/9zuWZ6P/bNJvi1Juvt9WZyffXWSw0m+nORHV3peewUAgIlcGQ0AgJGELgAAIwldAABGEroAAIwkdAEAGEnoAgAwktAFAGCk/w9vR2wobY+AKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for metric in ['R','F','P']:\n", + " fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + " fig.set_figheight(8.27)\n", + " fig.set_figwidth(11.7)\n", + " plt.title('Metric {}'.format(metric))\n", + " sns.scatterplot(y=metric, x=\"beams\",hue=\"names\",style=\"names\",data=df,s=100)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion:\n", + " 1. 't5-base', 'gpt-neo-1.3B', 'gpt2' do not generate paraphrases good enough so we will work with t0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evaluating Consistency when it makes sens :) " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{1, 2, 5}" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "set(final_dic[\"temps\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4fc98d11aceb41b88921f39aeb621b6f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=1.0, bar_style='info', layout=Layout(width='20px'), max=1.0), HTML(value=''…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "model_selected = 'T0_3B'\n", + "final_dic['global_consisentency'] = []\n", + "max_beam = max(BEAMS)\n", + "for i in range(max_beam):\n", + " final_dic['beam_consisentency_{}'.format(i)] = []\n", + "for index, (prompts,anwsers) in tqdm(enumerate(zip(final_dic[\"all_conf_prompts\"],final_dic[\"all_conf_answers\"]))):\n", + " if final_dic[\"names\"][index] == model_selected:\n", + " global_consisentency = sum([i == 'Yes' for i in sum(anwsers,[])])/len(sum(anwsers,[]))\n", + " beam_size = len(anwsers[0])\n", + " beam_consisentency = [0] * beam_size\n", + " for answer in anwsers:\n", + " for answer_index, sub_answer in enumerate(answer):\n", + " beam_consisentency[answer_index] += ('Yes' == sub_answer)\n", + " beam_consisentency = [i/len(anwsers) for i in beam_consisentency]\n", + " final_dic['global_consisentency'].append(global_consisentency)\n", + " for i in range(max_beam):\n", + " if i < len(beam_consisentency):\n", + " final_dic['beam_consisentency_{}'.format(i)].append(beam_consisentency[i])\n", + " else :\n", + " final_dic['beam_consisentency_{}'.format(i)].append(0)\n", + " else :\n", + " final_dic['global_consisentency'].append(0)\n", + " for i in range(max_beam):\n", + " final_dic['beam_consisentency_{}'.format(i)].append(0)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "names 864\n", + "temps 864\n", + "reps 864\n", + "lengths 864\n", + "min_lengths 864\n", + "beams 864\n", + "all_conf_answers 864\n", + "all_conf_prompts 864\n", + "para_answers 864\n", + "para_prompts 864\n", + "global_consisentency 864\n", + "beam_consisentency_0 864\n", + "beam_consisentency_1 864\n", + "beam_consisentency_2 864\n", + "beam_consisentency_3 864\n", + "beam_consisentency_4 864\n", + "beam_consisentency_5 864\n", + "beam_consisentency_6 864\n", + "beam_consisentency_7 864\n", + "beam_consisentency_8 864\n", + "beam_consisentency_9 864\n" + ] + } + ], + "source": [ + "for k,v in final_dic.items():\n", + " print(k, len(v))" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.DataFrame(final_dic)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overall Computation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3jU5Z338c895yEnCCQRQgBRCaAcilEptgoLXa0oeKD7iLu1ra22j223j7aeVnGtrNXq1rrddbvV2oNt0W5VBMEWC4JtrVaBQkCSqEVKCBgGIoeEOc/9/JFgAyaQCb9fDs77dV25YGZ+851vchHmkzv3wVhrBQAAAOQST283AAAAAPQ0QjAAAAByDiEYAAAAOYcQDAAAgJxDCAYAAEDO8fV2A90xZMgQO2rUqN5uAwAAAH3YunXr9lhrSzp6rF+G4FGjRmnt2rW93QYAAAD6MGPMXzt7jOkQAAAAyDmEYAAAAOQcQjAAAAByDiEYAAAAOYcQDAAAgJxDCAYAAEDOIQQDAAAg5xCCAQAAkHNcPSzDGPMjSRdL2m2tPaODx42k/5B0kaRDkj5rrV3vZk/ZiCdSirQkJEkHoylFk2mF/V4VhFu/bCV5AQUD/fK8EQAAgJzmdoL7iaT/kvR4J49/UtJpbR/nSPp+25+96mA0qQOxlJZsaNATr29XfVP0A9dUFIc1/6wRmju5XIUhnwrC/l7oFAAAAN3hagi21v7OGDPqGJfMlfS4tdZKetUYM9AYM9Rau8vNvo6lcX9MK2satXD5FsWSmU6vq2+K6v4Vdfrei29pwezxmjWuTGVFoR7sFAAAAN3V23OCyyXVt7u9o+2+DzDGXGeMWWuMWRuJRFxppvFATLcurtbtz24+ZgBuL5bM6PZnN+vWxdVqPBBzpS8AAAA4q7dDcJdZax+x1lZZa6tKSkocr9+4P6Zbn6nW6tqOA3Z+wKuKQWHlB7wdPr66NqJbnyEIAwAA9Ae9vaqrQVJFu9vD2+7rUQejSa2saTwiAIcDXn1n3kSNLy+SzxgdiCUVS2YU8ntUGPIrZa0279inm57epGgiLak1CK/c0qi5k4cpP8QcYQAAgL6qt0PwUklfMcY8qdYFcft7Yz7wgVhKC5dvef/2D68+U+OGFmnJhgbd+5vaYy6MW3nD+arZtV9feHydJGnh8i2aXllKCAYAAOjDXJ0OYYx5QtIrkiqNMTuMMZ83xnzJGPOltkuel7RV0tuSHpV0vZv9dCSeaN0FIpbMaGRxWC/fMkONB+Ka+eAa3b+irsMALP1tYdzMB9eo8UBcL98yQyOLw4olM1q6sUHxRKqHPxMAAAB0lWndmKF/qaqqsmvXrnWk1o73Dmn+o6/KI+mXX5ym2xZ3Pi/4WGaMLdG9l03U//nBH5WR9MS1UzV80ABHegQAAED2jDHrrLVVHT3WbxbGucXa1lHdRddO7XYAllrnA9+2uFqLrp2q+qao+uHPFgAAADkj50NwcyylH159ptbURbodgA9bXRvRmrqIHr36TDXHmQ4BAADQV+V8CI4m0xo3tOiIhXEnYuHyLRo/tEixZNqRegAAAHBezofgEcXh9xfGOeHwwriKQWFH6gEAAMB5OR+Co8mMnnh9u6M1F722XVGHQjUAAACcl/MhWFKn26D1lXoAAABwVs6H4OaYOwvYWBgHAADQd+V8CI66tICNhXEAAAB9V86H4LDf26Xr8gNeVQwKKz/QtetDvq5dBwAAgJ7n6+0Gelt+qOMvQTjg1XfmTdT48iL5jNGBWFKxZEYhv0eFIb9S1mrzjn266elNiiY+OOrbWV0AAAD0vpxPasZIFcXhIxaz/fDqMzVuaJGWbGjQvb+p7XChW0VxWPPPGqGVN5yvml379YXH1x3xmDE90j4AAAC6IeenQ5TkBTT/rBGSpJHFYb18yww1Hohr5oNrdP+Kuk53eqhviur+FXWa+eAaNR6I6+VbZmhkcevewFedPUKlBcEe+xwAAACQnZwPwcGAT3Mnl2tMWZ5++cVpumPJZt3+7OYuH54RS2Z0+7ObdceSzfrlF6dpTFme5kwqV4A5wQAAAH2Wsdb2dg9Zq6qqsmvXrnWs3sFoUs2JlP5l8Satro10u86MsSX61mUTVBD0KT/kd6w/AAAAZM8Ys85aW9XRYzk/EnzYizW7TygAS9Lq2oherNntUEcAAABwCyFY0oFYSguXb3Gk1sLlW7Q/ykEZAAAAfVnOh+B4IqUlGxq6PAf4eGLJjJZubFA8QRAGAADoq3I+BEdaEnri9e2O1lz02nZFWhKO1gQAAIBzcj4EW6tOt0HrrvqmqPrhekMAAICckfMhuCXuzrSFFqZDAAAA9Fk5H4JjyQ8eedyX6wIAAODE5XwIDvndOdQixGEZAAAAfVbOh+ABQXfCqlt1AQAAcOJyPgSnM1YVxWFHa1YUh5XOsDIOAACgr8r5EOw1RldMGe5ozXlThstrjKM1AQAA4JycD8HGGE0fU6KQ35kvRcjv0fljSmQIwQAAAH1WzofgjLVavKFBN11Q6Ui9my6o1DMbGpRho2AAAIA+K+dDcCqd0aABAZ1UGNb0ypITqjW9skQnFYY1eEBAqTQhGAAAoK/K+RAcT2U0fUyJ7vv1Fi2ce4ZmjO1eEJ4xtkQL556h+369ReePKVE8xT7BAAAAfVXOh+D8kE8/enmbfvDpKt33fI3mTanQgovHdXmOcMjv0YKLx2nelArd93yNfnB1lR77wzvKD/lc7hwAAADdlfNJzchoUJ5f1Q37tXzzu1q++V1dMnGonrx2ql56M6Kn1u9QfVP0A8+rKA5r3pThOn9MiR77wzt6rrpGknReZYkG5QdkxMI4AACAvsrYfriAq6qqyq5du9aRWk0tMR2IpnXhf/xOsWTm/fu9HqOZY0s1e+JQDRsYVjKdUSyZUcjvkd/r0c59US2r3qUXa3cfsSdwyO/Rb752ngrDPhXnBR3pER8O8URKkZaEJOlgNKV0Ji2vx6uCcOvPoiV5AQUDOf9zKQAAjjHGrLPWVnX0WM6/4ybTVi9saTwiAEuth2i8sKVRL2xplCT5PEYBn0eJVEapYxyEEUtm9NstjZozeairfaP/OBhN6kAspeZ4UiG/V15jZGWVSEshj5WslLZW7+w9pIKQX4UhnwrC/t5uGwCAD7WcD8GptNXPXt12/OsyVqlE1xa7Pf7qNl004aQT7AwfBo37YzoYSygc8GtVzW498fr2TqfXzD9rhOZOLlfjgagOJdIqKwr1QscAAOSGnA/BGasOQ8mJqG+KilOTsedATGlr9ad33tPC5Vs+8NuG9uqborp/RZ2+9+JbWjB7vGaMLdWeAzENKSQIAwDghpzfHaI5nnKlbotLddE/7NkfU8pKtz+7Sbc/u/mYAbi9WDKj25/drNuf3aSUbQ3SAADAeTkfgmNJd/bzdasu+r6D0aSSsrptcbVW10a6VWN1bUS3La5W0lo1x5IOdwgAAHI+BAd97nwJAi7VRd+XSKX1Ys3ubgfgw1bXRvRizW5+oAIAwAU5n9TcOtSCwzJyUzyRUixltXD5FkfqLVy+RfGUVTzB9BoAAJyU8yHYY4wqisOO1qwoDstjOCwjF0XTaS3Z0NDlOcDHE0tmtHRjg6JpRoMBAHBSzofggM9o3pThjtb81JnDFfTm/Jc2Jx2MpvXE69sdrbnote06GCUEAwDgpJxPaj6P0cUThynkd+ZLEfJ7NHvCMHm9jATnKje23AMAAM7K+RDcEs8oL+jVTRdUOlLvpgsqlR/0qiXOyF0uOtjFnRx8HqMBAa98nq79sOTWVn4AAOSqnF+91RxL6ZWtezTtlCGaXlmiNXUdr+jvyrHJ0ytLNO2UIVpWvUvTTh3iZtvoozqbC+z1GM0aV6qLJgxV+cCw4qmM4qm0gj6vgj6PGvZFtbx6l1bV7la6g39f7BABAICzcj4ER5Np3b2sRqu+fp5umDVGkrSmLtJhaIkl0wr5Ow4t0ytLdMOsMQr4jBYur9Hi66f18meG3hD2ez9w35xJw3TNx0bp92/t0b+/UNfpscn/UFWh62ecoh/9YZuWbtx5xOMh3wfrAgCA7sv5EHw4tHzjfzfqB5+u0nUfH61/OmeEhhSEtKZu9zFDyxVThuv6Gadqz8GYBgR8GloU0hd/tlYSoSVXtd8aLy/g1f3zJmlvc1xXPvLqcY9N/s4Lb+rh1W/rXz45ThecfpJufmqjWhLpD9QFAAAnLufnBB8OFw9fNUX7DsU0uiRPkYMJXfnIK3po5VudLkqqb4rqoZVv6cpHXlHkYEKjS/K071BMD1815Yi6yC3GtP6AlBfw6rHPnqVn1u/QnUvfyOrY5DuXvqFn1u/QY589S3kBryqKw2LHPQAAnJXzSc0Y6WfXnK2WREp5waBuW7wpq5O+YsmMblu8STPGlujf5k5QSyKpn11zFqElRxWGvZp/1giNLsnTo7/bqlW1u7tV5/DzvvMPk/TOnhYNDPudbBMAgJyX8yPBJXkBjSkrUDjg04Il2QXg9lbXRrRgySaFAz6NKStUaUHQ4U7RH/iNR1dMGa6mlmS3A/Bhq2p3672WpC7/yHCx4x4AAM7K+RDcyuqluohe7GYAPuzF2oh+92ZERla2kx0k8OG291BSKWt197I3HKn3zWVvKJ2x2nuoa1uvAQCArsn5ELw/nlQqY7Vw+RZH6t29bIuSGav9XdwvFh8ufq/R8updjh6bvHzTLvkZCgYAwFE5H4J9HqPnHA4ty6p3yUdoyUmZjPSzV7c5WvPxV7cp48w/TwAA0CbnQ/ChREa/+NNfHa358z/9VYcSpJZclMpYV45N7uyAFgAA0D05H4IluRJakJtaXDreuCXBsckAADgp50PwwZg74aLZpbro26IuHW8cS3BsMgAATsr5EBx3aC7wB+qmmA6RiwI+d76l3KoLAECuyvl31qBbocWb81/anFQQdOf8mXyX6gIAkKtyPqkNCHr7VV30bcYYVRSHHa3Zemwyu40AAOCknA/B1sqV0MJa/twU8BnNmzL8uNf5PEYDAl75PMcPt586c7hrv7EAACBX5fzvWEP+1mNuH1r5lmM1500ZrhChJSeFAx7NnjhM33/pL0fsPe31GM0aV6qLJgxV+cCw4qmMYsm0Qn6vgj6PGvZFtbx6l1bV7la63XZoIb9HsycMUzjAbxYAAHBSzofgeCqjmWNL9T9HhZbuCvk9+ruxpSyMy1HvtaRUEPTppgsqtXBZjSRpzqRhuubcUVrzZkT//kJdh1voVRSHdcWU4bp++in60cvbtHTjTknSTRdUKj/oU1NLQgUhf49+LgAAfJjl/HBlyO/Rtr0tuumCSkfq3XRBpf66t0VhPyN3uaipJSFjrKadMkQXnl6mh6+aokkVRbry0Vf10Mq3Ot1Dur4pqodWvqUrH31VkyqK9PBVU3Th6WWadsoQeYzVey2JHv5MAAD4cMv5EJxMW40anKdhRWFNryw5oVrTK0s0rCiskYPzlEgzEpyLwn6v/m15rQYP8GvBxafrqfX1Wrispsu/ZYglM1q4rEZPra/XgotP1+ABAd29rEYhfqgCAMBROR+C02mrXftjijTHdN15o7sdhKdXlui680Yr0hzTrv2xI+Z1Infkh3yaXFGkpkNJ3blks1bXRrpVZ3VtRHcu2aymaEKTKwYqP5TzM5cAAHBUzodgGemU0nyV5If0+B+36VNnVmjBxeMU8nftSxPye7Tg4nH61JkVevyP21SSH9IppfkuN42+KuD16KIJQ/XyX/ZoVe3uE6q1qna3Xn57jy6eOJR9pwEAcBjvrJIef2WbWhIpXT1tlH61rl4btu/Tk9dO1Q2zTut0+7SK4rBumHWanrx2qjZs36dfravX1dNG6VAipZ++sq0n20cfUhTyqTme1gMr6hyp98CKOjXH0yoKMxIMAICTcv6dNeT3aNCAgIpCfv3i1b/qU2dW6N0DUf3jY3/SuacM0Tf+vlLDBoaVTGcUS2YU8nvk93q0c19Uy6p36ZHfb9WNnxijkwrD+sWrf9Wlk8s1eECAhXE5an88qeXVOx3ZaURqnSO8fNNOXXlWhUr9Of/tCgCAY3L+XTWZtpo5tlSf/fFr+v4/nalHfrdVYb9Xv/j8OXqp3ZZWPo9RwOdRIpVRKmNVURzWvCnD9eXpp+ixP7yjaHKvrjtvtP7vz9fpJ587m4VxOSqRtHpq/Q5Ha/5q3Q5d/pHjH8ABAAC6LudDcEleQJsa9uv6Gafqcz9+XffPm6R9hxJZjQT/yyfHaeCAgD7349d149+P0Y59UVWeVNDbnxp6QcbaTrdB6676pqgynEEIAICjcj4EBwM+TSwfKFnprJOL9eVF63XJxKH6xRem6pW/7DnmSPBVZ4/Ql2ecqsd+v1XPVe96f4u0ieUDFfAxHSIXHYynXKnbHEu7UhcAgFyV8yFYkgpDPh2IJnXdeaMlSc9V79Lzm9/VzLGlR4wEJ1IZBXxHjgT/+wtvKp2x72+RtqPpEIuYcljCpZMCEylCMAAATiKtSSoI+zW9slR3PbdZnzqzQh8/bYgeWFGnF7Y06oUtjZL0gZHgw0J+j/7lorE6qTCsn72yTXfNOUP5HG+bs7q6ILKzf0+d4bAMAACcRQhuU1YU0l1zztCtz1QrP+DTk9dO1UtvRvTU+h2qb4oqlbFKJf42Gnd4Ydz5Y0r02B/eUXNij+67fKLKCkO9+Fmgt+UFO/6W8nqMZo0r1UUThqp8YFjxVEaxZFohv1dBn0cN+6JaXr1Lq2p3d3jQSmd1AQBA9/DO2k5ZYUj3XTZRK2sas1sYd9E4zRpXRgCGvJ7WH5DaL46bM2mYrjl3lNa0223kaBXFYV0xZbiun36KfvTyNi3duPOIx7we0yP9AwCQK4y1/W/VeVVVlV27dq1r9ZtjSe2PprR0Y4MWvbb9mAvj5kwuV1HIxxQISJIiB6Na/Odd+tbzNcoLeHX/vEl690BUD6yo69LewSG/RzddUKmTCsO6+amNakmkdftF43TZR8o1pCDYA58BAAAfHsaYddbaqg4fIwR3Lp5IKdKSkLVSczz1/q+v84M+GSOVFgTZBQJHaGqJKZrIaM5//UH/edUUPfK7rVpTF8m6zuGFll9dtF5Lv/IxhQNeFecRggEAyMaxQjDTIY4hGPBpeIAvEbquJZ5RwOvR458/Rw+sqOtWAJb0/vMe//w58nk8aomnVZznZKcAAOQ2T283AHyY+D1G67e/p431+7sdgA9bUxdRdf1+ra9/Tz4vc4IBAHASIRhwUCKT0fBBYd297A1H6n1z2Rsa3rYwEwAAOIcQDDgo6PNoVe3uLi2C64pYMqMXa3cr6ONbFQAAJ/HOCjgomsjo6fU7HK351PodijoUqgEAQCtCMOAgY9ThPsAnor4pKmYEAwDgLEIw4KBD8fTxL+pO3YQ7dQEAyFWEYMBB8ZQ70xYSLtUFACBXEYIBB4X87nxLsTAOAABn8c4KOCg/5M7hKm7VBQAgVxGCAQclUhlVFIcdrVlRHGY6BAAADiMEAw7yGqP5Z49wtOZVZ4+Q17A/BAAATnI9BBtjLjTG1Blj3jbG3NrB4yOMMauNMX82xlQbYy5yuyfALR6P0bTRgx2bGxzye/TR0YPl8RCCAQBwkqsh2BjjlfSwpE9KGi9pvjFm/FGX3SHpf621H5F0paT/drMnwE3GSIs3NOjmCyodqXfzBZV6ZkODGAgGAMBZbo8Eny3pbWvtVmttQtKTkuYedY2VVNj29yJJO13uCXBNSV5AZQUhlRWGNb2y5IRqTa8sUVlhWEMLQyotCDrUIQAAkNwPweWS6tvd3tF2X3t3SfonY8wOSc9L+mpHhYwx1xlj1hpj1kYiETd6BU5YMODT3MnlunPJJl133uhuB+HplSW67rzRunPJJs2ZVK6Az+twpwAA5La+sDBuvqSfWGuHS7pI0s+MMR/oy1r7iLW2ylpbVVJyYiNsgJsGBL268ROVuvu5N3Tv5RN0z6VndHmOcMjv0T2XnqH7Lp+gu597Qzd+olJ5QQIwAABOc3vz0QZJFe1uD2+7r73PS7pQkqy1rxhjQpKGSNrtcm+AKw7F0yofFNZPPneObltcrfyAT09eO1UvvRnRU+t3qL4p+oHnVBSHNW/KcJ0/pkSP/eEdraxt1E8+d45q3z2glnhaAwf0wicCAMCHmNsh+HVJpxljTlZr+L1S0lVHXbNd0kxJPzHGjJMUksR8B/RL8URKSzY0aO7kYbptcbVW17b+U35+87uaObZU3/j7Sg0bGFYynVEsmVHI75Hf69HOfVEtq96l7734ttIZK0m6bXG1/u3SM7R0Q4OumTZKwQAHZgAA4BRX31WttSljzFckrZDklfQja+0bxpi7Ja211i6V9HVJjxpjblDrIrnPWmutm30Bbom0JDShvEhr6iLvB2BJSmesXtjSqBe2NEqSfB6jgM+jRCqjVKbjf+6rayNaUxvRGcMKFWlJaDghGAAAx5j+mDerqqrs2rVre7sN4APqmw7JY4xmPrhGseSJn/IW8nu06sbpylirimLmRAAAkA1jzDprbVVHj/WFhXHAh0bY79GSDQ2OBGBJiiUzWrqxQeEA36oAADiJd1bAQdFkRk+8vt3Rmote265owplQDQAAWhGCAYd1tPtDX6oHAAAIwYCjmmMpd+rG3akLAECuIgQDDoom067UjblUFwCAXEUIBhwU9rtzuluIY5MBAHAUIRhwUH7Inb183aoLAECuIgQDDjKm9QhkJ1UUh2WMoyUBAMh5hGDAQYUhr+afNcLRmledPUJFIb+jNQEAyHWEYMBB8VRGcyeXK+R35lsr5PdozqRyxVMsjAMAwEmEYMBB8ZSVx1gtmD3ekXoLZo+X11jFUhyWAQCAkwjBgIMOxlK699d1+ruxpZoxtuSEas0YW6K/G1eqe56v1UGX9h8GACBXEYIBB0WTaS3duFM17x7UvZdN7HYQnjG2RPdeNlE1uw7quepd7BMMAIDDCMGAgw7vE/zVReu1470W3XPpBN1z6RldniMc8nt0z6Vn6J5LJ2jHey366qL1bfezTzAAAE4iBAMOKmjbz7clkdZnfvS6/rx9n846eZBW3Thdt1xY2en2aRXFYd1yYaVW3ThdZ508SH/evk+f+dHrakmkj6gLAACcwTsr4CBP2z7B9U1RtSTS+vKi9bpk4lB9/mMna/ppJbpowlB5jFFzPKVYMq2Q36v8oE8Za3UonlLkYEyP/eEdPVe96/2aFcVhedgnGAAARxGCAQeV5AU1/+wRuv83de/f91z1Lj2/+V3NHFuq2ROHatjAsDLpjFIZq0QyreZ4Sjv3RbWsepderN2tdMYeUfOqs0eopCDU058KAAAfaoRgwEF+v1dzJ5fre6veUiz5t23N0hmrF7Y06oUtjZIkn8co4PMokWoNw50J+T2aM7lcfi8zlwAAcBLvrIDDBoX9uvPiY+8TnMpYHUqkjxmAJenOi8dr0ABOiwMAwGmEYMBhA4I+zRpXdszt0XweowEBr3zHmOw7Y2yJZo0r04AAv7ABAMBpvLsCLigtDOnbl0/ULc9Ua3VtRF6P0axxpbpowlCVDwwrnsq8vzAu6POoYV9Uy6t3aVXbnOAZY0v07csnqrSQucAAALiBEAy45HAQrtl1QEUDAlpTt1v//kKd6puiH7i2ojisK6YM1/UzTtX+QwmNG1pIAAYAwEWEYMBFPq9HjQfj+uLP1x2xUO5o9U1RPbTyLf3PS3/R3XPP0IThzFQCAMBNvNMCLtnbHNctT1Xr5qeqPxCAQz6PhuQHFPId+S0YS2Z081PVuuWpau1tjvdkuwAA5BRGggEXNLUkdOvTm/TbmtYt0QI+j/7fzFM1fWyp8gI+NcdSiqfSCvq8yg/51JJI6cWa3frei28rkcq0Pu9p6f55EzUoL9DLnw0AAB8+jAQDDkukMlpV0/h+AL7z4nFadeP5GjU4T9v3HlLkYFz7okm9dyipfdGkIgfj2r73kE4enKdVN56vOy8eJ0n6bU2jVtY0KpHqfBoFAADoHkaCAYc1tSS0YMlmleQHtOjaqWp4L6q9LQm9ubtZT6/fccyFceXFAzR6SL5+e8N5uurRV7VgyWZ9/LQSnVTEIjkAAJzESDDgoHQ6o2XVO1UQ9Gnx9ecqcjCuv+xp1pWPvKKHVr7VYQCW/rYw7spHXtFf9jQrcjCuxdefq4KgT8uqdyqdZjQYAAAnEYIBBzUdSuinr2zTE9dN1d6WhB75/VYtXFZzzJ0h2oslM1q4rEaP/H6r9rYk9MR1U/XTV7ap6VDC1b4BAMg1hGDAQamM1eemjVIybfXdlW9qTV2kw+vyA15VDAorP+Dt8PE1dRF9d+WbSqatPvvRUcc9XhkAAGSHOcGAgw7GUvrkhKF6ftOuIwJwOODVd+ZN1PjyIvmM0YFYUrFkRiG/R4Uhv1LWavOOfbrp6U2KJtKSWoPwx08botkThupgLCUV9dZnBQDAhw8hGHBQQdCnlnhaD6yoe/++H159psYNLdKSDQ269ze1nS6Mm3/WCK284XzV7NqvLzy+TpL0wIo6TR9Tqvwg36oAADiJ6RCAgzweaXn1TsWSGY0sDuvlW2ao8UBcMx9co/tXdHxkstS6MO7+FXWa+eAaNR6I6+VbZmhkcVixZEbLN+2Uh+9UAAAcxVsr4KBEyuqp9Ts0sjisX35xmu5Yslm3P7s5q4Vxtz+7WXcs2axffnGaRhaH9at1O5RIMScYAAAnEYIBB1lrVd8U1aJrp+q2xdVaXdvxwrjjWV0b0W2Lq7Xo2qmqb4rKihAMAICTCMGAgw7GU/rh1WdqTV2k2wH4sNW1Ea2pi+jRq89UcyztUIcAAEAiBAOOSqQyGje0SAuXb3Gk3sLlWzR+aJESKUIwAABOIgQDDqooDmvJhoYuzwE+nlgyo6UbGzS8OOxIPQAA0IoQDDgomsjoide3O1pz0WvbFU1wbDIAAE4iBAMO62wbtL5SDwAAEIIBRzXHUu7UjbtTFwCAXEUIBhwUTbqzgC3mUl0AAHIVIRhwUNjvdaVuyOdOXQAAchUhGHBQfsjXr+oCAJCrCMGAg4xp3SbNSRXFYRnjaEkAAHIeIRhwUEleQPPPGuFozavOHqHSgqCjNb9FhdcAACAASURBVAEAyHWEYMBBwYBPcyeXK+R35lsr5PdozqRyBZgTDACAowjBgMMKQz4tmD3ekVoLZo9XUZj5wAAAOI0QDDisIOzXrHFlmjG25ITqzBhbolnjy5Qf8jvUGQAAOIwQDLigrCik+y6f2O0gPGNsie67fKLKCkMOdwYAACRCMOCassKQ7rtsou659IwuzxEO+T2659IzCMAAALiMyYaAy6aOLtaqG6dr6cYGLXptu+qboh+4pqI4rKvOHqE5k8oVS6Yk2wuNAgCQQwjBgEsaD8R06+Jqra6NKBzw6oErJuhnnz9HXmPUHE8plkwr5PcqP+hT2lpt3rFPs777kqKJNNMhAABwmbG2/w05VVVV2bVr1/Z2G0CnGvf/LQB3JD/g1aC8gN5rSag5ke7wGoIwAAAnxhizzlpb1dFjzAkGHHYwmtTKmsZOA7AkNSfSqn8v2mkAlqTVtRGt3NKo5ljSjTYBAMhphGDAYQdiKS1cvsWRWguXb9H+aMqRWgAA4G8IwYCD4omUlmxoUCyZcaReLJnR0o0NiicIwgAAOIkQDDgo0pLQE69vd7Tmote2K9KScLQmAAC5rssh2BjzHWPM6W42A/R31qrDLdBORH1TVP1w/SoAAH1aNiPBNZIeMcb8yRjzJWNMkVtNAf1Vc8ydaQvNcaZDAADgpC6HYGvtD62150q6WtIoSdXGmEXGmBluNQf0N9Fk57s9nIiYS3UBAMhVWc0JNsZ4JY1t+9gjaaOkG40xT7rQG9DvhP3eLl2XH/CqYlBY+YGuXR/yde06AADQNV0+Mc4Y811JF0t6UdK3rLWvtT30bWNMnRvNAf1Nfqjjb6lwwKvvzJuo8eVF8hmjA7GkYsmMQn6PCkN+pdpOjLvp6U2KdrB3cGd1AQBA92Tzzlot6Q5rbUsHj53tUD9Av1dRHD5icdwPrz5T44YWacmGBt37m9oOF85VFIc1/6wRWnnD+arZtV9feHzdEY8BAABnZTMdYp/ahWZjzEBjzKWSZK3d73RjQH8U9ns0/6wRkqSRxWG9fMsMNR6Ia+aDa3T/irpOd46ob4rq/hV1mvngGjUeiOvlW2ZoZFv4versERrQxWkWAACga7IJwf/aPuxaa/dJ+lfnWwL6r2gyo7mTyzWmLE+//OI03bFks25/dnOXD8+IJTO6/dnNumPJZv3yi9M0pixPcyaV6xAL4wAAcFQ2Ibija5moCLRjjLQ10qyfXnOObltcrdW1kW7VWV0b0W2Lq/XTa87R1shBGeNwowAA5LhsQvBaY8yDxphT2j4elLTuuM8CckhJXkClBUG9WLO72wH4sNW1Eb1Ys1ulhSGVFgQd6hAAAEjZheCvSkpI+mXbR1zSl91oCuivggGf8kN+LVy+xZF6C5dvUX7QrwBbpAEA4KguT2do2xXiVhd7Afq9eCKlJRsaujwH+HhiyYyWbmzQNdNGKRhg9hEAAE7JZp/gMZK+odbT4t5/nrX275xvC+ifIi0JPfH6dkdrLnptuy6ZNEzDCcEAADgmm3fVX0n6H0k/lMRSdaAD1qrTbdC6q74pKmsdLQkAQM7LJgSnrLXfd60T4EOgOZZyp27cnboAAOSqbBbGPWeMud4YM9QYU3z4w7XOgH4o6tJ+vjH2CQYAwFHZjAR/pu3Pm9rdZyWNdq4doH8Lu3SyW4jdIQAAcFQ2u0Oc7GYjwIdBfsidxWtu1QUAIFd1eTqEMWaAMeYOY8wjbbdPM8Zc7F5rQP9jjFRRHHa0ZkVxmBPjAABwWDZzgn+s1sMyprXdbpD0b453BPRjJXkBzT9rhKM1rzp7BCfGAQDgsGxC8CnW2vslJSXJWntIEuNTQDvBgE9zJ5cr5M/mW6tzIb9HcyaVc2IcAAAOy+adOmGMCat1MZyMMaeo9ehkAO0UhnxaMHu8I7UWzB6vojDzgQEAcFo2IfguSb+RVGGM+YWkVZJucaMpoD8rCPs1a1yZZowtOaE6M8aWaNb4MuWH/A51BgAADstmd4gXjDHrJE1V6zSIr1lr97jWGdCPlRWFdN/lE3XrM9VaXRvJ+vkzxpbovssnqqww5EJ3AAC4K5lMK9ISV8ZKB2MpRZNphf1eFYR88hipJC8ov0vbinZVl0OwMWaVtXampOUd3AfgKGWFId132UStrGnUwuVbFEtmjvuckN+jBbPHa9b4MgIwAKDfORRP6b1oUks2NOiJ17arvikqn8co4PMokcoolbGqKA5r/tkjNHdyuQaF/RoQ7J1pf8d9VWNMSNIASUOMMYP0t8VwhZLKXewN6PfKikKaO3mYpleWaunGBi1q+w/haBXFYV119gjNmVyuopCPKRAAgH5n94GYVtY06p7na/SxU4foG39fqfKBYcVTGcWSaYX8XgV9HjXsi2p59S49vPpt3X7ROM0aV6bSXhj4MdbaY19gzNck/T9Jw9S6LdrhEHxA0qPW2v9ytcMOVFVV2bVr1/b0ywInJJ5IKdKSkLVSczz1/n8I+UGfjJFKC4LsAgEA6Jd2H4jplmeqVRD065pzR2nNmxE9vX5HpwM/V0wZruljSvSjl7fpYDypb18+0ZUgbIxZZ62t6vCx44XgdkW+aq39T0c76yZCMAAAQN+w+0BM/7p0sy6eWK53D0T1wIq6Lk8BvOmCSp1UGNay6gZ9c84ZjgdhR0JwW6Fpkkap3TQKa+3jJ9pgtgjBAAAAve9QPKVl1Ts1vHiAHvndVq2py34x+PTKEl133mjtaDqkiycN04CAc3OEjxWCs1kY9zNJp0jaICnddreV1OMhGAAAAL3vvWhSBSF/twOwpPef93+qKvTeoaSjIfhYsnmVKknjbTZDx5KMMRdK+g9JXkk/tNbe18E1/6DWfYitpI3W2quyeQ0AAAD0rGQyreod+7Rzf7TbAfiwNXURffy0IZKRSvMCPbJ9WjaHZWyWdFI2xY0xXkkPS/qkpPGS5htjxh91zWmSbpN0rrX2dLUuwgMAAEAfFmmJa/jAsB5YUedIvQdW1Gn4wLAiLT1zIHE2IXiIpC3GmBXGmKWHP47znLMlvW2t3WqtTUh6UtLco665VtLD1tr3JMlauzuLngAAANALfF6jVbW7u7QIritiyYxerN0tn8cc/2IHZDMd4q5u1C+XVN/u9g5J5xx1zRhJMsa8rNYpE3dZa39zdCFjzHWSrpOkESNGdKMVAAAAOOVQIqOn1+9wtOZT63do7kd65hiKbI5NfskYM1LSadbalcaYAWoNrU70cJqk6ZKGS/qdMWaCtXbfUa//iKRHpNbdIRx4XQAAAHSTkTrcB/hE1DdF1TPjwFlMhzDGXCvpKUk/aLurXNKzx3lag6SKdreHt93X3g5JS621SWvtO5LeVGsoBgAAQB91KJ4+/kXdqZtwp+7RspkT/GVJ56r1pDhZa9+SVHqc57wu6TRjzMnGmICkKyUdPY/4WbWOAssYM0St0yO2ZtEXAAAAelg85cxc4KMlXKp7tGxCcLxtcZskyRjjU+uWZp2y1qYkfUXSCkk1kv7XWvuGMeZuY8yctstWSNprjNkiabWkm6y1e7P5JAAAANCzQv5sYmTXBX3u1D1aNgvjXjLG/IuksDHmE5Kul/Tc8Z5krX1e0vNH3Xdnu79bSTe2fQAAAKAfyA+6c6iFW3WPlk3UvlVSRNImSV9Ua7C9w42mAAAA0LelrVVFcdjRmhXFYaWzO5et27ocgq21GWvto9baT6l1q7I/ZXt6HAAAAD4cQn6P/vGckce9zucxGhDwdmn/3386Z6TCPXBanJTFdAhjzBpJc9qes07SbmPMH621N7jUGwAAAPooa6XZE4bqoZVvHnFghtdjNGtcqS6aMFTlA8OKpzKKJdMK+b0K+jxq2BfV8updWlW7W+nM38ZTQ36PLpowVJkeGmPNZtJFkbX2gDHmC5Iet9b+qzGm2q3GAAAA0HcFfEZ/3r5PN19QqbuX1UiS5kwapmvOHaU1b0b07y/UdbiPcEVxWFdMGa7rp5+iH728TUs37pQk3XxBpTbv3K9zTi7ukf6zmRPsM8YMlfQPkpa51A8AAAD6gZZ4Rt/6dY3KCsO68PQyPXzVFE2qKNKVj76qh1a+1elBGvVNUT208i1d+eirmlRRpIevmqILTy9TWWFY33q+Ri0u7T98tGxGgu9W63Zmf7DWvm6MGS3pLXfaAgAAQF9mrVV9U1R3Ld2sZ64/V3cu3azVtZEuPz+WzGjhshrNGFuihXPP0GUPv6xIc0L22DvwOiabhXG/stZOtNZe33Z7q7X2CvdaAwAAQF91MJ6SJH3rsgn65nNvZBWA21tdG9FdS9/Qty6bIElqjvWRkWBjzM3W2vuNMf+pDg7HsNb+syudAQAAoM9KpDKaM2mY9h5KaGXN7hOqtbJmtz4xvkyXTByqRKqPhGC1nvQmSWvdbAQAAAD9R9jv1ddmnabZ3/u9I/X+dekbWv7PH1eyh45NPm4IttY+1/bnTw/fZ4zxSMq31h5wsTcAAAD0UYPy/FqyYdcR26OdiFgyoxdrdmvO5KGO1DueLs8JNsYsMsYUGmPyJG2WtMUYc5N7rQEAAKCvymSkn726zdGaj7+6TZmeGQjOaou08W0jv5dK+rWkkyV92pWuAAAA0KelM7bTbdC6q74pesQBGm7KJgT7jTF+tYbgpdbapDpYKAcAAIAPv+a23SEcr5twp+7RsgnBP5C0TVKepN8ZY0ZKYk4wAABADoom3dnFIZboO7tDSJKstd+T9L12d/3VGDPD+ZYAAADQ1wV82Yyl9n7do3U5BBtjgpKukDTqqOfd7XBPAAAA6OMKQtkcPNx1+UF36h4tm6i9RNJcSSlJLe0+AAAAkGOMjCqKw47WrCgOyxjjaM3OZBO1h1trL3StEwAAAPQbAZ/RvCnD9d2VbzlW81NnDlewh6ZDZPMqfzTGTHCtEwAAAPQbNiPNnjhMIb8zoTXk92j2hGHK2L63RdrHJK0zxtQZY6qNMZuMMdVuNQYAAIC+a9eBmPKCXt10QaUj9W66oFJ5Aa/e3R9zpN7xZDMd4pOudQEAAIB+Jez36tebdmnaKUM0vbJEa+oi3a41vbJE004ZouWbduncU4c42GXnujwSbK39q6SBki5p+xjYdh8AAAByTH7Ip7uX1cjvNbph1hhNryzpVp3plSW6YdYY+b1GC5fXKN+lXSeO1uUQbIz5mqRfSCpt+/i5MearbjUGAACAvivg9aiiOKz5j7yqwXkBXffx0Vpw8bguzxEO+T1acPE4Xffx0RqcF9D8R15VRXG4x/YJzuZVPi/pHGvtndbaOyVNlXStO20BAACgLxucF9Cnp45SpDmhy/77ZZUUBHVqSb6evO6jumHWaZ1un1ZRHNYNs07Tk9d9VKeW5KukIKjL/vtlRZoTuvqjozQ4L9gj/Wcz3mwktT/HLt12HwAAAHKM1+vRnElD9eBv6xRpTugT3/2dFswep78//SSdVpqv2y8ap8H5QSXTGcWSGYX8Hvm9Hu1tjitjrQbnBbRuW5M+8+PXJbWODF8ycai8np6Jl9mMBP9Y0p+MMXcZY+6S9Kqkx1zpCgAAAH1ecV5Qd889/f3bC5fXaOaDL2nrnhaNGDxAJQVBFYX9GjTAr6KwXyUFQY0YPEBbIy2a+eBLWri85v3n3j33DBX30CiwJBmbxV5sxpgpat0qTZJ+b639sytdHUdVVZVdu3Ztb7w0AAAA2mlqSejmpzZqZc3uDh8P+TzKD/nUHEsplsp0eM2scaV6YN4kDcoLONqbMWadtbaqo8eyWRg3VdJb1trvWWu/J+kvxphznGoSAAAA/U9xXkDfvmKiZo0r7fDxWCqjPc2JYwbgb18x0fEAfDzZTIf4vqTmdreb2+4DAABADhucH9T98ybp/nkTs9od4oF5E/XAvEkanN9z0yAOy2phnG03d8JamzHG9MxGbgAAAOjTivMCunRyuc47rUTLqnfqp69sU31T9APXVRSH9Zlpo3TxhGEqzgv02JZoR8smxG41xvyz/jb6e72krc63BAAAgP4o4PPopKKQPjdtlOZOHqZUxqo5llI8lVGwbW6wz2NUnBfssV0gOpNNCP6SpO9JukOSlbRK0nVuNAUAAID+y+v1qKQg1HqjqHd76UyXQ7C1drekKzt73Bhzm7X2Xke6AgAAAFzk5CSMTzlYCwAAAHCNkyGY0+MAAADQLzgZgrt+6gYAAADQixgJBgAAQM5xMgT/ysFaAAAAgGuOuzuEMeY/dYypDtbaf27781sO9gUAAAC4pitbpK11vQsAAACgBx03BFtrf9oTjQAAAAA9pcuHZRhjSiTdImm8pNDh+621f+dCXwAAAOin0umMmg4llMpYHYyllEyl5fd5VXD42OQBAXm9Ti5Ny142xyb/QtIvJc1W6xHKn5EUcaMpAAAA9D+JVEZNLQltrN8nK6sh+UElUhklUhkFfB4diCa1pzkuI2lSxSAV5wUU8PVOGM7mVQdbax+TlLTWvmStvUYSo8AAAABQU0tCr72zV+8eiCmeSr9/v5WUtvaIXRZiyYzePRDTa+/sVVNLosd7lbIbCU62/bnLGDNb0k5Jxc63BAAAgP5kb3NcbzYeVCyZVn7Ir617WvT0+h2qb4p+4NqK4rCumDJcI4fkKZZMq+7dAxpTVqDB+cEe7TmbEPxvxpgiSV+X9J+SCiXd4EpXAAAA6BeaWhLatS8qa6W/Nh3SV574s2LJTKfX1zdF9dDKt/Q/L/1FN11QqXEnFWrXvqg8xmhQXqDH+u5yCLbWLmv7635JM9xpBwAAAP1FIpXRnoMxpa30yO+3ak1d15eLxZIZLVxWo+mVJbph1hhFmmPKC/p6bI5wl1/FGDPaGPOcMWaPMWa3MWaJMWa0m80BAACg79p3KKFkxuq7K9/MKgC3t6Yuou+ufFPJtNW+Qz03PzibqL1I0v9KOknSMLUek/yEG00BAACgb0unM4qnM3p1695uB+DD1tRF9OrWvUqkMkqnO59K4aRsQvAAa+3PrLWpto+fq91+wQAAAMgd+2NJxZMZPbCizpF6D6yoUyyV0f5Y8vgXO+C4IdgYU2yMKZb0a2PMrcaYUcaYkcaYmyU9736LAAAA6GtSmYyWV+885iK4bMSSGT2/aadSPTQS3JWFcevUusWbabv9xXaPWUm3Od0UAAAA+rZ40uqp9TscrfmrdTt02UeGO1qzM8cNwdbak3uiEQAAAPQf1toO9wE+EfVNUR15rIZ7urxFmjHGL+n/Sjqv7a41kn5gre2ZiRsAAADoM5rjKXfqxtLHv8gB2RyW8X1Jfkn/3Xb70233fcHppgAAANC3xVPuzN1NpPpeCD7LWjup3e0XjTEbnW4IAAAAfV/Y73WlbsilukfLZou0tDHmlMM32g7K6JmoDgAAgD4lP5jNWGrv1z1aNq9yk6TVxpitat0pYqSkz7nSFQAAAPo0j0eqKA47ujiuojgsj8cc/0IHdHkk2Fq7StJpkv5Z0lclVVprV7vVGAAAAPqukN+jT08d6WjNT08dqZA/m4kK3XfckWBjzOWdPHSqMUbW2mcc7gkAAAB9XJ7fp9kTh+nB377pyIEZIb9HsycM61PTIS456vbhzdtM298JwQAAADkmGPApEEvprjmn69anN51wvW/OOV0Br1HA1zML47pyWMbnJMkY83UdeXKclbTfGDPZWrvBvRYBAADQF4X8Xn381CGaObZUq2p3d7vOzLGl+tipQxQO9EwAlrLbHeJMSV+SNFTSMLUen3yhpEeNMTe70BsAAAD6sIKwXwGPRwsvPUMzx5Z2q8bMsaVaeOkZCng9yg/5He6wc9mE4OGSplhrv2Gt/bpaQ3GpWk+Q+6wLvQEAAKCPKykKye8xuuPi8br3sgldXtgW8nt07+UTtODi8fJ7jEoKQy53eqRsZh6XSoq3u52UVGatjRpj4p08BwAAAB9yJYUhZfbHdPqwQv32hvP1/KZd+vmf/trh9mkVxWH90zkjddGEoXqvJaFwwNvjAVjKLgT/QtKfjDFL2m5fImmRMSZP0hbHOwMAAEC/UVYUUl7Qq/3RlKaMGKjzK0sU8nt1KJ5SLJlRyO/RgKBPsWRaB6NJeTxGo0vyenQKRHtdDsHW2oXGmF9LOrftri9Za9e2/f0fHe8MAAAA/Up+yK/8kF9D8vyKtCRkrWSMkd/b+qfXGOUHfRo9JK/HdoHoTFYbsbWF3rXHvRAAAAA5KxjwaXigZ/b77a6eOZIDAAAA6EMIwQAAAMg5hGAAAADkHEIwAAAAcg4hGAAAADmHEAwAAICcQwgGAABAziEEAwAAIOcQggEAAJBzCMEAAADIOYRgAAAA5BxCMAAAAHIOIRgAAAA5hxAMAACAnEMIBgAAQM4hBAMAACDnEIIBAACQcwjBAAAAyDmEYAAAAOQcQjAAAAByjush2BhzoTGmzhjztjHm1mNcd4UxxhpjqtzuCQAAALnN1RBsjPFKeljSJyWNlzTfGDO+g+sKJH1N0p/c7AcAAACQ3B8JPlvS29bardbahKQnJc3t4LqFkr4tKeZyPwAAAIDrIbhcUn272zva7nufMWaKpApr7fJjFTLGXGeMWWuMWRuJRJzvFAAAADmjVxfGGWM8kh6U9PXjXWutfcRaW2WtrSopKXG/OQAAAHxouR2CGyRVtLs9vO2+wwoknSFpjTFmm6SpkpayOA4AAABucjsEvy7pNGPMycaYgKQrJS09/KC1dr+1doi1dpS1dpSkVyXNsdaudbkvAAAA5DBXQ7C1NiXpK5JWSKqR9L/W2jeMMXcbY+a4+doAAABAZ3xuv4C19nlJzx91352dXDvd7X4AAAAATowDAABAznF9JBgAAAC5JZ5IKdKSkCQdjKYUTaYV9ntVEG6NniV5AQUDvRtDCcEAAABwxMFoUgdiKS3Z0KAnXt+u+qaoyvIDGjlkgP6655AamxOqKA5r/lkjNHdyuQpDPhWE/b3SKyEYAAAAJ6xxf0wraxr18Kq39cv/O1WXTBomY6QD0aRiyYxCfo8Kw35ZK1lr9an//qO+PPNUzRpXprKiUI/3SwgGAADACWk8ENOti6v1zUvGa3pl6REjwUc7PBL8q+unKZ1J69bF1brv8okqK+zZIGystT36gk6oqqqya9eylTAAAEBva9wf00/+uFWfmXayVtXs1sLlWxRLZo77vJDfowWzx2vmuFL99I/v6LPnjnY8CBtj1llrOzyEjZFgAAAAdMvBaFLV9e/ps+eO1q3PVGt1baTLz40lM7r92c1aWVui+y6fqOrt7+mjpw5Rfqhn5gizRRoAAAC65UAspQkVA7MOwO2tro3o1meqNaFikPZHUw532DlCMAAAALIWT6Tk80iranZ3OwAftro2olU1jfJ7W+v2BEIwAAAAshZpSSiVkRYu3+JIvYXLtyiZ1vv7C7uNEAwAAICsDQx7tWRDQ5cWwXVFLJnR0o0NGhj2OlLveAjBAAAAyNp7h9J64vXtjtZc9Np2vXco7WjNzhCCAQAA0C0d7QPcl+odCyEYAAAAWWuOubOArTnOwjgAAAD0UdGkO9MWYi7VPRohGAAAAFkL+91ZwBbysTAOAAAAfVR+yJ2Dh92qezRCMAAAALJmjFRRHHa0ZkVxWMY4WrJThGAAAABkbfAAv+afNcLRmledPUIl+UFHa3aGEAwAAICshYN+zZ1crpDfmTgZ8ns0Z1K5gi7NNT4aIRgAAADdMiDo1YLZ4x2ptWD2eOUFeyYAS4RgAAAAdNOgAQHNHFemGWNLTqjOjLElmjW+TAMHBBzq7PgIwQAAAOi2k4pCuu/yid0OwjPGlui+yyeqrDDkcGfHRggGAADACSkrDOneyybqnkvP6PIc4ZDfo3suPaNXArAk9cxGbAAAAPhQO6kopNkTh2p6ZamWbmzQote2q74p+oHrKorDuursEZozuVx5AW+PToFojxAMAAAARwwcENDAAdJnPzpSl0waJmul5nhKsWRaIb9X+UGfjJFK8oM9tgtEZwjBAAAAcFQ46NfwoL+32zgm5gT///buPTrq8s7j+Oc7l2RCwqWBCALBVNGAF0BNAcVFVBBbEWy1R0utdrXYrfairrbd7cpaac9acWsv290tqEfbldp6qSLWRQoi1uMtIHcIa9ECCZhIJEjIZDIzz/6RAUJMyAzMTX/v1zk5ZPL7zTNfvuc5zIdfnvk9AAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8JxArgsAAADAJ0ssFlfj/oiicacPw1G1tsVUGPSrdyiggM9U2qtAfn9ur8USggEAAJAWkWhcjc0RLVpbp0defVfbG1sU8JkKAj5FonFF407lpUW67pwKTRs1WKXFBSoI5CYME4IBAABwzBqbI1q66T3d9ewGnTd8gG6/uFJD+hWpNRpXuC2mUNCvwoBPtXta9Nzanbr/z1t012Wn6aKRA1VaXJD1egnBAAAAOCa797Xq+0+uU1GBX4/eME7LtzTovhdqtL2x5SPnlpcW6YqzhuqmSSfpoVfe1Qsb3tM9V5yh/iWFWa3ZnHNZfcF0qKqqctXV1bkuAwAAwPMamyOa/fR6ffaM47Vrb4vmLq5RuC3e4/NCQZ/umFqpQX2K9Py6nZpz+en6VJqvCJvZSudcVVfHuDsEAAAAjkokGtdLNfWaOX6YHl+5XXMWbUoqAEtSuC2uOYs26fGV2zVz/DAtr6lXJJrcc9OBEAwAAICj0tgcUSjo4cJ6ZAAAEstJREFU17wVW7W8puGoxlhe06B5K7YqFPSrsTmS5gq7RwgGAABAymKxuNbV7lFdU8tRB+ADltc0qK6pRetq9ygWy87VYEIwAAAAUta4P6JBfUKau7gmLePNXVyjQX1CatyfnavBhGAAAACkzExaurm+xzXAoYBPA0oKFOrhfsDhtriWba6XWTqr7B63SAMAAEDKmltjenLVjo/8vCDg0y0XDdekEcepuCCgfeGoWtpiKgr6VRIKqDkS1bJN9frFsrc/8kG4J1bt0OVnDtGAkszXTwgGAADAUel8H+DZ00ZqyqmD9OyaOn39tyu7vU/wlz4zTEtvO19LNu7S3Ys2HTZeli4EsxwCAAAAqdsfiR38vqykQEtunajCgF9T7n9J9y4+tFFGwGfqVeBXwNceb7c3tujexTWacv9LKgz4teTWiSorOXR/4OYO42YSV4IBAACQstbEUoaykgI9ddMEzV64Xi9ubpDfZ5p62kB97ozjj7ht8tLN9frB0+t1wYgyPXXTBH3hP19Rw75I1u4VTAgGAABAykLB9gUFC2aNPxiAp48erOsnVBy2bXLAZyoI+BSJxhWNu49sm7xwTZ1ma70WzBqvKfevUGEwOwsVCMEAAABIWd9QULOnjdQb7zTqja2N+tXMs7Rrb4u+/ODrOm/4AN1+ceURrwTPf3mrbptyiqaeNkjffWKN3ninUXdeOlJ9Q8Gs1E8IBgAAQMoCftOUUwfp8l/9RfOvq9K8FVvVJxTUozeMO+xKcGedrwS/HH5f86+r0rcWrNLTN5+ngD87H40z51xWXiidqqqqXHV1da7LAAAA8KzWSFQPvvKuTuhfrGfX1Oqy0UO0a2+L5i6u6fHewVL7coo7plZqUJ+ig8/f1tis6ydUqDCYnuu0ZrbSOVfV1TGuBAMAACBlu/dH9N6HYZWE/Lr23ArNW7E1pe2Tw21xzVm0SZMqy3TjxBP1dv2H2rk3rN3NEQ3ul/mISggGAABAyuJO+vyYIdrZFE45AHd04HlXVZVr1JB+imdpkQL3CQYAAEDKYnGn7R/sV11Ty1EH4AOW1zSorqlFOz7Yr1iWUjAhGAAAACmLxZ0q+hdr7uKatIw3d3GNTuhfTAgGAABA/upV6NfSzfVJfQguGeG2uJZtrlevQn9axusJIRgAAAApa22L68lVO9I65hOrdqg1TaG6J4RgAAAAHJWu7gOcT+MdCSEYAAAAKdsfiX2sxu2MEAwAAICUtUYzs2whkqFxOyMEAwAAIGWhQHIxMuAz9SrwK+BLbjvkwiTHPVYZ3yzDzC6R9HNJfkkPOOfu6XT8NklfkxSV1CDpeufc3zJdFwAAAI5eSajrGOn3mSaPPE6fO+N4DelXpNZoXOG2mEJBvwoDPtXuadFza3dq6eb6Lm+H1t246ZbRVzEzv6RfSZoiaYekN81soXNuY4fT3pJU5Zzbb2bfkHSvpKsyWRcAAACOjXNSeWnRYR9mmz56sK6fUKHlWxp03ws12t7YooDPVBDwKRKNKxp3Ki8t0hVnDdVNk07SQ6+8q4Vr6g4+v7y0SC5LO8ZlOmqPlfS2c26rJJnZY5JmSDoYgp1zL3Y4/zVJ12S4JgAAAByjeNzpy+NO0D3Pb1ZxgV/3Xjlau/a26MsPvq7zhg/Q7RdXHvFK8PyXt+q2Kado6mmD9N0n1qg5EtM1405QPEspONMheIik7R0e75A07gjn3yDp+a4OmNmNkm6UpGHDhqWrPgAAAByF3c0RXTZqsOav+Kt+OfMszVuxVX1CQT16w7jDrgR31vlK8Mvh9zX/uip9a8EqTRs1WPUfhnVC/+KM128ug2nbzK6UdIlz7muJx1+RNM45980uzr1G0jclne+caz3SuFVVVa66ujoTJQMAACAJu5pa9Na2PaoYUKyf/3mLLhs9RLv2tmju4pqkdpELBX26Y2qlBvUp0rNranXL5FP0zu5mnVneT4P6FqWlRjNb6Zyr6upYpq8E10oq7/B4aOJnhzGzyZJ+oCQCMAAAAHKvLea0N9ymDbVNuvbcCs1bsVXLaxqSfn64La45izZpUmWZbpx4otbXNSkai6stlp3lEJm+B8Wbkk42s0+bWYGkqyUt7HiCmZ0p6deSpjvn6jNcDwAAANLk3JMGqLgwkHIA7mh5TYPmrdiq4oKAJgwvS3OF3ctoCHbORdW+xGGxpE2S/uCc22Bmd5vZ9MRpcyWVSHrczFab2cJuhgMAAECeCPpNG3Y2qa6p5agD8AHLaxpU19SijXVNCgaSu5/wscromuBMYU0wAABAbm1rbFbT/jZ98devJrUGuCehoE+Pf/0c9e0V1LDS9Hww7khrgtkxDgAAACkLBX1aurk+LQFYal8jvGxzfdI70R0rQjAAAABStj8S15OrdqR1zCdW7VBLmkJ1TwjBAAAASJlJXd4H+Fike7wjIQQDAAAgZftbY5kZN5KZcTsjBAMAACBlrdHMLFuIZGjczgjBAAAASFkomJkYWcgH4wAAAJCvigszs/FwpsbtjBAMAACAlEVjcZWXFqV1zPLSIkXjLIcAAABAnvL7TFdVlad1zKs/Uy6/ZWfHOEIwAAAAUmZmOm/4gLStDQ4FfZpw0gAZIRgAAAD57I+ra3XH1Mq0jHXH1Eo9tbo2LWMlgxAMAACAlAV9poG9QxrUp0iTKsuOaaxJlWUa1KdIx/cJKejnSjAAAADyVN3esC4bPVizn1mnGyeeeNRBeFJlmW6ceKJmP7NO00YN1s6mcJor7RohGAAAACkrCvq1ZOMu3TalUrMeqdYXzy7XndNGJr1GOBT06c5pI/XFs8s165Fq3TalUi9s2KVQ0J/hytsRggEAAJCy3qGA7l60SeNP6q+xJ5bq5gWrtHrbHj02a7xunXxyt7dPKy8t0q2TT9Zjs8Zr9bY9unnBKo09sVTjT+qvOc9tUu9Qdu4TnJ1XAQAAwCeKz9oDba+ATz+acYb+Rev07Nqd+tP6XbpoxHG6/eJKDe5XpLZYXOG2uEJBn4J+n+r2tGjR2p36xbK3FYs7XTCiTD+acYZ8ciovLZIvO0uCZc657LxSGlVVVbnq6upclwEAAOBZbW0xbX2/WdV/+0A/+/MWLZg1Xm+806g5z21UuO3QhhcBn6kg4FMkGlc0fih3hoI+3XnpqRr76VLNnP+abpl8iqoqPqUTy0oU9KdnsYKZrXTOVXV1jOUQAAAASFkw6FdJKKg5z21Uw76Ipty/QuG2mJbcer6+d0nlweUQ0bjT/kjsYAAuLy3S9y6p1JJbz1e4LaYp969Qw76I5jy3USWFwbQF4J6wHAIAAAApa41E9czq2sOu+s55bpN+srhG375wuH79lbPVqyCg5tboweUQxYUB7Y9EtWxTvS766UuKRA89N9wW18I1tbr+3AoVFmQ+ohKCAQAAkLKG5oh+9+a2j/w8Eo3rvhe26L4XtkiSQgGfSkIB7QtHFe4Qeruy4I1tumz0YA0lBAMAACAfOSdtb2zp8bxwNK7wvkhSY25vbFG2Pq7GmmAAAACkbF84mplxWzMzbmeEYAAAAKSspS2WkXHDGRq3M0IwAAAAUlaUoZ3dQgF2jAMAAECeKsnQzm6ZGrczQjAAAABSZokd49KpvLRIlqUd4wjBAAAASFlZcYG+9JlhaR1z5thhOq53YVrH7A4hGAAAACkrLAhoxpghCgXTEydDQZ+mjx6iAtYEAwAAIJ/1CQV056WnpmWsOy89VX2LsreFBSEYAAAAR6V3UVCTRw7UBSPKjmmcC0aUafKpA1USCqapsp4RggEAAHDUBvYN6Z4vjDrqIHzBiDLd84VRGtgnlObKjowQDAAAgGMysE9I93x+lH58+elJrxEOBX368eWn5yQAS1L2Fl4AAADgE2tg35BmjBmsSZXHaeGaWi14Y5u2N7Z85Lzy0iLNHDtM08cMUd9QIKtLIDoiBAMAACAtSkJBlYSCuv7cCl02erCck/a1RhVuiykU9KukMCAz6bjehVm7C0R3CMEAAABIq8KCgIYW5HfMZE0wAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHHPO5bqGlJlZg6S/5eClB0h6Pwev+3FDn5JDn5JDn5JDn5JHr5JDn5JDn5KTqz6d4Jwr6+rAxzIE54qZVTvnqnJdR76jT8mhT8mhT8mhT8mjV8mhT8mhT8nJxz6xHAIAAACeQwgGAACA5xCCUzMv1wV8TNCn5NCn5NCn5NCn5NGr5NCn5NCn5ORdn1gTDAAAAM/hSjAAAAA8hxAMAAAAzyEEd2JmD5lZvZmt7+a4mdkvzOxtM1trZmdlu8Z8kESfJplZk5mtTnzNznaN+cDMys3sRTPbaGYbzOw7XZzj+TmVZJ88P6fMLGRmb5jZmkSfftjFOYVm9vvEfHrdzCqyX2luJdmnr5pZQ4f59LVc1JoPzMxvZm+Z2aIujnl+Ph3QQ5+YTwlm9q6ZrUv0obqL43nznhfI1QvnsYcl/Yek33Rz/LOSTk58jZP0X4k/veZhHblPkvSyc25adsrJW1FJ/+icW2VmvSWtNLMlzrmNHc5hTiXXJ4k51SrpQufcPjMLSvqLmT3vnHutwzk3SPrAOTfczK6W9BNJV+Wi2BxKpk+S9Hvn3DdzUF+++Y6kTZL6dHGM+XTIkfokMZ86usA5193GGHnznseV4E6ccyskNR7hlBmSfuPavSapn5kdn53q8kcSfYIk59xO59yqxPcfqv0f0CGdTvP8nEqyT56XmCP7Eg+Dia/On26eIemRxPdPSLrIzCxLJeaFJPsESWY2VNKlkh7o5hTPzycpqT4heXnznkcITt0QSds7PN4h3qy7c07i15HPm9lpuS4m1xK/RjxT0uudDjGnOjhCnyTm1IFfya6WVC9piXOu2/nknItKapLUP7tV5l4SfZKkKxK/jn3CzMqzXGK++Jmk70qKd3Oc+dSupz5JzKcDnKQXzGylmd3YxfG8ec8jBCNTVql9v+7Rkn4p6ekc15NTZlYi6UlJtzjn9ua6nnzVQ5+YU5KcczHn3BhJQyWNNbPTc11TPkqiT89KqnDOjZK0RIeudnqGmU2TVO+cW5nrWvJZkn3y/Hzq4Dzn3FlqX/Zws5lNzHVB3SEEp65WUsf/4Q1N/AwdOOf2Hvh1pHPuT5KCZjYgx2XlRGJN4pOSHnXOPdXFKcwp9dwn5tThnHN7JL0o6ZJOhw7OJzMLSOoraXd2q8sf3fXJObfbOdeaePiApLOzXVsemCBpupm9K+kxSRea2f90Oof5lESfmE+HOOdqE3/WS/qjpLGdTsmb9zxCcOoWSro28enG8ZKanHM7c11UvjGzQQfWjZnZWLXPNa/9w6lEDx6UtMk599NuTvP8nEqmT8wpyczKzKxf4vsiSVMkbe502kJJ1yW+v1LSMuexXZGS6VOnNYjT1b4O3VOcc//knBvqnKuQdLXa58o1nU7z/HxKpk/Mp3ZmVpz4cLPMrFjSxZI630Uqb97zuDtEJ2b2O0mTJA0wsx2S/lXtH6qQc+6/Jf1J0uckvS1pv6S/z02luZVEn66U9A0zi0pqkXS11/7hTJgg6SuS1iXWJ0rSP0saJjGnOkimT8wp6XhJj5iZX+3/CfiDc26Rmd0tqdo5t1Dt/5n4rZm9rfYPr16du3JzJpk+fdvMpqv9ziSNkr6as2rzDPMpOcynLg2U9MfE9YqApAXOuf81s3+Q8u89j22TAQAA4DkshwAAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBIE+YWT8zuynXdQCAFxCCASB/9JNECAaALCAEA0D+uEfSSWa22szmmtkdZvamma01sx9KkplVmNlmM3vYzLaY2aNmNtnMXjGz/0vspiczu8vMfmtmryZ+Pivx8+PNbEXiNdab2d/l8O8LADlDCAaA/PF9SX91zo2RtETSyZLGShoj6Wwzm5g4b7ikf5c0IvE1U9J5km5X+057B4ySdKGkcyTNNrPBiXMXJ15jtKTVAgAPYttkAMhPFye+3ko8LlF7KN4m6R3n3DpJMrMNkpY655yZrZNU0WGMZ5xzLZJazOxFtQfqNyU9ZGZBSU875wjBADyJK8EAkJ9M0r8558YkvoY75x5MHGvtcF68w+O4Dr+44TqN6ZxzKyRNlFQr6WEzuzYDtQNA3iMEA0D++FBS78T3iyVdb2YlkmRmQ8zsuBTHm2FmITPrL2mSpDfN7ARJ7znn5kt6QNJZ6SkdAD5eWA4BAHnCObc78QG39ZKel7RA0qtmJkn7JF0jKZbCkGslvShpgKQ5zrk6M7tO0h1m1pYYkyvBADzJnOv82zIAwMedmd0laZ9z7r5c1wIA+YjlEAAAAPAcrgQDAADAc7gSDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM/5fym705mNabZHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hV1Z0//vc695OTCwROQm4YtZCLkDA0ImDVMMRi5SrG/oTftLY60PnpdOarLUprsR0ztgitWlunDox1tFPwO+INwSkYBLxSuYwJmAsgIpdAciBCbud+1u+PkxNDyO3k7L1z2e/X8/Bozjn5ZEGeZ+/PXmt9PktIKUFEREREpCeGwR4AEREREZHWmAQTERERke4wCSYiIiIi3WESTERERES6wySYiIiIiHTHNNgDGIixY8fK7OzswR4GEREREQ1h+/fvPyeldHb33rBMgrOzs7Fv377BHgYRERERDWFCiC96eo/bIYiIiIhId5gEExEREZHuMAkmIiIiIt1hEkxEREREusMkmIiIiIh0h0kwEREREekOk2AiIiIi0h0mwURERESkO6oeliGE+COAeQAapJSTunlfAPgtgFsBtAH4npTygJpjiobXF4Cr1QcAaHYH4PYHYTcbkWAP/7M5HRZYLcPyvBEiIiIiXVM7g/tPAL8H8GIP738LwIT2P9cB+EP7fwdVs9uPJk8Ab3xyGhv3nsDJRvdln8lKtmPJteOxcEoGEm0mJNjNgzBSIiIiIhoIVZNgKeW7QojsXj6yEMCLUkoJYI8QYpQQIk1KeUbNcfWm/qIH5dX1KNtaBY8/1OPnTja6sWZbLZ5+5whWzc1HSV4qUpNsGo6UiIiIiAZqsPcEZwA42enrU+2vXUYIsVwIsU8Isc/lcqkymPomD1a+VomHXz/UawLcmccfwsOvH8LK1ypR3+RRZVxEREREpKzBToL7TUq5TkpZJKUscjqdisevv+jBylcrsbNmYAn2zhoXVr7KRJiIiIhoOBjsqq7TALI6fZ3Z/pqmmt1+lFfXDzgBjthZ40J5VT0WTklHvI17hIlIPSzcJSKKzWBfITcD+EchxEsIF8RdHIz9wE2eAMq2VikSq2xrFYpzUpgEE5EqWLhLRKQMtVukbQRQDGCsEOIUgJ8DMAOAlPJZAG8h3B7tKMIt0r6v5ni64/WFbyb93QPcF48/hM0Vp3H3zGzOwhCRoli4S0SkHLW7Qyzp430J4D41x9AXV6sPG/eeUDTmho9PYH5hOjKZBBORQiKFu9Fs24oU7pbX1GP14gKkJjIRJiKKGDaFcWqREt0uJ8biZKMbUioakoh0jIW7RETK030S3OIJqBPXq05cItIXpQt3Wzx+hUZGRDS86T4JdvuDqsT1qBSXiPRF6cLdi24+oBMRAUyCYTcbVYlrM6kTl4j0Q63CXa+PiTARke6T4HibOsVrasUlIv1Qq3A30l+YiEjPdJ8ECxHuqamkrGQ7hFA0JBHpEAt3iYjUo/sk2OmwYMm14xWNuXTaeKQkWBWNSUT6w8JdIiL16D4JtlpMWDglAzazMv8UNrMBCwozYOGeYCKKEQt3iYjUo/skGAASbSasmpuvSKxVc/ORZOd+YCKKHQt3iYjUw2wNQILdjJK8VJTXxNaLc1auEyX5qYi3mRUcHRHpFQt3iWi48voCHUW4ze4A3P4g7GYjEtonCp0OC6yDfLIur4TtUpNsWL24YMCnMs3KdfJYUiJSVKRwV8niOBbuEpGamt1+NHnC7R037j3R7fUrK9mOJdeOx8IpGUi0mZBgH5zJQ26H6CQ10YbVtxXgsUWT+r1H2GY24LFFk5gAE5HiWLhLRMNJ/UUPNlfUYfYTu7BmW22PD/AnG91Ys60Ws5/Yhc0Vdai/ODhHugs5DHvlFBUVyX379qkW/2KbDy3eIDZXnMaGj3t+ilk6bTwWFGYg3mpEUpxFtfEQkX6d/tKN2U/sUuTADJvZgB0PFCNjtLJtIYmI6ps8Q3I1XQixX0pZ1N173A7RRUOTB29X1+OXb1Xj+qvH4sffzEH6KDv8wRA8/hBsZgPMRgPqLrixpfIMfr/zKH56ax5uzktFCmeCiUhhkcLdh18/FHMsFu4SkRrqL3qw8rWBJcAAsLPGhZWvVmq+qs6rYScNTR481OkpZntVPbZX1QMATAYBi8kAXyCEQOjS2fOHXzuE8up6PL64gIkwESkqUri7o6Ye78RQuPu3LNwlIhU0u/0or46tsQAQToTLq+qxcEq6Ztcp7glu1zUB7ioQkmjzBS9LgCN21rjw0KuVaGganH0tRDRymU0G/PK2AszKdQ7o+2flOvHL2wpgMfKST0TKavIEULa1SpFYZVurcNGt3WE+vCICaPMG8LZSTzHV9Wjz8TQmIlKGLxBCQ7MHv9h8CKVTs7BqXl5Uhbur5uWhdGoWfrH5EBqaPfAFYt9bTEQEhNugvfHJaUVqFgDA4w9hc8VpeDXKo5gEA/jS7UfZFmWeYh7dUoUv2/yKxCIiutjmwwdHz+Evn9bjvg0H8MmJC3hp2XTcXzIBWcndF7hlJdtxf8kEvLRsOj45cQH3bTiAv3xaj/ePnsPFNp/GfwMiGqlcrT5s3HtC0ZgbPj7R0V9YbbrfE+z3B5V/ivnkNP7++ithVum0JyLSh2AwhCZvAGu31Xa89mblGbx16Cxm56b0Wbj79DtHEey0hWvttloU56QgORiCkVsjiChGUkLRPuZAOJ5Wjct0nwQ3tHix8WPln2IWFKYjY3SconGJSF8uevzYUlF32UN6MCT7XbjbmccfwtbKOvzd9CuQ7GCvYCKKTatXnW0LrdwOoY2QSk8xvdyHiIj6pc0XxKYDp/r8XF+Fu529vP8U2nxBJYZHRDrn8atzLVErble6T4JbPOo8bbSo9HRERPoRklKlh3Q+pRNR7Gwqbfu0mbTZTqr7JNg9zJ9iiGjk6u9DuskgEGcxwmQQ/Yvr5fWJiGIXZ1UnWVUrble63xNsH+ZPMUQ0cnl7aGdmNAiU5KXg1slpyBhlhy8Qgi8QgsVkgMVkwOkLbmytPIMdNQ2XFMZF+PiQTkQKCIYkspLtiq5YZSXbu71uqUH3M8EJ/TxC1GYyYGy8BTZT//7J+huXiKgn3S01LihMxyv/MANzJ6fB2n49kgCCUiJy27CaDJg7OQ2v/MMMLChM71dcIqJoGYXA7VMzFY1ZOjUTRtG/Va1Y6T5TkxLdPsVYTAb8n9lfQ3FuChwWE1o8Abj9QdjNRsTbTGj1BfBOdQOefufoZc3ns5LtmrX3IKKRK8H21SXaYTFiTWkhrCYBCIFj51rxyoFT3c7AZCXbcfvUTFwx1oEFhWmYc804PLipAq3tBXHxNt1f+olIAUIIFE904tndnynSatZmNuCmiU4IJsHasJjCTzFPlR/peO2ReXm4OX8c3qyoww/+tL/Hm8ySa8djxwM34e2qs3h0S3XHe6VTMztmaIiIYpGVbEdjiw/Pfe9ahEIS1Web8I8b/7fXG87JRjeeKj+CZ3d/hhVzcpA3LhHPfe9a3POfe5Ecb9Fw9EQ0koWkxGufnMaKOTko65QHDdSKOTl49ZPTuOf6KxUYXd90n6mdb/GheKITNrMBzngL3r7/RlhNRtz85G6s2Vbb4z6Xk41urNlWi5uf3A2ryYi3778RznhLx1PMOY1OOyGikctsDD+k/+bbU2A3G7HuvWMo21Ld7xkXjz+Esi3VWPfeMdjNRvzm21NQOjUTFh6UQUQKCARDGB1nwbhEO4pznDHFKs5xYlyiHWPiLAgEtVlO1/1MsDcQwvMfHMcj8/Jww4QUPLL5EHbWuPr9/R5/CA+/fgizcp149d7r8d6RBjz3/ue45xvaPMUQ0cjV2OrHvMnj4A1KrN1Wi121/b82dRb5vhVzcnC1Mw7nW31ISbQpOVQi0iFvIITiiU78cOMBbFg2I+ocKmJWrhOPLpiEpes/wu+WTIU3wD7BmrCbjdhcUYebJkafAHe2s8aFRzYfwk0TU/Bm5RkWnhBRzNy+IEwmA/YcOz/gBDhiV60Le46dh8VoYAtHIlJEvM2EP35wHP/+nSKsfqsapVOzsGpeHmzm/qWXNrMBq+bloXRqFla/VY1//24Rnnv/c83qFnQ/ExxvM+GReXnYVesacAIcsbPGhV25Lqyam8fCEyKK2Zh4C/zts8BKWLutFjdNTEGyg/uCiSh2BiEw2mFG5emL2HroLLYeOov5BWl4adl07D7swqZeindLp2bipolOPPf+53izMryf+MYcJ0bHW2DQqDBOyGHYxqCoqEju27dPkVh1F9oQDAE3P7lbscrGt++/CSaDQNoouwIjJCK9amh2Y+NfT+LJToW7sXrg5gm489ospCTy+kREsWls9aDJHcQtv333khzKaBCYnZuCuQVpSB9lhz8Ygscfgs1sgNloQN0FN7ZUnsE7XXqZ28wG/OWfb0Si3YRkh1WRMQoh9kspi7p7T/fTlXFWIzbsOdlnAmwyCFhMBvgCIQR6aeLs8YewpbIOS6/LUnqoRKQzXr/EpgOnFI358v5TuO1vlO3rSUT65A9KbK+qvyyHCobCr2+vqgcQXQ71dlU9FkxJU3XcEbpPgpvdQWzce+Ky17ueyOQNhODxB2EzG2Ht40SmDR+fwLyCdCRxooWIYiAhFT2JCQh3tvnqWA0iooELBCX+tOd4358LSQR8/atFeHHPcdw6eVyMI+sf3SfBAC67ySwoTMfd12dj12EXfr29+zZpkWb09xZfjT9+cBybK+p6jEdENBAtnoBKcVkYR0SxC0nlc56TjW5odGoyk+Bmj7/j/yMnMp1tcuPO9Xuiakbf9USmFq86Ny8i0g9vIPY6he74NGo/REQjm1q5TqtGOZTuW6RFEl2HxYj1dxXh5f0nB9SM/uX9J7H+riI4LMb213mTIaLY2FVqtcgWjkSkBLVyHa1yKN0nwZGbzJrSQqx791hMzejXvXsMa0oLAQA2E28yRBQbh1WdxTq14hKRvlhN6qSRFpXidqX7JDjeZsKCwnScbXIr0oz+bJMb8wvS2CeYiGJmNITrD5SUlWyH0aBND04iGtnUynW0yqF0nwQLASy74UpFm9Evv/EqaNTnmYhGMJvZgO9Mv0LRmN+ZfkW/T3MiIuqNQQhVHtS1OixD91fC0XYj3jtyTpGDMoDwHuH3j55DcpxZkXhEpF/+oMTcyemKJa02swFzJ6cjEGSLNCKKncUkUDpV2b7jd3w9ExYjt0No4sse+gTHYsPHJ9DY5u/7g0REvWhs8SMUCuIX86/p9XMmg0CcxQhTH9sc/mXBNQjJIM63+pQcJhHplNEgMK9A+Qd1k1GbmWDdb1yVKvW4G4anURPREOP2B/GH3Z/hwVtyMDs3BTtqGgAM7DCf2bkpuP5rY/H4/9Tg7m9cOZh/LSIaIRou+jDKYcaKOTko21Idc7wVc3LgsBhR3+RV7Njk3ug+Ce7cJ1hJ7BNMRLGym43YXFGH+YXpKFs0CXj9EBxWU9SH+bR6AyhbNAmf1jXhzcozuLf4a4PwtyGikcbtD+Kjg+cw8+qxKM5x9thgoD/HJhfnODHz6rHYevAMpl4xWs1hfzUuTX7KEKbUXuDL47JPMBHFJlIh/a9bPsWrP5iJx26bhB3VDVEd5rNqbj5m56XC3B6nc1wioljYzUY8uqUa5Q/ciPtLJgIId8qKdrWqOMeJ+0smwmwUKNtajf/5pxs0Gb/ur4SqNaNnn2AiipEQ4Vnd5+++Fn4AP3ntIHbW9L+Vo8cfwsOvH0J5TT1+dVsBnr/7Wtz1x73sXkNEiog8UC9Ztwev33c9lt9wFf7uuvEYm2DDrtqGvlerZn0N55o9iLOYMDbegkXPfHBJXLXpvjBuuPe4I6KRy+mw4MlvT4HdbMJPXquMKgHubGeNCz95rRJ2swlPfnsKUhLU32tHRCNf5EEdAAwSuMrpgKvZhzvXfYSnyo/0WHMVWa26c91HcDX7cJXTgcjUYVayXbMHdd1napFfoJLFcVr+Aolo5LJaTLhyTBz+8mn9gBPgiJ01LrxT3YA516TCwpUqIlKA02HBkmvH41uTxyEkBH42gNWqn7x2ELNynfjXhZPx3/8wA385dFazB3XdzwSPiTNjybXjFY25dNp4OOM500JEsfH6AvAEJMq2VikSr2xrFbwBCa+PhbtEFDurxYQ7vp4Js9GAVW9ElwB3trPGhVVvHITZaEDp1EzNHtR1nwTbrWYsnJKhaI+7BYUZsKq015iI9MMdDOKNT04repjP5orTcAdZuEtEChHA7loX3olxteqdGhfePezSdCVd90kwAMRZjVg1N1+RWKvm5sNhZQJMRLFrVukwn2Y3k2Aiip3fH4QvEFJsterRLVXwBkLwa9Rhi0kwgDZvEMU5TszKdcYUZ1auE8W5TrR6eYMhImWocZgPEZESmn1+vFl5RtHVqi2VZ9Ds0+bUXd0nwV5fAG98chr3vLAXqxcXDDgRnpXrxOrFBbjnP/dic8Vp7rkjopjxMB8iGsrafCH8+a9fKBrzv/76Bdp86pzh0JXuk2BXqw8b957Aj76ZgwutHvzqtsn41W2T+71H2GY24FeLJ+NXtxXgQqsHP/pmDjZ8fAKuVp/KIyeikY6H+RDRUDecV6t03yJNSuBvskZjfHIcAsEQ3P4QJqUn4u37b8KWyjps+PhEj42el04bj3kF6bjQ6oPbH0QgBFyRHIcpmaMguz8VkIio33iYDxENZc0edVaVWlSK25Xuk+AWTwAPfHMCvP4gRsdZcfx8K6rPNuGJtw/j+qvH4sffzEH6KDv8wRA8/hBsZgPMRgPqLrixpfIMfr/zKB64eSLyxiUie4wDzV4ffvzNiVxuJKKY8TAfIhrKvCqtVnkD2myH0P2V0GwSMAoDHBYDXC1erHvvGHbVhtt8bK+qx/aqegCAySBgMRngC4QQCF06zVu2pbrj3Osx8RZAAmYjp4KJKDY8zIeIhjKrSZ1dtRajNrt1db8nOMFmgsko0OwN4Mnywx0JcFeBkESbL3hZAhyxq9aFJ8sPo9kTgMkgkMCZFiKKUZLdiO9Mv0LRmN+ZfgVGxZkVjUlE+hSnUktYteJ2pfskGAAEgA8/O9djAtxfu2pd+PCzc5xlISJFuP0hzM5LVfQwn9l5qWjjdi0iUoCU4dUlJWUl26HVWrruk2CTUaDFG8TabbWKxFu7rRYt3iBMRmbCRBQbr1/ixY+OY8WcHEXirZiTgxc+Og5vgNu1iCh2NrMBt0/NVDRm6dRM2FTaZtGV7pPgQFBia2Wdoo2etx6sQyDImwwRxe6FD7/AuEQ7inNiO8ynOMeJcYl2vPihsj09iUi/vIEQZuemKLpa9be5KZoVxuk+CfYFJDYdOKVozJf3n4KPMy1EFKNIl5kHN1Vg+Y1XDTgRLs5xYvmNV+HBTRUAgFZuhyAiBdgtBhw/36roatUX51tVaw/Zle6TYCmlKo2epWY7WohopPK2H2rR6gti2Qv7cMfXs7BqXl5Uh/msmpeHO76ehWUv7EOrLxxPq1kWIhrhpED2GAfSk5RZrUpPsuOKMQ6FBtc33SfBzSrNiLR4eCITEcXG2ulQi1ZfEPdtOIBPTlzAS8um4/6SCT0WpGQl23F/yQS8tGw6PjlxAfdtONCRAAOARaP9dkQ0so1xWHDmogeuFo8iq1WuFg/ONHkwJt6q8Ei7p/s+Xj6VZkR8ASbBRBSb7toEvVl5Bm8dOovZuSl9Hubz9DtHEeymrWOchSfGEVHsjEYDJmUkIRiSePHD47jj61m4YcJYrN1W269aK5vZgBVzctrrFY5j4ZQMTEpPgtGgTXMB3SfBqh1LqtF+FiIa2bo7LCMYkv0+zKe7eERESvD7gwiGJNp8AXx3ZjbWvXsMCVYTXlo2HbsPu7DpwKlut5xmJdtROjUTN0104rn3P0ez9xyW33gVzlxwIxSS8PuDMGuQR+k+CY638lhSIhqaIu2Hnio/0uvnAiGJgK9/q0+lUzM1KzohopHtgseHVw+cQn5aIv685wvc8fUsnG1y4/997q+4/uqxfa5WrXvvGB64eSLGJdrx5z1fYNGUDLz6v6ewZFoWnGb1H9h1n6lZTAZVjiXV6sg/Ihq5/EGJ2bkpeHb3Z4q0cYy0H/IFWRhHRLHztnfYamzx4fnvX4t17x6D3WzEn++5DrsPu/Dr7bU42ei+bLUqMhN8X/HVeO79z+H2n8fyG6/C95/fi+R4CxYr3Hu4J7pPgsc4LPjO9Gz88q1qxWJ+d0a2Zpu6iWjkirMYcPCUGyvm5KBsS+zXqBVzcnDqghsZo7klgohiF+rUYev7z+/FmtJCXGjzRTUT/NNv5WFUnAXff34vWn1BtDa6EZLadNjSfRJsNBowvzANT7zdv03cfbGZDZhXkKbZpm4iGrlavEFMzkwCEK6ejuVo90j7ockZSWjxBpDs4IM6EcWm2fNVh61IB5v5BWn4899Px0efnet1JnjptPG4b9bX8Nx7x/Bm5ZlL4mrVYUv3STAAjHFY8eiCa/DgKwdjjvXowmswhjcXIlJAiyeAPcfOw2ExYfmNVwHAgBLhSPuhk+fbsO3QWcz42lilh0pEOtRdh62eOtj4AiFYTJfOBP96++FuO9ho1WGLSTDC+4JvmpiCkrwUlFc3DDhOSV4KbpqYwh6cRKQIbyCER7dUo/yBG/Gb7bUxtR/600fH8aNv5qDkiXfx+r0z1R88EY14PRXZdu1gYzMZEG8zocUTgKcfrWm16rDFJBhAs9uPXbUNHTMtA0mES/JSsPzGq7CrpgFzC9IQbzMrPUwi0pnIDWbJuj149d7r8cjmQ4i3RN9+qMV3Do8umITF//YBALZwJCJl9NQJy2gQKMlLwa2T05Axyg5vIASPPwib2QiryYDTF9zYWnkGO2oaup0J1qrDFpNgAE2eAH7+5qcwCoE1pYWYlZOCsq1V/Z5pWTU3v2NTd1BKfGOCk0kwEcXM0d7C0dXiw+J/+wAblk3Hx583Rl10Mu3KZCz+tw/gavFdEpeIKBYW4+UdthYUpuPu67Oxq1N3iK6yku24fWom7i2+Gn/84Dg2V9Rd8p5WHbZ0fyX0+gJ445PTHQlvZFP3S8tn4KPPzmHDxyd6/AUunTYeM64ee9mm7s0Vp3H3zGxYLbr/5yWiGBgNouMG42rx4eYn38WquXn4yz/fiC2VdX0WnTwyLx/bPz2Lm598tyNmVrIdJhbuEpECOnfYcliMWFNaiLNNbty5fk+vE4knG914qvwInt39GVbMycGca8bhwU0VaPUFNe2wJaRGbSiUVFRUJPft26dIrFNftmHJ+j2XJbpGg8Ds3BTMLUjrdVP3O91M5Wcl27Fx2XRkjo5TZIxEpE9+fxDPf3Qcv3yr5pLX7RYjfn37ZFyTOQpGIdDiDXQsNcZbTQhKiUOnLmDFKwfh7nKIxk9vzcX3r78SZvYyJyIF1F1wY/7v3sPvlk7FunePxVS8+8MNB7DlhzcgbZRybRyFEPullEXdvaf7qUop0e1MbyzHkp5sdGMYPlsQ0RBjNhsxryAdT7x9uGNWpfNS4+pt4ZngrkUnkaXGjX9/3SVLjeEWjulMgIlIMUaDwIv3XIe122oH3MYx8n0v3nMdDBquVOn+StjSqcddbwIhiTZfsM8EuCOut39xiYh6M8puxi8WXAOHxYhnlk5FYVYS7ly/B0+VH+l4gPcEQjjX4uuouo4sNd65fg8Ks5LwzNKpcFiM+JcF12BUHOsViEgZfn8QB058iYqTF2PqYw6EE+HKkxdx4MSX8PvZIk0TbpX+oT0a/QKJaGSLs5owOycF+eMS8UT54ahuNB5/CGVbqlGc48TGZdORlmRDHGsViEghrlYvMkfZcf///USReP+y5VO8/IMZcLV6kT5K/S2lup8J7qnHXaxsJrYgIiJlhCTw2x1HYlpq/O2OI4j9TEwioq+YjAI7ahoUOXEXCD+4v1PToFnxru6TYLV60WnV446IRrZmtx/l1fXYUTPwg3wAYEdNA8qr6tHi8Ss0MiLSuzZfCK8cOKVozE0HTqFNoaS6L7pPgoUId3NQUlayHYIdiIhIAU2eAMq2VikSq2xrFS66Wa9ARMoQ6L65QCxONrqhVQql+yTY6bBgybXjFY25dNp4pCRo0+OOiEaurn3MY+Xxh7C54jS8PibCRBS7Nq869U9tPm3qqnSfBFstJiyckgGbWZl/CpvZgAWFGbBwTzARxcjV6sPGvScUjbnh4xNwtfoUjUlE+uQNqLNtwadS3K50nwQDQKLNhFVz8xWJtWpuPpLs3A9MRLHrqY95LNjHnIiUotQEYldWkzbpKZNgAAl2M0ryUjEr1xlTnFm5TpTkpyLexj6cRBS7/vYxjzou+5gTkQIS7erkO2rF7YpJcLvUJBtWLy4YcCI8K9eJ1YsLkJpoU3hkRKRX7GNOREOZ2ShUaS5gNrJFmuZSE21YfVsBHls0qd9T/DazAY8tmsQEmIgUxz7mRDSUJcdZ8N0Z2YrGvGtGNpId2jQXUD0JFkLcIoSoFUIcFUKs7Ob98UKInUKI/xVCVAohblV7TL1JTbJh4ZR07HigGA/dktPjE05Wsh0P3ZKDHT8qxsIp6UyAiUhx7GNOREOZ0WjA/IJ0RZsLzCtIh1GjwzJUvRIKIYwAngFwM4BTAPYKITZLKTs3vfwZgP+WUv5BCJEP4C0A2WqOqy/xNjPibWbcPTMb8wvTIWV4D53HH4TNbES81QQhgJQEK7tAEJFqIn3MlSyOYx9zIlJSssOCsoWTsGJTZcyxyhZOQrLDosCo+kftmeBpAI5KKY9JKX0AXgKwsMtnJIDE9v9PAlCn8pj6zSAEDAIdN4xIsaIQCL/OCmsiUhH7mBPRUGcxGTA7LxU356XGFOfmvFSU5KXColFnCEDlmWAAGQBOdvr6FIDrunzmFwC2CyF+CMABoKS7QEKI5QCWA8D48creFLpq8wbwpduPihNfwmAQGBtvhTcQ6pgJbvUGcK7Fi2BIYsr40RhtNyPOyuVFIlJWpI/50+8cUeTADPYxJyI1JDssWH37ZOAV4O3q+qi//+a8VKy+fTJGazgLDKifBPfHEgD/KaX8jRBiBoA/CSEmSSkvueJLKdcBWAcARUVFqs3BNrhBIF4AACAASURBVDR5UH2mCUlxFhxuaMErB051uxSZlWzH7VMzkTE6Dkfrm5GXlogU7gsmIoXFWY1YNTcfD79+KOZYq+bmw2FlAkxEyhsTb0XZokkoznGibGtVvx7cbWYDVs3NR0leKsbEa79CpXYSfBpAVqevM9tf6+weALcAgJTyIyGEDcBYAA0qj+0yriYPjja04KirBWu31fb6CzzZ6MZT5Ufw7O7PsGJODsxGAwQAJxNhIlJQmzeIZIcFxTlO7Kp1DThOcY4TyQ4LWr1BjIpTcIBERADqmzz4yWuViLeY8NKy6dh92IVNvUwklk7NxE0TnXju/c9RXlM/KF221E6C9wKYIIS4EuHk904AS7t85gSA2QD+UwiRB8AGYOBX+gFyNXlQd9GDde8di+pG4/GHULalGsU5TtxfMhEAE2EiUobXF8Abn5zGMzuPYv1dRQAwoES4OMeJ5TdehWUv7MM//u3XcPfMbFgtQ2EhkIhGgvqLHqx8rRI7a8LXp7cOncXs3BT8+Js5SB9lhz8Ygscfgs1sgNloQN0FN7ZUnsHT7xxFMBRe3F/5aqXmibCqV0EpZUAI8Y8AtgEwAvijlPJTIcSjAPZJKTcD+BGA9UKI+xEukvuelNoe6tnmDeBcqw9Plh8e8ExL5PseuiUXDpsJcbzBEFGMXK0+bNx7Aq2+IJa9sA9rSgtxw4Sxfa5URdjMBqyYk4NxiXYse2EfWn1BbPj4BOYXpiOT1ygiUkCz24/y6vqOBBgAgiGJ7VX12F4V3h9sMghYTAb4AiEEQt2neDtrXCivqsfCKemanbyr+lVQSvkWwm3POr/2SKf/rwJwvdrj6E2zN4APPzsX01IjEE6Eb5gwFsmOdCbBRBQzKdGxlNjqC+K+DQcwvyAt6qXGNyurO9472eiGttMMRDSSNXkCKNta1etnAiGJgK/vkyrLtlahOCdl5CTBQ53fH0SzJ4C122oVibd2Wy2KJ6Yg2R6EWaXTnohIH1o8gctee7PyzICWGi+J6708LhFRtCJbtpToXgOEt5hurjit2ZYt3SfBFzw+bK2sU/QXuPVgHZZMy4LTrOx52kSkL25/9zMnA1lq7MzTQ1wiomhEtmwpScstW9p1JB6ivAGJTQdOKRrz5f2n4A1wvZGIYmPv52pSICTR5gv2KwEGABv7BBORAjpv2VKKllu2dJ8Eh6RU5RcY4qY7IopRvE2dmRC14hKRvnS3ZUuRuBpt2dJ9Etys1i/Qw+VGIoqNEOEiNyVlJds7joInIopFT1u2YqXVli3dJ8G+gDJ7gS+PyySYiGLjdFiw5Fplj4lfOm08UhK0P5mJiEae/m7ZipZWW7Z0nwSr9gtkZwgiipHVYsLCKRmwmZW5VNvMBiwozICFe4KJSAHDfcuW7pPg4f4LJKKRLdFmwqq5+YrEWjU3H0l2XpuISBnDfcuW7pNgs0Go8gs0G7jpjohil2A3oyQvFbNynTHFmZXrREl+qmZN6Ilo5BvuW7Z0nwQbDEDp1ExFY97x9UwYmQQTkUJSk2xYvbhgwInwrFwnVi8uQGqiTeGREZGeDfctW7pPgr0BiZsmOhX9Bd44wQmPSgV3RKRPqYk2rL6tAI8tmtTv65XNbMBjiyYxASYi1QznLVu6T4KbPQH88YPjWDEnR5F4K+bk4Ln3P1et9RoR6Vdqkg0Lp6RjxwPFeOiWnB63cmUl2/HQLTnY8aNiLJySzgSYiFQznLds6b5Cwu0PYnNFHeZcMw7FOU7sqnUNOFZxjhPjEu14s7Iad3/jSgVHSUQUFm8zI95mxt0zszG/MB1ShhvLe/xB2MxGxFtNEAJISbCyCwQRaSKyZWvlq5XYWRN9HjVYW7Z0nwRHWqQ9uKkC6+8qAoABJcLFOU4sv/EqLHthHwC2SCMidVktJmRadH8JJ6IhIrJlq7y6HmVbq+Dx970t1GY2YNXcfJTkpw7KipXur6AJ7a3MWn1BLHthH9aUFuKGCWOxdlttv3+BK+bkYFyiHcte2IdWX/CSuERERER6ENmyVZyTgs0Vp7Hh4xM42ei+7HNZyXYsnTYeC6ZkIMlmGrSuNbrP1AztPe5ONrrR6gvivg0HML8gDS8tm47dh13YdOBUj7/A0qmZuGmiE8+9/znerKy+5D02hyAiIiK9GU5btnSfBDsdViyZNh5r/lLb8dqblWfw1qGzmJ2bgh9/Mwfpo+zwB0Pw+EOwmQ0wGw2ou+DGlsozePqdowiG5CUxl04bD2cCC1GIiIhIn4bDlq2hPToNmM1GLJySgad3HLlk+0MwJLG9qh7bq+oBACaDgMVkgC8QQqBL0tuZzWzAgikZMBt133iDiIiIaMhipgZgtN2MR+b13uMuEJJo8wV7TYAB4JF5+RgdxxOZiIiIiIYyJsEA4qymPnvcmQwCcRYjTL1s9p2V60RJXirihvj0PxEREZHeMVtrl5Jow+OLC/BQe487o0GgJC8Ft05OQ8YoO7yBUMembqvJgNMX3NhaeQY7ahoQDEnMynXi8cUFSGFTeiIiIqIhj0lwJ5FEuPpME5LiLNhV24Bfb6/tsTvE7VMzce+sr+Fimw95aYlMgImIiIiGCSbBXZiMBtQ3e/GD/9rfa5/gk41uPFV+BM/u/gyPLpyEyZncWUJEREQ0XDBz6+R8ixcPbarEg5sq+3VQBgB4/CE8uKkSD22qxPkWr8ojJCIiIiIlcCa4XWOrDytfOYi3q+sH9P1vV9cDrwBrSgsw2mFReHRERJfy+4NwtXoRkkCzJwBvIAiryYgEmwkGEe6Bbubx7UREPWISDMAXCGFHdX2vCXB/+gS/XV2P8up6LJySAYuJk+xEpLw2bwBfuv2oOPElDAaBsfHWSwp3W70BnGvxIhiSmDJ+NEbbzYiz8lJPRNQVr4wIzwKveuPQJa9F2x0iYtUbh3DDBCfGJbFIjoiU1dDk6SjcPdzQgld6Odb99qmZyBgdh6P1zSzcJSLqhu6T4GAwhC2VdZfsAV5QmI67r8/GrsOuvrtDFF+NP35wHJsr6gCE9whvqazD92dmw8hT44hIIa4mD442tOCoqwVrt9X2u3B3xZwcmI0GCABOJsJERB2ElL2fgDYUFRUVyX379ikSy9XsweI/fIiTjW44LEasKS3E2SZ3nzeZCJvZgBVzcjAu0Y4HN1Wg1RdEVrIdr/5/M+FM4A2HiGLnavKg7qIHT5Yfxq5aV9TfX5zjxP0lE5GeZGMiTES6IoTYL6Us6u493U9VBkKyIwFef1cRXt5/EmVbqqPqDlG2pRov7z+J9XcVwWEx4mSju8/jlYmI+qPNG8C5Vt+AE2AA2FXrwpPlh3Gu1Yc2X0DhERIRDU+63w7R7AnfENaUFmLdu8diuslE4ty34QBaPAEgSbFhEpFONXsD+PCzcwO+NkXsqnXhhgljkexI59HuRKQ6ry8AV6sPANDsDsDtD8JuNiLBHr7+OB0WWAf5WqT7K6HXH8SCwnScbXIrdpOZX5AGb6B/M8lERD3x+4No9gSwdlutIvHWbqtF8cQUJNuDbJ9GRKpodvvR5AngjU9OY+PeEz3WVS25djwWTslAos2EBLt5EEbK7RCwmo24+/psRW8y93zjSrZII6KYXfD4sLVL4W4sPP4Qth6swwWPT5F4RESd1V/0YHNFHWY/sQtrtnXfWAAIF++u2VaL2U/swuaKOtRf9Gg80jDdZ2qj48zYddil6E1m92EXRscNzlMNEY0c3oDEpgOnFI358v5T8AZYs0BEyqpv8mDla5V4+PVDUdVVPfz6Iax8rRL1TdonwrpPgr2BEF5R+Caz6cApbocgopiFpOxxJmWgTja6ERqGXYGIaOiqv+jBylcrsbNmYNtKd9a4sPJV7RNh3SfBAFS5yRARxSpSuKu0Fk9QlbhEpD/Nbj/Kq+sHnABH7KxxobyqHi0ev0Ij65vuk+Bmtzo3GbVuXkSkHz6VVpR8ASbBRKSMJk8AZVurFIlVtrUKF1XKy7qj+yTY7VfnZuBRKS4R6YddpQ4ONnaGICIFeH3hLhBK1lVtrjgNr0b9zHWfBKt2kzHxJkNEsYm3qdPFUq24RKQvrlYfNu49oWjMDR+f6OgvrDbdJ8G8yRDRUGUxGpCVbFc0ZlayHRaj7i/9RKQAKdWpq9Kqdlf3V0IhoMpNRghFQxKRDo1xWPCd6dmKxvzujGyMibcqGpOI9KlFreJdL7dDaMLpsGDJteMVjbl02nikJPAmQ0SxMRoNmF+YBptZmUu1zWzAvII0GA18Siei2A33uirdJ8FWiwkLp2QoepNZUJgBC/cEE5ECxjiseHTBNYrEenThNRjj4AM6ESljuNdV6T4JBoBEmwmr5uYrEmvV3Hwk2bkfmIiUYTEZUJI/DiV5KTHFKclLwc1543ikOxEpZrjXVfFqCCDBbkZJXipm5TpjijMr14mS/FTE23hkMhEpJ9lhweO3Fww4ES7JS8HjtxdgtMOi8MiISM+Ge10Vk+B2qUk2rF5cMOBEeFauE6sXFyA10abwyIiIgDHxVqwpLcSa0oJ+b9+ymQ1YU1qAtaWFLIYjIsUN97oqIYfhGfJFRUVy3759qsSuv+hBeXU9yrZW9av5s81swKq5+SjJT2UCTESq8wVCaGz1YUtlHV746Hi37Ymyku24a2Y25k1OR7LDwi0QRKSa01+6MfuJXYocmGEzG7DjgWJkjFZudlkIsV9KWdTte0yCL9fi8eOiO4DNFaex4eMTPd5klk4bjwVTMpBkM3ELBBFpKhgMobHNh0BIosUTgDcQgtVkQLzNBJNBINlhZRcIIlJds9uPzRV1ePj1QzHHemzRJCyckq5oTtVbEswKrm7E28yIt5lx98xszC9Mh5ThnnUefxA2sxHxVhOEAFISrOwCQUSDwmg0wJnQvvqUNLhjISL9itRVldfUY2eNa8BxBqOuiklwL6wWEzIt/CcioqHH6wt0HC3a7A7A7Q/CbjYiob07jdNhgZXXLyLSQKSuauWrlQNKhAerropXSCKiYaTZ7UeTJ4A3PjmNjXt73q615NrxWDglA4k2ExLs3K5FROpKTbRh9W0Fw6quinuCiYiGiQEX7ualIjWJhbtEpL6hVlfFwrgB4nIjEQ0V9U2eYbfUSET6FcmhBruuioVxUeJyIxENJfUXPVj52sASYADYWePCylcrmQgTkWaGQ10Vm0d2UX/Rg80VdZj9xC6s2VbbbQIMACcb3VizrRazn9iFzRV1qL/o0XikRKQHzW4/yqtjq7oGwolweVU9Wjx+hUZGRDS8MQnupL4pPNvy8OuH+t302eMP4eHXD2Hla5Wob2IiTETKavIEULa1SpFYZVurcNEdUCQWEdFwxyS4Xf3Fge+3A75abmQiTERK8frC27KUOIkJCD+0b644Da+PiTAREZNgcLmRiIYmV6sPG/eeUDTmho9PdBT8EhHpWb+TYCHEb4QQ16g5mMHC5UYiGoqkRI91CQN1stGNYdgUiIhIcdHMBFcDWCeE+KsQ4h+EECPioE4uNxLRUNXiUec60uLl9YmIqN9JsJTyP6SU1wP4LoBsAJVCiA1CiFlqDU4LXG4koqHK7Q+qEtejUlwiouEkqj3BQggjgNz2P+cAVAB4QAjxkgpj0wSXG4loqLKb1Wkkb9OgQT0R0VDX7y7GQognAcwD8A6AX0opP25/63EhRK0ag9MClxuJaKiKt6nTaF6tuEREEcPh1N1ofnolgJ9JKVu7eW+aQuPRHJcbiWioEiJ8OqWSq1VZyXYIoVg4IqJLDKdTd6PZDnEBnZJmIcQoIcQiAJBSXlR6YFrhciMRDVVOhwVLrh2vaMyl08YjJcGqaEwiImD4nbobTRL8887JrpTyAoCfKz8kbXG5kYiGKqvFhIVTMmAzK9PS3WY2YEFhBix8SCcihQ3HU3ejubJ299lhn+lFlhuVxOVGIlJKos2EVXPzFYm1am4+kuzD/rJNREPMcD11N5okeJ8Q4gkhxNXtf54AsF+tgWmFy41ENJQl2M0oyUvFrFxnTHFm5TpRkp+KeNvg7L0jopFpOJ+6G00S/EMAPgD/t/2PF8B9agxKS1xuJKKhLjXJhtWLCwacCM/KdWL14gKkJtoUHhkR6d1wPnU3msMyWqWUK6WURe1/ftJDp4hhh8uNRDTUpSbasPq2Ajy2aFK/H9ptZgMeWzSJCTARqWK4n7obTZ/giQB+jPBpcR3fJ6X8W+WHpa3IcmN5TWzT+VxuJCI1pSbZsHBKOopzUrC54jQ2fNxz+6Gl08ZjwZQMJNlMvCYRkSrUOnV3fmE6MjXoIRzNT3gZwLMA/gPAiGuCG1luHOjGbi43EpEW4m1mxNvMuHtmNuYXpkPK8OE8Hn8QNrMR8VYThABSEqzclkVEqhrup+5GkwQHpJR/UG0kQ0BkubG8uh5lW6v6Nb1vMxuwam4+SvJTmQATkWasFpMmMyVERD0Z7qfuRnMFfVMIcS+A1xAuigMASCkbFR/VIOJyIxEREVHfhvupu9EkwXe1/3dFp9ckgKuUG87QwOVGIiIiot4N91N3+50ESymvVHMgQxGXG4mIiIi6N9xP3e13izQhRJwQ4mdCiHXtX08QQsxTb2hERERENFQN91N3ozkh4nmED8uY2f71aQD/qviIiIiIiGjIG+6n7kaTBF8tpVwDwA8AUso2ABrl6kREREQ0lAz3U3ejGbVPCGFHuBgOQoir0alLBBERERHpy3A+dTeaJPgXAP4CIEsI8WcAOwA8pMagiIiIiGjoi5y6OyvXGVOcwTh1t99JsJRyO4DFAL4HYCOAIinlTpXGRURERETDQOTU3YEmwoN16m403SF2SCnPSym3Sim3SCnPCSF2qDk4IiIiIhr6IqfuPrZoUr/3CNvMBjy2aNKgJMBAP/oECyFsAOIAjBVCjMZXxXCJADJUHBsRERERDRNCANOvSsaOB4r7d+puYQY8/sCgdVnoz+7jHwD4PwDSAezHV0lwE4DfqzQuIiLqhd8fhKvVi5AEmj0BeANBWE1GJNhMMAjA6bDCrNJpTkREXTU0efDQq5VIsJpx9/XZuGmCE7dOToNBiMtO3Q1JiTZvAK5mD/74wXE0e/14fHEBUjSeDe4zCZZS/hbAb4UQP5RS/k6DMRERUQ/avAF86faj4sSXMBgExsZb4Q2EOm4wrd4AzrV4EQxJTBk/GqPtZsRZefIlEamnocmDn28+hNKpWTjb5Mad6/fA4w91vB9vMWK0w4IvW31o8QU7XreZDVgxJwfjEu34+eZD+JcFkzRNhIWUsv8fFmImgGx0Sp6llC8qP6zeFRUVyX379mn9Y4mIBlVDkwfVZ5qQFGfBrtoGvHLgVI9LjbdPzURxTgoutvmQl5ao+QwLEelDmzeALZV1yEyOw7p3j2FXrSvqGMU5Tiy/8SqcamzDvMJ0xFmUe3AXQuyXUhZ1916/f4oQ4k8ArgbwCYBIGi8BaJ4EExHpjavJg6MNLTjqasHabbWXzLJ0dbLRjafKj+DZ3Z9hxZwcmI0GCABOJsJEpLAv3X4k2MwDToABdHzf/1OUhS/b/Iomwb2J5qcUAciX0UwdAxBC3ALgtwCMAP5DSrm6m898G+E+xBJAhZRyaTQ/g4hoJHM1eVB30YN170V3k/H4QyjbUo3iHCfuL5kIgIkwESnH7w+i8tQF1F10DzgBjthV68INE8YCAkhxWDSpaYjmsIxDAMZFE1wIYQTwDIBvAcgHsEQIkd/lMxMA/ATA9VLKaxAuwiMiIoSXGs+1+vBk+eGYZlmeLD+Mc60+tPkCCo+QiPTK1epF5ig71m6rVSTe2m21yBxlh6tVmwOJo5kJHgugSgjxMTodlyylXNDL90wDcFRKeQwAhBAvAVgIoKrTZ5YBeEZK+WV7vIYoxqSqYDCExjYfAiEZrr72B2E1h6uvTQaB5DgLjEZlzssmIupOszeADz87p9gsS7JD2f12RKRfJqPAjpqGXrdnRcPjD+GdmgYsmZalSLy+RHMl/MUA4mcAONnp61MAruvymYkAIIT4AOEtE7+QUv6layAhxHIAywFg/PjxAxhK//kCITS2+rClsg4vfHQcJxvdMBkELCYDfIEQAiGJrGQ77pqRjXkF6Uh2WGAxMRkmImX5/UE0ewKKzrIUT0xBsj3I9mlEFLM2XwivHDilaMxNB05h4d9ocwxFv5NgKeVuIcQVACZIKcuFEHEIJ61KjGECgGIAmQDeFUJMllJe6PLz1wFYB4S7Qyjwc7vV2OrDjup6/OLNT/GNr43Fj7+Zg4xRdvgCIfgCIVhMBlhMBpy+4MbWyjN4svwwfjH/GszOS0Wyw6LWsIhIhy54fNhaWdfnLEvXh/SeePwhbD1YhyXTsuA025UeLhHpjAC67VATi5ONbs0Oz4imO8QyhGdikxHuEpEB4FkAs3v5ttMAOs9pZ7a/1tkpAH+VUvoBfC6EOIxwUry3v2NTyvkWL1a+chB2ixF/vuc6nGhs65jhlQCCUiJye7GaDJg7OQ33Fl+NP35wHNs/rcfq2ydjTLxV62ET0QjlDUhs6maWxWgQKMlLwa2T05Axyn5Jn2Brp4f0HTUNCHZJil/efwqLp2Zq9VcgohGszRvs+0MDietTJ25X0WyHuA/hPb5/BQAp5REhREof37MXwAQhxJUIJ793Auja+eF1AEsAPC+EGIvw9ohjUYxLEY2tPvz8jU+x6G8yYDUJQAgcO9faZx/OK8Y6sKAwDd6AxM/f+BRliyZhNGeEiUgBISkvu/4sKEzH3ddnY9dhF369vbbX61PkIX1zRV3Heycb3QhF1+SHiKhb3oAye4G78qkUt6toNrJ6pZS+yBdCCBOAXq+kUsoAgH8EsA1ANYD/llJ+KoR4VAgRKajbBuC8EKIKwE4AK6SU56P5S8TKFwhhd20D/m7GFRgdZ8YXjW24c91HeKr8SI/T/JE+nHeu+whfNLZhdJwZfzfjCuyqbdDsl0dEI1uz56tODg6LEc8snYrCrCTcuX5P/65P6/egMCsJzyydCoflq91rLR5tZlmIaGSzmdWph7JqVGcVzUzwbiHETwHYhRA3A7gXwJt9fZOU8i0Ab3V57ZFO/y8BPND+Z1A0tvrgsJpgNxujbkPUtQ+nw2pCY6sP45LYi5OIYhN5oHZYjFh/V1HUzeg7X5/W31WEZS/sQ6svCF+ASTARxS7Rbh5WcbuKJtVeCcAF4CCAHyCc2P5MjUFpKRgM4eDpC8gYbVekD2fGaDsOnr6AYJCzwUQUG3t7B4c1pYUxn8a07t1jWFNaCACwsTMEESnAbBTISla2yDYr2Q6zUZvSuH4nwVLKkJRyvZTyDoQL5P4a7elxQ1Fjmw9XjXVgz7HzivTh3HPsPK5yOtDY5uv7G4iIehFvM2FBYTrONilzGtPZJjfmF6Qh3sY+wUQUu+Q4C747I7vPz5kMAnEWI0yGvpPbu2ZkI9mhTZOBaLpD7AKwoP179gNoEEJ8KKW8X6WxaUIIQEIo2ofzpokpEFr19yCiEctsEFh2w5W4498/UiTe2m21ePkHM2Dux42IiKgvRqMB8wvS8ZvttZe0chxoBxub2YB5BekwanSNimY6IElK2SSE+HsAL0opfy6EqFRrYFoJBGW/+nD2l8cfwlsH63BHkTannRDRyGU2Cbx35Jyi16f3j57Dndfy+kREykh2WFC2cBJWbAqnhLF0sClbOEnTMxeiSYJNQog0AN8G8LBK49GcP9h9H85YvLz/FG77G/bhJKLYtPlC2Lj3hKIxN3x8AvML0zHaoWhYItIpi8mA2XmpmDc5Dd+anIazTW7cuX5Prw/vkQ42z+7+DCvm5GDONePwPwfPoCQvVdMTeKNJgh9FuJ3Z+1LKvUKIqwAcUWdY2pG4vA9nrE42uiF77x5HRNSn7voEx4p9golIackOCx6Zn4+HXq3EzproO9jMynXi8cUFmp+zEE1h3MtSygIp5b3tXx+TUt6u3tC00dKpD6eicVU6RYWI9KNZresT+wQTkYIaW3346WsHo0qAO9tZ48JPXzuIL1u1bSrQ50ywEOJBKeUaIcTv0M3hGFLKf1JlZBrp72knJoOAxWSALxBCINT3LAr7cBJRrNQ6eIfXJyJSii8QQnnVWZRXN8QUp7y6AW9Xn8WiKZmabYnoz3aI6vb/7lNzIIPF3kO/zIFWNkbYTOzDSUSx6en6FCv2CSYipZxv9eKRzZ8qEuuRNz7FDROcSEtStvdwT/pMgqWUb7b/94XIa0IIA4B4KWWTimPTRHf9MmOpbOwtLhFRNNS6jvD6RERKCAZDeLPijKIdbLZUnsHdM7NhNKo/G9zvnyCE2CCESBRCOAAcAlAlhFih3tC0YTEaOk47cViMeGbpVBRmJeHO9XvwVPmRHotSIpWNd67fg8KsJDyzdCoclvDsSlayXdPqRiIamTpfn5SSlWyHRYObCxGNfOdbffjTnuOKxnzxo+M4r9He4GiuhPntM7+LAPwPgCsBfEeVUWlojMOC70zPhsNixPq7ivDy/pMo21Ld76eaSGXjy/tPYv1dRXBYjPjujGyM0ei0EyIauSLXJyV9d0Y2xsTz+kREsfMFQ6p0sPEF1amH6CqaNTGzEMKMcBL8eymlXwgx7PvsGI0GzCtIQ9ZoO9a9e2zAR5NGvu/XdxSiMGuUZqedENHIZTQaML8wDU+8XavIcmP4NKY0Xp+ISBHqddhSJ25X0cwE/zuA4wAcAN4VQlwBYNjvCQ4GQxAi3N5joAlwxK5aFxpbfTC2xyUiitUYhxWPLrhGkViPLryGq1REpBi3X51OMx6fNh1soukT/LSUMkNKeasM+wLALBXHpomLHj9avUGUba1SJF7Z1io0+4K46PErEo+I9M1iMqAkfxxK8lJiilOSl4Kb88axXoGIFKPW9USr61Q0hXFWIcRSIcRPhRCPCCEeAfBTFcemiUAohK2VdYpWNr51sA4BzgQTkUKSHRY8fnvBgBPhkrwUPH679qcxEdHIljDMW9JFegAAIABJREFUO9hEk2q/AWAhgACA1k5/hjWvX2LTgVOKxnx5/yl4A8N+uzQRDSFj4q1YU1qINaUFsJn7d+m2mQ1YU1qAtaWFLIYjIsUZhFClg41BaFO3EE2qnSmlvEW1kQwSKaUqlY3y8sP1iIhikuywYNGUDNw4wYktlXV44aPjPfYxv2tmNuZNTkeyw8ItEESkCqtJoHRqJp4sP6JYzDu+ngnbEDoxLuJDIcRkKeVB1UYzCNSqQGzx8lhSIlKexWTAuCQbvj8zGwunpCMQkmjxBOANhGA1GRBvM8FkEEh2WNkFgohUNcpmwdyCdPxh92eKdbCZOzkdSXHabN2KJgn+BoDvCSE+B+AFIABIKWWBKiPTiDegzt5dn0oVk0REQLh9mjPBFv4iaXDHQkT6ZDYbkWAzYcWcHJRtqY453oo5OYi3mWDW6ECfaJLgb6k2ikFkNxtViWtTKS4RERHRUJFgNWHm1WNRnOOMqdVscY4TM68eq1qxXXeiaZH2BYBRAOa3/xnV/tqwplYFolaVjURERESDJc5qwliHBfeXTERxjnNAMYpznLi/ZCLGOiyIswzBJFgI8c8A/gwgpf3PfwkhfqjWwLRiMRpUqWxkIQoRERHpgTPRhvQkG5bfcBVWzcuLqoPNqnl5WH7DVUhPssGZaFN5pJeKJt2+B8B1UspWABBCPA7gIwC/U2NgWhnjsOA707Pxy7di38sS8d0Z2TyViYiIiHTDmWiDBOAPhvDS8hnYXduATQdO9djBpnRqJm7KScHFNh++lhKveQIMRJcECwCdq72C7a8Na0ajAQsK0/DE27WKVTbOL0hjVTYRERHpSkqiDfE2E75s82NCSjwevjUPY+Kt8AdD8PhDsJkNMBsNON/iRUhKpCRYMTE1XtMtEJ1F81OfB/BXIcRr7V8vAvCc8kPSXrLDikcXXoMHN8Xe/e3RhZOQzFlgIiIi0qE4iwlxFhNSHBa4Wr0ISaDZE4AvEITFFO4mkTHKBmeCTbMuED3pdxIspXxCCLEL4VZpAPB9KeX/qjIqjVlMBpTkjUNJXj3KqxsGHKckLwU356VyPzARERHpmtlsRPqouMEeRq+iKYybDuCIlPJpKeXTAD4TQlyn3tC0leyw4PHbC1CSlzKg7y/JS8HjtxdgtEObBs9ERERENHDRTFn+AUBLp69b2l8bMcbEW7GmtBBrSguiqmxcW1qAtaWFGBPPbRBEREREw0FUhXFSShn5QkoZEkKMuGa4yQ4LFk3JwI0TnNhSWYcXPjreY2XjXTOzMW9yOpIdFm6BICIiIhpGoklijwkh/glfzf7eC+CY8kMafBaTAeOSbPj+zGwsnJKOQEiixROANxCC1WRAvM0Ek0Eg2WFlFwgiIiKiYSiaJPgfADwN4GcAJIAdAJarMaihwmg0wJnQ3rcuaXDHQkRERETKiaY7RAOAO3t6XwjxEynlrxQZFRERERGRipTcyHqHgrGIiIiIiFSjZBLMzbFERERENCwomQTLvj9CRERERDT4OBNMRERERLqjZBL8soKxiIiIiIhU02d3CCHE79DLVgcp5T+1//eXCo6LiIiIiEg1/3979x5dZ13ne/zz3bfsNGkKoWlo09SiQC+UtmK4ClqkClLaAuJR6ggLET0z6nFGB+UMq86MXc6pZca5eJwZYZgRzwjOgFwKxalTbIEBEdJKAzQNIji9kqYEkuays2+/80cSbEOa7GQ/z87eed6vtbJosp/+8iUP/PYnv+d3yWWLtEbfqwAAAAAKaNQQ7Jy7qxCFAAAAAIWS82EZZlYj6euSFkqKD37dOfchH+oCAABAicpksmrvSSqddTqSSCuVzigaCWtqPKJIyFQ9JaZw2MulaWM3lmOTfyTp3yStUP8RytdLavOjKADAyFKpjNq6+5R10pFEWn3pjMoG3mBCJtVUlCkaDU90mQACJpnOqr07qaa9bykrp+mVZUqms0qms4pFQursTelwV59M0pL6E1VdEVMsMjFheCwh+CTn3J1m9mXn3OOSHjez5/wqDADwTj19ab3Zm9LOPW8qFDJNryxTXzqrRCqjeDSs7r60Dnf1KZN1WjrnRJ1YHtWUsrF09QAwPu3dSe060KHKeFSJdObtcOskZZw7ZpeFRCqr1zsTeuXQES2cNU3VFbGC1zuWnjE18M+DZrZC0gFJ1d6XVDz6kmm1dSclSUd60+pNZVQeDWtqef+PraYiprIYby4ACuNQZ0LNBzs1bUpMLx/q0k927NPe9t53XFdfXa6PnTVbdSdO0SutR7RgZpVmVMWHaREAvPFGV59ebj2iRCqjynhUrx7uHrWPetf0CiVSGbW83qnTa6fqpMqygtZszuV20JuZXSHpSUn1kr4rqUrSnzvnNvpX3vAaGhpcY6N/m1Yc6U2pM5HWQ8/v1z3P7TnuDbz27DlavbROVfGIppZHfasHANo6E/r1oS41v96p2za3KJHKjvp34tGQbr50nhacXKXTZlSqhiAMwAft3UkdeLNHnYn0uPuoqnhEdSdO0Ykejwib2XbnXMOwr+UagouJnyG4tSOhLc2tWrdpV843cO2KhVq+oFa103iDAeC9ts6EDnQk9NdbXta2lrEvxVg2r0Z/tPx0zZoWJwgD8FQyndVv3+hSbzKbdx9VHgtp7kmVns4RHikE5/xdzOzdZvawmR02s0Nm9pCZvduzKotAa2dCtzzQpFsffDGnACz1z2m59cEXdcsDTWrtTPhcIYCg6elL63B3ctxvLpK0raVNf73lZR3uTqonmfa4QgBB1tGTVCrjPOmjUhmnjp6kxxUe31ii9t2S/l3SyZJmqf+Y5Hv8KGoitHYkdMv9Tdq6e3w3cOvuNt1yP0EYgLeO9KX19G8Oj/vNZdC2ljY9/ZvDOpIgBAPwRiaTVSKT1TOvvuFJH/XMq2+oL51VJpPbQGS+xhKCpzjn/p9zLj3w8a86ar/gUnakN6Utza3jDsCDtu5u05ZdrepKpEa/GABGkUpldCSR1m2bWzxp77bNLepKpJVKZTxpD0CwdSRS6ktlPe2jEumsOgqUo0YNwWZWbWbVkn5qZreY2Vwze5eZfU3So/6X6L/ORFrrNu3ypK11m3apo5eRFgD5eyuR1KamAzlPzxpNIpXVphcO6K1E4R43Api80tms533Uoy8cULqIRoK3S2qU9D8kfV7SVknbJP2+pE/4VlmB9CX7d4Hw8gZu3Llffcy7A5CnvrTTfTv2edrmvdv3qS9deguiARSfvlRp91GjbnLrnDulEIVMlLbupO55bo+nbd797B6tXDJLs9lDGEAess4Nu0VjPva29ypbgrsCASg+zqc+6thjNfyTc0ozs6j6R38/MPClbZK+75wr6QmwzsmfG8h7DIA8+bWIrSvBnGAA+evq86mP6itMHzWWocp/kBSV9PcDn3964Guf9bqoQury603Gp/8wAARHMu3PvLhkmhAMIH99fvVRBVq8O5YQfLZzbslRn//czHZ6XVCh9fr0g06w+hpAnsqjYV/ajfvULoBgKfU+aixbpGXM7D2DnwwclFHySc+3GxjhTQZAfirj/qwr8KtdAMFS6n3UWL7LzZK2mtmrkkzSuyTd4EtVBVTqNxDA5BULh1RfXe7puoX66nLFwt4dSQoguHzrozw8NnkkOX8X59xjkk6T9L8kfUnSPOfcVr8KKxSz/h+4l+qry2XmaZMAAuikipg+fd5cT9u87vy5OqmyzNM2AQSTb31URWH6qFwOy7h68EPSCkmnDnysGPhaSaupiOnas+d42uaac+ZoxlTeZADkJxwOaeWSmYpHvRkViUdDumLxTIVD/JYOIH/hcEirPO6jVhawj8ql6pVDPq4Y+Bj8c0kri0W0emmdpzdw1ZI6xZgTDMADJ1WU6ZurzvCkrW+uPqNgIywAgqG6okzfXO1VH7VI1QXso0ZNfs65G5xzN0h6UdILkl4a+HhB0lNmttTfEv1XFY9o7YqFnrS1dsVCTStnPjAAb8QiIS1feLKWL5iRVzvLF8zQhxecXLC5dgCCIRYJafkCr/qo2oL2UWP5Tu+T9D8lzZQ0S/1HKF8m6Q4z+5oPtRXM1PKoli+o1cXza/Jq5+L5NVq+sFaV8ahHlQGAVF0R07c/tnjcbzLLF8zQtz+2WCdWxDyuDABKt48yl+PRZmb2hKTLnXNdA59XStqk/iC83TnnzVBqDhoaGlxjY6Pn7bZ2JnTL/U3aurttzH/34vk1Wn/1YtVWxT2vCwAkqb07qS3NrfrGQy8qkRp9k/p4NKRvrl6kDy+oJQAD8N14+qh1qxdpuY99lJltd841DPvaGELwbklnDh6TbGZlknY65+ab2a+cc+/1rOJR+BWCJam1I6Etza1at2lXzjdw7YqFWr6wlgAMwHfJdFbt3Uk90nRAd/3it8NuTVRfXa7rL5irK86cpeqKGFMgABRMsfVRXoXgtZKukvTQwJdWStoo6a8k3e6c+5QHtebEzxAsSV2JlDp609q4c7/ufnbPcW/gmnPmaNXSOk2LR5gCAaCgMpms2nuSSmeduhJp9aWzKouEVBmPKBIyVVeUsQsEgAlTLH2UJyF4oKEGSe8f+PQp55x/SXQEfofgQX3JtNq6k3JO6upLK5HKKB4Nq7IsIjNpxtQydoEAAAAoUiOF4DFtYzAQeick+E6EslhEs2Ps9AAAADDZMFEMAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEju8h2MwuM7MWM3vFzG4Z4bqPmZkzswa/awIAAECw+RqCzSws6XuSPippoaRrzWzhMNdNlfRlSb/0sx4AAABA8n8k+BxJrzjnXnXOJSX9WNLqYa5bJ+nbkhI+1wMAAAD4HoLrJO096vN9A197m5mdJaneObdppIbM7HNm1mhmjW1tbd5XCgAAgMCY0IVxZhaS9B1JXx3tWufc7c65BudcQ01Njf/FAQAAYNLyOwTvl1R/1OezB742aKqkRZK2mdlvJZ0naSOL4wAAAOAnv0Pwc5JOM7NTzCwm6ZOSNg6+6JzrcM5Nd87Ndc7NlfSMpFXOuUaf6wIAAECA+RqCnXNpSV+UtFlSs6R/d869ZGbfNLNVfn5vAAAA4Hgifn8D59yjkh4d8rVvHOfaZX7XAwAAAHBiHAAAAALH95HgUtaXTKutOylJOtKbVm8qo/JoWFPL+39sNRUxlcX4EQIAAJQaEtwwjvSm1JlI66Hn9+ue5/Zob3vvO66pry7XtWfP0eqldaqKRzS1PDoBlQIAAGA8zDk30TWMWUNDg2ts9GcDidaOhLY0t2rdpl1KpLKjXh+PhrR2xUItX1Cr2mlxX2oCgKF4UgWgmBVLH2Vm251zw269Sw95lNbOhG55oElbd+d+Il0ildWtD76oLbtbtf7qxaqtIggD8A9PqgAUs1LqoxgJHtDaMfYAPNTF82sIwgB8w5MqAMWsGPuokUaC2R1C/b+1bGluzSsAS9LW3W3asqtVXYmUR5UBQL/BJ1W3PvhiTm8u0u+eVN3yQJNaOxM+VwggyEqxjyIES+pMpLVu0y5P2lq3aZc6etOetAUA0sCTqvvH/6Rq6+423XI/QRiAP0q1jwp8CO5L9s9byfW3ltEkUllt3LlffUmCMID88aQKQDEr5T4q8CG4rTupe57b42mbdz+75+0VkQCQD55UAShmpdxHBT4EO6dhVy7mY297r0pwvSGAIsOTKgDFrNT7qMCH4K6EPz/orj7eZADkhydVAIpZqfdRgQ/BvamML+0mfGoXQHDwpApAMSv1PirwIbg8Gval3XjEn3YBBAdPqgAUs1LvowIfgivj/hya51e7AIKDJ1UAilmp91GBD8Fm/cf3eam+ulxmnjYJIIB4UgWgmJV6HxX4EFxTEdO1Z8/xtM0158zRjKllnrYJIHh4UgWgmJV6HxX4EFwWi2j10jrFo978KOLRkFYtqVOMkRYAeeJJFYBiVup9VOBDsCRVxSNau2KhJ22tXbFQ08oZZQGQP55UAShmpd5HEYIlTS2PavmCWl08vyavdi6eX6PlC2tVGY96VBmAIONJFYBiVup9FCF4QO20uNZfvXjcQfji+TVaf/Vi1VbFPa4MQJDxpApAMSvlPooQfJTaqrjWX7VY37pyUc6/1cSjIX3rykUEYAC+4EkVgGJWyn2UuRI8OqihocE1Njb61n5XIqWO3rQ27tyvu5/dM+xpKPXV5VpzzhytWlqnafEIbywAfNXamdAt9zdp6+62Mf9dnlQB8Fux9lFmtt051zDsa4Tg4+tLptXWnZRz/aeXJFIZxaNhVZZFZCbNmFrG3DoABdPakdCW5lat27RLiVR21Ovj0ZDWrlio5QtrCcAAfFeMfRQhGAAmCZ5UAShmxdZHEYIBYJLhSRWAYlYsfdRIIZhlwgBQgspiEc2O0YUDKE6l0EexOwQAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAACJzLRBRSzTCar9p6k0lmnI4m0+lIZlUXDmhqPKBIyVU+JKRzm9wgAAIBSQwgeRjKdVXt3Uo80HdBdv/it9rb3KhIyxSIhJdNZpbNO9dXluv78ubpi8SxVV8QUixCGAQAASgUheIj27qQea27Vnz38ki48dbr++CPzVHdCufrSWSVSGcWjYZVFQtr/Vq82NR3UX295WX+28gxdsqBW1RWxiS4fAAAAOSAEH+WNrj7d8pMXVB4L60c3nqttL7fpL3/Wor3tve+4tr66XB87a7b+YNl79M9P/VY/e6lV6z92pk6qLJuAygEAADAW5pyb6BrGrKGhwTU2NnraZnt3Ut948EV99MyZer2zV7dtblEilR3178WjId186TydXFWun75wUOuuXKQTGREGAACYcGa23TnXMNxrTGRV/xzgx1sOac15c3Tv9r1a90hzTgFYkhKprNY90qx7t+/VmvPmaFvLISXTuf1dAAAATAxCsPpHgePRsG5/4lVta2kbVxvbWtp0+xOvKh4Nq7076XGFAAAA8FLgQ3Amk9UL+9/SgY7ecQfgQdta2nSgo1cv7H9LmQyjwQAAAMUq8CG4vSepk6vium1ziyft3ba5RSdXxdXew2gwAABAsQp8CDaTHtt9aNQ5wJGQaUosrEjIRrwukcrq57sPyUa+DAAAABMo8Fukdfdl9JMd+97x9XDItHzBDF1+5swR9wl+bPchZbLH7rBx3459uvK9dZpeWah/CwAAgOJRCqfuBj4ES3rHPsCrlszSZ94/d0z7BG/ceeCY9hgIBgAAQTPcqbtDFcupu4HfJ7j5YKc++rdPSpIqYmFtuGbJuPcJ/tp9O9WdzEiSfvrli7RgZpUnNQIAABS7wVN31z704jEZKhIyxSIhJdNZpY96eh6PhrRu9SJfT90daZ/gwI8E9w3s6VsRC+uO6xvGvE3a4D7By+bV6I7rG3TTXY3qTmbYKxgAAATG4Km7/9ncqnDIdOkZtTlNKb35viZ9eEHthJy6G/gQHI/2D8FvuGZJ3vsED7bzhbt3qCwa+DWHAAAgANq7k28H4OGmlA4dCR52SulPpA3XLC7oqbuBD8HT4lGtWjJLr3d6s0/wRadN18rFMzUtHvWoQgAAgOKUTGf1WHOrnv7NYX1vzVl6vbNXn7rzl7rw1On644/MG3Ek+I4nX9VXPny6Lj3jZH3tvp3a0tyq1UvrCjZHOPAhOBI23XTRKfr493/hSXu3bW7RvZ8/X5EwS+MAAMDk1t6d1PqfNr89pbQqHtWPbjx3TJsLPJk4rDuub9CX7t6hi06r0cnT4gWpPfAL41KpjO546jVt+A9vDsuQpK9fNk+fvfAURSNhz9oEAAAoJplMVv/y9G81c1q5Ht65XyuX1I17c4HBv3+wo1c3XDDXs+3TRloYF/iJq28lUrrn2T2etnn3s3v0Vm/K0zYBAACKSXtPUnvf7NEb3Qldd8Fc3bt9r9Y90pxTAJZ+t7nAvdv36roL5uqN7oT2vNlTsFN3Az8dIp11ww7V52Nve+8xW4AAAABMNums01VL63SwI+HJ5gKfaKjX4roTCpahAh+CjyTSvrTblUhL03xpGgCU6EvpcE//E6cjvWn1pjIqj4Y1tby/W58+Jap4GQt0Afgnk3Ha+2aPDh3p82xzgUw2q+kF2iot8CG4L5Xxp132CQbgg46epLr6Mnro+f2657k9x110cu3Zc7R6aZ0qy8KaNqVwWw4BCI5UNqu5J1Xo5vuaPGlvcHOBQo0EB35OcFk0t8VrkZBpSiysSCi3XR8m6ghAAJPX6x0JPdJ0UJd8Z5s2bB5+1bXUPyVrw+YWXfKdbXqk6aBe70gUuFIAQVAeC+ux3YdyngM8mkQqq5/vPqR4jC3SCmJqfPgfQThkWr5gRk6nnWSG+Y3leO0CwHi0dib0vx9o0tbdYzvR8tYHX9SW3a1af/Vi1VYVZtshAMHQl8rqJzv2edrmfTv26cr31nna5vEEPqlFQqb66vJjRlSGO+1kqGFPOznqtVxHjAFgNK93jByAh57GNNTW3W265f4mgjAAz/mxuUChBD4EV0+J6brz5+pbm5pVEQtrwzVL9Hpnrz55xzMjDu/vbe/V32z5tf7x8d/o5kvnvX3aSXcyo+vPn6vqisKefw1gcuroSeqx5tZjAvB4nlRt3d2mLbtatXLJTFWVM0cYQP56kv6sq/Kr3aECH4LD4ZAuXzRT/7jtFX13zVlj3uJjcI+7ZfNq3j7t5KOLZirMSDAAD3T1ZbRu0663P8/nSdW6Tbu0bN4MVZUXrHwAk5hfmwAkC7S5QOBDcCqVUdP+t/TDG8/VbZtb8t7j7oc3nqum/W9pRmVM0RwX3QHAcBJ9KT30/H4lUtkRn1QNnQ4x0pOqjTv364bz38X2aQDyFo/mtoBttClbQ5Xl2G6+fA/BZnaZpL+VFJb0T8659UNe/4qkz0pKS2qT9Bnn3H/7Xdegtu4+PfPqG3qzO+XJHneXLjxZza2dWjJ7mmadMMWjKgEE0eGelO55bo8qYmHdcX3D20+qwiHTpWfU5jQd4ugnVTfd1ai7n92jlUtmaTYhGECepsWH70fy3VzgeO16zdcQbGZhSd+T9GFJ+yQ9Z2YbnXO7jrrsV5IanHM9Zvb7kjZI+oSfdR0t66Srltbpk3c8M+J1uf4W8+ePvKQf33SeODAOQL6c619/8L2jpmrlMx1iwzVL9IW7d8jRPwHwQCSc2+YCQzPUqJsLhAszpdTvkeBzJL3inHtVkszsx5JWS3o7BDvnth51/TOSfs/nmo6RyTpte7ntHYvgxvtbTCKV1eMvtxVsew8Ak1dXIq1VS2bp9c5ePfdau7635qy8Fu5edNp0rVw8U119/pyUCSBYjre5wKfu/KUuPHW6/vgj80bMUHc8+aq+8uHTJ2xzAb9DcJ2kvUd9vk/SuSNcf6Oknw73gpl9TtLnJGnOnDle1adM1r1jj7t8t0i7b8c+rVwyy7MaAQRTbyqjz7x/rm6867ljpkPkariFu3def7YSPp2UCSBYwuGQLj/z2M0FquJR/ejGc8eUoZ5MHP7d5gJnFm5zAXM+Phczs2skXeac++zA55+WdK5z7ovDXPt7kr4o6YPOub6R2m1oaHCNjY2e1LinvVsf2LBNko75Lea2zS05nYASj4Z086XzdHJV+du/xUjSE19bpjnVFZ7UCCCY9rzRrft/tV+nzZiqe7fvzWvdwrJ5Nfr4++r1yqEjuuq9dZpzEv0TgPxkMln9vOWQZp84RX+75WWtXFI37gz18M79+sPlp2vvmz360LwZCoe9WRxnZtudcw3Dveb3SPB+SfVHfT574GvHMLPlkm5VDgHYaz19/aF16MKTXA0dabnprkZ1JzMF2+MOwORlZnqzJ6nXO3s9Wbh70WnT9UZPUmZs4Qggf+09SbV3J9XRk9J1F8zNK0N97gPv1osHOpTOZNXek1TNVP8P9vF7D4rnJJ1mZqeYWUzSJyVtPPoCM3uvpO9LWuWcO+RzPe+QGNiLbsM1S8Z88462raVNtz/xqjZcs0RS/1GCAJCvq5bW6bbNLZ60ddvmFl29lPUKALyRzjpd8J7pqiiLeJKhKmIRvf/Umpy2UfOCryHYOZdW/xSHzZKaJf27c+4lM/umma0auOw2SZWS7jWz581s43Ga88WUaPjthSdejLS83tmrlYtnqjzGHsEA8uPc8At3x2tw4a7E9hAA8hc26aWDHTrQ4U2GOtDRq10HOlSgzSH8nRPsFy/nBB/s6FVrR2LU1da5ikdD+vFN56l2Wlwzp3EsE4Dxe62tS9f9y7PDLiwZr/rqcv3wM+folOmVnrUJIJj2tHeroyelj3//F55lqHs/f75OmBJTfbU3Zy2MNCe4MEdyFLGySEiPezzS8sSv21QWCfyPFkCewmHzNABL/duncaw7AC/EoyE9tvuQpxnq57sPqSxSmD4q8EktkcroviFbpOXr3u372IIIQN4GF+563i4LdwF4oCeZfcc2s/m6b8c+9RZoXVXgQ3AmK19GWjKsiwOQJ79+meaXdABeMPmToQol8CG4K+HPyUmcyAQgX/GoPwts4xEW7gLIX6k/rQp8CO5lpAVAkaqM+7OVu1/tAgg708ZUAAAMHklEQVSWvrQ/j72TPrU7VOBDcDkjLQCKVMj6d3PwUn11uVgXB8AL8ag/MbJQmwsEPgQz0gKgWNVUlOnac+Z42uaac+YU5CQmAJNfRZk/WcevdocKfAg2n0ZaOJUUQL6i0bBWL63zbLQlHg1p1dI6RcOB7/oBeCCdyfqSodJZpkMUxAnlYV17tvcjLSdOiXraJoBgOrE8qm9csdCTtr5xxUL6JgCeCYdMn2io97TNT55dr3CBRhIDH4Lf7MnootOmezrScuGp09XenfKkPQDBNqUsouULanXx/Jq82rl4fo2WL6jVlBhTtQB4IxQyXXiqtxnq/e+ZrlCBFi4EPgRL0h1PvqabL53nSVs3XzpPtz/xqidtAYAkzaiK69tXLz5uEI6ETFNiYUWO88Zx8fwaffvqxZpRxVxgAN4JmfTA8/s9zVD3P7+/YIt3Az8k0JVIa+POA7r0jJO1bF6NtrW0jbutZfNqdHJVuR5uatYfXHyqh1UCCLrBILyluVXferRZF546XZefOVN1J5SrL51VIpVRPBpWWSSk/W/1alPTQT31m8O69fIFWr6glgAMwHM1FWWqrYrr5KpyzzJUMp0t2OLdwIfg3nT/fr5fu2+n7ri+QZLGdROXzavR5z7wbt10V6Mk9gkG4L0ZVXGtOHOmPnj6DD30/H795c9ahj1dqb66XNeePUd/uvIMVZaFNW1KbAKqBTDZDS7eXfXdJ/XdNWdJyi9DfenuHdr4pYsKtng38NMhBvcJ7k5mdNNdjfr4++q19ooFOc9viUdDWnvFAn38ffW66a5GdQ+ccuLXSU8Agqu1I6FHmg7qku9s04bNwwdgqf/Y0Q2bW3TJd7bpkaaDau1IFLhSAEFxYnlUX/3IPE8y1Fc/Mq+gi3cDPxI89aj9fLuTGX3h7h1auXimfnzTeXr85Tbdt2PfcUdarjlrtj54eo3u/K/X9HBT83HbBYB8tXYmdMsDTdq6O/dRlkQqq1sffFFbdrdq/dWLVcuUCAAeG1y8+5/NrXllqIlYvGvOuYJ9M680NDS4xsZGT9o68FaPPnH7M++4SeGQ6ZL5M7Ri8UzNOqFcqUxWiVRW8WhI0XBIB97q1SNNB/Xz3YeUyR77M6yvLte/fe48zTphiic1Agi21o6xB+ChLp5fQxAG4JtDnQl9/f7+fmqsGcrPxbtmtt051zDsa0EPwalURnc89Zo2/EfLiNdFQqZYJKRkOqt0duSf2dcvm6fPXvRuNqQHkLcjvSlt3HlAtz74Yt5tfevKRVq9dJYq4+wVDMB7hzoT2tLcqm8+skuJ1O8OvDhehopHQ/rGFQt9Xbw7UggO/DP7wUndf/fYr4+5YUOls07p5OiL3TiRCYCXOhNprdu0y5O21m3apWXzZhCCAfhiRlVcV763Th+cN0Mbn9+vu5/do73tve/IUPXV5frUOXO0ammdTpgSnbD9ywMfgqXfncj0Jw/kP9LCiUwAvNKXTOuh5/eP+Av6WCRSWW3cuV+fuWCuyjg0A4APpsQimhKL6LPvP0Wrl85S1klHEum3t3GcGo8oZFLN1PiEDxjSC+rYSd35zrnjRCYAXmnrTuqe5/Z42ubdz+7RyiWzNJt+CoCPotFw0a+N4pn9gNFOZBoNJzIB8JpzOu42aOO1t71XJbgUBAA8Rwg+ymAQ/ourFo1pj7u/uGoRARiA57oSaX/a7fOnXQAoJTwPG+J4k7qHKpZJ3QAmr16fTp7kREsAIAQPq5QmdQOYvMp9OnkyHuFESwAgBI+gFCZ1A5i8Kn06edKvdgGglDCMCQBFyqx/6pWX6qvLZeZpkwBQkgjBAFCkaipiuvbsOZ62ueacOZoxtczTNgGgFBGCAaBIlcUiWr20LufdakYTj4a0akmdYswJBgBCMAAUs6p4RGtXLPSkrbUrFmpaOfOBAUAiBANAUZtaHtXyBbXjPshn0MXza7R8Ya0q4xzrDgASIRgAil7ttLjW53mi5fqrF6uWA30A4G2EYAAoAbVVca2/arG+deXYTrT81pWLCMAAMAwmhwFAiaidFtfqpbO0bN4Mbdw58omWawZOtJwWjzAFAgCGQQgGgBJSGY+qMh7VZy6Yq5VLZsk5qavvdydaVpZFZCbNmFrGLhAAMAJCMACUoLJYRLNjdOEAMF7MCQYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFjzrmJrmHMzKxN0n9PwLeeLunwBHxf+Iv7Onlxbycv7u3kxH2dvCbq3r7LOVcz3AslGYInipk1OucaJroOeIv7Onlxbycv7u3kxH2dvIrx3jIdAgAAAIFDCAYAAEDgEILH5vaJLgC+4L5OXtzbyYt7OzlxXyevoru3zAkGAABA4DASDAAAgMAhBAMAACBwCMFDmNk/m9khM3vxOK+bmf2dmb1iZk1mdlaha8TY5XBfPzVwP18ws6fNbEmha8T4jHZvj7rubDNLm9k1haoN+cnl3prZMjN73sxeMrPHC1kfxi+HPnmamT1sZjsH7u0Nha4RY2dm9Wa21cx2Ddy3Lw9zTdHkKELwO/1A0mUjvP5RSacNfHxO0j8UoCbk7wca+b6+JumDzrkzJa1TEU7gx3H9QCPfW5lZWNK3Jf2sEAXBMz/QCPfWzE6Q9PeSVjnnzpD08QLVhfz9QCP/f/sFSbucc0skLZP0V2YWK0BdyE9a0ledcwslnSfpC2a2cMg1RZOjCMFDOOeekNQ+wiWrJf3Q9XtG0glmNrMw1WG8RruvzrmnnXNvDnz6jKTZBSkMecvh/1lJ+pKkn0g65H9F8EoO93aNpPudc3sGruf+logc7q2TNNXMTFLlwLXpQtSG8XPOHXTO7Rj48xFJzZLqhlxWNDmKEDx2dZL2HvX5Pr3zBqO03SjppxNdBLxhZnWSrhJPbSaj0yWdaGbbzGy7mV030QXBM/9X0gJJByS9IOnLzrnsxJaEsTCzuZLeK+mXQ14qmhwVmYhvChQrM7tY/SH4womuBZ75G0lfd85l+weVMIlEJL1P0iWSyiX9wsyecc69PLFlwQOXSnpe0ockvUfSf5rZk865zoktC7kws0r1P337w2K+Z4Tgsdsvqf6oz2cPfA0lzswWS/onSR91zr0x0fXAMw2SfjwQgKdLutzM0s65Bye2LHhgn6Q3nHPdkrrN7AlJSyQRgkvfDZLWu/7DDF4xs9ckzZf07MSWhdGYWVT9AfhHzrn7h7mkaHIU0yHGbqOk6wZWN54nqcM5d3Cii0J+zGyOpPslfZpRpMnFOXeKc26uc26upPsk/QEBeNJ4SNKFZhYxsymSzlX/HESUvj3qH+GXmdVKmifp1QmtCKMamMN9p6Rm59x3jnNZ0eQoRoKHMLN71L8SdbqZ7ZP0p5KikuSc+0dJj0q6XNIrknrU/9sqilwO9/Ubkk6S9PcDI4Zp51zDxFSLscjh3qJEjXZvnXPNZvYfkpokZSX9k3NuxK3yUBxy+P92naQfmNkLkkz9U5oOT1C5yN37JX1a0gtm9vzA1/5E0hyp+HIUxyYDAAAgcJgOAQAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAUEIGNpin7waAPNGRAkCRM7O5ZtZiZj+U9KKktWb2nJk1mdmfH3XNbjP7kZk1m9l9A6eoyczWm9mugev/ciL/XQCgWHBYBgAUOTObq/4jYy+QVCXpGkmfV/9JWhslbVD/MbOvSbrQOfeUmf2zpF2S/kXS05LmO+ecmZ3gnHur4P8SAFBkGAkGgNLw3865ZyR9ZODjV5J2SJov6bSBa/Y6554a+PO/SrpQUoekhKQ7zexq9R9TCgCBF5noAgAAOeke+KdJ+j/Oue8f/eLAaPHQR3vOOZc2s3MkXaL+EeQvSvqQv6UCQPFjJBgASstmSZ8xs0pJMrM6M5sx8NocMzt/4M9rJP3XwHXTnHOPSvojSUsKXjEAFCFGggGghDjnfmZmCyT9wswkqUvS70nKSGqR9IWj5gP/g6Rpkh4ys7j6R5G/MiGFA0CRYWEcAEwCA9MhHnHOLZrgUgCgJDAdAgAAAIHDSDAAAAACh5FgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABM7/Bw/6ob/DJyORAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hU1b0//vfac8lMQggZCJeQwYhCiELwhGhBFGOBooDQX4FW/Z6WthZ6iqc9P21RWwv1yDk9Vu3ltKc3+WqLPUVaUctFLTcFq+IlUAiXEFSMBAJJYLhlMte91/ePJBRCQmYye+/syX6/niePTSZZWWT3ec9nrb32WkJKCSIiIiIiO1F6ugNERERERGZjEUxEREREtsMimIiIiIhsh0UwEREREdkOi2AiIiIish1nT3egOwYMGCALCwt7uhtEREREZGE7duw4IaXM6+i1tCyCCwsLUVFR0dPdICIiIiILE0J80tlrXA5BRERERLbDIpiIiIiIbIdFMBERERHZDotgIiIiIrIdFsFEREREZDssgomIiIjIdlgEExEREZHtsAgmIiIiItsx9LAMIcQzAGYCaJBSju7gdQHgvwFMB9AM4MtSyp1G9ikZqqoh0BxFXJM4F44jElOR4XIg2+OEUxHwZbrhcHAcQUTmYz4RkZWlQ0YZfWLc7wH8D4BnO3n9dgAjWj8+BeDXrf/tUdG4hkAwivWVdVixvQa1gdAl3+P3eTF/QiFmluTDl+WG28k3GyIyHvOJiKwsnTJKSCmN/QVCFAJY38lM8G8BbJVSPtf6eTWAcinlscu1WVZWJo06NjkQjGJLVT2WrNmLcEzr8vs9LgXLZo/G5OJB8GW5DekTERHAfCIia7NiRgkhdkgpyzp6raenB4YCqL3g8yOtX7uEEGKhEKJCCFHR2NhoSGdONkXw4OpKLF5dmdDFA4BwTMPi1ZV4cHUlTjZFDOkXERHziYisLB0zqqeL4IRJKZ+SUpZJKcvy8vJ0bz8QjOKhF/ZgU1V9h687FYFMtwNORXT4+qaqejz0wh6cCkZ17xsR2RvziYisLF0zyug1wV05CsB/wecFrV8zVTSuYUtV/UUXz6EITCkeiOljhmBoPy8icQ3hmAqPy4EMp4Kjp0N4ufIYthxogKq1LCnZVFWPzVX1mH3dUK7BIyJdMJ+IyMrSOaN6ugheC+BfhRCr0PJA3Jmu1gMbIRCMYsmavec/nzU2H1+dWIitBxvx5MbqThd1zyktwKLyq/DMWzVYu7sOALBkzV7cPCIPg3M8pvWfiHov5hMRWVk6Z5ShD8YJIZ4DUA5gAIB6AD8A4AIAKeVvWrdI+x8At6Fli7SvSCm7fOJNzwfjVFXD796uwX+8XIUstwOPzx2L42dDeGJDdcKLuhdPK8Lgvl48sHo3glEV359RjK/cWNjjW38QUXpjPhGRlaVDRl3uwTjDd4cwgp5FcOO5MD7367cRaIpi+fwyPPXGIWytTv7Bu/KiPCycNBwLVlTA18eNF79xI/KyOdtCRN3HfCIiK0uHjLpcEdzTyyF6XFyTqA2E8Mu7S7t98QCc/7nH547FvSt3Iq6l3+CCiKyF+UREVpbuGWX7+2HnwnHMGpuP42dD3b54bbZWN+L42RDuKBmCpnBcpx4SkV0xn4jIytI9o2y/HGLPkdNQNYk7l7+T8L52l+NxKVi1YDycDgWjh+bo0EMisivmExFZWTpklJUPy+hxuZlubD3YqMvFA1o2ft52sBE5Xpcu7RGRfTGfiMjK0j2jbF8EQwAv7Dyia5Ordx6B6Hg/aCKixDGfiMjK0jyjWAQDHe5hZ6X2iMi+mE9EZGXpnFG2L4Kbo2patUtE9sF8IiIrS/eMsn0RHIkZ84eOxvVZH0NE9sV8IiIrS/eMsn0RnOFyJPR9TkUg0+2AU0lsoYpZ514TUe/FfCIiK0v3jLL9YRnZno7/BA5FYErxQEwfMwRD+3kRiWsIx1R4XA5kOBUcPR3Cy5XHsOVAA9QONnXurF0iokQxn4jIytI9o2yfhE5FwO/zXrQQe9bYfHx1YiG2HmzEkxurO1yk7fd5Mae0AIvKr8Izb9Vg7e66i15LdLRDRNQZ5hMRWVm6Z5TtD8tQVQ2/e7sG//FyFbLcDjw+dyyOnw3hiQ3VCe1753EpWDytCIP7evHA6t0IRlV8f0YxvjLxSjj4RkNEKWA+EZGVpUNG8bCMy3A4FMwsyUf/LBeWzy/D8ztqsWx9VcIbP4djGpatr8LzO2qxfH4Z+me5MLMkn28wRJQy5hMRWVm6Z5TtZ4KBlqcQD51owmOvHkjp7Ovyojx89/ZRuHJAHz54QkS6YD4RkZVZPaM4E5yAyiOnU7p4ALC1uhG7j5zRqUdERC2YT0RkZemaUSyCAQSCUSxds0+Xtpau2YtAMKpLW0REzCcisrJ0zijbF8GqqmF9ZV3C61e6Eo61tKeq3IyeiFKjqhrWMZ+IyKLSPaNsXwQHmqNYsb1G1zZXbK9BoJmzLUSUmkBzFM9ur9G1TeYTEekl3TPK9kVwXJMd7mGXitpACPEONn8mIkpGTDUmn2Iq84mIUhc3KKPiJmWU7Yvgc6G4Me2GjWmXiOzjbDhmSLvnDGqXiOzFqIwyqt32bF8EN8dUQ9oNRY1pl4jsIxw1Zl2cXuv3iMjeQmmeUbYvgj0G7ZeZwX04iShFHhfziYisK90zyvZJmJnhSKt2icg+Mt0G5ZNB7RKRvRiWUSbVULYvglVVwu/z6tqm3+eFygfjiChFcY35RETWle4ZZfsiWFEE5pQW6Nrm3NICKMKcc6+JqPdyGpRPDoX5RESpc6R5DcUiWAiUj8zTbV2Lx6XglpF5LIKJKGXCoHwSzCci0kG611C2L4I1KfHSrqNYOvNaXdr7wcxr8eKuo9AkbzcSUWqEAF7adRSLpxXp0t7iaUV4cddRsAYmIj201VB6Z5RZNZTti+C4KlF2RS7G+nNQXpSXUlvlRXko8efghityTdvomYh6L1WTyM10Y2g/LyaPGphSW5NHDcTQfl70z3RD45pgItJBXG3JqMF9vbrUUIP7tmQUD8swSUzVcJ0/F196+l0snDS82xexvCgPCycNx5eefhdj/bmImXTuNRH1XoFgFOWttwa/NXlESvn0rckjoAiBW0bmIRDksclElLpIXEX5yDw89up+LJs9GreO6l5G3ToqD8tmj8Zjr+7HLSPzEI1zn2BT5Ga5sK6yDieDMSxYUYF54/xYMrM44fUtHpeCJTOLMW+cHwtWVOBkMIb1lXXIzXIZ3HMi6u0ynAp2Hj6FxnMR3L38nZTy6e7l76DxXAQ7PjkFN/cJJiIdZGU48cxbNfjtF8vw2CtVmFvavYyaW+rHY69U4bdfKsPTb35s2hZpTlN+i4VF4xLPvXcYABCMqrh35U7cUTIEqxaMx7aDjVi980iH52L7fV7MLS3ALSPz8PSbH2NdZdX511a+dxgzS/JN+zcQUe+U7XGhdFgu7lz+DsIxLeV8WvbyfqxaMB7ZHg7SiSh1ihDIzXKh8ugZvLz3OF7eezyljJpUlIfcPm7THowTMg0f4CorK5MVFRW6tHXkVDNu+tHrl3zdoQhMHjUQM0qGIL+fFzFVQzimweNS4HIoqDsdwvrKY3jtQEOH+9m99eCtGJqbqUsficieGs6F8HzFUTyxofqir6eSTw9MK8LccUMxsK++e3sSkf0EgmGcDam47b/fuOio4+5mlMel4K//Ngl9vU74sjJ06aMQYoeUsqyj12w/E9wUjnf4dVWT2Li/Hhv31wNo2a/T7VQQjWuIJ/BQyblIx+0SESUqFpdY9f7hS76eSj499/5hzL6Od6qIKHXx1iy6sAAGup9R4ZiGTfvrMfu6IYb2u43tF4a1v3CdiWsSzVE1oQIYACIJtktE1BkJdHgrsb1k8qk2EEL63f8jIiuKxSX+8E5Nl9+XTEY9+04NYtwdwhwZBj0gwgdPiChV5zq5U5Wqzu6AERElQ5OJDdSTURsIwaxdHG1fqRn1BGKm25wnG4mo94rEVEPaDZu0/RAR9W5NBi39DJq0pNT2RbCULU8p6snv8yINnzckIovJcBozmM5w2D76iUgHYaMG6ga1257tk9DjVjCntEDXNueWFsDrtv2flohSZNidKpP24CSi3i3dl5TavlKLqxKTRw1MeGPnrnhcCj49aqBpi7qJqHcz4k4VEZEe+niM2WTMqHbbs30R7HYKfHIyiMXTinRpb/G0InwSCMLN241ElCKvQXeqMl2cCSai1ClCGDJQN+uwDNtXam6nglFDcpCf40V5UffOvG5TXpSH/BwvigfnIEOnmWUisi/D7lSZ9eg1EfVqHpeCuToP1OeNK4DHpIG67Su1cyEVAhKNTWEsnDS824VweVEeFk4ajsamMCAkzoa4BRERpcahCBw5FdL1TtWRUyE4FXNmWYiod1M1iRkl+boO1KePyYdm0kDd9kWwlBL/veVDjLvCh2ffrsG8cX4smVl8yQV1KgKZbsclbx4el4IlM4sxb5wfz75dg3FX+PCzTR9Acjt6IkpRJKZhSI5H1ztVQ3I8CMfNefKaiHq3SEwDpKbrQF1KzbSM4rHJkTjW7q7D9DFD8I3yq/HTzQeRneHEqgXjcTjQDLdTwYA+GYjENUTiKjKcDmQ4FZxoiiAa0zCsfyaefvNjnIucwH1TRqI2EMK6ymP4RvnVPf1PI6I01xSJ45m3alBW2A8LJw0HAGytbrzk+7o6krTtTtWHDefwyh7mExHpoykSx2+2HcLXb2m5k95RPgGJHZtcXpSH8cP74+dbPjQto2xfBEdaN43/9p934XdfuR4/uONafHIiCCFabkM+9/7hDk9D8fu8uOv6YbhiQBbmlBagcEAWGs6F8e0/7wIARDnTQkQpisQ1rN1dh2nXDj5/p+rmEQPwk00HcdPVAzB9zBAM7ee9ZJB+9HQIL1cew1sfncD9U0dicF8vnn27BneMHYp1lcdwz01X9vQ/jYh6gbaMmj5mCO6bMhJAy0DdoQhMKR54UUaFYyo8roszasuBBqiaRHlR3kUTiWZllO2LYG+7xdfHTodw9HQI//LHHQjHOj9VqTYQwuMbquF57QMsmXEN3E4FTsc/lkqYtaibiHqvtnx6ZO1evLhoIpau3Yubrh6Av/7bJKyvPIYnN1Z3Oki/+4YrsGTmNdi4/zhW76zFo7NG43O/egsA84mI9NGWUUv+sgcvLZqIhTcPxz9/ahgGZHuwtbrhshk1p7QAi269GifOhZHpdqJ/lhtfW/E+APMyyvZrgtv2ovvx56+Dx+XA029+jIf/sveyBfCFwjEND/9lL55+82N4XQ78+PPXXdQuEVF3teXII7NG48kNB/C924uR6XJi6k+34Ud/PdDhmwvQMkj/0V8PYOpPtyHT5cT3bi/GkxsO4JFZoy9ql4goFRdm1BMbDiAvOwON56K486nt+NnmDy6bUT/b/AHufGo7Gs9FkZedgSd6IKNsn4SKEJh/4xUY5vPixxsPYsuBhm610/Zz3542El+68Qo4TNrjjoh6r7Z8OhkM465PXYHHXj2QVEaFYxq++9IeTB41EAsmDcfB+rPMJyLSjduhnM+oL9wwDP/5SlWn64I70pZRFz638KUbrzDtrAUhZfrtYlBWViYrKip0aSsSjaMhGMXfDp7A917ak3J7//X/jcHNIwZgYHYG3LzlSEQpiMVUHD4dwkcNTfjT+7XdHqQDwORRA/GF6/24amAfDPNlwsUDfYgoRZFoHEfOhHHw+Dn8qaI2qQK4vfKiPHyhzI+Rg7Ph7+fVrYYSQuyQUpZ19JrtUzAYU6GqEo+u36dLe/++fh/imkRTlPsEE1FqNCnxUUMTTjRFUyqAgZa7VSeboviooQmamthyLyKiyzkbieGjhibUnQmlVAADLQ/U1Z1pGfSfCUd16uHl2b4IjmsaNuw7nvAa4K6EYxo27j+OON9kiChFjcEoCgdk6TpILxyQhcagOW8wRNS7RVWJITkePLGhWpf2nthQjSE5HkTjPCzDFLG4xP+++4mubf7hnU8QU9NvmQkRWYvbKfD6gQZdB+lbqxvgdnBNMBGlzqkIbDvYqGtGvfFB40W7bRnJ9kWwJtHp04vdVRsIwaQT/4ioF4vEjBmkR0yaZSGi3i0c0/Cnilpd21z1fq1uRXVXbF8EN0WMWbsbNKhdIrIXIwbpRER6UIQwJKMUk3awsX0RHI4Zc7KbUe0SkX0YNZgO8sFdItJBuk8k2r4IznAa8ydwG9QuEdlHiIN0IrKwiEHLFiJxLocwhVGnkvBEJiJKlWGDdO4RTEQ6SPeJRNsnoYCA3+fVtU2/zwsBPn1NRKnhIJ2IrCwzw5hDwTLd5hw2Zvsi2KkIzC0t0LXNeeMK4FRYBBNRajhIJyIrk4AhGWXW/jW2L4KjcQ0zSvLhcenzp/C4FEwfk48oD8sgohS5HMYM0l3cJ5iIdOBxKpijc0bNLS2Ah8shTCIASA2LpxXp0tziaUWQkgUwEelAwJBBukm7DxFRLxeJa5g8aqCuGfXpUQP5YJxZJIA/vHsY44f3R3lRXkptlRflYfzw/vjDu4dNm8onot4rFFEhIHUdpAsh0Rzl7hBElLoMl4Kak0FdM+qTk0Hdiuqu2L4I9jgV5Ga6URsI4b4pI7tdCJcX5eG+KSNRGwihf6YbXpMuIBH1Xg5FYP+xs7oO0qvqzsLBqWAi0kEooqKwfxbyc7y6ZFR+jhdX9M8ybaBu+0otFFUxedRAPPxSJUIxFQtvHo4lM4sTHoV4XAqWzCzGwpuHIxRT8fBLlfj0qIGcaSEiXfhzM3H0lD6D9KOnQijIzQSfiyMiPShCoOZkEI1NYSycNDyljFo4aTgam8L45GQQikkhZfsi2KG0XMBFt16Ne37/Pk41xzDMl4lVCyfgvikjOn3q0e/z4r4pI7Bq4QQM82XiVHMM9/z+fSy69Wp8cjLImRYiSllck3hp11EcPxvSZZB+/GwIL+46ClXlgi0i0oFoGajn9fHg2bdrMG+cv1sZNW+cH8++XYO8Ph5TB+q23yzS6VDgz82EU1Fw/ZU+3LtyJ+4oGYJ7broSV/bPwsPTi9G/TwZiqoZwTIPHpcDlUHCyKdKycFtKrN1Vh3WVx85P5Q/J8cDJzeiJKEVORSA3043+WR78/q2PccfYoecH6duqG7B65xHUBkKX/Jzf58Xc0gLcUjQQjefCONUcw7rdR3HH2KE4FYzBwS0ciUgHUgIv7TqKq/Ky8KUbC/HUG4eQneHEqgXjse1gY9cZNTIPT7/5Mc5FTmDhpOH4sOEctn98El+98UpT+m/7IhiQ5y/gwknDAQDrKo/hlb3HMXnUQMwoGQKgZVDiEP/YXTMS17C+8hheO9AAVZPnp/LbLuC/tLZFRNRdiiJQPjIP96x4H7+4u/T8G0yyg/RzkTgWThqOb67ciafnXw+FRTAR6cDrVs4P1Ntmgo+fDeH/PP0uJl41AN/5TBHy+3kvyai60yGsrzyGp/52CPdPHYnBfb149u2a8wN1sw7LsH0R7HYoyOuTcdEFvHnEADyxoRob99dj4/56AC0zMm6ngmhcQ1z7x61Ej0vB96aPuugCngvH4XaYcwGJqPcSomWWZdGtV2PBigo8PnfsRW8wXQ3S3/7oxPk3mAUrKnD/Z0bixV1H8fWbOUgnotTFVInJowbiy79776KB+h/v+RS2HWzEkxurURsIXVJDtc0E31t+1UUzwd9cuRO//8oNpp21YPsi+EQwipuuHnDJTEv7qfy4JhG/4GG3zqby22ZaTgYjGJCd0YP/MiJKd6oqMbSfF4P7ei9arpXsG8y6yiqUF+VhcF8vVE1ClVwTTESpy3Qr2HMk1OlAPZmZ4LaB+pHTIQzN1fcUus4ImYZhWFZWJisqKnRpa1ftaTzz5scY68/BTzYePH8Bf7Lp4PmZlstdwAtnWh5YvRv3f2Ykdh0+ja/dPBxj/f106SMR2dPfD5+C1+3A/1n+zvlB+tbqRjgUcX651uXyqf1yrW+u3Ik/fm08wnEV1/lze/qfR0Rp7sCxs+jjcWLPkTP4U0UttlY3nn+u6sKJxM4G6m0TiW3PVX2hzI8xBTloisQxanBfXfoohNghpSzr6DXbzwRnOBWs3V2HadcO1m2mZV1lFRbdenVP/9OIKM1lOBX86vWP8O3PjDo/y9Ld5VoLVlTg+zOuwS9f/xDfKL+qp/5JRNSLhGIq3v7oBLLczg6fq+pqJvjnr3140UC99mQzNuw9jnGF5gzSbV8Ety2+fmD1biyf3zJQSOUCLljRMkOdZdKibiLqvfp4XFi7uw7TxwzG+OH9zw/Sk12uta6yCpNHDURulgvrKo9h8W2jevBfRUS9RYZTwaPrq7D5/kn48cbqlJ6r+sP2Gnz7M0WY8pM38Mq3bjKl/7YvgoGWN4zaQAj/9tzfsXLBeEwtHoRlL+9P+AI+Outa3HClD3cvfwfBqAq/z8tjk4koZYpoyadv/3k3fveV6yFE9wbpU4oHYuGk4fjK796H3+cFN4cgIj308bgAAHc99Q5eXDQRS9fuRR938s9VNUVP4NFZo/G5X711UbtGs30RnJXhwJzSAix/4xD++65/wn++UtWtB+M2VdXjv+/6JyxYUYG5pQXIyrD9n5aIUpTpdmBuaQGeeuMQNAl8deKVmDQiDz98tSrhQfoPZl6Dqwf2QduX540r4J0qItJF20C9NhDC5371FlYuGI/3Pg4k9WDc924vxg1X+vC5X72FxqaoqQN121dqmgZMHjUQRYOyzz90AiDpmZY2T84bi4JcLzSNc8FElJpstxMzSvIxclA2frPto/MPnaxaOB5vfnACf6qo7XSQ/oUyP24aMQBP/+1jLF27D+VFeXhy3liMHJSNPhykE5EO2gbqP938AZqjKg7WN6F4SDb++m+TsL6y7rLPVd19wzAsnXkNGs+FcbC+Cc2tGTZvXAH3CTaL0yEQiqoIBKPnC2AAUDWZ0EzLhbZWN2Jq8SD07+OCy8H7jUSUmtPhGDKc4qJ86mw5RCSmIaPdIP2nmz84P0hvy6cMp8DpUAx52ZwNJqLUzSjJx7Pbay7awcbtVPCtT1+N335xHDLdTgQj8fMTiVkZTjRH43itqgGTf7IN0biG8qI8LJ9fhm+u3InpY/LNOjWZW6QdOxNCXJWY+tNtCMdS35zZ41Kw6b5b4HQIDMkxZ587Iuqdjp0J4Uwohs/+8q3L5lMig3SgJZ/+smgicjJdzCciStmxMyEEwzFEVIknNlRfNJl4IY9TQR+PE03hOMLxjrOsvCgPi6cVwe0Q6OPRL6Mut0WaostvSGOqKrFm11FdCmAACMc0rN19FKqafoMLIrIWVZX4697jXeZTXJNojqqXLYCBlnzasO8484mIdHEuHMcbH5zAniNnOi2AASAc13CiKdppAQy03K3ac/QM3jh4Ak3huBHdvYTti+CYpuFPFbW6trnq/dou34yIiLoS0zS8sPOIrm2u3nmE+UREuojEVJQOy8Uj6/bp0t4ja/dh3BW5iFymWNaT7Ytgh6KgNhDStc3aQAgK9yAiohQxn4jIynIz3dh6sFHXu+nbDjYix2vOFmm2L4KbI8ZMuTdHzZnKJ6Lei/lERJYmYMjdKmHSON32RbBRU+5RnUZFRGRfzCcisjoj7laZxfZFsNdlzDZBHm5GT0QpYj4RkZU1R9Suv6k77UaNabc92xfBmRnGvBmYtdEzEfVezCcisrJQzJhiNcwi2Dx+n777ZerdHhHZF/OJiKwqw2lMGek2qN32WARLYE5pga5Nzi0tALgDERGlivlERBaWadAR7Ea1257ti+BTzVGUj8yDx6XPn8LjUnDLyDycDsV0aY+I7Iv5RERWpmqaIXerNJP2Mrd9EZzhcuCZt2qweFqRLu0tnlaEp9/82LSpfCLqvZhPRGRlLkUx5G6Vw6S9zA1PQiHEbUKIaiHEh0KIhzp4fZgQ4nUhxN+FEJVCiOlG9+lC2R4n1u6uw+C+XpQX5aXUVnlRHgb39WJd5TFke8yZyiei3ov5RERW5nAIQ+5WOR29oAgWQjgA/BLA7QCuAXCXEOKadt/2fQB/llL+E4A7AfzKyD6151QE/D4vHli9GwsnDe/2G015UR4WThqOB1bvht/nhZMnMhFRiphPRGRlTkXgpV1Hdb1b9eKuo6ZllNEzwTcA+FBKeUhKGQWwCsDsdt8jAfRt/d85AOoM7tNFfJluzJ9QiGBUxYIVFZg3zo8lM4sTHtV4XAqWzCzGvHF+LFhRgWBUxfwJhfBlZRjccyLq7ZhPRGRlvkw3/LmZut6tGpabaVpGGV0EDwVQe8HnR1q/dqFHAPyzEOIIgFcAfLOjhoQQC4UQFUKIisbGRt066HAomFmSD49LQTCq4t6VOyEgsOm+W/DgbUWdLvj2+7x48LYibLrvFggI3LtyJ4JRFR5XS3tmrWchot6L+UREVtaWUUvX7NHlbtXSNXtMzSghpXFP4Akh5gK4TUr5tdbPvwjgU1LKf73ge+5v7cePhRATADwNYLSUstNzPcvKymRFRYVu/WyOxPGXXUfxny9X4fG5Y3H8bAg/2XQQE68agBklQ5Dfz4uYqiEc0+BxKXA5FNSdDmF95TG8/dEJ3D91JAb3bbll+fCMYnz2n4Yi0801d0SUOuYTEVlZW0b9dNNBrFwwHu99HMCyl/cjnMDx7B6XgiUzrsENV/pw9/J3cN/UkbpnlBBih5SyrMPXDC6CJwB4REo5rfXz7wKAlPK/LviefWgplGtbPz8EYLyUsqGzdvUugo+fCaPyyGkM6uvBTzcfxNbqS2eanYqA26kgGtcQ72DrjvKiPNw3ZSTqz4ZRUtAPg3M8uvWPiOyL+UREVtY+o7IznLjnpiux7WAjVu88gtpA6JKf8fu8mFtagFtG5uHpNz/GuUjcsIy6XBFs9HTA+wBGCCGuBHAULQ++3d3uew4DmAzg90KIYgAeAPqtd+iCqmpYX1mHglwvfr7lgw7fYAAgrknEL3OM39bqRjiEwLyyAqyvrMNXbiyEw8FtiIio+5hPRGRlnWXUK3uPY/KogfjOZ4oue7fq5699CLV14N4TGWVoESyljAsh/hXABgAOAM9IKfcJIR4FUCGlXIlVpdgAACAASURBVAvg2wCWCyHuQ8tDcl+WRk5PtxNojqL2VDOEALYc6HTyOSFbDjTgxqv74/CpZgSao8jL5mwLEXUf84mIrKyzjFI1iY3767Fxfz2Aru9WAT2TUYYuhzCKnsshjp0Jof5MGHcufyeh9Std8bgUrFowHoNyPBiSo+8pKkRkL8wnIrKydMioyy2HsP39MFWV2HqwUZeLBwDhmIZtBxsRV9NvcEFE1sJ8IiIrMyqjVJMyyvZFcEzT8MLOI7q2uXrnEcQ1ff4PQUT2xXwiIiszKqNinSyZ0Jvti2CHIjp8cjEVtYEQ9+EkopQxn4jIyozLKF2b7JTti+DmSOdPVKfU7mWe1CYiSgTziYisLN0zyvZFcDhmzB9ar/UxRGRfzCcisrJ0zyjbF8Eel8OYdp22/9MSUYqYT0RkZRkGZVSGSRll+yTs4zFmq2Sj2iUi+2A+EZGVZWUYkyVGtdue7YtgRbQc36cnv88LPndCRKliPhGRlaV7Rtm+CO6f6cZd1w/Ttc27bxiGAVkZurZJRPbDfCIiK8t0OzC3tEDXNueNK0CW25hlFu3Zvgg+G4nj5hED4HHp86fwuBTcdPUAnAnHdGmPiOyL+UREVpbjcWHm2HxdM2pGST76et26tNcV2xfBcU1i+d8+xuJpRbq0t3haEZ5641CnZ2MTESWK+UREVuZwKOib4dQ1o/pmOE3by9z2RfC5cBxrd9dhcF8vyovyUmqrvCgPg/t6sa7yGJrCcZ16SER2xXwiIqvLyXRj4tUDdMmom64egJxMc2aBARbBiLTucffA6t1YOGl4ty9ieVEeFk4ajgdW725pN859OIkoNcwnIrI6t1PBwGwP7p8yMqWMun/KSAzM9sBt4haOti+C2/a4C0ZVLFhRgXnj/Fgyszjh9S0el4IlM4sxb5wfC1ZUINh6yomZF5GIeifmExGlA1+WG0Nzvfj6pOHdyqivTxqOoble5GaZNwsMALbfLDL7gv0yg1EV967ciTtKhmDVgvHYdrARq3ce6fBcbL/Pi7mlBbhlZB6efvNjrKus6rRdIqLuYD4RUbro3ycDRUJA0yRWLZyAbdUNXWdU0UAEwzGMGtzX9AIYYBEMpyLg93kvukjrKo/hlb3HMXnUQHznM0XI7+dFTNUQjmnwuBS4HArqToewvvIYfv7ah1DbPWTi93nh5EacRJQi5hMRpRNflhvXX9kfgWAUowZn4+HpxejfJ+OSjDrZFIEigMF9PfAN6dtjd6dsXwT7Mt2YP6EQ//HyxTMlqiaxcX89Nu6vB9DyZuR2KojGtS6frJ4/oRA+7sNJRCliPhFRunE7FQzO8SCvzyAEmqOIaxJN4ThiqgaXQ0EfjxOF/TPhy8owbReIzth+YZjDoWBmSdd73MU1ieao2uUbjMfV0l5PX1giSn/MJyJKVw6HgrxsD4bkeDFiUDauyc/BiEHZGJLjRV62xxI5ZPsiGGiZvl82e7QubS2bPRq+HljXQkS9E/OJiMgYLILRMnU/uXgQphYPSqmdqcWDMKV4EJ+8JiLdMJ+IiIxh+zXBbXxZbjw2ZwzwArCpqj7pn59aPAiPzRnTI083ElHvxnwionSjqtr5NcHnwnFEYioyXA5ke5xwKgK+TDccjp4dlAsp0+/4zLKyMllRUWFI24FgFFuq6rFkzV6EY11vKO9xKVg2ezSmFA/iGwwRGYr5RERWF41rCASjWF9ZhxXbazrdIm3+hELMLMmHL8tt6B0qIcQOKWVZh6+xCL5UohfwyzcWYsYY4y8gEVEb5hMRWVV3B+qTiwcZ9rwCi+BuunAqv/32Hk5FWGJ7DyKyJ+YTEVnJyaYIHnphT0pLtvr30X/7xssVwZweSJBEy96cFw0Z0nAAQUS9D/OJiHpSIBi9bAHsVAQy3Y5OD+rZVFWPh17Yg1PBqJHdvLRfpv62NGG19SxERG2YT0RkJdG4hi1V9RcVwA5FYErxQEwfMwRD+3kRiWuIxFVkOB3IcCo4ejqElyuPYcuBhvOnWm6qqsfmqnrMvm6oaZnF5RDtWHE9CxERwHwiIus5fiaM8idfP59Js8bm46s3FeJvH5zAnytqOx2of77Mj5tHDMAzb9Zg7e46AC2ZtfU7t2Jwjke3/nFNcIKsup6FiIj5RERWo6oafvd2Df7j5SpkuR14fO5YnGyK4IevViU8UP/e7cXo3ycDD6zejWBUxfdnFOMrNxbqtn0a1wQnoKv1LF3pqfUsRNT7MZ+IyIoCzVGs2F6DLLcDT3/5ery48wiWrt2XUAEMAOGYhqVr9+HFnUfw9JevR5bbgRXbaxBoNierWASj4/Us7XW1qBv4x3qWaDyxi09E1BXmExFZVVyTqA2E8OPPj8XyNw5hy4GGDr+vq4zacqABy984hB9/fixqAyHENXNWKfDBOLTMsixZs/eir3W0qDscU+Fxdb6oGwCWrNmLm0fk6bqehYjsi/lERFZ1LhzHrLH5CARjFxXA3cmoLQcaMKV4EO4oGYKmcBzIMb7/ti+CVVXDusq6i6buZ43Nx1cnFmLrwUY8ubG600Xdc0oLsKj8Kjzz1j8WdYdjGtZX1um6noWI7In5RERWFompWHTrVfjsL986/7VUMurf1+/DXxZNRMSkO1a2fzCu8VwYn/v126gNhM4v6j5+NoQnNlQnvKh78bQiDO7rPb+o2+/z4sVv3Ii8bM62EFH3MZ+IyMqOBJrx8p5j+K9XD+iWUd+bPgq3jx4Cvy9Tlz7ywbjLiKvy/BvM8vlleH5HLZatT+ypRqBlZmXZ+io8v6MWy+eXIcvtaFnPoqbf4IKIrIX5RERWpijA/777ia4Z9Yd3PoFZN6psXwSfCccAAI/PHYun3jiErdWN3Wpna3UjnnrjEB6fOxYAcLa1XSKi7mI+EZGVaRKoDYR0zajaQAgmPRfHIjgc0zBrbD6Onw11++K12VrdiONnQ7ijZEjCoyAios4wn4jIyppaH4zTO6OaInGdenh5tl8TXHXsLCIxFXcuf0eXNwaPS8GqBeOR4XKgeEhfHXpIRHbFfCIiK/v74VMQgO4ZBQFc589NvYPgmuDLys10YevBRt1mRsIxDdsONiI306VLe0RkX8wnIrIyX6bbmIzymnPMu+2L4Jgq8cLOI7q2uXrnEcT44AkRpYj5RERWpijCkIxSLnPwj55sXwQLgQ73sEtFbSAEYc71I6JejPlERFZnREaZxfZFsFGLr4MmLeomot6L+UREVtYcNSZLjGq3PdsXwVGDTiWJ8nYjEaWI+UREVmbUyW5mZZTti2CPy2FIuxlO2/9piShFzCcisrJ0zyjbJ2G2x5lW7RKRfTCfiMjK0j2jbF8EOxUBv8+ra5t+nxdOk55sJKLei/lERFaW7hll+yLYl+nG/AmFurY5f0IhfFkZurZJRPbDfCIiK0v3jLJ9EexwKJhZkg+PS58/hcfV0p6DMy1ElCLmExFZWbpnlO2LYADwZbmxbPZoXdpaNns0fFnmnHRCRL0f84mIrCydM4pFMAC3U8Hk4kGYWjwopXamFg/ClOJBcPPJayLSCfOJiKwsnTOKadjKl+XGY3PGdPsiTi0ehMfmjEEuZ1mISGfMJyKysnTNKCFl+m2aXlZWJisqKgxpOxCMYnNVPZau2YtwrOtNoD0uBctmj8aU4kF8gyEiQzGfiMjKrJhRQogdUsqyjl7jZpEdGJrjwaqFE7CtugGrdx7p8Bxrv8+LuaUFuKVoIILhGNJvKEFE6Yj5RERWlk4ZxZngC5xsiuChF/ZgU1U9HIrA5FEDMaNkCPL7eRFTNYRjGjwuBS6HgrrTIayvPIbXDjRA1eT5qfz+fbj1EBHpj/lERFZm1Yy63Ewwi+BWgWAUD66uxKaq+g5fdyoCbqeCaFxDXOv4bza1eBAen1vC245EpCvmExFZmZUz6nJFMB+MAxCNa9hSVd/pxQOAuCbRHFU7vXgAsKmqHpur6hGNd70OhogoEcwnIrKydM4oFsFoGcEsWbNXl7aWrNmLQDCqS1tERMwnIrKydM4o2xfBqqphfWVdQk8xJiIca2lPVTnbQkSpYT4RkZWle0bZvggONEexYnuNrm2u2F6DQDNnW4goNcwnIrKydM+ohItgIcSPhRDXGtmZnhDXZIfbd6SiNhC67LoXIqJEMJ+IyMrSPaOSmQmuAvCUEOJdIcS/CCFyjOqUmc6F42nVLhHZB/OJiKws3TMq4SJYSvl/pZQTAXwJQCGASiHESiHErUZ1zgyhqGpIu2GD2iUi+2A+EZGVpXtGJbUmWAjhADCq9eMEgN0A7hdCrDKgb6bIcCb2J3AqApluB5yKSOj73Qm2S0TUGeYTEVlZumdUwscmCyF+CmAmgNcA/FBK+V7rSz8SQlQb0TkzZGZ0/CdwKAJTigdi+pghGNrPi0hcQzimwuNyIMOp4OjpEF6uPIYtraedJNouEVGimE9EZGXpnlHJ/JZKAN+XUgY7eO0GnfpjOlXT4Pd5L1rYPWtsPr46sRBbDzbiyY3VnZ57Pae0AIvKr8Izb9Vg7e66i17T+OAJEaWI+UREVpbuGZXMfPNpXFA0CyH6CSE+CwBSyjN6d8wsLkXBnNICAECW24Ff3l2Ksf4c3Ln8Hfxs8wedPvVYGwjhZ5s/wJ3L38FYfw5+eXcpstwOAMDc0gI4EpzyJyLqDPOJiKws3TMqmSL4BxcWu1LK0wB+oH+XzOVwCJSPzEP/LBeWzy/D8ztqsWx9VcIbP4djGpatr8LzO2qxfH4Z+me5cMvIPDgdfJMhotQwn4jIytI9o5Ipgjv63rRfWOZUBF7adRTP3vMpPPXGIWytbuxWO1urG/HUG4fw7D2fwou7jia8+JuIqDPMJyKysnTPqGSK4AohxE+EEFe1fvwEwA6jOmYWX6YbN109ALtrz3T74rXZWt2IytozuPnqAfBlZejUQyKyK+YTEVlZumdUMkXwNwFEAfyp9SMC4F4jOmUmh0PBNfk5eHT9Pl3a+/f1+3BNfg7X3BFRyphPRGRl6Z5RyRyWEZRSPiSlLGv9+G4nO0WkFVXV8MqeYwmvX+lKOKbh1T3HoKr6tEdE9sV8IiIrS/eMSrgIFkKMFEI8JYTYKIR4re3DyM6ZIdAcxbPba3Rtc8X2GgSao7q2SUT2w3wiIitL94xK5sG25wH8BsD/BdBrztyMa7LTLTy6qzYQQpz7cBJRiphPRGRl6Z5RyRTBcSnlrw3rSQ85F44b0m5TOA7kGNI0EdkE84mIrCzdMyqZB+PWCSEWCSGGCCF8bR+G9cwkkZgxk9qRONfcEVFqmE9EZGXpnlHJzATPb/3v4gu+JgEM16875stwOQxp1+1MZnxBRHQp5hMRWVm6Z1TCRbCU8kojO9JTsj3GnPdhVLtEZB/MJyKysnTPqGR2h8gUQnxfCPFU6+cjhBAzjeuaOZyKgN/n1bVNv8/LE5mIKGXMJyKysnTPqGTmm3+HlsMybmz9/CiA/9C9RybzZboxf0Khrm3On1DIE5mIKGXMJyKysnTPqGSK4KuklI8DiAGAlLIZQNpPJzgcCmaW5MPj0mf9icfV0h5PZCKiVDGfiMjK0j2jkul1VAjhRcvDcBBCXIWWo5PTni/LjWWzR+vS1rLZo+HLcuvSFhER84mIrCydMyqZIvgRAH8F4BdC/BHAFgAPGtEps7mdCiYXD8LU4kEptTO1eBCmFA/ik9dEpBvmExFZWTpnVMK/SUq5EcDnAHwZwHMAyqSUrxvUL9P5stx4bM6Ybl/EqcWD8NicMcjlLAsR6Yz5RERWlq4ZJaRM7Gg6IcQWKeXkrr5mhrKyMllRUWFI24FgFJur6rF0zV6EY11v1uxxKVg2ezSmFA/iGwwRGYr5RERWFghGsaWqHksslFFCiB1SyrKOXutyIzYhhAdAJoABQohc/ONhuL4AhurWSwsZmuPBqoUTsK26Aat3HunwXGy/z4u5pQW4pWggguEYzDnlmojsjvlERFbly3Jj9nVDcfOIPKyvrMOK7TWdZtT8Gwsxc0w+fFnuHlumlchuxF8H8P8DyAewA/8ogs8C+B+D+tUjTjZF8NALe7Cpqh4ORWDyqIH4zmeKkN/Pi5iqIRzT4HEpcDkU1J0OYX3lMfz8tQ+havL8VH7/Ptx6iIj0x3wionTiz/Xi4enF6N8n45KMOtkUgbDAJjXJLIf4ppTyFwb3JyFGLIcIBKN4cHUlNlXVd/i6UxFwOxVE4xriWsd/s6nFg/D43BLediQiXTGfiCgddLYcorOMalsOMbl4kGG7QlxuOUQyD8b9QghxoxDibiHEl9o+9Otmz4nGNWypqu/0DQYA4ppEc1Tt9A0GADZV1WNzVT2i8a7XwRARJYL5RETp4GRTBA+ursTi1ZWXrAfuLKPCMQ2LV1fiwdWVONlk/q67yRyb/AcATwK4CcD1rR8dVtbpJhCMYsmavbq0tWTNXgSCUV3aIiJiPhGR1QWC0fPLtbpjU1U9HnphD06ZnE/JrEQuAzBRSrlISvnN1o9vdfVDQojbhBDVQogPhRAPdfI9nxdC7BdC7BNCrEyiTylTVQ3rK+sSeooxEeFYS3uqytkWIkoN84mIrC6Ru1WJ6Im7VckUwXsBDE6mcSGEA8AvAdwO4BoAdwkhrmn3PSMAfBctBfa1aHkIzzSB5ihWbK/Rtc0V22sQaOZsCxGlhvlERFaXznerkimCBwDYL4TYIIRY2/bRxc/cAOBDKeUhKWUUwCoAs9t9zwIAv5RSngIAKWVDEn1KWVyTHW7fkYraQOiya/OIiBLBfCIiK1NVDevS+G5VIluktXmkG+0PBVB7wedHAHyq3feMBAAhxFsAHAAekVL+tX1DQoiFABYCwLBhw7rRlY6dC8d1a6t9u0NyDGmaiGyC+UREVhZojuLZ7TW6trliew1mX5ePvGyPru12JOEiWEq5TQhxBYARUsrNQohMtBStevRhBIByAAUA3hBCjJFSnm73+58C8BTQskWaDr8XABCKqno1dZGwQe0SkX0wn4jIyuKqQXerVHPuViWzO8QCAKsB/Lb1S0MB/KWLHzsKwH/B5wWtX7vQEQBrpZQxKeXHAA6ipSg2RYZBp5T01OknRNR7MJ+IyMrOhGOGtHvWoHbbSyYJ7wUwES0nxUFK+QGAgV38zPsARgghrhRCuAHcCaD9OuK/oGUWGEKIAWhZHnEoiX6lJDMjmRUhPd8uEdkH84mIrEyvtcBmtdteMkVwpPXhNgCAEMIJXP5IeillHMC/AtgAoArAn6WU+4QQjwohZrV+2wYAJ4UQ+wG8DmCxlPJkMv+IVKiaBr/Pq2ubfp8XGh88IaIUMZ+IyMrS/W5VMr9lmxDiewC8QoipAJ4HsK6rH5JSviKlHCmlvEpK+Z+tX1sqpVzb+r+llPJ+KeU1UsoxUspV3fmHdJdLUTCntEDXNueWFsChWOBQbCJKa8wnIrKyTLcej4ZdKsugdttLpgh+CEAjgD0Avg7gFQDfN6JTZnIoAreNHgyPS59Rh8elYNq1g+HkmwwRpcjhMCifHMwnItKHEXerzLpXlXCySik1KeVyKeU8tGxV9q6UMu3vqUlIuBSBxdOKdGlv8bQiuJwC0rRLSES9lVMRhuQTB+lEpIesDAe+UObv8vucikCm25FQ9tx5vR9ZJj23kPBvEUJsBTCr9Wd2AGgQQrwtpbzPoL6Zwut24C9/r8MV/bNQXpSHrdWNHX6fUxFwOxVE41qnG82XF+VhcF8vNu6rx503dP1/CiKiy+mb4cTzFUd0z6evTiw0sNdEZBdSArOvG4r/ef3Dix5mcygCU4oHYvqYIRjaz4tIXEM4psLjciDDqeDo6RBerjyGLQcaoF6QWR6Xglljh8KsOdZkSu0cKeVZIcTXADwrpfyBEKLSqI6Z5WwojufeP4xAUxTL55cBALZWNyZ9AcuL8rBw0nAsWFEBXx83po8ZgtzMjB7+1xFROjvZHDUkn2Zfl4/8ftwhgohS0zfDiYqaRiyeVoRl66sAALPG5uOrEwux9WAjntxY3eE+wn6fF3NKC7Co/Co881YN1u6uA9Byt2pv3Rl8uijPlP4nk4JOIcQQAJ8H8LBB/ekRbRdowYoKPD53LP75U8MwINuDrdUNXV/AW6/GiXNhROISC1ZUIBhVEQyEwJuNRJQqTRqTT9wcgoj0cLI5ih++WoWHbivGbdcOwh1jh+L42RDuXP7OZbc5qw2E8LPNH+A32z7C4mlFmHbtYKzbfRSD+3rxw1eqMLYgx5SBejK/4VG0bGf2ppTyfSHEcAAfGNMt8zR3cHJS3ekw/vW5vyd8Ab93ezH697l41jfIE5mIKEUdHZusRz4ZdRwzEdlL20D9kbV78eKiiVi6di9eP9Dxsq2OhGMalq2vwq2j8vDorNH43K/eQmNT1LSBejIPxj0vpSyRUi5q/fyQlHKOcV0zRyTe8kaS5XZg+fwyPL+jFkvX7kt4o+ZwTMPStfvw/I5aLJ9fdn5bj2jcnI2eiaj3CsVaBtN651M4xkE6EaWubUD9yKzRWLImuQL4Qq8faMSSNXvxyKzRF7VrtC5ngoUQD0gpHxdC/AIdHI4hpfyWIT0zSdvWQ4/PHYun3jjU6YMnXWn7ucfnjsW9K3ciQ6ctjYjIvryulqJV73zyuMzZg5OIerdQTMWssfk4fjbU7Xxqs7W6ETePGIA7SoaYNlBPZDlEVet/K4zsSE/J8bgMuYA5HpdOPSQiu8r2OA3Jp2wPH4ojotR5XQ58dWIh7lz+ji7tPbGhGqsWjEeGSQP1LpNQSrmu9b8r2r4mhFAA9JFSnjWwb6ZwOgQW3Hwl5v12uy7tPbGhGs9/fQI3oyeilCkChuQTtwkmIj307+PCynePJ7xEqyvhmIZtBxtxl0nbzCZ8z14IsVII0VcIkQVgL4D9QojFxnXNHP08LvztwxO6XsA3PzyBfl7OBBNRavpnuvG3D/TPp/5Z3L6RiFIXjUu8sPOIrm2u3nkEUdWcJ+OSWbh6TevM72cBvArgSgBfNKRXJjodjuG59w7r2ubK9w7jdCima5tEZD9nIy37mOtp5XuHcTbMfCKi1ClCdLhNYypqAyEowpzbVckUwS4hhAstRfBaKWUMHTwol27imjTkAnZ2ahMRUaKYT0RkZU0RY3ZxCBrUbnvJFMG/BVADIAvAG0KIKwCk/Zpgo7bh4D6cRJQqo3KkiflERDqIGLSLQ8SkbWYTfkRYSvlzAD+/4EufCCFu1b9L5goZdKhFmIdlEFGKjNomKMx9zIlIB0bt4uB2mrPNbMJFsBAiA8AcAIXtfu5RnftkqgyD/tBmXUAi6r2MyhEXd68hIh1kZxiz3aJR7baXTMKuATAbQBxA8IKPtJZp0B/aqHaJyD76GJQjRrVLRPYiIeH3eXVt0+/zQpr0yFkySVggpbzNsJ70EFXT4Pd5dX34xO/zQuODJ0SUIlWThuSTynwiIh24nQrmlBbgZ5s/0K3NuaUFcDvNOSwjmZngt4UQYwzrSQ9xKS0XUE9zSwvg4G70RJQiTZOG5BNrYCLSQyAYQ/nIPHhc+izd8rgU3DIyD6eCUV3a60oyvb4JwA4hRLUQolIIsUcIUWlUx8zicAhDLiBPjCOiVMU0aUg+xVQ+GEdEqYvEVDzzVg0WTyvSpb3F04rw9Jsfm7Y7RDLJejuAEQA+A+AOADNb/5vWnIrAS7uO6noBX9x1FE7OBBNRirI9TkPeYLI9XBNMRKnLcDmwdncdBvf1orwoL6W2yovyMLivF+sqj5m2uUDCv0VK+QmAfmgpfO8A0K/1a2nNl+mGPzdT1ws4LDcTPh5LSkQpcioCf689pWs+7TpymoN0ItJF24D6gdW7sXDS8G7nVHlRHhZOGo4HVu++qF2jJVwECyH+DcAfAQxs/fhfIcQ3jeqYWRwOBTNL8rF0zR5dLuDSNXswsySfa4KJKGW+TDfmTyjU9Q1m/oRCDtKJSBdORcDv8yIYVbFgRQXmjfNjyczihJdweVwKlswsxrxxfixYUYFgVIXf5zVtoJ7MfPM9AD4lpVwqpVwKYDyABcZ0y1y+LDceur1Ylwv40O3F8GW5De4xEdlB2yBdlVKXfFKl5CCdiHTTNlAHgGBUxb0rd2LX4dNYtWA87psyotPt0/w+L+6bMgKrFozHrsOnce/KnQi2HjJm5kBdSJnYY8JCiD0ArpdShls/9wB4X0pp+o4RZWVlsqKiQtc2A8EoHlxdiU1V9bijZAjuuelKbDvYiNU7j3S4PZHf58Xc0gLcMjIPT7/5MdZVHsPU4kF4fG4JclkEE5FOonENa3YdxeLVLc8hdzefAOCJuSWYfd1QHuZDRLo5fiaM8idfRzj2j4fZHIrA5FEDMaNkCPL7eRFTNYRjGjwuBS6HgrrTIayvPIbXDjRctGWjx6Vg63duxeAcj279E0LskFKWdfhaEkXw/QDmA3ip9UufBfB7KeXPdOllEowoggHgZFMED72wB5uq6pO+gFOLB+GxOWPQvw9vMxKRvi4cpAPde4PhIJ2IjNB+oN4RpyLgdiqIxjXEL7NHoxEDdV2K4NaGStGyVRoA/E1K+Xcd+pc0o4pgoOXNZktVPZas2XvRqKazC+hxKVg2ezSmFA/imwsRGebCQXp7Xb3BcJBOREZqP1DvDqMG6nrNBI8HsE9Kea71874AiqWU7+rW0wQZWQQDLaOaQDCK9ZV1WLG9ptPbjV++sRAzxuTDl+Xm7UUiMlxng/TOcJBORGa53EC9K0YO1PUqgv8OoFS2/oAQQgFQIaUs1a2nCTK6CG6jqhoCzVHENYmmcByRuIYMp4I+HiecioAvK4MPmBCRqThIJyKrsuJAXa8ieJeU8rp2X6uUUpbo0MekmFUEExFZFQfpRGRFVhuoX64ITmY34kNCiG8B+HXr54sAHEq1c0RElDyHQ0FedusT1Dk92xciojZup4LBOR585cZCzL4u39ID9WSK4H8B8HMA3wcgAWwBsNCIThERi0CtNgAAIABJREFUERFR+kqHgXrCRbCUsgHAnZ29LoT4rpTyv3TpFRERERGRgfRchDFPx7aIiIiIiAyjZxHMJzCIiIiIKC3oWQQnfuoGEREREVEP4kwwEREREdmOnkXw8zq2RURERERkmC53hxBC/AKXWeogpfxW639/qGO/iIiIiIgMk8gWaTyajYiIiIh6lS6LYCnlCjM6QkRERERkloQPyxBC5AF4EMA1ADxtX5dSftqAflmCqmoINEcR1yTOheOIxFRkuBzIbjvyL9MNh8O4866JiIiIyBjJHJv8RwB/AjADLUcozwfQaESnelo0riEQjGJ9ZR1WbK9BbSB0yff4fV7Mn1CImSX58GW54XayGCYi88RiKhqDEWgSOBeOIxRT4W0dpCsCyMvKgMvl6OluEhFZlpAyse19hRA7pJTjhBCVUsqS1q+9L6W83tAedqCsrExWVBizVDkQjGJzVT2WrtmLcEzr8vs9LgWPzh6NKcWD4MtyG9InIqI2zZE4ToViWLPrKJ5773Cng/S7bhiG2dcNRa7XhcyMZOY7iIhSZ5WBemv9Wtbha0kUwe9IKccLITYA+DmAOgCrpZRX6dfVxBhVBJ9siuDBFyqxuaoh6Z+dUjwQP5pTgv59MnTvFxERADScDWNzVT0eXb8/4UH60pnXYErxIAzs6+ny+4mIUmW1gbpeRfBMAH8D4AfwCwB9Afy7lHKtXh1NlBFFcCAYxQOrd3erAG4zpXggnpg7FrmcESYinTWcDePBFyvx+oHkV6HdOioPP/pcCQthIjJUw9kwNlXVY1kSA/UlM6/BVAMH6pcrghNeyCqlXC+lPCOl3CulvFVKOa4nCmAjROMaNlcdT6kABoDNVQ3YVFWPaLzrC09ElKhUCmAAeP1AIx58sRINZ8M694yIqEVbTj38UmLLSQEgHNPw8Et7eyyfEi6ChRDDhRDrhBAnhBANQog1QojhRnbOLIFgBEvX7NOlraVr9iIQjOjSFhFRcySOzVX13S6A27x+oBGbq+rRHI3r1DMiohbpOlBPZkuDlQD+DGAwgHy0HJP8nBGdMpOqali7+1jCo5auhGMa1lUeg6pyNpiIUncqFMOj6/fr0taj6/fjVHNMl7aIiICWgfqmNB2oJ1MEZ0op/yCljLd+/C8u2C84XZ0MRvGHd2p0bfPZ7TU4GYzq2iYR2U8spmLNrqO6DtLX7jqKWEzVpT0iolOhGJal6UC9yyJYCOETQvgAvCqEeEgIUSiEuEII8QCAV4zvorGiqtbhk4upqA2EEOVMMBGlqDEYwXPvHda1zZXvHUYjl2wRkQ7SfaCeyJ4UOwBIAKL1869f8JoE8F29O2WmprAx0+5NEa67I6LUaBKGDNK1xDYFIiK6rIYmYwbqs8bmY2hupq7tdqTLIlhKeaXhvehBIYNGG2HebiSiFJ0zaJBuVLtEZC/pPlBPeHdiIYQLwDcATGr90lYAv5VSpvVTFhkGHXfsdvAYZSJKDQfpRGRl6X43PZkjOn4NwAXgV62ff7H1a1/Tu1Nm6uMx5pQSo9olIvvwOo05UtRjULtEZC/pPlBPplK7Xko59oLPXxNC7Na7Q2YTEPD7vLpO5/t9XojzS6iJiLqHg3QisjKPy5i73kbdpW8vmd+iCiGuavuk9aCMtL+n5nIIzC0t0LXNeeMK4HKwCCai1Pl9Xku3R0T2le1xpVW77SVTBC8G8LoQYqsQYhuA1wB825humcfpEJhRkq/baMbjUjB9TD6cXBNMRCnq43HgruuH6drm3TcMQzZngolIB0IYM1AXJs0jJlypSSm3ABgB4FsAvgmgSEr5ulEdM4uUgIDE4mlFurS3eFoRhJCQknsQEVFq4qrEHWP1HaTPLMlHjPuYE5EOjBqo9/1/7d15eFzVff/xz3c2jSSvYwuDjBxjMLaMN0AQswTsYJZgY0MgD4Q0IUuhbdImpQkJTX92U5w0BLK1v6YLNGnI0x/QBmgwNi27IaFmkR1bNhYmxBgvMrbi8aZ1NDPn94ckYoysbe4dzei+X8+j5/HMXJ050n381WfOOffcPH1Q78/NMj7a/SVpkaTTur4WdT1X1BJlMW37XbPmTRmn+dMqcmpr/rQKzZsyTtsam5UoL/GohwCCKlEWU2NTu5YtmuFJe8sWzVDjkTbqEwBPjIxFtWSutx/Ur5pTqfKS/CyH6E/UvuqYx91DnNb170c87VGehcMhzZo4RnW7DurWhadLktZsHfj9r+dPq9CtC0/X7gOtmn3yGIVDrAkGkJtwOKTK0aUaVRLRgukVeu71gdembgumV+iDUxIaURKlPgHwRDgcUmkkpGWLZuivfrE55/aWLZqheCSUtxrVZ3R3zn3GOfcZSZslbZL0WtfXJkkvmtlcf7vov0R5TM3tabV2ZHTLh6Zo2eLqfn+qiUdDWra4Wrd8aIpaOzJqbk8rUR7zuccAgiJRHlP9nsO6Y8lMLZg+uNmqBdMrdMeSmapvOEx9AuCpkaUxXTytYtD1qduC6RW6eFqFRpXmr0YNZPz6bEl/LOkkSZXqvH3yFZLuNbOv+tC3vIlFQrp42gn697Vv60BLhyYlyvTgLefp1oVTj7vguypRqlsXTtWDt5ynSYkyHWjp0L+vfVvzp52gWJ629gAw/MUiIV0wtUI/fOoNff0j1frW1TMH9CH9W1fP1Nc/Uq0fPvWGLpxaQX0C4KlYJKSyWETfXDorpw/q31w6S+WxSF5rlPX3Ai4ze0HSlc65pq7HIyStVmcQXuec82bRWj/U1NS42tpaz9vd39Su2x/epHg0pM9deIp27G9RLBrSuBEl6shk1daRVTwaUjQc0v6mdrWns/pAokw//tVbauvI6s5rZ2ncCNbaAfBed32aNyWhy844UavqGnT/Kzt63OO8KlGqG8+dpMWzK/Xka+/opW1J6hMAX+1vateRtrRefPN3WrF6i9o6+r4ANx7tXEpxwWnjNTIe8aVGmdk651xNj68NIAS/LmlW922SzaxE0kbn3HQz+7Vz7kzPetwHv0KwJCWbU3qmfq++8dhruuDU8Vo0+yRVjilVOpNVKu0Ui5gi4ZAaDrZqVd0e/e9vf6dvXHWGFlZP0FimGQH4qLs+rVi9Rbd8aIo+XH2CymIRNben3/2QXl4SUUsqrWfr9+meX27TskUzqE8A8iLZnNKegy0aVRrr9wf1w60pVY4p861GeRWCl0m6RtKjXU9dJWmlpO9Jusc59wkP+tovfoZgSUqls0o2p7SqrkH3rd2unclWRUKmWCSkVDqrdNapKlGqT58/WYtmVSpRHmOKEUBe9FSf4pGQRsQjampLqy2dpT4BGDLdNWr3gRaVxyOKR8Pv+6De1pFRS1talWPLfK9RnoTgroZqJF3Q9fBF55x/SbQXfofgbplMVsmWlNJZp6a2tNrTWZV0/bGJhEyJ8hKusgYwJKhPAArZsTUqnc0qEsp/jeotBA9oN+Ku0DskwXcohMMhVYyMdz4YPbR9AYCjUZ8AFLJiqFHMkQEAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMDxPQSb2RVmttXM3jSz23s57lozc2ZW43efAAAAEGy+hmAzC0v6kaSPSJoh6eNmNqOH40ZK+pKkl/3sDwAAACD5PxJ8rqQ3nXPbnHMpSQ9KWtrDcSskfUdSm8/9AQAAAHwPwRMl7Tzq8a6u595lZmdJqnLOre6tITO7xcxqzay2sbHR+54CAAAgMIb0wjgzC0n6vqQv93Wsc+4e51yNc66moqLC/84BAABg2PI7BO+WVHXU45O7nus2UtJMSWvMbLukeZJWcnEcAAAA/OR3CH5V0lQzO8XMYpJukLSy+0Xn3CHn3Hjn3GTn3GRJL0la4pyr9blfAAAACDBfQ7BzLi3pTyU9Iale0n86514zszvMbImf7w0AAAAcT8TvN3DOPS7p8WOeW36cY+f73R8AAACAO8YBAAAgcHwfCS5mmUxWyZaU0lmnI21ptXdkVBINa2Q8okjIlCiLKRzmcwSA/KM+AShkxVCjCME9SKWzSjantKquQfet3a6dyVbFIyGNiEfU1JZWWzqrqkSpbjpvshbPrlSiPKZYhD82APxHfQJQyIqpRplzbkjeOBc1NTWuttafDSSSzSk9U79XK1Zv0R9fNEXzp5+g8ljniWvtyKg0GtaIeETNqbSerd+ne365TcsWzdAl1ROUKI/50icAkKhPAApbIdYoM1vnnOtx611C8FH2N7Xr9oc36bxTE7p0xol6bGODHnh1h3YmW993bFWiVB8/Z5KumlOpp7a8o7W/TerOa2dp3IgSz/sFANQnAIWsUGsUIbgfks0pfWvVFv3x/FP1yltJrVi9RW0d2T6/Lx4NadmiGTr3lIT+ec1v9X8Wz9BYRlwAeIj6BKCQFXKNIgT3IZXO6onNezR30lgtX7lZz73eOOA2Fkyv0B1LZmrDjgO6fOZJrMED4AnqE4BCVug1qrcQTCVU5yeY6pNGDfrkSdJzrzdq+crNqq4cpWRzyuMeAggq6hOAQlbMNSrwITiTyarhUKtefis56JPX7bnXG/XytqQaDrYok+l7GgAAekN9AlDIir1GBT4EJ1tSqhhRohWrt3jS3orVW1QxMq5kC6MtAHJDfQJQyIq9RgU+BEfCpsc2NvRrAXd/tHVktaquQZGwedIegOCiPgEoZMVeowIfgpvaMnrg1R2etnn/KzvU1JbxtE0AwUN9AlDIir1GBT4ES+pxD7tCag9AcFGfABSyYq5RgQ/BTW1pf9pt96ddAMFBfQJQyIq9RgU+BLem/Rlyb+tguhFAbqhPAApZsdeowIfg0mjYl3bjPrULIDioTwAKWbHXqMCH4JHxSFG1CyA4qE8AClmx16jAh+CQSVWJUk/brEqUKsQORAByRH0CUMiKvUYFPgRXlJfo4+dO8rTNG8+dpIqRcU/bBBA81CcAhazYa1TgQ3A0GtbSuRMVj3rzq4hHQ1oyd6Ki4cD/agHkiPoEoJAVe42iEkoaWxrV8sUzPGlr+eIZGlsW9aQtAKA+AShkxVyjCMGSykoiWlg9QQumV+TUzoLpFVpYPUFlMS46AeAN6hOAQlbMNYoQ3OWEUXF956OzB30SF0yv0Hc+OlsnjGKtHQBvUZ8AFLJirVHmnMvrG3qhpqbG1dbW+tL2vsNterp+r+5YtUVtHdk+j49HQ1q+eIYWVk/gDwwAX1GfABSyQqxRZrbOOVfT42uE4PdrSaV1oKVDKzfs1v2v7OjxPtZViVJ94txJWjJ3osaURZliBJAX1CcAhazQahQheJA6OjJqbG5X1klH2tJq68goHg1rZDyikEkVI+NcZQ1gSFCfABSyQqlRvYVghgd6EY2GVTmmbKi7AQDvQ30CUMiKoUYxTAAAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAiQx1BwpZJpNVsiWldNbpSFta7R0ZlUTDGhmPKBIyJcpiCof5HAEAAFBsCME9SKWzSjantKquQfet3a6dydb3HVOVKNVN503W4tmVSpTHFIsQhgEAAIqFOeeGug8DVlNT42pra31pO9mc0jP1e7Xs0c1q68j2eXw8GtKKpTN1SfUEJcpjvvQJAI7FTBUA9M3M1jnnanp6jZHgo+xvatftD2/SU/V7+/09bR1Z3fZQnS6tnqA7r52lcSNKfOwhgKBjpgoAvMFIcJdkc0pfe6huQAH4WJdWT9Bd183WWEaEAfiAmSoAGJjeRoIZHlDnyMoz9XtzCsCS9FT9Xj1dv1epdN9/nABgIPY3tetrD9Xptofq+hWApd/PVH3toTrtb2r3uYcAUFwIweocXVn26GZP2lr26GYlm1OetAUAUmeNGuhSraM9Vb9Xtz+8SQeoTQDwrsCH4Ewmq1V1Df0eWelLW0dne5kMo8EAcsdMFQD4I/AhONmS0n1rt3va5n1rtyvZwogLgNwxUwUA/gh8CE5nXY9XVx8rEjKVxcKKhKzPY3cmW5XOFt8FhwAKCzNVAOCfwG+RdqQt3ePz4ZBpYfUJunLWSZo4plTt6azaOjKKR8MqiYS0+2CrVtft0TOv71Omh8Db1JaWRvvdewDDmV8zVUvnVqpiZNzTdgHgaMWwl3ngQ3B7R+Z9zy2ZU6nPXjBZa95o1Hef3HrcfTivPetkfX7+qfrJi9u1cmPDe9tl3R2AHPV3pmogmKkC4Kdi2ss88CG4JBp+99/lsbDuum6O3jncqhvufanXKcidyVb98Onf6J+f/61uu3yaLj/jRH31oY1qTnWGajanB5Cr481UHSsSMsUiIaXS2X4FXGaqAPihv3uZ70y26pur6/XdJ7cO6V7mgQ/BI+Odv4LyWFj33lSje17YpjVbG/v9/W0dWa1YVa/50yp07001uvm+WjWnMu+2CwCD1dNMlZT7ci1mqgB4rRjvuhv4pBYJmaoSpbr9iuoBB+CjdX/fXdfN0Z3/U9+vC+gAoDdHz1R182K5FjNVALzU117mfc1WPVW/V3pYeb/rbuBDcKIspuWLZ2hHsmXQAbjbmq2N+tDU8Vq+eIYS5fn9NANg+Dl6RsnL5VrMVAHwSk97mQ9mtqp7L/Olcyfm7YN64CthOBzSjMrR+rMHfu1Je3c/sVXPfHm+wowEA8hR90xVsinl2XKtxIgYM1UAPHPsXua5zFYte3SzPjS1QieOzs/uNYEPwZlMVo9v2uPpPpz/vWmPPnP+5CHf+gNAcUuUxXTTeZN10uhSz5Zr7TnUykwVAE8cvZe5V7NVq+oa8pahAp/Ski0p/Wztdk/b5I5xALwQDoe0dE6l3jnc6slyrXcOt2rpnEpmqgB4onsv8+7NBX6+bqdWrKrv98Bi92zVz9ft1L031ag8Fs5rhgp8CGYfTgCFLOOc7n5iqydt3f3EVmUctQmAN7oz1F3Xzcl5tuqeF7bpruvm5DVDBT4E93cfzoFq8qldAMHROdXo7XKtVXV7uG0yAE8caUtricezVVfNPilvGSrwIfh4+3Dm3C77cALIkV+3TWa5FgAvtHdk9NkLJns6W/W5C0/JW4YKfAjuaR9OL7APJ4BcsVwLQCEbWxbTmjcaPZ2tev6NRo0ujXrSXl8Cn9T82i+TfTgB5IrlWgAKmkkPr9/laZMPrd8ly9O1u4EPwd37cPbnuLJYuF/7a1YlStmHE0DOWK4FoND5MVuVL4EfrkyUxfSpeZP1rcfr3/P8YO520u2m8yazDyeAnLFcC0Aha0n580Hdr3aPFfgQHA6HdOWsk/S9p7a+u6Yll7udxKMhfWTmSezDCSBnLNcCUMj8mq1KcWFcfrSn0qrbdVDLF5+h8lhYP7rxLM2pGq0b7n1JP3z6N8cdlu++28kN976kOVWj9aMbz1J5LKy/XnyG6nYfVHuKNXcAchM2f5ZrhfO14A7AsNbf2aqB1Cgpf7NVvg8HmNkVkv5OUljSvzrn7jzm9b+Q9IeS0pIaJX3WOfe23/3q1tic0ktv7dcN51Tp/pvn6QdPvzGgve6673Yyf1qF7r95nmIR0wOv7tSsiaN1cozRFgCDZ+Z03Vkn6wdP/+Y9z+eyXOtjZ58sJqoAeKEs1nMIzqVG9dau13xNaWYWlvQjSZdK2iXpVTNb6ZzbctRhv5ZU45xrMbM/kXSXpOv97NfRnJOumTtRO5Ot+o9Xdx43AMcjIY2IR9TUllZbD8P0a7Y2Kmym68+p0kfnThQ3ZQKQq/a008WnV+ifnv9tr8u1IiFTLBJSKp1VOut6Xa510dSKHmsYAAxGVaL0PbPmudSo7vbyxe+hynMlvemc2yZJZvagpKWS3g3Bzrnnjjr+JUl/4HOf3iObddp5oEX7jrTrmdf3vft8LBLSn19ymuZPP0Hlsc7w29qRUWk0rBHxiJpTaT1bv09//+yb765deeb1fTr/tHFKpTMaWx7L548BYBg60pbW+h0HtGzRDP3t4/W667o5eudwqz7x45d14Wnj9ZXLpvU6ynLvL7fpLy49XZefcaK++tBGff3Kaq17+4DOP238UP9oAIYDJ11fU6XvPvmGymPhnGtUcyqjG86pyttAojkf38nMrpN0hXPuD7sef1LSB51zf3qc4/9B0jvOuW/28Notkm6RpEmTJp399tverJjY1tik5va0PvYva98daVm+uFqXzjhRj21s0AOv7jjuhXEfP2eSrppTqae2vKM7VnXuLhGPhvTzPzpP5SURTakY4UkfAQTT+h0HFJK0vzml8SNK9IOn39CoePTdUZaH1+/q9cLd+adX6Ccvbtfhtg7duvB0/a6pXePKY3KSzpw0Nu8/D4DhZePOg0qUx3T1j36l/3vjWbrnhW2DrlG3XDRFf3b/ev3iCxfqQHNKs6vGeNJHM1vnnKvp8bVCCcFm9geS/lTSxc659t7arampcbW1tZ708Z1DrXrw1Z364dO/UcWImO6/eZ5eeSupFau39OsOKPFoSMsWzdC5pyR0470vqbEppVsXTtX151TpxNH5G9IHMPy8vb9Z//Xr3Vo8u1I/eHKrrpxdqXcOt+ruJ7b2uz7ddvk0nTiqVI/XNejWy6ZpdV2Drj5zoj4wrjwPPwGA4WzH/mZt3HVQp50wUn/39Bu6as7EQdeoxzbu1p8vPF1v7jui2SeP0SSPalRvIdjv5RC7JVUd9fjkrufew8wWSvor9SMAe609ndXD63epYkRMj3z+Ai1fuVnPvT6wC+P+6hebtWB6hR75/AX66D++qIfW79LVZ070sdcAgiAcMp00Oq5125P6xHkf0D0vbBv0hbu3XDRF67YnNWFUCVs4AvCEmaklldFruw/pU+dPzrlGbW44pHQmK8vTDjZ+70HxqqSpZnaKmcUk3SBp5dEHmNmZkv5F0hLn3L4e2vDdzmSr7r953oAD8NGee71Ry1du1v03z8vr3U4ADG/nnzpeo0qjA/7jcrQ1Wxs7pylLo7rgtAqPewggyM4/dbzKSyKe1KjyWCSvNcrXEOycS6tzicMTkuol/adz7jUzu8PMlnQddrekEZJ+bmYbzGzlcZrzRUsqo+WLq/XKW8lBB+Buz73eqFfeSmrZouq83e0EwPAVC5s27z6khkOtg/7j0m3N1kY1HGrV5oZDioYZCQaQu6hfNSqSnxrl65pgv3i5JnjDzoMaVx7TpT94vl/rV/oSj4b01K0XK9mc0hyPFnUDCKYdyWYdaul4z4W7uei+cHdMWUxViTIPegggyPyqUaPLopqU8H9NcODvGHfiqBI9trHBk5Mnda5vWVXXoAmjSjxpD0BwlURCeub1fZ7Wp2df36dYnkZZAAxvftWokjzdMS7wITiddXrg1R2etnn/KzuU7uEOKAAwEK2pzgt3vfTQ+l1q9egPFoBgK/YaFfgQ7Jw8v5BtZ7KVO8YByJmZP/WJcWAAXij2GhX4ENzUlvan3XZ/2gUQHC3t/lxgy4W7ALxQ7DUq8CG4tcOfX3SbT+0CCI72tD9Tgimf2gUQLMVeowIfgkujYV/ajUf8aRdAcMSj/pTofF10AmB4K/YaFfhKOCLuz03z/GoXQHCUl/hTR/xqF0CwFHuNCnwINpOqEqWetlmVKFWe7vgHYBhLZ7O+1Kd0luUQAHJX7DUq8CF4ZDysj58zydM2bzx3kkbFo562CSB4oqGQrq+p8rTNG86pUiQU+NIPwAPFXqMCXwn3Hk5p6dyJnq1riUdDWjJnovYebvOkPQABZtKFp433tD5dcOp4ZqoAeKPIa1TgQ3B7R0b1ew5p2aIZnrS3bNEMbdlzyLcrJgEEy39t2K3bLp/mSVu3XT5Nj2zY7UlbACAVd40KfAguiYb1hz9bp/nTKrRgekVObS2YXqH50yp088/WKcbV1wBy5aSxZTGdOKpU86flVp/mT6vQiaNKNa4sJnEzHwBeKPIaFfikNrJrF4cb731J375m9qCD8ILpFfr2NbN1470vvaddABisAy0pzT+9Qssf3aRbLpoy6D8y86dV6JaLpmj5o5t08ekVOtja4XFPAQRRsdeowIfgSMhUlSjV28lWffrfXtbfXjNL37p6Zr/Xt8SjIX3r6pn69jWz9Ol/e1lvJ1tVlShVJMSiOwC5KYmG9ZMXt+vzC07TzffV6mNnV2nZ4uoB1adli6v1sbOrdPN9tfr8gtP041+9xUwVAE8Ue40KfCVMlMV003mTVR4La/lVZ+gvH9mkto6Mnrr1Yn3timnH3fqjKlGqr10xTU/derHaOjK6/ZFNWn7VGSqPhXXTeZOVKC/J808CYLgZGY9o5cYGTRxTqnlTxukL96/Xhh0H9eDN83Trwqm91qdbF07VgzfP04YdB/WF+9dr3pRxmjimVI/V7WGmCoAnir1GBb4ShsMhLZ5dqYljSnXPC9u0Zmuj1mxt1Hee2Kovfvg0/csnz1ZZLKLm9rTaOrKKR0MqL4moJZXWs/X7dMn3n3/P7f2++7E5OnPSWIUZCQaQo+6ZKsn0xUumKuOcHqvbo8c3v6NLpp+gr1w2TZVjStWRyb5bn6LhkBoOtmpV3R79/bNvKpN1mj+tQl+8ZKr2HGpjpgqAZ4q9RplzxXeFRE1NjautrfWsvZb2tH6xYbe+/l+bj3tMPBLSiHhT0qCVAAAJqUlEQVRETW1ptfWy88PfXjNTV585UWWxwH++AJCjTCarZ7fu045ki77/5Bu667o5eudwq+5+YqvaOn5fhyIhUywSUiqdVTr7+5oej4Z02+XTdOKoUn31oY36i8tO16REmT48fQIf1AHkrBhqlJmtc87V9PgaIVh651Cb5n/3ufecsMGKR0Na85UFOnF03IOeAQi63Qdbdcn31rxbn66afZI+d+Epev6NRj20fpd2Jlvf9z1ViVJdd9bJuvj0Cv34V2/psbo9kjrr0zNfnq+JY7y9wxOA4Cr0GtVbCA78cGUmk9WqugZPArAktXV0tveZ8ycrHA78kmsAOchksnp805731KfBTDV2a+vI6r837aE+AfBEsdeowIfgZEtK963d7mmb963drqVzK1UxktFgAIOXbEnpZ2u3v+/5TNbpyS179eSWvZKOP9XYE+oTAK8Ue40KfAhOZ12PQ/W52Jls7fMkA0Bf+luf0lmndCrTrzapTwC8Uuw1KvDzYUfa0r602+RTuwCCg/oEoJAVe40KfAhu7+jfJ5MBt9vLDhIA0B/UJwCFrNhrVOBDcEk07Eu73JEJQK6oTwAKWbHXqMBXQr/uSsIdmQDkivoEoJAVe40KfAj+/d1OvMMdmQB4gfoEoJAVe40KfAhOlMV003mTPW3zpvMmK1Fe4mmbAIKH+gSgkBV7jQp8CA6HQ1o8u1LxqDe/ini0sz1uSQogV9QnAIWs2GtU4EOwJCXKY1qxdKYnba1YOlOJ8pgnbQEA9QlAISvmGkUIVudViJdUT9Cl1RNyaufS6glaWD2BK68BeIb6BKCQFXONohp2SZTHdOe1swZ9Ei+tnqA7r52lsYyyAPAY9QlAISvWGmXOFd/tM2tqalxtba0vbSebU3qmfq+WPbpZbR19b9Ycj4a0YulMLayewB8YAL6iPgEoZIVYo8xsnXOupsfXCMHvl0pnlWxOaVVdg+5bu73H+2JXJUr16fMna9GsSiXKY0wxAsgL6hOAQlZoNYoQPEiZTFbJlpTSWaemtrTa01mVREIaEY8oEjIlyku4yhrAkKA+AShkhVKjegvB3DaoF+FwSBUj450PRg9tXwDgaNQnAIWsGGoUc2QAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwivKOcWbWKOntIXjr8ZJ+NwTvC39xXocvzu3wxbkdnjivw9dQndsPOOcqenqhKEPwUDGz2uPdeg/Fi/M6fHFuhy/O7fDEeR2+CvHcshwCAAAAgUMIBgAAQOAQggfmnqHuAHzBeR2+OLfDF+d2eOK8Dl8Fd25ZEwwAAIDAYSQYAAAAgUMIBgAAQOAQgo9hZj8xs31mtvk4r5uZ/b2ZvWlmdWZ2Vr77iIHrx3n9RNf53GRm/2tmc/LdRwxOX+f2qOPOMbO0mV2Xr74hN/05t2Y238w2mNlrZvZ8PvuHwetHTR5tZo+Z2cauc/uZfPcRA2dmVWb2nJlt6TpvX+rhmILJUYTg9/uppCt6ef0jkqZ2fd0i6Z/y0Cfk7qfq/by+Jeli59wsSStUgAv4cVw/Ve/nVmYWlvQdSU/mo0PwzE/Vy7k1szGS/lHSEufcGZI+lqd+IXc/Ve//b78gaYtzbo6k+ZK+Z2axPPQLuUlL+rJzboakeZK+YGYzjjmmYHIUIfgYzrkXJCV7OWSppJ+5Ti9JGmNmJ+Wndxisvs6rc+5/nXMHuh6+JOnkvHQMOevH/1lJ+jNJD0va53+P4JV+nNsbJT3inNvRdTznt0j049w6SSPNzCSN6Do2nY++YfCcc3ucc+u7/n1EUr2kicccVjA5ihA8cBMl7Tzq8S69/wSjuH1O0n8PdSfgDTObKOkaMWszHJ0uaayZrTGzdWb2qaHuEDzzD5KqJTVI2iTpS8657NB2CQNhZpMlnSnp5WNeKpgcFRmKNwUKlZktUGcIvnCo+wLP/FDS15xz2c5BJQwjEUlnS7pEUqmktWb2knPujaHtFjxwuaQNkj4s6VRJT5nZL51zh4e2W+gPMxuhztm3Py/kc0YIHrjdkqqOenxy13MocmY2W9K/SvqIc27/UPcHnqmR9GBXAB4v6UozSzvnfjG03YIHdkna75xrltRsZi9ImiOJEFz8PiPpTtd5M4M3zewtSdMlvTK03UJfzCyqzgD8/5xzj/RwSMHkKJZDDNxKSZ/qurpxnqRDzrk9Q90p5MbMJkl6RNInGUUaXpxzpzjnJjvnJkt6SNLnCcDDxqOSLjSziJmVSfqgOtcgovjtUOcIv8xsgqRpkrYNaY/Qp6413D+WVO+c+/5xDiuYHMVI8DHM7AF1Xok63sx2SfprSVFJcs79s6THJV0p6U1JLer8tIoC14/zulzSOEn/2DVimHbO1QxNbzEQ/Ti3KFJ9nVvnXL2Z/Y+kOklZSf/qnOt1qzwUhn78v10h6admtkmSqXNJ0++GqLvovwskfVLSJjPb0PXc1yVNkgovR3HbZAAAAAQOyyEAAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgABhiZtbkQ5tzzezKox5/w8y+4vX7AECxIgQDwPA0V517cQIAekAIBoACYma3mdmrZlZnZn/T9dxkM6s3s3vN7DUze9LMSrteO6fr2A1mdreZbTazmKQ7JF3f9fz1Xc3PMLM1ZrbNzL7Y9f3lZrbazDZ2fe/1PXYMAIYZQjAAFAgzu0zSVEnnqnMk92wzu6jr5amSfuScO0PSQUnXdj3/b5L+yDk3V1JGkpxzKXXeBfE/nHNznXP/0XXsdEmXd7X/12YWlXSFpAbn3Bzn3ExJ/+P3zwkAhYAQDACF47Kur19LWq/O0Dq167W3nHPdtyFdJ2mymY2RNNI5t7br+fv7aH+1c6696/az+yRNkLRJ0qVm9h0z+5Bz7pCHPw8AFCxCMAAUDpP07a7R27nOudOccz/ueq39qOMykiKDaP99bTjn3pB0ljrD8DfNbPlgOg4AxYYQDACF4wlJnzWzEZJkZhPN7ITjHeycOyjpiJl9sOupG456+YikkX29oZlVSmpxzv27pLvVGYgBYNgbzEgCAMAHzrknzaxa0lozk6QmSX+grrW+x/E5SfeaWVbS85K6lzM8J+l2M9sg6du9fP8sSXd3fX+HpD/J7acAgOJgzrmh7gMAYJDMbIRzrqnr37dLOsk596Uh7hYAFDxGggGguC0ys79UZz1/W9Knh7Y7AFAcGAkGAABA4HBhHAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAALn/wM5efBFphmaKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zU5Zn//9c958kRBhIgIYgHDEEJrKIi1go11lYUPNBtcb/V7UHdX7vdXd1atZZuK+tWcWu79tvteqj9anfR7npEcIuCoNZDFSwEJATPEMAkECAkmfPcvz8SKGASkjCfycR5Px+PPDRzuHIjceaa+3Pd12WstYiIiIiI5BLXYC9ARERERCTTlASLiIiISM5REiwiIiIiOUdJsIiIiIjkHCXBIiIiIpJzPIO9gIEYOXKkHT9+/GAvQ0RERESy2Nq1a3dZa0u6u29IJsHjx49nzZo1g70MEREREclixpiPerpP5RAiIiIiknOUBIuIiIhIzlESLCIiIiI5R0mwiIiIiOQcJcEiIiIiknOUBIuIiIhIzlESLCIiIiI5R0mwiIiIiOQcR4dlGGMeBC4Gmqy1p3ZzvwH+DbgI6AD+2lr7lpNrEhERERFnRWMJmttjAOwPJwjHkwS9bgqDnalnSb4Pv29wZ7Y5/dP/H/B/gYd7uP+LwISur7OAX3X9U0RERESGmP3hOK2RBE+v284jb25lW0v4E4+pCAWZf8Y45k4tpyjgoTDoHYSVOpwEW2tfMsaM7+Uhc4GHrbUWeN0YM8wYM8Zau9PJdYmIiIhIejXui7CirpGFyzYRiad6fNy2ljCLltdzzwvvsGD2JGqqRjGqOJDBlXYa7JrgcmDbId83dN32CcaYa40xa4wxa5qbmzOyOBERERE5usbWCDc/WcutT23sNQE+VCSe4tanNnLzk7U0tkYcXuEnDXYS3GfW2vustdOstdNKSkoGezkiIiIiQucO8M1P1LJqc/eblAU+NxXDgxT43N3ev2pzMzc/kflEeHArkmE7UHHI92O7bhMRERGRLLc/HGdFXeNhCXDQ5+an86qZVF6MxxhaI3Ei8RQBr4uigJeEtWxs2MuNj28gHEsCnYnwik2NzJ1aRkEgMzXCg50ELwH+1hjzKJ0H4vapHlhERERkaGiNJFi4bNPB7x+46nSqxhTz9Lrt/OT3m3s9GLfi+vOo27mPbz68FoCFyzYxs7I0Y0mwo+UQxphHgNeASmNMgzHmG8aYvzHG/E3XQ54F3gfeBe4HvuXkekREREQkPaKxzi4QkXiK40JBXrlpFo2tUc6/ezWLltd3mwDDnw/GnX/3ahpbo7xy0yyOCwWJxFMsWb+daCyRkfWbzsYMQ8u0adPsmjVrBnsZIiIiIjmrYU8H8+9/HRfwu+tmcMuTPdcF92bWxBJ+clk1X773VVLAI9dMZ+zwvLSs0Riz1lo7rbv7hszBOBERERHJHtZ27uouvmb6gBNg6KwHvuXJWhZfM51tLWEytT+rJFhERERE+q0tkuCBq05ndX3zgBPgA1ZtbmZ1fTP3X3U6bdHMlEMoCRYRERGRfgvHk1SNKT7sYNyxWLhsE5PGFBOJJ9MS72iUBIuIiIhIv40LBQ8ejEuHAwfjKoYH0xLvaJQEi4iIiEi/heMpHnlza1pjLn5jK+E0JdVHoyRYRERERAakpzZo2RKvN0qCRURERKTf2iLOHGDTwTgRERERyVphhw6w6WCciIiIiGStoNfdp8cV+NxUDA9S4Ovb4wOevj3uWHky8lNERERE5FOlINB9Ghn0ufnpvGomlRfjMYbWSJxIPEXA66Io4CVhLRsb9nLj4xsIxz6569tT3HRTEiwiIiIi/WYMVISChx1me+Cq06kaU8zT67bzk99v7vagW0UoyPwzxrHi+vOo27mPbz689rD7jMnI8lUO0Zt4PMmOvR007OmgbmcrdTv2ULezlYY9HezY20E8QzUrIiIiItmmJN/H/DPGAXBcKMgrN82isTXK+XevZtHy+h47PWxrCbNoeT3n372axtYor9w0i+NCnb2BrzxzHKWF/oysXzvB3eiIJtgTjmNTFkvnJx1rLZE4BLydA62TKfi4NYLL7WJ40EueX/8pRUREJHf4fR7mTi3nqXUNPPz16dzyZG2/xidH4ilufWojsyaW8LvrZnDVg68zZ0o5vgzVBBtrbUZ+UDpNmzbNrlmzxpHYTa0RookkLuPi6XXbeeTNrb1u5c+dWk7KpvB73JQWBRxZk4iIiEg22h+O0xZL8P0nN/QrAT7SrIkl/Mtlkyn0eygIeNO2PmPMWmvttO7uUznEIXa3RkhZy0tbdvVrK/+lLbtIWcvu1kiGVywiIiIyuF6oazqmBBhg1eZmXqhrStOK+kZJcJfdrRESwC1PbuDWpzb2eQ72ga38W57cQKIrjoiIiEguaI0kWLhsU1piLVy2iX3hzAzKACXBQGcNcNxabn6if7Ush1q1uZmbn6glbqEjlrm/QBEREZHBEI0leHrd9j5vHB5NJJ5iyfrtRDOURykJBsLxBCvTtJW/sq6RiJJgERER+ZRrbo/xyJtb0xpz8RtbaW6PpTVmT3I+CY7Hk0TiNq1b+eG4Vfs0ERER+VSzlh7PTg3UtpYwmerZkPNJcDjpzFZ+OKndYBEREfn0aos4k+u0RVUOkRGt4aQjW/mtYe0Ei4iIyKdX2KGr3pEMXU3P+SR4qG/li4iIiAyGoNeZoRaBDA3LyPkxZ/sjcUfiZmorX+RI8XiS5vYoKQv7Iwki8SQBr5vCgAeXgZJ8P16HXrhERCR3FAScSSOdinuknE+Co4n01AJ/Mq7KISSzDoz7fmb9Dv7rjx+xrSWMx2XweVzEEikSKUtFKMhfnXUcl0wp07hvERE5JsZ0TtBN5xX1ilAQY9IWrlc5/w4YcGhHzJ+hrXwR6Bz3vXJzE/+8bBOfOWkk3/18JeXDgsQSKWKJFD6PC5/Hxfa9YZbV7uQXL7zDD2ZP4vyJpRr3LSIiA1KS72P+GeNYtLw+bTGvPHMcpYX+tMXrTc7XBBc4tBPmVFyRIzW1RrjliQ289t5u/usbZzF78hj8ns7/tS2QwnKgRN3vcTF78hj+6xtn8dp7u7nliQ00acqhiIgMgN/nYe7UcgLe9KSTAa+LOVPK8akmODNS1jqylZ/SyTjJgKbWCD9e8jaXnzYWv8dgjOGjlg7+e822bn+nK0JB/nJaBeNH5jNnyhiiCcuPl7zNP805RTvCIiLSb0UBDwtmT+LWpzYec6wFsydRHMxcaprzO8GJZIorThub1pjzThtLIqkkWJzVEU3w8jvNfHXGeIbnedmxN8KX73uNnz63pccPddtawvz0uS18+b7X2LE3wvA8L1+dMZ6X32nWuG8REem3wqCXmqpRzJpYckxxZk0soWbSKAoC3jSt7OhyPgmOJlLMPLkkrVv5551cooNx4ri94TiFAS95Pje//sMH/HDJ230e+hKJp/jhkrf59R8+IN/npjDgZW+HM51SRETk021UcYA7Lq8ecCI8a2IJd1xezagMX5HM+SS4IODhwVc+5MYLK9MS78YLK/n1Hz7IWHsPyU3xeJKN2/cxdniQf1vxDis3Nw0ozsrNTfx8xTuMDQXZuGOfxn2LiMiAjCoKcMdl1dx+6al93lgMeF3cfumpg5IAg5JgDIY/bdvD6KIgMyuPbSt/ZmUJo4uCrGvYiyFD/T0kJzW3xzixJJ912/YNOAE+YOXmJtZv3ceJJfk0t8fStEIREck1o4oDzJ1axsobZnLTFyqpCAW7fVxFKMhNX6hk5T/OZO7UskFJgEEH4/B7DfNOG8v3HlvP/VdPA2B1fXO/48ysLOHaz57ANQ+t4brzTiDgyfnPF+IgjxvcLhe3LX07LfF+vPRtfv/3n0W/tiIiciwKAl4KAl6+PmM8l0wpw9rOAWIHBjcV+D0YA6WF/ox1gehJzifBABdXl/GrF9/jmofWsGjeFM6dMJK7ltf3qb4y4HVx44WVjC4Kcs1Da0hay+zqMnQsTpyUSsHytz/ucw3w0UTiKZ7b9DGXTClLSzwREcltfp+Hsb7sTjNzft/H53EdTGTbY0m+vfgt1m3dy6PXTOf6mgm9buVfXzOBR6+Zzrqte/n24rdojyW58cJKgl0xRZySTFn+848fpTXmb1//iFRKH99EROTYxeNJduztoGFPB3U7W3lr6x7qdrbSsKeDHXs7suIMSnan6BlQ6PMSiaWYceJIZlaWsLq+mWdqd/Lsxo85f2Ip3/18JWXDgsSTKSLxFAGvC6/bxY69YZbW7uSeF94l2ZU4zKws4ZwTR+J2GfL9mWvxIbknZUlrb2vojKccWEREjkVHNMGecJyn123nkTe29tizfv6Z45g7tZzhQS95gzRgLOeTYLfbhddlcBu4vuZkoLMmOJmyPLepkec2NQLgcRl8HhexRIpEN5nCzMoSrq85GZcBt8vgdulgnDinLepMT992h+KKiMinX1NrhOfrGlm4dFOv5XrbWsIs+n0996x8hwUXT+KCqlGDMrAp55NgAI/bRb7fQzwZ49pzT+i2JjiRsiRin9y6P1BKUTW6CI8L8v0efDpdJA6LOHQZyam4IiLy6dbUGuGmJ2pZtbnvzQUi8RS3PrmRFXWN3Hl5dcYTYWVrdE6Na48lGJ7nB+CEkfk8eu3ZfasJvvZsThiZD8DwPD/tsQSxRHoOK4n0xO/QBy19gBMRkf4aSAJ8qFWbm7npiVqaWiNpXlnvcn4nOBpLEElY5t/3Or/6P6czZliQrbvbMcCJJfncelEVIwr8n6gJ3t0WJZFMYQCXMZQNC9Kwt4P/7z/XsuRvzyUaS+DP8lORMnQ5NYxFQ15ERKQ/OqIJnq9rHHACfMCqzc2sqGvk0r8oJy9D+VPOb/uEk0meXred3e1xvvabN9m0o5XCgIdQvg+X+XNdrwE85vARGC6XIZTvozDg4e0drXztN2+yuz3OkvXbCSd1WVmc4zKmx6sUA1URCh72Oy8iInI0e8JxFi7dlJZYty3dxJ6OeFpi9UXOJ8H7w0keeXMrwMEWab955UN2t0UJ5fkYPzKfkkI/RUEvhUEPRUEvJYV+xo/MJ5TnY3dblN+88uHBFmkAi9/Yyv6wkmBxjs/TOeQlnb50+lj87px/SRARkT6Kxzs3EtPZs37Juu0Za5+ma598stXUoS3SZlePoWxYkGQyRTxp8boNHbHkwRZpL2xuOtgirad4Iuk2POA7OOQlHS8+Aa+L2ZPLGJbvS8PqREQkFzS1RXnkja1HfVyBz83wfB972mO0ddNk4FCL39jKnClllA/PS9cye5TzSfD+SPfb7v1tkXYkp1pYiQB4u0ZP3nhhJQuX1h1zvBsvrKTA78GrnWAREemjnnrWB31ufjqvmknlxXiMoTUSJ5ZI4fO4KAp4SVjLxoa93Pj4BsJHJMWZ7Fmf8+946drC/2RclUOIswoDnoNDXo7FzMoSZpw4ksJgzn8mFhGRfmiLfHLD74GrTmfF9ecBsHlnKx+3RtjXEWd/OMG+jjgft0bYvLMVg2HF9efxwFWnfzJuhjYSc/5dL+h1d3u722WoqSrlosljKB8WJJpIEYknCXjd+D0utu8Ns6x2Jyu7KYcACHi6jyuSLnl+DyPzfYcNeemvA0NeRub7MnYaVwYumUzR0hEjkbLsjySIJ5J4PW4KAx48LkMoz4dbu/kikiHhQzb8jgsFWXzNdN5pbKO5LUoo38ewfB9Br5u2SIJwPEnQ66Yg4KEg4GFPW4zmtigel4tXbprFlfe/zkddu8qZ2kjM+Xe97lpCzZlSxtfPGc/qLc3863P1PY78u+K0sXxr5ok8+MqHLFm/46hxRdLNAKWF/h6HvPTk0CEvpYV+1BMiu8USKVraY9Ru20sKy8gC/2EfzFvDcXa1RTHAlIrhhPJ96vksIo4LeDtfZ44LBfnv62bwXnMbxXleRuT7eObdXTzyZi9jk88YxyVTyrDW8tHuDv77uhn85b2v8lFL2LFe+EfK+UzNmM6/jG0tYfJ9bhbNm8LHrWG+cv/rRx359/MV7/AfL77HjRdWcuEpo/neY+tpjyWpCAVRpylxWkc0wep3mjlhZB5lw4LEkykevfZsXqxv4rG3Gnp84Zl32ljOqyxlX0eMsmFBdu7r4INdHXxx8hjtBmehlvYYm3bsoyDgZdPHrTze9Xd75DmFAx/MRxUHebdpP5PKignpoKOIOKgw4AXgkWums6stwphhQV59dxcLl/VhbPLyeu554R0WzJ7EjJNGsqstwiPXTGfGnasOxnWasTZD1cdpNG3aNLtmzZq0xNobjrL49W38ctW73H/1NO576f0BX1a+9rMncM1Da/jbz53ElWeNozioNyBxzo69Yep2tvLIG1tZUdfEgtlVfP6U0Wxo2IvLZXoc8pKylsnlw3ju7Y9ZuKyOmqpS5p85jqoxRZQNS2/vYTk2u9uibGncz6adrdz9/BY+c9LIw0q0ookkfs/hJVqvvLeLGy44mUljijh5VCEjCvyD/ccQkU+phj0dfNDczqhiP/k+Lz94esOAhmbMmljCP8+dTHssTuO+CMeXFDA2Td0hjDFrrbXTur1PSXCU9kiK2oa9/G7NtgElwAfMrCzhy9MqqB47jPyAi2FBvfmIM+LxJKu2NNHSEefmxzccvN3ncfF3nzuJz1WVkufz0BFNHDyRm+f30BFL8EJdE/e88O5h473vvGIyw/K8fO7kUrw91MlLZrW0x2ho6eDuFVsoCnj5+mfG8/I7u/jvNdt63OX/y2kVnDthJA/+4UNaI3FuqDmZilAew7UjLCIO2BuOEo1ZYskUP1yy8Zimxs2aWMJtc0/F53IR9LkoStNGopLgXjTuC9MWTfD6+y3c+tTGY453+6WncvaJIfL9HkYVaVdNnLFjb5hoPMkX73m510tOAY+LgoCHtkiCSKKXx3ldPPt35xLwurUbnAViiRTv72rj589v4ZIp5exui/Iv/1vX53rv73+xc9z7M+u3c/0FJ3P8yALVCItI2kWicfZEOjdX0pVD1UwspTjPQ8CXnpKI3pLgnH9VjKcsPo+bhcvSM/Jv4bJNeN1u4smh9+FChg63C56vazpqUhRJpNjVFus1AYbOVoEr65pQY4HssK8jxhsf7OavzzmeJ95q4IdL3u5zO8dIPMUPl7zNE2818NfnHM8fP9jNvo6YwysWkVzUGkuQTNm05lBxa2ntpvWaE3L+Lc/jMjyzfkdaR/4trd2Bx62TceKcRNLy29c/TGvMh1//kIQ+vA26ZDJFazTB6KIg97/0Pis3Nw0ozsrNTdz/0vuMLgrSGk2QTDrTE11EcpfbZViyLr051DPrd+DOUA6V80lwLJnikTePPvKvPxa/sfWwekuRdOtpSs+xyOSUHunZvkicLR/vZ1dbbMAJ8AErNzexuy3Glo/3s6+H6ZgiIgPVEXUmh+qIZiaHyvkk2GAcSSaMOq+Kg9odmqbTHtO478HWEUtyYmkBty19Oy3xfrz0bU4sLaAjpimWIpJ+TuRQmZLzSXB3I//SEjdDI/8kN4UdmqYTUaI06Lxuw6rNR6/37qtIPMXq+ia8KtESkTTb79AVpkzlUDmfBDuWTGRo5J/kJqdO+quDwOCLJSz/+ceP0hrzt69/RCyhWhcRSa90fVj/ZNzM5FA5/44XdKgnasCjXqvinEKHxnJr3Hd2GMqXF0Ukdwz1HCrnk2Cn3vSVTIiTXBgqQunt51sRCuJSLfugU723iAwVQz2HyvkkGHAkmRBxks9rmHfa2KM+zuMy5PnceFxHT26/dPpYlUNkAdV7i8hQ4TLO5FCuDL0V5fx2ZZ7fxfwzxrFoeX3aYl555jjy/SqHEOe4XIbZ1WX86sX3DqvJcrsMNVWlXDR5DOXDgkQTKSLxJAGvG7/Hxfa9YZbV7mTl5iaSh/RDC3hdzJ5cpv7WWcCvem8RGSJKC/zMP3Mci36f3hyqtDCQtni9yfkkOJGwXDKljHteeCctBd4Br4uLq8s0MU4c1bgvSijfx40XVrJwaR0Ac6aU8fVzxrN6SzP/+lx9t3WgFaEgV5w2lm/NPJEHX/mQJet3AHDjhZXk+9x8vC9KKN+f0T+LHG6oX14Ukdzh9bqZO7Wce1amL4eaM7Ucb4bGl+b81sDIAj9N+6MsmD0pLfEWzJ5E8/4IIwuUSIhzYokU/7thJ+ecOJLZp47ml1eexpSKYr5y/+v8fMU7PR6E2tYS5ucr3uEr97/OlIpifnnlacw+dTTnnDiSZRt2EkvokvlgMw7Ve6t3uYg4YXjQy4KL05ND/fDiSQzP86YlVl/kfBLsdrsoKw5w1vEhZk0sOaZYsyaWcNYJIcYUB3H3oQZTZKCCXje3La1jeJ6X78+exGNvbWPh0ro+fxKPxFMsXFrHY29t4/uzJxHK87JwWR0Bh076St/5+1jv3R9fOn2sY2UWIpLb8vweLqgalZYcqqZqFHm+zF210qsiMKLAz9s79nHbnFMH/Jc4a2IJt805lU079jFCu8DisIKAhx9eXEVLR5xbn9rAqs3NA4qzanMztz61gd0dcRbMrtIl8ywQiaW4eEoZAW96Xp4DXhezq8vUu1xEHFNaFODOy6uPKYe68/JqSosyUwt8gJJgOg+MnHtyKT97vp7vf7GK2y89tc9vQAGvi9svPZXvf7GKnz1fz7kTSnUARRznc7u4aPIYXn1vF6vrB5YAH7C6vplX39vFxdVj8GWoDkt6YTpfk268sDIt4W68sBK/24WqIUTESQcS4dsv618O9S+XnTooCTAoCT4olO/j1tmTuPP3m4nEkzx//Xnc9IXKHmvzKkJBbvpCJc9ffx6ReJI7f7+ZW2dPYni+L8Mrl1xUHPDQFk1yV5q6mty1vJ62aJLioHaCB1siaXng5fc558SRzKw8tsuLMytLOOekkdz3h/cP6wYiIuKE0qIAl/1FOSv/cWafcqgX/nEml/5F+aAkwKDuEIcZUeBn0bwprKhrZPYvXubac0/g3q+eTp7PQ3s0QSSeIuB1ke/30BFL8EJdE7N/8TI/mD2Ju+ZNUQIsGbMvGmdZ7Y60jayMxFMs27CDr5xRQalXLwuDyW0Mw/N87Ngb5oaakwEGtNs/s7KEG2pOZseeMCPyfBqEIiIZkefzkOfz8M1zjmfu1DJSFvZHEgfbdRYGPLgMlBQGMtYFoifG2qG3OzBt2jS7Zs0ax+LHEila2mMsrd3BQ699yLaWMAGPi4KAh7ZIgkgiRUUoyNVnj+fi6jJC+T6VQEhGNbR0MP+B19M6DrciFOSRb05nbCgvbTGl/xpaOtjVFuUbD73JvV89nXjSsmlnK3ctr+/Th56At7OUYtKYIrxuw3W/Xcuvrz6DkQV+/d2KSM4xxqy11k7r7j5t+XTD53ExujjA12aMZ+7UMhIpS1skQTSRwt+VDHtchlC+X10gZFCkrE1rAgyd7dNSDL0PxZ82xsCT67bzrVkncfWDb7Jo3hROKing0WvP5sX6Jh57q6HHHtDzThvLeZWl7OuI0dIe53uPreeGz5/ME+u2c91nTxiEP42ISPZSEtwLt9tFyYGpJcWDuxaRQ+2PJhyJ2xZRB4HBVlrgZ1RRgNFFQc44PsS3F7/FJdVj+Ma5JzChtIBbL6piRIGfeDJ1sETL63axuy1KquvK3mNrG3imdiczK0sYXRQklkhlbAKTiMhQoSRYZAiKJdJTC/zJuEqCB9uBCUxzfvEyv7jyNACeqd3Jsxs/5vyJpcyuHgN0Nnvwuv48AiOaSLG0dicvdI3EnllZwrWfPYHvLH6LJd85d9Br70REso2SYJEhKOjQUAsNy8gOw4Nebvh8Jdc8tIZF86Zw7oSR3LW8nuc2NfLcpkYAPC6Dz+MilkiROKTzQ8Dr4vsXTWR0UZBrHlrDrbOrMjqBSURkqFASLDIE5fud+V/XqbjSPwcmMK2oazxYDvHoNdN5cUvzwZrgRMqSiP155/5gTfDJJfz6Dx/wTG3doExgEhEZKvTKKDIEuV2dSU+6u0PooGf2KC0KcMfl1dz8RO1h5RDf/XwlZcOCn6gJ3rE3zNLandzzwrskU5ZZE0u4Y5Aa0IuIDAVKgkWGIK/b8NXp4/mXZ+vSFvOq6eM1MS6LNLVG+Mmzm/j+F6uomTiKhcs29bkc4rY5p3Dm8aHO5180SYmwiEg39I4nMgS5XYYvnjq6z6MpjybgdfGFU0fj0itCVuiIJlhR18jzm5rY0thG1ZjCT0yxTKQsHbHkwQT40CmWVWMK2dLYxvObmlhR10hHzJluIiIiQ5l2gkWGoPZoCq/b8OM5p3DT4xuOOd6P55yCz21ojyYJ5adhgXJM9oTj/PS5eu6/ehr3vfQ+q+ub8Xlc/N3nTjrqFMvz736RWCLFzMoS7r96Gt9Z/BbnVZaqLlhE5AiaGCcyBNXtaOW193fxmZNKWLR8MyvqmgYcq6aqlO99YSIvb2lmxkkjqRpTlMaVSn/F40nuf+UDjgvl8z9rt/U4MvnIKZbdmVlZwpdOr2BrSzvfPOd4vOr+ISI5preJcbr4KTIEheNJbltah9tt+Ieak6mpKh1QnJqqUv6h5mTcLsPCZXVE4uoTPNia26M0tkb4uDXcYwIMEEmk2NUW6zEBBlhd38zHrWF2tkZobo86sVwRkSFLSbDIEHSgT/BX7n2NYUEvXz/neG6/9NQ+1wgHvC5uv/RUvn7O8QwLevnKva913u7RTuFgS1m4bGo5dy2vT0u8u5bXc/nUclJD76KfiIijlASLDEEFgc76zua2GJf9+yuUFPqpGJ7H7649+7DDU0c6cHjqd9eeTcXwPEoK/Vz276/Q3BY7LK4MnmTKsnpLM5F4eqYCRuIpXtzSTFJZsIjIYfSOJzIEGfPnPsHNbTEu+NlLLJhdxedPGc34EfncelEVIwr8xJMpYokUPk9nL9ndbVGshVC+jzUftnDVb944GLMiFMSoTfCgS6Ysj7/VkNaYj73VwCVTytIaU0RkqNNOsMgQVJLvY/4Z4w67beGyOs6/+0Xea25j3IjOXd5hQe/Br5JCP+NG5PFecxvn3/0iC5cd3mP4yjPHUVroz+QfQ7rhcZu0DkEB2NYSxuPWJxwRkUNpJ1hkCPL7PMydWs49L7xz2GXzWBqaPPoAACAASURBVCLFvz63hX99bgvQtw4C0FkjPGdKOT7VBA+6jqgzhxM7Yjr0KCJyKO0EiwxRRQEPC2ZP6vUxfekgALBg9iSKg/pMnA3SVQt8pKhDcUVEhiolwSJDVGHQS03VKGZNLDmmOLMmllAzaRQFAW+aVibHIl1TAI/k9+jlXkTkUHpVFBnCRhUHuOPy6gEnwrMmlnDH5dWMKgqkeWUyUEGfMyUpTsUVERmqlASLDHGjigLccVn1gPoEKwHOPtbSY4u7gaoIBRmCw0FFRBzleBJsjPmCMabeGPOuMebmbu4fZ4xZZYz5kzGm1hhzkdNrEvm0GVUcYO7UMlbeMLNPfYJX/uNM5k4tUwKchYI+F1ecNjatMeedNpY87QSLiBzG0ZMwxhg38EvgAqABeNMYs8Rau+mQh/0A+G9r7a+MMZOAZ4HxTq5L5NOoIOClIODl6zPGc8mUMqyFtmiCSDxJwOumwO/BGCgt9KsLRBaLJy3nTyzlP158Ly2H5AJeF5+bWEosqYNxIiKHcvo4+JnAu9ba9wGMMY8Cc4FDk2ALFHX9ezGww+E1iXyq+X0exvrU6WGoKsn3saFhHzdeWMnCpXVHf8JR3HhhJQ17w1SOLkzD6kREPj2cLocoB7Yd8n1D122H+hHwf4wxDXTuAn+nu0DGmGuNMWuMMWuam5udWKuIyKDz+zxUjx1GWXGQmZXH1vljZmUJZcVBqsuHafdfROQI2XAwbj7w/6y1Y4GLgN8aYz6xLmvtfdbaadbaaSUlx/bGICKSzQr8btqjCb496yRqqkoHFKOmqpRvzzqJjliCwoASYBGRIzl9zXQ7UHHI92O7bjvUN4AvAFhrXzPGBICRQJPDaxMRyUqJZIqp44op9Pv4+jnHc/aJI7hreX2faoQDXhc3XlhJ1egixg3PY3i+h9hRhqWIiOQip3eC3wQmGGOON8b4gK8AS454zFbgfABjTBUQAFTvICI5KZlMEU6kCHq93PxkLVc+8EfWbd3Lo9dM5/qaCb12/ri+ZgKPXjOddVv3cuUDf+TmJ2vJ83qJJFIkdTBOROQwju4EW2sTxpi/BZYDbuBBa+3bxpjbgDXW2iXAPwL3G2Oup/OQ3F9bq46WIpKb9sfitEcSrPloD6s2d+4HPFO7k2c3fsz5E0v57ucrKRsWJJ5MEYmnCHhdeN0uduwNs7R2J/e88C7JVOdL6KrNzaza3MS08cPZH4szLOgfzD+aiEhWMUMx35w2bZpds2bNYC9DRCTtGvZ0YDCcf/fqXssfPC6Dz+MilkiRSPX8Oh7wulh5w0wslrHD85xYsohI1jLGrLXWTuvuvmw4GCciIl0KAm6eXrf9qPW/iZSlI5bsNQEGiMRTLFm/nQIdjhMROYySYBGRLLI/nOSRN7emNebiN7ayP5xMa0wRkaFOSbCISJbZ1hLO6ngiIp8GSoJFRLJIWyThTNyoM3FFRIYqJcEiIlkkHHembCHiUFwRkaFKSbCISBYJep05wBbQ2GQRkcMoCRYRySIFAWfatzsVV0RkqFISLCKSRYyhx6lwA1URCmJMWkOKiAx5SoJFRLJIUcDN/DPGpTXmlWeOozjgTWtMEZGhTkmwiEgWiSZSzJ1aTsCbnpfngNfFnCnlRBM6GCciciglwSIiWSSasLiMZcHsSWmJt2D2JNzGEkn0PoFORCTXKAkWEcki+yMJfvK/9XxuYimzJpYcU6xZE0v4XFUptz+7mf0O9R8WERmqlASLiGSRcDzJkvU7qPt4Pz+5rHrAifCsiSX85LJq6nbu55naneoTLCJyBCXBIiJZ5ECf4O8sfouGPe3cfulkbr/01D7XCAe8Lm6/9FRuv3QyDXva+c7it7puV59gEZFDKQkWEckihV39fNtjSa5+8E3+tHUvZxw/nJU3zOSmL1T22D6tIhTkpi9UsvKGmZxx/HD+tHUvVz/4Ju2x5GFxRUSkk14VRUSyiKurT/C2ljDtsSTfXvwWl1SP4RufOZ6ZE0q4aPIYXMbQFk0QiScJeN0U+D2krKUjmqB5f4Rf/+EDnqndeTBmRSiIS32CRUQOoyRYRCSLlOT7mX/mOBb9vv7gbc/U7uTZjR9z/sRSZlePoWxYkFQyRSJlicWTtEUT7NgbZmntTl7Y3EQyZQ+LeeWZ4ygpDGT6jyIiktWUBIuIZBGv183cqeXcs/IdIvE/tzVLpizPbWrkuU2NAHhcBp/HRSzRmQz3JOB1MWdqOV63qt9ERA6lV0URkSwzPOjlhxf33ic4kbJ0xJK9JsAAP7x4EsPzNC1ORORISoJFRLJMnt9DTdWoXtujeVyGPJ8bTy/FvrMmllBTNYo8ny76iYgcSa+MIiJZqLQowJ2XV3PTE7Ws2tyM22WoqSrlosljKB8WJJpIHTwY5/e42L43zLLanazsqgmeNbGEOy+vprRItcAiIt1REiwikqUOJMJ1O1spzvOxur6Jf32unm0t4U88tiIU5IrTxvKtWSexryNG1ZgiJcAiIr1QEiwiksU8bheN+6Nc959rDzsod6RtLWF+vuId/uPF97ht7qlMHqtqNxGR3uhVUkQkS+1ui3LTY7V877HaXhPgQ0XiKb73WC03PVbL7raowysUERm6tBMsIpKFWtpj3Pz4Bp6vaxzQ85+va4THYdG8aobn+9K8OhGR3iWTKVo6YiRSlv2RBPFEEq/HTWHAg8dlCOX5cA9y60YlwSIiWSaWSLGyrnHACfABz9c1sqKukblTy/F5dOFPRJwXS6RoaY9Ru20vKSwjC/yHHeRtDcfZ1RbFAFMqhhPK9w3a65OSYBGRLNPSHmPB0xvTEmvB0xs5d0IJo4t1SE5EnNXSHmPTjn0UBLxs+riVx99q6PUg76jiIO827WdSWTGhQbhipa0BEZEskkymWFq7o881wEcTiXfGSybTE09EpDu726LUf9xKfeN+vnLfa/x8xTvdJsDw54O8X7nvNeob91P/ceugnGFQEiwikkVaOmI89NqHaY350Gsf0tIRS2tMEZEDWtpjbN8T5t6X3mfh0rp+HeRduLSOe196n+17wuxpz+zrlMohRESySCJle9w9GahtLeGjjlcWERmIWCJF0/4Id6/Ywur65gHFOPC8m784kXy/J2M1wtoJFhHJIvsjCUfitjkUV0Ry276OGK+8u6vXBLjA56ZieJACn7vHx6yub+aVd3exL4NXrbQTLCKSRaLxpDNxE6oJFpH0SiZTtEYT3LW8/rDbgz43P51XzaTyYjzG0BqJE4mnCHhdFAW8JKxlY8Nebnx8A+HYn1/z7lpez8zKUkLJVEbapykJFhHJIn5vzzslx0It0kQk3fZF4ixdf/hB3geuOp2qMcU8vW47P/n95h67Q8w/Yxwrrj+Pup37+ObDa4HOGuFltTv4P9OPI5Tvd3z9elUUEckihQFn9iaciisiuasjluSxtxoAOC4U5JWbZtHYGuX8u1ezaHl9r90hFi2v5/y7V9PYGuWVm2ZxXCgIwP+sbaAj5swVsSPpVVFEJIt4XIaKUDCth+MqQkE8LpO2eCIiACnbeZD3uFCQ3103g1uerGXV5r4fjovEU9z61EZmTSzhd9fN4Mv3vspHLWFSNjMHebUTLCKSRUJ5Pq4+e3xaY1599viMXFoUkdxy4MDt4mum9zsBPtSqzc3c8mQti6+Z3hk3mpmdYCXBIiJZxO12cXF1GQFvel6eA97OeG7tBItImkUTKR646nRW1zcPOAE+YNXmZlbXN3P/VacTc+iA8JGUBIuIZJlQvo+Fc09NS6yFc08dlHGkIvLpF/S6qRpTzMJlm9ISb+GyTUwaU0zAoQPCR1ISLCKSZXweF+dXjeKCqlHHFOeCqlHUVI1SZwgRccToYX6eXrc9rWPel6zfzuhhmSnf0iujiEgWCuX7uOOKyQNOhC+oGsUdV0xmuHaBRcQhbZEkj7y5Na0xF7+xlbaIyiFERHLaiAI/d86r5q551X2uEQ54Xdw1r5pF86oZUaDDcCLiHGtxZMx7hppDqEWaiEg2C+X7mDu1nHMnlLC0dgcPvfZhj83n/3rGeGZPLiOU71MJhIg4zqlx7G3RzIx5VxIsIpLlfB4Xo4sDfG3GeOZOLSORsrRFEkQTKfweFwUBDx6XIZTvVxcIEcmYsENdHCIZ6g6hJFhEZIhwu12UFAY6vyke3LWIiAQd6uIQ8Kg7hIiIiIhkqQKHxrE7FfdISoJFREREpN+M6TyPkE4VoSAmQ1VdSoJFREREpN9K8n3MP2NcWmNeeeY4SgvVJ1hEREREspTf52Hu1PK0jnmfM6Ucn2qCRURERCSbFQU8LJg9KS2xFsyeRHEwcz0blASLiIiIyIAUBr3UVI1i1sSSY4oza2IJNZNGURDwpmllR6ckWEREREQGbFRxgDsurx5wIjxrYgl3XF7NqKJAmlfWOyXBIiIiInJMRhUFuOOyam6/9NR+jXm//dJTByUBBg3LEBEREZE0mX5CiJU3zGTJ+u0sfmNrj2PerzxzHHOmlBOJJ8AOwkJREiwiIiIix6ixNcLNT9ayanMzQZ+bu66YzG+/cRZuY2iLJojEkwS8bgr8HpLWsrFhLzU/e5FwLDlo5RDG2kFKv4/BtGnT7Jo1awZ7GSIiIiI5r3HfnxPg7hT43AzP97GnPUZbLNntY5xKhI0xa62107q7TzXBIiIiIjIg+8NxVtQ19pgAA7TFkmzbE+4xAQZYtbmZFZsaaYvEnVhmt5QEi4iIiMiAtEYSLFy2KS2xFi7bxL5wIi2x+kJJsIiIiIj0WzSW4Ol124nEU2mJF4mnWLJ+O9FYZhLhPifBxpifGmNOcXIxIiIiIjI0NLfHeOTNrWmNufiNrTS3x9Iasyf92QmuA+4zxvzRGPM3xphipxYlIiIiItnNWrptgXYstrWEyVTPhj4nwdbaB6y15wBXAeOBWmPMYmPMLKcWJyIiIiLZqS3iTNlCWzTLyiEAjDFuYGLX1y5gPXCDMeZRB9YmIiIiIlkqHO+528OhCnxuKoYHKfC5+/T4SB/jHqs+D8swxvwMuBh4AfgXa+0bXXfdaYypd2JxIiIiIpKdgt7uk9qgz81P51UzqbwYjzG0RuJE4ikCXhdFAS+JrmEZNz6+gXA3bdMCnr4ly8eqPxPjaoEfWGvbu7nvzDStR0RERESGgILAJ9PIB646naoxxTy9bjs/+f3mHscmzz9jHCuuP4+6nfv45sNrjxrXCf0ph9jLIUmzMWaYMeZSAGvtvnQvTERERESyW0UoCMBxoSCv3DSLxtYo59+9mkXL63s8NLetJcyi5fWcf/dqGlujvHLTLI7rinMgXib0Jwn+p0OTXWvtXuCf0r8kEREREcl2hUE3888Yx3GhIL+7bgY/eHojtz61sc99gyPxFLc+tZEfPL2R3103g+NCQa48cxxFwczsBPfnp3SXMGdmlSIiIiKSVdoiSeZOLWfu1DJuebK219HJvVm1uZlbnqxl8bXTwRr2RxIUB31pXu0n9WcneI0x5m5jzIldX3cDa4/6LBERERH51CnJ9+Fxwer65gEnwAes2tzM6s3NeN1QWuhP0wp7158k+DtADPhd11cU+LYTixIRERGR7Ob3eUikYOGyTWmJt3DZJuJJ8GVbd4iurhA3O7gWERERERkiorEET6/b3uca4KOJxFMsWb+dr88Yj9/nfMVtf/oEnwx8l85pcQefZ639XPqXJSIiIiLZrLk9xiNvbk1rzMVvbOWSKWWMzaYkGPgf4D+AB4DMjPIQERERkaxkLT22QRuobS1hrE1ryB71JwlOWGt/5dhKRERERGTIaIsknIkbdSbukfpzMO4ZY8y3jDFjjDGhA1+OrUxEREREslY47kxhQMShuEfqz07w1V3/vPGQ2yxwQvqWIyIiIiJDQdDrTBeHQBZ2hzjeyYWIiIiIyNBREHDm8JpTcY/U53IIY0yeMeYHxpj7ur6fYIy52LmliYiIiEi2MgYqQsG0xqwIBTEmrSF71J+a4N/QOSxjRtf324F/TvuKRERERCTrleT7mH/GuLTGvPLMcVk5Me5Ea+0iIA5gre0AMpSri4iIiEg28fs8zJ1aTsDbn3SyZwGvizlTyjM2Ma4/q44ZY4J0HobDGHMinaOTRURERCQHFQU8LJg9KS2xFsyeRHEwM/XA0L8k+EfA74EKY8x/ASuBm5xYlIiIiIhkv8Kgl5qqUcyaWHJMcWZNLKFm0igKAt40rezo+tMd4jljzFpgOp1lEH9vrd3l2MqyQDyepLk9SsrC/kiCcDxJ0OumMODBZaAk34/XofYgIiIiIkPBqOIAd1xezc1P1LJqc3O/nz9rYgl3XF7NqKKAA6vrWZ+TYGPMSmvt+cCybm77VOmIJtgTjvP0uu088sZWtrWE8bgMPo+LWCJFImWpCAWZf+Y45k4tZ3jQS54/c9v3IiIiItlkVFGAOy6rZkVdIwuXbSISTx31OQGviwWzJ1EzaVTGE2DoQxJsjAkAecBIY8xw/nwYrggod3Btg6KpNcKKukZuf7aOz5w0ku9+vpLyYUGiiRSReJKA143f42L73jDLanfyy1XvcutFVdRUjaJ0EP4CRURERLLBqOIAc6eWMbOylCXrt7O4ayPxSBWhIFeeOY45U8spDngyWgJxKGOt7f0Bxvw98A9AGZ1t0Q4kwa3A/dba/+voCrsxbdo0u2bNmrTHbWqNcNMTtRT6vXz9nPGs3tLM42819PgXeMVpY5l5cgkPvvIh+6Nx7ry8WomwiIiI5LxoLEFzewxroS2aOLiRWOD3YAyUFvoz0gXCGLPWWjut2/uOlgQfEuQ71tpfpHVlA+REEtzUGuGflmzk4upyPm4Nc9fy+j5v5d94YSWji4Isrd3Oj+ecqkRYREREJAukJQnuCjQDGM8hZRTW2oePdYH9le4kuCOaYGntDsaG8rjvpfdZXd//ou6ZlSVc+9kTaGjp4OIpZeT5VCMsIiIiMph6S4L7czDut8CJwDog2XWzBTKeBKfbnnCcwoB3wAkwcPB5X55WwZ6OuJJgERERkSzWn0xtGjDJ9mfrGDDGfAH4N8ANPGCtvaObx/wlnX2ILbDeWntlf37GsYjHk9Q27GXHvvCAE+ADVtc3c+6EkWCgNN+n9mkiIiIiWao/wzI2AqP7E9wY4wZ+CXwRmATMN8ZMOuIxE4BbgHOstafQeQgvY5rbo4wdFuSu5fVpiXfX8nrGDgvS3K5heiIiIiLZqj9J8EhgkzFmuTFmyYGvozznTOBda+371toY8Cgw94jHXAP80lq7B8Ba29SPNR0zj9uwcnNTnw7B9UUknuKFzU14XOboDxYRERGRQdGfcogfDSB+ObDtkO8bgLOOeMzJAMaYV+gsmfiRtfb3RwYyxlwLXAswbty4ASylex2xFI+/1ZC2eACPvdXA3L/41LVQFhEREfnU6M/Y5BeNMccBE6y1K4wxeXQmrelYwwRgJjAWeMkYM9lau/eIn38fcB90dodIw88FOpsed9cH+FhsawmjfWAZLEeO+44mkvg9GvctIiJyqP50h7iGzp3YEJ1dIsqB/wB6G5u8Hag45PuxXbcdqgH4o7U2DnxgjNlCZ1L8Zl/Xdiw6osmjP2ggcWPOxBXpyYFx3+u37sHlMows8B826bA9mmBXW5RkyjJ13HCN+xYRkZzWn3fAb9NZ4/tHAGvtO8aY0qM8501ggjHmeDqT368AR3Z+eAqYD/zGGDOSzvKI9/uxrmMSTaSnFvhIMYfiinSnqTVC3c5WivN8bGlqO+qkw/LhebzbuJ+qMUUa7iIiIjmpP0lw1FobM6bzQr8xxkNnS7MeWWsTxpi/BZbTWTrxoLX2bWPMbcAaa+2Srvs+b4zZRGf/4RuttbsH8GcZkIC3P2cD+87vcSauyJGaWyO829TGu81tR510uK0lzM9XvMN/vPgeN15YidftwgAlSoRFRCTH9CcJftEY830gaIy5APgW8MzRnmStfRZ49ojbfnjIv1vghq6vjMt36HJwgS4zSwY0t0bYsS/CfS/3b9BLJJ5i4dI6ZlaWcH3NyYASYRERyS392a68GWgGNgDX0ZnY/sCJRWVSMmWpCAXTGrMiFCSRStvZPZFudUQT7GqP8bMVW45p0uHPVmxhV3uMjlgizSsUERHJXn1Ogq21KWvt/dbaL9F5QO6P/Z0el42CPhfzz0xfyzWAK88cR55Pp+/FWfujCV59b1evCbDHZcjzuXvtW726vplX39vF/oiSYBERyR396Q6xGpjT9Zy1QJMx5lVr7fUOrS0j4knLuSeN5B7vO2kZmBHwuvjMSSOJJXUwTpwTjyfZH0l8YtKh22WoqSrlosljKB8WJJZIEU2k8Htc+Dwutu8Ns6x2Jys3N5E85GrFXcvrmXlyKaFgUu3TREQkJ/SncLXYWttqjPkm8LC19p+MMbVOLSxTCgNuNjSE+d6Fldy2tO6Y433vwkoa9oY5bkR+GlYn0r29kRjLancc9sFtzpQyvv6Z43n13V3863P1PXaHmH/GOL416yQe/MMHLFm/A+isEV62YQfzz6ygxJve8iAREZFs1J+aYI8xZgzwl8BSh9aTca3hJNVjhzGmOMjMypJjijWzsoQxxUGqy4exLxxP0wpFPimasDzWNekw3+fml1eexlnHh/jKfa+xaHn3CTB0dodYtLyer9z3GmcdH+KXV55Gflfpzv+sbSCaGPIVTiIiIn3SnyT4Njrbmb1rrX3TGHMC8I4zy8oci6Vu5z5aw3Gu/ewJA06EZ1aWcO1nT6A1HGfTzn3Y3rvHiRyTlLVsawmT73Pzm6+dwZN/auDWpzb2uaQnEk9x61MbefJPDfzma2eQ73OzrSVMauiX+YuIiPRJfw7G/Y+1ttpa+62u79+31l7h3NIyoy2S4JsPr+UzE0by29c+5EunV7Dg4qo+9w8OeF0suLiKL51ewW9f+5DPTBjJNQ+vpc2hSXQiwMFDbD//8lTue+l9VtQ1DSjOirom7nvpfX7+5akAtEX0eysiIrnhqDXBxpjvWWsXGWN+QTfDMay1f+fIyjLkwMS4K+9/nd9dN4NbnqylwOfh0Wum8+KWZh7rZfLWvNPGct7JJfz6Dx/QFtvFTy6r5sv3vgpALKFkQpwTS6SYM6WM3R2xASfAB6yoa+KCSaO4pHqMfm9FRCRn9OVg3IHTYmucXMhgCXadhP+oJcyX732VxddMZ3V9M3/16z9yzokj+e7nKykbFiSeTBGJpwh4XXjdLnbsDbO0dif3vfw+3/9iFTMrS/jyva/yUVfCHPDohL04J+h18/c1E5h9z8tpifdPS95m2d+dS1zjvkVEJEccNQm21j7T9c+HDtxmjHEBBdbaVgfXlhEFgT//J/ioJcw5d67i/qtO57l/OI8l67cfPGXvcRl8HhexRIpE14CNK88cx48uOYVNO/dxzp2reowrkm6hAi9P/WlnWtr6QWeN8At1TcydOiYt8URERLJdf/oELwb+BkgCbwJFxph/s9be5dTiMsHndlERCh5W8nDNw2sJ+tzcdcVkfvuNs3AbQ1s0QSSeJOB1U+D3kLSWjQ17qfnZi4Rjh19CrggF8Xn6c+ZQpH+SKfjt6x+mNebDr3/IxVOUBIuISG7oz3blpK4+wX8F/C+dY5TXAkM6CR6R7+Or08fzL88e3iM4HEvyt4+sO/h9gc/N8Hwfe9pjtMV6r5u86uzxjMj3O7JeEYBk0vbYBm2gtrWEDxugISIi8mnWn+1KrzHGC1wKLLHWxunmoNxQ43a7mDNlzFG7QbTFkmzbEz5qAhzwurikegzuXsbUihyrtqgzI46diisiIpJt+pME3wt8COQDLxljjgOGfE0wQCjfz21zT0lLrNvmnkpIu8DisHDcmS4OkaN8yBMREfm06E+f4HusteXW2otsp4+AWQ6uLWN8Hhc1VaOpqSo9pjg1VaVcUDVK9cDiOKd+x/S7KyIiuaI/B+P8wBXA+COed1ua1zQoQvk+7ryimpserx1Q39WaqlLuvKKa4fk+B1YncrhCh7qPqKuJiIjkiv5s+zwNzAUSQPshX58aIwr8LJo3hUXzqvs1Me6uedXcNW8KIwpUBiGZYTBUhIJpjVkRCmJQLbuIiOSG/mz7jLXWfsGxlWSJUL6PS6eW89kJJSyt3cFDr33Y48S4q2eM5+LJZYTyfbqMLBnl8xjmnTaWn614J20xv3T6WPz6PRYRkRzRnyT4VWPMZGvtBsdWkyV8HhejiwN8bcZ45k4tI5GytEUSRBMp/B4XBQEPHpchlO9XFwgZFKkUzK4u41cvvpeWgRkBr4vZk8tIqUWaiIjkiP4kwZ8B/toY8wEQBQxgrbXVjqwsC7jdLkoKA53fFA/uWkQO9XFrhNHFAW68sJKFS+uO/oSjuPHCSvJ97s64w9JbZiEiIpKN+pMEf9GxVYhIvwS9bv53w05mnDiSmZUlrK5vHnCsmZUlzDhxJMs27OSck0amcZUiIiLZqz8t0j4ChgGXdH0N67pNRDKsIODhtqV1eN2G62tOZmZlyYDizKws4fqak/G6DQuX1ak7hIiI5Iw+J8HGmL8H/gso7fr6T2PMd5xamIj0zOd2UREKMv++1xmR7+Pac09gwcVV/epqsuDiKq499wRG5PuYf9/rVISC+Nw6GCciIrmhP+943wDOstb+0Fr7Q2A6cI0zyxKR3ozI9/HV6eNpbotx2b+/Qkmhn5NKCnj02rO5vmZCj+3TKkJBrq+ZwKPXns1JJQWUFPq57N9fobktxlVnj1ebPxERyRn9ufZpgENnqia7bhORDHO7XVwyZQx3P19Pc1uMC372EgtmV/H5U0YzobSAWy+qYkSBn3gyRSSeIuB14XW72N0WJWUtI/J9rP2what/8ybQuTN8cfUYdTsREZGc0Z+d4N8AfzTG/MgY8yPgdeDXjqxKRI5qRL6f2+accvD7hcvqOP/uF3l/VzvjRuRRUuinOOhleJ6X4qCXkkI/40bk8X5zAqj9ZwAAIABJREFUO+ff/SILl/25q8Rtc09hRL52gUVEJHcYa/veF9QYcxqdrdIAXrbW/smRVR3FtGnT7Jo1awbjR4tklZb2GN97bH2Po74DXX2t2yIJIonu+wnXVJVy17wpGvktIiKfOsaYtdbaad3d15+DcdOBd6y191hr7wHeM8acla5Fikj/hfJ93HlFNTVVpd3eH0mk2NUW6zUBvvOKaiXAIiKSc/pTDvEr4P9v797jo67u/I+/P3PLDAkBIyFICKIVgYiAGinVqiBQbUFAa3+tdltbW2xrtxdsbbFd/O2WtVrt6q67bbfadut2i714RWyLyEW7VotouZUQa9FyNUTDLSGTuZ39YyYQLglJmMkk+b6ejwcPMjPfOXNg+A7v75nPOaeh1e2GzH0A8ujUogLdfe143X3tuE6tDnH3teN0z7XjmQwHAPCkTk2Mc61qJ5xzKTNjUVGgBygpDGnOhHJdOrJUS9bv1EMvvqlt9U3HHFdREtENF43QzHOHqqQwpFCAJdEAAN7UmRC7xcy+qMOjvzdL2pL9LgHoilDApyEDwvrkRSM0e8JQJVJODdGEmhMpFWRqgwM+U0lhAatAAAA8rzMh+LOS7pf0D5KcpOWSbspFpwB0nd/vU2n/cPrGgPz2BQCAnqrDIdg5t1vSR9p63Mxuc87dmZVeAQAAADmUzYLAD2WxLQAAACBnshmCKTIEAABAr5DNENzxXTcAAACAPGIkGAAAAJ6TzRD86yy2BQAAAOTMCVeHMLN/VzulDs65L2Z+/3YW+wUAAADkTEeWSFuT814AAAAA3eiEIdg591B3dAQAAADoLh3eLMPMSiV9XVKlpHDL/c65y3PQLwDAUZLJlOoPxpRIOR2IJhRPJBUM+NW/ZUvsfiH5/dmc6gEAfVdntk3+uaRfSpqh9BbKN0iqy0WnAACHxRIp1TfGtG7bXjk5DSoqUCyRUiyRUijg0/6muN5uaJZJGl9xikoKQwoFCMMA0J7OfEqe6pz7saS4c+4559yNkhgFBoAcqm+MafUb7+it/VE1J5KH7neSks4dMWs5Gk/prf1RrX7jHdU3xrq9rwDQm3RmJDie+X2Xmc2QtFNSSfa7BACQpHcamvVa7QFF40kVhYPa8najHn11u7bVNx1zbEVJRB88f5hOH1SoaDypmrf26+yy/jq1qCAPPQeAnq8zIfifzWyApK9I+ndJxZLm5aRXAOBx9Y0x7drbJOekv9Uf1N8//CdF46k2j99W36R/ffYv+s/n/qpbrxilMUOKtWtvk3xmOqUw1I09B4DeocMh2Dm3JPPjPklTctMdAEAskdLbB6JKOumB32/RqpqOT7+IxlNauKRak0eVat60s1XXEFVhQYAaYQA4Soc/Fc3sTDN7yszeNrPdZvakmZ2Zy84BgBftPRhTPOV037OvdSoAt7aqpk73Pfua4kmnvQepDwaAo3VmaGCRpF9JGiJpqNLbJD+ci04BgFclkyk1J1N6acs7XQ7ALVbV1OmlLe8olkgpmWy7lAIAvKgzIbifc+5nzrlE5tf/qNV6wQCAk7cvGldzPKV7ltZkpb17ltYomkhpXzR+4oMBwENOGILNrMTMSiT91szmm9kIMzvdzL4m6Te57yIAeEcildLT63e2OwmuM6LxlH6zYacSjAQDwBE6MjHuFaWXpLTM7c+0esxJui3bnQIAr2qOOz3y6vastvnrV7br6vOGZbVNAOjtThiCnXNndEdHAACSc+646wCfjG31TTpyWw0AQIeXSDOzoKTPSbo0c9cqST90zlFoBgBZ0tCcyE270eSJDwIAD+nMZhk/kBSU9P3M7Y9l7vt0tjsFAF7VnMhN7W4sQQgGgNY6E4IvdM6Nb3V7hZmty3aHAMDLIkF/TtoN56hdAOitOrNEWtLM3tVyI7NRBkMLAJBFRQWdGZvIf7sA0Ft15lPxVkkrzWyL0itFnC7pkznpFQB4lM8nVZREsjo5rqIkIp/PTnwgAHhIh0eCnXPLJY2U9EVJX5A0yjm3MlcdAwAvCgd9+tik07Pa5scmna5wsDNf/AFA33fCkWAzu6aNh84yMznnHstynwDAswqDAc0YN1T3LnstKxtmhIM+zTh3KOUQAHCUjnwqXnXU7ZbFJi3zMyEYALKkIBRQKJrQP846R/Mf3XDS7f3TrHMU8ptCASbGAUBrHdks45OSZGZf0ZE7xzlJ+8xsgnNube66CADeEg76dclZgzR19GAt37y7y+1MHT1Y7z1rkCIhAjAAHK0zRWIXSPqspNMkDVV6++QrJT1oZl/LQd8AwJP6R4IK+XxaOGespo4e3KU2po4erIVzxirk96koHMxyDwGg9+tMCB4m6Xzn3Fedc19ROhQPVnoHuU/koG8A4FmlA8IK+kz/MLNSd159bocntoWDPt15zblaMLNSQZ+ptDic454CQO/UmZkSgyU1t7odl1TmnGsys+Y2ngMA6KLS4rBS+6I6Z2ixls27TL/ZsEv/88e/HXf5tIqSiP7u3afrA+eepj2NMUVCfgIwALSjMyH455L+aGZPZm5fJWmRmRVK2pT1ngEAVDYgrMICv/Y1JXT+8IG6bFSpwkG/DjYnFI2nFA761K8goGg8qQNNcfl8pjNLCymBAIAT6HAIds4tNLPfSro4c9dnnXNrMj9/NOs9AwBIkorCQRWFgxpUGFRdY0zOSWamoD/9u99MRQUBnTmokFUgAKCDOrVwZCb0rjnhgQCArCsIBTQsxHq/AJANbCEEAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8J+ch2MyuNLMaM3vdzOa3c9wHzcyZWVWu+wQAAABvy2kINjO/pO9Jer+kSknXmVnlcY7rL+lLkv6Yy/4AAAAAUu5HgidKet05t8U5F5P0C0mzj3PcQknfkRTNcX8AAACAnIfgcknbWt3enrnvEDM7X1KFc+7p9hoys5vMbI2Zramrq8t+TwEAAOAZeZ0YZ2Y+SfdK+sqJjnXOPeCcq3LOVZWWlua+cwAAAOizch2Cd0iqaHV7WOa+Fv0ljZW0yszelDRJ0mImxwEAACCXch2CX5Y00szOMLOQpI9IWtzyoHNun3NukHNuhHNuhKSXJM1yzq3Jcb8AAADgYTkNwc65hKS/l7RUUrWkXznn/mxm3zKzWbl8bQAAAKAtgVy/gHPuN5J+c9R9t7dx7ORc9wcAAABgxzgAAAB4Ts5HggEAAOAtzbGE6hpjkqQDTQk1xZOKBP3qH0lHz9LCkApC+Y2hhGAAAABkxYGmuPZHE3py7Q49/PJWbatvUlHIr1MKQ9rTGFNDLKmKkoiuu3C4Zk8oV3E4oP6RYF76SggGAADASavdF9Wz1bX67jM1umPOWP3sU+9WwEz7o3FF4ymFgz4Vh4NKOKeN2/dq5r//Xl993yhNG1OmsgHhbu8vIRgAAAAnpXZ/VPMfX6+PThyuJV+4RE+u3aE7f7dZ2+qbjjm2ZSR4yRcuUfWufZr/+Hrddc04lRV3bxA251y3vmA2VFVVuTVrWEoYAAAg32r3RXXvss364tSztaqmTguf3qRoPHXC54WDPi2YUanJo0p1//LXdMv7Rmc9CJvZK865427CxkgwAAAAuuRAU1wv/fVtzZs+Wrc9vl4rN9d1+LnReErffGKjpowu1Z1Xj9NLr7+tqZVlKgp3T40wS6QBAACgS/ZHE7rwzFM7HYBbW7m5Trc9vl4Xnnmq9jUlstzDthGCAQAA0GnNsYQaonGt3Ly7ywG4xcrNdVq5ebcamuNqjnVPECYEAwAAoNPqGmMqCge18OlNWWlv4dObVFQQPLS+cK4RggEAANBpRWG/nly7o0OT4DoiGk9p8bodKgr7s9LeiRCCAQAA0GkN0aQefnlrVttctHqrGqLJrLbZFkIwAAAAOs05HXcd4JOxrb5J3bV6LyEYAAAAndYQzc0EtoZmJsYBAACgh2qK56ZsIZqjdo9GCAYAAECnhYO5iZEFge6Jp4RgAAAAdFr/HO3slqt2j0YIBgAAQJdUlER6dHvtIQQDAACg0/pH/LruwuFZbfP6icNVHAlktc22EIIBAADQaRG/X7MnlGetNjgc9GnW+HJFgmyWAQAAgB6qIBRQOGBaMKMyK+0tmFGpgoApFCAEAwAAoAcLBfy6fMxgTRldelLtTBldqsvHDFa4m0aBJUIwAAAAuqh/JKigTHdePa7LQXjK6FLdefU4Bc1U1E0rQ0iEYAAAAJyEQQPCCph0x5xzdcecsR2uEQ4HfbpjzljdMedcBUwaVBzOcU+P1D3T7wAAANBnDSoOq3ZfVJPOLNHyWyZr8bodWrR6q7bVNx1zbEVJRNdPHK5Z48sVjSfk91m3B2CJEAwAAIAsKBsQVmHUr31NCV0+arA+cO5p8pmpoTmhaDypcNCvooKAUs4pGktKJpUVh7u1BKI1QjAAAACyoigcVFE4qOZYUHWNMTmXvj/Uar6b32c6o7Sw21aBaAshGAAAAFlVEApoWKhnx0wmxgEAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8J5LsDPVkymVL9wZgSKacD0YSa40kVBP3qHw4o4DOV9AvJ7+c6AgAAoLchBB9HLJFSfWNMS9bv1EMvvqlt9U0K+EyhgE+xREqJlFNFSUQ3vGeEZo4bqpLCkEIBwjAAAEBvQQg+Sn1jTMura/WPT/1Z7z1rkL76vlEqHxhRcyKlaDypcNCvgoBPO/Y26en1u3Tfs6/pH686R1PHlKmkMJTv7gMAAKADCMGtvNPQrPmPblAk5NfPP/VurXqtTt99pkbb6puOObaiJKIPnj9MN09+l37ywpt65s+1uuuD5+rUooI89BwAAACdYc65fPeh06qqqtyaNWuy2mZ9Y0y3P7FR7z/3NL21v0n3LK1RNJ464fPCQZ9uvWKUhhRH9NsNu7RwzlidwogwAABA3pnZK865quM9RiGr0jXAz9Xs1vWThuvXr2zTwiXVHQrAkhSNp7RwSbV+/co2XT9puFbV7FYs0bHnAgAAID8IwUqPAoeDfj3w/BatqqnrUhuraur0wPNbFA76Vd8Yy3IPAQAAkE2eD8HJZEobduzVzn1NXQ7ALVbV1GnnviZt2LFXySSjwQAAAD2V50Nw/cGYhhSHdc/Smqy0d8/SGg0pDqv+IKPBAAAAPZXnQ7CZtHzz7hPWAIcDPg0qCil8gvWAo/GUVmzeLbNs9hIAAADZ5Pkl0hqbk3r01e3H3B8K+PTlqWdp8ujBKgwF1BBNqCmeVCToV1E4oMZYQiuqd+v+Fa8fMxHukVe3a8555RpU1F1/CgAAAHSG50OwpGPWAb595hhNrxyip9bt1Gd+9kqb6wRfd+FwLb/lMi3b9Ja+taT6iPYYCAYAAOi5PF8OcTCWPPRzaVFIy+ZdqoKAX9Pve053Lz28UUbAZ+oX8ivgS8fbbfVNuntpjabf95wKAn4tm3epSosOrw/c2KpdAAAA9CyeHwluzpQylBaF9NjNF+v2xRu1cnOd/D7TFeeU6QPnntbutsnLN+/WN5/YqCmjS/XYzRfrmu+/oLqGGGsFAwAA9GCeD8HhYHowfNHcSYcC8KzxQ3XjxSOO2DY54DOFAj7FEiklUu6YbZMXr9up27VRi+ZO0vT7nldB0POD7AAAAD2W50PwgHBQt88co9Vv1Gv1lnp97/rz9db+Jn30x3/Ue88apK++b1S7I8EP/n6Lbpl+tq44Z4i+9sg6rX6jXgtmjNGAcDDffzQAAAC0wfMhOOA3Ta8cojnf+189eEOVHnh+i4rDQf38U+8+YiT4aEePBP8++rYevKFKX1j0qp74/HsV8DM1DgAAoKcy51y++9BpVVVVbs2aNVlpqzmW0I9feFOnn1qop9bt0FXjy/XW/ibds7TmhGsHS+lyiluvGKUhxZFDz99a36gbLx6hgqDnrzEAAADyxsxecc5VHe8xz6e0dw7GVHsgqqKwXx+/aIQeeH5Lp7ZPjsZTWrikWpNHleqmS8/U67sPaNf+qN5pjGnoQM//9QIAAPRInk9pKSddPaFcu/ZFOx2AW2t53oerKjSufKBSvW+AHQAAwDM8H4KTKadtew5q94HmLgfgFqtq6nTJyEFKplI6pTB04icAOdAcS6iuMSZJOtB0eKfD/pH06V5aGFJByPOnPgDA4zz/P2Ey5TTi1ELd+sj6rLR3z9Ia/foz71GSoWB0swNNce2PJvTk2h16+OWt7e50OHtCuYrDAfWPsIoJAMCbPL+Ybb8Cv5Zv3t2hSXAdEY2ntGLzbvUr8GelPaAjavdFtXjdTk29d9UROx0erWWnw6n3rtLidTtVuy/azT0FAKBn8PxIcHM8pUdf3Z7VNh95dbvmnFee1TaBttTuj2r+4+u1cnPnJnR+84mNenZzre66ZpzKisM57CGyJZlMqf5gTImU04FoQs3xpAqCfvUPBxTwmUr6heT3e35sAwA6xPMhWFKbo2Y9pT2gLbX72g/ARSG/TikMaU9jTA2x5DGPr9xcp/mPrScI93CxREr1jTEtWb9TD734ZpulLje8Z4RmjhuqksKQQgHCMAC0x/Mh+OBxgkFPbhdocaAprmera48IwJGQX/9y7ThVlg9QwEz7o3FF4ymFgz4Vh4NKOKeN2/fq1kc3qCnzb3Tl5jo9u6lWsycMVRE7HfY49Y0xLa+u1YInN7ZbtrWtvkn//HS1vvtMjRbOHqupY8pUwgRdAGiT50NwcyI7tcBHi+WoXaDF/mhCC5/edOj2jz5+gcacNkBPrt2hO3+3ud2Jcc/Ou0zVu/bp0//9iiRp4dObNHnUYEJwD/NOQ7PmP7pBy6prO/ycaDylWx9Zr+ljynTXB8/VqUUFOewhAPRenv++LJyjrwwL+CoSOdQcS68CEY2ndHpJRC98fYpq9zd3amJc7f5mvfD1KTq9JKJoPKXF63aoOZbo5j8J2lLfGGs3AA8MB3T24CINDB9/LGNZda3mP7pBezLL5QEAjpTzkWAzu1LSv0nyS/qRc+6uox6/RdKnJSUk1Um60Tn3t1z3q0VRG/+B9NR2AUmqa4zp4Ze36vSSiH75mYt0Wxcnxk0ZXapffuYiffiHf9Ci1Vt11fihGsYawnkXS6S0vLr2iABcFA7ov26o0pABEZlJ+5talbpEgnJO2rn3oD7136+oIZq+mFlWXatnq2s1e0I5NcIAcJSc/m9nZn5J35M0XdJ2SS+b2WLn3KZWh/1JUpVz7qCZfU7S3ZI+nMt+teZc+ivibE5mqyiJyLFMMHLIufSo7gtfn9LpANzays11uu3x9Vo0d5Iu/s5K/t32EPWNMS14cuOh24/ffJEG9w9n1oBe126py9IvXardB6K6+vt/kCQteHKjLhlZqiEDmPgIAK3lemhgoqTXnXNbnHMxSb+QNLv1Ac65lc65g5mbL0kaluM+HSGVcvpwVUVW2/zIhRVKkSaQQw3NCf3o4xdoVU1dlwNwi5Wb67Sqpk4PfvwCNTZTDpFvyWRKS9bvVDSe0ughRXrxtsu1aef+TpW6bNq5Xy/edrlGDylSNJ5uL5lkngIAtJbrEFwuaVur29sz97XlU5J+e7wHzOwmM1tjZmvq6k7uP/3W3mmM6b1nDVI4mJ2/inDQp4vfNUj11OEhh5rjSY05bcARE+NOxsKnN6nytAGKJljVJN/qD8b00ItvavSQIj1047v1jcc36JtPtL8yRGstpS7feHyDHrrx3el2XnxT9Qf5TALQfZqa49q+56C27zmo6p379erf9qh65/5D9zU1x/PdxZ6zOoSZ/Z2kKkmXHe9x59wDkh6QpKqqqqwNs0aCfv3gub/q1itGaeGS6pNu79YrRunH//uGbp58VhZ6BxzfsJKIfvXy9hMGo3DAp6JwQA3RhKLtrFjSMjHuQ1Xd+kUMjiORctpW36QXb7tc8x87uVKX+Y+t108/OVGT7lyhBFu5A+gGew7GdLA5mSnf2tpu+dbsCeXqV+DXKf3ys5xjrkPwDkmtaw2GZe47gplNk/RNSZc555pz3KcjFIUDWrxup644Z4gmjyrVqpqujzJPHlWqIcURPbW+Wl+7cnQWewkcqSmW0sMvbz3m/lDApy9PPUuTRw9WYSgdfpviSUWCfhWFA2qMJbSierfuX/H6Mcv4LVq9VTPHDe2uPwLacCCa0OM3X6QV1buzUuqyvHq3Hvvce9KT5QZkqZMAcBxv7YtqeXWtFj696YTrmt+9tEb3r/iLFsyo1NQxZXmZt5DrEPyypJFmdobS4fcjkq5vfYCZnSfph5KudM7tznF/jmGWviL52iPr9OANVZLUpSA8eVSpbrr0TM19aI0qStKzt4FcOvrq+vaZYzS9coieWrdTn/nZK+1efS+/5TIt2/SWvtXq2w92OuwZmuNJDe4f1nVPv5SV9hY+vUnLb5msPZRDAMih2v3RLq9U9Ozm2rzsXJrTmmDnXELS30taKqla0q+cc382s2+Z2azMYfdIKpL0azNba2aLc9mno5UWhnTdhcPVGEtq7kNr9KELKrRg5pgO1wiHgz4tmDlGH7qgQnMfWqPGWFLXTxyuwf1ZoB6507IEliSVFoW0bN6lKgj4Nf2+5zo0eWr6fc+pIODXsnmXqrTo8NdQDUyMy7uKUyOH1oDOhpZSl2ElrA4BIDfe2hfNSvlW7f5olnvWvpwvHOmc+41z7mzn3Lucc3dk7rvdObc48/M051yZc25C5tes9lvMroJQQLMnlCsc9KkxltTnF72qtVv36hdzJ2netJGqKIkc93kVJRHNmzZSv5g7SWu37tXnF72qxlhS4aBPs8aXKxTwd+cfAx7TFE9PYCstCumxmy/Wt39b3aXJU9/+bbUeu/niQ0E4GmdiXL41RJPHLXU5GYtWb1VDlPcWQPbtOZje2j0b5VvPbqrV3m781qrHTIzLp+JwQAtmVOqbT6TX5Xxq/S79ZuNbmjp6sL76vlEaOjCieDJ1aGH6oN+nnXubtGT9Lt2/4nUlW004WTCjUgMi/LUityLB9EXWormTdPvijSd19X27NmrR3Emaft/zCnPxlncta0Bn07b6JtaABpATB5uTWV2paPKowRrYLyvNnRBpTVL/SFDTxpTp2c2Hr2SSKadnNtXqmU3pHZsCPlMo4FMskWpzlvWU0aWaVlmmonCw2/oObyoKB3T7zDFa/UZ9Vq6+p40u04IZY9jpsAdoXeqS1XYpdQGQZU3N8ZyUb33iPacrUpD7LMU+mhllA8K665pxmjK69LiPJ1JOB2PJdgNwPoq64U1m0vTKIVm9+n7fOUOY0NkDNOWoJIVSFwDZ9s7BeE7Kt9452D1rCBOCWykrDuuuq8fpjjljOzUx7o45YwnA6Fan9gvqqXU7s3r1vWT9Tg0q5FuMfGspdck2Sl0AZFtvL9/iu8+jlA0Ia/aEoZo8arAWr9uhRavbXuj5+onDNWtCuQaEA5RAoFvtacrN1ffsCUM1NMS/5XzKVUkKpS4Asq23l2/xqXgcReGgisJB3XjRCF01fqicS78h0XhS4aBfRQUBmUmD+xewCgTyIpWjq282Fcs/J6eKkkhW39+KkoiceHMBZFdvL98iBLejIBTQsBB/Reh5DuTo6jtX7aLjwgGfrrtwuO5eWpO1Nq+fOJxyCABZ19vLt6gJBnqh3n71jbbFkk5XjR/a4XkJJxIO+jRz3FDFktmpHweAFr29fIsQDPRCObv6zlG76Di/mf7w17e1YEZlVtpbMKNSL7xeJz9LfwDIMjO1ualYV1WURLptpSJCMNAL9c/RVXKu2kXH+XzpLUgnnlHS5pKNHTVldKkmnlGi3Qea5fcRggFk16n9grruwuFZbfP6icNVWlSQ1TbbQggGeiFfjq6+yUn5F0s4XXZ2qW786Wp9a9bYLgfhKaNL9a1ZY3XjT1fr0pGlak5QDgEguyIFQc2eUJ7V8q1Z48tV0E3fShKCgV6otLBA103MwdV3f9a6zreGaEI/eeFNfeLiM3TN91/QN94/pktrl3/j/WN0zfdf0CcuPkM//t832DEOQE70K/BntXyrsKD7yvIIwUAvFAz6s3/1PaFcQT8fCfnWlEhq8bqdGlIc0TnlAzT9vucVjSe1bN5l+vqVo9r8BqCiJKKvXzlKy+Zdpmg8qen3Pa9zygdoSHFET63fxaRHADlxSr+Qpo4py0r51rTKMg3sF8pSz06MAkCglzolEtTtMyv1jcc3nnRbt8+s1Cn92CSjJ2iZ9Pi1R9bpwRuqJEkLn67Wd5bW6IuXn6UffuwC9QsF1NicUDSeUjjoU2FBQAdjCa2o3q2p9z6nWCKlyaNKddOlZ2ruQ2skMekRQO4MGRDWXdeM0/zH1mvl5rpOP3/K6NK87LxLCAZ6qX4FAU0bU6Zl1bVd+tBpMWV0qaaNKVM/1sTuEVomJzbGkpr70Brdfe14XTJykO5ZWqPvPvOavvvMa5LS6wkXhQNqiCYUbVXvGw76tGDmGA0pjmjuQ2vUGEse0S4A5IJf0h1zztXKzbu18OlNisZPPA8hHPRpwYxKTRk9WPm4TOe7T6AXG1wc1neuGXdSk6e+c804De7mq2+0rfWkx8ZYUp9f9KrWbt2rX8ydpHneMRs0AAAK5klEQVTTRh56LJpI6e2G2KEAXFES0bxpI/WLuZO0dutefX7Rq4cCMJMeAeRS7b6obn1svS66a4UGFxdo+S2TO1S+tfyWyRpcXKCL7lqhWx9br9r90W7ttznX+7bSrKqqcmvWrMl3N4AeY/f+qJ6trtW3lnT86vv2mZWaNqaMANzDxONJPfjCG7r7d0fuGOf3maaOHqwZ407T0IERxZOpQ+UQQb9PO/c2acn6XVqxebeSR+1//fUrR+nTl5xJzTeArDvQFNfidTv1zScOl+ZFQn7d88FzNXbYQPnN1NCcUDSeVDjoV1FBQEnntHH7Xt366AY1xQ7PV7hjzljNnjBUReHsleeZ2SvOuarjPkYIBvqGg7GE9hyMa/HaHVq0equ21Tcdc0xFSUQfnThcsyaUa2C/ICUQPdSOvU2a+i+r2r2gCfhMoYBPsURKiVTbn+PhoE/LvzJZ5QOzu6QeAEjSjj1Nmnpv+59XRSG/TikMaU9jTA2xtifphoM+Lb9lsspPyd7nVXshmP8BgT6iXyigfqGAPn3xGZo9YahSTjoQPXz13T8ckM+k0v5hRgR7uI5MekyknBLt/GfSgkmPAHKlOZbQk2t3nPAbyIZYUg2xYwdmjhaNp7R43Q7deNEIFXTDIA0hGOhjgkG/hg7sl+9u4CQw6RFAb1DXGNPDL2/NapuLVm/VVeOHalg3fG4xHAQAPRCTHgH0dM7puKV3J2NbfZO6q1KXEAwAPVRLEP721Z3bMe7bV48lAAPIuYZobnai7K4dLvmODAB6sMHFYc05r1yXjRrMpEcAPUpTjnai7K4dLvmUBIAejkmPAHqiSI52ogwHumfrDEIwAPQSTHoE0JMU5Wgnyly1ezSGDAAAANBp1mqHy2ypKInIummHS0IwAAAAOq20MKTrLhye1Tavnzhcg/sXZLXNthCCAQAA0GkFoYBmTyjv8Oo1JxIO+jRrfLlC3VQTTAgGAABAlxSHA1owozIrbS2YUakBke6brkYIBgAAQJf0jwQ1bUxZlzf2aTFldKmmVZapKNx927wTggEAANBlZQPCuuskd7i865pxKuvmDX4IwQAAADgpZcVh3XX1ON0xp3M7XN4xZ2xeArDEOsEAAADIgrIBYc2eMFSTRw3W4nXt73B5fWaHywHhQLeWQLRGCAYAAEBWFIWDKgoHdeNFI3TV+KFyTmpoPrzDZVFBQGbS4P4F3bYKRFsIwQAAAMiqglBAw0I9O2ZSEwwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADzHnHP57kOnmVmdpL/l8CUGSXo7h+0jv3h/+y7e276N97dv4/3t2/L1/p7unCs93gO9MgTnmpmtcc5V5bsfyA3e376L97Zv4/3t23h/+7ae+P5SDgEAAADPIQQDAADAcwjBx/dAvjuAnOL97bt4b/s23t++jfe3b+tx7y81wQAAAPAcRoIBAADgOYRgAAAAeA4huBUzu9LMaszsdTObn+/+4OSYWYWZrTSzTWb2ZzP7Uub+EjNbZmZ/yfx+Sr77iq4zM7+Z/cnMlmRun2Fmf8ycx780s1C++4iuMbOBZvaImW02s2ozew/nb99hZvMyn80bzexhMwtz/vZeZvYTM9ttZhtb3Xfc89XS7s+8z+vN7Px89JkQnGFmfknfk/R+SZWSrjOzyvz2CicpIekrzrlKSZMkfT7zns6XtNw5N1LS8sxt9F5fklTd6vZ3JN3nnDtL0h5Jn8pLr5AN/ybpd8650ZLGK/0+c/72AWZWLumLkqqcc2Ml+SV9RJy/vdlPJV151H1tna/vlzQy8+smST/opj4egRB82ERJrzvntjjnYpJ+IWl2nvuEk+Cc2+WcezXz8wGl/wMtV/p9fShz2EOS5uSnhzhZZjZM0gxJP8rcNkmXS3okcwjvby9lZgMkXSrpx5LknIs55/aK87cvCUiKmFlAUj9Ju8T522s5556XVH/U3W2dr7Ml/bdLe0nSQDM7rXt6ehgh+LBySdta3d6euQ99gJmNkHSepD9KKnPO7co89Jaksjx1CyfvXyV9TVIqc/tUSXudc4nMbc7j3usMSXWS/itT7vIjMysU52+f4JzbIem7krYqHX73SXpFnL99TVvna4/IXIRg9HlmViTpUUlfds7tb/2YS68RyDqBvZCZzZS02zn3Sr77gpwISDpf0g+cc+dJatRRpQ+cv71XpjZ0ttIXO0MlFerYr9LRh/TE85UQfNgOSRWtbg/L3IdezMyCSgfgnzvnHsvcXdvytUvm99356h9OysWSZpnZm0qXL12udA3pwMzXqxLncW+2XdJ259wfM7cfUToUc/72DdMkveGcq3POxSU9pvQ5zfnbt7R1vvaIzEUIPuxlSSMzM1NDShfoL85zn3ASMvWhP5ZU7Zy7t9VDiyXdkPn5BklPdnffcPKcc7c554Y550Yofb6ucM59VNJKSddmDuP97aWcc29J2mZmozJ3TZW0SZy/fcVWSZPMrF/ms7rl/eX87VvaOl8XS/p4ZpWISZL2tSqb6DbsGNeKmX1A6RpDv6SfOOfuyHOXcBLM7L2Sfi9pgw7XjH5D6brgX0kaLulvkv6fc+7oYn70ImY2WdJXnXMzzexMpUeGSyT9SdLfOeea89k/dI2ZTVB60mNI0hZJn1R68Ibztw8ws3+S9GGlV/L5k6RPK10XyvnbC5nZw5ImSxokqVbS/5f0hI5zvmYufP5D6RKYg5I+6Zxb0+19JgQDAADAayiHAAAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAyAMzm2Vm80985DHPG2FmG3PQn8lmdlGr2z81s2vbew4A9GaBEx8CAMg259xi9axdKSdLapD0hzz3AwC6BSPBAJBlmdHazZnR1NfM7OdmNs3MXjCzv5jZRDP7hJn9R+b4n5rZ/Wb2BzPb0tERWDPzm9k9Zvayma03s89k7p9sZqvM7JFMP36e2aFJZvaBzH2vZF5ziZmNkPRZSfPMbK2ZXZJ5iUuP7pOZnWZmz2eO29jqWADoVQjBAJAbZ0n6F0mjM7+ul/ReSV9Vevvuo52WeXympLs6+BqfkrTPOXehpAslzTWzMzKPnSfpy5IqJZ0p6WIzC0v6oaT3O+cukFQqSc65NyX9p6T7nHMTnHO/b6dP10ta6pybIGm8pLUd7CsA9CiUQwBAbrzhnNsgSWb2Z0nLnXPOzDZIGnGc459wzqUkbTKzsg6+xvskjWs1cjxA0khJMUmrnXPbM6+/NvOaDZK2OOfeyBz/sKSb2mn/eH16WdJPzCyYeZwQDKBXYiQYAHKjudXPqVa3Uzr+AETr462Dr2GSvpAZvZ3gnDvDOffMcdpLtvGaJ3JMn5xzz0u6VNIOST81s493oV0AyDtCMAD0XkslfS4zKiszO9vMCts5vkbSmZkaYEn6cKvHDkjqf6IXNLPTJdU65x6U9CNJ53eh3wCQd5RDAEDv9SOlyxxezUx8q5M0p62DnXNNZnazpN+ZWaPSpQ0tnpL0iJnNlvSFdl5zsqRbzSyudHkFI8EAeiVzzuW7DwCAbmJmRc65hkxo/p6kvzjn7st3vwCgu1EOAQDeMjczUe7PSk+k+2Ge+wMAecFIMAD0QGZ2rqSfHXV3s3Pu3fnoDwD0NYRgAAAAeA7lEAAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHP+D1iGN26qy09+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Z3//9c1p8yQk0QmEUKAegASJbAYLaVVodDVCkJVulvdr/ZbW7W/HrZf23qq0oNsPXa1267dXbXt2m7xUE8gWFEQWmtrNbgQkCQeqOVoEokQEuY81++PBARMSCbc9yRk3s/HgwfOzD2ffEj84517Ptd1GWstIiIiIiK5xDPQDYiIiIiIZJtCsIiIiIjkHIVgEREREck5CsEiIiIiknMUgkVEREQk5/gGuoH+GDFihB03btxAtyEiIiIig9jatWvfs9aGu3vtmAzB48aNo7a2dqDbEBEREZFBzBjzt55e0ziEiIiIiOQchWARERERyTkKwSIiIiKScxSCRURERCTnKASLiIiISM5RCBYRERGRnKMQLCIiIiI5RyFYRERERHKOq4dlGGN+AcwFmq21p3XzugH+DTgf2Af8X2vta272JCIiIiLuisWTtHTEAdgbSRJJpAj5vRSGOqNnOD9AXmBgz2xz+6v/N/DvwK96eP3TwCldfz4K/EfX3yIiIiJyjNkbSdAWTbJk3XYeenULW1sjH7qmoiTEJWeMYf6UcoqCPgpD/gHo1OUQbK39gzFm3BEumQ/8ylprgZeNMccZY0Zaa3e62ZeIiIiIOKtpT5SV9U0sWr6JaCLd43VbWyPcuaKRn7zwJgvnVDG7soyy4mAWO+000DPB5cDWgx5v63ruQ4wxVxljao0xtS0tLVlpTkRERER619QW5YYn67jpqY1HDMAHiybS3PTURm54so6mtqjLHX7YQIfgPrPW3metrbHW1oTD4YFuR0RERETovAN8wxN1rG7o/iZlQcBLxfAQBQFvt6+vbmjhhieyH4QHdiIZtgMVBz0e3fWciIiIiAxyeyMJVtY3HRKAQwEv/7qgmqryYnzG0BZNEE2kCfo9FAX9JK1l47bdXPv4BiLxFNAZhFduamL+lFEUBLMzIzzQIXgp8DVjzMN0Lojbo3lgERERkWNDWzTJouWbDjx+4PLTqRxZzJJ127nt2YYjLoxbec051O/cw5d+tRaARcs3MWNCadZCsKvjEMaYh4A/AxOMMduMMV80xnzZGPPlrkueATYDbwH3A19xsx8RERERcUYs3rkLRDSRZmxJiJeun0lTW4xZd6/hzhWN3QZg+GBh3Ky719DUFuOl62cytiRENJFm6frtxOLJrPRvOjdmOLbU1NTY2tragW5DREREJGdte38fl9z/Mh7gkaunc+OTPc8FH8nMiWFuu7Caf/yvP5EGHrpyGqOHD3OkR2PMWmttTXevHTML40RERERk8LC2867u4iun9TsAQ+c88I1P1rH4ymlsbY2QrfuzCsEiIiIikrH2aJIHLj+dNY0t/Q7A+61uaGFNYwv3X3467bHsjEMoBIuIiIhIxiKJFJUjiw9ZGHc0Fi3fRNXIYqKJlCP1eqMQLCIiIiIZG1MSOrAwzgn7F8ZVDA85Uq83CsEiIiIikrFIIs1Dr25xtObiV7YQcShU90YhWERERET6padt0AZLvSNRCBYRERGRjLVH3VnApoVxIiIiIjJoRVxawKaFcSIiIiIyaIX83j5dVxDwUjE8REGgb9cHfX277mj5svJVRERERGRIKQh2HyNDAS//uqCaqvJifMbQFk0QTaQJ+j0UBf0krWXjtt1c+/gGIvEP3/Xtqa7TFIJFREREJGPGQEVJ6JDFbA9cfjqVI4tZsm47tz3b0O1Ct4qSEJecMYaV15xD/c49fOlXaw95zZistK9xCBERERHJXDg/wCVnjAFgbEmIl66fSVNbjFl3r+HOFY097vSwtTXCnSsamXX3GpraYrx0/UzGlnTuDXzpmWMoLczLSv8KwSIiIiKSsbyAj/lTyhlfls8jV0/n5iUbuempjX0+PCOaSHPTUxu5eclGHrl6OuPL8pk3uZxAlmaCjbU2K1/ISTU1Nba2tnag2xARERHJaXsjCdrjSb7z5AZWN7T0u87MiWFuvXAShXk+CoJ+x/ozxqy11tZ095ruBIuIiIhIv71Q33xUARhgdUMLL9Q3O9RR3ygEi4iIiEi/tEWTLFq+yZFai5ZvYk8kOwdlgHaHOKJYPElLRxyAvZEkkWSKkM9LYajz2xbOD5AX0LdQREREck8snmTJuu19ngHuTTSRZun67VwxfVxW8pUSXDf2RhK0RZM8vX4Hv3nlbz1u7/FPZ47lgsmjKAr6KAw5N78iIiIiMti1dMR56NUtjtZc/MoWLpg8itEKwdnXtCfKC43N/ODp14/4m83W1gi3P9vAj1e9wfcuOJVPTiilrDiYxU5FREREBo619LgNWn9tbY2QrT0bFIIP0tQW5TtPbmBVQ98Hs6OJNDc+sYFZE0u59aJJlBUpCIuIiMjQ1xFzZ363I56duWAtjOvStCfKd57ILAAfbFVDM995YgNNbVGHOxMREREZfKKJDx95PJjrHk4hmM4Z4NWNzf0OwPutamhmTWMz7dGEQ52JiIiIDE5BvzuHWgSzdFiGQjCwN5bk+0+/7kit7y19nbZo9rb3EBERERkIw/LcCatu1T1czofgWDzJsrodjm7vsaxuB7EszbOIiIiIDIRUylJREnK0ZkVJiFQ6Oyvjcj4E79oX59cv/83Rmr9++W/s2hd3tKaIiIjIYOLxGC6eOtrRmgumjsZjjKM1e5LzITiV7tv2Hj6PYVjAi8/T+w9ma2uElDM3lkVEREQGJY8xzBgfJuh3Jk4G/R7OGR/OWgjO+S3Setrew+sxzK4s5fxJIyk/LkQsmSaaSBH0e8nzedi+O8Lyup2samju9rZ9trb3EBERERkIxsCT67Zz7bkTWLSs/qjrXXvuBJ5Yt52rzjrRge56l/MhONLNNhzzJo/iio+PY80bLfzoucYeT4y7eOpovjLjJH7x0jssXb/jkNej8exs7yEiIiIyEIpDXsoKg5xQFGLGhDBrGlv6XWvGhDAnFIWIJ9MMH5adU3hzfhwiz/fBtyA/4OXeS6cyuaKYz93/Mj9e+WaPoxJbWyP8eOWbfO7+l5lcUcy9l04lP/DBasaAL+e/tSIiIjKEDfP7mT+lnNt/t4lF809j5sRwv+rMnBhm0fzTuP13m5g3uZygPzv3aHM+qRUEO7/R+QEv93++ht+u3cqiZfV93i0imkizaFk9v127lfs/X3MgCO+vKyIiIjJUdcQS3Hf5Gfxw+SYWTK1g4dzKPs8IB/0eFs6tZMHUCn64fBP3XX4GHfEE2To3OeeTmsFQURLihvMque8Pm/t9K3//++5cMJnbn63HkJ2hbhEREZGBsKsjjtdjqP3r+zz7ehPPvt7EBdUjefjKafz+jRYee21bjyOlC6aO5pzxYX7+x7/ydF3nPPE540s588Th7OqIU1oUdL1/Y7OUtp1UU1Nja2trHanVsjdC7Tu72bEn4shQ98K5lYwqDnHGuBJGFOY50KGIiIjI4NO8N0JbJMXcn754yCfoXo9h1sRS5lSPZNRxIRKpNNFEmqDfg9/rYcfuCMvqdvLCYZsLBP0eln39LIpCXkoLndl/2Biz1lpb091rOX8nOG2hevRxXPPoOkfq3bWikVXfnEH6GPzlQkRERKSv0mlY3s2BY6m05blNTTy3qQno3GY24PMQT6ZJHuEgjGgizTMbdvDZmgpX+94v52eCvV7D0y6cGOfJzol/IiIiIgMikbI89tq2Xq9Lpi374qkjBuD9frt2G8mUTozLikgszW/+4uyJcf/zl78Riem0DBERERm6rLV9OnAsE1tbI1gUgrPGjR+giIiIyFDW3sOBY0dfNztnLeR8CG6PuvUD1IlxIiIiMnTFku586h3v5iAzN+R8CO7uxDgnRLP0AxQREREZCCG/Owuggi7VPVzOh2DXfoA+rYwTERGRoSs/z51Nxtyqe7icD8FuneymE+NERERkKPN5Ow8cc1JFSQifNzsHjuV8CPYYXPkBenRgnIiIiAxhJSE/l00b52jNy6eN4/j8gKM1e5LzITgY8HDJGWMcrXnpmWMIBTQOISIiIkNXXsDH3OqRBP3OxMmg38Oc6pEEsjRSmvMheF8szQWTRzn6A5xbPYqOLG3vISIiIjJQCvN8/GDeqY7UumXeqRRlcZw050Pw3miC5ze9y8I5VUe8zucxDAt48fUy57BwThXPvf6utkgTERGRIa8w5GfG+FJmV5YeVZ3ZlaXMmFBKQdDvUGe9y/nVW9FEmluW1fP8NWczc2KY1Q0tAHg9htmVpZw/aSTlx4WIJdNEEymCfi95Pg/bd0dYXreTVQ3NpLqOAZw5McyZHynhU/f8gSe/Mn0g/1kiIiIiWVFWHOTWCycBG1hZ35zx+2dXlnLrhZMoLQo639wR5HwI3r9F2nWPrec/L6vhhifqKMzzc8XHx7HmjRZ+9FxjtyfAVZSEuHjqaL4y4yR+8dI77I0luP2iar7861pAW6SJiIhIbmjtiHPP8438YN6pfKqqjO8tfZ1o4oODNHweQ8DnIZ5Mk0x/cCRy0O/hB/NO5RMnj+Ce5xu57rxKhmdpURwoBB/YyuzeS6eyuyPKbRdOYlV9M5+7/+VDfoCH29oa4ccr3+Q/f/82C+dUMauylN0dUe69dCrT71itLdJERERkyIsn06zc9C5/ensXX/vkKVSNLOL5a85hw7bdeDyGEQV5H/o0/b32GOm0ZdLo49i9Lw7An97exfP17/KZKaMJ+LIzrZvzSc0Y+PUVZ9IeT1IQzOPGJzccGInoi2gizU1PbWRlQ5h/mT+J9niCX19xBkZbpImIiMgQt6sjxgN/3MyjV0/n7ZZ29sWTpC28/V4Hj9Zu7fHT9H+oqaB8+DBa9kbZG03y6NXTuewXL3PWKWFGFju7dW1PjLW296sGmZqaGltbW+tIrUgsQVs0RTyV5rtLN2YUgA83c2KYW+afRsDjoTjkIxjI+d8xREREZIhKpdL8/KV3mDvpBHZ1xNkbTVL/bht3rWg84qfp+wX9Hq49dwKVJxRRGPRxfEGA5Rve5Yrp4/B6nbkbbIxZa62t6e61nN8dIpZOk8byhzdajioAA6xuaOEPjS1gLdGUtkgTERGRoWtXR5zKEwrZG+u8+3vfi5tZtKy+TwEYOj9NX7Ssnvte3Ezawt5okollBezqiLvceaecD8HxZJpU2rJo+SZH6i1avomEtcT7+D+AiIiIyLEonkozvqyQZNpyz8o3WNPYv5uJaxpbuGflGyTTlvFlRcRT2clQOR+CvR7D0nU7+vxbS2+iiTRPr9+BN0vnXouIiIgMhKDfQzyV5uXNu/odgPdb09jCy5t3kUilCQayE09zPgTvi6V56NUtjtZc/MoW9sV0J1hERESGrlTaEkumuWtFoyP17lrRSDSZJpXKznq1nA/BQLcrFwdTPREREZHBaHmds5+mP7NhhyO1+iLnQ3B71J3jjXVssoiIiAxl8aTlsde2OVrzt2u3EU/qTnBWRJPu7OIQc6muiIiIyGBgrXXl0/Rsbd+b8yE46HfneOM8HZssIiIiQ5hbn3q3x7JzIzHnQ3BBnjsHWrhVV0RERGQwiCXd2QQgnqVP03M+BKespaLE2eP5KkpCpI/Bk/hERERE+irk0qfpbn1KfziF4FSai6eOdrTmgqmjSWRpew8RERGRgXCsf5qe8yE4kbLMGB8m6HfmWxH0ezhnfJhklk47ERERERkIxuDKp+kmS+eN5XwIzs/z8YuX3uHacyc4Uu/acyfw8z/+lXzNBIuIiMgQlkxZLps21tGal00bS1KHZWSH1wP/u/V9TigKMWNC+KhqzZgQ5oSiEOu27cbr0bHJIiIiMnS17otztsOfpp99Spj398UdqdebnA/BiaTlsmnjuO6x9Vx19on9DsIzJoS56uwTue6x9Vw+bRwJjUOIiIjIEBbye/nZ6rf57txTHan3vbmncu/qt7QwLlt2dcSZVVlKylqufLCWz55ewcK5lX3+rSbo97BwbiWfPb2CKx+sJWUtn6wspbUjO7/FiIiIiAyE/DwfS9fvoCTfz6yJpUdVa9bEUobn+3m6bmfWRkpzPgSH/F7+beWbfH/eqXTEU3x18Wus27Kbh6+cxjWzT+lx4LuiJMQ1s0/h4SunsW7Lbr66+DU64il+MO9Ufvz8GwR1WIaIiIgMcRUlIb716HquPPvEfgfhWRNLufLsE/nWo+sdX2h3JDm/eqsg2PlbzAXVI5ldWcrK+maertvJMxvfZdbEUr799xMYdVyIRCpNNJEm6Pfg93rYsTvCsrqd/OSFt0ilOwe4Z1eWUjIswNN1O7nuvIkD/C8TERERcU+e33DZtLHc+kwDX/zvV7lzwWTOGR/m1t/VE030PhYa9Hv4zqcrOb4gjy/+96t0xFN8Y9pY8nzZuUeb8yHY07W9x/97ZB2//MIZAKysbyaVtjy3qYnnNjUB4PMYAj4P8WSaZPrDqxZnV5Zy1dkn8oVfvkpFSQitixMREZGhLJG0zJhQyt3Pv3Hg0/QLqkfy8FXT+OOb7/FI7Va2tkY+9L6KkhD/WFPBJ04Zwc9f/CtP1+0EOkPxjAmlWVtXZewxeLJZTU2Nra2tdaRWIpHi/pf+yp3PNpIf8HLngsns3hdn0fJNff4tZuGcKo4bFuC6x9bTEU9x/XkT+NJZJ+L35vy0iYiIiAxR7+6JsH7bbna1J/jOkxsOPO/1GGZNLGVO9cgDn6bHEmnyDvs0/YWG5gOfpgPcduEkSgr8TKk4jrIiZ8YijDFrrbU13b2W83eC/X4v86eU85NVbx72W8zH+PPb77H4lS09/hZz6Zlj+NhJI/j5i5sP+S1m3pRyBWAREREZ0nZ1xBl7fD6GfcyaWMqqhmaAjD9Nh8654OMLAowpGcau9oRjIfhIcj4EAwwP+Vk4p4qbntoI0ONMcDyZJuA79LeYHz33xiG/xXx3bhXDh/kH6p8iIiIikhXxZJpfvvQOnzh5BFeefSLAgSB8sGTakoyneqyzf2Hc1l37uHf9W3zxEx9xreeDKQQDw/J8fKqqjJUNTaxuaAH691vMzIlhZleWMSygb6uIiIgMbSG/l6Xrd3D+pBP49Z/e4aKpo/u9MO7Xf3qHC6aM4um6nXx15slZ6F5bpB1QWhTkjouqmTmx+8MykmnLvnjqiAH4jouqKS0KutmmiIiIyKCwfz/fbz26nsumj+OJ17bx6jutPHzVNL799+OPuM3st/9+PA9fNY1X32nlide2cdn0cXzr0fWH1HWbblkeZH8Qfr6+iUXL+r4w7rtzq5hdWaYALCIiIjnD6+kMtFtbIwe2SNu9L84/PfAXPn7SiENGSrtbGPcfv3+b73y6kuOGBQ5skVZREsKbpS22FIIPU1oU5MK/K2fGhFKWrtve68K4+VPKOW6YXyMQIiIiklP8XsNl08Zx6zP1B54rLcpj8Zem8eKbLfzouUa2tkY+NFK6f4u0r808mea9UeLJDz5lv3zaOAJZ2lwg57dIO5JEIkVLR4y0hb3RJNFEiqDfS2HQh8dAuDCoXSBEREQkJ7V2RInE08z79z/y00unct8fNrOmsSXjLdJmTAhz1dkn8vXFr7H0a58gFPBSkp/nSI9H2iJNIVhEREREMra1dR8Br4f3OmLctaKRNY0t3V7Xl80FZkwIc+25ExiRn0c8laaiZJgjPWqfYBERERFxlN9jeG3L+7y/L9FjAIbet0gDWNPYwrlVJ3BcfudhGdmgz/JFREREJGPxdJrRw0Pcsux1R+r9YNnrjO4an8gGhWARERERyViez8OqhuY+7abVF9FEmhcamsnzZSeeKgSLiIiISMYi8TSPv7bN0ZqPvbaNiEOhujcKwSIiIiKSMWPodhvZo7G1NUJ2dglWCBYRERGRftgXO/Jit37X7WURnVMUgkVEREQkY7GkO2MLcZfqHk4hWEREREQyFvS7EyO1ME5EREREBq2CoDvHTbhV93AKwSIiIiKSsXgyTUVJyNGaFSWhrI1D6MS4I4jFk7R0xAHYG0kSSaQI+b0Uhjq/beH8AHkBfQtFREQk93iN4ZIzx3Dns42O1bz0zDF4TXb2h3A9wRljzgP+DfACD1hrbz/s9THAg8BxXdfcYK19xu2+jmRvJEFbNMmSddt56NUt3W7/UVES4pIzxjB/SjlFQR+FIf8AdCoiIiIyMDwew/QTjyfo9zhyYEbQ7+FjJx6Px5OdEOzqOIQxxgvcC3waqAIuMcZUHXbZzcCj1tq/Az4H/MzNnnrTtCfK0vU7mHX3Gu5c0XggABcEvFQMD1EQ8AKd+9jduaKRWXevYen6HTTtiQ5k2yIiIiJZZQw8uW471507wZF61507gSfWbSdLN4JdvxN8JvCWtXYzgDHmYWA+sOmgayxQ1PXfxcAOl3vqUVNblBuerGN1QwuhgJefXfp3VJUX4zOGtmiCaCJN0O+hKOgnaS0bt+3m2sc3cNNTG1nZ0MTtF1VTVhQcqPZFREREsiacH6CsMEhZUYgZE8KsaWzpd60ZE8KUFYWIJdOUFuY52GXP3A7B5cDWgx5vAz562DXfB54zxnwdyAdmd1fIGHMVcBXAmDFjHG+0ac8HAfiBy0+ncmQxS9Zt57ZnG444DrHymnOo37mHL/1qLTc8UacgLCIiIjkhL+Bj/pRy5v37i/z00qkA/QrCMyaEuersE/n64tdY+rWzCPi8TrfarcGwO8QlwH9ba0cD5wO/NsZ8qC9r7X3W2hprbU04HHa0gb2RBCvrm9jc3M5L18+kqS32oXGIwx08DtHUFuOl62eyubmdlZuaaI8mHO1PREREZDAqCvr45qcmcOWDtXz29AoWzq3s8/7BQb+HhXMr+ezpFVz5YC3f/NQEikPZ23DA7a+0Hag46PHorucO9kXgPABr7Z+NMUFgBNDscm8HtEWTPPjnv/LI1dO5setucF9FE2luemojMyeGeeTq6Vz+i5eZMaGUgqAWyomIiMjQVhjyM7uyjJUNTXx18WtcUD2Sh6+cxu/faOGx17b1+Gn6gqmjOWd8mJ//8a88XVfPzIlhZleVZTU/GWute8WN8QFvALPoDL+vApdaa18/6JrfAY9Ya//bGFMJrALK7REaq6mpsbW1tY70GIsn+flL7zB/yihuXrIxowB8uJkTw/zL/NNYun4HV0wfp+3TREREJCc0tUW54YnOG4lej2HWxFLmVI9k1HEhEqn0gXVVfq+HHbsjLKvbyQsNzaTSlpkTw66Nkxpj1lpra7p9zc0Q3PXFzwd+TOf2Z7+w1v7QGHMLUGutXdq1W8T9QAGdi+Sus9Y+d6SaTobgbe/v468tHWxp3cdNT2086no//MxpjCkJ8ZFwAaOHD3OgQxEREZHBr2lPlJX1TSxavumQLdN8HkPA5yGeTJNMf5A7g34PC+dUMbuqzLX1VAMagt3gZAje2roPjzHMunuNY3vcrfrmDNLWUlGiECwiIiK5oz2aYE8kydL121n8Ss9nLVx65hjmTSmnOOhzdQTiSCE45z+vD/k9PFq7zZEADJ0zwkvXb+ezNaMdqSciIiJyrCgI+ikI+rli+jgumDwKa6E9liSaSBH0eynI82EMlBbmZW0XiJ4Mht0hBlQkkeahV7c4WnPxK1uIxLNz7rWIiIjIYOMxBo/hwMEX/q68awydzw+CQYScvxMM9LgN2mCpJyIiInIs2BdL8n4kwZJ123noCOMQl5w5hvlTyhke8jMsb2DiaM6H4PZo0p26MXfqioiIiAxGzW2dC+NuWbbpiGOmW1sj3PlsIz9Z9SbfnVvF7MoySgfgoLGcD8GRRMqVulGX6oqIiIgMNs1tUa5/IvOzFr7z5Eaer2/ijouqsx6Ec34mOOR3Zyg7OMDD3iIiIiLZ0J8AfLDVDS1c/0QdzW1Rhzs7spwPwQVBd26Gu1VXREREZLDYF0uysr7pqA4bg84gvLK+iX3x7I2T5nwINqZzQNtJFSWhA6shRURERIaq9yMJblm2yZFatyzbxPv7Eo7U6oucD8FFIS+XnDHG0ZqXnjmG4lD2zr4WERERybZEIsWSddudPWth3XYSWVpXlfMhON/vZ/6UcoJ+Z74VQb+HeZPLGRbQOISIiIgMXS0dMR56xfmzFlo6Yo7W7EnOh2Cv10PQb1g4p8qRegvnVBH0G7wezUOIiIjI0JW27py1kM7SQRo5H4IBCoMBPllZysyJ4aOqM3NimE9WllIYDDjUmYiIiMjgtNelsxbcqns4hWAg4POQ5/Ny24XV/Q7CMyeGue3CaoI+LwGfvq0iIiIytB3rZy0orXUpyQ/g9xp++JlJ/PAzp/V5Rjjo9/DDz5zGDz8zCb/XMDxfd4FFRERk6HPtrAWX6h5Oq7cOcnxBHq0dcT52UgmrvjmDpeu3s/gI515feuYY5k0uJ5ZMEvJ7FYBFREQkZxS6dCaCW3UPpxB8mJL8AAV5Plo74syaWMr5k0biMYb2WJJoIkXQ76Ugz0faWmKJFF6PYfTwfI1AiIiISE7xdJ214OTiuIqSENnaW0DJrRsBn4cTioOcFC5gWMCLz2vweQyhgAefx+DzGoYFvJxUWsgJxUEFYBEREck54fw8LjnT+bMWwoVBR2v2RHeCj8Dr9Xzwgyge2F5EREREBhO/38v8KeX8ZNWbjhyYEfR7mDelHL83OzcXdQtTRERERPpleMjPd+c6c9bCd+dWMXxY9k7cVQgWERERkX4ZludjdmXZEbeY9Xk6x0h9Rxj2nTkxzOzKsqyeuKtxCBERERHpt9KiIHdcVM31T9SxuqEFr8cwu7Jzc4Hy40LEkukDmwvk+Txs3x1hed1OVjU0k0pbZk4Mc8dF1ZQWZWcWeD+FYBERERE5KvuDcP3ONoqHBVjT2MyPnmvscZvZi6eO5iszT2bPvjiVI4uyHoBBIVhEREREHODzemjaG+Pq/1l7xIVyW1sj/Hjlm/zn79/mlvmnMWn0wEznaiZYRERERI7KrvYY1z9Wx3WP1fV5p4hoIs11j9Vx/WN17GqPudzhh+lO8BEkEilaOmKkLR71LPEAACAASURBVOyNJoklU+T5vBQGfXhM5/54/iwd7SciIiIyGLV2xLnh8Q08X9/Ur/c/X98Ej8OdC6qzevquQnA39sWSvB9JsH7L+3g8hhEFeYcMdXfEkrzXHiOVtkwZM5zhIT/D8vStFBERkdwST6ZZVd/U7wC83/P1Taysb2L+lPKsHUKm5HaY5rbogaHuN5rbefy1bUcc6i4fPoy3mvYO2FC3iIiIyEBp7YizcMlGR2otXLKRs04Jc0KxTozLupa2KG81t/NWSzt3rWjs81D3tedOwO/1YICwgrCIiIjkgFQqzbK6HY6cFgedM8LL6nbwhenj8Gbh1DgtjOvS0hZlx54o9724mUXL6jMa6l60rJ77XtzMjj1RWtqiLncqIiIiMvBa98V58M/vOFrzwT+/Q+u+uKM1e6IQTOcM8Hsdce5Z+QZrGlu6vaYg4KVieIiCQPcL4dY0tnDPyjd4ryPOvnjSzXZFREREBlwybbsdGT0aW1sjJNPW0Zo90TgEsDeW5E9vv3dIAA4FvPzrgmqqyovxGUNbNEE0kSbo91AU9JO0lo3bdnPt4xuIxFNAZxA+65QRlOSPyuqxfyIiIiLZtjfqzk2/9mgSil0pfYicT2qJRIq90SR3rWg88NwDl59O5chilqzbzm3PNvS4MO6SM8aw8ppzqN+5hy/9ai0Ad61oZMb4UkpCKW2fJiIiIkNWLJFyp27SmRnj3uT8OMTuaJzlXUPdY0tCvHT9TJraYsy6ew13ruj+uD/ovF1/54pGZt29hqa2GC9dP5OxJSGiiTTLN+xgdzQ78ywiIiIiAyHPpZt92doiLedDcCxpeey1bYwtCfHI1dO5eclGbnpqY0YL4256aiM3L9nII1dPZ2xJiN+u3UYsmZ15FhEREZGBUBh0Z6DArbqHy/kQnO4a6l585TRufLKO1Q3dL4zrzeqGFm58so7FV05ja2uEtFUIFhERkaHL5zFUlIQcrVlREsLnMY7W7EnOh+C9sSQPXH46axpb+h2A91vd0MKaxhbuv/x02qPuzMmIiIiIDAYlwwJ8/mPjHK35+Y+NoyQ/z9GaPcn5EBxPpqkcWcyi5Zscqbdo+SaqRhYTTyoEi4iIyNDl9XqYWz2KoN+ZOBn0d9bz6k5wdlSUhFiybrujp50sXb+d0Q5/PCAiIiIy2JTkB1g0/zRHai2afxol+QFHavVFzofgSDzNQ69ucbTm4le2EIlnZ3sPERERkYES8HmYVVnGpyrLjqrOpyrLmF1ZlrWdIUAhGMCV005EREREckFJfoDbL57U7yD8qcoybr94EsOzeBcYFII7TyVxo25MRyeLiIhIbji+II87FlRz14LqPs8IB/0e7lpQzZ0Lqjm+IDuL4Q6W8yfGRVw67STqUl0RERGRwagkP8D8KeWcdUqYZXU7ePDP7/R46u7/nT6OOZNGUZIfyOoIxMFyPgSHXDrtJOjTkckiIiKSWwI+DycUB/nC9HHMnzKKZNrSHk0SS6bJ83koCPrweQwl+XlZ2wWiJzkfggtcOpXErboiIiIig53X6yFcGOx8UDywvfQk52eCjcGV007MwP5yIyIiIiJHkPMhOJwf4JIzxjha89Izx1BamP0BbxERERHpm5wPwXkBH/OnlDt62sm8yeUENBMsIiIiMmjlfAgGKAr6WDinypFaC+dUURzSPLCIiIjIYKYQDBSG/MyuLGPmxPBR1Zk5MczsqjIKgn6HOhMRERERN+iWZZey4iC3X1TNDU/UsbqhJeP3z5wY5vaLqikrCrrQnYiIiMixIxZP0tIRB2BvJEkkkSLk91LY9Wl5OD9AXmBgY6hC8EHKioLcfmE1K+ubWLR8E9FEutf3BP0eFs6pYnZVmQKwiIiI5LS9kQRt0SRL1m3noVe39HhYxiVnjGH+lHKKgj4KQwPzCbqx1g7IFz4aNTU1tra21rX67dEEeyJJlq7fzuJXev4BXnrmGOZNKac46NMIhIiIiOS0pj3R/t1IrCyjrNidG4nGmLXW2ppuX1MI7tn+W/nWQnssSTSRIuj3UpDnwxgoLczTLhAiIiKS85raooNypPRIIVjjEEeQF/AxeoDnVUREREQGs6Y9UW54sn8BGGB1Qws3PFGX9bVV2h1CRERERPplbyTByvqmfgfg/VY3tLByUxPt0YRDnfVOIVhERERE+qUtmmTR8k2O1Fq0fBN7IklHavWFQrCIiIiIZCwW79wFoi+L4PoimkizdP12YvHsBGGFYBERERHJWEtHnIde3eJozcWvbDmwv7Db+hyCjTH/aow51c1mREREROTYYC3dbiN7NLa2RsjWxmWZ3AmuB+4zxvzFGPNlY0yxW02JiIiIyODWHnVnbKE9NsjGIay1D1hrPw5cDowD6owxi40xM91qTkREREQGp0gi5UrdqEt1D5fRTLAxxgtM7PrzHrAe+KYx5mEXehMRERGRQSrk79uBYQUBLxXDQxQE+nZ9MEsHkfX5JAhjzD3AXOAF4FZr7StdL91hjGl0ozkRERERGZwKgt3HyFDAy78uqKaqvBifMbRFE0QTaYJ+D0VBP0lr2bhtN9c+voFI/MN3fXuq67RMvkodcLO1tqOb1850qB8REREROUZUlIQOWRz3wOWnUzmymCXrtnPbsw3dLpyrKAlxyRljWHnNOdTv3MOXfrX2kNeyJZNxiN0cFJqNMccZYz4DYK3d43RjIiIiIjJ4hfweLjljDABjS0K8dP1MmtpizLp7DXeuaOxx54itrRHuXNHIrLvX0NQW46XrZzK2K/xeeuYYhvVxzOJoZRKCv3dw2LXW7ga+53xLIiIiIjLYRRJp5k8pZ3xZPo9cPZ2bl2zkpqc29vnwjGgizU1PbeTmJRt55OrpjC/LZ97kcvYNwoVx3V2bnaENERERERlUjIHNLe08eMVHufHJOlY3tPSrzuqGFm58so4Hr/gom1v2YozDjfYgkxBca4y52xhzUtefu4G1vb5LRERERIaccH6A0sI8Xqhv7ncA3m91Qwsv1DdTWhSktDDPoQ6PLJMQ/HUgDjzS9ScGfNWNpkRERERkcMsL+CgI+lm0fJMj9RYt30RBnp/AYNsirWtXiBtc7EVEREREjhGxeJIl67b3eQa4N9FEmqXrt3PF9HHkBdyfuM1kn+DxwLfpPC3uwPustZ90vi0RERERGcxaOuI89OoWR2sufmULF0wexejBFIKB3wL/CTwAZGfZnoiIiIgMStbS4zZo/bW1NYK1jpbsUSYhOGmt/Q/XOhERERGRY0Z7NOlO3Zg7dQ+XycK4p40xXzHGjDTGlOz/41pnIiIiIjJoRVzazzeapX2CM7kT/Pmuv6896DkLnOhcOyIiIiJyLAi5dLJbcBDuDvERNxsRERERkWNHQdCdxWtu1T1cn8chjDHDjDE3G2Pu63p8ijFmrnutiYiIiMhgZQxUlIQcrVlREhqUJ8b9ks7DMqZ3Pd4O/IvjHYmIiIjIoBfOD3DJGWMcrXnpmWMG5YlxJ1lr7wQSANbafUCWsrqIiIiIDCZ5AR/zp5QT9GcSJ3sW9HuYN7k8ayfGZdJ13BgTonMxHMaYk+g8OllEREREclBR0MfCOVWO1Fo4p4riUHbmgSGzEPx94FmgwhjzG2AVcL0bTYmIiIjI4FcY8jO7soyZE8NHVWfmxDCzq8ooCPod6qx3mewO8ZwxZi0wjc4xiG9Ya99zrbNBIJFI0dIRI21hbzRJJJEi5PdSGPThMRDOz8Pv0vYgIiIiIseCsuIgt19UzQ1P1LG6oSXj98+cGOb2i6opKwq60F3P+hyCjTGrrLWzgOXdPDek7IsleT+SYMm67Tz0yha2tkbweQwBn4d4Mk0ybakoCXHJmWOYP6Wc4SE/w/Kyd/teREREZDApKwpy+4XVrKxvYtHyTUQT6V7fE/R7WDinitlVZVkPwNCHEGyMCQLDgBHGmOF8sBiuCCh3sbcB0dwWZWV9Ez98pp5PnDyCb//9BMqPCxFLpokmUgT9XvJ8HrbvjrC8bif3rn6Lm86vZHZlGaUD8AMUERERGQzKioPMnzKKGRNKWbp+O4u7biQerqIkxKVnjmHelHKKg76sjkAczFhrj3yBMd8A/h8wis5t0faH4Dbgfmvtv7vaYTdqampsbW2t43Wb26Jc/0QdhXl+rvj4ONa80cLjr23r8Qd48dTRzBgf5hcvvcPeWII7LqpWEBYREZGcF4snaemIYy20x5IHbiQW5PkwBkoL87KyC4QxZq21tqbb13oLwQcV+bq19qeOdtZPboTg5rYo31u6kbnV5bzbFuGuFY19vpV/7bkTOKEoxLK67fxg3mkKwiIiIiKDgCMhuKvQdGAcB41RWGt/dbQNZsrpELwvlmRZ3Q5Glwzjvj9sZk1j5kPdMyaEuersE9nWuo+5k0cxLKAZYREREZGBdKQQnMnCuF8DJwHrgFTX0xbIegh22vuRBIVBf78DMHDgff9YU8H7+xIKwSIiIiKDWCZJrQaospncOgaMMecB/wZ4gQestbd3c80/0LkPsQXWW2svzeRrHI1EIkXdtt3s2BPpdwDeb01jC2edMgIMlOYHtH2aiIiIyCCVyWEZG4ETMilujPEC9wKfBqqAS4wxVYddcwpwI/Bxa+2pdC7Cy5qWjhijjwtx14pGR+rdtaKR0ceFaOnQYXoiIiIig1UmIXgEsMkYs8IYs3T/n17ecybwlrV2s7U2DjwMzD/smiuBe6217wNYa5sz6Omo+byGVQ3NfVoE1xfRRJoXGprxeUzvF4uIiIjIgMhkHOL7/ahfDmw96PE24KOHXTMewBjzEp0jE9+31j57eCFjzFXAVQBjxozpRyvd2xdP8/hr2xyrB/DYa9uY/3dDbgtlERERkSEjk2OTf2+MGQucYq1daYwZRmdodaKHU4AZwGjgD8aYSdba3Yd9/fuA+6BzdwgHvi7Quelxd/sAH42trRF0H1hERERk8OrzOIQx5krgMeC/up4qB57q5W3bgYqDHo/ueu5g24Cl1tqEtfavwBt0huKs2BdL9X5Rf+rG3akrIiIiIkcvk5ngrwIfp/OkOKy1bwKlvbznVeAUY8xHjDEB4HPA4XPET9F5FxhjzAg6xyM2Z9DXUYklnZkFPlzcpboiIiIicvQyCcGxrsVtABhjfHRuadYja20S+BqwAqgHHrXWvm6MucUYM6/rshXALmPMJmA1cK21dlcm/4ijEfRn8i3ouzyfO3VFRERE5OhlsjDu98aY7wAhY8yngK8AT/f2JmvtM8Azhz333YP+2wLf7PqTdQV57hxq4VZdERERETl6mdyuvAFoATYAV9MZbG92o6lsSllLRUnI0ZoVJSFSmZ0pIiIiIiJZ1OcQbK1NW2vvt9Z+ls6tyv6S6elxg1HQ7+GfPjq21+t8HsOwgLdP+//+n4+OJaTT4kREREQGrT5/Zm+MWQPM63rPWqDZGPMna+01LvWWFdbCnEkj+fHKNw45MMPrMcyuLOX8SSMpPy5ELJkmmkgR9HvJ83nYvjvC8rqdrGpoJpX+4HeBoN/D+ZNGkj72fz8QERERGbIyGVwttta2GWO+BPzKWvs9Y0ydW41lS8Bn+N8tu7nu3AncsqwegHmTR3HFx8ex5o0WfvRcY7f7CFeUhLh46mi+MuMkfvHSOyxdvwOA686dwMYde/joR0qy+u8QERERkb7LZCbYZ4wZCfwDsMylfrKuI5bm1t/VU1YU4rxTy7j30qlMrijmc/e/zI9XvtnjQRpbWyP8eOWbfO7+l5lcUcy9l07lvFPLKCsKcesz9XS4tP+wiIiIiBy9TO4E30LndmZ/tNa+aow5EXjTnbayx1rL1tYI31+6kSe+8nG+u3Qjqxta+vz+aCLNomX1zJwYZtH807jw3pdoaY9jj7x7nIiIiIgMoEwWxv3WWlttrf1K1+PN1tqL3WstO/bGkgDceuEkfvD06xkF4IOtbmjh+0tf59YLJwHQHtWdYBEREZHBqtc7wcaY66y1dxpjfko3h2NYa//Zlc6yJJ5MM2/yKHbti7Oyvvmoaq2sb+ZTVWVcUD2SeFIhWERERGSw6ss4RH3X37VuNjJQQn4v35h9CnN+8qIj9b639HWW//NZJHRssoiIiMig1WsIttY+3fX3g/ufM8Z4gAJrbZuLvWXF8Hw/S9btPGR7tKMRTaR5ob6ZeVNGOlJPRERERJzX55lgY8xiY0yRMSYf2AhsMsZc615r2ZFOw69ffsfRmr96+R3SuhEsIiIiMmhlskVaVded388AvwM+AlzmSldZlErbHrdB66+trZFDDtAQERERkcElkxDsN8b46QzBS621CbpZKHesae/aHcLxunF36oqIiIjI0cskBP8X8A6QD/zBGDMWOOZngiMJd3ZxiMa1O4SIiIjIYNXnwzKstT8BfnLQU38zxsx0vqXsCvgy+T1g4OuKiIiIyNHrcwg2xuQBFwPjDnvfLQ73lFWFwUwOzeu7gjx36oqIiIjI0cvkduUSYD6QBDoO+nNMMxgqSkKO1qwoCWGMcbSmiIiIiDgnk9uVo62157nWyQAJ+AwLpo7mnpVvOlbzs6ePJk/jECIiIiKDViZJ7U/GmEmudTJAbBrmVI8i6HcmtAb9HuZMGkXaHvMbZ4iIiIgMWZkkv08Aa40xjcaYOmPMBmNMnVuNZcvOtij5eV6uPXeCI/WuPXcC+QEv7+6JOlJPRERERJyXyTjEp13rYgCF/F5+t2En008awYwJYdY0tvS71owJYaafNILlG3by8ZNHONiliIiIiDipz3eCrbV/A44DLuj6c1zXc8e0gqCPW5bV4/carpk9nhkTwv2qM2NCmGtmj8fvNSxaXk+BS7tOiIiIiMjR63MINsZ8A/gNUNr153+MMV93q7FsCXg9VJSEuOS+lzk+P8BVZ53IwrmVfZ4RDvo9LJxbyVVnncjx+QEuue9lKkpC2idYREREZBDLJKl9Efiotfa71trvAtOAK91pK3uOzw9w2bRxtLTHufBnLxEuzOPkcAEPX/Uxrpl9So/bp1WUhLhm9ik8fNXHODlcQLgwjwt/9hIt7XEu/9g4js/Py/K/RERERET6KpPP7A1w8FnAqa7njmler4d5k0dy9/ONtLTH+dQ9f2DhnEr+/tQTOKW0gJvOr+T4gjwSqTTRRJqg34Pf62FXe4y0tRyfH2DtO618/pevAp13hi+oHonXc8x/a0RERESGrEzuBP8S+Isx5vvGmO8DLwM/d6WrLCvJz+OW+aceeLxoeT2z7v49m9/rYMzxwwgX5lEc8jN8mJ/ikJ9wYR5jjh/G5pYOZt39exYtrz/w3lvmn0aJ7gKLiIiIDGrGZrCfrTFmKp1bpQG8aK39X1e66kVNTY2tra11tGZrR5zrHlvPyvrmbl8P+jwUBH20R5NEk+lur5ldWcpdCyYzPD/gaG8iIiIikjljzFprbU13r2WyMG4a8Ka19ifW2p8AbxtjPupUkwOtJD/AHRdXM7uytNvXo8k077XHjxiA77i4WgFYRERE5BiQyTjEfwDtBz1u73puyDi+II87F0zmzgXVGe0OcdeCau5aMJnjCzQGISIiInIsyGhhnD1odsJamzbGDLnNcEvyA3xmSjlnnxJmWd0OHvzzO2xtjXzouoqSEJ+fPo65k0ZRkh/QlmgiIiIix5BMQuxmY8w/88Hd368Am51vaeAFfB5OKA7yhenjmD9lFMm0pT2aJJZMk9c1G+zzGEry87QLhIiIiMgxKJMQ/GXgJ8DNgAVWAVe50dRg4fV6CBcGOx8UD2wvIiIiIuKcPodga20z8LmeXjfG3Gitvc2RrkREREREXOTkIOtnHawlIiIiIuIaJ0OwhmNFRERE5JjgZAju+6kbIiIiIiIDSHeCRURERCTnOBmCf+tgLRERERER1/S6O4Qx5qccYdTBWvvPXX/f6mBfIiIiIiKu6csWabWudyEiIiIikkW9hmBr7YPZaEREREREJFv6fFiGMSYMXA9UAcH9z1trP+lCX4NCKpWmdV+cZNqyN5okkUzh93kp3H9s8rAAXq+TY9UiIiIikg2ZHJv8G+ARYA6dRyh/Hmhxo6mBFk+mae2Is37rbiyWEQV5xJNp4sk0AZ+HtkiC99pjGGByxXBK8gMEfArDIiIiIseKTJLb8dbanwMJa+3vrbVXAEPuLnBrR5xX/rqLd9uixJKpA89bIGXtISsEo4k077ZFeeWvu2jtiGe9VxERERHpn0zuBCe6/t5pjJkD7ABKnG9p4Oxqj/FG016iiRQFQT+b3+vg8de2sbU18qFrK0pCXDx1NGNH5BNNpGh8t43xZYUcX5A3AJ2LiIiISCYyCcH/YowpBr4F/BQoAq5xpasB0NoRZ+fuCNbC31r38bWH/pdoIt3j9VtbI/x45Zv85+/f5tpzJ1B5QhE7d0fwGMPw/EAWOxcRERGRTPU5BFtrl3X95x5gpjvtDIx4Ms17e6OkLNz34mbWNPZ91DmaSLNoWT0zJoS5ZvZ4Wtqj5Of5NCMsIiIiMoj1OakZY040xjxtjHnPGNNsjFlijDnRzeayZfe+OIm05Z6Vb2QUgA+2prGFe1a+QSJl2b1P88EiIiIig1kmtysXA48CJwCj6Dwm+SE3msqmVCpNLJXm5c27+h2A91vT2MLLm3cRT6ZJpXoepRARERGRgZVJCB5mrf21tTbZ9ed/OGi/4GPVnmiCWCLNXSsaHal314pGosk0e6KJ3i8WERERkQHRawg2xpQYY0qA3xljbjDGjDPGjDXGXAc8436L7kqm0yyv23HERXCZiCbSPLNhB0ndCRYREREZtPqyMG4tndvkmq7HVx/0mgVudLqpbIolLI+9ts3Rmr9du40L/260ozVFRERExDm9hmBr7Uey0chAsdZ2uw/w0djaGuHQYzVEREREZDDp8xZpxhg/8P8BZ3c9tQb4L2vtMT382h5LulM3mur9IhEREREZEJkclvEfgB/4Wdfjy7qe+5LTTWVTLOnO7G48qRAsIiIiMlhlEoLPsNZOPujxC8aY9U43lG0hv9eVukGX6oqIiIjI0ctki7SUMeak/Q+6Dso45m93FuRl8nvAwNcVERERkaOXSVK7FlhtjNlM504RY4EvuNJVFnk8UFEScnRxXEVJCI/H9H6hiIiIiAyIPt8JttauAk4B/hn4OjDBWrvarcayJej3cNm0sY7WvGzaWIL+TG6yi4iIiEg29Xon2BhzUQ8vnWyMwVr7hMM9ZVW+38ec6lHc/fwbjhyYEfR7mDNplMYhRERERAaxviS1Cw57vH8DXNP138d0CM4L+AhEk3x/3qnc8PiGo673g3mnEvAaAj4tjBMREREZrPpyWMYXAIwx3+LQk+MssMcYM8Vau869Ft0X9Hs56+QRzJpYyqqG5n7XmTWxlE+cPIJQQAFYREREZDDLZHD1dODLwEhgFJ3HJ58H3G+Muc6F3rKmMOQn4PGw6DOnMWtiab9qzJpYyqLPnEbA66Eg6He4QxERERFxUiYheDQw1Vr7bWvtt+gMxaV0niD3f13oLavCxUH8HsPNc6u47cJJfV7YFvR7uO2iSSycW4XfYwgXBV3uVERERESOViart0qB2EGPE0CZtTZijIn18J5jSrgoSHpPlFNHFfH8NefwzIad/M9f/tbt9mkVJSH+z0fHcv6kkbzfEScU8CoAi4iIiBwjMgnBvwH+YoxZ0vX4AmCxMSYf2OR4ZwOkrDhIfp6XPZEkU8ccxzkTwgT9XvbFkkQTaYJ+D8PyfEQTKfZGEng8hhPD+RqBEBERETmG9DkEW2sXGWN+B3y866kvW2tru/77nxzvbAAVBP0UBP2MyPfT0hHHWjDG4Pd2/u01hoI8HyeOyNcuECIiIiLHoIw2s+0KvbW9XjhE5AV8jA5ov18RERGRoUbHmomIiIhIzlEIFhEREZGcoxAsIiIiIjlHIVhEREREco5CsIiIiIjkHIVgEREREck5CsEiIiIiknMUgkVEREQk5ygEi4iIiEjOUQgWERERkZyjECwiIiIiOUchWERERERyjkKwiIiIiOQchWARERERyTkKwSIiIiKScxSCRURERCTnKASLiIiISM5RCBYRERGRnKMQLCIiIiI5RyFYRERERHKO6yHYGHOeMabRGPOWMeaGI1x3sTHGGmNq3O5JRERERHKbqyHYGOMF7gU+DVQBlxhjqrq5rhD4BvAXN/sREREREQH37wSfCbxlrd1srY0DDwPzu7luEXAHEHW5HxERERER10NwObD1oMfbup47wBgzFaiw1i4/UiFjzFXGmFpjTG1LS4vznYqIiIhIzhjQhXHGGA9wN/Ct3q611t5nra2x1taEw2H3mxMRERGRIcvtELwdqDjo8eiu5/YrBE4D1hhj3gGmAUu1OE5ERERE3OR2CH4VOMUY8xFjTAD4HLB0/4vW2j3W2hHW2nHW2nHAy8A8a22ty32JiIiISA5zNQRba5PA14AVQD3wqLX2dWPMLcaYeW5+bRERERGRnvjc/gLW2meAZw577rs9XDvD7X5ERERERHRinIiIiIjkHNfvBB/LYvEkLR1xAPZGkkQSKUJ+L4Whzm9bOD9AXkDfQhEREZFjjRJcN/ZGErRFk/z/7d17dJX1ne/xz3dfkr2TEDAQgsQgRdoAcqtGRPFYOIDYKpfadlppZ+xocc7oXIqrzjing2em1DVMdR2n7WpnVavVdU6xM16qKNMBRRHHTtVAuYd4HFQgXBINBEmys2+/80cChhggO3l2dsjzfq3lys7ez/7uLz4rrA9Pvs/v99zWOj3x1j7tb2xVWVGeLh5RoPc/aNGRE3FVlER18xVjtHh6uYojIQ2JhnPdNgAAAHqIENzFkaaYXqo5op9seEf/8qcztXDaaJlJx1sTiiXSioQDKo6G5ZzknNNXfvpb3Tl3vOZNLFPZ0Eiu2wcAAEAPEII7OXI8pnt+vV1/v3CSZleOPO1KcFcnrwQ/ecfVSqVTuufX27XqpqkqAJiG3AAAFp1JREFUKyYIAwAADHTmnMt1Dxmrqqpy1dXeLiV8pCmmx367V7dc/SltqKnXyrW7FUukz/m+SDigFTdM0tyJI/X4b9/VN2eNIwgDAAAMAGa22TnX7SZsXAlW+wzw9v1H9c1Z43TPM9v1yp6GHr83lkjru8/u1Et7SrXqpqnavu+orho/QkURZoQBAAAGKpZIk3Q8ltSUimEZB+DOXtnToHue2a4pFReoqTXpcYcAAADwku9DcFs8qVBA2lBT3+sAfNIrexq0oeaIwsH2ugAAABiYfB+CG5rjSqallWt3e1Jv5drdSqR0an1hAAAADDy+D8HDokE9t7WuRzfB9UQskdaabXUaFg16Ug8AAADe830IPtqS0hNv7fO05uo39+loS8rTmgAAAPCO70OwpG7XAR5I9QAAAOAt34fgE7Hs3MB2oo0b4wAAAAYq34fg1kR2xhZiWaoLAACAvvN9CI6Gs3MDWyTEjXEAAAADle9DcFEkO5vmZasuAAAA+s73IdhMqiiJelqzoiQqM09LAgAAwEO+D8HDC8K6+YoxntZcOmOMSovyPa0JAAAA7/g+BEfzw1o8vVyRsDf/KyLhgBZNK1d+lmaNAQAA0He+D8GSVJAf1IobJnlSa8UNk1SYTwAGAAAYyAjBki4oyNPciWWaM6G0T3XmTCjVvEllGlaQ51FnAAAAyAZCcIdRQyNaddPUXgfhORNKteqmqSorjnjcGQAAALxGCO6krDiif/jiVN23ZHKPZ4Qj4YDuWzKZAAwAAHAeYTHbLkYNjeiGqRdqduVIrdlWp9Vv7tP+xtZPHFdREtXSGWO0aHq5CvOCjEAAAACcRwjB3RhWkKdhBdI3r7pYC6eNlnPSibakYomUIuGgivJDMpNKi/JZBQIAAOA8RAg+i2h+WBflh3PdBgAAADzGTDAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8J5TrBgAAADC4pFJpNbbElUw7fRRLqi2RUn44qCGRkEIBU0lBnoLB3F6LJQQDAADAE/FkWo3Ncb2w/aAe/8/3tL+xVaGAKS8UUDyZVjLtVFES1S1XjdWNU0erpDBPeaHchGFCMAAAAPqssTmuDTVH9HfP79I140foO9dVqnxYVG3JtGKJlCLhoPJDAdUda9Xa7Yf04Etv6+8WXqq5E8tUUpjX7/0SggEAANAnH55o0z1P71A0L6hf3nalNr7doAfW12p/Y+snjq0oiepLl12kO2Zfokdff0/rdx3Rqi9N0fCi/H7t2Zxz/fqBXqiqqnLV1dW5bgMAAMD3GpvjuvfZnfr8lAt1+Hir7l9Xq1gifc73RcIB3b2gUqOKo/rNjkNauWSyLvD4irCZbXbOVXX3GqtDAAAAoFfiybRera3X0plj9OTm/Vr5Qk2PArAkxRJprXyhRk9u3q+lM8doY2294smevdcLhGAAAAD0SmNzXJFwUA9t2quNtQ29qrGxtkEPbdqrSDioxua4xx2eGSEYAAAAGUul0tpRd0wHm1p7HYBP2ljboINNrdpRd0ypVP9cDSYEAwAAIGONLXGNKo7o/nW1ntS7f12tRhVH1NjSP1eDCcEAAADImJm0YU/9OWeAI6GARhTlKXKO9YBjibRe3lMvMy+7PDOWSAMAAEDGmttSenrLgU88nxcK6Ntzx2v2hJEqzAvpRCyp1kRK0XBQRZGQmuNJvVxTrx+9/M4nboR7assBLflsuUYUZb9/QjAAAAB6pes6wPfeOFHzJ43S89sO6k/+z+YzrhN88xVjtOGuz+nF3Yf1vRdqTqvXTxeCGYcAAABA5lriqVOPS4vy9OLya5UfCmr+g6/qB+s+3igjFDAV5AUVCrTH2/2NrfrBulrNf/BV5YeCenH5tSot+nh94OZOdbOJK8EAAADIWFvHKENpUZ6euWOW7l2zU6/saVAwYFpwaZm+MOXCs26bvGFPvb777E7NmVCqZ+6YpZt++roaTsT7ba1gQjAAAAAyFgm3DxSsXjbzVABeNG20bp019rRtk0MBU14ooHgyrWTafWLb5DXbDupe7dTqZTM1/8FNyg/3z6ACIRgAAAAZGxoJ694bJ+rNdxv15t5G/WTpZTp8vFVff+QNXTN+hL5zXeVZrwQ//Npe3TX/M1pw6Sj91VPb9Oa7jVpxw0QNjYT7pX9CMAAAADIWCprmTxqlJT/5Dz18S5Ue2rRXxZGwfnnbladdCe6q65Xg12If6OFbqvTnq7fo2TuvUSjYP7fGmXOuXz7IS1VVVa66ujrXbQAAAPhWWzypR15/TxcPL9Tz2+q0cFq5Dh9v1f3ras+5drDUPk5x94JKjSqOnnr/vsZm3TprrPLD3lynNbPNzrmq7l7jSjAAAAAy9mFLXEc+iqkoEtQfXT1WD23am9H2ybFEWitfqNHsylLdfu04vVP/kQ4dj+nD5rhGD8t+RCUEAwAAIGNpJ31xerkONcUyDsCdnXzfV6sqNLV8mNL9NKTAOsEAAADIWCrttP9oiw42tfY6AJ+0sbZBB5tadeBoi1L9lIIJwQAAAMhYKu00dnih7l9X60m9+9fV6uLhhYRgAAAADFwF+UFt2FPfo5vgeiKWSOvlPfUqyA96Uu9cCMEAAADIWFsirae3HPC05lNbDqjNo1B9LoRgAAAA9Ep36wAPpHpnQwgGAABAxlriqfOqbleEYAAAAGSsLZmdsYV4lup2RQgGAABAxiKhnsXIUMBUkBdUKNCz7ZDze1i3r7K+WYaZXS/ph5KCkn7unFvV5fW7JH1LUlJSg6RbnXPvZ7svAAAA9F5RpPsYGQyY5k0cqS9MuVDlw6JqS6YVS6QUCQeVHwqo7lir1m4/pA176rtdDu1Mdb2W1U8xs6Ckn0iaL+mApLfMbI1zbnenw34vqco512JmfyrpB5K+ms2+AAAA0DfOSRUl0dNuZls0bbRunTVWG99u0APra7W/sVWhgCkvFFA8mVYy7VRREtWXLrtId8y+RI++/p7WbDt46v0VJVG5ftoxLttRe4akd5xzeyXJzH4labGkUyHYOfdKp+N/J+kbWe4JAAAAfZROO339you16jd7VJgX1A++PE2Hj7fq64+8oWvGj9B3rqs865Xgh1/bq7vmf0YLLh2lv3pqm5rjKX3jyouV7qcUnO0QXC5pf6fvD0i68izH3ybpN929YGa3S7pdksaMGeNVfwAAAOiFD5vjWjh1tB7e9F/68dLL9NCmvSqOhPXL26487UpwV12vBL8W+0AP31KlP1+9RTdOHa36j2K6eHhh1vs3l8W0bWZflnS9c+5bHd//oaQrnXN/1s2x35D0Z5I+55xrO1vdqqoqV11dnY2WAQAA0AOHm1r1+33HNHZEoX740ttaOK1ch4+36v51tT3aRS4SDujuBZUaVRzV89vq9O15n9G7HzbrsxXDNGpo1JMezWyzc66qu9eyfSW4TlJFp+8v6njuNGY2T9J31YMADAAAgNxLpJyOxxLaVdekP7p6rB7atFcbaxt6/P5YIq2VL9RodmWpbr92nHYebFIylVYi1T/jENleg+ItSZ82s0+ZWZ6kr0la0/kAM/uspJ9JWuScq89yPwAAAPDI1ZeMUGF+KOMA3NnG2gY9tGmvCvNCmjW+1OMOzyyrIdg5l1T7iMM6STWS/tU5t8vMvmdmizoOu19SkaQnzWyrma05QzkAAAAMEOGgadehJh1sau11AD5pY22DDja1avfBJoVDPVtPuK+yOhOcLcwEAwAA5Na+xmY1tST0lZ/9Z49mgM8lEg7oyT+5SkMLwhpT4s2NcWebCWbHOAAAAGQsEg5ow556TwKw1D4j/PKe+h7vRNdXhGAAAABkrCWe1tNbDnha86ktB9TqUag+F0IwAAAAMmZSt+sA94XX9c6GEAwAAICMtbSlslM3np26XRGCAQAAkLG2ZHbGFuJZqtsVIRgAAAAZi4SzEyPzuTEOAAAAA1VhfnY2Hs5W3a4IwQAAAMhYMpVWRUnU05oVJVEl04xDAAAAYIAKBkxfrarwtObXrqhQ0PpnxzhCMAAAADJmZrpm/AjPZoMj4YBmXTJCRggGAADAQPbrrXW6e0GlJ7XuXlCpZ7bWeVKrJwjBAAAAyFg4YCobEtGo4qhmV5b2qdbsylKNKo7qwuKIwkGuBAMAAGCAOng8poXTRuve53bo9mvH9ToIz64s1e3XjtO9z+3QjVNH61BTzONOu0cIBgAAQMai4aBe3H1Yd82v1LLHq/WVyyu04saJPZ4RjoQDWnHjRH3l8gote7xad82v1PpdhxUJB7PceTtCMAAAADI2JBLS916o0cxLhmvGuBLduXqLtu47pl8tm6nl8z59xuXTKkqiWj7v0/rVspnauu+Y7ly9RTPGlWjmJcO1cm2NhkT6Z53g/vkUAAAADCoBaw+0BaGAvr94iv5WO/T89kP6t52HNXfCSH3nukqNHhZVIpVWLJFWJBxQOBjQwWOtemH7If3o5XeUSjvNmVCq7y+eooCcKkqiCvTPSLDMOdc/n+ShqqoqV11dnes2AAAAfCuRSGnvB82qfv+o/umlt7V62Uy9+W6jVq7drVji4w0vQgFTXiigeDKtZPrj3BkJB7Tihkma8akSLX34d/r2vM+oauwFGldapHDQm2EFM9vsnKvq7jXGIQAAAJCxcDiookhYK9fuVsOJuOY/uEmxREovLv+c/vr6ylPjEMm0U0s8dSoAV5RE9dfXV+rF5Z9TLJHS/Ac3qeFEXCvX7lZRftizAHwujEMAAAAgY23xpJ7bWnfaVd+Va2v0j+tq9Rf/fbx+9oeXqyAvpOa25KlxiML8kFriSb1cU6+5//tVxZMfvzeWSGvNtjrdevVY5edlP6ISggEAAJCxhua4nnhr3yeejyfTemD923pg/duSpEgooKJISCdiScU6hd7urH5znxZOG62LCMEAAAAYiJyT9je2nvO4WDKt2Il4j2rub2xVf92uxkwwAAAAMnYilsxO3bbs1O2KEAwAAICMtSZSWakby1LdrgjBAAAAyFg0Szu7RULsGAcAAIABqihLO7tlq25XhGAAAABkzDp2jPNSRUlU1k87xhGCAQAAkLHSwjzdfMUYT2sunTFGI4fke1rzTAjBAAAAyFh+XkiLp5crEvYmTkbCAS2aVq48ZoIBAAAwkBVHQlpxwyRPaq24YZKGRvtvCwtCMAAAAHplSDSseRPLNGdCaZ/qzJlQqnmTylQUCXvU2bkRggEAANBrZUMjWnXT1F4H4TkTSrXqpqkqK4543NnZEYIBAADQJ2XFEa364lTdt2Ryj2eEI+GA7lsyOScBWJL6b/ACAAAAg1bZ0IgWTx+t2ZUjtWZbnVa/uU/7G1s/cVxFSVRLZ4zRounlGhoJ9esIRGeEYAAAAHiiKBJWUSSsW68eq4XTRss56URbUrFESpFwUEX5IZlJI4fk99sqEGdCCAYAAICn8vNCuihvYMdMZoIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvmHMu1z1kzMwaJL2fg48eIemDHHwusovzOnhxbgcvzu3gxHkdvHJ1bi92zpV298J5GYJzxcyqnXNVue4D3uK8Dl6c28GLczs4cV4Hr4F4bhmHAAAAgO8QggEAAOA7hODMPJTrBpAVnNfBi3M7eHFuByfO6+A14M4tM8EAAADwHa4EAwAAwHcIwQAAAPAdQnAPmNl7ZrbDzLaaWXWu+4F3zGyYmT1lZnvMrMbMrsp1T+g7M6vs+Hk9+d9xM/t2rvtC35nZcjPbZWY7zewJM4vkuid4w8z+suO87uLn9fxmZo+aWb2Z7ez0XImZvWhm/6/j6wW57FEiBGdijnNu+kBb4w599kNJ/+6cmyBpmqSaHPcDDzjnajt+XqdLulxSi6Rf57gt9JGZlUv6C0lVzrnJkoKSvpbbruAFM5ssaZmkGWr/u/hGMxuf267QB49Jur7Lc/dI2uCc+7SkDR3f5xQhGL5lZkMlXSvpEUlyzsWdc8dy2xWyYK6k/3LO5WKXSXgvJClqZiFJBZIO5rgfeGOipDeccy3OuaSkVyXdlOOe0EvOuU2SGrs8vVjS4x2PH5e0pF+b6gYhuGecpPVmttnMbs91M/DMpyQ1SPqFmf3ezH5uZoW5bgqe+5qkJ3LdBPrOOVcn6QFJ+yQdktTknFuf267gkZ2S/puZDTezAklfkFSR457grTLn3KGOx4clleWyGYkQ3FPXOOcuk/R5SXea2bW5bgieCEm6TNI/O+c+K6lZA+DXM/COmeVJWiTpyVz3gr7rmCFcrPZ/wI6WVGhm38htV/CCc65G0j9KWi/p3yVtlZTKaVPIGte+Pm/O1+glBPdAx9UHOefq1T5XOCO3HcEjByQdcM690fH9U2oPxRg8Pi9pi3PuSK4bgSfmSXrXOdfgnEtIekbS1TnuCR5xzj3inLvcOXetpKOS3s51T/DUETO7UJI6vtbnuB9C8LmYWaGZDTn5WNJ1av+1Dc5zzrnDkvabWWXHU3Ml7c5hS/DezWIUYjDZJ2mmmRWYman9Z5abWQcJMxvZ8XWM2ueBV+e2I3hsjaRbOh7fIum5HPYiiR3jzsnMxunju8pDklY75+7LYUvwkJlNl/RzSXmS9kr6Y+fc0dx2BS90/KN1n6RxzrmmXPcDb5jZ30v6qqSkpN9L+pZzri23XcELZvaapOGSEpLucs5tyHFL6CUze0LSbEkjJB2R9L8kPSvpXyWNkfS+pD9wznW9ea5fEYIBAADgO4xDAAAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAwQJjZWDNjHXIA6AeEYAAAAPgOIRgABpaQmf3SzGrM7KmO3dEuN7NXzWyzma3rtPXoMjN7y8y2mdnTZlbQ8fxjZvbPZvY7M9trZrPN7NGOmo91HBPsOG6nme0ws+U5/DMDQL8jBAPAwFIp6afOuYmSjku6U9KPJX3ZOXe5pEclndy18hnn3BXOuWlq3z74tk51LpB0laTlat+u9EFJl0qa0rFT4nRJ5c65yc65KZJ+kf0/GgAMHKFcNwAAOM1+59zrHY//r6T/KWmypBfNTJKCkg51vD7ZzL4vaZikIknrOtV53jnnzGyHpCPOuR2SZGa7JI2V9KqkcWb2Y0lrJa3P6p8KAAYYQjAADCxd97L/SNIu59xV3Rz7mKQlzrltZvZNSbM7vdbW8TXd6fHJ70POuaNmNk3SAkn/Q9IfSLq1z90DwHmCcQgAGFjGmNnJwLtU0u8klZ58zszCZnZpx+tDJB0ys7Ckr2fyIWY2QlLAOfe0pL+VdJkn3QPAeYIrwQAwsNRKutPMHpW0W+3zwOsk/cjMhqr97+1/krRL0gpJb0hq6Pg6JIPPKZf0CzM7eTHkb7xpHwDOD+Zc19+8AQAAAIMb4xAAAADwHUIwAAAAfIcQDAAAAN8hBAMAAMB3CMEAAADwHUIwAAAAfIcQDAAAAN/5/zkedChEcCq2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for x_name in [\n", + " \"temps\",\n", + " \"reps\",\n", + " \"lengths\",\n", + " \"min_lengths\",\n", + " \"beams\"]:\n", + " \n", + " fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + " fig.set_figheight(8.27)\n", + " fig.set_figwidth(11.7)\n", + " sns.scatterplot(y='global_consisentency', x=x_name,data=df[df.names == model_selected],s=500)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5xcVcH/8c+507fXbHoPVXwAY0N/j4oVHkX0oTdDbwkgNSiEJl0CoXcU6RZ4RLBgwy4EVCC0hPS+fXd2Zqfd8/tjd8LuZntmZifM9/167cvszr03JzFkP7lz7jnGWouIiIiISCFxxnoAIiIiIiK5pggWERERkYKjCBYRERGRgqMIFhEREZGCowgWERERkYLjHesBjEZNTY2dPn36WA9DRERERPLYK6+80mCtre3vtZ0ygqdPn87SpUvHehgiIiIikseMMWsGek3TIURERESk4CiCRURERKTgKIJFREREpOAogkVERESk4CiCRURERKTgKIJFREREpOAogkVERESk4CiCRURERCQjmhqbh31s/dZGYrFYFkczuKxGsDHmQWPMVmPMGwO8bowxtxpjVhhjXjPG7JvN8YiIiIhIdmzd3MAt193DxvWbhzy2fksDP7zvSdas2jBmIZztO8E/AL4yyOsHAHO6P04B7sryeEREREQkw7ZubuCiBVfwzFO/5LRjzx80hOu3NHDnzQ/x8L1PcvyhC8YshLMawdbaPwFNgxzydeBh2+UfQIUxZkI2xyQiIiIimZMO4Fdeeg2A1SvXDRjC6QD+6eO/AKC9LTxmITzWc4InAet6fL6++2vbMcacYoxZaoxZWl9fn5PBiYiIiMjA+gZwWn8h3DeA08YqhMc6gofNWnuvtXautXZubW3tWA9HREREpKD1DeCa2iqe/eMj7DP3Q0DvEG6ob9ougJ96/n6OmvdNYGxCeKwjeAMwpcfnk7u/JiIiIiJ5LBzu4J233gO6AvjxZ+/huWd+yw23X9YrhE895jyuufSWXgH8ixcf5dWXX+Oo4w/pFcIv/+1V2lvDORm/Nyc/y8B+Dsw3xjwBfBxotdZuGuMxiYiIiMgQJk6ewANPLuGCMy/ngcdv5oYr7+CF5//I3158iZvuuoIL51/Bv5a+wZpV61mzav22837x4qP86tnfc/v3H6BuwuM88MQSAGrH1/Clr36OmnHVORm/sdZm7+LGPA58FqgBtgCXAT4Aa+3dxhgD3E7XChIR4Hhr7dKhrjt37ly7dOmQh4mIiIhIFnV2xmlrbeP6y2/jhef/uO3rH95nj14hnNYzgNPqJtTywBNLqKwqp7SsJKPjM8a8Yq2d2+9r2YzgbFEEi4iIiIy9+i2NXHf5rb0COK1vCPcXwGl1E2p58MklTJnW7/oIo6YIFhEREZGMGiyA09IhnEyleO7pF/oN4LRshPBgETzWD8aJiIiIyE6opbmVP/72r4Me89q/3uTc0xbx6IM/HTSAAbZsqufZn/6Gxobhb728IxTBIiIiIjJi4yeM464f3oDP7xv0uNf//RaPPPDjIa93+HEHc+gxB1FdU5mpIQ5KESwiIiIiI1ZaXsLue+4yrBAeyuHHHcwpC46jNkcrQ4AiWERERERGqbS8hFm7ztihED78uIM5ef6xOQ1gUASLiIiIyCjVb2ng9hvvJxqJjSqEDz/uYE449ShOP+6CXlss54IiWERERERGrH5Lw7atkBecuJBoJMbtD1477PO/+o0vcuLpR3HwF45l+dsrOfWY83IawopgERERERmxpsYWnnnql9s+nzF7Cv959c1hn7/qvXUYY9htzzkArFm1nqce+T+aG1syPtb+KIJFREREZMTG1dVw051X4DgOv3jxUd5atpzDjjmIk+cfO+S5k6ZMYMl9V7NyxVpuuP0y9pn7IQ446PMcffwhVFZX5GD0imARERERGYXK6gr2+ehe/OpvT/LWsuV8eO89uHD+FXztm18aNIQnTZnAD35yG9dedgt+v687hC/nosvOorZOq0OIiIiISJ5LplL859VlfHjvPTjjWxfy0t/+xfGHnz1gCKcD+IqFN/K7X/2ZU489vzuE15BIJnI6dkVwH82NrbQ0tw7v2OZm2tvDxOPxLI9KREREJL/Ub23k1Zdf2xbA7y1fDUBjfVO/IdwzgP/yh38CEI/F3w/h5WvYsrk+Z+M31tqc/WSZMnfuXLt06dKMX7e5qZVoNEo8FqeiqpyKivKBj21uJhFL0djQxLjxtZSWFeP3+zM+JhEREZF8tG7tRrweT68A7qm6toqHnlzCqvfWUlxazLQZk3sFcE/+gJ97fvR9AkE/k6dOpKJy4AYbCWPMK9bauf29pjvB3dIBfNox5zPv0LO67gi39H9HOB3Al5x3Lcd+80xWrVhDe1uH7giLiIhIwfB6Bw5geP+O8IxZU5k1Z9qAAQzv3xGOdcbxeHKTp4pgegfw6pXraGpo5vjD+g/hngH8j78sJR6Lc9pxFyiERUREpKAk4gna28KDHtNY38S8w87i7JMvGTCAe16vvr6RWCw3c4MLPoL7BnBazxBubW0HoKWltVcApymERUREpNBMnT6ZB55cwri6mkGPa2po5rVXlw16jDGG629dxMc+sQ81tVWZHOaACjqCW5vb+g3gtHQItzS1EA+3kYonWXTBdb0COK1nCIfbIrkYvoiIiMiYmjZjeCE8mG0BvN8+VNVUZnB0gyvoCHaty2UXXN9vAKc1NTTzrUMWsHrtFr573rX87U8vD3hsPBbnzHkX4fEW9G+riIiIFJAdCeGxCmAo8Aj2+X1ces151I2vHfS4poZmDjngpEEDGMBxHK655bsk4rld505ERERkLI0mhMcygKHAI7ikpJiqmkoeePKWIUN4KI7jsPjuK/nwvntSMy53u52IiIiI5INpMyZz72OLh338iWccxX6f+diYBDAUeARDVwhPnDiOh3YghB3HYcm9V/GxT+5NrQJYREREClD9lgZu+t6dwz7+6ad+SVNDE6lUKoujGljBR3AqlcLtjFAab+XBJxaPOIQdx2HJPVfyoZl10FJPKqGVIURERKSw1G9p4PKLbuTPf/jHsM9JryO8bvWGMQnhgo9gUkk61q0m1RmlLNHOg08sHvZ8FmNMVwDPGo/paCXe0oRNaD6w5F5zUyutLW24qRSpRJxUZ5REezvxtlYS4TZSnVHcRBw3laK1pY2WpuFtDS4iIjKU0QRw2liGcMFHcDIawaaSALjxOKGgn/ETxw3rXL/fx4zZ0/Cm3g/f6NZNuhssOdXc2MIP732C/3vql7Q2t2BTKTAG4/fh8QdwfH4wBjeVoq25lWd/9hseuucJmhpbxnroIiKyk9uRAE4bqxAu6AhOxePEGrcCYBwPyco6Lr3oJl7715vDOj8Wi3PcoWfR7BThCRYBkGhrAWuzNmaRnpobW3j84af51Gc+xt4f3Ytnn/4d4Y7OrjvBLU3EmhuItzSR6owS7ujkuWd/z3/tswef+sxHeeKHTyuERURk1IYbwMYYgsHAoMeMRQgXdASDJRWJbAvgRRffzF9ffGlEV2hqaGbe4ef0CmE7RhO8pbCkA/jj++1LMBSkszPGPh/di7/9eSnxpMX4/HhDRRifn3jK5R9/e5UP770HkUiUouIiPvrJvRXCIiIyaq0t7bz8938NeowxhutvX8TTv/3hkNNNG+ub+O2v/pSzKXuFHcHdd2xHG8BpfUM41akd4yS7egaw1+flioU38vC9TxII+Nn/i/sRDAUxjoPruhjHIRgM8bnPfxJ/0M+jD/2URedfRyDgVwiLiMioTZhcx32PLR7wLm86gD/2iX2YNGUCDz41+DrCJ5x2FF8/5CtUa9vk3NjRAE7rGcLWmAyNTmR7Lc2tvQL4qu/cxLtvvceffv937lz8IO0trbStfJuOtSuJrF9Nx9qVtL33Nm3NLdy75GH++MJfWfHuKi6/6MZtIfz4D3+mh+VERGREiouLmL3bzH5DuGcAp9cBnjp98oAhfMJpR3H0Cf9L7Q5svzxSBR3B7R2dXHPlnUMGsOM4nH3hScPaWW7e4efQkVAES/ZYa/nM/p/oFcBpv//NX7j68jtIVY4Hp/s/b+OQqhzPdVfdxQu/fHHbsT1D+P997hO4mssuIiIj1F8I9xfAaf2F8FgEMBR4BIeCfk48/UhCoeCAx6TXAT7k658Z1jrCR8/7Bh5PQf+2Spb5/X4sbBfAaT1D2Hi8XQH8vbt44Zd/2u7YdAg7jiEQ8Odg9CIi8kHTM4RDRaEBAzitZwiPVQADGLsT3v2ZO3euXbp06Q5fJxWP01G/hbVb2zjxyHOJRjt7vb5tI4zudYA9wRBtvlJOOOJctmyu3+56C84/gW8c9DkqJ9Th8Q/+FKTIaLU0t3LK0efx9rLlgx63/5c+zdWLL2bRBdf3G8A9zdl1Jg8+tYTyirJMDlVERApIR0eEZCJJKpka1lbIDfVNWNfNagAbY16x1s7t77WCv2UZKi9nUqmXBx5f3OuOcN8ABnptqNH3jnBXAH+WoJMCNB1CssfrcTh5/jGYIeae//43f+Fzc785ZAAbYzjxzKNxNJddRER2QHFxEeUVZcMKYICa2qoxuQOcVtgR7BgcfwCTivcK4f4COK2/EE4HsNNaT6h2PLDz3V2XnUco6OeTn96XG29fNGQId3bGBn3dGMM1iy/m/33moxSF9O6FiIgUjoKeDmGtxU0msYkYbSvexhSVsqE9SVNjC3vOGLddAPeUnhrx5z++xJf2/yhOaz3B2vH4q2pxPA6O17fD4xPpTyoRJ9ZYTzQS5ZU313LB/CsZzX/H6QD++N6zKQr6CdTU4fFrXrCIiOy4VDwG1pKKxUjFOgGL4/XhDRWB42A8XhyPJ+vjGGw6REFHMHTNC7bWkmhpJLplIyZUQsoYnEj7kOd6giGSvhCmvQlvUQnFU2cCVvOBJatSsRjtK9/BTcSxJRWjCuGeAeyEmzFeL2WzdscT0J9dEREZPTcRJ97eRqx+c3f8bs94PPgrawjWjMt6DGtO8CAcrxdjwF9ZTahuIjYaHlYAQ9fUCNPehLe4lOKpM7FuCmMK/rdUss7iJuIAmHALH9lj6rCmRqT1DWAAm0yiaTwiIjJabjJJMhqhfeW7RNavHjCAoWtn3VjDFlrfXUa8tXnb97RcK/hic1236wfW4quoonTWrjjDfUvYGEITplA8ZTpuPI5xnFG9LS0yEjb9Z7ab6Wjj45/cm+mzpg7r/MlTJ/Lpz3wMJ9J7uo+2+xYRkdHoCuAO2la8NWj8bn+iS2T9aiJbNpIagxAu+AjGdelYuwoLGNv1f2TpzF0pmTYLb0np+xsO9OAJhgiNn0T5Lh/CW1KCm0jg+HxENq4F6yqEJbt6/vnq3gjjyktuYdWKNcM6fd2aDSy66MbeG2oA1rqDnCUiItI/Nx4jvHpF7+9PIxBvaiDWsJVUIpHhkQ3Om9OfLc9Y18VNxElGwrSvfIfS6XPwBkOkohGs61I8aRpguuKg+/9Y43gASyoeJ9HWiq+sDOtAZNM6Em2tdPr8BGsn6AEjyZ6+O8FdfTcvPP/i4Of08YcX/grAJVfMx9O8GVy3+8+2iIjI8LmJOOG1K0cdwGmd9Zvxl1eCL3cLCxR0BLupFJ0NWwCwiQRtK96iaMJkvKXlYC3WTZGMRrvmqrguOAbjePGGinB8Phx/gFQyQWTtym3zWWLNjQRrx4/lL0s+4Izj7FAAp/UNYUWwiIiMhOu6xJobceODL8c5XB3rV1MyfXbOFhgo6AjGuiQ7wj0+t0Q2rsPxbyVQXYe/tBRvUTHGKcVaizEG69quKQ+JONGtm0l29HmIznW7PkSyJJWyuNUTuO6qu0YdwGnpEL70ygWkrEUZLCIiw2WTCTobtmbseqnOaNeD2org3LDJ7eefuPEY0U1riW4C4/PhDRZte+jNjXUOOek7FevEEwxla8hS4NrDEa793tABbIxh/y9/mt//+i+DzlP/wwt/BWO49JrzqAkGBzxORESkJ5tK9dtR0LXqlr+iGsfn27Z6kbV0vcsebqOzfgs2ldzuvFhzI04whNPPM1mZVtgRPIz5KzaRIJEYeNOM/rgD/IEQyZQZMwdfCcIYw7U3f4f99vsvDvja/kOuIzxtxmRt9i0iIiPS6930bqEJk/GXVeAmEsRbm95f/swarLE4jgdfaRlls3fHTcQIr1nZK4aTkY6usM7B3WCtDtGHEwxhQsXDOtZ4fTgl5f28oN9WyZ7q2iqOmve/nLLg2H5fTwfwx/5rFu6WdUOuIzzvlMOZd+oRVNdWZXPYsgMikeiwV52JxeLEYmOz5qaIFJZUZ2Tbjx1/gPJd9sQbDBHZsgE3ESdQVUuwZjyB6nEEamoJVdcRrB2P4/UTrd9EoqODsjm746+s3nYddyRLrO2gwq41Y3otEeUEQ7Q6xWyKgCkqGfxUr494WS3L1jRiSyp6vebRW8qSZVU1lRx9wiGcPP+YXl/vGcDpjTAG21Bj3imHc/zpR1FVXZmzscvIhMMd/Pn3/2Ddmg1DhnA8HuetN97lzTfeIR5XCItI9rju+0vCOoEQpTN3obO5AYxDsKoOT1ER0P0wN3Ttx9T9Y+P1EaiuxV9eTmf9FkK1EwiMm9h1WA6XmS3sCLbg7b7rmw7geUd8m+OP+Dabwu6AIZwO4DNPuoQzjl/I0mVreoWw483d8h5SuMpKijjmxPdDuL8ATusvhOedcjgnnH4UZaVFOR+7DE843MFf//gSU6dP4tWXXx80hLsCeDkd4QjRjihvvvGuQlhEssZxHIzHC45D6YzZxFqaCFRUY7xewNK5ZRNt771N24q3CK9aTnj1ctrfe5u25W8S2bAatzMKGAJVNSSjEYIVVfgqqjFZ3EK5L7Mzbuwwd+5cu3Tp0h2+TqKzk1QkTGfDlm0B3FjfBECoKMRDjy9mQomDjbw/56VnAL/71ntdXzOGG267lLl7TsNvXIomTsMTyM2TjVKYUokEifZWPIEg4Wicx374NDNmTuk3gHuyJRW8+uZalr3+Lt86+TBKQj5SsRi+snI8+sdbXkkH8KQpE/B6PTQ2NFO/tZF9P7oXkyaN6zrIWsCQSCZ55+1VdIQj+HxeMIZkIkGoOMQeH9oFv9YtF5EsiLU24/H6SMU78XTfVIxu3kCirWVY5zv+AMWTp2O8PtxEDE8gRGTjWoomTcXjy8zfW8aYV6y1c/t9rZAjuLWlleJQgA3rNzPv8PcDOK1vCPcXwGnpEN7v0x/BFwgQLNLqEJI9qXgM67q0r3gb66ZIjZtKMBDAb1LEGraSjHb02VnO4A0VEageR8LxEo3E8NSvBcehbPbuGGPwBDSNJ1/0DGBrXb5/1Z185gv7sfteuzBr9jQqy0sgmcBiMY7BGi/NbR2sW72BZ378S6xrOfjwAxXCIpJV6e9FGAOpFO2rl3ctcTZCRROn4CutIBXrxPF3rcqVKYrgAVhrWbt6A/MOXbBdAKelQ3hSRYBOb6jfAE4zxnDjHZfzqf/+KMWlw3u4TmSk3GSSVLyTzs0bSYTber3mCRXjr6zGGyrCOKZrDpYBXEsyGiHe0kgy0tHrHG9xKaEJk3H8ATzewl4wJh/0F8D/Wvo6AN+56hy+9OVPE3BjuJ1RrOtiPB48oSIi+Lnzlh/wk8eeBeBr3/yyQlhEsmpbBAPt773T75Jnw1U0eRq+4lJwnIzdBYbBI7igv+O1NLfyve8uHjCAAaKRKMcfeS7XL/kuty9+aMAAhq6ovvT86/j1357MxnBFgK41Fg1muwAGSEU7iEY7+jlrYMmO9q67xm6KAv8rIS9Y1zJ1+iSSyWSvAAa45tJbMNby+f/eG6e9e+lGY4h5gtx15/sBDPDsz34NwMGHHwgudEZjimARySxjMI5Dx9qVOxTAAJEN6yibsxvkcL+xgn4wLpVyueTqc5m9y4xBj4tGopx18sB3gNOCwQC33n81yWQqk8MU6c0YovWbM3rJzvpNGb2ejF4ymeo3gNOuXrSE3/3p37ilVWAMbkUdd935BD/uEcBpz/7s1zzz5POkUilc7WQpIplmIRlu3+4dxtFdyyWycR0Gk7P9Fgo6ggMBPy1NLSy+56ohQ3gowWCA2x68loqq8q63oEWyxVoS7SPbwGUoifbt7yrL2Eglk9z0vbv6DeC0dAj7Js8aMIDTnv3Zr/n5T39FKqUIFpFMsxm9KZMMt2OtO5y9zDKioCO4tKyEmXOm09rcukMh3DOAq6urqBmnTQcki6yFTN/Vs3ZYOyhK9nl9XqbNnDLkcVcvWsIxh5w1aACn7brHbPx+rf4hIpnjui7WdTO+uUW8uZFcbWFa0BEMOx7CCmDJNZvKznQbdxRP9Erm+XxezrnoZL5x2IFDHrtqxZohj1l4+QK+evAXBtwxUERkNIwxmZkG0Ucy0pH5Gz0DKPgIhq4QnjhlPI0NTSy+5yqmD+MuDIDX6+kK4MpyKirKqa7VrlsismP8fi9FHsuCs48ZVggPZuFl8/nS5z5CUcCH16MIFpHMSmUhglOd0YxfcyCKYKChvokrFn6fd5atIBD043iG+dtiDKVlJYDlpCPPGda2piI7yjjZ+c82l7v0yMAcINawFad58w6F8MLL5vOl/efitDUSa6zH69X/vyKSOdbabcujZfS6OXyIt+AjuKG+icsvuoG331jOJz79Ec468TusXD70W4wAyUSS4w87m3g8wZxdZzLv0AUKYck+x+lamDyTupe5kfyQjITB2lGHcM8ABki0t+Zqip2IFAjHcbLyfSOX34sK+rteU2ML1y1awttvLOfeR2/iorOu4p03V4zoGtFIlJOOPJfjTzuSvff9UNfGGw0Db1srkgm+ktKMXs9bXJLR68no9dptyVqc5i1cuOhMqqorhnX+vh/9MP9z0P7bAhjATcT14KOIZFw2vnd4gqGchXBBRzDWcuTx/8u9jy0eVQCnRSNRTjqqK4TPuvDknN7Kl0JkCNTU9fqKW1SGCQ1vl0ITKsYtKuv1tWBNHTl7HFcG5Sbi739iDG7FOBZfczdNjS3DOv/Vl1/jV8+92LWOcA96h0pEMs07zO87I7pmcQmONzer2RR0BFfVVDJ56gQuWnDlqAM4LR3Cc3ad1bVWsEi2WBePP4Cn+y8fW1zOm6vr2Rw1mNDg/yo3oWK2xhxeW7EJt7jrzqInGMITDGGt/vGWV4bYCGMwvTbUSF8u0+MTEXEcPIFgRi8ZqKzO6PUGU9AR3NLUyqXnXTdkAAeDAa76/sJh7Sx34hFn0xGOZHKYIr3YVArrWoonT8OWlPPGe5s56+RLOP6Ic9gcZcAQTgfw8Ud8m3NPv5z/vLset6SC4snTsa7t/Ta8jBnH59+hAE7bLoS1RJqIZJjH7ydYNzFj1/OVlOX0Ie2CjmDXTfHti08ddK5deh3gj39q3yHXETbGcP4lZxKPxwc8RiQTols20h6J8cbKrZx96iJc1yXSER0whHsGcLi9A9d1Oe+MK/jPuxtpj8a1bXIesY6zwwGcti2Ey2tJuZoOISKZ5ysuxVuUgbnBxqFo0rScTYWAAo9gjIObcrnz4Rv7DeGeG2EUFRcNuqGGMYZLrzmPuZ/YG0dP2UsWGY+XzlA5//jrK5x98iW4Peag9xfCfQM4zXVdzjv9Mv7yx5eI+HI3B0sG1x7uHHYAT5sxechjrl60hN+/+CrhSGZ3dRIRAXB8PoqnzsB4vTt0neKpM3B8uf0+VNC1VlVdwcQp43FTqe1CuO9OcGXlpQPuLNczgEOhIDW1uZvPIoWnpT3C0n/+m4vPvrpXAKf1DGFv1bh+AzjNdV0uPf86/vnXV2lp1zSevGAty99ZNeRhCy+bz2NP3zGs5dOWvf6u5gSLSNY4Pj9ls3bDjPJmSvGUGfhKSnO+VGdBRzBAZVUFk6ZM6BXCA22F3N8Wy30DuG5C7Rj/iuSDzuv1cP8dj/YbwGnpEH721/8cMIDTXNfl/jsf1WYKeaI44LD47ivZ+yN7DnhMeh3gxPr3mH/W0YOG8MGHHsDZF55IaXFmH14REUkzxuAJBCmbszv+iqqhT+jmBIKUzdkDX1kFjmfH7iSPhtkZl82ZO3euXbp0aUav2dzUwoZ1m3A8HsJtYcory3oFcE/tbWFWLl9NeWU577y5gl33mK0AlpwJt3fQ3NTKWSdezHvLV+/w9abPnMIdP7ieyqoKSkozv9yNjEy8rZVIWxtJf4hzT1vEv19Z1uv1vhthYAypijpuv/VRnn7q+V7HHnzoAXz74lNxWhoonjQZbzCUq1+GiBQoN5nEJhNEG7aQaG3GplK9DzAGb1EJwXHju1Yn8vmzOh5jzCvW2rn9vVbwd4LT0neEU8kk5RWlAwYw9L4j/KG9d1cAS06VlBbj83m59YFrmTVn+g5dKx3AXq9XAZwn4tbw7zdX8fSTz7H4rit63RHeLoABrMXTsmW7O8IHH3oAZ190Mt+79GY2RVxSO9/9DhHZCTleL55giKIJUyjfZU/Kd9uLsjl7UDZnD8p3/RAVu+1FybRZ+EvLsx7AQ8n9vec8VlnVNSfYTblU1w5+Oz8dwqlUiopKrQssuTV+4jg2b9zKrQ9cO+o7wj0DeMKkuqFPkNxwHC5feBNNjS0EggFuuusKzjv9Mr7y1c9tH8BpPUK461PLWReezI3fu4MXnnuRjeu2cM8j3yegG8EikiOOxwM5XO5sNDQdQmQnZa3Llk0NJBLJEYdwzwAeP6E25w8jyMBinZ1sWLuJbx16Fq0tbRx48Be4cNF8iEWhYRMwyN/ZHg+2ehJJC+eetojX//0W02dN5b5Hvk9FVQWBYCBnvw4RkXyg6RAiH0DRaIzWljZ8Pi/3PPJ9xk8cN6zzasdVc+9ji/F6vbQ0txKJxrI8UhmJeDzJ5Cl1/OCpWyivKOP5Z37L1/c/jmee+T2p2sn46ybjr6jCEwzhBAJ4QkX4K2vw1k0mWlLLg/c8yYH/fdS2AL73h9dTWVVOLKb1y0VEelIEi+yEIpEob73+Lmd86yIwsHHDFtpa24d1bri9gw1rN+E4DvNPWMgb/36Ljo5olkcsw+V4PLS3R5hQVbwthFtb2rjl+vu44js3k3A8GK+XQFUNwZrxBCqqMR4PMddwxgnf4UcP/oREPNEdwNdRWZ11CwMAACAASURBVFZES3MboSKtDiEi0pOmQ4jsZNIBfOH8K3nkmTvYsrmBM7514aDLoPUVKgpx5w+uZ+KU8Rxz8Olcc/MlfGjv3Sku1qTRfNDREcXvMUS3bqQ+apl32DnstffuXHHNOXiaN0M/y+M5Pj/R4mpOO/5irLXc+8PrKHWSeCvH4fi8+HK8CL2ISD4YbDqEIlhkJxNu7+Dko89l8V1XjCqA03qG8LdPvYT7H7tFK0TkkZbmVkqKgkS2bKA16SUY8A4YwGnpEDYGSpwkwZrxxFMpioqKcjhyEZH8oTnBIh8ggaCf2x+8docCGCAaiXLGvIvYuG4ztz94PYHg2C5VI+9rbWnjpb+9ypOP/oLQuIlUlwaGDGAANxEnGGmioiSIv6qWyy+5mZXL1xLr1LxvEZG+FMEiO5n2tjDr1mzcoQBOS4fwmpXraB/mnGLJrtaWNv7511e4+pJb2G3P2TzxyLOEk4ayOXsQqKnDDLCrkuP3Exo/idIZu9DUEeexh3/OZ/f/JKceez7L31mlEBYR6UPrBIvsZPx+Pxef/b0hA3j6zCksvvsqzj/zMlYuXzPgcdFIlIvP+R5Pv/CDDI9URsNxHG6/6UEW330lt95wH/9a+jrvvLmcNavWc8jRX+MrB/w3Ho+Dm0yCtWAMjs9HZ2eMHz38DK++9AbWuvz9z0v52je/zBXXX8D1V9zK7Q9epyXSRER60JxgkZ1MR0cHmzfUc/xhZ9HS3NrvMel1gCORToqKgiw48eIBQ7isvJSHnrqViZPHU1yiuaNjLZlM0rC1iYsWXMm/lr7e7zHnLDwVf8DPjx/9OedcdAq/+/Wf+flPftXvsV875MucfcEpjBtfk81hi4jkJc0JFvkA8fsDOB7DQ0/d2u9uhekA9ni9PP9/v8Xr9XLbA9cyc8607Y5NB7DH4+APaPWAfNDW2s7Cs68aMIABbrnuHuKxOLfcc9WgAQzw7E9+zd1LfjDgP5hERAqVIlhkJ+PzeZk8dVK/IdwzgC+/4HoeuusxFp59Vb8h3DOAp0yfpCW08oTjOEyfMWXI42657h7OOfXSQQM4bfauM/Hk+falIiK5pggW2Qn1F8J9A/gff30FgH+9/Pp2IawAzl9er4cTzzyG//nGF4c8dtWKged6p5114Ul89gv7UaQ1oEVEetGcYJGdlLWWrVvqiXREcV2L3+/bLoB72ueje3HdkktJJpLE4nEcYyguKaa2rhrH0b+H80VHOMJXP3M0l1x9Lr/91Ys89/QLo77WggtOwufz8suf/477HruZsvLSDI5URCT/aU6wyAeMtZY1q9Zz+P+cwpM/egbHcfB4Bg5g6HFH2OfB4zg889TzHHrAiaxeuQ53iPVnJXeMgVsfuIZFF1zHF77yGQ465Cujus45C0/F5/Py6IM/5cY7rlAAi4j0oTvBIjuZdADPO3QBTQ3NABzw9S+wZdNWXn3ptSHP//C+ezJtxiSe/elvAKioLOcHP7mN6TOn6I5wnoh0RHhv+Rr+9uJLfPWbX+b2m+4f0R3hsy48mQMP/iJ33/wQJ80/lqnTJ2VxtCIi+Ut3gkU+QDo6IpzxrQu3BTDAL//vt9sFcN34Wu764Y1MmFTX6+uvvbpsWwBD1/a8px93AdFINLsDl2ErKi5ixqwpfPpzn+Dog0/lnIWnUlVdMaxz9/3oh/n4fvsy75D5nLxAASwiMhBFsMhOxrou19+2iFDRwA861Y2v5f4nbuHjn96X+x+/ebsQ7ikUCnL9rYtIJlPZGK6MQqwzxppVGzj12PP47lXf5rYb76epsWVY57768mu8/I9/c9gxX+fEI85h3ZqNWR6tiMjOSREsspMpLStl+szJ3P/4zf2GcDqAJ06uw+v1Mn7iuAFDOBQKcs8jNzFj9lTKK8pyMXwZQqwzxop3V3Pqsedx2bXn8+Lv/j6sZdB6uuW6e3AcpzuEz1YIi4j0QxEsshMaKIR7BnB62TOfz9dvCCuA81MimWT+8QtHHcBpPUP4/DMW0dbanuGRiojs3BTBIjupviHcXwCn9Q1hBXD+MhZ++NPbdyiA02657h48HofFd1+ldYJFRPrI+uoQxpivAEsAD3C/tfa6Pq9PBX4IVHQfs9Ba+/xg19TqECLva29rZ82qDZSWlfQbwD0lEgk2b9xKc1Mr02ZMVgDnoZbmVm77/v38+JGfD3nstBmTWbNq/ZDHXXL1uRxw0OcpLSvJxBBFRHYaY7Y6hDHGA9wBHADsARxpjNmjz2GXAE9Za/cBjgDuzOaYRD5oSstKmTZ98pABDO/fEZ4xU3eA85XrWpa/tXLI4xZecTaPP3sv3zzif4Y8dtlrb5NK6cFHEZGesj0d4mPACmvtSmttHHgC+HqfYyyQ/m5cDugJDpERKi0vGfbWxz6fj9Jy3RHMV+UVpdxw+2V8eN89Bzxm4WXz+dJn9yG++m3OnH8U3zjswAGP/Z+Dv8iZ555IRWV5NoYrIrLTynYETwLW9fh8fffXerocOMYYsx54HljQ34WMMacYY5YaY5bW19dnY6wiImMu0hHl1GPP59yLT+s3hBdeNp8v7T8Xp60RrMXTsoX5Zx3dbwgfePAX+OKBn+GCMy+ntbktF8MXEdlp5MODcUcCP7DWTgYOBH5kjNluXNbae621c621c2tra3M+SBGRXIjHE5x+zjwuu/B6brnnKvb+yPsh3CuA0wYI4W8cdgDnf/cMFp1/PedfeiY+vzeXvwwRkbyX1QfjjDGfBC631n65+/OLAay11/Y4ZhnwFWvtuu7PVwKfsNZuHei6ejBORD6orLWE29oJBvzEGjYTMQHOX3AVX/nq57YP4J6MIVVRx+23Poq1lrPOOZbigAdTVIoxhkBRUW5/ISIieWCwB+OyHcFe4F3g88AG4GXgKGvtsh7H/BJ40lr7A2PM7sDvgEl2kIEpgkXkg8pNJEjGY9h4jI51qzAeL7ZmEm40PHAAp3WHMICnZQtYS9ns3XGtxRsM4Xg8OfgViIjkjzFbHcJamwTmA78G3qJrFYhlxpgrjTEHdR92HnCyMeY/wOPAvMECWETkg8xaF4/PR8eGNV2fp5KwZc3QAdx1Mp7mzXiaN0P3X6PhtSvx+Hxd1xERkW2yPkmse83f5/t8bVGPH78JfCrb4xAR2SkYh1hTPbhuRi7nxmOkYp14AtosQ0Skp3x4ME5ERNKsS6wxsyvgxOq30LUapYiIpCmCRUTyibXYZCKjl0xEwhm9nojIB4EiWEQkj7iJeBYu6m6bIywiIl0UwSIiecTN1vbGimARkV4UwSIiecQYM9ZDEBEpCIpgEZE84vgDWbqw/roXEelJfyuKiOQR4ziQ4bvBnkAQLb8uItKbIlhEJM/4yioyej1/ZQ3G0W5xIiI9KYJFRPKIcRxCteMzeEGDv6JSWyaLiPShCBYRySOO1wdeL/6KqoxcL1Q3CeieZiEiItvob0URkTzjGIfQ+Mk4Pv8OXcdbVIK/ogrH483QyEREPjgUwSIiecbx+cAYSmfuMuoQ9oSKKZ46EwwYTYUQEdmOIlhEJA85Hg8WKJ2164gflAvUjKNk2iywLp4dvJssIvJBpffIRETykHEccDyk4jGKJkzGramjc+smEuG2AU4w+MsrCY6bgLUW103hC4ZyO2gRkZ2I7gSLiOShZDLJ2jUbOfGYC1mxfA3RjgihiVMo320vSmftRtGkqYQmTKZo8jTK5uxB+a4fIlhbR2tzCy//8zVOOvoCNm/cOta/DBGRvGV2xgXU586da5cuXTrWwxARyYpkMsna1Rs44bCzaGpswXEcPvvF/TjptCOpqa7AR4ri8hKMcXBTKVrbwhiPj/feW8c9tz3Cv5a+DsCsOdO56+EbGT9x3Bj/ikRExoYx5hVr7dx+X1MEi4jkj74B3FdRcYjd95zDzDnTCYUCtLeFefftVSx/ZyXxWHy74xXCIlLIBotgTYcQEckj0UgnJx5xTr8BDBDpiPLKS6/x5z/8gzm7z+ZXv/gjy157u98ABnhv+WrOO30RrS0DzCUWESlQimARkTySSrlcdNkCjDEDHjN+4jgeeOIWDjzo8zzwxM2EigZ+AC5UFOLiK88mENAqESIiPSmCRUTySEVlGZ/49Fyuv23RthCum1CLvzti0wE8ZdokfH4fc3ad2SuEy8pLKa8oA7oC+IEnbmb2LjMIhoJj8wsSEclTimARkTzTM4R33WM2t95/DTfddQVTpk/aFsBpgWBgWwhPmjKB2x68llsfuIZJUycqgEVEBqEH40RE8lRbW5j6LQ2cevR57D33Q1xw6XzqJtT2e2ysM0ZjQzPnnrYIgMX3XElVVYUCWEQKmh6MExHZCbW1tnPq0eexdUsDv3nuj9xy3T00N7X2e2x7ewfnnX4Zb77+Dm++/g7nnXYZ4XAkxyMWEdl5KIJFRPLQ+nWbmPe/89m6pWHb15575gVuuOK27UK4ob6JBSdczLLX3t72tWWvvc2CEy6mob4pZ2MWEdmZKIJFRPJMfwGc1jeE+wvgNIWwiIwVN5EglYiT7Iz2+IiQisVIJRJY1x3rIeId6wGIiMj72lrbOf6QBf0GcNpzz7wAwHeuOmfAAE5b9trbnHfaIm578FrKykszPl4RkZ5SiTg2lSIV6yTR2kwyGsGNx8BajNeLN1SMt7gUX1k5xvHg+LwYMzb3ZPVgnIhIHgm3d/CH3/yF7557zZDHejweUqnUoMf4A37uf/xm9thrF/x+rRUsItlh3RRuMkmyI0xk03psMjH4CcYQqKolWDOuO4Z9WRmXHowTEdlJlJQW87kvfZqrF39nyGMVwCKSD6zr4iaTRDauo2PdqqEDGMBaYo1baV/1Lm4iTjIxjHMyTBEsIpJnRhLCA1EAi0iuuMkEHetWk2jrf7v3Qc+Nx2lf9S4k4rjJZBZGNzBFsIhIHtqREFYAi0iupOJxOus3k+xoH/ggj6frYwA2lSK8diXWHfzdrUzTg3EiInmqZwgPZ44wKIBFJHestdhEnFhjfa+vewIhiiZPxfH6AYtNT91yHIzjYFMpOhvriTe9f54bj9HZsJVgTR2eHP3dpQgWEcljJaXF/PfnP0lVdQVNjUO/1bjLbjOZOXuaAlhEss5NJIhu3fT+FzxeymbtCkBn/WYSbS3vB3CaMXiLSgjW1hEaN57o5g3EW7qWcYw1biVYMy5Xw9d0CBGRfNZQ38Tpx10wrAAGeOM/b3PtoiUD7iwnIpIx1pJo7/q7JlBTR/mcPejcuom2d5cRb27cPoC7z0l2tBNevYL2VcsJ1o6nZOYuva6Xq5XLFMEiInmqob6Js068mDf+M/A6wP0ZaGc5EZFMSsW6tmb319QRrKqhbcVb2+7qDocb66Rt+ZvYeJzS2bsDkGhvy9kDcopgEZE8NNoATlMIi0i2JTvCeELFhKrH0bbyneEtjdaPjvWrceMxiqbOJBWNQI52k1MEi4jkmR0N4DSFsIhki9u9NnDJtJndawPv2N3bjnWr8YWKMD4/mAwNcgiKYBGRPNLU2DKsAPYH/Hztm18e8nrpEG5pVgiLSGb5yitIdoRJRsI7fjHrEtmwluLJ03b8WsOkCBYRySMej8N/feRDgx6TXgbtO1edM6x1hD/x6Y/g8Q68RqeIyEg5joM3UERnz9UhdlAi3IYxOboNjCJYRCSvlFeUcdrZ3+LoEw7p9/We6wAXlxQNuaHGVd9fyOe/8t+UlpZka8giUqCsdUnFOjN6zVhzI3hys4KvIlhEJM8MFML9bYQx2M5y6QAuKS3OybhFpLCkoh0Zv2ayIwz9La2WBYpgEZE81DeEB9sJrr8QVgCLSLYlOzIfwanOKJCbdYK1Y5yISJ5Kh7DP52X/L/+/QbdC7hnCrusqgEUkq1zXxWZhKbNsXHMgimARkTxWXlHGiWccTagoOORWyCWlxXz2S5/a9mMRkWxxHAfjZH5CQTauORBFsIhIniuvKBv2sXoATkRyxVtUTKypPqPX9ARD5GqhYM0JFhEREZER8xZl/h0nb1ExniHe9coURbCIiIiIjJzj4ASCGb1koKomo9cbjCJYREREREbM4w8QGjc+Y9fzlpSCNssQERERkXznKy7LzLQI41A8aRoef2DHrzVMimARERERGRXH76d4ykzMDu7yVjx52g5fY6QUwSIiIiIyel4vpbN2xXhHF7FFk6bhKynFGeX5o6UIFhEREZFR83g8GJ+fstm74yurGPZ5jj9A2ezd8RSX4vhysyJEr58/5z+jiIiIiHygbN64lROPPh8qaiibswf+iioYYOMLb1ExJdNmUTJjDjdcex9//9u/aG5qyfGIwVibm/2ZM2nu3Ll26dKlYz0MERERkYK3Yd0mTjry22xYtwmAD++7B9cvuYTx42vAWtxkErAYjxfjOMQ649xzx6M8dPfjQNed5CX3X81ee+9OZdXw7yQPhzHmFWvt3H5fUwSLiIiIyGj0DeCeSstKeOipW5k2czKBQICtm+u5cP6VvPrya9sdm60QHiyCNR1CREREREZssAAGaG8Lc/xhZ7Fm5XoatjYOGMAAqVSKs0/6Lq//+y2aG5uzOextcvsYnoiIiIh8IBhjcAaY95uWDuG68bWseHfVENfrfshuiGtmiu4Ei4iIiMiIlZSVcO9ji5kybdKgx7W3hYcMYK/Xw20PXseuu8+morI8k8MckCJYREREREZs4/rN3H3LQ9z76E1DhvBg0gFsHMNDdz9GS3NrBkc5sGFHsDHmJmPMntkcjIiIiIjsHKprKpkwcTx3L/nBqEO4ZwDfev19HHfy4Xl5J/gt4F5jzD+NMacZY3IzQhERERHJO7Xjqjn0mINGHcJ9A3jJfVdTN6E2iyPubdgRbK2931r7KeA4YDrwmjHmMWPM57I1OBERERHJXz1D+Lmnf8NdD9847HNPPONops2YPCYBDCOcE2yM8QC7dX80AP8BzjXGPJGFsYmIiIhInqsdV80R3/oGXz/sQB6+78lhn/efV5fR0RHl7h/dkPMAhpHNCb4ZeBs4ELjGWvsRa+311tqvAftka4AiIiIikt+SiQTL317FggtO4kc/u2PI4487+XCuueUSiotDbN3cSCwWy8EoexvJneDXgL2ttadaa1/q89rHMjgmEREREdlJbN1cz7tvr6K0rJgvffIwtmyuHzSEjzv5cA475iCO/Oop/PSJ5ygqDrFm5fqch/BIIriFHptrGGMqjDEHA1hrc7OWhYiIiIjkjZ4BfPKR3yYaiXLh/CsHDOF0AJ94+Dls2VzPA3c8MmYhPJIIvqxn7FprW4DLMj8kEREREcl3fQO4s7MrYF3X7RXCHo+H8oqy7QI4baxCeCTbJvcXzNp2WURERKQAGcN2AZyWDuEbbl/EL/70GKWlxbQ0t24XwGkP3PEIAIcf83Xa28IEagNZH/9I7gQvNcYsNsbM6v5YDLySrYGJiIiISP5qbQ33G8Bp6RBe9p+3aG8LDxjAaQ/c8QjPPfMCBpOtIfcykgheAMSBJ7s/YsCZ2RiUiIiIiOS3svJSPvKJvQc9xnVdLjjzCr75xXmDBjBAVU0l+3/5/xEI+jM5zAGNZLOMDmvtQmvt3O6Pi621HdkcnIiIiIjkJ4/HcMX1F/Cpz3580OOstUSjnYMeU1VTyUNP3UpZeSklpSWZHOaARrJO8C7GmHuNMb8xxvw+/ZHNwYmIiIhIfqquqcbjdYYVwoPpGcDVNZUZHOHgRjId4sfAv4BLgAt6fIiIiIhIAdrREB6rAIaRRXDSWnuXtfYla+0r6Y+sjUxERERE8t5oQ3gsAxhGFsHPGmPOMMZMMMZUpT+yNjIRERER2SlU11RTXFrMhYvmD/uc/z3if6iqKh+TAIaRrfP7re7/7TkFwgIzMzccEREREdkZNdY3ccpR5w77+AfufIxdd5/N3E/uTVV1Ht8JttbO6OdDASwiIiJS4NauXj/kOsB9ua7LhQuuZOnf/01TY3MWR9e/kawOUWSMucQYc2/353OMMV/N3tBEREREJN+NJoDTxjKERzIn+CG6NsvYr/vzDcD3Mj4iEREREdkp7EgAp41VCI8kgmdZa28AEgDW2gjkaF87EREREckr69ZsGFYAV1VX8OF99hj0mG0h/I//0NSQmxAeSQTHjTEhuh6Gwxgzi66tk0VERESkwPh8XopLiwY9pqqmkod+fBtL7r96yOXTvD4vVdUV+PwjWbdh9EYSwZcDvwKmGGMeBX4HXJSNQeUTay1uMoGb6PqwrjvWQxIREREZc+Mn1nH3wzcyc860fl9PrwM8dfokqmuquPKGCwcMYX/Az90P38hue86mtKw0m8PeZiSrQ/wG+CYwD3gcmGut/UOWxjWmrOuSSiRIdkZJdUZJRjpIhNtIdLR3fd4ZJZWI46aSYz1UERERkTEzUAj3DGCPxwNAbV1NvyHcM4BLSktyNvaRrA7xO2tto7X2OWvtL6y1DcaY32VzcGMhlUjgxmPEWxqJt7XgJuIYjwfH58fx+rBuimS4jVhTA6nOTlLxmO4Oi4iISMHqG8L9BXBa3xAeqwAGMNbawQ8wJggUAX8APsv7D8OVAb+y1u6WzQH2Z+7cuXbp0qUZvaa1Lm4iQTISxjgecF1izY0kI2FsKvX+gcbgCYbwV1ThKyohEe3AX1qO8XpxPLmZwyIiIiKSbzZv3MJ3z72WS64+t98A7ql+SwNXX3oLx5xwSFYD2BjzirV2br+vDSOCzwbOASbStSxaOoLbgPustbdncKzDkukIttbiJuIk2tvw+AN0bFiDGx/GM3/GoWjCJBxfACcQwPH6cLwKYRERESlMzU2tlJWXDBrAaQ31TQSD/qzeAR4sgocsNmvtEmCJMWaBtfa2jI8uD7iJBKloFJtK0r5qzfBPtC6RjevwlpQRqpuIdRys9WCMVo4TERGRwlNZVT7sY2tqq7I4kqEN+7altfY2Y8x+wPSe51lrH87CuHImlUxiE3FSsSjRzRtGdY1kuI2odSmaMBnXGDw+f4ZHKSIiIiKZNOwINsb8CJgF/BtIT5K1wE4dwbgu1rqjDuC0ZEeYeFsr/vIqrNfqbrCIiIhIHhvJBNa5wB52qEnEfRhjvgIsATzA/dba6/o55jC61iG2wH+stUeN5OcYLeu6WDdFx4a1Gble59ZN+MsqsMkkxufLyDVFREREJPNGEsFvAOOBTcM9wRjjAe4AvgisB142xvzcWvtmj2PmABcDn7LWNhtjxo1gTDvEppK48ThurDNj14w11RMcNzFj1xMRERGRzBtJBNcAbxpjXqLHdsnW2oMGOedjwApr7UoAY8wTwNeBN3scczJwh7W2uft6W0cwph1ibVe0ZlKsuYlg7YSMXlNEREREMmskEXz5KK4/CVjX4/P1QN/98nYBMMb8la4pE5dba3/V90LGmFOAUwCmTp06iqH0w1qSkY7MXGvbNbumWIiMJTeV6prvjsVgwHFwhrFcjYiISKEYyeoQLxpjpgFzrLW/NcYU0RWtmRjDHLo24pgM/MkYs5e1tqXPz38vcC90rROcgZ+367rJRKYutU2qM4o3VJTx64oMxqZSuKkkifY23ES864vGdL3lATg+H77S8q4dELWxi4iIFLiRbJt8MvAT4J7uL00CnhnitA3AlB6fT+7+Wk/rgZ9baxPW2lXAu3RFcQ5krKV7X1V3giWHrLWk4jGijVtJdXbi+PwYY0jFOklFwqQ6owA4Pj+pWCedDfVd231bbfctIiKFayS3g86ka47vPwGstcuH8RDby8AcY8wMuuL3CKDvyg/PAEcCDxljauiaHrFyBOPKO8bR286SG24qRSoaASwG6Fi/ut93NxJtXW+sGK+PYHUtbjxGKh7HGyrSNAkRESlIw74TDMSstfH0J8YYL0PcSrXWJoH5wK+Bt4CnrLXLjDFXGmPSD9T9Gmg0xrwJ/AG4wFrbOJJfxKgZk5Vg9QSDGb+mSF/WdUlGO8AYIhvXEd28YcjpPTaZILplIx0b1mIMJCMRXL1zISIiBWgkd4JfNMZ8BwgZY74InAE8O9RJ1trngef7fG1Rjx9b4Nzuj9yy4AkVkexoz+hldSdYciGViGOA8KrlI56C48Y6aV+1nNJps3ETCZyA/syKiEhhGcmd4IVAPfA6cCpdYXtJNgaVM44hUF2b0Uv6SsuxruZaSnalEnFIpQiveW/0c9Bdl/Ca9yCV6rqeiIhIARnJ6hAucB9wnzGmCpg80t3j8o5r8fgDGI8Hm8rMW8LB2vEYZyT/thAZOZtKEd2yccA/t8bjxRMMYozT9eBcLIpNJre/jpsisnkDRROngDY5FBGRAjLsCDbG/BE4qPucV4Ctxpi/WWu/naWxZZ/HIRHuoGjSNDrW7vizeL7ySlLxGI7fn4HBifTPTSawyQSJ9tZeX3f8AQJVtXiLS7CpJKnOTqybwjgOwdo6HI+XRCRMrLEeN75tvxuS4TZsIoHr9eJ4VcIiIlIYRjInuNxa22aMOQl42Fp7mTHmtWwNLCdci7+kjES4HX9FFfGWplFfyvH5CdWOJxmNACZzYxTpw7qWWGOPnQ6NQ9GESTiBIJ31W4huXj/gud6SUoomTsVNxIhsWg/dU3c6G7dSNDFDm9CIiIjsBEbyvr3XGDMBOAz4RZbGk2OWZDRKMholUFmNr6xiVFdxfH5Kps0ksmk9vpJSrRMsWWaJd98FdvwBymbtSqIjTHjVcpLhtkHPTIbbCa9eTiLcTtnMXXECXSuZJNrbyNa62SIiIvloJBF8JV3Lma2w1r5sjJkJLM/OsHKnY91KQrV1dGxYi7+iitCEKV27bA2Tv7ySkqkz6Vi3mqIJkwivW4Ub68ziiKXguRZcF8cfoGTaLMJrV5JobR7RJRKtzYTXvEfJ1Jk4gUD3dt96oFNERArHsCPYWvtja+2HrbVndH++0lr7v9kbWg5YC9YSXrOCkumziWxYSyraQdmsXQnW1GEG3ETA4CuroHTGHLxFJbStfJfguAnEw2FSM3bnvQAAIABJREFUkQ7cfh5AEsmUrncaDCVTZxJe+16v+b0j4Sbi20IYYzL2cKiIiMjOYMg5wcaYC621NxhjbqOf90uttWdlZWQ5lOqMElm/mrJZuxFe+x5t772Dv7yS4ikzMR4HNxHH/v/27jw8zqru//j7O1v2pGmarUlXKFCgspVFUUSxgIps8rAo0lIBWWQXLA8ILiwFlUWsIjs+bCK/R0QBURFckAcpCFKohdo1aZqmabNvs5zfHzOTJmnWZibbfF7X1au5lzn3dzKd9JMz5z4nHMbMgyeQBkCwqYGmjevARciesVt0OdrYWEwbQk+yyK5ILy6hva6WSPuuBeC4SEc77du2klFUmqDKRERExofB3Bi3Mvb38mQWMirMEx364ByhlmYa135A1ozdCLU00bZlc+eNcub3RxfAcI5IsCPag2wWHT5RVEpL5QaCXcZixsdZiiSDeb2k5U2m/oP3EtJee20NuXvso9s5RUQkpQwYgp1zv4n9/Uh8n5l5gGznXP934Yx1Bt70DMKtLUD04+HG1SujQx1m7o6LhAk2NRJqaY71BBv+7Fx82Tn4MjJp31ZLw4crd7oRTtNMSVJ5PLTVbE5ok+1bt5Cu3mAREUkhQ5kn+HHgfCAMvAHkmtldzrnvJ6u4ZPP4/AQmFdAaC8FxwYY6gg11mM+PLzMLX1YWHq8fF4kQbm+lrXoT4T5ufvNmZGqxDEkuBx3bd306v9501G8jvagkoW2KiIiMZUNJa3vHen5PBF4AZgFfSUpVI8TMCORN6nM2CBcKEmyoo626ipZNG2jdXEHH9to+AzBARlEpHr96giWJXAQXTuzNly4cjg7zERERSRFDCcF+M/MTDcHPOueCTICJRc3nI6N4akLa8mZk4svMTkhbIn1J1lRmmh1CRERSyVBC8M+AdUAW8BczmwGM7zHBgMfjJS1/Ct70jOE1ZEb2tNnqBZbkS1KPrXOaJ1hERFLHUOYJ/pFzrsw59zkXtR74VBJrGzEev5/smXOiiwbsCjNyZu+BJxBIbGEivUnSmHPz9DUvtoiIyMQzlBvj0oAvAjN7PO67Ca5pVHgDAXJn70nzpo1DWn0rvmqXNy1dN8TJiEjWvzP9+xURkVQy6BAM/BqoB94EhjdD/xjl8QfIKptBuKCQ1s2VhFqa+zzX/H7Sp5SQNmmyhkDIiPNmZBFu7fvf55DbS88Y0nLhIiIi491QQnC5c+7YpFUyRnh8PjzZuXhnZkSnRGttIdjciAuFwDzdpkwzn0+rw8koMNIKCmmpSFwITisoTFhbIiIi48FQQvDfzWyec+7dpFUzhsQXvPAG0gjk5eOcU+CVMcFFIvgzs/H4A9EVDIfJfH78Wbm4yLif7EVERGTQhjII8OPAm2a2ysz+ZWbvmtm/klXYWKMALGNGJAweI7NsekKayyqbgTMSPvewiIjIWDaUnuDPJq0KERk083hp2bSRjJIy0otKadtStcttpReW4ElLo3VzZcLmyxYRERkPhjJF2npgEvCF2J9JsX0iMpI8HoIN9YTbWvHn5JFRUrZLzWQUT8WfO4lIexvB+u2aHUJERFLKoP/XM7NLgceAotifR83s4mQVJiK9M0/0Bs3mDWtwkQjejCxyZu856AVfvGnp5MzaI7q6oXM0rf8P3oxMhWAREUkpQxkO8VXgUOdcM4CZ3Qq8BtydjMJEpHcen4/0ohKa1q2mae0HZJbNwJ+dE+0RNqOjbhuhlmYi7W07HpOWhi8ji8CkAiA6xV+opYmWiuiHORlFpZ03g4qIiKSCoYRgA8JdtsOxfSIywnwZWXgCaUQ62mmpXI83I4ussulghi87F39OXrdQGwkFwTk8/gAQoaViXec82B5/INorLCIikkKGEoIfAl43s1/Ftk8EHkh8SSIyEI/fT/aM2TR8uBKAcGszDatX4vEHSCssxpue2X0RF4NQayut6z8k0tF9WrWsGbO14IuIiKScQYdg59ztZvYK0anSAM52zv0zKVWJyIA8gXQyy2bQUrnj/tRIsIPWTRsH3UZG6TS8aenJKE9ERGRMG3QINrPDgPecc2/FtnPN7FDn3OtJq05E+uTxeglMysc8Hpor1oEbwmIXZmROnU4gLx+PdygfCImIiEwMQ7kd/KdAU5ftptg+ERklHq+PQF4+eXvsM+hxvd6MLPL22IdA/mQ8PgVgERFJTUO6Mc65HV1NzrmImel/UJFRZh4P3rR0smfuhguFadtWQ6i5iXBbS7R32Axvega+zGzSCgrx+HyaCUJERFLeUELsGjO7hB29vxcCaxJfkojsCo/PDz4/maXl0SWQd/zKCmaY16flv0VERGKGMhzifOBjQCVQARwKnJeMokRk15kZHp8fjz/+J4DH51cAFhER6WIos0NsAU7v67iZXeOcuyUhVYmIiIiIJFEi10n9rwS2JSIiIiKSNIkMwfqsVURERETGhUSG4CFMUioiIiIiMnrUEywiIiIiKSeRIfiXCWxLRERERCRpBpwdwszupp+hDs65S2J/35zAukREREREkmYwU6QtT3oVIiIiIiIjaMAQ7Jx7ZCQKERGRwYuEQ7GvDI/XO6q1iIiMR4NeLMPMCoFvAnsD6fH9zrlPJ6EuERHpwkUiuHCIcFsbHU0NRNpaowfM8GVk4svOxRsIYFodUERkUAYdgoHHgF8Anye6hPJCoCYZRYmISJRzDhcK0rp1Cxik5eaTll8QDbrOgVn0nHCYluoqvOnppE2ajMfnH+3SRUTGtKGE4ALn3ANmdqlz7s/An83sjWQVJiKS6lwkQrithY6WZtInTyHc3kbrlipCrc24YLDzPE8gDV9mFmkFhXi8ftq2biEtvwBPIE29wiIifRhKCI7/xK0ys88Dm4DJiS9JRERcJEKopRnz+vCnZdC45gMiwY5ez410tNPR0U5H3Ta8GZlklc8kEurAOYc3LV1BWESkF0MJwTeaWR5wJXA3kAtcnpSqRERSXLijHY/fT9vWatprBz/yLNzaQsOHK8mcOg1flo9IMIg3EEhipSIi49OgQ7Bz7rexL+uBTyWnHBERCceGOrRuqaJje+0utOBo2bSBjNJp+LOyiXg8eHxD6fMQEZn4Br1inJnNNrPfmNlWM9tiZr82s9nJLE5EJBW5cIhwa8suBuAdWqs2RtuLhBNRlojIhDKUZZMfB54CSoCpRJdJfiIZRYmIpKpwMIh5PLRUbkhIe00b1wDRMcYiIrLDUEJwpnPuf5xzodifR+kyX7CIiCRG+/bahPXeRtrbCbe1dVlcQ0REYBAh2Mwmm9lk4AUzW2JmM81shpldDTyf/BJFRFJIJEL7tsROwd5eWx2dU1hERDoN5k6JNwEHxOfY+VqXYw64JtFFiYikLtdtDuBECDU3J7Q9EZGJYMAQ7JybNRKFiIgIRBIcgCF2Y5x6gkVEuhn0nDlm5gcuAI6I7XoF+JlzLvE/sUVEUlTSxu4qBIuIdDOUiSN/CviBn8S2vxLbd06iixIRSVVa3U1EZGQMJQQf7Jzbr8v2n8zsnUQXJCKSyryBtOQ07BnKZEAiIhPfUH4qhs1st/hGbKEMzcAuIpJIHg8kuDfYm6bZLEVEehpKT/BVwMtmtoboTBEzgLOTUpWISMoy/Dl5BBvqEtZiIL9APcEiIj0MOgQ7514ysznAnrFdq5xz7ckpS0QkVTkyiksTF4LNCEyaDBHdGCci0tWAIdjMTu7j0O5mhnPufxNck4hIyjKvD+cc/rx8gvXbh91eRnEZLuLwpSdprLGIyDg1mJ7gL/TYjncnWOxrhWARkQTxeL24cIjM0nIaWpqGtXCGNyOLwKR8dqx1JCIicYNZLONsADO7ku4rxzmg3sz2d869nbwSRURSi3l9hJqbyZ29Jw3/WYULDT0IezMyyZ4xm0gwhD8rKwlVioiMb0O5U+Ig4HygFJhKdPnkY4H7zOzqJNQmIpKSPF4v3vR0Ohrqyd19L/w5eUN6fFpBEdkzdqO9oQ5vwJ+kKkVExrehzA5RDhzonGsCMLMbgOeIriD3JnBb4ssTEUlN3kCAtEn5tGzeREZpOemFxbRWVxFqbuzjEYY/bxIZRaVEwmHat28lfXIhHn9gROsWERkvhhKCi4Cus0EEgWLnXKuZaZYIEZEE8/gDZJZMJdTSRPv2bWROLcc8XiKhIOHWVlwkjHl9+DIyMZ+PSEcHLZs2kllSRpoCsIhIv4YSgh8DXjezX8e2vwA8bmZZwPsJr0xERPD4A/hyJuHNyCbU3Eh7bQ2RcAh/Vg54PLi2Nlq3bsbnTyOtsJisabPwBhR+RUQGMpR5gr9nZi8Ah8d2ne+cWx77+ssJr0xERADweDwQCOANFODLygEcONd5q3KGGebx4PFp/K+IyGANpSeYWOhdPuCJIiKSFOrlFRFJDK2jKSIiIiIpRyFYRERERFKOQrCIiIiIpByFYBERERFJOQrBIiIiIpJyFIJFREREJOUoBIuIiIhIylEIFhEREZGUoxAsIiIiIilHIVhEREREUo5CsIiIiIikHIVgEREREUk5CsEiIiIiknIUgkVEREQk5SgEi4iIiEjKUQgWERERkZSjECwiIiIiKUchWERERERSjkKwiIiIiKQchWARERERSTlJD8FmdqyZrTKz1Wa2pJ/zvmhmzszmJ7smEREREUltSQ3BZuYFlgGfBfYGzjCzvXs5Lwe4FHg9mfWIiIiIiEDye4IPAVY759Y45zqAJ4ETejnve8CtQFuS6xERERERSXoILgM2dtmuiO3rZGYHAtOcc8/115CZnWdmy81seU1NTeIrFREREZGUMao3xpmZB7gduHKgc51z9zrn5jvn5hcWFia/OBERERGZsJIdgiuBaV22y2P74nKAfYFXzGwdcBjwrG6OExEREZFkSnYIfgOYY2azzCwAnA48Gz/onKt3zk1xzs10zs0E/g843jm3PMl1iYiIiEgKS2oIds6FgK8DLwIrgaecc++Z2XfN7PhkXltEREREpC++ZF/AOfc88HyPfdf3ce6Rya5HREREREQrxomIiIhI0kQiESLh8GiXsZOk9wSLiIiISOqIhIK4SIRIRwfB5kYi7dFlIMznw5+VgzcjEwBvIG00y1QIFhEREZHhC4fDEA7TVrMZF4kQyC8gkJePeWIDD5wjEg7TUV9HqLGejJIyzOfHGwiMSr0KwSIiIiIyLJFgB+GWFkId7aQXFhNub6NjWw2h1hYiHe3gHObz4cvIwp+TR2b5DCLBIO1bN5NRWILHP/JBWCFYRERERHZZuKOdYEMDvpwcfDgaVv8bFwrudJ4LhQg21hNsrIcqI62gkPQpJbTXbyOQNxnvCAdhhWARERER2SXhcJhwWxv+3DxaNm0g2FA3uAc6R/vWLQQb6sieOYeO5kYCmTkjOjRCs0OIiIiIyK4Jh/CmZ9C8ce3gA3AXkY4OGv/zb/zpmYRDwei44hGiECwiIiIiQxYJhXDO0bZ1M6Hmxl1ux4XDNK1bjdfnh3AogRX2TyFYRERERIbMRaKzQbRv3TLstiId7bTXVgM2/MIGSSFYRERERHZJa/WmhLXVtrUGcERCI9MbrBAsIiIiIrsk2FifuMZchGBjAy5xLfZLIVhEREREhizc1prwNqOhemRisEKwiIiIiAxJJBIZ1s1wfQm3tkA4kvB2e6MQLCIiIiJDloyxu5FQaMTujVMIFhEREZGxYeQmh1AIFhEREZGh8Xg8eNMzEt6uN5A2UkOCFYJFREREZOj8WdkJb9OXmQVeb8Lb7Y1CsIiIiIgMmfn8WIIDayC/AK/Pl9A2+6IQLCIiIiK7wEibXJiw1jyBNDz+QMLaG/B6I3YlEREREZkwvIEAaQWFWIJ6bjPLZuC0bLKIiIiIjHUOI2v67GG3E8gvwJuWji+gnmARERERGeN8gQBefxpZ5TN3uQ1/Th4ZJWWYZ2RjqUKwiIiIiOw6nw9vVg45s/fAfP4hPTS9uJTMshkY4BmhG+LiRvZqIiIiIjKheL1ewgAGubvPpX1bDe21NbhwHyvKmRHInUR68VTM4wVjRG+Ii1MIFhEREZFh8Xq94PUS7uggUFBI2uQpuHCYUEsT4bZWcA7zB/Bn5eAJBHAOzAzvCI4B7kkhWEREREQSIh5qw8EOzOvFn5dPIG8yAM45cBEAfGlpo1ZjnEKwiIiIiCSUdxSGNwzVhAnBwWCQiooK2traRruUMSE9PZ3y8nL8/qENUBcRERFJBRMmBFdUVJCTk8PMmTMxG7mJlsci5xy1tbVUVFQwa9as0S5HREREZMyZMFOktbW1UVBQkPIBGKIDzQsKCtQrLiIiItKHCROCAQXgLvS9EBEREenbhArBIiIiIiKDoRCcQOvWrWPfffcd7TJEREREZAAKwSIiIiKSchSCEywUCvHlL3+ZuXPncsopp9DS0sKbb77JJz/5SQ466CCOOeYYqqqqALjvvvs4+OCD2W+//fjiF79IS0sLAIsWLeKCCy7gsMMOY/bs2bzyyissXryYuXPnsmjRIgDC4TCLFi1i3333Zd68edxxxx2j9ZRFRERExh2F4ARbtWoVF154IStXriQ3N5dly5Zx8cUX8/TTT/Pmm2+yePFirr32WgBOPvlk3njjDd555x3mzp3LAw880NnO9u3bee2117jjjjs4/vjjufzyy3nvvfd49913efvtt3n77beprKxkxYoVvPvuu5x99tmj9ZRFRERExp0JM0/wWDFt2jQOP/xwAM4880xuvvlmVqxYwYIFC4BoD25paSkAK1as4LrrrqOuro6mpiaOOeaYzna+8IUvYGbMmzeP4uJi5s2bB8A+++zDunXr+OQnP8maNWu4+OKL+fznP8/RRx89ws9UREREZPxSCE6wnlOT5eTksM8++/Daa6/tdO6iRYt45pln2G+//Xj44Yd55ZVXOo+lxdbU9ng8nV/Ht0OhEPn5+bzzzju8+OKL3HPPPTz11FM8+OCDyXlSIiIiIhOMhkMk2IYNGzoD7+OPP85hhx1GTU1N575gMMh7770HQGNjI6WlpQSDQR577LEhXWfr1q1EIhG++MUvcuONN/LWW28l9omIiIiITGDqCU6wPffck2XLlrF48WL23ntvLr74Yo455hguueQS6uvrCYVCXHbZZeyzzz5873vf49BDD6WwsJBDDz2UxsbGQV+nsrKSs88+m0gkAsAtt9ySrKckIiIiMuGYc260axiy+fPnu+XLl3fbt3LlSubOnTtKFY1N+p6IiIhIKjOzN51z83s7puEQIiIiIpJyFIJFREREJOUoBIuIiIhIylEIFhEREZGUoxAsIiIiIilHIVhEREREUo5CcIKFw2EOOOAAjjvuuNEuRURERET6kLKLZbRvr6V1cyWRYAcef4CMkjLS8guG3e5dd93F3LlzaWhoSECVIiIiIpIMKdkT3L69luaK9USCHQBEgh00V6ynfXvtsNqtqKjgueee45xzzklEmSIiIiKSJCkZgls3V4KLdN/pItH9w3DZZZdx22234fGk5LdVREREZNxIybQW7wEe7P7B+O1vf0tRUREHHXTQLrchIiIiIiMjJUOwxx8Y0v7BePXVV3n22WeZOXMmp59+On/6058488wzd7k9EREREUmelAzBGSVlYD2eunmi+3fRLbfcQkVFBevWrePJJ5/k05/+NI8++ugwKxURERGRZEjJ2SHis0AkY3YIERERERn7UjIEQzQIJyv0HnnkkRx55JFJaVtEREREhi8lh0OIiIiISGpTCBYRERGRlKMQLCIiIiIpRyG4B+cckUhk4BNjhnKuiIiIiIwNCsFdOOdob++gtaVtUOE22BGkob6JcDg8AtWJiIiISKIoBMfEA/C6/2xg/dqKAYNwsCPIujUb2VRRRX1dg4KwiIiIyDiiEEz3AFxaVsz0mWVsXF/ZZxCOB+C8STnMnjOTrVu2dQbhuro6TjnlFPbaay/mzp3La6+9NgrPSERERET6k7LzBDes3UDt2ysItbTizcggWDiF0nl70dzUQigYonz6VDasr2T6jDIyMtPxeKK/L3QNwF6fj4oNmyifPpWKDZsAuOzySzn22GN5+umn6ejooKWlZTSfpoiIiIj0IiVDcMPaDWx5/S1cbAhDuLUVT2UldZnpNPkDnedN6xGEw6FwtwC8eVM1AJsqN1M+fSor31vFn//8Zx588EEAAoEAgUBg5wJEREREZFSl5HCI2rdXdAbgTuEI7f9Z17nZ2NjEtq3bO4Nw3faGXgMwQHtbO5sqN9MRbmNS3iQWL17MAQccwDnnnENzc/MIPSsRERERGayUDMGhltbeDwSD3Ta7BuHqqi29BuC49rZ2Nm+q5r333+PCCy/kn//8J1lZWSxdujQZT0FEREREhiElQ7AvM6P3A37/TrviQXj27jP6DMBxk/MnU1JSwkEHzQfglFNO4a233kpIzSIiIiKSOCkZggv23xfzervtc2aEi4t6Pb+xsYkN6yr7DcAAU6YUMnVqGR98sAqAl156ib333jsxRYuIiIhIwqTkjXG5s6YDdM4O4clIp6NgCpH8PDIyM/D5vDQ2NHV7TEdHx07t+Pw+cnKy2b6tDoC8Sbn85CfLWLhwIR0dHcyePZuHHnoo+U9IRERERIYkJUMwRINwPAyHwxGam5qp3bqdsvISnHN4PB7q6xr6fLzP72PWbtOJhCME0vy0tbZTMrWI8ulTWb58+Ug9DRERERHZBSkbgrvyej1k52SRnpHOhrUVhMNhZs6eBtBrEI4H4KrKapqbWpkxq5xJ+Xn4fPp2ioiIiIwHKTkmuDehUJgNayvIzsmkoHAy69ZspLCogLxJud3O6xqADaNsWgkb11fS3t6hpZNFRERExgmFYKCjIxgLwFmkpacRCUeYUlSwUxDuGYAnT8mnqbGZsmmlbFxXSVtbu4KwiIiIyDiQ8p/fdw/AAaqrajCPkZ+f1xmEZ86ehs/nZfKU/G4BuGLDJrw+L5FIpDMIT5tZRnp6Gt4es0+IiIiIyNiR0j3BoVCITRWbdwTgzVuZNrOMaTPKqK9rJBwKdQbhSfl5OwXgqeUllE+fSjgUpm57fWcQdm60n5mIiIiI9CelQ7CZh6nlJTsC8IypVFfVULmxirJppd2C8H8+XLdTAG6ob2T9mo0UFk/pDMKzdp+BUrCIiIjI2JbSIRigraWtWwBubWmlo72DyoruQXj6zPKdAnB9XQPhcJiN6ys7g/DNN93Mfvvtx7777ssZZ5xBW1vbaD9FEREREekhZccEf/C3Fbz2xCs01TaQVZBDzafmMXmPks7jXYNw5cYq2ts7aG5q6RaA4+JB2Os3Hnr4QVasWEFubi6nnnoqTz75JIsWLRqFZygiIiIifUnJnuAP/raCl+99nqbaaJBtrm1kxTOvU71iQ7fzugbh9raOXgNwXDgcZlNFFZFIhLa2NkKhEC0tLUydOnVEnpOIiIiIDF5KhuDXnnyFUEeo275IKMyaV97b6dx4EJ42s6zPABw3ZUohZ525iNmzZ1NaWkpeXh5HH310wusX6WlL9VZqtmwd1Lk11VvZUj24c0VERCaqlAzB8R7gntobWnvd39HewepVa/oNwAD1DfX89dW/sHr1ajZt2kRzczOPPvrosOsV6U91VQ2XfPW/ufm6OwcMwjXVW7ntuz/mokXfZHPVlhGqUEREZOxJyRCcXZDb6/603Ixhtbvqg/eZM2d3SkpK8Pv9nHzyyfz9738fVpsi/amuquHSc6/l/XdX8dKLf+03CMcD8Iu/fZlV76/m4sXXKAiPE62tbbhBzjoT7AjS0RFMckUiIuNfSobgj55+JL5A93sCvQEfu3163i63WTK1mD322IPXX3+dlpYWnHO89NJLzJ07d7jlivSqawCO6ysIdw3AcQrC40NzUzOvvvI6lRurBgzCwY4gq1auZtV7HyoIi4gMICVD8B4f35dPnfc5sqdEe4SzCnI46L8+zqFf+NgurfRWMrUIcBxw4IGcdNJJHHjggcybN49IJMJ5552X4OpFdg7AGRlpncd6BuHeAnBWdvRTDwXhsa25qZk/v/QaV15wA2d98aJ+g3A8AC8+9VIWn3apgrCIyABssB+xjSXz5893y5cv77Zv5cqVQ+51DQVDBIMhtmyuwcyYUlyAizg2rq8kHA4Pqo2ikkIyMtJpb+9g65Zaps0sIxDw4/ON/uxzu/I9kbGvbns9F5x1Ne/9698AzJg9jQeevJNwMMyJn/kKra3tABx1zCe48fb/5tvfvK0zAAcCAX79p58TSAtwzhmXs3b1egD22mcO9z72Qybl543Ok5KdxAPwNZfe2Bl8pxRN5uf/bxll00oxs85zuwbgtrbo65+WFuDBX9zFnvvMIRDwj8pzEBEZbWb2pnNufm/HUrInuKutNbWYRVeC27C2AnCkd+lV64/H4yE3N5uqyurOleW0bLIkWzgU5kuLTsbMogH4iTu44apbefjeJ/jVH3/e2Sv80ot/5ahDTt4pAD/+8P/jvy+7kXsf+2F0hUPgtK+cSCg0uF/8JPl6C8AAW7ds26lHuLcADNDe3qEeYRGRfqR0CPZ4PRQWT+m2Etz2bQ00N7UM6vGRSIQN6yu7rSxXPmMqNvBDRXZZZnYme+69OzffeW00AF99G6/++R888civeOTeJ7sF4Zbm6IwnXQPw/9z/S15/9S2uu+Jm7n3sh9z4wyXsu99eZGVnjubTkpjeAvB9j9/O6QtPBLoH4WAwtFMAvuHWb/DtpVcDCsIiIv1Jegg2s2PNbJWZrTazJb0cv8LM3jezf5nZS2Y2I9k1deUirstSyE3U19UP6fE9l1hubW7t9jGlSKKFQ2HuvPVnHPzRAzoDcFxvQbhnAI6LB+HDPj6fO5beQ1g9wWNCJOL44Y0/6QzAT/z2XrxeL4u+dgZfWnQysCMIP/v0C90C8C13Xsd+B+zDRw6cy613fwuIBuFbv/tj2lq1hLuISFdJHRNsZl7gA2ABUAG8AZzhnHt3gJ8OAAAcNklEQVS/yzmfAl53zrWY2QXAkc650/prN2FjgkNhqio3kzcpd5cCcFeBtABl5aVsrtrC9JllGhMsSbWleis3XHVrtwDc1RkLT2Lheadzyue+yi+fu3+nANzVoYcfyE23X0tRyZRkliyD5JyjYkMVC0+5iLsfXEr99nq+vvgayqeVcs+jP+Dn9/6Cxx/+350ed8ud17Hn3rtx9qmX4pzj4V/+iA9XreGhe57kJw/fxpSiyaPwbERERtdojgk+BFjtnFvjnOsAngRO6HqCc+5l51x8/MH/AeVJrqmTz+elZGoxjQ3DC8Cwo0e4fPrUXZphQmSwttZs6zcAw44e4d///al+AzBEe4SvvfxGttZsS0a5MkRmRvn0Un7x3P2dATgUDLFuzUbOP/MbnHXeaZ09wnFdA3B9XQMN9Y0s+q9LmLPnbO5/4g4FYBEZMQ31jbS29r74WE/ba+uo3Tp6//ckOwSXARu7bFfE9vXlq8ALvR0ws/PMbLmZLa+pqUlIcaFQmJotW6nbPnAAnpSfN2C47WjvYP2ajbrBSJLKOcf+8/cd8LwnHvkV/3Xs4n4DcNxHDtp30IsxSPLVbWvgw3//pzMAx/UWhHsG4Lh4EN6yuYa2Ng2FEJHkq9xYxTlnXM7GdZsGDMJbqrdy5YU3sOKdf49aEB4zN8aZ2ZnAfOD7vR13zt3rnJvvnJtfWFiYkGt6PEZubvaAY3iLSgrJzsli2oyyfoPwdddfy0c/fggHHLB/575t27axYMEC5syZw4IFC9i+fXtCapfUVVhUwMmnH8dFVy7u3PeZzx7BvAP23uncyo2bd9o3d989OOa4T3Vun3vxVzj9rJMoLCpITsEyJNtr61n53qqdAnBc1yD8yxfu7zUAx8WDcMX6TQrCIpJU0QB8Gf9+70POPvWSfoPwluqtXHXht1n+f29z2bnXjVoQTnYIrgSmddkuj+3rxsw+A1wLHO+ca+95PBmee+YPfPbjp3P4vOO49NxrefWV3j9aLiqJBu6KDZuo2VLbbxD+ypln8vzzz3fbt3TpUo466ig+/PBDjjrqKJYuXZrYJyIpqWsQPunUz/H1b5zDrT+6ngPm97/q4bwD9ub2e77L+Zcu4tQvn6AAPAYF0nwsueTGXgNwXDwIb6mu7TMAxzXUN3LtFbfQ0a7ZIUQkOeIBON7x0tjQ1GcQjgfgfy5/F4BwODxqQTjZN8b5iN4YdxTR8PsG8CXn3HtdzjkAeBo41jn34WDaHe6Ncc898we+s+T7tLXuyNtp6Wmce9GZHH7kIZ374gF4y+Ydwy+ysrMoLCrYaUGNSfl5FJVMobKykuOOO44VK1YAsOeee/LKK69QWlpKVVUVRx55JKtW7VjmNpl0Y9zEVlO9FTOjvr6Rr552KXn5eSx76Fauvfymzh8uXc07YG9uu/t6Ll58DTVbannoqR+RXzCJSCRMYZFuihsrWppb2bCugsWnXUpTY/Ow2yubVsL9T9xJ2bTSBFQnItJdzwDcVU5uNg899SOmzZxKRkbGTgG4K6/Xy5333ci+++1FwZTE3ccwajfGOedCwNeBF4GVwFPOuffM7LtmdnzstO8D2cAvzextM3s2mTUB/Oi2+7oFYID2tnZ++fiznUMjegvAEJ3Ds2ePcN6kPHJys9m4fhPBYPfelurqakpLo//5lJSUUF1dnZTnJKmlpnorL//+VerrGvjqaZeyrbaOtavXc9HZ3+SmO67dqUe4awBe/cFa6usaOPvUS9hWu52Xf/9q5xLLMvra29pZ+e4H3P/knWTnZA2rrbJpJfzssdt547V/9ttbLCKyK/oLwNC9R3hrzbY+AzB07xGu2VKbzLI7JX1MsHPueefcHs653ZxzN8X2Xe+cezb29Wecc8XOuf1jf47vv8Xh27xpS6/7t2zeStm0Uor76AE2i367ugbhyQX55OZlU7FhE60trVRVVPd5g5GZaQ5hGbaaLbW8/PtXOejQj/DV0y9jW21d57HegnDPABxXX9fA4lMv5YCD5ykIjyUGf33ldX737EvDCsLxAHzL9XdRtUm/fItI4pkZHk//kwbEg/B5X7qizwC8oz3w+XyMVFQaMzfGjaSSqUW97i+Ykk9zUwsR57oF4IIpkymfPpUZs8p3CsLpGWlUbNjUGXw9vu7f0uLiYqqqqgCoqqqiqKj3a4sMlt/n46DD9tspAMd1DcJnLDyp1wAcFw/CBx78Efx+/0iULwPInzyJ6266nI3rK3c5CHcNwPP224svnX0KeZNyk1SxiKSqqeUl3Pf47Uyb0d/EX9Eg3Nv/QV35fF7ufnApe+0zhymFI3OfSkqG4EuuPpf02GpacYG0AKeddSLbt9VRU72jR6xgymQKCifj83lJT0/bKQhvqtjcGYCzc7IoLins1tt7/PHH88gjjwDwyCOPcMIJ3aZJFhkyf8DHxYuv6TUAx8WD8KlnnthnAI6rr2vgwkVXKwSPEcGOIFWbtnDqmSey7j8bOoNwenrawA8GiksLOwPw7nvMZPqschrrG5NctYikqsEG4f50DcAFU/ITWF3/UjIEf/7EBdyw9CpKy4oxM0qmFnHVty7i40ce2u28eAD2+6Orv3l7CcJx2TlZXL3kGxxxxBGsWrWK8vJyHnjgAZYsWcIf/vAH5syZwx//+EeWLNlp5WiRoXHw/WXfJis7s9/T1q5ez0kLFg7423dGRjo/+Mm3ibhIIquUXdQRDPK1L1/JZedey2lnnUTZtFJ8Pi8e7+B+XPt8XjxmfHrB4czabTrXXn4zV15wPY2NTUmuXERS1XCC8GgFYEjy7BDJkqhlk7sKBkM0NjRSVRkdO9czAHcVDoVpa2tn/doKnIuQnZPF1PKSMdeTptkhJqZwOExDXSNVm6r56umX0dzUMvCD+pCRkc59T9xB2fRS8vJy8fm02uFoq9tez6r3V/P1s5fwvR9cw+57zuLsUy8Z0o1tM2dP455Hf8j/3PcLfvfbl7n3sR9SWlZMdvbwbrQTEenPporNnPulK9i4fqfZcHs1EgF4NJdNHjf8fh85uTmUlhX3G4Che49wTm72mAzAMnFt27qd+3/yKL9/7hXuf+LOAXuE+5KRkc59j9/O315+nXvveoTt2/oeXiEjJxJxbK+t47d/fZzd95w55AAM8XmEr+Qr557K0797gH+99X6/8w6LiCTC1PISfvrzXtc869VXL/wy+x24z4j3AMcpBHcRD8IFhfl9BuC4eBCeWqYALCPN2Lyphgd/+jh/eH7XgnBnAH7lH9xz18Nsrup9xhQZeZPyczn0EwfRWNc44EIY/YkvqNHe3sFnPnsEk/LzElypiEh3W6q38q0rbxn0+Y8//L9sqthMc3P/Sywni0JwD36/b9Ch1uvz4hsgLIskWmFxAUu+fTELPndktyCckZkxqMenp6d1C8CfOvpwrr3xCq0aN0a0tbVRu2XbsAJwXDwINze30Ny868NmREQG0t9CGH2JT59WuWHTqARhhWCRcaiweEpnEH7j/95mcsEkJuUPbgqs3LwcphQX8Pqrb3YG4KJirRg3VkTCjnPOuHzAADy1vIRb775+wE8B1q3ZyJXn36DhECKSNLsSgONGMwgrBIuMU4XFU7juxsv5/o9v4KJF3+y8qXMgW6q3cv5XruLmu67jhqVXKwCPMe3tHXzr5m/g8fT943lqeQn3Pn47oVCI+5/sfzhMVnYm199yJQEN2xKRJBhOAI4brSCsECwyjrW3d/D1s5cMOA1aT+v+s4ELzrqK9vb2gU+WEeXzeSksnswPfvqdXoNwPADfcv1d3H7zPbz4mz/1GYSzsjO5/4k7iThHZBzOBCQiY9tgA7DP5x1wwZ7RCMIKwQk2c+ZM5s2bx/7778/8+b3OyCGSEJs3beHChVcPOQDHrfvPBr525je0pO4YE4lE+M6SH9DW2rZTEO4agHffYyaP//oe1q7e0GsQjgfg3z/3Mg8se4xgMDgaT0dEJrCmxuZBrwT3y989MKiV5d78xzs0NzUnssw+pWwIfuGFFzjuuOM4+OCDOe6443jhhRcS1vbLL7/M22+/Tc+5jEUSZbgBOE5BeOzJnzyJe/7nBzx0zxPdgnDPADxrt+mctGAhpy88aacg3DUAr19bwbduvkKzQ4hIwhWXFvHgL+4iJze71+Nd5wEuKS0acEGNK669gKOO/cSIDdNLyRD8wgsvcNNNN7F5c3TJ482bN3PTTTclNAiLJEt9XSNfXzzwEIiMzAwuv+Z8MrP6nzUiPjSiQUvrjhmFRQX89JHbOoPw3Q/cslMA/s6SH9DS3MoVX/vWTkE4HoDXrdnI9TdfSf7kSaP9lERkAsrKyqB8RlmvQbi3hTD6W1nuimsv4HMnHEVRceGI1A4pGoKXLVtGW1tbt31tbW0sW7Zs2G2bGUcffTQHHXQQ995777DbE9mZ42uXLOz3xqmMzAweePIOzlh4Mg/+4q5+g7CZcd7FZzEeV4+cqJoam3jjtbf53g+u4aF7nmD92o07BeD469Xa2tYtCP/m6Rf57a9+z/q1G/ny4i+yfm0F7W0a+y0iydFbEO5vJbjegvBoBGBI0RBcXd37R7997R+Kv/3tb7z11lu88MILLFu2jL/85S/DblOkq7xJuRzysQP4/rJv9xqE4wF49z1mkZ6Rxm57zOozCJsZt9x1HYd/8pABb1qQkdHU2MTvfvMyjz74S/IL8vju95fwq6ee7zUAx3UNwpUbq9i4rpLFF3yZqeWlXHnRDax4598KwiKSFMFgkKqKzbz7zkoe/MVd5E/O4+4Hl+LxGGtXr6epsanb+VWV1Tz12LPc+1g0CF9x7QUc8emP8sofXmXrltoRrT0lV3ooLi5m8+bNve4frrKy6G82RUVFnHTSSfzjH//giCOOGHa7Il11DcJXXfRtIpEI0DMApwOQlhboDMKLT7uUlthdtwrAY1M47PjzH1/lBz/5Dl8/ewkNdY386MFbWPnuql4DcFw8CN/+s+9hZpx7xuUccviBPPL0j/n+d3/MjT+8hrT0tBF+NiIykQWDQdavqehc3v2a717Kc395gnfeeo+vnfkNAmkB7vn599lrn93JzsmmqrKa88+6irWr17O1eiuPPvMTtm+r58Sjzups89NHf4IpI7R4k43Hj0Dnz5/vet50tnLlSubOnTuox8fHBHcdEpGens61117LZz/72V2uq7m5mUgkQk5ODs3NzSxYsIDrr7+eY489dpfbHI6hfE9kfKqva+Aff/8nV130bdLS03YKwF21t3fwnw/Wsvi0S2ltaVMAHsM2b9rCRWd/kw//vQaIrvLX3t4xqCEr8VUs44tjfPIzH+P6m6+kUPNBi0iCrf3PBs46+aJui/uUTi2iatOWzu14EJ42s4zzvnwla1ev7/NcgBuWXsUnj/powoKwmb3pnOt1uq6U7AmOB91ly5ZRXV1NcXExF1100bACMESHU5x00kkAhEIhvvSlL41aAJbUEO8R/sFPv0NJaWGfARi69whvWF/JRz8+XwF4DKqt2dYtAAO09TKUISMjneNOPoanH3+2WzjuuTLcn//4d270GNff8g0KpkxOXuEiknIyMzOYNmNqtxDcM9R2tHfwta98g9y8HGprtnU71vPczKwM9tpnd7Ky+l8JM1FSMgRDNAgPN/T2NHv2bN55552EtikykLxJuRxy2AEE0vx9BuC4eBAuKy9VAB7DDv/kId1CcE8ZGenc98QdzNptOvMP248ll3yvz15iM+Poz38Kr8ebrHJFJEUVlxZyx89u5PKvXceKd/7d53nBjuBOAbinzKwMHnjyTmbvNoOMAWY1SpSUvDFOZKLJnZQzYACOS0sLkJevADxWFRROZuG5p7Hoa6f3ejwegPfYazY5udl89BPzWfqjb2FmO51rZtx857UcfsQhTJqseYJFJPHiQXjf/fba5TZGIwCDQrCIyJjTVxDuGoDjv/RMys/rNQgrAIvISBlOEB6tAAwKwSIiY1LPINxbAI7rGYQVgEVkpO1KEB7NAAwpPCZYRGSsiwfhQMDPEUd9rNcAHNc1CEciEQVgERlxxaWF3Hr3DXz+iDMGdf5Z55zKjNnTRiUAg0KwiMiYVlA4mTMWnkxWduaA474n5edx2MfnA04BWERGXFVlNV9fvGTQ5z94zxMc8rED2WPu7uTmZQ/8gATTcAgRkTGuoHDyoG98zJ+cR/7kSUmuSESku64LYQxWR3sH5591FR+sXE1DfdPAD0gwheAEWrx4MUVFRey7776d+7Zt28aCBQuYM2cOCxYsYPv27aNYoYiIiEhi7UoAjhvNIJySITgYDHLxxRdz8cUX09LS0vl1MBgcVruLFi3id7/7Xbd9S5cu5aijjuLDDz/kqKOOYunSpcO6hoiIiMhYMZwAHDdaQTglQ/AVV1zBW2+9xVtvvcXnPve5zq+vuOKKYbV7xBFHMHly9xWZfv3rX7Nw4UIAFi5cyDPPPDOsa4iIiIiMBYMNwBmZGUyfWdbvOd2DcGMiy+xTSobguPb2dpqammhv33lJ0kSprq6mtLQUgJKSEqqrq5N2LREREZGREgqFaGlq6feczKwMHvzFXTz0y7sHnD4tFAyxrbZup+XfkyUlQ/Ctt96K3+/vts/v93Pbbbcl9brx+TtFRERExrtpM8p44Bd3UVxS2Ovx6DzAd7HbnBkUFhX0O4+wx+Phth/fwPzD9mPylPxklr3jmiNylTHmm9/85k7jf4PBIFdffXXCr1VcXExVVRUAVVVVFBUVJfwaIiIiIqNh+szeg3DXAByf3aavBTW6BeCCkQnAkKIhOC4tLY3s7GzS0tKSdo3jjz+eRx55BIBHHnmEE044IWnXEhERERlpPYNwbwE4rmcQHq0ADCkagm+//XYOPPBADjzwQJ5//vnOr2+//fZhtXvGGWfw0Y9+lFWrVlFeXs4DDzzAkiVL+MMf/sCcOXP44x//yJIlg59EWkRERGQ8iAfhWbvP6DMAx8WD8EcO2HvUAjCAOedG/KLDNX/+fLd8+fJu+1auXMncuXNHqaKxSd8TERERGUlNjU34fL5BLfBTt72eSCSS1ABsZm865+b3dkzLJouIiIhIQmTnDH7540n5o7u8e0oOhxARERGR1DahQvB4HNqRLPpeiIiIiPRtwoTg9PR0amtrFf6IBuDa2lrS0wcejyMiIiKSiibMmODy8nIqKiqoqakZ7VLGhPT0dMrLy0e7DBEREZExacKEYL/fz6xZs0a7DBEREREZBybMcAgRERERkcFSCBYRERGRlKMQLCIiIiIpZ1yuGGdmNcD6JF5iCrA1ie3L6NLrO3HptZ3Y9PpObHp9J7bRen1nOOcKezswLkNwspnZ8r6W2JPxT6/vxKXXdmLT6zux6fWd2Mbi66vhECIiIiKSchSCRURERCTlKAT37t7RLkCSSq/vxKXXdmLT6zux6fWd2Mbc66sxwSIiIiKSctQTLCIiIiIpRyFYRERERFKOQnAXZnasma0ys9VmtmS065HhMbNpZvaymb1vZu+Z2aWx/ZPN7A9m9mHs7/zRrlV2nZl5zeyfZvbb2PYsM3s99j7+hZkFRrtG2TVmNsnMnjazf5vZSjP7qN6/E4eZXR772bzCzJ4ws3S9f8cvM3vQzLaY2You+3p9v1rUj2Kv87/M7MDRqFkhOMbMvMAy4LPA3sAZZrb36FYlwxQCrnTO7Q0cBlwUe02XAC855+YAL8W2Zfy6FFjZZftW4A7n3O7AduCro1KVJMJdwO+cc3sB+xF9nfX+nQDMrAy4BJjvnNsX8AKno/fvePYwcGyPfX29Xz8LzIn9OQ/46QjV2I1C8A6HAKudc2uccx3Ak8AJo1yTDINzrso591bs60ai/4GWEX1dH4md9ghw4uhUKMNlZuXA54H7Y9sGfBp4OnaKXt9xyszygCOABwCccx3OuTr0/p1IfECGmfmATKAKvX/HLefcX4BtPXb39X49Afi5i/o/YJKZlY5MpTsoBO9QBmzssl0R2ycTgJnNBA4AXgeKnXNVsUObgeJRKkuG707gaiAS2y4A6pxzodi23sfj1yygBngoNtzlfjPLQu/fCcE5Vwn8ANhANPzWA2+i9+9E09f7dUxkLoVgmfDMLBv4f8BlzrmGrsdcdI5AzRM4DpnZccAW59ybo12LJIUPOBD4qXPuAKCZHkMf9P4dv2JjQ08g+svOVCCLnT9KlwlkLL5fFYJ3qASmddkuj+2TcczM/EQD8GPOuf+N7a6Of+wS+3vLaNUnw3I4cLyZrSM6fOnTRMeQTop9vAp6H49nFUCFc+712PbTREOx3r8Tw2eAtc65GudcEPhfou9pvX8nlr7er2MicykE7/AGMCd2Z2qA6AD9Z0e5JhmG2PjQB4CVzrnbuxx6FlgY+3oh8OuRrk2Gzzl3jXOu3Dk3k+j79U/OuS8DLwOnxE7T6ztOOec2AxvNbM/YrqOA99H7d6LYABxmZpmxn9Xx11fv34mlr/frs8BZsVkiDgPquwybGDFaMa4LM/sc0TGGXuBB59xNo1ySDIOZfRz4K/AuO8aM/jfRccFPAdOB9cCpzrmeg/llHDGzI4FvOOeOM7PZRHuGJwP/BM50zrWPZn2ya8xsf6I3PQaANcDZRDtv9P6dAMzsO8BpRGfy+SdwDtFxoXr/jkNm9gRwJDAFqAZuAJ6hl/dr7BefHxMdAtMCnO2cWz7iNSsEi4iIiEiq0XAIEREREUk5CsEiIiIiknIUgkVEREQk5SgEi4iIiEjKUQgWERERkZSjECwiIiIiKUchWERkFJjZ8Wa2ZOAzd3rcTDNbkYR6jjSzj3XZftjMTunvMSIi45lv4FNERCTRnHPPMrZWpTwSaAL+Psp1iIiMCPUEi4gkWKy39t+x3tQPzOwxM/uMmb1qZh+a2SFmtsjMfhw7/2Ez+5GZ/d3M1gy2B9bMvGb2fTN7w8z+ZWZfi+0/0sxeMbOnY3U8FluhCTP7XGzfm7Fr/tbMZgLnA5eb2dtm9onYJY7oWZOZlZrZX2LnrehyrojIuKIQLCKSHLsDPwT2iv35EvBx4BtEl+/uqTR2/Dhg6SCv8VWg3jl3MHAwcK6ZzYodOwC4DNgbmA0cbmbpwM+AzzrnDgIKAZxz64B7gDucc/s75/7aT01fAl50zu0P7Ae8PchaRUTGFA2HEBFJjrXOuXcBzOw94CXnnDOzd4GZvZz/jHMuArxvZsWDvMbRwEe69BznAXOADuAfzrmK2PXfjl2zCVjjnFsbO/8J4Lx+2u+tpjeAB83MHzuuECwi45J6gkVEkqO9y9eRLtsReu+A6Hq+DfIaBlwc673d3zk3yzn3+17aC/dxzYHsVJNz7i/AEUAl8LCZnbUL7YqIjDqFYBGR8etF4IJYryxmtoeZZfVz/ipgdmwMMMBpXY41AjkDXdDMZgDVzrn7gPuBA3ehbhGRUafhECIi49f9RIc5vBW78a0GOLGvk51zrWZ2IfA7M2smOrQh7jfA02Z2AnBxP9c8ErjKzIJEh1eoJ1hExiVzzo12DSIiMkLMLNs51xQLzcuAD51zd4x2XSIiI03DIUREUsu5sRvl3iN6I93PRrkeEZFRoZ5gEZExyMzmAf/TY3e7c+7Q0ahHRGSiUQgWERERkZSj4RAiIiIiknIUgkVEREQk5SgEi4iIiEjKUQgWERERkZTz/wH203KVvE1B/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + "fig.set_figheight(8.27)\n", + "fig.set_figwidth(11.7)\n", + "sns.scatterplot(y='global_consisentency', x=\"min_lengths\",hue=\"beams\",style=\"beams\",data=df[df.names == model_selected],s=500)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xc1Z3///dnipoly92AZLCNDRgXDNgYAnEwCcXGAb5JfsEEQugLSyghIcAuG8qmECD5QliWDTWhOmX3uzTbMYE4TgixsY1oLhEBO5Zw7+pTzu+PkYQky1ijmTtF9/V8PPTQ3HPvnPmM5oEfb86ce4455wQAAAD4SSDbBQAAAACZRggGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+E8p2Ab0xZMgQN3LkyGyXAQAAgBy2fPnyrc65od2dy8sQPHLkSC1btizbZQAAACCHmdm6fZ1jOgQAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHfycp1gAAAAZFc8GpGLxzs3OieZffK4WyZZ2/nWxx3PBgIKhMJprnZvnoZgM3tc0mxJm51zE7o5b5LulzRLUoOki5xzK7ysCQAAAKlz8bh2rX437f2WHzEx7X12x+vpEL+QdMannJ8paWzrzxWSHvK4HgAAAMDbEOycWyxp+6dccrakJ13CXyUNMLMDvawJAAAAyPaNcRWS1nc4rmlt24uZXWFmy8xs2ZYtWzJSHAAAAPqmvLkxzjn3sKSHJWnKlCn7mmkNAACATOhy45sFgio5aIQaN30sBQIKl/ZXqKREgXCBJJOLRRVralSkvk7Rut0qOWiEWnbuULShrku/mSk/2yG4VtKIDseVrW0AAADIZYGAykYf/slhKCQXj6ts9GFyzknxuJyLt4daC4YUKu2vcP8BskBALh5TuLS/4rFY50Ad6LJchEeyHYJfkPRNM5sraZqkXc65DVmuCQAAAPsTj2vPh2vS3m354XstKOYJr5dIe07SyZKGmFmNpNskhSXJOfdfkuYpsTzaB0oskXaxl/UAAAAAksch2Dl33n7OO0lXe1kDAAAA0FW2V4cAAAAAMo4QDAAAgKS4fW6JnD8IwQAAAEiKWWZWcPASIRgAAAC+QwgGAABA0vJ9SgQhGAAAAMlz8WxXkBJCMAAAAJLinMvY9sZeIQQDAAAgKX3hxrhsb5sMAACAPGShkMpGH96hQQqEwopHo4mQHAioa1R2kuScXDyuQDAkF4/JxbtMqwhkZoyWEAwAAIDkOac9H65Je7flh09Ie5/dYToEAAAAfIcQDAAAAN8hBAMAAMB3CMEAAADwHUIwAAAAfIcQDAAAAN/x9RJp8Whk77Xp2vfBNrVthZLYFSXx2CygvRa962bBaAsEFAiF01swAAAA0sLXIdjFYtq15j1P+i4/fIJECAYAAMhJTIcAAACA7xCCAQAAkJTEVNFsV5EaQjAAAACSYt3cD5VvCMEAAABIXp7nYEIwAAAAkuJcns+FECEYAAAASSIEAwAAwHcCgfyPkPn/DgAAAIAk+XqzDAUCKht9uGd9AwAAIDf5OwTH49rz4RpPui4/fIIn/QIAACB1DFcCAADAdwjBAAAA8B1CMAAAAHzH33OCAQAA0DteLTCQocUFCMEAAABIXsybBQYytbgA0yEAAACQFHaMAwAAAPIQIRgAAABJc8rv0WBCMAAAAJJiZjKzbJeREkIwAAAAfIcQDAAAAN8hBAMAAMB3CMEAAADwHUIwAAAAfIcQDAAAAN8hBAMAAMB3QtkuIKsCAZWNPtyzvgEAAJCb/B2C43Ht+XCNJ12XHz7Bk34BAACQOn+HYAAAAPSOV9+oZ+jbdEIwAAAAkufRN+qZ+jadiasAAABImnMur/rtihAMAACAXrBsF5ASQjAAAACSZh5lYMtQuCYEAwAAIHdkaICZEAwAAICkOOcyNnfXK4RgAAAAJMXMJEIwAAAA/MQ5RwgGAAAA8g0hGAAAAMnzanmIDCEEAwAAIClmJrP8jpH5XT0AAACyI78HggnBAAAASE6+L48mEYIBAADgQ4RgAAAAJMXy/KY4iRAMAAAAHyIEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3wllu4CsCgRUNvpwz/oGAABAbvJ3CI7HtefDNZ50XX74BE/6BQAAQOr8HYIBAACQNOecd9+oZ+jbdH+HYKZDAAAA9I5H36hn6tt0f4dgpkMAAAAkjR3jAAAAgDzk75FgAAAA9I55NK3UmBMMAACAHOXiMU+mlfY/bHza++yOv0Owl/NZ+sBcGQAAgH0xC6ikYrQn/WaCr0OwBQIqP2KiZ30DAAD0VdGmFv39vxemvd8x556pYGFh2vvtytchOBAKZ7sEAACAvOOcy3YJKWO4EgAAAElhiTQAAAD4U56PBhOCAQAAkBSmQwAAAMB3mA4BAAAAX3KxeLZLSAkhGAAAAEmzYH7HyPyuHgAAANmR51MiCMEAAABISl+4Mc7Xm2XsTzweV7y5RS7uEsuAmCQzBQvCCoT40wEAAH8ys7xfIs3XSS7a1Kx4JNK50X3yfzfxSEQuGkuE4DZmsmBAwYJw4rFZIhx3EQiHFSryfss/AACArMjz6RCeh2AzO0PS/ZKCkh51zt3V5fzBkn4paUDrNTc75+Z5XZeUCLnVz73kSd9jz5stEYIBAABykqch2MyCkh6UdKqkGklvmtkLzrmVHS67VdKvnXMPmdmRkuZJGullXe31BQIaOfuUTm3BwrBkAcVaWhQIhWTBQOuQvxIjvk5y8bjisZjMTIFwSNHGpsT5Ln0DAAAgN3k9EnycpA+ccx9KkpnNlXS2pI4h2Enq3/q4XNLHHtfULh6Nae1Lr3nS95hzz/SkXwAAAKTO6+HKCknrOxzXtLZ1dLukC8ysRolR4Gu668jMrjCzZWa2bMuWLV7UCgAAAJ/Ihe/sz5P0C+dcpaRZkp4ys73qcs497Jyb4pybMnTo0IwXCQAAgL7D6xBcK2lEh+PK1raOLpX0a0lyzr0hqUjSEI/rAgAAgI95HYLflDTWzEaZWYGkOZJe6HLNPyR9XpLMbJwSIZj5DgAAAPCMpzfGOeeiZvZNSb9TYvmzx51z75vZnZKWOedekPRtSY+Y2beUuEnuItcXtiEBAADowwKh4F6rbKWr30zwfJ3g1jV/53Vp+16Hxyslneh1HQAAAEgfF497ssrW2PNmp73P7vh6xzgAAAD0TiAc3juwtu2r0OG47Qv+vXbZ7Xpth34zgRAMAACApIWKCjvtjhttatbuj9ar7JAKxSNR1a3/WPW1m9Wyu06SU7CoUCXDh6jskAqFS/upcfNWFQ8brHC/kuzUn5VXBQAAQJ8RbWrWluXvafv71dr9YY2GTB6nzW++q3gk2um6hg1bZMGgggUF2vjGChWUl2nk7BlZCcK5sE4wAAAA8lS0qVlbliUCsCTV127U1qpVGnHaZxUIdx5vHXrsBAULwtr4xgpJUsuuPVr70h8UqW/IeN2EYAAAAPRKewBeWd2pvbsg/EkAfqvTtdkKwkyHAAAAQNLap0B0CcBt6ms3SpJGnPZZNW7epkAouFcAbtMWhDM5NYKRYAAAACQt2tCo7Ss/+NRrEiPCK+Xi8X0G4DYtu/Zo+/vVirVE0lnmPhGCAQAAkLRQv2JVnnKCZN2sc9ZBfe0mbVn+3n776z96hAaNP0zBgswskUYIBgAAQNJcNKaGjVtUcfK0/Qbh/ek/eoQGjB2ppq3b01Td/hGCAQAAkLSWPfXa/n61GjdtTSkItwXg9b9/XTs/WKd4LJbmSrtHCAYAAEDSGjZskSRtX/lBr4NwxwDsYnE1bdmuWHOLF+XuhRAMAACApDjn1LJrT/txWxA+aPrUHvdRdshBnQKwJEUbmtJe674QggEAAJAU62bEN1hclNQobqwlKguFZIEucdSlWl3PEIIBAACQtMKB/dsft22EsemvVT1+fsOGzdpatbLThhqh0pJuA7YXCMEAAABIWsmBwyTteye4nqiv3dQpCBcPHaRAYWaWSPP1jnGBUFAjZ5+y/wtNiYneTpJze5/rZtg+EAqmoUIAAIDcFO5XrKFTJioYDvUqALepr90kKbGznCQFgpnJUL4OwRYMKlzmzdZ8lqEPEAAAIBssGFSosEAbXl+ecl9tQbji5Gkp99VTvg7BoaJCqagw22UAAADknWh9Y48CcP9RI9TvoGHa8JcVe3+j3kF97SZte2eNhk6ZoGDY+ykRzAkGAABA0sKlJRo6ZeKnXtN/9AgNOGykWnbv2e86wkVDBmrwUUdkJABLhGAAAAD0QrCwQIPHj91nEO64Eca2d//2qRtqFA0ZqIPPmK5wSbHXZbcz9ynD0rlqypQpbtmyZdkuAwAAwLeiTc2KRyKSk2ItEcVbIu3nLBRUIBxSrLG503MC4ZAsGFCs6ZP1hC0QULC4UBaw1mvCiSmraWBmy51zU7o75+s5wQAAAOideCSi6udeSnu/Y8+bnZF7tpgOAQAAAN8hBAMAAMB3mA7RRbShSS4eV6hfsWKNzXLxuGItLYq1RBQIBhUsKpQFAwoWFCgejSoeiSrcr3jvfa8BAACQs3wdgiMNjYpHop3aYk3Ncs4pHoslHsfi7efi8UTolUmh4iLFIxHFozG5WGyvOx0D4VBG73AEAABAz/k6BMcjUX3wq5c96XvMuWd60i8AAABSx3f4AAAA8B1CMAAAAHyHENyVmSzY+c8SLCxQuKyfQiXFe8/9Dfl6RgkAAEBe8nWCC4SCGjn7lE5tweJCmUzxaEQWCsnM5JyTnJNkstYQHI9FZRaQhYKKNjZJcbdX3wAAAMhNvg7B8WhMa196zZO+uTEOAAAgdzEdAgAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDv+HrbZAAAAPROIBzW2PNme9JvJhCCAQAAkLRQUaFUVJjtMnqN6RAAAADwHUIwAAAAfIcQDAAAAN8hBAMAAMB3fB2CzSwv+wYAAEBq/L06hJc5lQwMAAD6sGhTs+KRSOdG1+Ghc20PEr9bBwjNLJGT2q7tkpkC4XBi5QmP+TsEAwAAoFfikYiqn3sp7f2OPW92RpZe8/V0CAAAAPgTIRgAAADJc/u/JKf67cLX0yG82u6vrW8AAIC+qn3Ob57025WvQ3C+b/cHAACA3mE6BAAAAHyHEAwAAADfIQQDAADAd3ocgs3sJ2Y23stiAAAAkB9cLJ7tElKSzEjwKkkPm9kSM7vSzMq9KgoAAAC5zcVi2S4hJT0Owc65R51zJ0q6UNJISe+Y2bNmNsOr4gAAAJB7EsuYZWhBX48kNSfYzIKSjmj92SrpbUk3mNlcD2oDAABADjIzSbZXe8GA/p2Py8vUr+IAlY44UMVDB8mCwU/O9S+VBbJ3e1qP1wk2s/8rabak1yT90Dm3tPXUj81sjRfFAQAAIDeFios0cvYp7ceBcEiBgnBimoSZzEwuHpeLJ0aMzdQaek3xeEyBYFAu7hRrau7UbyAUVCYks1nGO5Judc7Vd3PuuDTVAwAAgBznnFM8FtPal15Le99jzj0z7X12J5kx6J3qEJrNbICZnSNJzrld6S4MAAAAuSkxHSK/JROCb+sYdp1zOyXdlv6SAAAAAG8lE4K7uzaZ6RQAAABATkgmBC8zs5+a2aGtPz+VtNyrwgAAAJDDnH+WSLtGUoukX7X+NEu62ouiAAAAkOPyfF5wj6cztK4KcbOHtQAAAAAZkcw6wYdJ+o4Su8W1P885d8q+ngMAAIA+Ks+nQyRzY9tvJP2XpEcl5fdm0QAAAEiJi8WzXUJKkgnBUefcQ55VAgAAgLzh4vkdgpO5Me5FM/tnMzvQzAa1/XhWGQAAAHKSc06Sf6ZDfKP1940d2pyk0ekrBwAAALnOzCRLZiw19ySzOsQoLwsBAABA/rCgNyE4U1sy97h6Mysxs1vN7OHW47FmNtu70gAAAJCrLODRSHCGlh9OpvonlNgs4zOtx7WSvp/2igAAAJDzMjVi65VkQvChzrm7JUUkyTnXoIxldQAAAOQS59U6wRm63y6ZENxiZsVqLc3MDlVi62QAAAD4TL6PhCazOsTtkhZIGmFmz0g6UdLFXhSVSxoaGtVQ19D+PyUFBWH1Ly/L+68AAAAAUhLwKAtlKGIlszrEQjNbLul4Jcq7zjm31bPKsmT7tp2KRaOSTIt+/7oWv/qG/rb679qzu04FBWGNOvRgHX3cJH3xS6errH+pTNKgIQMJxQAAAHmkxyHYzF51zn1e0svdtOWlnTt2qb6uof04Ho9r545disXiKh/QX4eOHamRo0d0+9xoNKrNG7eqsbFRdXUNCoWCnc73Ky3RgIHlntYPAACA3tlvCDazIkklkoaY2UB9MkjdX1KFh7V5rr6uQTNPmuNJ3/P/PJcQDAAAkKN6MhL8T5Kul3SQpOX6JATvlvQfHtUFAACAHBYIhzX2vC5bRjh9khTd3itIJHaa63CttNcc4EA4nOZKu7ffEOycu1/S/WZ2jXPugQzUlDHxeDwv+wYAAMi2UFGhVFSY7TJ6LZkb4x4ws89IGtnxec65Jz2oKzM8XIfOs7XzAAAAkLJkbox7StKhkqokxVqbnaS8DcHEVAAAAH9KZp3gKZKOdEkOcZrZGZLulxSU9Khz7q5urvmqEusQO0lvO+e+lsxrAAAAAMlIJgS/J+kASRt6+gQzC0p6UNKpkmokvWlmLzjnVna4ZqykWySd6JzbYWbDkqgpRYwFAwAA+FEyIXiIpJVmtlQdtkt2zp31Kc85TtIHzrkPJcnM5ko6W9LKDtdcLulB59yO1v42J1FTDmPzDAAAgFyV7LbJyaqQtL7DcY2kaV2uOUySzOx1JaZM3O6cW9C1IzO7QtIVknTwwQf3opS9ce8aAACAPyWzOsQfzewQSWOdc783sxIlQms6ahgr6WRJlZIWm9lE59zOLq//sKSHJWnKlCnEVwAAAPRaoKcXmtnlkn4r6eetTRWS/nc/T6uV1HHf4crWto5qJL3gnIs45z6S9DclQrHnzMMZC0yGAAAAyF09DsGSrpZ0ohI7xck5Vy1pfzexvSlprJmNMrMCSXMkvdDlmv9VYhRYZjZEiekRHyZRV06KM9cCAAAgZyUTgpudcy1tB2YW0n6WV3DORSV9U9LvJK2S9Gvn3PtmdqeZtd1Q9ztJ28xspaQ/SLrRObctmTfRe4zXAgAA+FEyN8b90cz+RVKxmZ0q6Z8lvbi/Jznn5kma16Xtex0eO0k3tP5kFLu6AQAA+FMyI8E3S9oi6V1J/6REsL3Vi6Iyxcs5wQAAAMhdyawOEZf0iKRHzGyQpMpkd48DAAAAckGPQ7CZLZJ0VutzlkvabGZ/cc59y6PaPFdUVKjH5t7nSd/FxYWe9AsAAIDUJTMnuNw5t9vMLpP0pHPuNjN7x6vCMqGxsVmXzrnek75fXPSMJ/0CAAAgdcnMCQ6Z2YGSvirpJY/qAQAAADyXTAi+U4nlzD5wzr1pZqMlVXtTFgAAAOCdZG6M+42k33Q4/lDSl70oCgAAAPDSfkOwmX3XOXe3mT2gbjbHcM5d60llAAAAgEd6MhK8qvX3Mi8LyYZAwLuFgo1FiAEAAHLWfkOwc+7F1t+/bGszs4CkUufcbg9r85yXyxyzhDIAAEDu6vGNcWb2rJn1N7N+kt6TtNLMbvSutExgtBYAAMCPklkd4sjWkd9zJM2XNErS1z2pKmMYrQUAAPCjZEJw2MzCSoTgF5xzEZEi94kxZgAAgNyVTAj+uaS1kvpJWmxmh0jK8znBHnZOCgYAAMhZyawT/DNJP+vQtM7MZqS/JAAAAMBbPQ7BZlaoxOYYI7s8784015QxrGIGAADgTz0OwZKel7RL0nJJzd6U03ewQhoAAEDuSiYEVzrnzvCskqxgKBgAAMCPkrkx7i9mNtGzSrLAy+kQ7BgHAACQu5IZCT5J0kVm9pES0yFMknPOTfKkskzwdMoC8yEAAAByVTIheKZnVWQJMRUAAMCfejwdwjm3TtIASV9s/RnQ2pbHiMEAAAB+1OMQbGbXSXpG0rDWn6fN7BqvCgMAAAC8ksx0iEslTXPO1UuSmf1Y0huSHvCisIxgIBgAAMCXkgnBJinW4TimPF9jrKikSI/Nve+T46JC9SvrJxd3CoWDampqUaS5RZFIVPF4XGamUDikcDik4pJimUlNTc0yM+3a0XkH6aLioky/HQAAAPRQMiH4CUlLzOz/tR6fI+mx9JeUOZGWiC6dc32ntpNOnqZBQwbqxf/+nSYfO0HjjzpChx1xqPqVFisaiWndR+u18t01evOvVTqo4gCdfOpn9Mh/PL1X3/P/PDdTbwMAAABJ6nEIds791MwWKbFUmiRd7Jx7y5OqsujPi5a0P35r2bt6a9m7+7y2es2Hql7zYSbKAgAAQBr1OASb2fGS3nfOrWg97m9m05xzS/bzVAAAACCnJLNj3EOS6joc17W2AQAAAHklmRBszrn29RScc3ElN6cYAAAAyAnJhNgPzexafTL6+8+S8npCbL/SEs9uYOtXWuJJvwAAAEhdMiH4Skk/k3SrEivsvirpCi+KypQBA8s1YGB5tssAAABAhiWzOsRmSXP2dd7MbnHO/SgtVQEAAAAeSmZO8P78f2nsCwAAAPBMOkNwXu8eBwAAAP9IZwh2+78EAAAAyD5GggEAAOA76QzBv0ljXwAAAIBn9rs6hJk9oE+Z6uCcu7b19w/TWBcAAADgmZ4skbbM8yoAAACADNpvCHbO/TITheSqWCymPbvqFIvFZGbqV9ZPhYUF2S4LAAAAKejxZhlmNlTSTZKOlFTU1u6cO8WDurKmbk+9YrGYWloiWv1+tRa/9oZWvrNGe3bXKVwQ1ugxh+j4k6boxM9NVXFJscxM/cvLsl02AAAAkpDMtsnPSPqVpDOV2EL5G5K2eFFUpmzbsl319Q0dWhILXDgX1/atO1RUVKjTZp2s02advNdz16/7WIOGDFRBQVi7du6Wc52nTffrV6LBQwd5WD0AAAB6K5kQPNg595iZXeec+6OkP5rZm14Vlgn19Q2a/bnzPen7pT8+QwgGAADIUcmE4Ejr7w1mdqakjyXld8rzcnsPtg4BAADIWcmE4O+bWbmkb0t6QFJ/Sd/ypKoMIQMDAAD4U49DsHPupdaHuyTN8KaczGKLOwAAAH/q8Y5xZjbazF40s61mttnMnjez0V4W5znzLgZ72DUAAABSlMy2yc9K+rWkAyQdpMQ2yc95UVSmeJlTHfMhAAAAclYyIbjEOfeUcy7a+vO0OqwXnI8cM3cBAAB8ab9zgs2sbQWI+WZ2s6S5Stz3da6keR7WlteYDgEAAJC7enJj3HIlQm9brPunDuecpFvSXVSmeDtlgRQMAACQq/Ybgp1zozJRCAAAAJApPV4izczCkq6SNL21aZGknzvnIvt8Uo7zdsoC840BAAByVTKbZTwkKSzpP1uPv97adlm6i+oLWB0CAAAgdyUTgqc6547qcPyamb2d7oIyi3m7AAAAfpTMEmkxMzu07aB1o4xY+kvKHMdwLQAAgC8lMxJ8o6Q/mNmHSgyhHiLpYk+qAgAAADzU4xDsnHvVzMZKOry1aY1zrtmbsjLDyxvjmGgBAACQu3qyWcaX9nFqjJnJOfc/aa4JAAAA8FRPRoK/2OW4bSKttT7O2xDs5ZRgZhsDAADkrp5slnGxJJnZt9V55zgnaZeZTXbOVXlXIgAAAJBeyawOcaykKyUdKOkgJbZPPkPSI2b2XQ9qAwAAADyRzOoQlZKOcc7VSZKZ3SbpZSV2kFsu6e70lwcAAACkXzIjwcMkdVwNIiJpuHOusUs7AAAAkNOSGQl+RtISM3u+9fiLkp41s36SVqa9sgwo6Ves51990rO+AQAAkJuSWSf4381svqQTW5uudM4ta318ftory4BwOKSCwoJObc45OScFAp+s9BuPx9sfmwU6rS8cj7tO13bsGwAAALkpqaTWGnqX7ffCPDFgYLkGDCzPdhkAAADIsGTmBAMAAAB9AiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO+Esl0AAOSjSCSimpoaNTU1ZbuUnFRUVKTKykqFw+FslwIA3SIEA0Av1NTUqKysTCNHjpSZZbucnOKc07Zt21RTU6NRo0ZluxwA6BbTIQCgF5qamjR48GACcDfMTIMHD2aUHEBOIwQDQC8RgPeNvw2AXEcIBgAAgO8QggEgD+3cuVP/+Z//me0yACBvEYIBIA8RggEgNYRgAMhDN998s/7+979r8uTJuvHGG3XPPfdo6tSpmjRpkm677TZJ0tq1a3XEEUfooosu0mGHHabzzz9fv//973XiiSdq7NixWrp0qSTp9ttv19e//nWdcMIJGjt2rB555BFJ0oYNGzR9+nRNnjxZEyZM0J/+9KesvV8ASDdCMADkobvuukuHHnqoqqqqdOqpp6q6ulpLly5VVVWVli9frsWLF0uSPvjgA33729/W6tWrtXr1aj377LP685//rHvvvVc//OEP2/t755139Nprr+mNN97QnXfeqY8//ljPPvusTj/9dFVVVentt9/W5MmTs/V2ASDtPF8n2MzOkHS/pKCkR51zd+3jui9L+q2kqc65ZV7XBQB9xcKFC7Vw4UIdffTRkqS6ujpVV1fr4IMP1qhRozRx4kRJ0vjx4/X5z39eZqaJEydq7dq17X2cffbZKi4uVnFxsWbMmKGlS5dq6tSpuuSSSxSJRHTOOecQggH0KZ6OBJtZUNKDkmZKOlLSeWZ2ZDfXlUm6TtISL+sBgL7IOadbbrlFVVVVqqqq0gcffKBLL71UklRYWNh+XSAQaD8OBAKKRqPt57ouaWZmmj59uhYvXqyKigpddNFFevLJJzPwbgAgM7yeDnGcpA+ccx8651okzZV0djfX/bukH0tiZXUA6IGysjLt2bNHknT66afr8ccfV11dnSSptrZWmzdvTqq/559/Xk1NTdq2bZsWLVqkqVOnat26dRo+fLguv97JvE8AAB79SURBVPxyXXbZZVqxYkXa3wcAZIvX0yEqJK3vcFwjaVrHC8zsGEkjnHMvm9mN++rIzK6QdIUkHXzwwR6UCgD5Y/DgwTrxxBM1YcIEzZw5U1/72td0wgknSJJKS0v19NNPKxgM9ri/SZMmacaMGdq6dav+7d/+TQcddJB++ctf6p577lE4HFZpaSkjwQD6FHPOede52VckneGcu6z1+OuSpjnnvtl6HJD0mqSLnHNrzWyRpO/sb07wlClT3LJlTBsGkD2rVq3SuHHjsl1GWtx+++0qLS3Vd77znbT225f+RgDyk5ktd85N6e6c19MhaiWN6HBc2drWpkzSBEmLzGytpOMlvWBm3RYLAAAApIPX0yHelDTWzEYpEX7nSPpa20nn3C5JQ9qOezoSDABIn9tvvz3bJQBAxnk6Euyci0r6pqTfSVol6dfOuffN7E4zO8vL1wYAAAD2xfN1gp1z8yTN69L2vX1ce7LX9QAAAACeh+B8FIvFOt1V3djYpEhLRIFgQP36lXRaT7PrtQAAAMh9vg7BO3fsUn1dQ6e2WCwmF3cKBAOKxeJqbm5WS3NE8XhcZqZwOKTCokKFw4k/XTQaVTgc3muh+X6lJRowsDxj7wUAAAA95+sQXF/XoJknzenU9rWLv6wDDhqmxx58Rl84Y7omTB6nkYeOUMAS06c3frxZK99doz/+/i86sGK4zvrKGbr12z9SS3NLp37m/3kuIRiApxYsWKDrrrtOsVhMl112mW6++eZslwQAecPTdYK9kq51grds3qa63XXtx4ltRGOKxqIqLi5S3Z56NTe3KBr5ZGvRQDCggoKwSstKZWaqr2tQWf9+ikVjnfou7V+qocMGp1wjgNyU7Bq4zTu2qXFjreKRFgXCBSo+oEKFA3v/b0QsFtNhhx2mV155RZWVlZo6daqee+45HXnkXjvTZw3rBAPItk9bJ9jXI8EN9Y06+/MXetL3i4ue8aRfAPmnecc21desk1xckhSPtCSOpV4H4aVLl2rMmDEaPXq0JGnOnDl6/vnncyoEA0Au83qzDADwvcaNte0BuJ2LJ9p7qba2ViNGfLIXUWVlpWpre98fAPgNIRgAPBaPtCTVDgDwnq9DcJcFHQDAE4FwQVLtPVFRUaH169e3H9fU1KiioqLX/QGA3/g6BEvepWACNoA2xQdUSNbln1sLJNp7aerUqaqurtZHH32klpYWzZ07V2edxUacANBTvr4xTvJuZYw8XHQDgEfabn5L5+oQoVBI//Ef/6HTTz9dsVhMl1xyicaPH5+ukgGgz/N5CGa4FkBmFA4cnFLo7c6sWbM0a9astPYJAH7h8+kQDNcCAAD4kc9DsHeYEwwAAJC7fB2CvZ23SwoGAADIVb4Owd5iqgUAAECu8nUI9nTKAhkYAAAgZ/k6BHuJDAwAAJC7fB6CmbcLIH9dcsklGjZsmCZMmJDtUgAg7/g8BDNeCyAzmnds085V72j7O8u0c9U7at6xLeU+L7roIi1YsCAN1QGA//g6BBvbJgPIgOYd21Rfs07xSIskKR5pUX3NupSD8PTp0zVo0KB0lAgAvuPrEOzYNhlABjRurJVcvHOjiyfaAQBZ4e8QTFAFkAFtI8A9bQcAeM/XIRgAMiEQLkiqHQDgPV+HYC+n7TIlGECb4gMqJOvyz60FEu0AgKzwdQgmBQPIhMKBg9Wv8pD2kd9AuED9Kg9R4cDBKfV73nnn6YQTTtCaNWtUWVmpxx57LB3lAoAvhLJdQDYVFRfpsbn3dWqzgMnMFI8lbmIxM4XCIQUCJuekaDTafk5mCgYDikVj3fYNAG0KBw5OOfR29dxzz6W1PwDwE1+H4IKCsA6qPMCzvgEAAJCbfB2CBwws14CB5dkuAwAAABnm7znBAAAA8CVCMAAAAHyHEAwAAADfIQQDAADAdwjBAJCnmpqadNxxx+moo47S+PHjddttt2W7JADIG75eHQIAMmXdktV69/nX1bB9j0oGlWni2SfqkGlHpNRnYWGhXnvtNZWWlioSieikk07SzJkzdfzxx6epagDouwjBAOCxdUtWa9kzv1esJSpJati+R8ue+b0kpRSEzUylpaWSpEgkokgkIjO2qwSAnmA6BAB47N3nX28PwG1iLVG9+/zrKfcdi8U0efJkDRs2TKeeeqqmTZuWcp8A4AeEYADwWMP2PUm1JyMYDKqqqko1NTVaunSp3nvvvZT7BAA/IAQDgMdKBpUl1d4bAwYM0IwZM7RgwYK09QkAfRkhGAA8NvHsExUs6HwLRrAgpIlnn5hSv1u2bNHOnTslSY2NjXrllVd0xBGp3WwHAH7BjXEA4LG2m9/SvTrEhg0b9I1vfEOxWEzxeFxf/epXNXv27HSUDAB9HiEYADLgkGlHpBx6u5o0aZLeeuuttPYJAH7BdAgAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBoA8FovFdPTRR7M+MAAkiXWCASAD3nxlmV58dJ52bN6hgcMG6ouXzdLUU6ek3O/999+vcePGaffu3WmoEgD8g5FgAPDYm68s03P3/lo7Nu2QnLRj0w49d++v9eYry1Lqt6amRi+//LIuu+yyNFUKAP5BCAYAj7346DxFmiOd2iLNEb346LyU+r3++ut19913KxDgn3IASBb/cgKAx3Zs3pFUe0+89NJLGjZsmI499the9wEAfkYIBgCPDRw2MKn2nnj99df1wgsvaOTIkZozZ45ee+01XXDBBb3uDwD8hhAMAB774mWzFC4Md2oLF4b1xctm9brPH/3oR6qpqdHatWs1d+5cnXLKKXr66adTLRUAfIPVIQDAY22rQHixOgQAoHcIwQCQAVNPneJZ6D355JN18skne9I3APRVTIcAAACA7xCCAQAA4DuEYAAAAPgOc4IBAACQdtFoVLt31SkWi0mSzEylpSUqKi7KcmUJhGAAAACkRTwe1/ZtO1W7foOe/818vfPWStX842O5uNOAQeUaN+EwfWHm5zTtM8eorH+/rAZiQjAAAABStmvnHv1t1d/1b9/5kT6u2bjX+cbaJm2o3aTXfvcnFRcX6YprL9Q5X52lwUN6v3FQKpgTDAB5bOfOnfrKV76iI444QuPGjdMbb7yR7ZIA+NCObTv1P3Nf1CGjK/WZ6VP3e/2BlcM147ST9Pofl2j9ulrF4/EMVNkZIRgAMuDl/31Fp3/mqzpq5Mk6/TNf1cv/+0pa+r3uuut0xhlnaPXq1Xr77bc1bty4tPQLAD21Y/tOPfX4bzRuwmH6P1/4hqYcP1lf+doX93n96LGH6I67b9I/f+O7WvdRjZb+ZYVq12/IYMUJhGAA8NjL//uK7rj5Hm2o3STnnDbUbtIdN9+TchDetWuXFi9erEsvvVSSVFBQoAEDBqSjZADokfr6Bi1+9S867oSjdf0Vt2rP7jr967d+uM8g3BaAb7rmTn1cs1GPPPCUPq7dpLeWvavtW3dktHZCMAB47Gd3P6KmxuZObU2NzfrZ3Y+k1O9HH32koUOH6uKLL9bRRx+tyy67TPX19Sn1CQDJ2L51p4YfOEzXX3GrGuobJUmxWKzbINw1ALd55IGntO6jGn3093+oqbEpY7UTggHAYxs/3pxUe09Fo1GtWLFCV111ld566y3169dPd911V0p9AkBP7dlTp80bt3QKwG26BuF9BeA2jzzwlP7ypze1e3fm/keeEAwAHjvgoGFJtfdUZWWlKisrNW3aNEnSV77yFa1YsSKlPgGgp7Zs2qarL75prwDcpmMQ/tF9t+4zALd55IGntOCF36tuT2aCMCEYADx27XcvV1FxYae2ouJCXfvdy1Pq94ADDtCIESO0Zs0aSdKrr76qI488MqU+AaCnCgsLNHHyp9+MG4vF9C/X/0CXzrn+UwOwJA0YWK6jp05SKBRMZ5n7xDrBAOCxM885VVJibvDGjzfrgIOG6drvXt7enooHHnhA559/vlpaWjR69Gg98cQTKfcJAD0x/4VXdfk1F0qSlrze+VuoQCCgUYcerCMnHq4DKoYpGAho1649Wv1etVa/X63GLnN/Bwws130Pf1+P/+cz+tfvfysjm2iYc87zF0m3KVOmuGXLlmW7DAA+tmrVKpYj2w/+RkDf5ZzT+++sVnNTiwYOHqC6PXVqbmpRKBRSWXmpCosKterdv+nNN97Suo9q5FxcAwcN0LHTjtLRUyYqHA6poaFRDfWNCgQCGjRkoHbv2qNIS0QjR4/QkGGD01KnmS13zk3p7hwjwQAAAEiKmcksoIu/em1726xzvqA5F/4fPfR/n9AfFv5Z0Whsr+ctePE1SdIR48fqsqsv0NYt23X/XT/vNDL88uJnvX8DYk4wAAAAeiEcToylmplu/f4N+sxnp6qoqFBbN2/vNgB3VLt+gwYOKlc8Htd/PX2vhqZp5DcZhGAAAAAkraCwQJJ00+3Xqq6uXiNHj9C//8tPdN1NV+joKRP3+byy/qW67+Hv69EHn9bwA4boz39YonsfukP9y8skJeYTZwIhGAAAAEkLBgM65fTPasDA/poy7Sj9y7d+oHerVum6y/91n0G4LQD/1/2/1Bt/Wqabrv13HTF+jJYveUc33X5tN6/iHW6MA4Be4Kav/eNvBPRtmzdtTawR7Jx2bN+laDTafq7jzW4tzS2ftA0eoD2769Tc2iZJMtOgQeUyM9XVNeiAg4Zp2PAhaamRG+MAAACQVs1NzTprxgVp7/elPz6T9j67w3QIAMhTpaWlae+zqqpK8+bNaz++/fbbde+996b9dQDkP+9mE5hH/XZGCAYAtOsaggFgX7zKwJmJwIRgAOgT7rnnHk2dOlWTJk3SbbfdJklau3atxo0bp8svv1zjx4/XaaedpsbGRknSm2++qUmTJmny5Mm68cYbNWHCBLW0tOh73/uefvWrX2ny5Mn61a9+JUlauXKlTj75ZI0ePVo/+9nPJEn19fU688wzddRRR2nChAnt1wLwj5aO83rTyCkz96sRggEgzy1cuFDV1dVaunSpqqqqtHz5ci1evFiSVF1drauvvlrvv/++BgwYoP/+7/+WJF188cX6+c9/rqqqKgWDQUlSQUGB7rzzTp177rmqqqrSueeeK0lavXq1fve732np0qW64447FIlEtGDBAh100EF6++239d577+mMM87IzpsHkDUtLd6E4EwhBANAnlu4cKEWLlyoo48+Wsccc4xWr16t6upqSdKoUaM0efJkSdKxxx6rtWvXaufOndqzZ49OOOEESdLXvva1T+3/zDPPVGFhoYYMGaJhw4Zp06ZNmjhxol555RXddNNN+tOf/qTy8nJv3ySAnJKPq4t1RQgGgDznnNMtt9yiqqoqVVVV6YMPPtCll14qSSosLGy/LhgMdlrCqKe66+Owww7TihUrNHHiRN1666268847U38jAPKGmSkYyu9FxgjBAJDnTj/9dD3++OOqq6uTJNXW1mrz5s37vH7AgAEqKyvTkiVLJElz585tP1dWVqY9e/bs9zU//vhjlZSU6IILLtCNN96oFStWpPguAOSbwoKwRz1n5ta4/I7wAACddtppWrVqVfv0htLSUj399NPtc32789hjj+nyyy9XIBDQ5z73ufbpDDNmzNBdd92lyZMn65Zbbtnn8999913deOONCgQCCofDeuihh9L7pgDkvGBo3//GpCYzUy3YMQ4AeiHfd0Orq6trX2f4rrvu0oYNG3T//fen9TXy/W8E4NOtX1urMz/36fcU9MZLf3xWB4+sSEtf7BgHAOjk5Zdf1o9+9CNFo1Edcsgh+sUvfpHtkgDkGa8GUjM1QEsIBgAfOvfcc9uXQAOA3si/uQSdeR6CzewMSfdLCkp61Dl3V5fzN0i6TFJU0hZJlzjn1nldFwAAAHqvuLhIj829z5N+M8HTEGxmQUkPSjpVUo2kN83sBefcyg6XvSVpinOuwcyuknS3JIYnAAAAclhjY5MunXN92vt9cdEzae+zO16PBB8n6QPn3IeSZGZzJZ0tqT0EO+f+0OH6v0q6wOOaAAAAkKLi4kKPRoIL939RGngdgiskre9wXCNp2qdcf6mk+d2dMLMrJF0hSQcffHC66gMAAECS4vG4Ghub83okOGc2yzCzCyRNkXRPd+edcw8756Y456YMHTo0s8UBQA665JJLNGzYME2YMKHb8845XXvttRozZowmTZrEhhYA0iYQyJkI2Wtev4NaSSM6HFe2tnViZl+Q9K+SznLONXtcEwBk3Pz58zV79mxNnTpVs2fP1vz53X7plZSLLrpICxYs+NTXrK6uVnV1tR5++GFdddVVKb8mAEiZW8bMS16H4DcljTWzUWZWIGmOpBc6XmBmR0v6uRIBeN/7fAJAnpo/f75+8IMfaOPGjXLOaePGjfrBD36QchCePn26Bg0atM/zzz//vC688EKZmY4//njt3LlTGzZsSOk1AUCSzDKztbGXPA3BzrmopG9K+p2kVZJ+7Zx738zuNLOzWi+7R1KppN+YWZWZvbCP7gAgLz344INqamrq1NbU1KQHH3zQ09etra3ViBGffBlXWVmp2tq9vowDAF/yfJ1g59w8SfO6tH2vw+MveF0DAGTTpk2bkmoHgFzHdAgAwH4NHz48qfZ0qaio0Pr1nyzQU1NTo4qKCk9fE4A/MB0CALBfV199tYqKOu+AVFRUpKuvvtrT1z3rrLP05JNPyjmnv/71ryovL9eBBx7o6WsCQL7wfDoEAPjdzJkzJSXmBm/atEnDhw/X1Vdf3d7eW+edd54WLVqkrVu3qrKyUnfccYcikYgk6corr9SsWbM0b948jRkzRiUlJXriiSdSfi8A0FcQggEgA2bOnJly6O3queee+9TzZub5zXcAkK+YDgEAAICkRKPRbJeQMkIwAAAAkhIK5f9kAkIwAAAAfIcQDAAAAN8hBAMAAMB3CMEAAABICjvGAQCy5pJLLtGwYcM0YcKEbs8vWrRI5eXlmjx5siZPnqw777wzwxUC6KvYMQ4AsF+RSETXXHONrrnmGjU0NLQ/btvYorcuuugiLViw4FOv+exnP6uqqipVVVXpe9/7XkqvBwB9Sf6vbwEAOe6GG27QihUrJEmzZs1qD7833HCDHnjggV73O336dK1duzYdJQKA7zASDAAZ0tzcrLq6OjU3N2fsNd944w0dddRRmjlzpt5///2MvS6Avs+rKRGZmmpBCAYAj/34xz9WOBzu1BYOh3X33Xd7+rrHHHOM1q1bp7ffflvXXHONzjnnHE9fD4C/eHVzXKZuuiMEA4DHbrrppr3m/0YiEX33u9/19HX79++v0tJSSZ9Mw9i6daunrwkA+YI5wQCQIYWFhQqHwynfENdTGzdu1PDhw2VmWrp0qeLxuAYPHpyR1wbQ9xUXF+qxufd50m8mEIIBwGM//elPdcMNN0hKTI246aab2ttTcd5552nRokXaunWrKisrdccdd7QH7CuvvFK//e1v9dBDDykUCqm4uFhz587tE8saAcgNjY3NunTO9Wnv98VFz6S9z+5YPi52PGXKFLds2bJslwHAx1atWqVx48Zlu4ycxt8I6Ns2b9yidR/VfNJgptLSEtXXN8jF958vS/qVqLm5WbForFP7IaMqNeyAoWmp0cyWO+emdHeOkWAAAAAkrbGhyZOR4JcXP5v2PrvDjXEAAABIWotH9zewOgQAAAByVqQlMzf5eoUQDAAAgKQ45zI2YusVQjAAAACSYmYKBPI7RuZ39QAAAMiKgsICT/rNVLgmBANAnlq/fr1mzJihI488UuPHj9f999+/1zXOOV177bUaM2aMJk2apBUrVmShUgB9UTjszSJjmVrPnCXSAMBj06dPV0NDw17tJSUlWrx4ca/7DYVC+slPfqJjjjlGe/bs0bHHHqtTTz1VRx55ZPs18+fPV3V1taqrq7VkyRJdddVVWrJkSa9fEwDamOX3WGp+Vw8AeaC7APxp7T114IEH6phjjpEklZWVady4caqtre10zfPPP68LL7xQZqbjjz9eO3fu1IYNG1J6XQCQJOfiHvXLEmkAgB5au3at3nrrLU2bNq1Te21trUaMGNF+XFlZuVdQBoDeye9t2AnBAJDn6urq9OUvf1n33Xef+vfvn+1yAPhEMOhNjMzUnGBCMADksUgkoi9/+cs6//zz9aUvfWmv8xUVFVq/fn37cU1NjSoqKjJZIgDkJEIwAOQp55wuvfRSjRs3TjfccEO315x11ll68skn5ZzTX//6V5WXl+vAAw/McKUAkHtYHQIAPFZSUrLP1SFS8frrr+upp57SxIkTNXnyZEnSD3/4Q/3jH/+QJF155ZWaNWuW5s2bpzFjxqikpERPPPFESq8JAH0FIRgAPJbKMmif5qSTTtrvXdRmpgcffNCT1weAfEYIBgAAQNL6lZZo/p/netJvJhCCAQAAkLQBA8s1YGB5tsvoNW6MA4BeytSC7vmIvw2AXEcIBoBeKCoq0rZt2wh73XDOadu2bSoqKsp2KQCwT0yHAIBeqKysVE1NjbZs2ZLtUnJSUVGRKisrs10GAOwTIRgAeiEcDmvUqFHZLgMA0EtMhwAAAIDvEIIBAADgO4RgAAAA+I7l453NZrZF0rosvPQQSVuz8LrwFp9r38Vn23fx2fZNfK59V7Y+20Occ0O7O5GXIThbzGyZc25KtutAevG59l18tn0Xn23fxOfad+XiZ8t0CAAAAPgOIRgAAAC+QwhOzsPZLgCe4HPtu/hs+y4+276Jz7XvyrnPljnBAAAA8B1GggEAAOA7hGAAAAD4DiG4B8xsrZm9a2ZVZrYs2/UgfcxsgJn91sxWm9kqMzsh2zUhdWZ2eOt/r20/u83s+mzXhdSZ2bfM7H0ze8/MnjOzomzXhPQws+taP9f3+e81v5nZ42a22cze69A2yMxeMbPq1t8Ds1mjRAhOxgzn3ORcW+MOKbtf0gLn3BGSjpK0Ksv1IA2cc2ta/3udLOlYSQ2S/l+Wy0KKzKxC0rWSpjjnJkgKSpqT3aqQDmY2QdLlko5T4t/i2WY2JrtVIQW/kHRGl7abJb3qnBsr6dXW46wiBMO3zKxc0nRJj0mSc67FObczu1XBA5+X9HfnXDZ2mUT6hSQVm1lIUomkj7NcD9JjnKQlzrkG51xU0h8lfSnLNaGXnHOLJW3v0ny2pF+2Pv6lpHMyWlQ3CME94yQtNLPlZnZFtotB2oyStEXSE2b2lpk9amb9sl0U0m6OpOeyXQRS55yrlXSvpH9I2iBpl3NuYXarQpq8J+mzZjbYzEokzZI0Iss1Ib2GO+c2tD7eKGl4NouRCME9dZJz7hhJMyVdbWbTs10Q0iIk6RhJDznnjpZUrxz4egbpY2YFks6S9Jts14LUtc4hPFuJ/4E9SFI/M7sgu1UhHZxzqyT9WNJCSQskVUmKZbUoeMYl1ufN+hq9hOAeaB19kHNusxLzCo/LbkVIkxpJNc65Ja3Hv1UiFKPvmClphXNuU7YLQVp8QdJHzrktzrmIpP+R9Jks14Q0cc495pw71jk3XdIOSX/Ldk1Iq01mdqAktf7enOV6CMH7Y2b9zKys7bGk05T42gZ5zjm3UdJ6Mzu8tenzklZmsSSk33liKkRf8g9Jx5tZiZmZEv/NcjNrH2Fmw1p/H6zEfOBns1sR0uwF/f/t3TGIFGcYxvH/E88UEjGiVoLINSKeKJEUdtfZWogBUxijgmBlOoMigqkjEbSR8wo1EKIoIcUlpBAJKCIi5yWkERILEQtJrETxTXGzuB6CqHu3e87/18zszPDNO83y7Mw3+8LOZn0ncLmPtQB2jHutJMO8eKt8CDhfVd/0sST1UJKNwGngQ+AusKuqHvW3KvVC86P1H2C4qv7tdz3qjSRHgc+AZ8AtYE9VPelvVeqFJFeBZcBT4Kuq+q3PJektJfkeGAWWAw+AI8Al4AdgFfA3sL2qZr48N6cMwZIkSWodp0NIkiSpdQzBkiRJah1DsCRJklrHECxJkqTWMQRLkiSpdQzBkjQgkqxO4v+QS9IcMARLkiSpdQzBkjRYhpKcS/Jnkh+b7mibklxJcjPJRFfr0b1JbiS5neRCkkXN9vEkp5JcS3I3yWiSsWbM8eaYBc1xd5JMJjnQx2uWpDlnCJakwbIGOFlVa4H/gP3ACWBbVW0CxoBO18qLVfVpVW1gun3w7q5xlgKbgQNMtyv9FlgHrG86JW4EVlbVSFWtB87M/qVJ0uAY6ncBkqSX3Kuq35v1s8DXwAjwaxKABcD9Zv9IkmPAx8BHwETXOD9VVSWZBB5U1SRAkilgNXAFGE5yAvgZ+GVWr0qSBowhWJIGy8xe9o+Bqara/Ipjx4GtVXU7yRfAaNe+J83yedd65/NQVT1KsgHYAuwDtgNfvnP1kjRPOB1CkgbLqiSdwLsDuAas6GxLsjDJumb/YuB+koXA529ykiTLgQ+q6gJwCPikJ9VL0jzhnWBJGix/AfuTjAF/MD0feAL4LskSpr+3jwNTwGHgOvCwWS5+g/OsBM4k6dwMOdib8iVpfkjVzCdvkiRJ0vvN6RCSJElqHUOwJEmSWscQLEmSpNYxBEuSJKl1DMGSJElqHUOwJEmSWscQLEmSpNb5H0RSmO3QxF+eAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + "fig.set_figheight(8.27)\n", + "fig.set_figwidth(11.7)\n", + "sns.scatterplot(y='global_consisentency', x=\"beams\",hue=\"temps\",style=\"lengths\",data=df[df.names == model_selected],s=500)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5hU1f0G8Pfc6WV7pSwsvfcFFBCsoIidJBpNgt1YgyXRmCjJLxq7qIkNFUvsaKxgFJVeZOnSYdlle6/Ty/39scy6C7Ozszt3ZoX7fp7HJ+7Mud89u+aZfefMud8jZFkGEREREZGaSN09ASIiIiKiWGMIJiIiIiLVYQgmIiIiItVhCCYiIiIi1WEIJiIiIiLV0Xb3BLoiNTVVzs7O7u5pEBEREdHP2ObNm6tkWU4L9twJGYKzs7ORm5vb3dMgIiIiop8xIURBe89xOwQRERERqQ5DMBERERGpDkMwEREREakOQzARERERqQ5DMBERERGpDkMwEREREakOQzARERERqc4J2Sc4VhrqG9HUaAMAeL1eSJIEjUYDrVaLtIyUbp4dEREREXVVVEOwEOI1AHMAVMiyPDLI8wLAMwBmA7ADmCfL8pZozikcZSUVqKqswduvLcHW3J0oKSpreS4u3ooRo4fisivOx+jxI5CUnASjUd+NsyUiIiKizor2SvDrAP4F4M12nj8PwKCj/0wG8MLR/+0WdbX1qKmqxX1/eAh7ftwfdExjQxM2rMnFhjW5SEiMxwOP3I0x40cgPSM1xrMlIiIioq6K6p5gWZZXAagJMeQiAG/KzTYASBRC9IjmnNpTWVGNlcvXYe5517YbgI9VX9eAu256AI/97TlUlldFeYZEREREpJTuvjGuF4DCVl8XHX3sOEKIG4QQuUKI3MrKSkUnUVfbgHUrf8Bf734EXo+309d//eUK/O3eJ1BRxiBMREREdCLo7hAcNlmWX5ZlOUeW5Zy0tDRFa1dX1eBv9z0RUY1V363HV198h/r6RoVmRUQUmsvhQklRGcpKKlBWUoHSknKUFZfD6+38m3kiIrXp7u4QxQCyWn3d++hjMVNWWoH77vhHl1aAj/XMoy/jjHOmISEhToGZEREFV1ZSgeqqWnz07ufYsXU38g4WwOvxwmg0YPCwARg/aTQu+dX5MFtMyMhUdtGAiOhk0d0h+DMAtwoh3kPzDXH1siyXxnICFWVV2LvrgCK1PG4P3l68BLfedS2scRZFahIRBdRU16GirBL33/kwDuzNO+55p9OFHVt3Y8fW3Xj9pfcweeoEPPDPu5CYnIg4viYREbUR1e0QQoh3AawHMEQIUSSEuFYIcZMQ4qajQ5YCyANwEMAiADdHcz7Hqqurx9uvLVG05qcfLkNjQ5OiNYmIKiuqseSdz3D5nBuCBuBgNq7djLmzrsHGNZtRXRnqHmUiIvWJ6kqwLMtXdPC8DOCWaM4hFHuTA1t+2KFoTVuTHQ6HU9GaRKRuFeVV+M+rS/D6S+92+lqHw4m7fv8AHn32AZx6Wg4SkuKjMEMiohPPCXNjXDTIsozyMmU7TQDAof2HFa9JROrkdrux98cDXQrAAbIs4893PoTqqloFZ0ZEdGJTdQiO1h3UdbUNUalLROpTU1WHv979z4jreD1e3HvH/6GstEKBWRERnfhUHYIlKTo/vl6vi0pdIlIXr9eL5ctWoramXpF6e3cdQGlxuSK1iIhOdKoOwVqtFmaLSfG6A4f0U7wmEalPRVkV3l78kaI1F7/4LrdFEBFB5SFYkgSGjRikaE0hBJKSExWtSUTq5Pf7UVyobNfILT/sgMvlUrQmEdGJSNUhOKNHOi751fmK1pw8dQJ0uu5uv0xEJ4OKcuWPYm+ob4TP61O8LhHRiUbVIRgAJk0Zr+jBFtffehXSMlIVq0dE6lVTVReVuh63Jyp1iYhOJKoPwQmJcbjv739QpNZpZ5yCvv2zOh5IRBQGrU4TlbpCqP6ln4io249N7nYmswmTp47HjLOmYOW367pcJzk1Cff/Yz7SuQpMRArpldVD8ZpCCBhNesXrEhG11tRoQ0N9I2RZhtPpAmQZOr0OOp0OOp0Wqekp3T1FhmAASM9IxQP/vAt/nu/ExrVbOn19cmoSXnv/GWT0SIvC7IhIraxWCzQaDXw+5fbw9u3XG82HdRIRKa+qohq2JjveffO/+HbZquMOJTNbTJgweQyuvukKZPXpiYwe6d00U26HaJGWkYqHnroft9x1DbTa8D+CnHr6ZLzz6Yvo2683NJrofHRJROqk1WkxZcZERWuee8GZSE5JUrQmEREAlJdW4vmFr+OCM67CO4s/Cnoqr93mwOrvNuCaX96B2679M/IO5HfbIWPiRFwRyMnJkXNzc6NSu7a2Hg11DXhz0Qf4/KP/NS/hBzFpyjhcf+tv0W9AFtIzuQJMRNGxZdMOzJt7myK1NBoNvlj5dlS2WRCRuh3JL8KNV92F4sKyTl2n1Wnx6LN/xYRJY5CcqvwbdCHEZlmWc4I+xxDcls/rAXw+2BsaYXO6YbM5cGh/PurrG6E36DFwUDaSkhNg0EpISE6EpNVCaHUQQkRlPkSkbuVllVjwp8exdsXGiGtdf8tVuPLauVwJJiJFlRSV4XeX3Rp05TccQgg8+8rDmDRlHExmZQ8xYwgOk9/thrupAY6SQsj+o3vwhIBGb4DQaCDLMvwu10/PATAkp8KY3gNCq4UkcTsEESmvuLAMl8+5HvV1Xf/IcODgfnjxrcf5yRURKaq8rBJ/ufPhLt1T1ZrFasaSr15T/JOqUCGYe4KP8nncsJcVwV6U3ybkQpbhcznhtdvgc9jbPgfAVVOFxrz9kD0eyH5/jGdNRGqQnpmCxR88i/iEuC5dn90/C8+/8RgDMBEpbue2PREHYACwNdnx6IJno3JIUHsYgtEcgJ3lJXDX1XTper/bhcbDB+D3sgE9ESlPkmVkxunw3mcvYOyEkZ26dvZFZ+GV/zyOREPzax0RkVJKS8rx0jNvKFZv5bfr4XLG7nVK9SHY5/XC57DDVRPZOw+/2wVHWQl8bv6RISLl+DweeBrr4a4qg8VegyefuQ9P/vtBDBraP+R1E08dhzc+eAZ33flbaGtKYS8+Ar/bBb+C7daISN1cTjf27T6oWD1ZlvHlJ98oVq8j7BPs98FWlK9IKXddNQypadDo2YieiBTi98NeWggAkL0eaGrLMGloD4x+6UG4fAJ5Bwuwa+d+2O1OJCRYMXrcMGT16QWd7IHe3QR/w09v8G2F+YjrPxhgO0ciUsCenfsUr7l543ZUllcjLSP6h2moOgTLsgyf3Q7Z61WsprOiDFLPPgzCRBQxn88LV20VcMz9Bj67DTrYoAMwNjsJE4bMAIQE+P3wOR3wNzS3KDr2LgW/2wWf0wFJq4OQVP9BIBFFaPuW3YrXPLD3EDye2GwvVXUI9ns9cNZ0rZ1HezwNdUDPLEVrEpFK+XwdbtXyu1zwu4L3Mw/GWVUBrckMIfGNOhF1ndfrRWNDk+J17TYHhBSbtrPqXgqQZfgcNuXLKriyTEQqJsuQFb7h1mtv4rHJRBQxrVYLs0XZnr4AYDAaIMAQHH2yDDkKN4n4XA7FaxKR+vij0c3B7wcYgolIAWMnjFC85sDB2dDrY7NRQdXbIaKF/YKJSAnhdnIQGg0gRPNrTzivPwzBRKSAYSMHKV5zwqQxSOhiT/TOYgiOAqHhr5WIItfucexCgi4hCVpzHISQ4HU1H9YjaTXQ6LSQfV54bQ3wNNbFdsJEpBp+vx9WkwF9+/VGweEixerOufgsQI7NYqK6t0MIETKwas0W6FPSYe7dH5Y+A2HOGgBDWi/o4hKAEHdWa4zK75EhIvXR6A3HPaZPSoOpVz94nQJehxdepwfuBjvc9Ta4G+zwOj3wOr3w+XQwZw1sfr06FjtDEFGEJElCvFmH62+5UrGaEyaPgcUQuxaOql+y1Fos8DTU//SAEDCkpENrTYTs9cPd0IS6oiL4XG4IrQbGlESYklOgT8qA3+uCq7K07b49Idh6iIiUIUmAEIAsQ2h1MGVmwVVvBxxuNOQXo+5AAWTv8VsmNEY9kocNgM5qgayxwpSZAEd5ESD7m9+kczcEESlA0hlw6imjMXzUEOyOsGewTq/DgofvhFkjN7d8jAHVh2BDUmpLCJaMZpgys+BtcqJ4RS4a8ovb3TtnTE1E2thhsGb1g6ehBu6jrdb0CcnN3SGCrOAQEXWWPj4RHlsTzL2y4XV40HC4CNU7D4S8xud0o3LrHlTt2IfMyWMg9UyDuWc27CWHoU9IAmLUfoiITm6SVgudrQaPPXM/rrj45ohapj3w0HzECQ+0piTE6p26upcsZRkQApLeAF1CEsyZfVCxaRcOfPgVGg4Xhbx5xFlVh8Ll61GwdDU0xniYemYDAAwpqfA67TH6AYjoZOb3eGBIToOpZzZ8Ti+OfLOuwwDcmuzzo3TdVpT/sBN+rwxjRhZ01vjwbp4jIgrB7/fD63RAa7Yizm/H6x88g/gu3tB274LbMWXSCAhnEyS9IWY376o7BANwlBXD0rsf9EkZOPzlSlT/GP4fGACwl1fjwIf/g98jw9J3EDwN9THrb0dEJze/1wO/1wfZK6Pg67Vw1dR3fFEQjUdKUbZxO4RGD3dTI7tDEFHEJEmCz+mAISUdOoMR6RYz3v3oX5h2+qSwa2T2TMcb7y3EjPEjERcXB2NaD7hqq2O2ZUvdIVgI+D1uyLLAkf+thaOipktl/G4PDn3yLWQ/4HU6IBmMCk+UiNRICAFZaFC1Y2+XA3BAw+Fi2IrLoTFZFJodEamd1mSGp7Ee0Fpw+JPvUPftRvzptt/hzfeewZkzp0GrC77rdtDQ/nj48T9h8euPwZxfgsoVP6DqxzxojJbmA4JitGVLnIgnB+Xk5Mi5ubkR1/G53fDYbGg4XIqS1ZsjrmfpmY4+s6ZCa9BBY+CeYCKKjMfhgLvehgPvL1OknqTTYvAVs6GzmKDR89hkIoqMz+WE1+7CwY+Xw9P001ZQndUM06C+0KUnw+3zoaqiGj6fHwmJ8YiPs8DXaIM7rwj20so29QbOnQmtWQNDYkr7LSI7SQixWZblnGDPqfrGOBmApNGhdP02RerZSirgrKqFpXeGIvWISN1kn4yqHZHdcd2a3+NFQ34JEodkQ8MMTEQRkmWgdn9BmwAMAJ4mOzxb9zR/IQQsJgMgBHyuAlR7ve3WK1y+AQMuPRs+twdaQ/RfpNQdgn1+1OcVBW0xFKCzmmFMTYRGp4Ps98NV1whnTX27e+oqNu9G39RkgKssRBQh2e9H3YECRWvW7s1D4oAsRWsSkTr53F5Ube/gjbosw2t3hlXPVdcAj80BvZYt0qLO7/aidn/+cY/r460wDe4LbXoyigpLsXb7XtTU1sNoNGDYsAEYOG4ytB4vPIcK0VRU3uZaW0kF5BiddEJEJze/xxvyTXpXOKvq2CaYiCImyzJ8Dhe8jvACbrhq9hxCxuTRitZsj6pDsBCAo/Knm+GERkL8uGFo1Grw6HNvYv2azWhvz3R2/yxcc8OvkDNzChrWb4e70dbynMfmgCFG514T0cnLHUHPzfbIfj9kn7LBmojUyVZWpXhNe1kV4IvNYqKqQ7Df729ZZdFZzUiaPgGLXn4fH32wtMNr8/MK8cC9T2DI8IF45Il7odufD9uRMgCAq7YB1p7pUZ07EZ385Gj9ITgBb4gmop+f1guJSnHVNba7AKk0dbdIO0prNiJxRg5uv+3vYQXg1vbtPohfz70Njl4ZMGdlAmheaSEiipQmSjeG8Gh3IoqULMvRyTv+2L1JV/UroXT0D0HilHG4955HsX/PoS7VcdgduGHeH6Ef3h9aswk6s0nJaRKRSunjzIrXlLRahmAiipgQAlqT8uciaIx6HpYRC7IMJI4ajBVrN2P7ll0R1bLbHPjrfU8iYfIoGJLjFZohEamZ0Gia/yAoyJSRDGhU/dJPRAoQQsCSmap4XVNaMkSMXqNU/UqoMepgGNAbzzzxiiL1tm/ZhcOlFdDodYrUIyJ1kwx6pIwcrGjN9PHDobcov8JMROpjTE1SvKY1KwNSjHKUqkOwpNNhzepcuFxuxWoueuld1NscitUjIvXS6nVIGTlIsVURndUMU1qyIrWIiCSNBGufHorVExoJ8X17QRujEKzq7hAVZZX4dMlXitbcvnmXoqGaiNRNMurQc9oEFK/c1OZxrdkES98ekOOt0CfGNW+h88vw1NZD1DehsaAEfrenzTV9zz0NWrPye/iISJ2EToeMnBFoOlKqSL3kEQMh6WL3abqqQ7AsN3d3UFpVRQ16ZSn3zoiI1EtnMCBhYB80FpSgIb8YhqR4mEcPRoPbgzc/+go7tu5B3sEC+Hw+GAx6DBraHxMmjcbFl8yEpsmBph374LU7kTFxJAyJVkgaTXf/SER0ktCZDPCaTUgeMRA1uyLLU7o4C1JHDoakj100VXUI9ng8UVm1zTtYgDETRihel4jUSWvUofdZp6DyYAHqfX7Mv+dRHNx/+LhxLpcbP27fix+378Ubiz7A5Cnj8ZcFt8Hk9SGxby9oonAnNxGpm85iQurowXBW1zUfdHEModVAZzVDQMDrcsHncB03RtLr0HfWVGgtRmij1BoyGFWH4Gg1Y/Z6vVGpS0Tq4/d64LE5UW934svVm/D8U4vhD7M358Z1W/CLC2/CQ0/fj9EJViQDgNnY0h6SiChSWqMBsteHXjMmomz9NjQeKYUhMR7GQX2gTUlEY5MdJcVl8PtlJCf3RFpaMuByw3O4GE1HSqGzmNDn3GnQGg1RabkWcu4x/W4/M7oo7TtJ5Y0nRKQAv9cDT5MTtU02vLV4Cd565cNO13A6Xbj75gfxjyfvw6TxI5CclswgTETK0kjQmoxIGz8ccROGI+9QIZ549g3kbtgWdMGxV1Ymfnv1XJx+0ZlIsDSfrSAZdGhuECxiNm1VvwrKshyVvbv9BvZVvCYRqY/f60dtUSl27zrQpQAcIMsyHvzTY2hwuVH544HjbpgjIuoqj92B6vwS1DQ1oU724093/xM3zPsjNq3f2u4n7sWFZfjn3/+FKy67BTv25aHO5UZDXSM8TQ7IcuxO3VV1CI6Lt2LSlHGK1kxKToDewD7BRBQ5WZYhJyVgwZ8ej7iW1+PFn+c/BKlPD8RypYWITl4euwM1e/Mhx1tQXFiGX51/PTZv3BH29TVVtbjhyruw5J3P4ZJlVBeVxTQIqzoEW61m/PrquYrW/MWVFyIxIU7RmkSkTj4BfP3lCtTV1itSb9/ugygqLIGkVfVLPxEpxGt3QtsrDXW19bjl6ntha7J3qc4r//4P/vfl9xAJVtTlHYHXGZtWs6p+JfT7fEhMjMPEU5VZDbZYzbj0ijkw8MQ4IlJAbXU93nvzY0Vrvvny+6ipbVC0JhGpkzAZ4PJ48Zc7/wmHPbKDwv71+CuoramHrncPCCk2n1apOgRLkoBVuLHg0T/CpMAdiff/Yz7MWgmCN5wQkQK8Ph+KC8sUrbll00643TzQh4gi53S5sWL5WhzYlxdxLa/Xh4f+8jScThdEjPqZqzqtSVodjMnpsBi1eOrFv0MTwS/9sivmYOIpY2GNswCC++2IKHKVQXpuRqqhvhFej0/xukSkPg6HE2+98oFi9XZs3Y3GhiZEqYPtcVQdggFA0mgRn5iAoSMG4YU3HkNcvLVT1wshcPVNV+Dm+VcjOTEOsqThiUxEpIia6rqo1PV62B2CiCLX1GhX/NOqL//7DZxBDtSIBlWHYNnnh9vugNvmhK/GhoF9srBk2Ws4a9ZpEGGs5mb3z8Lbn7yAq353KbQuHzwuH3x2FzzO2PzHI6KTm04XnVbu3LJFRErYvXOf4jW3bt6JpqYmxesGo+rDMrxuN/xuDzxOL2QZkN1eaAXwh1vn4bY/XI2lX3yP3B+2Y9+eg7A12aHVatBvYF+MHD0EF10yC0nWOCSlJKDmcDmSszPgarRDq9dC44tdjzsiOnlFo4+5EAJGY+yOJSWik5Pf78fObbsVr5t3oEDxmu1RdQgWQkDWaADJB41OA8gycv+zHE0VdZB0Gowf3hdT510Oa2YytAYdZL+Mpso6OEtqUfrFFuTVNUFj0GHs3OmwVdbDmpYICAmI0V2NRHRys1jN0Gg08PmU28Pbt39WzPbbEdHJSwgRlW0LbpcbseplruoQrDUa4Gx0QKPXwt3owNoXP2/pTef3+FCyPQ/YHvqOR5/Lg81vf4tRl0yFIc4Mk0EHv49/YYgocnq9DtPOmIyVy9cpVvOCS2YiOTlRsXpEpF7xUTgXwWw1x+w4H1VvDHM1Nfe089hc2PDasoiaM+/871q4bU4IjQS/l3deE1HkLAYjrr3xCsXqaTQazL7obMher2I1iUidZFnG2LEjFK87ZNgA6HWxOW9B1SE48BHj/m+3wNXQtVNOWtvy7nfwONwQGlX/WolIIT6PByYPMP2MUxSpd93vf436AyWQvfy0iogiN3jYAMVrTj5lHEwGg+J1g1F1WhNCwON0o3CTMnc3OuttKPvxMGQ//8AQUeT8Pj/2frwWd/3pRiQmJURUa9DQ/pg9cwb2L90EmZuCiShCkiRBJ0kYMXqoojXPmnka/AreBxHy+8Xku/xc+f0o2LhH0ZKHVu+Ez8OPGokocs56GzwON/I+34SXFj+KhMT4LtXJHtAHTy58ALs/WA2vwwXZzw42RBS5+Hgrbrz5KsXqnTN7BuD0QNLyxLio8/n8KN99RNGa9uoG7gkmIkV4HM33KdTml6H02514492FGJczslM1Zl94Np7799+x+50VcNQ2AmheYSYiipQsA72SkzHjzFMjrhWfEIdbbv0dElISoTPEZk+wqrtDCAg0ltcqXtdWVY/4zGTF6xKRukit7i+oySuF7c3vcP8fb0ZecQleXfQe9u0+2O61k6dOwA03XQmjw4ctLy5t8wlVOIcBERF1RGfSw6DV4e4/3oiDB/JRXFjapToajQaPLfwrGg+WIXF8XMzurVJ1CPb7/IhGw0xHnU3xmkSkPqbEtse4uxrs2PHGciT1zcCCP90KY2ocDucVYu/eg3A4XYi3WjFi5GD06p2JhoIKlH77I5oq2x69LCQRs48aiejkJgkBo9WEI5v24fmXH8YfbluAwwc7d9iF0WjAE88+CG1ZI3pNGQm9WQ+fxwtJE/3XKVWH4GithQgNV1mIKHKSTgOhkSAfs32htqActQXlgAAsqQkYl5EBKVEDr8uNuu93o6x+U7s14zKSuSeYiBQhez0wJVnRb+pI7Ph4NRYufACffb4cixe9D38YrzPjc0bhr3+fj5LVu9Fz0lC4nW4Irwv6KJyWGYyqQ7CklSAkSfE/CNbUyO7iJiICmg/t6Tm6P4q3trPtQQZslfWwVdaHXbP3hEGQtKq+HYSIFGKIj4Nc34jGRhtGXzoNuW99gylDBuPCL1/FV0tX4KtlK1CQV9gmEKekJWPSqeNw5VWXQOvyYe87KzDq4mmw1zagZ89sGBOt0Bpic7S7qkOwkCTE90hGfXGVonVNicqfoEJE6qM16NB/2sj2Q3AnSVoNMob1BWR+WkVEkRMaCcaEOCQKgaItBzH+ijNRtOUAtrz4JcaM6o9p998BS1oCPD4fABlajRaeJgeaCqtQ8PEGWFLicMq156F42yEMmD4aBqsRWmNsegQDKg/Bhngzeo0bqGgIjstMgkav6l8rESlESBKaKuvRe/wgFG05EHG9YedNQsW+I8g+VflTnohInYRGgineit7jB6JsVwF0ZgNO/8NcFG09gKIVO2GravtJld5iRNqg3sj5zTnwOFzI37AHQ2dOiHkABlQegiVJQt/Jw7D7y42K3SA3dNZEmBIsitQiInXTW4yw1zZi0JnjUH24FI7api7XSunfAwm9U+H3+PgaRUSKCgThHsP7wO1wY89XmyBpNRg2exKsqYmQ5ebtEEJIcNscqM4vw4HvtmDQGWMxaPpIGKymmAdgQOV9goHmPzIDzxirSC1LWgIyhvVRpBYRkdagQ7+pI7H1/RU45drzjusWEa6kPukYfek0/PjJWiT3y1R4lkREzUFYH2eGVi8ha2hPDD1nPCRJoGDTXuxZ+gN2f7EBB77fCntNA3qPGYBhZ46G5HbAlJLYLQEYUPlKMNB8c9zgs8ahdPsh2Kobul5ICJxyzXnQsPUQESlIbzEiK2cwtrz7PU65fjb2frUJpTsPh3exAAZMH41e4wZi3UtfYvI158LIVWAiigKf1wuf042anQdRvXM/Kjf/CGNyAlLTk5HZpx8gBPwuN5xVFSjcsxd+jxeGpHgkDuwLjwB03RCExYl4hnxOTo6cm5sbcR2f1wtnVR2KvtuIzOkTsepfn8LVYO98ISEw+Zpz4a+thiHeguQRg6C3mCKeHxERADjqm7Dp9a9RU1CO0ZdOgzHOjIMrd6Bi3xEgyEu40EjoNXYgBkwfhfI9R7Dv680YcPoYDJ2ZA2O8OfY/ABGd1HxeL3wOF8p+2Im6fYfhb3U4TyiSTgud1Yz+F50FyaCLShAWQmyWZTkn6HNqDsEeuwOFyzeg4XARjGlJ6DF9Eja/8z1q8svCrqG3mjBp3kx4yitQvWMftCYjhlw1BzozQzARKcdR14TNby9H2a4CWNIS0H/aKKT07wGP3YWGsmr4PD7oDHrE90yGRqdF6a585K/dBVeTAwPPHIsh50yAKaFr2ymIiNrTOgC76hrQ55ypKFu/HbV7D4W8zpAYhz6zT0djfhFq9xyKWhBmCA7B3WTHka/XoqmwDFqLCT2mT0R9eT32/i8X9prGdq/T6LXIPmU4BkwbgfL1W2ErqYDWZMTAy86BNt4CrS42514T0cnPbXPAUVkDjdmEiv3F2L5kFXzu5pUWncmAuIwkSDoNvE4PGstrWp4zxJsx6XczYbAYoDfooE+wdtveOyI6+RwbgJPHjsDaF79AzpVnwVNe0W4QNiTGoeeZp2LdomXoN2U4ElPMUQvCDMEdaB2EASCubw8kDh8EvyxQfbgM1fnl8DpckLQaJPRMQUq/TFhT41F/oAB1e/Pg93oZgIkoKtw2BxzlVcj/chVkvx99Zs+AITkRJdsPIX/9btSXVLfpbiNpNUjqk44Bp49BSlHAr/wAACAASURBVL8eaDx8BGVrt0JjNGDAxWcxCBORYtyNtjYBePW/P4PX6YaQJJx63XlBg3DrABxonzbywlOjFoQZgsNwbBAGAI1RD3N6CgzJiRA6LeCX4a5vgKOyBu76n1oVMQATUTQcG4CTRw2GJikZ1tR4OCuqYMxIg9ZogM/jhSzLEJIEjUaCx+6Aq7IGmoTm0yvrftyLpiOlLUFYF2+FzsQgTESRsVfWoHj1ZiSPGd4SgANaB2FtnBkJ2T1RtGITepyW0yYABwSCsM/pQtr44YrdW8UQHKZgQbgjDMBEFC0+lxu7X/8vfE43kkcNhohLwMbXv4Y5yYqpN56Pku83wFXbAEuPNGSdfSryPvkW7kYbrH16IHHkUKx54XMAwLTfX9AShE1pyRhw6dlcDSaiiLkdTtirGrDi6Y/aBOAAIUmYetMcCEmgcMsBDJ01Eauf++S4ABww6uIp6HvKcBjjletiwxDcCR6bHYc/XwF7eXWHY4VGgyG/Ph/aODMDMBEpzu/zwVldh+rdeYAlDhtf/7pl64M5OQ5TbzwftT/uR6/TJkBnNcNV34jSddthHZiNNS983vJHSWvUY9rvL0DTwXz0mDIGhgQe7U5EkWssr8W3j74XNAAHCEnC5GvOhSUtARsWLW03AAeMu/wM9Jk4RLFPq0KFYNUflnEsv8cHj80R1ljZ54OrrgHw+aM8KyJSI0mjgcZkgpSY1CYAA4C9phFrX/oSaZPGQGdtbnumMRmQOHJwmwAMAF6nG2te+ByJIwdDw20QRKQQndmApKy0kGNkvx8bX1uGVc983GEA1pkMSBvUC1pDbBYWGYJbcdU14uBHX8PTFH6v4MNfrIStpAJepyuKMyMiNXI22lF5sATrFy0NerS7vaYRK59eAltVPXxeLxrL6tr9WNLrdGPF0x+hsawOXnf7qzZEROEyxpkx+brZSBvUK+Q42S/DYw+dk3QmA864+xeIy0iCkGITTxmCj+pKAAYAyDKDMBFFhUarwdZ3vwsagAPsNY1YufAjFG89hJULgwfgAK/TjS3vfge/h59eEZEywg3CoXRHAAYYggFEEIADGISJKAokrRbT518GvcUYcpy9phE/LP4qZAAGgLjMJJx6/ewO6xERdUYkQbi7AjDAEBx5AA5gECYihWl0GlhTEzHjzrkRB9e4zCScduvFMCfHKzQ7IqJWZBljLz8DqQN7hn2JzmTA1JsvhM5siHkABlQegr0OJwq/29BhANaajBh8+WxYszJDF5RlFCxbo+AMiUjtlAjCDMBEFE3OBhsOrdqBzW8tx5i5M8K+bsD00ajOK8W6Fz6Hvbb9U3qjRdUhWDLokXX2qTAktt8uKNAH2JCSgD4zp4YMwkIjod+FpwP+E6/tHBH9fEUShBmAiSiaAgG4MHc/xvxiOja8sjTsa/d9sxnm5Dgk9ErF+pe+iHkQVncIliTorGb0v+TsoEG49UEYGq0Wequ53SAsNBL6X3QmTClJ0Jq5346IlNU6CIfbPsiSEs8ATERR0zoAT/zdTPyw+H8dtkFrTfb78cPi/yFjeN9uCcKqDsFA+0G4vZPgggVhBmAiigVZ9sHv8cHvD6+7g9/nh8xPpogoSpwN9i4H4IBjg/CBb7fCZXNGYbbHU30IBo4Pwh0dhdw6CDMAE1EseN1uNJbVYeXCj+D3+MK6xlHXhJULP+rSHyYioo6Yk+Iw5aYLuhyAAwJBuMeofhh8zngYYtTBJuohWAhxrhBinxDioBDi3iDP9xFCfC+E2CqE2CGEmB3tOQXTOggPnDuz3QAcEAjCg35xLgMwEUVV6wDcURu0YwX6CDMIE5HSvG4P1j7/WRgnwekR3zMl5BjZ78eGV5ahobQGXrdHyWm2K6ohWAihAfBvAOcBGA7gCiHE8GOG/QXAB7IsjwNwOYDnozmnUCRJgmQyQGM2hgzAATqLCfpEKwMwEUVNJAE4gEGYiKJCRsjDfIBAH+BfYsYfLguvj3AH9ZQU7ZXgSQAOyrKcJ8uyG8B7AC46ZowMIHDXRgKAkijPqV0+jxfuegec9bYO/9jIsgxngx32WhtcjRH2GCYiCkKJABzAIExESjMnx2HG/LmwpAS/+bb1QRgGqynkgRpCkjDtlguRMqAntPrwbv6NVLRDcC8Aha2+Ljr6WGsLAFwlhCgCsBTAbcEKCSFuEELkCiFyKysrFZ+oz+OFs8GOuqIKlO05AkdD+0G4JQBXN+Dw2h/hsjkZhIlIcbIfWP3cf8M6CW7arReFdbLc+kVL4Y7RTSdEdPJrLwgHOwmuvZPlhCRh6s2xDcDAz+PGuCsAvC7Lcm8AswG8JYQ4bl6yLL8sy3KOLMs5aWlpik6gJQAXVmDDq8uw/YOVKNtVEDQItw7Aa1/4DAe+3YoD325hECYixfncHky48iwITfsv1XGZSTj1hjlI7d8T024JHYT1FiPGX3EGZF943SWIiMIiBCZfN7slCOtMBky5aQ6ERoLf1/ZGXtnvx6hLT2s5WU5IEibNmwm9xQhfjPYCB0Q7BBcDyGr1de+jj7V2LYAPAECW5fUAjABSozyvFscG4MAfh+0fHh+Ejw3AgdWUw2t3MQgTUVS4HS5MvvrcoEE4LjMJOb85B2v+9Qn+93//wfaPVuPUG+YEDcJ6ixGn3jAHzkY7ZBGLmRORGtiqG7Dy6SX4YfFXmHTNuUjMSsOUG+dg1xcb8N1j76Opsh4+T3O4ddQ1YeNrX2H1c//FiAumIG1wb0yaNxPlewvx/eMfoLagAq4OTvFVUrRD8CYAg4QQ/YQQejTf+PbZMWOOADgLAIQQw9AcgpXf7xBEewE4oE0QdnmCBuAABmEiUpox3oIeI7LhcbmPC8KBALzx1WWw1zTCUduI6kMl+PGzdccF4UAA9jhdSM7OhDHO3B0/DhGdZGzVDVj1zMewVdWjqaIOm974GhN/OxO7vtyAqgPF8NhdWPHUEjRV1sPZYMPGxV+1PL7upc8xYs6pKN9biPx1uyD7/Vj7wufNQThGOUrIUb4L72jLs4UANABek2X5ISHE3wHkyrL82dFuEYsAWNF8k9wfZVn+OlTNnJwcOTc3N+K5ORvtqM4rxYZXlob8eHDML2agx8hsuBodQQNwa/2mjsCIC06FMd4S8fyIiIDmU5lKd+VDZ9Bj4+KvYE1LaBOAj5UyoCdGXjgF61/+AgAYgIkoKmzV9Vi18GPYqhtCjtOZDDAnx6G+uCrkOCFJmHLTHCT3zYBBodcqIcRmWZZzgj4X7RAcDUqFYJfNgR0frUbBhj0dju1/2igUbTnQ4Q0l5uQ4nHnPr2BMYAgmIuUEgrDRaobeamw3AAcEgjAABmAiippwg3BHWgJwdgYMVuVeq0KF4J/DjXHdxmAxYfSlpyFr4pAOx+at3hlWAJ5x51wGYCJSXGBrhL22scMADADVh0qw4+PVcDucDMBEFDWWlARM/8Ol7bZJC0e0AnBHVB2CAcBgNWHsL2aEFYRDCQRgS3LX/09ARBSKRq9Dn0lD4XN7wxuv1SB1QE/oTIYoz4yI1CySINxdARhgCAbQHITHzJ2OrImDu3R9S488BmAiihKP0w2Pw4Xct76Bq8kR1jVVh0qQt3IHXA02+Ly+ji8gIuqirgTh7gzAAEMwAMDv9cLV6EDfScPQa9zATl1rTo7D5GvPQ01+GbtCEFFUBALw9iWrULz1YKeu3fXFBhRs2MMgTERRZ0lJwLTbLgl7/NBZOUgd0LNbAjDAEAy/14vGinqseOpDrHvpCwycMQap4ZxtDUCj02LqzRci981vsPHVZSjefohBmIgUFUkADmAQJqJYcNQ1YfPby8Mef3DldthrGlv6CMeaqkNw6wDssbuQ1DcDEAINJdVhXe/zeFGxrxC9JzRvo9jyzncMwkSkGCUCcACDMBFFk6OuqaUPcLg8dhdWPL0ETRX13RKEVR2CPQ43dny0Ch67q01fzY66QLS2/cNV0FsMGDZ7MgBgx8drAMHjmIgocl6XO+wAnJjV8XHygSDsDnNPMRFROLoSgAO6MwirOgQb4szI+c056DtleJcCcEAgCI+48FScPv8yaA3aKMyWiNRHwGN3dTgq56qzMf2OSzFgxugOxzob7XyjTkSKiSQAB3RXEFZ1CJZlGZAkDD5zXJcDcMD2D1fBGG+B1mSE7DvxDiAhop8fU4IFE+fNRPqQrHbH5Fx1NjJH9YPebMSw8yaFDMIDZozGsPMmwcRe5kSkgHADsJBEh60auyMIqzoEu21O2KvrsfLpjyIKwAGb/7McpTvz4HF1zwZvIjr5mBKs7QbhQAAOHIRhjLe0G4QDAZhHuhORUjxON+oKK0OOaW6DdgHOuf/KDtuneewuVOwrhNvuVnKa7VJ1CBZCYPcXG8I6Ce6cv1wVVvu0XZ+vh6RR9a+ViBQWLAgfG4ADggVhBmAiigZzshUz5l8GrVEf9PnWfYDNyXEd9hEeedEU9J4wKGafVqk6rektRuT8diaS+qS3OybQB/iH179C9inDQwZhrVGP0++cC50p+P8ZiIi6qnUQbi8AB7QOwgzARBQtWr0ecRmJQYNwsIMwQh2oMfKiKeh7yjCYEqwxmTsACFk+8fav5uTkyLm5uYrVc9TbsO6Fz1B7pKLN44EAnPvmN2gsr4Wk1eDU689H/obdx92tHQjA8T2SIWk0is2NiKg159EWjO0F4NYcDTYAgIkBmIiiyOt2o7G8Diuf/ghep7vDk+Bs1fVYtfBj2KobAEQ3AAshNsuynBPsOVWvBAeYEiyY8vsLkdT3pxXhYwMwAPi9Pqxf9OVxK8IMwEQUK8Y4c1gBGGgOvwzARBRtrVeE9RZjh0cht14R7o4V4ACuBB9lr22Es8GOre9+B1eT47gA3FrrFeHyPUcw5cY50JkMsGYkQmfgVggiIiJSH6/bDdknw+/zhXUUsqvJAb/PF9UAHGolmA1tAdhrGrD6uU/gdrgw5YbzIYSETW9+HTQAAz+tCJ96/fkYMjMHuz5bh8oDxTjttkuQ2CeNQZiIiIhUR6vvXP4xWE1Rmkl4VL8SHAjAgcCrt5qg1Wthr2ns8FpJq4E1PbHlmGVJq2EQJiIiIvqZ4J7gdriaHMh9a3mbFV93k+O4AKw16jHt1ouQ1DejzeN+r68lAAe+XvPvTyB7/dGdOBERERFFRNUh2GA1YfwVZ8IYoh+d1qjH6fMvQ9rg3phy45yQ7dQgBCbNmxWFmRIRERGRklQdggHAmp6I0+fPbQnChngzLGkJAH4KwHGZSdBotTAlWjHlpgtagrBGp0ViVlpzISFw6vWzkTaoN/QWY7f8LEREREQUHtXvCQ5oqqjDhleXYtyvTgeEwLYPV2HCFWc0B2Cdrs1YR10TNryyFMPOmwS92Yg9y35A9pThDMBEREREPyOh9gQzBLdir2nE2hc+g9vuwow7LoUpyXJcAA5w1DVhy/vfo2LPEUy//VJYM5JgYAAmIiIi+tngjXFhcNTbsPaFz1BfXAVHbSNWPvMxnA2OoGNdTQ5s+3AlSrfnwef2YtWzH8Ne3QCf1xfjWRMRERFRVzAEozkAr/nXJ6gvrvrpsdpGrHhqScuRfgGuJge2vPtdm2OTfW4vVjz1IRpKqhmEiYiIiE4Aqg/BwQJwy3PHBOFgATiAQZiIos3v96OstALVVcEP8jlWeWkFyksrojwrIqITk6pDsNvuxKY3vm4TgPudNRZDL50KiOavfwrC9ccF4IzR/THu2nOhMTTvG/a5vVj59BL4XJ6Y/hxEdPLz+/0oL6vCq/9+G3t/3N9hEK4oq8Tyr1Zh+VerUFFWGaNZEhGdOFQdgnVGA8ZdfnrLsX39zxmHI84GfJe7BcPnntYmCC/76+vHBWDTiJ548dV3MOZ3Z0Oj1wICGH/lWRAaVf9aiUhhgQD80sLFeP+tT3DHDX/B3l0H2g3CFWWV+GbZSjy64Dk8uuA5fLNsJYMwEdExtN09ge4kJAFraiJOv/sXyPthD/Lqq/Hgn59oflKWcfbc07B7yWrgmAYagQD8+2vvhcvlhsvlxh9uuxo6P5A5PBs6I49MJiJltA7AH7+/FADgdrlxx/X345lFD2HoiEFISU1qGd86AAcE/v2c82YgPTMttj8AEdHPlOqXLIUk4JGAI67GnwIwgFdefAfLN2xqsyIMHB+AAWDF8nV49t9vwNgrhQGYiBQTLAAHBIJw6xXhYAE4gCvCRERtqT4EV1fWYOV363H/nQ8f99yxQThYAA747us1+Pufn0BF+fE32BERdUVtdR1eWvj6cQE4oHUQrqutbzcABzy64DksX7YKVZU10ZoyEdEJQ9XbISorqrFmxUY8eM+j7Y555cV3AAAX3Xg+KuvrgwbggJXL1wEA/vrwXUjPSFV+wkSkKjKA/XsPhRwTCMJnnzcdSz9Z3mHNndv3YNYFZyo0QyKinzidbng9Hvi8PiQkxXc4vramDl6vD2npKTGY3fFUvRIs+/3IP3ikw3GvvPgOHn3q5ZABOKCirPK4PcRERF2RmpaMhS8/hJFjhoYc53a5wwrA519yDu6+/+Y2e4iJiJTgdLpRkHcE50+/Aj/u2Iv62oaQ40uKynDVxTfjy/9+jcqK6hjNsi1Vh+D0zDRcdd0vMO/Gyzscu+b7jR0G4GEjB+HZV/6J9EyuAhORMtIzU8MKwh1pCcBpyQrNjIioWSAAX/OrO1BbU4/brrk3ZBAuKSrD9b++E4UFxXjq4Re7LQirOgQDQFp6Cn5z3S9x3S1XRlRn2MjBePbVfyKjB++8JiJlRRqEGYCJKFpaB+DGhiYAgNfrazcItw7AAd0VhFUfggEg3mzGBbPOwNU3dLwiHMywkYPw+FP3I05vVHhmRETNuhqEGYCJKFqCBeCAYEE4WAAO6I4grPoQ7GpyYMt732Hzy0tx7rRTOh2Eh40chMeeuB87Fn+D75/8sOWIZSIipaVnpuL5Nx5DUnJCWONHjR2GPz5wGwMwEUVFSVFp0AAc0DoIl5VUtBuAA556+EV8s3QFqipjE4RVHYJdNge2LVmJ4i0HARnY9cEqXHbRTEydMSms600mI55/7VHsfPNbOBvsR49Y/hDOBnuUZ05EalRRVomlnyxHbU19WOP37TmE3Tv3dXjEMhFRV1jjLBg4uF/IMYEg/Ivzrg0ZgAEgLt6KnMljERdvVXKa7VJ1CNbqdRgwbRQkrQYAkDGqPypq65C7YVtY1zscTrz92hL0nzm+5UCNrJwhkHhsMhEprKKsEsuXrcIjC54N+5pgB2oQESklPSMVjz+/AONyRoUc5/X6UF8X+pPyuHgrFn/wLLIHZMFgMCg5zXYJWT7x+nnl5OTIubm5itTyebyoLSjHvu+3wTA0M6w2aMe67qZf4+xTJsJbZ8fQmTnQW7g3mIiU05UA3JreoA96xDIRkRIqyqtwz80LsDV3Z5eubx2A9XplT94VQmyWZTkn2HOqX7LU6LQwpCfAMq5vlwIw0NxH+LtNm9Fr2nAGYCJSVKQBGOCKMBFFV7grwsFEMwB35KRZCfZ4PCgqKoLT6exULb/fD6/Hi+qqWkT6u7DGWWCxmqHRaCKqcyIyGo3o3bs3dDpdd0+F6KRRVVGNr79cEVYA1mg08Pl8IccEVoSHjRiM5NREpaZJRASg8yvCsQjAoVaCT5pjk4uKihAXF4fs7GwIIcK6xufzwel0oSCvCBnpofefSJIEv9/fYc3UlBQkpyZBpztpfrUdkmUZ1dXVKCoqQr9+oTfIE1H4dHodFr/4bofjzr/kHNz3tztw02/uxo/b97Y7zu1yY9Fzb+Lplx9ScppERACaV4T/78l7MWdGeGcv/HrepejZOzPmK8ABJ812CKfTiZSUlLADMADIfhk1VbWQ5dDh1mgyYtDQAWG1GaqrDe+u7ZOJEAIpKSmdXoUnotASEuPx2gfPICOz/UN4An2A4xPiOuwjPHLMUDz2rwVht1gjIuqMkqIy/P63fwx7/KvPv43tW3Z1eMRytJw0IRhApwIwAGh1WmT2TIc1rv1WHEaTEX369oJWq0FKanLIIKzVapE9oA+0WvVth+js756IwpPVt1e7QfjYgzBCHagxcsxQLHz5IR7rTkRREeogjPaEOlkuFk6qENwVOp0OPXtnBA3CgQCs0+uOjtW2G4QDAViv1zEQEpGiggXh9k6CCxaEGYCJKJq6EoADujMIqz4EA8GD8LEB+KexxwfhzgTgzz77DI888kin55ifn4+RI0d2+rqOrFixAuvWrWv5et68eViyZIni34eIItM6CHd0FHLrIMwATETRFEkADuiuIKyeu7c6EAjCJUWA1+sNGoB/GtschAGgvrahUyvAF154IS688EJF5x6JFStWwGq1YsqUKd09FSLqQFbfXnjrk+eh02o7vEehOQj/o+XfiYiUFm4Ajou3IiMzDQf3H253TCAIP/faIxgxeggSk6J/7wJXglsJBOE+2e0H4J/GNgfh/oOyWwJwfn4+hg4dinnz5mHw4MG48sorsXz5ckydOhWDBg3CDz/8gNdffx233norgOZV19tvvx1TpkxB//79w16B9fl8uOeeezBx4kSMHj0aL730EoDmQHv66adj7ty5GDp0KK688sqWtm9Lly7F0KFDMWHCBNx+++2YM2cO8vPz8eKLL+Lpp5/G2LFjsXr1agDAqlWrjptTaWkppk+fjrFjx2LkyJEtY4kotjJ7pId1ky4ApGemIT3ETXVERJGQZRl+f+jWjIE2aC+/81SHfYRluXkhUg6jG5cSGIKPodPpwu51q9NpodNp26wAHzx4EHfddRf27t2LvXv34p133sGaNWvwxBNP4OGHHz6uRmlpKdasWYMvvvgC9957b1jf99VXX0VCQgI2bdqETZs2YdGiRTh8uPnd1datW7Fw4ULs3r0beXl5WLt2LZxOJ2688UYsW7YMmzdvRmVlJQAgOzsbN910E+bPn49t27bhtNNOa3dO77zzDmbNmoVt27Zh+/btGDt2bFhzJSIiopNTr6weeOXdheiVlRn0+dZ9gFPTkkMeqKHRaLBw0T8wetxwJKXE5mRLhmCF9evXD6NGjYIkSRgxYgTOOussCCEwatQo5OfnHzf+4osvhiRJGD58OMrLy8P6Hl9//TXefPNNjB07FpMnT0Z1dTUOHDgAAJg0aRJ69+4NSZIwduxY5OfnY+/evejfv39LD98rrrgiZP1gc5o4cSIWL16MBQsWYOfOnYiLi+vEb4WIlFJTXYeqiuqwxlZWVKGyoirKMyIiNWsvCAc7CKO9k+XaBODk2B3kwxCsMIPhp0M3JElq+VqSJHi93pDjwz2xTpZlPPfcc9i2bRu2bduGw4cPY+bMmcfV02g0Qb9nZ36GwJymT5+OVatWoVevXpg3bx7efPPNTtcloshUlFXi9mvvw5efLO8wCFdWVOHpf76Ep//5EoMwEUXVsUE41Elwxwbh7grAAENwUOGcDNeVsUqZNWsWXnjhBXg8HgDA/v37YbPZ2h0/ZMgQ5OXltaxEv//++y3PxcXFobGxscPvWVBQgIyMDFx//fW47rrrsGXLlsh+CCLqlIqyStx50wPYsXU3nnzo+ZBBOBCAv/j4a3zx8dcMwkQUdYEgPHTEoA6PQg4E4ZxTxnZbAAbYHeI4Lpcbfr8fBoMekhT6PYLH44HL5YbRaIBWG7tf5XXXXYf8/HyMHz8esiwjLS0Nn3zySbvjTSYTnn/+eZx77rmwWCyYOHFiy3MXXHAB5s6di08//RTPPfdcuzVWrFiBxx9/HDqdDlarlSvBRDHUOgAHPPnQ8wCA8y8+G6npKS2Ptw7AAYF/n3/fjUhLZ6cIIoqO5iD8NIwmQ4dHIadnpOLJ5/8GCHRLAAYAEe5H8D8nOTk5cm5ubpvH9uzZg2HDhkVU1+VyoyCvED6fD9kD+oQMwh6PB4X5JXA4nMjq2xNmiymmQbizmpqaYLVaIcsybrnlFgwaNAjz589X9Hso8d+AiNoKFoBbu+v+m1uCcLAA3NqcS2cyCBORqgghNsuynBPsOW6HOCoQgD0eD/x+P/IPHWlZFT7WTwHYAUBGYUEJ7DZHl/bfxsqiRYswduxYjBgxAvX19bjxxhu7e0pE1IGqiuqQARhAy9aIxoamkAEYwE9bI8q5NYKI6Oe7dBlDrQNwQCAIH7si3DYABzQHYSVWhHfu3Inf/OY3bR4zGAzYuHFjl2sCwPz58xVf+SWi6JIBDBjcL2QIBpqD8Idvf4oj+R2f2DRq7DCAR7sTETEEBwvAAccGYZ/PFyQABygThEeNGoVt27Z16VoiOrmkpafg1ruvBQD89/0vQ44NJwDf9/c7cM55M9rsISYiUitVb4fwer0oLS4PGoADAkHYbnOECMABMooLSwFwlYWIlBEIwpf86vyI6jAAExG1FXYIFkI8KYQYEc3JxJpWq0XP3pnQG0Lfwej3+1FwuLCDAAwIIaFPdm9+0khEioo0CDMAExEdrzMrwXsAvCyE2CiEuEkIkRCtScWSXq9D335ZHQbhjgghoW+/3jCaDNBoNArNjoioWVeDMAMwEVFwYYdgWZZfkWV5KoDfAsgGsEMI8Y4Q4oxoTS5WIg3CrQPwN998gyFDhmDgwIF45JFHFJ4pEalZWnoK/vjgrUhOCa+n5oRJo3H+xecwABMRBdGpPcFCCA2AoUf/qQKwHcCdQoj3ojC3mOpqEG4dgAHglltuwbJly7B79268++672L079F3dREThqqyowkN/eRo11XVhjd/8ww789/2lHR6xTESkRmG3MBBCPA1gDoDvADwsy/IPR596VAixLxqTiyZXbTUcZcXwe9yQdHqYMnvBkJSCvv2yUJBXCLfb3WENIUSbLRDr16/HwIED0b9/fwDA5Zdfjk8//RTDhw+P9o9DRCe5jg7CaE97J8sRESmtrrYeTocLWq2mw9cbl8uF6spa6HRapGV0zwE+nVkJ3gFgrCzLN7YKwAGTFJxT1Llqq2ErKoDf0xx0upEliwAAIABJREFU/R43bEUFcNVWQwhASOHf2SZpJIijd8IVFxcjKyur5bnevXujuLjjtkVERKF0NQAHBA7U4IowEUVLXW09dm7bg9mnXY7/ffl9yNcbl8uFI4eL8cvZ1+HZxxd12wE+nQnBdWi1ciyESBRCXAwAsizXKz2xaHKUFQPyMSfByX7YS4tQmF8Cl9MVVh1ZlkOeLEdEFKlIA3AAgzARRUsgAN9x3Z/h9frw6ILn2g3CgQB89S9vR0N9Iz798KtuC8KdCcEPtg67sizXAXhQ+SlFX2AF+LjHvZ4O26Add02rI5Z79OiBwsLClueKiorQq1eviOZKROrVmQDcf1DfDscEgnBlOYMwESnj2AAcECwIHxuAA7orCHcmBAcbe0KeOCfpgt/85uviIReBIDx69BgcOHAAhw8fhtvtxnvvvYcLL7wwkqkSkaoJFB8p7XDUvX+7HW99/Dwu/uXsDsceOpCP5gOZiYgi014ADmgdhNsLwAHdEYQ7E4JzhRBPCSEGHP3nKQCbozWxaDJl9gJE2x/dD6ARXe8V7Pf7UVRQgieffAqzZs3CsGHD8Mtf/hIjRpxU54sQUQylpafg8X8/iHE5o9odc+/fbsfM2acjLt6K2+65LmQQvviXs3HbPdd1200oRHRyqSirajcABwSCcNGR0nYDcMCnH36Fd9/4b9gdcCLVmZXc2wD8FcD7R7/+BsAtis8oBgxJzXcs2kuL4Pd64INAI/RwQhd0vBASevTKQFVlNdyu9rtG+P1+DB08Art374ZWe0IukhPRz0x6Zhoe//eDuOeWv2Fr7s42zwUCcOAu7LT0FNx2z3UAgE8+WNpmbEsAZocIIlJIUkoizrvobHz+0f9Cjnt0wXMQQkCWQ38K1SurBy67Yk7YvdAj1ZnDMmyyLN8ry3LO0X/uk2XZFs3JRZMhKQUJQ0fBMmgUajTxIQNw3369kZAQF1Yf4YzMNHTw35iIqFMCQbj1ivCxATggEIRbrwgzABNRNKSlp+AP996ICy6b1eHYcALwK+8+jV5ZPZSaXoc60yd4MIC70XxaXMt1siyfqfy0YkOSJOgNOmT374P8vCPw+dou57c+CEPSSNBrpOY+wocLg64I9+iVibh4K3Q6rgITkbJarwjPuuCMoAE4oPWKMAAGYCKKmkAQBtDhinB7uiMAA53bDvEhgBcBvAKg/c0fJ5j2gnDrAKzRaFrGB06WOzYIMwATUbSlZ6bh6Zf/D36fv8NG9GnpKbjt7v9v797jrarr/I+/PufCHUFEUA4gEJbiLRNEpyJRUdBCsX6KWoOKmpNd1KZoxkrQUVJn+GWOo1maNqFMOv2UFLXykpNmaN4vYzKKI3hBUSlBDufy/f1xNnREhLM5e+19zlmv5+OxH+estdf5rM9hPdy+z9rf/f3O3PC9JGWlPUG4UgEYigvBjSmlyzPrpII2DsLNzWmTAXi9jYOwAVhSuQzYbts2H+sH4CSVy9YE4UoGYChudohfRsSXImLHiBiw/pFZZ2XWOgjvNOqDA/B664Pw0OFDDMCSJCn3+vXvyxdmHt3m4yce8gl69+6VYUebV0xym1H4+o1W+xIwqnTtVNb6IJxSzWYD8HrdutVSXV3VpmMlSZK6qvXzAJ987Blt/pmfXXUDdcN24NDDJ25xiFcWipkdYuQmHl0mAK9XVVVcqN342KamJvbee28+/elPA/DCCy8wfvx4Ro8ezTHHHMO6dR88xZokSVJns6WFMDZnc0ssZ63NITgiekXEtyPiysL2zhHx6exa65wuueQSdt111w3bs2bN4swzz2TJkiVsu+22XHXVVRXsTpIkqXTaE4DXq1QQLmZM8E+AdcDfFLaXA/9U8o7K5LXHnuP3/3wd93znSn7/z9fx2mPPtbvmsmXLuPXWWzn55JapiVJK3HXXXXzuc58DYMaMGdx0003tPo8kSVKllSIAr1eJIFxMCP5QSukioAEgpbQGiEy6ythrjz3Hszf/F/Wr3gGgftU7PHvzf7U7CJ9xxhlcdNFFVFW1/LOuXLmS/v37b1g9bujQoSxfvrx9zUuSJHUALy97rU0BuG7Yjkw4cP8t1rtw9qXc9avflS0IFxOC10VET1o+DEdEfAioz6SrjD3/6wdpbmh8z77mhkae//WDW13zlltuYdCgQeyzzz7tbU+SJKnD6927JyM+NHyzxwwdPoQfX/9/mXPxN7e4slyfvr3ZY+8x9O7bu5RtfqBiQvBs4HZgWETMB+4EZmXRVNbW3wFu6/62uO+++1i4cCEjRoxg+vTp3HXXXXzta1/j7bffprGxJXAvW7aMurq6rT6HJElSRzFoh+2Zd/kc9vzYbpt8fujwIfzounnUDduR7QYO2OwSy3369uaq/7iEEaOG0bNnjyzb3qCY2SF+BRwFnABcD4xNKd2dUV+Z6t6vT1H722Lu3LksW7aMpUuXsmDBAg488EDmz5/PxIkTufHGGwG49tprOeKII7b6HJIkSR1FU0MD223bd5NBeH0A3mHwdjTVr6Wpfi0D+vXmjFnvD8IbAvBOQ+hW1VK3HIqZHeLOlNLKlNKtKaVbUkpvRMSdWTaXlVGTxlG10eIWVbU1jJo0ruTnuvDCC5k3bx6jR49m5cqVzJw5s+TnkCRJKr9Ec0MD2/bp+Z4gvD4ADxrYj+Z19TQ3NGx49O/d7T1BeH0A3mnYDtTQTHNDA4WRt5nb4mIZEdED6AUMjIht+euH4bYBOuV7+4P32hloGRtcv+oduvfrw6hJ4zbsb68DDjiAAw44AIBRo0axePHiktSVJEnqMJqb+cvzzwLQvWcv5l0+h385/3K++s1T6Me7/OW5TU8GUF1dzRmzTqV3715Mm344Q7btydqlz7K28Hy/j+xelvbbsmLcF4EzgCHAH/lrCP4z8K8Z9ZW5wXvtXLLQK0lZaGpogOambIpXVVNdW5tNbUm50/TuGrrzOrPO+TLd3n2bdW+9uZmDm6h+4yVOPv14ujfX0/TGq+VrtJUthuCU0iXAJRHxlZTSpWXoSZIErH+rMQtV3Yv5XLQkbVnTu2vg3edp09q4TU3UrHiRjP7Mb5O23AkGIKV0aUT8DTCi9c+llH6aQV+SpFZvNZZaud5ulKSOqs0hOCL+HfgQ8ChsCO4JMARLkiSpU2lzCAbGAmNSSkV9ZC8iJgOXANXAj1NK39vEMUfTMg9xAh5LKR1XzDkkSZKkYhQTgp8EdgBeaesPREQ1cBkwCVgGPBgRC1NKT7c6ZmfgH4CPp5TeiohBRfQkSZIkFa2YT0YMBJ6OiDsiYuH6xxZ+Zl9gSUrp+ZTSOmABsPFqEacAl6WU3gJIKa0ooqd2SamZ1Fzax7x589htt93YfffdOfbYY1m7di0vvPAC48ePZ/To0RxzzDGsW9emIeOSJEnKSDF3gmdvRf064KVW28uA8Rsd82GAiLiPliETs1NKt29cKCJOBU4FGD588+tUt1mCprXvlqYWsPzll7n0Bz/g8T8+RJ9tB3DM9OksWLCARYsWceaZZzJ9+nROO+00rrrqKv7u7/6uZOeVJElScYqZHeK3EbETsHNK6TcR0YuW0FqKHnYGDgCGAvdGxB4ppbc3Ov+VwJUAY8eObfdSIr+/YzG/uOJmVq54iwGDtuWoUz/Dfoe0b8W4qm7daWxqor450aOxkTVr1rDjjjty1113cd111wEwY8YMZs+ebQiWtGVZLppUngWZJKnDKmZ2iFNouRM7gJZZIuqAK4CDNvNjy4FhrbaHFva1tgz4Q0qpAXghIv5ESyh+sK29Fev3dyzm2u9dx7r6lmEJb772Fj+96HqAdgXhuro6vn7WWYwYOZKePXtyyCGHsM8++9C/f39qalr+qYcOHcry5ZteQUWSWmtuTvQcMjKz2qW4iyFJnVUxwyFOp2WM7x8AUkrPteFDbA8CO0fESFrC73Rg45kfbgKOBX4SEQNpGR7xfBF9Fe0XVyzcEIDXW1ffwC9+uJB9P7XHVtd96623uPmmm3juqSfZbocdOfqYY7j99veN7JCkNmluaOTZ+Ysyqb3rCUdmUleSOotiPhhXX/hwGwARUcMW3lBLKTUCXwbuAJ4Bfp5Seioizo2IqYXD7gBWRsTTwN3AN1JKK4v5JYq1csWml/J78/W3N7m/re68+25GjBjB9ttvT21tLUcddRT33Xcfb7/9No2NjQAsW7aMurq6dp1HkiRJ7VNMCP5tRPwj0DMiJgE3AL/c0g+llBallD6cUvpQSun8wr7vppQWFr5PKaWzUkpjUkp7pJQWbM0vUoztBg3Y5P4B2/dvV91hw4ax+MHFrFmzhpQSd955J2PGjGHixInceOONAFx77bUcccTGE2RIkiSpnIoJwd8CXgeeAL4ILAK+nUVTWTvqtKl0697tPfu6da9l2swp7ao7ftw4jjrySPb9+MfZc6+9aG5u5tRTT+XCCy9k3rx5jB49mpUrVzJz5sx2nUeSJEntU8zsEM3Aj4AfRcQAYGixq8d1FPsfui/AX2eH2L4/02ZOYfxBH2t37XO+/W3O+fa3qe7Rk6hq+Rtj1KhRLF68uN21JUmSVBrFzA5xDzC18DN/BFZExP0ppTMz6i1T+x+6L/tNGlvSeYIlSZLyorkpmxlsmpvKM3tNMbND9Esp/TkiTgZ+mlI6JyIez6oxSZIkdVxZzWBTrtlrihkTXBMROwJHA7dk1I8kSZKUuWJC8Lm0TGe2JKX0YESMAp7Lpi1JkiQpO8V8MO4GWqZFW7/9PPDZLJqSJEmSsrTFEBwR30wpXRQRl7KJxTFSSl/NpDNJkiQpI20ZDvFM4etDtMwKsfGj00oJqmq7l+xxypdOZ8iIkXx03HjWTx73jW98g1122YU999yTadOm8fbbf12Vbu7cuYwePZqPfOQj3HHHHRX6V5AkScqfLd4JTin9svD12vX7IqIK6JNS+nOGvWUvJda+uapk5Y498rOcfPzfcspXTmd9Cp40aRJz586lpqaGWbNmMXfuXC688EKefvppFixYwFNPPcXLL7/MwQcfzJ/+9Ceqq8sxKYgkSVI7ZbVcRJmWoWjzB+Mi4rqI2CYiegNPAk9HxDeyay1bt970a6Z8cjr7j/8sR079Irfffm+7a35i/79hQP9t37PvkEMOoaam5W+N/fbbj2XLlgFw8803M336dLp3787IkSMZPXq0C2pIkiSVSTGzQ4wp3Pk9ErgNGAl8IZOuMnbrTb9mzrcu5pWXV5BS4tVXX+d7F1xekiC8OVdffTVTprQszbx8+XKGDRu24bmhQ4eyfPnyTM8vqZPJ8m5I51zwU5JKppgQXBsRtbSE4IUppQY28UG5zuAHF/2Ite/Wv2ff2rX1XPFv8zM75/nnn09NTQ3HH398ZueQJElS2xSzYtwPgaXAY8C9EbET0CnHBL/68opN7n/ttTcyOd8111zDLbfcwp133klEAFBXV8dLL7204Zhly5ZRV1eXyfklSZL0Xm2+E5xS+kFKqS6ldFhq8SIwMcPeMrPDkEGb3D948MCSn+v222/noosuYuHChfTq1WvD/qlTp7JgwQLq6+t54YUXeO6559h3331Lfn5JkiS9X5vvBEdEd1oWxxix0c+dW+KeMvfVb57CnG9d/J4hET16dOe0L7VvqMKM007hv+6/j5VvvsnwETsxZ84c5s6dS319PZMmTQJaPhx3xRVXsNtuu3H00UczZswYampquOyyy5wZQpIkqUyKGQ5xM7CKlrmB67dwbId2+JEtgfQHF17Jq6+8zuDBAzntS8czefKEdtW99oofbfi+x3b9qaqpZubMmR94/Nlnn83ZZ5/drnNKkiSpeMWE4KEppcmZdVJmhx85iSmfPpC1K9/e8sGSVBHRSWtLUsdXTAi+PyL2SCk9kVk3kqQNqrt3Y9cTp2VTu7Y2k7qS1FkUE4I/AZwQES/QMhwigJRS2jOTziQp52p6dqemZ/dKtyFJXVIxIXhKZl1IkiRJZVTMFGkvAv2BzxQe/Qv7JEmSpE6lzSE4Ir4GzAcGFR4/i4ivZNWYJEmSlJVilk2eCYxPKX03pfRdYD/glGza6nzeXrWKK39ydaXbkCRJUhsUMyY4gKZW2004x84Gq1at4sprrubUE0+qdCuSJEmZi5oaRn92UiZ1y6GYs/wE+ENE/L/C9pHAVaVvqXP67vnn8sKLS9nvoAM4cMKnGLLTMG648Ubq6+uZNm0ac+bMYenSpUyePJn99tuP+++/n3HjxnHiiSdyzjnnsGLFCubPn8++++7L7Nmz+Z//+R+WLFnCG2+8wTe/+U1OOeUUXnnlFY455hj+/Oc/09jYyOWXX84nP/nJSv/qkiQphyKC2j69MqlbDm0OwSmleRFxDy1TpQGcmFJ6JJOuOqFzz/4uT/33f/PAnffwm3vu5pe/voPFixeTUmLq1Knce++9DB8+nCVLlnDDDTdw9dVXM27cOK677jp+97vfsXDhQi644AJuuukmAB5//HEeeOABVq9ezd57783hhx/O9ddfz6GHHsrZZ59NU1MTa9asqfBvLUmS8qq2d0+gZ6Xb2GptDsERsR/wVErp4cL2NhExPqX0h8y666TuvOdufv2bX7P33nsD8M477/Dcc88xfPhwRo4cyR577AHAbrvtxkEHHUREsMcee7B06dINNY444gh69uxJz549mThxIosXL2bcuHGcdNJJNDQ0cOSRR/LRj360Er+eJElSp1fMB+MuB95ptf1OYZ82klJi1jdn8eijj/Loo4+yZMkSZs6cCUD37n+d+L6qqmrDdlVVFY2NjRue2/itgIhgwoQJ3HvvvdTV1XHCCSfw05/+tAy/jSRJUtdTTAiOlFJav5FSaqa4McVdWp8+fXjnnZa/EQ6eeCDXXPOTDdvLly9nxYoVRdW7+eabWbt2LStXruSee+5h3LhxvPjiiwwePJhTTjmFk08+mYcffrjkv4ckSVIeFBNin4+Ir/LXu79fAp4vfUvlE1VBj4H9S1KrbmB/Pv7JT7DvQZ9i8qGHcuxxx7H//vsDLQH5Zz/7GdXV1W2ut+eeezJx4kTeeOMNvvOd7zBkyBCuvfZaLr74Ympra+nTp493giVJkrZStLq5u/kDIwYBPwAOBBJwJ3BGSqm4W5wlMHbs2PTQQw+9Z98zzzzDrrvuWu5WMjF79mz69OnD3//931e6laJ0pWsgSZI6v4j4Y0pp7KaeK2Z2iBXA9M2c5B9SSnO3oj9JkiSprEo5pvf/AIbgEpg9e3alW5AkSerSivlg3Ja4epwkSZI6hVKG4LYNLpYkSZIqzDvBkiRJyp1ShuAbSlhLkiRJyswWPxgXEZeymaEOKaWvFr5eUMK+OqWTTjqJW265hUGDBvHkk09Wuh1JkiR9gLbcCX4I+ONmHio44YQTuP322yvdhiRJkrZgi3eCU0rXlqORcrvtttu47LLLeO211xg8eDCnn346U6ZMaVfNCRMmsHTp0tI0KEmSpMy0eZ7giNgemAWMAXqs359SOjCDvjJ12223cf7557N27VoAXn31Vc4//3yAdgdhSSqVtX9eTePahkxq1/Sopcc2vTOpLSkf6le/m8lrVE2PWrr37lnyuu87TxHHzgf+AzgcOA2YAbyeRVNZu+yyyzYE4PXWrl3LZZddZgiW1GGk5sS7b7+TSe0+g/pnUldSfjQ3NtPU0FjyulU11SWvuSnFhODtUkpXRcTXUkq/BX4bEQ9m1ViWXnvttaL2S1IlNK5r5Lff/89Mah86e0YmdSXlR2N9A786999LXrdcr0/FhOD197tfiYjDgZeBAaVvKXuDBw/m1Vdf3eT+9v5F09TQCAmaG5vK9peMJEmSilNMCP6niOgHfB24FNgGODOTrjJ2+umnv2dMMED37t2ZccznWfXyyq2ue8pXTuO+B+5n5VtvMnzETsyZM4eZM2eWomVJkiSVUJtDcErplsK3q4CJ2bRTHuvH/a6fHWL77QZy4vEzOGhC+36tH116xYbv+w3ZjuraYv7GkCRJUrkUMzvEKOASYH+gGfg9cGZK6fmMesvUlClTOOTgSe268ytJkqTOqZhlk68Dfg7sAAyhZZnk67NoSpIkScpSMSG4V0rp31NKjYXHz2g1X7AkSZLUWWxxOERErJ8B4raI+BawAEjAMcCiDHuTJEmSMtGWMcF/pCX0RmH7i62eS8A/lLopSZIkKUtbDMEppZHlaESSJEkqlzaPCY6I2oj4akTcWHh8OSJqs2yus1n+8nKOmH4U+x/8Sfbcay8uueSSSrckSZKkTShmItvLgVrg3wrbXyjsO7nUTXVW1TU1nPvt2ey1+55U9e3GvvuNZ9KkSYwZM6bSrUmSJKmVYkLwuJTSXq2274qIx0rdUDk0NDRw1llnkVLiH77895z3z3MBmPOt71Bbu/U3t3cYNJgdBg0GoG/fvuy6664sX77cECxJktTBFDNFWlNEfGj9RmHxjKbSt5S9s846i4cffphHHnmE406dwRNPP8ETTz/BOd87r2TnWLp0KY888gjjx48vWU1JkiSVRjF3gr8B3B0Rz9MyU8ROwImZdFUm9fX11FMPQPdu3UpW953Vqzn680fz/e9/n2222aZkdSVJklQabQ7BKaU7I2Jn4COFXc+mlOqzaStbF154IYcddhj19X9tv6amlu984x/bXbuhoYETTpvJsccey1FHHdXuepIkSSq9LQ6HiIij1j+Aw4HRhcfhhX2dzqxZs2hoaHjPvsbGBs67+IJ21U0p8dVZZ/Lh0Ttz5hlntquWJEmSstOWO8Gf2Wg7Fb5G4ftflLSjMurevTs11TU0NjZs+eA2+MNDi/n5L25kzC67ss/YfSCCCy64gMMOO6wk9SVJklQabVks40SAiPg67105LgGrIuKjKaVHs2ux9ObNm/eBs0O0x37jxrNy6asA9BuyHdW1xQy5liRJUrkUk9L2AcYCC2kJwp8GHgdOi4gbUkoXZdBfJmpra7n00ktpamhk1csrueA751a6JUmSJJVRMSF4KPCxlNI7ABFxDnArMAH4I9BpQrAkSZLyrZh5ggcBrWeDaAAGp5Te3Wi/JKkEIrZ8TEesLSkfsnoZKdfLUzF3gucDf4iImwvbnwGui4jewNMl70yScq62V3emnJfNdOw1PbZ+dUxJgpbXkcmzZ2RStxyKmSf4vIi4Dfh4YddpKaWHCt8fX/LOyiAi6Ddku8xqS1J7dO/dk+69e1a6DUnapB7b9IZOvCZYUdMXFELvQ1s8sJOoqqmudAuSJEmqAOfwKrERI0bQt29fqqurqamp4aGHuszfDJIkSV2GITgDd999NwMHDqx0G5IkSfoAuQzBEyZMYM2aNe/b36tXL+69994KdCRJkqRyKmaKtC5jUwF4c/uLEREccsgh7LPPPlx55ZXtridJkqTSy+Wd4Cz97ne/o66ujhUrVjBp0iR22WUXJkyYUOm2JEmS1Eou7wRnqa6uDoBBgwYxbdo0Fi9eXOGOJEmStDFDcAmtXr2av/zlLxu+/9WvfsXuu+9e4a4kSZK0MYdDlNBrr73GtGnTAGhsbOS4445j8uTJFe5KkiRJG8tlCO7Vq9cHzg7RHqNGjeKxxx5rVw1JkiRlL5ch2GnQJEmS8s0xwZIkScqdLhWCU0qVbiG3/LeXJEmdSZcJwT169GDlypWGsQpIKbFy5Up69OhR6VYkSZLapMuMCR46dCjLli3j9ddfr3QrudSjRw+GDh1a6TYkSZLapMuE4NraWkaOHFnpNiRJktQJdJnhEJIkSVJbGYIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuZB6CI2JyRDwbEUsi4lubOe6zEZEiYmzWPUmSJCnfMg3BEVENXAZMAcYAx0bEmE0c1xf4GvCHLPuRJEmSIPs7wfsCS1JKz6eU1gELgCM2cdx5wIXA2oz7kSRJkjIPwXXAS622lxX2bRARHwOGpZRu3VyhiDg1Ih6KiIdcFU6SJEntUdEPxkVEFTAP+PqWjk0pXZlSGptSGrv99ttn35wkSZK6rKxD8HJgWKvtoYV96/UFdgfuiYilwH7AQj8cJ0mSpCxlHYIfBHaOiJER0Q2YDixc/2RKaVVKaWBKaURKaQTwADA1pfRQxn1JkiQpxzINwSmlRuDLwB3AM8DPU0pPRcS5ETE1y3NLkiRJH6Qm6xOklBYBizba990POPaArPuRJEmSXDFOkiRJuZP5neCO7I0Vb7J69ZpMavfu3YuBgwZkUluSJEntk+sQvHr1Gj5zwPGZ1P7lPfMZiCFYkiSpI8p1CJakjsx3qyR1ZFm9RpXr9ckQLEkdlO9WSerIsnqNKtfrkx+MkyRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7NZVuoJJ69+7FL++Zn1ltSZIkdUy5DsEDBw1gIAMq3YYkSZLKLNchWJIkSVsnq3fUy/VuuiFYkjooh2xJ6sg6+zvqhmBJ6qA6+/9gJKkjc3YISZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUOzWVbqCSmhsbSM3NmdSOqiqqamozqS1JkqT2yXUITs3NrPrvJzKp3W+XPTKpK0mSpPbLdQgmgr6jPpJZbUmSJHVM+Q7Bzc385flnMykQsDEJAAAKaElEQVTd7yO7Z1JXkiRJ7ecH4yRJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTlTr6nSKuqym6e4Cr/vpAkSV1XVivvlmvV3XyHYOcJliRJ2ipZrbxbrlV38x2CJUmStHWyWnm3TKvuGoIlSZJUvIzeUS/Xu+kOXJUkSVLueCdYkiRJxctqgoEyTS5gCJYkSVLxHA4hSZIkdS6GYEmSJOWOIViSJEm5k+8xwamT1paUC00N6yCD1ZgAqKqiurZbNrUlqRPIdQhOGSbVLGtLyonmZlY9+2QmpV3VUlLeORxCkiRJuZPvO8HN0HPIyMxqS5IkqWPKdQhubmjk2fmLMqm96wlHZlJXkiRJ7ZfrECxJHVlzU8rs3armpkR1JpUlqXMwBEtSB+W7VZKUHT8YJ0mSpNzJ/E5wREwGLgGqgR+nlL630fNnAScDjcDrwEkppRez7kuSOrpEFTtNPSiz2pLUHg3rmqndfqdM6lZ3L3nZ98k0BEdENXAZMAlYBjwYEQtTSk+3OuwRYGxKaU1E/B1wEXBMln1JUmfQuK6BOy++IZPak+fMyKSupPxorF/HHeddV/K6k8+dAX17lbzuxrK+E7wvsCSl9DxARCwAjgA2hOCU0t2tjn8A+HzGPW2wpqGBfgfvn1ntMvwRI0mSVBHrUjN7fXFyJnXLIesQXAe81Gp7GTB+M8fPBG7b1BMRcSpwKsDw4cNL0tzq1Ws54rCZJam1sUX3Xs+2AzMpLUmSVHFr1rzLZ6eeWvK6i+69jgElr/p+HWZQWER8HhgLXLyp51NKV6aUxqaUxm6//fblbU6SJEldStZ3gpcDw1ptDy3se4+IOBg4G/hUSqk+455aSZ20tiRJktoj6zvBDwI7R8TIiOgGTAcWtj4gIvYGfghMTSmtyLgfSZIkKdsQnFJqBL4M3AE8A/w8pfRURJwbEVMLh10M9AFuiIhHI2LhB5STJEmSSiLzeYJTSouARRvt+26r7w/OugdJkiSptQ7zwThJkiSpXHIegqOT1pYkSVJ75DwEOzuEJElSHuU8BEuSJCmPDMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKnVyH4JThLGZZ1pYkSVL75DoES5IkKZ9qKt2AJGnT1qVm9vri5MxqS1KeGYIlqYNaveZdPjv11Exq3/rb6xiQSWVJ6hwcDiFJHVREdMrakvIiq9eR8rw+GYIlqYNqas5uyEKWtSXlRVazAJRndgFDsCRJknIn12OCe/XqyX8uvDKz2pIkSV1Vr149uXnRVZnULYdch+BuVPHYD2/PpPahs2dkUleSJKkj6F1bw//+5vclrztkxhElr7kpuQ7BkiRJ2jpVtbXsmkFgraqtLXnNTTEES5IkqWi1vXsCnXf4px+MkyRJUu4YgiVJkpQ7uQ7BWU7F7DT0kiRJHVeuxwTX9KhlckazONT0KM+gbkmSJBUv1yG4xza9YZtKdyFJkqRyy/VwCEmSJOWTIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOVOrleMk6SOrHfvXvzynvmZ1ZakPDMES1IHNXDQAAYyoNJtSFKX5HAISZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuREqp0j0ULSJeB16swKkHAm9U4LzKlte16/Ladl1e267J69p1Vera7pRS2n5TT3TKEFwpEfFQSmlspftQaXlduy6vbdflte2avK5dV0e8tg6HkCRJUu4YgiVJkpQ7huDiXFnpBpQJr2vX5bXtury2XZPXtevqcNfWMcGSJEnKHe8ES5IkKXcMwZIkScodQ/BGIuLqiFgREU9+wPMRET+IiCUR8XhEfKzcPap4bbiuxxeu5xMRcX9E7FXuHrV1tnRtWx03LiIaI+Jz5epN7dOWaxsRB0TEoxHxVET8tpz9aeu14TW5X0T8MiIeK1zbE8vdo4oXEcMi4u6IeLpw3b62iWM6TI4yBL/fNcDkzTw/Bdi58DgVuLwMPan9rmHz1/UF4FMppT2A8+iAA/j1ga5h89eWiKgGLgR+VY6GVDLXsJlrGxH9gX8DpqaUdgP+T5n6Uvtdw+b/uz0deDqltBdwAPAvEdGtDH2pfRqBr6eUxgD7AadHxJiNjukwOcoQvJGU0r3Am5s55Ajgp6nFA0D/iNixPN1pa23puqaU7k8pvVXYfAAYWpbG1G5t+G8W4CvAfwIrsu9IpdKGa3sc8IuU0v8Wjvf6dhJtuLYJ6BsRAfQpHNtYjt609VJKr6SUHi58/xfgGaBuo8M6TI4yBBevDnip1fYy3n+B1bnNBG6rdBMqjYioA6bhuzZd0YeBbSPinoj4Y0T8baUbUsn8K7Ar8DLwBPC1lFJzZVtSMSJiBLA38IeNnuowOaqmEieVOqqImEhLCP5EpXtRyXwfmJVSam65qaQupAbYBzgI6An8PiIeSCn9qbJtqQQOBR4FDgQ+BPw6Iv4rpfTnyraltoiIPrS8+3ZGR75mhuDiLQeGtdoeWtinTi4i9gR+DExJKa2sdD8qmbHAgkIAHggcFhGNKaWbKtuWSmAZsDKltBpYHRH3AnsBhuDO70Tge6llMYMlEfECsAuwuLJtaUsiopaWADw/pfSLTRzSYXKUwyGKtxD428KnG/cDVqWUXql0U2qfiBgO/AL4gneRupaU0siU0oiU0gjgRuBLBuAu42bgExFRExG9gPG0jEFU5/e/tNzhJyIGAx8Bnq9oR9qiwhjuq4BnUkrzPuCwDpOjvBO8kYi4npZPog6MiGXAOUAtQErpCmARcBiwBFhDy1+r6uDacF2/C2wH/FvhjmFjSmlsZbpVMdpwbdVJbenappSeiYjbgceBZuDHKaXNTpWnjqEN/92eB1wTEU8AQcuQpjcq1K7a7uPAF4AnIuLRwr5/BIZDx8tRLpssSZKk3HE4hCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLUidSmGDe125JaidfSCWpg4uIERHxbET8FHgS+E5EPBgRj0fEnFbH/HdEzI+IZyLixsIqakTE9yLi6cLx/1zJ30WSOgoXy5CkDi4iRtCyZOzfANsAnwO+SMtKWguBi2hZZvYF4BMppfsi4mrgaeAnwP3ALimlFBH9U0pvl/2XkKQOxjvBktQ5vJhSegA4pPB4BHgY2AXYuXDMSyml+wrf/wz4BLAKWAtcFRFH0bJMqSTlXk2lG5AktcnqwtcA5qaUftj6ycLd4o3f2ksppcaI2Bc4iJY7yF8GDsy2VUnq+LwTLEmdyx3ASRHRByAi6iJiUOG54RGxf+H744DfFY7rl1JaBJwJ7FX2jiWpA/JOsCR1IimlX0XErsDvIwLgHeDzQBPwLHB6q/HAlwP9gJsjogctd5HPqkjjktTB+ME4SeoCCsMhbkkp7V7hViSpU3A4hCRJknLHO8GSJEnKHe8ES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXf+PzTtThGRVhVNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + "fig.set_figheight(8.27)\n", + "fig.set_figwidth(11.7)\n", + "sns.scatterplot(y='global_consisentency', x=\"reps\",hue='min_lengths',style='temps' ,data=df[df.names == model_selected],s=500)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## On global consistency:\n", + " # 1. Increasing temps decrease consistency (expected trade-off)\n", + " # 2. Min length decrease consistency\n", + " # 3. No link between lenght penalty and consistency\n", + " # 4. No link between reps and consistency" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namestempsrepslengthsmin_lengthsbeamsall_conf_answersall_conf_promptspara_answerspara_promptsglobal_consisentencybeam_consisentency
0T0_3B51.01.015[[Yes, No, No, Yes, No], [Yes, No, Yes, Yes, N...[[Sentence 1: He said the foodservice pie busi...[[The boss said the foodservice pie business d...[[Sentence: He said the foodservice pie busine...0.578922[0.5735294117647058, 0.5906862745098039, 0.568...
1T0_3B51.01.0110[[No, No, Yes, No, Yes, No, No, No, Yes, No], ...[[Sentence 1: He said the foodservice pie busi...[[The company decided not to enter the pie ser...[[Sentence: He said the foodservice pie busine...0.242105[0.21052631578947367, 0.15789473684210525, 0.2...
2T0_3B51.01.0305[[No, Yes, Yes, No, No], [No, No, Yes, No, Yes...[[Sentence 1: He said the foodservice pie busi...[[He said that's the only way to grow the food...[[Sentence: He said the foodservice pie busine...0.551961[0.5318627450980392, 0.5171568627450981, 0.563...
3T0_3B51.01.03010[[No, Yes, Yes, No, Yes, No, No, No, No, No], ...[[Sentence 1: He said the foodservice pie busi...[[The company does not plan to buy the Pie, wh...[[Sentence: He said the foodservice pie busine...0.200000[0.2631578947368421, 0.2631578947368421, 0.263...
4T0_3B51.01.0505[[No, Yes, No, No, No], [No, No, Yes, No, Yes]...[[Sentence 1: He said the foodservice pie busi...[[He said that's the only way to grow the food...[[Sentence: He said the foodservice pie busine...0.474510[0.44362745098039214, 0.5024509803921569, 0.47...
.......................................
859gpt212.02.03010[[Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...[[Sentence 1: He said the foodservice pie busi...[[Sentence: He said the foodservice pie busine...[[Sentence: He said the foodservice pie busine...0.0000000
860gpt212.02.0505[[Yes, Yes, Yes, Yes, Yes], [Yes, Yes, Yes, Ye...[[Sentence 1: He said the foodservice pie busi...[[Sentence: He said the foodservice pie busine...[[Sentence: He said the foodservice pie busine...0.0000000
861gpt212.02.05010[[Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...[[Sentence 1: He said the foodservice pie busi...[[Sentence: He said the foodservice pie busine...[[Sentence: He said the foodservice pie busine...0.0000000
862gpt212.02.01005[[Yes, Yes, Yes, Yes, Yes], [Yes, Yes, Yes, Ye...[[Sentence 1: He said the foodservice pie busi...[[Sentence: He said the foodservice pie busine...[[Sentence: He said the foodservice pie busine...0.0000000
863gpt212.02.010010[[Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...[[Sentence 1: He said the foodservice pie busi...[[Sentence: He said the foodservice pie busine...[[Sentence: He said the foodservice pie busine...0.0000000
\n", + "

864 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " names temps reps lengths min_lengths beams \\\n", + "0 T0_3B 5 1.0 1.0 1 5 \n", + "1 T0_3B 5 1.0 1.0 1 10 \n", + "2 T0_3B 5 1.0 1.0 30 5 \n", + "3 T0_3B 5 1.0 1.0 30 10 \n", + "4 T0_3B 5 1.0 1.0 50 5 \n", + ".. ... ... ... ... ... ... \n", + "859 gpt2 1 2.0 2.0 30 10 \n", + "860 gpt2 1 2.0 2.0 50 5 \n", + "861 gpt2 1 2.0 2.0 50 10 \n", + "862 gpt2 1 2.0 2.0 100 5 \n", + "863 gpt2 1 2.0 2.0 100 10 \n", + "\n", + " all_conf_answers \\\n", + "0 [[Yes, No, No, Yes, No], [Yes, No, Yes, Yes, N... \n", + "1 [[No, No, Yes, No, Yes, No, No, No, Yes, No], ... \n", + "2 [[No, Yes, Yes, No, No], [No, No, Yes, No, Yes... \n", + "3 [[No, Yes, Yes, No, Yes, No, No, No, No, No], ... \n", + "4 [[No, Yes, No, No, No], [No, No, Yes, No, Yes]... \n", + ".. ... \n", + "859 [[Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,... \n", + "860 [[Yes, Yes, Yes, Yes, Yes], [Yes, Yes, Yes, Ye... \n", + "861 [[Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,... \n", + "862 [[Yes, Yes, Yes, Yes, Yes], [Yes, Yes, Yes, Ye... \n", + "863 [[Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,... \n", + "\n", + " all_conf_prompts \\\n", + "0 [[Sentence 1: He said the foodservice pie busi... \n", + "1 [[Sentence 1: He said the foodservice pie busi... \n", + "2 [[Sentence 1: He said the foodservice pie busi... \n", + "3 [[Sentence 1: He said the foodservice pie busi... \n", + "4 [[Sentence 1: He said the foodservice pie busi... \n", + ".. ... \n", + "859 [[Sentence 1: He said the foodservice pie busi... \n", + "860 [[Sentence 1: He said the foodservice pie busi... \n", + "861 [[Sentence 1: He said the foodservice pie busi... \n", + "862 [[Sentence 1: He said the foodservice pie busi... \n", + "863 [[Sentence 1: He said the foodservice pie busi... \n", + "\n", + " para_answers \\\n", + "0 [[The boss said the foodservice pie business d... \n", + "1 [[The company decided not to enter the pie ser... \n", + "2 [[He said that's the only way to grow the food... \n", + "3 [[The company does not plan to buy the Pie, wh... \n", + "4 [[He said that's the only way to grow the food... \n", + ".. ... \n", + "859 [[Sentence: He said the foodservice pie busine... \n", + "860 [[Sentence: He said the foodservice pie busine... \n", + "861 [[Sentence: He said the foodservice pie busine... \n", + "862 [[Sentence: He said the foodservice pie busine... \n", + "863 [[Sentence: He said the foodservice pie busine... \n", + "\n", + " para_prompts global_consisentency \\\n", + "0 [[Sentence: He said the foodservice pie busine... 0.578922 \n", + "1 [[Sentence: He said the foodservice pie busine... 0.242105 \n", + "2 [[Sentence: He said the foodservice pie busine... 0.551961 \n", + "3 [[Sentence: He said the foodservice pie busine... 0.200000 \n", + "4 [[Sentence: He said the foodservice pie busine... 0.474510 \n", + ".. ... ... \n", + "859 [[Sentence: He said the foodservice pie busine... 0.000000 \n", + "860 [[Sentence: He said the foodservice pie busine... 0.000000 \n", + "861 [[Sentence: He said the foodservice pie busine... 0.000000 \n", + "862 [[Sentence: He said the foodservice pie busine... 0.000000 \n", + "863 [[Sentence: He said the foodservice pie busine... 0.000000 \n", + "\n", + " beam_consisentency \n", + "0 [0.5735294117647058, 0.5906862745098039, 0.568... \n", + "1 [0.21052631578947367, 0.15789473684210525, 0.2... \n", + "2 [0.5318627450980392, 0.5171568627450981, 0.563... \n", + "3 [0.2631578947368421, 0.2631578947368421, 0.263... \n", + "4 [0.44362745098039214, 0.5024509803921569, 0.47... \n", + ".. ... \n", + "859 0 \n", + "860 0 \n", + "861 0 \n", + "862 0 \n", + "863 0 \n", + "\n", + "[864 rows x 12 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Intra beam consistency" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3SV5Z33//e1zzsJiQSSACFIrZoQMDAa8NQqVKy2KCi1tdinttOOdp6eZuqMo9ZiD9TWQ0efp7Pa31THTkd/xXZqPaBxikXBWlsVcAQxB3VQCaAhECAk2ed9PX8koQEC2Tu5703i/rzWYsHe+97ffMMiKx+uXPf3MtZaRERERETyied4NyAiIiIikmsKwSIiIiKSdxSCRURERCTvKASLiIiISN5RCBYRERGRvOM73g0Mx8SJE+306dOPdxsiIiIiMopt3Lhxt7W2bLDXxmQInj59Ohs2bDjebYiIiIjIKGaMeedor2k7hIiIiIjkHYVgEREREck7CsEiIiIikncUgkVEREQk7ygEi4iIiEjeUQgWERERkbyjECwiIiIieUchWERERETyzpg8LCNXYvEk7d1xAA5EkkQSKcJ+L+PCvX9tZYUBggH9FYqIiIiMNUpwgzgQSdAZTfLYKzt4cP02WjsiR1xTVRpm2dxpLJlTSXHIx7iw/zh0KiIiIiLDYay1x7uHrNXX11u3jk1u2x9lTVMbKxoaiSbSQ14f8ntYvqiWhTMqqCgJudKTiIiIiGTPGLPRWls/2GtaCR6grTPKjY9sZm1ze8bviSbS3PzoFtY0t3Hb0joqihWERUREREY73RjXp21/lBsfzi4AD7S2uZ0bH95MW2fU4c5ERERExGkKwfTuAV7T1DbsANxvbXM7axrb6IomHOpMRERERNygEAx0RpOsaGh0pNaKhkb2R5KO1BIRERERd+R9CI7Fe6dAZHITXCaiiTSrNu0gFlcQFhERERmtXA3BxpifG2N2GWO2HOV1Y4z5sTHmTWPMZmPM6W72M5j27jgPrt/maM2VL207OF9YREREREYft1eCfwFcfIzXPwac0vfrWuD/c7mfI1jLoHOAR6K1I8IYnDwnIiIikjdcDcHW2j8AHce4ZAlwv+31AnCCMWaymz0drivqzraFrpi2Q4iIiIiMVsd7T3Al0Drg8fa+545gjLnWGLPBGLOhvX1kUxwGiiRSjtUaKOpSXREREREZueMdgjNmrb3HWltvra0vKytzrG7Y73Ws1kAhnzt1RURERGTkjncI3gFUDXg8te+5nCkKuXNonlt1RURERGTkjncIXgVc3Tcl4ixgv7X23Vw2YAxUlYYdrVlVGsYYR0uKiIiIiIPcHpH2IPBnoNoYs90Y80VjzN8aY/6275Inga3Am8C9wJfd7GcwZYUBls2d5mjNq+ZNo3xc0NGaIiIiIuIcV39mb61dNsTrFviKmz0MJRjwsWROJT9+5g1HDswI+T0snl1JQHuCRUREREat470dYlQoDvlYvqjWkVrLF9VSEtZ+YBEREZHRTCEYGBf2s3BGBQtqRjZ1YkFNGQtrKygK+R3qTERERETcoBDcp6IkxG1L64YdhBfUlHHb0joqikMOdyYiIiIiTlMIHqCiOMRtl9dx62WzCPkz+6sJ+T3cetksBWARERGRMUSbVw9TURJiyZwpzK8uZ9WmHax8aRutHRGKAl7GFwbY2x2nK56iqjTMVfOmsXhOJSUhn7ZAiIiIiIwhCsGDKAr5KQr5+fzZJ3Lp7CkAHIgkiSRShP1exvXd+DahwE84qPArIiIiMtYoBA9ib0+cnliKx17ZwYPre1eCD1dVGmbZ3GksmVNJQdDL+ILAcehURERERIbD9I7qHVvq6+vthg0bXKn93v4oTze1saKhMaO5wSG/h+WLarlgRgWTSrQnWERERGS0MMZstNbWD/aaVoIHaOuMctMjm1nb3J7xe6KJNDc/uoU1zW26OU5ERERkjNB0iD7v7Y9y48PZBeCB1ja3c+PDm2nrjDrcmYiIiIg4TSGY3j3ATze1DTsA91vb3M6axjb29cQd6kxERERE3KAQDPTEUqxoaHSk1oqGRrpjKUdqiYiIiIg78j4ER2IJHntlR0Y3wWUimkizatMOIrGEI/VERERExHl5H4L39CR4cP02R2uufGkbe3oUgkVERERGq7wPwdYy6BzgkWjtiDAGJ8+JiIiI5I28D8Fd0aQ7dWPu1BURERGRkcv7EBxNunMTW8yluiIiIiIycnkfgsN+ryt1Qz536oqIiIjIyOV9CC4MunNonlt1RURERGTk8j4Ep62lqjTsaM2q0jBp3RknIiIiMmrlfQhOpNJ84vSpjta84vSpJFLOzB0WEREREeflfQiOJ9PMP7WMkN+Zv4qQ38P5p5YRTyoEi4iIiIxWeR+Ci0I+fv7829xyyUxH6n37kpnc98e3KAppT7CIiIjIaJX3IdhgGF/oZ3ZVCfOry0ZUa351GXVVJYwvCmAwDnUoIiIiIk7L+xAc9Bs+e9Z0rr7vRa4976RhB+H51WVce95JXH3fi1x91nTCvrz/qxUREREZtfI+qYX8Hp5pbmNPd4Jr/mMDnzyjiuWXzMh4j3DI72H5JTP45BlVXPMfG9jTneCZ5jYCgbz/qxUREREZtfJ+42pnJMUDL7wDQHc8xVdWvsyldZP51TVn8ezr7Tz08nZaOyJHvK+qNMwVp0/l/FPLuO+Pb/H45qaDrz3wwjt8/LTJFIcCOfs8ZPRLJFK0d8dIWzgQTRJNpAj5vYwL+fAYKCsM4nfp8BYRERE5VN6HYGs5IuQ+vvldntzyHhfUlPOPH61myglhEqk00USakN+D3+th574IT2x+lx8/8yap9KEzgVs7ImhMsPTriSXZG0nQsHknD7zwzlH/U/XZs05kUd0Uxof9FOiwFREREVfl/Xfarmhy0OdTactTjW081dgGgM9jCPg8xJNpkumhE25XbPC6kl92dUZZ27KLb696jWji6GPzWjsi/ODJZu76/et8d/FMFlSXU14cymGnIiIi+SXvQ3A0mcroumTakoxndi1ALMO68v61qzPKNx95lTVNuzJ+TzSR5obfvsrCGeX84PLTFIRFRERckvd3b4Vc2oMZ9GlvZz4bTgAeaE3TLr75yKvs6ow63JmIiIiAQjBFLu29dKuujH49sSRrW3YdMwD7PIaCgBef5+jzpNc07WJdyy564tpaIyIi4rS8T2opa6kqDQ96s9JwVZWGSevOuLy1L5Lg26teO+Q5r8ewcEY5Hz9tMpUnhIkn08STaQI+DwGfhx37IjRsfpenm3cdcqPlLate40OnlFEQyPsvVREREUfl/UpwKpXmE6dPHfK6TFbu+l1x+lSSKYXgfJRIpHhi87uH3AS3ePYUfvu3Z7PotMkE+w5RsfT+B6z/X0nQ52HRaZP57d+ezeLZUw6+N5pI07D5XRIJ7TEXERFxUt4vLyVSlvmnlvGvz/7PIcHl8JW7WDJ9cK5r8BgrdyG/h/NPLSOROvokAHn/2t0T54EX3gagMODljitmE/QZMIatu7v57THmTn/i9KmcOLGQxbMnc9HMSfzTQ5vojqe4/4W3uWT2ZCaXhHP82YiIiLx/GTsGf2xfX19vN2zY4Eit7Xt7uON3LcyuKmHFE70HXiyePYUvnDudda+3Dxla5p9axs+ff5tVm3YCsPySGbyybR83XFzD1NICR3qUsaO1o4cP37GWwoCX+z4/l3Ta0vReJ3eubjnmiLR+Ib+H6y+qZsakYjwewxd/sZ7ueIrn/mkBVfr3JCIikhVjzEZrbf1gr+X9SrDHwH+37uWimZO4eGYFl86u5L3OCJ++94Uh57r+nzVv8K/P/g/XX1TNRTMn8fimHUwqDvPK9rfxZLBtQt5/uvvmQ//zp+YQ9nu5e83rrGtpz/j90USaFU80Mb+6jG8sPJV//tQc/vb/30i3bo4TERFxVN6H4IKgl8+edSLfWbWFh798Lres2sLa5uxDy4KaMr63eBZLf/o815x3EoXBvN9unZciiRSLZ0+hqjTMnatbsgrAA/W/7/qLqrm0bjLRLGZUi4iIyNDyPgQfiKS4aOYkqsYXsPyxLcMOLWub21lut/C9JbOonVJMZySFtnDmn4DPw9c/8kGefWP3sP8t9VvX0s6HT5nI1y84mYRutBQREXGUliuBsN9LR3f8mKElk+kQ61ra6eiOU+DSARwy+k0oDIDxcOfqFkfq3bm6BWM8lBYGHKknIiIivfJ+JdjvMXRGk6xoaDzk+eFOh1jR0MhZJ02gIKggnI88HmjYvDOjm+AyEU2kefLVnXx6bpUj9URERKRX3odgBgktA6dD/OipFlo7Ivg8hoDPQzyZJpm2B6dDfHn+Bw+ZDhFNpGl4dSefUmjJS/Gk5aGXtzta8zcbt7M0g1nWIiIikrm8D8GJAaGlf67re50RPnPfi3zo5In840erj7kSfO9zW7nuwlMPmev6m43bufyvFFryUdpaR08fhN5JJDqBUERExFl5H4ItvaGlMODl3s/Vc88ftlIc8vPLL555yErw4Q5fCX4uupt7P1fPNf+xgdaOCH85C0zySVfUnVFmXVFNhxAREXFS3ofg/tByxxWzuf9Pb/PJM6qGNSd4UnGY+//0NndcMZuvrHyZrphCSz6KJd05KTCe1L8nERERJ+V9CI4n0yyePYU93VGuPmc69/xh67APN7j2vJN4c9cBLq2bTMKlMCSjW9ilySAhTRwRERFxVN6H4JDfyxfOnc67+6NZB+CB+t93ZX0VX/zQBwj6NH0uHxUG3fmScquuiIhIvsr7pDa+0E/r3h527o84crjBzv0Rtu/tYXyh36EOZSzxmN794k6qKg2jU7hFRESclfchOJ60TJ9Q6OjhBidOKCSe1I1x+WhcuPcY7qFkcvhKv8+edSLFYf2nSkRExEl5/zPWoM/wdPMuRw83eKZ5F8vmaU5wPgoYD5fUTeGu379+yL+p4R6+EvL31gt48/7/qyIiIo7K+xDck0jzW4cPN3jo5e1c9leVjtaUscHv8xL0pfjOpTO58eFXgcEPXznc0Q5f+e7imQR9JqMVYxEREclc3odgA64cbiD5qaMnjrWW+dVlLJo1iY/XTRnWyL2LZk7iyc07Of/UctJpS0dPnLJxoRx+JiIiIu9vef8z1h6X5vn2xDXXNR8ZAy++1YEfuGXxTB56uZUVTzRlvN2mf+TeQy+3csvimfjprWe0ECwiIuKovA/BMZcOIXDr0AQZ3bpjKWonFxNJW258eDNrm4c3cWRtczs3PryZSDrNjCnFdOvwFREREUflfQgOunQIgeYE56egz0NR0MezLe3DDsD91ja382xLO+MCPv17EhERcVjef2cdF3JnW7RbdWX0S6QtKxoaHam1oqGReNqigXsiIiLOyvsQDO4cbiD5KeAzrHplp6Mj9x7ftJOgT5uCRUREnJT3Ibgw6OUzZw59uEE2/teZJ1KkY27zUk88zYPrtzlac+VL2+iJa4+5iIiIk/I+BHdFU1xSN5mQ35m/ipDfw6K6yRyIJh2pJ2OLte6M3LPaDyEiIuKovA/BFstTr73H8kW1jtS75ZJaVm95D+3izE8HoglX6nbF9J8qERERJ+V9CO6KJvneE02ceVIpH6kpG1Gtj9SUMe8DpaxoaKJLI63yklN7gY+sq39PIiIiTsr7ENw/z3fZPS/w3cWzWDDMILygpozvLp7FsnteACCu0JKXwi6N3Av53KkrIiKSr/I+BPeHlvauOEt/+jzf/NgMbr1sVsZ7hEN+D7deNotvfmwGS3/6PO1d8b7nFVryUZFLo/HcqisiIpKv8j4EDwwX7V1xLrz7D0QTKX7/jfO54eLqo447qyoNc8PF1fz+G+cTTaS48O4/HAzAh9eV/KKReyIiIqNf3ie1gNdDVWn4kDv6VzQ0cfvqFr7+kZP52WfPoCDgozuWJJpIE/J7KAz66IkneaZpFxfc9Szxw45IrioNE9AJX3nJ7zUsmzuNO1a3OFbzqnnTCHg1J1hERMRJeR+CJxQG+OxZ0/nBk02HPB9PpvnRU6/zo6deByDk81AU8tEVTRJNHvvmp6vPns6EwqBrPcvolUhZFs+Zwo+fecORm+RCfg+Xzp5CPKVpIyIiIk7K++VKr9fD4tlDzwmOJtPs7ooPGYBDfg+X1k3G69HKXT5KW8vzb+52bOTe8kW1/PGNdqwGBYuIiDgq70MwQGlhkO8tmelIre8tmUWpVoHzl4X9kQRnnlQ67Ekj/RbUlHHmSaV0RpM6LENERMRhCsFAwOdh4YxJLJxRPqI6C2eUc+GMCu0HzmMej+G8U8v4639/ie+NcOTe9xbP4q///SXOO6UMj36yICIi4iiltT6lhQFu/0TdsIPwwhnl3P6JOsYXBhzuTMYSj4EHX9rG/55/iiMj9748/xRWrt+GR1+pIiIijtK31gEmFAW544rZ3HFFXVah5c4r6rjzitlMKNI2iHxXXhSkojhEaaGfuqknjGjkXt3UExhf6GdycYjycaEcfyYiIiLvb2Ys3nBTX19vN2zY4Fr9eDJNR3ecJzbv5D/+/PYh49P6VZWG+dw507nktCmUFga0BUIO2rEvwuJ/eY6ffOYM7v3DVp5u3kXA5+HrHzmZj8woP+bIvR8/8ybxZJoLasq55ryT+MovN7Lqax+m8gTNChYREcmWMWajtbZ+0NcUgo8ulUrT0RMnmbZ0RZPEkmmCfaPSfB5DaWFQUyDkCD2xJI+8soMfNDRxxxWz2dMV4wf/1XTIyLSigJfxhQH2dsfpiv/liO2Q38M3PzaDCUVB/umhTdy8aAaX/VUlBYG8n2YoIiKStWOFYH1nPQav10NZ/4+hS45vLzJ2FAR9XDijgjVNbXxl5ctcWjeZX117Nu/ti4CBiUVBksk0qbTF6zH4fB52d8WwFiafEOa+57by+OZ3WVBTxsIZFQrAIiIiLtB3VxEXlBeHuH1pHTc8vJklc6ZQVhSkwO8l6PfgNYbOaOLgdojikJ+ycUGi8RRFIT9L5kyhK57k9qV1lBdrL7CIiIgbtB1CxEXv7Y/SFY0TDvh57JUdPLh+21H3mC+bO40lcyqJxBMUhQJMKlEAFhERGQntCRY5DnZ3RomnLWubd7GioTGjY5RDfg/LF9WyoKacgMcwUSvBIiIiw3asEOz6SANjzMXGmBZjzJvGmBsHeX2aMWatMea/jTGbjTEfd7snEbft3h8laeHmR1/l5ke3ZBSAAaKJNDc/uoWbH32VpO0N0iIiIuI8V0OwMcYL/AT4GFALLDPG1B522beA/7TW/hXwaeCnbvYk4rYDkQQJLDc9spm1ze3DqrG2uZ2bHtlMwlq6ogmHOxQRERG3V4LnAW9aa7daa+PAr4Alh11jgeK+P5cAO13uScRV8WSKZ5p2DTsA91vb3M4zTbuIJlJDXywiIiJZcTsEVwKtAx5v73tuoO8A/8sYsx14EvjaYIWMMdcaYzYYYza0t48sXIi4JRZPEk1aVjQ0OlJvRUMjsaQlFk86Uk9ERER6jYZjzpYBv7DWTgU+DjxgjDmiL2vtPdbaemttfVlZWc6bFMlEJJXisVd2ZLwHeCjRRJpVm3YQSWk1WERExEluh+AdQNWAx1P7nhvoi8B/Alhr/wyEgIku9yXiigORFA+u3+ZozZUvbeNARCFYRETESW6H4PXAKcaYDxhjAvTe+LbqsGu2ARcAGGNm0BuCtd9BxqzB5gCPpnoiIiLicgi21iaBrwKrgSZ6p0C8Zoz5njFmcd9l/wBcY4zZBDwIfN6OxeHFIsABlyY5dMW0J1hERMRJrh+bbK19kt4b3gY+d8uAPzcC57rdh0guOLUX+Mi62g4hIiLipNFwY5zI+0bY73WlbsjnTl0REZF8pRAs4qCikDs/XHGrroiISL5SCBZxWFVpeFTXExEREYVgEUeNC3tZNneaozWvmjeN4rBWgkVERJykECzioO5oiiVzKgn5nfnSCvk9LJ5dqekQIiIiDlMIFnFQeVGQrmiC5YtqHam3fFEtXbEE5eNCjtQTERGRXgrBIg7y+70Uhf3Mry5nQc3IjvdeUFPGgppyikJ+/F59qYqIiDhJ31lFHDY+7GfD23v44eV1ww7CC2rK+OHldWx4aw/jC/wOdygiIiIKwSIOKwj6OPuDE7n79818f8ksbr1sVsZ7hEN+D7deNovvL5nF3b9v5qwPTqQgoJviREREnKYQLOKC8uIQ//DRGr712BbKi4M8fd18bri4+qjjzqpKw9xwcTVPXzef8uIg33psC//w0RrKi7UXWERExA3GWnu8e8hafX293bBhw/FuQ2RIbfujrGlq40dPtbBiyUxmTT0BrzF0xZJEEylCfi9FQR8pa9myfR/LH3uN6y+q5oIZFVQoAIuIiIyIMWajtbZ+sNf0c1YRl+zpihFJpKirLGHVVz/EE5t3cvvqFlo7IhQFvIwvDLC3O05XPEVVaZir5k1j1Vc/xL7uOJF4ij1dMSYUBY/3pyEiIvK+pBAs4oKO7jjRRJoVTzTydPMuAj4PX//Iyfzss2dQEPDRHUsSTaQJ+T0UBn30xJM807SLC+56lngyzQU15ay4bBZ7u+OMLwwc709HRETkfUfbIUQcFk+maT8Q5ZbHXuPp5l2DXhPyeSgK+eiKJokm04Nec0FNOd9bMpOycSECPm3fFxERydaxtkPoO6uIww5E4jz3xu6jBmAAn8cQ9nvxecxRr3m6eRd/fHM3nZG4G22KiIjkNW2HEHFQKpUmmrR85/HXDnk+HPDyz1fUUVtZgs8YOqOJg9shikN+kn03xl3/21eJxFMH3/ftVa/xoZPLSKXSeHVghoiIiGMUgkUcdCCeoOHVnUQTf9ni8G9Xn8GMySU89soOfvi7Zlo7Ike8r6o0zLK501jzjfNpenc/f3P/RgCiiTQNr+7kU3OnckJYN8mJiIg4RUtLIg7qiaV44IV3ADixNMzzNyygrTPGBXet446+yRCDae2IcMfqFi64ax1tnTGev2EBJ/bNFH7ghXfoiaUGfZ+IiIgMj1aCRRyUSvcG2hNLw/z6S+dw0yObWdvcnvH7o4k0Nz+6hQU1Zfz6S+dw5c/+xDsdEVKD3zsnIiIiw6SVYBEHdceSAKy85qysA/BAa5vbuemRzay85qzeuvGkYz2KiIiIQrCIoyKJFP929Rmsa2kfdgDut7a5nXUt7dx79RlE49oOISIi4iSFYBEHBX0eZkwuYUVDoyP1VjQ0Uju5RHOCRUREHKbvrCIOmjw+xGOv7DhkOsRIRBNpVm3aweTxIUfqiYiISC+FYBEHdUVSPLh+m6M1V760ja6ItkOIiIg4SSFYxGFHG4M2WuqJiIiIQrCIo7qimU1xKAp4qRofpijgzaxuTNMhREREnKQ5wSIOiiQG37Yw3GOT+0WPUldERESGRyFYxEFh/5EruyM5NrlfyJfZirGIiIhkRtshRBxUFPrL/yudOjb58LoiIiIycvrOKuKwqtIwHnDs2GSdmCwiIuI8hWARBwX9hmVzp7FkzhTHjk1etWknIR2WISIi4ih9ZxVxUEdXgivrpzp6bPInz5jKnu64Qx2KiIgIKASLOKow6COatI4emxxLWgqD+qGNiIiIkxSCRRw0Lux15djkcWFNhxAREXGSQrCIg7qiLh2bHNWcYBEREScpBIs4yFp3jk221tGSIiIieU8hWMRBmR6bnHVdHZssIiLiKIVgEQcd7djkkdKxySIiIs5SCBZx0GDHJjtBxyaLiIg4SyFYxEFuHW+sY5NFREScpRAs4iBjeo9NdlJVaRhjHC0pIiKS9xSCRRxUFPKybO40R2teNW8a47QSLCIi4iiFYBEHHYikWDKnkpDfmS+tkN/D4tmVdEY0HUJERMRJCsEiDuqKJml6dz/LF9U6Um/5oloa392vEWkiIiIOUwgWcVAkkeJv7t/I/OoyFtSUjajWgpoy5leXcc39GzUiTURExGEKwSIO6h+RdtW9L/DDy+uGHYQX1JTxw8vruOreFwCNSBMREXGa7rYRcVD/KLN3OiJc+bM/sfKas1hX086KhkaiifSQ7w/5PSxfVMv86jKu/NmfeKfvCGaNSBMREXGWVoJFHDRwRNo7HRHOvX0t5cVBnr5uPjdcXH3U8WlVpWFuuLiap6+bT3lxkHNvX3swAGtEmoiIiPO0vCTioLLCAMvmTuOO1S0Hn7vm/o2EA17u/MRpPPDFM/EaQ1csSTSRIuT3UhT0kbKWLdv3sfDuZ4nED93/e9W8aZSPC+b6UxEREXlfUwgWcVAw4GPJnEp+/Mwbh2x/iMRTfPXBVw4+Lgp4GV8YYG93nK740W966x+RFtCeYBEREUdpO4SIw4pDviFHpHXFU7TujRwzAEPviLSSsP6vKiIi4jSFYBGHjQv7WTijwpERaQtrKygK+R3qTERERPopBIu4oKIkxG1LRzYi7baldVQUhxzuTEREREAhWMQ1FcUhbru8jlsvm5XxMcohv4dbL5ulACwiIuIybTYUcVFFSYglc6Ywv7qcVZt2sPKlbbT2jT4bqKo0zFXzprF4TiUlIZ+2QIiIiLhMIVjEZUUhP0UhP184ZzqXzp6CtdAVS5JOp/B4ekekGQPl44KaAiEiIpIj2g4hkmPGABZiyd7f+w/CsGl7PNsSERHJKxmvBBtjKoDKvoc7rLVt7rQk8v5yIJKgM5rksVd28OD6o2+HWDZ3GkvmVFIc8jEurO0QIiIibjLWHnv1yRgzB/hXoATY0ff0VGAf8GVr7cuudjiI+vp6u2HDhlx/WJGste2PsqapjRUNjYccnnE0Ib+H5YtqWTijgooS3RgnIiIyEsaYjdba+sFey2Ql+BfAl6y1Lx5W9Czg34HZI+5Q5H2orTPKjY9sZm1ze8bviSbS3PzoFtY0t2lChIiIiIsy2RNceHgABrDWvgAUOt+SyNjXtj/KjQ9nF4AHWtvczo0Pb6atM+pwZyIiIgKZheD/MsY0GGOuNMac0/frSmNMA/A7txsUGWsORBKsaWobdgDut7a5nTWNbXRFEw51JiIiIv2G3A5hrf26MeZjwBIG3BgH/MRa+6SbzYmMRZ3RJCsaGh2ptaKhkfnV5ZobLCIi4rCMpkNYa/8L+Jp+msYAACAASURBVK9jXWOM+Rdr7dcc6UpkjIrFe6dAZHITXCaiiTSrNu3gC+dMJxjQWG8RERGnOPld9VwHa4mMSe3dcR5cv83Rmitf2sals6cwVSFYRETGiFQqTUdPnGTaciCaJJFM4fd5GRfy4fMYSgsCeL3H97gKfVcVcZC1DDoHeCRaOyIMMclQRERkVIgn03R0x9ncuo80lolFQWLJNNFEipDfS2ckwe6uGAaYXTWe0sIAAd/xCcMKwSIO6oom3akbc6euiIiIUzq64zTu3E9RyE/je5389uXttHZE8HkMAZ+HeDJNMm2pKg3zidOnUlES5s1dB6idUkJpYSDn/ToZgo2DtUTGpEgi5UrdqEt1RUREnLCnK8brbQdoaTvAXb9/nQ+dPJF//Gg1lSeED1kJDvo87NgXoWHzu9z73Fauu/BUvB7DqRXjmFAUzGnP2RybfJq19tVjXPJ/HehHZEwL+72u1A353KkrIiIyUh3dcXbsjfCzP2ylOOTnl188k3Wvt/Ojp1oG3SLYvxL85fkf5OfPv81zb+zmuoWn4jGG8TlcEc5mJfinxpggvSfI/dJau3/gi9baXzjYl8iYVBRyZ4eRW3VFRERGIp5Ms+tAlJ+ue5NPnlHFe50RPn3vC8ecktTaEeH/rHmDf332f7j+omomFYf56bo3+caFp1IY9OVsj3DGH8Va+2HgM0AVsNEYs9IYc6FrnYmMQcb0/g/XSVWlYYw2G4mIyCi0vyfOS2/t4epzpvObja2seKIp4zGh0USaFU808ZuNrVx9znRefGsP+3viLnf8F1lFbWvtG8C3gBuA84EfG2OajTFL3WhOZKwpKwywbO40R2teNW8a5eNyu09KRERkKKlUms5YkrKiEPf8YSvrWoZ3Uuq6lnbu+cNWyopCdMaSpFLOzNofSsYh2BhTZ4y5G2gCPgJcaq2d0ffnu13qT2RMCQZ8LJlTScjvzI9yQn4Pi2dXEtCeYBERGWX2RxM07dzPzv2RYQfgfuta2tm5P0LTu/vZH0041OGxZfOd+l+Al4HZ1tqvWGtfBrDW7qR3dVhEgOKQj+WLah2ptXxRLSVh7QcWEZHRpyee4sQJhdy5usWReneubuHE0kJ64rmZiJRNCF4ErLTWRgCMMR5jTAGAtfYBN5oTGYvGhf0snFHBgpqyEdVZUFPGwtoKikJ+hzoTERFxjs9reLp5V8Z7gIcSTaR5pnkXPm9uboTJJgSvAQbe8VPQ95yIHKaiJMRtS+uGHYQX1JRx29I6KopDDncmIiLijGg8zW9f3u5ozYde3u5YqB5KNiE4ZK3t6n/Q9+cC51sSeX+oKA5x2+V13HrZrIz3CIf8Hm69bJYCsIiIjHrGMOgc4JFo7Yjk7PS1bDYbdhtjTu/fC2yMOQMY8jM3xlxM70EaXuDfrLW3DXLNp4DvABbYZK29Kou+REatipIQS+ZMYX51Oas27WDlS9uOOjj8qnnTWDynkpKQT1sgRERk1OuJubN3N1d7grMJwX8P/MYYs5PeI5InAVce6w3GGC/wE+BCYDuw3hizylrbOOCaU4CbgHOttXuNMeVZfg4io1pRyE9RyM8XzpnOpbOnYC10xZIHj5AsCvowBsrHBTUFQkRExoxY0p1tC3GX6h4u4xBsrV1vjKkBqvuearHWDjXDYh7wprV2K4Ax5lfAEqBxwDXXAD+x1u7t+zi7Mu1JZCwJBnxMDWjSg4iIvD84NQ70cMEcnRiX7XfkucD0vvedbozBWnv/Ma6vBFoHPN4OnHnYNacCGGOep3fLxHestb87vJAx5lrgWoBp05w9jEBEREREslMQdGdhp9CluofL+KMYYx4APgi8AvRv1rDAsUJwpj2cAswHpgJ/MMacZq3dN/Aia+09wD0A9fX1doQfU0RERERGIJ22VJWGHb05rqo0TCqdm5iXTdSuB2qttdl0tgOoGvB4at9zA20HXuzbWvGWMeZ1ekPx+iw+joiIiIjkUDjg4cr6Kn701OuO1fz03CoKArm5PyabTRdb6L0ZLhvrgVOMMR8wxgSATwOrDrvmUXpXgTHGTKR3e8TWLD+OiIiIiORQImU5/9Qyx/YGh/wezjuljHhq9M0Jngg0GmNWG2NW9f861hustUngq8BqoAn4T2vta8aY7xljFvddthrYY4xpBNYC11tr92T/qYiIiIhIrhSFvGzfG+H6i6qHvjgD119UzfZ9EYpDo2xPML1zfLNmrX0SePKw524Z8GcLXNf3S0RERETGgHEBP6dNLQFgfnUZ61rah11rfnUZU0rCnFZZQmEwN7PysxmR9qwx5kTgFGvtGmNMAb3THEREREQkz3i9HoJeD52RBNeedxLAsILw/Ooyrj3vJFr39BD0evB6cnNmXMbbIYwx1wAPAT/re6qS3v28IiIiIpJnEokUG7bt5ZyTJ/LAn9/mk2dUsfySGUfsEfZ5DAUBL77Dwm3I72H5JTP45BlVPPDntznnlIls2LaXRGL0nRj3FXoPv3gRwFr7hk53ExEREclPu7pi/ODJJm65ZCbLL5nJ8ke3cO7JE/n9N87ntZ37AZhYFCSWTB88JTXo87C7KwbAzCkl/L6xjYdf3s6Ky2bx2s5OfvBkE3WVJVSOL3C9/2xCcMxaGzemN8UbY3z0zgkWERERkTyTttDaEeH7T7zGb750Dt+6pJZUKoXHGN7e3cMvX3pn0BnCVaVhPjPvRE6rPIHzTpnAgppyfMbw/Sdeo7UjQo7GBGc1HeJZY8w3gbAx5kLgN8Dj7rQlIiIiIqNZVzQJwH2fn8ue7ihBn4cX39rLBXet47bfNR/1EI3Wjgi3/a6ZC+5ax4tv7SXo87CnO8p9n5/bWzeWzEn/2YTgG4F24FXgS8CT1tqbXelKREREREa1SCLFLZfMwGIZXxji5kdf5eZHtxBNZDbnN5pIc/OjW7j50VcZXxjCYlm+aAbRHO0JziYEf81ae6+19pPW2iustfcaY/7Otc5EREREZNQK+T187LTJFAX83PTIZtY2D29E2trmdm56ZDNFQT+LTptM0OfM4RtDyeajfG6Q5z7vUB8iIiIiMoZUlATxGsMzzbuGHYD7rW1u55mmXXg9hoqSoEMdHtuQN8YZY5YBVwEfOOyEuHFAh1uNiYiIiMjolUpbEilY0dDoSL0VDY3Mry4nN0dlZDYd4k/Au/Qem/zPA54/AGx2oykRERERGd0CPg8PbWjNeA/wUKKJNKs27WDZmVWO1BvKkCHYWvsO8A5wtvvtiIiIiMhYcCCS4sH12xytufKlbVxSN4UTwo6WHVQ2J8YtNca8YYzZb4zpNMYcMMZ0utmciIiIiIxeRxuDNlrqHUs2h2XcAVxqrW1yqxkRERERGRsORBOu1B2Nc4LbFIBFREREBHBsL/CRdXMzJzibleANxphfA48Csf4nrbUPO96ViIiIiIxqYb/Xlbohnzt1D5dNCC4GeoCPDnjOAgrBIiIiInmmKJRNjDz+dQ+X8Uex1v61m42IiIiIyNhhDFSVhh29ma2qNIwxjpU7pmymQ5xqjHnaGLOl73GdMeZb7rUmIiIiIqNVWWGAZXOnOVrzqnnTKB+XmxPjsrkx7l7gJiABYK3dDHzajaZEREREZHQLBnwsmVNJyJ9NnDy6kN/D4tmVBHK0JzibrgustS8d9lxuZliIiIiIyKgT8huWL6p1pNbyRbWE/TnaC0F2IXi3MeaD9N4MhzHmCnqPUxYRERGRPJNKpYkk0syvLmdBTdmIai2oKWNBTTk9iTSplDuj1w6XTQj+CvAzoMYYswP4e+B/u9KViIiIiIxqB+IJVr2yk6vu/TM/vLxu2EF4QU0ZP7y8jmX3/JnHN+3kQNydQzgOl3EIttZutdYuBMqAGmvth6y1b7vWmYiIiIiMWl3RFA+u38Y7HRGu/Nmf+P6SWdx62ayM9wiH/B5uvWwW318yiyt/9ife6Yiw8qVtdEVzc1hGNtMh/s4Y0z8r+G5jzMvGmI8O9T4RERERef+xloPj0d7piHDu7WspLw7y9HXzueHiaqpKw4O+r6o0zA0XV/P0dfMpLw5y7u1reaevTmtHBGtz038204i/YK39v8aYi4AJwGeBB4CnXOlMREREREatA9Ejty1cc/9GwgEvd37iNB744pl4jaErliSaSBHyeykK+khZy5bt+1h497NE4keu+nbFcjN3IZsQ3H+73seB+621rxmTq3HGIiIiIjKaRBOD38AWiaf46oOvHHxcFPAyvjDA3u44XYOE3iPr5mY7RDYheKMx5ingA8BNxphxQG5u3xMRERGRUSXsz2yeb1c8RVc881PlQjmaE5xNCP4iMAfYaq3tMcZMAHSUsoiIiEgeKgplEyOPf93DDXljnDGmpu+Pc/p+P8kYczpwItmFaBERERF5n/AYjnrz23BVlYbxOHMA3ZAyCbHXAdcC/zzIaxb4iKMdiYiIiMioV14UZNm8adzxuxbHal41bxrl40KO1TuWIUOwtfbavt8XuN+OiIiIiIwFfr+XJXMq+fHTbxz1JrlshPweFs+pxO/NzVJwNnOCP9l3MxzGmG8ZYx42xvyVe62JiIiIyGg2Puxn+SW1jtS65ZJaxhf4HamViWyi9nJr7QFjzIeAhcB9wL+605aIiIiIjHYFQR8Xzqg45pHJIZ+HiUUBQr6jx84FNWUsnFFBQSB3t5tl85H6h7YtAu6x1jYYY77vQk8iIiIiMkaUF4e4fWkdNzy8mbXN7QR8Hv7+gpOZX1NOYcBHVzRJJJEi7PdSFPLRHU/yTNMufvzMm8STaRbUlHH70jrKi3OzF7hfNiF4hzHmZ8CFwO3GmCDZrSSLiIiIyPtQfxB+d3+E0sIgj2/ayZce2HjwWOWBqkrDLJs7jaevO5+93TEmlYRzHoAhuxD8KeBi4EfW2n3GmMnA9e60JSIiIiJjzZadnax4ovGQG+V8HkPA5yGeTJNMW1o7ItyxuoUfP/MGyy+pZVKJs2PWMpVxCO47IOMxoMIYM63v6WZ32hIRERGRsWJXZ/Tgdgivx3DRzAo+ftpkKk8IE0umiSZShPxegj4PO/ZFaNj8Lk837+LmR7awpqltdG+HMMZ8Dfg20MZfjku2QJ0LfYmIiIjIGDAwAC+ePYUvnDudda+386OnWmjtiByxElxVGuYTp0/ly/M/yM+ff5tVm3Zyw8Obcx6Es9kO8XdAtbV2j1vNiLyfRWIJ9vQkADgQ+ctNAuPCvV+GEwr8hIO5Gw0jIiIyUj2xJL9vauOlrR385KrTea8zwmfue5EPnTyRf/xoNZUnhIkn08STaQI+D4EBK8H3PreV6y48lYtmTuKfHtrEmqY2LvurypxNiMjmo7QC+91qROT9am9PnJ5Yisde2cGD67cd8yaBJXMqKQh6GV8QOA6dioiIZGdvJMFdT7Vw7+fquecPWykO+fnlF89kW0cPgb6RaBZIWYvte0/Q52HRaZMPrgQ/F93NvZ+r52srX+b86vKchWBjrR36KsAYcx9QDTQAsf7nrbV3udPa0dXX19sNGzbk+sOKZO29/VGebmpjRUNjRqfphPweli+q5YIZFUwqyf2dsiIiIplKJFLc+/xbnFhayOObdnDp7EqCPsPEcSHWtezity9vP+rCzydOn8r86nJ2H4gSS9qD79/W0c3fnPsB/H6vIz0aYzZaa+sHfS2LEPztwZ631n53BL0Ni0KwjAVtnVFu7Nsjla0FNWXctrSOiuMwMkZERCQTO/b2cM9zW/lgWSGnVhSTTlua3uvkztUtGS/8XH9RNTMmFePxGF5v6+TN9m6+9OGTqBxf4EiPjoTgAcWKAKy1XQ70NiwKwTLavbc/yk2PDC8A91MQFhGR0ay1o4c9XTF2HYhRURzi7jWvs64l++9786vL+MbCU2nrjFI+LsiEoiBVpe6H4IwPuzDGzDLG/DfwGvCaMWajMWamIx2KvI/s7YnzdFPbiAIwwNrmdtY0trGvJ+5QZyIiIs5Jpy2te3uoHB8edgAGWNfSzt1rXqdyfJjte3tIZ7lAO1zZnPh2D3CdtfZEa+2JwD8A97rTlsjY1RNLsaKh0ZFaKxoa6Y6lhr5QREQkx1LWUju5mBe27hl2AO63rqWdF7buYcaUYlLp0ReCC621a/sfWGvXAYWOdyQyhkViCR57ZUdGe6EyEU2kWbVpB5FYwpF6IiIiTikIeLEY7lzd4ki9O1e3YK2hIODMTXFDySYEbzXGLDfGTO/79S1gq1uNiYxFe3oSPLh+m6M1V7607eB8YRERkdGkYfNORxd+nnx1J7lZB84uBH8BKAMeBn4LTOx7TkT6WMug42BGorUjQo62R4mIiGQskbI89PJ2R2v+ZuN2kqncfNPLeBqxtXYv8HUXexEZ87qiSXfqxtypKyIiMlwW687CT47WgrOZDvF7Y8wJAx6PN8asdqctkbEpknDnJraoS3VFRESGy72Fn9x8z8tmO8REa+2+/gd9K8PlzrckMnaFHTrh5nAhX25uEhAREclULOnMXuDDxZOjLwSnjTHT+h8YY06EnO1dFhkTikLunHfuVl0REZHhGusLP9l8Z70Z+KMx5lnAAB8GrnWlK5ExypjeM9Gd3CNVVRrGGMfKiYiIOGKsL/xkvBJsrf0dcDrwa+BXwBnW2oN7gnV6nAhMKPCzbO60oS/MwlXzplFWFHS0poiIyEgFvB6qSsOO1qwqDRPwZbNRYfiy+ijW2t3W2if6fu0+7OUHHOxLZEwKB/0smVNJyO/MF3DI72Hx7EqCLv3ISUREZLgmFAb47FnTHa159dnTmVCYm4UfJ6O2fmArAhQEvSxfVOtIreWLaikMKgCLiMjo4/V6WDx7sqMLP5fWTcbryU2kdDIE6yY5EWB8QYALZlSwoKZsRHUW1JSxsLaCEwoCDnUmIiLirMKAj+9c6syO2O8unklRMHc3gudm04VInplUEuK2pXXDDsILasq4bWkdFcUhhzsTERFxzoFYktLCABfUjGxq7gU15YwvCNDp0uzhwTgZguMO1hIZ8yqKQ/zw8jpuvWxWxj8qCvk93HrZLAVgEREZ9RKJFE9s3sk3fv0K15x30rCD8AU15Vxz3kl849ev8MTmnSRydECUsTbzXQzGmDpgOgNGq1lrH3a+rWOrr6+3GzZsyPWHFRmWfT1xumMpVm3awcqXtg06Pq2qNMxV86axeE4lhQGvtkCIiMiot3NfhCvv+TOtHREKA17uuGI2e7pi/OC/mogmhj5II+T38M2PzWBCUZB/emgT3fEUVaVhfn3t2Uw5wZmpE8aYjdba+sFey3jjhTHm50Ad8BrQ/5lZIOchWGQsOaEgwAkF8PmzT+TS2VOwFrpiSaKJFCG/l6KgD2OgrCioKRAiIjJmpNL24MJOdzzFV1a+zKV1k/nVtWfxxzd28+sNrUdd+LmyvooPnTKR+557i8c3v3vwtdaOCKl0bm4zy2b38VnWWmdueRfJQ+Ggn6lB//FuQ0RExBHdsSP37z6++V2e3PIeF9SU848frWbKCWESqTSxRJqg34Pf62HnvghPbH6Xu9e8MWjg7Y7nZl9wNiH4z8aYWmtto2vdiIiIiMiYEDnK3t1U2vJUYxtPNbYB4PMYAj4P8WSaZAarvNF4bvYEZxOC76c3CL8HxOidC2yttXWudCYiIiIio1Yww5PdkmlLMotgm6sT47IJwfcBnwVe5S97gkVEREQkDxWF3Jnp61bdw2XzUdqttatc60RERERExgyPMVSVhge9+W24qkrDeMzoOzHuv40xK40xy4wxS/t/udaZiIiIiIxaBQEvV5w+1dGanzxjKgWB3ExKyiYEh+ndC/xR4NK+X5e40ZSIiIiIjG4lIT+XzJ6S8YFQQwn5PSyqm0JJODez8jPeDmGt/Ws3GxERERGRscPr9VAc9HH9RdWseKJpxPWuv6ia4qAPryc32yGyOSwjBHwRmAkcPM/VWvsFF/oSERERkVGupCDAuSdPZH51Geta2oddZ351GeeePJGSHJ6Yms369QPAJOAi4FlgKnDAjaZEREREZPQL+DyUjwtx3cJTmV9dNqwa86vLuG7hqVSMC+VsPBpkNx3iZGvtJ40xS6y1/2GMWQk851ZjIiIiIjL6lRYGsNbypfNO4sOnTOTO1S1EE0NP0w35PVx/UTW1k4upHB9mfGHuVoEhuxCc6Pt9nzFmFvAeUO58SyIiIiIylkwoClJtDKm05VfXns2zLbt46OXtg45PqyoNc8XpUzm/upzuaIKaScU5D8CQXQi+xxgzHlgOrAKKgFtc6UpERERExpTSwgDzPjCBju44NZPGcfPHZzChKEgilSaaSBPye/B7PezpimEMTCoOUTq5OKdbIAbKZjrEv/X98VngJHfaEREREZGxKuDzMKkkRFlRBR09cZJpS1c0SSKVxu/1UBTyMX1CAaWFwZxNgTiabKZDVAA/AKZYaz9mjKkFzrbW3udadyIiIiIy5ni9HsrG9Q0TKzm+vRxNNuvPvwBWA1P6Hr8O/L3TDYmIiIiIuC2bEDzRWvufQBrAWpsEUkO9yRhzsTGmxRjzpjHmxmNc9wljjDXG1GfRk4iIiIhI1rIJwd3GmAmABTDGnAXsP9YbjDFe4CfAx4BaYFnfNorDrxsH/B3wYhb9iIiIiIgMSzYh+Dp6p0KcZIx5Hrgf+NoQ75kHvGmt3WqtjQO/ApYMct0K4HYgmkU/IiIiIiLDkk0IbgQeAdYDbcC99O4LPpZKoHXA4+19zx1kjDkdqLLWNmTRi4iIiIjIsGUTgu8HauidEPEvwKn0HqU8bMYYD3AX8A8ZXHutMWaDMWZDe/vwz6YWEREREcnmsIxZ1tqB+3nXGmMah3jPDqBqwOOpfc/1GwfMAtYZYwAmAauMMYuttRsGFrLW3gPcA1BfX2+z6FtERERE5BDZrAS/3HczHADGmDOBDce4Hnq3TpxijPmAMSYAfJrefcUAWGv3W2snWmunW2unAy8ARwRgEREREREnDbkSbIx5ld6JEH7gT8aYbX2PTwSaj/Vea23SGPNVeucLe4GfW2tfM8Z8D9hgrV11rPeLiIiIiLghk+0Ql4zkA1hrnwSePOy5W45y7fyRfCwREREROf5i8STt3XEADkSSpNIpvB4v48K90bOsMEAwkM2uXOcN+dGtte/kohERERERGdsORBJ0RpN0xRKE/F68xmCxxFMQ8liwkLKWt/b0MC7kpzjkY1zYf1x6Pb4RXERERETeF9r2RzkQjRMO+Hm6aRcPrt9Ga0fkiOuqSsMsmzuNJXMqaeuM0BNPUVESynm/xtqxN2ihvr7ebtige+dERERERoPdnVHiacva5l2saGgkmkgP+Z6Q38PyRbUsqCkn4DFMLHY+CBtjNlpr6wd7LZvpECIiIiIih9i9P0rSws2PvsrNj27JKAADRBNpbn50Czc/+ipJ2xukc0khWERERESG5UAkQQLLTY9sZm3z8A4zW9vczk2PbCZhLV3RhMMdHp1CsIiIiIgMSzyZ4pmmXcMOwP3WNrfzTNMuoomUQ50NTSFYRERERLIWiyeJJi0rGoY6QDgzKxoaiSUtsXjSkXpDUQgWERERkaxFUikee2VHxnuAhxJNpFm1aQeRVG5WgxWCRURERCRrByIpHly/zdGaK1/axoGIQrCIiIiIjGKDzQEeTfWORSFYRERERLJ2wKVJDl0x7QkWERERkVHKqb3AR9bVdggRERERGaXCfq8rdUM+d+oeTiFYRERERLJWFPKNqbqHUwgWERERkawZA1WlYUdrVpWGMcbRkkelECwiIiIiWSsrDLBs7jRHa141bxrl44KO1jwahWARERERyVow4GPJnEpCfmfiZMjvYfHsSgLaEywiIiIio1lxyMfyRbWO1Fq+qJaScG72A4NCsIiIiIgM07iwn4UzKlhQUzaiOgtqylhYW0FRyO9QZ0NTCBYRERGRYasoCXHb0rphB+EFNWXctrSOiuKQw50dm0KwiIiIiIxIRXGI2y6v49bLZmW8Rzjk93DrZbOOSwAGyN3GCxERERF536ooCbFkzhTmV5ezatMOVr60jdaOyBHXVZWGuWreNBbPqaQk5MvpFoiBFIJFRERExBHW9v6+oLqcj582GY8xdMWSRBMpQn4vRUEfaWuJxlNg/3L98aAQLCIiIiIj1rY/ypqmNlY0NBJNpA8+XxTwMr4wwN7uOF3x1MHnQ34PyxfVsnBGBRUl2g4hIiIiImNMW2eUGx/ZzNrm9iNe64qn6IofuS0imkhz86NbWNPcphvjRERERGRsadsf5caHBw/AmVjb3M6ND2+mrTPqcGfHphAsIiIiIsNyIJJgTVPbsANwv7XN7axpbKMrmnCos6EpBIuIiIjIsHRGk6xoaHSk1oqGRvZHko7UyoRCsIiIiIhkLRZP8tgrOw65CW4kook0qzbtIBbPTRBWCBYRERGRrLV3x3lw/TZHa658aRvt3XFHax6NQrCIiIiIZM1aBj0MYyRa/1979x8b913fcfz1tn1333OcOHXrXBrXTqeB6pjIMeB462CoJhmCmdpphrQmYtDBhvYDjWkbU7rKDBZFzcY2TfuhbQxQgZEAg7TJCB1rMktsE5C4kKSp423dxhwMuXpJ6tTx3flsf/aHL8Nc7fh75+/37pJ7PiQrtr8fv++djz7KvfL15/v9XkmV7N7BhGAAAAAUbCodzraFqQzbIQAAAFChUtm5lQcVIR1S3XyEYAAAABQsHqkNpa5XF07dfIRgAAAAFKzBC+fBw2HVzUcIBgAAQMHMpNameKA1W5viMgu05LIIwQAAAChY85qo9mxvC7Tm3p42bVgbC7TmcgjBAAAAKFgsWqeBrhZ5kWDipBepUf+2FkXZEwwAAIBKts6r02BfRyC1Bvs61BgvzX5giRAMAACAIq2NR7RzS0K97c2rqtPb3qydHQk1eJGAOlsZIRgAAABFSzR6Ori7s+gg3NverIO7O5VY5wXc2c0RggEAALAq9swdDwAAFaBJREFUiXWeDj7UqQO7tvreI+xFanRg19ayBGBJKt3GCwAAANy2Eo2eBro26YH7NujY2XEdOjWmi1dSaojW6o41UV29PqOpmTm1NsW1t6dN/V0tavTqSroFYjFCMAAAAALR4EXU4EX0yP2b9eC2TZKkl1OzSmXnFI/Uam3uwrc76yOKx8oTfm8gBAMAACAQV6dnNJ2Z09Ez4zp8euFMcL7Wprj2bG/TQFeL6mO1uqM+WoZOJXPOleWFV6O7u9sNDw+Xuw0AAADkXJpM6+SFpPYfH1E6O7/ieC9So8G+Du3YktDGxnD2BJvZs8657qWOcSYYAAAAq5K8ltajT57T0OiE759JZ+f12FPndWI0yd0hAAAAcGu5NJnWviOFBeDFhkYntO/IOSWvpQPu7OYIwQAAACjK1ekZnbyQLDoA3zA0OqETI0m9ND0TUGcrIwQDAACgKNOZOe0/PhJIrf3HR3Q9MxdILT8IwQAAAChYKpPV0TPjvi6C8yOdndexs+NKZbKB1FsJIRgAAAAFuzyd1eHTY4HWPHRqTJenCcEAAACoUM5pyfsAr8bFKymV6u69hGAAAAAUbCo9G07dTDh18xGCAQAAULBUNpyL2NIh1c1HCAYAAEDB4pHaUOp6deHUzUcIBgAAQMEavHAePBxW3XyEYAAAABTMTGptigdas7UpLrNASy6LEAwAAICC3Vkf0Z7tbYHW3NvTpuaGWKA1l0MIBgAAQMHisYgGulrkRYKJk16kRv3bWhQLaa9xPkIwAAAAilIfq9VgX0cgtQb7OrQmVpoALBGCAQAAUKQ76qPasSWh3vbmVdXpbW/Wzo6E1tdHA+psZYRgAAAAFG1jo6eDuzuLDsK97c06uLtTiXVewJ3dHCEYAAAAq5JY5+nxhzp1YNdW33uEvUiNDuzaWpYALEmluREbAAAAbmsbGz31dd6tB+7boGNnx3Xo1JguXkm9YlxrU1x7e9rU39WiNdHakm6BWIwQDAAAgECsr49qfb30yP2b9eC2TXJOmsrMKp2dkxepVUOsTmYLt1eLxyJl7ZUQDAAAgEC8ND2j65k5HT0zrsOnF84EN0RrdceaqK5en9HUzJxam+Las71NA10tWhMr35lgc86V5YVXo7u72w0PD5e7DQAAAORcmkzr5IWk9h8fUTo7v+J4L1Kjwb4O7diS0MbGcPYEm9mzzrnupY5xJhgAAACrkryW1qNPntPQ6ITvn0ln5/XYU+d1YjTJ3SEAAABwa7k0mda+I4UF4MWGRie078g5Ja+lA+7s5gjBAAAAKMpL0zM6eSFZdAC+YWh0QidGkpqcngmos5URggEAAFCU65k57T8+Ekit/cdHNJWZC6SWH4RgAAAAFCyVyeromXFfF8H5kc7O69jZcaUy2UDqrYQQDAAAgIJdns7q8OmxQGseOjWmy9OEYAAAAFQo57TkE+FW4+KVlEp1915CMAAAAAo2lZ4Np24mnLr5CMEAAAAoWCobzkVs6ZDq5iMEAwAAoGDxSG0odb26cOrmCz0Em9lbzezfzOwFM9u3xPHfMLMRMztnZifNbHPYPQEAAGB1GrxwHjwcVt18oYZgM6uV9BeS3iapQ9IeM+vIG/ZtSd3OuU5JX5T0B2H2BAAAgNUzk1qb4oHWbG2KyyzQkssK+0xwj6QXnHP/5ZybkfQ5SQOLBzjnhpxz07kvvyHpnpB7AgAAwCrdWR/Rnu1tgdbc29Om5oZYoDWXE3YIbpF0cdHX3819bznvlfT0UgfM7H1mNmxmwxMTq3s0HwAAAFYnHotooKtFXiSYOOlFatS/rUWxkPYa56uYC+PM7J2SuiV9dKnjzrmPOee6nXPdzc3NpW0OAAAAr7AmVqvBvvydrsUZ7OtQQ6w0AVgKPwSPS2pd9PU9ue/9EDPbKekxSf3OuUzIPQEAACAA6+uj2rElod721Z2g7G1v1s6OhBrrowF1trKwQ/BpSa82sx8xs6ikhyUdWzzAzF4r6a+1EIBfDLkfAAAABGhjo6eDuzuLDsK97c06uLtTiXVewJ3dXKgh2Dk3K+n9kr4q6YKkLzjnnjez3zOz/tywj0pqkPR3ZnbGzI4tUw4AAAAVKLHO0+MPderArq2+9wh7kRod2LW1LAFYksyV6gHNAeru7nbDw8PlbgMAAACLTE7PaCozp2Nnx3Xo1JguXkm9YkxrU1x7e9rU39WihmhtqFsgzOxZ51z3UsdKczdiAAAA3PYa66NqrJceuX+zHty2Sc5JU5lZzczOKVpXq4ZYncyk5oZYye4CsZyKuTsEAAAAbi9mkpw0N7/w540HYczPz5ezLUmcCQYAAEBArk7PaDozp6NnxnX49PLbIfZsb9NAV4vqY7W6o4R3hFiMPcEAAABYtUuTaZ28kNT+4yNKZ1c+0+tFajTY16EdWxLa2BjOhXHsCQYAAEBoktfSevTJcxoa9f9U33R2Xo89dV4nRpO33y3SAAAAcHu7NJnWviOFBeDFhkYntO/IOSWvpQPu7OYIwQAAACjK1ekZnbyQLDoA3zA0OqETI0m9ND0TUGcrIwQDAACgKNOZOe0/PhJIrf3HR3Q9MxdILT8IwQAAAChYKpPV0TPjvi6C8yOdndexs+NKZbKB1FsJIRgAAAAFuzyd1eHTY4HWPHRqTJenCcEAAACoUM5pyfsAr8bFKymV6u69hGAAAAAUbCo9G07dTDh18xGCAQAAULBUNpyL2NIh1c1HCAYAAEDB4pHaUOp6deHUzUcIBgAAQMEavHAePBxW3XyEYAAAABTMTGptigdas7UpLrNASy6LEAwAAICC3Vkf0Z7tbYHW3NvTpuaGWKA1l0MIBgAAQMHisYgGulrkRYKJk16kRv3bWhQLaa9xPkIwAAAAilIfq9VgX0cgtQb7OrQmVpoALBGCAQAAUKQ76qPasSWh3vbmVdXpbW/Wzo6E1tdHA+psZYRgAAAAFG1jo6eDuzuLDsK97c06uLtTiXVewJ3dHCEYAAAAq5JY5+nxhzp1YNdW33uEvUiNDuzaWpYALEmluREbAAAAbmsbGz31dd6tB+7boGNnx3Xo1JguXkm9YlxrU1x7e9rU39WiNdHakm6BWIwQDAAAgECsr49qfb30yP2b9eC2TXJOmsrMKlo3p5nZWjXE6mQmNTfESnYXiOWwHQIAAAChMJPkpMnphT9vPAhjfn6+nG1J4kwwAAAAAnJ1ekbTmTkdPTOuw6eX3w6xZ3ubBrpaVB+r1R1l2g5hzrmyvPBqdHd3u+Hh4XK3AQAAgJxLk2mdvJDU/uMjSmdXPtPrRWo02NehHVsS2tgYzoVxZvasc657qWOcCQYAAMCqJK+l9eiT5zQ0OuH7Z9LZeT321HmdGE1yizQAAADcWi5NprXvSGEBeLGh0QntO3JOyWvpgDu7OUIwAAAAinJ1ekYnLySLDsA3DI1O6MRIUi9NzwTU2coIwQAAACjKdGZO+4+PBFJr//ERXc/MBVLLD0IwAAAACpbKZHX0zLivi+D8SGfndezsuFKZbCD1VkIIBgAAQMEuT2d1+PRYoDUPnRrT5WlCMAAAACqUc1ryPsCrcfFKSqW6ey8hGAAAAAWbSs+GUzcTTt18hGAAAAAULJUN5yK2dEh18xGCAQAAULB4pDaUul5dOHXzEYIBAABQsAYvnAcPh1U3HyEYAAAABTOTWpvigdZsbYrLLNCSyyIEAwAAoGB31ke0Z3tboDX39rSpuSEWaM3lEIIBAABQsHgsooGuFnmRYOKkF6lR/7YWxULaa5yPEAwAAICi1MdqNdjXEUitwb4OrYmVJgBLhGAAAAAU6Y76qHZsSai3vXlVdXrbm7WzI6H19dGAOlsZIRgAAABF29jo6eDuzqKDcG97sw7u7lRinRdwZzdHCAYAAMCqJNZ5evyhTh3YtdX3HmEvUqMDu7aWJQBLUmluxAYAAIDb2sZGT32dd+uB+zbo2NlxHTo1potXUq8Y19oU196eNvV3tWhNtLakWyAWIwQDAAAgEOvro1pfLz1y/2Y9uG2TnJOmMrNKZ+fkRWrVEKuTmXTXmoi8aKSsvRKCAQAAEIiXU1ldS8/q6JlxHT69cCb43qa4XrNprZ7/3sv6zpWUWpvi2rO9TQNdLVrn1WltvDxh2JxzZXnh1eju7nbDw8PlbgMAAAA5ycm0TlxIav/xEaWz8yuO9yI1Guzr0M4tCSUaw9kTbGbPOue6lzrGmWAAAACsSvJaWvuePKeh0QnfP5POzuuxp87rxGiSu0MAAADg1pKcTGvfkcIC8GJDoxPad+ScktfSAXd2c4RgAAAAFOXlVFYnLiSLDsA3DI1O6MRIUlPpbECdrYwQDAAAgKJcS89q//GRQGrtPz6iydRsILX8IAQDAACgYJmZhbtA+LkIzo90dl7Hzo4rM1OaIEwIBgAAQMEmrs/o8OmxQGseOjWmieszgdZcDiEYAAAABXNOSz4RbjUuXkmpVHfvJQQDAACgYFPpcLYtTGXYDgEAAIAKlcrOhVI3HVLdfIRgAAAAFCweqQ2lrlcXTt18hGAAAAAUrMEL58HDYdXNRwgGAABAwcyk1qZ4oDVbm+IyC7TksgjBAAAAKFjzmqj2bG8LtObenjZtWBsLtOZyCMEAAAAoWCxap4GuFnmRYOKkF6lR/7YWRdkTDAAAgEq2zqvTYF9HILUG+zrUGC/NfmCJEAwAAIAirY1HtHNLQr3tzauq09verJ0dCTV4kYA6WxkhGAAAAEVLNHo6uLuz6CDc296sg7s7lVjnBdzZzRGCAQAAsCqJdZ4OPtSpA7u2+t4j7EVqdGDX1rIEYEkq3cYLAAAA3LYSjZ4Gujbpgfs26NjZcR06NaaLV1KvGNfaFNfenjb1d7Wo0asr6RaIxQjBAAAACESDF1GDF9F7fuJePbhtk5yTpjKzSmfn5EVq1RCrk5m0YW2sZHeBWA4hGAAAAIGKRet0T7SyYyZ7ggEAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABVhxAMAACAqkMIBgAAQNUhBAMAAKDqmHOu3D0UzMwmJP1PGV76Lkn/W4bXvdUwT/4wT/4wT/4wT/4xV/4wT/4wT/6Ua542O+ealzpwS4bgcjGzYedcd7n7qHTMkz/Mkz/Mkz/Mk3/MlT/Mkz/Mkz+VOE9shwAAAEDVIQQDAACg6hCCC/Oxcjdwi2Ce/GGe/GGe/GGe/GOu/GGe/GGe/Km4eWJPMAAAAKoOZ4IBAABQdQjBAAAAqDqE4Dxm9kkze9HMzi9z3MzsT83sBTM7Z2avK3WPlcDHPD1gZpNmdib38aFS91gJzKzVzIbMbMTMnjezDywxpurXlM95qvo1ZWaemZ0ys7O5efrIEmNiZvb53Hr6ppndW/pOy8vnPD1iZhOL1tMvlKPXSmBmtWb2bTP78hLHqn493bDCPLGecszsO2b2XG4ehpc4XjHveXXleuEK9oSkP5f06WWOv03Sq3MfPybpL3N/VpsndPN5kqR/ds69vTTtVKxZSb/pnPuWma2V9KyZPeOcG1k0hjXlb54k1lRG0pudc1NmFpH0L2b2tHPuG4vGvFfSVefcq8zsYUm/L+lny9FsGfmZJ0n6vHPu/WXor9J8QNIFSeuWOMZ6+oGbzZPEelqs1zm33IMxKuY9jzPBeZxzX5N05SZDBiR92i34hqT1ZnZ3abqrHD7mCZKcc993zn0r9/nLWvgHtCVvWNWvKZ/zVPVya2Qq92Uk95F/dfOApE/lPv+ipB1mZiVqsSL4nCdIMrN7JPVJ+vgyQ6p+PUm+5gn+Vcx7HiG4cC2SLi76+rvizXo59+d+Hfm0mb2m3M2UW+7XiK+V9M28Q6ypRW4yTxJr6savZM9IelHSM865ZdeTc25W0qSkO0vbZfn5mCdJ+pncr2O/aGatJW6xUvyJpN+WNL/McdbTgpXmSWI93eAk/aOZPWtm71vieMW85xGCEZZvaeF53dsk/Zmkp8rcT1mZWYOkL0n6defctXL3U6lWmCfWlCTn3JxzrkvSPZJ6zGxruXuqRD7m6e8l3euc65T0jH5wtrNqmNnbJb3onHu23L1UMp/zVPXraZE3Oudep4VtD79qZm8qd0PLIQQXblzS4v/h3ZP7HhZxzl278etI59xXJEXM7K4yt1UWuT2JX5L0WefckSWGsKa08jyxpn6Yc+4lSUOS3pp36P/Xk5nVSWqUdLm03VWO5ebJOXfZOZfJfflxSa8vdW8V4A2S+s3sO5I+J+nNZva3eWNYTz7mifX0A8658dyfL0p6UlJP3pCKec8jBBfumKR35a5u/HFJk86575e7qUpjZhtv7Bszsx4trLVq+4dTuTn4hKQLzrk/XmZY1a8pP/PEmpLMrNnM1uc+j0v6KUmjecOOSXp37vN3SPonV2VPRfIzT3l7EPu1sA+9qjjnHnXO3eOcu1fSw1pYK+/MG1b168nPPLGeFpjZmtzFzTKzNZLeIin/LlIV857H3SHymNlhSQ9IusvMvivpd7VwUYWcc38l6SuSflrSC5KmJf18eTotLx/z9A5Jv2xms5JSkh6utn84c94g6eckPZfbnyhJvyOpTWJNLeJnnlhT0t2SPmVmtVr4T8AXnHNfNrPfkzTsnDumhf9MfMbMXtDCxasPl6/dsvEzT79mZv1auDPJFUmPlK3bCsN68of1tKSEpCdz5yvqJB1yzv2Dmf2SVHnveTw2GQAAAFWH7RAAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABVhxAMAACAqkMIBoAKYWbrzexXyt0HAFQDQjAAVI71kgjBAFAChGAAqBwHJf2omZ0xs4+a2QfN7LSZnTOzj0iSmd1rZqNm9oSZ/buZfdbMdprZv5rZf+Sepicz+7CZfcbMvp77/i/mvn+3mX0t9xrnzewny/j3BYCyIQQDQOXYJ+k/nXNdkp6R9GpJPZK6JL3ezN6UG/cqSX8kqT33sVfSGyX9lhaetHdDp6Q3S7pf0ofMbFNu7Fdzr7FN0hkBQBXisckAUJnekvv4du7rBi2E4jFJ/+2ce06SzOx5SSedc87MnpN076IaR51zKUkpMxvSQqA+LemTZhaR9JRzjhAMoCpxJhgAKpNJetw515X7eJVz7hO5Y5lF4+YXfT2vHz654fJqOufc1yS9SdK4pCfM7F0h9A4AFY8QDACV42VJa3Off1XSe8ysQZLMrMXMNhRYb8DMPDO7U9IDkk6b2WZJSefc30j6uKTXBdM6ANxa2A4BABXCOXc5d4HbeUlPSzok6etmJklTkt4paa6AkuckDUm6S9J+59z3zOzdkj5oZtlcTc4EA6hK5lz+b8sAALc6M/uwpCnn3B+WuxcAqERshwAAAEDV4UwwAAAAqg5nggEAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABV5/8AXy7ELJvMy+cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Z338e8158mBQGQIEBKpFhMQA4uBIl01VCxtUbAengp9Vldb6K7ubuvu2mot3a6srbXWdrtPd1tpba27aHdbDyi2WBS0tVIICinm4IFqQsAQDRAIM5nT9fyRwEYIJBPuOyTM5/165WVm5p7f/BKTV77cc92/y1hrBQAAAGQTz6luAAAAABhshGAAAABkHUIwAAAAsg4hGAAAAFmHEAwAAICs4zvVDQzE6NGj7cSJE091GwAAABjCtmzZ8q61NtLbY8MyBE+cOFHV1dWnug0AAAAMYcaYt4/3GMshAAAAkHUIwQAAAMg6hGAAAABkHUIwAAAAsg4hGAAAAFmHEAwAAICsQwgGAABA1iEEAwAAIOsMy80yBktnPKnWjrgk6UA0qWgipbDfq/xw17ctkhtQMMC3EAAAYLghwfXiQDSh9lhST2xt1sObG9XUFj3mmJLCsBbPLNWi6cUaEfIpP+w/BZ0CAABgIIy19lT3kLHKykrr1rbJLftjWlfXohVrahVLpPs8PuT3aPmCKZo3uUhFBSFXegIAAEDmjDFbrLWVvT3GmeAeWtpjuu2xGq2vb+33c2KJtO54fLvW1bfo7isrVDSCIAwAADDUcWFct5b9Md32aGYBuKf19a267dEatbTHHO4MAAAATiMEq2sN8Lq6lgEH4MPW17dqXW2LDsYSDnUGAAAANxCCJbXHklqxptaRWivW1Gp/NOlILQAAALgj60NwZ7xrCkR/LoLrj1girdXbmtUZJwgDAAAMVa6GYGPMA8aYPcaY7cd53BhjvmeMecMYU2OMmeFmP71p7Yjr4c2NjtZctanxyHxhAAAADD1unwn+qaSPneDxj0ua1P2xTNJ/uNzPMaxVr3OAT0ZTW1TDcPIcAABA1nA1BFtrX5DUdoJDFkn6me2yUdJIY8w4N3s62sGYO8sWDnayHAIAAGCoOtVrgoslNfW4vbP7vmMYY5YZY6qNMdWtrSc3xaGnaCLlWK2eYi7VBQAAwMk71SG436y191trK621lZFIxLG6Yb/XsVo9hXzu1AUAAMDJO9UhuFlSSY/bE7rvGzR5IXc2zXOrLgAAAE7eqQ7BqyVd1z0lYrak/dba3YPZgDFSSWHY0ZolhWEZ42hJAAAAOMjtEWkPS3pJUpkxZqcx5jPGmL8yxvxV9yFPS9oh6Q1JKyXd5GY/vYnkBrR4ZqmjNZfMKtWY/KCjNQEAAOAcV9+zt9Yu7uNxK+lmN3voSzDg06Lpxfrec687smFGyO/RwmnFCrAmGAAAYMg61cshhoQRIZ+WL5jiSK3lC6aoIMx6YAAAgKGMECwpP+zXvMlFmlt+clMn5pZHNG9KkfJCfoc6AwAAgBsIwd2KCkK6+8qKAQfhueUR3X1lhYpGhBzuDAAAAE4jBPdQNCKkuz9ZobuumKqQv3/fmpDfo7uumEoABgAAGEZYvHqUooKQFk0fr6qyMVq9rVmrNjWqqS16zHElhWEtmVWqhdOLVRDysQQCAABgGCEE9yIv5FdeyK8b50zU5dPGy1rpYGdSsURKIb9XeUGfjJHG5AeZAgEAADAMEYJPIBjwaUKAbxEAAMDphoR3AtHOhN47lJAkHYgmFU2kFPZ7ld89Au2MHL/CQZZBAAAADDeE4F7sPRTXoc6UntjarIc3H39N8OKZpVo0vVg5Qa9G5QROQacAAAAYCNO1advwUllZaaurq12p/c7+mJ6ta9GKNbX92kEu5Pdo+YIpumRykcYWMB0CAABgqDDGbLHWVvb2GGeCe2hpj+n2x2q0vr6138+JJdK64/HtWlffwpg0AACAYYI5wd3e2R/TbY9mFoB7Wl/fqtserVFLe8zhzgAAAOA0QrC61gA/W9cy4AB82Pr6Vq2rbdG+Q3GHOgMAAIAbCMGSDnWmtGJNrSO1VqypVUdnypFaAAAAcEfWh+BoZ0JPbG3u10Vw/RFLpLV6W7OinQlH6gEAAMB5WR+C3zuU0MObGx2tuWpT45H5wgAAABh6sj4EW6te5wCfjKa2qIbh5DkAAICskfUh+GAs6U7dTnfqAgAA4ORlfQiOJd25iK3TpboAAAA4eVkfgkN+ryt1gz536gIAAODkZX0Izgu6s2meW3UBAABw8rI+BKetVUlh2NGaJYVhpbkyDgAAYMjK+hCcTKV11YwJjta8esYEJVOEYAAAgKEq69+zj6esqs6J6AfPv+nIhhkhv0cXnxNRPOXM5hs4fXTGk2rt6NpS+0A0qWgipbDfq/xw169hJDegYCDrfyUBABgUWf8XNy/o039seFO3zi/TiqfqTrrerfPL9OPf/Ulf/Fi5A93hdHAgmlB7LKkntjbr4c2Nvc6lLikMa/HMUi2aXqwRIZ/yw/5T0CkAANkj65dDSNIrTXt10aSI5pZHTqrO3PKILpoU0dad+xzqDMNdy/6YVm/bpUvu26B71jYcd2OWprao7lnboEvu26DV23apZX9skDsFACC7GDsML+CqrKy01dXVjtRqfK9D23bu095DcX1wTL7uf2GHNjS0ZlynqiyiZRedpTf2HFBhTkAVJSNVWpjrSI8YnlraY7rt0Rqtr8/852lueUR3X1mhohEhFzoDACA7GGO2WGsre3ss688Ev9cR1/SSUfr60/Va+mC1rjm/RMsvm6yQv3/fmpDfo+WXTdY155do6YPV+vrT9ZpWMkptB+Mud46hrGX/wAOwJK2vb9Vtj9aopZ0zwgAAuCHrQ3BhTkBP1uxSLJFWRzylm1e9rK2N+/TI0tm6Zd6k445PKykM65Z5k/TI0tna2rhPN696WR3xlGKJtJ6q2aVROYFB/kowVByIJrSurmXAAfiw9fWtWlfbooOxhEOdAQCAw7L+wjiPx+jhTY3vu+/Jmt16evs7uqR8jP7xo2UaPzKsRCqtWCKtkN8jv9ejXfuieqpmt7733BtKpd+/pGTVpkZdVjF+ML8MDCHtsaRWrKl1pNaKNbWqKhujvBAXygEA4KSsD8HGqNeLlVJpq2dqW/RMbYskyecxCvg8iifTSqZPvI66qS0qY1xpF0NcZ7xrCoQT4/YkKZZIa/W2Zt04ZyLj0wAAcFDWL4c4GEv267hk2upQPNVnAD5St7N/dXF6ae2I6+HNjX0fmIFVmxqPzBcGAADOyPoQ7NQZu6N1ulQXQ5u1vb+zcDKa2qIahkNcAAAY0rI+BAd87qxbCHiz/lublfr7zkLGdXlnAQAAR2V9UssNurPOMifodaUuhrZoIuVK3ZhLdQEAyFZZH4Kt1XHHoA1USWGYt6+zVNjvzj9+Qj7+UQUAgJOyPgSHAx5dNWOCozWvnjFBOQFCSzbKC7nzzoJbdQEAyFZZH4ITKatLysf0e4e4voT8Hn2kfIziKS6My0bGuPPOAiP3AABwVtaH4HDAo517o7p1fpkj9W6dX6ad+6KcCc5SI8JeLZ5Z6mjNJbNKVRBmswwAAJyU9SE4mbKqmDBS4wvCqiqLnFStqrKIxheEVVE8UskUi4Kz0YFYSoumFzv6zsLCacVqj7J1MgAATsr6EJwT8CjgNWqPJrTsorOOG4RDPo9G5wUU8vX+Lasqi2jZRWepPZpQwGuUy3SIrJROS3W792v5giknPM7nMcoJeOXznHidw/IFU1S7e7/6uUcLAADop6y/2sZvPPqvVxp16ZQi3be2QdecX6ILJ43Wvz77uv7qorNUVT5GuQGfDsaSiiZSCvu9ygv51BFP6rm6Pbr/tzv0+UsmaeyIsP7rpbf1D/PL9Ogrzbr+gjNP9ZeGU6CjM6nP/myLXvzSXM0tj2h9faskyesxmjd5jD5x3jgVjwyrM5lWLJFSyO9V0OdR876o1tTs1rP1e5TqTrxzyyOqKovow99cr19/4cJT+WUBAHDayfoQ/N6hhP7rD2/r0ilFWnbx2frOutf0fz9Uql/93UV6YmuzPvfQll53ACspDGvxzK7j6nbv13/+oVG3zDtHVtJ//uFtXVYxTsWBrP/2Zp3Dc4KXrNyon39ujm5/rEb5Qb9u/PBEbXitVfc+03Dcn6erZkzQTVVn64EX39KBzoS+8ckKfeqHv5fEnGAAAJxm7DAcaFtZWWmrq6sdqdXUdki/qX1HQZ9X97/wplYtna0NDa1asaa2X1sqh/weLV8wRVVlES1ZuVHLLjpbsURKHz13rEoKcxzpEcNH3e52ffxffytJuuCsQn3nU9P1bN2ejH+eLplcpFt+/ope2tEmSfrV5y/U5HEjXO0dAIDTjTFmi7W2srfHsv5U5cFYUpdOGaslK1/SqqUX6CtPbD/yFnZ/xBJp3fH4ds0tj+g/Pzv7SB22uc1Oed07EJ5ZGNZ3PvVnuv2xmgH9PK2rb9F3PvVn+tQPf6+326JH6gIAAGdk/YVx+SGfnty2Sw/85Sx9dXVmAbin9fWt+urq7XrgL2fpqZpdGsHmBlmrpDCsVUsvyDgA97S+vlW3P1ajVcsucHzuMAAAIATLSjojL6BNf2obcGA5bH19qzb9qU2jcvxczZ+l0tbq/r84Xxsa9jjy8/R8wx6t/IvzNRyXLQEAMJRlfQiWpDlnj9aKNbWO1FqxplYf/uDJzRvG8NXWEdeIUMCxn6c7n6pVfiigtkNxR+oBAIAuWR+C/V6jJ7ft6tdFS/0RS6T1VM0u+X3sc5uNSgrDemJbs6M/T6u3NWvCKJZEAADgpKwPwfFUWg9vbnS05qpNjYonnQlBGF5iibQe3uT8z5NToRoAAHTJ+hBsZHqd23oymtqiMuJMcDayVq78PLEkGAAAZ2V9CD4Yc2eUGSPSshM/TwAADA9ZH4KjLu3ExQ5f2YmfJwAAhoesD8Fhv9eVuiGfO3UxtIUDLv08ufRzCgBAtsr6EJzn0qYWbtXF0Nbfnd18HqOcgFc+T//WjrNjHAAAzsr6v6xWViWFYUcvZiopDMuKK5myVW8/T16P0bzJY/SJ88apeGRYncm0YomUQn6vgj6PmvdFtaZmt56t36PUUTutsGMcAADOy/oQHPB6tHhmqe5Z2+BYzSWzShX0Zv1J9ixlddWMCfruuteP3LNw2njd+OGJ2vBaq+59pqHXf3CVFIZ11YwJuqnqbD3w4ltavW3XkceunjFB4h9VAAA4KuuTWjJldfm08Qr5nflWhPweXVYxXokUoSUbvXcwoapzIgr5PcoNePX9JTM0raRA167cqO+ue/247zg0tUX13XWv69qVGzWtpEDfXzJDuQGvQn6PLj4noraOxCB/JQAAnN6MHYYDSCsrK211dbUjtZr3HtLv3nhXyZTVHY9vP+l6d10xVV6PdOGkiIpH5TjQIYaT+t3t+vcNb6py4kh9cEy+7n9hhzY0tGZcp6osomUXnaU39hzQ5j/t1c1zP6jycSNc6BgAgNOXMWaLtbayt8ey/kywz2u0P5rQrA8Uam555KRqzS2PaNYHCtUeS8rPcoislBP0avW2XbrgrNFa+duBBWBJ2tDQqpW/3aELzhqtJ2t2KyfIdAgAAJxEUpP00SljdeNPN+nOhVMHHITnlkd058KpuvGnm/TRKWMd7hDDRSpldf2cM/XC661aXz+wAHzY+vpWvfB6q66bc+YxF8sBAICTk/Uh2NquK/dvqpqkK//9RX3545N11xVT+71GOOT36K4rpurLH5+sK//9Rd00d5J8HqP0MFxmgpPn9RhdN3uivuXQhZbfWtug6y+YKK9hG24AAJyU9SG4M5mWtVbTSgpUMWGkLv3OC4olUvrNLRfrSx8rO+54qpLCsL70sTL95paLFUukdOl3XlDFhJGaVlKgtKw6k+lB/kowFOSGvHq2vkWxhDP//2OJtJ6ta1FuiOUQAAA4KetHpOUGvXrpzfd0TlG+vjBvkiRpxZo6fXNtg/7uIx/UD//ifOUEfOroTCqWSHdd9R/06VA8qefq9uiS+55XPJnWJeVj9IV5k+QzRjVN+zT77NGn+CvDqXCoM62HNr7taM2HNr6tj08dpzNyHS0LAEBWy/oQbK008Yxc7dwb1Zj8oD7z5x/QxedE9PVf1eneZ17Tvc+8JkkK+TzKC/l0MJZUrMdZ3pDfozsXnqsPjsmTJDXtjerMM3I1HKdu4OQZydGNV9Rdj8UQAAA4K+tDcGFOQFub9mn3/qjyu7c6HjcypJ8vu0C/fb1VP69uUlNbVLFkWrGD8SPPKykM61OVJbpwUkR7DsQkSdFESs37DiltraaMLzglXw9OrQOxpDt1O92pCwBAtsr6EOz1enRe8UglU1YP/O5PunxasXICHllJpaNydMcnJuuMvKASqbQ6E2kF/R75vR69d7Czaz2xJJ/HaO+hhJ7c1qxF04t1XvFIeT2cu8tGsWTKlbqdLtUFACBbZX0IlqTC3IBiiZSumzNR97+wQ/lBnz5z4Qfk6XHZoJHkMeZ9b0t7jSRZPfpysw50JrXsorPUsj+mwtzA4H4BGDJCfncuYAv6uDAOAAAnZf10CEkK+Dy6uGyMVm1s1DXnl2h66Uh9+kd/0Optu9835aFnAO5MpvXEtt369I/+oOmlI3XN+SVatbFRVWVjFPDxbc1WeUF3/l3pVl0AALIVf1m7FeYG9M+LztVtv/yjQn6P/uszH9Lzr7Xq3mca1NQWlc9jFPB5FE+mlUxblRSGdfWMCbq56mz9+Hd/UizRpruvOk+jOAuc1VK262fDyYvjSgrDzJ0GAMBhhOAezsgL6ptXV+jZuhZ9+sd/0IfPHq1//GiZxo8MK5FKHxmR5vd6tGtfVE/V7Nb9v92hr11+ruZNLiIAQ6mU1VUzJui76153rObVMyYomSIEAwDgJELwUQpzA1o0vVgXToroqZpdJzwT/JdzJmrFoqkqzA2wBAKSpEQqrapzIvrB8286smFGyO/RxedElEix+QoAAE4yw3GebWVlpa2urnb9dVKptNoOxZVMWx2MJdWZTCvYPS/Y5zEqzA0yBQLv07z3kL756wZNKynQiqfqTrre8ssma2vjPt328XIVj8pxoEMAALKHMWaLtbayt8c4E3wCXq9HkfxQ1w3G/qIf/F6PXmnaq/nnjlVVWUQbGloHXKuqLKKxI8LauvMt+XmnAQAAR/GXFXDQGbkBXTd7or74i21adtFZqiqLDKhOVVlEyy46S1/8xTZdd8FEnZEbdLhTAACyGyEYcJDX69Hl08YpZa2WPlita84v0fLLJivk79+vWsjv0fLLJuua80u09MFqpazV5RXjWHYDAIDDCMGAwwpzg7pz0bnqiKd086qXtbVxnx5ZOlu3zJukksJwr88pKQzrlnmT9MjS2drauE83r3pZHfGU7lw0VYWcBQYAwHGsCQYcFvB5dNGkMfpIeUTP1bfqyZrdenr7O7qkfEyfI/e+99wbSqW7Llb9SHlEF58TYfIIAAAuIAQDDjsQTej5hj367IVnKW2lDQ2tSqWtnqlt0TO1LZJ0zMi9o1WVRfTZC8/Shvo9WlAxTnkh/2B/GQAAnNYIwYDD2mNJ/dOTr8prjO65epounDRa31rb8L65wcm0VTKeOua5Ib9Ht84v09gR4SNrgv98UoQQDACAwwjBgIM640k9sbX5SOC9edXL+s0tF+pj547T6m3NWrWpsdctlUsKw1oyq1QLpxXrUDyhS7/z2yOPrd7WrBvnTFQwwK8rAABO4a8q4KDWjrge3twoSSofm6ef3DBLz9Xt0dd/Vfe+bbiTqbTiSauAz8jXY03w/1v/hr788cl66faP6IafbFL9Owe1alOjLp82XhMIwQAAOMb1K26MMR8zxjQYY94wxtzWy+Olxpj1xphXjDE1xphPuN0T4BZrpaa2qMrH5unBGz+kLz/2R93x+HbFEmmZ7ilnRpKVZGVlu28fvj+WSOuOx7fry4/9UQ/e+CGVj81TU1tUw3BjRwAAhjRXTy0ZY7ySvi/pUkk7JW02xqy21tb2OOwrkv7bWvsfxpgpkp6WNNHNvgC3HIwlJUk/uWGWbn+0RuvrW7Vw2njd+Ocf0O/feFf3PtNw3OUQi2eW6qa5H9QDv/uTVm/bpdsfrdFPb/iQZn/jWR3sTA72lwIAwGnN7fdXZ0l6w1q7Q5KMMY9IWiSpZwi2kkZ0f14gaZfLPQGuiSZSeuymOXqubo/+sKNN318yQ/sOxXXt/S+978K4ozW1RXXP2gaFnntdyxdM0fxzx+qLv9im5+pb9OhfX6BY4tiL6AAAwMC5vRyiWFJTj9s7u+/r6WuS/q8xZqe6zgL/bW+FjDHLjDHVxpjq1tZWN3oFTlrY79WY/JDu+02DfnLDTD32ys4jyyH64/ByiMde2amf3DBT336mQUUjwgr5vC53DgBAdhkKU/gXS/qptXaCpE9IesgYc0xf1tr7rbWV1trKSCQy6E0C/VFcGNSTNbt095UVuv+FHVpXt2dAddbV7dH9L+zQ3VdW6KmaXSouZNc4AACc5HYIbpZU0uP2hO77evqMpP+WJGvtS5JCkka73BfgivZoSrv3R/XeofiAA/Bh6+r2qO1QXM37o2qPshwCAAAnuR2CN0uaZIz5gDEmIOlaSauPOqZR0iWSZIyZrK4QzHoHDFvXXTBRX1v9qiO1/mn1q7r+gomO1AIAAP/L1RBsrU1K+htJayXVqWsKxKvGmDuNMQu7D/sHSUuNMdskPSzpL61lIBSGp1Ta6tm6Pf1eA9yXWCKt5+r2KN3L1soAAGDgXJ++b619Wl0XvPW876s9Pq+V9GG3+wAGg9dj9NDGtxyt+bONb+nj5411tCYAANluKFwYB5w2Dm+W4SQ2ywAAwHmEYMBBHS5tatERZ7MMAACcRAgGHBR1aVOLWJzpEAAAOIkQDDgo4HPnV8qtugAAZCv+sgIOyg+6c61pnkt1AQDIVoRgwEEej1FJYdjRmiWFYXk8xtGaAABkO0Iw4KCgz+jqGRMcrXnN+RMUYjkEAACO4i8r4KCRoYAWVIxXyO/Mr1bI79GC88arICfgSD0AANCFEAw4yO/3Kj/k063zyxypd+v8MuWFfPJ7+VUFAMBJ/GUFHJYf9GnO2aNVVRY5qTpVZRHNOXu08kNcFAcAgNMIwYDDcoI+jc4N6JZ55ww4CFeVRXTLvHM0OjegnAAhGAAAp/HXFXBBZERIVtKyC8/ShZNG61trGxRLpI887vMYBXwexZNpJdP/uydyyO/RrfPLNHnsCI0rCCkyInQKugcA4PRHCAZc0NYR1zd/Va+/qjpbiVSefr7sAjW1HZLPazQ6L6jOZFqxREohv1dBn0fvHuxUMpVWSWGu9h2KK5If1Dd/Va+vXDZFo3K5KA4AAKcRggGHxZNpPVvXol++0qxfvtKsZ265ULkBv1568z3916a31dQWPeY5JYVhfXrWmfqz0kKFAx5d+p0XJEmzzz5Di6YXs2McAAAOM9bavo8aYiorK211dfWpbgPo1Tv7Y6q6d72K8oNatXS2NjS0asWa2vcthziekN+j5QumqKosoiUrN6rlQKc2/ONcjS1gWQQAAJkyxmyx1lb29hinlwAHpVJpPVWzS0X5Qf38c3P0lSe2647Ht/crAEtSLJHWHY9v11ee2K6ff26OivKDeqpml1Kp/j0fAAD0DyEYcFDbobgefOktrVo6W7c/VqP19a0DqrO+vlW3P1ajVUtn68GX3lLbobijfQIAkO0IwYCDkmmrf7psijY0tA44AB+2vr5VGxpa9dXLprxvggQAADh5hGDAQQdiSU0eV6AVa2odqbdiTa2mjCvQwVjSkXoAAKALIRhwUGGOX09sbe73GuC+xBJprd7WrFE5fkfqAQCALoRgwEHRRFoPb250tOaqTY2KOhSqAQBAF0Iw4LDe5gAPpXoAAIAQDDjKrbW7BztZEwwAgJMIwYCDoomUK3VjLtUFACBbEYIBB4X9Xlfqhnzu1AUAIFsRggEH5YV8w6ouAADZihAMOKykMDyk6wEAAEIw4Ki8kFeLZ5Y6WnPJrFKNCHMmGAAAJxGCAQft2hfTounFCvmd+dUK+T1aOK1YzXtjjtQDAABdCMGAg+LJtOp279fXLj/XkXr/vPBc1e7er3iS6RAAADiJEAw46PB0iOklI1VVFjmpWlVlEU0rGSlJCrk0dQIAgGxFCAYclBf0afK4An36Rxu17KKzBhyEq8oiWnbRWfr0yo2aMq5AeUHWBAMA4CRCMOCgETlePbG1We91JLT0wWpdc36Jll82ud9rhEN+j5ZfNlnXnF+ipQ9W672OhFZva9aIHM4EAwDgJEIw4KD2aEoPb26UJHXEU7p51cva2rhPjyydrVvmTTruuLOSwrBumTdJjyydra2N+3TzqpfVEe9aB7xqU6Pao6wJBgDASbzHCjjIWqmpLfq++56s2a2nt7+jS8rH6B8/WqbxI8NKpNKKJdIK+T3yez3atS+qp2p263vPvaFU2r7v+U1tUdn33wUAAE4SIRhw0MFYstf7U2mrZ2pb9ExtiyTJ5zEK+DyKJ9NKpvtOuAc7e68LAAAGhhAMOCia6N+yhWTaKhnv/xKHWD/rAgCA/mFNMOCgsEujzEI+LowDAMBJhGDAQXkhd95ccasuAADZihAMOMgYHXcCxECVFIZljKMlAQDIeoRgwEGR3IAWzyx1tOaSWaUakx90tCYAANmOEAw4KBjwadH04n5vjtGXkN+jhdOKFWBNMAAAjiIEAw4bEfJp+YIpjtRavmCKCsKsBwYAwGmEYMBh+WG/5k0u0tzyyEnVmVse0bwpRcoL+R3qDAAAHEYIBlxQVBDS3VdWDDgIzy2P6O4rK1Q0IuRwZwAAQCIEA64pGhHS3Z+s0F1XTO33GuGQ36O7rphKAAYAwGUsNgRcVFQQ0qLp41VVNkartzVr1aZGNbVFjzmupDCsJbNKtXB6sQpCPpZAAADgMkIw4LK8kF95Ib9unDNRl08bL2ulg51JxRIphfxe5QV9MkYakx9kCgQAAIOEEAwMkmDApwkBfuUAABgKWBMMAACArEMIBgAAQNYhBAMAAESJv94AACAASURBVCDrnFQINsbkOdUIAAAAMFhO9kxwrSNdAAAAAIOoz0vVjTF/f7yHJHEmGAAAAMNOf84Ef13SKEn5R33k9fP5AAAAwJDSn6GlL0t63Fq75egHjDGfdb4lAAAAwF39CcE3SHrvOI9VOtgLAAAAMCj6XM5grW2w1r57nMdaDn9ujPk3JxsDAAAA3OLkmt4PO1gLAAAAcA0XtgEAACDrEIIBAACQdZwMwcbBWgAAAIBr+h2CjTHn9XHIv55kLwAAAMCgyORM8L8bYzYZY24yxhQc/aC19qfOtQUAAAC4p98h2Fp7oaRPSyqRtMUYs8oYc6lrnQEAAAAuyWhNsLX2dUlfkfQlSRdL+p4xpt4Yc6UbzQEAAABuyGRNcIUx5juS6iR9RNLl1trJ3Z9/x6X+AAAAAMf1Z9vkw/5N0o8kfdlaGz18p7V2lzHmK453BgAAALgkkxC8QFLUWpuSJGOMR1LIWnvIWvuQK90BAAAALshkTfA6SeEet3O67wMAAACGlUxCcMhae/Dwje7Pc5xvCQAAAHBXJiG4wxgz4/ANY8z5kqInOB4AAAAYkjJZE/wFSf9jjNmlri2Sx0r6lCtdAQAAAC7qdwi21m42xpRLKuu+q8Fam3CnLQAAAAxXiURKrR2dSlvpQCypaCKlsN+r/JBPHiNFcoPy+72ntMdMzgRL0kxJE7ufN8MYI2vtzxzvCgAAAMPOoc6k9kYTemJrsx7e1KimtqjyAl6Nyg1ob0dcB+MplRSGtXhWqRZNL9aosF85wUzjqDP6/arGmIcknS1pq6RU991WEiEYAAAgy+1pj2ldXYu+tbZBd10xVQ995kPyGaP2WEKxRFohv0cjQn4lrdX2nft02fd+q1vnl2ne5CKNGREa9H4zid6VkqZYa61bzQAAAGD42dMe05cerdGnZ5Xqqb+9UE9sbdY3fl2vprZjZyiUFIa1eGbXcXW79+tLj9bom1dWDHoQzmQ6xHZ1XQwHAAAASOoKwN9+pl7/smiqWto7dcl9G3TP2oYjAdjnMcoJeOXzGElSU1tU96xt0CX3bVBLe6f+ZdFUffuZeu1pjw1q35mcCR4tqdYYs0lS5+E7rbULHe8KAAAAQ96hzqQ2vvmubrm0XLc/VqP19a3yeozmn1ukT5w3TsUjw+pMphVLpBTyexX0edS8L6o1Nbv1bP0e3fH4ds0tj+gbn6zQxjff1bxzxyonMDhrhDN5la+51QQAAACGn73RhM6fWHgkAC+cNl43fniiNrzWqnufaTjucoirZkzQTVVn64EX39Lqbbt0+2M1+pcrpmrvocTQC8HW2ueNMWdKmmStXWeMyZF0amdbAAAA4JRIJFI6GE2o+u292rSjTd9fMkPvtEd17cqNiiXSx31eU1tU3133un7w/Ju6dX6Z5p87Vl/8xTZtqG9V5cRRSiQCgzI+rd9rgo0xSyX9QtIPu+8qlvR4P573MWNMgzHmDWPMbcc55v8YY2qNMa8aY1b1tycAAACcGq0dncoL+XXfbxq08vpK/c+WJq14qu6EAbinWCKtFU/V6X+2NGnl9ZW67zcNygv61drR2feTHZDJ+eabJc2S9AdJsta+bowZc6InGGO8kr4v6VJJOyVtNsasttbW9jhmkqTbJX3YWru3r5oAAAA49XKCXq3a2KQ7F52n+1/YoQ0NrQOqc/h5dy46T6u3NWvxh0qcbPO4MgnBndbauDFdV/YZY3zqmhN8IrMkvWGt3dH9nEckLZJU2+OYpZK+b63dK0nW2j0Z9AQMG53xpFo74pKkA9Eeu+eEu34NI7kBBQdpHRQAACfrQDSllgMxBf2eAQfgwzY0tOrCSaO1uz2mA9GURoYdavIEMvmL+7wx5suSwsaYSyXdJOnJPp5TLKmpx+2dkj501DHnSJIx5kV1rTH+mrX210cXMsYsk7RMkkpLSzNoGzi1DkQTao8lu3bP2dx4wpmJi6YXa0TIp/yw/xR0CgBAZj45vVjXrtzoSK1vrW3QI0tnO1KrPzKZE3ybpFZJf5T0OUlPW2vvcKAHn6RJkqokLZa00hgz8uiDrLX3W2srrbWVkUjEgZcF3NeyP6bV23YdMzPxaD1nJq7etkst+wd3ViIAAJlKp602vNba7zXAfYkl0nr+tValB2lftkxC8N9aa1daa6+x1l5trV1pjPl8H89pltRzYceE7vt62ilptbU2Ya39k6TX1BWKgWGtpT2m2x6r0R2Pb8/oIoE7Ht+u2x6rUcsgDw0HACATKWv1y5d3OlrzFy/vVCo99ELw9b3c95d9PGezpEnGmA8YYwKSrpW0+qhjHlfXWWAZY0ara3nEjgz6Aoaclv0x3fZo18zEgVhf36rbHiUIAwCGLp/HHPcdzoFqaose2VnObX2uCTbGLJa0RNIHjDE9A2y+pLYTPddamzTG/I2ktepa7/uAtfZVY8ydkqqttau7H/uoMaZWUkrSrdba9wb25QCn3oFoQuvqWgYcgA9bX9+qdbUtWjR9vPJCrBEGAAwth+Ipd+om3Kl7tP5cGPd7SbvVtW3yt3vcf0BSTV9PttY+Lenpo+77ao/PraS/7/4Ahr32WFIr1tT2fWA/rFhTq6qyMYRgAMCQ49Ra4KN1ulT3aH2GYGvt25LelnSB++0Aw1tnvGsKhJMXCaze1qwb50xkfBoAYEgJBzJZVdt/Ib87dY+WyY5xVxpjXjfG7DfGtBtjDhhj2t1sDhhuWjvienhzo6M1V21qPDJfGACAoSKnnydnfB6jnIC332t9+1v3ZGXyKvdIutxaW+dWM8BwZ61cuUhgkKbFAADQb1ZWJYXhY/7ueT1G8yaP0SfOG6fikWF1JtOKJVIK+b0K+jxq3hfVmprderZ+zzGTIEoKw7J97sXmjExCcAsBGDixg7GkO3U73akLAMBABXweXTVjgr677vUj9y2cNl43fniiNrzWqnuf6X0+fklhWFfNmKCbqs7WAy++pdXbdh157OoZExT0eQel/0xCcLUx5ufqGmnWefhOa+2jjncFDFNRl65ojQ3SlbIAAPTXvo6ELp82Xj94/k15jdE9V0/TO+1RXbty4wmvjWlqi+q7617XD55/U7fOL9P8c8fqi7/YppS1umzaeO09FFfRiJDr/WcSgkdIOiTpoz3us5IIwUC3sN+df72GBulfxQAA9FdnMq2CHL/uXDhVEwrDuv+FHdrQ0P/xoLFEWiueqlNVWUQrr69Uc1tUuX6v9rj0rurR+h2CrbU3uNkIcDrIC7mzmN+tugAADNS4gqC2vL1Pcz54hpY/sT2jANzThoZWGSOtWDRVr+zcpxmlIx3utHeZTIc4xxjzrDFme/ftCmPMV9xrDRh+jOla6+SkksKwzOBsngMAQL/FU1bnFOXpxTfedWSDqBffeFfnFOUpkRp62yavlHS7pIQkWWtr1LUNMoBukdyAFs8sdbTmklmlGpMfdLQmAAAny+818vs8+qfVrzpS759Wvyq/1yO/d3DO/GQSgnOstZuOuo9L1oEeggGfFk0vdmzQd8jv0cJpxQqwJhgAMMSkrfTr7S2ObhC1dnuL0oM0FjSTv9TvGmPOVtfFcDLGXK2u7ZQB9DAi5NPyBVMcqbV8wRQVhFkPDAAYeqy1emjjW47W/NnGt2QHaTh+JiH4Zkk/lFRujGmW9AVJf+1KV8Awlh/2a97kIs0tj5xUnbnlEc2bUqS8kN+hzgAAcE4q7c4GUSlnTiz3qd8h2Fq7w1o7T1JEUrm19s+ttW+51hkwjBUVhHT3lRUDDsJzyyO6+8qKQZmTCADAQHS4tJFTR3xwVttmMh3i88aYw7OCv2OMedkY89G+ngdkq6IRId39yQrddcXUfq8RDvk9uuuKqQRgAMCQ59oGUfHB2SAqk8WGN1pr/9UYM1/SGZL+QtJDkp5xpTPgNFBUENKi6eNVVTZGq7c1a9WmxuNuIblkVqkWTi9WQcjHEggAwJAX8DlzEfhg1T1aJiH48LyKT0j6mbX2VWOYXgr0JS/kV17IrxvnTNTl08bLWulgZ1KxREohv1d5QZ+MkcbkB5kCAQAYNvKH+QZRmbzKFmPMM5I+IOl2Y0y+pEFaugwMf8GATxMCTHoAAJwePMaopDDs6MVxJYVheQbpHGsm55s/I+k2STOttYckBSSxlTIAAEAWCvqMrp4xwdGa15w/QaFBWg7R56sYY8q7P53e/d+zjDEzJJ2pzM4kAwAA4DQxMhTQgorxjm4QteC88SrICThSry/9CbF/L2mZpG/38piV9BFHOwIAAMCQ5/d7lR/y6db5ZVrxVN1J17t1fpnyQj75vUPkwjhr7bLu/851vx0AAAAMF/lBn+acPVpVZRFtaGgdcJ2qsojmnD3atYvtepPJnOBrui+GkzHmK8aYR40xf+ZeawAAABjKcoI+jc4N6JZ556iqbGAbRFWVRXTLvHM0OjegnEG8gDyT883LrbUHjDF/LmmepB9L+oE7bQEAAGA4iIwIaXxBSMsuPEvLL5uc0QZRyy+brGUXnqXxBSFFBnmTqEzi9uHtOxZIut9au8YY8y8u9AQAAIBhxOMxGj8yrEQqrUeWXaDnG/boFy/vPO4GUVfPmKCLy8Zo/6G4xo8My+MZ/K0nMgnBzcaYH0q6VNI3jTFBZXYmGQAAAKeZto64vvTLGq2r26PlCybro+eO1aQxebrjE5N1Rl5QiVRasURaIb9Hfq9H7x3sVNpanZEb0Ja32nT9TzZr3uQx+tbV0zQqd3AmQ0iZhdj/I2mtpPnW2n2SCiXd6kpXAAAAGPLiybTW1b6jdXV7JEkr1tTpkvue1453O1R6Ro4i+UEVhP0aleNXQdivSH5QpWfkaEdrhy6573mtWNM1VWJd3R79pu4dxZODtw+bsdb2/2BjvJKK1OMMsrW20YW+TqiystJWV1cP9ssCAACgh937o5p77wbFEscPryGfR3khnw7GkoqdIOSG/B6t/8cqjSsIO9afMWaLtbayt8cymQ7xt5JaJP1G0pruj6cc6RAAAADDSiqV1pPbdp8wAEtSLJnWuwfjJwzAkhRLpPVUzW6lUoNzNjiTNcGfl1RmrX3PrWYAAAAwPLzXEddDG9/q8zifxyjg8yieTCuZPvEKhJ+99JYWTRuvMYMwKSKTENwkab9bjQAAAGD4iKfSvU5/8HqM5k0eo0+cN07FI8PqTKYVS6QU8nsV9HnUvC+qNTW79Wz9HqWOCsVNbVHFh+CZ4B2SNhhj1kjqPHyntfY+x7sCAADAkHYwljzmvoXTxuvGD0/Uhtdade8zDccdkXbVjAm6qepsPfDiW1q9bdf763YeW9cNmYTgxu6PQPcHAAAAslQ0kTryeW7Aq3uunqZ32qO6duXGE64TbmqL6rvrXtcPnn9Tt84v0/xzx+qLv9imjnhXvVg8ddznOqnfIdha+8+SZIzJ67590K2mAAAAMLQFfF3zFXIDXq28vlL3v7BDGxpa+/38WCKtFU/VqaosopXXV2rpg9XqiKeO1HVbJtMhphpjXpH0qqRXjTFbjDHnutcaAAAAhqr8UNe51HuunpZxAO5pQ0Or7n9hh+65epokKS+UyUKFgcskat8v6e+ttWdaa8+U9A+SVrrTFgAAAIYyjzG6fs6Zeqc9OuAAfNiGhla90x7VdXPOlMcMzhbKmYTgXGvt+sM3rLUbJOU63hEAAACGvKDPo+tmT9S31jY4Uu9baxt0/QUTFfJ5HanXl0xC8A5jzHJjzMTuj6+oa2IEAAAAskzQb/RsfUufm2X0VyyR1rN1LQr4HSnXp0xC8I2SIpIelfRLSaO77wMAAECWaY+m9NDGtx2t+dDGt9UeHXrTIfZK+jsXewEAAMAwYa16nQN8tEx2jGtqi8qe+BDH9DsEG2N+I+kaa+2+7tujJD1irZ3vVnMAAAAYmg7EEr3ef/SOcfFkWolUWn6vR4E+doyTBm+zjEyWQ4w+HIClI2eGxzjfEgAAAIa63tYCL5w2Xr/86wt0ecV4Bbvn/Xok+Yw5EjqDPo8unzZOv/zrC7Rw2vhe6g6x5RCS0saYUmttoyQZY86UNEgnrAEAADCUhP3/O8Xh8I5xYb9HktHZkVzlBH3yGqP2WEKxRFohv0cjQn5F8oPqiCUVT1tdMX38MTvGDdZ0iExC8B2SfmeMeV6SkXShpGWudAUAAIAh7fCmFrkBr35yw0wlU1aR/IByAn49sbVZD29u7HXNcElhWItnlmrR9GLlBjxqPRDXT26YqRt+slkd8dTQ2yzDWvtrSTMk/VzSI5LOt9auPfw4u8cBAABkD4/pCrTfvXa68oNeTRydq01/2qtL7tuge9Y2HPeiuaa2qO5Z26BL7tugTX/aq4mjc5Uf9Oq7105XSWFYnsHZNVnGOnQJnjHmZWvtDEeK9aGystJWV1cPxksBAACgF4lESusa9uiDY3KVHwzo9sdqtL4+853j5pZH9I1PVuhgZ1yv7+nQvMlF8nudScLGmC3W2sreHnMyaw/OHncAAAA45fx+r2aUjlJewD/gACxJ6+tbdftjNcoN+nV+6SjHAnBfnHwVLpIDAADIEqlUWkbSc/V7BhyAD1tf36rn6vbIdNcdDIO06gIAAACnk/2xhBIpqxVrah2pt2JNreIpq/3HmT/sNCdDcNzBWgAAABjCPB7pia3Nvc4LHohYIq3V25oH7cK4jGZQGGMqJE3s+Txr7aPd/53taGcAAAAYsg5EU3p4c6OjNVdtatRlFeM1Muxo2V5lsm3yA5IqJL0q6XDkt5IedaEvAAAADHHHG4M2VOqdSCZngmdba6e41gkAAACGjQMurd092Jl0pe7RMll18ZIxhhAMAAAAx9YCH1s35Urdo2VyJvhn6grC70jqVNdcYGutrXClMwAAAAxZYb/Xlbohnzt1j5ZJCP6xpL+Q9Ef975pgAAAAZKG8UEbzFU553aNl8iqt1trVrnUCAACAYcMYqaQw7OjFbCWFYZlB2oM4kzXBrxhjVhljFhtjrjz84VpnAAAAGLIiuQEtnlnqaM0ls0o1Jj/oaM3jySQEh9W1Fvijki7v/rjMjaYAAAAwtAUDPi2aXqyQ35ndLUJ+jxZOK1ZgqK0Jttbe4GYjAAAAGF5GhHxavmCK7nh8+0nXWr5gigrCg7MeWMpss4yQpM9IOldS6PD91tobXegLAAAAQ1x+2K95k4u0rr5F6+tbB1xnbnlE86YUKS/kd7C7E8vk/PVDksZKmi/peUkTJB1woykAAAAMD0UFId19ZYXmlkcG9Py55RHdfWWFikaE+j7YQZmE4A9aa5dL6rDWPihpgaQPudMWAAAAhouiESHd/ckK3XXF1H6vEQ75PbrriqmnJABLmY1IO7w33j5jzFRJ70ga43xLAAAAGG6KCkJaNH28qsrGaPW2Zq3a1Njr+LSSwrCWzCrVwunFKgj5BnUJRE+ZhOD7jTGjJC2XtFpSnqSvutIVAAAAhp28kF95Ib9unDNRl08bL2ulg51JxRIphfxe5QV9MkYakx8ctCkQx5PJdIgfdX/6vKSz3GkHAAAAw10w4NOEwOBNehiIfq8JNsYUGWN+bIz5VfftKcaYz7jXGgAAAOCOTC6M+6mktZLGd99+TdIXnG4IAAAAcFsmIXi0tfa/JaUlyVqblJRypSsAAADARZmE4A5jzBmSrCQZY2ZL2u9KVwAAAICLMlmx/PfqmgpxljHmRUkRSVe70hUAAADgokxCcK2kxyQdUtdOcY+ra10wAAAAMKxkshziZ5LKJX1d0r9JOkddWykDAAAAw0omZ4KnWmun9Li93hhT63RDAAAAgNsyORP8cvfFcJIkY8yHJFU73xIAAADgrj7PBBtj/qiuiRB+Sb83xjR23z5TUr277QEAAADO689yiMtc7wIAAAAYRH2GYGvt24PRCAAAADBYMlkTDAAAAJwWCMEAAADIOoRgAAAAZB1CMAAAALIOIRgAAABZhxAMAACArON6CDbGfMwY02CMecMYc9sJjrvKGGONMZVu9wQAAIDs5moINsZ4JX1f0sclTZG02BgzpZfj8iV9XtIf3OwHAAAAkNw/EzxL0hvW2h3W2rikRyQt6uW4FZK+KSnmcj8AAACA6yG4WFJTj9s7u+87whgzQ1KJtXbNiQoZY5YZY6qNMdWtra3OdwoAAICscUovjDPGeCTdJ+kf+jrWWnu/tbbSWlsZiUTcbw4AAACnLbdDcLOkkh63J3Tfd1i+pKmSNhhj3pI0W9JqLo4DAACAm9wOwZslTTLGfMAYE5B0raTVhx+01u631o621k601k6UtFHSQmtttct9AQAAIIu5GoKttUlJfyNpraQ6Sf9trX3VGHOnMWahm68NAAAAHI/P7Rew1j4t6emj7vvqcY6tcrsfAAAAuKsznlRrR1ySdCCaVDSRUtjvVX64K3pGcgMKBlyPoSd0al8dAAAAp40D0YTaY0k9sbVZD29uVFNb9JhjSgrDWjyzVIumF2tEyKf8sP8UdCoZa+0peeGTUVlZaaurWTYMAAAwVLTsj2ldXYtWrKlVLJHu8/iQ36PlC6Zo3uQiFRWEXOnJGLPFWtvrwAXOBAMAAOCktLTHdNtjNVpf3/+9HGKJtO54fLvW1bfo7isrVDTCnSB8PKd0TjAAAACGt5b9Md32aGYBuKf19a267dEatbQP7sbBhGAAAAAMyIFoQuvqWgYcgA9bX9+qdbUtOhhLONRZ3wjBAAAAGJD2WFIr1tSe8Ji8gFclo8LKC3hPeNyKNbXaH0062d4JsSYYAAAAGeuMd02BOPoiuHDAq29fXaEpxQXyGaP2WEKxRFohv0cjQn4lrdX2nft06y//qGg8deR5sURaq7c168Y5EwdlfBohGAAAABlr7Yjr4c2N77vvR9edr8njCvTE1mZ949f1JxyRtu6Wi1W3e78++7MtRx5btalRl08brwmDEIJZDgEAAICMWasjIffMwrBe/NJctbR36pL7NuietQ29BmCp6zn3rG3QJfdtUEt7p1780lydWRg+8thgTe/lTDAAAAAydjDWtX73zMKwfv65Obp9gCPS5pZH9PPPzdGnfvh7vd0W1cHOwVkXzJlgAAAAZCya6FrPu2rp7IwDcE/r61t1+2M1WrV0tiQplkj18QxnEIIBAACQsZDfox9dd742NLQ6MiJtQ0OrVl53voK+wYmnhGAAAABkLD/k1+RxBX2OSOuvFWtqNWVcgfJDfkfq9YUQDAAAgIzlh729jkgbqMMj0vLDJ54n7BRCMAAAADJ2MJY6ZkTayVq1qVEHY6wJBgAAwBDVc0SaUwZzRBohGAAAABk7PCLN8bqMSAMAAMBQFXVplBkj0gAAADBkhf3uXMAW8nFhHAAAAIaovJA7Gw+7VfdohGAAAABkzBippDDsaM2SwrCMcbTkcRGCAQAAkLFIbkCLZ5Y6WnPJrFKNyQ86WvN4CMEAAADIWDDg06LpxQr5nYmTIb9HC6cVK8CaYAAAAAxlI0I+LV8wxZFayxdMUUF4cNYDS4RgAAAADFB+2K95k4s0tzxyUnXmlkc0b0qR8kJ+hzrrGyEYAAAAA1ZUENLdV1YMOAjPLY/o7isrVDQi5HBnJ0YIBgAAwEkpGhHS3Z+s0F1XTO33GuGQ36O7rph6SgKwJA3ewgsAAACctooKQlo0fbyqysZo9bZmrdrUqKa26DHHlRSGtWRWqRZOL1ZByDeoSyB6IgQDAADAEXkhv/JCft04Z6IunzZe1koHO5OKJVIK+b3KC/pkjDQmPzhoUyCOhxAMAAAARwUDPk0IDO2YyZpgAAAAZB1CMAAAALIOIRgAAABZhxAMAACArEMIBgAAQNYhBAMAACDrEIIBAACQdQjBAAAAyDqEYAAAAGQdQjAAAACyDiEYAAAAWYcQDAAAgKxDCAYAAEDWIQQDAAAg6xCCAQAAkHV8p7oBAAAAnF6inQm9dyghSToQTSqaSCns9yo/3BU9z8jxKxz0n8oWCcEAAABwxt5DcR3qTOmJrc16eHOjmtqixxxTUhjW4pmlWjS9WDlBr0blBE5Bp5Kx1p6SFz4ZlZWVtrq6+lS3AQAAgG7v7I/p2f/f3v3HRn3fdxx/vTHn+4EDBuKYxNhkWqsaDxm3NWxRuyqUrGrnBgirtICyNlu3aj+qddrWiSyia4tQ2LpN035oW9dWabtC27UksNKsC8xStqktmBYINd6WbR3UK44HBELuB2f7vT98pO7FZ3/v/P3eHbnnQ7Lw+fvx228++oh7cf58P3duTHuODCubn5p3fCK2SLsHerR5bbtWLUtE0pOZnXT3/tmu8UowAAAAFmTsWlaPPHFGgyPjgb8nm5/So0+e1dGRMe3b3qv2pdEE4VK4MQ4AAAAVu3g1q10HywvAMw2OjGvXwTMau5YNubO5EYIBAABQkSvpGzp2bqziAHzT4Mi4jg6P6YX0jZA6mx8hGAAAABVJ5ya158hwKLX2HBnWS7nJUGoFQQgGAABA2TK5vA6dGg10E1wQ2fyUDp8eVSaXD6XefAjBAAAAKNuldF4HTpwPteb+4+dfPl84aoRgAAAAlM1ds54DvBAXLmdUrdN7CcEAAAAo2/XsRDR1c9HULUYIBgAAQNky+WhuYstGVLcYIRgAAABlS8aaIqmbWBxN3WKEYAAAAJStJRHNGw9HVbcYIRgAAABlM5M6VyRDrdm5IimzUEuWRAgGAABA2VamYtqxoSvUmjs3dqmtJR5qzVIIwQAAAChbMh7T1r4OJWLhxMlEbJG2rO9QPKK9xsUIwQAAAKhIKt6k3QM9odTaPdCjJfHqBGCJEAwAAIAKLU81a/Padm3qbltQnU3dbbqvp12tqeaQOpsfIRgAAAAVW7UsoX3beysOwpu627Rve6/alyZC7mxuhGAAAAAsSPvShB57oFd7t60LvEc4EVukvdvW1SQAS1J1DmIDAADAq9qqZQkN9N6pe193hw6fHtX+4+d14XLmFeM6VyS1c2OXtvR1aElzU1W34LKE3wAAEIVJREFUQMxECAYAAEAoWlPNak1JD9+zRvevv0vu0vXchLL5SSViTWqJL5aZ1NYSr9opEKUQggEAABCqZDym1fFYrduYEyEYAAAAocrk8rqUzkuSXsxMKJOfVDLWpNuS09FzZSqmZI1DMiEYAAAAobiSvqF0blKHTo3qwInSe4J3bOjS1r4OpeJNWl6jPcHm7jX5wQvR39/vQ0NDtW4DAAAABRevZnXs3Jj2HBlWNj817/hEbJF2D/Ro89p2rVoWzekQZnbS3ftnu8YrwQAAAFiQsWtZPfLEGQ2OjAf+nmx+So8+eVZHR8Y4JxgAAAC3lotXs9p1sLwAPNPgyLh2HTyjsWvZkDubGyEYAAAAFbmSvqFj58YqDsA3DY6M6+jwmF5I3wips/kRggEAAFCRdG5Se44Mh1Jrz5FhvZSbDKVWEIRgAAAAlC2Ty+vQqdFAN8EFkc1P6fDpUWVy+VDqzYcQDAAAgLJdSud14MT5UGvuP37+5fOFo0YIBgAAQNncNes5wAtx4XJG1Tq9lxAMAACAsl3PTkRTNxdN3WKEYAAAAJQtk4/mJrZsRHWLEYIBAABQtmSsKZK6icXR1C0WeQg2s7eb2b+Z2XNmtmuW679pZsNmdsbMjpnZmqh7AgAAwMK0JKJ54+Go6haLNASbWZOkv5D0Dkk9knaYWU/RsG9L6nf3XklfkvQHUfYEAACAhTOTOlckQ63ZuSIps1BLlhT1K8EbJT3n7v/l7jckfV7S1pkD3H3Q3dOFh9+QtDringAAALBAK1Mx7djQFWrNnRu71NYSD7VmKVGH4A5JF2Y8/l7ha6W8V9JTs10ws/eZ2ZCZDY2PL+yt+QAAALAwyXhMW/s6lIiFEycTsUXasr5D8Yj2GhermxvjzOwhSf2SPjbbdXf/uLv3u3t/W1tbdZsDAADAK6TiTdo9ULzTtTK7B3q0JF6dACxFH4JHJXXOeLy68LUfYmb3SXpU0hZ3z0XcEwAAAEKwPNWszWvbtal7YS9Qbupu03097WpNNYfU2fyiDsEnJL3WzH7EzJolPSjp8MwBZvZ6SX+t6QD8fMT9AAAAIESrliW0b3tvxUF4U3eb9m3vVfvSRMidzS3SEOzuE5LeL+lrks5J+qK7f8fMPmpmWwrDPiapRdLfmdkpMztcohwAAADqUPvShB57oFd7t60LvEc4EVukvdvW1SQAS5J5td6gOUT9/f0+NDRU6zYAAAAwwwvpG3opN6nDp0e1//h5XbicecWYzhVJ7dzYpS19HVrS3BTpFggzO+nu/bNdq85pxAAAAHjVa001qzUlPXzPGt2//i65S9dzE8rmJ5WINaklvlhmUltLvGqnQJRCCAYAAECokvGYVsdjtW5jToRgAAAAhCqTy+tSOi9JejEzoUx+UslYk25LTkfPlamYkjUOyYRgAAAAhOJK+obSuUkdOjWqAydK7wnesaFLW/s6lIo3aXkVj0WbiRvjAAAAsGAXr2Z17NyY9hwZVjY/Ne/4RGyRdg/0aPPadq1aFs3pENwYBwAAgMiMXcvqkSfOaHBkPPD3ZPNTevTJszo6MvbqOycYAAAAr24Xr2a162B5AXimwZFx7Tp4RmPXsiF3NjdCMAAAACpyJX1Dx86NVRyAbxocGdfR4TG9kL4RUmfzIwQDAACgIuncpPYcGQ6l1p4jw3opNxlKrSAIwQAAAChbJpfXoVOjgW6CCyKbn9Lh06PK5PKh1JsPIRgAAABlu5TO68CJ86HW3H/8/MvnC0eNEAwAAICyuWvWc4AX4sLljKp1ei8hGAAAAGW7np2Ipm4umrrFCMEAAAAoWyYfzU1s2YjqFiMEAwAAoGzJWFMkdROLo6lbjBAMAACAsrUkonnj4ajqFiMEAwAAoGxmUueKZKg1O1ckZRZqyZIIwQAAACjbylRMOzZ0hVpz58YutbXEQ61ZCiEYAAAAZUvGY9ra16FELJw4mYgt0pb1HYpHtNe4GCEYAAAAFUnFm7R7oCeUWrsHerQkXp0ALBGCAQAAUKHlqWZtXtuuTd1tC6qzqbtN9/W0qzXVHFJn8yMEAwAAoGKrliW0b3tvxUF4U3eb9m3vVfvSRMidzY0QDAAAgAVpX5rQYw/0au+2dYH3CCdii7R327qaBGBJqs5BbAAAAHhVW7UsoYHeO3Xv6+7Q4dOj2n/8vC5czrxiXOeKpHZu7NKWvg4taW6q6haImQjBAAAACEVrqlmtKenhe9bo/vV3yV26nptQNj+pRKxJLfHFMpPaWuJVOwWiFEIwAAAAQpWMx7Q6Hqt1G3MiBAMAACBUmVxel9J5SdKLmQll8pNKxpp0W3I6eq5MxZSscUgmBAMAACAUV9I3lM5N6tCpUR04UXpP8I4NXdra16FUvEnLa7Qn2Ny9Jj94Ifr7+31oaKjWbQAAAKDg4tWsjp0b054jw8rmp+Ydn4gt0u6BHm1e265Vy6I5HcLMTrp7/2zXeCUYAAAACzJ2LatHnjijwZHxwN+TzU/p0SfP6ujIGOcEAwAA4NZy8WpWuw6WF4BnGhwZ166DZzR2LRtyZ3MjBAMAAKAiV9I3dOzcWMUB+KbBkXEdHR7TC+kbIXU2P0IwAAAAKpLOTWrPkeFQau05MqyXcpOh1AqCEAwAAICyZXJ5HTo1GugmuCCy+SkdPj2qTC4fSr35EIIBAABQtkvpvA6cOB9qzf3Hz798vnDUCMEAAAAom7tmPQd4IS5czqhap/cSggEAAFC269mJaOrmoqlbjBAMAACAsmXy0dzElo2objFCMAAAAMqWjDVFUjexOJq6xQjBAAAAKFtLIpo3Ho6qbjFCMAAAAMpmJnWuSIZas3NFUmahliyJEAwAAICyrUzFtGNDV6g1d27sUltLPNSapRCCAQAAULZkPKatfR1KxMKJk4nYIm1Z36F4RHuNixGCAQAAUJFUvEm7B3pCqbV7oEdL4tUJwBIhGAAAABVanmrW5rXt2tTdtqA6m7rbdF9Pu1pTzSF1Nj9CMAAAACq2allC+7b3VhyEN3W3ad/2XrUvTYTc2dwIwQAAAFiQ9qUJPfZAr/ZuWxd4j3Aitkh7t62rSQCWpOocxAYAAIBXtVXLEhrovVP3vu4OHT49qv3Hz+vC5cwrxnWuSGrnxi5t6evQkuamqm6BmIkQDAAAgFC0pprVmpIevmeN7l9/l9yl67kJZfOTSsSa1BJfLDOprSVetVMgSiEEAwAAIFTJeEyr47FatzEn9gQDAACg4RCCAQAA0HAIwQAAAGg4hGAAAAA0HEIwAAAAGg4hGAAAAA2HEAwAAICGQwgGAABAwzF3r3UPZTOzcUn/U4Mffbuk/6vBz73VME/BME/BME/BME/BMVfBME/BME/B1Gqe1rh722wXbskQXCtmNuTu/bXuo94xT8EwT8EwT8EwT8ExV8EwT8EwT8HU4zyxHQIAAAANhxAMAACAhkMILs/Ha93ALYJ5CoZ5CoZ5CoZ5Co65CoZ5CoZ5Cqbu5ok9wQAAAGg4vBIMAACAhkMIBgAAQMMhBBcxs0+Z2fNmdrbEdTOzPzWz58zsjJm9odo91oMA83SvmV01s1OFjw9Vu8d6YGadZjZoZsNm9h0z+8AsYxp+TQWcp4ZfU2aWMLPjZna6ME8fmWVM3My+UFhP3zSzu6vfaW0FnKeHzWx8xnr6xVr0Wg/MrMnMvm1mX5nlWsOvp5vmmSfWU4GZfdfMni3Mw9As1+vmOW9xrX5wHXtc0p9L+kyJ6++Q9NrCx49L+svCn43mcc09T5L0z+7+zuq0U7cmJP2Wu3/LzG6TdNLMnnb34RljWFPB5kliTeUkvdXdr5tZTNK/mNlT7v6NGWPeK+mKu7/GzB6U9PuSfrYWzdZQkHmSpC+4+/tr0F+9+YCkc5KWznKN9fQDc82TxHqaaZO7l3pjjLp5zuOV4CLu/oyky3MM2SrpMz7tG5JazezO6nRXPwLMEyS5+/fd/VuFz1/U9D+gHUXDGn5NBZynhldYI9cLD2OFj+K7m7dK+nTh8y9J2mxmVqUW60LAeYIkM1staUDSJ0oMafj1JAWaJwRXN895hODydUi6MOPx98STdSn3FH4d+ZSZ/Vitm6m1wq8RXy/pm0WXWFMzzDFPEmvq5q9kT0l6XtLT7l5yPbn7hKSrklZWt8vaCzBPkvQzhV/HfsnMOqvcYr34E0m/I2mqxHXW07T55kliPd3kkv7RzE6a2ftmuV43z3mEYETlW5p+v+71kv5M0pM17qemzKxF0pcl/Ya7X6t1P/VqnnliTUly90l375O0WtJGM1tX657qUYB5+ntJd7t7r6Sn9YNXOxuGmb1T0vPufrLWvdSzgPPU8Otphje7+xs0ve3h18zsLbVuqBRCcPlGJc38H97qwtcwg7tfu/nrSHf/qqSYmd1e47ZqorAn8cuSPufuB2cZwprS/PPEmvph7v6CpEFJby+69PJ6MrPFkpZJulTd7upHqXly90vunis8/ISkN1a7tzrwJklbzOy7kj4v6a1m9rdFY1hPAeaJ9fQD7j5a+PN5SU9I2lg0pG6e8wjB5Tss6d2Fuxt/QtJVd/9+rZuqN2a26ua+MTPbqOm11mj/cKowB5+UdM7d/7jEsIZfU0HmiTUlmVmbmbUWPk9K+ilJI0XDDkt6T+Hzd0n6J2+wd0UKMk9FexC3aHofekNx90fcfbW73y3pQU2vlYeKhjX8egoyT6ynaWa2pHBzs8xsiaS3SSo+RapunvM4HaKImR2QdK+k283se5J+T9M3Vcjd/0rSVyX9tKTnJKUl/XxtOq2tAPP0Lkm/YmYTkjKSHmy0fzgL3iTp5yQ9W9ifKEm/K6lLYk3NEGSeWFPSnZI+bWZNmv5PwBfd/Stm9lFJQ+5+WNP/mfismT2n6ZtXH6xduzUTZJ5+3cy2aPpkksuSHq5Zt3WG9RQM62lW7ZKeKLxesVjSfnf/BzP7Zan+nvN422QAAAA0HLZDAAAAoOEQggEAANBwCMEAAABoOIRgAAAANBxCMAAAABoOIRgA6oSZtZrZr9a6DwBoBIRgAKgfrZIIwQBQBYRgAKgf+yT9qJmdMrOPmdkHzeyEmZ0xs49IkpndbWYjZva4mf27mX3OzO4zs381s/8ovJuezOzDZvZZM/t64eu/VPj6nWb2TOFnnDWzn6zh3xcAaoYQDAD1Y5ek/3T3PklPS3qtpI2S+iS90czeUhj3Gkl/JKm78LFT0psl/bam32nvpl5Jb5V0j6QPmdldhbFfK/yM9ZJOCQAaEG+bDAD16W2Fj28XHrdoOhSfl/Tf7v6sJJnZdyQdc3c3s2cl3T2jxiF3z0jKmNmgpgP1CUmfMrOYpCfdnRAMoCHxSjAA1CeT9Ji79xU+XuPunyxcy80YNzXj8ZR++MUNL6rp7v6MpLdIGpX0uJm9O4LeAaDuEYIBoH68KOm2wudfk/QLZtYiSWbWYWZ3lFlvq5klzGylpHslnTCzNZLG3P1vJH1C0hvCaR0Abi1shwCAOuHulwo3uJ2V9JSk/ZK+bmaSdF3SQ5Imyyh5RtKgpNsl7XH3/zWz90j6oJnlCzV5JRhAQzL34t+WAQBudWb2YUnX3f0Pa90LANQjtkMAAACg4fBKMAAAABoOrwQDAACg4RCCAQAA0HAIwQAAAGg4hGAAAAA0HEIwAAAAGs7/Awpxqler9Ue/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3xV5Z3v8e+z75vcNJBECImo1RCUwGCgqG2FGmsrCF5oK06r0zrSc+z0zNEZqx2LbaWdemmtM3M6nUJ1OjpF23pFsNWCoK2K3EYil0SrVcLFJBogJOz7fs4fSTBCSLLDWiFxf96vFy/Ye6/9y8925ZVv1n7W7zHWWgEAAADZxHO8GwAAAAAGGyEYAAAAWYcQDAAAgKxDCAYAAEDWIQQDAAAg6/iOdwMDMWrUKDtu3Ljj3QYAAACGsI0bN75nrS3q6bVhGYLHjRunDRs2HO82AAAAMIQZY9452msshwAAAEDWIQQDAAAg6xCCAQAAkHUIwQAAAMg6hGAAAABkHUIwAAAAsg4hGAAAAFmHEAwAAICsMyw3yxgssXhSze1xSdKBSFKRREphv1d54Y7/2YpyAgoG+J8Q/cP5BADA0MFP3B4ciCTUGk3qyVd36aH1O9TQEjnimLLCsOZPLdfcyaXKD/mUF/Yfh04xHHA+AQAw9Bhr7fHuIWPV1dXWrW2TG/dHtXJ7oxat2KZoIt3n8SG/RwtnTVBNZYlKCkKu9IThi/MJAIDjxxiz0Vpb3eNrhOAPNLZGdctjtVpd15zxe2eOL9Idl1epJJ/ggg6cTwAAHF+9hWBujOvUuH/ggUWSVtc165bHatXYGnW4MwxHnE8AAAxthGB1rNlcub1xwIGly+q6Zq3c1qi2aMKhzjAccT4BADD0EYIltUaTWrRimyO1Fq3Ypv2RpCO1MDxxPgEAMPRlfQiOxTvu2u/PTUv9EU2ktWzzLsXiBJdsxPkEAMDw4GoINsbcb4xpMsZsOcrrxhjzr8aYPxtjao0xU9zspyfN7XE9tH6HozWXrttxaB4ssgvnEwAAw4PbV4J/Kemzvbz+OUmnd/5ZIOlnLvdzBGvV49zWY9HQEtEwHLoBB3A+AQAwPLgagq21L0hq6eWQuZIesB3WSjrBGDPazZ4O1xZ152PmthgfX2cjzicAAIaH470muFRSQ7fHOzufO4IxZoExZoMxZkNz87Hddd9dJJFyrFZ3UZfqYmjjfAIAYHg43iG436y1i6211dba6qKiIsfqhv1ex2p1F/K5UxdDG+cTAADDw/EOwbsklXV7PLbzuUGTG/INq7oY2jifAAAYHo53CF4m6erOKRHTJe231u4ZzAaMkcoKw47WLCsMyxhHS2KY4HwCAGB4cHtE2kOSXpZUYYzZaYy51hjzv4wx/6vzkKclvSXpz5KWSLrezX56UpQT0Pyp5Y7WvGpauYrzgo7WxPDA+QQAwPDg6mes1tr5fbxuJX3dzR76Egz4NHdyqf71uTcc2eAg5PdozqRSBVjDmZU4nwAAGB6O93KIISE/5NPCWRMcqbVw1gQVhFm/mc04nwAAGPoIwZLywn7VVJZo5vhjmzoxc3yRaiaUKDfkd6gzDEecTwAADH2E4E4lBSHdcXnVgIPLzPFFuuPyKpXkhxzuDMMR5xMAAEObscNwP9bq6mq7YcMGV2o37o9q5fZGLVqxrV9rOkN+jxbOmqCaCSUEFhyB8wkAgOPHGLPRWlvd42uE4CO1RRPaH0lq2eZdWrpuhxpaIsoNeHViTkB72+Nqi6dUVhjWVdPKNWdyqQpCPj6yxlH1dD4djvMJAADnEYIHKBJL6P2DCUnSgUhSiVRKfq9XeZ03Ko0c4Vc4SFhB/8TiSTW3x2Wt1BZLKppIKeT3KjfokzFScV6QKRAAADiotxDMbec9OBBJqDWa1J59EeWGfQr7vUpbq3jKyuuxSqWtIomU9uyLaswJYeWHfMoLE4bRu2DAp7EBvuUAABgK+Il8mMb9UTUdiOqEEQGte7tFD60/+sfX86eW65JJY/T2++0qzguppIA1nAAAAMMByyG6aW6Nqi2e0kt/fi/jG5nO/dgo5Qa8KuJmJgAAgCGht+UQjEjr1Lw/qnjK6vblW3XrE1v6vdtXNJHWrU9s0e3LtyqesmpujbrcKQAAAI4VIVgda4Bj6bS+/eRrWl3XPKAaq+ua9e0nX1MslVZbNOFwhwAAAHASIVhSNJnS8/XNAw7AXVbXNev5+mZFEymHOgMAAIAbsj4Ex+JJxZNpLVqxzZF6i1ZsUyyZViyedKQeAAAAnJf1Ibg9kdSTr+7u9xrgvkQTaS3bvFvtCUIwAADAUJX1IfhgPK2H1u9wtObSdTt0MO5MqAYAAIDzsj4EW6se5wAfi4aWiIbh5DkAAICskfUhuC3qzrKFthjLIQAAAIaqrA/BkX5OcvB5jEYEvPJ5TL+OZ0IEAADA0JX12yaH/D3/HuD1GNVUFuviiaNVekJYsWRa0URKIb9XQZ9Hu/ZFtKJ2j1bVNSmVPnLtQ9CX9b9fAAAADFlZH4LzQv4jnpszaYy+et44rXm9WT96tr7HNcNlhWFdMWWsrp9xmu5/8W0t27y7z7oAAAAYGrI+BBvTEWgbWiLKCXh117xJerc1oiuXrO11bFpDS0T3rnxD//H8m7rpogpddOZJ+uYjm9UeT6msMCzTv1UTAAAAOA6y/jP7/LBX86eWKyfg1ZJrqvXbjQ1atHx7v+cGRxNpLVq+Xb/d2KAl11QrJ+DVVdPKlR/O+t8vAAAAhqysT2qtkZQ+efoonTIqR4tfeEtr6ge2dXLX+370+Ukae2JYrZGk8kMBJ1vFMJdKpdVyMK5k2upANKlYIqWg36u8kE8+j1HhiIC83qz/vRQAgEGR9SHYWmn92y0K+rwDDsBd1tQ368LKEu3eF9FnzjzJoQ4x3MWTabW0x7W8drf+6+W31dASkc9jFPB5FE+mlUxblRWGdc054zS7aowKcwIKcGMlAACuyvoQ3B5Lakr5ibpyyVpH6i1asU0PXzdd7XHmBENqaY9r5fZGfe+prfrEx0bpHz9T0eu0kZ+sfF3fueRM1VSWqDCHTxIAAHBL1odgv9do5fb3+r0GuC/RRFovvvmeLuJKcNZ7vy2mmx+t1YiAT7+69uMZTRt5duu7uvOKKo3MDR6HzgEA+OjL+s9cfV6Pfr2hwdGaD69vkJ+1nVmtpT2u257cosv+aqwmlRXoyiVrde/KN466RXfXtJErl6zVpLICXfZXY3Xbk1u0tz0+yJ0DAJAdsj6peT3mqMGku0x2jGtoicjbz53l8NETT6a1pr5Rfz395KNOG8kNeFV2Yli5Ae+Hnu8+beSvp5+s1fVNiied+ZQCAAB8IOuXQ7RFe16729OOcbFkSkFf/3aMa4uxJjhbtbTHFPb7PjRtJBzw6sfzqjShtEA+Y9QaTSiaSCvk9yg/5FfSWm3ZuU83PfqaIvHUofd9sbpMLe0xnVQQPp7/SQAAfORkfQjuaS3wnElj9NVPjNMf33iv1zWcX6gu0/UzT9P9fzpyx7iYQ2uMMbykUmnV7tyv3fsjh4LsL64+W5WjC/Tkq7v0w9/XHfV8mj+1XCtvOF/b9+zX3z6wUWvqm/XJ00fJu8uoKDfI+DQAAByU9T9Vg91GUeUEvPrpVVNUffKJunLxWv342dd7XcP542df15WL16r65BP106umKKfbR9sBAktWer89rtEFId39TL1OLgzrxZtnqrE1pgvuWaO7nun5Fyqp43y665l6XXDPGjW2xvTizTN1cmFYdz9Tr9H5Ib3P2mAAAByV9UltRLAjuOYEvLrvb6bqsU07dduyrRntGHfbsq16bNNO3fc3Uw8F4a66yDLGalVdk0rygvr1187Vt5/coluf2JLR+XTrE1v07Se36NdfO1cleUE9V9ck6cglNwAAYOCyPgRLHR9F//gLk7Tkhbe0qq5pQDVW1TVpyQtv6cdfmKSyQtZvZqtIPK1HN+3U0uvO0bcer9XquoFtwLK6rlnferxWSxeco0c27VSE5TUAADgq60NwyO/RNy+qUEt7YsABuMuquibtbU/o5osqFPZzJThbfWf2BK2pbxpwAO6yuq5Zz9c36bbZExzqDAAAdMn6EJxKW/1V+Ym6fflWR+p9b/lWTS4/UckeJkbgo689llTl6AItWrHNkXq3L9+mCaMLdDCecqQeAADokPUhOC/k1dOv7XF0x7inX9ujvBBXgrNRUV5QT27e5ej5tGzzLo1kC2UAAByV9SG4NZrSg2vfcbTmg2vfUWuEOcHZKJZM66F1O/o8LpPNV5au26F4ijXBAAA4KevnBKfT6teOcZloaImI1RDZydqez6eeNl+JJlIK+fvefKWhJSLL+QQAgKOyPgS3u7SzW3ucK8HZqKcdCOdMGqOvnjdOa15v7nXzlSumjNX1M07T/S8eufkKOxACAOCsrA/BkYQ7NxxFuZEpK3U/n3ICXt01b5LebY3oyiVre10n3NAS0b0r39B/PP+mbrqoQhedeZK++chmtXeeR1GXzlMAALJV1q8J7r5jnJMCLtXF0Bbyd/z/nhPwask11frtxgYtWr49o80yFi3frt9ubNCSa6oPbb7i1nkKAEC2yvqfrLkhdy6Gu1UXQ1teyC9JumveJC1+4S2tqR/YrOA19c1a/MJbumvepA/VBQAAzsj6EGxkHN/hrawwLKO+7/rHR9M1556sd1sjAw7AXdbUN+vd1oiuPvdkhzoDAABdsj4Eh/xG86aMdbTm588ey45xWSon6NHV08fp7mfqHal39zP1umb6OOUGOZ8AAHBS1odgY4xmTxpzaC3nsQr5PZpVNUaGC8FZKZ60WlXX5OhmGc/VNymWZE4wAABOyvoQnExZBXwe3XRRhSP1brqoQkGvh80NslQybfXg2rcdrfnAy2+zDTcAAA7L+hCcSFn94o9vafqpIzWjouiYas2oKNL0U0dq8Z/eUjJFaMlWbmy+AgAAnJX1IViS/uuld9TQEtENNWcMOAjPqCjSDTVnqKElogdecnYbZgwfPW2W4UhdNssAAMBRWR+Cu3aM+4ffvKpIIqUFnzxVC2dX9nuNcMjv0cLZlVrwyVMVSaT0D795taMuO8ZlJbc2tYg5tMYYAAB0yPoQ3LXDV3s8pWt/uV57DyZUXjhCDy84RzfUnH7U8WllhWHdUHO6Hl5wjsoLR2jvwYSu/eV6dvjKcm5tkuL3Zv23KgAAjsr6HR2678TVHk/p60s36ZKq0br2E6folJE5uvXiSo3MDSqRSiuaSCvk98jv9ej9tljHHfvWatmru/VU7Z4P1Q0QWrJSTtCdb6kcRqQBAOCorA/BPe3s9lTtHj295V1dML5Ys6pGS5KMJK/5YAuMWDKt5bV79Fxdk1I93LnPjnHZq6ww7OjNbE5v5gIAAAjB8nTuGHd4aEmlrZ7d1qhntzVKknweo4DPo3gy3ee4qrLCsDzsGJeVQn6PrpgyVveufMOxmvOmsPkKAABOy/rP7AP93DEumbY6GE/1a17r588e69raUAxtyZTVBeOLHd185dPji5Vg7jQAAI7K+qTm8xjNqnJ4x7iJY+TzciU4G+WEvNqzP+Lo5iu790dYXgMAgMOyPgS3x9LKCXodDS05Aa/aY0yHyEaJZFpnlZ6gMQXhXmdO+zxGIwJe+TxH/2VpRkWRxhSENbH0BMWTnE8AADgp6y8vtUWTevmt93TuaaM0o6JIa+qbB1xrRkWRzj1tlFa8tkfnfmyUg11iuEikrN5vi6s9ltSCT50qSVpT3yyvx6imslgXTxyt0hPCiiXTiiZSCvm9Cvo82rUvohW1e7Sq80bLGRVFWvCpU7VnX0QtbTEV5gaP838ZAAAfLVkfgiOJlG5fvl0rb/yUbqg5Q5IGFIS7dozze40Wrdiux68/1+lWMQyk0tIJYZ/OO32Uvv/UNn3+7DJ96ePlGpUX0pr6Jv3o2foeJ0eUFYZ1xZSxun7mx/TegahiSatfvfyOFl4yQYlUqscJJAAAYOCyfjlE11rg+YvXamRO4Jh2jBuZE9D8xWslfXj+MLJHOm1lPB5dc/8r+s4lZ6owx6/d+6K6cvHLunflG0cdndbQEtG9K9/QlYtf1u59URXm+PWdS87U1fe/ImM8SltCMAAATsr6pJYX8kuSmtviuuzfX1RRXlAfK8rNaMe4jxXlqigvqMv+/UU1t8U/VBfZZUTQq2Wv7lYskVZa0i/++Bfdtmyrov3c9jiaSOu2ZVv1iz/+RWl1bJf81ObdGhFgRBoAAE7K+uUQxnywuUFzW1wX/uQFLZxVqc+ceZJOL87tdce4tLUamRPQxrdbdM1/rj9Us6wwLMNwiKwUTaT10Podevi66frW47VaXTewNear6pqUfrxWS6+briuXrNXsqjEOdwoAQHbL+ivB4YBH86eWf+i5RSu264J7ntdb77WrfOQIFeUFVRD268QRfhWE/SrKC6p85Ai91dyuC+55XotWbP/Q+6+aVs6Vuyz2ndkTtKa+ecABuMvqumatqW/WbbMnONQZAADoYuwwXGtYXV1tN2zY4Eitd/dHlExb1dzzfK8fWYd8HuWGfGqLJhVN9nKc36OVN54vv8eopIDtbrPNtt37VRAO6IJ71vR7CURvQn6PVt04Q63RhCpH5zvQIQAA2cMYs9FaW93Ta1l/JTiZtgp6PVo4q/erbdFkWu+1xXsNwJK0cNYEBb0eJbibPyuNyg3oyVd3ORKApY7lFcs279LIHNaYAwDgpKwPwQGvR8/VN+n8iiLNHH/0zQ36Y+b4Ip1fUaRVdY1sm5ylYkmrh9bvcLTm0nU7FEvySxUAAE7K+qQ2Mieg/ZGk4qmUvj934oCD8MzxRfr+3ImKp1I6EEtpZA6bG2Sro41BGyr1AAAAIVher0dzJo3WNfetk6zVbbPP1A8uPSujOcE/uPQsfWf2mZK1uua+dbqkarS8vWyHi4+utmjSnboxd+oCAJCtsj4ES1JhTlDfuOB0XfrvLyqZSmtiaYH+cMP5uvmzFb3OCb75sxX6ww3na2JpgRKptC799xf1jQvOUCFXgbNWJJFypW7UpboAAGSrrJ8TLEkBn0c1lSfp2a2NH5oTXH3yiZo5vlghv1ftseShOcE5QZ+iiZQORBKSpPVvt2jRiu2qqSzWhZUlrAfOYmG/O6PxQj5G7gEA4CTSWqfCnIDuvKJKNZXFh+YEv/KXlg9tV9s926at1St/aTk0J7imslh3XlGlE3MCx6F7DBW5IXd+r3SrLgAA2YqfrN2MzA3qrnmTtHJ7o257cot+9Ozr+tGzr0s6+pzgkN+ju+dVqaayhACMD+1A6BR2IAQAwHmE4MMU5gR06eRSfer0Ii2v3a3/evltNbREFE2mFW2LHzqurDCsa84dp9kTx6gwJ8ASCEiSinICmj+1XHc9U+9Yzaumlas4j3XmAAA4iRDcg4DPo5MKQvrKueM0d/IYJdNWbdGkYsm0gp1XhH0eo8KcIFMg8CHBgE9zJ5fqX597w7Ed4+ZMKlWANcEAADiKENwLr9ejorxQx4OC49sLho/coFcLZ03QrU9sOeZaC2dNUF6IAAwAgNP4DB9wWDyZ1qcrix3ZgfDTlcWKObQFMwAA+AAhGHBQKpVWeyKla+5/RT+8rOqYdiD84WVVuub+V9SeSCmVIggDAOAkQjDgoP3RhJ7Z8q5eb2zXF3/+kr4/96wB7UD4/bln6Ys/f0mvN7br2a3van804XLnAABkF9dDsDHms8aYemPMn40xt/TwerkxZrUx5n+MMbXGmIvd7glwSzSR0n+/8o4k6Z2WiM67c7WK84NadeOMfu1AuOrGGSrOD+q8O1frnc4xaw+ufYcd4wAAcJirN8YZY7ySfirpQkk7Ja03xiyz1m7rdti3Jf3GWvszY8wESU9LGudmX4BbUmkdMSP4ugc2Khzw6u4rJurBaz8urzFqiyUVTaQU8nuVG/QpZa227Nynmp88r0j8w4G3oSUiVkMAAOAst6dDTJP0Z2vtW5JkjHlY0lxJ3UOwlZTf+e8CSbtd7glwTVss2ePzkXhKf/fQq4cel+QGdPKoEXrnvYNq7DZ/+mjaj1IXAAAMjNshuFRSQ7fHOyV9/LBjvivpWWPMNyTlSKrpqZAxZoGkBZJUXl7ueKOAE462bCEc8OrH86o0obRAPmPUGk0omkgr5PcoP+RXsvNK8E2PvnbEleDe6gIAgIEZCnOC50v6pbX2x8aYcyQ9aIw5y1r7oQ+ArbWLJS2WpOrqansc+gT6FOxh58BfXH22KkcX6MlXd+mHv6/rcUvlssKw5k8t18obztf2Pfv1tw9s/NDr7EgIAICz3P7JuktSWbfHYzuf6+5aSb+RJGvty5JCkka53BfgitzQB79XnlwY1os3z1Rja0wX3LNGdz1T32MAljrW/d71TL0uuGeNGltjevHmmTq520103esCAIBj5/ZP1vWSTjfGnKKO8HulpKsOO2aHpAsk/dIYU6mOENzscl+AKzzGqKwwLI+kX3/tXH3r8Vqtruv/6RxNpHXrE1s0c3yRfv21c/XFn7+kdGddAADgHFdDsLU2aYz5O0nPSPJKut9au9UYc7ukDdbaZZL+QdISY8wN6rhJ7m+stSx3wLDk9xrNmzJW884em3EA7m51XbO+9Xitll43XY9u2qmAl+UQAAA4yfXPWK21T6tj7Fn3527r9u9tks5zuw9gMETiac2fVq4/bGsccADusrquWWvGN2v+1HId7OFmOQAAMHBcXgIctPdgXImU1aIV2/o+uB8WrdimeMpq78G+x6gBAID+IwQDDiorDOvJV3cpmnBmd4toIq1lm3dp7FF2mgMAAANDCAYcFE2k9dD6HY7WXLpuh2OhGgAAdCAEAw6y9shtk49VQ0tE3CoKAICzCMGAg9qi7mxvfLTtmAEAwMAQggEHRVza3phtkwEAcBYhGHBQ2O91pW7I505dAACyFSEYcJBb2xuzbTIAAM4iBAMOMqZjTJqTygrDYtdkAACcRQgGHFSUE9D8qeV9HufzGI0IeOXz9J1ur5pWruK8oBPtAQCATnzGCjgoGPBp7uRS/etzb3xotq/XY1RTWayLJ45W6QlhxZJpRRMphfxeBX0e7doX0YraPVpV16RU+oN5aCG/R3MmlSrAmmAAABxFCAYclh/yaeGsCbr1iS2SpDmTxuir543Tmteb9aNn63ucI1xWGNYVU8bq+hmn6f4X39ayzbslSQtnTVBBmG9TAACcxk9XwGF5Yb9qKkv04p+bNauqVO+2RnTlkrW97vrW0BLRvSvf0H88/6ZuuqhCF515klbU7lLNhBLlhvyD2D0AANnB2GG4FVV1dbXdsGHD8W4D6FVja1S3PFar1XXNGb935vgi3XF5lUryQy50BgBAdjDGbLTWVvf0GjfGAS54d//AA7Akra5r1i2P1aqxNepwZwAAQCIEA47bezCuVdsbBxyAu6yua9bKbY3adzDuUGcAAKALIRhw2MFYSotWbHOk1qIV29QeY8tkAACcRggGHBSJJfTkq7t6vQkuE9FEWss271IklnCkHgAA6EAIBhz0/sGEHlq/w9GaS9ft0PsHCcEAADiJEAw4yFr1OAf4WDS0RDQMh7gAADCkEYIBB7VFk+7UjblTFwCAbEUIBhwUSbhzE1vUpboAAGQrQjDgoLDf60rdkM+dugAAZCtCMOCg3JA7O5G7VRcAgGxFCAYcZIxUVhh2tGZZYVjGOFoSAICsRwgGHDRyhF/zp5Y7WvOqaeUqyg06WhMAgGxHCAYcFA76NXdyqUJ+Z761Qn6P5kwqVdCltcYAAGQrQjDgoEQipZDPaOGsCY7UWzhrgkI+owTTIQAAcBQhGHDQvmhc//3KDn26slgzxxcdU62Z44t0QWWxfrVuh/ZF4w51CAAAJEIw4KhY0uqRTTv1lf9cpzsurxpwEJ45vkh3XF6lv/nPdfrtxp2KJdkyDgAAJzF3CXBQ2tpD2yZfc/8r+s+vTNNz25u0aMU2RRPpPt8f8nu0cNYEXVBZrGvuf0V177YdqgsAAJzDlWDAQQe6bZtc926bzvnhc6ocnadVN87QzZ+tOOr4tLLCsG7+bIVW3ThDlaPzNP2Hzx0KwJLUFmVNMAAATuJKMOCgePLIq72X/+xl5YZ8uu/qszW7aowkqS2WVDSRUsjvVW6w49twz76DuuhfXlBbtyD9QV1CMAAATuJKMOCgo22bHE+mtfGdvToQSyhtrdJpK5/p+DttrQ7EElr39t4eQ7QkhRiRBgCAo7gSDDiop+2Nb5tdqQsnnKTXdu7TjvcPalRuULFkuvNKcFqRRErvtcV0ysgcrbrxfP1h27u6ffn2PusCAICB4ycr4KCA16OywrAaWiIqyg1o6XXTtWtvRO+3x/V6U5se3bTz0I1z3ZUVhnXFlLEqLRyhU0fl6g83fEpXLVmr5ra4ygrDCnj50AYAACfxkxVw0MicgL48fZyKcgN6/Prz1Hwgpjffa9OVi1/WvSvf6DEAS1JDS0T3rnxDVy5+WW++16bmAzE9fv15KsoN6Orp4zSSbZMBAHCUscNw9FJ1dbXdsGHD8W4DOEIqlda7B2KKxpNqi6X0k5Wva019c8Z1ZlQU6YaaM5Qb8irs86kkPygvV4MBAMiIMWajtba6p9f4qQo4aH80oUQypXjKDjgAS9Ka+mb9ZOXriietEqmU9kcTDncKAEB2IwQDDjoYTyns9+mlN98bcADusqa+WS+9+Z5Cfp8OxhmRBgCAkwjBgINyQl4diCV19zP1jtS7+5l6tcWSygkxIg0AACcRggEHxRNprajd3a8tkvsjmkhrxWu7FXeoHgAA6EAIBhwUT1o9smmnozV/u3Gn4snhdwMrAABDGSEYcJC19qhj0AaqoSUiK0IwAABOIgQDDjoQS7pSty3KjXEAADiJEAw4KJ50Z+1uPEkIBgDASYRgwEFhvztTHEIu1QUAIFsRggEH5QR9w6ouAADZihAMOCjgNSorDDtas6wwrICPb1UAAJzET1bAQaNyg/ry9HGO1rx6+jiNyg06WhMAgGxHCAYc5PV6NLtqtEJ+Z761Qn6PZlWNltdjHKkHAAA6EIIBh43KDep7c850pNbtc8/kKjAAAC4gBAMOC8hHv/AAACAASURBVPg8unDCSaqpLD6mOjWVxbqw8iTWAwMA4AJ+ugIuKMwJ6M4rqgYchGsqi3XnFVU6MSfgcGcAAEAiBAOuGZkb1F3zJumueRP7vUY45PfornlVunveJI1kGQQAAK5h+CjgosKcgC6dPFafOr1Yy2t3679eflsNLZEjjisrDOuac8ZpdtUYFeYEWAIBAIDLCMGAywI+j04qCOkr547T3MljlExbtUWTiiXTCvo8yg355PMYFeYEmQIBAMAgIQQDg8Tr9agoL9TxoOD49gIAQLbr8zNXY8xEY8xaY0yDMWaxMebEbq+tc7c9AAAAwHn9WXj4M0nflTRR0uuS/mSMOa3zNb9LfQEAAACu6c9yiDxr7e87//0jY8xGSb83xnxZknWvNQAAAMAd/VoTbIwpsNbulyRr7WpjzBWSHpVU6GZzAAAAgBv6sxziTkmV3Z+w1tZKukDSY240BQAAALipzxBsrV1qrV3bw/M7rLXXdT02xvyb080BAAAAbnByIv95DtYCAAAAXMO2VAAAAMg6hGAAAABkHSdDMPu9AgAAYFjodwg2xkzs45B/OcZeAAAAgEGRyZXgfzfGrDPGXG+MKTj8RWvtL51rCwAAAHBPv0OwtfaTkv5aUpmkjcaYpcaYC13rDAAAAHBJRmuCrbVvSPq2pJslnS/pX40xdcaYy91oDgAAAHBDJmuCq4wxP5G0XdKnJV1ira3s/PdPXOoPAAAAcJwvg2P/TdIvJP2TtTbS9aS1drcx5tuOdwYAAIBhKZFIqbk9prSVDkSTiiRSCvu9ygv55DFSUU5Qfr/3uPaYSQieJSlirU1JkjHGIylkrT1orX3Qle4AAAAwbByMJbU3ktCTr+7SQ+t2qKElIp/HKODzKJ5MK5m2KisMa/60cs2dXKoTw36NCGYSR52TyVddKalGUlvn4xGSnpV0rtNNAQAAYHhpao3qD9sb9c9Pb9cnPjZK//iZCpWeEFYsmVY0kVLI71XQ59GufRGtqN2jn67+s/7p4kpdWFmi4vzQoPebSQgOWWu7ArCstW3GmBEu9AQAAIBhpKk1qpsfq1Ve0K9fXftxrXm9WT96tl4NLZEjji0rDOuKKWN1/YzTdP+Lb2vl9kbdeXnVoAfhTKZDtBtjpnQ9MMacLenI/7LDGGM+a4ypN8b82Rhzy1GO+YIxZpsxZqsxZmkGPQEAAOA4amqN6rvLtmjelDJNKivQlUvW6t6Vb/QYgCWpoSWie1e+oSuXrNWksgLNm1Km7y7boqbW6KD2bay1/TvQmKmSHpa0Wx1bJJ8k6YvW2o29vMcr6XVJF0raKWm9pPnW2m3djjld0m8kfdpau9cYU2ytbeqtl+rqarthw4Z+9Q0AAAB3HIwltbx2t8YWjtDiF97SmvrmI445fE3w4WZUFGnBp07VzpaDmj1pjEYEnFsjbIzZaK2t7um1fn8Va+16Y8x4SRWdT9VbaxN9vG2apD9ba9/qbORhSXMlbet2zHWSfmqt3dv5dXoNwAAAABga9kYSygv5PxSAvR6jmspiXTxxtEpPCCueSiuRTMvv8yjg/WBN8Kq6JqXS9tD7vlhdpr0HE46G4N5k+lWmShrX+b4pxhhZax/o5fhSSQ3dHu+U9PHDjjlDkowxL0rySvqutfb3hxcyxiyQtECSysvLM2wbAAAATkokUnpt1z7t3h85FGTnTBqjaz9xita+9X6va4K/9PGT9fWZH9N9f/qLlm3erTX1zfrk6aPkMVJxTmBQxqf1OwQbYx6UdJqkVyWlOp+2knoLwf3t4XRJMySNlfSCMWaitXZf94OstYslLZY6lkMc49cEAADAMWhqi6m0IKz/+/Crygl4dde8SToQTeiLi19WNJE+6vsaWiL64e/qFPJ79N1LztRFZ56kbz6yWXc/U6/ffu2cjronuj97IZMrwdWSJtj+LiLusEtSWbfHYzuf626npFc6l1b8xRjzujpC8foMvg4AAAAGkd9ntKquSV5j9MC10/SzNW9q5fb+r2qNJtK65bHXVFNZrAeunaar71un5+qaNH9aWd9vdkAm0yG2qONmuEysl3S6MeYUY0xA0pWSlh12zBPquAosY8wodSyPeCvDrwMAAIBBdDCe1qObdur/XTUl4wDc3crtTfrZmjf1/66aokc27VSkl6vITsrkSvAoSduMMeskxbqetNbOOdobrLVJY8zfSXpGHet977fWbjXG3C5pg7V2WedrnzHGbFPHMoubrLXvD+C/BQAAAIPESPqrshPVdCA64ADcZeX2Jn1mQokmjz3Bmeb6IZMRaef39Ly19nlHO+oHRqQBAAAcX9t3tyo35NOFP3m+1zXA/RXye/SHG85XWyypytH5DnTY+4i0fi+H6Ay7b0vyd/57vaRNjnQIAACAYSXgM/rdlncdCcBSxxrh3299V35vJqt1B67fX8UYc52kRyT9vPOpUnWs5wUAAECWGRHw6cG1bzta84GX31ZOwP3xaFJmN8Z9XdJ5klolyVr7hqRiN5oCAADA0Jay9qhbIw9UQ0tEqR52lXNDJiE4Zq2Ndz0wxvjUMScYAAAAWaYtmnSnbtyduofLJAQ/b4z5J0lhY8yFkn4r6Sl32gIAAMBQFkmk+j5oAKIu1T1cJiH4FknNkl6T9DVJT1trb3WlKwAAAAxpQZ87N7AFBunGuEzmBH/DWvsvkpZ0PWGM+fvO5wAAAJBFcoOZxMjjX/dwmUTta3p47m8c6gMAAADDiDFGZYVhR2uWFYZljHG05tH0GYKNMfONMU9JOsUYs6zbn9WSWtxvEQAAAENNwGc0b8pYR2t+/uyxri2zOFx/rje/JGmPOrZN/nG35w9IqnWjKQAAAAxtHiPNqhqjnz3/pmM7xl08cYw8g3QluM8QbK19R9I7ks5xvx0AAAAMB/sjSQX9Xt10UYUWLd9+zPVuuqhCIZ9H+yJxjcoLOtBh7zLZMe5yY8wbxpj9xphWY8wBY0yrm80BAABgaEqmrLxGmn7qSM2oKDqmWjMqijT91JHyeDrqDoZMFl3cJWmOtbbAWptvrc2z1ua71RgAAACGrpygT3f8rl5+j9ENNWcMOAjPqCjSDTVnyO81+uHTdcoZgtMhGq21x36tGwAAAMOe1yP9T8Ne7d4flddICz55qhbOrlTI3794GfJ7tHB2pRZ88lR5jbR7X1Sv7twnn2eIrAnuZoMx5teSnpAU63rSWvuY410BAABgSBs5IqAvTx+nr/9qkx64dpqMkcoLR+jhBefo+fomPbJppxpaIke8r6wwrHlTxur8imI1H4jKGCmWSuvrv9qk/1tzhkbmBgal/0xCcL6kg5I+0+05K4kQDAAAkGWCAZ9mV43WPX+o19X3rdNd8yYpr3Mpwykjc3TrxZUamRtUIpVWNJFWyO+R3+vR+20xxZId0ySCXq9a2hP65iOblbJWs6pGK+DzDkr//Q7B1tqvuNkIAAAAhpe8oE/fm3Ombn70NX196SZdUjVa137yVPm7zfo1krzGqPsih66tkX+7sUFP1e6RJN15xUTlhwZnPbCUQQg2xpwh6WeSSqy1ZxljqtRxo9z3XesOAAAAQ1Ze2K8ZZxSrprJYK7c36anaPXp6y7u6YHyxZlWNltQZgj06FIJjybSW1+7Rc3VNSqU7JkHUVBZrRkWxckP+Qes9kxvjlkj6lqSEJFlrayVd6UZTAAAAGB5KCkL658smqqay+NBzXftdGElp2zH2LG0/CMLdrwrXVBbrny+bqJL80GC1LCmzNcEjrLXrDtvPOelwPwAAABhmivND+sGlE3X1OQeUH/ZrTX2TfvRsvRpaIvJ5jAI+j+LJtJJpq7LCsK6YMlbXz/yYWiMJVZyUp+JBDsBSZiH4PWPMaeq4GU7GmHnq2E4ZAAAAWc7v8+jd1qj+96826hMfG6V//EyFSk8IK5ZMK5ZMKejzKujzaNe+iFbU7tGSP76l71xyps4qLTgu/WYSgr8uabGk8caYXZL+IulLrnQFAACAYeP9tphuefQ1hQNe/epvP64/vvHeoSvBhysrDOsL1WW6fuZpuv9Pb+sPWxt1xxUTNTLX/a2SuzPWZrY1nTEmR5LHWnvAnZb6Vl1dbTds2HC8vjwAAAA6tbTHddsTW/S5iaP1fltM//y77Yom0n2+L+T36J8+1zFG7Xev7dGiS8/SiTnOzgg2xmy01lb39Fq/b4wzxvy9MaZrVvBPjDGbjDGf6et9AAAA+GiKJ9N6vr5JXzrnZD22aaduW7a1XwFYkqKJtG5btlWPbdqpL51zstbUNyme7N97nZDJdIivWmtb1bFZxkhJX5Z0hytdAQAAYMhraY8rJ+jTkhfe0qq6pgHVWFXXpCUvvKWcoE8t7XGHOzy6TEJw11iIiyU9YK3dqg9PuAAAAECWSKXSem3XPr3XFh9wAO6yqq5J77fF9dqufUqlBudqcCYheKMx5ll1hOBnjDF5kgbvmjUAAACGjJaDcZ08Mke3L9/qSL3vLd+qk0fmqOXg4FwNziQEXyvpFklTrbUHJQUksZUyAABAFjJGWl3X1O81wH2JJtJaU98kM0jrDPoMwcaY8Z3/nNz596nGmCmSTlZmI9YAAADwERGNp/Xfr7zjaM0H176jaHxwFhr0J8TeKGmBpB/38JqV9GlHOwIAAMCQZ6Ue5wAfi4aWiDIb3jtwfYZga+2Czr9nut8OAAAAhoP2WNKdunF36h4ukznBn++8GU7GmG8bYx4zxvyVe60BAABgqIokUq7UjbpU93CZ3Bi30Fp7wBjzCUk1ku6T9B/utAUAAIChLOjLJEb2X8DrTt3DZfJVumL5LEmLrbUr1DEhAgAAAFkmN+QfVnUPl0kI3mWM+bmkL0p62hgTzPD9AAAA+IjwGKmsMOxozbLCsDxDZURaN1+Q9Iyki6y1+yQVSrrJla4AAAAwpI0IeDVvylhHa37+7LHKCXgdrXk0/Q7BnRtkPCmp3RhTLskvqc6txgAAADB0FYT8mj1pjEJ+ZxYGhPwezaoao/zw4Ky2zWQ6xDckNUr6g6QVnX+Wu9QXAAAAhjCv16P8oE83XVThSL2bLqpQftAn7yCth8hkx7e/l1RhrX3frWYAAAAwvEw/daRmVBRpTX3zgGvMqCjS9FNHOthV3zK5ft0gab9bjQAAAGD4SKXSevzV3Qr6PLqh5gzNqCgaUJ0ZFUW6oeYMBX0ePbF5t1KpobNtcpe3JK0xxqyQFOt60lp7j+NdAQAAYEh7vz2uXfsO6qU339MZJfla8MlT9cnTR+nuZ+oVTfQdZEN+j266qEKVJ+Urkkhp8869ath7UO+3x1WcH3K9/0xC8I7OPwExHxgAACCrxVNpXTa5VFcuWSuvMbpr3iSVF47QwwvO0fP1TXpk0041tESOeF9ZYVjzpozV+RXFaj4Q1d6DCX3zkc1KWauHr5uu+FC7Emyt/Z4kGWNyOx+3udUUAAAAhrZ02mrN682Hrvp+fekmXVI1Wtd+4hSdMjJHt15cqZG5QSVSaUUTaYX8Hvm9Hr3fFlMsmZas1bJXd+up2j2Haj7/erMum1I6KP33OwQbY86S9KA65gPLGPOepKuttVtd6g0AAABDVDJt9eimnR967qnaPXp6y7u6YHyxZlWNliQZSV5j1DXzIZZMa3ntHj1X16RU2n7o/Y9s2qk5k8cMQveZLYdYLOlGa+1qSTLGzJC0RNK5LvQFAACAIcznMT0ud0ilrZ7d1qhntzUeOi7g8yieTCt5WOg9XENLRF4z9Eak5XQFYEmy1q4xxuS40BMAAACGuIPxVL+OS6atkv08VpIOJvp/7LHIaDqEMWahOpZESNKX1DExAgAAAFmmPxMgBiLmUt3DZTIn+KuSiiQ9JulRSaM6nwMAAECWcWq75MMFfe7UPVwm0yH2Svo/LvYCAACAYWJEMJMFBf2X41Ldw/U7ahtj/mCMOaHb4xONMc+40xYAAACGsnTaqqww7GjNssLwERMj3JLJ9eZR1tp9XQ86rwwXO98SAAAAhrpwwKMvVpc5WvPKqWUaEfA6WvNoMgnBaWNMedcDY8zJkgYnqgMAAGBISaSszj+jyLG1wSG/R586vWjQdozLpOtbJf3JGPOgMea/Jb0g6VvutAUAAIChrCgnoJ17I7rpogpH6t10UYV27ouoOC/oSL2+9DsEW2t/L2mKpF9LeljS2dbaQ2uCjTFnOt8eAAAAhqJgwKeqsSdoTEFYMyqKjqnWjIoijSkIq6r0BAV8g7McIqPb76y170lafpSXH1RHSAYAAEAWyA/51BpJaMGnTpUkralvzrjGjIoiLfjUqWp4/6AKwoMzGULKbDlEXwZnjzsAAAAMCXlhv2ZUFOvBl9/W588u08LZlf1eIxzye7RwdqU+f3aZHnz5bc0YX6zckN/VfrtzMm5zkxwAAECWKSkI6btzztItj9UqN+DTw9dN1/OvN+uRTTvV0BI54viywrDmTRmr888o0n1/+ova4u/pjsurVJIfGtS+B++aMwAAAD6SSvJDuuOyKq3c3qi/vu8VnXfaKP3jZyo05oSwEqm0oom0Qn6P/F6Pdu+LaHntHi3+41v6p89VqmZCyaAHYMnZEBx3sBYAAACGkZKCkOZOHqMZFcVatnmXfvRsvRpaIvJ5jAI+j+LJtJKdG2xcNa1c351zpgpCvkFdAtFdRiHYGFMlaVz391lrH+v8e7qjnQEAAGBYyQ35lRvy66vnjtMlk8bIWqktllQ0kVLI71Vu0CdjpOK84KBNgTiafodgY8z9kqokbZXUNcXYSnrMhb4AAAAwTAUDPo0NDO1Vt5l0N91aO8G1TgAAAIBBksmItJeNMYRgAAAADHuZXAl+QB1B+F1JMXXMBbbW2ipXOgMAAABckkkIvk/SlyW9pg/WBAMAAADDTiYhuNlau8y1TgAAAIBBkkkI/h9jzFJJT6ljOYSkD0akAQAAAMNFJiE4rI7w+5luzzEiDQAAAMNOv0OwtfYrbjYCAAAADJZMNssISbpW0pmSDm3wbK39qgt9AQAAAK7JZE7wg5JOknSRpOcljZV0wI2mAAAAADdlEoI/Zq1dKKndWvtfkmZJ+rg7bQEAAADuySQEJzr/3meMOUtSgaRi51sCAAAA3JXJdIjFxpgTJS2UtExSrqTbXOkKAAAAcFEm0yF+0fnP5yWd6k47AAAAGO5i8aSa2+OSpAORpCKJlMJ+r/LCHdGzKCegYCCTa7HOy2Q6RImkf5Y0xlr7OWPMBEnnWGvvc607AAAADBsHIgm1RpN68tVdemj9DjW0RI44pqwwrPlTyzV3cqnyQz7lhf3HoVPJWGv7d6Axv5P0n5JutdZOMsb4JP2PtXaimw32pLq62m7YsGGwvywAAACOonF/VCu3N2rRim2KJtJ9Hh/ye7Rw1gTVVJaopCDU5/EDYYzZaK2t7um1TG6MG2Wt/Y2ktCRZa5OSUv344p81xtQbY/5sjLmll+OuMMZYY0yPjQIAAGBoamyN6pbHa3XrE1v6FYAlKZpI69YntuiWx2vV2Bp1ucMjZRKC240xI9WxVbKMMdMl7e/tDcYYr6SfSvqcpAmS5ncuozj8uDxJfy/plQz6AQAAwHHWuD+qWx6r1eq65gG9f3Vds255bPCDcCYh+EZ1TIU41RjzoqQHJH2jj/dMk/Rna+1b1tq4pIclze3huEWS7pQ0+L8GAAAAYEAORBJaub1xwAG4y+q6Zq3c1qi2aKLvgx2SSQjeJulxSeslNUpaIun1Pt5TKqmh2+Odnc8dYoyZIqnMWrsig14AAABwnLVGk1q0YpsjtRat2Kb9kaQjtfojkxD8gKTx6pgQ8W+SzlDHVsoDZozxSLpH0j/049gFxpgNxpgNzc3H9tsGAAAAjk0s3jEFor9rgPsSTaS1bPMuxeKDE4QzCcFnWWv/1lq7uvPPdZLO7OM9uySVdXs8tvO5LnmSzpK0xhjztqTpkpb1dHOctXaxtbbaWltdVFSUQdsAAABwWnN7XA+t3+FozaXrdhyaL+y2TELwps6b4SRJxpiPS+prTtl6SacbY04xxgQkXamOdcWSJGvtfmvtKGvtOGvtOElrJc2x1jL/DAAAYAizVj3OAT4WDS0R9XN67zHrc7MMY8xr6pgI4Zf0kjFmR+fjkyXV9fZea23SGPN3kp6R5JV0v7V2qzHmdkkbrLXLens/AAAAhqa2qDvLFtpig7Mcoj87xs0+li9grX1a0tOHPXfbUY6dcSxfCwAAAIMjkuhzu4gBibpU93B9hmBr7TuD0QgAAACGj7Df60rdkM+duofLZE0wAAAAIEnKDfVnQcHQqXs4QjAAAAAGpKwwPKTr9YYQDAAAgIyF/R7Nn1ruaM2rppVrRIDlEAAAABiidrRENHdyqUJ+Z+JkyO/RnEml2tFy0JF6fSEEAwAAIGMhv0fb9+zXwlkTHKm3cNYEbduzX0Hf4MRTQjAAAAAylhfy628f2KgZFUWaOf7YdvOdOb5IMyqKdN0DG5UX8jvUYe8IwQAAABiQssKwrlqyVj+8rGrAQXjm+CL98LIqXbVkLTfGAQAAYGjLC3s1f2q53mmJ6Is/f0nfn3uWfnDpWf1eIxzye/SDS8/S9+eepS/+/CW90xLRVdPKlR9mRBoAAACGqLDXe+jGuHdaIjrvztUqzg9q1Y0zdPNnK456VbesMKybP1uhVTfOUHF+UOfduVrvtEQO3Rjn1iYchxucqA0AAICPlGDAp1AsqYWzJujWJ7ZIkq57YKPCAa/uvmKiHrz24/Iao7ZYUtFESiG/V7lBn1LWasvOfar5yfOKxD/YInnhrAkK+owCg7RjHCEYAAAAAxLwefXpymLNrCvS6rpmSVIkntLfPfTqoWNyA16dmBPQ3va42rqF3u5mji/SpyuLFRqkq8ASyyEAAAAwQHlhv/wyvd4Y1xZPqWFvpNcA/MPLquQ3RrmDNBlCIgQDAADgGIwqCMlnpB9cOnFAN8b94NKJ8hlpVH7I5U4/jOUQAAAAOCaj8kNq3B/V9FMLterGGVq2eZeWrtuhhpbIEceWFYZ11bRyzZlUqmgiKa/HDHoAlgjBAAAAcEBJQUg5Ua/2R5L6dEWxLp44Wp4eboxLW6toPCUZqSQ/NKhLILojBAMAAMARuSG/ckN+xeJ+NbfHZW3H84Fu97t5PUanFOUM2hSIoyEEAwAAwFHBgE9jA0M7ZnJjHAAAALIOIRgAAABZZ2hfpwYAAMCwE4sn1dwelyQdiCQVSaQU9nuVF+6InkU5AQWP83IJQjAAAAAccSCSUGs0qSdf3aWH1h99RNr8qeWaO7lU+SGf8sLHZzqEsV237Q0j1dXVdsOGDce7DQAAAHRq3B/Vyu2NWrRim6KJdJ/Hh/weLZw1QTWVJSopcGdOsDFmo7W2uqfXuBIMAACAY9LYGtUtj9dqdV1zv98TTaR16xNbtLKuUXdcXqWSQd4wgxvjAAAAMGCN+6O65bHMAnB3q+uadctjtWpsjTrcWe8IwQAAABiQA5GEVm5vHHAA7rK6rlkrtzWqLZpwqLO+EYIBAAAwIK3RpBat2OZIrUUrtml/JOlIrf4gBAMAACBjsXjHFIj+3ATXH9FEWss271IsPjhBmBAMAACAjDW3x/XQ+h2O1ly6bseh+cJuIwQDAAAgY9aqxznAx6KhJaLBmt5LCAYAAEDG2qLuLFtoi7EcAgAAAENUJJFypW7UpbqHIwQDAAAgY2G/15W6IZ87dQ9HCAYAAEDGckPubDzsVt3DEYIBAACQMWOkssKwozXLCsMyxtGSR0UIBgAAQMaKcgKaP7Xc0ZpXTStXcV7Q0ZpHQwgGAABAxoIBn+ZOLlXI70ycDPk9mjOpVAHWBAMAAGAoyw/5tHDWBEdqLZw1QQXhwVkPLBGCAQAAMEB5Yb9qKks0c3zRMdWZOb5INRNKlBvyO9RZ3wjBAAAAGLCSgpDuuLxqwEF45vgi3XF5lUryQw531jtCMAAAAI5JSX5Id1xWpR9cela/1wiH/B794NKzjksAlqTBW3gBAACAj6ySgpDmTh6jGRXFWrZ5l5au26GGlsgRx5UVhnXVtHLNmVyqgpBvUJdAdEcIBgAAgCNyQ37lhvz66rnjdMmkMbJWaosl5fOmlEx5lRv0yRipOC84aFMgjoblEAAAAHBU2lpJHRtqyEoHIh1/d22EkUqlj1tvXbgSDAAAAEfsPRjXwVhKT766Sw+tP/pyiPlTyzV3cun/b+/ug+K6zjuO/x5g2buAQMbGyMJgdRKPJaogkmC1yttYkZxJii1kxTO1NGnsJG2mL5mm09aNXA9pEkZjpW47nb5M2zTJ2EkjJaktW6oVN7VUZtJ2nEgokbACpHVaVwqO10TYyAh2WeD0D5aGrEHcXe7dXWm/nxlGLPfw8OjMGe1Pl3PvVVW0XNdUVRagU8lcOqlfSTo6OlxfX1+h2wAAAEDaS2MJHR+Mq+fogBKp5c/0epEydXe2atuGRq2pC+fCODM75ZzrWOwYZ4IBAACwIvGLCT3wRL96h0Z8f08iNasHnzyrY0NxbpEGAACAK8tLYwntPZRdAF6od2hEew/1K34xEXBnl0cIBgAAQE5emZjS8cF4zgF4Xu/QiI4NxPXqxFRAnS2PEAwAAICcTCRn1HN0IJBaPUcHdCk5E0gtPwjBAAAAyNpkMqXDp4d9XQTnRyI1qyNnhjWZTAVSbzmEYAAAAGTtwkRKB0+eC7TmgRPndGGCEAwAAIAi5ZwWvQ/wSpwfnVS+7t5LCAYAAEDWxhPT4dRNhlM3EyEYAAAAWZtMhXMRWyKkupkIwQAAAMhaLFIeSl2vIpy6mQjBAAAAyFqNF86Dh8Oqm4kQDAAAgKyZSc31sUBrNtfHZBZoySURggEAAJC1a6si2n1rS6A192xuUUNNNNCaSyEEAwAAIGuxaERd7U3yIsHESS9Sph2bmhQNaa9xJkIwAAAAclIVLVd3Z2sgtbo7W1UdzU8AlgjBAAAAyNE1Ht1rlAAAE25JREFUVZXatqFRW9c3rKjO1vUN2t7aqNVVlQF1tjxCMAAAAHK2ps7T/l1tOQfhresbtH9XmxprvYA7uzxCMAAAAFaksdbTQ3e1ad/Ojb73CHuRMu3bubEgAViS8nMjNgAAAFzV1tR56my7Qbfdcr2OnBnWgRPndH508nXjmutj2rO5RTvam1RdWZ7XLRALEYIBAAAQiNVVlVpdJd235SbduWmtnJPGk9NKpGbkRcpVE62Q2dzt1WLRSEF7JQQDAAAgEK9NpnQxMa3Dp4d18OTcmeDm1Z5uWVOjH7w0rvOvJtRcH9PuW1vU1d6kWq9Cq2KFCcPmnCvID16Jjo4O19fXV+g2AAAAkBYfS+jYYFw9RweUSM0uO96LlKm7s1XbNzSqsS6cPcFmdso517HYMc4EAwAAYEXiFxPa+0S/eodGfH9PIjWrB588q2NDce4OAQAAgCtLfCyhvYeyC8AL9Q6NaO+hfsUvJgLu7PIIwQAAAMjJa5MpHRuM5xyA5/UOjejYQFzjiVRAnS2PEAwAAICcXExMq+foQCC1eo4OaGxyOpBafhCCAQAAkLXk1NxdIPxcBOdHIjWrI2eGlZzKTxAmBAMAACBrI5emdPDkuUBrHjhxTiOXpgKtuRRCMAAAALLmnBZ9ItxKnB+dVL7u3ksIBgAAQNbGE+FsWxhPsh0CAAAARWoyNRNK3URIdTMRggEAAJC1WKQ8lLpeRTh1M4Uegs3svWb2AzN73sz2LnL8d81swMz6zey4md0Udk8AAABYmRovnAcPh1U3U6gh2MzKJf21pPdJapW028xaM4Z9T1KHc65N0mOS/jjMngAAALByZlJzfSzQms31MZkFWnJJYZ8J3izpeefcfzvnpiR9VVLXwgHOuV7n3ET65bcl3RhyTwAAAFihhupK7b61JdCaeza36PpV0UBrLiXsENwk6fyC1z9Kf20pH5H09GIHzOyjZtZnZn0jIyt7NB8AAABWJlpZoa72JnmRYOKkFynTjk1Nqrxa9gT7ZWYfkNQh6eHFjjvnPuec63DOdTQ0NOS3OQAAALxOrVeh7s7Mna656e5sVV0sP/uBpfBD8LCk5gWvb0x/7WeY2XZJD0ra4ZxLhtwTAAAAArAqFtH2DY3aun5lJyi3rm/Q9tZG1XiRgDpbXtgh+KSkm83s58ysUtI9ko4sHGBmb5b0d5oLwC+H3A8AAAAC1Fjnaf+utpyD8Nb1Ddq/q02NtV7AnV1eqCHYOTct6WOSvilpUNLXnXPfN7PPmNmO9LCHJdVI+kczO21mR5YoBwAAgCLUWOtp/11t2rdzo+89wl6kTPt2bixIAJYkc/l6QHOAOjo6XF9fX6HbAAAAwALjiZTGJqd15MywDpw4p/Ojk68b01wf057NLdrR3qQ6ryLULRBmdso517HYsfztPgYAAMBVrcaLqMaL6MNvW6c7N62Vc9J4clpT0zOqrChXTbRCZtL1q6J5uwvEUorm7hAAAAC4OszvNDCT5KQZN/fn/IMwZmdmC9bbPM4EAwAAIBBjE1MaT87o8OlhHTy59HaI3be2qKu9STXRctVVVRagU/YEAwAAIAAvjSV0fDCunqMDSqSWP9PrRcrU3dmqbRsataYunAvj2BMMAACA0MQvJvTAE/3qHfL/VN9EalYPPnlWx4biV98t0gAAAHB1e2ksob2HsgvAC/UOjWjvoX7FLyYC7uzyCMEAAADIydjElI4PxnMOwPN6h0Z0bCCui5NTAXW2PEIwAAAAcjKenFHP0YFAavUcHdBriZlAavlBCAYAAEDWEsmUDp8e9nURnK96qVkdOTOsRDIVSL3lEIIBAACQtZ9MpHTw5LlAax44cU4/mSAEAwAAoEg5p0XvA7wS50cnla+79xKCAQAAkLXxxHQ4dZPh1M1ECAYAAEDWJlPhXMSWCKluJkIwAAAAshaLlIdS16sIp24mQjAAAACyVuOF8+DhsOpmIgQDAAAga2ZSc30s0JrN9TGZBVpySYRgAAAAZO26qoh239oSaM09m1vUUBMNtOZSCMEAAADImheNqKu9SV4kmDjpRcq0Y1OToiHtNc5ECAYAAEBOaqLl6u5sDaRWd2erVnn5CcASIRgAAAA5qquq1LYNjdq6vmFFdbaub9D21kbVxioD6mx5hGAAAADkbE2dp/272nIOwlvXN2j/rjY11noBd3Z5hGAAAACsSGOtp4fuatO+nRt97xH2ImXat3NjQQKwJOXnRmwAAAC4qq2p83Tnpht02y3X68iZYR04cU7nRydfN665PqY9m1u0o71Jq6Lled0CsRAhGAAAAIGojVWqNiZ9aMtNunPTWjknjSenlUjNyIuUqyZaITOpoSaat7tALIXtEAAAAAiUS/9pNvfC0l+cfxDG7OxsYRpbgDPBAAAACMQrE1OaSM7o8OlhHTy59HaI3be2qKu9SVXRcl1TVZjtEOacW35Ukeno6HB9fX2FbgMAAABpL40ldHwwrp6jA0qklj/T60XK1N3Zqm0bGrWmLpwL48zslHOuY7FjnAkGAADAisQvJvTAE/3qHRrx/T2J1KwefPKsjg3FuUUaAAAAriwvjSW091B2AXih3qER7T3Ur/jFRMCdXR4hGAAAADl5ZWJKxwfjOQfgeb1DIzo2ENerE1MBdbY8QjAAAAByMpGcUc/RgUBq9Rwd0KXkTCC1/CAEAwAAIGuTyZQOnx72dRGcH4nUrI6cGdZkMhVIveUQggEAAJC1CxMpHTx5LtCaB06c04UJQjAAAACKlHNa9D7AK3F+dFL5unsvIRgAAABZG09Mh1M3GU7dTIRgAAAAZG0yFc5FbImQ6mYiBAMAACBrsUh5KHW9inDqZiIEAwAAIGs1XjgPHg6rbiZCMAAAALJmJjXXxwKt2Vwfk1mgJZdECAYAAEDWrq2KaPetLYHW3LO5RQ010UBrLoUQDAAAgKzFohF1tTfJiwQTJ71ImXZsalI0pL3GmQjBAAAAyElVtFzdna2B1OrubFV1ND8BWCIEAwAAIEfXVFVq24ZGbV3fsKI6W9c3aHtro1ZXVQbU2fIIwQAAAMjZmjpP+3e15RyEt65v0P5dbWqs9QLu7PIIwQAAAFiRxlpPD93Vpn07N/reI+xFyrRv58aCBGBJys+N2AAAAHBVW1PnqbPtBt12y/U6cmZYB06c0/nRydeNa66Pac/mFu1ob1J1ZXlet0AsRAgGAABAIFZXVWp1lXTflpt056a1ck4aT04rkZqRFylXTbRCZlJDTTRvd4FYCiEYAAAAgZiantXopSk91f+iHn32BZ0fndTa2qjecH21fvjyJb14Manm+pju3bJOd7StVX11pSorCrM715xzBfnBK9HR0eH6+voK3QYAAADSRi9N6fhgXN2HzyqRml12vBcpU0/XRm3b0Kj66nC2RJjZKedcx2LHuDAOAAAAK3JhPKlPPNav+x/r9xWAJSmRmtX9j/XrE4/168J4MuQOX48QDAAAgJyNXprS3sef0zOD8Zy+/5nBuPY+/pxeuTQVcGeXRwgGAABATqamZ3V8MJ5zAJ73zGBcxwbjmpr2dxY5CIRgAAAA5GT00pS6D58NpFb34bMazePZYEIwAAAAsjYzM6un+l/0vQd4OYnUXL2ZmfycDSYEAwAAIGujE1N69NkXAq356LMvaHQiP2eDCcEAAADI2vSsW/SJcCtxfnRS07P5uX0vIRgAAABZey0xHUrd8ZDqZiIEAwAAIGvJ1Ew4dfN0hwhCMAAAALIWjZSHUjdfj1EmBAMAACBrq7yKK6puJkIwAAAAslZRZmqujwVas7k+pooyC7TmUgjBAAAAyFp9VaXu3bIu0Jr3blmn+upooDWXQggGAABA1srLy3RH21p5kWDipBeZq1fOmWAAAAAUs/rqSvV0bQykVk/XRtVXVwZSyw9CMAAAAHJSWVGmbRsadfuGxhXVuX1Do7ZvaMzbnSEkQjAAAABWoL66Uvvf/6acg/DtGxq1//1v0jV5PAssEYIBAACwQtfWRPXZu9v08N1tvvcIe5EyPXx3m/747jZdW5Ofi+EWys+N2AAAAHBVq6+uVFd7k955c4Oe6n9Rjz77gs6PTr5uXHN9TPe9bZ0637RW9dWVed0CsRAhGAAAAIGorCjTmjpPH3rbOnW1r9X0rNN4YlrJ6VlFK8pU41WoosxUXx3N210glkIIBgAAQKDKy8vUsMqbe1FX2F6Wwp5gAAAAlBxCMAAAAEoOIRgAAAAlhxAMAACAkkMIBgAAQMkhBAMAAKDkEIIBAABQcgjBAAAAKDnmnCt0D1kzsxFJ/1uAH32dpJ8U4OdeaZgnf5gnf5gnf5gn/5grf5gnf5gnfwo1Tzc55xoWO3BFhuBCMbM+51xHofsodsyTP8yTP8yTP8yTf8yVP8yTP8yTP8U4T2yHAAAAQMkhBAMAAKDkEIKz87lCN3CFYJ78YZ78YZ78YZ78Y678YZ78YZ78Kbp5Yk8wAAAASg5nggEAAFByCMEAAAAoOYTgDGb2RTN72czOLnHczOwvzOx5M+s3s7fku8di4GOebjOzMTM7nf74ZL57LAZm1mxmvWY2YGbfN7OPLzKm5NeUz3kq+TVlZp6ZnTCzM+l5+vQiY6Jm9rX0evqOma3Lf6eF5XOe7jOzkQXr6VcL0WsxMLNyM/uemT21yLGSX0/zlpkn1lOamb1gZs+l56FvkeNF855XUagfXMQekfRXkr60xPH3Sbo5/fELkv4m/WepeUSXnydJ+jfn3B35aadoTUv6Pefcd81slaRTZvaMc25gwRjWlL95klhTSUnvds6Nm1lE0r+b2dPOuW8vGPMRSa84595oZvdI+qykXy5EswXkZ54k6WvOuY8VoL9i83FJg5JqFznGevqpy82TxHpaaKtzbqkHYxTNex5ngjM4574lafQyQ7okfcnN+bak1WZ2Q366Kx4+5gmSnHM/ds59N/35a5r7B7QpY1jJrymf81Ty0mtkPP0ykv7IvLq5S9Kj6c8fk7TNzCxPLRYFn/MESWZ2o6ROSZ9fYkjJryfJ1zzBv6J5zyMEZ69J0vkFr38k3qyXsiX968inzeznC91MoaV/jfhmSd/JOMSaWuAy8ySxpuZ/JXta0suSnnHOLbmenHPTksYkXZvfLgvPxzxJ0vvTv459zMya89xisfhzSX8gaXaJ46ynOcvNk8R6muck/YuZnTKzjy5yvGje8wjBCMt3Nfe87k2S/lLSkwXup6DMrEbS45J+xzl3sdD9FKtl5ok1Jck5N+Oca5d0o6TNZrax0D0VIx/z9E+S1jnn2iQ9o5+e7SwZZnaHpJedc6cK3Usx8zlPJb+eFniHc+4tmtv28Ftm9q5CN7QUQnD2hiUt/B/ejemvYQHn3MX5X0c6574hKWJm1xW4rYJI70l8XNJXnHOHFhnCmtLy88Sa+lnOuVcl9Up6b8ah/19PZlYhqU7Shfx2VzyWmifn3AXnXDL98vOS3prv3orA2yXtMLMXJH1V0rvN7B8yxrCefMwT6+mnnHPD6T9flvSEpM0ZQ4rmPY8QnL0jkj6YvrrxFyWNOed+XOimio2ZrZnfN2ZmmzW31krtH06l5+ALkgadc3+2xLCSX1N+5ok1JZlZg5mtTn8ek3S7pKGMYUck3Zv+/G5J/+pK7KlIfuYpYw/iDs3tQy8pzrkHnHM3OufWSbpHc2vlAxnDSn49+Zkn1tMcM6tOX9wsM6uW9B5JmXeRKpr3PO4OkcHMDkq6TdJ1ZvYjSX+kuYsq5Jz7W0nfkPRLkp6XNCHpQ4XptLB8zNPdkn7DzKYlTUq6p9T+4Ux7u6RfkfRcen+iJP2hpBaJNbWAn3liTUk3SHrUzMo195+ArzvnnjKzz0jqc84d0dx/Jr5sZs9r7uLVewrXbsH4maffNrMdmrszyaik+wrWbZFhPfnDelpUo6Qn0ucrKiQdcM79s5n9ulR873k8NhkAAAAlh+0QAAAAKDmEYAAAAJQcQjAAAABKDiEYAAAAJYcQDAAAgJJDCAaAImFmq83sNwvdBwCUAkIwABSP1ZIIwQCQB4RgACge+yW9wcxOm9nDZna/mZ00s34z+7Qkmdk6Mxsys0fM7D/N7Ctmtt3M/sPM/iv9ND2Z2afM7Mtm9mz667+W/voNZvat9M84a2bvLODfFwAKhhAMAMVjr6QfOufaJT0j6WZJmyW1S3qrmb0rPe6Nkv5U0vr0xx5J75D0+5p70t68NknvlrRF0ifNbG167DfTP2OTpNMCgBLEY5MBoDi9J/3xvfTrGs2F4nOS/sc595wkmdn3JR13zjkze07SugU1DjvnJiVNmlmv5gL1SUlfNLOIpCedc4RgACWJM8EAUJxM0kPOufb0xxudc19IH0suGDe74PWsfvbkhsuo6Zxz35L0LknDkh4xsw+G0DsAFD1CMAAUj9ckrUp//k1JHzazGkkysyYzuz7Lel1m5pnZtZJuk3TSzG6SFHfO/b2kz0t6SzCtA8CVhe0QAFAknHMX0he4nZX0tKQDkp41M0kal/QBSTNZlOyX1CvpOkk9zrkXzexeSfebWSpdkzPBAEqSOZf52zIAwJXOzD4ladw59yeF7gUAihHbIQAAAFByOBMMAACAksOZYAAAAJQcQjAAAABKDiEYAAAAJYcQDAAAgJJDCAYAAEDJ+T8+hheSkweV1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hV5Z33/8+9zzsnILIDBIJ4TEANDEbqYaoworRFoVXbUaanaUdmfnbmN61TO7QW60jbx0NP07n6tKNTn2mdAZ+ORYlgBwHBnlQIDARIgloPQIAQCack+7zv548kNEJCssNaIWG/X9fFVffea3/zDSXX/mSte31vY60VAAAAkEs8Z7sBAAAAYLARggEAAJBzCMEAAADIOYRgAAAA5BxCMAAAAHKO72w3MBCjR4+2kyZNOtttAAAAYAjbvHnze9baSE+vDcsQPGnSJNXU1JztNgAAADCEGWPe7e01lkMAAAAg5xCCAQAAkHMIwQAAAMg5hGAAAADkHEIwAAAAcg4hGAAAADmHEAwAAICcQwgGAABAzhmWm2UMlmg8qUPtSUnS8WhK0WRaYb9XheGOv7bz8vwKB/1ns0UAAAAMACG4B4fbE2qPp7Via6OWbdqtPS3RU44pKw7rrqsmav608coLejUqL3AWOgUAAMBAGGvt2e4ha1VVVdatbZMPHI1pXX2TlqyqUyyZ6fP4kN+jxXOn6MbJYzR2RMiVngAAAJA9Y8xma21VT69xJribpmMxffXZWq1vaO73e2LJjO5/bofWNjTp4dsqNaaIIAwAADDUcWNcpwNHY1q0PLsA3N36hmYtWl6rpmMxhzsDAACA0wjB6lgDvK6+acABuMv6hmatrWvSkfaEQ50BAADADYRgSe3xtJasqnOk1pJVdWqLpx2pBQAAAHfkfAiOxpNasbWxXzfB9UcsmVH1tkZF40lH6gEAAMB5roZgY8yTxpiDxpgdvbxujDE/NMa8aYypNcZMd7OfnhxqT2rZpt2O1ly6cfeJ+cIAAAAYetw+E/zvkj50mtc/LOmSzj8LJf3Y5X5OYa16nAN8Jva0RDUMJ88BAADkDFdDsLX215JaTnPIfEk/tx1elTTSGDPOzZ5O1hpLuVM37k5dAAAAnLmzvSZ4vKQ93R7v7XzuFMaYhcaYGmNMTXPzmU1x6C6adOcmtphLdQEAAHDmznYI7jdr7ePW2iprbVUkEnGsbtjvdaxWdyGfO3UBAABw5s52CG6UVNbt8YTO5wZNQcidTfPcqgsAAIAzd7ZDcLWkT3dOibha0lFr7f7BbMAYqaw47GjNsuKwjHG0JAAAABzk9oi0ZZJekVRujNlrjPm8MeZvjDF/03nIC5LekvSmpCck3eNmPz05L8+vu66a6GjNBTMmKlIQdLQmAAAAnOPqNXtr7V19vG4lfcHNHvoSDvo1f9p4/fClNxzZMCPk92je1PEKurTWGAAAAGfubC+HGBLygl4tnjvFkVqL505RfpAADAAAMJQRgiWNygvoxsljNKvizKZOzKqIaPaUMRqZF3CoMwAAALiBENxp7IiQHr6tcsBBeFZFRA/fVqkxRSGHOwMAAIDTCMHdjCkK6X99rFLf+ujlCvn791cT8nv0rY9eTgAGAAAYRhhme5KxI0KaWzlOM8tLVL2tUUs37taelugpx5UVh7VgxkTNmzZe+QEvSyAAAACGEUJwD0bmBTQyT/rsNefr1qmlslZqjacUS6YV8ntVEPTJGClSEGQKBAAAwDBECD6NcNCvCUH/2W4DAAAADmNNMAAAAHIOZ4JPI55IqbktIUk6Hk0pmkwr7PeqMNzx1xbJDygY4K8QAABguCHB9eB4NKljsZRWbG3Usk293xh311UTNX/aeBWFfCoMs2wCAABguDAdOxcPL1VVVbampsaV2k1HY1pb36Qlq+r6tY1yyO/R4rlTNHvyGI0ZwYg0AACAocIYs9laW9XTa5wJ7qbpWEyLnq3V+obmfr8nlszo/ud2aG1DE7OCAQAAhglujOvUdDSmRcuzC8DdrW9o1qLltWo6FnO4MwAAADiNEKyONcBr65sGHIC7rG9o1rr6JrXGkg51BgAAADcQgiUdi6W0ZFWdI7UeWlmno9GUI7UAAADgjpwPwfFESs/X7uvXTXD9EUtmtLJ2n+IJgjAAAMBQlfMhuLktof987V1Ha/7Ha++emC8MAACAoSfnQ7CkHucAD6V6AAAAcFbOh+DjMXeWLbS6VBcAAABnLudDcDyZdqVuLOXMGmMAAAA4L+dDcNDndaeuN+f/agEAAIasnE9qeUF3QrBbdQEAAHDmcj4ES1JZcXhI1wMAAICzcj4Eh/we3T59gqM175g+QWE/Z4IBAACGqpwPwbFkRjdWlCjkd+avIuT36M8qShR16YY7AAAAnLmcD8GpdEbvHGrTfXPKHal335xyvXuoTcm0daQeAAAAnJfzITiRtioblafSEWHNLI+cUa2Z5RGVjghrwqg8JdOMSAMAABiqfGe7gbMtP+jVjzf8QVWTRmrh9RdKkjbsas66zszyiBZef6HePHhcL2zfr/s+5MyZZZw7ksm0mtviytiOTVqiybTCfq8KQz55jBTJD8rPWnIAAAZFzodgI6P/2XNYcy4bq5///h19/Moy/Vl5ib79q3rFkn2fzQ35PfrahyfrvIKgfv77d3Tr1PHauveIjMwgdI/hoD2e0uFoUiu2NmrZxt09bqtdVhzWXTMmav608RoV9isvmPM/mgAAuMpYO/zWrlZVVdmamhpHah04GtX/3bRHj//6Lf30s1cpk7FqS6QUKQzp5V0H9cyWvb2GljumT9AN5SVqPh5TfsAnj8fo8/++SX99w4X6RFWZxo5gVFquO3gspjX1TVqysq7fv1QtvmWKbpo8RiVFoUHoEACAc5cxZrO1tqqn13L+dJPHI91SWaqfv/KOJOmnv31b6xoOyusxurGiRF++uVylI8NKpjOKJTMK+T3yez3adySqlbX79cOX3lQ6Y3VjRYnuvv5Chfweza0sldfDmeBcd/BYTP+4vFbrG/q/vCaWzOj+Z3dobX2THrmtkiAMAIBLcv5McPPxqGJJq9Z4So/8d0Ov64F9HqOAz6NEKqNUpue/s5nlES36UIXygz6F/EaRQs4E56qBBOCTzaqIEIQBADgDpzsTzHSIlNU777Vp294jp70hLpWxak+kew3AUscNddv2HtE777UqkRp+v1zAGe3xlNbUN51RAJak9Q3NWlvfpPZEyqHOAABAl5wPwRkrTRqdrwerdzpS7xvVOzVpdIFOk5VxjjscTWrJyrrTHuPzGOUFvPL1sWzmoZV1OtyedLI9AAAg1gTL7zF6buu+ft201B+xZEYvbN+vedNKHamH4SWZTGvF1sZT/j15PUazJ5foI1eM0/iRYcVTGcVTaQV9XgV9HjUeiWpV7X6taziodLffoGLJjKq3NuqvrruA8WkAADgo50NwIpPRf25819Ga//Hau/rwFWMdrYnh4WBrXMs27n7fc/OmlupzfzpJv3njPX3nxV29Thv5RFWZ7pl1kZ787Tuq3rbvxGtLN+7WvKmlGj8qz/X+AQDIFTkfgj3G9BhKzsSelqg8hukQuShjdeLfU37Aq0fvmKpDrXHd+firp73asKclqu+++Lp+tP5Nfe3DkzXnsrH6yjPb1JZIa09LlOU1AAA4LOfXBB+PuXPTUatLdTG0df3/nh/w6qefvUrLt+zVA9U7+73cJpbM6IHqnVq+Za9++tmrlB/oWALRGuffEwAATsr5EBxPpl2pG0s5s8YYw0u089/Tdz8xVU/8+i2tazg4oDrrGg7qiV+/pe9+YqokKebSv1MAAHJVzofgoM+dm42C3pz/q81JIb9H86aWqqUtOeAA3GVdw0Edbkvq1spxCvr49wQAgJNy/pM1L+hOCHarLoa2wpBf98y6SA+tdGbk3j+t3KkvzLpYhSG/I/UAAECHnA/BVh135juprDgs7mPKTUG/0a9fb3Z05N6v32hW0MeNlgAAOCnnQ3BewKPbp09wtOYd0ycoj5muOSmdkZ56te+Re/3dLEPqqJfmtyoAAByV8yPSkimrGytK9JOX/+DI2buQ36M/qyhRMsONcbkonbE9jtzrabOMWDKtkP/0m2VIHePTTn4OAACcmZwPwSUFQW3fd1T3zSnXkpX1Z1zvvjnl2nckqopxRQ50h+Gmp9F486aW6nPXTdKG15tPu1nG7dMn6J6ZF+nJ371/swyJEWkAADgt55dD+P1eXTF+pEpHhDWzPNLrcf25fD2zPKLSEWFdPmGk/EyHyEnRbqPM8gNe/WjBdE0tG6E7n3hVP1j7Rq8bs+xpieoHa9/QnU+8qqllI/SjBdNPzAiWpFiCEWkAADgp588ES1JewKvjsaQWXn+hJGnDruasL1/PLI9o4fUXam9L+/vCC3JL1yiz/IBXT3ymSo//+i1t2NXc7/fHkhktWVmvmeURPfGZKt39sxq1JdIKMCINAABHEYIltcfTmn5+sb73YoM+fmWZPvmBiRpdGNKGXQf7vnw962K9dzymeMrqP155R/9wc4Xa4mmNzBv87wNnX0Gw40fq0TumZh2Au+t636N3TNUXlm45URcAADgj508vReNJrdjaqLsef0X3z52iUXl+7TsS052Pv9K/y9ePv6J9R2IalefX/XOn6M7HX1H1tkZF48lB/k4wFBhj9Jlrz9eBY9EBB+AuG3Y168CxqD597fkyhhFpAAA4KedD8KH2pJZt2i2pY2bwk797Ww9U7+z3pIhYMqMHqnfqyd+9fWI28NKNu3WonRCciwI+o09dPUmPrd7lSL3HVu/Sp6+exI5xAAA4LOc/Wa3tOKv79MJr9I0VO7W2fmBb3a6tP6hvrNippxdeoz0tUVkmWuUkn9fopYYmRzfLeKmhST4vZ4IBAHBSzofg1lhKD9wyWZveadG6hoEF4C7rGg6q5t0WLZ47mZFWOao9nunXZhnZeOrVd9UWZzoEAABOyvkQHE2mNeeysXrw+Z2O1PtG9U596PKxiiUJLbmqt3XkZ1KP88AAADgr50Nw6YiQVm3f7+jl61Xb92tsUciRehhe2vp5BSCbbZMlqTXBlQUAAJyU83OX0rKuXL6ee8U4R2tieIilev5l6ky2TZakuEO/pAEAgA45H4IzGXcuX/eQY5ADepri4MS2yWyWAQCAs3I+BPf38nW22rl8nZO6b2qRH/Dq0Tum6sCxqO584tXTLrnpmjv9k5f/oPvmlGvOZWP1lWe2qa1zu2Q2ywAAwFk5f3rJrRvYoly+zknpjFVZcfjEtsn/tXmPlqysz2ru9JKV9fqvzXv0xGeqlB/wqqw4rDQz9wAAcFTOn14K+r3u1OXydU5KZzK6ffoEXVJS6Ni2yW8ePK50mhAMAICTcj6p5QfdCcFu1cXQlkhb3XLFWEe3Tf7IFWOVSHNlAQAAJ+V8CE6nOy5fO6msONzjHf449xUEfUpZObptcjrDmmAAAJyW8yHY6zG6ffoER2veMX2CvIbtDXJR0G+0escBR+dOv1h3QEEf/54AAHBSzodgGWnmpRGF/M78VYT8Ht1waURs8ZWbkimrZ7bsdbTmf23eqyRrggEAcFTOh+B02urZrY26b065I/Xum1Ou5VsbWQ6RozKWudMAAAwHOR+CPR6jUXkBjS0Ka2Z55IxqzSyPaGxRWOflBeRhOUROao25Mx+61aV51gAA5KqcD8GmcznEAyu2a+H1Fw44CM8sj2jh9RfqgRXbdcOlEZGBc1PUpbnTbs2zBgAgVxGCZfTs1kbdM+ti3f2zGn38yjItvmVyv9cIh/weLb5lsj5+ZZnu/lmN7pl1sZZvbZRhUXBOCrs0dzrkY+QeAABOyvm5SyG/UXHncoirLijWF5Zu0a2V4/T03Vfr5deb9cyWvT2u8SwrDuuO6RN0w6UR/fS3b+v52voTyyHa4inXwhCGtoKQOz9SbtUFACBX5fwnq5V0y9RSfeInv9e/LJguSXq+dr9e2HFAN1aU6Ms3l6t0ZFjJdEaxZEYhv0d+r0f7jkS1sna/fvjSm0pn7InlEH+3dIt+8TfXKsM2tznJmI5fkJy8Oa6sOMzyGgAAHJbzITjg8ygvoBPLIR69Y6o+eMloPbZ6l16sa9KLdU2SJJ/HKODzKJHKKNXtVv2Q36OvfaRCY4vCuvtnNbr35kuV5/c6NnINw0skP6C7rpqoRx3aLEOSFsyYqJLCoGP1AAAAa4JVGPDLI6PrLhp9YjnE1t1H9PTdV+tLsy85sZtcKmPVnkifCMBlxWF9afYlevruq7V19xF9YekWXXVBsa67eLQ8xig/6D+b3xbOkmDAp/nTxjs6d3re1PEKsCYYAABH5fyZYK/XI59H8nike2dfKmngyyHunX2pPEbyejp2okNuKgr5tHjuFN3/3I4zrrV47hSNCOf8jykAAI7j01VSYTigeCqjVDqpv77+wgEth5gyrkg+r1FBwKeicOBsfSsYAgrDfs2ePEZrG5q0vqF5wHVmVUQ0e8oYFYS4qgAAgNNyfjmE1LEuOBTwaWReQNZKF0cK9PTCa/q3HGLhNbo4UiBrpZF5AYUDPgV8/LXmujEjQnr4tkrNqhjY3OlZFRE9fFulxhSFHO4MAABInAk+oTg/oEOtcZWODOvdQ20yki4pKdD9H5ms8wqCpyyHONQaV8baE9OAS0eGFfR5NCqfs8CQWtoS+sGaXfrm/Mu1oaJZS1bVKZbM9Pm+kN+jxXOnaGZ5RD9Ys0tf+dBk/k0BAOACTll2c15BUEVhv0YXBFR8UvAwkvyeU7fAKM4PaHRBQCPCfp1XwB38kBKpjNbWHdCyTXt13SPrVVIU1Lp7Z+ofP1R+4srCycqKw/rHD5Vr3b0zVVIU1HWPrNeyTXu1pv6AEqm+wzMAAMiOscNwnm1VVZWtqalxrX4ilVFLW0KNh9uVH/Ip5PeqLZ5SIpVRwOdRftCnWDKt9lhKpaPyVJwfYAkETth/NKpZ39nwvjO/4YBXj91+hS6fMFJeY9QaTymWTCvk96og6FPaWu3Ye0T3/XK7ook/bpEc8nu0/sszNW5Ez+EZAAD0zhiz2Vpb1dNrLIfoQcDn0dgRIUUKAmppTyiVsUqmPPIYyefxKOjzKD/g1SUlhUyBwPuk0xk9v23/KUsfoom0/nbZ1hOPCwJejcoP6HBbQq3dQu/JYsmMVtbu1+eunSSvl1+0AABwCiH4NLxejyKFnTcmjTi7vWB4ONSW0FOvvtPnca2JtFoT/dtV7uevvKP5U0tVwk1yAAA4hlNLgIMS6YyjWyZL0p6WqBJp1gUDAOAkQjDgoNZYyp26cXfqAgCQqwjBgIOiyd7X956JmEt1AQDIVYRgwEFBl6aEBLgpDgAAR/HJCjioIOjOvaZu1QUAIFcRggEHGWN63RCju5DPo9EFAYX6cea4rDgsYxjFBwCAkzi9BDjI5zG6Y/oEfX/tG+97PuDz6Is3XqyZFSXKD/jUGkspmkwr7PeqIORTWyKll+oP6ocvvXnKDnEfv3KCfMyjBgDAUYRgwEEejzS3slQ/fvkPJzbMeOCWybppylg9v22f/vqpzT2OUCsrDuuuqyZq3b03aE3dAT20sl5Sx45xH7milE1ZAABwGMshAAel0lZGVvfNKVekIKA1X7peQZ9XN33/ZT26elevM4T3tET16Opduun7Lyvo82rNl65XpCCg++aUyxirZIY5wQAAOMlYa939AsZ8SNI/S/JK+jdr7cMnvT5R0s8kjew8ZpG19oXT1ayqqrI1NTUudQwMXDKZ1tpdB3VRJF/5Ab++vmK71jc0n3JcyOdRQahjWUQsdWrAnVUR0TfnX6G2RFJ/aG7T7Mlj5GdCBAAAWTHGbLbWVvX0mqvLIYwxXkk/knSTpL2SNhljqq21dd0O+7qkX1hrf2yMmSLpBUmT3OwLcIvf71XlhJHyGumrz/4xAGe7Jnh9Q7O+ru16+GOVqpzgJwADAOAwt9cEz5D0prX2LUkyxjwtab6k7iHYSirq/O8Rkva53BPgqryAVy/U7j8RgAe6Jnh9Q7PW1jdpbuW4wf4WAAA457l9emm8pD3dHu/tfK67ByV90hizVx1ngf+up0LGmIXGmBpjTE1z86mXl4Ghoj2e1pJVdY6sCV6yqk5tcXaLAwDAaUPhGutdkv7dWjtB0kckPWWMOaUva+3j1toqa21VJBIZ9CaB/ojGk1qxtVGFQZ+W33Odvv2ret3/3I4TkyL6EktmdP9zO/TtX9Vr+T3XqTDoU/W2RkXjSZc7BwAgt7gdghsllXV7PKHzue4+L+kXkmStfUVSSNJol/sCXHGoPallm3Zr2cKr9UD1jh5viuuP9Q3NeqB6h5YtvFpLN+7WoXZCMAAATnI7BG+SdIkx5gJjTEDSnZKqTzpmt6QbJckYM1kdIZj1DhiWrJX+8tpJeu2tlgEH4C7rG5r12lst+uw1k+TyEBcAAHKOqyHYWpuS9LeSVkuqV8cUiJ3GmIeMMfM6D/sHSXcbY7ZJWibps9btuW2AS1pjKd182VgtWVXX98H9sGRVneZcPlat8ZQj9QAAQAfXd4zrnPn7wknPPdDtv+skXed2H8BgKAz5VL11X7/XAPcllszo+W37NG9qqSP1AABAh6FwYxxwzrCSlm3a7WjNpRt3K8O1EQAAHEUIBhzW2xi0oVIPAAAQggFHtcbcWbvLmmAAAJxFCAYcFE26s7FFzKW6AADkKkIw4KCQ350fqaCPH1UAAJzEJyvgoMKQf1jVBQAgVxGCAQcZI5UVhx2tWVYcljGOlgQAIOcRggEHFYS8uuuqiY7WXDBjoopCro/0BgAgpxCCAQcVBvyaN63UsbXBIb9Ht04tVX6Q5RAAADiJEAw4yOv1KOzzaPHcKY7UWzx3ikI+j7we1kMAAOAkQjDgsMJwQDeURzSrInJGdWZVRHRDeURF4YBDnQEAgC6EYMBhAZ9HeQGfvjn/igEH4VkVEX1z/hXKD/gUYDwaAACO424bwAXF+QEdsnF945bLNLviPS1ZVadYMtPn+0L+jqUU1108WiG/R6PyOQsMAIAbCMGAS84rCMoYo2llI7TmSzdoZe0+Ld24W3taoqccW1Yc1oIZE3VLZamORRMaEfYTgAEAcBEhGHBRcX5AIb9Hh9uTqjp/lGZVlCjk96otnlIsmVHI71F+0KdYMq3j0aS8HqMLIgXKC/CjCQCAm/ikBVzU0pbQuvomPfj8Tl130WjNrRyn0pFhpdMZJdNWyZRReyKtfUeiWlm7X7//w3t68NbLdOPkMSrmTDAAAK4x1tqz3UPWqqqqbE1NzdluAzitQ61xLfrldq2pbzrlNZ/HKODzKJHKKJU59Wfwpslj9PDtV+i8guBgtAoAwDnJGLPZWlvV02vcdg64oKUt0WsAlqRUxqo9ke4xAEvSmvomLfrldh1uS7jZJgAAOYsQDDgskcpoXX1TrwG4v9bUN2ltfZMSqb6nSgAAgOwQggGHtbQltHjFDkdqLV6xQy2cDQYAwHGEYMBB6XRGK2v39WsmcH/Ekh310mnOBgMA4CRCMOCglvaEfvbKO47W/Nkr76ilnbPBAAA4iRAMOCiVsT1uhnEm9rREe72BDgAADAwhGHDQ8VjKlbqtLtUFACBXEYIBB8WTaXfqMiECAABHEYIBBwX9XlfqBnz8qAIA4CQ+WQEHFYbc2YncrboAAOQqQjDgIJ/HqKw43K/j8gJe+Tymz2PLisP9Og4AAPQfp5cABxXnBfSZaybpm6vq3/e812M0e3KJPnLFOI0fGVY8lVEsmVbI71XQ51HjkahW1e7XuoaDSp80CeIz10xScX5wML8NAADOeYRgwEFer0e3VJbqOy/uOrFhxryppfrcdZO04fVmfefFXT2OUCsrDuv26RN0z8yL9OTv3lH1tn2SpJC/o56XM8EAADiK5RCAw4rzA1oy/3LlB7z60YLpmlo2Qnc+8ap+sPaNXmcI72mJ6gdr39CdT7yqqWUj9KMF05Uf8GrJ/MtVnB8Y5O8AAIBzH2eCAYcFfB7dOHmMyscU6ntrX9eGXc2nHDM6z6/SUWHtOxzVe+3JE8/HkhktWVmvmeURLbv7apUV5zEZAgAAFxCCARckUxn987o3TgTgEXl+/WLh1coL+GSMdCyaVCyZUcjvUVHYL2ultnhSf/7EazrantSGXc3yGqNv33bFWf5OAAA4NxGCAYcdjya1tr5J6xoOSpLWfOmDygv4tWJro5Zt2t3rmuC7rpqoF/7ug2pPJHXT93+jdQ0HtbauSfOnlaog5B/sbwMAgHOasdb2fdQQU1VVZWtqas52G0CPGg9HdeP3Nmjy2EL9+JNXal39QS1ZVXfiRrnTCfk9Wjx3im6cXKL/7z82q/7Aca27d6bGj+p77BoAAHg/Y8xma21VT6+x2BBwUDyR0oqtjZo8tlA/+VSVvvrsdt3/3I5+BWCpY03w/c/t0Fef3a6ffKpKk8cWqnpbo+KJlMudAwCQWwjBgIOa2xJatmm3fvzJK7Voea3WN5x6U1x/rG9o1qLltfrxJ6u0dONuNbclHO4UAIDcRggGHGSt9ORnqrSu/uCAA3CX9Q3NWlffpJ9+pkrDcNUSAABDGiEYcFBrLKW8gF9LVtU5Um/JqjrlB/xqjbMcAgAAJxGCAQeNGxXUiq2N/V4D3JdYMqPqbY0aN5JtkwEAcBIhGHDQ8WhayzbtdrTm0o27dTyadrQmAAC5jhAMOKy3rZGHSj0AAEAIBhzVGnNn7S5rggEAcBYhGHBQNOnOsoWYS3UBAMhVhGDAQSG/Oz9SQR8/qgAAOIlPVsBBhSH/sKoLAECuGlAINsYUO90IcC7weKSy4rCjNcuKw/IYR0sCAJDz+gzBxpjrjDH1xpidxpgPGGPWSNpkjNljjLlmEHoEho2A1+iO6RMcrfnxKyco6PM6WhMAgFzXnzPB35f0CUl/JWmVpH+y1l4kab6k77jYGzDsxJJWN1wacWxtcMjv0fWXRFy74Q4AgFzVn09qv7V2u7X2FUnN1trfSpK1doskZ6/7AsNcayylJ3/3ju6bU+5IvfvmlOunv32bEWkAADisPyG4+zFfPem1gIO9AMNeNJlW9bZ9GlsU1szyyBnVmlke0diisEpVmpIAACAASURBVJ6v3c+INAAAHNafELzYGJMnSdba57qeNMZcJOnnbjUGDEdhf8fa3a88s00Lr79wwEF4ZnlEC6+/UF95ZpskKcSaYAAAHNVnCLbWVltr23t4/g/W2ke7Hhtj/sXp5oDhpiDkkyS1JdK6+2c1+viVZVp8y+R+rxEO+T1afMtkffzKMt39sxq1JdLvqwsAAJzh5CfrdQ7WAoYlYzpGmu1piaotkdYXlm7RrZXj9PTdV+vl15v1zJa92tMSPeV9ZcVh3TF9gm64NKKf/vZtPV9b/77XDCPSAABwFKeXAAdF8gO666qJenT1rhPPPV+7Xy/sOKAbK0r05ZvLVToyrGQ6o1gyo5DfI7/Xo31HolpZu18/fOlNpTP2fTUXzJioksLgYH8rAACc0wjBgIOCAZ/mTxuvH770hmLJzInn0xmrF+ua9GJdkyTJ5zEK+DxKpDJKnRR6uwv5PZo3dbwCrAkGAMBRTm6bzAVbQFJRyKfFc6ec9phUxqo9kT5tAJakxXOnaESY31UBAHBav0OwMeaKPg755zPsBTgnFIb9mj15jGZVnNmItFkVEc2eMkYFIb9DnQEAgC7ZnAn+38aYjcaYe4wxI05+0Vr77861BQxvY0aE9PBtlQMOwrMqInr4tkqNKQo53BkAAJCyCMHW2g9K+gtJZZI2G2OWGmNucq0zYJgbUxTSwx+r1Lc+enlWI9K+9dHLCcAAALjMWHv6NYmnvMEYr6SPSvqhpGPqWAv8NWvtcufb61lVVZWtqakZrC8HnJHWWFJHoylVb2vU0o27ex2RtmDGRM2bNl4jQj6WQAAA4ABjzGZrbVVPr/X7jhtjTKWkv5Q0V9IaSbdaa7cYY0olvSJp0EIwMJwUhPwqCPn1uWsn6dappbJWao2nFEumFfJ7VRD0yRippDDIFAgAAAZJNred/4ukf1PHWd8Tp7KstfuMMV93vDPgHBMM+DQhwKQHAACGgmw+kedKilpr05JkjPFICllr2621T7nSHQAAAOCCbKZDrJUU7vY4r/M5AAAAYFjJJgSHrLWtXQ86/zvP+ZYAAAAAd2UTgtuMMdO7HhhjrpR06m3uAAAAwBCXzZrgL0r6L2PMPnWMRRsr6c9d6QoAAABwUb9DsLV2kzGmQlJ551O7rLVJd9oCAAAA3JPtvKarJE3qfN90Y4ystT93vCsAAADARdlslvGUpIskbZWU7nzaSiIEAwAAYFjJ5kxwlaQpNtt9lgEAAIAhJpvpEDvUcTMcAAAAMKxlcyZ4tKQ6Y8xGSfGuJ6218xzvCgAAAHBRNiH4QbeaAAAAAAZTNiPSXjbGnC/pEmvtWmNMniSve60BAAAA7uj3mmBjzN2SnpH0r51PjZf0nBtNAQAAAG7KZjnEFyTNkPSaJFlr3zDGlLjSFQAAAIatdDqjlvaEUhmr47GUkqm0/D6vCkM++TxGxXkBeb3ZzGdwXjYhOG6tTRhjJEnGGJ865gQDAAAASqQyamlLqHbPEWVkNbogqHgqo1gyrZDfq2PRpN5rjctImlo2SsX5AQV8ZycMZxOCXzbGfE1S2Bhzk6R7JD3vTlsAAAAYTlraEqrbd1QFIb/qDhzTL7fs1Z6WqHweo4DPo0Qqo1TGqqw4rNunT9CYEWG9efC4ppSOUHF+YND7zSYEL5L0eUnbJf21pBestU+40hUAAACGjUOtcb3edFy7mo7re2te159ePFpfvrlc40eG33cmOOjzqPFIVKtq9+uJ37yle2+6VF6P0aVjCnVeQXBQe84mBP+dtfafJZ0IvsaYv+98DgAAADmopS2hxsNR/euv31JRyK///PwHtOH1Zn3nxV3a0xI95fiuM8H3zLxIT/7uHf3mjfd07+xL5TFGowbxjLDp7y7Ixpgt1trpJz33P9baP3Gls9OoqqqyNTU1g/1lAQAA0E0ildFb77XqB2te161Tx+vAsageW71LsWSmz/eG/B7dN6dcY4vCen5bo75006W6YHSBo2uEjTGbrbVVPb3W55lgY8xdkhZIusAYU93tpUJJLc60CAAAgOHmaHtCG98+pE9fO0mP//otbdjV3O/3xpIZLVlZr5nlES28/kK99vYhFecFFCkKudjxH/VnOcTvJe1Xx7bJ3+32/HFJtW40BQAAgKEtnc7oWDylSEEo6wDcXdf7/ryqTMfiKRWnM4MyPq3PEGytfVfSu5Kucb0bAAAADAtHY0nV7zuqpuPxAQfgLht2NeuDl4xW2mY0Ks+v4nz3b5LLZse424wxbxhjjhpjjhljjhtjjrnZHAAAAIam9kRa55+Xr8dW73Kk3mOrd+n84ny1J9KO1OtLNueaH5U0z1o7wlpbZK0ttNYWudUYAAAAhi6f12hdw8F+3QTXH7FkRi81HJTPaxyp15dsQnCTtbY+2y9gjPmQMWaXMeZNY8yiXo75hDGmzhiz0xizNNuvAQAAgMEVS2T0yy17Ha35zJa9joXqvmQzJ7jGGPN/JT0nKd71pLV2eW9vMMZ4Jf1I0k2S9kraZIypttbWdTvmEklflXSdtfawMaYky+8BAAAAg8wY9TgH+EzsaYlqcM4DZxeCiyS1S7q523NWUq8hWNIMSW9aa9+SJGPM05LmS6rrdszdkn5krT0sSdbag1n0BAwb8URKzW0JSdLxaErRZFphv1eF4Y4fw0h+QMFANj+SAACcPe1xd9buDtaa4H5/4lpr/3IA9cdL2tPt8V5JHzjpmEslyRjzO0leSQ9aa//75ELGmIWSFkrSxIkTB9AKcHYcjyZ1LJbSiq2NWrZpd6+759x11UTNnzZeRSGfCsP+s9ApAAD9F0+5s2wh4VLdk2UzHeJSY8w6Y8yOzseVxpivO9CDT9IlkmZKukvSE8aYkScfZK193FpbZa2tikQiDnxZwH1NR2Oq3rZPN35vgx5d3fP2kVLH5Z9HV+/Sjd/boOpt+9R0NDbInQIAkJ2Q351ZvkEHd4w7nWy+yhPqWLublCRrba2kO/t4T6Oksm6PJ3Q+191eSdXW2qS19m1Jr6sjFAPDWtOxmBY9W6v7n9vR70X+sWRG9z+3Q4uerVXTMYIwAGDoKgi5s4TPrbonyyYE51lrN570XKqP92ySdIkx5gJjTEAdobn6pGOeU8dZYBljRqtjecRbWfQFDDlNR2NatLxW6xsGNjx8fUOzFi0nCAMAhi5rO5bzOamsOCxrHS3Zq2xC8HvGmIvUcTOcjDF3qGM75V5Za1OS/lbSakn1kn5hrd1pjHnIGDOv87DVkg4ZY+okrZd0n7X2UJbfBzBkHI8mtba+acABuMv6hmatrWtSayzpUGcAADhnZJ5XfzHjfEdrfvID52tU/uDcF2NsP+O2MeZCSY9LulbSYUlvS/qktfYd17rrRVVVla2pqRnsLwv0S+PhqG783gZH5hyG/B6tu3emxo9y9jdtAADO1J6WdknSTd9/2bHPvDVfukGSVFacd8b1JMkYs9laW9XTa/0+E2ytfctaO1tSRFKFtfZPz0YABoayeKJjCoSTu+dUb2tUPNHXyiMAAAbfmroDWjx3iiO1Fs+dohd3HnCkVn9kMx3i740xXbOCv2+M2WKMubmv9wG5pLktoWWbdjtac+nG3SfmCwMAMFQcjyX10Mp6zbigWLMqep/c5fMY5QW88nl63wZjVkVEMy4o1pJV9WqND86Jn2xuv/uctfafjTFzJJ0n6VOSnpL0oiudAcOQte7snjNYNwkAANBfXVc9Fzzxqpbfc50e1E6tazgor8do9uQSfeSKcRo/Mqx4KqNYMq2Q36ugz6PGI1Gtqt2vdQ0Hlc5Y3VhRogfnXabb/vfvOusOsc0ypBO72H1E0s87b3AbrJ3tgGGhNebOb6+D9VsxAAD9FfZ7JXXs8Lb/aFSf/9MLdNeMMo0uDGnDroP6zos9z8cvKw7r9ukTdM+si/Xe8ZjyAj7tPxo9sVNcyOcdlP6zmQ6x2RjzojpC8GpjTKGkwdnSAxgmoi799jpYvxUDANBfhZ3zfB+9Y6qe/O3bOtye1L4jMd35+Cv6wdo3TrtB1A/WvqE7H39F+47EdLg9qSd/+7YevWPq++q6LZuv8nlJ0yS9Za1tN8acJ2kgWykD56yu34qdNli/FQMA0G9G+sy15+tQW0yfvnaSHv/1W9qwq//jQWPJjB6o3qmZ5REtvP5CvXnwuD597fl/XHvgsj5DsDGmwlrboI4ALEkXsgoC6Nlw3z0HAID+Kgx59amrJ+mNpuNZB+Duut7351Vluu6iiIqG0JngeyUtlPTdHl6zkv7M0Y6AYcyYjrVOTt4cV1YcFr93AgCGmmgio7eaW7XvaHTAAbjLhl3N+uAlo+X1GuUFR6hoEMbj97km2Fq7sPN/Z/XwhwAMdBPJD+iuqyY6WnPBjIkqKQw6WhMAgDOVTFuNGxHSY6t3OVLvsdW7NK4opFR6cEYiZTMn+OOdN8PJGPN1Y8xyY8yfuNcaMPwEAz7NnzZeIX8295z2LuT3aN7U8QqwJhgAMMQE/UbrGg46ukHUSw0HFfQNzuXPbD6pF1trjxtj/lTSbEk/lfQTd9oChq+ikM/R3XNGhFkPDAAYeqKJjH65Za+jNZ/ZsldRh0J1X7IJwV0zmuZKetxau0pSwPmWgOGtMOzX7MljTrt7Tn/Mqoho9pQxKgj5HeoMAABnubFB1GDJJgQ3GmP+VdKfS3rBGBPM8v1AzhgzIqSHb6sccBCeVRHRw7dVakxRyOHOAABwRnvcnRn2XZtmuC2bEPsJSaslzbHWHpFULOk+V7oCzgFjikJ6+GOV+tZHL+/3GuGQ36NvffRyAjAAYMiLp9wJq/HU4CyH6Pdiw84NMlZIGmOM6br9vcGdtoBzw5gRIc2fVqqZ5SWq3taopRt397qF5IIZEzVv2niNCPlYAgEAGPKCLm0QFfQNzkKDfodgY8zfSfqGpCb9cbtkK6nShb6Ac0ZByK+CkF+fu3aSbp1aKmul1nhKsWRaIb9XBUGfjJFKCoNMgQAADBtubW88FLdN/ntJ5dbaQ241A5zLggGfJgSY9AAAOHe4sUHUYMnmfPMeSUfdagQAAADDRyQ/oL/4wPmO1vzkB84ftA2isjkt9ZakDcaYVZLiXU9aa7/neFcAAAAY0oIBn26tLNUP1r7uyIYZIb9Ht1SWDtrSwGzOBO+WtEYds4ELu/0BAABADnJyg6gHbhncDaKymQ7xT5JkjCnofNzqVlMAAAAY+ro2iFrb0KT1Dc0DrjOrIqIbJw/uBlH9PhNsjLncGPM/knZK2mmM2WyMucy91gAAADDUDdcNorJZDvG4pHuttedba8+X9A+SnnCnLQAAAAwXw3GDqGwWXuRba9d3PbDWbjDG5LvQEwAAAIaZ4bZBVFbTIYwxiyU91fn4k+qYGAEAAAAMqw2isgnBn5P0T5KWq2OnuN90PgcAAACcMBw2iMpmOsRhSf+/i70AAAAAgyKb6RBrjDEjuz0eZYxZ7U5bAAAAgHuymQ4x2lp7pOtB55nhEudbAgAAANyVTQjOGGMmdj0wxpyvjrXBAAAAwLCSzYrl+yX91hjzsiQj6YOSFrrSFQAAAOCibG6M+29jzHRJV3c+9UVr7XtdrxtjLrPW7nS6QQAAAMBpWc2u6Ay9K3t5+SlJ08+4IwAAAMBl2awJ7otxsBYAAADgGidDMDfJAQAAYFhwMgQDAAAAw4KTITjhYC0AAADANVndGGeMqZQ0qfv7rLXLO//36l7eBgAAAAwp/Q7BxpgnJVVK2ikp0/m0lbTchb4AAAAA12RzJvhqa+0U1zoBAAAABkk2a4JfMcYQggEAADDsZXMm+OfqCMIHJMXVMRfYWmsrXekMAAAAcEk2Ifinkj4labv+uCYYAAAAGHayCcHN1tpq1zoBAADAOSGdzqilPaFUxup4LKV0Oi2v16vCkE8+j1FxXkBe79ndriKbEPw/xpilkp5Xx3IISX8ckQbg9KLxpA61JyVJx6MpRZNphf1eFYY7fgzPy/MrHPSfzRYBADgjiVRGLW0J7TvcrryQT2G/V8lURtFkRmG/USKV0dFkWrsPtWv8qDwV5wcU8J2dMJxNCA6rI/ze3O05RqQBfTjcnlB7PK0VWxu1bNNu7WmJnnJMWXFYd101UfOnjVde0KtReYGz0CkAAAPX0pbQviPtGhEO6NW3W0585oV8HhWEfGqNpRRLZU585t1aFNLrTcdUOrIjDA82Y60d9C96pqqqqmxNTc3ZbgPo04GjMa2rb9KSVXWKJfteSh/ye7R47hTdOHmMxo4IDUKHAACcuUOtcR2PpfS7N9/TI6sb9DfXX6iZFSXKD3SG32RaIb9XBSGf2hIpvVR/UI//5i3945wKXXfxaBWGfDqvIOh4X8aYzdbaqh5f628INsaEJH1e0mWSTnw6W2s/50ST2SAEYzhoOhbTouW1Wt/QnPV7Z1VE9PBtlRpTRBAGAAxtLW0JRRNpfX3Fdn3w4tG6acpYrazdr6Ub3+316ueCGefrlspxWlN3QL958z19c/4Vygt4NcrhM8KnC8HZLMJ4StJYSXMkvSxpgqTjZ94ecO45cHTgAViS1jc0a9HyWjUdizncGQAAzkmkMmpPpPTY6np97cOTFfb7dNP3X9Yj/93QYwCWpD0tUT3y3w266fsvK+z36WsfnqzHVterLZFSIjV4A8iyCcEXW2sXS2qz1v5M0lxJH3CnLWD4Otye0Lr6pgEH4C7rG5q1tq5JR9oTDnUGAICzjkcTeu0Ph/QPN1fo4V816KvPbu/X8j9JiiUz+uqz2/Xwrxr0DzdX6LU/HNKx6OB95mUTgpOd/3vEGHO5pBGSSpxvCRje2uNpLVlV50itJavq1BZPO1ILAAAnpdMZRVMZTZ04Sg9W79S6hoMDqrOu4aAerN6paRNHKZbKKJ0enLPB2YTgx40xoyQtllQtqU7So650BQxT0XhSK7Y29vu34L7EkhlVb2tUNJ7s+2AAAAbR8URSB47GVPNOy4ADcJd1DQe16d0WHTga0/HE4Hzm9TsEW2v/zVp72Fr7srX2QmttibX2J242Bww3h9qTWrZpt6M1l27cfWK+MAAAQ0VrLK2xI0J68PmdjtR7sHqnxo4IqTU2OFdA+x2CjTFjjDE/Ncb8qvPxFGPM591rDRh+rFWvNwIM1J6WqIbhJEMAwDkuHPDohe37Hb36+cL2/QoHBmfzjGy+yr9LWi2ptPPx65K+6HRDwHDWGku5UzfuTl0AAAYqmsjoqVffdbTmU6++q2hi6K0JHm2t/YWkjCRZa1OSuGMH6CaadOdHIuZSXQAABmq4X/3MJgS3GWPOU8dWyTLGXC3pqCtdAcNU2O91pW7I505dAAAGqs2lq5RticG5+unL4th71TEV4kJjzO8kRSTd4UpXwDBVEMrmR+rs1wUAYKBcu/qZGJyrn9l8stZJelZSuzp2intOHeuCAXQypmM7SCcvD5UVh2WMY+UAAHBE0OfODWwBl+qeLJuv8nNJFZK+LelfJF2qjq2UAXQ6L8+vu66a6GjNBTMmKlIQdLQmAABnarhf/cwmBF9urf0ra+36zj93S7rMrcaA4Sgc9Gv+tPEK+Z35LTbk92je1PEKurTWGACAgfIYo7LisKM1y4rD8gzS5c9sPqm3dN4MJ0kyxnxAUo3zLQHDW17Qq8VzpzhSa/HcKcoPEoABAENPwGd0x/QJjtb8+JUTFPQOkeUQxpjtxphaSVdK+r0x5h1jzNuSXpFU5XaDwHAzKi+gGyeP0ayKyBnVmVUR0ewpYzQyL+BQZwAAOCdjpVsqSx29+jm3slQZDc6MtP50fYukWyV9SNIFkm6QNLPzvz/sWmfAMDZ2REgP31Y54CA8qyKih2+r1JiikMOdAQDgjEOtCXm90n1zyh2pd9+ccvmMdKg16Ui9vvQZgq21757uz2A0CQxHY4pC+l8fq9S3Pnp5v39LDvk9+tZHLycAAwCGvEQqo++9+IauvWi0Zpaf2dXPmeURXXfRaH3nxdeVSA29EWkAsjR2REhzK8dpZnmJqrc1aunG3T2OTysrDmvBjImaN2288gNelkAAAIa8sN+r6m37dOvUcfrS7EslSRt2NWddZ2Z5RF+afan2HG7X87X79YVZFzvdao8IwYDLRuYFNDJP+uw15+vWqaWyVmqNpxRLphXye1UQ9MkYKVIQZAoEAGDY6Bpl9sWnt+r//OVVWvjBC/XBS0brsdW7FEtm+nx/yO/RfXPKNXlskeKptL749Nb31XUbIRgYJOGgXxOC/rPdBgAAjgh4PSc2iPrL/7NJj94xVReOztfTC6/Ry7sO6pkte3u9+nnH9Am6obxEh9viOtye1Fee2aa2RFplxWEFBmk6BCEYAAAAWTsvP6BPXT1J336hXm2JtL6wdIturRynz3/wAl0Uydf9H5ms8wqCSqYziiUzCvk98ns9OtQaVyqdkWS1fEujnq/df6Lmp6+ZpPMGaYMoQjAAAACy5vV6dOvUcfremj8uf3i+dr9e2HFAN1aUaG7lOEmSkeQzRl1bYMRTGa2s3a+XGg4qnfnjOLSQ36NbKsfJ6xmczTIIwQAAABiQ8/KDemjeZfrKL7efeC6dsXqxrkkv1jVJknweo4DPo0Qqo1Sm9xnAD82/TOflD85ZYCm7HeMAAACAEwI+j2ZPGavZk0t6PSaVsWpPpE8bgGdPLtFNk8cq4Bu8aEoIBgAAwIAV5wf0yO2Vpw3CpzN7cokeub1So/IHdzwoyyEAAABwRjIZq89dd4GuvySib/+qvt8j0r724cm6uKRAmdOcJXYLZ4IBAAAwYAePxfSV5bVa8G+vadM7LXp64dX68s2Xqqw43OPxZcVhffnmS/X0wqu16Z0WLfi31/SV5bU6eCw2qH1zJhgAAAAD0h5PaW19k9Y3dOwU1306xJdvLlfpyLCS6YziyYyCnSPS9h2JamXtfn1/7RsnpkOsb2jW2vomffRPxisvwGYZAAAAGMIOR5N6aGXd+54b8HSIlXW6obxk0EIwyyEAAACQtWQyrRVbG/tc/9uf6RCSFEtmVL21Uclk2sk2e0UIBgAAQNaa2+JatnG3ozWXbtyt5ra4ozV7QwgGAABA1jJW2tMSdbTmnpaoBmtQBCEYAAAAWTseSw2ruicjBAMAACBrUZfW7sZYEwwAAIChKuz3ulI35FLdkxGCAQAAkLXCkDujzNyqezJCMAAAALLmMep1V7iBKisOy2McLdkrQjAAAACyFskP6q4ZEx2tuWDGREUKQ47W7A0hGAAAAFnz+72aP228Qn5n4mTI79G8aePl9w5OPCUEAwAAYEBGhf164JYpjtR64JYpGpXnd6RWf7gego0xHzLG7DLGvGmMWXSa4243xlhjTJXbPQEAAODM5QV9mj15jGZVRM6ozqyKiGZPHqO8wODcFCe5HIKNMV5JP5L0YUlTJN1ljDnl1wVjTKGkv5f0mpv9AAAAwFklRSE9clvlgIPwrIqIHrmtUiVFg7MWuIvbZ4JnSHrTWvuWtTYh6WlJ83s4bomkRyTFXO4HAAAADusKwt/+2OX9XiMc8nv07Y9dflYCsCS5fc55vKQ93R7vlfSB7gcYY6ZLKrPWrjLG3NdbIWPMQkkLJWniRGfvRAQAAMCZKSkK6aN/Ml43lJeoemujlm7crT0t0VOOKysO6y9mTNS8aeM1Ms8/qEsgujs7X7WTMcYj6XuSPtvXsdbaxyU9LklVVVXW3c4AAACQrbyAT3kBn/7qugs0f1qpMlY6Hksplkwr5PeqMOSTx0iRwtCgTYHojdshuFFSWbfHEzqf61Io6XJJG4wxkjRWUrUxZp61tsbl3gAAAOACv9+r0pF5Z7uN03I7BG+SdIkx5gJ1hN87JS3oetFae1TS6K7HxpgNkr5MAAYAABi+4omUmtsSkqTj0ZSiybTCfq8Kwx3RM5IfUPAsLYPo4upXt9amjDF/K2m1JK+kJ621O40xD0mqsdZWu/n1AQAAMHiOR5M6FktpxdZGLdvU+5rgu66aqPnTxqso5FNhePBmA3dnrB1+y2urqqpsTQ0niwEAAIaKpqMxra1v0pJVdYolM30eH/J7tHjuFM2ePEZjRrgzHcIYs9la2+MeFGf3PDQAAACGvaZjMS16tlbrG5r7/Z5YMqP7n9uhtQ1Nevi2So05x+YEAwAA4BzWdDSmRcuzC8DdrW9o1qLltWo6NrjbRRCCAQAAMCDHo0mtrW8acADusr6hWWvrmtQaSzrUWd8IwQAAABiQY7GUlqyqc6TWklV1OhpNOVKrPwjBAAAAyFo80TEFoj83wfVHLJlR9bZGxRODE4QJwQAAAMhac1tCyzbtdrTm0o27T8wXdhshGAAAAFmzVj3OAT4Te1qiGqzpvYRgAAAAZK015s6yhdY4yyEAAAAwREWTaVfqxv5fe3cfHNdV3nH890i62ruybNlyZNmWJac0IbLqkQXIhgChFnYp1MR23Mw09lBIA4G2MKW0pDgN5s3jiZsUpkPbaUsDk0CxEwpJbDAhJI6AlgFsJciOIytt2lI5IpFVv0bR7molnf6hdVA2WuuudPfF2e9nRmOt7tWjx2fOeH++OvfcHNVNRwgGAABA1nwvWIysrixX44KoqivLA50fqchPPOWJcQAAAMjaXN+b8uvRynJ9/vpWtTTUqMJM5+NJxZPj8r0yzfM9jTqnY8+e1S3felKxkVde9c1UN2yEYAAAAGTNTGqsjb7s5ri73vsGrVhSo33d/br9e71T3jjXWBvV1tVNevRjv6njz53TB776+MuOmeWlfZZDAAAAIHvVfrm2rm6SJC2vjerHn+jQwPmE1n3hB7rj4acz7hxx4nRMdzz8tNZ94QcaOJ/Qjz/RoeW1UUnStjVNmuvn5xotIRgAAABZe+5sQpvaGvTa+jm670Nv1if3HdNtDx4L/PCMeHJctz14TJ/cd0z3fejNem39HG1c1aDnzsZz3PkElkMAAAAga7GRMfWfGdY9N71Rd5m3JwAAFIFJREFUtz5wVJ29gzOq09k7qFsfOKp7bnqjjvWf02XVkZA7nRpXggEAAJC1qDex28Njx0/OOABf0Nk7qMeOn5Qk+RXBdpGYLUIwAAAAslbtV2jFkhrtPNATSr2dB3rUsqRG1awJBgAAQLGaGy3Xvu7+wGuApxNPjmv/kX7NjXIlGAAAAEVqKD6mvYf7Qq2551CfhuI8MQ4AAABFyjll3AZtpk6cjsm5UEtmRAgGAABA1obio7mpm8hN3XSEYAAAAGQtlszNsoV4juqmIwQDAAAgaxe2SAsbW6QBAACgaOVqKzO2SAMAAEDRMpMaa6Oh1mysjcos1JIZEYIBAACQtbo5ldq6uinUmtvWNGnRXB6bDAAAgCIVqazQprYG+V44cdL3yrRxVYMqWRMMAACAYjbPr9CODS2h1PrUu1tUE83PemCJEAwAAIAZmhv1tG5FvTqa62ZVp6O5TutW1Kva90LqbHqEYAAAAMzIC7Gkfvj0Sd18zWu09qqZBeG1V9Xp5mteox8+fVJD8WTIHWaWv2vOAAAAeFU5Hx/Vp7/9lMrNdMf1q3TNlZfpzoefVjw5Pu33+l6Zbvntq7R4XlQ339OlMef0livq8nY1mCvBAAAAyFpiZFT7uvsVT47rxZExfXjPE+ruO6t7b36TPrb+yozbpzXWRvWx9Vfq3pvfpO6+s/rwnif04siY4slx7T/Sr8RIfh6bzJVgAAAAZG3wxRHtPdz3sq99++hz+u6x57WueZE+/o6rtHR+VMmxccWT4/K9MnnlZfrl2Zi+c/Q5ffGxZzQ27l72/XsO9enaVUu1rDL3EZUQDAAAgKw5J504HXvF18fGnb7fM6Dv9wxIkirKTJUVZRoZHddoWuhNd+J0TO7ip4SGEAwAAICsDcWDLVsYHXcaHRkLXjeRn+UQrAkGAABA1mLJ4ME2G/Ec1U1HCAYAAEDWol5unuzm88Q4AAAAFKtqPzeranNVNx0hGAAAAFkzU8Zt0GaqsTYqs1BLZkQIBgAAQNbq5lRq6+qmUGtuW9OkRXMjodbMhBAMAACArEUqK7SprUG+F06c9L0ybVzVoErWBAMAAKCYzfMrtGNDSyi1dmxoUU00f7v3EoIBAAAwI3OjntavqFdHc92s6nQ012l9S72qfS+kzqZHCAYAAMCM1df42r2ldcZBuKO5Tru3tKp+nh9yZxdHCAYAAMCs1M/ztfu6Vu3avDLwGmHfK9OuzSsLEoAlHpsMAACAENTX+NrUtlRrr1qk/Uf6tedQn06cjr3ivMbaqLatadLGtgbV+BV5XQIxGSEYAAAAoaj2PVX7nm568+W6dtVSOScNJUYVT47J98pVHamQmbRobiRvu0BkQggGAABAqCKVFVpWWdwxkzXBAAAAKDnFHdEBAABwyYklkjo1nJQkvRAbVSw5pqhXrrmpfYAXVnmKRgqzFvgCQjAAAABCcWZ4RMOJMe3r7tfew5lvjNu6ukmb2hpUFSnXgqrKAnQqmXOuID94Ntrb211XV1eh2wAAAEDK8+fiOnh8QDsP9CieHJ/2fN8r044NLVq3ol6La3KzRZqZPe6ca5/qGFeCAQAAMCsD5+O69YGj6uwdDPw98eS4bnvwmB7tHeBhGQAAALi0PH8uru33ZxeAJ+vsHdT2+49q4Hw85M4ujhAMAACAGTkzPKKDxwdmHIAv6Owd1KM9Azo7PBJSZ9MjBAMAAGBGhhNj2nmgJ5RaOw/06MXEWCi1giAEAwAAIGuxRFL7uvsD3QQXRDw5rv1H+hVLJEOpNx1CMAAAALJ2ajipvYf7Qq2551DfS/sL5xohGAAAAFlzTlPuAzwbJ07HlK/dewnBAAAAyNpQfDQ3dRO5qZuOEAwAAICsxZK5uYktnqO66QjBAAAAyFrUK89JXb8iN3XTEYIBAACQtWo/Nw8ezlXddIRgAAAAZM1MaqyNhlqzsTYqs1BLZkQIBgAAQNYWVnnaurop1Jrb1jSprjoSas1MCMEAAADIWjTiaVNbg3wvnDjpe2XauKpBkRytNU5HCAYAAMCMVEXKtWNDSyi1dmxo0ZxIfgKwRAgGAADADC2oqtS6FfXqaK6bVZ2O5jqtb6nX/KrKkDqbHiEYAAAAM7a4xtfuLa0zDsIdzXXavaVV9fP8kDu7OEIwAAAAZqV+nq/br2vVrs0rA68R9r0y7dq8siABWJLysxEbAAAAXtUW1/ja0LpEa69apP1H+rXnUJ9OnI694rzG2qi2rWnSxrYGzaksz+sSiMkIwQAAAAjF/KpKza+Sbrx6ua5dtVTOSUOJUcWTY/K9clVHKmQm1VVH8rYLRCaEYAAAAIQqGvG0LOIVuo2LYk0wAAAASg4hGAAAACWH5RAAAAAIVSyR1KnhpCTphdioYskxRb1yzY1ORM+FVZ6iBV4uQQgGAABAKM4Mj2g4MaZ93f3aezjz7hBbVzdpU1uDqiLlWlCg3SHMOVeQHzwb7e3trqurq9BtAAAAIOX5c3EdPD6gnQd6FE+OT3u+75Vpx4YWrVtRr8U1udkn2Mwed861T3WMK8EAAACYlYHzcd36wFF19g4G/p54cly3PXhMj/YO8MQ4AAAAXFqePxfX9vuzC8CTdfYOavv9RzVwPh5yZxdHCAYAAMCMnBke0cHjAzMOwBd09g7q0Z4BnR0eCamz6RGCAQAAMCPDiTHtPNATSq2dB3r0YmIslFpBEIIBAACQtVgiqX3d/YFuggsinhzX/iP9iiWSodSbDiEYAAAAWTs1nNTew32h1txzqO+l/YVzjRAMAACArDmnKfcBno0Tp2PK1+69hGAAAABkbSg+mpu6idzUTUcIBgAAQNZiydzcxBbPUd10hGAAAABkLeqV56SuX5GbuulyHoLN7J1m9rSZPWNm26c4/mdm1mNmR83soJktz3VPAAAAmJ1qPzcPHs5V3XQ5DcFmVi7p7yW9S1KLpK1m1pJ22s8ltTvnWiV9U9IduewJAAAAs2cmNdZGQ63ZWBuVWaglM8r1leA1kp5xzv23c25E0r2SNk0+wTnX6ZwbTr38qaRlOe4JAAAAs7SwytPW1U2h1ty2pkl11ZFQa2aS6xDcIOnEpNfPpr6WyfslPTTVATP7oJl1mVnX4ODsHs0HAACA2YlGPG1qa5DvhRMnfa9MG1c1KJKjtcbpiubGODN7j6R2SXdOddw59yXnXLtzrr2uri6/zQEAAOAVqiLl2rEhfaXrzOzY0KI5kfwEYCn3IbhfUuOk18tSX3sZM1sv6TZJG51ziRz3BAAAgBAsqKrUuhX16mie3QXKjuY6rW+p1/yqypA6m16uQ/BhSVea2a+ZWaWkGyTtn3yCmb1O0j9pIgCfzHE/AAAACNHiGl+7t7TOOAh3NNdp95ZW1c/zQ+7s4nIagp1zo5I+IulhScclfcM595SZfc7MNqZOu1NStaR/NbNuM9ufoRwAAACKUP08X7df16pdm1cGXiPse2XatXllQQKwJJnL1wOaQ9Te3u66uroK3QYAAAAmOTs8ohcTY9p/pF97DvXpxOnYK85prI1q25ombWxr0JzK8pwugTCzx51z7VMdy89uxAAAAHjVm19VqflV0o1XL9e1q5bKOWkoMap4cky+V67qSIXMpLrqSN52gciEEAwAAIBQRSOelkW8QrdxUUWzRRoAAACQL1wJBgAAQKhiiaRODSclSS/ERhVLjinqlWtudCJ6LqzyFC3wlWJCMAAAAEJxZnhEw4kx7evu197DmW+M27q6SZvaGlQVKdeCPO4NPBm7QwAAAGDWnj8X18HjA9p5oEfx5Pi05/temXZsaNG6FfVaXJObLdLYHQIAAAA5M3A+rlsfOKrO3sHA3xNPjuu2B4/p0d6BV9/DMgAAAPDq9vy5uLbfn10Anqyzd1Db7z+qgfPxkDu7OEIwAAAAZuTM8IgOHh+YcQC+oLN3UI/2DOjs8EhInU2PEAwAAIAZGU6MaeeBnlBq7TzQoxcTY6HUCoIQDAAAgKzFEknt6+4PdBNcEPHkuPYf6VcskQyl3nQIwQAAAMjaqeGk9h7uC7XmnkN9L+0vnGuEYAAAAGTNOU25D/BsnDgdU7527yUEAwAAIGtD8dHc1E3kpm46QjAAAACyFkvm5ia2eI7qpiMEAwAAIGtRrzwndf2K3NRNRwgGAABA1qr93Dx4OFd10xGCAQAAkDUzqbE2GmrNxtqozEItmREhGAAAAFlbWOVp6+qmUGtuW9OkuupIqDUzIQQDAAAga9GIp01tDfK9cOKk75Vp46oGRXK01jgdIRgAAAAzUhUp144NLaHU2rGhRXMi+QnAEiEYAAAAM7SgqlLrVtSro7luVnU6muu0vqVe86sqQ+pseoRgAAAAzNjiGl+7t7TOOAh3NNdp95ZW1c/zQ+7s4gjBAAAAmJX6eb5uv65VuzavDLxG2PfKtGvzyoIEYEnKz0ZsAAAAeFVbXONrQ+sSrb1qkfYf6deeQ306cTr2ivMaa6PatqZJG9saNKeyPK9LICYjBAMAACAU86sqNb9KuvHq5bp21VI5Jw0lRhVPjsn3ylUdqZCZVFcdydsuEJkQggEAABCqaMTTsohX6DYuijXBAAAAKDmEYAAAAJQcQjAAAABKDiEYAAAAJYcQDAAAgJJDCAYAAEDJIQQDAACg5BCCAQAAUHLMOVfoHrJmZoOS/rcAP/oySf9XgJ97qWGcgmGcgmGcgmGcgmOsgmGcgmGcginUOC13ztVNdeCSDMGFYmZdzrn2QvdR7BinYBinYBinYBin4BirYBinYBinYIpxnFgOAQAAgJJDCAYAAEDJIQRn50uFbuASwTgFwzgFwzgFwzgFx1gFwzgFwzgFU3TjxJpgAAAAlByuBAMAAKDkEIIBAABQcgjBaczsK2Z20syOZThuZvZFM3vGzI6a2evz3WMxCDBOa83snJl1pz4+le8ei4GZNZpZp5n1mNlTZvbRKc4p+TkVcJxKfk6ZmW9mh8zsSGqcPjvFOREzuy81n35mZpfnv9PCCjhON5rZ4KT59IFC9FoMzKzczH5uZt+Z4ljJz6cLphkn5lOKmf3CzJ5MjUPXFMeL5j2volA/uIjdLenvJH01w/F3Sboy9fFGSf+Q+rPU3K2Lj5Mk/Ztz7t35aadojUr6c+fcE2Y2V9LjZvaIc65n0jnMqWDjJDGnEpLe7pwbMjNP0r+b2UPOuZ9OOuf9ks44564wsxsk/ZWk3ytEswUUZJwk6T7n3EcK0F+x+aik45LmTXGM+fQrFxsnifk0WYdzLtODMYrmPY8rwWmccz+SdPoip2yS9FU34aeS5pvZkvx0VzwCjBMkOeeec849kfr8BU38A9qQdlrJz6mA41TyUnNkKPXSS32k3928SdI9qc+/KWmdmVmeWiwKAccJksxsmaQNku7KcErJzycp0DghuKJ5zyMEZ69B0olJr58Vb9aZXJ36deRDZvYbhW6m0FK/RnydpJ+lHWJOTXKRcZKYUxd+Jdst6aSkR5xzGeeTc25U0jlJC/PbZeEFGCdJ+t3Ur2O/aWaNeW6xWPyNpL+QNJ7hOPNpwnTjJDGfLnCSvm9mj5vZB6c4XjTveYRg5MoTmnhe9ypJfyvpwQL3U1BmVi3pW5L+1Dl3vtD9FKtpxok5Jck5N+aca5O0TNIaM1tZ6J6KUYBx+raky51zrZIe0a+udpYMM3u3pJPOuccL3UsxCzhOJT+fJnmrc+71mlj28GEze1uhG8qEEJy9fkmT/4e3LPU1TOKcO3/h15HOue9K8szssgK3VRCpNYnfkvR159z9U5zCnNL048Scejnn3FlJnZLemXbopflkZhWSaiSdym93xSPTODnnTjnnEqmXd0l6Q757KwJvkbTRzH4h6V5Jbzezf0k7h/kUYJyYT7/inOtP/XlS0gOS1qSdUjTveYTg7O2X9N7U3Y1vknTOOfdcoZsqNma2+MK6MTNbo4m5Vmr/cCo1Bl+WdNw594UMp5X8nAoyTswpyczqzGx+6vOopN+S1Jt22n5J70t9fr2kx1yJPRUpyDilrUHcqIl16CXFOXerc26Zc+5ySTdoYq68J+20kp9PQcaJ+TTBzOakbm6Wmc2R9A5J6btIFc17HrtDpDGzvZLWSrrMzJ6V9GlN3FQh59w/SvqupN+R9IykYUl/UJhOCyvAOF0v6Y/MbFRSTNINpfYPZ8pbJP2+pCdT6xMl6S8lNUnMqUmCjBNzSloi6R4zK9fEfwK+4Zz7jpl9TlKXc26/Jv4z8TUze0YTN6/eULh2CybIOP2JmW3UxM4kpyXdWLBuiwzzKRjm05TqJT2Qul5RIWmPc+57ZvaHUvG95/HYZAAAAJQclkMAAACg5BCCAQAAUHIIwQAAACg5hGAAAACUHEIwAAAASg4hGACKhJnNN7M/LnQfAFAKCMEAUDzmSyIEA0AeEIIBoHjslvTrZtZtZnea2S1mdtjMjprZZyXJzC43s14zu9vM/sPMvm5m683sx2b2n6mn6cnMPmNmXzOzn6S+fnPq60vM7Eepn3HMzK4p4N8XAAqGEAwAxWO7pP9yzrVJekTSlZLWSGqT9AYze1vqvCskfV5Sc+pjm6S3Svq4Jp60d0GrpLdLulrSp8xsaerch1M/Y5WkbgFACeKxyQBQnN6R+vh56nW1JkJxn6T/cc49KUlm9pSkg845Z2ZPSrp8Uo19zrmYpJiZdWoiUB+W9BUz8yQ96JwjBAMoSVwJBoDiZJJud861pT6ucM59OXUsMem88Umvx/XyixsuraZzzv1I0tsk9Uu628zem4PeAaDoEYIBoHi8IGlu6vOHJd1kZtWSZGYNZrYoy3qbzMw3s4WS1ko6bGbLJQ045/5Z0l2SXh9O6wBwaWE5BAAUCefcqdQNbsckPSRpj6SfmJkkDUl6j6SxLEoeldQp6TJJO51zvzSz90m6xcySqZpcCQZQksy59N+WAQAudWb2GUlDzrm/LnQvAFCMWA4BAACAksOVYAAAAJQcrgQDAACg5BCCAQAAUHIIwQAAACg5hGAAAACUHEIwAAAASs7/A8okSsMWFyBPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Z338c81p8wk4RRJwimIB4QgBJZGRa0KBbQVBA90q+yqXX2k+9TttnZrtbq4W3lqLbq1dV/uQR7bWp9iD3hCcBcFQVurhcBCxBzUohJOIRI5JJnzXM8fSTCckplw3yFxvu/Xi1eZmXt+ueLebL6553f/LmOtRUREREQkm3hO9QJERERERHqaQrCIiIiIZB2FYBERERHJOgrBIiIiIpJ1FIJFREREJOv4TvUCumPw4MF21KhRp3oZIiIiItKLbdy48WNrbeHxXuuTIXjUqFFUVFSc6mWIiIiISC9mjPnoRK+pHUJEREREso5CsIiIiIhkHYVgEREREck6CsEiIiIiknUUgkVEREQk6ygEi4iIiEjWUQgWERERkayjECwiIiIiWadPbpbRU8LROPta4gAcCicIx5OE/F76hVr/s52W6yeU4z+VS5Q+JB5P0tAcJWXhUKTD+RT04TFQmJeD3+891csUERHJCgrBx/FJS4yWaJIXNu/k6Q3bqWsMH3NMSUGIG84bydxJw8nN8TIoN3AKVip9QUs0wSfheOv5tL6T8+n81vNpUMhPbo7+aYqIiLjJWGtP9RoyVl5ebt3aNnnPgQhrqutZtLKKSDzV5fFBv4eFs8YxvbSYIQOCrqxJ+q69ByOsrq7n/hXpn0/3zR7HjNJiivrrfBIRETkZxpiN1try476mEPyp+oMR7n62krU1DRm/d9rYQh68toxiBRdps/dghLtO4nz60bVlCsIiIiInobMQrBvj2uw50P0ADLC2poG7n62k/mDE4ZVJX3QyARhaz6e7nq1kr84nERERVygE09oDvKa6vtuBpd3amgZWV9WzvyXm0MqkL2qJJljt1PlUXU9LLOHQykRERKSdQjDQEk2yaGWVI7UWrayiOZp0pJb0TZ+E49y/wpnz6f4VVXzSNqFEREREnJP1ITgcbb1rP52bltIRiadYvmUn4aiCSzaKx5POn0+bdxKP6xcrERERJ7kago0xPzPG7DXGbD3B68YY86gx5n1jTKUxZrKb6zmefS1xnt6w3dGaS9dvPzxfWLJLQ3OUp9c7fz41NEcdrSkiIpLt3L4S/Avgi528/iVgdNufBcC/u7yeY1jLcee2noy6xjB9cOiGOCDl0vmU0vkkIiLiKFdDsLX2daCxk0PmAr+0rd4CBhpjhrq5pqM1Rdy56agpqpuZstEhl84nt+qKiIhkq1PdEzwcqOvweEfbc8cwxiwwxlQYYyoaGk7urvuOwi71WkbUw5mVdD6JiIj0Dac6BKfNWvu4tbbcWlteWFjoWN2Q3+tYrY6CPnfqSu/m2vnkUl0REZFsdapD8E6gpMPjEW3P9Zj8oK9P1ZXerZ9L/3d3q66IiEi2OtUheDlwU9uUiCnAAWvt7p5cgDFQUhBytGZJQQhjHC0pfYTHpfPJo/NJRETEUW6PSHsaeBMYY4zZYYy51Rjzt8aYv2075CVgG/A+sAT4upvrOZ7Tcv3ccN5IR2vOP38khfk5jtaUvqEwL4cbznfhfOoXdLSmiIhItnP1M1Zr7Q1dvG6B291cQ1dCOX7mThrOo6++58gGB0G/hzkTh5OjHs6s5Pd7W8+nNQ6eT5OG4/ee6g9tREREPlv0kxXIzfGycNY4R2otnDWOvBwF4Gw2KOTnvtnOnE/3zR7HoFy/I7VERETkUwrBwKDcANNLi5k29uSmTkwbW8iMccUMzA04tDLpi3JzfMxw6nwqLSY3oJviREREnKYQ3GbIgCAPXlvW7eAybWwhD15bRnF/9W4KFPUP8qOTPJ9+dG0ZRTqfREREXGFsH9zft7y83FZUVLhSe8+BCGuq61m0siqtns6g38PCWeOYMa5YAViOsfdghNXV9dy/Iv3z6b7Z45hRWqwALCIicpKMMRutteXHfU0h+Fj7W2I0R5Ms37KTpeu3U9cYPuaYkoIQ888fyZxJw8kLeNUCISfUEkvwSUuc5Zs/PZ98HkPA5yGWSJFIWUoKQvxV2/k0MNevFggREREHKAR3UzgaZ19LHGuhKZogEk8S9HvJz/FhDBTm52gKhKQtGkvQ0BwD4FA4QTieJOT30i/UGnh1PomIiDirsxCsy02dCOX4GZGjO/Pl5MQSKRqbY6yo3MWTb354wk8Wbr5wFLPLhlGQFyDgU7u+iIiIm3QluBPxeJKG5igpC4cin14J7hf04TGtGyP4deVOOtHYHGNNdT0LX9iadk/wornjmV5aTEGeWmxEREROhq4EZ6glmuCTcJyVlbt46q2PTtjDeeOU05lVNoxBIT+5OfpPKUfa1xTl7mfe5pXq+rTfE4mnuHNZJTNLi3nwugmcpp0HRUREXKHkdpS9ByOsrd3L/Suq+PzZg/nO5WMYPjBENJE6fCU4x+dh5/4wKyt389M173Hf7HFMG1Oku/nlsMbmWMYBuKNXquvhGVg8r4xBuiIsIiLiOIXgDvYejHDPc2+TG/Dxq1svYN27DTz8cu0JezivmzyCr089i5+98SGvVNXzwDUTFISFWCLFmur6bgfgdq9U17O6up65k4arR1hERMRh6glus/dghO+/+A5XThjGnoNhHlpVm3YP551XjGFI/xAvvb2Lf7rqXAXhLLfnQISpD69N6/zpStDvYd13pjFkgM4pERGRTHXWE6zLS7T2AP/+vQb+asrp/G5jHYtWVKcdYCLxFItWVPO7jXX81ZTT+cN7DbTEEi6vWHqrZDLFispdjgRgaD2/VlTuIpl0pp6IiIi0UggG9ofj5AZ8PP76NtbVNnSrxrraBh5/fRuhgI/9LXGHVyh9RWNLjCff/NDRmk+++SGNLTFHa4qIiGS7rA/B8XiSrTsPsOtAuNsBuN262gZ2HQizddcB4vGkQyuUviSRssftIT8ZdY1hEqm+17YkIiLSm2V9CP64JcbQAUEeWlXrSL2HVtUytH+Qj3XlLisdirjTCtPkUl0REZFslfUh2OuBNTV7He3hfLVmL17jSDnpY6IufQIQTagnWERExElZH4LDsRTPbNrhaM1lm3YQdihUS9+S49IOghqRJiIi4iz9ZAVXejglO/ULujN62626IiIi2SrrQ3BLLL2Pr30eQ27Ai8+TXp9DOM268tni8xhKCkKO1iwpCKV93omIiEh6sv7yUvQEbQtej2FGaRFXThja6bbJa2r2kjzOnfvq4cxOBbkBbr5wFP9nZbVjNW++cBQFeTmO1RMRERGFYIL+Yy+Gz5k4jFsuHnXEtsk+jyHg8xBLpEik7DHbJi/fsuuIGjnq4cxKXq+H2WXDePjl9HYc7ErQ31rPqyvBIiIijsr6EJyb8+mNTHkBL4vnTWTPwTB/9cSf+PzZg/nO5WM6vRK85Pfb+PbMc7ji3CF8d9kWmtvaIDrWlexSkBdg0dzx3Lms8qRrLZo7noK8gAOrEhERkY6yPgQnkq1XdRubYiy5uZzHX99G/6CfX916wRFXgo929JXg30c+ZsnN5dz2ZAUF+QESSW1ukK0CPg/TS4uZWVrMK9X13a4zs7SYGaXFmgwhIiLiAmNt3wtr5eXltqKiwpFaH33czHObdzK6qB8vbtnJVROHs+dgmIdWpfdxdtDv4c4rxjCkf+jw+9/fe4irJw3n9MF5jqxR+qZ9TVHueqaS1dV7M37vjNIifnRdGaflqxdYRESku4wxG6215cd7LeuvBHs9htkThvDHbfu46aJRPP76toy2T47EUyxaUc3UMYUsuPRM3t97iCsnDFEPpwBw6+fP4MKzTsv4l6pxQ/v3wOpERESylz5nNZDCUJgfzDgAd7SutoHHX99GYX4QiwFl4KzW2BzjrmcquWHJnzAYXrnjMu7+0tgTjk8rKQjxvS+N5ZU7LsNguGHJn7jrmUo+adb22yIiIm7I+ivBA0Je3t5xgF0Hwt0OwO3W1TZwyejBYODzZ5/m0Aqlr4klUqyu2sObf97HY/Mnk+MzNDbHGD4wyL1XlnJafg7xZIpIPEXQ78Hv9bCvKUo8maKxOcbIghCPzZ/Md5dt4ZXqPVw9aYT6gkVERByW9SF4f0uSEYNC3PHbzY7Ue2hVLb/72oXsb0nQL6i7+rPRvuYoP/rvGp746nmkUpb39zbxd0//zxHtEEeP3GsX9Hu450ulnF2UzxNfPY/bf7WRS0YXMnSAsxtwiIiIZLusv7wU8BnW1Ox1ZKYrtPYIv1qzl4BP/RDZKJlM8eKW3fzgmjJyA16e+MMH3Lf8nWPOr0TK0hJLHhGAofX8uW/5Ozzxhw/IC3j5wTVlrKjcTTKpzVdERESclPUhOBxL8cymHY7WXLZpB2GHQrX0LfuaY+zc38LIghA/Xf0ea2oynwwBsKZmLz9Z/R4jTwtR90kL+9QbLCIi4qisD8HGcNw5wCejrjGs++KyVCyZ4sYLRrK57kC3A3C7NTV72bL9ADdeMJKYrgSLiIg4KutDcEs06U7dmDt1pXdLpSw+r5f7V7zT6XE+jyE34MXXxSi97694B7/XS6oPzvMWERHpzbL+xrhowp0rbDGX6krv5vN6eHHLrmN6gL0ew4zSIq6cMLTTbbjX1Owl2aFPOBJP8XLVHq4qG9bT34qIiMhnWtaH4KDfnYvhORpplZWstfy/P310xHNzJg7jlotHZbQN9/Ituw6/9tRbHzFrwlDX1y4iIpJNsj4E9wu685/ArbrSu6Xspz3meQEvi+dNZM/BMNcveavTEWl1jWF+svo9/uO1P3PnFWO44twhfHfZFppjSeoaw6TUDSEiIuKorE9q8aSlpCDk6M1xJQUh4kotWakpmgBaA/CSm8sP70Lo9RiuOLc4rXaI9m24l9xczm1PVtAcS9LcVldEREScoRCcTHHjlNN54KUax2reNOV0ErqbPytF4q03RC6eN/FwAD6ZdojF8yZy+9JNh+uKiIiIM7K+cTWRtMyaMKzL3uCgz8Pg/ADBLnp9g34PV04YRjyhK8HZKMfnYc7EYew5GGbDB408Nn8yE0sGcP2St/jJ6vdO+IlDezvE9UveYmLJAB6bP5kNHzSy52CYq8qGattkERERhxnbB0cvlZeX24qKCkdq7Q9HefP9RvYciPD9FVWHnw/4PHxr+tlMHVtEXsBHUyRBOJ4k5PeSH/TRHEvwavVeHn31/SMmQfzT7HEMGRjkwrMKGBjKcWSN0ndsb2ymsSnGrU9u4F/nTz58NThTU8cUsuDSM/nG0k08cfN5FOQHGFmQ58KKRUREPruMMRutteXHey3r2yGaIkke+K9q7v5iKVPHFLKutoH7Zpcyc9wQXtyyi689tfGEH1/fcN5I1nz7Ml6p2sP9bX2cRf2DPPBSNU/fNoWBoVPwDckpFfR7eO3dBu6fO6HbARg4/L77507g9fcauP68EieXKSIikvWyPgTbtrv5v7tsC0tvO59/vupc3nj/Y2Y+8toxs147qmsMs3hVLY+++h4LZ41j3XemciAcZf6S9TTHkvTBC+zigHjC0tgSY8/BcLcDcLt1tQ1cMnowHzfHiCd1QomIiDgp6xsNmyKtd92XjRjAkAG5fH/FO9z7/NZOA3BHkXiKe5/fyvdXvMOQAbmUjRjQWld382ellIVrJg3noVW1jtR7aFUt104arhFpIiIiDsv6EBxJtN51/8hXJnH3s5Wsrene1bu1NQ3c/Wwlj3zlLwCIJnQ3fzZKpSzr3m1I+5eorkTiKV57t0HbJouIiDgs60Nw0O/l9TsvY0313m4H4HZraxpYU13P69+9jByf16EVSl+StJZnNu3o8jifx5Ab8OLzmC6PXbZph0KwiIiIw7K+Jzg/x4fHGBatrOr64DQsWlnFmjFTyc/J+t8vspLPa457I6XXY5hRWpTWZhnJo3of6hrDeNMIyyIiIpK+rA/Bg3K9/PLNOkc/vl6+ZSd/PUV382ejluixbTAns1nG4boxtdeIiIg4KesvV37SkuTpDdsdrbl0/Xb2tyi0ZKOOO7vlBbwntVlGXuDTlhqnfkkTERGRVlkfgoETBpPeUk/6jhx/a3DNC3hZcnM5v9tYx6IV1RlNG1m0oprfbaxjyc3lh4NwjnaMExERcVTW/2RtH5HmeF2NSMtK7aF18byJJ71ZxuOvb2PxvIlH1BURERFnZH0IDsfdaVuIuFRXejdjDDdfdLpjm2XsORjmpotOxxjdGCciIuKkrA/BIb87V9iCGpGWlQI+w01TRjm6WcbNF45SO4SIiIjDsv4na37QnQEZbtWV3s3vNaypqXd02sia6nr0O5WIiIizsj4EQ+t4qt5cT/qO5miKp976yNGaT731Ec1RTYcQERFxUtaHYL/XcMN5Ix2tOf/8keT41MOZrTRtREREpPfL+hC850CEqyYOI+h35j9F0O9hdtkwdh+IOlJP+hZNGxEREekbsj4EB/1eXqnaw8JZ4xypt3DWOF5+Z49uZMpSmjYiIiLSN2R9UssP+rh/RTXnn1HAtLGFJ1Vr2thCzj+jgEUrq3VjXJbStBEREZG+IetDsKH1Rrb5S97i/jnjux2Ep40t5P4545m/5C1KCkKoIzg7adqIiIhI35D1ITiRtNw45XQammJc+29vcM+XSvnB1ePT7hEO+j384Orx3POlUq79tzdoaIpx45TTSaSsyyuX3krTRkRERHq/rA/Bn4TjXHpOIUG/h4amGDMfeZ1IPMkrd1zGXV8cc8IAUlIQ4q4vjuGVOy4jEk8y85HXaWiKEfR7uHR0Iftb4j38nUhvkJvjcWXaSF6O2iFEREScZKzte1csy8vLbUVFhSO1avYc5N/W/pkpZ57GPc+9ffj5gM/D33/hbL5QWkRuwEdzNEEkniLo95CX46MlluDV6r08+ur7xBKfznD94TUT+OOfP+b2L5zN2CH9HVmj9B0fftyM12OY+chrjmyYEfR7eOWOy0hay6jT8hxYoYiISPYwxmy01pYf77WsbzQcEPSzfMsurpwwhOlji1hTsxeAWCLFwy+/y8MvvwtA0OchP+ijKZIgkjh+uJk+tohBeX5erNzNPVeW9tj3IL1HIpWi/mCMhbPGce/zW0+63sJZ49i9v4WC/BwHViciIiLtsr4dwuc1lBSE+IffbuG2S89k+tii4x4XSaT4uCnWaQC+7dIz+YffbqGkIITPq1vjslEiacnxebjAoWkjF5xZQMDnJZHse5/YiIiI9GZZH4ILcgPcdOEommNJbv3FBq6dPIL755yb0Y1x9885l2snj+DWX2ygOZbk5gtHUZCnK3fZKD/o42dvfMj6D/c5Mm1k/Qf7eOIPH2g6hIiIiMOyPgR7vR6uKmvdMa45luT2pZvY8GEjv14whe9cfk6nN8Z95/Jz+PWCKWz4sJHbl26iOZY8vGOc16Mrwdko4PXwP3WfMCCUw8Orak5q2sjDq2oYEMph8479BLT5ioiIiKOy/sY4aO3/fWHzTu5cVnn4Oa/HMH1sEbPKhjJsYIh4MkU0niLH78Hv9bBrf5gVlbt5tWYvyQ7j0B6aV8bcScMVWrJUMpniiTc+5Ker32XJzeU8/vo2Ljl7MJefO4QVlbtYun47dY3hY95XUhBi/vkjmV02jJff2cPv3/+YBZeeyW1PVvCtmedwy8Vn6BcrERGRDHV2Y5xCcJvG5hh3Lavkler6477u8xgCPg+xROqEM4BnlhazeF4Zg/ICjq5N+pY9B8JMfXgdXmNYPG8iew6G+ema91hwyZldTht5/Pfb+Ob00QzpH+K7y7aQtJZ135nKkAGaFSwiIpIpheA07WuKcvczb58wCHdmZmkxD143gdN0F3/WiyVSPL95B99d1jpy76qyodz6+TN47d0Glm3aQV1j+JhpIyUFIeZNHsFl5xTyxB8+4MXK3QAsnlfG1fpkQUREpFsUgjPQ2BxjTXU9C1/Ymtac16Dfw6K545lRWqwrwHJYY3OM7y7bwurq1pF7x2uvab8SfKL2mhmlRTw0b6LOKxERkW7SnOAMFOQFmDtpOJeMLmRF5S6efPPDE/ZwfvWiUcyaMIyCvICu1MkRkskU35w+GmthTVuwfbmqnperWj9l6Kq9ZvrYIr45fTSJ5MlvuCEiIiLH0pXgTiSTKRpbYiRSlqZIgmgiRU7bx9g+j6EgL0c3K8kxWqIJnt+8kx+srGbxvInsa4rywH9Vp/3Jwj1fKuW0/By+u2wL984q5eq/GE5uQL+vioiIZEpXgrvJ6/VQ2C/Y+mDAqV2L9B2fhOPcv6KKSDzF7Us3cVXZUH69YAp/eO9jflNRd8JPFr5SXsLnRw/mid9/2hN8/4oqLhtTpBAsIiLiMP1kFXFQPJ7khc07j7jq+2Llbl7auofpY4v4zuVjOh2598jq944YuReJp1i+eSf/6+Iz8Pu9p+JbEhER+UxSCBZxUENzlKfXbz/m+Ux7gjtaun47cycNY9jAXFfWLCIiko0UgkUclLIct93haImUJRFLplWzrjFMFzlZREREMqSRBiIOOhRJ9Km6IiIi2cr1EGyM+aIxptYY874x5u7jvD7SGLPWGPM/xphKY8yVbq9JxC3heHpXd30eQ27Aiy/N6SKRNOuKiIhIelxthzDGeIHHgJnADmCDMWa5tbaqw2H/CPzWWvvvxphxwEvAKDfXJeKWkO/4N695PYYZpUVcOWEowweGiCVSxBIpAj4PAZ+HnfvDrKzcfXim8NGCJ6grIiIi3eP2leDzgfettdustTHg18Dco46xQP+2vw8Adrm8JhHX5AeP/b1yzsRhPPO3FzJrwlByTrCpSo7Pw6wJQ3nmby9kzsRhadUVERGR7nM7BA8H6jo83tH2XEf/DPy1MWYHrVeBv3G8QsaYBcaYCmNMRUNDgxtrFXFESUEIgLyAl8fmT2bOxKFgjmx7sEDSWo655msMcyYO5bH5k8kLeI+oJyIiIs7pDZeXbgB+Ya39F2PMhcBTxpjx1tojttey1j4OPA6tO8adgnWKdCk/6OWG80by2Nr3eeKr55FKWVpirTe1bfu4mWc27TjhZhnXTR7B6YPzABiU6+eJr57Hrb/YwPzzR9JPV4JFREQc5fZP1p1ASYfHI9qe6+hW4IsA1to3jTFBYDCw1+W1iTgukbRcNXEYZxflkxfwciiS4KPGFv7u6f/pdNvkusYwP1n9Hv/x2p+584oxlA7pT17AyyNfmUTp0P7Ek11vuSwiIiLpc7sdYgMw2hhzhjEmAFwPLD/qmO3AdABjTCkQBNTvIH1SQW6AcDzB6aflkrLw+O+3sWhFdacBuKNIPMWiFdU8/vttpCycflou4XiCgrwcl1cuIiKSXVwNwdbaBPB3wCqgmtYpEO8YY+43xsxpO+wfgNuMMVuAp4GvWmvV7iB9ktfrYUAoQCJleWT1u6yr7d7vc+tqG3hk9bskUpaBoQDeNEepiYiISHpcbzS01r5E6w1vHZ+7r8Pfq4CL3V6HSE9IJlPEkine2rav2wG43braBi4ZPZgrxg0hmUzh9WpvGxEREafop6qIgw5E4kTjKR5aVetIvYdW1RJJpDgQiTtST0RERFopBIs4KJFKsbJyV9o9wF2JxFO89PYuEroxTkRExFEKwSIOisYtyzbtcLTm7zbuIJpQm7yIiIiTFIJFHGStPe4c4JNR1xjmONtqiIiIyElQCBZxUFM04U7dSNKVuiIiItlKIVjEQdGEO727sYRCsIiIiJMUgkUcFPJ7XakbdKmuiIhItlIIFnFQXo47o7fdqisiIpKtFIJFHGStpaQg5GjNkoIQ2kRRRETEWQrBIg67ccrpXR7j8xhyA158aWyHnE49ERERyYw+YxVxkDGGS88p5MevvHvEhhlej2FGaRFXThjK8IEhookUkXiSoN9Ljs/Dzv1hVlbuZk3NXpKpT6/6Bv0eLh1diDFdh2URERFJn0KwiIO8HsPT67dz3+xzuee5twGYM3EYt1w8inXvNvDwy7XHnSNcUhDiuskj+PrUs/jZGx+yfMsuAP5p9rks3bCd/33pWT36fYiIiHzWKQSLOKgwL8DwgSEK8vzMGj+EK8uGsedgmOuXvNXpVsp1jWF+svo9/uO1P3PnFWO44twhvFS5i0F5fkYMDDG4X04PfhciIiKffeoJFnGQ3+9ldtkwfvHGB9w351yWbapj0YrqTgNwR5F4ikUrqlm2qY775pzLL974gNllw/B79U9VRETESaYv3nVeXl5uKyoqTvUyRI6rJZrgYCTO9557m7U1Dd2uM21sIT+8poz+IR+5AX1oIyIikiljzEZrbfnxXtPlJRGHRZMp1lTvPakADLC2poE11fXEXNqFTkREJJspBIs4rCWaZNHKKkdqLVpZRXNUWyaLiIg4TSFYxEHhaJwXNu9Muwe4K5F4iuVbdhKOxh2pJyIiIq0UgkUctK8lztMbtjtac+n67exrUQgWERFxkkKwiIOs5bhzgE9GXWOYPnj/qoiISK+mECzioKZIwp26UXfqioiIZCuFYBEHhePu3MQWcamuiIhItlIIFnFQyO91pW7Q505dERGRbKUQLOKgfiF3NrVwq66IiEi2UggWcVhJQahX1xMRERGFYBFHBXyG6yaPcLTmvMkjCHj1T1VERMRJ+skq4qDGpjhTzykk6Hfmn1bQ7+GycwppbIk5Uk9ERERaKQSLOCgcT/KzNz7kzivGOFLvzivG8MQfPiAS03QIERERJykEizgo4POwfMsuhvQPMXVM4UnVmjqmkCH9Q7xYuZuAT/9URUREnKSfrCIO6pfTOsXhu8u2sODSM7sdhKeOKWTBpWfy3WVbAMjP0XQIERERJykEizjIGENJQYjmWJLbnqzgy58rYeHs0rR7hIN+Dwtnl/Llz5Vw25MVNMeSlBSEMMa4vHIREZHsohAs4iC/zzCvbTpEcyzJ7Us3sXn7fn592xTumDH6hOPOSgpC3DFjNL++bQqbt+/n9qWbaG7rA/7y50YQ8CkEi4iIOEmfsYo4KQWzyobx76/9mUg8BcCLlbt5aesepo8t4juXj2HYwBDxZIpIPF1TboIAACAASURBVEXQ78Hv9bBrf5gVlbt59NX3Sabs4XJBv4dZE4ZhU6fqGxIREflsUggWcVA8ZcnL8XLnFWNYtKL68PPJlOXlqnperqoHwOcxBHweYokUiQ6h92h3XjGGvICXeCfHiIiISObUDiHiIGPg9XcbuOiswZ3eFJdIWVpiyU4D8NQxhVx01mDWvbsXtQSLiIg4SyFYxEH9Q172NcXwew13zDjnpKZD3DHjHPxewyctcQaG/A6vVEREJLspBIs4qDmaYu6k4Xz9VxsZ0j/IgkvO7NZ0iAWXnMmQ/kG+/quNzJk4nEPRhMsrFxERyS4KwSIOOhRJUL37AI9eP5kHXqqisF8OZxfm8+sFF6Y3HWLBhZxdmE9hvxweeKmKR2+YTNXuAzRFFIJFREScpBvjRBwUjbeONdtct58XtuzmhS27WTirlMvPHcLoonzuvbKU0/JzjpkOsa8pSspaTssLsPHDRm7++QYALjp7MAV5AaIJjYcQERFxkrG27911Xl5ebisqKk71MkSO8W79IfICPqb/eN3hEWnQup3y33/hbL5QWkRuwEdzNEEskSLg85CX46MlluDV6r08+ur7xDoE3qDfw5pvT6U5luCc4n6n4lsSERHps4wxG6215cd7TVeCRRxU3D/Ar96qOyIAA8QSKR5++V0efvldAII+D/lBH02RBJFOrvJG4imWb9nJ/AtKXF23iIhItlFPsIiDDkWSPL1he5fHRRIpPm6KdRqA2y1dv51DkaQTyxMREZE2CsEiDrIW6hrDjtasawzTB7uWREREejWFYBEHuTXFoUkj0kRERBylECzioHDcnbaFiEt1RUREspVCsIiDQn6vK3WDPnfqioiIZCuFYBEH5QfdGbjiVl0REZFspRAs4iBjOOGucN1VUhDCGEdLioiIZD2FYBEHFeYFuOG8kY7WnH/+SIr65ThaU0REJNspBIs4KCfgY+6k4QT9zvzTCvo9zJk4nIB6gkVERBylECzisP5BHwtnjXOk1sJZ4xgQUj+wiIiI0xSCRRzWL+RnRmkx08YWnlSdaWMLmTGumPyg36GViYiISDuFYBEXFA8I8uC1Zd0OwtPGFvLgtWUU9w86vDIREREBhWAR1xT3D/LgNWX84OrxafcIB/0efnD1eAVgERERl6nZUMRFxQOCzJ00jKljili+ZSdL12+nrjF8zHElBSHmnz+SOZOGMyDoUwuEiIiIyxSCRVyWH/STH/Rzy0WjuGriMKyFpmiCSDxJ0O8lP8eHMVDUL0dTIERERHqIQrBID8kJ+BgR0D85ERGR3qBbPcHGmDlOL0REREREpKd0eVnKGHPt0U8BjxljfADW2mfdWJiIiIiIiFvS+Wz2N8AqYC+tARggD7gKsIBCsIiIiIj0KemE4IuAB4EN1tp/BzDGTLXW/o2rKxMRERERcUmXPcHW2g3ATCBgjFlrjDmf1ivAIiIiIiJ9Ulq3qltrU8BPjTG/A37i7pJERERERNyV0XQIa+0ua+1fWmvPPPo1Y8y/OrcsERERERH3OLlt8sUO1hIRERERcY2TIVhEREREpE9QCBYRERGRrONkCDZdHyIiIiIicuqlNR0CwBgzwVr7dieH/NSB9YiIiIhIHxeNJWhojgFwKJwgHE8S8nvpF2qNnoV5AXICacdQV2Ty1f/NGJMD/AL4lbX2QMcXrbW/cHBdIiIiItLHHArHORhJ8MLmnTy9YTt1jeFjjikpCHHDeSOZO2k4/YM++oX8p2ClYKxNf98LY8xo4Bbgy8B64OfW2ldcWtsJlZeX24qKip7+siIiIiJyAvUHIqyurmfRyioi8VSXxwf9HhbOGseM0mKKBwRdWZMxZqO1tvy4r2USgtuKeYGrgUeBg7T2At9jrX32ZBeaLoVgERERkd6j/mCEu5+tZG1NQ8bvnTa2kAevLaO4v/NBuLMQnPaNccaYMmPMI0A18AXgKmttadvfH3FkpSIiIiLSp9Qf6H4ABlhb08Ddz1ZSfzDi8Mo6l8l0iH8FNgETrbW3W2s3QesucsA/urE4EREREem9DoXjrK6u73YAbre2poHVVfU0ReIOraxrmYTgWcBSa20YwBjjMcbkAlhrn3JjcSIiIiLSex2MJFi0ssqRWotWVnEgnHCkVjoyCcGrgVCHx7ltz4mIiIhIlonGWqdApHMTXDoi8RTLt+wkGuuZIJxJCA5aa5vaH7T9Pdf5JYmIiIhIb9fQHOPpDdsdrbl0/fbD84XdlkkIbjbGTG5/YIz5HHDs8LejGGO+aIypNca8b4y5+wTH/KUxpsoY844xZmkGaxIRERGRU8BajjsH+GTUNYbJcHBZt2WyWca3gN8ZY3bROhZtCPCVzt7QNk7tMWAmsAPYYIxZbq2t6nDMaOB7wMXW2k+MMUUZfg8ifUJf2D1HREQkXU0Rd9oWmqI90w6R9k9ca+0GY8xYYEzbU7XW2q5u4TsfeN9auw3AGPNrYC7QsYP6NuAxa+0nbV9nb7prEukL+tLuOSIiIukKx5Ou1I24VPdomV52Og8Y1fa+ycYYrLW/7OT44UBdh8c7gAuOOuYcAGPMG4AX+Gdr7X8fXcgYswBYADBy5MgMly1yaqS7e05dY5jFq2p59NX3XN89R0RExAkhv9eVukGfO3WPlnYINsY8BZwFbAbaI7oFOgvB6a5hNDAVGAG8boyZYK3d3/Ega+3jwOPQumPcSX5NEdfVH4xw93OZDQ+PxFPc+/xWVtfUu7Z7joiIiBPyg+608LlV92iZfJVyYJzNbJ/lnUBJh8cj2p7raAfwp7bWig+MMe/SGoo3ZPB1RHqV+gOZB+CO2nfPURAWEZHeypjWdj4nb44rKQhhjGPlOpXJdIittN4Ml4kNwGhjzBnGmABwPbD8qGOep/UqMMaYwbS2R2zL8OuI9Bp9efccERGRdBXmBbjhPGdbVOefP5KifjmO1jyRTELwYKDKGLPKGLO8/U9nb7DWJoC/A1YB1cBvrbXvGGPuN8bMaTtsFbDPGFMFrAXutNbuy/xbEekd+vLuOSIiIpmYO2k4QX8mcfLEgn4PcyYOx6Z6pus1k3aIf+7OF7DWvgS8dNRz93X4uwW+3fZHpE9za/ecWy4apfFpIiLSqzQ0x/igoZmFs8Zx7/NbT7rewlnj2NZwCEs+I3rgZ17a0d1a+xrwIeBv+/sGYJNL6xLpk/r67jkiIiLpshZu/Nl6po4pZNrYwpOqNW1sIVPHFHLjzzb02GYZaYdgY8xtwDLgP9ueGk5rP6+ItOnru+eIiIikq32zjPlL3uKH15R1OwhPG1vID68pY/6St1rr9tBmGZk0cdwOXAwcBLDWvgdodzeRDvr67jkiIiLpat8s46PGMF/9+Z944JoJ/ODq8Wn3CAf9Hn5w9Xh+eM0EvvrzP/FR20WkntosI5MQHLXWHv5M1hjjo3VOsIi06eu754iIiKSrfbOMvICX+646l+89+zZF/XNY8+2p3PXFMZQUhI77vpKCEHd9cQxrvj2Vov453P3s29x31bnkBVrr9brNMoDXjDH3ACFjzEzg68CL7ixLpG/q67vniIiIpKt9U4vF8yby+OvbWFfbwLraBkIBLw9dN4Gnbr0ArzE0RRPEEkkCPi/5OT6S1rJ1x35mPPIa4dinF3kWz5vI7Us39crNMu4GbgXeBr4GvGStXeLKqkT6qL6+e46IiEi6PB64+aLT2XMwzLraT2fjxxIpXqzcTdLC8IEhYskUsUSKgC9JczTBzv1hVlbuJpb4dJLSutoGLhk9mJsuOh1PD22WkclP1m9Ya38KHA6+xphvtj0nIvT93XNERETS5fcabpwyitn/+vvDz82ZOIxbLh7FuncbePjl2uP+PCwpCHHd5BF8fepZ/OyND1m+ZRcAD62qZcU3LiHH68zc4a5k8lVuPs5zX3VoHSKfCX199xwREZF0WQtrquuJxFPkBbw8Nn8yE0sGcP2St/jJ6vdOeEGorjHMT1a/x/VL3mJiyQAemz+ZvICXSDzFqzX1JHvolrMuQ7Ax5gZjzIvAGR13ijPGrAUa3V+iSN+RE/C5sntOQD3BIiLSy4RjKf7fnz4iL+Blyc3l/G5jHYtWVKe9YVQknmLRimp+t7GOJTeXkxfw8tRbHxF2aMOprqTTDvFHYDet2yb/S4fnDwGVbixKpC/rH/Q5unvOgJD6gUVEpPcxpvWq7mPzJx++Ma472t/XfmNcT3UAdvnT1Vr7EfARcKH7yxHp+/qF/MwoLWZ1TT1ra7r3/xCgdXj4jHHF5Af9Dq5ORETEGS3RJHMmDqP+qBvjumNdbQOXjh7MVWVDaYn1sjnBxphrjTHvGWMOGGMOGmMOGWMOurk4kb6qeECQB689ud1zHry2jOL+QYdXJiIi4oxoIsUtF49i8apaR+otXlXLrZ8/44ipEW7KpHFxMTDHWjvAWtvfWtvPWtvfrYWJ9HXF/YM8eE1Zt3bPUQAWEZHeriDPzx+37Uu7B7grkXiKN7ftY1Buz3wCmkmzYb21ttq1lYh8BhUPCDJ30jCmjili+ZadLF2//YTjYuafP5I5k4YzIOhTC4SIiPR6Ho/h6fXbHa25dP12rpo4zNGaJ5JJCK4wxvwGeB6Itj9prX3W8VWJfIbkB/3kB/3cctEorpo4DGuhKZogEk8S9LfunmMMFPXL0RQIERHpMww4Oheftnq95sa4DvoDLcDlHZ6zgEKwSBpyAj5GBDTpQUREPhsORRLu1I26U/doaf9Ettb+jZsLEREREZG+w6le4KNFe2hOcCbTIc4xxqwxxmxte1xmjPlH95YmIiIiIr1Vjs+d7Y0DvXDb5CXA94A4gLW2ErjejUWJiIiISO+Wm+POfSxu1T1aJiE411q7/qjneqZpQ0RERER6FUvrdCMnlRSEsI5WPLFMQvDHxpizaP2eMcbMo3U7ZRERERHJMrkBD9dNHuFozXmTR5Dr731Xgm8H/hMYa4zZCXwL+N+urEpEREREerVE0jJ9bFHaG0J1Jej38IWxRSRSvezGOGvtNmvtDKAQGGut/by19kPXViYiIiIivVZhXg479oe584oxjtS784ox7NgfprBfz+yYmsl0iG8aY9pnBT9ijNlkjLm8q/eJiIiIyGeP3++lbMRAhg0IMXVM4UnVmjqmkGEDQpSNGIi/F06HuMVae5DWzTJOA24EHnRlVSIiIiLS6w0K+TkUibPg0jO7HYSnjilkwaVncigSZ1Cu3+EVnlgmIbh9F7srgV9aa9/p8JyIiIiIZJncHB9TxxTx1Jsf8uXPlbBwdmnaPcJBv4eFs0v58udKeOrND5k6pojcHtxZNZOvtNEY8zJwBvA9Y0w/oGc6l0VERESkVyrqH+T7c8Zz17OV5Ad8/Pq2Kbz2bgPLNu2grjF8zPElBSHmTR7BZecU8sQfPqAp9jE/uraMov490wvczlib3jQ2Y4wHmARss9buN8acBgxv2zSjR5WXl9uKioqe/rIiIiIicgJ7D0ZYXV3PD16q5uKzBjOrbCjDBoaIJ1NE4imCfg9+r4dd+8OsqNzNH//8MfdeWcqM0mLXArAxZqO1tvx4r3V5JdgYM9ZaW0NrAAY40xh1QYiIiIjIp4r6B7n6L4Zz2Zgilm/eycMv11LXGMbnMQR8HmKJFImUpaQgxPzzR/L9OecyMNffoy0QHaXzVb8NLAD+5TivWeALjq5IRERERPqmtgaDz50+iGljiwj6vTRHE4evBOfl+IjEkxwMx1sP7ant4Y6jyxBsrV3Q9r/T3F+OiIiIiPRF7e0Q96+oIhL/9LaxoM9DftBHUyRBJNHheb+H+2aPc7UdojOZzAn+ctvNcBhj/tEY86wx5i/cW5qIiIiI9AV7D0a469lK7nlu6xEBGCCSSPFxU+yIAAwQiae457mt3PVsJXsPRnpyuUBmI9IWWmsPGWM+D8wAngD+w51liYiIiEhf0B6A19Y0dOv9a2saTkkQziQEJ9v+dxbwuLV2JRBwfkkiIiIi0he0RBOsrq7vdgBut7amgdXV9bTEEg6trGuZhOCdxpj/BL4CvGSMycnw/SIiIiLyGfJJOM79K6ocqXX/iio+aYk7UisdmYTYvwRWAVdYa/cDBcCdrqxKRERERHq1eDzJC5t3HtMDfDSfx5Ab8OLzdD5iNxJPsXzzTuLxZKfHOSXtwWzW2hZjzAtAsTFmZNvTNe4sS0RERER6s4bmKE+v337M816PYUZpEVdOGMrwgSGiiRSReJKg30uOz8PO/WFWVu5mTc1ekqkjZ6QtXb+duZOGMWxgruvrTzsEG2O+AfwTUM+n2yVboMyFdYmIiIhIL5ayHLMt8pyJw7jl4lGse7fh8GYZR49IKykIcd3kEXx96ln87I0PWb5l1+H31zWGSfXQ7OBMtuj4JjDGWrvPrcWIiIiISN9wKPLpTWx5AS+L501kz8EwN/18PX976Zn8542fIy/QGn7D8SQhv5f8oI/mWIJXq/dy08/X883po7ni3CF8d9kWmmPJY+q6KZMQXAcccGshIiIiItJ3hNt6d/MCXpbcXM7jr2/j0tGDWfmNS3hxyy6+9tTGY64UA5QUhLjhvJGs/MYlvFK1h99trGPJzeXc9mQFzbEkkR7qCc7kxrhtwDpjzPeMMd9u/+PWwkRERESk9wr5vAAsnjeR36zfzr1XlpLj8zLzkddYvKr2uAEYWlseFq+qZeYjr5Hj83LvlaX8Zv12Fs+bCECwra7bMrkSvL3tTwDNBxYRERHJavlBH3MmDuNAOMp3rhjLfcu3Hnde8Im2TY7EU9z7/FamjS3k/jnj+f17e7mqbCj5wUziafdlMh3i+wDGmPy2x01uLUpEREREer/bLjmDkN97RAAO+Dx8a/rZTB1b1GlP8KOvvk8skWJtTQP3sZV7ryxlwvCBPbb2TKZDjAeeonU+MMaYj4GbrLXvuLQ2EREREeml+oe81B9MUbnjwOEAfN/sUmaOG3JET7DPYwj4PMQSKRIpe7gneM23L+OVqj3cv6KatTUNzBhbzJgh/RgQ6pkrwcba9OZQGGP+CNxrrV3b9ngq8IC19iL3lnd85eXltqKioqe/rIiIiIi02bW/hWQKZj7yGv1yfCy9bQrrP2jkgf+q5vNnD+5yTvAbf/6Ye75UyvlnFDB/yVsciiZ45Y7L8HpwbE6wMWajtbb8eK9lErXz2gMwgLV2nTEm76RXJyIiIiJ9Tsjv5en1dfTL8fHs1y/mvuVb6Zfj51e3XnDEnOCjHT0neHVNPc9+/WKu/bc3WFG5i+vPK+mR9WcSgrcZYxbS2hIB8Ne0TowQERERkSzTFE3y9IbtLL1tCg+8VMW8ySXsORjm+iVvdbqVcl1jmJ+sfo//eO3P3HnFGIb0D/HAS1UsvW0Ktzy5gdllwxjUA5dZM2mHGAR8H/g8rTvF/R74vrX2E/eWd3xqhxARERE5teoaW3ilag95AR8lp+Xy+OvbWFd77HSIrkwdU8iCS8+kbl8LTdEEl587hJKCXtQO0RZ2/96RFYmIiIhIn9YUSTBz3BC27jzQ7QAMHH7fV8pLuOjswTRFe2bHuLQ3yzDGvGKMGdjh8SBjzCp3liUiIiIivVm/kI+tOw+w60C42wG43braBnYdCLN11wH699Cc4Ex2jBtsrd3f/qDtynCR80sSERERkd7OWhgxKMRDq2odqffQqlpGDAyRSq9T96RlEoJTxpiR7Q+MMafT2hssIiIiIlkm4DOsqdnb6U1wmYjEU7xas5eAzzhSryuZXG++F/iDMeY1wACXAAtcWZWIiIiI9GrhWIpnNu1wtOayTTuY+xfDHa15IpncGPffxpjJwJS2p75lrf24/XVjzLnaPU5EREQkOxjDcecAn4y6xjA9cx04syvBtIXeFSd4+Slg8kmvSERERER6vZZo0p26MXfqHi2TnuCu9FRwFxEREZFTLJpwphf4aDGX6h7NyRCsm+REREREskTQ72SM/FSOz526R+uZryIiIiIinyn9Q/4+VfdoTobgmIO1RERERKQX83sNJQUhR2uWFITwe3umwzajEGyMKTPGzDHGXNv+p/01a+2Uzt4rIiIiIp8dBbkBbrpwlKM1b75wFAV5OY7WPJG0p0MYY34GlAHvAO0dyxZ41oV1iYiIiEgv5vV6uKpsGP/ycq0jG2YE/R5mlw3D6+l9m2VMsdaOc20lIiIiItKnFOQFWDR3PHcuqzzpWovmjqcgL+DAqtKTSTvEm8YYhWARERERASDg8zC9tJiZpcUnVWdmaTEzSosJ9NBkCMjsSvAvaQ3Ce4AorXOBrbW2zJWViYiIiEivV5AX4MHrJsAz8Ep1fcbvn1lazIPXTWBQD14FhsxC8BPAjcDbfNoTLCIiIiJZ7rT8HH40r4zLq+tZ+MLWtHqEg34Pi+aOZ0ZpcY8HYMgsBDdYa5e7thIRERER6bMK8gLMnTScS0YXsqJyF0+++SF1jeFjjispCPHVi0Yxa8IwCvICPdoC0VEmIfh/jDFLgRdpbYcAwFqr6RAiIiIiQsDnYciAIH9z0SjmThpGImVpiiSIJlLk+DzkB334PIaCvJwemwJxIpmE4BCt4ffyDs9pRJqIiIiIHMHr9VDYL9j6YMCpXcuJpB2CrbV/4+ZCRERERER6SiabZQSBW4FzgWD789baW1xYl4iIiIiIazLpRH4KGAJcAbwGjAAOubEoERERERE3ZRKCz7bWLgSarbVPArOAC9xZloiIiIiIezIJwfG2/91vjBlPa5tzkfNLEhERERFxVybTIR43xgwCFgLLgXzgPldWJSIiIiLiokymQ/zftr++BpzpznJERERERNyXdjuEMabYGPOEMea/2h6PM8bc6t7SRERERETckUlP8C+AVcCwtsfvAt9yekEiIiIiIm7LJAQPttb+FkgBWGsTQLKrNxljvmiMqTXGvG+MubuT464zxlhjTHkGaxIRERERyVgmIbjZGHMarVslY4yZAhzo7A3GGC/wGPAlYBxwgzFm3HGO6wd8E/hTBusREREREemWTELwt2mdCnGmMeYN4JfAN7p4z/nA+9babdbaGPBrYO5xjlsE/AiIZLAeEREREZFuySQEVwHPARuAemAJrX3BnRkO1HV4vKPtucOMMZOBEmvtygzWIiIiIiLSbZmE4F8CY4EHgH8FzqF1K+VuM8Z4gB8D/5DGsQuMMRXGmIqGhoaT+bIiIiIikuUy2SxjvLW2Yz/vWmNMVRfv2QmUdHg8ou25dv2A8cA6YwzAEGC5MWaOtbaiYyFr7ePA4wDl5eU2g3WLiIiIiBwhkxC8yRgzxVr7FoAx5gKgoov3bABGG2POoDX8Xg/Mb3/RWnsAGNz+2BizDvjO0QFYRERERPqOaCxBQ3MMgEPhBOF4kpDfS79Qa/QszAuQE8gkhjqvy69ujHmb1okQfuCPxpjtbY9PB2o6e6+1NmGM+Tta5wt7gZ9Za98xxtwPVFhrl5/sNyAiIiIivcOhcJyDkQQvbN7J0xu2U9cYJj/gZVBegE+aYzTFkpQUhLjhvJHMnTSc/kEf/UL+U7JWY23nnQXGmNM7e91a+5GjK0pDeXm5rajQxWIRERGR3qL+QITV1fU8/HItP7h6POOGD8BnDAcjcSLxFEG/h/5BPwlr2bpjPwtfeIfvXD6GGaXFFA8IurImY8xGa+1x96Do8krwqQi5IiIiItJ31B+McPdzlfzV+SNZ8Y1LeGHzTn743zXUNYaPObb9SvCKb1xC9e4D3P1cJQ9eW0Zxf3eC8Il0eSW4N9KVYBEREZHeof5AhB+/UsPfTz+HdbUNLFpZRSSe6vJ9Qb+HhbPGMXVMIY+ueZdvXz7W8SB8UleCRURERESO51A4zlt//pg7Zo7le89Vsrbm2DG2R/cEt4vEU9z7/FamjS3kh9eU8db7HzN9XDH5wZ7pEVYIFhEREZFuORhJUH5GwREBOBTw8i/zyrrsCb7zmbcJx5KsrWnge89V8n+uHs+BcEIhWERERER6r2gsQVMkTsVHnxwOwP/3ps9ROnRAWj3Bq++4jOrdB/hfv9zI2poG1tU0UD5qENGYv0fGp2WyY5yIiIiICAANzTHyg34Wrazi9IIQb9w1jfqDUab/eB2LV9UeNwAD1DWGWbyqluk/Xkf9wShv3DWN0wtCLFpZRX6O//B8YbcpBIuIiIhIxvKDXl7YvJPifjn85msX8Y8vbOXe57emdVMcfNoT/I8vbOU3X7uI4n45LN+yk/yg1+WVt1IIFhEREZGMHQoneXrDdpbeNuWEN8Wlo70neOltU1i6fjuHwsmu3+QAhWARERER6ZZ/mj2OdbUN3Q7A7dbWNLCutoH7Zo9zaGVdUwgWERERkYw1RRKUDh3AopVVjtRbtLKKcUMH0BRNOFKvKwrBIiIiIpKx0/L9vLB5Z9o9wF2JxFMs37KT0/J6ZkSaQrCIiIiIZCyasDy9YbujNZeu30400TO7GSsEi4iIiEi3nGgMWm+p1xmFYBERERHJWFPEnd5d9QSLiIiISK8VjrszyiziUt2jKQSLiIiISMZCfnc2tQj6tFmGiIiIiPRS+UFfn6p7NIVgEREREcmYMVBSEHK0ZklBCGMcLXlCCsEiIiIikrHTcv3ccN5IR2vOP38khfk5jtY8EYVgEREREclYKMfP3EnDCfqdiZNBv4c5E4eT41Kv8dEUgkVERESkW3JzvCycNc6RWgtnjSMvp2cCMCgEi4iIiEg3DcoNML20mGljC0+qzrSxhcwYV8zA3MD/b+/+g6O+7zuPv95a7e53V+KXsBBGlkymyVioRCipoOHSplYgGbc4CBPP1NBc7bv+mPauc+2kSUPOQ64NQ03q+927ubaXduL2Ck3rYENNczlDNZP0xinICchE0t25d66IXK8VhAGh3dVK+twfWhJ5rZW+u/ruD9jnY0aDVt+v3nrzmc+wL776fD/fgDpbHiEYAAAARdu4xtOx/V1FB+HejmYd29+lltVewJ0tjRAMQsuozwAAGAVJREFUAACAFamX9NQj79XRfVt9rxH2wnU6um+rnnqkS+XZFO3tCMEAAAAo2ps3UvrUyUF94Km/1vZ3rdO5Tz6ozzz0QN7t09qaYvrMQw/o3Ccf1PZ3rdMHnjqnT50c1Js3UmXtuxLBGwAAAHeBqfSMzg4n1D8yLkn66L/7htbEw/ryL/yoHu7aJEmaTM8olZmVFw6pMVqf/b6Mfup3v6HrUxlJUv/IuM4OJ7Tvfa2KR8oTTwnBAAAAKMq1ZEaff2HobV+7PpXRQ//hb77/+p54WJvWxfT6taS+lw29i/n8C0P6iQc2lC0EsxwCAAAABctkZnXq4phSmbklz/veVEaDYzeWDMCSlMrM6fTFMWUys0G2mRchGAAAAAUbv5XWifOjgdY8fn5U47fSgdbMhxAMAACAgs056cpEMtCaVyaSmnOBlsyLEAwAAICC3UzN3FF1cxGCAQAAULBkidbuplgTDAAAgGoVC4dKUtcrUd1chGAAAAAUbJVXmq3MSlU3FyEYAAAABasz5X0qXLHammKqs0BL5kUIBgAAQMGaG6I6sKM90JoHd7SreZUXaM18CMEAAAAoWDgcUl93q7xwMHHSC9dpb3erwqHyxFNCMAAAAIqyLhbW5x7uDKTW5x7u1Lp4OJBafhCCAQAAUJR4tF67t7Sot6N5RXV6O5q1e0uL4pHy3BQnEYIBAACwAhtWe/rC/q6ig3BvR7O+sL9LG1aXZy3wbYRgAAAArMjtIPzbj2z1vUbYC9fptx/ZWpEALEnlu+YMAACAu9aG1Z72va9VP/HABp2+OKbj50d1ZSL5jvPammL6mR3t2tvdqrXxcFmXQCxECAYAAEAg4pF6xSP1+vkPvkt93Zs056SbqRlNz8wqUh/SKq9edSY1r/LKtgtEPoRgAAAABKquzhQO1WlmzilUZ6ozU6hu/qO+zqpiPS4hGAAAAIGYnpnTxK1pvTD4up556bW8yyEe37lZD3dtUlNDRJH6ykRic85V5AevRE9PjxsYGKh0GwAAAMiauDWtc8MJHT51WanM3LLne+E6Henbql1bWtTUEClJT2b2snOuZ7Fj1XA1GgAAAHewq5NpfebZQX362UFfAViSUpk5ffrZQX3m2UFdnUyXuMN3IgQDAACgaBO3pnXoK6/oxeFEUd//4nBCh77yiq7dmg64s6URggEAAFCU6Zk5nRtOFB2Ab3txOKGzwwlNz/i7ihwEQjAAAACKMnFrWodPXQ6k1uFTlzVRxqvBhGAAAAAUbHZ2Ti8Mvu57DfByUpn5erOz5bkaTAgGAABAwSampvXMS68FWvOZl17TxFR5rgYTggEAAFCwmTm36D7AK3FlIqmZufJs30sIBgAAQMFupmZKUneyRHVzEYIBAABQsHRmtjR1y7RDBCEYAAAABYuGQyWpW67HKBOCAQAAULBVXv0dVTcXIRgAAAAFq68ztTXFAq3Z1hRTfZ0FWjMfQjAAAAAK1hSP6PGdmwOt+fjOzWpqiAZaMx9CMAAAAAoWCtXp4a5N8sLBxEkvPF8vxJVgAAAAVLOmhoiO9G0NpNaRvq1qaogEUssPQjAAAACKEqmv064tLfrIlpYV1fnIlhbt3tJStp0hJEIwAAAAVqCpIaJjH39v0UH4I1tadOzj79W6Ml4FlgjBAAAAWKH1jVF94dEuPf1ol+81wl64Tk8/2qXfebRL6xvLczPcQuXZiA0AAAB3taaGiPq6W/Xj72nWC4Ov65mXXtOViaQ2rY7qhzY06O/evKXXb6TV1hTTE/9os/a8d5OaGiJlXQKxECEYAAAAgYjU12njGk8/s6NND23dKEm6mZxRMjOrWDikVbH56Lk+HlYsGq5kq4RgAAAABOPa1LSm0rM6dXFMJy6M6spE8h3ntDXFdGB7u/q6WxWPhrQuXt61wLeZc64iP3glenp63MDAQKXbAAAAQNYb11M6N5zQkTNDSmXmlj3fC9fp8J5O7drSoo1rvJL0ZGYvO+d6FjvGlWAAAACsSOJGSp99blD9I+O+vyeVmdOTz1/W2ZGEju3vUsvq0gThfNgdAgAAAEV743pKh04WFoAX6h8Z16GTg0rcSAXc2dIIwQAAACjKtalpnRtOFB2Ab+sfGdfZoYTempoOqLPlEYIBAABQlKn0rI6cGQqk1pEzQ7qVng2klh+EYAAAABQsmc7o1MUxXzfB+ZHKzOn0pTEl05lA6i2HEAwAAICCXZ3K6MSF0UBrHj8/qqtThGAAAABUKee06D7AK3FlIqly7d5LCAYAAEDBJlMzpambLk3dXIRgAAAAFCyZKc1NbKkS1c1FCAYAAEDBYuFQSep69aWpm6vkIdjMHjKz/2Vmr5rZoUWOf9LMhsxs0MzOmdn9pe4JAAAAK9PolebBw6Wqm6ukIdjMQpL+s6SflNQp6YCZdeac9m1JPc65LknPSvqdUvYEAACAlTOT2ppigdZsa4rJLNCSeZX6SvAOSa865/6vc25a0p9J6lt4gnOu3zk3lX35TUn3lbgnAAAArND6eFgHtrcHWvPgjnY1N0YDrZlPqUNwq6QrC15/N/u1fH5O0lcXO2Bmv2hmA2Y2MD6+skfzAQAAYGVi0bD6ulvlhYOJk164Tnu3tSpaorXGuarmxjgz+4SkHklPL3bcOfcHzrke51xPc3NzeZsDAADAO8SjIR3ek7vStTiH93SqIVqeACyVPgSPSWpb8Pq+7Nfexsx2S3pS0l7nXLrEPQEAACAA6+IR7drSot6OlV2g7O1o1u7OFq2NRwLqbHmlDsEXJL3HzN5lZhFJj0k6vfAEM3ufpN/XfAB+s8T9AAAAIEAb13g6tr+r6CDc29GsY/u71LLaC7izpZU0BDvnZiT9iqSvSRqW9OfOue+Y2efNbG/2tKclNUr6CzO7aGan85QDAABAFWpZ7empR7p0dN9W32uEvXCdju7bWpEALEnmyvWA5gD19PS4gYGBSrcBAACABd6amtat9KxOXxrT8fOjujKRfMc5bU0xHdzRrr3drWqIhEq6BMLMXnbO9Sx2rDy7EQMAAOCutzYe0dq49MTO+/WxbZvknDSZnpFpVk4hNUbrZSY1N0bLtgtEPlWzOwQAAADuLmaSnDQ1Pf/n7QdhzM3NVbItSVwJBgAAQECuTU1rKj2rUxfHdOJC/uUQB7a3q6+7VfFoSOvKuCPEQqwJBgAAwIq9cT2lc8MJHTkzpFRm+Su9XrhOh/d0ateWFm1cU5ob41gTDAAAgJJJ3Ejps88Nqn/E/1N9U5k5Pfn8ZZ0dSdx9W6QBAADg7vbG9ZQOnSwsAC/UPzKuQycHlbiRCrizpRGCAQAAUJRrU9M6N5woOgDf1j8yrrNDCb01NR1QZ8sjBAMAAKAoU+lZHTkzFEitI2eGdCs9G0gtPwjBAAAAKFgyndGpi2O+boLzI5WZ0+lLY0qmM4HUWw4hGAAAAAW7OpXRiQujgdY8fn5UV6cIwQAAAKhSzmnRfYBX4spEUuXavZcQDAAAgIJNpmZKUzddmrq5CMEAAAAoWDJTmpvYUiWqm4sQDAAAgILFwqGS1PXqS1M3FyEYAAAABWv0SvPg4VLVzUUIBgAAQMHMpLamWKA125piMgu0ZF6EYAAAABRsfTysA9vbA615cEe7mhujgdbMhxAMAACAgsWiYfV1t8oLBxMnvXCd9m5rVbREa41zEYIBAABQlHg0pMN7OgOpdXhPpxqi5QnAEiEYAAAARVoXj2jXlhb1djSvqE5vR7N2d7ZobTwSUGfLIwQDAACgaBvXeDq2v6voINzb0axj+7vUstoLuLOlEYIBAACwIi2rPT31SJeO7tvqe42wF67T0X1bKxKAJak8G7EBAADgrrZxjac9XffqwQc26PSlMR0/P6orE8l3nNfWFNPBHe3a292qhkiorEsgFiIEAwAAIBBr4xGtjUtP7LxfH9u2Sc5Jk+kZpTKz8sIhNUbrZSY1N0bLtgtEPiyHAAAAQKDqsk+8MJPkpFhk/s/vPwjDuUq19n1cCQYAAEAgbiYzupGa0amLYzpxIf9yiAPb29XX3arVXr1WxcIV6FQyVwVJvFA9PT1uYGCg0m0AAAAgK3E9pbPDCR05M6RUZm7Z871wnQ7v6dTuLS1qWVOaG+PM7GXnXM9ix7gSDAAAgBVJ3Ejp0HOD6h8Z9/09qcycnnz+ss6OJNgiDQAAAHeWxPWUDp0sLAAv1D8yrkMnB5W4kQq4s6URggEAAFCUm8mMzg4nig7At/WPjOvsUEKTqUxAnS2PEAwAAICi3EjN6MiZoUBqHTkzpOvJmUBq+UEIBgAAQMHS0/O7QPi5Cc6PVGZOpy+NKT1dniBMCAYAAEDBxm9N68SF0UBrHj8/qvFb04HWzIcQDAAAgII5p0X3AV6JKxPJsj1HgxAMAACAgk2mSrNsYTLNcggAAABUqWRmtiR1UyWqm4sQDAAAgILFwqGS1PXqS1M3FyEYAAAABWv0SvPg4VLVzUUIBgAAQMHMpLamWKA125piMgu0ZF6EYAAAABSsuSGiA9vbA615cEe7NqyKBlozH0IwAAAAChaN1Kuvu1VeOJg46YXrtHdbqyKsCQYAAEA1W+3V6/CezkBqHd7TqTWx8qwHlgjBAAAAKNKqWFi7t7Sot6N5RXV6O5q1u7NFjV44oM6WRwgGAABA0VrWeDq2v6voINzb0axj+7vUstoLuLOlEYIBAACwIi2rPR17pEtH9231vUbYC9fp6L6tFQnAklS+hRcAAAC4a7Ws8dTXvUkPPrBBpy+N6fj5UV2ZSKoxEtK6hoiu3ZrW5PSs2ppiOrijXXu7W7XGqy/rEoiFCMEAAAAIRKMXVqMX1hM779fHtm2SJN1MziiZmVUsHNKq7I1v6+NhxaKVCb+3EYIBAAAQiGtT05pKz+rUxTGduDB/JThXW1NMB7a3q6+7VfFoSOvikQp0KplzriI/eCV6enrcwMBApdsAAABA1hvXUzo3nNCRM0NKZeaWPd8L1+nwnk7t2tKijWtKsybYzF52zvUsdowrwQAAAFiRxI2UPvvcoPpHxn1/Tyozpyefv6yzIwl2hwAAAMCd5Y3rKR06WVgAXqh/ZFyHTg4qcSMVcGdLIwQDAACgKNempnVuOFF0AL6tf2RcZ4cSemtqOqDOlkcIBgAAQFGm0rM6cmYokFpHzgzpVno2kFp+EIIBAABQsGQ6o1MXx3zdBOdHKjOn05fGlExnAqm3HEIwAAAACnZ1KqMTF0YDrXn8/KiuThGCAQAAUKWc06L7AK/ElYmkyrV7LyEYAAAABZtMzZSmbro0dXMRggEAAFCwZKY0N7GlSlQ3FyEYAAAABYuFQyWp69WXpm4uQjAAAAAK1uiV5sHDpaqbixAMAACAgplJbU2xQGu2NcVkFmjJvAjBAAAAKNj6eFgHtrcHWvPgjnY1N0YDrZkPIRgAAAAFi0XD6utulRcOJk564Trt3daqaInWGuciBAMAAKAo8WhIh/d0BlLr8J5ONUTLE4AlQjAAAACKtC4e0a4tLertaF5Rnd6OZu3ubNHaeCSgzpZHCAYAAEDRNq7xdGx/V9FBuLejWcf2d6lltRdwZ0sjBAMAAGBFWlZ7euqRLh3dt9X3GmEvXKej+7ZWJABLUnk2YgMAAMBdbeMaT3u67tWDD2zQ6UtjOn5+VFcmku84r60ppoM72rW3u1UNkVBZl0AsRAgGAABAINbGI1obl57Yeb8+tm2TnJMm0zNKZWblhUNqjNbLTGpujJZtF4h8CMEAAAAIVCwa1n3RcKXbWBJrggEAAFBzCMEAAACoOYRgAAAA1BxCMAAAAGoOIRgAAAA1hxAMAACAmkMIBgAAQM0hBAMAAKDmmHOu0j0UzMzGJf19BX70PZK+V4Gfe6dhnPxhnPxhnPxhnPxjrPxhnPxhnPyp1Djd75xrXuzAHRmCK8XMBpxzPZXuo9oxTv4wTv4wTv4wTv4xVv4wTv4wTv5U4zixHAIAAAA1hxAMAACAmkMILswfVLqBOwTj5A/j5A/j5A/j5B9j5Q/j5A/j5E/VjRNrggEAAFBzuBIMAACAmkMIBgAAQM0hBOcwsz8yszfN7HKe42Zm/9HMXjWzQTN7f7l7rAY+xulBM7tuZhezH58rd4/VwMzazKzfzIbM7Dtm9quLnFPzc8rnONX8nDIzz8zOm9ml7Dj91iLnRM3sy9n59Ldmtrn8nVaWz3F6wszGF8ynn69Er9XAzEJm9m0ze2GRYzU/n25bZpyYT1lm9pqZvZIdh4FFjlfNe159pX5wFfuSpP8k6Y/zHP9JSe/JfvyopP+S/bPWfElLj5MkfcM593B52qlaM5J+3Tn3LTNbJellM3vROTe04BzmlL9xkphTaUkfds5NmllY0t+Y2Vedc99ccM7PSbrmnHu3mT0m6QuSfroSzVaQn3GSpC87536lAv1Vm1+VNCxp9SLHmE8/sNQ4ScynhXqdc/kejFE173lcCc7hnPu6pIklTumT9Mdu3jclrTWze8vTXfXwMU6Q5Jz7B+fct7Kf39T8P6CtOafV/JzyOU41LztHJrMvw9mP3Lub+yQ9k/38WUm7zMzK1GJV8DlOkGRm90naI+mLeU6p+fkk+Ron+Fc173mE4MK1Srqy4PV3xZt1Pjuzv478qpn9cKWbqbTsrxHfJ+lvcw4xpxZYYpwk5tTtX8lelPSmpBedc3nnk3NuRtJ1SevL22Xl+RgnSfp49texz5pZW5lbrBb/XtJvSJrLc5z5NG+5cZKYT7c5Sf/DzF42s19c5HjVvOcRglEq39L887q3SfpdSc9XuJ+KMrNGSV+R9GvOuRuV7qdaLTNOzClJzrlZ51y3pPsk7TCzrZXuqRr5GKe/lLTZOdcl6UX94GpnzTCzhyW96Zx7udK9VDOf41Tz82mBH3POvV/zyx7+uZl9qNIN5UMILtyYpIX/w7sv+zUs4Jy7cfvXkc65v5IUNrN7KtxWRWTXJH5F0p86504ucgpzSsuPE3Pq7Zxzb0nql/RQzqHvzyczq5e0RtLV8nZXPfKNk3PuqnMunX35RUk/Uu7eqsAHJe01s9ck/ZmkD5vZf8s5h/nkY5yYTz/gnBvL/vmmpOck7cg5pWre8wjBhTst6Wezdzd+QNJ159w/VLqpamNmG2+vGzOzHZqfa7X2D6eyY/CHkoadc/82z2k1P6f8jBNzSjKzZjNbm/08JukjkkZyTjst6fHs549K+mtXY09F8jNOOWsQ92p+HXpNcc591jl3n3Nus6THND9XPpFzWs3PJz/jxHyaZ2YN2ZubZWYNkj4qKXcXqap5z2N3iBxmdkLSg5LuMbPvSvpXmr+pQs6535P0V5J+StKrkqYk/ZPKdFpZPsbpUUm/bGYzkpKSHqu1fzizPijpH0t6Jbs+UZL+paR2iTm1gJ9xYk5J90p6xsxCmv9PwJ87514ws89LGnDOndb8fyb+xMxe1fzNq49Vrt2K8TNO/8LM9mp+Z5IJSU9UrNsqw3zyh/m0qBZJz2WvV9RLOu6c++9m9ktS9b3n8dhkAAAA1ByWQwAAAKDmEIIBAABQcwjBAAAAqDmEYAAAANQcQjAAAABqDiEYAKqEma01s39W6T4AoBYQggGgeqyVRAgGgDIgBANA9Tgm6YfM7KKZPW1mnzazC2Y2aGa/JUlmttnMRszsS2b2v83sT81st5n9TzP7P9mn6cnMftPM/sTMXsp+/ReyX7/XzL6e/RmXzezHK/j3BYCKIQQDQPU4JOnvnHPdkl6U9B5JOyR1S/oRM/tQ9rx3S/o3kjqyHwcl/ZikT2n+SXu3dUn6sKSdkj5nZpuy534t+zO2SbooAKhBPDYZAKrTR7Mf386+btR8KB6V9P+cc69Ikpl9R9I555wzs1ckbV5Q45RzLikpaWb9mg/UFyT9kZmFJT3vnCMEA6hJXAkGgOpkkp5yznVnP97tnPvD7LH0gvPmFrye09svbricms4593VJH5I0JulLZvazJegdAKoeIRgAqsdNSauyn39N0j81s0ZJMrNWM9tQYL0+M/PMbL2kByVdMLP7JSWcc/9V0hclvT+Y1gHgzsJyCACoEs65q9kb3C5L+qqk45JeMjNJmpT0CUmzBZQclNQv6R5JR5xzr5vZ45I+bWaZbE2uBAOoSeZc7m/LAAB3OjP7TUmTzrl/XeleAKAasRwCAAAANYcrwQAAAKg5XAkGAABAzSEEAwAAoOYQggEAAFBzCMEAAACoOYRgAAAA1Jz/D+xO5uSa3ztpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXRcd33v+89XmtHskfWQyJYUrEhxAsGyMLIKskngsLBqU6AmVuKWNvZpC4VL7rqnDxTO4eI0qLdFJwdDWzjtWbSH0FIO3GtzCnViN6YNdVDSe3myZWqbRFaAkzZyFDwRsSNZ1jxp9Lt/SApCliyN9Nt6yLxfa3lJs2fPN18r8pqPtr779zPnnAAAAIBCUrTcDQAAAABLjRAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcCLL3cBCrFu3zm3YsGG52wAAAMAKdurUqZ8456pnem5VhuANGzaou7t7udsAAADACmZmz8z2HOMQAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHBW5WYZSyWZzuqFkawk6XJyVMlsTvFoscrj41+2taVRxWPR5WwRAAAAC0AInsGlkYxG0jkdOd2vQyf7dP5i8qpz6qvi2ru1Qe0tdSqNFev60pJl6BQAAAALYc655e4hb62trS6sbZMvDKb06LmEOo/1KJUdm/P8IFqkjl1N2rGpVjdUBqH0BAAAgPyZ2SnnXOtMz3EleIrEUEr3PnhWXb0D835NKjum+x56Qsd7Ezqwp1m1FQRhAACAlY4b4yZcGEzp3sP5BeCpunoHdO/hs0oMpTx3BgAAAN8IwRqfAf5Gb0LfWGAAnvSN3gE9ei6hF0cynjoDAABAGAjBkkbSOX3s4R4vtT72cI+upHNeagEAACAcBR+Ck+ms/v7sc/O6CW4+UtkxPXz2OSXTWS/1AAAA4F/Bh+AXRrL6f777jNea//d3n3lpfWEAAACsPAUfgiXNuA7wSqoHAAAAvwo+BF9OjYZSdzikugAAAFi8gg/B6Ww4N7GlRv3MGAMAAMC/gg/BJZFwvgSx4oL/0gIAAKxYBZ/U1sTC2TSvNFYcSl0AAAAsXsGHYEmqr4qv6HoAAADwq+BDcLykSL/0uhu91vzl192oeJQrwQAAACtVwYfgbM5pR2ONgqifL0UQLdLPN9Yom+PGOAAAgJWq4ENwVTyqHw+m9OG3bfRS78Nv26gfD6W0rizmpR4AAAD8K/gQHI9FtbmuUvXXl2pHY82iau1orFH99aXavL5SMcYhAAAAVqyCD8G53Jh+PJjSTWtL9bs7btX2jdULqrN9Y7V+d8etumltqS4MJpVjHAIAAGDFKvgQ/JPhtK6LR3TqmRe173Pf0bteX6+Od26a94xwEC1Sxzs36V2vr9e+z31H33vmRVWWRvWT4XTInQMAAGChCj4EyyQn08ceflJXMjn91sHv6XTfi/ry+2/TB3feOutyZ/VVcX1w56368vtv0+m+F/VbB7+nK5mc/ujhJ+WcSbbEfw8AAADMWzg7RawizknHzj6nVPan4wt/f/bH+toTF7SjsUb/6Rc2av11cWVzY0plxxREixQtLtJzLyb18Nkf68+/8SPlxtxLr01lx/S17z+nd7XWL8dfBwAAAPNQ8CE4m3P66veevep4bszp6z0Jfb0nIUmKFJlKIkXKjI5pdEronclXTj2ru37O79rDAAAA8KfgQ7BzTucvJuc8b3TMaTSTm1fN8xeTcrp2UAYAAMDyKfiZ4OH0aEh15xeYAQAAsPQKPgSnR8NZyiyTJQQDAACsVAUfguMhbWoRsFkGAADAilXwIbgsCGcsOqy6AAAAWLyCD8HRIpt1LeCFqq+KK1pc8F9aAACAFavgk9q6sph+/bYNXmv+xu0btK4s5rUmAAAA/Cn439kXFxfpjuZX6FP/9NTPbJixUEG0SO987StUXMSWcfhZ2WxOA1fSGnPS5dSoktmc4tFilQcRFZlUvSamKLPkAAAsiYIPwZK0tiymP9r9Gn3k776/6Fofa3+N1nIVGFOMpEd1KZnVkdP9OnSib8Z1qeur4tq7rUHtLXW6Ph5VaYx/mgAAhKngxyEkqSRSpLc23aCdm2pmPSdSZCotKVbkGld4d26q0Vs33aCSCF9WjHt+KKUHT/drx58+pk/+41Ozbsxy/mJSn/zHp7TjTx/Tg6f79fxQaok7BQCgsHC5aYo/2r1Zzj2hR3ufV3GRaeemGv3ia1+huuviSo+OKZXNKYgWKxYpUv+LSR07+2M92vu8cmNOOxpr9Ee7Ny/3XwEryPNDKX3k8Fl19Q7M+zWp7Jjue/AJHT+X0Cf2NKumIgixQwAACpc5t/q2921tbXXd3d3e6mVGx/T0T4b1+f/3aX1g56v1vwauqCIe1WNPPa+/+96zs/76+pded6O2b6zRUDKrV1av0Z8d/4He9+ZbdPO6Mq4GF7iFBODp2hqrCcIAACyCmZ1yzrXO9BxJTdLgSEbfe+aiPrDj1crknPovJXX3A9/Wfz3+w2v++vq/Hv+h7n7g2+q/lFQm5/SBHa/WqWcuanAks8R/A6wkI+lR/dO5xKICsCR19Q7o+LmERjLhbO0NAEAhK/gQnMuNaSg9qttuWSuZ6WMPP6l7H/z+vFeKSGXHdO+D39fHHn5SMtNtr1yrofSocrlwtmPGyncpmVXnwz1ean3s4R5dGsl6qQUAAH6q4EPwYCqrFy6nVRIp1kePfH/BV++6egf00SPfV0lxsV4YTmkwRXApRNlsTkdO93tZbk8a/yHr6Ol+ZbM5L/UAAMC4gg/BI5mcNqxbo8efGvDy6+vHnxrQzWvLNJIhtBSi54fTOnSiz2vNgyf69Pxw2mtNAAAKXcGH4KCkSJncmDqP+fn1deexHqVzYwpKCv5LW5DGnGadI1+o8xeTGlt9968CALCiFXxSM0lHTz/n9dfXf3/mObFfXGEaToVzE9twmpvjAADwqeBD8Eh6TIdO+v/19UiaG+MKUXKes7vz2XxlqhQzwQAAeMVmGQrn19coTEF05p8r8918ZboY604DAOBVwYfgyyGt4sCvrwtTeRC96tjuLev13jdt0GM/GNCffH3mrZMnN1/5D9tfqc9/89909Mxzc9YFAAALV/Ah2Ncs8NV1+fV1oaqviuv8xaTWlBTrk7+8RReGkrr7c9+55vfa5OYr//3x/6UPv22j3vaaG/R/fvWMrmRyqq+KL2H3AAAUhoL/HWs8WhxK3SASTl2sbEG0SHu3NmhNSbE+9+5WfeXUeXU+fC6vzVc6Hz6nr5w6r8+9u1VrSoq1b1tDaN+nAAAUqoK/ElwWhPMlCKsuVrZkJqfdLet187o1euCfn9ZjTy1s7enJ1/3Ju7botTdWTmydHPPYKQAAha3grwSbyfuvm+ur4jLWSCtIRUWmIFKki1cyCw7Akx57akAXr2QURIpUNM9VJAAAwPwQgiXt3dbgtea+bQ2sE1ygisyUHnV+N18ZdSrmpyoAALwq+BD8YjKr3VvWz7q0Vb6CaJHu2LJeg8lwVp3AynZ9PKIjp/u9br5y9Ey/roszXgMAgE8FH4LLg4i+/uQFdexq8lLvD97ZpEeeuMBMcIF6YSQbyuYrL4zwQxUAAD4VfAguMtPffOvfdNsta9XWWL2oWm2N1XrDzWv1hW//m4r49XVBci6czVfc1ftnAACARSj4EByLmH75dTfq7ge+rc72zQsOwm2N1eps36y7H/i23vX6GxWww1dBGk6Fs0kKm68AAOBXwSe164IS7Wper8vpUd31mW/q99+xSfffuXneM8JBtEj337lZv/+OTbrrM9/U5fSodr12vSpLS0LuHCtRMqRNUth8BQAAvwo+BEejxSoPIvrw2zZqYDijt376n5XK5vRPH3yLPvL2jbMun1ZfFddH3r5R//TBtyiVzemtn/5nDQxn9OG3bVRZEFG0uOC/tAWJzVcAAFgduHtLUnksoje+cp22b6zWY08NqPPYOX3ikaf0uz//Kn3211+v0pKIrqRHlcqOKYgWaU0sopHMqL5x7nnt+NTjyoyOrwSwfWO13vjKdSrnpriCxeYrAACsDryzSiqNRbRuTYk+uPPVksY3KciMjulPvv4D/cnXfyBJCiJFKgsiGk6NKjV69fJX2zdW64M7X611a0pUWsKXtZDVV8W93hznezMXAADAOMRLqisCra8MdM+bb1HHOzddNROcGh3TT4YzVwXgIFqkjndu0j1vvkXrKwNVVwRL2TZWmHhJkfZu9b/5SmkJ4xAAAPjEJcspqisCOUnZ3Ji+fM/tevyp5/XV7z0741W9+qq4fvl1N+otG2s0OJLRq2rKCMBQMjOm9pY6/fk3fuhlw4wgWqTdW+o0kslprYf+AADAOELwNDUVgcqCiC6NZHVrTZnu+8VNWlsWUzY39tJMcLS4SC8MpzXmnGrKY3p1bRkjEHjJ0wPD6tjVpPseemLRtTp2NenpgcvasK7MQ2cAAGASyW0GpSURlZZEVLOmRANX0hpz0uXUqDKjOZVExleTqLsuUHV5wCoQ+BmRItPZ/kHd2bJebY3V6uodWHCttsZqbd9YrSOnn9Oraso9dgkAAAjB1xCNFmv9daXL3QZWESuS3vaaG/SbXzihL773Nt374NkFBeG2xmp9/K5m/cbnv6O/+PetKuJnLQAAvOKtFfBoNOdkcrp7a4N+9bPf0n9u37ygzVf+c/tm/epnv6W7tzbIzCmbY99kAAB8IgQDHsUipnM/HtIbblmrm6vL9KZPdKmmIqZHP7R9XpuvPPqh7aqpiOlNn+jSzdVlesMta3Xux0Nsww0AgGeMQwAeXReUqPEVlXp6YPildaff/8VTipcU649/6bX60vveoGIzDadHlcrmFESLVRaLKOecnnj2Re389ONKZnIvrTvdfympTTdUsg03AACeEYIBjya34b4wlFRFPKp73nyL3nzrOv3xI0/ptw+dfum8spJiXb+mRJeuZDScyb10fHLd6U03VCiZzenCUFJb6q/jBkwAADzjnRXwrDwW0dYNa/WFb/6rLo1k1VBVqi/fc7s+uPPWa45DfHDnrfryPberoapUl0ay+sI3/1VbN6xlG24AAELAuyvg2eQ23P/H9lfp08d/oPJYRO/7dzfrzpY67XndjTKThpLZl9adrohH5Zw0NuZ0aSSjo6ef0+X0KNtwAwAQIt5dgRBM7h54z5tvUXV5iUpLojpyul+HTvbNugPh3q0Nam+p0+/ueJUGLmfYhhsAgBCZc6tv6aXW1lbX3d293G0Ac7owmNKj5xLqPNYzr22Ug2iROnY1acemWt1QSQAGAGAxzOyUc651pudCnwk2s7eb2VNm9iMz2z/D8w1m1mVm/2JmZ83sF8PuCVgKiaGU7n3wrO576Il5BWBJSmXHdN9DT+jeB88qMZQKuUMAAApXqCHYzIolfUbSOyQ1SdprZk3TTvuopL91zv2cpLsl/UWYPQFLITGY0v7DC9stTpK6ege0/zBBGACAsIR9JXibpB855552zmUkfVlS+7RznKSKic8rJT0Xck9AqC4nszp+LrHgADypq3dAx3sSGk5lPXUGAAAmhR2C6ySdn/L42YljU/2hpF8zs2clfU3S78xUyMzuMbNuM+seGFhcuADCNJQaVeexHi+1Oo/1aDA56qUWAAD4qZWwTvBeSV9wzt0o6RclfcnMrurLOfeAc67VOddaXV295E0C85HOjOrI6f55zwDPJZUd09Ez/UpnCMIAAPgUdgjul1Q/5fGNE8emep+kv5Uk59y3JQWS1oXcFxCKgSsZHTrZ57XmwRN9GriS8VoTAIBCF3YIPinpVjO72cxKNH7j29Fp5/RJ2iFJZrZJ4yGYeQesSs5pxnWAF+P8xaRW4UqGAACsaKGGYOfcqKTflvSIpHMaXwXiSTP7mJntnjjtP0p6v5mdkXRI0nvcaly8GJA0nApnbGE4zTgEAAA+hb5jnHPuaxq/4W3qsT+Y8nmPpDeF3QewFJLZXCh1UyHVBQCgUK2EG+OAl414tDiUukEknLoAABQqQjDgUVkQzi9XwqoLAEChIgQDHplJ9VVxrzXrq+Iy81oSAICCRwgGPKpeU6K9Wxu81ty3rUE15TGvNQEAKHSEYMCjWElE7S11CqJ+/mkF0SLt3lKnEmaCAQDwihAMeFYRRNSxq8lLrY5dTaqMMw8MAIBvhGDAs/J4VDs31aqtcXHbe7c1VmtnU63KgqinzgAAwCRCMBCC2spAB/Y0LzgItzVW68CeZtVWBJ47AwAAEiEYCE1tRaADdzXr/js3z3tGOIgW6f47NxOAAQAIGcOGQIhqKwO1t6zX9o01OnqmXwdP9On8xeRV59VXxbVvW4N2t9SpMogwAgEAQMgIwUDIyoKoyoKo3nP7Tbpjy3o5Jw2nR5XK5hREi1UWi8hMWlsaVTxG+AUAYCkQgoGQXRrJaCSd05HT/Tp0cvxKcFlJsa5fU6JLVzIazuRUXxXX3q0Nam+pU2msWNeXlix32wAAvKyZc265e8hba2ur6+7uXu42gDldGEzp0XMJdR7rUSo7Nuf5QbRIHbuatGNTrW6oZCYYAIDFMLNTzrnWmZ7jSjAQksRQSvc+eFZdvQPzfk0qO6b7HnpCx3sT3BwHAECIWB0CCMGFwZT2H84vAE/V1Tug/YfPKjGU8twZAACQCMGAd5dGMnr0XGLBAXhSV++Ajvck9OJIxlNnAABgEiEY8GwknVPnsR4vtTqP9ehKOuelFgAA+ClCMOBRMp3VkdP987oJbj5S2TEdPdOvZDrrpR4AABhHCAY8emEkq0Mn+7zWPHiiTy+MEIIBAPCJEAx45Jxm3BFuMc5fTGoVrmQIAMCKRggGPBpOjYZTNx1OXQAAChUhGPAomQ3nJrZUSHUBAChUhGDAo3i0OJS6QSScugAAFCpCMOBRWRDOJoxh1QUAoFARggGPzKT6qrjXmvVVcZl5LQkAQMEjBAMerS2Nau/WBq81921rUHVZzGtNAAAKHSEY8Gg4k1N7S52CqJ9/WkG0SLu31GkoxTrBAAD4RAgGPBodc3r+ckodu5q81OvY1aTEUFKjYywUDACAT4RgwKPLqVHd9Rff0s9vqlFbY/WiarU1VmvHphrt+ctvh7b+MAAAhYoQDHiUnljP9zf/5oQO7GlecBBua6zWgT3Nes/fnBivOzrmrUcAAEAIBryKTawT3HthWO/+/Hf1X+56re6/c/O8Z4SDaJHuv3OzPn7Xa/Xuz39XvReGJUklEf6pAgDgE++sgEflU9bz7b0wrNs//g1tekW5Hv3Qdn3k7RtnXT6tviquj7x9ox790HZtekW5bvv4N14KwNPrAgCAxeOdFfAoUmSqr4rr/MXkS8f2/OW3VRZE9Ne/8Xq9s3m9JGk4PaqxsZyKiopVFhv/Z/jjF0f0tj/756vmf+ur4ooUsVAwAAA+cSUY8KiqtETvvn3DVcdzY04vDGeUc04myTmn9Oj4R5OUc07PX04rN8MqEO++fYOq1rBOMAAAPnElGPCouLhI72xerz/5+lNKZcdvZvur33i9Nr2iUkdO9+vj/9j7M1eJJ9VXxbV3a4OOf/AtOvfjQf1vXzwlaXxG+J3N61XMlWAAALziSjDgWdWaEnW2b9ZNVXF98yNtSgylteNTj+mTjzw1YwCWpPMXk/rkI09px6ceU2IorW9+pE03VcXV2b5ZVWtKlvhvAADAy585t/oW4W9tbXXd3d3L3QYwq4tXMsqMjuneB8+qq3cg79e3NVbr43c1KxYp0vWEYAAAFsTMTjnnWmd6jivBQAiyiwjAktTVO6B7HzyrTI71gQEACAMhGPDscjKr4+cSCw7Ak7p6B3S8J6HhVNZTZwAAYBIhGPBsKDWqzmM9Xmp1HuvRYJItkwEA8I0QDHiUzozqyOn+l1aGWKxUdkxHz/QrnSEIAwDgEyEY8GjgSkaHTvZ5rXnwRJ8GrmS81gQAoNARggGPnNOsy6At1PmLSa3CRVwAAFjRCMGAR9O3PPZWN804BAAAPhGCAY+S2VwodVMh1QUAoFARggGP4tHiUOoGkXDqAgBQqAjBgEdlQWRV1QUAoFARggGPzKT6qrjXmvVVcZl5LQkAQMEjBAMeVa8p0d6tDV5r7tvWoJrymNeaAAAUOkIw4FGsJKL2ljoFUT//tIJokXZvqVMJM8EAAHhFCAY8qwgi6tjV5KVWx64mVcaZBwYAwDdCMOBZeTyqnZtq1dZYvag6bY3V2tlUq7Ig6qkzAAAwiRAMhKC2MtCBPc0LDsJtjdU6sKdZtRWB584AAIBECAZCU1sR6MBdzbr/zs3znhEOokW6/87NBGAAAELGsCEQotrKQO0t67V9Y42OnunXwRN9On8xedV59VVx7dvWoN0tdaoMIoxAAAAQMkIwELKyIKqyIKr3vnGD7tiyXs5Jw+lRpbI5BdFilcUiMpNqymOsAgEAwBJhHAJYYmaSnBQtGv84uRGGG3PL2RYAAAWFK8FAyC4nsxpKjerI6X4dOjn7OMTerQ1qb6lTRRBReZxxCAAAwmTOrb6rT62tra67u3u52wDmlBhM6fi5hDqP9SiVHZvz/CBapI5dTdq5qVa1ldwYBwDAYpjZKedc60zPcSUYCEliKKX9D55VV+/AvF+Tyo7pvoee0PHeBCtEAAAQImaCgRAkBlPafzi/ADxVV++A9h8+q8RQynNnAABAIgQD3l1OZnX8XGLBAXhSV++AjvckNJzKeuoMAABMIgQDng2lRtV5rMdLrc5jPRpMjnqpBQAAfooQDHiUzoyvAjGfm+DmI5Ud09Ez/UpnCMIAAPhECAY8GriS0aGTfV5rHjzRp4ErGa81AQAodIRgwCPnNOM6wItx/mJSq3AlQwAAVjRCMODRcCqcsYXhNOMQAAD4RAgGPEpmc6HUTYVUFwCAQkUIBjyKR4tDqRtEwqkLAEChIgQDHpUF4WzCGFZdAAAKFSEY8MhMqq+Ke61ZXxWXmdeSAAAUPEIw4FH1mhLt3drgtea+bQ2qKY95rQkAQKEjBAMexUoiam+pUxD1808riBZp95Y6lTATDACAV4RgwLOKIKKOXU1eanXsalJlnHlgAAB8IwQDnpXHo9q5qVZtjdWLqtPWWK2dTbUqC6KeOgMAAJMIwUAIaisDHdjTvOAg3NZYrQN7mlVbEXjuDAAASIRgIDS1FYEO3NWs++/cPO8Z4SBapPvv3EwABgAgZKEPG5rZ2yX9maRiSX/lnDswwzm/IukPJTlJZ5xz+8LuC1gKtZWB2lvWa/vGGh0906+DJ/p0/mLyqvPqq+Lat61Bu1vqVBlEGIEAACBkoYZgMyuW9BlJb5X0rKSTZnbUOdcz5ZxbJd0r6U3OuUtmVhNmT8BSKwuiKguieu8bN+iOLevlnDScHlUqm1MQLVZZLCIzqaY8xioQAAAskbCvBG+T9CPn3NOSZGZfltQuqWfKOe+X9Bnn3CVJcs49H3JPwLKIlUR0YwkrPQAAsBIsaCbYzKrmeWqdpPNTHj87cWyqV0t6tZl908y+MzE+AQAAAIRmzhBsZh+d8nmTmf1A0ikz+zcze4OHHiKSbpW0XdJeSZ8zs+tm6OMeM+s2s+6BgQEP/1kAAAAUqvlcCd4z5fM/lvQB59zNkn5F0qfneG2/pPopj2+cODbVs5KOOueyzrl/lfQDjYfin+Gce8A51+qca62uXtz6qwAAAChs+Y5DrHfO/YMkOedOSIrPcf5JSbea2c1mViLpbklHp53zkMavAsvM1ml8POLpPPsCAAAA5m0+d+ncYmZHJZmkG82s1Dk3MvHcNddxcs6NmtlvS3pE40ukfd4596SZfUxSt3Pu6MRzv2BmPZJykj7snHthoX8hAAAAYC7zCcHt0x4XSZKZ1Ur6y7le7Jz7mqSvTTv2B1M+d5I+NPEHAAAACN2cIdg59/gsxxMaXwNYkmRm/8059zseewMAAABC4XPb5Dd5rAUAAACExmcIBgAAAFYFQjAAAAAKjs8QbB5rAQAAAKGZdwg2s9fOccqfLbIXAAAAYEnkcyX4L8zshJn9BzOrnP6kc+4L/toCAAAAwjPvEOyce7Okf6/xbZBPmdlBM3traJ0BAAAAIclrJtg590NJH5X0EUlvkfTnZtZrZnvCaA4AAAAIQz4zwc1m9mlJ5yT9vKQ7nHObJj7/dEj9AQAAAN7NZ9vkSf9N0l9J+n3nXHLyoHPuOTP7qPfOAAAAgJDkE4J3SUo653KSZGZFkgLn3Ihz7kuhdAcAAACEIJ+Z4OOS4lMel04cAwAAAFaVfEJw4Jwbnnww8Xmp/5YAAACAcOUTgq+Y2esmH5jZ6yUlr3E+AAAAsCLlMxP8e5K+YmbPaXyL5Bsk/WooXQEAAAAhmncIds6dNLNGSRsnDj3lnMuG0xYAAAAQnnyuBEvSVkkbJl73OjOTc+6L3rsCAAAAQjTvEGxmX5L0SkmnJeUmDjtJhGAAAACsKvlcCW6V1OScc2E1AwAAACyFfFaHeELjN8MBAAAAq1o+V4LXSeoxsxOS0pMHnXO7vXcFAAAAhCifEPyHYTUBAAAALKV8lkh73MxuknSrc+64mZVKKg6vNQAAACAc854JNrP3S/qqpM9OHKqT9FAYTQEAAABhyufGuN+S9CZJQ5LknPuhpJowmgIAAADClE8ITjvnMpMPzCyi8XWCAQAAgFUlnxD8uJn9vqS4mb1V0lck/X04bQEAAADhyScE75c0IOn7kv53SV9zzt0XSlcAAABAiPJZIu13nHN/JulzkwfM7AMTxwAAAIBVI58rwe+e4dh7PPUBAAAALJk5rwSb2V5J+yTdbGZHpzxVLuliWI0BAAAAYZnPOMS3JP1Y49sm/+mU45clnQ2jKQAAACBMc4Zg59wzkp6RdHv47QAAAADhy2fHuD1m9kMzGzSzITO7bGZDYTYHAAAAhCGf1SE+KekO59y5sJoBAAAAlkI+q0MkCMAAAAB4OcjnSnC3mf1PSQ9JSk8edM4d9t4VAAAAEKJ8QnCFpBFJvzDlmJNECAYAAMCqMu8Q7Jz7zTAbAQAAAJZKPqtDvNrMHjWzJyYeN5vZR8NrDQAAAAhHPjfGfU7SvZKykuScOyvp7hYdrogAACAASURBVDCaAgAAAMKUTwgudc6dmHZs1GczAAAAwFLIJwT/xMxeqfGb4WRmv6zx7ZQBAACAVSWf1SF+S9IDkhrNrF/Sv0r6tVC6AgAAAEKUz+oQT0vaaWZrJBU55y6H1xYAAAAQnnxWh/iAmU2uFfxpM/uemf3CXK8DAAAAVpp8ZoLf65wb0vhmGWsl/bqkA6F0BQAAAIQonxBsEx9/UdIXnXNPTjkGAAAArBr5hOBTZvZ1jYfgR8ysXNJYOG0BAAAA4clndYj3SWqR9LRzbsTM1kpiK2UAAACsOnOGYDNrdM71ajwAS9ItZkxBAAAAYPWaz5XgD0m6R9KfzvCck/TzXjsCAAAAQjZnCHbO3TPxsS38dgAAAIDw5bNO8LsmboaTmX3UzA6b2c+F1xoAAAAQjnxWh+hwzl02s38naaekv5b038NpCwAAAAhPPiE4N/Fxl6QHnHPHJJX4bwkAAAAIVz4huN/MPivpVyV9zcxieb4eAAAAWBHyCbG/IukRSW9zzr0oqUrSh0PpCgAAAAjRvEOwc25E0hFJV8ysQVJUUm9YjQEAAABhmfeOcWb2O5L+L0kJ/XS7ZCepOYS+AAAAgNDks23yByRtdM69EFYzAAAAwFLIZyb4vKTBsBoBAAAAlko+V4KflvSYmR2TlJ486Jz7lPeuAAAAgBDlE4L7Jv6UiPWBAQAAsIrNOwQ75/5IksysbOLxcFhNAQAAAGGa90ywmW02s3+R9KSkJ83slJm9JrzWAAAAgHDkc2PcA5I+5Jy7yTl3k6T/KOlz4bQFAAAAhCefELzGOdc1+cA595ikNd47AgAAAEKW1+oQZtYh6UsTj39N4ytGAAAAAKtKPleC3yupWtJhSX8nad3EMQAAAGBVyWd1iEuSfjfEXgAAAIAlkc/qEP9kZtdNeXy9mT0STlsAAABAePIZh1jnnHtx8sHEleEa/y0BAAAA4conBI+ZWcPkAzO7SZLz3xIAAAAQrnxWh7hP0v9nZo9LMklvlnRPKF0BAAAAIcrnxrh/NLPXSbpt4tDvOed+Mvm8mb3GOfek7wYBAAAA3/K5EqyJ0PvwLE9/SdLrFt0RAAAAELJ8ZoLnYjMeNHu7mT1lZj8ys/2zvtjsl8zMmVmrx54AAACAq/gMwVfdJGdmxZI+I+kdkpok7TWzphnOK5f0AUnf9dgPAAAAMCOfIXgm2yT9yDn3tHMuI+nLktpnOK9T0ickpULuBwAAAPAagjMzHKuTdH7K42cnjr1k4ma7eufcsWsVN7N7zKzbzLoHBgYW3SwAAAAKV143xplZs6QNU1/nnDs88fG2WV52rXpFkj4l6T1zneuce0DSA5LU2trK+sQAAABYsHmHYDP7vKRmSU9KGps47CQdvsbL+iXVT3l848SxSeWSNkt6zMwk6QZJR81st3Oue769AQAAYOVIpbP6yUhWknQ5OapkNqd4tFjl8fHoua40qiAWXc4W87oSfJtz7qqb2uZwUtKtZnazxsPv3ZL2TT7pnBuUtG7ysZk9Juk/EYABAABWn8GRjIbTOR053a9DJ/t0/mLyqnPqq+Lau7VB7S11KosVq7K0ZBk6zS8Ef9vMmpxzPfN9gXNu1Mx+W9Ijkoolfd4596SZfUxSt3PuaJ79AgAAYAW6MJjSo+cS6jzWo1R2bNbzzl9M6pOPPKU//8YP1bGrSTs21eqGymAJOx1nzs1vvNbM3iLpqKQLktIaXxfYOeeaw2tvZq2tra67m4vFAAAAK0FiKKX9h8+qqzf/xQvaGqt1YE+zaiv8B2EzO+Wcm3EPinyuBP+1pF+X9H39dCYYAAAABezCYEr3PriwACxJXb0D2n/4bGhBeDb5LJE24Jw76pz7V+fcM5N/QusMAAAAK9rgSEaPnkssOABP6uod0PGehIaSM624G458rgT/i5kdlPT3Gh+HkPTTJdIAAABQWIbTOXUem/ftYtfUeaxH2zfWqCLupdyc8rkSHNd4+P0FSXdM/HlnGE0BAABgZUulszpyuv+aN8HlVS87pqNn+pVKZ73Um8u8rwQ7534zzEYAAACwevxkJKtDJ/u81jx4ok93bFmvG5dgDeF8NssIJL1P0mskvTS17Jx7bwh9AQAAYAVzTjOuA7wY5y8mNc+FyxYtn3GIL2l8R7e3SXpc47u/XQ6jKQAAAKxsw6nRcOqmw6k7XT4h+FXOuQ5JV5xz/0PSLklvCKctAAAArGTJbC6UuqmQ6k6XTwienFJ+0cw2S6qUVOO/JQAAAKx08WhxKHWDSDh1p8tnibQHzOx6SR0a3zmuTNIfhNIVAAAAVrSyIJ8Yufx1p8tndYi/mvj0cUm3hNMOAAAAVgMzqb4q7vXmuPqquMy8lbumeY9DmFmtmf21mf3DxOMmM3tfeK0BAABgpVpXGtXerQ1ea+7b1qDqspjXmrPJZyb4C5IekbR+4vEPJP2e74YAAACw8gWxqNpb6hRE84mT16gXLdLuLXWKhTRrPF0+Xa9zzv2tpDFJcs6NSlqa2/cAAACw4pTFitWxq8lLrY5dTSoPliYAS/mF4CtmtlaSkyQzu03SYChdAQAAYMWrLC3Rjk21amusXlSdtsZq7WyqVUW8xFNnc8snBH9I46tC3GJm35T0RUm/E0pXAAAAWBVuqAx0YE/zgoNwW2O1DuxpVm1FMPfJHuWzBkWPpAcljWh8p7iHND4XDAAAgAJWWxHo43c169FzCXUe61EqOzbna4JokTp2NWlnU+2SB2ApvxD8RUlDkv7LxON9Gt9K+V2+mwIAAMDqckNloDu2vELbN9bo6Jl+HTzRN+PyafVVce3b1qDdLXUqjxUv6QjEVPmE4M3OuamTz11m1uO7IQAAAKxOFfESVcSl37z9Jt2xZb2ck4bToxrN5RQpLlZZLCIzqbostmSrQMwmn5ng703cDCdJMrM3SOr23xIAAABWM5vY8cJMkpOyufGPL22E4dxytfaSOa8Em9n3Nb4iRFTSt8ysb+LxTZJ6w20PAAAAq8XlZFZDqVEdOd2vQydnH4fYu7VB7S11qggiKo9Hl6FTydwcSdzMbrrW8865Z7x2NA+tra2uu5uL0AAAACtFYjCl4wu5MW5TrWorw7kxzsxOOedaZ3puzivByxFyAQAAsHokhlLa/+BZdfUOzPs1qeyY7nvoCR3vTSzLEml+9rkDAABAQUoMprT/cH4BeKqu3gHtP3xWiaGU586ujRAMAACABbmczOr4ucSCA/Ckrt4BHe9JaDiV9dTZ3AjBAAAAWJCh1Kg6j/lZMbfzWI8Gk6Neas0HIRgAAAB5S2fGV4GYz01w85HKjunomX6lM0sThAnBAAAAyNvAlYwOnezzWvPgiT4NXMl4rTkbQjAAAADy5pxmXAd4Mc5fTC7ZPhqEYAAAAORtOBXO2MJwmnEIAAAArFDJbC6UuqmQ6k5HCAYAAEDe4tHiUOoGkXDqTkcIBgAAQN7Kgjk3Hl5RdacjBAMAACBvZlJ9VdxrzfqquMy8lpwVIRgAAAB5q15Tor1bG7zW3LetQTXlMa81Z0MIBgAAQN5iJRG1t9QpiPqJk0G0SLu31KmEmWAAAACsZBVBRB27mrzU6tjVpMr40swDS4RgAAAALFB5PKqdm2rV1li9qDptjdXa2VSrsiDqqbO5EYIBAACwYLWVgQ7saV5wEG5rrNaBPc2qrQg8d3ZthGAAAAAsSm1FoAN3Nev+OzfPe0Y4iBbp/js3L0sAlqSlG7wAAADAy1ZtZaD2lvXavrFGR8/06+CJPp2/mLzqvPqquPZta9DuljpVBpElHYGYihAMAAAAL8qCqMqCqN77xg26Y8t6OScNp0c1msspUlysslhEZlJNeWzJVoGYDeMQAAAA8GrMOUnjG2rISdnc+MfJjTByubFl620SV4IBAADgxaWRjEbSOR053a9DJ2cfh9i7tUHtLXUqjRXr+tKSZehUMjeR1FeT1tZW193dvdxtAAAAYMKFwZQePZdQ57EepbJzX+kNokXq2NWkHZtqdUNlODfGmdkp51zrTM9xJRgAAACLkhhK6d4Hz6qrd2Der0llx3TfQ0/oeG+CJdIAAACwulwYTGn/4fwC8FRdvQPaf/isEkMpz51dGyEYAAAAC3JpJKNHzyUWHIAndfUO6HhPQi+OZDx1NjdCMAAAABZkJJ1T57EeL7U6j/XoSjrnpdZ8EIIBAACQt2Q6qyOn++d1E9x8pLJjOnqmX8l01ku9uRCCAQAAkLcXRrI6dLLPa82DJ/r0wgghGAAAACuUc5pxHeDFOH8xqaVavZcQDAAAgLwNp0bDqZsOp+50hGAAAADkLZkN5ya2VEh1pyMEAwAAIG/xaHEodYNIOHWnIwQDAAAgb2VBOBsPh1V3OkIwAAAA8mYm1VfFvdasr4rLzGvJWRGCAQAAkLe1pVHt3drgtea+bQ2qLot5rTkbQjAAAADyFo9F1d5SpyDqJ04G0SLt3lKnWEizxtMRggEAALAgpbFidexq8lKrY1eT1sSWJgBLhGAAAAAs0PWlJdqxqVZtjdWLqtPWWK2dTbW6rrTEU2dzIwQDAABgwW6oDHRgT/OCg3BbY7UO7GlWbUXgubNrIwQDAABgUWorAn38rmbdf+fmec8IB9Ei3X/n5mUJwJK0NAuxAQAA4GXthspAu5pfoe0ba3T0TL8OnujT+YvJq86rr4pr37YG7W6p05qS4iUdgZiKEAwAAAAvrist0XWl0ntuv0l3bFkv56Th9KgyozmVRIpVFovITKouiy3ZKhCzYRwCAAAAXhVN7HhhJslJOTf+8aWNMJxbrtZewpVgAAAAeHE5mdVQalRHTvfr0MnZxyH2bm1Qe0udKoKIyuPRZehUMrcCkni+WltbXXd393K3AQAAgAmJwZSOn0uo81iPUtmxOc8PokXq2NWknZtqVVsZzo1xZnbKOdc603NcCQYAAMCiJIZS2v/gWXX1Dsz7NansmO576Akd702wRBoAAABWl8RgSvsP5xeAp+rqHdD+w2eVGEp57uzaCMEAAABYkMvJrI6fSyw4AE/q6h3Q8Z6EhlNZT53NjRAMAACABRlKjarzWI+XWp3HejSYHPVSaz4IwQAAAMhbOjO+CsR8boKbj1R2TEfP9CudWZogTAgGAABA3gauZHToZJ/XmgdP9GngSsZrzdkQggEAAJA35zTjOsCLcf5icsn20SAEAwAAIG/DqXDGFobTjEMAAABghUpmc6HUTYVUd7rQQ7CZvd3MnjKzH5nZ/hme/5CZ9ZjZWTN71MxuCrsnAAAALE48WhxK3SASTt3pQg3BZlYs6TOS3iGpSdJeM2uadtq/SGp1zjVL+qqkT4bZEwAAABavLAhn4+Gw6k4X9pXgbZJ+5Jx72jmXkfRlSe1TT3DOdTnnRiYefkfSjSH3BAAAgEUyk+qr4l5r1lfFZea15KzCDsF1ks5PefzsxLHZvE/SP8z0hJndY2bdZtY9MLC4XUkAAACwONVrSrR3a4PXmvu2NaimPOa15mxWzI1xZvZrklol/fFMzzvnHnDOtTrnWqurq5e2OQAAAPyMWElE7S11CqJ+4mQQLdLuLXUqeTnMBEvql1Q/5fGNE8d+hpntlHSfpN3OuXTIPQEAAMCDiiCijl3Tb/damI5dTaqML808sBR+CD4p6VYzu9nMSiTdLeno1BPM7OckfVbjAfj5kPsBAACAJ+XxqHZuqlVb4+J+S9/WWK2dTbUqC6KeOptbqCHYOTcq6bclPSLpnKS/dc49aWYfM7PdE6f9saQySV8xs9NmdnSWcgAAAFhhaisDHdjTvOAg3NZYrQN7mlVbEXju7NrMLdXedB61tra67u7u5W4DAAAAExKDKR0/l1DnsR6lsmNznh9Ei9Sxq0k7m2pDC8Bmdso51zrTc0s3eAEAAICXrdrKQO0t67V9Y42OnunXwRN9On8xedV59VVx7dvWoN0tdaoMIks6AjEVIRgAAABelAVRlQVRvef2m3THlvVyThpOjyqVzSmIFqssFpHZ+PJqsZLljaGEYAAAAHhxOZnVUGpUR07369DJ8SvBZSXFun5NiS5dyWg4k1N9VVx7tzaovaVOFUFE5fHluRLMTDAAAAAWbcEzwZtqVVvJTDAAAABWmcRQSvsfPKuu3vnv6pvKjum+h57Q8d7EsqwOsWJ2jAMAAMDqkxhMaf/h/ALwVF29A9p/+KwSQynPnV0bIRgAAAALcjmZ1fFziQUH4EldvQM63pPQcCrrqbO5EYIBAACwIEOpUXUe6/FSq/NYjwaTo15qzQchGAAAAHlLZ8ZXgZjPTXDzkcqO6eiZfqUzSxOECcEAAADI28CVjA6d7PNa8+CJPg1cyXitORtCMAAAAPLmnGbcEW4xzl9MaqlW7yUEAwAAIG/DqXDGFobTjEMAAABghUpmc6HUTYVUdzpCMAAAAPIWjxaHUjeIhFN3OkIwAAAA8lYWhLPxcFh1pyMEAwAAIG9mUn1V3GvN+qq4zLyWnBUhGAAAAHmrXlOivVsbvNbct61BNeUxrzVnQwgGAABA3mIlEbW31CmI+omTQbRIu7fUqYSZYAAAAKxkFUFEHbuavNTq2NWkyvjSzANLhGAAAAAsUHk8qp2batXWWL2oOm2N1drZVKuyIOqps7kRggEAALBgtZWBDuxpXnAQbmus1oE9zaqtCDx3dm2EYAAAACxKbUWgA3c16/47N897RjiIFun+OzcvSwCWpKUbvAAAAMDLVm1loPaW9dq+sUZHz/Tr4Ik+nb+YvOq8+qq49m1r0O6WOlUGkSUdgZiKEAwAAAAvyoKoyoKo3vvGDbpjy3o5Jw2nR5XK5hREi1UWi8hMqimPLdkqELNhHAIAAAChMJPkpn2U5MbccrYliSvBAAAA8ORyMquh1KiOnO7XoZOzj0Ps3dqg9pY6VQQRlceXZxzCnFv+JJ6v1tZW193dvdxtAAAAYEJiMKXj5xLqPNajVHZszvODaJE6djVp56Za1VaGc2OcmZ1yzrXO9BxXggEAALAoiaGU9j94Vl29A/N+TSo7pvseekLHexMskQYAAIDVJTGY0v7D+QXgqbp6B7T/8FklhlKeO7s2QjAAAAAW5HIyq+PnEgsOwJO6egd0vCeh4VTWU2dzIwQDAABgQYZSo+o81uOlVuexHg0mR73Umg9CMAAAAPKWzoyvAjGfm+DmI5Ud09Ez/UpnliYIE4IBAACQt4ErGR062ee15sETfRq4kvFaczaEYAAAAOTNOc24DvBinL+Y1FKt3ksIBgAAQN6GU+GMLQynGYcAAADACpXM5kKpmwqp7nSEYAAAAOQtHi0OpW4QCafudIRgAAAA5K0sCGfj4bDqTkcIBgAAQN7MpPqquNea9VVxmXktOStCMAAAAPJWvaZEe7c2eK25b1uDaspjXmvOhhAMAACAvMVKImpvqVMQ9RMng2iRdm+pUwkzwQAAAFjJKoKIOnY1eanVsatJlfGlmQeWCMEAAABYoPJ4VDs31aqtsXpRddoaq7WzqVZlQdRTZ3MjBAMAAGDBaisDHdjTvOAg3NZYrQN7mlVbEXju7NoIwQAAAFiU2opAB+5q1v13bp73jHAQLdL9d25elgAsSUs3eAEAAICXrdrKQO0t67V9Y42OnunXwRN9On8xedV59VVx7dvWoN0tdaoMIks6AjEVIRgAAABelAVRlQVRvfeNG3THlvVyThpOj0ouJ1mxymIRmUk15bElWwViNoxDAAAAwKsx5ySNb6ghJyWz4x8nN8LI5caWrbdJXAkGAACAF5dGMhpJ53TkdL8OnZx9HGLv1ga1t9SpNFas60tLlqFTydxEUl9NWltbXXd393K3AQAAgAkXBlN69FxCncd6lMrOfaU3iBapY1eTdmyq1Q2V4dwYZ2annHOtMz3HlWAAAAAsSmIopXsfPKuu3oF5vyaVHdN9Dz2h470JlkgDAADA6nJhMKX9h/MLwFN19Q5o/+GzSgylPHd2bYRgAAAALMilkYwePZdYcACe1NU7oOM9Cb04kvHU2dwIwQAAAFiQkXROncd6vNTqPNajK+mcl1rzQQgGAABA3pLprI6c7p/XTXDzkcqO6eiZfiXTWS/15kIIBgAAQN5eGMnq0Mk+rzUPnujTCyOEYAAAAKxQzmnGdYAX4/zFpJZq9V5CMAAAAPI2nBoNp246nLrTEYIBAACQt2Q2nJvYUiHVnY4QDAAAgLzFo8Wh1A0i4dSdjhAMAACAvJUF4Ww8HFbd6QjBAAAAyJuZVF8V91qzviouM68lZ0UIBgAAQN7Wlka1d2uD15r7tjWouizmteZsCMEAAADIWzwWVXtLnYKonzgZRIu0e0udYiHNGk9HCAYAAMCClMaK1bGryUutjl1NWhNbmgAsEYIBAACwQNeXlmjHplq1NVYvqk5bY7V2NtXqutIST53NjRAMAACABbuhMtCBPc0LDsJtjdU6sKdZtRWB586ujRAMAACARamtCPTxu5p1/52b5z0jHESLdP+dm5clAEvS0izEBgAAgJe1GyoD7Wp+hbZvrNHRM/06eKJP5y8mtemGMm296TqdfOZFnbswrPqquPZta9DuljqtKSle0hGIqcw5tyz/4cVobW113d3dof93kumsXhjJSpIuJ0eVzOYUjxarPD7+s8Pa0qjisWjofeDlge8nAEChWCnveWZ2yjnXOtNzXAmewaWRjEbSOR053a9DJ8d/ipmuviquvVsb1N5Sp9JYsa5fpp9isPLx/QQAKBSr6T2PK8HTXBhM6dFzCXUe61EqOzbn+UG0SB27mrRjU61uqFz6eRasbHw/AQAKxUp8z7vWlWBC8BSJoZT2Hz6rrt6BvF+7XHc2YuXi+wkAUChW6nvetUIwq0NMuDC48P95ktTVO6D9h88qMZTy3BlWI76fAACFYrW+5xGCNT6/8ui5xIL/503q6h3Q8Z6EXhzJeOoMqxHfTwCAQrGa3/MIwZJG0jl1HuvxUqvzWI+upHNeamF14vsJAFAoVvN7XsGH4GQ6qyOn++c1wD0fqeyYjp7pVzKd9VIPqwvfTwCAQrHa3/NCD8Fm9nYze8rMfmRm+2d4PmZm/3Pi+e+a2Yawe5rqhZGsDp3s81rz4Im+l9bGQ2Hh+wkAUChW+3teqCHYzIolfUbSOyQ1SdprZk3TTnufpEvOuVdJ+rSkT4TZ03TOacY17Bbj/MWkVuGiG/CA7ycAQKFY7e95YV8J3ibpR865p51zGUlfltQ+7Zx2Sf9j4vOvStphZhZyXy8ZTo2GUzcdTl2sbHw/AQAKxWp/zws7BNdJOj/l8bMTx2Y8xzk3KmlQ0trphczsHjPrNrPugYHF3YE4VTIbzgB2KqS6WNn4fgIAFIrV/p63am6Mc8494Jxrdc61VldXe6sbjxZ7qzVVEAmnLlY2vp8AAIVitb/nhR2C+yXVT3l848SxGc8xs4ikSkkvhNzXS8qCyKqqi5WN7ycAQKFY7e95YYfgk5JuNbObzaxE0t2Sjk4756ikd098/v+3d+cxdpVlHMe/P8owLVStQK3YFpsIBtFABawalbBpVExJECMSBfe4RY1b1ATcYsS4xKiJRsGgCC5RwaogEiVBDVvZ1ygqKrigqCgCtcDjH/dUxmGmPcXOnHM9309yM/fe8+bcp0+fzPvMOe+55yjgRzWP93JOYOXOi7bpPlfuvIj5W9WsPrGeJElDMe5z3pw2wc0a3zcA5wDXA1+vqmuTvD/J2mbYycAuSW4E3gI84GvU5tIuO07woiftvk33ecya3Vm6eHKb7lPjwXqSJA3FuM95c74muKrOqqrHVtVjquqDzXsnVNW65vndVfWCqtqjqtZU1S/nOqapFk1OcMTq5Syc2DapWDixHWv3Xc7kHK2TUb9ZT5KkoRj3OW9sLoybSztOLuD4w6d/ffGDc/zhe7PTpA3LkFlPkqShGOc5zyYYePiOO3Do45Zx8F7/27dOHLzXUg7bexlLdtxhG0WmcWQ9SZKGYpznPJvgxiMftpATj9znQf8nHrzXUk48ch+WPXThNo5M48h6kiQNxbjOeZnHL2LYZg444IBav379nOz7D7ffzQ+v/yMf+N513L3xvi2OXzixHccfvjeH7b3MhkUPYD1Jkoaij3Nekkur6oAZt9kEP9Df7vwX/9xwL+uuvIXTL/7NjPfFXrnzIo5ZsztrVy9npx0WeMpas7KeJElD0bc5zyb4Qbprw0Zuu3MjVaP7WN+98V4WTixg8eT2JLB08aRX7as160mSNBR9mfM21wR7G6rNWDQ5wYrJia7D0P8J60mSNBTjMOd5YZwkSZIGxyZYkiRJg2MTLEmSpMGxCZYkSdLg2ARLkiRpcGyCJUmSNDg2wZIkSRocm2BJkiQNzljeMS7Jn4Bfd/DRuwJ/7uBzx415asc8tWOe2jFP7ZmrdsxTO+apna7y9OiqWjrThrFsgruSZP1st97T/cxTO+apHfPUjnlqz1y1Y57aMU/t9DFPLoeQJEnS4NgES5IkaXBsgrfO57oOYEyYp3bMUzvmqR3z1J65asc8tWOe2uldnlwTLEmSpMHxSLAkSZIGxyZYkiRJg2MTPE2SLyS5Nck1s2xPkk8muTHJVUn2m+8Y+6BFng5KcnuSK5rHCfMdYx8kWZnkvCTXJbk2yZtmGDP4mmqZp8HXVJKFSS5OcmWTp/fNMGYyydeaerooyar5j7RbLfP00iR/mlJPr+wi1j5IsiDJ5Um+O8O2wdfTJlvIk/XUSHJTkqubPKyfYXtv5rztu/rgHjsF+DTwpVm2PwfYs3k8GfhM83NoTmHzeQL4cVU9b37C6a17gLdW1WVJHgJcmuTcqrpuyhhrql2ewJraABxSVXckmQB+kuTsqrpwyphXAH+tqj2SHA18GHhhF8F2qE2eAL5WVW/oIL6+eRNwPfDQGbZZT/fbXJ7Aeprq4Kqa7cYYvZnzPBI8TVWdD/xlM0OOAL5UIxcCS5LsNj/R9UeLPAmoqt9X1WXNvUZQLgAABKVJREFU838w+gW6fNqwwddUyzwNXlMjdzQvJ5rH9KubjwC+2Dz/BnBoksxTiL3QMk8CkqwADgdOmmXI4OsJWuVJ7fVmzrMJ3nrLgd9OeX0zTtazeWpzOvLsJI/vOpiuNacRnwhcNG2TNTXFZvIE1tSmU7JXALcC51bVrPVUVfcAtwO7zG+U3WuRJ4DnN6djv5Fk5TyH2BefAN4B3DfLdutpZEt5AutpkwJ+kOTSJK+eYXtv5jybYM2Vyxjdr3tf4FPAmR3H06kki4FvAm+uqr93HU9fbSFP1hRQVfdW1WpgBbAmyRO6jqmPWuTpO8CqqtoHOJf7j3YORpLnAbdW1aVdx9JnLfM0+Hqa4ulVtR+jZQ+vT3Jg1wHNxiZ4690CTP0Lb0Xznqaoqr9vOh1ZVWcBE0l27TisTjRrEr8JnFZV35phiDXFlvNkTf23qvobcB7w7Gmb/lNPSbYHHgbcNr/R9cdseaqq26pqQ/PyJGD/+Y6tB54GrE1yE/BV4JAkX542xnpqkSfr6X5VdUvz81bgDGDNtCG9mfNsgrfeOuDY5urGpwC3V9Xvuw6qb5I8ctO6sSRrGNXa0H5x0uTgZOD6qvr4LMMGX1Nt8mRNQZKlSZY0zxcBzwRumDZsHXBc8/wo4Ec1sLsitcnTtDWIaxmtQx+UqnpXVa2oqlXA0Yxq5cXThg2+ntrkyXoaSbJTc3EzSXYCngVM/xap3sx5fjvENEm+AhwE7JrkZuA9jC6qoKo+C5wFPBe4EbgTeFk3kXarRZ6OAl6b5B7gLuDoof3ibDwNeAlwdbM+EeDdwO5gTU3RJk/WFOwGfDHJAkZ/BHy9qr6b5P3A+qpax+iPiVOT3Mjo4tWjuwu3M23y9MYkaxl9M8lfgJd2Fm3PWE/tWE8zWgac0Ryv2B44vaq+n+Q10L85z9smS5IkaXBcDiFJkqTBsQmWJEnS4NgES5IkaXBsgiVJkjQ4NsGSJEkaHJtgSeqJJEuSvK7rOCRpCGyCJak/lgA2wZI0D2yCJak/TgQek+SKJB9J8vYklyS5Ksn7AJKsSnJDklOS/CzJaUkOS/LTJD9v7qZHkvcmOTXJBc37r2re3y3J+c1nXJPkGR3+eyWpMzbBktQf7wR+UVWrgXOBPYE1wGpg/yQHNuP2AD4G7NU8jgGeDryN0Z32NtkHOAR4KnBCkkc1Y89pPmNf4AokaYC8bbIk9dOzmsflzevFjJri3wC/qqqrAZJcC/ywqirJ1cCqKfv4dlXdBdyV5DxGDfUlwBeSTABnVpVNsKRB8kiwJPVTgA9V1ermsUdVndxs2zBl3H1TXt/Hfx/cqGn7rKo6HzgQuAU4JcmxcxC7JPWeTbAk9cc/gIc0z88BXp5kMUCS5UkesZX7OyLJwiS7AAcBlyR5NPDHqvo8cBKw37YJXZLGi8shJKknquq25gK3a4CzgdOBC5IA3AG8GLh3K3Z5FXAesCvwgar6XZLjgLcn2djs0yPBkgYpVdPPlkmSxl2S9wJ3VNVHu45FkvrI5RCSJEkaHI8ES5IkaXA8EixJkqTBsQmWJEnS4NgES5IkaXBsgiVJkjQ4NsGSJEkanH8DXKGKswZqbRsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXzV9X338ffn3OWcEAJEkiAhSG01JNJAbaC6bi0MWm2xoMxeK26dtV3Zda3benPNldbhtcnDzXbdunWPbtd0nb3ZBbZ1KFS8LhWKduvqIFigmMSbOUuMGiNBbpJzf77XH0lshADnJL9fbvy9no8HD3J+53c+fMSTx3nzy+f3/ZpzTgAAAECQhCa6AQAAAGC8EYIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgRCa6gdGYPXu2W7BgwUS3AQAAgEls//79rzrnqkd6bkqG4AULFqi1tXWi2wAAAMAkZmY/P9tzjEMAAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAmZKbZYyXZDqro/1ZSdLJZE7JbF6JaFjTEwN/bReUR5Uoi05kiwAAABgFQvAIjvVn1J/Oa/uBLm3dd0SdvckzzqmvSmj90vlau6RO5WVhzSqPTUCnAAAAGA1zzk10DyVraWlxfm2b/PLxlHa3d2vzzjalsoXznh+PhrRpdZNWNtZqzoy4Lz0BAACgdGa23znXMtJzXAkepvtESl+475D2dPQU/ZpUtqBb7j+sXR3dumNds2orCcIAAACTHTfGDXr5eEobt5UWgIfb09GjjdsOqftEyuPOAAAA4DVCsAZmgHe3d486AA/Z09GjXW3deq0/41FnAAAA8AMhWFJ/Oq/NO9s8qbV5Z5v60nlPagEAAMAfgQ/ByXRW2w90FXUTXDFS2YJ2HOxSMp31pB4AAAC852sINrN/MrNXzOzwWZ43M/uamT1rZofM7HI/+xnJ0f6stu474mnNLXuPvL6+MAAAACYfv68Ef1PS1ed4/gOSLhn8tUHS3/vczxmc04jrAI9FZ29SU3DlOQAAgMDwNQQ7534kqfccp6yV9G034HFJM83sQj97Ot2pVM6fuml/6gIAAGDsJnomuE5S57DHLwweO4OZbTCzVjNr7ekZ2yoOwyWz/tzElvKpLgAAAMZuokNw0ZxzdzrnWpxzLdXV1Z7VTUTDntUaLh7xpy4AAADGbqJDcJek+mGP5w0eGzcVcX82zfOrLgAAAMZuokPwDkm/NbhKxBWSjjvnXhrPBsyk+qqEpzXrqxIy87QkAAAAPOT3EmlbJf1EUoOZvWBmnzCz/25m/33wlAclPSfpWUl3SfpdP/sZyQXlUa1fOt/Tmjcsm6/qijJPawIAAMA7vv7M3jm3/jzPO0mf8rOH80mURbV2SZ2+9sNnPNkwIx4Nac3iOpX5NGsMAACAsZvocYhJobwsrE2rmzyptWl1k6aVEYABAAAmM0KwpFnlMa1srNWKhWNbdWLFwmqtaqrVzPKYR50BAADAD4TgQXNmxHXHuuZRB+EVC6t1x7pm1VbGPe4MAAAAXiMED1NbGdefX9es269dpHj0jX81FbGw6mclVBF746hDPBrS7dcuIgADAABMISxme5o5M+Ja3XyhljfU6FQ6q3g0rLCZTqSySmULikdDqoxHlXdOqUxeFYmopsXCjEAAAABMIYTgEYQHF/nd3f6Ktu47os7e5Bnn1FcltH7pfK1dUvf6+QAAAJgabGCVsqmlpaXFtba2+lK7+3hKu9q7tXlnW1FLpsWjIW1a3aRVjbWqncE4BAAAwGRhZvudcy0jPceV4GG6T6S08b5D2tPRU/RrUtmCbrn/sHZ1dDMXDAAAMEVwY9yg7uMpbdxWWgAebk9HjzZuO6TuEymPOwMAAIDXCMGSTiaz2tXePeoAPGRPR492tXXrVCrrUWcAAADwAyFY0olUTpt3tnlSa/PONh1P5jypBQAAAH8EPgSnMzltP9BV1E1wxUhlC9pxsEvpDEEYAABgsgp8CO7py2jrviOe1tyy94h6+jKe1gQAAIB3Ah+CndOI6wCPRWdvUlNw5TkAAIDACHwIPpX2Z2yhz6e6AAAAGLvAh+B0Nu9L3VTOn7oAAAAYu8CH4Hg07E/diD91AQAAMHaBD8HlZf6EVb/qAgAAYOwCH4Lzeaf6qoSnNeurEsoXuDMOAABgsgp8CA6FTL92+TxPa15/+TyFzDytCQAAAO8EPgSbScsvrVY86s1fRTwa0nsvrRYZGAAAYPIKfAgOmem+A126+aoGT+rdfFWDth3o4kowAADAJBb4EByLmKrKY5pTmdDyhuox1VreUK05lQnNnhZTWTjwf7UAAACTVuCTmnPSNYvn6tbtP9OG91w86iC8vKFaG95zsW7d/jOtbp4rbosDAACYvAIfgntPZVVZFtHn3tegT2/9qW75YKNuv3ZR0TPC8WhIt1+7SLd8sFGf3vpTfe59Daosi+hoX8bnzgEAADBakYluYKJFwqa+TF7V08v0jzcu1e0Ptmt6WUT3fPIKPfZ0j+594gV19ibPeF19VULXXz5P7720Wt/4t//SI+3d+scbl6r7REp9mbyiYWaCAQAAJqvAh+CKsoi+19qphjnT9bXdz+jRp3okSQ8eflkrF9boD9/foLkzE8rmC0plC4pHQ4qGQ3rxtaQeOPSSvvbDZ19fEzhspg+3zNOOg1368DvrJ/I/C5NQMp3V0f6sJOlkMqdkNq9ENKzpiYFvwwvKo0qURSeyRQAAAiPwIThXcOrtz6jrtaR2d7zy+vF8wenhtm493NYtSYqETLFISJlcQbmzbISxu+MV/dLbLtCrfZmznoPgOdafUX86r+0HurR135Gz/mRh/dL5WrukTuVlYc0qj01ApwAABIc5N/XCWktLi2ttbfWk1pHePvWeyugjdz2uVLYw5nrxaEj3fPIKVVXENL9qmgcdYip7+XhKu9u7tXlnW1Hvr3g0pE2rm7SysVZzZsTHoUMAAN68zGy/c65lpOcCf2OcK0iPPt3jSQCWpFS2oMee7tEU/LcFPNZ9IqUv3HdIt9x/uOj3Vypb0C33H9YX7juk7hMpnzsEACC4Ah+C887pX554wdOa9z7xggqMQwTay8dT2rjtkPZ09Izq9Xs6erRxG0EYAAC/BD4ER8I24ozmWHT2JhVmdYjAOtaf0e727lEH4CF7Onq0q61br/Wz3B4AAF4LfAjuT+f9qZvxpy4mv/50Xpt3tnlSa/PONvX59B4FACDIAh+CUzlvZoFPl/ZoxhhTSzKd1fYDXZ7OmO842KVkOutJPQAAMCDwIbg8Gi7qvEjIVB4LKxIqbswhESuuLt5cjvZntXXfEU9rbtl75PX1hQEAgDcCv07w0EYFpwuHTKsaa/TBt1+oupkJpXMFpbJ5xaNhlUVC6notqZ2HXtLujlde3yzjDXXjgf+rDSTn5MuMOauNAADgrcAntUjIVF+VeENwWbN4rj7+7gV69OkefeXhp866ucGvXT5Pv7v8rfqnHz+vHQdffMNzxV4xxpvLqVTOn7ppf+oCABBUgR+HqCqP6beuXCBJmhYL6+s3XK7F9TP0kbse11/veuasV/U6e5P6613P6CN3Pa7F9TP09Rsu17TBEYgbr1ygqmll4/WfgEkkmfXnJraUT3UBAAiqwIfgcDikD779Ql0wLaq7bmzR9/d3avMD7SVtbrD5gXZ9f3+n7rqxRRdMi+oDb79QYa4EB1KiyBnzUsUjzJgDAOClwI9D5PMFdZ9I6Z9/+wp96f916NGnRre269Dr/vm3r1D38aTmTC9TOBz4f2METoVPs+B+1QUAIKgCn9J6+zOaEY/op0deG3UAHvLoUz06cOQ1zSiPqpcNDgLJbGAm3Ev1VQkZP1gAAMBTgQ/BZpKT6bYHnvSk3p8+8KScM0JLQFUmwvroFRd5WvOjV1ykmYmopzUBAAi6wIfgXN5p56EXPd3c4MGfvahsnjWtgiiZKWjlwlrFo958a8WjIa1srFVfhtUhAADwUuBDcDbvdO8TL3ha8/v7X1COEBxImZzTtx9/Xjdf1eBJvZuvatC3fvK8MjneTwAAeCnwIdjJ+bO5gQgtQeSc07f+/eeaU5nQ8obqMdVa3lCtOZUJffvffy7HbhkAAHgq8CHYv80NWNc1iIY2tfijew9qw3suHnUQXt5QrQ3vuVh/dO/Bwbq8nwAA8FLgQ3A6580s8OkybG4QSEPvp75MXp/8Vqs+/M56bbqmsegZ4Xg0pE3XNOrD76zXJ7/Vqr7MwPsok+P9BACAlwK/+Khvmxv4VBeT2/D3U18mr09teUIfar5Q92y4Qv/2zKv6bmvnWbfh/vWWev3yJbP1jX/9L/3gUPsbnuf9BACAtwIfgqeV+fNX4FddTG4j/X+3gXX4VD+rXLd8sFEXVJQpmy8olS0oHg0pGg7p6Kn0wFVkN3h+EXUBAMDo8cmqgatwXt4c5/VmCZg6QvaL99O0WFhfvn6xXj6R1EfuevwNy/BFQqZYJKRMrqBc4Rc3vcWjId18VYOuumyO/ujeg+rL5FVflRC7cAMA4K3AzwTHIqbffJf3mxuURQL/VxtIkbDpo1cs0LRYWHfd2KLv7+/U5gfaz1iHOldw6s/k3xCApYF1pjc/0K7v7+/UXTe2aFosrN+6YoGibMENAICnAn8lOF9wWrGwRl/d9bQnG2bEoyEtb6g5I9wgGHJ5p6suq1X9rITu/NFzo96Ke+h1X/nwYjXNrVS24M8NnAAABFXgLy/l8k7Pv9qnW6+5zJN6/+uay/T8q33KEVoCqaaiTIloWL19mVEH4CGPPtWj3r6MyqNh1UyPe9QhAACQCME62pfRW2sqNLsippULa8ZUa+XCGl1QEdNbayrU25fxqENMJaGQKZMvaPPONk/qbd7ZpnS+wDcqAAAeC/xna1kkpL/Z9YxOpLL65HsuHnUQXrmwRp98z8U6mcrqrx95WjFmOAPpZCarHQde9GS0RhqYEf7BwRd1MpP1pB4AABgQ+KRWEY9qx8EXNSMe1Xd+8rzWXT5Pt625rKTNDW5bc5nWXT5P3/nJ86qMR/WDQy+pIh71tW9MTqdSeW3dd8TTmlv2HtGpFJtlAADgpcDfGDe0pNVnvntAd9+0VHf+6DklouGSNzdIZvPa8J6LddPd+1jSKsCck6fL7UkD9Rz3WQIA4KnAh+DyWFjXXz5PX931jG66e5++fP1ivdaf0W/843/o3W+drT98f4Pmzkwomy8onS2obHBzgxdfS+qBQy/p7x/7T33xA42aWR7TTXfvU18mr9955zxNi7HDVxCdTPkztnAqnfOlLgAAQRX4EDwjHtU1i+fq7x/7zzdsc/t/fvsK/eQ/X9VXHn5Knb3JMzY3qK9K6IZl8/WpFW/TN/71Of3g0EuSBsYjVjfPVWUiNsH/ZZgIXs0Cn1mXcQgAALwU+BAcDodUWRbRzVc1aPMD7ZKkHxx6SQ8eflkrF9a84UpwJldQLPLGK8Ffefhp5YetCXzzVQ2qLIsozDxEICWi/vwEIB7hJwsAAHgp8CFYkmaUx/Tut83W8obq19d2zRecHm7r1sNt3ZLOvs3tcMsbqvXLb5utGeVcBQ6qirg/31J+1QUAIKgCvzqEJMUiIdVMj+tzqy7V8obqEc852za3Q5Y3VOtzqy5VzfS4YmyZHGj1VYlJXQ8AABCCX1c1Laa6WQn9znsu1qZrGktaIm3TNY36nfdcrLpZCc2axlXgIAuZtH7pfE9r3rBsPquNAADgMX7GOswFFWVqMFOh4HTPhiv12FOv6N4nXjjrEmnXXz5P722oUV8qq4VzKgnA0MlUTmuWzNXXfviMJzfJxaMhfWjxXJ1MsToEAABeMjcFFyBtaWlxra2tvtXP5Arq7cvoYOcxOQ2E42y+oFS2oPjgEmlHT6UVMql53ixVTYsxAgFJUmdvvx5pe1llkbBuuf/wmOvdfu0ipbJ5vf+yOaqvKvegQwAAgsPM9jvnWkZ6jivBI4hFQpozI67qilr19meUKzidSuWUzRcUDYdUEY9owQXlqppWxioQeIOQSXf/+/O6+2NLtWJhtfZ09Iy61oqF1XrXxVW66Zv7dPWiOR52CQAACMHnEA6HVD09PvBgxsT2gqkhmc3ro1cs0Po7H9e23323btXhUQXhFQurdduaRVr3dz/Whve8VUnWCQYAwFP8DB/wUDpX0MrGGp1M57Tu736sL36gUbdfu6ikGy1vv3aRvviBRq37ux/rZDqnX22sUSbnzyYcAAAEFSEY8ND0eER/s+sZ/cmay9RzKqP3ffVHSmXzeuSz79Xnr24463Jn9VUJff7qBj3y2fcqlc3rfV/9kXpOZfSnay7TXz/yNOsEAwDgMT5ZAQ+FzPTTzmP6UPOFWtVYo13tr2jzznZ96aGn9Ae/+jb9w0ffqfJYRH3p3Os3Wk4ri6g/k9MP21/Ryr967PWrvqsaa1RVHtOBF15TyJg9BwDAS4RgwENlEdP1l8/TZ757QHfftFSStKv9FWVyBX3l4af1lYefliTFIwM3WJ5K5ZQaYdRhVWONNrznYt109z79znsvVpzVRwAA8BSfrICHZsZjWt08V3nndNPd+3TdO+aNOBOcyhX06qnMGQF4aCb4unfM001371PeOa1++1y24gYAwGO+h2Azu9rMnjKzZ81s4wjPzzezPWb2UzM7ZGYf9LsnwC/RaFjT4xHdfFWD+jJ5fWrLE3r8uaO6Z8OVRc0E37PhSj3+3FF9assT6svkdfNVDaqIRxQN8+9VAAC85Os4hJmFJX1d0vskvSBpn5ntcM61DTvtjyV9zzn392bWJOlBSQv87Avw0/SyiH7prbO1vKFajz7Vox8cekkPHn5ZKxfW6A/f36C5MxPK5gvK5AqKRQY2X3nxtaQeOPSSvvLw08oXBjawWd5QrV9662xN56Y4AAA85/en6zJJzzrnnpMkM7tH0lpJw0Owk1Q5+PUMSS/63BPgq/KyiGZPi+mzqy6VJD36VI/yBaeH27r1cFu3JCkSMsUiIWVyBeUKZ+7auLyhWp9ddalmT4upPEYIBgDAa35/utZJ6hz2+AVJ7zrtnD+R9LCZ/b6kaZJWjVTIzDZI2iBJ8+fP97xRwEvVlQObrGz4lYv1K5fM1l889JRS2V/M/+YKTrnMmRtgxKMh3XxVgxrnVGrujPjrdQAAgLcmwyWm9ZK+6Zz7SzO7UtJ3zGyRc+4Ndww55+6UdKcktbS0nHnpDJhkqivjcpKy+YLu2XClHnvqFd37xAvq7E2ecW59VULXXz5P722o0fH+jN5WU0EABgDAR36H4C5J9cMezxs8NtwnJF0tSc65n5hZXNJsSa/43Bvgu5rKuCriER3rz+qSmgrd8sFGXVBRpmy+8Po6wdFwSEdPpVVwTjXTy3RpbQUjEAAA+MzvT9p9ki4xs7doIPx+RNINp51zRNJKSd80s0ZJcUk9PvcFjJvyWETlsYhqpsXU05dWwUknUzllcnnFIgOrSdTNjKt6epxVIAAAGCe+hmDnXM7Mfk/SQ5LCkv7JOfekmd0mqdU5t0PS/5R0l5l9VgM3yX3MOce4A950otGw5s4sn+g2AACAxmEm2Dn3oAaWPRt+7NZhX7dJerfffQAAAABD+NkrAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAInMhENwAERT5fUG9/RrmC08lUTulsXmXRsKbHI4qETFXlMYXD/LsUAIDxQAgGfJbJFdTbl9EDh17Ut37yvDp7k2ecU1+V0I1XLtA1zXNVNS2mWIQwDACAn8w5N9E9lKylpcW1trZOdBvAefX2ZbS7vVubth9WKls47/nxaEib1y7SysZaVU2LjUOHAAC8eZnZfudcy0jPcbkJ8MnRU2l9/t5DuvneQ0UFYElKZQu6+d5D+vy9h3T0VNrnDgEACC5CMOCD3r6MNv7Lz/RIe/eoXv9Ie7c2/svPdKwv43FnAABAIgQDnsvkCtrd3j3qADzkkfZu7WrvViZX3FVkAABQPEIw4LHevow2bT/sSa1N2w+rl6vBAAB4jhAMeCifL+iBQy8WPQN8PqnsQL18nqvBAAB4iRAMeKi3P6Nv/eR5T2t+6yfPq7efq8EAAHiJEAx4KFdwI64DPBadvUnlClNvKUMAACYzQjDgoZOpXFHnRUKm8lhYkZAVdf6pIusCAIDisGMc4KF0Nj/i8XDItKqxRh98+4Wqm5lQOldQKptXPBpWWSSkrteS2nnoJe3ueEX5Ea76plkhAgAATxGCAQ+VRcNnHFuzeK4+/u4FevTpHn3l4afOum3yr10+T7+7/K36px8/rx0HX3zD82yjDACAtwjBgIemx3/xLTUtFtaXr1+sl08k9ZG7Hj/nihGdvUn99a5n9L8f+0/dfFWDrrpsjv7o3oPqy+TPqAsAAMaOy0uAhyIhU31VQtNiYd11Y4u+v79Tmx9oL2nb5M0PtOv7+zt1140tmhYLq74qUfTsMAAAKA6XlwAPVZXHdOOVC3ThjITu/NFzevSpnlHVGXrdl69frJeOJ1U1rczLNgEACDyuBAMeCodDWrN4rl4+kRx1AB7y6FM9evlEUmsWz1WYK8EAAHiKEAx4LFdw+ouHnvKk1l889BRrBAMA4ANCMOChdCan+3/a5em2ydsPdCmdYZ1gAAC8RAgGPNTTl9HWfUc8rbll7xH19LFtMgAAXiIEAx5yTr5sm+yYiAAAwFOEYMBDfm1vfCrNOAQAAF4iBAMeSp5l2+SxSvlUFwCAoCIEAx5KjLBtshfiEX/qAgAQVIRgwEMVPm1v7FddAACCihAMeMhMqq9KeFqzviohY68MAAA8RQgGPFQ9Lab1S+d7WvOGZfNVM51tkwEA8BIhGPBQWSyitUvqFI96860Vj4a0ZnGdYswEAwDgKUIw4LHKeESbVjd5UmvT6ibNSDAPDACA1wjBgMemJ6Ja1VirFQurx1RnxcJqrWqqVUU86lFnAABgCCEY8EHtjLjuWNc86iC8YmG17ljXrNrKuMedAQAAiRAM+Ka2Mq47rmvW7dcuOmNGuCIWVv2shCpib5z1jUdDuv3aRQRgAAB8xrAh4KPaGXGtXTJXyxtqdCqdVTwaVthMJ1JZpbIFxaMhVcajyjunVCavikRUM+IRRiAAAPAZIRjwmXMDv+9uf0Vb9x1RZ2/yjHPqqxJav3S+1i6pe/18AADgH3NT8BO3paXFtba2TnQbwHl1H09pV3u3Nu9sUypbOO/58WhIm1Y3aVVjrWpnMA4BAMBYmNl+51zLSM9xJRjwSfeJlDbed0h7OnqKfk0qW9At9x/Wro5u5oIBAPARN8YBPug+ntLGbaUF4OH2dPRo47ZD6j6R8rgzAAAgEYIBz51MZrWrvXvUAXjIno4e7Wrr1qlU1qPOAADAEEIw4LETqZw272zzpNbmnW06nsx5UgsAAPwCIRjwUDqT0/YDXUXdBFeMVLagHQe7lM4QhAEA8BIhGPBQT19GW/cd8bTmlr1H1NOX8bQmAABBRwgGPOScRlwHeCw6e5OsHQwAgMdKDsFm9jYz+zUza/KjIWAqO5XyZ2zhVJpxCAAAvHTeEGxme8xs9uDXH5X0oKQPSPqumf2+z/0BU0oym/elbsqnugAABFUxm2VUO+deHfz6DyRd6Zw7amblkh6X9Le+dQdMMYlo2Je68Yg/dQEACKpixiGyZlY3+PUpSX2DX6cl8ckMDFMR92cTRr/qAgAQVMV8sn5W0sNm9i+SnpT0QzN7SNIvS7rbz+aAqcZMqq9KeHpzXH1VQmaelQMAACriSrBz7lFJvyTpJUlZSfslpST9vnPuK752B0wx1dNiWr90vqc1b1g2XzXTyzytCQBA0BX1M1bn3HFJf3+uc8zsb51z3CiHQCuLRbR2SZ2+9sNnPNkwIx4Nac3iOsWYCQYAwFNerhP8bg9rAVNWZTyiTau9WUFw0+omzUgwDwwAgNfYLAPw2PREVKsaa7ViYfWY6qxYWK1VTbWqiEc96gwAAAwhBAM+qJ0R1x3rmkcdhFcsrNYd65pVWxn3uDMAACB5G4K5fx0YprYyrjuua9bt1y5SPFrct1o8GtLt1y4iAAMA4LOihw3N7O3OuZ+d45S/Ocvrrh58LizpH51zd4xwzn+T9CeSnKSDzrkbiu0LmMxqZ8S1dslcLW+o0Y6DXdqy98iIy6fVVyV0w7L5WrOkTjPiEUYgAADwmTnnijvR7F8llUn6pqT/M7hixPleE5b0tKT3SXpB0j5J651zbcPOuUTS9yT9qnPumJnVOOdeOVfdlpYW19raWlTfwGSRzuTU05eRc9KpdE6pbF7xaFgVZRGZSTXTy1gFAgAAD5nZfudcy0jPFX0l2Dn3K4OB9eOS9pvZXkl3O+ceOcfLlkl61jn33GAj90haK6lt2DmflPR159yxwT/nnAEYmKrKYhHNi7HSAwAAk0FJM8HOuWck/bGkz0t6r6SvmVmHma07y0vqJHUOe/zC4LHhLpV0qZn92MweHxyfOIOZbTCzVjNr7enpKaVtAAAA4A2KDsFm1mxmX5XULulXJX3IOdc4+PVXx9BDRNIlkpZLWi/pLjObefpJzrk7nXMtzrmW6uqxLT0FAACAYCvlSvDfSnpC0mLn3Kecc09IknPuRQ1cHR5Jl6T6YY/nDR4b7gVJO5xzWefcf2lghviSEvoCAAAASlJKCF4taYtzLilJZhYys3JJcs595yyv2SfpEjN7i5nFJH1E0o7TzrlfA1eBZWazNTAe8VwJfQEAAAAlKSUE75KUGPa4fPDYWTnncpJ+T9JDGhij+J5z7kkzu83M1gye9pCko2bWJmmPpJudc0dL6AsAAAAoSSm3qsedc6eGHjjnTg1dCT4X59yDkh487ditw752kj43+AsAAADwXSlXgvvM7PKhB2b2TklnrvoPAAAATHKlXAn+jKTvm9mLGtgieY6kX/elKwAAAMBHpQKMVK0AACAASURBVGyWsc/MFkpqGDz0lHMu609bAAAAgH9K3b5qqaQFg6+73MzknPu2510BAAAAPio6BJvZdyS9VdIBSfnBw04SIRgAAABTSilXglskNQ2u5gAAAABMWaWsDnFYAzfDAQAAAFNaKVeCZ0tqM7O9ktJDB51za87+EgAAAGDyKSUE/4lfTQAAAADjqZQl0h4zs4skXeKc2zW4W1zYv9YAAAAAfxQ9E2xmn5R0r6R/GDxUJ+l+P5oCAAAA/FTKjXGfkvRuSSckyTn3jKQaP5oCAAAA/FRKCE475zJDD8wsooF1ggEAAIAppZQb4x4zsy9KSpjZ+yT9rqQf+NMW8OaTzebV05dWwUknUzkls3klomFNj0cUMql6WpmiUcbsAQAYD6WE4I2SPiHpZ5J+R9KDzrm7fOkKeBPpT+d0LJnV9gNd2rr3iDp7k2ecU1+V0Ppl87V2SZ1mJaIqLyt1R3MAAFAKK3YDODP7tHPub853bDy0tLS41tbW8f5jgZK9ciKlXe3duu2BNqWyhfOeH4+GdOs1TVrVWKuayvg4dAgAwJuXme13zrWM9FwpM8E3jnDsY6PqCAiAV06k9Plth/TF+w4XFYAlKZUt6Iv3Hdbntx3SKydSPncIAEBwnTcEm9l6M/uBpLeY2Y5hv/ZI6vW/RWDqGQrAezp6RvX6PR09BGEAAHxUzODhv0t6SQPbJv/lsOMnJR3yoylgKutP57SrvXvUAXjIno4e7Wrv1rXvqFN5jBlhAAC8dN5PVufczyX9XNKV/rcDTH3Hklnd9kCbJ7Vue6BN722oIQQDAOCxUnaMW2dmz5jZcTM7YWYnzeyEn80BU002m9f2A11FzwCfTypb0I4DXcpm857UAwAAA0q5Me7LktY452Y45yqdc9Odc5V+NQZMRT19aW3de8TTmlv2HlFPX9rTmgAABF0pIbjbOdfuWyfAm0DBacR1gMeiszepAnszAgDgqVIGDVvN7LuS7pf0+mUp59w2z7sCpqiTqdyUqgsAQFCVEoIrJfVLev+wY04SIRgYlPRpdjfFTDAAAJ4qOgQ7527ysxHgzSARDftSN+5TXQAAgqqU1SEuNbPdZnZ48HGzmf2xf60BU8/0uD9LmflVFwCAoCrlxri7JH1BUlaSnHOHJH3Ej6aAqSpkUn1VwtOa9VUJhczTkgAABF4pIbjcObf3tGPcrQMMUz2tTOuXzfe05g3L5qt6etzTmgAABF0pIfhVM3urBm6Gk5ldr4HtlAEMikbDWrukTvFoKd9aZxePhrRmSZ2iYW/qAQCAAaV8sn5K0j9IWmhmXZI+I+l/+NIVMIXNSkR16zVNntS69ZomzSqPelILAAD8QtEh2Dn3nHNulaRqSQudc7/snHvet86AKaq8LKJVjbVasbB6THVWLKzWqsZalce4KQ4AAK+VsjrEp81saK3gr5rZE2b2/vO9Dgiimsq4vrSuedRBeMXCan1pXbNqKpkFBgDAD6WMQ3zcOXdCA5tlXCDpo5Lu8KUr4E1gKAj/2XWLip4RjkdD+rPrFhGAAQDwWSk/Zx1apOmDkr7tnHvSzFi4CTiHmsq4rn1Hnd7bUKMdB7q0Ze8RdfYmzzivviqh31g2X2uW1GlmeZQRCAAAfFbKJ+1+M3tY0lskfcHMpksq+NMW8OZRHouoPBbRb7/7LVq7ZK4KTjqZyimVzSseDWt6PKKQSdXT46wCAQDAOCklBH9C0hJJzznn+s3sAklspQwUKRoNa+7M8oluAwAAqIgQbGYLnXMdGgjAknQxUxAAAACYyoq5Evw5SRsk/eUIzzlJv+ppRwAAAIDPzhuCnXMbBn9f4X87AAAAgP9KWSf4w4M3w8nM/tjMtpnZO/xrDQAAAPBHKbeib3LOnTSzX5a0StI3JP1vf9oCAAAA/FNKCM4P/r5a0p3OuZ2SYt63BAAAAPirlBDcZWb/IOnXJT1oZmUlvh4AAACYFEoJsf9N0kOSrnLOvSapStLNvnQFAAAA+KjoEOyc65e0XVKfmc2XFJXU4VdjAAAAgF+K3jHOzH5f0v+S1K1fbJfsJDX70BcAAADgm1K2Tf60pAbn3FG/mgEAAADGQykzwZ2SjvvVCAAAADBeSrkS/JykR81sp6T00EHn3F953hUAAADgo1JC8JHBXzGxPjAAAACmsKJDsHPuTyXJzCoGH5/yqykAAADAT0XPBJvZIjP7qaQnJT1pZvvN7DL/WgMAAAD8UcqNcXdK+pxz7iLn3EWS/qeku/xpCwAAAPBPKSF4mnNuz9AD59yjkqZ53hEAAADgs5JWhzCzTZK+M/j4NzWwYgQAAAAwpZRyJfjjkqolbZP0L5JmDx4DAAAAppRSVoc4JukPfOwFAAAAGBelrA7xiJnNHPZ4lpk95E9bAAAAgH9KGYeY7Zx7bejB4JXhGu9bAgAAAPxVSggumNn8oQdmdpEk531LAAAAgL9KWR3iFkn/ZmaPSTJJvyJpgy9dAQAAAD4q5ca4/2dml0u6YvDQZ5xzrw49b2aXOeee9LpBAAAAwGulXAnWYOh94CxPf0fS5WPuCAAAAPBZKTPB52Me1gIAAAB842UI5iY5AAAATAlehmAAAABgSvAyBGc8rAUAAAD4pqQb48ysWdKC4a9zzm0b/P2Ks7wMAAAAmFSKDsFm9k+SmiU9KakweNhJ2uZDXwAAAIBvSrkSfIVzrsm3TgAAAIBxUspM8E/MjBAMAACAKa+UK8Hf1kAQfllSWgPrAjvnXLMvnQEAAAA+KeVK8DckfVTS1ZI+JOmawd/PycyuNrOnzOxZM9t4jvN+zcycmbWU0BMAAABQslKuBPc453aUUtzMwpK+Lul9kl6QtM/Mdjjn2k47b7qkT0v6j1LqAwAAAKNRSgj+qZltkfQDDYxDSPrFEmlnsUzSs8655yTJzO6RtFZS22nnbZb0JUk3l9APAAAAMCqljEMkNBB+36+BMYihkYhzqZPUOezxC4PHXmdml0uqd87tPFchM9tgZq1m1trT01NC2wAAAMAbFX0l2Dl3k9d/uJmFJP2VpI8V8effKelOSWppaXFe9wIAAIDgKGWzjLikT0i6TFJ86Lhz7uPneFmXpPphj+cNHhsyXdIiSY+amSTNkbTDzNY451qL7Q0AAAAoRSnjEN/RQEi9StJjGgi0J8/zmn2SLjGzt5hZTNJHJL1+c51z7rhzbrZzboFzboGkxyURgAEAAOCrUkLw25xzmyT1Oee+JWm1pHed6wXOuZyk35P0kKR2Sd9zzj1pZreZ2ZrRNg0AAACMRSmrQ2QHf3/NzBZJellSzfle5Jx7UNKDpx279SznLi+hHwAAAGBUSgnBd5rZLEmbNDDSUCFpxDALAAAATGalrA7xj4NfPibpYn/aAQAAAPxX9EywmdWa2TfM7P8OPm4ys0/41xoAAADgj1JujPumBm5wmzv4+GlJn/G6IQAAAMBvpYTg2c6570kqSK+v/JD3pSsAAADAR6WE4D4zu0CSkyQzu0LScV+6AgAAAHxUyuoQn9PAqhAXm9mPJVVLut6XrgAAAAAflRKC2yTdJ6lfAzvF3a+BuWAAAABgSillHOLbkhZK+jNJfyvpUg1spQwAAABMKaVcCV7knGsa9niPmbV53RAAAADgt1KuBD8xeDOcJMnM3iWp1fuWAAAAAH+d90qwmf1MAytCRCX9u5kdGXx8kaQOf9sDAAAAvFfMOMQ1vncBAAAAjKPzhmDn3M/HoxEAAABgvJQyEwwAAAC8KRCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4EQmugEAAAC8uSTTWR3tz0qSTiZzSmbzSkTDmp4YiJ4XlEeVKItOZIuEYAAAAHjjtf6M+tJ5bT/Qpa37jqizN3nGOfVVCa1fOl9rl9RpWllYM8tjE9CpZM65CfmDx6KlpcW1trZOdBsAAAAY9PLxlHa3d2vzzjalsoXznh+PhrRpdZNWNtZqzoy4Lz2Z2X7nXMtIz3ElGAAAAGPSfSKlL9x3SHs6eop+TSpb0C33H9aujm7dsa5ZtZX+BOGz4cY4AAAAjNrLx1PauK20ADzcno4ebdx2SN0nUh53dm6EYAAAAIzKa/0Z7W7vHnUAHrKno0e72rp1vD/jUWfnRwgGAADAqPSl89q8s82TWpt3tulUOu9JrWIQggEAAFCyZDqr7Qe6iroJrhipbEE7DnYpmc56Uu98CMEAAAAo2dH+rLbuO+JpzS17j7y+vrDfCMEAAAAomXMacR3gsejsTWq8Vu8lBAMAAKBkp1I5f+qm/al7OkIwAAAASpbM+nMTW8qnuqcjBAMAAKBkiWjYl7rxiD91T0cIBgAAQMkq4v5sPOxX3dMRggEAAFAyM6m+KuFpzfqqhMw8LXlWhGAAAACU7ILyqNYvne9pzRuWzVd1RZmnNc+GEAwAAICSJcqiWrukTvGoN3EyHg1pzeI6lfk0a3w6QjAAAABGZVpZWJtWN3lSa9PqJlWUjU8AlgjBAAAAGKWZ5TGtbKzVioXVY6qzYmG1VjXVakZ5zKPOzo8QDAAAgFGbMyOuO9Y1jzoIr1hYrTvWNau2Mu5xZ+dGCAYAAMCY1FbG9efXNev2axcVPSMcj4Z0+7WLJiQAS9L4LMQGAACAN7U5M+K6pvlCLW+o0Y6DXdqy94g6e5NnnFdfldANy+ZrzZI6VcTC4zoCMRwhGAAAAJ6IhkOS5bV0QZVWLKxRPBpWXzqnVLageDSkaWURpbJ5nUrlfnH+BCEEAwAAYMxeOZHSrvZu3fZAm1LZwuvH45GQKuIRnUrllMoNOx4N6dZrmrSqsVY1jEMAAABgqnnlREqf33ZIezp6zngulSsodSpz5vFsQV+877Aeae/Wl9Y1j3sQ5sY4AAAAjNq5AnAx9nT06PPbDumVEymPOzs3QjAAAABGpT+d06727lEH4CF7Onq0q71b/ZmcR52dHyEYAAAAo3IsmdVtD7R5Uuu2B9p0rD/rSa1iEIIBAABQsmw2r+0Hut5wE9xYpLIF7TjQpWw270m98yEEAwAAoGQ9fWlt3XvE05pb9h5RT1/a05pnQwgGAABAyQpOI26GMRadvUkVnKclz4oQDAAAgJKdTPlzE5tfdU9HCAYAAEDJkj7N7qaYCQYAAMBklYiGfakb96nu6XwPwWZ2tZk9ZWbPmtnGEZ7/nJm1mdkhM9ttZhf53RMAAADGZnrcn42H/ap7Ol9DsJmFJX1d0gckNUlab2ZNp532U0ktzrlmSfdK+rKfPQEAAGDsQibVVyU8rVlflVDIPC15Vn5fCV4m6Vnn3HPOuYykeyStHX6Cc26Pc65/8OHjkub53BMAAADGqHpamdYvm+9pzRuWzVf19LinNc/G7xBcJ6lz2OMXBo+dzSck/d+RnjCzDWbWamatPT1j25oPAAAAYxONhrV2SZ3iUW/iZDwa0poldYqGx+eWtUlzY5yZ/aakFkl/MdLzzrk7nXMtzrmW6urq8W0OAAAAZ5iViOrWa06fdB2dW69p0qzyqCe1iuF3CO6SVD/s8bzBY29gZqsk3SJpjXNufLYJAQAAwJiUl0W0qrFWKxaO7QLlioXVWtVYq/LY+NwUJ/kfgvdJusTM3mJmMUkfkbRj+Alm9g5J/6CBAPyKz/0AAADAQzWVcX1pXfOog/CKhdX60rpm1VSOzyzwEF9DsHMuJ+n3JD0kqV3S95xzT5rZbWa2ZvC0v5BUIen7ZnbAzHacpRwAAAAmoaEg/GfXLSp6RjgeDenPrls0IQFYksy5cdqg2UMtLS2utbV1otsAAADAMP2ZnI71Z7XjQJe27D2izt6kZpdHNXdWQi8eS+rV/qzqqxL6jWXztWZJnWaWR30dgTCz/c65lpGeG7/BCwAAALyplcciKo9F9LErL9KHFs+VJJ1M5pTM5pWIhjU9MRA9LyiPKlE2fjfBjYQQDAAAAE8c68+oP53X9gNd2rpv4Erw6eqrElq/dL7WLqlTeVlYs8pjE9Ap4xAAAADwwMvHU9rd3q3NO9uUyhbOe348GtKm1U1a2VirOTP8mQlmHAIAAAC+6T6R0hfuO6Q9HcVvaJbKFnTL/Ye1q6Nbd6xrVu2baXUIAAAAvLm9fDyljdtKC8DD7eno0cZth9R9IuVxZ+dGCAYAAMCoHOvPaHd796gD8JA9HT3a1dat1/ozHnV2foRgAAAAjEp/Oq/NO9s8qbV5Z5v60nlPahWDEAwAAICSJdNZbT/QVdRNcMVIZQvacbBLyXTWk3rnQwgGAABAyY72Z7V13xFPa27Ze0RH+wnBAAAAmKSc04jrAI9FZ29S47V6LyEYAAAAJTuVyvlTN+1P3dMRggEAAFCyZNafm9hSPtU9HSEYAAAAJUtEw77UjUf8qXs6QjAAAABKVhH3Z+Nhv+qejhAMAACAkplJ9VUJT2vWVyVk5mnJsyIEAwAAoGQXlEe1ful8T2vesGy+qivKPK15NoRgAAAAlCxRFtXaJXWKR72Jk/FoSGsW16nMp1nj0xGCAQAAMCrlZWFtWt3kSa1Nq5s0rWx8ArBECAYAAMAozSqPaWVjrVYsrB5TnRULq7WqqVYzy2MedXZ+hGAAAACM2pwZcd2xrnnUQXjFwmrdsa5ZtZVxjzs7N0IwAAAAxqS2Mq4/v65Zt1+76IwZ4UjIVB4LKxJ647IP8WhIt1+7aEICsCSNz0JsAAAAeFObMyOu1c0XanlDjQ52HlMoZJpdUaZ0rqBUNq94NKyySEivnkqrUHBaPH+WpsXC4zoCMRwhGAAAAJ5wg793Hkvqn//j5+rsTZ5xTn1VQr/5rou0uH7W6+dPBHNuIv/40WlpaXGtra0T3QYAAAAGvXw8pd3t3dq8s02pbOG858ejIW1a3aSVjbWaM8OfcQgz2++caxnpOa4EAwAAYEy6T6T0hfsOaU9HT9GvSWULuuX+w9rV0c2NcQAAAJhaXj6e0sZtpQXg4fZ09GjjtkPqPpHyuLNzIwQDAABgVI71Z7S7vXvUAXjIno4e7Wrr1mv9GY86Oz9CMAAAAEalP53X5p1tntTavLNNfem8J7WKQQgGAABAyZLprLYf6CrqJrhipLIF7TjYpWQ660m98yEEAwAAoGRH+7Pauu+IpzW37D2io/2EYAAAAExSzmnEdYDHorM3qfFavZcQDAAAgJKdSuX8qZv2p+7pCMEAAAAoWTLrz01sKZ/qno4QDAAAgJIlomFf6sYj/tQ9HSEYAAAAJauI+7PxsF91T0cIBgAAQMnMpPqqhKc166sSMvO05FkRggEAAFCyC8qjWr90vqc1b1g2X9UVZZ7WPBtCMAAAAEqWKItq7ZI6xaPexMl4NKQ1i+tU5tOs8ekIwQAAABiV8rKwNq1u8qTWptVNmlY2PgFYIgQDAABglGaVx7SysVYrFlaPqc6KhdVa1VSrmeUxjzo7P0IwAAAARm3OjLjuWNc86iC8YmG17ljXrNrKuMednRshGAAAAGNSWxnXn1/XrNuvXVT0jHA8GtLt1y6akAAsSeOzEBsAAADe1ObMiGt184Va3lCjHQe7tGXvEXX2Js84r74qoRuWzdeaJXWaFguP6wjEcIRgAAAAeGJmeUwzy6WPXXmRPrR4rpyTTqVzSmXzikfDqiiLyGxgebVEWXRCeyUEAwAAwBMnk1mdSOW0/UCXtu4buBI8uzyqubMSevFYUq/2Z1VfldD6pfO1dkmdKuMRTU9MTBg259yE/MFj0dLS4lpbWye6DQAAAAzqPp7SrvZubd7ZplS2cN7z49GQNq1u0qrGWtXO8Gcm2Mz2O+daRnqOK8EAAAAYk+4TKW2875D2dPQU/ZpUtqBb7j+sXR3drA4BAACAqaX7eEobt5UWgIfb09GjjdsOqftEyuPOzo0QDAAAgFE5mcxqV3v3qAPwkD0dPdrV1q1TqaxHnZ0fIRgAAACjciKV0+adbZ7U2ryzTceTOU9qFYMQDAAAgJKlMwOrQBRzE1wxUtmCdhzsUjozPkGYEAwAAICS9fRltHXfEU9rbtl7RD19GU9rng0hGAAAACVzTiPuCDcWnb1JjdfqvYRgAAAAlOxUyp+xhVNpxiEAAAAwSSWzeV/qpnyqezpCMAAAAEqWiIZ9qRuP+FP3dIRgAAAAlKwi7s/Gw37VPR0hGAAAACUzk+qrEp7WrK9KyMzTkmdFCAYAAEDJqqfFtH7pfE9r3rBsvmqml3la82wIwQAAAChZWSyitUvqFI96Eyfj0ZDWLK5TjJlgAAAATGaV8Yg2rW7ypNam1U2akRifeWCJEAwAAIBRmp6IalVjrVYsrB5TnRULq7WqqVYV8ahHnZ0fIRgAAACjVjsjrjvWNY86CK9YWK071jWrtjLucWfnRggGAADAmNRWxnXHdc26/dpFZ8wIL55Xqf/xKwu0eF7lG47HoyHdfu2iCQnAkjR+gxdTUDKd1dH+rCTpZDKnZDavRDSs6YPzKheUR5UoG7/L9pjaeD8BAN7MamfEtXbJXC1vqNHMREi9/XmZSSeSWaWyBX3oHfNUmYjKOamqPKzXUgXNiEfGdQRiOELwCI71Z9Sfzmv7gS5t3XdEnb3JM86pr0po/dL5WrukTuVlYc0qj01Ap5gKeD8BAIIiW3CSpG/9pLOoz7yh8yeCOTdxf/hotbS0uNbWVl9qv3w8pd3t3dq8s02pbOG858ejIW1a3aSVjbWaM2P8L+VjcuP9BAAIisn4mWdm+51zLSM+Rwj+he4TKW3cdkh7OnpKfu1EDXVj8uL9BAAIisn6mXeuEMyNcYNePj76/3mStKejRxu3HVL3iZTHnWEq4v0EAAiKqfqZRwjWwMzm7vbuUf/PG7Kno0e72rr1Wn/Go84wFfF+AgAExVT+zCMES+pP57V5Z5sntTbvbFNfOu9JLUxNvJ8AAEExlT/zAh+Ck+msth/oKmqAuxipbEE7DnYpmc56Ug9TC+8nAEBQTPXPPN9DsJldbWZPmdmzZrZxhOfLzOy7g8//h5kt8Lun4Y72Z7V13xFPa27Ze+T19WARLLyfAABBMdU/83wNwWYWlvR1SR+Q1CRpvZk1nXbaJyQdc869TdJXJX3Jz55O55xGXMNuLDp7k5qCi27AA7yfAABBMdU/8/y+ErxM0rPOueeccxlJ90hae9o5ayV9a/DreyWtNDPzua/XnUrl/Kmb9qcuJjfeTwCAoJjqn3l+h+A6SZ3DHr8weGzEc5xzOUnHJV1weiEz22BmrWbW2tMztjsQh0tm/RnATvlUF5Mb7ycAQFBM9c+8KXNjnHPuTudci3Oupbq62rO6iWjYs1rDxSP+1MXkxvsJAP5/e/cea1lZ3nH8+3PmcM7AKCMwDnRmcIxgKDYwIp1qtASQGhUzJIhxSqhovaReUo2tjTUBUdOUpto0bRObFgh4wWqk4KhQSoQEbQQZLnI1FRWt4wU7VBSBcYCnf+w1cNycM7OGzjlr7a7vJ9k5a+/1Zu1nnnly3ues/a69NBSTPuctdBO8FVg76/ma5rU5xyRZCuwPbFvguB63fGbpRB1X/WY9SZKGYtLnvIVugm8ADk/ynCT7AJuAzWNjNgNnNtunAVfXIt7LOYG1Byzbq8dce8AyFm9Vs/rEepIkDcWkz3kL2gQ3a3zfCVwJ3AV8tqruSPKhJBubYecDBya5G3gP8KSvUVtIB+47xe//9qF79ZinbziUlcun9+oxNRmsJ0nSUEz6nLfga4Kr6vKqel5VPbeq/qJ57eyq2txsP1xVr62qw6pqQ1V9Z6Fjmm3Z9BSnrF/NzNTeScXM1NPYePRqphdonYz6zXqSJA3FpM95E3Nh3ELad3oJZ508/vXFT81ZJx/JftM2LENmPUmShmKS5zybYOCZ++7Dy35zFScc8X/71okTjljJSUeuYsW+++ylyDSJrCdJ0lBM8pxnE9w4eP8Zzj31qKf8n3jCESs599SjWPWMmb0cmSaR9SRJGopJnfOyiF/EsNcce+yxtWXLlgU59o/vf5gv3/UTPvylO3l4x2O7HT8z9TTOOvlITjpylQ2LnsR6kiQNRR/nvCQ3VtWxc+6zCX6ynz34K365/VE2f2MrF3/9+3PeF3vtAcs4fcOhbFy/mv32WeJH1pqX9SRJGoq+zXk2wU/RQ9t3sO3BHVSN7mP98I5HmZlawvLppSSwcvm0V+2rNetJkjQUfZnzdtUEexuqXVg2PcWa6amuw9D/E9aTJGkoJmHO88I4SZIkDY5NsCRJkgbHJliSJEmDYxMsSZKkwbEJliRJ0uDYBEuSJGlwbIIlSZI0ODbBkiRJGpyJvGNckp8C3+vgrQ8C/ruD95005qkd89SOeWrHPLVnrtoxT+2Yp3a6ytOzq2rlXDsmsgnuSpIt8916T08wT+2Yp3bMUzvmqT1z1Y55asc8tdPHPLkcQpIkSYNjEyxJkqTBsQneM//UdQATwjy1Y57aMU/tmKf2zFU75qkd89RO7/LkmmBJkiQNjmeCJUmSNDg2wZIkSRocm+AxSS5Icm+S2+fZnyR/l+TuJLcmOWaxY+yDFnk6Psn9SW5pHmcvdox9kGRtkmuS3JnkjiTvmmPM4GuqZZ4GX1NJZpJ8Pck3mjx9cI4x00k+09TT9UnWLX6k3WqZpzck+emsenpzF7H2QZIlSW5O8sU59g2+nnbaTZ6sp0aSe5Lc1uRhyxz7ezPnLe3qjXvsQuAfgI/Ps/+VwOHN43eAjzU/h+ZCdp0ngK9U1asXJ5zeegT4k6q6KcnTgRuTXFVVd84aY021yxNYU9uBE6vqgSRTwFeTXFFV180a8ybgf6rqsCSbgL8CXtdFsB1qkyeAMyxn9AAABOxJREFUz1TVOzuIr2/eBdwFPGOOfdbTE3aVJ7CeZjuhqua7MUZv5jzPBI+pqmuB+3Yx5BTg4zVyHbAiySGLE11/tMiTgKr6UVXd1Gz/gtEv0NVjwwZfUy3zNHhNjTzQPJ1qHuNXN58CXNRsfw54WZIsUoi90DJPApKsAU4GzptnyODrCVrlSe31Zs6zCd5zq4H/mvX8BzhZz+fFzceRVyR5ftfBdK35GPEFwPVju6ypWXaRJ7Cmdn4kewtwL3BVVc1bT1X1CHA/cODiRtm9FnkCeE3zceznkqxd5BD74m+BPwMem2e/9TSyuzyB9bRTAf+e5MYkb51jf2/mPJtgLZSbGN2v+2jg74HLOo6nU0mWA5cA766qn3cdT1/tJk/WFFBVj1bVemANsCHJb3UdUx+1yNMXgHVVdRRwFU+c7RyMJK8G7q2qG7uOpc9a5mnw9TTLS6vqGEbLHt6R5LiuA5qPTfCe2wrM/gtvTfOaZqmqn+/8OLKqLgemkhzUcVidaNYkXgJ8qqr+dY4h1hS7z5M19euq6mfANcArxnY9Xk9JlgL7A9sWN7r+mC9PVbWtqrY3T88DXrjYsfXAS4CNSe4B/gU4Mcknx8ZYTy3yZD09oaq2Nj/vBS4FNowN6c2cZxO85zYDr2+ubnwRcH9V/ajroPomycE7140l2cCo1ob2i5MmB+cDd1XV38wzbPA11SZP1hQkWZlkRbO9DPg94JtjwzYDZzbbpwFX18DuitQmT2NrEDcyWoc+KFX151W1pqrWAZsY1coZY8MGX09t8mQ9jSTZr7m4mST7AS8Hxr9Fqjdznt8OMSbJp4HjgYOS/AD4AKOLKqiqfwQuB14F3A08CLyxm0i71SJPpwFvS/II8BCwaWi/OBsvAf4AuK1ZnwjwfuBQsKZmaZMnawoOAS5KsoTRHwGfraovJvkQsKWqNjP6Y+ITSe5mdPHqpu7C7UybPP1xko2MvpnkPuANnUXbM9ZTO9bTnFYBlzbnK5YCF1fVvyX5I+jfnOdtkyVJkjQ4LoeQJEnS4NgES5IkaXBsgiVJkjQ4NsGSJEkaHJtgSZIkDY5NsCT1RJIVSd7edRySNAQ2wZLUHysAm2BJWgQ2wZLUH+cCz01yS5K/TvLeJDckuTXJBwGSrEvyzSQXJvnPJJ9KclKS/0jyreZueiQ5J8knknytef0tzeuHJLm2eY/bk/xuh/9eSeqMTbAk9cf7gG9X1XrgKuBwYAOwHnhhkuOacYcBHwWOaB6nAy8F/pTRnfZ2Ogo4EXgxcHaS32jGXtm8x9HALUjSAHnbZEnqp5c3j5ub58sZNcXfB75bVbcBJLkD+HJVVZLbgHWzjvH5qnoIeCjJNYwa6huAC5JMAZdVlU2wpEHyTLAk9VOAv6yq9c3jsKo6v9m3fda4x2Y9f4xfP7lRY8esqroWOA7YClyY5PULELsk9Z5NsCT1xy+ApzfbVwJ/mGQ5QJLVSZ61h8c7JclMkgOB44Ebkjwb+ElV/TNwHnDM3gldkiaLyyEkqSeqaltzgdvtwBXAxcDXkgA8AJwBPLoHh7wVuAY4CPhwVf0wyZnAe5PsaI7pmWBJg5Sq8U/LJEmTLsk5wANV9ZGuY5GkPnI5hCRJkgbHM8GSJEkaHM8ES5IkaXBsgiVJkjQ4NsGSJEkaHJtgSZIkDY5NsCRJkgbnfwHWyKnG6zi6FQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3hU93nn/c89o5k5IwkBsiURZCnODwekEEFcmTpJuzExadziACZua9i2SeONt1eTPu1mm5jUwZs1dYLtbtOmm+fZ2k3aJFchSR1siPHWNQ5Ot2lSEC6oWBKx100ky7asIAxImhnNaL7PH5KwLASakc7RD5/367q40Jw5c3NbHq75cHSf79eccwIAAADCJDLXDQAAAACzjRAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABCp2SuG5iOyy+/3F155ZVz3QYAAADmsaNHj/7MOVc12XMLMgRfeeWVamlpmes2AAAAMI+Z2U8v9hzjEAAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQW5GYZsyWVyerUYFaSdC6VUyo7rGQsqkXJkW/bZaUxJROxuWwRAAAA00AInsTpwSENZoa171i39hzpVFdf6oJz6iqT2npNvTatqVVpIqqlpfE56BQAAADTYc65ue6haM3NzS6obZNfOpPWE+092nmgTelsfsrzvVhEOzY06vqGGi1b7AXSEwAAAIpnZkedc82TPceV4HF6zqb1mYdadaijt+DXpLN53fHwCR3s6NGuLU2qqSAIAwAAzHfcGDfqpTNpbd9bXAAe71BHr7bvbVXP2bTPnQEAAMBvhGCNzAA/0d4z7QA85lBHrw629eiVwSGfOgMAAEAQCMGSBjPD2nmgzZdaOw+0aSAz7EstAAAABCP0ITiVyWrfse6CboIrRDqb1/7j3Uplsr7UAwAAgP8CDcFm9lUze9nMTlzkeTOzL5nZs2bWamZXB9nPZE4NZrXnSKevNXcf7jy/vjAAAADmn6CvBP+NpBsu8fwvS7pq9Ndtkv6/gPu5gHOadB3gmejqS2kBrjwHAAAQGoGGYOfcP0rqu8QpmyR93Y34kaQlZvaGIHuaqD+dC6ZuJpi6AAAAmLm5ngmuldQ17vHzo8cuYGa3mVmLmbX09s5sFYfxUtlgbmJLB1QXAAAAMzfXIbhgzrn7nXPNzrnmqqoq3+omY1Hfao3nlQRTFwAAADM31yG4W1LduMdXjB6bNeVeMJvmBVUXAAAAMzfXIXi/pN8aXSXiWklnnHMvzmYDZlJdZdLXmnWVSZn5WhIAAAA+CnqJtD2SfihphZk9b2a3mtnvmNnvjJ7yqKTnJD0r6QFJvxtkP5O5rDSmrdfU+1pz29p6VZUnfK0JAAAA/wT6M3vn3NYpnneSPh5kD1NJJmLatKZWX/reM75smOHFItq4ulaJgGaNAQAAMHNzPQ4xL5QmotqxodGXWjs2NKosQQAGAACYzwjBkpaWxnV9Q43WrZzZqhPrVlZpfWONlpTGfeoMAAAAQSAEj1q22NOuLU3TDsLrVlZp15Ym1VR4PncGAAAAvxGCx6mp8PSFm5p09+ZV8mKv/daUx6OqW5pUefy1ow5eLKK7N68iAAMAACwgLGY7wbLFnjY0vUHXrahWfyYrLxZV1Exn01mls3l5sYgqvJiGnVN6aFjlyZjK4lFGIAAAABYQQvAkoqOL/D7R/rL2HOlUV1/qgnPqKpPaek29Nq2pPX8+AAAAFgYbWaVsYWlubnYtLS2B1O45k9bB9h7tPNBW0JJpXiyiHRsatb6hRjWLGYcAAACYL8zsqHOuebLnuBI8Ts/ZtLY/1KpDHb0FvyadzeuOh0/oYEcPc8EAAAALBDfGjeo5k9b2vcUF4PEOdfRq+95W9ZxN+9wZAAAA/EYIlnQuldXB9p5pB+Axhzp6dbCtR/3prE+dAQAAIAiEYEln0zntPNDmS62dB9p0JpXzpRYAAACCEfoQnBnKad+x7oJugitEOpvX/uPdygwRhAEAAOar0Ifg3oEh7TnS6WvN3Yc71Tsw5GtNAAAA+Cf0Idg5TboO8Ex09aW0AFeeAwAACI3Qh+D+dDBjC/0ZxiEAAADmq9CH4HRuOJC6mYDqAgAAYOZCH4K9WDSQuomSYOoCAABg5kIfgssTwWyaF1RdAAAAzFzoQ/Cwc6qrTPpas64yqTx3xgEAAMxboQ/BueG8PnT1Fb7WvPnqK5Qd9mfdYQAAAPgv9CE4m3O67m1V8mL+fCu8WETvfVuVsjmuBAMAAMxXoQ/B5V6JvvqDn+hTH1jhS71PfWCFvvJP/65yj5lgAACA+Sr0IdhM+teu01pWkdR1K6pmVOu6FVVaVpHUsedfkZlPDQIAAMB3oQ/BpfGotl5Tr08/eFy/89636PqV1dOqc/3Kav3Oe9+iTz94XNvW1qs8zpVgAACA+Sr0IbgkKm1aU3t+JvjWX3iTdtzYUPCMsBeLaMeNDbr1F950/vHG1bWKRrkUDAAAMF+F/nLl2dSwEiUR/e1/ula7/r5DT57s1Qeb3qBvfuxaff/HvXrwqefV1Ze64HV1lUndfPUVeu/bqvSVf/p37XykXdetqNLffuxaJUpMZ1JZLfJic/BfBAAAgKmEPgQvSkb1bM+Anunp15MneyVJ3219UY+eeEnXr6zWH/7SCi1fklR2OK90Ni8vFlEsGtELr6T0SOuL+tL3ntVwfmQliCdP9uqXVy3TW6vL9daasrn8zwIAAMAlmFuAmzo0Nze7lpYWX2p1nx5U3knv/+L3lc5efG3fkogpXhLRUC6vXP7i3zMvFtHj/+W9iphUu7TUlx4BAABQPDM76pxrnuy50M8Ee/GIvnv8hUsGYEnK5Z0Gh4YvGYAlKZ3N65HWF+TFQ/+tBQAAmLdCn9QGM3ntOdLpa83dhzs1mGHHOAAAgPkq9CFY0qQ3vs2negAAAPBX6EPwuXQ2kLr9mVwgdQEAADBzoQ/BU80CjymJmErjUZVEClv/N50dnklbAAAACFDol0hLxqKTHo9GTOsbqvUr73iDapcklcnllc4Oy4tFlSiJqPuVlA60vqgnOl4+v0TaeF7J5HURXsPDefUNDimXdzqXzimTHVYiFtUir0QlEVNlaVzRaOj/XQoAwKwIfQhe5F34Ldi4erk++p4r9eSPe/Un/3DyoptlfOjqK/S7171FX/3BT7T/+AtT1kU4DeXy6hsY0iOtL+hrP/zJRd9PH37Xlbqxabkqy+KKlxCGAQAIEusEnx7ULQ/8SF19KZXFo7r35tV66WxK9z12sqBRCS8W0ac+sELLKpL69IPHNTA0rLrKpL5527WqXcI6wWHXNzCkg+09unPfiYLfT3dtWqX1DTWqLIvPQocAALx+sU7wJVSXJ7R1bb3K4lE98OFm/d3RLu18pL3gWeF0Nq+dj7Tr74526YEPN6ssHtW2tfWqXuQF3Dnmu1P9GX36weP69IOtRb2fPv1gqz794HGd6s8E3CEAAOEV+p/Zx2JRbV5TqzddVqb7//G581snF2vsdX/yq6u1um6JYsx2hlrfwJBu/06rDra/PK3XH2x/Wbd/p1X33bxaS7kiDACA70hqkmJRU9/A0LQD8JgnT/aqb2BI8WhhK0jg9Wkol9fB9pemHYDHHGx/WY+392gox8YrAAD4LfQhOJsd1plUTjsPtPlSb+eBNp1J5ZRlibTQ6hvI6M59T/tS6859J9Q3wFgEAAB+C30IfiU9pAOtLxQ8szmVdDavA//2gl5JD/lSDwvL8HBe3z3+oq/vp++2vqjhYa4GAwDgp9CH4EzO6cGnnve15t8dfV6Z3MJbdQMzd2pgSF//0U98rfn1H/5Epwb4RxUAAH4KfQjOOzfpuq0z0dWXUn4BLj2HmcsO5wt6PxWzA2FXX0pZrgQDAOCr0K8OcS6dC6Ruf5qZ4DC62PtppjsQnssE8z4FACCsQh+Cg7rzfihHCA6jyWaB/diBMOPTjDEAABgR+hCcjEUDqesFVBfzW2LcdsfjdyC85YEfXfJmua6+lP7s4DP6X9//v/rUB1boA29fdn4HQklsowwAgM9C/8lalgjm3wFB1cX8VpoY+cfPVDsQXmwmeLIdCCWpNM4/qgAA8FPok1pJ1FRXmfT15ri6yqRibJgRSs6N/P/ffkPDa3YgLHYmeOx19968Wrv+vl3cZwkAgL9CH4IjJv3mtVfq84+2+1bzt669UhEjBIeRF4/osxsa9Pzp1PkgO92Z4CdP9uoXr7pcn93QoGQ89D+0AQDAV6H/ZB3KOV3fUC0v5s+3wotF9L6GamXY6jaUTNLbly/WfY+dVFk8qi9vu1qr6xbrlgd+pD87+MxFf+IwNhN8ywM/0uq6xfrytqtVFo/qvsdO6u3LF8/ufwQAACEQ+hDcn87pzw8+o89tfLsv9f77xrfrzx7/sfpZ0iqUIibtO/aComaXnAm+mIkzwVEz7T/2Aj9ZAADAZ6EPwanssPYff0GXlca1vqF6RrXWN1SrsjSu77a+qHSWJdLCKJ11+uaRTt178+rXzAQX68mTvbr/H5/TvTev1p4jnb5twwwAAEaEPgSPLZH2B986ptv+w5unHYTXN1Trtv/wZv3Bt45JkrwS7uYPIyend9Yt1UtnU9MOwGOePNmrl86mtOaKJXLizjgAAPwU+hBc7o3cGzgwNKzf/usjuumdV+juzasKnhH2YhHdvXmVbnrnFfrtvz5yfl3XsboIl/50Th99z5W677GTvtS777GTuvUX3sQOhAAA+Cz0Idhs5M58aSQIf3z3U/rRc6f0zdvepdtvWHH+uYnqKpO6/YYV+uZt79KPnjulj+9+6nwArqtMihHOcEqURPTkj3t9G19IZ/P6/o972SwDAACfhf5yZbkX1dZr6nXvuCt33219UY+eeEnXr6zWH/7SCi1fklR2OK+hXF7xkohi0YheeCWlR1pf1J/8w481nH/tj6q3ra3XIq4Eh1JJNKLvPPW8rzUffOp5bX5nra81AQAIu9AntUXxmDauWa4vfe+Z11y9G847/UNbj/6hrUfSyA5f8ZKIhnJ55fIXn8/0YhF9cPVylSdigfeO+Sdi5uvGK9LI8mmsDgEAgL9C/zPWaDSiZElEOzY0XvK8XN5pcGj4kgFYknZsaJRXElE0QmgJo6CWxhtgyT0AAHwV+hAsSYuScb13RZXWrayaUZ11K6v03hVVqkjGfeoMC01QS+Olc9wYBwCAnwjBkuIlEZXGS/THm94x7SC8bmWV/njTO1QWL+EmphALamm8RJQl9wAA8FPoZ4LHVJbFdcpl9N9ufLvWr/yZdh5oK+gOfy82MkrxnrdeLi8W0dIyrgKHWVBL47HkHgAA/uKTdZzLyhMyM62uW6zH/8t79UjrC9p9uHPSG53qKpPatrZeNzYt19nUkBYnYwRgnF9yz8+b41hyDwAA/xGCJ6gsi6s8UaK+gSGtvbJS61ZWy4tFNZDJKZ3Ny4tFVJYoUTo7rIF0TrFoRFfVVDACAUlSVVn8giX3Zmrb2npVL0r4Vg8AADATPKl4SUTLFntaU7dEl5XFlSiJKB6NqDQ+8nuiJKLLyuJaU79UyxZ7BGCcl4iXaNOa2oJ3HJyKF4to4+paxdmGGwAAX3El+BKi0YiqFnkjDxbPbS9YOMoTUe3Y0Kg7Hj4x41o7NjRqkUcABgDAb1zCBHyWG87rfQ3Vviy5976Gag3l/NmCGQAAvIoQDPhoeDivVC6vD3/1X/SFm5pmtOTeF25q0oe/+i9K5/IaHiYIAwDgJ0Iw4KNzQ1ntP/aCftwzoF//y3/WH29apbs3ryp4RtiLRXT35lX6402r9Ot/+c/6cc+Avnv8BZ0bygbcOQAA4UIIBnzUnx7WniOdkqSf9qX0nnsOqboioSc+eZ1uv2GF6iqTk76urjKp229YoSc+eZ2qKxJ6zz2H9NPRZdZ2H+5Uf5od4wAA8BM3xgE+ck4XrBH8sa8fVWVZXPt+9926sWm5JKk/k1M6OywvFlV5omT0tXl98H/+k/oGhl7z+q6+lJybnf4BAAgLQjDgo3PpC8cW/uq3fk4Nb1isfce6tefIyOYr5fGolpbFdXpgSP1Dw6qrTGrrNfX67id+Qe0vntF/+vrR19Toz+Rm6z8BAIBQYBwC8NH4rbbfWJnUD25fp56zGV3/p0/q3sdOnr9K3D80rK7TKfUPjYw5dPWldO9jJ3X9nz6pnrMZ/eD2dXrjuNGJdJZxCAAA/BR4CDazG8zspJk9a2bbJ3m+3swOmdm/mlmrmf1K0D0BQUnGRtb0fWNlUt/6z+/WZ/ed0B0Pn3hNOL6UdDavOx4+oc/uO6Fv/ed3nw/CHptlAADgq0BDsJlFJX1Z0i9LapS01cwaJ5z2WUnfds69U9Itkv7fIHsCglTujUwY7f7YtfrMQ6061NE7rTqHOnr1mYdatftj176mLgAA8EfQV4LXSnrWOfecc25I0jclbZpwjpNUMfr1YkkvBNwTEJiISd/46Fo9ebJ32gF4zKGOXj15slff+Og1ijC4BACAr4L+aK2V1DXu8fOjx8b7nKTfMLPnJT0q6fcmK2Rmt5lZi5m19PbOLFwAQakuT+jNVeXaeaDNl3o7D7TpzVWLVD22fTcAAPDFfLi+tFXS3zjnrpD0K5K+YWYX9OWcu9851+yca66qmtl2tEBQ8s5p37HugmeAp5LO5rX/eLfy7BgHAICvgg7B3ZLqxj2+YvTYeLdK+rYkOed+KMmTdHnAfQGB6B0YOr9Zhl92H+5U74S1gwEAwMwEHYKPSLrKzN5kZnGN3Pi2f8I5nZKulyQza9BICGbeAQvSZJtlzBSbZQAA4L9AQ7BzLifpE5Iek9SukVUgnjazu8xs4+hp/1XSx8zsuKQ9kj7iHB/5WJj608FsasFmGQAA+CvwdZecc49q5Ia38cfuHPd1m6T3BN0HMBtSAW1qwWYZAAD4az7cGAe8boxtluE3NssAAMBfhGDAR0FtasFmGQAA+IsQDPjITKob3erYL3WVSZn5WhIAgNAjBAM+qiqLa+s19b7W3La2XtWLEr7WBAAg7AjBgI8S8RJtWlMrL+bPXy0vFtHG1bWKMxMMAICvCMGAzyq8Eu3Y0OhLrR0bGrU4yTwwAAB+IwQDPluUjGl9Q43WrZzZ9t7rVlZpfWONyr2YT50BAIAxhGAgADWLPe3a0jTtILxuZZV2bWlSTYXnc2cAAEAiBAOBqanwtOumJt29eVXBM8JeLKK7N68iAAMAEDCGDYEAxUoievdbKvXEJ6/T/uPd2n24U119qQvOq6tMatvaem1cXauhXE6xKP8+BQAgSIRgICCn+jPa/p1/0+PtPUrGo7rvQ+/QN279eUXN1J/JKZ0dlheLqjxRomHndOL5V7T+i99XamhY72+o0a4PvUOXlbM0GgAAQSAEAwHoGxg6H4AlKTU0rE/sOXb++fJ4VEvL4jo9MKT+oeELXv94e4/0Henem5u0tCw+a30DABAW/MwV8NlQLq8n2nvOB+DJ9A8Nq+t0atIAPObx9h4dbO/RUC4fRJsAAIQaIRjwWd/AkHbsO+FLrR37TqhvYMiXWgAA4FWEYMBHw8N5PdL6gtJZf67eprMj9YaHuRoMAICfCMGAj/oGh/S1H/7E15pf++FP1DfI1WAAAPxECAZ8lMu7SZdAm4muvpRyeedrTQAAwo4QDPjoXDoXSN3+gOoCABBWhGDAR5nsxVd7mFFdVogAAMBXhGDAR4lYNJC68RL+qgIA4Cc+WQEfLfKC2X8mqLoAAIQVIRjwUUnEVFeZ9LVmXWVSJRHztSYAAGFHCAZ8VFka14ffdaWvNT/8ritVWZbwtSYAAGFHCAZ8FI1GdGPTcnkxf/5qebGRelGuBAMA4CtCMOCzyrK4dm5a5UutnZtWqbIs7kstAADwKkIw4LN4SUTXN9To/Q01M6rz/oYarW+oYWUIAAACwKcrEIDKsrh2fegd0w7C72+o0a4PvUNLuQoMAEAgCMFAQC4rT+iem5t0381NBc8Ie7GI7ru5Sffe3KTLyrkZDgCAoLD4KBCgyrK4Nq2p1S9eVaVHWl/Q1374E3X1pS44r64yqY+8+0pteMdyVZbFGYEAACBghGAgYPGSiJYt9vTb775Sm9YsVy7v1J/OKZPLK1ESUblXopKIqbIswSoQAADMEkIwMEui0YiqFnkjDxbPbS8AAIQdIRiYJdnssHoHMso76Vw6p1R2WMlYVIu8EkVMqipLKBaLznWbAACEAiEYCNhgJqfTqaz2HevWnsOdF50J3rq2XpvW1GppMqbSBH81AQAIkjnn5rqHojU3N7uWlpa5bgOY0stn0zrY3qO7HmlTOpuf8nwvFtGdNzZqfUONqiu8WegQAIDXLzM76pxrnuw5LjcBAXn5bFq3723VoY7egl+Tzub1Rw+d0OPtPbpnSxNBGACAgLAOExCA6QTg8Q519Or2va16+Wza584AAIBECAZ8N5jJ6WB7z7QD8JhDHb062N6jwaGcT50BAIAxhGDAZ6dTWd31SJsvte56pE2nB7O+1AIAAK8iBAM+ymaHte9Yd0E3wRUinc1r/7FuZbPDvtQDAAAjCMGAj3oHMtpzuNPXmrsPd6p3IONrTQAAwo4QDPgo7zTpOsAz0dWXUn7hrWQIAMC8RggGfHQuHcxNbEHVBQAgrAjBgI9SAc3uppkJBgDAV4RgwEfJWDSQul5AdQEACCtCMOCjRV4wmzAGVRcAgLAiBAM+iphUV5n0tWZdZVIR87UkAAChRwgGfFRVltDWtfW+1ty2tl5VizxfawIAEHaEYMBHsVhUm9bUyov581fLi0W0cU2tYlH+qgIA4Cc+WQGfLU3GdOeNjb7UuvPGRi0tjflSCwAAvIoQDPisNFGi9Q01WreyakZ11q2s0vqGGpXGuSkOAAC/EYKBAFRXeLpnS9O0g/C6lVW6Z0uTqiuYBQYAIAiEYCAgY0H48zetumBG+PLSmJpqK3T5hFEHLxbR529aRQAGACBg/JwVCFB1hafN76zVe1dUKxaRMjknM+lsKqt0Ni8vFlFFMibnpHjUNOykJaUxRiAAAAgYn7RAwDK5vOSkB492a8+RTnX1pS44p64yqa3X1GvTmlplcnmVxuegUQAAQsScc3PdQ9Gam5tdS0vLXLcBTOmlM2k90d6jnQfalM7mpzzfi0W0Y0Ojrm+o0bLFjEMAADATZnbUOdc82XNcCQYC0nM2rc881KpDHb0FvyadzeuOh0/oYEePdm1pUg1zwQAABIIb44AAvHQmre17iwvA4x3q6NX2va3qOZv2uTMAACARggHfnR4c0hPtPdMOwGMOdfTqYFuPXhkc8qkzAAAwhhAM+GwwM6ydB9p8qbXzQJsGMsO+1AIAAK8iBAM+SmWy2nesu6Cb4AqRzua1/3i3UpmsL/UAAMAIQjDgo1ODWe050ulrzd2HO3VqkBAMAICfCMGAj5zTpOsAz0RXX0oLcCVDAADmtSlDsJktmY1GgNeD/nQumLqZYOoCABBWhVwJ/pmZHTSzWwnEwKWlssHcxJYOqC4AAGFVSAhul/Rnkt4n6f+a2T4zu8XMksG2Biw8yVg0kLpeSTB1AQAIq0JCcNY594hz7j9KukLS30r6NUnPm9nuQLsDFphyL5hNGIOqCwBAWBUSgm3sC+dcyjn3befcFklvlvRYYJ0BC5CZVFfp7w9J6iqTMpv6PAAAULhCQvDfTnbQOXfGOfc1n/sBFrTLSmPaek29rzW3ra1XVXnC15oAAITdlCHYOfcnhRQys7+YeTvAwpZMxLRpTa28mD+rD3qxiDaurlUioFljAADCys91gt/jYy1gwSpNRLVjQ6MvtXZsaFRZggAMAIDf2CwD8NnS0riub6jRupVVM6qzbmWV1jfWaElp3KfOAADAGEIwEIBliz3t2tI07SC8bmWVdm1pUk2F53NnAABA8jcEc/86ME5Nhacv3NSkuzevKnhG2ItFdPfmVQRgAAACVvDio2b2Dufcv13ilD+/yOtuGH0uKumvnHO7Jjnn1yR9TpKTdNw5t63QvoD5bNliTxua3qDrVlRr//Fu7T7cqa6+1AXn1VUmtW1tvTauqVVZPMoIBAAAATPnXGEnmv0fSQlJfyPpb51zZwp4TVTSjyW9X9Lzko5I2uqcaxt3zlWSvi3pfc6502ZW7Zx7+VJ1m5ubXUtLS0F9A/NFKpPVqcGsnJP6Mzmls8PyYlGVJ0pkNrK8WjIRm+s2AQB43TCzo8655smeK/hKsHPuF0cD60clHTWzw5L+2jn3+CVetlbSs86550Yb+aakTZLaxp3zMUlfds6dHv1zLhmAgYXmXCqrs+mc9h3r1p4jI1eCy+NRLS2L6/TAkPqHhlVXmdTWa+q1aU2tKrwSLUoShgEACFJRe7E6554xs89KapH0JUnvNDOT9EfOub2TvKRWUte4x89L+vkJ57xNkszsBxoZmficc+7vJxYys9sk3SZJ9fX+bkYABKXnTFoH23u080Cb0tn8+eP9Q8PqH3p1LKKrL6V7HzupL33vGe3Y0Kj1DTWqWcxMMAAAQSn4xjgzazKzL0pql/Q+SR90zjWMfv3FGfRQIukqSddJ2irpATNbMvEk59z9zrlm51xzVdXMlp4CZkPP2bS2P9SqOx4+8ZoAfCnpbF53PHxC2x9qVc/ZdMAdAgAQXsWsDvEXkp6StNo593Hn3FOS5Jx7QdJnL/Kabkl14x5fMXpsvOcl7XfOZZ1z/66RGeKriugLmHd6zqS1fW+rDnX0Tuv1hzp6tX0vQRgAgKAUE4I3SNrtnEtJkplFzKxUkpxz37jIa45IusrM3mRmcUm3SNo/4ZyHNXIVWGZ2uUbGI54roi9gXjmXyupge8+0A/CYQx29OtjWo/501qfOAADAmGJC8EFJyXGPS0ePXZRzLifpE5Ie08gYxbedc0+b2V1mtnH0tMcknTKzNkmHJH3KOXeqiL6AeeVsOqedB9qmPrEAOw+06Uwq50stAADwqmJujPOcc/1jD5xz/WNXgi/FOfeopEcnHLtz3NdO0idHfwELWmZoZBWIQmeAp5LO5rX/eLc++u4rlYgXdR8rAAC4hGKuBA+Y2dVjD8zs5yRduJyoKigAACAASURBVOo/EGK9A0Pac6TT15q7D3eqd2DI15oAAIRdMZeW/kDS35nZCxrZInmZpF8PpCtggXJOk+4INxNdfSkVuKcNAAAoUDGbZRwxs5WSVoweOumc444dYJz+dDDzu/0Z5oIBAPBTsUOG10i6cvR1V5uZnHNf970rYIFKZYcDqZsOqC4AAGFVcAg2s29IeoukY5LGPpGdJEIwMCoZiwZS1ysJpi4AAGFVzJXgZkmNo6s5AJhEuRfMCg5B1QUAIKyKWR3ihEZuhgNwEWZSXWVy6hOLUFeZlJmvJQEACL1iQvDlktrM7DEz2z/2K6jGgIWoqiyurdfU+1pz29p6VS9K+FoTAICwK+ZnrJ8Lqgng9SIRL9GmNbX60vee8WXDDC8W0cbVtYozEwwAgK8KvhLsnPu+pJ9Iio1+fUTSUwH1BSxYFV6Jdmxo9KXWjg2NWpxkHhgAAL8VHILN7GOSHpT0l6OHaiU9HERTwEK2KBnT+oYarVtZNaM661ZWaX1jjcq9mE+dAQCAMcXMBH9c0nsknZUk59wzkqqDaApY6GoWe9q1pWnaQXjdyirt2tKkmgrP584AAIBUXAjOOOeGxh6YWYlG1gkGMImaCk+7bmrS3ZtXyYsV9lfNi0V09+ZVBGAAAAJWzLDh983sjyQlzez9kn5X0neDaQt4fahZ7GnTmuW6bkW19h/v1u7DnerqS11wXl1lUtvW1mvjmlot9koYgQAAIGBW6N4XZhaRdKukX5Jkkh5zzj0QYG8X1dzc7FpaWubijwamLTOUU+/AkJyT+jM5pbPD8mJRlSdKZCZVL0qwCgQAAD4ys6POuebJnivmSvDvOef+XNL54Gtmvz96DMAUEvESXRFnpQcAAOaDYmaCPzzJsY/41AcAAAAwa6a8LGVmWyVtk/SmCTvELZLUF1RjAAAAQFAK+dnsP0t6USPbJv+PccfPSWoNoikAAAAgSFOGYOfcTyX9VNK7gm8HAAAACF4xO8ZtMbNnzOyMmZ01s3NmdjbI5gAAAIAgFHOr+r2SPuicaw+qGQAAAGA2FLM6RA8BGAAAAK8HxVwJbjGzb0l6WFJm7KBzbq/vXQEAAAABKiYEV0ga1MiOcWOcJEIwAAAAFpSCQ7Bz7reDbAQAAACYLcWsDvE2M3vCzE6MPm4ys88G1xoAAAAQjGJujHtA0mckZSXJOdcq6ZYgmgIAAACCVEwILnXOHZ5wLOdnMwAAAMBsKCYE/8zM3qKRm+FkZjdrZDtlAAAAYEEpZnWIj0u6X9JKM+uW9O+SfiOQrgAAAIAAFbM6xHOS1ptZmaSIc+5ccG0BAAAAwSlmdYjfN7OxtYK/aGZPmdkvTfU6AAAAYL4pZib4o865sxrZLOMySb8paVcgXQEAAAABKiYE2+jvvyLp6865p8cdAwAAABaMYkLwUTP7B42E4MfMbJGkfDBtAQAAAMEpZnWIWyWtkfScc27QzC6TxFbKAAAAWHCmDMFmttI516GRACxJbzZjCgIAAAALVyFXgj8p6TZJ/2OS55yk9/naEQAAABCwKUOwc+620d/XBd8OAAAAELxi1gn+1dGb4WRmnzWzvWb2zuBaAwAAAIJRzOoQO5xz58zsFyStl/QVSf8rmLYAAACA4BQTgodHf98g6X7n3AFJcf9bAgAAAIJVTAjuNrO/lPTrkh41s0SRrwcAAADmhWJC7K9JekzSB5xzr0iqlPSpQLoCAAAAAlRwCHbODUraJ2nAzOolxSR1BNUYAAAAEJSCd4wzs9+T9N8k9ejV7ZKdpKYA+gIAAAACU8y2yb8vaYVz7lRQzQAAAACzoZiZ4C5JZ4JqBAAAAJgtxVwJfk7Sk2Z2QFJm7KBz7k997woAAAAIUDEhuHP0V1ysDwwAAIAFrOAQ7Jz775JkZuWjj/uDagoAAAAIUsEzwWa2ysz+VdLTkp42s6Nm9vbgWgMAAACCUcyNcfdL+qRz7o3OuTdK+q+SHgimLQAAACA4xYTgMufcobEHzrknJZX53hEAAAAQsKJWhzCzHZK+Mfr4NzSyYgQAAACwoBRzJfijkqok7ZX0HUmXjx4DAAAAFpRiVoc4Len/CbAXAAAAYFYUszrE42a2ZNzjpWb2WDBtAQAAAMEpZhzicufcK2MPRq8MV/vfEgAAABCsYkJw3szqxx6Y2RslOf9bAgAAAIJVzOoQd0j6JzP7viST9IuSbgukKwAAACBAxdwY9/dmdrWka0cP/YFz7mdjz5vZ251zT/vdIAAAAOC3Yq4EazT0PnKRp78h6eoZdwQAAAAErJiZ4KmYj7UAAACAwPgZgrlJDgAAAAuCnyEYAAAAWBD8DMFDPtYCAAAAAlPUjXFm1iTpyvGvc87tHf392ou8DAAAAJhXCg7BZvZVSU2SnpaUHz3sJO0NoC8AAAAgMMVcCb7WOdcYWCcAAADALClmJviHZkYIBgAAwIJXzJXgr2skCL8kKaORdYGdc64pkM4AAACAgBRzJfgrkn5T0g2SPijpxtHfL8nMbjCzk2b2rJltv8R5HzIzZ2bNRfQEAAAAFK2YK8G9zrn9xRQ3s6ikL0t6v6TnJR0xs/3OubYJ5y2S9PuS/qWY+gAAAMB0FBOC/9XMdkv6rkbGISS9ukTaRayV9Kxz7jlJMrNvStokqW3CeTsl3SPpU0X0AwAAAExLMeMQSY2E31/SyBjE2EjEpdRK6hr3+PnRY+eZ2dWS6pxzBy5VyMxuM7MWM2vp7e0tom0AAADgtQq+Euyc+22//3Azi0j6U0kfKeDPv1/S/ZLU3Nzs/O4FAAAA4VHMZhmepFslvV2SN3bcOffRS7ysW1LduMdXjB4bs0jSKklPmpkkLZO038w2OudaCu0NAAAA80dmKKfegSFJ0rlUTqnssJKxqBYlR6JnVVlciXhRGxf7rpg//RuSOiR9QNJdkv6jpPYpXnNE0lVm9iaNhN9bJG0be9I5d0bS5WOPzexJSX9IAAYAAFh4zqWyOpvOad+xbu050qmuvtQF59RVJrX1mnptWlOrCq9Ei5KxOei0uBD8Vufcr5rZJufc10Zvkvs/l3qBcy5nZp+Q9JikqKSvOueeNrO7JLUUu9oEAAAA5qeeM2kdbO/RzgNtSmfzFz2vqy+lex87qS997xnt2NCo9Q01qlnsXfT8oBQTgrOjv79iZqskvSSpeqoXOecelfTohGN3XuTc64roBwAAAPNAz9m0tj/UqkMdhS9ekM7mdcfDJ3Swo0e7tjSppmJ2g3Axq0Pcb2ZLJe2QtF8jy5zdG0hXAAAAWBB6zqS1fW9xAXi8Qx292r63VT1n0z53dmnFrA7xV6Nffl/Sm4NpBwAAAAvFuVRWB9t7ph2Axxzq6NXBth5tWrNc5d7szAgXfCXYzGrM7Ctm9r9HHzea2a3BtQYAAID57Gw6p50HJu6BNj07D7TpTCrnS61CFDMO8TcaucFt+ejjH0v6A78bAgAAwPyXGRpZBeJSN8EVI53Na//xbmWGZicIFxOCL3fOfVtSXhpZ+UHScCBdAQAAYF7rHRjSniOdvtbcfbjz/PrCQSsmBA+Y2WWSnCSZ2bWSzgTSFQAAAOY15zTpOsAz0dWXkpulfYGLWSLtkxpZFeLNZvYDSVWSbg6kKwAAAMxr/elgxhb6M7MzDlFMCG6T9JCkQUnnJD2skblgAAAAhEwqG8xUbDqguhMVMw7xdUkrJX1e0l9IeptGtlIGAABAyCRj0UDqeiXB1J2omCvBq5xzjeMeHzIzf9bEAAAAwIJS7hUTI+e+7kTFXAl+avRmOEmSmf28pBb/WwIAAMB8ZybVVSZ9rVlXmZSZryUvasoQbGb/Zmatkn5O0j+b2U/M7N8l/VBSc9ANAgAAYP6pKotr6zX1vtbctrZe1YsSvta8mEKuN98YeBcAAABYUBLxEm1aU6svfe8ZXzbM8GIRbVxdq/gszQRPeSXYOffTS/2ajSYBAAAw/1R4JdqxoXHqEwuwY0OjFidnZx5YKm4mGAAAADhvUTKm9Q01WreyakZ11q2s0vrGGpV7MZ86mxohGAAAANNWs9jTri1N0w7C61ZWadeWJtVUeD53dmmEYAAAAMxITYWnXTc16e7Nq+TFCouXXiyiuzevmpMALBW3TjAAAAAwqZrFnjatWa7rVlRr//Fu7T7cqa6+1AXn1VUmtW1tvTauqdVir2RWRyDGIwQDAADAF+VeTOVeTB9995X64Orlck7qz+SUzg7Li0VVniiRmVS9KDFrq0BcDCEYAAAAvkrES3RFfH7HTGaCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChUzLXDQAAAOD1JZsdVu9ARnknnUvnlMoOKxmLapFXoohJVWUJxWLROe2REAwAAABfDGZyOp3Kat+xbu053KmuvtQF59RVJrV1bb02ranV0mRMpYm5iaPmnJuTP3gmmpubXUtLy1y3AQAAgFEvn03rYHuP7nqkTelsfsrzvVhEd97YqPUNNaqu8ALpycyOOueaJ3uOK8EAAACYkZfPpnX73lYd6ugt+DXpbF5/9NAJPd7eo3u2NAUWhC+GG+MAAAAwbdMJwOMd6ujV7Xtb9fLZtM+dXRohGAAAANMymMnpYHvPtAPwmEMdvTrY3qPBoZxPnU2NEAwAAIBpOZ3K6q5H2nypddcjbTo9mPWlViEIwQAAAChaNjusfce6C7oJrhDpbF77j3Urmx32pd5UCMEAAAAoWu9ARnsOd/pac/fhTvUOZHyteTGEYAAAABQt7zTpOsAz0dWXUn6WVu8lBAMAAKBo59LB3MQWVN2JCMEAAAAoWiqg2d00M8EAAACYr5KxaCB1vYDqTkQIBgAAQNEWecFsPBxU3YkIwQAAAChaxKS6yqSvNesqk4qYryUvihAMAACAolWVJbR1bb2vNbetrVfVIs/XmhdDCAYAAEDRYrGoNq2plRfzJ056sYg2rqlVLDo78ZQQDAAAgGlZmozpzhsbfal1542NWloa86VWIQjBAAAAmJbSRInWN9Ro3cqqGdVZt7JK6xtqVBqfnZviJEIwAAAAZqC6wtM9W5qmHYTXrazSPVuaVF0xO7PAYwjBAAAAmJGxIPz5m1ZdMCO8vCKhX3xrpZZXJF5z3ItF9PmbVs1JAJak2bvmDAAAgNet6gpPm99Zq/euqFZZIqJzqWGZSWdTWaWzeXmxiCqSMTknLfKiGhzKa0lpbFZHIMYjBAMAAMAXmVxectLuH3Vpz5FOdfWlLjinrjKprdfUa9OaWmVyeZXG56BRSeacm5s/eQaam5tdS0vLXLcBAACAUS+dSeuJ9h7tPNCmdDY/5fleLKIdGxp1fUONli0OZhzCzI4655one44rwQAAAJiRnrNpfeahVh3q6C34NelsXnc8fEIHO3q0a0uTargxDgAAAAvFS2fS2r63uAA83qGOXm3f26qes2mfO7s0QjAAAACm5fTgkJ5o75l2AB5zqKNXB9t69MrgkE+dTY0QDAAAgGkZzAxr54E2X2rtPNCmgcywL7UKQQgGAABA0VKZrPYd6y7oJrhCpLN57T/erVQm60u9qRCCAQAAULRTg1ntOdLpa83dhzt1apAQDAAAgHnKOU26DvBMdPWlNFur9xKCAQAAULT+dC6Yuplg6k5ECAYAAEDRUtlgbmJLB1R3IkIwAAAAipaMRQOp65UEU3eiwEOwmd1gZifN7Fkz2z7J8580szYzazWzJ8zsjUH3BAAAgJkp94LZeDiouhMFGoLNLCrpy5J+WVKjpK1m1jjhtH+V1Oyca5L0oKR7g+wJAAAAM2cm1VUmfa1ZV5mUma8lLyroK8FrJT3rnHvOOTck6ZuSNo0/wTl3yDk3OPrwR5KuCLgnAAAAzNBlpTFtvabe15rb1tarqjzha82LCToE10rqGvf4+dFjF3OrpP892RNmdpuZtZhZS2/vzLbmAwAAwMwkEzFtWlMrL+ZPnPRiEW1cXatEQLPGE82bG+PM7DckNUu6b7LnnXP3O+eanXPNVVVVs9scAAAALlCaiGrHhomTrtOzY0OjyhKzE4Cl4ENwt6S6cY+vGD32Gma2XtIdkjY65zIB9wQAAAAfLC2N6/qGGq1bObMLlOtWVml9Y42WlMZ96mxqQYfgI5KuMrM3mVlc0i2S9o8/wczeKekvNRKAXw64HwAAAPho2WJPu7Y0TTsIr1tZpV1bmlRT4fnc2aUFGoKdczlJn5D0mKR2Sd92zj1tZneZ2cbR0+6TVC7p78zsmJntv0g5AAAAzEM1FZ6+cFOT7t68quAZYS8W0d2bV81JAJYkc7O1QbOPmpubXUtLy1y3AQAAgHFeGRzSQGZY+493a/fhTnX1pVQSMcVLIhrK5ZXLO9VVJrVtbb02rqlVWTwa6AiEmR11zjVP9tzsrEYMAACA170lpXEtKZU+8q436oOrl0uSzqVySmWHlYxFtSg5Ej0vK40pmYjNZauEYAAAAPjj9OCQBjPD2nesW3uOjFwJnqiuMqmt19Rr05palSaiWjqLN8ONxzgEAAAAZuylM2k90d6jnQfalM7mpzzfi0W0Y0Ojrm+o0bLFwcwEMw4BAACAwPScTeszD7XqUEfhG5qls3nd8fAJHezoef2tDgEAAIDXt5fOpLV9b3EBeLxDHb3avrdVPWfTPnd2aYRgAAAATMvpwSE90d4z7QA85lBHrw629eiVwSGfOpsaIRgAAADTMpgZ1s4Dbb7U2nmgTQOZYV9qFYIQDAAAgKKlMlntO9Zd0E1whUhn89p/vFupTNaXelMhBAMAAKBopwaz2nOk09eauw936tQgIRgAAADzlHOadB3gmejqS2m2Vu8lBAMAAKBo/elcMHUzwdSdiBAMAACAoqWywdzElg6o7kSEYAAAABQtGYsGUtcrCabuRIRgAAAAFK3cC2bj4aDqTkQIBgAAQNHMpLrKpK816yqTMvO15EURggEAAFC0y0pj2npNva81t62tV1V5wteaF0MIBgAAQNGSiZg2ramVF/MnTnqxiDaurlUioFnjiQjBAAAAmJbSRFQ7NjT6UmvHhkaVJWYnAEuEYAAAAEzT0tK4rm+o0bqVVTOqs25lldY31mhJadynzqZGCAYAAMC0LVvsadeWpmkH4XUrq7RrS5NqKjyfO7s0QjAAAABmpKbC0xduatLdm1cVPCPsxSK6e/OqOQnAkjQ7C7EBAADgdW3ZYk8bmt6g61ZUa//xbu0+3KmuvtQF59VVJrVtbb02rqlVWTw6qyMQ4xGCAQAA4As3+vuvNl+hG5uWS5L6Mzmls8PyYlGVJ0aiZ1k8qlQ2f/78uUAIBgAAwIy9dCatJ9p7tPNAm9LZ/PnjNeVxvfHyUv30Z4Pq6R86f9yLRbRjQ6Oub6jRssWMQwAAAGCB6Tmb1mceatWhjt4Ln+sfek34HZPO5nXHwyd0sKOHG+MAAACwsLx0Jq3teycPwIU41NGr7Xtb1XM27XNnl0YIBgAAwLScHhzSE+090w7AYw519OpgW49eGbzwinFQCMEAAACYlsHMsHYeaPOl1s4DbRrIDPtSqxCEYAAAABQtlclq37Hu19wENxPpbF77j3crlcn6Um8qhGAAAAAU7dRgVnuOdPpac/fhTp0aJAQDAABgnnJOk26GMRNdfSm5WVo8mBAMAACAovWnc8HUzQRTdyJCMAAAAIqWygZzE1s6oLoTEYIBAABQtGQsGkhdrySYuhMRggEAAFC0ci+YjYeDqjsRIRgAAABFM5PqKpO+1qyrTMrM15IXRQgGAABA0S4rjWnrNfW+1ty2tl5V5Qlfa14MIRgAAABFSyZi2rSmVl7MnzjpxSLauLpWiYBmjSciBAMAAGBaShNR7djQ6EutHRsaVZaYnQAsEYIBAAAwTUtL47q+oUbrVlbNqM66lVVa31ijJaVxnzqbGiEYAAAA07ZssaddW5qmHYTXrazSri1NqqnwfO7s0gjBAAAAmJGaCk9fuKlJd29eVfCMsBeL6O7Nq+YkAEvS7CzEBgAAgNe1ZYs9bWh6g65bUa39x7u1+3CnuvpSF5xXV5nUtrX12rimVmXx6KyOQIxHCAYAAIAvlpTGtaRU+si73qgPrl4u56T+TE7p7LC8WFTliRKZSVXliVlbBeJiCMEAAADwVTIR0xWJ2Fy3cUnMBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQqdkrhuYz1KZrE4NZiVJ51I5pbLDSsaiWpQc+bZdVhpTMhGbyxaxgPB+AgCExUL4zCMET+L04JAGM8Pad6xbe450qqsvdcE5dZVJbb2mXpvW1Ko0EdXS0vgcdIqFgPcTACAsFtJnnjnn5uQPnonm5mbX0tISSO2XzqT1RHuPdh5oUzqbn/J8LxbRjg2Nur6hRssWe4H0hIWL9xMAICzm42eemR11zjVP+hwh+FU9Z9PavrdVhzp6i37tupVV2rWlSTUVBBeM4P0EAAiL+fqZd6kQzI1xo146M/3/eZJ0qKNX2/e2quds2ufOsBDxfgIAhMVC/cwjBGtkfuWJ9p5p/88bc6ijVwfbevTK4JBPnWEh4v0EAAiLhfyZRwiWNJgZ1s4Dbb7U2nmgTQOZYV9qYWHi/QQACIuF/JkX+hCcymS171h3QQPchUhn89p/vFupTNaXelhYeD8BAMJioX/mBR6CzewGMztpZs+a2fZJnk+Y2bdGn/8XM7sy6J7GOzWY1Z4jnb7W3H248/zaeAgX3k8AgLBY6J95gYZgM4tK+rKkX5bUKGmrmTVOOO1WSaedc2+V9EVJ9wTZ00TOadI17Gaiqy+lBbjoBnzA+wkAEBYL/TMv6CvBayU965x7zjk3JOmbkjZNOGeTpK+Nfv2gpOvNzALu67z+dC6Yuplg6mJ+4/0EAAiLhf6ZF3QIrpXUNe7x86PHJj3HOZeTdEbSZRMLmdltZtZiZi29vTO7A3G8VDaYAex0QHUxv/F+AgCExUL/zFswN8Y55+53zjU755qrqqp8q5uMRX2rNZ5XEkxdzG+8nwAAYbHQP/OCDsHdkurGPb5i9Nik55hZiaTFkk4F3Nd55V7JgqqL+Y33EwAgLBb6Z17QIfiIpKvM7E1mFpd0i6T9E87ZL+nDo1/fLOl7bhb3cjaT6iqTvtasq0xq9qaaMZ/wfgIAhMVC/8wLNASPzvh+QtJjktolfds597SZ3WVmG0dP+4qky8zsWUmflHTBMmpBuqw0pq3X1Ptac9vaelWVJ3ytiYWB9xMAICwW+mde4DPBzrlHnXNvc869xTl39+ixO51z+0e/TjvnftU591bn3Frn3HNB9zReMhHTpjW18mL+fCu8WEQbV9cqEdCcDOY33k8AgLBY6J95C+bGuCCVJqLasWHi8sXTs2NDo8oSBJYw4/0E/P/t3XmsHWUZx/HvTygtUKBKa0EKNBGSigYqkCoBCZtEhZQESSQEAde4RUwUoyYiyB9iXGLURKNAWATFgCAiiA2SoIatrGWLYkQEERBkE6gFHv84U3u53NtOEe7Mdb6fZHLPOfNmztOnT877nFnOSBqK6Tzn2QQDr95kI/Z/w3z2XfS//erEvovmccBO85mzyUYvU2SajqwnSdJQTOc5zya4sdUWszj50J1f8n/ivovmcfKhOzN/81kvc2SajqwnSdJQTNc5L1P4Qwwvm913372WL1/+imz77489w+V3PMBJv7ydZ1Y9v87xs2a8ii8etBMH7DTfhkUvYj1Jkoaij3NekuuravcJ19kEv9ijT/2bf618jotuvo9zrr1nwvtib/uajTliyXYsXbwNm260gYesNSnrSZI0FH2b82yCX6KnV67i4adWUTW6j/Uzq55j1owNmD1zQxKYN3umV+2rNetJkjQUfZnz1tYEexuqtdh45gwWzJzRdRj6P2E9SZKGYjrMeV4YJ0mSpMGxCZYkSdLg2ARLkiRpcGyCJUmSNDg2wZIkSRocm2BJkiQNjk2wJEmSBscmWJIkSYMzLe8Yl+Qh4C8dvPVc4B8dvO90Y57aMU/tmKd2zFN75qod89SOeWqnqzxtX1XzJloxLZvgriRZPtmt97SGeWrHPLVjntoxT+2Zq3bMUzvmqZ0+5snTISRJkjQ4NsGSJEkaHJvg9fODrgOYJsxTO+apHfPUjnlqz1y1Y57aMU/t9C5PnhMsSZKkwXFPsCRJkgbHJliSJEmDYxM8TpLTkjyY5NZJ1ifJt5PcleSWJLtOdYx90CJP+yR5LMlNzXL8VMfYB0m2TXJFktuT3Jbk2AnGDL6mWuZp8DWVZFaSa5Pc3OTpxAnGzExyblNP1yRZOPWRdqtlno5J8tCYevpgF7H2QZINktyY5OIJ1g2+nlZbR56sp0aSu5OsaPKwfIL1vZnzNuzqjXvsdOC7wJmTrH8nsGOzvAX4XvN3aE5n7XkC+G1VHTw14fTWs8Cnq+qGJJsB1ydZVlW3jxljTbXLE1hTK4H9qurJJDOA3yW5tKquHjPmA8A/q2qHJIcDXwXe00WwHWqTJ4Bzq+oTHcTXN8cCdwCbT7DOelpjbXkC62msfatqshtj9GbOc0/wOFV1JfDIWoYcApxZI1cDc5JsPTXR9UeLPAmoqvur6obm8ROMPkC3GTds8DXVMk+D19TIk83TGc0y/urmQ4AzmsfnAfsnyRSF2Ast8yQgyQLgIOCUSYYMvp6gVZ7UXm/mPJvg9bcN8Ncxz+/FyXoyezSHIy9N8saug+lacxjxzcA141ZZ9XR+1QAABD1JREFUU2OsJU9gTa0+JHsT8CCwrKomraeqehZ4DNhyaqPsXos8Aby7ORx7XpJtpzjEvvgW8Fng+UnWW08j68oTWE+rFfDrJNcn+fAE63sz59kE65VyA6P7de8CfAe4sON4OpVkNnA+8KmqerzrePpqHXmypoCqeq6qFgMLgCVJ3tR1TH3UIk+/ABZW1c7AMtbs7RyMJAcDD1bV9V3H0mct8zT4ehpjr6raldFpDx9PsnfXAU3GJnj93QeM/Ya3oHlNY1TV46sPR1bVJcCMJHM7DqsTzTmJ5wNnV9XPJhhiTbHuPFlTL1RVjwJXAO8Yt+q/9ZRkQ2AL4OGpja4/JstTVT1cVSubp6cAu011bD2wJ7A0yd3AT4D9kvxo3BjrqUWerKc1quq+5u+DwAXAknFDejPn2QSvv4uAo5qrG98KPFZV93cdVN8k2Wr1eWNJljCqtaF9cNLk4FTgjqr65iTDBl9TbfJkTUGSeUnmNI83Bt4O3Dlu2EXA0c3jw4Df1MDuitQmT+POQVzK6Dz0Qamqz1fVgqpaCBzOqFaOHDds8PXUJk/W00iSTZuLm0myKXAgMP5XpHoz5/nrEOMk+TGwDzA3yb3AlxhdVEFVfR+4BHgXcBfwFPC+biLtVos8HQZ8NMmzwNPA4UP74GzsCbwXWNGcnwjwBWA7sKbGaJMnawq2Bs5IsgGjLwE/raqLk3wZWF5VFzH6MnFWkrsYXbx6eHfhdqZNnj6ZZCmjXyZ5BDims2h7xnpqx3qa0HzggmZ/xYbAOVX1qyQfgf7Ned42WZIkSYPj6RCSJEkaHJtgSZIkDY5NsCRJkgbHJliSJEmDYxMsSZKkwbEJlqSeSDInyce6jkOShsAmWJL6Yw5gEyxJU8AmWJL642Tg9UluSvK1JMcluS7JLUlOBEiyMMmdSU5P8ockZyc5IMnvk/yxuZseSU5IclaSq5rXP9S8vnWSK5v3uDXJ2zr890pSZ2yCJak/Pgf8qaoWA8uAHYElwGJgtyR7N+N2AL4BLGqWI4C9gM8wutPeajsD+wF7AMcneV0z9rLmPXYBbkKSBsjbJktSPx3YLDc2z2czaorvAf5cVSsAktwGXF5VlWQFsHDMNn5eVU8DTye5glFDfR1wWpIZwIVVZRMsaZDcEyxJ/RTgK1W1uFl2qKpTm3Urx4x7fszz53nhzo0at82qqiuBvYH7gNOTHPUKxC5JvWcTLEn98QSwWfP4MuD9SWYDJNkmyWvXc3uHJJmVZEtgH+C6JNsDD1TVD4FTgF1fntAlaXrxdAhJ6omqeri5wO1W4FLgHOCqJABPAkcCz63HJm8BrgDmAidV1d+SHA0cl2RVs033BEsapFSNP1omSZrukpwAPFlVX+86FknqI0+HkCRJ0uC4J1iSJEmD455gSZIkDY5NsCRJkgbHJliSJEmDYxMsSZKkwbEJliRJ0uD8BwI7j7+VuyHtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXRc9X3v+893pNHskWUJC8YyFhKEBCwLR3aJ7JDQJtaxmyeBDW7aYjdtaXJD72rS25O0aUyo6Dn4cOOkbdKHQ9ctaXrSZh07TakBB6cl2BFJTx5qy6mtGEkmhKQyAoSwjWVJM6PRzO/+IQkUWbI00t6yhv1+rcWSZ8+er7/YW2t/vPV7MOecAAAAgDCJXOoGAAAAgIVGCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFTfKkbmIsrrrjCXXPNNZe6DQAAACxiR48efdk5l5jqvYIMwddcc43a2toudRsAAABYxMzsP6d7j+EQAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdApys4yFkkxndHooI0k6nxxRMpNVPFqkpfHRP7bLS6OKx6KXskUUkPTwiPoGhyVNfT0llpQoVsK3JAAAC4E77hTODg1rKJ3Vo8d6tPdIt06dSV5wTk1lXNvX12rrumqVxoq0rLTkEnSKQnA+mVF/amTW11O5V6ylcf5xBQBAkMw5d6l7yFtjY6MLatvkF8+ldKizV7sOdCiVyc14vheNqKW5XptWV2lFhRdITyhcvedSOjiH62nz6ipVcT0BADAvZnbUOdc45XuE4Nf09qe0c1+7Wrv68v5sU11Cu7c1qKqc4IJRXE8AAFxaFwvBTIwb8+K5uQcWSWrt6tPOfe3q7U/53BkKUS/XEwAAixohWKNjgA919s45sIxr7erTwY5evTI07FNnKETnkxkd9PF6GkhlfOoMAACMIwRLGkpntetAhy+1dh3o0GA660stFKb+1Iiv19O55IgvtQAAwGtCH4KT6YwePdYzq0lLs5HK5LT/eI+SaZ7ehVF6eCSQ6yk9TBAGAMBPoQ/Bp4cy2nuk29eaew53v7q+MMKlb3A4kOtpfH1hAADgj9CHYOc05bqt83HqTFIFuOgGfMD1BABAYQh9CB5IBfNj5oE0P74OI64nAAAKQ+hDcDITzCS2VEB1sbhxPQEAUBhCH4LjJUWB1PWiwdTF4hYP6O/dK+Z6AgDAT6EPwWWx4oKqi8WtzAvoegqoLgAAYRX6ECxJNZXxRV0PhcMsmOvJzNeSAACEXuhDcM45/Wpjja8171hfI8d0/lBKLCnR9vW1vtbcsaFWy5fGfK0JAEDYhT4Enxkc1tZ11fKi/vxReNGItqyt1hnWdQ2lWElxINdTCWOCAQDwVehD8OVLSnTs1Fl94t2rfKn3iXev0vFTZ1W5pMSXeig85V6xWprrfanV0lyvijjjgQEA8FvoQ7CZ6bOPn9SK8rg2rkrMq9bGVQmtKI/rM4+flDGIM7SWxqPavLpKTXXzu56a6hLaXF+lMi/qU2cAAGBc6EOwNLoj1x8+dFx3vePaOQfhjasSuusd1+oPHzru+45hKDxVFZ52b2uYcxBuqkto97YGVZV7PncGAAAkQvCrO3ENDmf14b9v0y+/pUYtt6ye9ZhOLxpRyy2r9ctvqdGH/75Ng8OjmxoMssNX6FWVe9p9e4Puv21NXtfT/betIQADABCw0A82TA6/thPX4HBWH9nzA93acKW+8uGb9K2n+/TQD56b8sluTWVc77/xKr3z+oS++H9+oq+1d/5sXXb4gkafCG9dt1IbVy3X/uM92nO4e9rraceGWm1ZV60Kr5ghEAAABCz0IXiqHb6+1v6Cvn7iRW2qW64/eNcqrbwsrkw2p1QmJy8aUbQooudfSeqx9hf0l998RtnchcuhscMXxpV5UZV5UX3w7dfo1rUr5dzoTyBSmay8aJHKYsUyk5YvjbEKBAAACyT0IXi6nbiyOadvdPTqGx29kqTiiKmkOKLhkZxGpgi9s62L8IqVFOuqEq4LAAAWg9CPCZ7tDl8jOaeh4eysAjA7fAEAACxuoX8sVVoS0fb1tfrs4yd9q7ljQ61KS/ixNn5WJpNV32BaOSedT40oPZJVrLhIS71iRUxKLIkpOsXwHAAA4L/Qh+DBdE5b1q3UX37zR0plcvOu50UjunXtSg2ms6pc4kODKHhD6RGdTWZ0vPusIhHTFWUxpUdyr44JHkyP6OWBtLI5p3W1y7QsHlVpLPTfmgAABCr0d9qB1Ii+9+zLammu1z2PnJh3vZbmej1+4kW9/U1X+NAdCt1L/Sl1vtCvitISPf3SgP75IquN/NKNV6l6Wame6T2v1VeWazlLpAEAEJjQjwlOZrK677FOvfXaSl92+HrrtZXadaBTKZZIC72+/pSeeWlAz/QN6I4Hv6c/P/ijVwOwVxzRFWUl8opHvwVPnUnqzw/+SHc8+D090zegZ14aUF9/6lK2DwDA61ronwSPb2Kw/cHv6+GP3KwWnVBrV1/edZrqEtq1dY1uf+A7kqRYcej/fRFqff0pPX8upQf/7Vk9ebJPJcUR/eG7r9fGuuVaUlKsgdSIkpms4tEilXnFGhwe0Tc7X9JffvMZ7XqsUxtXJfSxzddLkhI8EQYAwHehD8FLxzYlGBrO6vlXkrr3lhu0ue5l7TrQ8TNjhKdbIs2LRtTSXK+b33SFnn8lqaGxzTeWstlBaA2lR/Ty4LA+f/BpPXmyT/feslq/WL9CXzv+vH77y0d16kzyguuppjKu7etrdejj79QTHS/qvsdGN1/55HvqtMQrVilLqwEA4KvQ31nHl0jb+Z7V+usnf6wnT/bpC7/xFh36+EYdPzX1RKZYcUQvD6SVyzmtrVmmjhfOaeOfPqmNqxL67PvXave/drJEWoidT4/ouz9+WU/1nNMTH3uHDv/kjN7zF9/Wz7/pCv3Bu1ap+rL4BddTzytJHWh/QQ88+Yw+9d7VeuJj79COL3xf3/3xy6pcspIQDACAz0J/Zy2PF+lT712t588ldeQnZ/TAjhtlkl4eSOvHLw/qq22npp3I9CuNNapeViqT9MCOG/WHDx3XL1x3hT71vtWqiPMkOIwymazOp0b0pe/8RPt+52bdu/+Elsai+t8fequefLpPf/qNkxedGPc7G9+ov/vOT3Wwq1f7fudm7fjC97Tx+uWqjGdZPg0AAB+ZczNv/rDYNDY2ura2Nl9qZbM5vdif1pb/+W964NfeolzOqfPFfv3J4ydntWSaF43oE+9epdUryhWJmD7yv49q/0d/QSsqPBVFeBwcNn3nk9rz76f0vjdfqc89cVK3NFTrxf5k3tfTivK4Hmvv0cd/cZX+5cQL2r6hRomlM2/qAgAAXmNmR51zjVO+RwjO6e++81PVVJbqygrv1XGc+RqfyPTCuZROnR3SB99+jYqKmBwXNs+dHdJ3nnlZclLN5aV68NvPzvl6uusd1+rU6SE5Of38dQldtaw0gI4BAHj9ulgIDn1KOzM0rOdeGVJNZXzOAViSnjzZp88ffFo1lXGdOjukM0PDPneKQpDLOb39jVeoPB6dcwCWRq+nB7/9rMrjUd38poRyBfiPVQAAFrPQh+CRnNOvv7VW33/29JwDy7gnT/bp+8+e1q+/tfZnVpBAeESLIjrRc07Pn0v6cj09fy6pE8+fUzQS+m9VAAB8Ffo7azbrJIvoTx4/6Uu9P3n8pMwio3UROplcTlcti/t6PV11WVyZ3Py39AYAAK8JfQguipgOtD8/q0lLs5HK5PT1Hz7PpLiQihVHdKjrJV+vp292vcTmKwAA+Cz0d9aRnNNDP3jO15r/dPQ5hkOEVHI4p3/2+Xp66AfPKelTqAYAAKNCH4Kd3JTrts7HqTNJORGCw8hMgVxP/FwBAAB/hT4ED6RGgqmbzgZSF4vbUEB/7+PbcQMAAH+EPgSnR4L5MfNwhtASRoFdTwHVBQAgrEIfguMBbUXrscVtKHnRYL6lmBgHAIC/Qn9nLfOKC6ouFrfyeLSg6gIAEFahD8EmqaYy7mvNmso4E5lCKlpkgVxP0SKuKAAA/BT6EFxcZPrAW6/2teav33S1okWh/6MNpcrSEv3GTdfMeF5xxFRaUqTiWawn/Ztvu0aVS2I+dAcAAMaF/mf2pweG9c5VCX3+4NO+bHDgRSN6x3UJnR4c1vJyz4cOUUiKiiK6de1K/dkTJ3/meiqKmDavXq73vflKVV8WV3okp1QmKy9apFhxRD2vJHWg/QUd6npJ2QlrTHvRiG5pWMnmKwAA+Cz0ITiVyelL3/2p7r3lBn3q4R/Ou94f33KDHmh9Rh/8+Tf40B0KUeWSEu3aukafeKhdkrRl7Up98OZr9OTTffrTb5ycch3hmsq4funGq/Q7G9+ov/vOT7X/+POSpF1b16hyScmC9g8AQBiE/mf28WiR9h9/XpVLotpUt3xetTbVLdeyJVF9rf0FecWsDhFWJcWjPw1oXrNCD+y4UWtrKnTHF76vPz/4o2k30jh1Jqk/P/gj3fGF72ttTYUe2HGjmtes0DuuT6iElSEAAPBd6J8Ej6/i8PtfPa4v3rleknSo66W862yqW64Pv+NafehLR36mLsLnfDKj/vSwWm69QXc/3K7Wrr5ZfzaVyWnXY51qqkvo07c3qD81rCUlRSrzWB0CAAA/hf4Rk9noj6IHh7P60JeOaNuNV+m+LTfMer1XLxrRfVtu0LYbr9KHvnREg8PZ0dUhGMIZWkPDWXnFxXkH4Ilau/p098Pt8qLFGmT3QQAAfBf6EJxYUqLt62slSYPDWX1kzw905Kdn9JW7btIfvOv6aZe7qqmM6w/edb2+ctdNOvLTM/rInh9ocGxr2x0barV8KbP5wyg9PKKcnL79dN+cA/C41q4+fftkn+Sc0sPBbO8NAEBYmXNu5rMWmcbGRtfW1uZbvZ6zSW363JMXzObfVLdczQ1XauVlcWWyOaUzOcWiEUWLInr+laQea39B35xiNv+hj29U9TJ/14pFYXjpfFLDI06bP/ct31YbOfjxd6qkyLS8nGsKAIB8mNlR51zjVO8xcFVSuVesluZ63fPIiVePZXNO3+jo1Tc6eiWNrutaUhzR8EhOI7np/+HQ0lyvijh/rGFVFDHtP9bjSwCWRscIf+348/qV9Vf5Ug8AAIwK/XAISVoaj2rz6io11SWmPWck5zQ0nL1oAG6qS2hzfRWTmEJsKJ3T3iPdvtbcc7hbQ2l/QjUAABhFCB5TVeFp97aGiwbhi2mqS2j3tgZVsUFG6E23DNpiqQcAAAjBP6Oq3NPu2xt0/21r8lod4v7b1hCAIUk6n8oEUncgzcQ4AAD8xODVSaoqPG1dt1IbVy3X/uM92nO4e9odvnZsqNWWddWq8IoZAgFJ8m0s8IV1WSYNAAA/EYKnUOZFVeZF9cG3X6Nb166Uc6NP4lKZrLxokcpixTKTli+NqYSd4TBBPBrM9cAOhAAA+IsQfBGxkmJdVcIfEWYvqJ0C2YEQAAB/MSYY8NH4DoR+YgdCAAD8RwgGfFRaEtH2DbW+1tyxoValJQyHAADAT4RgwEfZnNPWtStnvbrITLxoRFvWrlTuIutTAwCA/BGCAR9d5pUoEjG1NNf7Uq/llnoVm6mitMSXegAAYBQhGPBRNFqkiJnecX1izhuvjGuqS+id1yekiClaxLcqAAB+4s4K+GxprFjJzIj+x9Y3z2sHwv+x9c0aGh7RUlaGAADAd4RgwGelsWIti5folaG07r3lhil3IPSKI7qirERe8aTjYzsQ/vEtN+iVobSWxUtUyjJ9AAD4jrsrEIDE2BbaP3ppQKuvXKonPvZO9fanVOYVKx4t0kBqRMlMVvFokcq8YiUzWQ2kRlRV7qnvfErPv5LUdcvLXq0DAAD8RQgGApIo9+QkFUWkVMbp8E/OaO+R6bfh3r6+VlvXVevqy0uVzYkADABAgAjBQIByTnriRK92HehQKpOb9rxTZ5L67OMn9Zff/JFamuu1aXXVAnYJAED4EIKBgPT2p3T3w+1q7eqb9WdSmZzueeSEDnb1ave2BlXxNBgAgEAEPjHOzN5jZifN7Bkz2znF+7Vm1mpm/2Fm7Wb2vqB7AoL24rmUdu7LLwBP1NrVp5372tXbn/K5MwAAIAUcgs2sSNIDkt4rqV7SdjObvIvAH0n6qnPu5yTdIemvg+wJCNrZoWEd6uydcwAe19rVp4MdvXplaNinzgAAwLignwRvkPSMc+5Z59ywpK9I2jrpHCepfOzXFZKeD7gnIFBD6ax2HejwpdauAx0aTGd9qQUAAF4TdAiulnRqwuvnxo5N9N8kfcDMnpP0dUm/O1UhM7vLzNrMrK2vb35P2ICgJNMZPXqs56KT4PKRyuS0/3iPkumML/UAAMCoxbBZxnZJX3LOXSXpfZK+bGYX9OWce9A51+ica0wk5rcdLRCU00MZ7T3S7WvNPYe7dXqIEAwAgJ+CDsE9kmomvL5q7NhEH5L0VUlyzn1PkifpioD7AgLhnKZcB3g+Tp1JyjlfSwIAEHpBh+Ajkq4zszeYWYlGJ77tn3ROt6RNkmRmqzUaghnvgII0kBoJpm46mLoAAIRVoCHYOTci6aOSHpfUqdFVIJ4ys/vMbMvYab8v6cNmdlzSXkl3OsdzLxSmZCaYSWypgOoCABBWgW+W4Zz7ukYnvE08du+EX3dIujnoPoCFEI8WBVLXKw6mLgAAYbUYJsYBrxtlXjD/rgyqLgAAYUUIBnxkJtVUxn2tWVMZl5mvJQEACD1CMOCjy0uj2r6+1teaOzbUKlEW87UmAABhRwgGfBSPRbV1XbW8qD/fWl40oi1rqxULaKwxAABhRQgGfFYaK1JLc70vtVqa67UkRgAGAMBvhGDAZ8tKS7RpdZWa6ua3s2FTXUKb66t0WWmJT50BAIBxhGAgACsqPO3e1jDnINxUl9DubQ2qKvd87gwAAEiEYCAwVeWePn17g+6/bc2sxwh70Yjuv20NARgAgICx+CgQoBUVnpobrtTGVcu1/3iP9hzu1qkzyQvOq6mMa8eGWm1ZW60lsSKGQAAAEDBCMBCgM4PDOtTZq88//rS+8n/fpFsaVkqSBtIjSmWy8qJFKouNfhs6l9Mv//V39bF3X69Nq6tUuYQgDABAUBgOAQTk9EBan3yoXZ94qF1n0xmd6DmnrHMySc45xaOjX01S1jm1P3dOZ9MZfeKhdn3yoXadHkhf6v8FAABet3gSDATgzOCwdv7zD/VEZ6/+9jfeotVXVujRYz369L92TTscYvv6Wh382DvV+cI5/V//cFT6Z+mz72/QMp4IAwDgO54EAz4bHsnpUGevnu7t13c+2aTe/rQ2fe5Jffbxk1MGYEk6dSapzz5+Ups+96R6+9P6zieb9HRvvw529mp4JLfA/wcAALz+8SQY8NmZwWF94d9+rH/87bfr7ofb1drVN+vPpjI53fPICTXVJfSPv/12/cbffV+/cF1CKypYKQIAAD/xJBjwUTab02Ptz+t/3bkh7wA8UWtXn+5+uF3/684Neqz9eWWzPA0GAMBPhGDAR2eGhrWqaqmePNk35wA8rrWrT0+e7NOqqjKdGRr2qUMAACARggFfjeScrk2UadeBDl/q7TrQoWsTSzWSc77UAwAAowjBgI9ixaZHj/UolfFn+EIqk9P+4z2KFZsv9QAAwChCMOCjwXROe490+1pzz+FuDaYZEwwAgJ8IwYDPplsGbbHUAwAAhGDAVwOpkWDqpoOpCwBAWBGCAR8lM9lA6qYCqgsAQFgRggEfxaNFgdT1ioOpCwBAWBGCAR+VecFswhhUXQAAwooQDPjITKqpjPtas6YyLmOFNAAAfEUIBnyUWFKi7etrfa25Y0Otli+N+VoTAICwIwQDPoqVFGvrump5UX++tbxoRFvWVquEMcEAAPiKEAz4rNwrVktzvS+1WprrVRFnPDAAAH4jBAM+WxqPavPqKjXVJeZVp6kuoc31VSrzoj51BgAAxhGCgQBUVXjava1hzkG4qS6h3dsaVFXu+dwZAACQCMFAYKrKPe2+vUH337Zm1mOEvWhE99+2hgAMAEDAGGwIBKiqwtPWdSu1cdVy7T/eoz2Hu3XqTPKC82oq49qxoVZb1lWrwitmCAQAAAEjBAMBK/OiKvOi+uDbr9Gta1fKOWkgPaJUJisvWqSyWLHMpOVLY6wCAQDAAmE4BLDAzCQ5KRoZ/Tq+EYbLuUvZFgAAocKTYCBg55MZ9adG9OixHu09Mv1wiO3ra7V1XbXKvWItjTMcAgCAIJlzhff0qbGx0bW1tV3qNoAZ9Z5L6WBnr3Yd6FAqk5vxfC8aUUtzvTavrlJVBRPjAACYDzM76pxrnOo9ngQDAentT2nnw+1q7eqb9WdSmZzueeSEDnb1skIEAAABYkwwEIDecynt3JdfAJ6otatPO/e1q7c/5XNnAABAIgQDvjufzOhgZ++cA/C41q4+Hezo1UAq41NnAABgHCEY8Fl/akS7DnT4UmvXgQ6dS474UgsAALyGEAz4KD08ugrEbCbBzUYqk9P+4z1KDxOEAQDwEyEY8FHf4LD2Hun2teaew93qGxz2tSYAAGFHCAZ85JymXAd4Pk6dSaoAVzIEAGBRIwQDPhpIBTNsYSDNcAgAAPxECAZ8lMxkA6mbCqguAABhRQgGfBSPFgVS1ysOpi4AAGFFCAZ8VOYFswljUHUBAAgrQjDgIzOppjLua82ayrjMfC0JAEDoEYIBHyWWlGj7+lpfa+7YUKvlS2O+1gQAIOwIwYCPYiXF2rquWl7Un28tLxrRlrXVKmFMMAAAviIEAz4r94rV0lzvS62W5npVxBkPDACA3wjBgM+WxqPavLpKTXWJedVpqktoc32VyryoT50BAIBxhGAgAFUVnnZva5hzEG6qS2j3tgZVlXs+dwYAACRCMBCYqnJPu29v0P23rZn1GGEvGtH9t60hAAMAEDAGGwIBqqrwtHXdSm1ctVz7j/doz+FunTqTvOC8msq4dmyo1ZZ11arwihkCAQBAwAjBQMDKvKjKvKg++PZrdOvalXJOGkiPKJXJyosWqSxWLDNp+dIYq0AAALBACMHAAomVFOuqEr7lAABYDBgTDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQifwEGxm7zGzk2b2jJntnOacXzGzDjN7ysz2BN0TAAAAwq04yOJmViTpAUm/KOk5SUfMbL9zrmPCOddJulvSzc65s2a2PMieAAAAgFk9CTaz4gm/LjOzRjOrnMVHN0h6xjn3rHNuWNJXJG2ddM6HJT3gnDsrSc65l2bXOgAAADA3M4ZgM7tTUq+ZPW1m75XULukzko6b2fYZPl4t6dSE18+NHZvoeknXm9l3zOz7Zvaeafq4y8zazKytr69vprYBAACAac1mOMTvS1olaamk45J+zjn3YzOrkvSEpL0+9HCdpI2SrpL0bTN7s3PulYknOecelPSgJDU2Nrp5/p4AAAAIsdkMh8g65152zv1E0oBz7seS5JzrncVneyTVTHh91dixiZ6TtN85lxn7PZ7WaCgGAAAAAjGbENxtZp82s/8pqcvM/szMbjazP5b0wgyfPSLpOjN7g5mVSLpD0v5J5zyi0afAMrMrNDo84tl8/icAAACAfMwmBH9AUr9Gn9hukfRdja7msFzSnRf7oHNuRNJHJT0uqVPSV51zT5nZfWa2Zey0xyWdNrMOSa2SPuGcOz2H/xcAAABgVsw5f4bXmtlfOed+15diM2hsbHRtbW0L8VsBAACgQJnZUedc41Tv+blZxs0+1gIAAAACw7bJAAAACB1CMAAAAELHzxBsPtYCAAAAAjPrEGxmb57hlL+YZy8AAADAgsjnSfBfm9lhM/sdM6uY/KZz7kv+tQUAAAAEZ9Yh2Dn3C5J+TaM7wB01sz1m9ouBdQYAAAAEJK8xwc65H0n6I0mflPROSX9pZl1mti2I5gAAAIAg5DMmuMHMPq/Rnd/+i6RbnXOrx379+YD6AwAAAHxXnMe5fyXpbyV9yjmXHD/onHvezP7I984AAACAgOQTgpslJZ1zWUkys4gkzzk35Jz7ciDdAQAAAAHIZ0zwQUnxCa9Lx44BAAAABSWfEOw55wbGX4z9utT/lgAAAIBg5ROCB83sxvEXZvYWScmLnA8AAAAsSvmMCf6vkv7JzJ7X6BbJKyT9aiBdAQAAAAGadQh2zh0xszpJq8YOnXTOZYJpCwAAAAhOPk+CJWm9pGvGPnejmck59w++dwUAAAAEaNYh2My+LOmNko5Jyo4ddpIIwQAAACgo+TwJbpRU75xzQTUDAAAALIR8Voc4odHJcAAAAEBBy+dJ8BWSOszssKT0+EHn3BbfuwIAAAAClE8I/m9BNQEAAAAspHyWSPuWmV0t6Trn3EEzK5VUFFxrAAAAQDBmPSbYzD4s6SFJfzN2qFrSI0E0BQAAAAQpn4lxH5F0s6R+SXLO/UjS8iCaAgAAAIKUTwhOO+eGx1+YWbFG1wkGAAAACko+IfhbZvYpSXEz+0VJ/yTpa8G0BQAAAAQnnxC8U1KfpB9K+m1JX3fO3RNIVwAAAECA8lki7Xedc38h6QvjB8zs98aOAQAAAAUjnyfBvznFsTt96gMAAABYMDM+CTaz7ZJ2SHqDme2f8NZSSWeCagwAAAAIymyGQ3xX0gsa3Tb5zyYcPy+pPYimAAAAgCDNGIKdc/8p6T8lvS34dgAAAIDg5bNj3DYz+5GZnTOzfjM7b2b9QTYHAAAABCGf1SE+K+lW51xnUM0AAAAACyGf1SF6CcAAAAB4PcjnSXCbmf2jpEckpccPOuf2+d4VAAAAEKB8QnC5pCFJ75pwzEkiBAMAAKCgzDoEO+d+K8hGAAAAgIWSz+oQ15vZITM7Mfa6wcz+KLjWAAAAgGDkMzHuC5LulpSRJOdcu6Q7gmgKAAAACFI+IbjUOZYl6GUAACAASURBVHd40rERP5sBAAAAFkI+IfhlM3ujRifDyczer9HtlAEAAICCks/qEB+R9KCkOjPrkfQTSR8IpCsAAAAgQPmsDvGspM1mtkRSxDl3Pri2AAAAgODkszrE75nZ+FrBnzezH5jZu2b6HAAAALDY5DMm+IPOuX6NbpZxuaRfl7Q7kK4AAACAAOUTgm3s6/sk/YNz7qkJxwAAAICCkU8IPmpm39BoCH7czJZKygXTFgAAABCcfFaH+JCkdZKedc4NmdnlkthKGQAAAAVnxhBsZnXOuS6NBmBJutaMURAAAAAoXLN5EvxxSXdJ+rMp3nOS/ouvHQEAAAABmzEEO+fuGvvaFHw7AAAAQPDyWSf4l8cmw8nM/sjM9pnZzwXXGgAAABCMfFaHaHHOnTezn5e0WdIXJf1/wbQFAAAABCefEJwd+9os6UHn3AFJJf63BAAAAAQrnxDcY2Z/I+lXJX3dzGJ5fh4AAABYFPIJsb8i6XFJ73bOvSKpUtInAukKAAAACNCsQ7BzbkjSo5IGzaxWUlRSV1CNAQAAAEGZ9Y5xZva7kv5YUq9e2y7ZSWoIoC8AAAAgMPlsm/x7klY5504H1QwAAACwEPIZE3xK0rmgGgEAAAAWSj5Pgp+V9KSZHZCUHj/onPuc710BAAAAAconBHeP/Vci1gcGAABAAZt1CHbO/XdJMrOysdcDQTUFAAAABGnWY4LNbI2Z/YekpyQ9ZWZHzeyG4FoDAAAAgpHPxLgHJX3cOXe1c+5qSb8v6QvBtAUAAAAEJ58QvMQ51zr+wjn3pKQlvncEAAAABCyv1SHMrEXSl8def0CjK0YAAAAABSWfJ8EflJSQtE/SP0u6YuwYAAAAUFDyWR3irKT/J8BeAAAAgAWRz+oQT5jZZRNeLzOzx4NpCwAAAAhOPsMhrnDOvTL+YuzJ8HL/WwIAAACClU8IzplZ7fgLM7takvO/JQAAACBY+awOcY+k/2Nm35Jkkn5B0l2BdAUAAAAEKJ+Jcf9qZjdKumns0H91zr08/r6Z3eCce8rvBgEAAAC/5fMkWGOh97Fp3v6ypBvn3REAAAAQsHzGBM/Epjxo9h4zO2lmz5jZzmk/bPZLZubMrNHHngAAAIAL+BmCL5gkZ2ZFkh6Q9F5J9ZK2m1n9FOctlfR7kv7dx34AAACAKfkZgqeyQdIzzrlnnXPDkr4iaesU5+2S9BlJqYD7AQAAAHwNwcNTHKuWdGrC6+fGjr1qbLJdjXPuwMWKm9ldZtZmZm19fX3zbhYAAADhldfEODNrkHTNxM855/aNfb1pmo9drF5E0uck3TnTuc65ByU9KEmNjY2sTwwAAIA5m3UINrO/k9Qg6SlJubHDTtK+i3ysR1LNhNdXjR0bt1TSGklPmpkkrZC038y2OOfaZtsbAAAAkI98ngTf5Jy7YFLbDI5Ius7M3qDR8HuHpB3jbzrnzkm6Yvy1mT0p6Q8IwAAAAAhSPmOCvzfVyg4X45wbkfRRSY9L6pT0VefcU2Z2n5ltyacWAAAA4Jd8ngT/g0aD8IuS0hpdF9g55xou9iHn3NclfX3SsXunOXdjHv0AAAAAc5JPCP6ipF+X9EO9NiYYAAAAKDj5hOA+59z+wDoBAAAAFkg+Ifg/zGyPpK9pdDiEpNeWSAMAAAAKRT4hOK7R8PuuCcdmWiINAAAAWHRmHYKdc78VZCMAAADAQslnswxP0ock3SDJGz/unPtgAH0BAAAAgclnneAva3RHt3dL+pZGd387H0RTAAAAQJDyCcFvcs61SBp0zv29pGZJbw2mLQAAACA4+YTgzNjXV8xsjaQKScv9bwkAAAAIVj6rQzxoZssktUjaL6lM0pQ7vwEAAACLWT6rQ/zt2C+/JenaYNoBAAAAgjfr4RBmVmVmXzSzfxl7XW9mHwquNQAAACAY+YwJ/pKkxyWtHHv9tKT/6ndDAAAAQNDyCcFXOOe+KiknSc65EUnZQLoCAAAAApRPCB40s8s1ulWyzOwmSecC6QoAAAAIUD6rQ3xco6tCXGtm35GUkPT+QLoCAAAAApRPCO6Q9LCkIY3uFPeIRscFAwAAAAUln+EQ/yCpTtL/K+mvJF2v0a2UAQAAgIKSz5PgNc65+gmvW82sw++GAAAAgKDlE4J/YGY3Oee+L0lm9lZJbcG0BQAAgEKVTGd0eigjSTqfHFEyk1U8WqSl8dHoeXlpVPFY9FK2OHMINrMfanRFiKik75pZ99jrqyV1BdseAAAACsXZoWENpbN69FiP9h7p1qkzyQvOqamMa/v6Wm1dV63SWJGWlZZcgk4lc85d/ASzqy/2vnPuP33taBYaGxtdWxsPoQEAABaLF8+ldKizV7sOdCiVyc14vheNqKW5XptWV2lFhRdIT2Z21DnXONV7Mz4JvhQhFwAAAIWjtz+lux9uV2tX36w/k8rkdM8jJ3Swq1e7tzWoqjyYIDydfFaHAAAAAH7Gi+dS2rkvvwA8UWtXn3bua1dvf8rnzi6OEAwAAIA5OTs0rEOdvXMOwONau/p0sKNXrwwN+9TZzAjBAAAAmJOhdFa7DvizYu6uAx0aTGd9qTUbhGAAAADkLZnO6NFjPbOaBDcbqUxO+4/3KJnO+FJvJoRgAAAA5O30UEZ7j3T7WnPP4e5X1xcOGiEYAAAAeXNOU64DPB+nziQ1w+q9viEEAwAAIG8DqZFg6qaDqTsZIRgAAAB5S2aCmcSWCqjuZIRgAAAA5C0eLQqkrlccTN3JCMEAAADIW5k348bDi6ruZIRgAAAA5M1MqqmM+1qzpjIuM19LTosQDAAAgLxdXhrV9vW1vtbcsaFWibKYrzWnQwgGAABA3uKxqLauq5YX9SdOetGItqytViygscaTEYIBAAAwJ6WxIrU01/tSq6W5XktiCxOAJUIwAAAA5mhZaYk2ra5SU11iXnWa6hLaXF+ly0pLfOpsZoRgAAAAzNmKCk+7tzXMOQg31SW0e1uDqso9nzu7OEIwAAAA5qWq3NOnb2/Q/betmfUYYS8a0f23rbkkAViSFmYhNgAAALyurajw1NxwpTauWq79x3u053C3Tp1JXnBeTWVcOzbUasu6ai0pKVrQIRATEYIBAADgi8tKS3RZqXTn267WrWtXyjlpID2iXC6rSKRIZbFimUmJstiCrQIxHYZDAAAAwFfj+12YSXJSemT06/hGGC6Xu0SdvYYnwQAAAPDFuaFhDaSzevRYj/YemX44xPb1tdq6rlplsSJVXKLhEOacuyS/8Xw0Nja6tra2S90GAAAAxrx4LqVDnb3adaBDqczMT3q9aEQtzfXatLpKKyqCmRhnZkedc41TvceTYAAAAMxLb39Kdz/crtauvll/JpXJ6Z5HTuhgVy9LpAEAAKCwvHgupZ378gvAE7V29Wnnvnb19qd87uziCMEAAACYk3NDwzrU2TvnADyutatPBzt61Z8c9qmzmRGCAQAAMCcD6ax2HejwpdauAx06n8r6Ums2CMEAAADIWyqd0aPHemY1CW5W9TI57T/eo1Q640u9mRCCAQAAkLeXhzLae6Tb15p7Dnfr5SFCMAAAABYp5zTlOsDzcepMUgu1ei8hGAAAAHkbSI0EUzcdTN3JCMEAAADIWzITzCS2VEB1JyMEAwAAIG/xaFEgdb3iYOpORggGAABA3sq8YDYeDqruZIRgAAAA5M1MqqmM+1qzpjIuM19LTosQDAAAgLxdURrV9vW1vtbcsaFWibKYrzWnQwgGAABA3rxYVFvXVcuL+hMnvWhEW9ZWKxbQWOPJCMEAAACYk7JYkVqa632p1dJcr6XewgRgiRAMAACAOaooLdGm1VVqqkvMq05TXUKb66tUHi/xqbOZEYIBAAAwZysqPO3e1jDnINxUl9DubQ2qKvd87uziCMEAAACYl6pyT5++vUH337Zm1mOEvWhE99+25pIEYElamIXYAAAA8Lq2osLTrWuv1MZVy7X/eI/2HO7WqTPJC86rqYxrx4ZabVlXraWxogUdAjERIRgAAAC+KI+XqDwu/dbbrtata1fKOWkgPaJUJisvWqSyWLHMpERZbMFWgZgOwyEAAADgq6JIRBHTqxtflIzlXTMpYosjgPIkGAAAAL4YSo/obDKjR4/1aO9FhkNs31CrreuqtSweVWns0sRRc85dkt94PhobG11bW9ulbgMAAABjXupP6WBnr+57rEOpTG7G871oRPfeUq/Nq6u0PKCJcWZ21DnXONV7PAkGAADAvLzUn9In97Wrtatv1p9JZXL61MMn9ERnrz6zrSGwIDydxTAkAwAAAAVqLgF4otauPn1yX7te6k/53NnFEYIBAAAwJ0PpER3s7J1zAB7X2tWng529Ghoe8amzmRGCAQAAMCdnkxnd91iHL7Xue6xDZ4cyvtSaDUIwAAAA8pbJZPXosZ5ZTYKbjVQmp/3HepTJZH2pNxNCMAAAAPLWN5jW3sPdvtbcc7hbfYNpX2tOhxAMAACAvOWcplwHeD5OnUkqt0Cr9xKCAQAAkLfzqWAmsQVVdzJCMAAAAPKWDGjsbur1MibYzN5jZifN7Bkz2znF+x83sw4zazezQ2Z2ddA9AQAAYH7i0aJA6noB1Z0s0BBsZkWSHpD0Xkn1krabWf2k0/5DUqNzrkHSQ5I+G2RPAAAAmL+lXjAbDwdVd7KgnwRvkPSMc+5Z59ywpK9I2jrxBOdcq3NuaOzl9yVdFXBPAAAAmKeISTWVcV9r1lTGFTFfS04r6BBcLenUhNfPjR2bzock/ctUb5jZXWbWZmZtfX3z25UEAAAA85NYEtP2DbW+1tyxoVaJpZ6vNaezaCbGmdkHJDVK+pOp3nfOPeica3TONSYSiYVtDgAAAD8jGi3S1nXV8qL+xEkvGtGWddWKFi1MPA36d+mRVDPh9VVjx36GmW2WdI+kLc65hVkhGQAAAPOyLB7VvbdMnu41N/feUq9lpVFfas1G0CH4iKTrzOwNZlYi6Q5J+yeeYGY/J+lvNBqAXwq4HwAAAPikNFaszaur1FQ3v5/SN9UltHl1lUpLFmZSnBRwCHbOjUj6qKTHJXVK+qpz7ikzu8/Mtoyd9ieSyiT9k5kdM7P905QDAADAIrO83NNntjXMOQg31SX0mW0NWl6+MGOBx5lzC7Q3nY8aGxtdW1vbpW4DAAAAY17qT+lgZ6/ue6xDqUxuxvO9aET33lKvzaurAgvAZnbUOdc41XsL98wZAAAAr1vLyz3d9nPVeueq5dp/rEd7Dnfr1JmkiiOmkuKIhkdyGsk51VTG9WsbarVlXbUuK40u6BCIiQjBAAAA8EVpSbFKS4p159uu1q1rV0qSzidHlMxkFY8WaWl8NHpeXhpVPLZwk+CmQggGAACAL84ODWsondWjx3q098jok+DJairj2r6+VlvXVas0VqRlpSWXoFPGBAMAAMAHL55L6VBnr3YdmP2Y4Jbmem1aXaUVFYwJBgAAQIHp7U/p7ofb1do1+119U5mc7nnkhA529Wr3tgZVLfDqEItmxzgAAAAUnhfPpbRzX34BeKLWrj7t3Neu3v6Uz51dHCEYAAAAc3J2aFiHOnvnHIDHtXb16WBHr14ZGvaps5kRggEAADAnQ+msdh3o8KXWrgMdGkxnfak1G4RgAAAA5C2ZzujRYz2zmgQ3G6lMTvuP9yiZzvhSbyaEYAAAAOTt9FBGe490+1pzz+FunR4iBAMAAGCRck5TrgM8H6fOJLVQq/cSggEAAJC3gdRIMHXTwdSdjBAMAACAvCUzwUxiSwVUdzJCMAAAAPIWjxYFUtcrDqbuZIRgAAAA5K3MC2bj4aDqTkYIBgAAQN7MpJrKuK81ayrjMvO15LQIwQAAAMjb5aVRbV9f62vNHRtqlSiL+VpzOoRgAAAA5C0ei2rrump5UX/ipBeNaMvaasUCGms8GSEYAAAAc1IaK1JLc70vtVqa67UktjABWCIEAwAAYI6WlZZo0+oqNdUl5lWnqS6hzfVVuqy0xKfOZkYIBgAAwJytqPC0e1vDnINwU11Cu7c1qKrc87mziyMEAwAAYF6qyj19+vYG3X/bmlmPEfaiEd1/25pLEoAlaWEWYgMAAMDr2ooKT80NV2rjquXaf7xHew5369SZ5AXn1VTGtWNDrbasq9aSkqIFHQIxESEYAAAAvristESXlUp3vu1q3bp2pZyTBtIjcrmsLFKkslixzKREWWzBVoGYDsMhAAAAEAgzSU5KjYx+Hd8II5fLXcq2JPEkGAAAAD45OzSsoXRWjx7r0d4j0w+H2L6+VlvXVas0VqRll2g4hDnnLslvPB+NjY2ura3tUrcBAACAMS+eS+lQZ692HehQKjPzk14vGlFLc702ra7SiopgJsaZ2VHnXONU7/EkGAAAAPPS25/S3Q+3q7Wrb9afSWVyuueREzrY1csSaQAAACgsL55Laee+/ALwRK1dfdq5r129/SmfO7s4QjAAAADm5OzQsA519s45AI9r7erTwY5evTI07FNnMyMEAwAAYE6G0lntOtDhS61dBzo0mM76Ums2CMEAAADIWzKd0aPHemY1CW42Upmc9h/vUTKd8aXeTAjBAAAAyNvpoYz2Hun2teaew906PUQIBgAAwCLlnKZcB3g+Tp1JaqFW7yUEAwAAIG8DqZFg6qaDqTsZIRgAAAB5S2aCmcSWCqjuZIRgAAAA5C0eLQqkrlccTN3JCMEAAADIW5kXzMbDQdWdjBAMAACAvJlJNZVxX2vWVMZl5mvJaRGCAQAAkLfLS6Pavr7W15o7NtQqURbzteZ0CMEAAADIWzwW1dZ11fKi/sRJLxrRlrXVigU01ngyQjAAAADmpDRWpJbmel9qtTTXa0lsYQKwRAgGAADAHC0rLdGm1VVqqkvMq05TXUKb66t0WWmJT53NjBAMAACAOVtR4Wn3toY5B+GmuoR2b2tQVbnnc2cXRwgGAADAvFSVe/r07Q26/7Y1sx4j7EUjuv+2NZckAEvSwizEBgAAgNe1FRWemhuu1MZVy7X/eI/2HO7WqTPJC86rqYxrx4ZabVlXrSUlRQs6BGIiQjAAAAB8cVlpiS4rle5829W6de1KOScNpEeUymTlRYtUFiuWmZQoiy3YKhDTYTgEAAAAfBUZ2/HCTJKTiiKjX1/dCMO5S9Xaq3gSDAAAAF+cT2bUnxrRo8d6tPfI9MMhtq+v1dZ11Sr3irU0Hr0EnUrmFkESz1djY6Nra2u71G0AAABgTO+5lA529mrXgQ6lMrkZz/eiEbU012vz6ipVVQQzMc7MjjrnGqd6jyfBAAAAmJfe/pR2Ptyu1q6+WX8mlcnpnkdO6GBXL0ukAQAAoLD0nktp5778AvBErV192rmvXb39KZ87uzhCMAAAAObkfDKjg529cw7A41q7+nSwo1cDqYxPnc2MEAwAAIA56U+NaNeBDl9q7TrQoXPJEV9qzQYhGAAAAHlLD4+uAjGbSXCzkcrktP94j9LDCxOECcEAAADIW9/gsPYe6fa15p7D3eobHPa15nQIwQAAAMibc5pyHeD5OHUmuWD7aBCCAQAAkLeBVDDDFgbSDIcAAADAIpXMZAOpmwqo7mSEYAAAAOQtHi0KpK5XHEzdyQjBAAAAyFuZF8zGw0HVnYwQDAAAgLyZSTWVcV9r1lTGZeZryWkRggEAAJC3xJISbV9f62vNHRtqtXxpzNea0yEEAwAAIG+xkmJtXVctL+pPnPSiEW1ZW60SxgQDAABgMSv3itXSXO9LrZbmelXEF2Y8sEQIBgAAwBwtjUe1eXWVmuoS86rTVJfQ5voqlXlRnzqbGSEYAAAAc1ZV4Wn3toY5B+GmuoR2b2tQVbnnc2cXRwgGAADAvFSVe9p9e4Puv23NrMcIe9GI7r9tzSUJwJK0cAMvAAAA8LpVVeFp67qV2rhqufYf79Gew906dSapspIiLVtSorODwxoYzqqmMq4dG2q1ZV21KrziBR0CMREh+CKS6YxOD2UkSeeTI0pmsopHi7R0bND25aVRxWOX5i8OhYfrCQDwelfmRVXmRXXn267WrWtXSlq89zxC8BTODg1rKJ3Vo8d6tPfI6L9iJqupjGv7+lptXVet0liRlpWWXIJOUQi4ngAAYVFI9zxzzl2S33g+GhsbXVtbWyC1XzyX0qHOXu060KFUJjfj+V40opbmem1aXaUVFQs/ngWLG9cTACAsFuM9z8yOOucap3yPEPya3v6Udu5rV2tXX96fvVQzG7F4cT0BAMJisd7zLhaCWR1izIvn5v6XJ0mtXX3aua9dvf0pnztDIeJ6AgCERaHe8wjBGh2/cqizd85/eeNau/p0sKNXrwwN+9QZChHXEwAgLAr5nkcIljSUzmrXgQ5fau060KHBdNaXWihMXE8AgLAo5Hte6ENwMp3Ro8d6ZjWAezZSmZz2H+9RMp3xpR4KC9cTACAsCv2eF3gINrP3mNlJM3vGzHZO8X7MzP5x7P1/N7Nrgu5potNDGe090u1rzT2Hu19dDxbhwvUEAAiLQr/nBRqCzaxI0gOS3iupXtJ2M6ufdNqHJJ11zr1J0uclfSbIniZzTlOuYTcfp84kVYCLbsAHXE8AgLAo9Hte0E+CN0h6xjn3rHNuWNJXJG2ddM5WSX8/9uuHJG0yMwu4r1cNpEaCqZsOpi4WN64nAEBYFPo9L+gQXC3p1ITXz40dm/Ic59yIpHOSLp9cyMzuMrM2M2vr65vfDMSJkplgBmCnAqqLxY3rCQAQFoV+zyuYiXHOuQedc43OucZEIuFb3Xi0yLdaE3nFwdTF4sb1BAAIi0K/5wUdgnsk1Ux4fdXYsSnPMbNiSRWSTgfc16vKvOKCqovFjesJABAWhX7PCzoEH5F0nZm9wcxKJN0haf+kc/ZL+s2xX79f0jfdAu7lbCbVVMZ9rVlTGdfCjWrGYsL1BAAIi0K/5wUagsfG+H5U0uOSOiV91Tn3lJndZ2Zbxk77oqTLzewZSR+XdMEyakG6vDSq7etrfa25Y0OtEmUxX2uiMHA9AQDCotDveYGPCXbOfd05d71z7o3OufvHjt3rnNs/9uuUc+6XnXNvcs5tcM49G3RPE8VjUW1dVy0v6s8fhReNaMvaasUCGieDxY3rCQAQFoV+zyuYiXFBKo0VqaV58vLFc9PSXK8lMQJLmHE9AQDCopDveYRgSctKS7RpdZWa6ua36kRTXUKb66t0WWmJT52hEHE9AQDCopDveYTgMSsqPO3e1jDnv8SmuoR2b2tQVbnnc2coRFxPAICwKNR7ni3gQgy+aWxsdG1tbYHUfvFcSoc6e7XrQIdSmdyM53vRiFqa67W5vorAggtwPQEAwmIx3vPM7KhzrnHK9wjBF3plaFiD6az2H+/RnsPdU+6LXVMZ144NtdqyrlpLSor4kTWmxfUEAAiLxXbPIwTPUTKd0emhjJwb3cc6lcnKixapLFYsMylRFmPWPmaN6wkAEBaL5Z53sRDMNlQXEY9FdVUseqnbwOsE1xMAICwK4Z7HxDgAwP/f3v2H2l3XcRx/vnAjw1kDZ7WcOWhCUOiasBJtrFXSD9n+SGiEqf2kX2RQRvWHaf1R0Q+igqKmTE1L0bQlLhs1WIWabq7NX5SRlUuazVJHIs29++N8146He7fvhbzf7/g+H3C459zvh3Pe98Wb+33f7/me+5WkwXEIliRJ0uA4BEuSJGlwHIIlSZI0OA7BkiRJGhyHYEmSJA2OQ7AkSZIGxyFYkiRJg3NEXjEuyaPAnzt46QXAPzp43SONObVjTu2YUzvm1J5ZtWNO7ZhTO13ldFJVHT/VhiNyCO5Kkrumu/SeDjKndsypHXNqx5zaM6t2zKkdc2qnjzl5OoQkSZIGxyFYkiRJg+MQPDPf67qAI4Q5tWNO7ZhTO+bUnlm1Y07tmFM7vcvJc4IlSZI0OB4JliRJ0uA4BEuSJGlwHIInJLk8ye4k90yzPUm+meTBJDuSLJvtGvugRU4rkzyeZHtzu3i2a+yDJCcm2ZzkviT3JrlwijWD76mWOQ2+p5IcneS3SX7X5HTpFGuel+Tapp/uSLJ49ivtVsucLkjy6Fg/va+LWvsgyVFJ7k5y8xTbBt9PBxwmJ/upkeShJDubHO6aYntv9nlzunrhHlsPfBu4cprtbwFObm6vAb7TfB2a9Rw6J4BfVdXZs1NOb+0DPlFV25IcC2xNsqmq7htbY0+1ywnsqaeBVVW1N8lc4NdJNlbV7WNr3gv8s6qWJFkLfBl4RxfFdqhNTgDXVtVHO6ivby4E7gdeMMU2++mgQ+UE9tO411fVdBfG6M0+zyPBE6pqC/DYIZasAa6skduB+UkWzk51/dEiJwFV9UhVbWvuP8noF+gJE8sG31Mtcxq8pkf2Ng/nNrfJTzevAa5o7l8PvCFJZqnEXmiZk4Aki4C3AeumWTL4foJWOam93uzzHIJn7gTgr2OPH8ad9XROb96O3JjklV0X07XmbcRXA3dMbLKnxhwiJ7CnDrwlux3YDWyqqmn7qar2AY8Dx81uld1rkRPA25u3Y69PcuIsl9gX3wA+BeyfZrv9NHK4nMB+OqCAnyfZmuQDU2zvzT7PIVjPlW2Mrtd9KvAt4KaO6+lUknnADcDHq+qJruvpq8PkZE8BVfVMVS0FFgHLk7yq65r6qEVOPwUWV9UpwCYOHu0cjCRnA7uramvXtfRZy5wG309jzqyqZYxOe/hIkhVdFzQdh+CZ2wWM/4W3qPmexlTVEwfejqyqW4C5SRZ0XFYnmnMSbwCurqofT7HEnuLwOdlTz1ZV/wI2A2+e2PS/fkoyB3ghsGd2q+uP6XKqqj1V9XTzcB1w2mzX1gNnAKuTPAT8CFiV5AcTa+ynFjnZTwdV1a7m627gRmD5xJLe7PMcgmduA3Be8+nG1wKPV9UjXRfVN0lecuC8sSTLGfXa0H5x0mRwGXB/VX19mmWD76k2OdlTkOT4JPOb+88H3gQ8MLFsA3B+c/8c4Jc1sKsii31g4AAAAr5JREFUtclp4hzE1YzOQx+UqvpMVS2qqsXAWka9cu7EssH3U5uc7KeRJMc0H24myTHAWcDkf5HqzT7P/w4xIckPgZXAgiQPA59j9KEKquq7wC3AW4EHgX8D7+6m0m61yOkc4ENJ9gFPAWuH9ouzcQbwLmBnc34iwGeBl4E9NaZNTvYULASuSHIUoz8Crquqm5N8HrirqjYw+mPiqiQPMvrw6truyu1Mm5w+lmQ1o/9M8hhwQWfV9oz91I79NKUXAzc2xyvmANdU1c+SfBD6t8/zssmSJEkaHE+HkCRJ0uA4BEuSJGlwHIIlSZI0OA7BkiRJGhyHYEmSJA2OQ7Ak9USS+Uk+3HUdkjQEDsGS1B/zAYdgSZoFDsGS1B9fAl6eZHuSryS5KMmdSXYkuRQgyeIkDyRZn+T3Sa5O8sYkv0nyh+ZqeiS5JMlVSW5rvv/+5vsLk2xpXuOeJK/r8OeVpM44BEtSf3wa+GNVLQU2AScDy4GlwGlJVjTrlgBfA17R3N4JnAl8ktGV9g44BVgFnA5cnOSlzdpbm9c4FdiOJA2Ql02WpH46q7nd3Tyex2go/gvwp6raCZDkXuAXVVVJdgKLx57jJ1X1FPBUks2MBuo7gcuTzAVuqiqHYEmD5JFgSeqnAF+sqqXNbUlVXdZse3ps3f6xx/t59sGNmnjOqqotwApgF7A+yXnPQe2S1HsOwZLUH08Cxzb3bwXek2QeQJITkrxohs+3JsnRSY4DVgJ3JjkJ+HtVfR9YByz7/5QuSUcWT4eQpJ6oqj3NB9zuATYC1wC3JQHYC5wLPDODp9wBbAYWAF+oqr8lOR+4KMl/muf0SLCkQUrV5LtlkqQjXZJLgL1V9dWua5GkPvJ0CEmSJA2OR4IlSZI0OB4JliRJ0uA4BEuSJGlwHIIlSZI0OA7BkiRJGhyHYEmSJA3OfwGqh/f88GV1OAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXhUd53//9d7JnOXQGgDIZQQSmspSUpTrClbb1sErZpKWqxfhb3x7mf3e311L3fdX79Su7harrq47q1+/e13q3Xdei3tul3aYuluLYiudxVChbRNUu1WBdISIhQCZGYyk/n8/siAaQhkJjknyXCej+viInPOmXfeHE+cV08+5/Mx55wAAACAIAlNdQMAAADAZCMEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCmb6gbGY86cOW7RokVT3QYAAACmsT179vzGOVc92r6SDMGLFi1SW1vbVLcBAACAaczMfn2ufQyHAAAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgVOSi2VMlvRAVr2nBiRJJ5JZJTODSkTCmpkYOm3VFVHFopxCAACAUkOCG8WJZEZ9qawe3dutB3bv14GjybOOqatKaO11C9W6rFaV8TLNTESmoFMAAACMhznnprqHojU3Nzu/lk3uOZ7S9s4ebdzWoVQmN+bx8UhIG1oataqhRjWz4r70BAAAgOKZ2R7nXPNo+7gTPExPX0rrH27Xzq7egt+TyuR01yPPantXjzataVJNJUEYAABguuPBuLye4ymt31JcAB5uZ1ev1m9pV09fyuPOAAAA4DVCsIbGAG/v7Bl3AD5tZ1evtnf06GQq41FnAAAA8AMhWFJfKquN2zo8qbVxW4eOJ7Oe1AIAAIA/Ah+C0wNDs0AU8hBcIVKZnLbu61Z6gCAMAAAwXfkags3s62Z22MyePcd+M7MvmdkLZtZuZtf62c9oek8N6IHd+z2tuXnX/jPzCwMAAGD68ftO8DckveM8+98paXH+z+2S/sHnfs7inEadB3giDhxNqgRnngMAAAgMX0Owc+6/JB09zyGtku53Q56SdJGZXeJnTyOdTPkzbOFkmuEQAAAA09VUjwmulXRg2OuD+W1nMbPbzazNzNp6eyc2i8NwycygZ7WGS/lUFwAAABM31SG4YM65e51zzc655urqas/qJiJhz2oNFy/zpy4AAAAmbqpDcLekumGvF+S3TZoZcX8WzfOrLgAAACZuqkPwVkl/kJ8l4npJx51zL09mA2ZSXVXC05p1VQmZeVoSAAAAHvJ7irQHJP1E0hIzO2hmHzGz/2lm/zN/yOOSXpT0gqSvSvpffvYzmuqKqNZet9DTmuuWL9TcmTFPawIAAMA7vv7O3jm3doz9TtLH/OxhLLFomVqX1epL3/2FJwtmxCMhrb6mVlHGBAMAAExbUz0cYlqojJdpQ0ujJ7U2tDRqVoLxwAAAANMZIVjSzEREqxpqtKJ+YrNOrKiv1qrGGs2IRzzqDAAAAH4gBOfVzIpr05qmcQfhFfXV2rSmSTWVcY87AwAAgNcIwcPUVMa16dYm3XPLUsUjrz418ytjevMVVZpf+eoH3uKRkO65ZSkBGAAAoIQweHWEmllxtS6brxuXzFVFPKQTyUGZSX3JjFKZnOKRkCoTETknzYyHdWogp1nxMoZAAAAAlBBC8CgyOSdJ2vzUAT2we78OHE2edUxdVUJrr1uo1mW1Z44HAABAabChWcpKS3Nzs2tra/Ol9qHjKe3o7NHGbR0FTZkWj4S0oaVRKxtqNG8WwyEAAACmCzPb45xrHm0fd4KH6elL6c6H27Wzq7fg96QyOd31yLPa3tXDuGAAAIASwYNxeYeOp7R+S3EBeLidXb1av6VdPX0pjzsDAACA1wjBkl7pH9COzp5xB+DTdnb1antHj471D3jUGQAAAPxACJbUnx7Uxm0dntTauK1Dp9KDntQCAACAPwIfgpPpjB7d213QQ3CFSGVy2rqvW8l0xpN6AAAA8F7gQ/CR/owe2L3f05qbd+3XkX5CMAAAwHQV+BDsnEadB3giDhxNqgRnngMAAAiMwIfgk6msP3XT/tQFAADAxAU+BKey/jzElvapLgAAACYu8CE4Hgn7UjdW5k9dAAAATFzgQ/CMmD+L5vlVFwAAABMX+BCcc051VQlPa9ZVJZTjyTgAAIBpK/AhODuY03uuXeBpzduuXaDsICEYAABgugp8CE5nc7rxymrFI96cingkpBuurObBOAAAgGks8CF4RrxMX//Rr3THTUs8qXfHTUt03w9/qRlxxgQDAABMV4EPwSEz/ezAK5pXmdCNS6onVOvGJdWaV5nQ3oPHFDLzqEMAAAB4LfAhOBEJ6bZrF+izW5/VxtalWlE/viC8or5aG1uX6rNbn9V7X7dA5VGmSAMAAJiuAv87ezOpdVmtrqyZqXu2dei2a+v0pivm6ItPPK9UJjfm++ORkO64aYnmVSZ0z7YO3d26VA2XVIr7wAAAANNX4ENw/0BOFdGwjp4a0H8+16P/fK5H7266RA9+9Hp9/+e9eujpgzpwNHnW++qqErrt2gW64cpq3ffDX+rb7Z2SpDcvrlZFNKxTA4O6uGKy/zUAAAAohLkSnM+2ubnZtbW1eVLrN6dSOn4qq5Yv/+BVd37DIdPK+rlqabpE8y9KKDOYUyqTUzwSUiQc0kvHknqs/WV9t+uwBnO/PYfxSEjb/ujNmlVRpjkVcU96BAAAQPHMbI9zrnm0fYG/Ezw46PRY+0tnDX0YzDl9p6NH3+nokSSVhUzRspAGsjllc+f+D4dUJqdtz7yk911X52vfAAAAGL/APxg3kHV66OmDYx6XzTn1DwyeNwCf9m97DmogW3p32AEAAIIi8CHYOTfqmN+JOHA0KSdCMAAAwHQV+BB8Ip31pe7JFCvGAQAATFeBD8ED2bGnQRtfXUIwAADAdBX4B+MSEX8WtYj7VBelKz2QVe+pAUnSiWRWyeygEmVhzUwM/RhWV0QViwb+RxIAgEkR+E/cipg/p8Cvuig9J5IZ9aWy+va+l/Qvu359znmnf3f5pXr3NfNVGS/TzERkCjoFACA4Ap/UwqGhAOLlw3F1VQmFQ6wZB6nneErf7Tqszz323HlXIDxwNKlN/9mlv9vxc/35zVfprfVzVTOLeaYBAPBL4McEl8fC+v3rF3la8w+uX6SKGMMhgq6nL6VPP/yM7nz4mYKW4JaG5pm+8+Fn9OmHn1FPX8rnDgEACK7Ah+CZ0Yhami5RPOLNqYhHQmq5+hLNiPHr7CDrOZ7Sp7c8ox1dh8f1/h1dh/XpLQRhAAD8EvgQHA6HFA+bPrf6Kk/qfW71VYqWGcMhAuxEMqOdzx8edwA+bUfXYX3v+cM6mcp41BkAADgt8CFYkmYmonrTFXO0qmHuhOqsapirNy2eo8pE1KPOUIpOpLP67Lef86TWn299Tn0pf+ayBgAgyAjBkqJlISWiZbq7dem4g/Cqhrm6u3WpyiNlipZxWoMqPZDVY+0vFTwGeCypTE6Ptb+k9ABBGAAAL5HW8qoqooqETB9+42W6e/VVBY8RjkdCunv1VfrwGy9TJGS6uIK7wEH2m/4BffOpX3ta85tP/Vq/yc8vDAAAvEEIzjt6akB3PvyM1n3tp8rmnJ78kxv0qXcsUV1VQpJUFjKVR8Mqy4/1ratK6FPvWKIn/+QGZXNO6772U9358DN6hbASaC4nT6fbk4bqOedpSQAAAi/w8wRLQ0snb+88pJ/89xF9Zd21OtSXVMuXf6A/fMvl+sfff50qomU6mcoqmRlUIhLWjHiZTg1k9d3Ow2r58g/0iZWL9ZV11+p/P7RPT3b26JZltQyJCKiTaX+GLZxkOAQAAJ4iBEs6eiqtL/xHl776gWbd+18vqjIe0f0fWq7v/bxXf/jNPedc4es91y7Q/R9arq//6Ff6Qeo3+uoHmvVHm5/WWxbP0bxZiSn4l2CqJTODvtRNDfhTFwCAoAp8CB4czOnb+17W3a1X6/4f/0rvfV2dDvUl9f6vPjXmCl9/t/0X+r/f/2/dcdMSzatM6P4f/0p3t16tb7e/rA+/YZHCYe4GB03Mp98A8JsFAAC8FfgQfOTUgA4e61csYvqDNyzSvf/1or73fG/B709lctr4WKduXFKt299yuV44fEIHXunXkVMDmlvJsrdBMyPmz4+UX3UBAAiqwH+yZgZzunVZrV4+nio6AA93+n3va65TU+1Fygx6M0UWSouZqa4q4enDcXVVCZmx+AoAAF4K/O9YB3NOB17p10vHk+MOwKd97/levXQ8qYOv9GuQx/kDKRYx3XbtAk9rvvd1C3wbZgEAQFAF/pN1MOe0aHaFvvjE857U++ITz+vS2RUazBGCgyiXk1qa5o85z/TIKffOJR4J6V1Xz5fjP6oAAPBU4IdDJGJhPbrP2xW+vtt1WO9bXudJPZSWdCanWCSkO25aoo2PdZ7ZHg6ZVjXM1buuvkS1FyWUzuaUygwqHgkrVhZS97GktrW/rB1dh1/1H1B33LRE8bKQZ9cnAAAYEvgQnM7k9O9PH/S05kNPH9Qtr631tCZKhEmDuZyuv3y2blxSre8936vV18zXh9+4SN/7ea/+6jvPn3fKvf9142v09R/9Slv3vaQbl1Tr+stnazCXkxgTDACApwIfgiV/VvhCcP30xaN68xVz9PlbrtavjpxS56G+oqfce/91dVo0u0KS03/9olevf82cyfsHAAAQAIEPwf1pfxYh6Gdxg0BKREN60xVzdDKdVTqb030//KV2dB0u+P2np9xbWT9Xf7xqsWKRkN6yuFplzDkNAICnAv/Jms76M9ZywKe6mN7KQiHlJGVyTn/95M+LCsDD7eg6rL9+8ufKDDrlnFQWZjgEAABeCnwIjo3xFP94scJXgDnpqRePeDLl3lMvHhHzQgAA4L3AJzVW+IKXsrmc0tmcp1PupbM5ZVl8BQAATwU+BOecU11VwtOadVUJ5ZjXNZCck7a1ezvl3uPPvMTdYAAAPBb4EJyIhPS+Zm/n9H3/dXVKRMKe1kRpGMg6PeTxlHv/tuegBrLEYAAAvBT4ECyZbriyeswVvgoVzz/Nj2Byzvky5R4rxgEA4K3Ah+DZFVG9fDylO25a4km9O25aopf7Upo9I+ZJPZSWk+msT3WZcg8AAC8FPgSHwyFdvWCW5s9K6MYlE7uDe+OSas2fldDVtbMUDjGlVRD5N+UeIRgAAC8FPgRL0uyKmJIDWd3+lsvHHYRvXFKt299yuZKZrGZXcBc4qPwaCx5njDkAAJ4iBGtoTt8b62v0L0/9Wu99XZ023NxQ8BjheCSkDTc36L2vq9O/PPVrrVhSwxzBATYj7tOUez7VBQAgqPhkzauqiOru1qX61L+3KxEJ68GPXq/v/7xXDz19cNQHneqqErrt2gW64cpq3ffDXyqZOaIvvKdJF1dEp6B7TBtu6Nrw8uE4r6fwAwAAhOBXmT0jpr+87Rpt7+zR7973U73xNXP0/759ieZflFBmMKdUJqd4JKRIOKSXjiX1WPvLuvcHL+rP332V3tZQQwCGBnNOv3/9In3+8U7Pav7B9Ys0OMjsEAAAeIkQPEJVRVS3LKvVWxZX67H2l/RX33leB44mVRYyRctCGsjmlM0NLbDxgTcs0sbWpaqqiDIEApKkUMi0smGu/ubJ5z1ZMCMeCemtDXMV4kFLAAA8ZaU4/2hzc7Nra2vz/fsMDuZ0tH9A2ZzTyVRW6WxOsbKQZsTLVBYyVVXEmAUCr3LwlX599QcvqvGSSn3q35+ZcL0vvOdqPfdyn25/8+VacHG5Bx0CABAcZrbHOdc82j7uBJ9HOBxS9cz40ItZU9sLSsOMeFg1M+OqKo9qVcNcbe88PO5aqxrmqqo8qksq46rkwTgAADzF7/ABD82MRrR62Xyt39Ku299yuVY1zB1XnVUNc3X7Wy7X+i3tevc181URi3jcKQAAwUYIBjwUDoeUKAvpk29bog/9027d+toFuueWpUVNuXfPLUt162sX6EP/tFuffNsSxctCDLsBAMBj/I4V8NjMRFQ3LKnW9q4efWzz03p30yV68PbX6yf//Rtt3rX/nFPurVu+UK9/zRzd94MX9e32l7Wivlo3LKlWZYJZRwAA8BoPxgE+OHpqQKnMoDY88qx2dB1WOGRaWT9XLU2XnJlybyCbU7Ts1VPufbfrsAZzTivr52rjLUuViISZeg8AgHGa0gfjzOwdkv5eUljS15xzm0bsXyjpnyVdlD9mvXPucb/7AvxUVRHV4b6UPvKmy/SGK2bri088r+909Og7HT2SdNaUe6fFIyF9+l31aphXqbKQEYABAPCJr2OCzSws6SuS3impUdJaM2sccdifSfqWc+61kt4v6f/zsydgMhzuS+lTW9q17ms/1d79x/TgR6/Xn6xafGb1t2zOqX9g8EwArqtK6E9WLdaDH71ee/cf07qv/VSf2tKuw32pqfxnAABwwfL7TvBySS84516UJDN7UFKrpI5hxzhJlfmvZ0l6yeeeAF/1p7Pa3tmjnV29kqRvt7+sx589pJX1c8dcgfBL331Bg/lgvLOrV9s7e3TLa2tVHmX4PgAAXvL7k7VW0oFhrw9K+p0Rx3xW0nfM7I8kVUhaNVohM7td0u2StHDhQs8bBbzySjKjux/reNW2wZwraDjESHc/1qEblswlBAMA4LHpMEXaWknfcM4tkPQuSd80s7P6cs7d65xrds41V1dXT3qTQCEymUE9urd7zCWTRw6HOJdUJqete7uVyQx62SYAAIHndwjullQ37PWC/LbhPiLpW5LknPuJpLikOT73Bfii91RaD+za72nNzbv2q/dU2tOaAAAEnd8heLekxWZ2mZlFNfTg29YRx+yXtFKSzKxBQyG41+e+AF/knEadB3giDhxNaowbxgAAoEi+hmDnXFbSxyU9IalTQ7NAPGdmd5vZ6vxhfyrpo2a2T9IDkj7oSnHyYkDSiVS2pOoCABBUvj9tk5/z9/ER2z4z7OsOSW/0uw9gMiR9GrubYkwwAACemg4PxgEXjEQk7EvduE91AQAIKkIw4KGZcX9+ueJXXQAAgooQDHgoZDqzKpxX6qoSCpmnJQEACDxCMOCh6oqY1i73djGXdcsXqnpm3NOaAAAEHSEY8FAkElbrslrFI978aMUjIa1eVqtImB9VAAC8xCcr4LGLExF95uZGT2p95uZGXVwe8aQWAAD4LUIw4LHyWJlWNdRoRf3ElvdeUV+tVQ01Ko/yUBwAAF4jBAM+mFsZ1xfWNI07CK+or9YX1jRpbiVjgQEA8AMhGPDJ6SD8+VuXnjVGeFFVQi1L52rRiJkk4pGQPn/rUgIwAAA+4/esgI/mVsZ1y2trdcOSuaqMh3Ssf1BmUl8yo1Qmp3gkpMpERM5JF5WHdSKV00XlEYZAAADgMz5pAZ+lsznJSd/8yQE9sHu/DhxNnnVMXVVCa69bqNZltUpncyqPTkGjAAAEiDnnprqHojU3N7u2trapbgMY06HjKe3o7NHGbR1KZXJjHh+PhLShpVErG2o0bxbDIQAAmAgz2+Ocax5tH3eCAZ/09KV058Pt2tnVW/B7Upmc7nrkWW3v6tGmNU2qYVwwAAC+4ME4wAeHjqe0fktxAXi4nV29Wr+lXT19KY87AwAAEiEY8Nwr/QPa0dkz7gB82s6uXm3v6NGx/gGPOgMAAKcRggGP9acHtXFbhye1Nm7r0Kn0oCe1AADAbxGCAQ8l0xk9ure7oIfgCpHK5LR1X7eS6Ywn9QAAwBBCMOChI/0ZPbB7v6c1N+/aryP9hGAAALxECAY85JxGnQd4Ig4cTaoEZzIEAGBaIwQDHjqZyvpTN+1PXQAAgooQDHgomfHnIbaUT3UBAAgqQjDgoUQk7EvdeJk/dQEACCpCMOChGXF/FmH0qy4AAEFFCAY8VleVmNb1AAAAIRjwVFV5WGuvW+hpzXXLF2pORcTTmgAABB0hGPBQ9/EBtS6rVTzizY9WPBLS6mtqdeBYypN6AABgCCEY8NDMeJliZaYNLY2e1NvQ0qhYmWkmY4IBAPAUIRjwUFnIdOs//FgrG+ZqRX31hGqtqK/WyoYa3foPP1ZZyDzqEAAASIRgwFNV5VF94PWLtOnxDm1a0zTuILyivlqb1jRp0+PP6QOvX6SqipjHnQIAEGz8jhXwUDgc0s1N8/VX33lekvQXt16tHZ2HtXFbh1KZ3Jjvj0dC2tDSqJUNNfqLbc/pPzsOa/27rlKYO8EAAHiKEAx4rKoiqo2tS3XHQ+16ZN8htd21Ujcumaut+7q1edd+HTiaPOs9dVUJrVu+UKuvqVWszNR8zw5J0hdva1JVRXSy/wkAAFzwCMGAx6JlIa1sqNHbGmr0ZGePmu/ZodrKhB774zfq5qb5kqST6axSmUHFI2HNiA39GFbGy/Suv/uhuvuGQvLbGmq0qqFG0TJGLQEA4DVCMOCDqoqoNr3naunfpSc7e9Tdl9Rr795+Zv+iqoSumj9Tz710Qr8a5c7w2xpqtOk9V+ti7gIDAOALQjDgk9kzYvrCbU16e2ePNjz67KvGBP/qaHLU8BuPhLSxdalWNdQQgAEA8BEhGPBRVUVUrctq9ebF1Xqs/SX9809+dc4xwR98wyK1XD1fVRVRhkAAAOAzQjDgs2hZSPNmxfWhNyxS67L5yuacTqaySmdzipWFNCNeprKQqaoixiwQAABMEkIwMEnC4ZCqZ8aHXsya2l4AAAg6fucKAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAicsqluAAiK9EBWvacGJEknklklM4NKRMKamRj6MayuiCoW5UcSAIDJwCcu4LMTyYz6Ulk9urdbD+zerwNHk2cdU1eV0NrrFqp1Wa0q42WamYhMQacAAASHOeemuoeiNTc3u7a2tqluAxhTz/GUtnf2aOO2DqUyuTGPj0dC2tDSqFUNNaqZFZ+EDgEAuHCZ2R7nXPNo+7gTDPikpy+l9Q+3a2dXb8HvSWVyuuuRZ7W9q0eb1jSpppIgDACAH3gwDvBBz/GU1m8pLgAPt7OrV+u3tKunL+VxZwAAQCIEA547kcxoe2fPuAPwaTu7erW9o0cnUxmPOgMAAKcRggGP9aWy2ritw5NaG7d16Hgy60ktAADwW4RgwEPpgaFZIAp5CK4QqUxOW/d1Kz1AEAYAwEuEYMBDvacG9MDu/Z7W3Lxr/5n5hQEAgDcIwYCHnNOo8wBPxIGjSZXgTIYAAExrBU+RZmbVkhZIGpT0onPupG9dASXqZMqfYQsn0wyHAADAS2OGYDNrlPQlSYskLZT0M0lzzez7kj7hnDvua4dACUlmBn2pm/KpLgAAQVXIcIivS/qYc+4KSW+S1OWcu0zSjyTd52dzQKlJRMK+1I2X+VMXAICgKiQEJ5xzz0uSc26XpKvzX39V0lU+9gaUnBlxfxZh9KsuAABBVUgI/m8z22BmbzSzv5a0V5LMLFLg+4HAMJPqqhKe1qyrSsjM05IAAAReISH2w5JmSrpTUkrSJ/LbyyV9wKe+gJJUXRHV2usWelpz3fKFmjsz5mlNAACCbswQ7Jw75pz73865m51zdznnTuS3H3fOPXX6ODP7sp+NAqUgFi1T67JaxSPe/JIkHglp9TW1ijImGAAAT3k5nOGNHtYCSlZlvEwbWho9qbWhpVGzEowHBgDAa4zpBTw2MxHRqoYaraivnlCdFfXVWtVYoxnxiEedAQCA0wjBgA9qZsW1aU3TuIPwivpqbVrTpJrKuMedAQAAydsQzPPrwDA1lXFturVJ99yytOAxwvFISPfcspQADACAz4pZNvlq59wz5znk78/xvnfk94Ulfc05t2mUY/6HpM9KcpL2OefWFdoXMJ3VzIqrddl83bhkrrbu69bmXft14GjyrOPqqhJat3yhVi+r1ax4GUMgAADwmTnnCjvQ7AeSYpK+IelfClku2czCkn4u6W2SDkraLWmtc65j2DGLJX1L0ludc6+Y2Vzn3OHz1W1ubnZtbW0F9Q1MF+mBrHpPDcg56WQ6q1RmUPFIWDNiZTKT5s6MMQsEAAAeMrM9zrnm0fYVfCfYOffmfGD9sKQ9ZrZL0j855548z9uWS3rBOfdivpEHJbVK6hh2zEclfcU590r++5w3AAOlKhYt04IoMz0AADAdFDUm2Dn3C0l/JulTkm6Q9CUz6zKzNed4S62kA8NeH8xvG+5KSVea2Y/M7Kn88ImzmNntZtZmZm29vb3FtA0AAAC8SsEh2MyazOxvJXVKequkdzvnGvJf/+0EeiiTtFjSjZLWSvqqmV008iDn3L3OuWbnXHN19cSmngIAAECwFXMn+MuSnpZ0jXPuY865pyXJOfeShu4Oj6ZbUt2w1wvy24Y7KGmrcy7jnPulhsYQLy6iLwAAAKAoxYTgFkmbnXNJSTKzkJmVS5Jz7pvneM9uSYvN7DIzi0p6v6StI455REN3gWVmczQ0POLFIvoCAAAAilJMCN4uKTHsdXl+2zk557KSPi7pCQ0No/iWc+45M7vbzFbnD3tC0hEz65C0U9IdzrkjRfQFAAAAFKWYR9XjzrmTp184506evhN8Ps65xyU9PmLbZ4Z97SR9Mv8HAAAA8F0xd4JPmdm1p1+Y2esknT3rPwAAADDNFXMn+I8l/ZuZvaShJZLnSXqfL10BAAAAPipmsYzdZlYvaUl+0/POuYw/bQEAAAD+KXb5quskLcq/71ozk3Pufs+7AgAAAHxUcAg2s29Keo2kvZIG85udJEIwAAAASkoxd4KbJTXmZ3MAAAAASlYxs0M8q6GH4QAAAICSVsyd4DmSOsxsl6T06Y3OudXnfgsAAAAw/RQTgj/rVxMAAADAZCpmirTvm9mlkhY757bnV4sL+9caAAAA4I+CxwSb2UclPSTpH/ObaiU94kdTAAAAgJ+KeTDuY5LeKKlPkpxzv5A014+mAAAAAD8VE4LTzrmB0y/MrExD8wQDAAAAJaWYEPx9M/u0pNpsm/MAACAASURBVISZvU3Sv0n6tj9tAQAAAP4pJgSvl9Qr6RlJfyjpcefcXb50BQAAAPiomCnS/sg59/eSvnp6g5l9Ir8NAAAAKBnF3An+wCjbPuhRHwAAAMCkGfNOsJmtlbRO0mVmtnXYrpmSjvrVGAAAAOCXQoZD/FjSyxpaNvmvh20/Iandj6YAAAAAP40Zgp1zv5b0a0mv978dAAAAwH/FrBi3xsx+YWbHzazPzE6YWZ+fzQEAAAB+KGZ2iL+U9G7nXKdfzQAAAACToZjZIXoIwAAAALgQFHMnuM3M/lXSI5LSpzc657Z43hUAAADgo2JCcKWkfklvH7bNSSIEAwAAoKQUHIKdcx/ysxEAAABgshQzO8SVZrbDzJ7Nv24ysz/zrzUAAADAH8U8GPdVSXdKykiSc65d0vv9aAoAAADwUzEhuNw5t2vEtqyXzQAAAACToZgQ/Bsze42GHoaTmd2moeWUAQAAgJJSzOwQH5N0r6R6M+uW9EtJv+dLVwAAAICPipkd4kVJq8ysQlLIOXfCv7YAAAAA/xQzO8QnzOz0XMF/a2ZPm9nbx3ofAAAAMN0UMyb4w865Pg0tljFb0u9L2uRLVwAAAICPignBlv/7XZLud849N2wbAAAAUDKKeTBuj5l9R9Jlku40s5mScv60BVx40gNZ9Z4akCSdSGaVzAwqEQlrZmLox7C6IqpYtJgfSQAAMF7FfOJ+RNIySS865/rNbLYkllIGxnAimVFfKqtH93brgd37deBo8qxj6qoSWnvdQrUuq1VlvEwzE5Ep6BQAgOAw59z5DzCrd851mdm1o+13zj3tS2fn0dzc7Nra2ib72wJF6zme0vbOHm3c1qFUZuxfnMQjIW1oadSqhhrVzIpPQocAAFy4zGyPc655tH2F3An+pKTbJf31KPucpLdOoDfggtXTl9L6h9u1s6u34PekMjnd9ciz2t7Vo01rmlRTSRAGAMAPY4Zg59zt+b9X+N8OcGHoOV58AB5uZ1ev1m9pJwgDAOCTYuYJfm/+YTiZ2Z+Z2RYze61/rQGl6UQyo+2dPeMOwKft7OrV9o4enUxlPOoMAACcVswUaRuccyfM7E2SVkm6T9L/9actoHT1pbLauK3Dk1obt3XoeDLrSS0AAPBbxYTgwfzfLZLudc5tkxT1viWgdKUHhmaBKOQhuEKkMjlt3det9ABBGAAALxUTgrvN7B8lvU/S42YWK/L9wAWv99SAHti939Oam3ftPzO/MAAA8EYxIfZ/SHpC0k3OuWOSqiTd4UtXQIlyTqPOAzwRB44mNcZMhgAAoEgFh2DnXL+kRyWdMrOFkiKSuvxqDChFJ1P+DFs4mWY4BAAAXip4xTgz+yNJfy6pR79dLtlJavKhL6AkJTODYx80Dimf6gIAEFTFLJv8CUlLnHNH/GoGKHWJSNiXuvEyf+oCABBUxYwJPiDpuF+NABeCGfFi/rty6usCABBUxXyyvijpe2a2TVL69Ebn3N943hVQosykuqqEpw/H1VUlZOZZOQAAoOLuBO+X9KSG5gaeOewPgLzqiqjWXrfQ05rrli/U3JkxT2sCABB0Bd8Jds59TpLMbEb+9Um/mgJKVSxaptZltfrSd3/hyYIZ8UhIq6+pVZQxwQAAeKrgO8FmttTMfibpOUnPmdkeM7vKv9aA0lQZL9OGlkZPam1oadSsBOOBAQDwWjHDIe6V9Enn3KXOuUsl/amkr/rTFlC6ZiYiWtVQoxX11ROqs6K+WqsaazQjHvGoMwAAcFoxIbjCObfz9Avn3PckVXjeEXABqJkV16Y1TeMOwivqq7VpTZNqKuMedwYAAKQiZ4cwsw2Svpl//XsamjECwChqKuPadGuTtnf2aOO2joLGCMcjIW1oadSqxhoCMAAAPiomBH9Y0uckbdHQSnE/yG8DcA41s+JqXTZfNy6Zq637urV51/5Rp0+rq0po3fKFWr2sVrPiZQyBAADAZ+acm+oeitbc3Oza2tqmug2gKOmBrHpPDcg56WQ6q1RmUPFIWDNiZTKT5s6MMQsEAAAeMrM9zrnm0fYVfCfYzJ6U9F7n3LH864slPeicu8mbNoELWyxapgVRZnoAAGA6KObBuDmnA7AkOedekTTX+5YAAAAAfxUTgnNmdmYpLDO7VENjgwEAAICSUszvZu+S9EMz+74kk/RmSbf70hUAAADgo2KWTf5PM7tW0vX5TX/snPvN6f1mdpVz7jmvGwQAAAC8VtRTOvnQ+9g5dn9T0rUT7ggAAADwWTFjgsdiHtYCAAAAfONlCOYhOQAAAJQEL0MwAAAAUBK8DMEDHtYCAAAAfFPUg3Fm1iRp0fD3Oee25P++/hxvAwAAAKaVYpZN/rqkJknPScrlNztJW3zoCwAAAPBNMXeCr3fONfrWCQAAADBJihkT/BMzIwQDAACg5BVzJ/h+DQXhQ5LSGpoX2DnnmnzpDAAAAPBJMXeC75P0+5LeIendkm7O/31eZvYOM3vezF4ws/XnOe49ZubMrLmIngAAAICiFXMnuNc5t7WY4mYWlvQVSW+TdFDSbjPb6pzrGHHcTEmfkPTTYuoDAAAA41FMCP6ZmW2W9G0NDYeQ9Nsp0s5huaQXnHMvSpKZPSipVVLHiOM2SvqCpDuK6AcAAAAYl2KGQyQ0FH7frqFhEKeHRJxPraQDw14fzG87w8yulVTnnNt2vkJmdruZtZlZW29vbxFtAwAAAK9W8J1g59yHvP7mZhaS9DeSPljA979X0r2S1Nzc7LzuBQAAAMFRzGIZcUkfkXSVpPjp7c65D5/nbd2S6oa9XpDfdtpMSUslfc/MJGmepK1mtto511ZobwAAAEAxihkO8U0NhdSbJH1fQ4H2xBjv2S1psZldZmZRSe+XdObhOufccefcHOfcIufcIklPSSIAAwAAwFfFhOArnHMbJJ1yzv2zpBZJv3O+NzjnspI+LukJSZ2SvuWce87M7jaz1eNtGgAAAJiIYmaHyOT/PmZmSyUdkjR3rDc55x6X9PiIbZ85x7E3FtEPAAAAMC7FhOB7zexiSRs0NKRhhqRRwywAAAAwnRUzO8TX8l9+X9Ll/rQDAAAA+K/gMcFmVmNm95nZf+RfN5rZR/xrDQAAAPBHMQ/GfUNDD7jNz7/+uaQ/9rohAAAAwG/FhOA5zrlvScpJZ2Z+GPSlKwAAAMBHxYTgU2Y2W5KTJDO7XtJxX7oCAAAAfFTM7BCf1NCsEJeb2Y8kVUu6zZeuAAAAAB8VE4I7JD0sqV9DK8U9oqFxwQAAAEBJKWY4xP2S6iV9XtKXJV2poaWUAQAAgJJSzJ3gpc65xmGvd5pZh9cNAQAAAH4r5k7w0/mH4SRJZvY7ktq8bwkAAADw15h3gs3sGQ3NCBGR9GMz259/famkLn/bAwAAALxXyHCIm33vAgAAAJhEY4Zg59yvJ6MRAAAAYLIUMyYYAAAAuCAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4ZVPdAAAAAC4syXRGR/ozkqQTyaySmUElImHNTAxFz9nlESVikalskRAMAAAAb7zSP6D+9KAe3dutB3bv14GjybOOqatKaO11C9W6rFblsbAuLo9OQaeSOeem5BtPRHNzs2tra5vqNgAAAJB36HhKOzp7tHFbh1KZ3JjHxyMhbWhp1MqGGs2bFfelJzPb45xrHm0fd4IBAAAwIT19Kd35cLt2dvUW/J5UJqe7HnlW27t6tGlNk2oq/QnC58KDcQAAABi3Q8dTWr+luAA83M6uXq3f0q6evpTHnZ0fIRgAAADj8kr/gHZ09ow7AJ+2s6tX2zt6dKx/wKPOxkYIBgAAwLj0pwe1cVuHJ7U2buvQqfSgJ7UKQQgGAABA0ZLpjB7d213QQ3CFSGVy2rqvW8l0xpN6YyEEAwAAoGhH+jN6YPd+T2tu3rX/zPzCfiMEAwAAoGjOadR5gCfiwNGkJmv2XkIwAAAAinYylfWnbtqfuiMRggEAAFC0ZMafh9hSPtUdiRAMAACAoiUiYV/qxsv8qTuS7yHYzN5hZs+b2Qtmtn6U/Z80sw4zazezHWZ2qd89AQAAYGJmxP1ZeNivuiP5GoLNLCzpK5LeKalR0lozaxxx2M8kNTvnmiQ9JOkv/ewJAAAAE2cm1VUlPK1ZV5WQmaclz8nvO8HLJb3gnHvROTcg6UFJrcMPcM7tdM71518+JWmBzz0BAABggmaXR7T2uoWe1ly3fKGqZ8Q8rXkufofgWkkHhr0+mN92Lh+R9B+j7TCz282szczaensntjQfAAAAJiYRi6h1Wa3iEW/iZDwS0uprahXzaazxSNPmwTgz+z1JzZK+ONp+59y9zrlm51xzdXX15DYHAACAs5THwtrQMnKk6/hsaGlURWxyArDkfwjullQ37PWC/LZXMbNVku6StNo5l/a5JwAAAHjg4vKoVjbUaEX9xG5Qrqiv1qrGGl1UHvWos7H5HYJ3S1psZpeZWVTS+yVtHX6Amb1W0j9qKAAf9rkfAAAAeGjerLg2rWkadxBeUV+tTWuaVFMZ97iz8/M1BDvnspI+LukJSZ2SvuWce87M7jaz1fnDvihphqR/M7O9Zrb1HOUAAAAwDdVUxvUXtzbpnluWFjxGOB4J6Z5blk5JAJYkc5O1QLOHmpubXVtb21S3AQAAgGGO9Q/oVHpQW/d1a/Ou/TpwNKkZ0bAurojqlVMDOjkwqLqqhNYtX6jVy2pVEQ37OgTCzPY455pH2zc5sxEDAADggndReVQXlUsffP2levc18yVJJ5JZJTODSkTCmpkYip6zyyNKxCJT2SohGAAAAN54pX9A/elBPbq3Ww/sHroTPFJdVUJrr1uo1mW1Ko+FdfEkPgw3HMMhAAAAMGGHjqe0o7NHG7d1KJXJjXl8PBLShpZGrWyo0bxZ/owJZjgEAAAAfNPTl9KdD7drZ1fhC5qlMjnd9ciz2t7Vc+HNDgEAAIAL26HjKa3fUlwAHm5nV6/Wb2lXT1/K487OjxAMAACAcXmlf0A7OnvGHYBP29nVq+0dPTrWP+BRZ2MjBAMAAGBc+tOD2ritw5NaG7d16FR60JNahSAEAwAAoGjJdEaP7u0u6CG4QqQyOW3d161kOuNJvbEQggEAAFC0I/0ZPbB7v6c1N+/aryP9hGAAAABMU85p1HmAJ+LA0aQma/ZeQjAAAACKdjKV9adu2p+6IxGCAQAAULRkxp+H2FI+1R2JEAwAAICiJSJhX+rGy/ypOxIhGAAAAEWbEfdn4WG/6o5ECAYAAEDRzKS6qoSnNeuqEjLztOQ5EYIBAABQtNnlEa29bqGnNdctX6jqGTFPa54LIRgAAABFS8Qial1Wq3jEmzgZj4S0+ppaxXwaazwSIRgAAADjUh4La0NLoye1NrQ0qiI2OQFYIgQDAABgnC4uj2plQ41W1FdPqM6K+mqtaqzRReVRjzobGyEYAAAA4zZvVlyb1jSNOwivqK/WpjVNqqmMe9zZ+RGCAQAAMCE1lXH9xa1NuueWpQWPEY5HQrrnlqVTEoAlaXImYgMAAMAFbd6suFqaLtGNS+Zq675ubd61XweOJs86rq4qoXXLF2r1slpVRMOTOgRiOEIwAAAAPOHyf//u79Tp5qb5kqST6axSmUHFI2HNiA1Fz4sSEfWlsmeOnwqEYAAAAEzYoeMp7ejs0cZtHUplcme2110U15J5M/T8oZM6cCx1Zns8EtKGlkatbKjRvFkMhwAAAECJ6elL6c6H27Wzq/esfQeOpV4Vfk9LZXK665Fntb2rhwfjAAAAUFoOHU9p/ZbRA3Ahdnb1av2WdvX0nR2U/UQIBgAAwLi80j+gHZ094w7Ap+3s6tX2jh4d6x/wqLOxEYIBAAAwLv3pQW3c1uFJrY3bOnQqPehJrUIQggEAAFC0ZDqjR/d2v+ohuIlIZXLauq9byXTGk3pjIQQDAACgaEf6M3pg935Pa27etV9H+gnBAAAAmKac06iLYUzEgaNJuUmaPJgQDAAAgKKdTGX9qZv2p+5IhGAAAAAULZnx5yG2lE91RyIEAwAAoGiJSNiXuvEyf+qORAgGAABA0WbE/Vl42K+6IxGCAQAAUDQzqa4q4WnNuqqEzDwteU6EYAAAABRtdnlEa69b6GnNdcsXqnpGzNOa50IIBgAAQNESsYhal9UqHvEmTsYjIa2+plYxn8Yaj0QIBgAAwLiUx8La0NLoSa0NLY2qiE1OAJYIwQAAABini8ujWtlQoxX11ROqs6K+Wqsaa3RRedSjzsZGCAYAAMC4zZsV16Y1TeMOwivqq7VpTZNqKuMed3Z+hGAAAABMSE1lXH9xa5PuuWVpwWOE45GQ7rll6ZQEYEmanInYAAAAcEGbNyuulqZLdOOSudq6r1ubd+3XgaPJs46rq0po3fKFWr2sVhXR8KQOgRiOEAwAAABPXFQe1UXl0gdff6nefc18OSedTGeVygwqHglrRqxMZlL1jNikzQJxLoRgAAAAeCoRi2hBLDLVbZwXY4IBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFTNtUNTGfJdEZH+jOSpBPJrJKZQSUiYc1MDJ222eURJWKRqWwRJYTrCQAQFKXwmUcIHsUr/QPqTw/q0b3demD3fh04mjzrmLqqhNZet1Cty2pVHgvr4vLoFHSKUsD1BAAIilL6zDPn3JR844lobm52bW1tvtQ+dDylHZ092ritQ6lMbszj45GQNrQ0amVDjebNivvSE0oX1xMAICim42eeme1xzjWPuo8Q/Fs9fSmt39KunV29Rb93RX21Nq1pUk0lwQVDuJ4AAEExXT/zzheCeTAu79Dx8f+PJ0k7u3q1fku7evpSHneGUsT1BAAIilL9zCMEa2j8yo7OnnH/j3fazq5ebe/o0bH+AY86QyniegIABEUpf+YRgiX1pwe1cVuHJ7U2buvQqfSgJ7VQmrieAABBUcqfeYEPwcl0Ro/u7S5oAHchUpmctu7rVjKd8aQeSgvXEwAgKEr9M8/3EGxm7zCz583sBTNbP8r+mJn9a37/T81skd89DXekP6MHdu/3tObmXfvPzI2HYOF6AgAERal/5vkags0sLOkrkt4pqVHSWjNrHHHYRyS94py7QtLfSvqCnz2N5JxGncNuIg4cTaoEJ92AB7ieAABBUeqfeX7fCV4u6QXn3IvOuQFJD0pqHXFMq6R/zn/9kKSVZmY+93XGyVTWn7ppf+pieuN6AgAERal/5vkdgmslHRj2+mB+26jHOOeyko5Lmj2ykJndbmZtZtbW2zuxJxCHS2b8GYCd8qkupjeuJwBAUJT6Z17JPBjnnLvXOdfsnGuurq72rG4iEvas1nDxMn/qYnrjegIABEWpf+b5HYK7JdUNe70gv23UY8ysTNIsSUd87uuMGfGykqqL6Y3rCQAQFKX+med3CN4tabGZXWZmUUnvl7R1xDFbJX0g//Vtkr7rJnEtZzOprirhac26qoQmb1QzphOuJwBAUJT6Z56vITg/xvfjkp6Q1CnpW86558zsbjNbnT/sPkmzzewFSZ+UdNY0an6aXR7R2usWelpz3fKFqp4R87QmSgPXEwAgKEr9M8/3McHOucedc1c6517jnLsnv+0zzrmt+a9Tzrn3OueucM4td8696HdPwyViEbUuq1U84s2piEdCWn1NrWI+jZPB9Mb1BAAIilL/zCuZB+P8VB4La0PLyOmLx2dDS6MqYgSWION6AgAERSl/5hGCJV1cHtXKhhqtqJ/YrBMr6qu1qrFGF5VHPeoMpYjrCQAQFKX8mUcIzps3K65Na5rG/T/iivpqbVrTpJrKuMedoRRxPQEAgqJUP/NsEidi8Exzc7Nra2vzpfah4ynt6OzRxm0dSmVyYx4fj4S0oaVRqxprCCw4C9cTACAopuNnnpntcc41j7qPEHy2Y/0DOpUe1NZ93dq8a/+o62LXVSW0bvlCrV5Wq4pomF9Z45y4ngAAQTHdPvMIweOUTGd0pD8j54bWsU5lBhWPhDUjViYzqXpGjKf2UTCuJwBAUEyXz7zzhWCWoTqPRCyiBbHIVLeBCwTXEwAgKErhM48H4wAAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOCU5IpxZtYr6ddT8K3nSPrNFHzfUsN5KgznqTCcp8JwngrHuSoM56kwnKfCTNV5utQ5Vz3ajpIMwVPFzNrOtfQefovzVBjOU2E4T4XhPBWOc1UYzlNhOE+FmY7nieEQAAAACBxCMAAAAAKHEFyce6e6gRLBeSoM56kwnKfCcJ4Kx7kqDOepMJynwky788SYYAAAAAQOd4IBAAAQOIRgAAAABA4heAQz+7qZHTazZ8+x38zsS2b2gpm1m9m1k93jdFDAebrRzI6b2d78n89Mdo/TgZnVmdlOM+sws+fM7BOjHBP4a6rA8xT4a8rM4ma2y8z25c/T50Y5JmZm/5q/nn5qZosmv9OpVeB5+qCZ9Q67nv6fqeh1OjCzsJn9zMweG2Vf4K+n08Y4T1xPeWb2KzN7Jn8e2kbZP20+88qm6htPY9+Q9H8k3X+O/e+UtDj/53ck/UP+76D5hs5/niTpB865myennWkrK+lPnXNPm9lMSXvM7EnnXMewY7imCjtPEtdUWtJbnXMnzSwi6Ydm9h/OuaeGHfMRSa84564ws/dL+oKk901Fs1OokPMkSf/qnPv4FPQ33XxCUqekylH2cT391vnOk8T1NNwK59y5FsaYNp953AkewTn3X5KOnueQVkn3uyFPSbrIzC6ZnO6mjwLOEyQ55152zj2d//qEhv4PtHbEYYG/pgo8T4GXv0ZO5l9G8n9GPt3cKumf818/JGmlmdkktfj/t3d/oVLUYRjHvw8pFBoJ2h/zVAcyCAo9KRwSTURKosIu8kLCtIKiPxBdZFQXZXVR0B+CboI0DNMiMs1CMylBEAmzRI2kjKK0SDDSJJHUp4uZk+viyT2QZ0bm+cBydnZ+zL7n5WXn3Znf7NRCh3kKQFIXcDOwsJ8hja8n6ChP0bna7PPSBA/cGODnluXdZGfdn0nl6cg1kq6qOpiqlacRrwE+b1uVmmrxH3mC1FTfKdmtwF5gne1+68n2EWA/MHJwo6xeB3kCuK08HfuepEsGOcS6eAV4FDjWz/rUU+FUeYLUUx8Dn0jaIunek6yvzT4vTXCcLl9S3K97PPAqsLLieColaTiwHHjY9oGq46mrU+QpNQXYPmq7B+gCeiVdXXVMddRBnj4Eum2PA9Zx/GhnY0i6Bdhre0vVsdRZh3lqfD21mGJ7AsW0hwclTa06oP6kCR64PUDrN7yu8rVoYftA3+lI26uBoZJGVRxWJco5icuBpbbfP8mQ1BSnzlNq6kS2/wDWAze2rfq3niQNAc4D9g1udPXRX55s77N9uFxcCEwc7NhqYDIwU9KPwDvAdElvtY1JPXWQp9TTcbb3lH/3AiuA3rYhtdnnpQkeuFXA3PLqxmuB/bZ/rTqoupF0Ud+8MUm9FLXWtA9OyhwsAr6x/XI/wxpfU53kKTUFks6XNKJ8fg5wA7CzbdgqYF75fBbwmRt2V6RO8tQ2B3EmxTz0RrH9uO0u293AbIpamdM2rPH11EmeUk8FScPKi5uRNAyYAbT/ilRt9nn5dYg2kt4GpgGjJO0GnqK4qALbrwGrgZuAXcBfwF3VRFqtDvI0C7hf0hHgEDC7aR+cpcnAHcD2cn4iwBPApZCaatFJnlJTMBp4U9JZFF8C3rX9kaRngC9sr6L4MrFE0i6Ki1dnVxduZTrJ00OSZlL8MsnvwJ2VRVszqafOpJ5O6kJgRXm8YgiwzPbHku6D+u3zctvkiIiIiGicTIeIiIiIiMZJExwRERERjZMmOCIiIiIaJ01wRERERDROmuCIiIiIaJw0wRERNSFphKQHqo4jIqIJ0gRHRNTHCCBNcETEIEgTHBFRH88Dl0vaKukFSfMlbZa0TdLTAJK6Je2UtFjSt5KWSrpe0kZJ35V300PSAklLJG0qX7+nfH20pA3le+yQdF2F/29ERGXSBEdE1MdjwPe2e4B1wBVAL9ADTJQ0tRw3FngJuLJ83A5MAR6huNNen3HAdGAS8KSki8uxa8v3GA9sJSKigXLb5IiIeppRPr4ql4dTNMU/AT/Y3g4g6WvgU9uWtB3obtnGB7YPAYckradoqDcDb0gaCqy0nSY4IhopR4IjIupJwHO2e8rHWNuLynWHW8Yda1k+xokHN9y2TdveAEwF9gCLJc09DbFHRNRemuCIiPr4Ezi3fL4WuFvScABJYyRdMMDt3SrpbEkjgWnAZkmXAb/Zfh1YCEz4f0KPiDizZDpERERN2N5XXuC2A1gDLAM2SQI4CMwBjg5gk9uA9cAo4Fnbv0iaB8yX9He5zRwJjohGkt1+tiwiIs50khYAB22/WHUsERF1lOkQEREREdE4ORIcEREREY2TRqH83gAAAC5JREFUI8ERERER0ThpgiMiIiKicdIER0RERETjpAmOiIiIiMZJExwRERERjfMPlvLgqxn0muYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(max_beam):\n", + " fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + " fig.set_figheight(8.27)\n", + " fig.set_figwidth(11.7)\n", + " sns.scatterplot(y='beam_consisentency_{}'.format(i), x='temps',data=df[df.names == model_selected],s=500)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3xU5bkv8N871zWTK4FJSEIiXiAXIaEYKJVWQwnqLpco4lHoqba12HO03bv11Kq1WGvqLmJbW8+xu8q2tvop2F2vSNxiQcBWS7kVIuQCFDUhgSQQcplk1lzWvOePXAwhITPJWpMJ8/t+Pn4kM5Mnb6Sdeda7nvd5hJQSRERERESxxDTWCyAiIiIiijQmwUREREQUc5gEExEREVHMYRJMRERERDGHSTARERERxRzLWC9gJCZNmiSnTp061ssgIiIioii2b9++01JK12DPjcskeOrUqdi7d+9YL4OIiIiIopgQ4pOhnmM5BBERERHFHCbBRERERBRzmAQTERERUcxhEkxEREREMYdJMBERERHFHCbBRERERBRzmAQTERERUcxhEkxEREREMWdcDssgIiIioujl9QXQ3OkDAHR4AvD4NTisZiQ4ulNPV5wNdtvYpqFMgomIiIhIFx0eP9rVAN44UI+Ne2pR1+I57zVZKQ6snJON0lmZSFQsSHBYx2ClgJBSjskPHo2ioiLJsclERERE0aOxTcXWqkaUlVdC9QeHfb1iNWHN4nyU5KUhLUkxZE1CiH1SyqLBnuNOMBERERGNSmO7igdeq8D26uaQv0f1B/HQ64ewtboRa5cXIC3RmER4KDwYR0REREQj1tim4oFXw0uA+9te3YwHXq1AY7uq88oujEkwEREREY1Ih8ePrVWNI06Ae22vbsbWyka4Vb9OKxsek2AiIiIiGpF2NYCy8kpdYpWVV6LNE9AlViiYBBMRERFR2Ly+7i4QoRyCC4XqD2LTwXp4fZFJhA1NgoUQvxVCNAkhDg3xvBBCPCWEOCaEqBBCzDZyPURERESkj+ZOHzbuqdU15obdtX39hY1m9E7w7wDccIHn/wXAtJ5/7gLwHwavh4iIiIh0ICUG7QM8GnUtHkSqe6+hSbCU8j0ALRd4SSmAF2S3XQCShRDpRq6JiIiIiEbPrRpTtuD2XgTlECHIBFDX7+sTPY+dRwhxlxBirxBib3Pz6E4gEhEREdHoePyaIXFVg+IONNZJcMiklM9KKYuklEUul2usl0NEREQU0xxWsyFxFYsxcQca6yS4HkBWv6+n9DxGRERERFEsXjFm8LBRcQca6yR4E4Dbe7pEzAPQJqU8OcZrIiIiIqJhCAFkpTh0jZmV4oAQuoYcktEt0jYC+BuAHCHECSHEnUKI/yWE+F89L3kLwHEAxwCsB3C3keshIiIiIn244mxYOSdb15ir5mYjNcGua8yhGLrfLKVcOczzEsA9Rq6BiIiIiPRnt1lQOisTT717VJeBGYrVhGWFmbDFSE0wEREREY1TiYoFaxbn6xJrzeJ8JDkiUw8MMAkmIiIiohFKcFhRkpeGBbmj69y1INeFkvw0xCtWnVY2PCbBRERERDRiaUkK1i4vGHEivCDXhbXLC5CWqOi8sgtjEkxEREREo5KWqGDtTQV47MYZUKyhpZeK1YTHbpwxJgkwYPDBOCIiIiKKDWlJCkpnZaA4JxWbDtZjw+5a1LV4EG8zY0KcDWc7fXD7NGSlOLBqbjaWzcpEkmKJaAlEf0yCiYiIiEgX8YoV8YoVX/3cJVhamAEA6PAE4PFrcFjNSOg5+DbRaYXDPjbJby8mwURERESki7NdPnR5NbxxoB4b93TvBA+UleLAyjnZKJ2VCafdjAlO2xisFBDdrXrHl6KiIrl3717Df46mBdHS5UMgKNGhBuAPaLBazEhQLLCYBFKcNpjNLKsmIiIiOtWmYltVI8rKK0PqG6xYTVizOB8L89IwOcmYmmAhxD4pZdFgz3EneBC+QBAtnT5U1LUiCIlJ8Xb4A0EENAmLOYB2jx+n3V4IAIVZE5ASZ4PNwmSYiIiIYlNju4oHX6vA9urmkL9H9Qfx0OuHsLW6kd0hokFLpw+7PzqDU+0qEh0WTJ0UB1eCHYkOK5yKGYkOK1wJdkydFIdExYpT7Sp2f3QGLZ2+sV46ERERUcSdalPxwKvhJcD9ba9uxgOvVqCxXdV5ZRfGneB+zri9ONLYgTi7BRPjbCj/5xn8YfcnQ9azfHnuJVhckA4pJWpOtWN6WgImxkdm3jURERHRWDvb5cO2qsYRJ8C9tlc3Y2tlIxYXpCM5QjXC3Anu0dLpQ2ObB5OTHKg+1YFFT+7E2rerB02AAaCuxYO1b1dj0ZM7UX2qA5OTHGhs8+Asd4SJiIgoRnR5NZSVV+oSq6y8Ep1eTZdYoWASjO4a4DOdKpLj7PjJ5ko8+OqHIRV0A931LA+++iF+srkSyXF2nO5U4QuE9r1ERERE45XH68cbB+pDzpmGo/qD2HSwHh6vX5d4w2ESDKCtywen1YI1rx/CtuqmEcXYVt2ENa8fgtNqQVsXd4OJiIjo4namy4+Ne2p1jblhdy3OdDEJjghNCyIgJf5y9PSIE+Be26qb8NdjpxEMSmgad4OJiIjo4iUlhiwbHam6Fg8i1b035pPgNtUPKYFH3jysS7wfbToMrScuERER0cXKrQaMies1Ju5AMZ8EAxKbKxp0rWfZXNEAYPwNISEiIiIKlcdvzCE21aC4A8V8izTVH8SLuz7RNeaLuz7BkoJ0XWMShWrgpENN02A2c9IhERHpy2E1GxJXsRgTd6CYT4K1oDH1LCwJpkjrnXTYcLYLTsUCh9UMfyAIjz8Ih1XAFwiiza+h9kwXMic4OemQiIhGJV4xJo00Ku5AMZ8EdxpUd9Lpi0w9CxHQ3ee6obULSQ4bdn3Ugo17aocc8rJyTjaWJio40tiOjOTuZJiIiChcQnR/rui5mZiV4oAQuoW7oJjfBjKsnsUXuWbPFNvOuL1o9/hxsK4Ni57ciXVbai445GXdlhosenInDta1od3jxxm3N8IrJiKii8FEpxUr52TrGnPV3Gy4IjR9N+aTYLtBt4N5m5kioaXTB9UfxI83H8ZDrx8Ka8jLQ68fwo83H4bqD3LSIRERhc1ht6J0ViYUqz45j2I1YVlhJuwG1RoPFPOZ2nivZ6HY5QsE0eUL4IdvfDjime3bq5vxwzc+RKcvwEmHREQUNqfdjDWL83WJtWZxPuLskUmAASbBEBDISnHoGjMrxQGBCBW0UMzq8Piws6Z5xAlwr+3VzdhZ04x2D3eDiYgoPBOcNizMS8OCXNeo4izIdaEkPw3JzsidU4n5JNhuFVgxe4quMW+5agoUlkOQgTQtCE8giLLySl3ilZVXQg0EOemQiIjCNjlJwdrlBSNOhBfkurB2eQHSEhWdV3ZhMZ+pWc0mLCnM0LWeZXFBBmuCyVAdPj82HdB3yMubBxvQ4eOkQyIiCl9aooKf3lSAx26cEXJOpVhNeOzGGWOSAANMgtHeFUC83YL7rs/RJd591+cgwW5BaxeTCTKOW9WwcU+trjE37K6FW2VXEyIiGpnJSQoWF6Rj273FuP+GnCHLTbNSHLj/hhxs+z/FWFyQPiYJMMA+wegu3ZWYf/kkFOe4sKNm5PWVxTkuzL9iEiAlWBJMRpLSmCEvktO+iYhoFMw9TX6XzEzHkoIMAIDbG4Dq16BYzYi3d6eeUkpAfvr6scAkGMCvd/wT//vay/HdkukAMKJEuDjHhe+WTMcEhxX/b+c/cef8S/VeJlEft2rMMBa3QcNjiIjo4tfYpmJrVWP3OZN+5XrJigWpiQqa2lW09vv8UqwmrFmcj5K8NKQlRX43OOaT4DibGROcNtQ0diAvLRF3feEyfGHaJDyxpSakekvFasJ91+cgb3Ii0hMVVDW2Y6LThjhbzP+nJQOpAWPKFrwGxSUiootbY7uKB16rGLRjUSAo4fFrCATPvd3Y27N+a3XjmNQFx3ymJgEszE3FV5/fjfW3X4Wpk+IQ0CReuutz2FnThJf3nxhy/OyK2VNwbU4q2j1+TJ0UhxOtnbj3jwfwu6/NhQTvK5NxFIMaidstkevPSEREF4fGtnMTYIfNjJ+vKEB+ZhIsQqBd9UP1B6FYTUhUrAhIiUMnWnHfKx/C49OwvboZD7xaEfFEOOaT4BSnDf+obcXdC67AV57bg3UrCpEzOQ4OqxXT0xLw0JfyMDHeDr8W7PsLtJpNOOP2QkrAFW9HvN2Ef9S24vsvH8S9103HqXYV+RlJY/2r0UWst6ZqvMQlIqKLU4fHj61VjX0J8H/efhXy0pPwxoF6/PTt6iE3ElfOycbW716LqpNt+MYL+7C9uhlbKxtROisD8Yo1ImuP+e4QZrMJV2YkISPJgTmXpuCeDfvxq63H0OxWcekkJ/LSEzE5UcEEpw0T46yY4LRhcqKCvPREXDbJiWa3il9tPYZ7NuzHnEtTkJHkQH56Eswmnowj42hSGjLkJciTcUREFIZ2NYCy8kpckuLA+/cvQGO7Fwt/sQPrttQMeYC7rsWDdVtqsPAXO9DY7sX79y/AJSkOlJVXos0TubMpMb/t4/drONzQhma3iruuuQwA8GbFSbx16BQW5qZicUE6MpIdCGpBaEEJ1aTB7Q2godWDzRUn8W51E7SgRHGOC3ddcxmONXXgcEMbUuNtsEZo9jXFHk0L4ubZU/DLrUd1i7li9hQENCbBREQUGq8vgDcO1CMtwY4/fvNqPDhETfBQemuCF+S68MdvXo1bn/kAmw7W4+tXT4U9AmerYj4JPt3lQ1l5JR64IQ8vfPAxbrkqq+9g3DuVjXinshEAYDEJ2Cwm+ALBcwq7FasJP/hSLiYnOvDCBx9jaWEmysorMXPK55CepO9OHVEvvyZRPN2F3+z8py4DMxSrCddOd8HPiXFRze/X0NzpRVACHWoA3oAGu8WMBMUCkwBccXZefBNRxDR3+rBxTy1eWj0v7AS4v+3VzXjwtQpsWD0Pt63fhaWFGZjCJNh4AU2irsWDRzYdwqt3z8fDmw4h3mbBS6vnYeeR5r6DcYGgRMD36cn5voNx01147q8fwe07jUeXzcDyX7+PZrePO2pkqHjFgl/v+Cfuuz4HZZurRh3vvutz8NxfP8L9N+TqsDrSW5c3gLMePw7WnoXJJDAp3g5vINjXd7PTG8BptxdaUGJW9gRMcFjhZH03ERlMSuBHS/Kxo6Z5xAlwr+3VzdiR24yHl+RHrGd9zL9Ldvb0RX1k2Qw8Vl6JFbOzcKrdgy8/93fMv3wSvnddDjKSHecdjOsth3j2L8dx76LpmJzowGPllXhk2Qzcs2E/On3st0rGMQngH3Vncf2Vk3UZ8jI50YEDJz6GibXsUaepXUXVyXYkOW040uTGKxfoWHPz7CnInODEscYO5KUnInWMpjARUWxwqwHkpSfhWxt36BKvrLwS2+4tRrsamam7MZ8Ee/walhVm4FS7B28fbsTbhxuxtCAdf7jzs9h5pBk/e6e7sHtgOUTvTvA9xZfjub9+hDcrunfj5lyagqUF6VB97LdKxnHazfjKvKn4/ssHsf6OIgAjH/Jy1zWXYfXv9+I7JdMRb+et9GjS3K7iWJMbx5rdw/Yur2vx4Jdbj+I3O7vvEFjNJggALibCRGSQifFWvLyvXpeyPKC7RnjTwXrcPDtTl3jDEXIcngYvKiqSe/fu1SXW4YY2+ANB3LZ+1zl/iWaTOOdg3FA7wb0H43opVhNeWj0PNouJbdLIMJoWxKkOLxb+fAfMQmDdikKcaveEPeRlcqID33/5IDQp8e69xUhLUtjZJEo0t6toaFPx5NYjo5pimZGkMBEmIkPUtXRh1X/uGrILxEhkpTiw4RvzkJXi1CWeEGKflLJosOdifid4YpwNL+2pOy9x0IIypINxA6n+IHYeacatc7IMXTfFNrPZBLtZ4MfLrsT9r3yIezbsx9KC9PNq2QcaWMveewfj8ZtnwmYRTICjRJc3gNOdvgsmwMO9J/V+3/035CJOscDJKZZEZAA9E2Aj4l1IzL8r+jWJV/afGPZ1Aw/GXcjL+09g+ewpo10a0QVpQWD+FZNQkpeKrVVN57T2G66W/al3j/XdwSjJS8X8KyaBjSGiR4c3gA/+efqcBNhsEijJS8WXZqYjM9lxzsE4u8WE+lYPyitOYlu/u1M7aprxhWmTkBKXwSSYiHTnVkM7/xTqRmJfXG9kzlXF/LuiSRhzFcMNNTKS1xfAK/tPYFpaAh4tnQHgELZWNYV9B6MkLxWPls7A4YZ2HGvqiFhvRhqa36/BrQbwxJaavseWFWbg6/OnYke/cwoD9R6Mu7v4cvz2/Y+x6WADAOCJLTUonp6KFIfG9mlEpCuPf/DNwYEX7f5AEAFNwmIWsA5x0d6fOkRcvcX8p11HiFcxYceN0FUMxabe3owtbh+e/9ocPLQ4HyV5aXjkzcPnlPYMdQdDsZrwyNIrMe+yiThxtgvfeekfSIm3Raw3Iw2tVfVhc0UDVH8QcTZzX733wHMLAw08GHf9lZPx/ZcPotOnofzDBqycmwWXlb3LiUg/jkEurHsv2lW/huQ4GxxWM9xqAB6/BofVjHjFgnjFgtR4+3kX7b0US2Qu2GP+006vE40DeQ2KSwR092bs3Q382vN7sG5FIaanxePP370W//3hSbz490+G3C38yrxL8C8z0tHcoeJwQ3tfotTZ4olYb0Yamjcg8fL+E4izmbH+jiI8+97xsA7Gqf4gyjZXoTjHhfV3FGH17/fiT/tYokVE+otXPk0jey/aM5IVTIy3482DDdi4p3bIz6KVc7KxtDADX5s/9ZyL9oFxjRTzSbDdYjIkrs2guETAuXVYnT6t72DcnZ+/FAWZSVh/exEUqxld3kBfTbDTboHq19Da6cMZtxfPv/8x3qw4eW5c3sEYc0HZPcDn6VWzw06A++v9vnUrCnHPhv0I8gqHiHQmRHdC23tX0pWg4INjp1FWXjnsnat1W2rw1LtHsWZxPq6+YhKe/9ocfO35PUiJt0FEqKQ05pNgp0F9UZ021t6RcQarw+p/MK63tZ+mBeHXJHwBgU6fNmRrv16RqsOioXV6P+1dPpohKMCnB+OWFqSjy8u/WyLSlyvOhpVzsjEtLQGZyU788I0Pw5ocp/qDeOj1Q1iQ68JPSmfil7d9BseaOpCaYDdw1Z+K+SRYyu6rGL173HHThYykWAe/0zDS1n69jLozQqHz+jV8ff5U3LZ+ly7xnthSg5dWz4MaYIkWEenLbrPg5tlT4NOCYSfA/W2vbsYP8SEeLZ2Bgswk2CJUExzzn3iKzYSbda6VWzF7Chy2mP9PSwZKUKwhvS4QlOjyaSElwOHEJeOkxNmw40izrhOYdh5pRoqTf7dEpD+zCXjvSPOIE+Be26ub8V5NM8wRTJ9iPlMLaBILc1OH3FkLl2I14Yu5qfBr3AomY2WlDH/S32IScNrMsITQsy+UeGQ8IURIvcvD8fL+ExCRKrIjopihaUGogSDKyit1iVdWXgk1EIQWocb1MV8O4bSZcaC2E/ddn4OyzVWjjnff9Tn4pKUTmROYUJBxEhxmrJyTjXX9eskCIxuo0GvV3GwkOmL+LSEqjOcJTEQUOzp8fmw60KDrnas3DzZg5WezkOwwvi445j/xEmwW5GUkwXyqA8U5rlEdRCnOcSEjyYHpkxOQYI/5/7RkIIfZjNJZmXjq3aN9bz6jGaigWE1YVpg5aM9HiqxOgzp0GBWXiGKXW9WwcU+trjE37K7F0sIMJEdgLzHmyyFaVT/ibWY0u1Xcdc1lKM5xjShOcY4Ld11zGZrdKuJtZrR6/DqvlOhTdpsFikVgzeJ8xNnMeHrVbBRmJeG29bvwy61Hh9z56x2ocNv6XSjMSsLTq2YjzmbGmsX5sFtExA4j0NAM613Og3FEpLP+Pev1UhfBnvUxv10pBPDxmS7MnToRv9x6BLdclYUvTJuEJ7bUhPRhpFhNuO/6HExOdOCFDz7GdxZNxydnOnFZanwEVk+xzGYxoyQvFTMyk/Dk1iMjHqiwYfU8TE5UoHAXOCrYdTqfMBB7lxOR3jpUYzb8ItWzPuaT4E6vBqfNjFPtKu4uvgK/2HoECXYLXlo9DzuPNOPl/SeGvK28YvYUXDvdhef++hE6vKdxb8l0nGpTMTHOhk6vhknMg8lAZpNAICjx1LajoxqoYBYCj5ZeCZMp5t8OokK8QaVURsUlothl1J2rSPWsj/l3RbvFhG3VTVj/3nH8/utz8M1rLkPlyXZ8+bm/Y/7lk/C963KQkeyAXwv2Td6ymk19Qwee/ctx3LtoOvLTE+HTNNzzh/2465rLcOucrLH+1egi1+kLYEdNM7ZVN40qzrbqJnwxNxXXX5kGpy3m3xKighG9y4mI9GbUORIlQqV5Mf+JpwaCeGX/CXT6NNzx2z1Yt6IQV7ji8YdvzMPOmqa+A0YDhw707gTfs+AKtHX50NLp75t7/fL+Eyj9TOZY/2p0EfP7NXh1bktzbY4Lfr8GK8sixpTNIrBqbjYef7tm+BeH6MtzszkIhYh0F68YdOfKoLgDxXwSLPBpUXenT8M9G/ZjaUE67vzCZZiWGo+HvpSHifH283aCz7i9CPZUbr+87wTerDjZF7OuxQN25CQjuf0BQ9rS3DY3CxOYBI8ps0lgaWEGfrXtqC5/v4rVhCWFGTCF0CuaiCgcJmHMnStThK7ZY35roMt3ft3JmxUncfN/fIDXDzT0nagWAKwm0ZfcegNBvPaPBtz8Hx+ckwBfKC6RXjq9xrSl6fTyf7djLaBJHG5ow33X5+gS777rc3C4oQ2BCDWfJ6LYkRpvx8q52brGXDU3G6kJiq4xhxLzO8FDtQ3SghLvVDbincpGADivHGI4PrYjIgON97Y0NDS/JvGT8io8cEOeLr3LJyc68JPyKmz4xjwdV0lEBFitPT3rdbxztWxWJqwRmp0c8zvBoY5LDgQlunxaSAkwYFybIyJg/LeloaFJSNS1ePD9lw/q0rv8+y8f7L7AAa9wiEh/ExxWrFmSr0ush5fkY4LTqkusUMR8ppakGPMf26i4RMD4b0tDQ3Or3RcinT4Nq3+/F7dclYU1S/JCvmBXrCasWZKHW67Kwurf70VnT2mWm6UuRGQAp92CRXlpWJA7sgv2XgtyXSjJi2yXophPgi1moXv7oKwUByxmHkIh44z3tjQ0tP4lWr2HdQ/UtuKl1fPw3ZJpQ75fZaU48N2SaXhp9TwcqG3FPRv29yXAAODjBQ4RGSQ1UcHjywtGnAgvyHXh8eUFSE2MTC1wr5ivCU5x2nD756bisfIq3WLe8bmpSImz6xaPaKDx3paGhjbYBc6bFSfx1qFTWJibOmzv8qfePQZtkLItTgQkIiP1JsJ/rmpE2ebKkKfuPrwkHyV5aRFPgAEmwTCbTVhakIGfvxPamOThKFYTlhRkwMx2RGQwDlS4OA11ITLaw7q8wCEio6UmKrjpM5kozknFpgP12LC7dsipu6vmZqN0ViaSndYxG9TEd0UAKXE2lJXOwH0vV4w6VlnpDKTE2XRYFdHQzEJg5ZxsrNui30CFVXOzYRK8eBtrNrMppAucQFAiEGIrxqwUB2wclkFEEeC0WeC0WfCN+ZeidFYGghLoUANQ/RoUqxkJigUmAbgSlIh1gRgK3xUB2CwmLMxLw6K8tFHFWZSXhpK8NH7YkOHaVT+WzcoI+bDUcBSrCUsLMwzrOkGhmxhnw1fmTdU15u2fm4qJLNEiogiyWs3ISHZiygQn8tIT8ZnsCchLT8SUCU5kJDvHPAEGmAT3SYmzYe3NM0ecCC/KS8Pam2diAneBKQKcdgveOXwKaxbr05ZmzeJ8bDl0CnF23hwaa2azCcsK0/W9wClIZ4kWEdEATIL7mRhvx+MrCvDEioKw2hE9saIA61YUYGI8d1ooMoJBiec/+BifvSxFl7Y0n70sBb/728eDHqiiyEuJs+PR0it1ifVo6Qwe1CUiGgS3fQZIibOhdFYmvjDNhc0VDfj93z4esqj7q1dPxeKZGUiJs7EEgiLKYTPh1qIsrHx2F169ez4exiFsrw5/stiCXBceXTYDy3/9Pr46fyqcNnYQiAY2iwkleZNRkteIrVVNI45TkpeKRSzRIiIalJDjcE5qUVGR3Lt3r+E/R9OCaOnyIRCUcKsBeANB2C0mxCsWWEwCKXF23mKkMVF/tgstnT7c8szfkGC3YMPqedj9UQvKykNvS7NmcT7mXpqCVet3ocMbwJ+++TmkxNuQmeyMwG9AoTjj9uL+VypGlAiX5KXi8Zt5h4qIYpsQYp+UsmjQ55gEE40/fr+GrTVNaGj1oGxzd4/rNYvzcN2Vk7G5omHYtjRLCjLwzuFTKOvpj71mSR4ykh0oyUuLisMK9KmWTh+2VjXi4TcOhXyBU1Y6AyV5aTyjQEQxj0kw0UWovtWDirpW/HFvHXbUdJdC2Cwm/OsXr8AX81LhtFnQ6Q30DVSIs1vQ5Qvg3aomPPXuMfh6JpMV57hwa1EWCrKSkZnMXsHRyBcIoqXTN2yJ1h1XT8USlmgREfVhEkx0EeryBvBmRQOyUpx49r3jfYlwf0pP+Y5bDUANnL+LWJzjwl3XXIYTLV1YUpgxZg3LKTQs0SIiCs+FkmB+4hGNU067BQtyUvGjTYdwy1VZ+MK0SXhiy7mTD9VAEKrbd973KlYT7rs+B5MTHXjxbx/jx8tmMAEeB8xmE1wJPaNFk8Z2LURE4x0/9YjGsdREBT9eNgP3v1qBeJsFL62eh51HmvHy/hND3jJfMXsKrp3uwnN//Qhu32k8vrxgTGa2U/g8Xj/OdHUPNOnwBODxa3BYzUhwdL+VT3Ra4bBbx3KJRETjBpNgonEuNVHB48sL8OeqRnz5ub9j/uWT8L3rcpCR7IBfC/bVBFvNJjS0erC54iSe/ctxPPSlPJTkpTEBHgfOdvnQ5dXwxoF6bNwz9KHHlXOyUTorE067GROcPBRHRHQhrAkmukh0+QI42+XHpgP1fd0hLCYBm8UEXyCIQFD2dYconZWJZKeVJRDjwKk2FduqGsNuf7cwLw2Tk3iBQ0SxbUwPxgkhbgDwKwBmAP8ppVw74PlsAM7/2mwAACAASURBVL8HkNzzmgeklG9dKCaTYKKh+f0amju9CEqgQw1A9WtQrGYkKBaYBOBKUNgGbZxobFfxwKsVIx6EsnZ5AdK4009EMWzMkmAhhBnAEQCLAJwAsAfASillZb/XPAvgH1LK/xBC5AN4S0o59UJxmQQT0cXuVJuKB18bWQLci4kwEcW6CyXBRm8HzQVwTEp5XErpA/ASgNIBr5EAEnv+nASgweA1ERFFtbNdPmyrahxVAgwA26ubsbWyEa1d53cIISKKdUYnwZkA6vp9faLnsf4eAfA/hRAnALwF4NuDBRJC3CWE2CuE2NvcPLoPBiKiaNbl1VBWXjn8C0NQVl6JTq+mSywiootJNBQGrgTwOynlFABfAvCiEOK8dUkpn5VSFkkpi1wuV8QXSUQUCR6vH28cqA/pEFwoVH8Qmw7Ww+P16xKPiOhiYXQSXA8gq9/XU3oe6+9OAP8FAFLKvwFQAEwyeF1ERFHpTJcfG/fU6hpzw+7avv7CRETUzegkeA+AaUKIS4UQNgC3Adg04DW1ABYCgBAiD91JMOsdiCgmSYlB+wCPRl2LB+OwGyYRkaEMTYKllAEA3wKwBUAVgP+SUh4WQjwqhFjW87L/A2C1EOIggI0AvirHY/NiIiIduNWAMXG9xsQlIhqvDO+U39Pz960Bjz3c78+VAOYbvQ4iovHA4zfmEJtqUFwiovEqGg7GERFRD8VqzNuyYjEbEpeIaLxiEkxEFEUSFKshceMVjsgmIuqPSTARUZTJSnFEdTwioosBk2AioiiS5DRj5ZxsXWOumpuNZKcxO8xEROMVk2AioijS4dFQOitTt9pgxWrCssJMtKvsE0xE1B+TYCKiKJIab4cW1LBmcb4u8dYszkcgqCE1QdElHhHRxYJJMBFRFLFazTCbzfhiXioW5I5uRPyCXBcW5qXCYjbDaubbPRFRf3xXJCKKMhMcVuz/uAVrlxeMOBFekOvC2uUF2PdxCyawHpiI6DxMgomIoozTbsGcSyfi6XeP4N9vmonHbpwRco2wYjXhsRtn4Kc3zcTT7x7BnEsnwmljezQiooGYBBMRRaHURAXf+uJ0/OC1D5GXnoBt9xbj/htyhmx3lpXiwP035GDbvcXIS0/Ag699iG99cTpSE1kLTEQ0GCGlHOs1hK2oqEju3bt3rJdBRGS4xjYVW6sa8eSfj+DpL38GGclOAIDbG4Dq16BYzYi3d+/0nmztwt1/+AfuvW46FualIY0JMBHFOCHEPill0aDPMQkmIopOZ9xedKgBdHj8SI6zYXNFAzbsrkVdiwfJigWpiQqa2lW0qgFkpTiwam42lhRkoLXThwSHFQmKBRPj7WP9axARjZkLJcEsFCMiikItnT6o/iDKNldiW3UTbBYT/vWLV+CZr1wFp82CTm8Aqj8IxWpCnN2CLl8A71Y1YeEvdsIXCGJhbirKbpyBs50+TIizjfWvQ0QUdbgTTEQUZXyBIJo7VDz8xmFsq24a9DWKxYR4xQK3GoAaCA76moW5qXi09Eq4EhTYLDwCQkSx50I7wXxXJCKKMh0eH/5y9PSQCTAAqIEgTrt9QybAALCtugl/PXYa7R6fEcskIhrXWA5BRBRFNC0INSDxyJuHdYn3o02H8fkrXNC0IMwcmEFEEeL1BdDc2X0B3uEJwOPX4LCakeDoTj1dcTbYx7h9I5NgIqIo0uHzo/zDBqj+oXd4w6H6gyj/sAH/Y84UJDt4SI6IjNXh8aNdDeCNA/XYuKf7IO9AWSkOrJyTjdJZmUhULEhwjM1AH24LEBFFkS6vhhd3fTLs6ywmAafNDItJDPvaF3d9gi6vpsfyiIiG1NimYtPBBiz8xQ6s21IzaAIMAHUtHqzbUoOFv9iBTQcb0NimRnil3bgTTEQURbQgBv3gMJsESvJS8aWZ6chMdsAbCPb1CbZbTKhv9aC84iS2VTdBC5574LmuxQNNn41lIqJBNbareOC1Cmyvbg75e1R/EA+9fghbqxuxdnlBxHubMwkmIooind7AeY8tK8zA1+dPxY4jzfjZO4PvrmSlOHDz7Cm4u/hy/Pb9j7HpYMO5cX3nxyUi0kNjW/gJcH/bq5vxwKsVEU+EWQ5BRBRFPP5PyxbibGY8vWo2CrOScNv6Xfjl1qMXvL34y61Hcdv6XSjMSsLTq2Yjzmbue171sRyCiPTX4fFja1XjiBPgXturm7G1shFu1a/TyobHJJiIKIrYe/r5xtnMWH9HEf60rw5lm6tCPijXPWCjCn/aV4f1dxT1JcLsE0xERmhXAygrr9QlVll5Jdo8kbtrxXdFIqIoEq90V6mtW1GIZ987jh01I9td2VHTjGffO451KwrPiUtEpBevr7sLhJ7dbDYdrIc3QuVbTIKJiKKIgMAdV1+CU+2eESfAvXbUNONUuwe3X30JBIbvIkFEFI7mTh827qnVNeaG3bV9/YWNxiSYiCiKKFYTvjJvKp7YUqNLvCe21OD2eVPhsJqHfzERURikHLybzWjUtXgg5fCv0wOTYCKiKJJot+Dd6kZdby++W92IBJZDEJHO3GpoZQvxNjOyJjgQbwvtYtw9SJccI/BdkYgoirR7AyENywjHi7s+wU2fyYSLu8FEpKP+3Wz6c9jM+PmKAuRnJsEiBNpVP1R/EIrVhETFioCUOHSiFfe98iE8g3SuUYeIqzcmwUREUSQQlIbcXgwEI3R/kYhixmBlVv95+1XIS0/CGwfq8dO3qy84Nnnrd69F1ck2fOOFfec8r1gic8HOcggioijSEeLtxXCFetuSiChU/bvOXJLiwPv3L0BjuzesscmN7V68f/8CXJLiGDSukbgTTEQURbwG3Qb0Bjg3mYj0l5XigAnAH795NR4c4djkBbku/PGbV+PWZz5AJN+pmAQTEUURu0F1uxyWQUR6s1sEVs7JRumsjLAT4P62VzfjwdcqsGH1PGw62AAlQu9XfFckIooiRnVxYHcIItLbGbcftxZNwY6aZl3GJu+oacYtV03BaTf7BBMRxRyLSSCrX22cHrJSHLCYOCyDiPQVr1igBqSuY5O9ARmxmmAmwUREUSTFacMdn5uqa8w7PjcVKXF2XWMSESU4zIaMTU5wsDsEEVHMMZtNWFKQAcWqz9uzYu2OZ+ZOMBHpzK1qhoxNdquR6RPMJJiIKMqkxNlQVjpDl1hlpTOQEmfTJRYRUX8cm0xERLqyWUxYmJeGRXlpo4qzKC8NJXlp7AxBRIYwqv94pMYm852RiCgKpcTZsPbmmSNOhBflpWHtzTMxgbvARGSQocYmj1akxiYzCSYiilIT4+14fEUBnlhREHKNsGI14YkVBVi3ogAT43kYjoiMM9jYZD1EamwyG0cSEUWxlDgbSmdl4gvTXNhc0YDf/+3jQWvwslIc+OrVU7F4ZgZS4mwsgSAiwxnVyoxjk4mICEB3jfDkJAVfu3oqSmdlIBCUcKsBeANB2C0mxCsWWEwCKXF2doEgoogRovsCXM/DcVkpDogIvY0xCSYiGifMZhNcCUr3F0ljuxYionjFjJVzsrFuS41uMVfNzY7YhEveLyMiIiKisHV4NJTOytS1r/mywky0e9gdgoiIiIiilFsNoOpkG9Ysztcl3prF+ag82cYWaUREREQUvTx+Dd94YR+Kc1xYkOsaVawFuS4U57iw+oV9bJFGRERERNGrt0XaqvW78NObCkacCC/IdeGnNxVg1fpdANgijYiIiIiiWG8rs09aPLj1mQ+wYfU87MhtRll5JVR/cNjvV6wmrFmcj+IcF2595gN80tNlIlIt0rgTTERERERh622RBnQnwvMf347URDu23VuM+2/I6XtuoKwUB+6/IQfb7i1GaqId8x/f3pcAs0UaEREREUU1V5ztvBZpq1/YB4fNjCdunokX7/wszELA7Q1A9WtQrGbE2y3QpMShE60oeXInPL5z639Xzc1GakJkpl0yCSYiIiKisNltFpTOysRT7x49p/zB49PwrY0H+r6Ot5kxIc6Gs50+uH1DH3rrbZFmi1BNMMshiIiIiGhEEhXLsC3S3D4NdWc9F0yAge4WaUmOyO3PMgkmIiIiohFJcFhRkpemS4u0kvw0xCtWnVY2PCbBRERERDRiaUkK1i4fXYu0tcsLkJao6LyyC2MSTERERESjkpaoYO1NBXjsxhkhj1FWrCY8duOMMUmAAR6MIyIiIiIdpCUpKJ2VgeKcVGw6WI8Nu2tR19P6rL+sFAdWzc3GslmZSFIsES2B6I9JMBERERHpIl6xIl6x4utXT8XSwgxIifNapAkBpCbYI9YFYihMgomIxgmvL4DmTh8AoMMTgMevwWE1I6HnNLUrzga7jW/rRDT27DYLpkT5+1HIqxNCpAHI7PmyXkrZaMySiIiovw6PH+1qAG8cqMfGPUPfXlw5JxulszKRqFiQ4Bib24tEROOFkFJe+AVCzALwGwBJAOp7Hp4CoBXA3VLK/YaucBBFRUVy7969kf6xREQR19imYmtVI8rKK89pRj8UxWrCmsX5KMlLQ1pS5A+aEBFFEyHEPill0WDPhbIT/DsA35RS/n1A0HkAngdQOOoVEhHReRrbVTzwWgW2VzeH/D2qP4iHXj+ErdWNY3bimohoPAilh0XcwAQYAKSUuwDE6b8kIiJqbFPxwKvhJcD9ba9uxgOvVqCxXdV5ZUREF4dQkuD/FkKUCyFuFUJc3fPPrUKIcgBvG71AIqJY0+HxY2tV44gT4F7bq5uxtbIRbtWv08qIiC4ew5ZDSCn/VQjxLwBK0e9gHICnpZRvGbk4IqJY1K4GUFZeqUussvJKFOekjlkfTiKiaBVSdwgp5X8D+O8LvUYI8X+llN/WZVVERDHK6+vuAhHKIbhQqP4gNh2sx9evnsr2aURE/ej5jjhfx1hRQdOCaOnyIRCU6FAD8Ac0WC1mJCgWWEwCKU4bzGZOniYi/TR3+rBxT62uMTfsrsXSwoyo79lJRBRJfEcchC8QREunDxV1rQhCYlK8Hd5AsG/aSbvHj9NuLwSAwqwJSImzwWZhMkxEoyclBu0DPBp1LR4M0w2TiCjmMAkeoKXTh8qGNsQrVlSeascr+0+grsUDi0nAZjHBFwgiEJTISnHg5tlTkJbkwLGmDuRnJCElzjbWyyeicc6tBoyJ6zUmLhHReKVnEix0jDUmzri9ONLYgZrGDvziz0fw+Ssm4XvX5SAz2XHOTrDdYkJ9qwflFSex/i/Hce+i6TCbBKanJWBivH2sfw0iGsc8fs2QuKpBcYmIxqtwxibPlFJ+eIGX/EqH9YyZlk4f6s968Mx7x5GoWPGHOz+LHUea8bN3aoYcUXrz7Cm4u/hy/Pb9j/GXo6dxb8l0mITABO4IE9EIOaxmQ+IqFmPiEhGNV+HsBP9aCGFH9wS5P0gp2/o/KaX8nY7riihfIIimDhW/3nEMt1yVhVPtHty2ftcFT2fXtXjwy61H8Zud/8R91+dgcqIDv95xDN9dNB1xdgtrhIloROIVY6rUjIpLRDRehZypSSm/AODLALIA7BNCbBBCLDJsZRHU1uXD7o/O4Parp+JP++pQtrkq5PZEqj+Iss1V+NO+Otx+9VT8/aMzaOvyGbxiIrpYCdF9p0lPWSkOiHFfsEZEpK+wtiullEcB/BDA/QCuBfCUEKJaCLHciMVFgqYF0e4NwBWv4Nn3jmNHzcgmNO2oacaz7x2HK15BuzcATdOnxycRxRZXnA0r52TrGnPV3GykJvC8AhFRfyEnwUKIAiHEkwCqAHwRwFIpZV7Pn580aH2Ga1P9qGpoQ0ObZ8QJcK8dNc1oaPOg6mQb2jimlIhGwG6zoHRWJhSrPiVVitWEZYWZsLEmmIjoHOG8y/5fAPsBFEop75FS7gcAKWUDuneHx6Uun4ZLJsbhiS01usR7YksNLkmJQ5ePJ7GJaGQSFQvWLM7XJdaaxflIcrAemIhooHCS4MUANkgpPQAghDAJIZwAIKV80YjFRYLFLLCtuknXEaXvVjfBYmYBHhGNTILDipK8NCzIdY0qzoJcF0ry0xCvWHVaGRHRxSOcJHgrgP6nNZw9j41rqi+IV/af0DXmy/tP6JZUE1FsSktSsHZ5wYgT4QW5LqxdXoC0REXnlRERXRzCSYIVKaW794uePzv1X1JkCWHMiFLuAxPRaKUlKlh7UwEeu3FGyDXCitWEx26cwQSYiGgY4RSKdQohZvfWAgshrgIwbPYohLgB3YM0zAD+U0q5dpDX/A8AjwCQAA5KKVeFsa5R6fIaU7vLmmAi0kNakoLSWRkozknFpoP12LC7dsgBPqvmZmPZrEwkKRaWQBARDSOcJPg7AP4khGhA94jkyQBuvdA3CCHMAJ4GsAjACQB7hBCbpJSV/V4zDcCDAOZLKc8KIVLD/B1GxRswpmzBZ1BcIoo98YoV8YoVX796KpYWZkBKwO0N9I1yj7dbIASQmmBnFwgiohCFnARLKfcIIXIB5PQ8VCOlHK4P2FwAx6SUxwFACPESgFIAlf1esxrA01LKsz0/pynUNelBrzZEA9k5MY6IdGa3WTDFxk4PRER6CPfddA6AqT3fN1sIASnlCxd4fSaAun5fnwDw2QGvmQ4AQoj30V0y8YiU8u2BgYQQdwG4CwCys/VrJO+0G/OBEmdQXCIiIiIavZAzNSHEiwAuB3AAQG/BqwRwoSQ41DVMA1AMYAqA94QQM6WUrf1fJKV8FsCzAFBUVCRH+TP7BIMSWSkOXQ/HZaU4oAV1WyIRERER6Syc7coiAPlSynCyu3oAWf2+ntLzWH8nAPy9p7TiIyHEEXQnxXvC+Dkj5rCZcGtRFn72zhHdYt42JwtOG+vyiIiIiKJVOIWrh9B9GC4cewBME0JcKoSwAbgNwKYBr3kd3bvAEEJMQnd5xPEwf86I+TWJa6e7dB1Res00F3waD8YRERERRatwMr9JACqFEFuEEJt6/7nQN0gpAwC+BWALgCoA/yWlPCyEeFQIsaznZVsAnBFCVALYDuA+KeWZ8H+VkYlXzDhx1oP7rs8Z/sUhuO/6HJxo9SBRYU0wERERUbQKJ1N7ZCQ/QEr5FoC3Bjz2cL8/SwD39vwTcQk2K2ZOSQIAFOe4sKOmecSxinNcyEhyYGZmEuLs7NFJREREFK3CaZG2UwhxCYBpUsqtQggnurs5jGtmswl2swntHj/uuuYyABhRIlyc48Jd11yGujNdsJtNMJs4M47Ght+vobnTi6AEOtQAvAENdosZCYoFJgG44uywWsf9/3WJiIhGJZzuEKvR3aIsBd1dIjIB/AbAQmOWFhl+v4a9tWdx9RWT8O9vVeKWq7LwhWmT8MSWGqj+4et6FasJ912fg8mJDrz4t4/xg8X52Ft7FiU5qUw0KKK6vAGc9fhxsPYsTCaBSfF2BAJBaEEJ1aSh0xvAabcXWlBiVvYETHBYDWsRSEREFO3C+QS8B93DL/4OAFLKo5Ge7maEJrcX//5WFR5eciV+uPhK/PCNDxFvs+Cl1fOw80gzXt5/YsgRpStmT8G101147q8fwe07jZ+UzkTlyXb8+1tVKMhMQuYE5xj8RhSLmtpVVJ1sR5LThksnxcFpt8AsBNpVP1R/EIrVhETFCleCHZ1qAM0dXhxr7EBeeiJSE5WxXj4REVHEhZMEe6WUPiG6b/MLISzo7hM8rgUlUNfiwXde+gee/9ocPLzkSnxw7DS+/NzfMf/ySfjedTnISHbArwX7kgmr2YSGVg82V5zEs385jh/8Sx7mXzEJ9a1d+M5L/0CnTwPbBFOkNLerONbkRkayAqfNijcO1GPjntohL95WzslG6axMxNlMONbkhgDgYiJMREQxJpwkeKcQ4gcAHEKIRQDuBvCmMcuKHLcaAAB0+jR87fk9WLeiEHnpCXj7367B5ooG/OydGtS1eGAxCdgsJvgCQQR6BmysmpuNh5fko7lDxeGGdnz/5YPo9HXPEXF7A2P5a1GMaG5XcdqtYuqkOGyvbkJZeeUFy3jqWjxYt6UGT717FGsW52NBbipOu1UATISJiCi2hJMEPwDgTgAfAvgmgLeklOsNWVUEefxa3587fRru2bAfSwvScefnL8VnpiRjQW4qFKsZnd5A305wnN0C1a+htdOHM24vnn//Y7xZcfKcuGq/uERG6PIG0Kr6MCFOwYOvVWB7degHOlV/EA+9fggLcl346U0FaFV9iFMscNpYI0xERLEhnE+8b0spfwWgL/EVQvxbz2Pj1mBDMt6sOIm3Dp3CwtxULC5IR0ayA5oWhF+T8AcEunxaXznEu9VNg45Itlv0Gb5BNJQObwDxNmvYCXB/26ub8eBrFfj3m2aiQw0wCSYiopgRzifeHQAGJrxfHeSxcSVBGbyfrxaUeKeyEe9UNgLAeeUQI41LpAe/X4MA8G5104gT4F7bq5vxblUTrstPg9+vsasJERHFhGGTYCHESgCrAFw6YEJcAoAWoxYWKUJ0HxYa7BBRf4GgRMAXWolDVooDgm2CyUCtqg9+DSgrr9QlXll5JYpzUtGq+uCyOnSJSUREFM1C2Qn+AMBJdI9N/nm/xzsAVBixqEiKV8xYOScb67bU6BZz1dxsjk0mQ1ktJvxpb11IvaxDofqD2HSwHis/m6VLPCIiomg3bOGqlPITKeUOKeXnpJQ7+/2zX0o57lsgJNisWDYrY9Da4JFQrCYsLczg2GQyVIdHw8Y9tbrG3LC7Fh0eHugkIqLYEHLmJ4RYLoQ4KoRoE0K0CyE6hBDtRi4uEsxmExwWE9Ysztcl3prF+VAsHJtMxhuuhGes4xEREUWzcLY/1wFYJqVMklImSikTpJSJRi0skhIcNlyb48KCXNeo4izIdeHaHBcSHTadVkY0uA7Vb0hc9rcmIqJYEU4S3CilrDJsJWPIZjHBabPgJ6UzR5wIL8h14SelMxFns8DG9mhkML1qgc+Py3IIIiKKDeGc3torhPgjgNcBeHsflFK+qvuqxkBKnA1npBc/WnIlSnJPDzt5q5di7S6lmH/FJChWEybEcReYjOcwqI2ZYmF7NCIiig3hJMGJALoAXNfvMQngokiCAWBivB1CCMzKSsKfv3stNlc0YMPu2kFrJXvHJi8pyEC7x4ckh5UJMEVMvEHdR4yKS0REFG1C/sSTUn7NyIVEi5Q4G+LtFrR0+jB3asoFxyZ3qQFYzSZMS0tkCQRFVKj9rcPB/tZERBRLwukOMV0IsU0Icajn6wIhxA+NW9rYsVlMmJykYFZWMibG2WC3mGAzm+C0df/bbjFhYpwNhdkTMDlJYQJMEeeKs2HlnGxdY66am43UBLuuMYmIiKJVONnbegAPAvADgJSyAsBtRiwqWpjNJrgSFKQnOTAtLQF56UmYlpaA9CQHXAkK26DRmLHbLCidlalrf+tlhZmwsSaYiIhiRDifoE4p5e4Bj7GfEtEYUaxC1/7WDisv6oiIKHaEkwSfFkJcju7DcBBCrED3OGUiijBNC8LjD6I4J1WX/tYLclPR5Q9C04xpvUZERBRtwkmC7wHwDIBcIUQ9gO8A+N+GrIqILqjD58emAw1Ytf5v+OlNBaPqb/3Tmwqw8tm/4c2DDejwGTOEg4iIKNqEnARLKY9LKUsAuADkSik/L6X82LCVEdGQ3KqGjXtq8UmLB7c+8wF+UjoDj904I+QaYcVqwmM3zsBPSmfg1mc+wCctHmzYXQu3ymEZREQUG8LpDvFvQojeXsFPCiH2CyGuG+77iEh/UqKvPdonLR7Mf3w7UhPt2HZvMe6/IQdZKY5Bvy8rxYH7b8jBtnuLkZpox/zHt+OTnjh1LR5IGbFfgYiIaEyF0xn/61LKXwkhrgcwEcBXALwI4B1DVkZEQ+pQzy9bWP3CPjhsZjxx80y8eOdnYRYCbm8Aql+DYjUj3m6BJiUOnWhFyZM74fGdv+vr9vKsKxERxYZwkuDeo+NfAvCClPKwEGytTzQWhhrp7fFp+NbGA31fx9vMmBBnw9lOH9yDJL3nx2U5BBERxYZwkuB9Qoh3AFwK4EEhRAIAHiUnGgMOa2j9fN0+DW5f6FPlFPYJJiKiGBFOEnwngFkAjkspu4QQEwHExChlomgTr4Tzf92xj0tERBRthj0YJ4TI7fnjrJ5/XyaEmA3gEoSXRBORTkwCQx5+G6msFAdMnABOREQxIpQk9l4AdwH4+SDPSQBf1HVFRDSs1Hg7Vs7Nxrq3a3SLuWpuNlITFN3iERERRbNhk2Ap5V09/15g/HKIKBRWqxmlszLx1LajQx6SC4diNWHZrExYzdwKJiKi2BBOn+Bbeg7DQQjxQyHEq0KIzxi3NCK6kAkOK9Ysydcl1sNL8jHBadUlFhER0XgQzrbPGillhxDi8wBKADwH4DfGLIuIhuO0W7AoL23EI5N7Lch1oSQvDU4bS/yJiCh2hJME9zYQXQzgWSllOQCb/ksiolClJip4fHnBiBPhBbkuPL68AKmJrAUeD/x+DQ2tXThxtgtVJ9uxv/Ysqk6248TZLjS0dsHPPs9ERCELZ+unXgjxDIBFAB4XQtgRXhJNRAboTYT/XNWIss2VIdUIK1YTHl6Sj5K8NCbA40CXN4CzHj/eOFCPjbtr+0Zm95eV4sDKudkonZWJCQ4rnHbu7BMRXYiQUob2QiGcAG4A8KGU8qgQIh3ATCllxMcmFxUVyb1790b6xxJFtS5fAGe7/Nh0oB4bLpAorepJlJKdVpZAjANN7eqgFzgWk4DNYoIvEEQg+On7uGI1Yc2SfCziBQ4REYQQ+6SURYM+F2oS3BPIDCAN/XaQpZS1o15hmJgEEw3N79fQ3OlFUAIdagCqX4NiNSNBscAkAFeCwi4Q40RTu4r7X63A9upmmE0CJXmp+NLMdGQmO+ANBPv+bu0WE+pbPSivOIlt1U3QgpKlLkREuHASHPI2kBDi2wB+BKARn45LlgAKRr1CItKN1WpGRrJzrJdBo9Q/AV5WmIGvz5+KHUea8bN3alDX4jlvwH6LOwAAIABJREFUJzgrxYGbZ0/B3cWX47fvf4xNBxtw/6sVTISJiIYQzr3QfwOQI6U8Y9RiiIiouwb4z1WN2H28BU+vmo1T7R58+bm/4/NXTML3rstBZrIDvkAQvkAQNosJtn47wev/chz3LpqO66+cjO+/fBBbqxpx42cyWfpCRBHl8fpxpssPAOjwBODxa3BYzUhwdL8XTXRa4bCPbWvOcN4V6wC0GbUQIiLqdtbjxy/eqcH6O4rw7HvHkahY8Yc7P4vali7YLN2lLBKAJiV6C9rsFhMWz0zv2wn+i3oa6+8owrc37Me1OalMgokoIs52+dDl1boP8u65wEHeOd3nU5x2MyY4x6bZWDgH454DkAOgHIC393Ep5S+MWdrQWBNMRBcrv1/D+vc/wiUpcXjzYD2WFmbCbhGYlKBgR00TXtl/YsgPlZtnT0FxTipOd6jwBmTf99e2dOIb8y+F1Woeg9+IiGLFqTYV26oaUVYeeqeiNYvzsTAvDZOTjCnb0uVgnBDiR4M9LqX88SjWNiJMgonoYlV/9v+3d/fRcd31ncc/33m8o8dYiTyJFTkmS7CsGtlQ2SVQ2Lgx5cHBDoYutftACwvd3W4foKU1zZrd4pOuKbul2y2n2xRYoKc2dINJ3Jg2xamhtAVsB2InyA5wArXjkIkSJ5IlzfP89g+NEsXW04zu1Whm3q9zfOyZufrO7/j3m3s/uvO7vzuhu772mP5Nd6teluxQqeR05slRffT+Rxd8UPnAG9Zq3bUdCoVM302N6vvD4/qV196onhXMFQcQjNRoRnvK1zFUaktft/bvHFAygOsXfFsdolysTZKcc2M+tK0qhGAAjer8xQk9M5bVU5eySnZ4+tjR7+orj1Z+ULllbbfet/VlSo1mtLI9rqvb4urtIgQD8N+TIxl98IvVBeApQQXhuULwgtdJMrP1ZvZtSd+R9B0ze9DMfsyvRgIApFLJ6fyzE+pZkag6AEvSVx4d1seOflc9KxJ6/NkJlSo84QEAC/HsRE4PnEktKgBL0rGzwzo6lNJzEzmfWja/ShYLvUvS+51zNzjnbpD0W5L+IphmAUBzKjqn/us69I3Hnqk6AE/5yqPD+sZjz2jdqg4VS4RgAP6byBa178iQL7X2HRnSeHbpbv9eSQhudc4dm3rgnPuKpFbfWwQATawlFpaT6aP3P+pLvY/e/6icM7XEuCgOgL/S2cnbuS/keoWFyORLOnzqgtLZvC/15lNJCH7MzPaa2Zryn/8i6bGgGgYAzerI6Sd8Pah86eEnxHlgAH57ZiKvgyf8vXHwgePnnl9fOGiVhOB3SeqWdEjSFyRdU34OAOCTfNHp7m897mvN//fg4yoUicEA/OWcZlyycTHOX0xrqS5hWPDq6c65ZyX9eoBtAYCm5+SCOahwLhiAz8YyhWDqZoOpe7lKVof4spldNe3xCjO7P5hmAUBzCu6gsnQXmwBoDul8MPuVTEB1L1fJdIhrnHPPTT0onxle6X+TAKB5ZQv+zAW+XK5ACAbgr0RAd6H0IktzIW8lIbhkZqunHpjZDRLfrwGAn+r9oAKgebR5C55VuyzqXq6Sd7lD0j+Z2VclmaTXSnpvIK0CgCZV7wcVAM3DTOrtSvh6HUNvV0JmvpWb04LPBDvn/k7SKyV9XtLnJP24c+75OcHcPQ4AFi8WDqm3K+Frzd6uhGKRSr74A4D5Xd0S1a5Nq+ffsAK7N69Wd1vc15qzqWiv6Jx72jl3X/nP05e9/Jc+tgsAmtLVrTH9wqvW+FrzF29eo6tbl+agAqB5JOJR7djYIy/qzy/ZXjSk7Rt6FA9oWtjl/Dw1sEQnrwGgcYXDIW3fcJ2vB5W3DFyncIhdNAD/tcTD2rut35dae7f1qzW+dNcv+BmCuUgOAHzQGovov73Fnxlmv7/9x9QWZz4wgGCsaInp1nVJbenrXlSdLX3d2tqf1FUtMZ9aNj8miQHAMnMpW1BXa0y39i1uFcpb+1ZqRUtMowGtPQwAknRtp6f9OweqDsJb+rq1f+eAkh2ezy2bm58hOOdjLQBoSvl8UfedfkLv+/xDes/rbqw6CN/at1Lved2Net/nH9J9p59QfokWnwfQnJIdnv77Wwd05+3rFzydy4uGdOft62sSgCXJXAU3aDazAUlrNG1pNefcIf+bNbfBwUF38uTJpX5bAAjcE8+l9Y67vq7zF9NqjYX1h2/foGfGsvqDvz2jTH7+G2l40ZB+703rdHVbXL9z9ymN54rq7Uro8++9Wauu8nfVCQC43HMTOY1nizp86oIOHD834/JpvV0J7d68Wts39qg1Fg50CoSZPeicG5zptQVPFDOzT0kakPQdSVN7YidpyUMwADSqYsk9f9AYzxX1qwe+pbcMXKfPvfdV+qfvPa3Pnzw/60HlHYO9+smbrtEnv/YD/c3pHz3/2vmLaRVLXLYBIHhXtcR0VYv0SzffoLdsWCXnpLFsQZl8UV40rLZ4RGZSd1t8yVaBmE0lV0u8yjnnz+V/AIAZjWevnL/7N6d/pC898qRu7Vup3/7ptVp1VUL5YknZfEnxaEjRcEhPPJfWfad/pI8d/d6MgXc8x7xgAEsnEY/q+ni01s2YUyUh+Otm1u+cGwqsNQDQ5NKzzN0tlpz+fiilvx9KSZIiIVMsElKuUFJhAWd5MznmBAPAdJWE4M9qMgg/KSmryXWBnXNuIJCWAUATii/wzm6FklOhgmDLHeMA4MUqCcGflPQLkh7WC3OCAQA+avOCWdM3qLoAUK8q2SsOO+cOB9YSAIBCZurtSsx48Vu1ersSChl3jAOA6Sr5fuzbZnbAzHaZ2c6pP4G1DACaUEssrLe/8npfa/7Mj1+vllhtr8IGgOWmkhCc0ORc4J+W9Jbyn9uCaBQANKtOL6rbNqxa8GLz8/GiIW0bWKXOxNLdihQA6sGCp0M45345yIYAAKRwOKSOeEQfeMNa7bvvzKLrfeANa9URjygcYjoEAExXyc0yPEnvlvRjkp6/t51z7l0BtAsAmlZnS0yveek1umVtt77y6HDVdW5Z263XvPQadQZ4NyYAqFeVfN/2l5KulfQGSV+VdL2kS0E0CgCaWSwS0sp2T+/f+jLdsra7qhq3rO3W+7e+TMl2j+XRAGAGlawO8VLn3M+Y2Q7n3GfM7ICkrwXVMABoZl2tMTnn9Cuvu1GvvekaffT+R5XJz786pRcN6QNvWKv+6zrUsyKhFa2cBQaAmVQSgvPlv58zs/WSnpS00v8mAQAk6eq2uNaaqVhy+tx7b9ZXH31Kd3/r8RmXT+vtSujtr7xe/3btSo1n8uq7toMADABzqCQE32VmKyTtlXRYUpukDwXSKgCApMkzwptfcrUujufUd2277njzOl3dFle+WFImX5IXDSkaDumZsazMpGs7PHVd18EUCACYRyWrQ3yi/M+vSroxmOYAAC4Xi4R0baen7rakLk7kVCg5jWUKyhdLioZDavMiWnN1i7pa46wCAQALVMnqEElJfyBplXPuTWbWL+lm59wnA2sdAOB54XBI3e3lxXk6a9sWAKh3lXxf9mlJ90taVX78XUm/6XeDAAAAgKBVEoKvcc79taSSJDnnCpKK8/2Qmb3RzB41s++b2Z45tnubmTkzG6ygTQAAAEDFKgnB42Z2tSQnSWb2Kkkjc/2AmYUlfVzSmyT1S9pVnkZx+Xbtkn5D0jcraA8AAABQlUpC8Ps1uSrEjWb2z5I+K+nX5vmZzZK+75x7zDmXk/Q5STtm2G6fpI9IylTQHgAAAKAqlYTgIUlflHRCUkrSX2hyXvBceiSdn/b48fJzzzOzV0rqdc4dqaAtAAAAQNUqCcGfldSnyRUi/rekl2nyVspVM7OQpD+S9FsL2Pa9ZnbSzE4ODw8v5m0BAADQ5Cq5WcZ659z0+bzHzGxonp+5IKl32uPry89NaZe0XtJXzEySrpV02My2O+dOTi/knLtL0l2SNDg46CpoNwAAAPAilZwJ/lb5YjhJkpn9hKSTc2wvTU6duMnMXmJmMUk/q8l5xZIk59yIc+4a59wa59waSd+QdEUABgAAAPw075lgM3tYkytCRCX9i5mdKz++QdLZuX7WOVcws/+syfWFw5I+5Zz7jpl9WNJJ59zhuX4eAAAACMJCpkPctpg3cM59SdKXLnvuQ7Nse8ti3gsAAAC1l80VNDyekyRdShdULBUVDoXVnpiMnt2tMcVjlczK9d+87+6c+9elaAgAAADq26V0XqOZgsayeXnRsMJmcnLKFSUv5CQnFZ3TD56ZULsXVYcXUXsiWpO21jaCAwAAoCGkRjK6lMkpEYvqgTNP6eCJczp/MX3Fdr1dCe3atFo7NvYoNZrWRK6oZKe35O015+pvoYXBwUF38iTXzgEAACwHT49mlCs5HTv7lPYdGVImX5r3Z7xoSHu39WtL30rFQqZrOvwPwmb2oHNucKbXKlkdAgAAAHiRp0cyKjjpjnse1h33PLKgACxJmXxJd9zziO6452EV3GSQXkqEYAAAAFTlUjqvvJw++MXTOna2upuZHTs7rA9+8bTyzmksk/e5hbMjBAMAAKAquUJR/3DmqaoD8JRjZ4f1D2eeUiZf9Kll8yMEAwAAoGLZXEGZgtO+I/PdQHhh9h0ZUrbglM0VfKk3H0IwAAAAKpYuFnXvQxcWPAd4Ppl8SYdPXVC6uDRngwnBAAAAqNildFEHT5zzteaB4+d0KU0IBgAAwDI20zrAy6neXAjBAAAAqNilgFZyGMsyJxgAAADLlF9zga+sy3QIAAAALFOJaDiQul4kmLqXIwQDAACgYm1epK7qXo4QDAAAgIqZSb1dCV9r9nYlZOZryVkRggEAAFCx7taYdm1a7WvN3ZtXa2V73NeasyEEAwAAoGLxWEQ7NvbIi/oTJ71oSNs39CjGnGAAAAAsZx1eRHu39ftSa++2fnUmlmY+sEQIBgAAQJXaE1FtXZfUlr7uRdXZ0tetrf1JtXlRn1o2P0IwAAAAqpbs9LR/50DVQXhLX7f27xxQssPzuWVzIwQDAABgUZIdnva/dUB33r5+wXOEvWhId96+viYBWJKWbuIFAAAAGlay09OOjat0y9qVOnzqgg4cP6fzF9NXbNfbldDuzau1fWOPOr3Ikk6BmI4QDAAAAF84N/n3lrUr9eaXX6eQmcayBWXyRXnRsNriEZWcUyZXlNwL29cCIRgAAACLlhrJ6OiZlPYdGVImX3r++bZYWCtaY3p2PKexXPH5571oSHu39WvruqSSnUyHAAAAQJ1JjWa054undezs8BWvjeWKGstdOS0iky/pjnse0dGzKS6MAwAAQH1JjWS059DMAXghjp0d1p5Dp5UazfjcsrkRggEAAFCVS+m8jp5JVR2Apxw7O6yjQymNZfI+tWx+hGAAAABUZTRT0L4jQ77U2ndkSCPpgi+1FoIQDAAAgIplcwXd+9CFF10EtxiZfEmHT11QNrc0QZgQDAAAgIoNj+d08MQ5X2seOH5Ow+M5X2vOhhAMAACAijmnGW+GsRjnL6aXbO1gQjAAAAAqNpYJZtrCWJbpEAAAAFim0vni/BtVIRNQ3csRggEAAFCxRDQcSF0vEkzdyxGCAQAAULE2L5gbDwdV93KEYAAAAFTMTOrtSvhas7crITNfS86KEAwAAICKdbfGtGvTal9r7t68Wivb477WnA0hGAAAABWLxyLasbFHXtSfOOlFQ9q+oUcx5gQDAABgOevwItq7rd+XWnu39aszsTTzgSVCMAAAAKrUnohq67qktvR1L6rOlr5ube1Pqs2L+tSy+RGCAQAAULVkp6f9OweqDsJb+rq1f+eAkh2ezy2bGyEYAAAAi5Ls8LT/rQO68/b1C54j7EVDuvP29TUJwJK0dBMvAAAA0LCSnZ52bFylW9au1OFTF3Tg+Dmdv5i+YrveroR2b16t7Rt71OlFlnQKxHSE4DlkcwUNj+ckSZfSBaXzRSWiYbWXJ213t8YUj/FfiOWFcQsAqJU2L6o2L6p3vXqN3rJhlZyTxrIFZfJFedGw2uIRmUkr2+NLtgrEbDgSzuBSOq/RTEH3PnRBB0/M/lvMrk2rtWNjjzq8iNoTtfktBpjCuAUALBfxWETXL/MTLuacq3UbKjY4OOhOnjwZSO3USEZHz6S078iQMvnSvNt70ZD2buvX1nVJJTuXfj4LIDFuAQCYiZk96JwbnPE1QvALUqMZ7Tl0WsfODlf8s7W6shFg3AIAMLO5QjCrQ5SlRqoPEpJ07Oyw9hw6rdRoxueWAbNj3AIAUB1CsCbnUh49k6o6SEw5dnZYR4dSGsvkfWoZMDvGLQAA1SMESxrNFLTvyJAvtfYdGdJIuuBLLWAujFsAAKrX9CE4m5u8mn4hFxMtRCZf0uFTF5TNESgQHMYtAACL0/QheHg8p4Mnzvla88Dxc8+v0woEgXELAMDiNH0Idk4zrqe6GOcvplWHi26gjjBuAQBYnKYPwWOZYL7+HcvytTKCw7gFAGBxmj4Ep/PFQOpmAqoLSIxbAAAWq+lDcCIazH2rvRrfDxuNjXELAMDiNH0IbvOCua91UHUBiXELAMBiNX0INpN6uxK+1uztSsjM15LAizBuAQBYnKYPwd2tMe3atNrXmrs3r9bK9rivNYHpGLcAACxO04fgeCyiHRt75EX9+a/woiFt39CjGHMrESDGLQAAi9P0IViSOryI9m7r96XW3m396kwwrxLBY9wCAFA9QrCk9kRUW9cltaWve1F1tvR1a2t/Um1e1KeWAbNj3AIAUD1CcFmy09P+nQNVB4otfd3av3NAyQ7P55YBs2PcAgBQHXN1eJ/UwcFBd/LkyUBqp0YyOnompX1HhpTJl+bd3ouGtHdbv7b2JwkSqBnGLQAAVzKzB51zgzO+Rgi+0lgmr5F0QYdPXdCB4+d0/mL6im16uxLavXm1tm/sUacX4atk1NxM4zYSMsUiIeUKJRVKjnELAGgqhOAqpbN5PTORl3PSWLagTL4oLxpWWzwiM+malqi8OCECy0smm9fTE3lJ0qV0Qel8UYloWO3lC9+622KKR7kIDgDQ+OYKwRwJZzAykdNYtqh7H7qggycmz6i1xcJa0RrTs+M5jeWK6u1KaNem1dqxsUdt8bA6W2K1bjaaXK5Q0sXxnO47/YQ+8/UfzvoNxjtvXqPbBlapqzWmWITLAgAAzYkzwZd5ciSjB6qYW3nruqSu7WRuJWrj4nhOD5xJae+9jyx43O7bsV63rkuqq5Vf4AAAjYnpEAuUGs1oz6HTOnZ2uOKf5Sp71MozY1nt+cLD+vKZVMU/+/p1Se1/28t1dRt3igMANJ65QjDfhZY9OVJ9AJakY2eHtefQaaVGMz63DJjdxfFc1QFYkr58JqU9X3hYz47nfG4ZAADLGyFYk3OAHziTqjoATzl2dlhHh1IaTRMoELxcoaQHzqSqDsBTvnwmpaNnUsoV5p9GAQBAoyAESxrLFrXvyJAvtfYdGdKlTNGXWsBcLo7ntPfeR3yptffeR3SRs8EAgCbS9CE4k83r3ocuLOhiogXVy5d0+NQFZbJ5X+oBMykWS7rv9BO+jtv7Tj+hYpGzwQCA5tD0IfjpibwOnjjna80Dx889v04rEISLEzl95us/9LXmZ77+Q12c4GwwAKA5NH0Idk4zrqe6GOcvplWHi26gjhRKLpBxWygxcAEAzaHpQ/BYphBM3WwwdQFJuhTUuA2oLgAAy03Th+B0PpiL2DIB1QUkKRvQ+MqyQgQAoEk0fQhORMOB1PUiwdQFJCke0LjlNsoAgGYR+BHPzN5oZo+a2ffNbM8Mr7/fzIbM7LSZPWBmNwTdpunavEhd1QUkqT2g8RVUXQAAlptAQ7CZhSV9XNKbJPVL2mVm/Zdt9m1Jg865AUl3S/rDINt0ZRul3q6ErzV7uxIy87Uk8CKRkAUybiMhBi4AoDkEfSZ4s6TvO+cec87lJH1O0o7pGzjnjjnnJsoPvyHp+oDb9CLXtES1a9NqX2vu3rxa3W1xX2sC03W1xPTOm9f4WvOdN69RVyvjFgDQHIIOwT2Szk97/Hj5udm8W9LfzvSCmb3XzE6a2cnh4cXd3ng6Lx7Vjo098qL+/Fd40ZC2b+gJbM4mIEnhcEi3DazyddzeNrBKYc4EAwCaxLK5CsbMfl7SoKSPzvS6c+4u59ygc26wu7vb1/dui4e1d9vlszSqs3dbv9o9AjCC19Ua074d632ptW/HenW1xnypBQBAPQg6BF+Q1Dvt8fXl517EzLZKukPSdudcNuA2XaGzJaZb1yW1pW9x4XpLX7e29ifVkSBMIHixSEi3rkvq9euSi6rz+nVJbV2XZGUIAEBTCfqod0LSTWb2EjOLSfpZSYenb2Bmr5D055oMwE8F3J5ZXdvpaf/OgaqD8Ja+bu3fOaBkh+dzy4DZdbXGtP9tL686CL9+XVL73/ZyreAsMACgyZgL+P6+ZvZmSX8sKSzpU865O83sw5JOOucOm9lRSS+X9KPyj5xzzm2fq+bg4KA7efJkIO19ciSjB86ktO/IkDL5+W8c4EVD2rutX1v7kwRg1MzF8ZweOJPS3nsfWfC43bdjvbauSxKAAQANy8wedM4Nzvha0CE4CEGGYEkaTed0KVPU4VMXdOD4OZ2/mL5im96uhHZvXq3tG3vUHg8zBQI1lyuUdHE8p/tOP6HPfP2Hs47bX3r1Gm17+Sp1tcaYAgEAaGiE4Cplsnk9PZGXc9JYtqBMvigvGlZbPCIzqbstzioQWHaKxZIuTuRUKDmNZQoqlEqKhEJq8yKKhExdrXFWgQAANIW5QjC3h5pDOBRSyKSpL5enboBhJoVsGS2tAUxTKjnliyWVnFQoOaXzJSWipmLJyTmnUrGkcIhf3urR1C/mknQpXVA6X1QiGlZ7YnJXfk1LVF48WssmAoAkKZsraHg8J2nm/VV3a0zxWG1jKCF4BhPZgp5N53XvQxd0cI7pELs2r9aOjT1akYiqJc5/JWqLcdu4RiZyGssWJ/v2xBx9u2myb9viYXW2MEULwNK7lM5rNFNY8P6qw4uoPVGbX96ZDnGZp0YzOnompQ/ft/AL4z50W7+2rktqJRfGoUYYt42r2ot1b12X1LWd9C2ApZMamTwWVby4wLqkkgHtr5gTvEBPjWb0u4dO69jZyu9It6WvWx/ZOUCgwJJj3Dau1GhGexbRtyzbCGCpLNf91VwhmGmtZYsJEpJ07OywfvfQaT01mvG5ZcDsGLeN68mR6g8o0mTf7jl0Win6FkDAUnW6vyIEa3Iu5dEzqao7b8qxs8M6eialiVzBp5YBs2PcNq6Ricl1n33p26GURtM5n1oGAC92KZ3371g0lNJYJu9Ty+ZHCJb0bDqvD9835EutD983pGcnlq4D0bwYt41rLFvUviP+9O2+I0O6lCn6UgsALjeaKfi6vxpJL90JmaYPwfn85BXXC5nAvRCZfEmHH7qgfJ6DDoLDuG1cmWze/749dUGZLL/kAPBXNlcIZH+VXaJvJps+BA+PZ3Xw+Dlfax44fk7D41lfawLTMW4b19MTeR084X/fPs2ZfgA+Gx7PBbK/mlpfOGhNH4JLTjOuYbcY5y+mVaq/RTdQRxi3jcsF1Ld1uBAQgGWu3vdXTR+CL2WCOeUeVF1AYtw2srGA+mAsS98C8Fe976+aPgSnA5oDmWFuJQLEuG1c9C2AelHv+6umD8GJaDiQul5AdQGJcdvIAuvbCH0LwF/1vr9q+hDc7kXqqi4gMW4bWVtAfRBUXQDNq973V00fgkMm9XYlfK3Z25VQyHwtCbwI47ZxWUB9a/QtAJ/V+/6q6UNwd2tcuzav9rXm7s2r1d3u//2vgSmM28Z1TUtUuzYF0LdtcV9rAkB3ayyQ/dXK9qXZXzV9CI5Gw9qxsUde1J//Ci8a0vaNPYqGm/6/FgFi3DYuLx71v2839CjOfG8APovHIoHsr2LMCV46KxJRfei2fl9qfei2fq1oifpSC5gL47ZxtcXD2rvNn77du61f7R4BGEAwOryIr/urzsTSXb9ACJbUEo9o67qktvR1L6rOlr5ubV2XVEuMC1AQPMZt4+psielWv/q2P6mORMynlgHAi7Unov4di/qTavOW7oQMIbhsZYenj+wcqLoTt/R16yM7B7SygzmVWDqM28Z1baen/Yvs2/07B5SkbwEELFmn+ytzdXgvzcHBQXfy5MlAaj81mtHRMyl9+L4hZfKlebf3oiF96LZ+bV2XJEigZhi3jevJkYweOJPSviML79u92/q1tT9JAAawpFIjk8ei5bS/MrMHnXODM75GCL7SRK6gZyfyOvzQBR04fm7G+2L3diX0c5tXa/vGHl3VEuWrZNQc47ZxjaZzupQp6vCpuft2d7lv2+NhpkAAqImxTF4j6cKC91edXiTQKRCE4Crl80UNj2dVctKlTEGZfFFeNKx2L6KQSd3tHlfTY9m5fNyWSkWFQozbRpDJ5vX0RF7OSWPZgkxFOYXVFo/ITOpui7MKBIBlIZsraHg89/z+aupYNLW/WtkeX5JVIOYKwZwGmkM0Gtaqq1pq3QygIiXnVJr63dZJ2YKUiE69JpWKJYkQXJemutVs8sFEfrJvpxaWL5VKkgjBAJaPqf3V1LFoan/lSrU/CUsIBhrEpXReo5mC7n3ogg6emP0rqF2bVmvHxh51eBG1J1gWrR48N5HTeLa44L5tjYd1VQvTIQAsvXo6FjEdAmgAVV+MsC6pZCcXTy1n1V4Yd+u6pK6lbwEsoeV4LGJOMNDAUqMZ7Tl0WsfODlf8syyjtbzRtwDqxXLdX80VgpkYCNSx1Ej1Ox1JOnZ2WHsOnVZqNONzy7BYT9K3AOpEvR6LCMFAnbqUzuvomVTVO50px84O6+hQSmOZvE8tw2I9N5HTAz727chEzqeWAcCL1fOxiBAM1KnRTEH7jgz5UmvfkSGNpAu+1MLijWeLvvbtWLboSy0AuFw9H4sIwUByI9nvAAAMWklEQVQdyuYmr7xdyIUHC5HJl3T41AVlcwThWktn84H0bTrLmX4A/qr3YxEhGKhDw+M5HTxxzteaB46f0/A4X5vX2jMT+UD69pkJQjAAf9X7sYgQDNQh5zTj2ouLcf5iWnW4WEzDoW8B1It6318RgoE6NJYJ5quisSzTIWqNvgVQL+p9f0UIBupQOh/MhU6ZgOpi4ehbAPWi3vdXhGCgDiWi4UDqepFg6mLh6FsA9aLe91eEYKAOtXmRuqqLhaNvAdSLet9fEYKBOmQm9XYlfK3Z25WQma8lUQX6FkC9qPf9FSEYqEPdrTHt2rTa15q7N6/Wyva4rzVRuatbooH0bXcbfQvAX/V+LCIEA3UoHotox8YeeVF/PsJeNKTtG3oUY95ozSXi0UD6Nh7Q3D0Azavej0WEYKBOdXgR7d3W70utvdv61Zlgzuhy0RoP+9q3bXECMIBg1POxiBAM1Kn2RFRb1yW1pa97UXW29HVra39SbV7Up5Zhsa5qielWH/u2syXmU8sA4MXq+VhECAbqWLLT0/6dA1XvfLb0dWv/zgElOzyfW4bFupa+BVAn6vVYZK4O76U5ODjoTp48WetmAMtGaiSjo2dS2ndkSJl8ad7tvWhIe7f1a2t/kpC0zD05ktED9C2AOrAcj0Vm9qBzbnDG1wjBQGMYy+Q1ki7o8KkLOnD83Iz3c+/tSmj35tXavrFHnV6EKRB1YmQip7FsccF92xYLMwUCQE0st2MRIRhoItlcQcPjOTk3ef/1TL4oLxpWWzwiM2lle5xVIOpUOpvXMxP5Wfu2uy3OKhAAloV591etMcVjwV8EN1cI5nJwoMHEYxFdvwQ7Fiy9RDyq6+OcvQewfF1K5zWaKejehy7o4InJM8FtsbBWtMb07HhOY7miersS2rVptXZs7FGHF1F7ojb7Nc4EAwAAYNGqnhO8Lqlk59LPCeZ0EQAAABYlNZrRni+e1rGzwwv+mUy+pDvueURHz6ZqsjoES6QBAACgaqmRjPYcqiwAT3fs7LD2HDqt1GjG55bNjRAMAACAqlxK53X0TKrqADzl2NlhHR1KaSyT96ll8yMEAwAAoCqjmYL2HRnypda+I0MaSRd8qbUQhGAAAABULJubXAViIRfBLUQmX9LhUxeUzS1NECYEAwAAoGLD4zkdPHHO15oHjp/T8HjO15qzIQQDAACgYs5pxjvCLcb5i2kt1eq9hGAAAABUbCwTzLSFsSzTIQAAALBMpfPFQOpmAqp7OUIwAAAAKpaIhgOp60WCqXs5QjAAAAAq1uYFc+PhoOpejhAMAACAiplJvV0JX2v2diVk5mvJWRGCAQAAULHu1ph2bVrta83dm1drZXvc15qzIQQDAACgYvFYRDs29siL+hMnvWhI2zf0KMacYAAAACxnHV5Ee7f1+1Jr77Z+dSaWZj6wRAgGAABAldoTUW1dl9SWvu5F1dnS162t/Um1eVGfWjY/QjAAAACqluz0tH/nQNVBeEtft/bvHFCyw/O5ZXMjBAMAAGBRkh2e9r91QHfevn7Bc4S9aEh33r6+JgFYkpZu4gUAAAAaVrLT046Nq3TL2pU6fOqCDhw/p/MX01ds19uV0O7Nq7V9Y486vciSToGYjhAMAAAAX7R5UbV5Ub3r1Wv0lg2r5Jw0li0oky/Ki4bVFo/ITFrZHl+yVSBmQwgGAACAr+KxiK6PLe+YyZxgAAAANB1CMAAAAJoOIRgAAABNhxAMAACApkMIBgAAQNMhBAMAAKDpEIIBAADQdAjBAAAAaDrmnKt1GypmZsOS/jXAt7hG0tMB1kdt0b+Ni75tbPRvY6N/G1ut+vcG51z3TC/UZQgOmpmddM4N1rodCAb927jo28ZG/zY2+rexLcf+ZToEAAAAmg4hGAAAAE2HEDyzu2rdAASK/m1c9G1jo38bG/3b2JZd/zInGAAAAE2HM8EAAABoOoRgAAAANB1C8DRm9kYze9TMvm9me2rdHiyOmfWa2TEzGzKz75jZb5Sf7zKzL5vZ98p/r6h1W1E9Mwub2bfN7L7y45eY2TfLn+PPm1ms1m1EdczsKjO728zOmtkZM7uZz2/jMLP3lffNj5jZQTPz+PzWLzP7lJk9ZWaPTHtuxs+rTfqTcj+fNrNX1qLNhOAyMwtL+rikN0nql7TLzPpr2yosUkHSbznn+iW9StKvlvt0j6QHnHM3SXqg/Bj16zcknZn2+COSPuace6mkZyW9uyatgh/+l6S/c871SdqgyX7m89sAzKxH0q9LGnTOrZcUlvSz4vNbzz4t6Y2XPTfb5/VNkm4q/3mvpD9boja+CCH4BZslfd8595hzLifpc5J21LhNWATn3I+cc98q//uSJg+gPZrs18+UN/uMpNtr00IslpldL2mbpE+UH5ukn5J0d3kT+rdOmVmnpNdJ+qQkOedyzrnnxOe3kUQkJcwsIqlF0o/E57duOef+UdLFy56e7fO6Q9Jn3aRvSLrKzK5bmpa+gBD8gh5J56c9frz8HBqAma2R9ApJ35SUdM79qPzSk5KSNWoWFu+PJf2OpFL58dWSnnPOFcqP+RzXr5dIGpb0f8vTXT5hZq3i89sQnHMXJP0PSec0GX5HJD0oPr+NZrbP67LIXIRgNDwza5P0BUm/6Zwbnf6am1wjkHUC65CZ3SbpKefcg7VuCwIRkfRKSX/mnHuFpHFdNvWBz2/9Ks8N3aHJX3ZWSWrVlV+lo4Esx88rIfgFFyT1Tnt8ffk51DEzi2oyAP+Vc+5Q+enU1Ncu5b+fqlX7sCivkbTdzH6oyelLP6XJOaRXlb9elfgc17PHJT3unPtm+fHdmgzFfH4bw1ZJP3DODTvn8pIOafIzzee3scz2eV0WmYsQ/IITkm4qX5ka0+QE/cM1bhMWoTw/9JOSzjjn/mjaS4clvbP873dKunep24bFc8590Dl3vXNujSY/r//gnPs5Scckvb28Gf1bp5xzT0o6b2Zry0/dKmlIfH4bxTlJrzKzlvK+eqp/+fw2ltk+r4cl/WJ5lYhXSRqZNm1iyXDHuGnM7M2anGMYlvQp59ydNW4SFsHMflLS1yQ9rBfmjP6eJucF/7Wk1ZL+VdK/c85dPpkfdcTMbpH0286528zsRk2eGe6S9G1JP++cy9ayfaiOmW3U5EWPMUmPSfplTZ684fPbAMzs9yW9Q5Mr+Xxb0r/X5LxQPr91yMwOSrpF0jWSUpL+q6R7NMPntfyLz59qcgrMhKRfds6dXPI2E4IBAADQbJgOAQAAgKZDCAYAAEDTIQQDAACg6RCCAQAA0HQIwQAAAGg6hGAAAAA0HUIwANSAmW03sz3zb3nFz60xs0cCaM8tZvbqaY8/bWZvn+tnAKCeRebfBADgN+fcYS2vu1LeImlM0r/UuB0AsCQ4EwwAPiufrT1bPpv6XTP7KzPbamb/bGbfM7PNZvZLZvan5e0/bWZ/Ymb/YmaPLfQMrJmFzeyjZnbCzE6b2a+Un7/FzL5iZneX2/FX5Ts0yczeXH7uwfJ73mdmayT9B0nvM7OHzOy15bd43eVtMrPrzOwfy9s9Mm1bAKgrhGAACMZLJf1PSX3lP7sl/aSk39bk7bsvd1359dsk7V/ge7xb0ohzbpOkTZLeY2YvKb/2Ckm/Kalf0o2SXmNmnqQ/l/Qm59yPS+qWJOfcDyX9H0kfc85tdM59bY427ZZ0v3Nuo6QNkh5aYFsBYFlhOgQABOMHzrmHJcnMviPpAeecM7OHJa2ZYft7nHMlSUNmllzge/y0pIFpZ447Jd0kKSfpuHPu8fL7P1R+zzFJjznnflDe/qCk985Rf6Y2nZD0KTOLll8nBAOoS5wJBoBgZKf9uzTtcUkzn4CYvr0t8D1M0q+Vz95udM69xDn39zPUK87ynvO5ok3OuX+U9DpJFyR92sx+sYq6AFBzhGAAqF/3S/qP5bOyMrOXmVnrHNs/KunG8hxgSXrHtNcuSWqf7w3N7AZJKefcX0j6hKRXVtFuAKg5pkMAQP36hCanOXyrfOHbsKTbZ9vYOZc2s/8k6e/MbFyTUxum/I2ku81sh6Rfm+M9b5H0ATPLa3J6BWeCAdQlc87Vug0AgCViZm3OubFyaP64pO855z5W63YBwFJjOgQANJf3lC+U+44mL6T78xq3BwBqgjPBALAMmdnLJf3lZU9nnXM/UYv2AECjIQQDAACg6TAdAgAAAE2HEAwAAICmQwgGAABA0yEEAwAAoOn8f6WUIZd87QH+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hU5bk3/u8zxzU5MzAJ5CSokIRDkkJEBNFQAlgDRAHfCt1vbbXQvbXde+sWRZHWSq2IrXXb132QrW/VX8G+VZQItGAQsKIUgZKIOahFTAghCYQkJJnzPL8/JklDzGEmWWuSMN/PdeWSzOHmCRNn7rXW/dy3kFKCiIiIiCic6IZ6AUREREREocYkmIiIiIjCDpNgIiIiIgo7TIKJiIiIKOwwCSYiIiKisGMY6gUMxJgxY+T48eOHehlERERENIwdO3bsvJTS1tN9IzIJHj9+PI4ePTrUyyAiIiKiYUwI8VVv97EcgoiIiIjCDpNgIiIiIgo7TIKJiIiIKOwwCSYiIiKisMMkmIiIiIjCDpNgIiIiIgo7TIKJiIiIKOwwCSYiIiKisDMih2UQERER0fDldHlQ3+oCAFyye2B3e2Ex6hFt8aeetkgTzKahTUOZBBMRERGRKi7Z3Wh2eLDjRDW2fVyJqgb71x6TYrVg5XWpKMhOQoxiQLTFOAQrBYSUckj+4sHIycmRHJtMRERENHzUNjlQVFaLjbtK4XD7+n28YtRhQ/5k5GUkICFW0WRNQohjUsqcnu7jmWAiIiIiGpTaZgfWvVWC/eX1AT/H4fZh/dsnUVRei03LMpEQo00i3BtujCMiIiKiAattcmDd9uAS4K72l9dj3fYS1DY7VF5Z35gEExEREdGAXLK7UVRWO+AEuMP+8noUldaixeFWaWX9YxJMRERERAPS7PBg465SVWJt3FWKJrtHlViBYBJMREREREFzuvxdIALZBBcIh9uHwuJqOF2hSYQ1TYKFEC8LIeqEECd7uV8IIZ4XQnwhhCgRQkzXcj1EREREpI76Vhe2fVypasytRyo7+wtrTeszwb8FcEsf938LwMT2rzUA/lPj9RARERGRCqREj32AB6OqwY5Qde/VNAmWUr4PoKGPhxQAeFX6HQYQJ4QYp+WaiIiIiGjwWhzalC20OK+AcogAJAGo6vL9mfbbvkYIsUYIcVQIcbS+fnA7EImIiIhocOxuryZxHRrF7W6ok+CASSlflFLmSClzbDbbUC+HiIiIKKxZjHpN4ioGbeJ2N9RJcDWAlC7fJ7ffRkRERETDWJSizeBhreJ2N9RJcCGA77Z3iZgFoElKWTPEayIiIiKifggBpFgtqsZMsVoghKohe6V1i7RtAD4CkCaEOCOEuEcI8Y9CiH9sf8huAKcAfAFgC4B7tVwPEREREanDFmnCyutSVY25amYq4qPNqsbsjabnm6WUK/u5XwK4T8s1EBEREZH6zCYDCrKT8Px7n6syMEMx6rA0KwmmMKkJJiIiIqIRKkYxYEP+ZFVibcifjFhLaOqBASbBRERERDRA0RYj8jISMC99cJ275qXbkDc5AVGKUaWV9Y9JMBERERENWEKsgk3LMgecCM9Lt2HTskwkxCgqr6xvTIKJiIiIaFASYhRsuj0TT942FYoxsPRSMerw5G1ThyQBBjTeGEdERERE4SEhVkFBdiJy0+JRWFyNrUcqUdVg/9rjUqwWrJqZiqXZSYhVDCEtgeiKSTARERERqSJKMSJKMeLu2eOxJCsRUgItTg8cbi8Uox5RZgOEAOKjzSHrAtEbJsFEREREpCqzyYBk0/BOM4f36oiIiIhoxLE73bjQ5gYAXLJ7YHd7YTHqEd3eAm10hBEW89CUQXRgEkxEREREqrjY5kKb04sdJ6qx7ePea4JXXpeKguwkRJj1GBVhGoKVAsI/tG1kycnJkUePHtX87xkJRzFEREREw8G5Jgf2ldVi467SgCbIKUYdNuRPxvyMBIyN1aY7hBDimJQyp6f7eCa4B41tLrR2O4ox6ARMBh1cHh88PnnZUUykWY+4ITqKISIiIhpqtc0OPPJWCfaX1wf8HIfbh/Vvn0RRee2QtEljEtxNx1HML/5YhhuvHYMHF6YhKc4Cl8cHp8cHs0EHk0GH6kY7dpXU4IUDX+DRb2VoehRDRERENFydawo+Ae5qf3k91m0vCXkizCS4i46jmGizEb/7wSx8+MV5/HJvRZ/1LPfOuxYvf/DlkB3FEBEREQ2Vi20u7CurHXAC3GF/eT2KSmuRnzkuZFfXWRPc7lyTAz975yQWZyahsc0VdD1LXIQJO0uq8fjSqUyEiYiIKCxUX7Rj/rMHAsqZ+qMYddj3QC6SRllUWJlfXzXBHJsMfw3wwYo6fH/OBLz11zNY//bJgF/MjnqWt/56Bt+fMwEHyuvQ1ObSeMVEREREQ8vudGPHiWpVEmDAn1MVFlfD7nSrEq8/LIcA0Or0Yky0GS++fwpFZXUDitHxvJUzU9Hi9CI2Qs0VEgXO6/Whoc0Fj0/iksMDp9sLs1GPaMUAg07AGmGCXs/jXyIiGpwLbW5s+7hS1Zhbj1RiSVYikkPQfSvsk2C7042SM41ocrgHnAB3KCqrw4LJCSipboQ1wsD2aRRSLo8PDa0u7Cw5i1c+Ot1rV5O7bhiPxZmJsEaaYDIwGSYiooGREj3umxqMqgY7QlWpG/ZJ8IU2N9LHRuNbz/9ZlXg/LfwUu/95Li60uUNyFEMEAA2t/o0Jj7/z6WVdTZweX+e8dnOXria/LvoMjy+ZgvkZCbBGsr0fEREFr8Xh0SauU5u43YV9EmzUC+z+pE7VepZ9ZXVYmj1OlXhE/bnQ4sS6Nz+BxaTH7+65Hgc+q++zq8ny6cm4N/cavHzoNPZ+WotNy6dhdJR5CFZOREQjmd3t1SSuQ6O43YX9tVCPV+K1w6dVjfnq4dNwe0de1w0aeRpaXfjpjk9x2zeSkJUSizu3HMZzRZ/3enmqqsGO54o+x51bDiMrJRa3fSMJP93xKS62cjMnEREFx2LUaxJXMWgTt7uwT4J9I7yehcKXy+PDwYo6rJqVij8cq8LGnWVfu6Jh0AlEmPQw6MRltzvcPmzcWYY/HKvCqlmpOFBRB5dHnashREQUHqIUbQoKtIrbXdiXQ7RqVHfS6gpNPQuFr4ZWFxSjHi++fwoHKvxNyvU6gbyMeNw6bVyfNcH7yuvg9cnO5307JwUNrS5OPSQiooAJ4S+zU/NkYorVAiH6f5wawj4J1qyexRWaehYKT16vDyXVjTjbZO9MZJdmJeLuOeODqgkuLD6LAxX1mDtxDAzVAraoeLZPIyKigIyOMGLldanYvKdCtZirZqbCFqJ9KmH/aadoVM9i1iguEQA0tLkwLkbBM3sqEGnS44VV0wdUE/zCqumINOnxzJ4KjI1R0MBBL0REFCCL2YiC7CQoRnXSScWow9KspJDlUGGfBEeZNapn0SguEQAIAPvK66AXAlvuyum1Jrg3XWuCt9yVA70QeK+8DiG6AkVERFeICLMeG/InqxJrQ/5kRJpDdxIx7JNgwH+JeDjHI+qu1eXFm8fPYPOKrMtqgoN1oKIeL75/CptXZOGN42fQyjIeIiIKwqgIE+ZnJGBeum1Qceal25A3OQFxEaHrXR/2SbBPSiyfnqxqzBXTkyHZHoI09o2UUTjXbB9wAtzhQEU9zjXbkZ0cp9LKiIgonIyNVbBpWeaAE+F56TZsWpaJhJjQbs4O+yS4odWF3Ek2VetZbp5kY20laarN6cXdc8bjGZU2IzyzpwL33DgBbTwTTEREA5AQo+Cp2zPx5G1TA86pFKMOT942dUgSYIBJMBSDHi8fOo21i9JUibd2URpe+uBLmPXcGEfaMRl0+OCL86pOOjz0t/MwsTMEERENQF2zA4+8VYK5k0Zj3wO5ePiWtF7LQ1OsFjx8Sxr2PZCLuZNGY932EtQ1O0K8YrZIQ5RiQGHxWSyaMha5abZBXVrOTbNhbIwF75SU4aFb0lVcJdHlDHqB3x+tUjXm6x9XYXFmoqoxiYjoylfX7MDD20uwv7we+8sPwhppwtv3zu78TGlxejp71nc0DpDShyX/5wM0tE8sfXh7CZ5elon4EJ4RDvskuKPR80NvFGPLXTkAMKBEODfNhjU3XY3VrxwNaaNnCk96ndBk0qFex19cIiIKXJvTg3fLarG//O+5U0OrCzc9c6Dz+4QoE64aE4GvzrehtqXnctH95fUoKqvFbd9IQoQpNOlp2F/7jLXosXJmKlpdXqx+5SjumJGCDYszgqpn2bA4A3fMSMHqV46i1eXFqpmpGBVh1HjlFM5aHNpMJGzRaIIiERFdmS7a3di4s7TPx9S2uHDkdGOvCXCHJ3aW4mKbW83l9Snsk+DGNi8KsvyNnltdXty39ThOVDbi9dWzcH/exD7rWe7Pm4jXV8/CicpG3Lf1OFpd3s5Gzw2toXsRKfyoVQvcnVOjuEREdOVxu73YcaJa1f0phSeq4dZomm93YV8O0eLwwKD3N2he//ZJAMA7JTXYffIc5qfH48GFaUiMs8Dt9cHh9kEx6mDU63C20Y6dJTV4/r0v4PX9vR3aTxZPRqvLDS9zCdKQyaBN2QI3xhERUaDqWpzYdqSy38cpBh2iFANaHB44PH0nSFuPVGJpViKSRkWotcxehX0SbHd7sez5D3H4kW+iqNzWWdPi9UnsLa3F3tJaAIBBJ2Ay6ODy+ODx9dwDeF66Dd9MT8Csp/bhrXtnh+xnoPATqdFEwogQTuohIqKRzSfR4/4Uk0GHf51/LXLT4xFp8ie/drcXFqMeUYoBrS4P3iurw/PvfQFXt6S4qsGOXtIs1YV9Emxpn0/9T//fMfzX/87Buvbdjd15fBKePnqodjR6/sfXjgLwt14j0oqU/pIcNTfHpVgt4IwXIiIKVE/7U36yOAMLJo/FO8Vn8cPXjvX4OZVitWDldanY98DNeLf0HJ7YWXZ53BDtTwn7a59Riv844K9VTfjH147iqdunBd/o+fapeOp2fwL816qmy+ISacFi0mky6TDCxIM3IiIKjL1L7a4tyoR3778JZoMeC359EJv3VPR6oqaqwY7Neyqw4NcHYTbo8e79N8EW9fdxyY4Q1QSHfRLc0SIN8CfCs556D9dNGBVUo+frxo/CrKf2dSbAbJFGWnN7Jeanx6s66fCb6fFwsZidiIgC1PEZZIsyYfu9c/CLP5Zh/dsnv7ZRTjHoMCbKBMVw+WeWw+3D+rdP4hd/LMP2e+d0JsJmQ2jS07A/XRlj0WPldanY3GX87MJf/xmxEUb8fvX1fTZ6bnO6cetv/oymbu08Vs1MRayFLdJIOxaTDp+csWPtojRs7HYZaSDWLkrDmUY7kkb1fNBHRETUXbTiz3W2rZmFnxSe7CwnDbYmeH95PX6Ck9i2Zhbynn2/M67Wwj4JvuTwoiA7Cc+/9/llRy5NbW7c8u8fdH4/JsKIxFEWnL1ox/k+eth1tEhrtrtD9iJS+PH6JDKTYwFAlUmHibEWZCbFwuNlUTAREQVGCODp5dPwl1MNnQnwQGuC95fXIy89AZuWTQ3Z1fSwL4fw+YCymiZsyJ/c5+POt7lRUt3cZwIM+FutldY0hWxnI4UnxaiDTifQbHdjzU1XIzfNNqA4HZMOm+1uGISAhTXBREQUoChFjxuvHYONu0r7rAk26AQiTHoY2qeS9lYTvHFXKeZOtCEmRPuqwv5McKvTgx+8egyHHp6Heem2HjtDBGpeug25aTbMeXo//vSvc1VcJdHlIo1G2J0uzL52DH6xuxR3zEjB3Ilj8MyeioCalitGHdYuSsPYGAte++g01udPBoQI2ahKGhi324v6Vid8ErjU5fJitGKATgC2SDOMRh7IEFFoWPR6bC2uQrTZgO33zuksidDrBBZNScCt08YhKc4Cp8fXWVJqNuhQ3WjHrpIa7Cuvw/q3T2Jeug3b752DZf9xCIXFZ3H3nPEhWX/Yf+J17GxcteUwfv/D2XjkrZ5bpPVnXroNT92eiW//94cAQrezkcKTXq+DQQ80OTx4LH8KHtvxCaJMBry+ehYOflaPN46f6fUS1Irpybh5kg0vffAlWlzn8fOCaWh1uTE60gS9jjs6h6M2pwcX7W7sOFGNbUcqe7+8ODMVBdlJGGUxIkKjXtJERB3Ot7qw7Ugltq7+e03w0qxE3D1nPA58Vo9f7u25Q0SK1YLl05Nxb+41ePnQaRQWn8VPcBJbV8/C3a983D4sQ/v3MCFHYGPQnJwcefToUVVilZ5twq3P+2t/r7JasHX1LByoqMfGXaUBn1HbkD8ZuWk2rNpyGF+1v9i7//lGTE6MVWWNRD1xeXxoaHXiQosTEWYjPvziPH7xxzLMuWYM8jPH9Tnp8MO/ncej38rAnGvHoNXpxugoM6yRZphCtCOXAlfX7MC7ZbXYuDOI96TFk7EgIwHxMUoIVkhE4aqqoQ3vlp6D2aDHL3aXYfOKLJxrtg/oquRDbxTj0Vsz4HB7sXDKWKRY1ZkYJ4Q4JqXM6fG+cE+CqxraMHfz/stu2/LdGZg8LhaFxdXY2sdZl1UzU7E0KwmlNU1Y/eqxy+7/80PzVHsBiXpzodkBjwT+Vt8CxaiDLVrBzpKznb+33ScddvzeLs5MRP0lBxxuH66xRcEggNFMmIadumYHHu5lgE9/5qXb8PSyTCbCRKSZsrPNiFIMuO2FD/CbVdPx4vunBrRRu2N/yo+3Hsfb992IFqcHGeNiVFkjk+A+VDW0YdX/HP5aomsx6fHM8mmYmhwHvRBfa5HmlRInzzRi7ZufwN5tklyK1YKtP5jFJJg05fL4cLHVicY2J6ItZnxeewmxESY4nB7ERZmgGPVodXo6zwRHmg1wuL1obHVBMRnQ1ObCxIRoXLI7ERehYFSkiWeCh5HBJMAdmAgTkZbONLShsPgsrhodiT8cqxp0p6I7ZqSgsqG1vRxC+zPBYV80ZjIILJ+ejOeKPr/sdrvLix9tO9H5fZxiQHyMgrpmBxp7GBPY1YrpySFr9Ezh65LDhaKyus5LUGljI2ExGlF8sQ2NDn+Jg9frg9sr4fYItLm8uNDihE9KZFkjEWXW4a+VjXjojWKsz8/ALVMSYI1isjQctDk9eLe0dlAJMADsL69HUVktbvtGEjc9EpHqJIDaSw6YjbpBJcAAcKCiHnMnjkFNsyNkHbbC/kxwWU0znG4v7txy+LL6Fb1OIC8jPqCdjd4ur5Zi1OH11bOgGPVIV+lUPlF3Xq8P55qdmP/sgc7f2yWZ43DP3AlQDDpYTAbo2q9guDxemAz+Kxg+KeFweWD3+PDSn7/EOyU1APy/t/seyMXYGDP0eh7ADbXqRjvm/+pAQDV1/VGMOuz7t1wkxXEQChGpq6qhDRdanF/LoQaqI4caHWUOSU1w2J8asLu9+O2h05dN3hrozkbAP3nrpQ++xN03Tgjpz0Hhpc3txo7i6svedN4pqcHuk+cwPz2+c2Ocz+uD1yfh0HnR4vR0box7r9vBm8PtQ2FxNf5hVgqi9eah+JGondvtxY4T1ap8oADtr+2JavxgzgS2TyMiVfl8Egc+q1f1/ergZ/W47RtJqsTrT9gnwRaDHoXFZ7FoyljcMiUBS7KScK7Z3u9RTVWDHc8VfY7/Ovg3rF2UhkVTxuKd4mqMjbHgnZIy3Jt7bQh/Cgo3TXYvth2p/NrtXp/E3tJa7C2tBYCvbYzry9YjlViSlYhoVkQMqboWZ4+v7WBsPVKpao0dEREAeKXEm8fPqBrzjeNnsCQrUdWYvQn7JDja4v8neLzw5GWNngPlcPuwcWcZ5qXb8MTSqVj2H4cui0ukBSnR4xWK7jw+CY8rsJ7VVQ12jMDqqCuOL8DXNhhVDXZOsSQi1Rn0QpP3K4M+ND3rw774Tyf8pQ2PL52KDTuCS4C72l9ejw07TuLxpVORYrWAMwdISy39bM4ccFynNnEpcK0avQatLr62RKSuNqc2g8HaAjx5M1hhnwTbIs149NYMnGu2q7Kz8VyzHY/emgEbrymThuwaTSTkpMOhp9VrwNeWiNTm8KhTC9ydU6Ua4/6EfRJsNOqRmRSHZ/ZUqBLvmT0VyEyKg5E77ElDilGb3y+29ht6ikab1xQDN8URkboiNHq/sphC834V9p94Xq8Puz+pUXVn4x9P1sDrDc1RDIWnaMU4ouJS4CLM2rz5axWXiMKXVvufopXQ7KsK+yS4oc2FVw+fVjXmKx+dRkObS9WYRF2J9lp2NaVYLRCsZR9yXq/U5LX1cmccEanMoBOavF8ZQrSxKuyTYI9XarKz0ePlBw5pJ8Kkw8rrUlWNuWpmKiJCdAmKeqfX+adYqmnF9GToeYRDRCqzRphw1w3jVY151w3jYY0MTb/6sE+CmxxuTeI2axSXCADcXoml2Ymq1QYrRh2WZCXy4G0Y0AmB3Ek2VV/bmyfZoGMSTEQq0+t1WJyp7mfR4sxE6HkmODTUqgUOVVwiALjY6ob0+bAhf3KfjzPoBCJM+n4vLW3InwwpfSzjGQaEAN46UY21i9JUibd2URq2n6hmqQsRacIaacLGgqmqxNpYMBXWSJMqsQIR9hMdtNoNb+Iue9KQ3e3FfxzwTyucl27r7G+t1wnkZcTj1mnjkBRngdPjg8PthWLUw2zQobrRjl0lNdjXZWzyvHQbbkqzYfMfy3HPXI77Hmo6nUBSnAVjYyzITbMNqnVjbpoNY2P89cA6Ni8nIg2YDDrMz0jAgowEvFtWO+A4CzISkJeRENL8KeyTYK1qIFlbSVoyG3QoLD6L5TOSsWlZJtZtL0G02Yi754zHgc/q8cu9FT3WuqdYLVg+PRn35l6Dlw+dxiWnG5uWZaL83CW8U1KDf8q9Zgh+GupKJ4CFk8di+X8ewm9WTQeAASXCuWk2rLnpavx463G8+U9zWBNMRJqxRpqwafk04E0MKBFekJGATcunYVQIzwIDLIcAoM0ueyItRZn9x69JcQo27S7Fo9/KwPUTrLhzy2E8V/R5r5s9qxrseK7oc9y55TCun2DFo9/KwKbdpUiKUy6LS0PH5ZHw+nx4cGE6Vr9yFHfMSMGGxRkB19wpRh02LM7AHTNSsPqVo3hwUTq80genRk3tiYgAYHSUGU+vyMQzKzKDer96ZkUmNq/IxOio0GyG60pIOfI2wuTk5MijR4+qEutcsx2vH6nCc0WfqxIPAO7Pm4g7Z6YiIYZT40gbVQ1t+PBv5wEJpIyOwIvvnxrU2cKqC22QkJhzrQ0p1ggNVkyBOtdkx18rG3HV6Aj8au9n2FdehyWZ43DPjRNw8LN6vHH8TK9n+VdMT8bNk2x46YMv8U5JDeanx+PfFk3CV+fb8I3UOIyN5QE6EWnL5fGhodWFnSVn8cpHp3t9v/re7PHIn5YIa6RJ0xIIIcQxKWVOj/eFexL85fkWtDg8uOO/P1JlM5ti1OEPP7wB0YoR48dEqrBCoq+ru2SHyyPxyZkm/P5o1aDrRr+dk4JpybEw6XWI58HbkKpttuOSw4tT9S0YF6vguaLPsa+8DnqdwPz0eORnjkNinAVurw8Otw+KUQejXoezjXbsLKnBe+313vPT4/GveRNR0+TA1bYoxCgGvrZEFDJer3+ztccn0eLwwOnxwWzQIUoxwKATsEaaQ9IFoq8kOOyvfRp1Opy+0Iq1i9KwcWfZoOOtXZSGry60IitllAqrI+qZYtTh2FcNONtkH1QCDPjrTedOHAMIYM61VpVWSAPl8kgISJxrtiPGYsQ9N07AzZNs+MUfy7C3tBZ7S/31dgadgMmgg8vjg6fLIAzFqMNPF0/GtfFRaHV5ca7ZjmviI1kOQUQhpdfrYItuP/COHdq19Cbsa4L1eoGUURFIjPXvxB6M3DQbEmMtSB4VAYOem1BIO812L5LjLHhmT4Uq8Z7ZU4HkOAua7V5V4tHA+XwSpTXNmHGVFb899CUutrkxLk7B79fcgAcXTurcc+DxSbS5vJ0JcIrVggcXTsLv19yAcXEKLra58dtDX2LGVVaUnW2GbwRe9SMi0lLYnwk26ATeOlGNa2yRWHPT1QAGtxP7i7pL+OjLC/jxvGvVXipRJ6NeYF95nWr9qB1uH94rr8OdM1NUiUcDd6HVhZRREai+aMc/5V6LXxd9hmizAffcOAGpoyKw/tYMjI4yw+31wen2wdxeDnGhxQmnxwcpJQpPnMUlpwf3501C9UU7kkdFoKHVhatGs0SLiKhD2J8JtkaYkDIqAqMjFbz64elB7cR+9cPTGB2pIHVURMhG/lF4srt8ePP4GVVjvnH8DOwc8jLkLEY9Xj50Guea7bC7vVgz92pkp8bhOy/9BTs/qeksaxDwT5fruObk9Piws6QG33npL8hOjcOauVfD7vaXQ7z0wZdQDGzbSETUVdifCe4Y+Zf//Pv4zarpePH9U4g2G/D66llB7cS+5Dzf2ZNz1z/fFLKRfxSehECvbdAGqqrBDv7WDr0oxYDC4rNYNGUsfnvoSyzJSkKqNQK/+8EsHKyo6+wB3b0muOM96b5516L+kgMX29x4p7gaS7KS8E5JDR66JX2ofzQiomEl7JNgwN/ked23MrD6laPYvCIL55rt+M5Lf8Gca8bgwYVpfe7EfvHPp/DAgkkYG2PB6leO4vGlU0I68o/CU6vTo0ncNhdrgoeaEP6D7IfeKMaWu3I6D8zvuXECJoyOvKwcout7Ukc5BLqUQ6y56WqsfuUoUqwWjk0mIuqGSTD+PvJv76e1uG/rcSzJHIff3XM9DnaZvNXrWZfca9p7cpYNycg/Ck8ujzabnFzsIDDkRkcYsfK6VGzeU9HjgXl+5jgA/nIIfQ/lEB/+7fxlB+atLi9+NDMVtiFoRE9ENJwxCW7XdeTfOyU12H3yHOanx/d7Jvj5976A1yeHbOQfhadAa9aDZeYB3JCzmI0oyE7C8+99jlaXd1AH5oD/d2VpVhLMRtYEExF1xSS4i46RfwvLarFhx8mAe3JuWjYNeRkJTIApZKIVbf7X1SouBSfSrMeG/MlY//ZJAAM7MO+wIX8yosxMgImIuuMnXjfWSBMKspMwd6LtspF/Hp+Ep0u9ZChH/hF1Z9TrkGK1qLo5LsVqgZG/x8NCXIQJ8zMSUFRei/3l/uTl358AACAASURBVJaNXp8M6MC8q3npNuRNTkBsBA/QiYi6C/uxyX0ZLiP/iLrzen14+dBpPLl78FMOO6zPz8Ddcybwd3oYqW12YN32ks5EOBjz0m3YtCwTCRyVTERhjGOTB2gkjPyj8KTX67Akaxx+9W6FKgMzFKMOSzLHMQEeZhJiFDx1eyb2ldVi467SgF5rxajDhvzJmJ+RwASYiKgPvPZJNEJZI814omCKKrGeKJjKAS/DUG2zA4+8VYL4GDP2PZCLh29J6xyb3F2K1YKHb0nDvgdyER9jxiNvlaC22RHiFRMRjRw8E0w0QpkMOuRljEVeRi2KyuoGHCcvIx4L2Npv2KltcmDdW/5SiP3l9bCY9Hhm+TS8ds/10AuBFqcHDrcXilGPKLMBXilx8kwj8n59EPb2/QvrtpewJIKIqBdMgolGMGukCU8vz8TDb5YMKBHOy4jH08sz2dlkmLlkd6OorPayWmC7y4sfbTvR+X1ClAlXjYnAV+fbUNvi6jHO/vJ6FJXWoiA7EVGKUfN1ExGNJEyCiUa40VFmbF6RhaKyWvxkx8mA60Y3Fkxla79hqtnhwcZdpZfdZjHp8asVmZicFAuDEGh2uDtbpMUoRnjazwSvffOTzjPBALBxVyly0+KZBBNRSDldHtS3+g/QL9k9sLu9sBj1iLb4U09bpAlm09CmoUyCia4A1kgTbstOwk3dWvt1l2K14K7Z47GYrf2GLafLgx0nqi87mPmf785AxrhY7DhRjaf+VN7ra7vyulQU3X8zymqa8INXjwEAHG4fCourcffs8UP+gUNEV75LdjeaHf73sW0fV/b5flWQnYQYxYBoy9AcpLNFGtEVhq39RrYzF9uwcsthVDXYcZXVgq2rZ+FARf3XukP0NcBnQ/5k5KbZsGrLYXzVYEeK1YJtq2cheVTEUPxIRBQmapscKBpAN5u8jAQkxGqzd2FIW6QJIW4B8O8A9AD+R0q5qdv9qQBeARDX/ph1UsrdWq+L6ErF1n4jm5ToTIB//8PZeKR9c5xeJ7BoSgJunTYOSXEWOD2+zo1xZoMO1Y127Cqpwb7yOqx/+yTmpdvw+x/Oxrf/+0N81WDHCDzfQUQjSG3z3zfzBsrh9mH92ydRVF47JJt4NU2ChRB6AC8AWADgDICPhRCFUsquxW6PAfh/Usr/FEJMBrAbwHgt10VENFy1ODwAgK2rZ+HR9g+UpVmJuHvOeBz4rB6/3FvR6+XF5dOTcW/uNXj50GkUFp/Fo2+VYOuaWZizaT9anJ5Q/yhEFCa6drMZiP3l9UPSzUbrgsCZAL6QUp6SUroAvA6goNtjJICY9j/HAjir8ZqIiIYtu9uL//nuDByoqMdfTjXghVXTkZUSizu3HMZzRZ/3Oiq7qsGO54o+x51bDiMrJRYvrJqOv5xqwMGKemz57gw43N4en0dENBg9dbMZiI5uNi0Ot0or65/WSXASgKou359pv62rxwH8gxDiDPxngX/cUyAhxBohxFEhxNH6+sH9QxMRDVcWox4Z42Lx7LsV2HJXDv5wrAobd5YFPBnQ4fZh484y/OFYFbbclYNf7a3A5HGxUAx6jVdOROGop242A7VxVyma7KG7ajUctoavBPBbKWUygFsBvCaE+Nq6pJQvSilzpJQ5Npst5IskIgqFcaPMeKfkLJ4omIYX3z+FAxUDO+g/UFGPF98/hScKpmFnyVmMG8WJgESkrp662QxGRzcbpys0ibDWSXA1gJQu3ye339bVPQD+HwBIKT8CoAAYo/G6iIiGpRaHFzVNdtQ22wecAHc4UFGP2mY7qpvsaHGwHIKI1FXf6sK2jytVjbn1SGVnf2GtaZ0EfwxgohBighDCBOBOAIXdHlMJYD4ACCEy4E+CWe9ARGHr9uwkbN5ToUqszXsqsCy7exUaEdHgdXSzUVNVCLvZaJoESyk9AH4EYA+AMvi7QHwqhHhCCLG0/WH/BmC1EKIYwDYA35MjsXkxEZEKvD6JD09dUPXy4kenLsDn49sqEamro5uN6nFD1M1G8z7B7T1/d3e77Sdd/lwKYI7W6yAiGgl8PoltR9S/vHjL1LGqxiQismvUdSZU3WyGw8Y4IiJqZzToNLm8aNTz7Z6I1GUxatN1JlTdbPiuSEQ0jIz0y4tEFD6iFG0KCrSK2x2TYCKiYUStWuDunBrFJaLwJYR/WqWaUqwWCKFqyF4xCSYiGkbMBm3elk0shyAildkiTVh5XaqqMVfNTEV8dGj6mvNdkYhoGIkwa1MLp1VcIgpfZpMBBdlJUIzqpJOKUYelWUkwsSaYiCj8SGhzeZEN0ohICzGKARvyJ6sSa0P+ZMRaQlMPDDAJJiIaViJMOiyfnqxqzBXTkxGh0S5uIgpv0RYj8jISMC/dNqg489JtyJucgCjFqNLK+sckmIhoGPF4Jeanx6t6efGb6fHw+Lgxjoi0kRCrYNOyzAEnwvPSbdi0LBMJMYrKK+sbk2AiomHEFmnGmUY71i5KUyXe2kVpONNohy06tB8uRBReEmIUbLo9E0/eNjXgg3jFqMOTt00dkgQYCMHEOCIiCpzRqEdmchwggdw0Gw5U1A84Vm6aDYmxFmQmx3FYBhFpLiFWQUF2InLT4lFYXI2tRyp7HP6TYrVg1cxULM1OQqxiCGkJRFdMgomIhplRFiMuOdxYc9PVADCgRDg3zYY1N12NMw1tGBUxNB8wRBR+ohQjohQj7p49HkuyEiGlf1iPw+2FYtQjymyAEEB8tDlkXSB6wySYiGiYiTAbkJsWj58WnsQdM1Iwd+IYPLOnIqBBGopRh7WL0jA2xoLXPjqNny2diggT3+qJKLTMJgOSh/l7z/BeHRFRmDLodXgsfwoe2/EJokwGvL56Fg5+Vo83jp/p9fLiiunJuHmSDS998CVaXOfx84JpLIMgoiHhdHlQ3+oCAFyye2B3e2Ex6hHd3gLNFmmCeYiTZCbBRETDjMvjw76yWmz+Uzm2rp6FI1824Dsv/QVzrhmDBxemITHOArfXB4fbB8Wog1Gvw9lGO3aW1ODFP5/Co9/KwMwJVtz2wgd46JZ0FGQnwaTRJDoioq4u2d1odniw40Q1tn3ce03wyutSUZCdhBjFgGjL0JRsCSlHXgv1nJwcefTo0aFeBhGRJs41OZD7y/2d5Q8b8jOwcMpY7Cw527nRxKATMBl0cHl88Phk50aTxZmJ2PvpOWzcVQbAXx5x4MF5GBvL7hBEpK3aJgeKymqxcVdpwOVbG/InIy8jAQkavUcJIY5JKXN6vI9JMBHR8OH1+vB/PzyNn7cnsR1MBh3++ZvX4psZ8YgwGdDq9HSeCY40G9Dm8uC9sjo8/94XcHku//B5LD8D3589HnqWRhCRRmqbHVi3vQT7y4PfyKtln2AmwUREI0T9JQeW/eeHPV5C7Eox6BClGNDi8MDh6fuMS4rVgu3/NJu9golIE7VNDqx7a2AJcAetEuG+kmCeFiAiGkY8PtlvAgwADo8P51tc/SbAAFDVYIfHN/JOeBDR8HfJ7kZRWe2gEmAA2F9ej6LSWrQ43CqtrH9MgomIhpFLDo8mcVs0iktE4a3Z4cHGXaWqxNq4qxRN9tC9VzEJJiIaRpxurzZxAzhjTEQUDKfL3wUikE1wgXC4fSgsrobTFZpEmEkwEdEwYjZqM0GJLdKISG31rS5s+7hS1Zhbj1R29hfWGt8ViYiGkWhFm/btWsUlovAlJQLawxCMqgY7QtWzgUkwEdEwYtAJpFgtqsZMsVpg0AlVYxIRabXXoMXJcggiorBjjTDhrhvGqxrzrhvGwxppVjUmEZFdoz0MDo3idsckmIhoGNHrdVicmQjFqM7bs2L0x9PzTDARqcyi0R4GxaBN3O6YBBMRDTPWSBM2FkxVJdbGgqmwRppUiUVE1FWURnsNtIrbHZNgIqJhxmTQYX5GAhZkJAwqzoKMBORlJLAzBBFpRos9DKHCd0YiomHIGmnCpuXTBpwIL8hIwKbl0zCKZ4GJSCNRih4rr0tVNeaqmamIsfBMMBFRWBsdZcbTKzLxzIrMgGuEFaMOz6zIxOYVmRgdxc1wRKSds40OFGQnqbqHYWlWEqovOlSJ1x82jiQiGsaskSYUZCdh7kQbdpacxSsfne6xL2eK1YLvzR6P/GmJsEaaWAJBRJpzeXwoq2nC40umYN32TwYd72dLp6C0pgm2EB3AMwkmIhrmTAYdxsYq+P7s8SjIToTHJ9Hi8MDp8cFs0CFKMcCgE7BGmtkFgohCpqM7RHZKHHLTbDhQUT/gWLlpNmSlxKGqoQ2KRl0numMSTEQ0Quj1OtiiFf83sUO7FiKiKLMBGeNisfT//Bm/WTUdAAaUCOem2bDmpqvxnS2HUfijuZAhGhnH62VEREREFLSYCD12nKjGhVY3Vr9yFHfMSMGGxRlB7WHYsDgDd8xIwepXjuJCqxuFxdWIiWCfYCIiIiIapprtXmz7uBIA0Ory4r6tx3GishGvr56F+/Mm9truLMVqwf15E/H66lk4UdmI+7YeR6vLPyVu65FKNNtDMzGO5RBEREREFDQp8bWNuu+U1GD3yXOYnx6PBxemITHOArfXB4fbB8Wog1Gvw9lGO3aW1OD5976A13d56UNVgx0hqoZgEkxEREREwWtxeHq83euT2Ftai72ltQAAg07AZNDB5fHB4+s/w21x9hxXbUyCiYiIiChodndgZQsen4THFXiJgyPAuIPFmmAiIiIiCppFo1ZmioEb44iIiIhomIpStCko0Cpud0yCiYiIiChoQqDXDhADlWK1QIRo5g+TYCIiIiIKmi3ShJXXpaoac9XMVMRHh2ZsMpNgIiIiIgqa2WRAQXZSwMMx+qMYdVialQQTa4KJiIiIaDiLUQzYkD9ZlVgb8icj1hK6xmVMgomIiIhoQKItRuRlJGBeum1Qceal25A3OQFRilGllfWPSTARERERDVhCrIJNyzIHnAjPS7dh07JMJMQoKq+sb0yCiYiIiGhQEmIUbLo9E0/eNjXgGmHFqMOTt00dkgQY4MQ4IiIiIlJBQqyCguxE5KbFo7C4GluPVKKqwf61x6VYLVg1MxVLs5MQqxhCWgLRFZNgIiIiIlJFlGJElGLE3bPHY0lWIqQEWpweONxeKEY9oswGCAHER5tD1gWiN0yCiYiIiEhVZpMByabhnWayJpiIiIiIwg6TYCIiIiIKO0yCiYiIiCjsDCoJFkJEqbUQIiIiIqJQGeyZ4FJVVkFEREREFEL9btsTQjzQ210AeCaYiIiIiEacQM4E/wLAKADR3b6iAnw+EREREdGwEkgDt+MA3pZSHut+hxDiB+oviYiIiIhIW4Ekwd8HcKGX+3JUXAsRERERUUj0W84gpayQUp7v5b7ajj8LIX6j5sKIiIiIiLSiZk3vHBVjERERERFphhvbiIiIiCjsMAkmIiIiorCjZhIsVIxFRERERKSZgJNgIcS0fh7y74NcCxERERFRSARzJvg/hBBHhBD3CiFiu98ppfytessiIiIiItJOwEmwlHIugO8ASAFwTAixVQixQLOVERERERFpJKiaYCnl5wAeA/AwgJsBPC+EKBdCLNNicUREREREWgimJjhTCPFrAGUAvglgiZQyo/3Pv9ZofUREREREqgtkbHKH3wD4HwCPSintHTdKKc8KIR5TfWVERERERBoJJgnOB2CXUnoBQAihA6BIKduklK9psjoiIiIiIg0EUxNcBMDS5fuI9tuIiIiIiEaUYJJgRUrZ0vFN+58j1F8SEREREZG2gkmCW4UQ0zu+EULMAGDv4/FERERERMNSMDXB/wrgD0KIs/CPSB4L4NuarIqIiIiISEMBJ8FSyo+FEOkA0tpvqpBSurVZ1vDgdntR3+qETwKXHB7Y3V5YjHpEKwboBGCLNMNo1A/1MomIiIgoSMGcCQaA6wCMb3/edCEEpJSvqr6qIdbm9OCi3Y0dJ6qx7UglqhrsiDLpMSrShIutLrS4vEixWrByZioKspMwymJEhDnYf0oiIiIiGioBZ25CiNcAXAPgBABv+80SwBWVBNc1O1BUVotn9lTgydum4rV7rodBCDQ73HC4fVCMOsQoRnikxMkzjVj8/J+xdlEa8jISEB+jDPXyiYiIiCgAwZy+zAEwWUoptVrMUKtrduDh7SX4zsxU7PzxXOw4UY2n/lSOqoav7/9LsVqw8jr/48pqmvDw9hI8vSyTiTARERHRCBBMd4iT8G+GuyLVNTvwq73l+HnBVNQ2OzH/2QPYvKeiMwE26AQiTHoYdAIAUNVgx+Y9FZj/7AHUNjvx84Kp+NXectQ1O4byxyAiIiKiAARzJngMgFIhxBEAzo4bpZRLVV9ViLU5PTj8t/O4f0E6HnmrBPvL66HXCSyakoBbp41DUpwFTo8PDrcXilEPs0GH6kY7dpXUYF95Hda/fRLz0m146vZMHP7beeRNGYsIE2uEiYiIiIarYDK1x7VaxFC7aHdjxnhrZwK8NCsRd88ZjwOf1eOXeyt6LYdYPj0Z9+Zeg5cPnUZh8Vk88lYJfn7bVFxsczMJJiIiIhrGgmmRdlAIcRWAiVLKIiFEBIAR3x/M7faixe7G0a8u4sipBrywajrONdtx55bDcLh9vT6vqsGO54o+x38d/BvWLkrDoilj8dAbxThQXo+c8aPgdpvYPo2IiIhomAq4JlgIsRrAGwD+u/2mJABvB/C8W4QQFUKIL4QQ63p5zP8SQpQKIT4VQmwNdE1qqG91Ikox4tl3K7Dlrhz84VgVNu4s6zMB7srh9mHjzjL84VgVttyVg2ffrUCU2Yj6Vmf/TyYiIiKiIRHMNfv7AMwE8BcAkFJ+LoSI7+sJQgg9gBcALABwBsDHQohCKWVpl8dMBPAIgDlSyov9xVRbhFmPrYer8ETBNLz4/ikcqKgfUJyO5z1RMA2FxdVYeX2KmsskIiIiIhUFkwQ7pZQuIfzdEYQQBvj7BPdlJoAvpJSn2p/zOoACAKVdHrMawAtSyosAIKWsC2JNg3bJ7kXtJQfMRt2AE+AOByrqMXfiGNQ0O3DJ7kWcRaVFEhEREY0gTpcH9a0uAMAle5epuxZ/6mmLNME8xPungvnbDwohHgVgEUIsAHAvgHf6eU4SgKou358BcH23x0wCACHEIfhrjB+XUv6peyAhxBoAawAgNTU1iGX37/bsJNy55bAqsZ7ZU4HXV89SJRYRERHRSHLJ7kazw+OfuvtxZZ+zFgqykxCjGBBtMQ7BSoPrE7wOQD2ATwD8EMBuKeV6FdZgADARQC6AlQC2CCHiuj9ISvmilDJHSpljs9lU+Gv9fD6JA5/VB1wD3B+H24eDn9XDd+XOFCEiIiL6mtomBwqLz35t1kJ3XWctFBafRW3T0MxYCCYJ/rGUcouU8g4p5Qop5RYhxL/085xqAF2LY5Pbb+vqDIBCKaVbSvklgM/gT4pDwisl3jx+RtWYbxw/A6+PSTARERGFh9pmB9a9VYL1b58MqrnA+rdPYt1bJagdgmFjwSTBd/Vw2/f6ec7HACYKISYIIUwA7gRQ2O0xb8N/FhhCiDHwl0ecCmJdg2LQiV6PVAaqqsHeOVmOiIiI6EpW2+TAuu3+WQsDsb+8Huu2hz4R7rcmWAixEsAqABOEEF0T2GgADX09V0rpEUL8CMAe+Ot9X5ZSfiqEeALAUSllYft9C4UQpQC8ANZKKS8M7McJXpvLq01ctzZxiYiIiIaLS3Y3ispqB5wAd9hfXo+i0loUZCciSglNjXAgG+M+BFAD/9jkX3W5/RKAkv6eLKXcDWB3t9t+0uXPEsAD7V8hp1YtcHdOjeIS9cft9qK+1QmfBC45uuzIVQzQCcAWaeYgFyIiUkWzw4ONu0r7f2AANu4qRW5a/PBJgqWUXwH4CsAN2i8n9CymYCpCAqcYtYlL1Js2pwcX7W7/jtwjlZ1lOSaDDi6PDx6f9O/InenfkTvKYkSEmeO9iYhoYJwufxcINZsLFBZX4+7Z40PSPi3gv0EIsQzA0wDiAYj2LymljNFobSERodE/slZxiXpS1+xAUVktntxdhhuvHYMHF6YhKc4Cl8cHl8cHk0EHk0GH6kY7dpXU4IX9X2D9rRnIy0hAfIwy1MsnIqIRqL7VhW0fV6oac+uRSizJSkRyCPKoYE5XbgawVEoZK6WMkVJGj/QEGAAk/GfH1JRitUD2O0eESB11zQ48vL0Eh0814Hf3XI/8aeNgNvz9f+2uv4lmgw7508bhd/dcj8OnGvDw9hLUDcGOXCIiGvmkhCbNBULVZTaYNLtWSlmm2UqGiMmgw/LpyXiu6HPVYq6YngyzgTWXpL26Zgd+WngSK6anwGwQEELgzEV7vw3Kx4+JxNKscXB6JH5aeBI/WzqVZ4SJiCgoLQ6PNnGd2sTtLpgzwUeFEL8XQqwUQizr+NJsZSHS2OpG7iSbajW8ilGHmyfZcLHNpUo8ot60OT04UFGHu2ZPwKgII2qbnfj2ix8F1KD82y9+hNpmJ0ZFGHHX7Ak4UFGHNldo3nSIiOjKYNeoE5YjRB22gsn8YgC0AVgIYEn712ItFhVKTo8PLx86jbWL0lSJt3ZRGl764Eu42B2CNHbR7kZchAlRZj1ePvTlgBqUv3zoS0SZDYiLMOFim1vjFRMR0ZXEolGnISVEV9MDLoeQUn5fy4UMFYtJj8Lis1g0ZSxy02w4UDHwPne5aTaMjbHgnZIy/Hh+yIbeURhyu70oOdOI8aMj8au9FSgqqxtQnI7n/dvCNJScaUR8pInt04iIKCBRijab17SK213AZ4KFEJOEEPuEECfbv88UQjym3dJCI7r9H/qhN4qx5qarkZtmG1Cc3DQb1tx0NR56o/iyuERaqG91YlJ8FErONA44Ae5QVFaHkjONmJQQhfpWp0orJCKiK50Q0KS5gAjR0N1gyiG2AHgEgBsApJQl8I9BHtEMOoEUqwWtLi9Wv3IUd8xIwYbFGQHXCCtGHTYszsAdM1Kw+pWjaHV5kWK1cGwyacqgFzAadPhp4aeqxPtp4acw6nX8vSUiooDZIk1YeV2qqjFXzUxFfLRZ1Zi9CSYJjpBSHul224jfSWONMOGuG8YDAFpdXty39ThOVDbi9dWzcH/exF6PcFKsFtyfNxGvr56FE5WNuG/rcbS2j2C+64bxsEaG5gWk8OT1AX86Watqg/I9J2vhZWc/IiIKkNlkQEF2kqrNBZZmJcE03GqCAZwXQlyD9rajQogV8I9THtH0eh0WZybil3srOhOKd0pqsPvkOcxPj8eDC9OQGGeB2+uDw+2DYtTBqNfhbKMdO0tq8Px7X8Dr+3vmoBj98fQ8o0YaklLitcOnVY356uHTyM8cq2pMIiK6ssUoBmzIn4z1b58cdKwN+ZMRawldOWkwf9N9AF4EkC6EqAbwJYB/0GRVIWaNNGFjwVSsfaOk8zavT2JvaS32ltYCwNfGz/ZmY8FUWCNNmq+ZwpvXp02Dci+bmhARURCiLUbkZSSgqLwW+8sH3lxgXroNeZMTEKUYVVxd3wI+fy2lPCWlzANgA5AupbxRSnlas5WFkMmgw/yMBCzISOj1MR6fRJvL22cCvCAjAXkZCTAZ1LksQNSbVo0aibeyVzAREQUpIVbBpmWZmJc+sOYC89Jt2LQsEwkhHtoUTHeIfxFCdPQK/rUQ4rgQYqF2Swsta6QJm5ZP6zMR7suCjARsWj4No3gWmEJAswblrtA0KCcioitLQoyCTbdn4snbpgbVXODJ26YOSQIMBFcOcbeU8t+FEIsAjAbwvwG8BmCvJisbAqOjzHh6RSYWltViw47ABg8oRh02FkxFXkYCE2AKGa2uNvAqBhERDVRCrIKC7ETkpsWjsLgaW49U9li6l2K1YNXMVCzNTkKsYghpCURXwSTBHTu9bgXwqpTyUyFC1cktdKyRJhRkJ2HuRBt2lpzFKx+d7vUF/N7s8ciflghrpInJA4WUVn2oQ9WgnIiIrkxRihFRihF3zx6PJVmJkBJocXrgcHuhGPWIMhsgBBAfbQ5ZF4jeBPOJd0wIsRfABACPCCGiAVyR22hMBh3Gxir4/uzxKMhOhMcn0eLwwOnxwWzQIUoxwKATsEaa2QWChoRO+Ptbq7k5LsVqge7KO64lIqIhYDYZkGwa3idWglndPQCyAZySUrYJIUYDuCJHKXfQ63WwRbfXqMQO7VqIujIbBFZMT8aviz5XLeYdM5Kh8IoGERGFiX4/8YQQ6e1/zG7/79VCiOkArkJwSTQRqSROMSE/M1HVBuX50xIRG8G6diIiCg+BJLEPAFgD4Fc93CcBfFPVFRFRv4xGPaIVA9YuSsPGnWWDjrd2URqiFAOMep4JJiKi8NBvEiylXNP+33naL4eIAhVtNmD2NWOQm2bDgYqBNyjPTbNh9jVjNNtsR0RENBwF0yf4jvbNcBBCPCaE2C6E+IZ2SyOivkSYDRgTacL9eZOQmzawBuW5aTbcnzcJYyJNiBjmGxiIiIjUFMy1zw1SyktCiBsB5AF4CcB/abMsIgqELUZBYqyCNXOvxobFGUE1KN+wOANr5l6NxFgFtiFoUk5ERDSUgjn10zFKKh/Ai1LKXUKIn2uwJiIKgk4nkBhngdvrw+trbsDBijq8cfxMr/2tV0xPxs1p8WhqcyExzgId2/wREVEYCiYJrhZC/DeABQCeFkKYEdyZZCJSWUOrCw+/WYKisjpsyM/AwiljMTE+CutvzcDoKDPcXh8cbh8Uow5GvQ4XWpzwSYnRkSYcO92Au/7vx8jLiMczK7I48ZCIiMJKMEns/wKwB8AiKWUjACuAtZqsioj65fL4UFR6DkVldQCAjbvKMP/Zgzh1vhWpoyNgizYj1mLEqAgjYi1G2KLNSB0dgVP1rZj/7EFs3OXvKlFUVod3y87B5bkiZ98QERH1SEgpA3+wEHoACehyBllKWanBuvqUk5Mjjx49Guq/lmhYqWmyY94vD8Dh7j15VdonHLY441uC+gAAIABJREFUPHD0keQqRh32P5iLcbEWLZZKREQ0JIQQx6SUOT3dF0x3iB8DqAXwLoBd7V87VVkhEQXF6/XhneKaPhNgAHB4fDjf4uozAQYAh9uHnSU18Hp5NpiIiMJDMDXB/wIgTUp5QavFEFFgLrS68Nrh06rGfPWj0yjISkQ8O0UMW16vDw1tLnh8EpccHni9Xuj1/sEpBp2ANcIEPQeeEBEFJJgkuApAk1YLIaLAuby+Hrs/DEZVgx0ungkellweHxpaXTh7sQ0RigEWox5ujw92tw8Wo4DL40OT24vKC21IGhUBa6QJJgOTYSKivgSTBJ8CcEAIsQuAs+NGKeWzqq+KiPrU4vBoE9epTVwauIZWF842tiHWYsLhLxuw7ePKXtvfrbwuFUtiFHxW24zEOH8yTEREPQsmCa5s/zK1fxHRELG7vf0/aAAcLm3i0sBcaHHiksOD4qombNxV2mcNeFWDHZv3VOD59z7HhvzJiDIbIaXE6ChzCFdMRDRyBJwESyl/BgBCiKj271u0WhQR9U2rS928hD58NLS64HD78LOdn2J/eX3Az3O4fVj/9knMS7fh5wXTcLHVxR7QREQ9CKY7xFQhxF8BfArgUyHEMSHEFO2WRkS9iVaCuYgTuCiN4lJwXB4f2lwePLbjk6AS4K72l///7d19dFx3fefxz1eahzvWUyIyHmJZinkIsdREFkF2Q1rauBHlwcFOTbrF3i4UKOlud9tCW1qz1O3Z+rB16ZZ2u+V0oeEh9NQGTjDYjVuyODjQ8mQrEDtBlgsnDXIUoqiYSJY8o5mRfvvHjBLFlmSNdK9m7sz7dY6PNTN3fvM9+t2Hj+787u+O6g8OP6rJbJ45oAFgHqWc9vmopN92zl3nnLtO0u9I+ttgygKwmDoztbf6O6dve2tCdcYtlCvBhXRWXzk7uuwAPOv44Ki+cnZU4+msT5UBQPUoJQQ3OOeOzz5wzj0kqcH3igBcUTxiuuvm9b62+YuvWi+P4RBlNz09o3R+RvuODvjS3r6jA8rkZ5gDGgAuUcoR73Ez22tmG4r//kCFGSMArLKrvJi2da+TF/UntHrROm27aZ1a1jB2tNwuZHM68shTV7wRylJlcjP6h1NP6UI250t7AFAtSjmCvkNSUtIhSZ+TdE3xOQCrLBot3CDhva+7wZf23vu6G9ToRRTlRgtlN5GZ1sGT/t6N/sCJIU1kmPkDAOYqZXaIH0v6zQBrAVCCpnhEt77sGt12Q1IPnV3+2NHbbkjq1pddE9jFdiiNc1rSjVAidaZYpE7Z/IzyM27RZc+dT8stvggA1JwlH/XM7EuSftE592zx8dWSPu2ce11QxQFY2Jp4RNc0xPSevldI0rKC8G03JPWevlfomoaY1sQIwZXgQmb+YQv1daa+zrV6403Xqu2qhLL5GeWmZxStr1MsUqfhZ9M6evqHenDwGU3PE4q5EQoAvFApR71rZgOwVDgzbGZrA6gJwBIlmz1J0t2vealec/01+rMHzi5pLKkXrdN7X3eDOl/crHUt3nPtoPzm67/tm9bpHT+9QU+eTytSX5jBo05SxOy5MW3xSJ3etOla/frWl+nj//KEjpx66pJ2GQ4BAHOVEoJnzKzDOTckSWZ2nSS+YAPKLNnsyUnKTc/o03e/Wl85+4zu+/aTC95a966b1+tnb1irsYtZvXxtIwG4wiSi9c/93BCr1wfv2qREtE6S6WXJBq2JR1RvpvFMTpncjLxonZq9qJJNcU1m8srOON3Zs06v+4kX6/fuO6XJ4l0AvUj9Ap8IALWplBD8fkn/YmZfkWSSXiPp7kCqAlCStc2eGr2Ifnwxp+vXNur9b+zUixrjyk3PPBeUovV1+tHElGac09qmuF6RamQIRAWavWFJQ6xen3j7ZuWnnZJNMa2JRXX4kWEdPDm04B84uzZ3aEdPmxpidRq9kNUn3r5Zb//ESU1mp7kRCgBcopQL475oZjdLuqX41Ludc/8++7qZ/YRz7rt+FwhgadbEIloTi2htQ0yjk1OacdKFTF7Z/LRikcJsEm1XeUo2ecwCUcHqrBBo//COLjXF69WyJq7jg88U5vtdZKjLufNpffCBs/qrL39Pe7d1aevGtRq7OKW/fEuP/vj+AdXR5QDwAuZ8umTYzL7tnLvZl8auoLe31/X396/GRwHAqsrlpnXs7DN6+doGNcVjet/nTy/rznFbNyb1J7/QrYmprL73zKT6OlP88QOg5pjZw8653vle83OPyP1WAWCFotF63dxxtRpj0WUHYKlwy+T3ff60GuJRvarjagIwAFzCz70iF8kBwApNT8/IJH158JllB+BZxwdH9eUzz8iK7QIAnsepAQCoIGOZnHLTTvuODvjS3r6jA8pOO40tMP8wANQqP0Nw1se2AKAm1dVJhx8ZXtJ8z0uRyc3oyKlhLowDgEuUNGeOmXVL2jD3fc65Q8X/b1ngbQCAJbqQntbBk0O+tnngxJDu6F6nqxK+NgsAoVbKbZM/Lqlb0nclzZ6icJIOBVAXANSs+eYBrqT2AKAalHIm+BbnXFdglQAAdCGgsbsTU/lA2gWAsCpllNg3zIwQDAAB8mss8OXtTgfSLgCEVSlngj+lQhB+WtKUCvMCO+dcdyCVAUANSkTrA2nXiwTTLgCEVSkh+GOS/pOkR/X8mGAAgI8avZKuVy57uwAQVqXsFUedc0cCqwQAIDOpvTXh68Vs7a0JGff0BIAXKGVM8HfM7ICZ7TKznbP/AqsMAGpQsiGmXZs7fG1z95YOrW2K+9omAIRdKSE4ocJY4J+X9KbivzuCKAoAalU8FtGOnjZ5UX/ubuFF67R9U5tijAkGgBdY8nAI59zbgywEAFDQ7EW0d1uX3v+Fx1bc1t5tXWpJMB4YAC5Vys0yPEnvlPQTkrzZ551z7wigLgCoWU2JqPo6Uzo2OKLjg6PLbmfrxqT6ulJq9KI+VgcA1aGU79v+TtKLJb1O0lckrZd0IYiiAKDWpVo87d/Zra0bk8t6/9aNSe3f2a1Us3flhQGgBpUSgl/unNsradI5d6+kbZJ+MpiyAACpZk/7f6FbH7jzxiWPEfaidfrAnTcSgAHgCkoZKDZ7L89nzexGSU9LWut/SQCAWakWTzt61um2G9bqyKlhHTgxNO/0ae2tCe3e0qHtPW1q8SIMgQCAKyglBH/UzK6WtFfSEUmNkv4wkKoAAM9p9KJq9KJ6x60b9KZN6+ScNDGVVyY3LS9ar8Z4RGbS2qY4s0AAwBKVMjvEPcUfvyLppcGUAwBYSDwW0foYMz0AgB+WPCbYzFJm9jEz+6fi4y4ze2dwpQEAAADBKOXCuE9KekDSuuLjf5X0br8LAgAAAIJWSgi+xjn3WUkzkuScy0uaDqQqAAAAIEClhOBJM3uRJCdJZnaLpLFAqgIAAAACVMoVFr+twqwQLzWzr0lKSrorkKoAAACAAJUSggckfV7SRRXuFPcFFcYFAwAAAKFSynCIT0naKOl/Svo/kl6hwq2UAQAAgFAp5Uzwjc65rjmPj5vZgN8FAQAAAEEr5Uzwt4sXw0mSzOwnJfX7XxIAAAAQrCueCTazR1WYESIq6etmNlR8fJ2kwWDLAwAAAPy3lOEQdwReBQAAALCKrhiCnXM/WI1CAAAAgNVSyphgAAAAoCoQggEAAFBzCMEAAACoOYRgAAAA1BxCMAAAAGoOIRgAAAA1J/AQbGavN7OzZvZ9M9uzyHJvNjNnZr1B1wQAAIDaFmgINrN6SR+W9AZJXZJ2mVnXPMs1SfotSd8Ksh4AAABACv5M8BZJ33fOPe6cy0r6tKQd8yy3T9KfSsoEXA8AAAAQeAhuk3RuzuMni889x8xultTunDu6WENmdreZ9ZtZ/+joqP+VAgAAoGaU9cI4M6uT9CFJv3OlZZ1zH3XO9TrnepPJZPDFAQAAoGoFHYKHJbXPeby++NysJkk3SnrIzJ6QdIukI1wcBwAAgCAFHYJPSrrezF5iZjFJb5F0ZPZF59yYc+4a59wG59wGSd+UtN051x9wXQAAAKhhgYZg51xe0n+T9ICkM5I+65z7rpn9sZltD/KzAQAAgIVEgv4A59w/SvrHS577wwWWvS3oegAAABCsqWxeo5NZSdKFdF7p3LQS0Xo1JQrRM9kQUzwWeAxdVHk/HQAAAFXjQjqn8Uxehx8Z1sGTQzp3Pn3ZMu2tCe3a3KEdPW1q9iJqSkTLUKlkzrmyfPBK9Pb2uv5+hg0DAABUipGxjI6dGdG+owPK5GauuLwXrdPebV3q60wp1eIFUpOZPeycm3fCBc4EAwAAYEVGxjPa8/nTOj649Hs5ZHIzev8XHtOxwRHt39mtVHMwQXghZZ0nGAAAAOE2MpbRnkOlBeC5jg+Oas+h0xoZX90bBxOCAQAAsCwX0jkdOzOy7AA86/jgqI4NjGgik/OpsisjBAMAAGBZxjN57Ts64Etb+44OaCyd96WtpSAEAwAAoGRT2cIsEFe6CK4xVq/2qxNqjNUvulwmN6Mjp4Y1lV2dIMyFcQAAACjZ6GRWB08OXfZ8IlavP7+rW11tLYqYaTyTUyY3Iy9ap2YvqrxzeuzJZ/Xezz2qdHb6Be89cGJIb9q0TutXYQ5hQjAAAABK5pwumwf4nre+Sp3XtujwI8P6ky8OLjpP8LH3/KzO/HBMv/qph5977dz5tFZr9l6GQwAAAKBkE5nnhy1c15rQ135/q0bGp3T7hx7SBx84O28AlgpB94MPnNXtH3pII+NT+trvb9V1rYnn251iOAQAAAAqVDpXGMpwXWtCn/m1W/W+Zc4TvHVjUp/5tVv1Sx/5un5wPq1MbvrKb/YBZ4IBAABQMi9aiJEH3nVLyQF4ruODo3rf50/rwLtukSTFI6sTTwnBAAAAKFmTF9U9b32VHjo76ss8wQ+dHdXfvvVVavKiPlW4OEIwAAAAlqXz2hZf5wnuurbFl7aWghAMAACAkl29pn5J8wQv1ew8wVevWZ1L1gjBAAAAKNmz6el55wleiQMnhvTsKt01jhAMAACAks03T/BKMU8wAAAAKtrceYJ9bXeV5gkmBAMAAKBk6YDm82WeYAAAAFSsRLQ+kHa9SDDtXooQDAAAgJI1esHM4hBUu5ciBAMAAKBkZlJ7a8LXNttbEzLztckFEYIBAABQsmRDTLs2d/ja5u4tHVrbFPe1zYUQggEAAFCyeCyiHT1t8qL+xEkvWqftm9oUY0wwAAAAKlmzF9HebV2+tLV3W5daEqszHlgiBAMAAGCZmhJR9XWmtHVjckXtbN2YVF9XSo1e1KfKrowQDAAAgGVLtXjav7N72UF468ak9u/sVqrZ87myxRGCAQAAsCKpZk/7f6FbH7jzxiWPEfaidfrAnTeWJQBL0uoNvAAAAEDVSrV42tGzTrfdsFZHTg3rwIkhnTufvmy59taEdm/p0PaeNrV4kVUdAjEXIRgAAAC+aPSiavSiesetG/SmTevknDQxlVcmNy0vWq/GeERm0tqm+KrNArEQQjAAAAB8FY9FtD5W2TGTMcEAAACoOYRgAAAA1BxCMAAAAGoOIRgAAAA1hxAMAACAmkMIBgAAQM0hBAMAAKDmEIIBAABQcwjBAAAAqDmEYAAAANQcQjAAAABqDiEYAAAANYcQDAAAgJpDCAYAAEDNiZS7gEo2lc1rdDIrSbqQziudm1YiWq+mROHXlmyIKR7jV4jKwnpbvaanZ3T+Ylb5GacLmbymctOKR+vV5EUUqTO1rompvp5zGwDKLwzHIo6E87iQzmk8k9fhR4Z18OSQzp1PX7ZMe2tCuzZ3aEdPm5q9iJoS0TJUCjyP9bZ6ZfMzOj+Z1f2nn9K933hiwb5926s36I7udWptiCkWIQwDWH1hOhaZc64sH7wSvb29rr+/P5C2R8YyOnZmRPuODiiTm7ni8l60Tnu3damvM6VUixdITcCVsN5Wr/OTWT14ZkR7Dz+25L7dt+NG3d6ZUmtDbBUqBICCSjwWmdnDzrneeV8jBD9vZDyjPYdO6/jgaMnv3boxqf07u5VqJlBgdbHeVq8fTUxpz+ce1ZfOjJT83td2prT/zTfpRY3xACoDgBeq1GPRYiGY78uKRsaW33mSdHxwVHsOndbIeMbnyoCFsd5Wr/OT2WUHYEn60pkR7fnco/pxcUweAAQlrMciQrAK41eOnRlZdufNOj44qmMDI5rI5HyqDFgY6231yuZn9OCZkWUH4FlfOjOiY2dGlM1f+WtJAFiOMB+LCMGSxjN57Ts64Etb+44OaCyd96UtYDGst9Xr/GRWew8/5ktbew8/pvOcDQYQkDAfi2o+BE9lC1cwLmUA91JkcjM6cmpYU1kCBYLDelu9pqdndP/pp3zt2/tPP6Xpac4GA/BX2I9FNR+CRyezOnhyyNc2D5wYem5uPCAIrLfV6/zFrO79xhO+tnnvN57Q+Yv0LQB/hf1YVPMh2DnNO4fdSpw7n1YIJ91AiLDeVq/8jAukb/MzdC4Af4X9WFTzIXgiE8wp94kpvlZGcFhvq9eFoPo2oHYB1K6wH4tqPgSnc9OBtJsJqF1AYr2tZlMB9cEUM0QA8FnYj0U1H4IT0fpA2vUiwbQLSKy31SweUN9yG2UAfgv7sajm94qNXiRU7QIS6201awqoD4JqF0DtCvuxqOZDsJnU3prwtc321oTMfG0SeAHW2+oVqbNA+jZSR+cC8FfYj0U1H4KTDTHt2tzha5u7t3RobVPc1zaBuVhvq1frmpje9uoNvrb5tldvUGsDfQvAX2E/FtV8CI7HItrR0yYv6s+vwovWafumNsUYW4kAsd5Wr/r6Ot3Rvc7Xvr2je53qORMMwGdhPxbVfAiWpGYvor3bunxpa++2LrUkGHuH4LHeVq/Whpj27bjRl7b27bhRrQ0xX9oCgEuF+VhECJbUlIiqrzOlrRuTK2pn68ak+rpSavSiPlUGLIz1tnrFInW6vTOl13amVtTOaztT6utMMTMEgMCE+VjEnrEo1eJp/87uZXfi1o1J7d/ZrVSz53NlwMJYb6tXa0NM+99807KD8Gs7U9r/5pt0NWeBAQQsrMcicyG8T2pvb6/r7+8PpO2RsYyOnRnRvqMDyuSuPLm8F63T3m1d6utKESRQNqy31ev8ZFYPnhnR3sOPLblv9+24UX2dKQIwgFVVicciM3vYOdc772uE4MtNZHIaS+d15NSwDpwYmve+2O2tCe3e0qHtPW1q8SJ8lYyyY72tXtn8jM5PZnX/6ad07zeeWLBvf+XWDdp20zq1NsQYAgGgLCrtWEQIXqapbF6jk1k5V7iPdSY3LS9ar8Z4RGbS2qY4V9Oj4rDeVq/p6Rmdv5hVfsZpIpPXVH5G8UidGr2IInWm1oY4s0AAqAiVcixaLARzOfgi4rGI1sf4FSFcWG+rV319nZJNxa8MW8pbCwAsJgzHosquDkDJZv/6lqQL6bzSuWklovVqKk47k2yIKV7hOybMLz2V048u5iTN37cvWhNVIs4QFwBYCo6EQJW4kM5pPJPX4UeGdfDkwuOwdm3u0I6eNjV7ETUlCExh8OzFrCanppfctw3xel21hoviAGAxjAkGqsCyr8jtTCnVwuwQlezpsYweXEbf3t6Z0ovpWwA1jgvjgCo2Mp7RnkOndXxwtOT3Mk9wZaNvAWBlFgvBzKEDhNjI2PJDkiQdHxzVnkOnNTKe8bkyrNTT9C0ABIoQDITUhXROx86MLDskzTo+OKpjAyOayOR8qgwr9ezFwg0y/OrbsYtZnyoDgOpBCAZCajyT176jA760te/ogMbSeV/awspNTk372rcTU9O+tAUA1YQQDITQVLYwC8RSLpRaikxuRkdODWsqSxAut/RULpC+TU9xph8A5iIEAyE0OpnVwZNDvrZ54MTQc/MLo3x+dDEXSN/Ozi8MACggBAMh5JzmnSt2Jc6dTyuEk8VUHfoWAFYHIRgIoYlMMMMWJqYYDlFu9C0ArA5CMBBC6VwwFzplAmoXS0ffAsDqIAQDIZSI1gfSrhcJpl0sHX0LAKsj8BBsZq83s7Nm9n0z2zPP679tZgNmdtrMHjSz64KuCQi7Ri8SqnaxdPQtAKyOQEOwmdVL+rCkN0jqkrTLzLouWew7knqdc92S7pP0wSBrAqqBmdTemvC1zfbWhMx8bRLLQN8CwOoI+kzwFknfd8497pzLSvq0pB1zF3DOHXfOXSw+/Kak9QHXBIResiGmXZs7fG1z95YOrW2K+9omSveiNdFA+jbZSN8CwFxBh+A2SefmPH6y+NxC3inpn+Z7wczuNrN+M+sfHV3ZrUSBsIvHItrR0yYv6s8m7EXrtH1Tm2KMGy27RDwaSN/GAxprDABhVTEXxpnZL0vqlfRn873unPuoc67XOdebTCZXtzigAjV7Ee3ddunoouXZu61LLQnGjFaKhni9r33bGCcAA8Clgg7Bw5La5zxeX3zuBcysT9L7JW13zk0FXBNQFZoSUfV1prR148r+KNy6Mam+rpQavahPlWGlrloT0+0+9m3LmphPlQFA9Qg6BJ+UdL2ZvcTMYpLeIunI3AXM7JWSPqJCAH4m4HqAqpJq8bR/Z/eyw9LWjUnt39mtVLPnc2VYqRfTtwAQKHMB30vTzN4o6S8l1Uv6uHPuA2b2x5L6nXNHzOyYpJsk/bD4liHn3PbF2uzt7XX9/f2B1g2EychYRsfOjGjf0QFlcjNXXN6L1mnvti71daUISRXu6bGMHqRvAWBZzOxh51zvvK8FHYKDQAgGLjeRyWksndeRU8M6cGJI586nL1umvTWh3Vs6tL2nTS1ehCEQITF2MauJqekl921jrJ4hEAAgQjBQU6ayeY1OZuWcNDGVVyY3LS9ar8Z4RGbS2qY4s0CEVHoqpx9dzC3Yt8nGOLNAAMAci4VgLgcHqkw8FtH6GJt2NUrEo1of5+w9APiBI+UiZs+oSdKFdF7p3LQS0Xo1FaeSSjbEFCdsoMKw3lYv+hZAWIRhf8Xech4X0jmNZ/I6/MiwDp5cePzdrs0d2tHTpmYvoqYEZ2dQXqy31Yu+BRAWYdpfMSb4Esu+yr4zpVQLV2KjPFhvqxd9CyAsKnF/xYVxSzQyntGeQ6d1fLD02zIzJyfKhfW2etG3AMKiUvdXi4XgirltcrmNjC2/8yTp+OCo9hw6rZHxjM+VAQtjva1e9C2AsAjr/ooQrML4lWNnRpbdebOOD47q2MCIJjI5nyoDFsZ6W73oWwBhEeb9FSFY0ngmr31HB3xpa9/RAY2l8760BSyG9bZ60bcAwiLM+6uaD8FT2cIVjEsZwL0UmdyMjpwa1lSWgw6Cw3pbvehbAGER9v1VzYfg0cmsDp4c8rXNAyeGnpsbDwgC6231om8BhEXY91c1H4Kd07xz2K3EufNphXDSDYQI6231om8BhEXY91c1H4InMsGccp+Y4qtHBIf1tnrRtwDCIuz7q5oPwencdCDtZgJqF5BYb6sZfQsgLMK+v6r5EJyI1gfSrhcJpl1AYr2tZvQtgLAI+/6q5kNwoxcJVbuAxHpbzehbAGER9v1VzYdgM6m9NeFrm+2tCZn52iTwAqy31Yu+BRAWYd9f1XwITjbEtGtzh69t7t7SobVNcV/bBOZiva1e9C2AsAj7/qrmQ3A8FtGOnjZ5UX9+FV60Tts3tSnG+DsEiPW2etG3AMIi7Purmg/BktTsRbR3W5cvbe3d1qWWBGPvEDzW2+pF3wIIizDvrwjBkpoSUfV1prR1Y3JF7WzdmFRfV0qNXtSnyoCFsd5WL/oWQFiEeX9FCC5KtXjav7N72Z24dWNS+3d2K9Xs+VwZsDDW2+pF3wIIi7Dur8yF8F6avb29rr+/P5C2R8YyOnZmRPuODiiTm7ni8l60Tnu3damvK8XBBmXDelu96FsAYVGJ+ysze9g51zvva4Tgy01kchpL53Xk1LAOnBia977Y7a0J7d7Soe09bWrxInzdiLJjva1e9C2AsKi0/RUheJmmsnmNTmblXOE+1pnctLxovRrjEZlJa5viXHGNisN6W73oWwBhUSn7q8VCMJcMLyIei2h9jF8RwoX1tnrRtwDCIgz7q8qursxm/4qRpAvpvNK5aSWi9WoqTt+RbIgpXuEdDAAAsNrCkKFIcPO4kM5pPJPX4UeGdfDkwuNZdm3u0I6eNjV7ETUlGH8HAABqW5gyFGOCL7HsKxs7U0q1cCU2AACoTZWYobgwbolGxjPac+i0jg+Olvxe5uQEAAC1qlIz1GIhmJtlFI2MLb/zJOn44Kj2HDqtkfGMz5UBAABUrrBmKEKwCuNXjp0ZWXbnzTo+OKpjAyOayOR8qgwAAKByhTlDEYIljWfy2nd0wJe29h0d0Fg670tbAAAAlSzMGarmQ/BUtnAF41IGcC9FJjejI6eGNZUlCAMAgOoV9gxV8yF4dDKrgyeHfG3zwImh5+bGAwAAqEZhz1A1H4Kd07xz2K3EufNphXDSDQAAgCULe4aq+RA8kQnmlPvEFMMhAABA9Qp7hqr5EJzOTQfSbiagdgEAACpB2DNUzYfgRLQ+kHa9SDDtAgAAVIKwZ6iaD8GNXiRU7QIAAFSCsGeomg/BZlJ7a8LXNttbEzLztUkAAICKEvYMVfMhONkQ067NHb62uXtLh9Y2xX1tEwAAoJKEPUPVfAiOxyLa0dMmL+rPr8KL1mn7pjbFGBMMAACqWNgzVM2HYElq9iLau63Ll7b2butSS4LxwAAAoPqFOUMRgiU1JaLq60xp68bkitrZujGpvq6UGr2oT5UBAABUrjBnKEJwUarF0/6d3cvuxK0bk9q/s1upZs/nygAAACpXWDOUuRDe37e3t9f19/cH0vbIWEbHzoxo39EBZXIzV1zei9Zp77Yu9XWlCMAAAKBmVWKGMrOHnXO9875GCL7cRCansXReR04N68CJoXnvi93emtDuLR3a3tOmFi/CEAgAAFDzKi1DEYKXaSqb1+hkVs4V7mOdyU3dV5ZjAAAHe0lEQVTLi9arMR6RmbS2Kc4sEAAAAJeolAy1WAhmGoNFxGMRrY/xKwIAAChFGDIUF8YBAACg5hCCAQAAUHMIwQAAAKg5hGAAAADUHEIwAAAAag4hGAAAADWHEAwAAICaQwgGAABAzQnlHePMbFTSDwL8iGsk/XuA7aO86N/qRd9WN/q3utG/1a1c/Xudcy453wuhDMFBM7P+hW6xh/Cjf6sXfVvd6N/qRv9Wt0rsX4ZDAAAAoOYQggEAAFBzCMHz+2i5C0Cg6N/qRd9WN/q3utG/1a3i+pcxwQAAAKg5nAkGAABAzSEEAwAAoOYQgucws9eb2Vkz+76Z7Sl3PVgZM2s3s+NmNmBm3zWz3yo+32pmXzKz7xX/v7rctWL5zKzezL5jZvcXH7/EzL5V3I4/Y2axcteI5TGzq8zsPjMbNLMzZvZqtt/qYWbvKe6bHzOzg2bmsf2Gl5l93MyeMbPH5jw37/ZqBX9V7OfTZnZzOWomBBeZWb2kD0t6g6QuSbvMrKu8VWGF8pJ+xznXJekWSf+12Kd7JD3onLte0oPFxwiv35J0Zs7jP5X0F865l0v6saR3lqUq+OF/S/qic26jpE0q9DPbbxUwszZJvymp1zl3o6R6SW8R22+YfVLS6y95bqHt9Q2Sri/+u1vS36xSjS9ACH7eFknfd8497pzLSvq0pB1lrgkr4Jz7oXPu28WfL6hwAG1ToV/vLS52r6Q7y1MhVsrM1kvaJume4mOT9HOS7isuQv+GlJm1SPoZSR+TJOdc1jn3rNh+q0lEUsLMIpLWSPqh2H5Dyzn3VUnnL3l6oe11h6RPuYJvSrrKzK5dnUqfRwh+Xpukc3MeP1l8DlXAzDZIeqWkb0lKOed+WHzpaUmpMpWFlftLSb8naab4+EWSnnXO5YuP2Y7D6yWSRiV9ojjc5R4zaxDbb1Vwzg1L+l+ShlQIv2OSHhbbb7VZaHutiMxFCEbVM7NGSZ+T9G7n3Pjc11xhjkDmCQwhM7tD0jPOuYfLXQsCEZF0s6S/cc69UtKkLhn6wPYbXsWxoTtU+GNnnaQGXf5VOqpIJW6vhODnDUtqn/N4ffE5hJiZRVUIwH/vnDtUfHpk9muX4v/PlKs+rMhPSdpuZk+oMHzp51QYQ3pV8etVie04zJ6U9KRz7lvFx/epEIrZfqtDn6R/c86NOudykg6psE2z/VaXhbbXishchODnnZR0ffHK1JgKA/SPlLkmrEBxfOjHJJ1xzn1ozktHJL2t+PPbJB1e7dqwcs659znn1jvnNqiwvX7ZOfcfJR2XdFdxMfo3pJxzT0s6Z2Y3FJ+6XdKA2H6rxZCkW8xsTXFfPdu/bL/VZaHt9YiktxZnibhF0ticYROrhjvGzWFmb1RhjGG9pI875z5Q5pKwAmb205L+WdKjen7M6H9XYVzwZyV1SPqBpP/gnLt0MD9CxMxuk/S7zrk7zOylKpwZbpX0HUm/7JybKmd9WB4z61HhoseYpMclvV2Fkzdsv1XAzP6HpF9SYSaf70j6VRXGhbL9hpCZHZR0m6RrJI1I+iNJX9A822vxD5+/VmEIzEVJb3fO9a96zYRgAAAA1BqGQwAAAKDmEIIBAABQcwjBAAAAqDmEYAAAANQcQjAAAABqDiEYAAAANYcQDABlYGbbzWzPlZe87H0bzOyxAOq5zcxunfP4k2Z212LvAYAwi1x5EQCA35xzR1RZd6W8TdKEpK+XuQ4AWBWcCQYAnxXP1g4Wz6b+q5n9vZn1mdnXzOx7ZrbFzH7FzP66uPwnzeyvzOzrZvb4Us/Amlm9mf2ZmZ00s9Nm9mvF528zs4fM7L5iHX9fvEOTzOyNxeceLn7m/Wa2QdJ/lvQeM3vEzF5T/IifubQmM7vWzL5aXO6xOcsCQKgQggEgGC+X9OeSNhb/7Zb005J+V4Xbd1/q2uLrd0jav8TPeKekMefcZkmbJb3LzF5SfO2Vkt4tqUvSSyX9lJl5kj4i6Q3OuVdJSkqSc+4JSf9X0l8453qcc/+8SE27JT3gnOuRtEnSI0usFQAqCsMhACAY/+ace1SSzOy7kh50zjkze1TShnmW/4JzbkbSgJmllvgZPy+pe86Z4xZJ10vKSjrhnHuy+PmPFD9zQtLjzrl/Ky5/UNLdi7Q/X00nJX3czKLF1wnBAEKJM8EAEIypOT/PzHk8o/lPQMxd3pb4GSbpN4pnb3uccy9xzv2/edqbXuAzr+SympxzX5X0M5KGJX3SzN66jHYBoOwIwQAQXg9I+i/Fs7Iys1eYWcMiy5+V9NLiGGBJ+qU5r12Q1HSlDzSz6ySNOOf+VtI9km5eRt0AUHYMhwCA8LpHhWEO3y5e+DYq6c6FFnbOpc3s1yV90cwmVRjaMOsfJN1nZjsk/cYin3mbpPeaWU6F4RWcCQYQSuacK3cNAIBVYmaNzrmJYmj+sKTvOef+otx1AcBqYzgEANSWdxUvlPuuChfSfaTM9QBAWXAmGAAqkJndJOnvLnl6yjn3k+WoBwCqDSEYAAAANYfhEAAAAKg5hGAAAADUHEIwAAAAag4hGAAAADXn/wMiR2T9Hjh02wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zV1Z3v/9fa950bGEgiCcE7SSgERpGiVgXB2haFqrRVZ9rai/Scdto5tsOotfS0ZTpVrNrT+c30VMd2WmdQZ7witIWCRK2XAnokIiSotHI1BAIJSfZ9r98fSWiAAEn4fnd23O/n48FD9u3DihvW/uz1/azPMtZaRERERERyiWeoByAiIiIikmlKgkVEREQk5ygJFhEREZGcoyRYRERERHKOkmARERERyTm+oR7AYIwePdqeeeaZQz0MEREREclir7322j5rbUlfjw3LJPjMM89kw4YNQz0MEREREclixpj3jveYyiFEREREJOcoCRYRERGRnKMkWERERERyjpJgEREREck5SoJFREREJOcoCRYRERGRnKMkWERERERyjpJgEREREck5w/KwDBGRXBSLJ2nuiANwKJIkkkgR9nspDHdN5SX5AYIBTesiMvSGw3yl2VJEJMsdiiRoiyZ55o1dPLJ+OztaIsc8p7I4zI0XjmPelAqKQj4Kw/4hGKmI5LrhNF8Za+2Q/MGnYurUqVbHJotILmhqjbJ6SxOLV2wmmkif9Pkhv4dFcyYwu6aMshGhDIxQRKRLNs5XxpjXrLVT+3xMSbCISHZqaoty+5P1rG1oHvBrZ1aXcNd1tZQVKREWEfdl63x1oiRYG+NERLJQU+vgP1AA1jY0c/uT9TS1RR0emYjIkYbrfKUkWEQkyxyKJFi9pWnQHyg91jY0s3pzE+3RhEMjExE50nCer5QEi4hkmbZoksUrNjsSa/GKzbRGko7EEhE52nCer5QEi4hkkVi8a1d1fzaV9Ec0kWbZxl3E4kqERcRZw32+cjUJNsb8whiz1xiz6TiPG2PMT40x7xhj6o0x57s5HhGRbNfcEeeR9dsdjbl03fbD/TpFRJwy3Ocrt1eC/x342Ake/zhwXvevBcDPXB6PiEhWs5Y++2qeih0tEYZhIyARyXLDfb5yNQm21r4AtJzgKfOAX9surwIjjTFj3ByTiEg2a4+6cxmwPaZyCBFx1nCfr4a6JrgC2NHr9s7u+45hjFlgjNlgjNnQ3HxqOxBFRLJVJJFyJW7UpbgikruG+3w11Elwv1lrH7DWTrXWTi0pKRnq4YiIuCLs97oSN+RzJ66I5K7hPl8NdRK8C6jsdXts930iIjmpIOQbVnFFJHcN9/lqqJPgZcDnurtETAdarbV7hnhMIiJDxhioLA47GrOyOIwxjoYUERn285XbLdIeAV4BqowxO40xXzLG/A9jzP/ofspvgG3AO8CDwFfdHI+ISLYryQ9w44XjHI1507RxlBYGHY0pIjLc5ytX15uttTee5HELfM3NMYiIDCfBgI95Uyr46XNvO9KAPuT3MHdyBQHVBIuIw4b7fDXU5RAiInKUopCPRXMmOBJr0ZwJjAirHlhE3DGc5yslwSIiWaYw7Gd2TRkzq0+tE87M6hJmTyijIOR3aGQiIkcazvOVkmARkSxUNiLEXdfVDvqDZWZ1CXddV0tZUcjhkYmIHGm4zlfGDsOzNKdOnWo3bNgw1MMQEXFdU2uU1VuaWLxic79q7kJ+D4vmTGD2hDIlwCKSUdk4XxljXrPWTu3zMSXBIiLZrT2aoDWSZNnGXSxdt50dLZFjnlNZHOamaeOYO6WCESGfSiBEZEj0NV8VBLyclh/gQEec9ngqo/OVkmARkQ+AWDxJc0cca6E9liSaSBHyeykI+jAGSguD6gIhIlkhEkuwvzMBwKFIkkgiRdjvpbB749uoPD/hoPtf1k+UBGvL8AlEYwn2neANHJ3nJ5SBN1BEBLraEY0NaNoWkex1KJKgLZrkmTd28cj641+5uvHCccybUkFRyEdheGhyKa0E96G1M057LNXvN7Ag6GVEXsC18YiIiIhku0HXBNeUUTZCNcH94mYS/H5rlDWDeANn1ZRxuktvoIiIiEg2a2qLcvuT9axtaB7wa93sDnGiJFgt0nppaotyx1P13Pn0pn6ffBJNpLnz6U3c8VQ9TW1Rl0coIiIikl2aWgefAAOsbWjm9iczn0cpCe72/jB9A0VERESGyqFIgtVbmgadP/VY29DM6s1NtEcTDo3s5JQE01UDvMahN3DNlibaInGHRiYiIiKSvdqiSRav2OxIrMUrNtMaSToSqz+UBAPtsZRjb+APlm/mUDTlSCwRERGRbBWLd3WB6G8J6clEE2mWbdxFLJ6ZRDjnk+BoLMEzG51/A6OxzC3ni4iIiGRac0ecR9ZvdzTm0nXbae7IzBX1nE+C93UmeGSd829gT39hERERkQ8ia+mzjeyp2NESIVONy3I+CR7ub6CIiIjIUGiPulO20B7LTDlEzh89NNzfQJGjpVJpWjrjJNOWQ9EkiWQKv89LYciHz2Mozgvg9eb8918RETlFkYQ7e6CiLsU9Ws4nwcP9DRTpEU+maemIU7/jIGksowuCxJNp4sk0AZ+HtkiCfe0xDDC58jSK8wMEfEqGRURkcMJ+rytxQz534h4t5z8BQ353/hcElVxIBrV0xFn3p/283xYlmvzLFzALpKyld3VONJHm/bYo6/60n5YMbT4QEZEPnoKQO2upbsU9Ws6vBBeG/MMqrsjR9rfH2Np0iGgiRUHIz7Z9HTzx+s4+a90ri8Ncf/5YzhidTzSRovH9NsaXFTKqIDgEIxcRkeHMmK7PFSf3VlUWhzHGsXAnlPPLlT1voJMy+QZKbmvpiLPnYNdGzPdaOrnhgVf4yeq3jzsh7WiJ8JPVb3PDA6/wXksn1sKegxEOaEVYREQGqCQ/wI0XjnM05k3TxlFamJmFmZxPgovCXlfewKJwzi+yi8viyTT72qOkLDzw4jYWL9/S737X0USaxcu38MCL20hZaG6PEk860ytbRERyQzDgY96UCsdKS0N+D3MnVxBQTXBmtEVSXHreaEffwI+cO5q2DB77J7mptTNOImW5f/VW6hoHd+R3XWMz96/eSiJlae3UarCIiAxMUcjHojkTHIm1aM4ERmRwETHnk2Br4cEX/8TCq6ocibfwqioeeGGb+gSLq1KpNNFUmj9u2z/oBLhHXWMzf9y2n1gyTSql1WAREem/wrCf2TVlzKwuOaU4M6tLmD2hjIIM7qnK+ST4UDTBso27Ob0ozIyqU3sDZ1SVcHpRmGfr96hPsLiqNZoglkizZGWjI/GWrGwkmkzTGtVJhyIiMjBlI0LcdV3toBPhmdUl3HVdLWVFIYdHdmI5nwT31FD+w+MbWXDZ2YNOhGdUlbDgsrP5h8c3dsdVn2BxTzKdZuVb7/e7Bvhkook0q956n6RWgkVEZBDKikLcdW0tP/zkxH6XmIb8Hn74yYlDkgCDWqQdbvTcEU9xy682sGT+ZC49bzT3rGzsV4IR8ntYeFUVpxeFueVXG+iIdyW/mWr0LLkplrA8un67ozEfWb+dayaXOxpTRERyR9mIEPOmlDOjqpRlG3exdN3247brvGnaOOZOqWBEyJfREojecj4J7t2QuSOe4mtLX+ea2jE8est0nt/azOMn6Lc6//yxXD6+hIf+8Ceerd9y3LgibnCyL6Mb8UREJPcUhPwUhPzcfNEZXDO5HGvpKhG1KTBeCoI+jOlqrxYMDG2upEyNYxs9P1u/h99sep9Z1aX8/UerKB8ZJpFKE02kCfk9+L0edh+MsLx+Dz997h1SaXtMPBE3uVVz3qFa9qwWiydp7u7pfCiSJJJIEfZ7KezeTZ0NHyoiktsORRK0RZOkbRowGAPWWqIJCPlt921oOhTD60lQFPJRGNZK8JDIC3q4cdo4lvzuyA1GqbRl1eYmVm1uAsDnMQR8HuLJNMn0iVs/3DRtHPlBlUOIe2Iu1ZzH1Cs4K/V8qDzzxi4eWX/8y4s3XjiOeVMqhvRDRURyV1NrlHgyicfjZUX9+/znuveOO1/99bSuleKDnTE64ynKRmS+JjjnN8ZF4mnmTi4/aRF3Mm3pjKdOmgCH/B6umVxOZ1wb48Q9QZdqzgPenJ8Ssk5Ta5RlG3cz6746lqxsPOFpgEtWNjLrvjqWbdxNU2s0wyMVkVy2vy2KxfKHd1qYdV8dd/2u4YTz1V2/a2DWfXX84Z0WLJb9bZmfs3L+E68o7OX91qhzjZ6vnsD7rVFGaBVGXJTn0pUGt+LK4DS1Rbn9qXrufHrTgE4DvPPpTdz+VD1NQ/ChIiK5Z39rlCRw51ObuOOpNwc0X93x1Jvc+dQmkpDxRDjnk+ADHUnGjAjz4bNHOdLoefpZoxgzIkxLh07fEnc5XXuuWvbs0tQa5fYn61nbMLjDUNY2NHP7k0qERcRdhyIJEli+/eSbrGnYO6gYaxr28u0n3yRpoT2D/epzPgkG6Iwn2Lj9AD+YO/GUGj3/YO5E3th+gI64DhwQd4X8Hq4/f6yjMeefP/Zwy0AZWociCVZvaRp0AtxjbUMzqzc3ZfRDRURySzyVoq6xedAJcI81DXup27qXWDJz5aQ5nwR3xJKEAz6mnzOKe1c18O2P1wyq0fO3P17DvasamH7uKPICPtUEi6tSacus6tJ+/z09mZDfwxXVpSeteZfMaIsmWbxi8wmf4/MY8gJefB5zwuctXrGZ1oi6foiI82LxJLGk5XvPvuVIvP+97C1iSUssnpk5K+e7Q4wM+3n6jd08tn47j33lYu54qp6PnDOa3996Ocvrd5+00fPVteWseut9/um3W/jRtbV85ucvc8O0ccydXDEEP43kCp/XsKc1ysKrqli8fMvJX3ASC6+qYk9rdEhO7JEjxeJdXSCOrqnzegyza0r5xKQxVIwME0+miSfTBHweAj4Puw5GWFG/hzUNe49o2xhNpFm2cRdfvPhMtU8TEUfF0imW1+929PTS5fW7uWHaWIIZSFFzfkZMWQ63HPrMz19m6S3TqWtsZs4/v8iCS8/m55+9gLyAj45Y8nCf4Pygj854kue27GXOP7/IbVdV84/zJvKZn7/Mey0Rlq7bztW1OnlL3OPzeKgeU0QqbZlRVUJd4+Avm8+oKqF8RJjqMUX4vCdeVRT3NXfEeeSo0wDnTi7ni5ecyfaWTgK+rtV/C6SspSfdDfo8zJk0hq/OOIdfvPRnlm3cffj1S9d1nQY4VkmwiDjoUDTFw6++52jMh199jzmTxpCJNRnNiPzlpKz3WiJccvdaHvzcBfz2G5exbOMuvvLwa+xoiRDyeSgI+WiPJokm04dXgn/7jcvYvKeVS+5ee0w8EbeMCPnpiKfojCdZcNnZAINKhGdUlbDgsrPZczCCBxgRDjg8Uhkoa/8yh+QHvCyZP5mgz4AxbNvXwRPdp1ge3bu8sjjM9eeP5YzR+cydPIarPnQ6//D4RjriKXa0RLCqdBERh6XT7pxemqnKvJxPgtujx9ad3PLr1wgHvNxz/SQe/tKH8RpDeyxJNJEi5O868i9lLZt2HmT2/c8T6aP+160TvUQAvF4PIa+HCeUj+P+ee5tPXVDJpeeN5p6Vjf26LBXye1h4VRWnF4X5z1ff42+vOI+gz4P3JPWl4r6eOSk/4OWhmy8knbZseb+Nv3vsDT5y7mj+/qNVVIwME0umiSVTBH1egr3KIR58cRvfvHI8NacX8dDNF/Klf19PRzylOUlEHOfWKaMdqgnOjMhxTt6KJ9M8W7+HlIWKkWGSyTSptCUWT9ERSx7+wIkf54StqEsneon0yA/6ONAZ53/OOJefrN5K2O/l0Vum8/zWZh7vXi08WmVxmPnnj+Xy8SU89Ic/EUns53/NHo/XA/mhnJ8OskLPnHTvp6cQ9nu5f/VWikJ+/vPLH+bFt/fx41V9H5hRWRzm01Mr+erMc/jFH/7Mi2/v49bZ47n301P4H//xmuYkEXHc8XKoUxXNUHOBnP/U62t3fU/9Xd3W5hN+4Fx//tg+6++gqz5PxE2ReBIMYC1fvOQs/rSvg79+6I9cck7XamH5yDCJVPpwLbvf62H3wQjL6/fwwIvb+PbHazhrdH7X9XcMnbEkeaoZHXJhv5e5k8upLA7zz2u6Vvn3t8e44YFXT7jKv6Mlwr2rtvIva9/h2x+vYVRBkJ/VvcPXZ53HNbVjCLl0yqCI5C63cp1AhnKonP/EKwz95WS3nvq799si3PDgyT9wfrL6bf7v8++y8KqqI+rvjo4r4rRUKk0kmWZHS4TTi4IAlBYFWfrl6bz87l9WC/uqG71p2jj+dua57D3UdYiCMV1/n/MCPlKpNF4dnTykCkI+vnHFOby8bT83X3IWD76wbUD9N6OJNN9d9hazqku55bKzee29Fr4x61xC/pyf7kXEYQUuXUF0K+7RNCvStarb0h7nwc9P5YEXtg1og1E0kWbx8i3MqCrhwc9P5ZZfbaC4QJuLxF2H4gne3NnKgc4E33jk/7Fk/mTyAh4sUDEizJ2f6FoJTKT+0kbL7/Wwvz1GLJnG0tVn9kBnglt+vYHvzJlAPJWmIORlZDg41D9eTgv6DbGkh9OLwgNOgHvred1nLqzEGE/X5joREQcZDJXFYUc3x1UWhzFkZr7K+SWfcMDDjReOY8n8yQNOgHura2zmgRe2sWT+ZG6aNo5wQJcexT3t0RTnlBbwg+Vv0RFP8bWlr/Pk67sAi6fXv2pD1yTVezrp6oJmefL1XXxt6et0xFN8f/lbnFNSQHtUdaNDzWsMDXta2dced+QEpv3tcRreb9UKv4g4LuT3MN/h00s/dUHmTi/N+VkxmbJcf8FY3m+LnFKvVehKhN9vi3D9+WNJpZ1pHC3SF7/XUNe494iSnWfr93D9z15h2cY9xHpt2OydAMeSaZ7Z2PW8Z+v3HL4/mkhT17gXv/oED7lIIs3404v4wXJnTmD6/vK3GF9W1GcXGxGRUzEy5OfqyeWOnl46p7acEXmZKSnN+XIIa7uOoL1nZaMj8e5Z2cjHPjQGdZoSN8WTts8G5am0ZdXmJlZtbgI4pib4RB5+9T0+PnGMK+OV/vN5DWsb9jp6AlNd417mTtEBPiLiLH9321gnTy8tDPrwZ+jKVc6vBAf8ps8jSger54jSgF9ZsLirPzVYybSlM546aQLc33jivkTS8h9/dP4EpkRSp2WIiPMKgz4uOWc0M6pKTinOjKoSLjl3dMY2xYGSYDpj6WOOKD1VS9dtpzOmcghxz3BvUC4n5sYJTCIibsgL+hiVH+DW2eMHnQjPqCrh1tnjGZUXyGirzpwvhwB94Mjw41qDch2oMOT0BUdEhpuSohAWWHDp2YM6vbTm9CLGjAhRUhRyf7C95HwSfCiacCWujigVN7nWoFwdBIacvuCIyHDT0hFn36EoY0aGSaYsjy64iOcb95789NKqUtoiCcpHhtl3KIrf6+G0/My1mc35JNipWuBj4+oDR9xTEHSpQblLcaX/9AVHRIaTeDLN3kNRlqzaSl1jM4vm1PDRD53O+LLCI3rW9z69dH97DGthVH6A1/7cwud+sY4ZVSXc/vFq8oO+jJ0Yl/Ozolu96HREqbjJmK4G5U6qLA5jjDZ0DrXhfgKTiOSW1s44L72z73Cb2cUrtjDrvud5t7mdcaPyKCkMMjLspzjPz8iwn5LCIONG5fFuczuz7nuexSu6ukrUNTbz0jv7aO2MZ2zsOT8r6gNHhqOAzzD//LHcv/ptx2J+6oKxrq1CSv8N9xOYRCR3pFJp2mLJY9rMxpNpfrxqKz9etRWAkM9DQchHezRJNHn8K/D3rGxkRlUpxal0Rg74yflPPI/BlRU1T87/nxU3pdMwp9bZBuWfmFROqh+t1MRdQb9x5QQmfcEREae1RhMs37j7pKWl0WSafe3xEybA0FWiuqJ+N60u7dc6Ws7PiqUFQW6cNs7RmDdNG0dpYWZ3OEpu8Xi6akcXXlXlSLyFV1UR8nnw6pSXIef1GMe/4MyZVI5PpwGKiMM64ykef32nozH/+7WddGbohMucT4L9fi/zplQ4+oEzd0pFxk47kdzUk6tOP3vUCfsy+jyGvIAX3wmS2xlVJUw/exQWMEYrwUOtM5YmP+h19AtOfsBLR0ybdUXEWWlrXWkzm7aZ+SxS4SpwWtjPoqsncOdTm0451nevnsBpGTrzWnJXImV5+d19TKkcya2zxwNdmwq8HsPsmlI+MWkMFSPDxJJpookUIb+XoM/DroMRVtTvYU3DXlJpe7hBuc9jeOmdZi4bXzrEP5l0xJK8/O4+Lu4+galns8lgzKgq4eJzRrPizT1cct5oB0cpIgLtUXfawbZn6Eu7kmC6Tju5sqaM1VuaWNsw+A+cmdUlzK4py+hpJ5KbUmmoKiukMOgjnoyz4NKz+dz0MyguCFLXuJcfr2o8bm/G688fy1dnnktLe4yQ34vHQGHIR/XpRaoJzgKRRIofLN/C6m9edsQXnIHq+YLj9xoWr9jC01+72OmhikiOi52kxnew4hlqM6tr9t1Ki0LcfV0tM6sHd+TfzOoS7r6ultIMn3YiuSmdtsSSaV58ex+JVIqzS/JpaotxwwOv8JPVbx/38tSOlgg/Wf02NzzwCk1tMc4uySeRSvHi1n3Ek6mMXYKS4+vZwHbjA68yKj/AgkvPZtHVNf0u2Qr5PSy6uoYFl57NqPwANz7wKqA+wSLiPNfazLoU92iaFXvpSYR/eO3EAX3g/NO1E5UAS0alrKV8ZJiHXtpG+ch87njqTe546s1+H/4STaQPv6Z8ZD4PvbSNMSPztBKcBXraKza3x7n2X1+ipDDIuSUFPLrgIm6dfd5xu9lUFoe5dfZ5PLrgIs4tKaCkMMi1//oSze3xI+KKiDgl36UDltyKezTNikcpLQpx7V9VMKOqlGVv7GLpuu3Hvax807RxzJtSwcg8v0ogJKOKwj7+a/1OfnnzNO54qn7QZTxrG5q546l6fnnzNJZt3M2npjrbmksGrnef4Ob2OFfe/8LhE5jOKy044QlMaWsPn8D0+V+uPxxTfYJFxA1ejzt9zU+0mdtJytz6kBfwkRfw8eVLzmLelHLSFg5Fk4c3GBWGfHgMlBSG1AVChkQknmZSxQjqGptPqY4duhLhuupmJpYXEYm7U98l/efv4yCUxSu2cPfKRr5xxblcUVNKXsBHRyxJ2J8m4POQH/SRH/Ty3Ja9/K/HNhI/qk7vUxeMJeBTEiwizirJD/DZ6WfwT79pcCzmZ6efwejCoGPxTsTYYVgDOHXqVLthw4ahHobIkNnR0onHGGbdV9fvEogTCfk9rPnmDNLWUlmc58AIZbDeb43QHktx9T+/eML3tr8nMIX8HlZ8/VIKgl7KRjh7MJCIyO6DEa6417nPoue+NYPykc7NVcaY16y1U/t6TMuYIsNQ2O/hmTd2OTLpQFeN8LKNuwgHNCUMtWTa9qtPcH9PYOrpE5xQvbeIuGBk2M/35n7IkVjfn/shRmawzaw+8USGoUgizSPrtzsac+m67SqHyAIBr4cXtjYf7hN8Knr6BNdt3UtAxyaLiAvygj6uqCplVvWp9ZmfVV3KzKrSjO6x0qwoMky5cUqPDL1R+QFaI0n8XsOts8cPOhHu3Sf4UCzFqPzM1NiJSO4pLQrxo+smDToRnlVdyo+um5TxLltKgkWGIfdO6XEnrvSf1+th7uQxfOGX6xzpE/yFX67jmtoxeDO021pEclNPIvyj6yYNaL7qec1QtJlVdwiRYSji0mk60Qyd0iMnVpwf5OuzzuPaf32JpbdMJ5Hq6hP8fONeHn9953HbNs4/fyyXV5XS2hk/3Cd44ceqKdYqsIhkQGlRiHlTyrlsfAnLN+7mP/743nHnq7/58BlcM7l8SNvMKgkWGYZcO6XHl5lTeuTEAj4Ps2tOZ9VbTafUJ3h2TSlX1pSpHlhEMqanzewXLz6TayaPOdxmNpZIEcyyNrNKgkWGIbdO/9KpYtmjOD/A3dfXctsT9YPqEzy7ppS7r6/ltPzAUP8oIpKD/H4v5SOzu+WmPvFEhiFjcOWUHqOy0awyqiDIP107idk1e/nes2/x41Vb+fGqrcDx+wSH/B7uun4SV1SVMqpAZRAiIseja2Qiw1BJfoAbLxznaMybpo2jNEOn9Ej/7G+P8W5zO6MKAjy24CL+/qPjqSzuaiJ/dJ/gyuIwf//R8Ty24CJG5Qd4t7md/e2xoRy+iEhW00qwyDAUDPiYN6WCnz73tmOn9MydXEFANcFZo6Ujzq4DEX7+wjbqGpvxegyzqkv5+49WUT4yTCKVJpZIE+yuCd59MMLy+j3cv/ptUmnLjKoSvjl7PB5jVBIhItIHJcEiw1RRyMeiORO48+lNpxxr0ZwJjAhrOsgW8WSavYei3Ld6K3WNzQCk0pZVm5tYtbkJAJ/HEPB5iCfTJPs4Da7ndXd8vJr8oE+b40REjqJZUWSYKgz7mV1TxszqUztVbGZ1CbMnlFEQytxRlXJirZ1xXn5n3+FEti/JtKUznuozAe5R19jMS+/so7Uz7sYwRUSGNSXBIsNY2YgQd11XO+hEeGZ1CXddV0vZEDQpl76lUmnaYkmWrGx0JN6SlY20xZKkUjoSW0SkNyXBIsNcWVGIu66t5YefnDigU3p++MmJSoCzUGs0we82ve9IrTdANJFm5ab3aY0mHIknIvJB4XoSbIz5mDGm0RjzjjHm9j4eH2eMWWuM+X/GmHpjzCfcHpPIB03ZiK5TetZ8cwa3fazqcAeBo1UWh7ntY1Ws+dYM5k0pVwKchTrjKR5dv93RmI+s305nXKcBioj05upOGGOMF/gX4EpgJ7DeGLPMWru519O+A/yXtfZnxpgJwG+AM90cl8gHUUHIT0HI331KTznWQnssSTSRIuT3UhD0YQyUFgbVBSKLWYuj/Z+hK549fumwiEhOcns7+DTgHWvtNgBjzKPAPKB3EmyBou7fjwB2uzwmkQ+0YMDH2CE6h11OXXss2a/nFQS8nJYf4EBHnPZ+rPJ29DOuiEiucPuTsgLY0ev2TuDDRz3ne8AqY8zXgXxgdl+BjDELgAUA48Y5e0iAiEi2iB2nFjgc8HLv/FomVALauxYAACAASURBVIzAZwxt0QTRRJqQ30NRyE/SWjbtPMjCJ94k0kdSHEtqY5yISG/ZsFx0I/Dv1tp7jTEXAQ8bYyZaa4+Ysa21DwAPAEydOlUX9kTkAynYRz/ff/vcBdSMGcEzb+ziR79r6LNcorI4zI0XjmP1rZezZU8rX/71a0c8rj7BIiJHcntW3AVU9ro9tvu+3r4E/BeAtfYVIASMdnlcIiJZKS/4l3rtM4rDvHTbTJraYsy6r44lKxuPWy+8oyXCkpWNzLqvjqa2GC/dNpMzem2QzAuoDlxEpDe3V4LXA+cZY86iK/m9AbjpqOdsB2YB/26MqaErCT5+h3gRkQ+4yuIwHuCxr1zMHU/Vs7ah/1NiNJHmzqc3MbO6hMe+cjGf+fnLqBBCRORYribB1tqkMeZvgZWAF/iFtfYtY8wPgA3W2mXAt4AHjTG30rVJ7mZrtY9ZRHJTyO/h+vPH8qkLxg44Ae5tbUMzdzxVz9JbpvP4azsJ+7USLCLSm+s1wdba39DV9qz3fd/t9fvNwCVuj0NEZDiIxNN85sKxPLeledAJcI+1Dc3UVTdzw9Sx6hMsInIU7ZQQEckiyXSadNqweMXmkz+5Hxav2EzSGpJpFUWIiPSmJFhEJIuMzPPzzBu7HD02ednGXYzM8zsST0Tkg0JJsIhIFokm0jzi8LHJS9dtdyypFhH5oFASLCKSRXRssohIZigJFhHJIu1Rd4437u9xzCIiuUJJsIhIFokk3OniEHUprojIcKUkWEQki7jVzzfkU59gEZHelASLiGSRgpA77dvdiisiMlwpCRYRySLGdB2b7KTK4jDGOBpSRGTYUxIsIpJFSvID3HjhOEdj3jRtHKWFQUdjiogMd7o+JiKSRYIBH/OmVPDT5952pLdvyO9h7uQKAqoJFpEMisQS7O9MAHAokiSSSBH2eykMd6Weo/L8hINDe4iPkmARkSxTFPKxaM4E7nx60ynHWjRnAiPCmupFJDMOdMbpjKV45o1dPLJ+e599zyuLw9x44TjmTakgL+jltLzAEIxU5RAiIlmnMOxndk0ZM6tLTinOzOoSZk8ooyCkI5NFxH3vt0b5Tf0eZt1Xx5KVjcc9+GdHS4QlKxuZdV8dv6nfw/ut0QyPtIuSYBGRLFQ2IsRd19UOOhGeWV3CXdfVUlYUcnhkIiLHamqLcsdT9dz59KZ+l3JFE2nufHoTdzxVT1Nb5hNhJcEiIllob1uU+1Y18I/zJvLDT04k5O/fdB3ye/jhJyfyj/Mmct+qBvYOwQeLiOSW91uj3P5kPWsbmgf1+rUNzdz+ZOYTYSXBIiJZpjOWZPWWJh7bsItL7l5LaVGQNd+cwW0fqzpu+7TK4jC3fayKNd+cQWlRkEvuXstjG3axeksTnXEdmSwi7jjQGWfNlqZBJ8A91jY0s3pzEwc74w6N7OSMtTZjf5hTpk6dajds2DDUwxARccWugxFm3Vt3xCXFcMDLPddPYuLYkXiNoT2WJJpIEfJ7KQj6SFnLpp0HWfjEm0TifzkiOeT3sOZbM6gY6WzvYRERgF0HIsy6r86xbjZrvjmDitOcm6+MMa9Za6f29Zi2DIuIZJFEomtX9dEfKJF4ir995I3DtwsCXk7LD3CgI057r6T3aNFEmmVv7OLLl5yF36UjmUUkN0ViiT7nq8GKJtIs27iLmy86IyPt01QOISKSRZo7YjyybvtJn9ceT7HjQOSECXCPpeu209wRc2J4IiKH7e9M8Mj6k89XA7F03fbD/YXdpiRYRCSLpC3HbSs0WDtaIqSHX+WbiGQ569J8lalKXSXBIiJZ5FDUnU1sbsUVkdzV7tK80h7LzHylJFhEJItEEicvbxiMqEtxRSR3Dff5SkmwiEgWCbu0eS2kTXEi4jDX5itfZuYrJcEiIlmkMORO0x634opI7ipwaV5xK+7RlASLiGQRj+G4B2IMVmVxGI9xNKSICMal+cpkaL5SEiwikkVK8oPcOG2cozFvmjaOksKQozFFREbl+bnxQhfmq4KgozGPR0mwiEgW8fu9zJtSQcjvzPQc8nuYO6UCv1fTvYg4Kxz0Oz9fTa4gmKE9DJoVRUSyzGlhP9+9eoIjsb579QROy3P/5CURyT2JRAq/FxbNcWa+WjRnAn5vV9xMUBIsIpJl8oI+ZteUMbO65JTizKwuYXZNGXkBbYoTEec1d8RoaotxRU2pI/PVrJpSmtpiGTvhUkmwiEgWKi0Kcfd1tcf9YPF5DHkBL77j7HibWV3C3dfVUlqkWmARcYfPa1jTsJcv/HIdd51gvjqZmdUl3HVdLTf/ch3PNew97rzmNC0PiIhkqZ5EePWWJn74my185NzRfGLSGCpGhokl00QTKUJ+L0Gfh10HI6yo38NL7+7jzk/UMLumTAmwiLiqM57midd3sqMlwud/8Ud++YVpPLdlL4tXbCaaSJ/09SG/h0VzJjCrppTP/+KPNLzfTkd8J/P+qiIDowdjM3VAs4OmTp1qN2zYMNTDEBHJiEPRBG2RJM+8sYtH1m9nR0vkmOdUFoe58cJxzJtSQVHYR2FIdcAi4q739ndw+T11R9z35P+8iLKiMMs27mLpuuPPVzdNG8fcyRU0tUW47mevHPH48wtncMaofEfGaIx5zVo7ta/HtBIsIpLFWjrirNnSxKJnNp1wZWVHS4QlKxv56XNvs3jeRGbVlFGcH8jgSEUk13TGjt3Adt3PXqEg5OOhz13A1bXlALTHkoevXBUEu1LPPQc7uer/vEB7NHls3Lg2xomI5LT97TFue7yehY/X9+vSIkA0kWbh4/Xc9ng9+9szs7lERHJTLNn3vBRPpnntvQMciiVIW0s6bfGZrv+mreVQLMG6Px8gfoLXZ4KSYBGRLNTSEef2J97k91uaBvX6329p4vYn3uRAR9zhkYmIdOmrP/B3r65hzTcv58xR+Wzf30nzoRgHIwn2tic4GEnQfCjG9v2dnDUqnzXfvJzvXl1zTIygLzPpqcohRESyTDyZZs2WpkEnwD1+v6WJ1VuamDelgkCGPlREJHcUhf+y96CkIMDSW6az60CE/R1xtu5tP7xp7miVxWGuP38sFcV5nD26gN/fehk3Pfgqze3xY+K6SbOiiEiWaemIs+iZTY7EWvTMJlq0GiwiLvB7DZXFYUoKAjz11UtoPhTj3X3t3PDAK/xk9dt9JsDQtYfhJ6vf5oYHXuHdfe00H4rx1FcvoaQgQGVxGL9XLdJERHJOKpVmef3uftcAn0w00RXvCxefiVdHJ4uIg4rzAnxu+pnMrC5hf0ecB17cRl1jc79fH02kWbx8CzOqSrh19ngeWTCdtY3NFOcHXRz1X2hGFBHJIi2dcX71yp8djfmrV/5MS6dWg0XEWclUmrmTx5BIWe5fvXVACXBvdY3N3L96K4mUZV7tGJJJdYcQEck5ybQ97iXEwdrREiGZHn494UUkuzV3xAHDy+/uG3QC3KOusZmX392HxXTHdZ+SYBGRLHKoj56ZTuirF6eIyKkoCHk5FEtyz8pGR+Lds7KR9liSgpDXkXgnoyRYRCSLxBLuXAY8Xj9PEZHBiiXSrHB4D8OKN3cTcyjeySgJFhHJIkG/OysgapEmIk6LJy2Pv77T0Zj//dpO4snMlG9pVhQRySKFIXea9rgVV0Ryl7Xu7GGwKAkWEck5Pk9X300nVRaH8Xky03dTRHLHoZhbexjUHUJEJOcU5wX4/EVnOhrz8xedmbG+myKSO+Iu7TWIq0WaiEju8Xo9XF1bTsjvzPQc8nfF82olWEQcFnZpD0PIpbhHUxIsIpJlivMDLJ430ZFYi+dNpDg/4EgsEZHe8oPu7DVwK+7RlASLiGSZgM/DrJoyrqwpO6U4V9aUMbumTJ0hRMQVAa87exgyNWdpZhQRyULF+QHuun7SoBPhK2vKuOv6SZymVWARccnogiCfnX6mozE/N/1MRhdkZg+DkmARkSw1qiDI3fNruWd+bb9rhEN+D/fMr2XJ/FpGZeiDRERyU9cehjGO7mGYUzsmY3sY1DhSRCSLFecHmDelgkvPK2F5/W5+9cqf++zLWVkc5uaLz2TOpHKK8wMqgRCRjBhdEOT7cz/EbU+8ecqxfjDvQxlbBQYlwSIiWS/g83D6iBBfuPhM5k0pJ5m2tEeTxJJpgj4PBSEfPo+hOD+oLhAiklEBn4crJ5zO7zc3sXrL3kHHmV1TypU1p2f0C7ySYBGRYcLr9VBSGOq6MWJoxyIi0qM4P8Dd19dy2xP1g0qEZ9eUcvf1tRnfw6DrZSIiIiJySkYVBFkyfzJL5k8a0B6GJfNruWf+5CHZw6CVYBERERE5ZcX5AT45ZSyXnVd60j0Mn7/oTK6uHdo9DEqCRURERMQRw2kPg5JgEREREXHUcNjDcNL1Z2PMJGPMq8aYHcaYB4wxp/V6bJ27wxMRERERcV5/ijB+BnwPmARsBf5gjDmn+zG/S+MSEREREXFNf8ohCq21v+v+/Y+NMa8BvzPGfBaw7g1NRERERMQd/aoJNsaMsNa2Alhr1xpjrgeeAIrdHJyIiIiIiBv6Uw5xN1DT+w5rbT0wC3jSjUGJiIiIiLjppEmwtXaptfbVPu7fbq29pee2MeafnR6ciIiIiIgbnOxOfImDsUREREREXKNjk0VEREQk5ygJFhEREZGc42QSPLRn34mIiIiI9FO/k2BjzKSTPOX/nOJYREREREQyYiArwf9qjFlnjPmqMeaYU6Cttf/u3LBERERERNzT7yTYWnsp8NdAJfCaMWapMeZK10YmIiIiIuKSAdUEW2vfBr4D3AZcDvzUGNNgjLnOjcGJiIiIiLhhIDXBtcaY+4EtwBXANdbamu7f3+/S+EREREREHOcbwHP/Gfg34NvW2kjPndba3caY7zg+siyQSKRo7oiRtnAomiSSSBH2eykM+fAYKMkP4vd7h3qYIiIiIjJAA0mC5wARa20KwBjjAULW2k5r7cOujG6IdMaSHIgkeOaNXTyybjs7WiLHPKeyOMyN08Yxb0oFp4X95AUH8r9SRERERIaSsdb274nGvArMtta2d98uAFZZay92cXx9mjp1qt2wYYMrsfe2Rfn9liYWL99MNJE+6fNDfg+Lrp7AlTVllBaFXBmTyEDoCoaIiEgXY8xr1tqpfT02kOXLUE8CDGCtbTfG5J3y6LLI3rYotz1Zz9qG5n6/JppIc+dTm1i9pYm7r6tVIixDRlcwRERE+m8g3SE6jDHn99wwxlwAHPspexRjzMeMMY3GmHeMMbcf5zmfNsZsNsa8ZYxZOoAxOWYwCXBvaxuaue3Jeva2RR0emcjJ7W2L8vQbu5h1bx1LftfYZwIMsKMlwpLfNTLr3jqefmOX/r6KiEjOGsgy0P8C/tsYs5uuI5JPBz5zohcYY7zAvwBXAjuB9caYZdbazb2ecx5wB3CJtfaAMaZ0gD/DKeuMJfn9lqZBJ8A91jY0s3pLE5/8qwryAlphk8w40Rc4n8cQ8HmIJ9Mk038pfYom0nz7qU38XlcwREQkR/U7U7PWrjfGVANV3Xc1WmsTJ3nZNOAda+02AGPMo8A8YHOv59wC/Iu19kD3n7O3v2NyyoFIgsXLN5/wOQUBL6flBzjQEac9njru836wfDOXV5UqCZaMODoB9noMs2tK+cSkMVSMDBNLpoklUwR9XoI+D7sORlhRv4c1DXtJpe3hKxhKhEVEJNcMNFO7EDiz+3XnG2Ow1v76BM+vAHb0ur0T+PBRzxkPYIx5CfAC37PW/u7oQMaYBcACgHHjxg1w2MeXSKR45o1dx2yCCwe83Du/lgkVI/AZQ1s0QTSRJuT3UBTyk7SWTTsPsvCJN4n0SoqjiTTL3tjFly85S5uPxFWdsSSre13BmDu5nC9+5ExefHsfP17Vd0lEZXGYT0+t5Kszz+EXf/gzyzbu1hUMERHJSQPpDvEwcA7wBtCT9Vlr7TdO8Jr5wMestV/uvv1Z4MPW2r/t9ZzlQAL4NDAWeAGYZK09eLy4TnaH2HWgkxsefPWIhOHfPncBNWNGdG0wWn+CDUYXdm0w2rKnlS//+rUjHnv0lulUnPaB2jcoWWbXwQiz7q3DawxL5k9mf3uMf/rtln53Nfn2x2sYVRDkHx7fSMpa1nxrBhUjwxkYuYiISGacqDvEQDbGTaWrbver1tqvd/86bgLcbRdQ2ev22O77etsJLLPWJqy1fwK2AucNYFynJG05nOSeURzmpdtm0tQWY9Z9dSxZeZINRisbmXVfHU1tMV66bSZnFIcPP5bu33cLkUHpuYLhNYaHbr6QJ1/fyXeXvdWvBBi6rlh8d9lbPPn6Th66+UK8xrDsjV0kEscv9REREfkgGUgSvImuzXADsR44zxhzljEmANwALDvqOU8DMwCMMaPpKo/YNsA/Z9Dao0mgKwF+7CsX851nNnHn05sGlEzc+fQmvvPMJh77ysWHE+H2WNK1MYs0d8R4ZN127v30ZB58YRtrGgZXSr+mYS8PvrCNez89maXrttPcEXN4pCIiItlpIEnwaGCzMWalMWZZz68TvcBamwT+FlgJbAH+y1r7ljHmB8aYud1PWwnsN8ZsBtYCC621+wf+owxOpHvla+kt07njqVNrkXbHU/UsvWU6AFGtqImL0hb+qvI0WjoSg06Ae6xp2MuBjgRTxo7UFQwREckZA6kJvryv+621zzs6on5wsiZ48+5Wdh+M0NQW486nN51yvB9+ciKlRUEqRoaZUD7CgRGKHGvLnjaMgU/+y0v9vmpxIiG/h6e/egkWqBlTdOoDFBERyQKO1AR3J7t/Bvzdv18PvO7ICIdQYchPzZgRLF5x4hZp/bV4xWYmjBlBYcjvSDyRvvi8hhe2NjuSAENXWc8Lbzfj9xpH4omIiGS7fifBxphbgMeBn3ffVUFXPe+wVhj29tkibbCiiTTLNu6iMKz2aOKekM/Lw6++52jMh199j6BPf29FRCQ3DKQm+GvAJUAbgLX2bSDjp7s5rT2a4pH12x2NuXTddtqjqgkW9xjDcTuXDNaOlghGC8EiIpIjBpIEx6y18Z4bxhgfMOy30VjrTjLRz1JrkUHp6WrieFx1NRERkRwxkCT4eWPMt4GwMeZK4L+BZ90ZVuYomZDhyK3uIzGHyoJERESy3UCS4NuBZuBN4CvAb6y1d7oyqgyKuJRMqEWauCngG8g/3f7ze92JKyIikm18A3ju1621/wd4sOcOY8zfdd83bIX97mwECmmDkbgoPziQf7oDiau/tyIikhsGsuzz+T7uu9mhcQyZgpA7yYRbcUV6VHafTpit8URERLLZSZNgY8yNxphngbN6nxRnjFkLtLg/RPcpmZDhJuT3cP35Yx2NOf/8sa5dGREREck2/VmufBnYQ9exyff2uv8QUO/GoDIp6DfceOE4lqxsdCzmTdPGEXKpZlMEIJ60zKou5f8+/65jJ8ZdUV1KLKmNcSIikhtOmqlZa9+z1tZZay+y1j7f69fr1tph3wJh36E486ZUEPI7k7SG/B7mTq6guT3mSDyRvsSSKXa3Rlh4VZUj8RZeVcXu1gixpDZ0iohIbhjIiXHXGWPeNsa0GmPajDGHjDFtbg4uEwpCPrbsaWXRnAmOxFs0ZwKb97SqJlhclUxZzhiVT/mIMDOqSk4p1oyqEspHhDmjOJ9kSg2uRUQkNwxk+XMJMNdaO8JaW2StLbTWFrk1sEzxGMP3l29mRlUJM6tPLZmYWV3CjKoSfrB8Mx4dvSUuyg/6+Ne173IommTBZWcPOhGeUVXCgsvOpj2a5F/WvuNa1wkREZFsM5AkuMlau8W1kQyRvICX+eeP5aYHX+VH19YOOhGeWV3Cj66t5aYHX+VTF4wlP6ANRuIer8fw/3YcoCjs4z9feY9PXVDJoqtr+l3WE/J7WHR1DZ+6oJL/fOU9CsM+3th5EJ9HX95ERCQ3DGTZZ4Mx5jHgaeBwwau19knHR5VBI0J+rp5czs+ef5fP/Pxllt4ynbrqZhav2NyvDUchv4dFcyYwo6qEz/z8ZZoOxZhTW05ROJCB0UuuKskP8NnpZ/Ct/9rIQzdfyIMvbCMv4OXRW6bz/NZmHn99Z5/HgVcWh5l//lguH1/CQ3/4E53x/dxy2dl86d/X83ezz2N0YXAIfhoREZHMM9b2rwbQGPPLPu621tovOjukk5s6dardsGGDY/Ga26Isq9/N4uVdC90Pfu4CJowZwbKNu1i6bvtxk4mbpo1j7uQKNu9p5ZZfvwbAoqtrmFtbTklRyLHxifRl98EIV9xbh9cYlsyfzP72GHevbOCSc0Yzp3YM5SPDJFJpook0Ib8Hv9fD7oMRltfv4eV393HbVdWMKgjyD49vJGUtz31rBuUj1d5PREQ+OIwxr1lrp/b5WH+T4GzidBIcT6bZtq+du37bQF1jMwDhgJd7rp/ExLEj8RpDeyxJNJEi5PdSEPSRspZNOw+y8Ik3icS7dtTPqCrhjo9Xc9boAteOtRXp0RlLsqx+N7c/8SYA19SO4UuXnsUf3t7HYxt2sKMlgs9jCPg8xJNpkmlLZXGYz0yt5CPnjeahF//Es/V7ALj7+klcM7mcvIBqgkVE5IPDkSTYGDMe+BlQZq2daIyppWuj3D86N9T+cToJBmjpiLOzpZP7Vm89nAj3VhDwclp+gAMdcdrjx7aRmlFVwjdnj6eyOI/T8lUKIZmxty3KHU++yZqGvUBXrfCs6tIjVoJjiTTBo1aCn2vYSyrd9W9/VnUpP7puEqW6eiEiIh8wTiXBzwMLgZ9ba/+q+75N1tqJjo20n9xIggH2t8fY2nSIzXvauGdlY79rghdeVcWEMUWMLytkVIFqKiWzjk6Eezt6JfhoSoCHl1QqTUtnnGTaciiaJJZIEfR7KQz58HkMxXkBvF5dhRIR6XGiJHgg1z7zrLXrzJGtv4b9YRm9jSoIUmUM6bTl0QUX8Xzj3pNvMKoqpSOaoPr0Iq0Ay5AoLQrxo+smsaZhL99/9q0jvrwl05ZkH1cuQn4P//uaDzGrulQJ8DAQT6Zp6YizvH43v3rlz8ctdfn8RWdydW05xfkBlWSJiJzEQJLgfcaYcwALYIyZT9dxyh8oxfkBLjxrFC0dcapPL+TOT9QwqiB4zAaj/e0xPAZOLwpRPKZIHzgypEqLQsybUs5l40tYvnE3//HH94775e1vPnwG10wuZ2SeXzXAw0BLR5w1W5r43rNv8ZFzR/P3H62iYmSYWDJNLJki6PMS9HnYdTDCivo93L96K9+75kPMqimjWF/MRUSOayDlEGcDDwAXAweAPwF/Y639s2ujOw63yiGO1vvSY3s0SSKVxu/1UNBz6TE/iFd9VSXLJBIpmjtipC3HXDL3GCgpDOHXJfNhYX97jNufeJNwwMsXP3ImL769j//q3vR4tMriMJ+eWsml543mF3/4M5F4iruun6QSLRHJaY52hzDG5AMea+0hJwY3GJlKgkVEhkpLR5zvPr2Jj08aw/72GP/02y393qfw7Y93XcH67Zt7WPzJiSrVEpGcdaIkuN/LQcaYvzPGFAGdwP3GmNeNMR91apAiItIlnkzzfONe/uaiM3jy9Z18d9lb/UqAAaKJNN9d9hZPvr6Tv7noDOoa9xJP9u+1IiK5ZCDXRL9orW0DPgqMAj4L3OXKqEREclhLR5z8oI8HX9jWZ9eP/ljTsJcHX9hGftBHS0fc4RGKiAx/A0mCe4pfPwH82lr7Vq/7RETEAalUmjd3HWRfe3zQCXCPNQ172d8e581dB0mltBosItLbQJLg14wxq+hKglcaYwoBzaoiIg5q6Yxzxqh8frD8LUfifX/5W5wxKp+WTq0Gi4j0NpAk+EvA7cCF1tpOIAB8wZVRiYjkKGNgbcPeftcAn0w0kaaucS9G1+1ERI5w0iTYGFPd/dsp3f892xhzPnAGA+szLCIiJxGNp/mPP77naMyHX32PaFwX7kREeutPEvtNYAFwbx+PWeAKR0ckIpLDLPTZB/hU7GiJMLBmmCIiH3wnTYKttQu6/zvT/eGIiOS2jpg7p9F3xD9Qp9yLiJyygfQJ/lT3ZjiMMd8xxjxpjPkr94YmIpJ7IomUK3GjLsUVERmuBrIxbpG19pAx5iPAbOAh4P+6MywRkdwU9LlzpHVAR2WLiBxhILNizzLCHOABa+0KujpEiIiIQwpC/mEVV0RkuBpIErzLGPNz4DPAb4wxwQG+XkRETsJjoLI47GjMyuIwHrVIExE5wkCS2E8DK4GrrLUHgWJgoSujEhHJUXkBL/PPH+tozE9dMJb8gNfRmCIiw12/k+DuAzKeATqMMeMAP9Dg1sBERHLRiJCfqyeXE/I7c6Et5Pcwp7acorCq10REehtId4ivA03A74EV3b+WuzQuEZGc5PV6KAr6WHhVlSPxFl5VRVHQh1f1ECIiRxjIiW9/B1RZa/e7NRgREeky/exRzKgqoa6xedAxZlSVMP3sUQ6OSkTkg2Mg19t2AK1uDURERCCVSvPUG7sJ+jzcOns8M6pKBhVnRlUJt84eT9Dn4emNu0mldGyyiEhvA1kJ3gbUGWNWALGeO6219zk+KhGRHLW/I86ug528/O4+xpcVseDSs7n0vNHcs7KRaOLkiWzI72HhVVXUnF5EJJFi484D7DjQyf6OOKVFoQz8BCIiw8NAkuDt3b8CqD+wiIgr4qk0106p4IYHX8VrDEvmT2ZccR6PLriI5xv38vjrO9nREjnmdZXFYeafP5bLq0ppPhTlQGeCf3h8IylrefSW6cS1EiwicoR+J8HW2u8DGGMKum+3uzUoEZFclU5b6rY2H171/drS17mmdgxf+shZnDUqnzs/UcOogiCJVJpoIk3I78Hv9bC/PUYsmQZrWfbGbp6t33M45vNbm7n2/Iqh+pFERLJSv5NgY8xE4GG6+gNjjNkHfM5a+5ZLYxMRyTnJtOWJ13cecd+z9Xv4zab3mVVdypzaMQAYwGsMPT0fYsk0JIQtPQAAIABJREFUy+v38FzDXlJpe8TrH399J3OnlGdg9CIiw8dAyiEeAL5prV0LYIyZATwIXOzCuEREcpLPY/osd0ilLas2N7Fqc9Ph5wV8HuLJNMmjkt6j7WiJ4DVqkSYi0ttAkuD8ngQYwFpbZ4zJd2FMIiI5qzOe6tfzkmlLsp/PBehM9P+5IiK5YEDdIYwxi+gqiQD4G7o6RoiIiEP60wFiMGIuxRURGa4G0if4i0AJ8CTwBDC6+z4REXGIU8clHy3ocyeuiMhwNZDuEAeAb7g4FhGRnJcXHMgFuv7LdymuiMhw1e+lAWPM740xI3vdPs0Ys9KdYYmI5KZ02lJZHHY0ZmVx+JiOESIiuW4g18dGW2sP9tzoXhkudX5IIiK5Kxzw8JmplY7GvOHCSvICXkdjiogMdwNJgtPGmHE9N4wxZwBaWhARcVAiZbl8fIljtcEhv4fLzivRiXEiIkcZyCx7J/AHY8zDxpj/AF4A7nBnWCIiuakkP8DOAxEWXlXlSLyFV1Wx82CE0sKgI/FERD4o+p0EW2t/B5wPPAY8ClxgrT1cE2yM+ZDzwxMRyS3BgI/asSMpHxFmRlXJKcWaUVVC+YgwtRUjCfhUDiEi0tuAtgtba/cBy4/z8MN0JckiInIKikI+2iIJFlx2NgB1jc0DjjGjqoQFl/3/7d1/dFTnfefxz1fzG0nIyBaTIIuQbFMjFWSSytRO2i7EuJsUihycbgrp1knTZH+12zZt12xz5O2aZoubbrPbbU43PxuSU5PtOiRQaJsalqbdhgRwgmUikTYnIWCcjBULS0ia3/PsHzPYMui37p2f79c5HJiZO995Ds9zZz5z57nPfY0uPz+lthgrQwDAjbxcOJJrcgKAB1pjIW25Y7U+c+qifvZHuzSwo3vBc4SjoSYN7OjWz/5olz5z6qK2rF+tlmjI1/YCQC3y8vAAJ8kBgEfibVH9zs4N2ntoUC3hoD77nrv1pX8c0eNfe0aXR5M3bd/VHtPbXn+7/vkPd+gT/+87msj8QPt39Sq+MlqB1gNA9eM3MgCoUvGVUe1/a6+ODyf0jk98VW/8Z7fpN3/qDq25JaZsvqBUtqBoqEmhQJOefSGpo4Pf00f//tv67bd0a1tPnAAMAHPwMgRnPKwFAFDxiHD/pjXacsdqHXnqiv7gb76py6NJBZtM4WCTMrmCcqULbOzZvFa/s/NH1BYNMgUCAOaxqBBsZr2S1k1/nnPuUOnvuz1tGQBAktQSDaklGtIvvmGdfubONXJOmkjnlMrmFQ0F1BIJykxa3RphFQgAWKAFh2Az+6SkXknfkHR91XUn6ZAP7QIA3CASDur2MLPYAMALi3k3vds51+NbSwAAAIAyWcwSaafMjBAMAACAmreYI8GfVjEIf19SWsV1gZ1zrteXlgEAAAA+WUwI/oSkfyXpab00JxgAAACoOYsJwSPOuSO+tQQAAAAok8WE4K+b2WOS/kLF6RCSXloiDQAAAKgViwnBMRXD709Nu48l0gAAAFBzFhyCnXPv8rMhAAAAQLks5mIZUUnvlvQjkl68IL1z7hd9aBcAAADgm8WsE/wZSa+Q9C8kfUnS7ZKu+dEoAAAAwE+LCcE/5JwbkDTpnDsgabukH/OnWQAAAIB/FhOCs6W/XzCzDZLaJK32vkkAAACAvxazOsRHzWyVpAFJRyS1SHrYl1YBAAAAPlrM6hAfL/3zS5Je409zAAAAUOvSmZxGJjOSpGvJnJLZvGKhgFpjxejZ0RxWJLyYY7HeW8zqEHFJ/1XSGufcW8ysR9I9zrlP+NY6AAAA1IxryazGUzkdPndFB89c0uXR5E3bdLXHtPuuterf1KmV0aBaY6EKtFQy59zCNjT7K0l/Kun9zrk7zSwo6evOuY1+NnAmfX197uzZs+V+WQAAAMwiMZbS8eGE9h0bUipbmHf7aKhJA9t7tK07rnhbdN7tl8LMnnTO9c302GJOjLvNOffnkgqS5JzLScov4MXfbGbfNLNvmdneObZ7wMycmc3YUAAAAFSnxHhKez8/qPd/4fyCArAkpbIFvf8L57X384NKjKd8buHNFhOCJ83sVhUvlSwzu1vS2FxPMLOApA9LeoukHkm7S9MobtyuVdKvSvrqItoDAACACkuMpbT30KBOXhhZ0vNPXhjR3kPlD8KLCcHvU3FViNeY2T9I+rSkX5nnOZslfcs5923nXEbSZyX1z7DdPkmPSir/1wAAAAAsybVkVseHE0sOwNedvDCi40MJTaSy82/skcWE4CFJn5d0RlJC0sck/eM8z+mUdHna7WdK973IzF4vqcs5d2wRbQEAAECFjady2ndsyJNa+44NaSyZ86TWQiwmBH9a0noVV4j4n5J+WMVLKS+ZmTVJ+kNJv7GAbd9rZmfN7OzIyPK+bQAAAGB50pniKhALnQM8n1S2oCNPXVE6U54gvJgQvME590vOuZOlP++R9CPzPOeKpK5pt28v3Xddq6QNkv7WzC5KulvSkZlOjnPOfdQ51+ec6+vo6FhEswEAAOC1kcmMDp655GnNx05fenF9Yb8tJgR/rXQynCTJzH5M0nzrlJ2R9Foze7WZhSX9nIrziiVJzrkx59xtzrl1zrl1kr4iaadzjvXPAAAAqphzmnEd4OW4PJrUAlfvXbZ5L5ZhZk+ruCJESNKXzexS6farJF2Y67nOuZyZ/bKkL0oKSPqkc+4bZvaIpLPOuSNzPR8AAADVaSLlz7SFiXR5pkMs5IpxO5bzAs65v5T0lzfc9/As225ZzmsBAACgPJLZeS8XsSQpn+reaN4Q7Jz7bjkaAgAAgNoRCwV8qRsN+lP3RouZEwwAAABIklqiC5lQUD11b0QIBgAAwJJ0tcequt5cCMEAAABYtFioSbvvWutpzT2b12pFmOkQAAAAqFKXRpPq39SpaMibOBkNNWnnnZ26NDrlSb35EIIBAACwaNFQk4a/N6aB7T2e1BvY3qOh740pEixPPCUEAwAAYNFaoyH90qef1JY7OrR1/fKu5rt1fYe23NGh93z6SbVGQx61cG6EYAAAACxJV3tMez72Ff3eW3uXHIS3ru/Q7721V3s+9hVOjAMAAEB1a40FtPuutfruaFJv/8iX9bv9G/SB+zcseI5wNNSkD9y/Qb/bv0Fv/8iX9d3RpPZsXquVMZZIAwAAQJWKBQIvnhj33dGk3vjoSa1eGdGJ923RQ2++Y9ajul3tMT305jt04n1btHplRG989KS+O5p88cQ4vy7CcaPyRG0AAADUlUg4qGg6p4HtPXr/F85Lkt7z6ScVCwf0wQc26jPv/jEFzDSRzimVzSsaCqglElTeOZ1/5gVt+9CXlMy8dInkge09igRN4TJdMY4QDAAAgCUJBwN6U/dqbb3QoZMXRiRJyUxev3zw3IvbtIQDWtUc1tXJjCamhd7ptq7v0Ju6VytapqPAEtMhAAAAsEStsZBCsjlPjJvI5HX5anLOAPx7b+1VyEwtZVoZQiIEAwAAYBlua4sqaNIH7t+4pBPjPnD/RgVNum1l1OeWvhzTIQAAALAst62MKjGW0t2vadeJ923Rkaeu6LHTl3R5NHnTtl3tMe3ZvFY77+xUKptToMnKHoAlQjAAAAA8EG+LqjkV0FgypzfdsVo/vfGVaprhxLiCc0pl8pJJ8ZXRsk6BmI4QDAAAAE+0RENqiYaUzoQ0MpmRc8X7w9POdws0mV7d0Vy2VSBmQwgGAACApyLhoG4PV3fM5MQ4AAAANBxCMAAAABpOdR+nrrB8vqDRqYxyBadrqZzS2bwioYBao0EFm0ztK8IKBPgegeqSzeY1MplWwUnXUjkls3nFSuO2yaSO5ohCZVyMHACAakQInkEmV9DoZEZHB5/VgVMXZ13e48F71mlH7xq1N4cVDhKGUVlT6ZyuJrM6fO6KDs6xLM3uzWvVv6lTq2IhrYjwFgAAaEzmrp+2V0P6+vrc2bNnfak9OpnRieGEBg6fVypbmHf7aKhJ+/o36N7uuNqbw760CZjPc+MpHR9O6JGjQwsetw/v6NG27rhWV2BtRgAAysHMnnTO9c34GCH4Jc9PpLX3c0/rieHEop97X3dc+x/YqFtbIp63C5jLc+MpPXRo8MVrti/G1vUdenRXL0EYAFCX5grB/IZfMjqZWXIAlqQnhhPa+7mndXUy43HLgNktJwBL0skLI3ro0KCeG0953DIAAKobIVjFOcAnhhNLDsDXPTGc0PHhhDK5+X+OBpZrKp3T8eHEkgPwdScvjOj4cEJTmZxHLQMAoPoRglU8Cjxw+LwntQYOn9coR4NRBleTWT1ydMiTWo8cHdLVqawntQAAqAUNH4Lz+YKODj67oJOJFiKVLdbL5zkaDP9ks3kdPnfF03F75NwVZbN5T+oBAFDtGj4Ej05ldODURU9rHjh1UaNTHA2Gf0Ym0zp4+pKnNR87fUkjk2lPawIAUK0aPgTnCm7G9VSX4/JoUrlC7a26gdpRcPJl3DJsAQCNouFD8LWUPycDTfhUF5D8G7d+1QUAoNo0fAhO+zQHMs0KEfBR0qdxm2JOMACgQTR8CI6EAr7U5TLK8FPMp3Eb9akuAADVpuGTWms0WFN1AYlxCwDAcjV8CA42mbraY57W7GqPKdhkntYEpmsy+TJuGbYAgEbR8CG4fUVYD96zztOaD96zTu3NEU9rAtN1NEe0e/NaT2vu2bxWHa1RT2sCAFCtGj4EBwJN2tG7RtGQN/8V0VCxXoBDavBRKBRQ/6ZOT8ftzk2dCgUa/i0BANAg+MST1N4c1r7+DZ7U2te/Qe3NYU9qAXNZFQvp4R09ntR6eEePVq0IeVILAIBaQAhWcSWHe7vjuq87vqw693XHta07zsoQKIsVkaC2dce1dX3HsupsXd+hbd1xrQhzUhwAoHGQ1kram8Pa/8DGJQfh+7rj2v/ARq3iKDDKaPXKqB7d1bvkILx1fYce3dWr1SuZCwwAaCzmXO1dJ7Wvr8+dPXvWl9qjkxmdGE5o4PB5pbLzX/AiGmrSvv4N2tYdJwCjYp4bT+n4cEKPHB1a8Lh9eEePtnXHCcAAgLplZk865/pmfIwQfLNMrqDRyYyODj6rA6cu6vJo8qZtutpjeucb1mn7xjVqbw4zBQIVN5XJ6epUVkfOXdFjpy/NOm7fsXmtdm7q1C0rQkyBAADUNULwEuXzBY1OZZQrOE2kcsoVCgo2NaklGlSwydTeHGEVCFSdbDavkcm0Ck66lsopk8srHAyoNRpUk0kdrVFWgQAANIS5QjCHgeaQyeWVzhV/Ws7lnZLZgmIhU77glC84ZbI5xSKcUY/qki8UVLj+3dZJeVf8W5IKTsrn8oTgGpXO5DQymZEkXUvmlMzmFQsF1BorvpV3NIcV4eg+gCqQTGf1/FRW0szvV7euCFU8Q/FuOYMXpjKaTOd1+NwVHTwz+8/Ku+9aq/5NnWqOBHTLCuYDo7LGpjKaWMS4bYkE1Ma4rQnXklmNp3IL7tuV0aBaY3xBB1B+V6cymlrEZ9GKSECrKvRZxHSIG3x/LKUTwwntO7bwE4wGtvfo3u64XtHGCUaoDMZt/UqMFU96XGzfbuuOK07fAiijavwsYk7wAiXGU9p7aFAnL4ws+rlb13do/65exTnTHmXGuK1f9C2AWlGt71dzhWAmBpZ8f2zpnSdJJy+MaO+hQSXGUx63DJgd47Z+JehbADWiVj+LCMEqzgE+MZxYcuddd/LCiI4PJTQ2lfGoZcDsxjwet+NJxm21uJbM6riHfTuRynrUMgB4uasefxa9UMYMRQiWNJnOa9+xIU9q7Ts2pIl03pNawFwmPB6311KM22oxnsp52rdjyZwntQDgRlMefxZNljFDNXwITqazOnzuyoImcC9EKlvQkaeuKJnmyAv8k/Jp3KYYtxWXzuR86dt0hiAMwFu1nqEaPgQ/P5XVwTOXPK352OlLL66NB/jhBz6N2x8wbituZDLjS99eX18YALxS6xmq4UOwc5pxDbvluDyaVA0uuoEawritX/QtgFpR6+9XDR+CJ1L+/EQ4keanR/iHcVu/6FsAtaLW368aPgQns/5MwE75VBeQGLf1jL4FUCtq/f2q4UNwLBTwpW406E9dQGLc1jP6FkCtqPX3q4YPwS3RYE3VBSTGbT2jbwHUilp/v2r4EGwmdbXHPK3Z1R6TmaclgZdh3NYv+hZAraj196uGD8G3rghp911rPa25Z/NadbREPK0JTHcb47ZudTSHfenb1a30LQBv1XqGavgQHIuE1L+pU9GQN/8V0VCTdt7ZqYhP82QASYoybutWJBz0pW/DzAkG4LFaz1ANH4IlqTkS0MD2Hk9qDWzvUUuEDxv4r8XjcdsaZdxWi5XRoKd92xZjPjAAf6zw+LOouYwZihAs6ZYVYd3bHdfW9R3LqrN1fYe29cTVtiLsUcuA2bV5PG5Xxhi31aI1FtI2D/u2JRryqGUA8HKrPP4suqWMGYoQXPKKtqj27+pdciduXd+h/bt6FV8Z9bhlwOwYt/UrTt8CqBG1+llkrgavpdnX1+fOnj3rS+3vj6V0YjihfceGlMoW5t0+GmrSwPYebeuJ82GDimHc1q/EWErH6VsANaAaP4vM7EnnXN+MjxGCbzY2ldFEOq8jT13RY6cvzXhd7K72mPZsXqudmzrVEg4wBQIVN57M6Fpq4eO2NRJgCkSNmEhlNZbMLbhv26JBpkAAqIgXpjKaXESGag4HfJ0CQQheomQ6q+ensnKueB3rVDavaCiglkhQZlJHS4Sz6VF1UumsfsC4rUvpTE4jk5lZ+3Z1a4RVIABUhfky1K0rQopF/P+yPlcI5pThOcQiId1ehg4CvBRl3NatSDio28O8bQOoXteSWY2ncjp87ooOnikeCW4JB7SqOayrkxlNZPLqao9p911r1b+pUyujQbXGKvOZxZFgAAAALNuSz2HojiveVv45wRxSAAAAwLIkxlPa+/lBnbwwsuDnpLIFvf8L53X8QqIiq0OwRBoAAACWLDGW0t5DiwvA0528MKK9hwaVGE953LK5EYIBAACwJNeSWR0fTiw5AF938sKIjg8lNJHKetSy+RGCAQAAsCTjqZz2HRvypNa+Y0MaS+Y8qbUQhGAAAAAsWjpTXAViISfBLUQqW9CRp64onSlPECYEAwAAYNFGJjM6eOaSpzUfO31JI5MZT2vOhhAMAACARXNOM14RbjkujyZVrtV7CcEAAABYtImUP9MWJtJMhwAAAECVSmbzvtRN+VT3RoRgAAAALFosFPClbjToT90b+R6CzezNZvZNM/uWme2d4fH3mdmQmQ2a2Qkze5XfbQIAAMDytET9ufCwX3Vv5GsINrOApA9LeoukHkm7zaznhs2+LqnPOdcr6XFJv+9nmwAAALB8ZlJXe8zTml3tMZl5WnJWfh8J3izpW865bzvnMpI+K6l/+gbOuZPOuanSza9Iut3nNgEAAGCZOprD2n3XWk9r7tm8VqtbI57WnI3fIbhT0uVpt58p3Tebd0v6q5keMLP3mtlZMzs7MrK8S/MBAABgeSLhoPo3dSoa8iZORkNN2nlnp8L1Mid4oczs5yX1SfrgTI875z7qnOtzzvV1dHSUt3EAAAC4ycpoUAPbb5zpujQD23vUFivPfGDJ/xB8RVLXtNu3l+57GTPbJun9knY659I+twkAAAAeaI2FtK07rq3rl3eAcuv6Dm3riaslGvKoZfPzOwSfkfRaM3u1mYUl/ZykI9M3MLPXSfqIigH4OZ/bAwAAAA/F26Lav6t3yUF46/oO7d/Vq/jKqMctm5uvIdg5l5P0y5K+KGlY0p87575hZo+Y2c7SZh+U1CLp/5jZOTM7Mks5AAAAVKH4yqj2v7VXH7h/w4LnCEdDTfrA/RsqEoAlyVy5LtDsob6+Pnf27NlKNwMAAADTTKSyGkvmdOSpK3rs9CVdHk3etE1Xe0x7Nq/Vzk2daosGfZ0CYWZPOuf6ZnqsfLOPAQAAUNdaoiG1REP6xTes08/cuUbOSRPpnFLZvKKhgFoiQZlJq1sjZVsFYjaEYKDO5PMFjU5llCs4XUvllM7mFQkF1BoNKthkal8RViBQNQvDYBHSmZxGJjOSpGvJnJLZvGKhgFpLZ1N3NIcVCfO2DqDyIuGgbq/y96Pqbh2ABcvkChqdzOjo4LM6cOrirD9BPXjPOu3oXaP25rDCQcJwLbiWzGo8ldPhc1d08MzsPy/uvmut+jd1amU0qNZY+c6wBoBaxJxgoA6MTmZ0YjihgcPnlcoW5t0+GmrSvv4Nurc7rvbmcBlaiKVKjKV0fDihfceGFty3A9t7tK07rnhb+U80AYBqMtecYEIwUOOen0hr7+ee1hPDiUU/977uuPY/sFG3tpTnEpVYnMR4SnsPDerkhcVfJbNSSw4BQDWZKwTzWyhQw0YnM0sOwJL0xHBCez/3tK6W5pmieiTGlh6AJenkhRHtPTSoxHjK45YBQH0gBAM1KpMr6MRwYskB+LonhhM6PpxQJjf/T+0oj2vJrI4PJ5YcgK87eWFEx4cSmkhlPWoZANQPQjBQo0YnMxo4fN6TWgOHz2uUo8FVYzyV075jQ57U2ndsSGPJnCe1AKCeEIKBGpTPF3R08NkFnSi1EKlssV4+z9HgSktniqtAeNm3R566onSGIAwA0xGCgRo0OpXRgVMXPa154NRFjU5xNLjSRiYzOnjmkqc1Hzt96cX1hQEARYRgoAblCm7GtWKX4/JoUrlC7a0WU2+cky99W4MLAQGArwjBQA26lvLnp+0Jn+pi4fzqg4k0fQsA0xGCgRqUzub9qcsKERWX9KlvUz7VBYBaRQgGalAkFPClLpdRrryYT30bDfpTFwBqFZ94QA1qjQZrqi4WrsWnPvCrLgDUKkIwUIOCTaau9pinNbvaYwo2mac1sXhm8qVvja4FgJchBAM1qH1FWA/es87Tmg/es07tzRFPa2LxOprD2n3XWk9r7tm8Vqtb6VsAmI4QDNSgQKBJO3rXKBryZheOhor1AhwJrrhIOKj+TZ2e9u3OOzsVZk4wALwMIRioUe3NYe3r3+BJrX39G9TeHPakFpZvZTSoge09ntQa2N6jthjzgQHgRoRgoEaFg026tzuu+7rjy6pzX3dc27rjrAxRRVpjIW3rjmvr+o5l1dm6vkPbeuJqiYY8ahkA1A8+9YAa1t4c1v4HNi45CN/XHdf+BzZqFUeBq068Lar9u3qXHIS3ru/Q/l29iq+MetwyAKgP5mrwWpp9fX3u7NmzlW4GUDVGJzM6MZzQwOHzSmXnv+BFNNSkff0btK07TgCucomxlI4PJ7Tv2NCC+3Zge4+29cQJwAAanpk96Zzrm/ExQjBQHzK5gkYnMzo6+KwOnLqoy6PJm7bpao/pnW9Yp+0b16i9OcwUiBoxkcpqLJnTkaeu6LHTl2bt2z2b12rnpk61RYNMgQAAEYKBhpLPFzQ6lVGu4DSRyimdKygSbFJLNKhgk6m9OcIqEDUqnclpZDIj56SJdE6pbF7RUEAtkaDMpNWtEVaBAIBp5grBnDI8h+sfOJJ0LZlTMptXLBRQa+lM647msCJh/gtRXQoFp2y+oIKTcgWnXKGgQMGULzg551TIFxRoIijVoiYzNZl0fVLE9Sssm0lNJlntHdMAgIohwc3gWjKr8VROh89d0cEzs//0uPuuterf1KmV0aBaY/z0iMqaSud0NZktjts5fjLfvbk4blfFQloR4S2gFtC3AOA9pkPcYMknoXTHFW/jJBRUxnPjxXH7yNGFj9uHdxTH7WpOnqpq9C0ALB1zghcoMZ7S3kODOnlhZNHPZTkiVMpz4yk9tIxx++iuXsJSlaJvAWB55grBnBpekhhbegCWpJMXRrT30KAS4ymPWwbMbjkhSSqO24cODeo5xm3VoW8BwF+EYBXnAB8fTiz5w+a6kxdGdHwooYlU1qOWAbObSue8G7fDCU1lch61DMtF3wKA/wjBksZTOe07NuRJrX3HhjSW5AMH/ruazOqRo96M20eODunqFF/eqgV9CwD+a/gQnM4UV4FYyAknC5HKFnTkqStKc+QFPspm896P23NXlM3mPamHpaNvAaA8Gj4Ej0xmdPDMJU9rPnb60ovrCwN+GJlM6+BpP8Zt2tOaWDz6FgDKo+FDsHOacc3N5bg8mlQNLrqBGlLwadwWGLcVR98CQHk0fAieSPkzbWEizXQI+OeaT+PWr7pYOPoWAMqj4UNw0qd5cinm38FHjNv6Rd8CQHk0fAiOhQK+1I0G/akLSD6OW5/qYuHoWwAoj4YPwS3RYE3VBSSp1afx5VddLBx9CwDl0fAh2Ezqao95WrOrPSYzT0sCL9Pk07htYtxWHH0LAOXR8CG4ozms3Xet9bTmns1rtbo14mlNYLqO5oh2b/Z+3Ha0Rj2ticWjbwGgPBo+BEfCQfVv6lQ05M1/RTTUpJ13dirMnGD4KBQKeD9uN3UqFGj4t4SKo28BoDx4V5S0MhrUwPYeT2oNbO9RW4y5d/DfqlhID+/wZtw+vKNHq1aEPKmF5aNvAcB/hGBJrbGQtnXHtXV9x7LqbF3foW09cbVE+cCB/1ZEgt6N2+64VoT58lYt6FsA8B8huCTeFtX+Xb1L/tDZur5D+3f1Kr6SeXcon9Uro3p0meP20V29Ws24rTr0LQD4y1wNXt+3r6/PnT171pfaibGUjg8ntO/YkFLZwrzbR0NNGtjeo209cQIwKua58eK4feTowsftwzt6tK07TkiqcvQtACydmT3pnOub8TFC8M0mUlmNJXM68tQVPXb6ki6PJm/apqs9pj2b12rnpk61RYNMgUDFTWVyujqV1ZFzc4/bd5TG7S0rQvxMXiPoWwBYGkLwEqUzOY1MZuScNJHOKZXNKxoKqCUSlJm0ujXCKhCoOtlsXiOTaRWcdC310rhtjQbVZFJHa5SVAmrUvO9JLRGFuTIcALxorhDMoYI5RMJB3c7RFNS/ORo+AAAKB0lEQVSYUCigNbesqHQz4KFMrqDRyYyODj6rA6cu6vJoUtFgk1qiQU2kckrlCupqj+nBe9ZpR+8atTeHFQ7yRQcA5sKRYACoYqOTGZ0YTmjg8PkFzwne179B93bH1d4cLkMLAaB6zXUkmEMFAFClnp9I66HHB/Vbjw8uKABLUipb0G89PqiHHh/U8xNpn1sIALWLEAwAVWh0MqO9n3taTwwnlvT8J4YT2vu5p3V1MuNxywCgPhCCAaDKZHIFnRhOLDkAX/fEcELHhxPK5BZ2FBkAGgkhGACqzOhkRgOHz3tSa+DweY1yNBgAbkIIBoAqks8XdHTw2QXPAZ5PKlusl89zNBgApiMEA0AVGZ3K6MCpi57WPHDqokanOBoMANMRggGgiuQKbsYrwi3H5dGkcoXaWw4TAPxECAaAKnItlfOl7oRPdQGgVhGCAaCKpLN5f+qyQgQAvAwhGACqSCQU8KUul1EGgJfjXREAqkhrNFhTdQGgVhGCAaCKBJtMXe0xT2t2tccUbDJPawJArSMEA0AVaV8R1oP3rPO05oP3rFN7c8TTmgBQ6wjBAFBFAoEm7ehdo2jIm7fnaKhYL8CRYAB4GUIwAFSZ9uaw9vVv8KTWvv4Nam8Oe1ILAOoJIRgAqkw42KR7u+O6rzu+rDr3dce1rTvOyhAAMAPeGQGgCrU3h7X/gY1LDsL3dce1/4GNWsVRYACYESEYAKrUrS0RPfq2Xn3wbb0LniMcDTXpg2/r1e+/rVe3tnAyHADMhoUjAaCKtTeH1b+pUz/x2g4dHXxWB05d1OXR5E3bdbXH9M43rNP2jWvU3hxmCgQAzIMQDABVLhxs0ivaonrXG9apf9Ma5QpOE6mc0rmCIsEmtUSDCjaZ2psjrAIBAAtECAaAGhEINKmjNVq80VbZtgBAreP3MgAAADQcQjAAAAAaDiEYAAAADYcQDAAAgIZDCAYAAEDDIQQDAACg4RCCAQAA0HAIwQAAAGg45pyrdBsWzcxGJH3Xx5e4TdIPfKyPyqJ/6xd9W9/o3/pG/9a3SvXvq5xzHTM9UJMh2G9mdtY511fpdsAf9G/9om/rG/1b3+jf+laN/ct0CAAAADQcQjAAAAAaDiF4Zh+tdAPgK/q3ftG39Y3+rW/0b32ruv5lTjAAAAAaDkeCAQAA0HAIwQAAAGg4hOBpzOzNZvZNM/uWme2tdHuwPGbWZWYnzWzIzL5hZr9aur/dzJ4ws38q/b2q0m3F0plZwMy+bmZHS7dfbWZfLe3H/9vMwpVuI5bGzG4xs8fN7IKZDZvZPey/9cPMfr303nzezA6aWZT9t3aZ2SfN7DkzOz/tvhn3Vyv6o1I/D5rZ6yvRZkJwiZkFJH1Y0lsk9UjabWY9lW0Vlikn6Teccz2S7pb070t9ulfSCefcayWdKN1G7fpVScPTbj8q6UPOuR+SdFXSuyvSKnjhf0j6a+fcekl3qtjP7L91wMw6Jf0HSX3OuQ2SApJ+Tuy/texTkt58w32z7a9vkfTa0p/3SvqTMrXxZQjBL9ks6VvOuW875zKSPiupv8JtwjI4577nnPta6d/XVPwA7VSxXw+UNjsg6f7KtBDLZWa3S9ou6eOl2ybpTZIeL21C/9YoM2uT9JOSPiFJzrmMc+4Fsf/Wk6CkmJkFJa2Q9D2x/9Ys59zfSRq94e7Z9td+SZ92RV+RdIuZvbI8LX0JIfglnZIuT7v9TOk+1AEzWyfpdZK+KinunPte6aHvS4pXqFlYvv8u6T9KKpRu3yrpBedcrnSb/bh2vVrSiKQ/LU13+biZNYv9ty44565I+gNJl1QMv2OSnhT7b72ZbX+tisxFCEbdM7MWSZ+T9GvOufHpj7niGoGsE1iDzGyHpOecc09Wui3wRVDS6yX9iXPudZImdcPUB/bf2lWaG9qv4pedNZKadfNP6agj1bi/EoJfckVS17Tbt5fuQw0zs5CKAfjPnHOHSncnrv/sUvr7uUq1D8vyRkk7zeyiitOX3qTiHNJbSj+vSuzHtewZSc84575auv24iqGY/bc+bJP0HefciHMuK+mQivs0+299mW1/rYrMRQh+yRlJry2dmRpWcYL+kQq3CctQmh/6CUnDzrk/nPbQEUkPlv79oKTD5W4bls8595+cc7c759apuL/+X+fcOySdlPS20mb0b41yzn1f0mUzu6N0172ShsT+Wy8uSbrbzFaU3quv9y/7b32ZbX89IukXSqtE3C1pbNq0ibLhinHTmNlPqzjHMCDpk865D1S4SVgGM/txSX8v6Wm9NGf0t1WcF/znktZK+q6kf+mcu3EyP2qImW2R9JvOuR1m9hoVjwy3S/q6pJ93zqUr2T4sjZltUvGkx7Ckb0t6l4oHb9h/64CZ/RdJb1dxJZ+vS/olFeeFsv/WIDM7KGmLpNskJST9Z0lf0Az7a+mLzx+rOAVmStK7nHNny95mQjAAAAAaDdMhAAAA0HAIwQAAAGg4hGAAAAA0HEIwAAAAGg4hGAAAAA2HEAwAAICGQwgGgAows51mtnf+LW963jozO+9De7aY2Rum3f6Umb1trucAQC0Lzr8JAMBrzrkjqq6rUm6RNCHpyxVuBwCUBUeCAcBjpaO1F0pHU//RzP7MzLaZ2T+Y2T+Z2WYze6eZ/XFp+0+Z2R+Z2ZfN7NsLPQJrZgEz+6CZnTGzQTP716X7t5jZ35rZ46V2/FnpCk0ys58u3fdk6TWPmtk6Sf9G0q+b2Tkz+4nSS/zkjW0ys1ea2d+Vtjs/bVsAqCmEYADwxw9J+m+S1pf+7JH045J+U8XLd9/olaXHd0jav8DXeLekMefcXZLukvQeM3t16bHXSfo1ST2SXiPpjWYWlfQRSW9xzv2opA5Jcs5dlPS/JH3IObfJOff3c7Rpj6QvOuc2SbpT0rkFthUAqgrTIQDAH99xzj0tSWb2DUknnHPOzJ6WtG6G7b/gnCtIGjKz+AJf46ck9U47ctwm6bWSMpJOO+eeKb3+udJrTkj6tnPuO6XtD0p67xz1Z2rTGUmfNLNQ6XFCMICaxJFgAPBHetq/C9NuFzTzAYjp29sCX8Mk/Urp6O0m59yrnXN/M0O9/CyvOZ+b2uSc+ztJPynpiqRPmdkvLKEuAFQcIRgAatcXJf3b0lFZmdkPm1nzHNt/U9JrSnOAJent0x67Jql1vhc0s1dJSjjnPibp45Jev4R2A0DFMR0CAGrXx1Wc5vC10olvI5Lun21j51zSzP6dpL82s0kVpzZc9xeSHjezfkm/MsdrbpH0W2aWVXF6BUeCAdQkc85Vug0AgDIxsxbn3EQpNH9Y0j855z5U6XYBQLkxHQIAGst7SifKfUPFE+k+UuH2AEBFcCQYAKqQmW2U9Jkb7k47536sEu0BgHpDCAYAAEDDYToEAAAAGg4hGAAAAA2HEAwAAICGQwgGAABAw/n/7Fuons5ecC0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3iV1Z33//fa550jBJJAIIjHJAiB0mi1Vg0DVFsQKjozlZk+7bQjncdOnxl9RkvHYg+0Hasd22mvOenTzrTOSH8zFhXBKQKCbadaBEciJqBWkXOIBMhpn/f6/ZEEIySQHe57J2F/XtflJfv0ZcXEnc9e91rfZay1iIiIiIjkEs9wD0BEREREJNsUgkVEREQk5ygEi4iIiEjOUQgWERERkZyjECwiIiIiOcc33AMYivHjx9upU6cO9zBEREREZATbvn37u9ba0v4eG5UheOrUqWzbtm24hyEiIiIiI5gx5p2BHtNyCBERERHJOQrBIiIiIpJzFIJFREREJOcoBIuIiIhIzlEIFhEREZGcoxAsIiIiIjlHIVhEREREco5CsIiIiIjknFF5WIaIiIiIjFyRWIKjXQkA2iNJIokUYb+XwnB39ByX5ycc9A/nEBWCRURERMQZx7ridMVSPPXKAVa9tJd9rZHTnlNZEua2K6aweNYk8oJexuYFhmGkYKy1w/IXn4u6ujqrY5NFRERERo7DJ6Jsampm5bpGoon0WZ8f8ntYsWAac2vKmVAccmVMxpjt1tq6/h7TTLCIiIiInJPmtihffqKBzbtaBv2aaCLNvU/uZOOuZu5fUkt5kTtBeCDaGCciIiIiQ3b4RJTlqzMLwH1t3tXC8tUNNLdFHR7ZmSkEi4iIiMiQHOuKs6mpecgBuNfmXS1sbGzmeFfcoZGdnUKwiIiIiAxJVyzFynWNjtRaua6RzljKkVqDoRAsIiIiIhmLxBI89cqBQW2CG4xoIs2aHQeIxBKO1DsbV0OwMebHxpgjxpidAzxujDE/MMa8aYxpMMbMdnM8IiIiIuKMo10JVr2019Gaj23de7K/sNvcngn+V+DGMzz+MeDSnn+WAf/o8nhERERExAHW0m8f4HOxrzVCtrr3uhqCrbW/BFrP8JTFwE9ttxeBMcaYiW6OSURERETOXUc06U7dmDt1TzXca4InAfv63N7fc99pjDHLjDHbjDHbWlrObQeiiIiIiJybSMKdTWxRl+qearhD8KBZax+21tZZa+tKS0uHezgiIiIiOS3s97pSN+Rzp+6phjsEHwAq+9ye3HOfiIiIiIxgBSF3Dh52q+6phjsErwH+V0+XiKuAE9baQ8M8JhERERE5C2OgsiTsaM3KkjDGOFpyQG63SFsFvABUGWP2G2M+Z4z5M2PMn/U85RngLeBN4BHgDjfHIyIiIiLOGJfn57Yrpjhac+mVUygtCDpacyCuzjdba287y+MW+IKbYxARERER54WDfhbPmsQPnnvDkQMzQn4Pi2ZOIujSWuNTDfdyCBEREREZpfKCXlYsmOZIrRULppEfzE4ABoVgERERERmisXkB5taUM6f63Dp3zakuZd60csbkBRwa2dkpBIuIiIjIkE0oDnH/ktohB+E51aXcv6SW8qKQwyM7M4VgERERETkn5UUh/ubmWr71iemE/IOLlyG/h299YvqwBGBweWOciIiIiOSGCcUhFtROpL6qjDU7DvDY1r3sa42c9rzKkjBLr5zColmTyA94s7oEoi+FYBERERFxxJi8AGPy4DNXX8BNMyuwFjpiSaKJFCG/l4KgD2OgtCCYtS4QA1EIFhERERFHhYN+Jgf9wz2MM9KaYBERERHJOZoJFhERERFHxeJJWjrjALRHkkQSKcJ+L4Xh7uhZmh8gGBjeGKoQLCIiIiKOaI8kaIsmeeqVA6x6aeCNcbddMYXFsyZRFPJRGB6eZROm++Ti0aWurs5u27bN9b8nlUrT2hUnmba0R5PEEimCfi+FIR8+j6EkL4DXqxUlIiIiIs0nomxsamblusZBHaMc8ntYsWAa82rKKS92p0WaMWa7tbauv8c0E9yPeDJNa2ecpxsO8tMX9gz4KeZ/XT2Vm2orKMkPEPApDIuIiEhuam6LsvyJBjbvahn0a6KJNPc+uZONu5qHpVewZoJP0doZZ2NTM/c9tXPQn2K+sXg682rKKckfnj53IiIiIsOl+UTmAfhUbp0ad6aZYE1f9nG0I8Y9j+/gnscbBhWAoftTzD2PN3DP4zs42hFzeYQiIiIiI0d7JMHGpuZzCsAAm3e1sLGxmY5owqGRnZ1CcI/Wzjhf+nkDG5uODOn1G5uO8KWfN3CsZyekiIiIyPmuLZpk5bpGR2qtXNfIiUjSkVqDoRBM9xrgDY2HhxyAe21sOsKGpsPEk4ObRRYREREZrWLx7i4Qg716fjbRRJo1Ow4Qi2cnCCsE070M4qtrXnOk1n1PvaZlESIiInLea+mMs+qlvY7WfGzr3pP9hd2W8yE4lUrzdMMhRz/FrG04RCql2WARERE5f1lLvx20zsW+1gjZ6tmQ8yH43Y4Yj764x9GaP31xD+9qNlhERETOYx1Rd5YtdMS0HCIr4inryqeYeGr0tZ4TERERGaxIIuVK3ahLdU+V8yG406VPG51ZWtQtIiIiMhzCfq8rdUM+d+qeKudDsFufNpxaYywiIiIyEhWE3Dl42K26p8r5EBx06VNMUMcoi4iIyHnMGKgsCTtas7IkjDGOlhxQdqL2CFYQdOlTjEt1Rc4mGkvwblf3iTvtkSSJdAq/x0thuPtncnyen1DQP5xDFBGR80BpfoDbrpjCA+t3O1Zz6ZVTKCsMOlbvTHJ+ujJtrSufYtLZ6u8h0uNEV5wDxyLsPNhORyxJKm1JW0s82f3vVNrSEUvy6sF2DhyLcKJLpxuKiMjQBQM+Fs+aRMjvTJwM+T0smjmJQJbWBOf8dGUyleaW2ZP5/sY3HKt56+zJJNQdQrLo8IkoLe1RxuQF2LqnlVUv7e2360llSZjbrpjCTTMr2NvaRWkizYTi0DCMWEREzgdFIR8rFkzj3id3nnOtFQumURzOXjTN+ZngeMpSf1mpo59irr+slIQOy5AsaWmLEkmkaNh/gvnfe54H1u8+GYBDPg/jCwKEetao72uN8MD63cz/3vM07D9BJJGipS06nMMXEZFRrDDsZ15NOXOqS8+pzpzqUuZNK6cglL3lesaOwsv2dXV1dtu2bY7U2nu0k+8++zozK4tZubbpnOutWFjDK3uPc/eNVUwpyXdghCIDazkRJZ62fOWpV9m8q4WAz8Nfzr2E+uoy8gM+OqJJIokUYb+XgpCPzniS55qO8IPn3iSeTDOnupRvLp5BwGsoLdKMsIiIDE1zW5TlqxvYvKsl49fOqS7l/iW1lLvwe8gYs91aW9ffYzm/HMIYw//sO8YNl0+gvqqULbsz/+b1qq8qZUJRmFf278GQpa2NkrNOdMWJpdOseGonm3e1cN/CGuZPm8DTOw7y+Ue3n3E5xKa7rmdD42G+sbaJr/AqKxdPpy0SpygcGIavRERERrvyohD331zLxqZmVq5rHFSr2JDfw4oF05g3rdyVAHw2Ob8cwu813Dp7Mvc8voNl111EfdXQpvPrq0pZdt1F3PP4Dn7/g5PxexWCxV3xVJrnd7ewc/8JNtx5HUGf97TlEKfquxwi6POy4c7r2Ln/BM/vbiGe1BIeEREZuvLiEItnVbDprnq+dGPVgI0HKkvCfOnGKjb933oWz6oYlgAMWg7BkfYIbZEUC3/4K7zG8MCtMzncFuHB9bsH/Snm7huqmFAU5p7Hd5CylrVfvJaikI8yXV4Wl/S2Qbvt4Rd47ParuW/NziFfgvrGouksfeQFVi27Wu3TRETEEbF4kpbOONZCRyxJNJEi5PdSEPRhDJQVBrPSBeJMyyEUgtuitEcTbHm95eSa4JtqJ/K5j1zI86+38PjL+we8rHzr7Mlcf1kpP/r12zzdcAjoXhNcX1VKYchPWaFCsLijtTPKz7buZ/60cr79X01DCsC95lSX8tcfq2FjUzN/eMVkSvL1cysiIucHrQk+g3H5AV7Zd5yrLhp3ck3w0w2HeGbnYeZWl/FXH62iYkyYRCpNNJEm5Pfg93o4eDzC2oZD/OC5N0mluz9I1FeVctVF4/hdSydzq8uH+SuT81lnLM24ggBb3249pwAMsHlXC/Oqyxmb56czlkb7OUVEJBfk/EwwwMHjEXYeOEF5UYjvbXy9381xPo8h4PMQT6ZJpk//b1ZfVcqd8y6juS3K9EnFVIxx9gAOkb72tXYBMP97zw9q2c7ZhPweNtx5PQCVJXnnXE9ERGQkONNMcM5vjEskUuzYf5zjXQkiiRTLrr2IFQtrTusbnExbuuKp0wJwyO9hxcIall17EZFEihNdCXbsP04ikcrmlyE5xu8xrGs45EgABogm0jzz6iF82tApIiI5IudD8JGOGN9+pomisI9Hf7OHY10JppTk8bNlV3PnvEvPuLPxznmX8rNlVzOlJI9jXQke/c0eCsM+vv1ME0c6Yln+SiSXxNNp/n3rO47W/LffvqNDXkREJGfk/JrgtO1uG/V//2MH//InV/DwL98i7PfyuY9cyIXj8rn34zWMKwietib4aEeMWDIN1rLmlYPds8jXXcSf/MtLdMZT9LNiQsQxHmMGbIM2VPtaI3iMZoJFRCQ35HwI7ogm33f7s9dcyJtHOvijH/2Way4ez4LaiQAYwGveOwIjlkyztuEQv/ndu3zphmouKSt4f93Y++uKOKk96s7P16n/P4iIiJyvcj4ER3rW7v7tH8zkn59/i027jnBT7UT+/U8/xK/feJfvPtt98MCpG+MqS8L8YV0lX5hzMT/61dvct+Y15laX8bd/MJM/+7eXiWpNsLgo5tLPV1QHZoiISI7I+RAc8ntYNLOC1s4Em3YdARiwRVoskSZ4Sou0721842SLtE27jjCvppybaicS9OX8cmtxUdClBuNBr35uRUQkN+R8CC4M+bljzsV84u//+333p9KWZxubebaxGTh7i7ReX1/7Gk/ecQ35wZz/Tysuygu6E4LdqisiIjLS5HxSC/oN/7Wz5aytppJpSzJ+9kvQ0USaX77RwidmVTg1RJHTWLo7lDi5Oa6yJIz2c4qIiBMisQRHuxIAtEeSRBIpwn4vheHu6Dkuz0846B/OISoEp9Lw6IvOtpp69MV3uGmmQrC4Jy/g4ZbZk/n+xjccq3nr7Mnk+TUTLCIiQ3esK05XLMVTrxxg1Ut7+52sqSwJc9sVU1g8axJ5QS9j8wLDMFL1CSaVtq60mkqpR5q4KJG0zK0uO+1Ql6EK+T38XnUZibQ2xomIyNAcPhHlmYZDzH1oCw+s3z1gvtrXGuGB9buZ+9AWnmk4xOET0SyPtFvOh2C3WkKpRZq4qawgyIETEe6+ocqRenffUMXB4xHKCkOO1BMRkdzS3Bbly080cO+TOwd9mmk0kebeJ3fy5ScaaG7LfhDO+RAccavV1CDWD4sMld/vZcakMVQUh6mvKj2nWvVVpVQUh5k+eQx+dYcQEZEMHT4RZfnqBjbvaun38ZDPw/iCAKEBOmdt3tXC8tXZD8I5vyZ4sK3MBtsdoldALdLEZfkBL+3RBMuuuwiALbv7f/M5k/qqUpZddxH7W7soCGg9sIiIZOZYV5xNTc3vC8ABn4e/nHsJ9dVl5Ad8dESTRBMpQn4vBSEfnfEkzzUd4QfPvUm8pz/95l0tbGxsZkHtRMZkaY1wzofgggFamXk9hnk1ZXx8xkQmjQkTS6ZPfgODPg8HjkdY13CITbuO9Lv+d6C6Ik7pjKW45pJSvrXuNX7/g5Vce+l4Hly/e1CXoUJ+D3ffUMWEojD/9sIevrLwcjpiKYrz3B+3DF0qlaa1K04ybWmPJoklUgT9XgpDPnweQ0leAK9m80Uki7piKVauazx5+76FNcyfNoG1DYf4/KPbB9wYt/TKC9h01/VsaDzMN9Y2AbByXSP1VWWMydLvopxPasaY01pNLZpZwWevmcqW11tOnhh3qsqSMLfMnswd9Rfz4//ew5odB9/3mDHmtNeIOCUWT9Kw/zjHumJ8+ePTuG/NTgoCPn52+1U8/3oLj7+8f8Cf21tnT+b6y0r50a/fpiP+Lt9YNJ0tu5sZmx9kfL6fYCDn3xZGnHgyTWtnnLUNB/nJC3vY1xoh5PNQEOqZYUmmqSwJ8+mrp7KwtoKS/ICuRomI6yKxBE+9coBoIk1pQYDHbr+KbXuOMf97z59xQmZfa4Tv/GIXf7fpdb668HI23HkdSx95kZaOOGt2HOAzV1+QlfZpxtrR18Wgrq7Obtu2zZFazW0RfrZ1H9/b+Ab5AS8P3DqTw22RIc2o3fP4DjrjKe6afymfvGIKZUXaZCTu2H+si2OdcX7/n1+gMOjjsduvYuvbrXz7v5q45uLxLKidePKkw2giTeiUkw5/87t3+euP1XDlhSUsfeRF2mNJ/vPzVzM2P8DksZoOHklaO+NsbGrmm+sa+bPrLnrf5cXevpt9Ly8+/Ku3+MqCacyrKackf3jaDolIbth/rIvbHnmRaDzF6juu4WtrXjt5+m4m5laX8bVFl7PkH/6bUMDLqtuvcux3kTFmu7W2rr/Hcn7KJ5WGBbUV/PSFPfxw6Wwe/uVbGa2tjCbSrFzbRH1VKY98uo4vPvYyH59RoRZp4iq/1/CrN98lmkgTTcSZ/71fsmJBDb/4i+tY23Dw5BWMU9eyd1+CmsJ9C6fx7GuHmf+9X56s+es332XJ7EnD+FXJqY52xPjSzxv48MXjWPfFa3l6x8EzXl687YoprPvitWxoPMw9j+/gO7fUMq4gOAwjF5FcYG33rO7Gu64fcgAGTr5u1bKrmffQ82RrfjbnZ4LfebcTj8fQFk3w4PrdQ9pc1Ku+qpS7b6iiOOQnlbZcMD7fkTGKnGrPu5186se/PS0MBXwe/s/vXcLv1ZSRF/DRGUuenAnOD/ro6mczQq/KkjCPfu5DTB2nn9uRoLUzzjfXvsb/rr+ErW+3snJd46CvTq1YMI0rLyzhH7e8yYqFlzNWM8Ii4oKmg2288Na75AV8LF/96jnXu/+WGXRGk3z4kvHUTCxyYISaCT4j4zGEfB5+c+DEOQVg6N6d/7HpE/i9qjIiSR06IO7xeky/s4HxZJrvPvs63332dYDT1o2eyb7WCD6tZR8R4sk0v37jCHfOr+K+NTsHbDvUn96+m3OqS/nGoun86o0Wbpw+UWuERcRxkUSKj14+gXkPPe9Iva+teY2Nd11PS3vMkXpnk/PvigVBD9Fkmq+uec2Rel9d8xrRZJqCYM7/pxUXdQ7yMJZk2tIVTw2qrR9AR1yHvIwErZ0xpk0szjgA97V5Vwv3rdnJtIoiWjuz8wtFRHJLRXGIZ149NOjDMc4mmkjzzKuHmJClPVU5PxOcSlvHv4H/tfMQN3+gwpF6Iv0Z6Of1XFv7xRz6/0CGLpVKc+B4lF2H2oYcgHtt3tXCvOpyaiYWUloQVPs0EXFUyloeffEdR2s++uI7LJgx0dGaA8n5EBxPWv7tt6P3Gyi5qb9DXs61tR9AQCFp2B3tjFNWGOSP/l/j2Z88CCvXNbLhzuu766pjjYg4KN2zMc5J+1ojZKu3QM7/xhvt30DJTXnB9053yw94+fuls5lZWcwnH3mR7298Y8Cf6X2tEb6/8Q0++ciLzKws5u+Xzia/z0lxfevK8PB54ekdBx29OrW24SA+fWtFxGGDXZqXcd0sLc3L+RDc4dY30KW6IgCW7lnd/ICXRz5dx39u38fKtU2DDk69rf3+c/s+Hvl0HfkBL5UlYfTZbfh1xtKsemmvozUf27qXzpiWuoiIsyKJlCt1o3F36p4q55dDRN36BrpUVwQgL+DhltmTubSsMOPe1n31vu6BW2fy5pF28vyaLhwJ3Lg6JSLitP6W5jkhW91scn4meLR/AyU3JZKWJR+YxOG2iCOt/Q63Rbh59iQSKc0WDjddnRKR0aIg5M5cqlt1T5XzSW20fwMlN4UDHrweDw+u3+1IvQfX78ZrPIQDmgkebjG3rk4ldXVKRJzlMYbKkrCjNStLwniy1LM+50OwwZ1voEGHDoh7PB7DUzsOOLp5as2OA3hy/h1h+IVcWpIS0s44EXFYXsDLrbMnO1rz9z84mbwsTcjk/K88n8e48g30eRSCxT3tkRSrtjq/eao9otnC4eZWhw51/hARpxWH/CycWUHI70ycDPk9LKitoDicnaPecz4Ep9KWBbXOfgM/PqNi0Cd0iQyVNk+dn1Ip68rVqf4ORxERORder4eioI+7b6hypN7dN1RRFPThzdJEYs6HYK/XgE07+g20No3Pq5lgcU9H1J1NTm5typLB83gMtzh8derW2ZOztsZORHJLcV6Aay4ZT31V6TnVqa8q5ZpLxlOcl51ZYFAIxucxPPrbvVx10ThHvoFXXTSOR3+7V8shxFWu9WZUa79hZwzUX1bq6NWp6y8rRRlYRNwQ8HkoKwxx17zLhpyj6qtKuWveZZQXhrLaXSvnQ3BJXoDKsXnsa41w5zl+A++cdxn7WiNMGZtHSX7Q4ZGKvCeszVPnLYPhiVcOOHp1avUrB7RZV0RcU5IfYNLYMJ+/7iJWLKwZ9If4kN/DioU1fP66i5g0NszY/OzNAoNCMF6vh4W1Fdz7RAORRIpl1w7tG7js2ouIJFLc+0QDC2srsraeRXKTWvudv0J+Q0legAlFYUeuTk0oCjM+P+DaBycREYBxBUGqJhRRVV7Iz5ZdzZ3zLh1wf0NlSZg7513Kz5ZdTXV5IdUTihhXkP3JQ/3Go/sTzPKP1fC5f32JB26dyZSSPH627Gqe332Ex1/e3++GocqSMLfOnsz1VWW0tEc51pXgnsd38LVFl1OS5U8yknuM6f4ZdHIzW2VJWJfMRwALLJxZwR/802/44dLZAEM6EKW+qpRl113EFx97mf/4sw+TttoYJyLuKskPcOWF42jtjFM9oZB7P17DuIIgiVSaaCJNyO/B7/VwtCOGMTChKETJxKJhO2BMIZju9Sxza8p59rVmvvDYy9xUO5HPfeRCLhyXf8ZvYCyZBmtZ88pBnm44xPyacubVlOu0OHFdaX6A266YwgMOHZYBsPTKKZQVahnPcAv4POQF4I45l3D7T7bxwK0zufbS8Ty4fveg+kKH/B7uvqGKCUVhbv/JNu766GXk+b2OrTEWETmTgM/DhOIQpQXltHbFSaYtHdEkiVQav9dDQcjH1HHdy0aH+6q5QnCPkvwA998yA34OTzcc4pmdh5lbXcaC2okAGMBr3ltVF0umWdtwiOd2HSGVtsyvKef+W2ZkfT2L5KZgwMfiWZP4wXNvOHJgRsjvYdHMSQS0JnjYFQb8xOJxrrl4PL+68N2TH8x/dvtVPP96y9mvTl1Wyo9+/TZPNzSd3G3tMYb8oH8YvhoRyVVer4fSwlD3jeLhHctAjB2Fl8jq6urstm3bXKnd2hlnU1MzK57a+b5w4fMYAj4P8WT6fT2AQ34PKxdPZ15NuQKwZFV7JMGaHQe598md51zrW5+YzuJZFRSEFJRGgqPtUY52xYnG0zy08XW27G7B6zEnP5hXjAmfdnXq4PHI+z6Y9+62DgU8lOQFGN/7y0hEJIcYY7Zba+v6fUwh+HTxZJrWzjhrGw7ykxf2DDjr8pkPT2XBjApK8gNaAiHDovlElOVPNLB5V+ZrRnvNqS7l/iW1lBcpJI0U8WSad9ujHI8kOBFJ0Hio7bTlEGf6YH73DVVMm1hEcdjPmLCf8VluOyQiMlIoBA9RKpV+33qWWDJN0Ne9nsXnMSNiPYtIc1uU5auHFoQVgEeu1s440USKPe92kkilKc4LDHqz7omuOH6vh6nj8wn7vbpKJSI560whWGuCz2A0rGeR3NbaGef7G3bzzcXT2VLdwsp1jYPePLViwTTqq0r5/obd3HNjjYLSCFOSH+BoR4yKMWHeOdqJAS4tKzjjZt20tSf3LVSMCRP0efR9FREZgK6PiYxS8WSajY2HWfXSfq75zmbKioJsuqueL91YdcbejF+6sYpNd9VTVhTkmu9sZtVL+9nQdJh48tw32ImzxhUEKQr7GV8QOK31ogH8ntOPwCjJDzC+IEBx2D8sfTdFREYLLYcQGaUOnYgw57tb3jfzGw54efCWGUyfPAavMXTEkkQTKUJ+LwVBHylr2bn/OHf//FUi8feOSA75PWz+q3omFvcfnmV49e5TOHCsi/yQj5DfS2csSTyZJuDzkB/0EU2k6IomqRibp30KIiI9tBxC5DyTSqV5eseh05Y+ROIp/nzVKydvFwS614Me64zT0Sf0niqa6G7599kPT8XrVXgaad7ruxk4uU8hkfTgMeDzeAj6POQHvFxaVqh9CiIig6QQLDIKHe2M8+iLe876vI54io744E6V++kLe1g8s4IybZIbsbRPQUTEOZryERmF4qm0o0cmA+xrjRBPaV2wiIjkBoVgkVGoI5p0p27MnboiIiIjjUKwyCgUSQy8vvdcRF2qKyIiMtIoBIuMQkGXdv4HtClORERyhH7jiYxCBUF39rS6VVdERGSkUQgWGYWMMQMeiDFUlSVhjFF7LRERyQ2a9hEZhXwew62zJ/O9jW84VvP3PzgZn3rMjmiRWIKjXQkA2iNJIokUYb+XwnD3W/m4PD/hoH84hygiMmooBIuMQh4PLKit4B+f/91pB2YMRcjv4eMzKnTQwgh1rCtOVyzFU68cYNVLe/ttj1dZEua2K6aweNYk8oJexuYF+qkkIiK9tBxCZBRKpiwGy903VDlS7+4bqjDGkkirT/BIc/hElGcaDjH3oS08sH73gP2h97VGeGD9buY+tIVnGg5x+EQ0yyMVERldXA/BxpgbjTG7jTFvGmOW9/P4FGPMZmPM/xhjGowxH3d7TCKjXVlBkNePdHDVReOoryo9p1r1VaVcddE4Xm/uoKxQp8WNJM1tUb78RAP3PrnztBn/kM/D+IIAoVM6hUQTae59cidffqKB5jYFYRGRgbi6HMIY4wX+HpgP7AdeMsassdY29nnaV4D/sNb+ozFmGvAMMNXNcYmMdn6/l9rJY3jtwAnunHcZAFt2t2Rcp76qlBqlSiYAACAASURBVDvnXcaBYxFqJ4/BrxZpI8bhE90BePOu7u9rwOfhL+deQn11GfkBHx3R99YEF4R8dMaTPNd0hB889ybxZJrNu1pYvrqB+5fUUq6jsEVETuP2muArgTettW8BGGN+BiwG+oZgCxT1/LkYOOjymETOC2PDfo51xSkK+1l27UVce+l4Hly/e1BrhEN+D3ffUEXNhCIiiRTHu+KMzdOGqpHiWFecTU3NJwPwfQtrmD9tAk/vOMjnH91+xjXBm+66ng2Nh/nG2iY272phY2MzC2onMkZrhEVE3sdYa90rbsytwI3W2j/tuf0p4EPW2j/v85yJwLPAWCAfmGet3d5PrWXAMoApU6Z88J133nFt3CKjxZG2KF9ds5OFtZMI+AylhSGe332Ex1/eP2BQunX2ZK6vKqOlPUo8aVnbcICvL5pOmWYLR4wDxyLMfWgLhUEfj91+FVvfbmXlusZBf8BZsWAaV15YwtJHXqQ9lmTTXfVMGutsSz0RkdHAGLPdWlvX32MjoTvEbcC/Wmv/1hhzNfCoMWa6tfZ97/bW2oeBhwHq6urcS+4io0hZUYivL5rOl1Y3UBDw8bmPXMiF4/K59+M1jCsIkkiliSbShPwe/F4PRztixJJpsJY1rxykI57kO0tqFYBHkEgswVOvHKAw6GP1Hddw35qdJ2eEB6N3TfCc6lJW33ENS/7hv1mz4wCfufoCtU8TEenD7QWAB4DKPrcn99zX1+eA/wCw1r4AhIDxLo9L5LxRVhTiO0tquericfzRj37L2lcPdQddwABeY+htfBZLplnbcIg/+tFvufricQrAI9DRrgSrXtrLqmVXZRyA+9q8q4X71uxk1bKreGzr3pP9hUVEpJvbM8EvAZcaYy6kO/x+Elh6ynP2AnOBfzXG1NAdgof2ri+So8qKQtz8gUnUV5Wx5pUDfPfZ7lZaPo8h4PMQT6ZJpi2VJWGWXjmFry+6nDF5fvICI+FikPRlLfzJh6fy27dahxyAe23e1cK86nI+c/VUXFz5JiIyKrm6Jhigp+XZ9wEv8GNr7beMMd8Atllr1/R0hHgEKKB7k9w91tpnz1Szrq7Obtu2zdVxi4xWiUSKls4YaQvt0STRRIqQ30thyIfHQGlhSF0gRrCmg20Uhn3Me+h5xw5C2XjX9bRHk9RMLDr7C0REziPDuibYWvsM3W3P+t53X58/NwLXuD0OkVzh93upGJM33MOQISoM+VjzykFHAjB0rxF+esdBFs2scKSeiMj5QtNBIiIjiAVWvbTX0ZqPbd1LWsshRETeRyFYRGSEGeho5JFST0TkfKAQLCIygnREk+7UjblTV0RktFIIFhEZQSKJlCt1oy7VFREZrRSCRURGkJDfnbfloE9v9yIifeldUURkBCkMuXOqm1t1RURGK4VgEZERxBioLAk7WrOyJIwxZ3+eiEguUQgWERlBCkJebrtiiqM1l145haKQTgcUEelLIVhEZAQpDPhZNKvCsbXBIb+Hm2ZWkB/UcggRkb4UgkVERhCv10PY52HFgmmO1FuxYBohnwevR+shRET6UggWERlhCsMBrq8qZU516TnVmVNdyvVVpRSFAw6NTETk/KEQLCIywgR8HvICPr65eMaQg/Cc6lK+uXgG+QEfAbVHExE5jXZKiIiMQCX5AY7aGF9deDnzqt9l5bpGoon0WV8X8ncvpbjmkvGE/B7G5msWWESkPwrBIiIj1LiCIMYYZlUWs+HO61nbcJDHtu5lX2vktOdWloRZeuUUFtZW0BaJUxz2KwCLiJyBQrCIyAhWkh8g5PdwrCtB3QVjmVNdRsjvpTOWJJpIE/J7yA/6iCZStEcSeD2GC0sLyAvo7V1E5Ez0LikiMoK1dsbZ1NTM155+jWsuHs+C2olUjAmTSqVJpCyJpKErnuLg8QhrGw7xm9+9y9duupy5NeWUaCZYRGRAxlo73GPIWF1dnd22bdtwD0NExFVHO2Is//mrbGhqPu0xn8cQ8HmIJ9Mk06e/j8+vKef+W2YwriCYjaGKiIxIxpjt1tq6/h7TlmERkRGotTM+YAAGSKYtXfFUvwEYYENTM8t//irHOuNuDlNEZNRSCBYRGWHiyTSbmpoHDMCDtaGpmY1NzcSTZ+8qISKSaxSCRURGmNbOOCue2ulIrRVP7aRVs8EiIqdRCBYRGUFSqTRrGw4OqifwYEQT3fVSKc0Gi4j0pRAsIjKCtHbF+ckLexyt+ZMX9tDapdlgEZG+FIJFREaQZNr2exjGudjXGhlwA52ISK5SCBYRGUHao0lX6na4VFdEZLRSCBYRGUFiiZQ7ddUhQkTkfRSCRURGkKDf60rdgE9v9yIifeldUURkBCkMuXOavVt1RURGK4VgEZERxOcxVJaEHa1ZWRLG5zGO1hQRGe0UgkVERpCSvACfvnqqozU/ffVUSvKDjtYUERntdH1MRGQE8Xo9LKyt4LvP7nbkwIyQv7ueVzPBIpJFsXiSlp7TKtsjSSKJFGG/l8Jwd/QszQ8QDAxvDFUIFhEZYUryA6xcPJ27H28451orF0+nJD/gwKhERM6uPZKgLZrkqVcOsOqlvf32Pa8sCXPbFVNYPGsSRSEfhWH/MIxUyyFEREacgM/D3Jpy5teUn1Od+TXlzKspV2cIEcmK5hNR1uw4yNyHtvDA+t0nA/D4PD+1k4oYn9cddve1Rnhg/W7mPrSFNTsO0nwiOizj1UywiMgIVJIf4P5bZsDPYUNTc8avn19Tzv23zGCsZoFFJAua26Isf6KBzbtaKM7z89QXriEv4MMYaIskiCbShPweisJ+rIXOWII/fOS33PvkTjbuaub+JbWUF4WyOmZj7eg7SrOurs5u27ZtuIchIuK61s44m5qaWfHUzkGtEQ75PaxcPJ15NeUKwCKSFc0n3gvAG+68lryAf9DLIbriCeZ/71fMqS51JQgbY7Zba+v6fUwhWERkZIsn07R2xlnbcJCfvLBnwF8qn/nwVBbMqKAkP6AlECKSFe2RBGt2HOTx7fv4xz/+IJuajrByXeOgP7SvWDCNuTVl/O9/286tH6xk8awKCkLOrRE+UwjWcggRkREu4PMwoTjEn3x4KotnVZBMWzqiSWLJNEGfh4KQD5/HUJIfVBcIEcmqtmiSp3cc4J8+Vcfy1d2zwYMVTaR7lkOU8k+fquMvVr1MfVWZoyH4TBSCRURGCa/XQ2lhz6XC4uEdi4hILN7dBeL7n/xAxgG4r827Wli+uoHvf3I2T/zPfj774alZaZ+m62UiIiIikrGWzjg3XF7OpqYjQw7AvTbvamFTUzM3XF5+sr+w2xSCRURERCRj1kLI72PlukZH6q1c10jQ5yNb29W0HEJEZJQYDScwiUjuKAp7+fcX9zlyuiV0rxFes+MASz9U6Ui9s9G7pYjICDeaTmASkdzRFkmx6qW9jtZ8bOteFtZWUBx2tGy/FIJFREaw5hNRNjY1n7XlUO8JTD947g1WLJjGvJpyyouz23heRHJPfx/KR1K9M1EIFhEZofqewDRY77UcGp4TmEQkd3REk+7UjblT91TaGCciMgI1n4g60nKouS3q8MhERLpFEilX6kZdqnsqhWARkRGmPZJgY1OzIy2HNjY20xFNODQyEZH3hPzuxMhglk68VAgWERlh2qJJR1sOnYhk59KiiOSWQpdOdnOr7qmGFIKNMSVOD0RERN47gcnplkOxuIKwiDjLmO7ONE6qLAljsnT6+1lDsDHmGmNMkzHmNWPMh4wxG4CXjDH7jDFXZ2GMIiI5o6Uz7krLoWydwCQiuWNM2MttV0xxtObSK6dQkjdyZoK/B/wB8KfAOuDr1tqLgcXAd10cm4hIzrHWnZZD2TqBSURyR9jvZ/GsSY6tDQ75PSyaOYmgPzvNywYzar+19lVr7QtAi7X21wDW2peBLLQyFhHJHaO95ZCI5A6v10PIb1ixYJoj9VYsmEbYb/B6srMeYjAhuO9zvnzKYwEHxyIikvNGe8shEckthaEAc2vKmFNdek515lSXMremnIJQ9qLlYELwCmNMHoC19sneO40xFwM/dWtgIiK5KOz3ulI35HOnrojktoDPQ8Dn5f4ltUMOwnOqS7l/SS1Bn4dAltqjwSBCsLV2jbW2q5/7f2etfaD3tjHmh04PTkQk1xSE3FkL51ZdEZGS/AA+j+Fvbp7Btz4xfdBrhEN+D9/6xHT+5uZafB7D2PzsLjBw8l3xGgdriYjkpN6WQ05ujstmyyERyU3jCoK0dsaZV11KfVU9a3Yc4LGte/t9L6ssCbP0yiksmjkJn7EEfJ6sB2BwNgSLiMg5Ks0PcNsVU3hg/W7Hai69cgplhUHH6omI9KckP0A86aO1M86S2ZNYWFsBdG/MjSZShPxeCoLd0TPoM6StYWx+MKtLIPrSiXEiIiNIMOBzpeVQQGuCRSQLAj4PE4pDjM8PEvJ78HkNPo8hP+TB5zH4vIaQ38O4ghATikPDFoDB2ZlgXWwTEXFAUcjHigXTuPfJnedca8WCaRSHddFPRLLL6/VQWhjqvlE8vGMZyKDjtzFmxlme8nfnOBYREQEKw37m1ZQ70nJo3rRyCkLZOX1JRGQ0yWQO+h+MMVuNMXcYY07L9Nbaf3VuWCIiua28OORIy6HyopDDIxMROT8MOgRba68F/gioBLYbYx4zxsx3bWQiIjmuvCjE/TfXDqnlkAKwiMiZGZvhgfLGGC/wCeAHQBvda4H/2lq72vnh9a+urs5u27YtW3+diMiw6ogmOBFJDq7l0KxJFId8WgIhIgIYY7Zba+v6e2zQuyWMMbXAnwALgA3ATdbal40xFcALQNZCsIhILikI+SkI+fnsh6dy08wKrD295ZAxUFYYVBcIEZFBymTL8A+B/0f3rO/JaQhr7UFjzFccH5mIiLxPMOBjckCdHkREnJDJu+kCIGKtTQEYYzxAyFrbZa191JXRiYiIiIi4IJPuEBuBcJ/beT33iYiIiIiMKpmE4JC1tqP3Rs+f85wfkoiIiIiIuzIJwZ3GmNm9N4wxHwRO36IsIiIiIjLCZbIm+C+B/zTGHKS7LdoE4A9dGZWIiIiIiIsGHYKttS8ZY6qBqp67dltrE+4MS0RERETEPZn22rkCmNrzutnGGKy1P3V8VCIiIiIiLsrksIxHgYuBV4BUz90WUAgWERERkVElk5ngOmCazfScZRERERGRESaT7hA76d4MJyIiIiIyqmUyEzweaDTGbAVivXdaaxc5PioRERERERdlEoK/5tYgRERERESyKZMWac8bYy4ALrXWbjTG5AFe94YmIiIiIuKOQa8JNsbcDjwO/HPPXZOAJ90YlIiIiIiImzJZDvEF4ErgtwDW2jeMMWWujGqESKXStHbFSaYt7dEkiWQKv89LYciHz2MoyQvg9Wayt1BERERERoJMQnDMWhs3xgBgjPHR3Sf4vBNPpmntjNOw7zhpLOMLgsSSaaKJFCG/l7ZIgnc7YhhgZuVYSvIDBHwKwyIiIiKjRSYh+HljzF8DYWPMfOAO4Gl3hjV8WjvjNB48QUHIT+PhNn7+8n72tUbweQwBn4d4Mk0ybaksCXPL7MmUF4d580g70yqKKckPDPfwRURERGQQMgnBy4HPAa8CnweesdY+4sqohsnRjhivN7ezu7mdhza8zkcuGc9ffbSKSWPC75sJDvo8HDgeYV3DIR751VvcNf8yvB7DZeWFjCsIDveXITkukUjR0hkjbaE9miSSSBH2dy/j8RgozQ/i92tPq4iI5LZMQvAXrbV/B5wMvsaYv+i5b9Rr7Yxz4FiEf/7lWxSF/Pz75z7Eltdb+O6zu9nXGjnt+b0zwXfUX8yP/3sPv3rjXe6adxkeYxirGWEZBl2xJMciCZ565QCrtu4d8Of2tiunsHjWJMaG/eQFM3kLEBEROX+YwZ6CbIx52Vo7+5T7/sda+wFXRnYGdXV1dtu2bY7ViyfTvPVuB9/f8Do3zZzE4bYID67fTTSRPutrQ34Pd99QxYSiME/vOMCd8y/jwvEFWiMsWXWkLcqGpmZWrm0c9M/tioXTmF9TTllRKAsjFBERyT5jzHZrbV2/j50tBBtjbgOWAh8BftXnoUIgba2d69RAB8vpENzSFuW/XjvEJWWFPPzLt9iyuyXjGvVVpSy77iLePNLOxy6fSKmChWTJkbYoX1rdwOZdmf/czqku5TtLahWERUTkvHSmEDyYa6G/AQ7RfWzy3/a5vx1oOPfhDa9UKk1bLElpQWjIARg4+bo/rKukLZakJJVW+zRx3bkEYIDNu1r40uoGBWEREck5Zw3B1tp3gHeAq90fTvadiCZoOniC5vbYkANwry27W7j20vGkbJqxeX5K8rVJTtzTFUuyoal5yAG41+ZdLWxsauYTH5hEXkBrhEVEJDdkcmLcEmPMG8aYE8aYNmNMuzGmzc3BZUNXPMUF4/J5cP1uR+o9uH43F5Tk0xVPOVJPZCDHIglWrm10pNY31jZyrCvhSC0REZHRIJPr9Q8Ai6y1xdbaImttobW2yK2BZYvPa9i068igNhMNRjSR5rldR/B5jSP1RPqTSKR46pUDjv7crnnlAImEPryJiEhuyCQEN1trmzL9C4wxNxpjdhtj3jTGLB/gOX9gjGk0xrxmjHks07/jXETjaX7+8n5Haz7+8n7HwolIf450xFi1da+jNR/bupcjHTFHa4qIiIxUmSwA3GaM+f+AJ4GTvymttasHeoExxgv8PTAf2A+8ZIxZY61t7POcS4EvA9dYa48ZY8oy/BrOiTH020/1XOxrjaB5YHFT2rrzc5s+Lw9CFxEROV0mIbgI6AI+2uc+CwwYgoErgTettW8BGGN+BiwG+i5kvB34e2vtMQBr7ZEMxnTOumLuXP7VmmBxU0c06U7dmDt1RUQkt8TiSVo64wC0R/qcXhrujp6l+QGCw7wZe9B/u7X2T4ZQfxKwr8/t/cCHTnnOZQDGmP8GvMDXrLW/OLWQMWYZsAxgypQpQxhK/2JJd5YtxF2qKwIQcWntblRrgkVE5By0RxK0RZPdp5e+dIbTS6/oPr20KOSjMOwfhpFm1h3iMmPMJmPMzp7btcaYrzgwBh9wKVAP3AY8YowZc+qTrLUPW2vrrLV1paWlDvy13UJ+d3r5BnVinLhIP7ciIjLSNJ+IsmbHQeY+tIUH1u8ecNnevtYID6zfzdyHtrBmx0GaT0SzPNJumfzGe4TutbsJAGttA/DJs7zmAFDZ5/bknvv62g+ssdYmrLVvA6/THYqzojDkzlS8W3VFAApD7nxqdquuiIic35rboix/ooF7n9w56OYA0USae5/cyfInGmhuy34QziQE51lrt55y39kWEL4EXGqMudAYE6A7NK855TlP0j0LjDFmPN3LI97KYFznxNI9Le+kypIw2l8kbjLGnZ9box2dIiKSoeYTUZaf4+mly1dnPwhnEoLfNcZcTHduxBhzK93HKQ/IWpsE/hxYDzQB/2Gtfc0Y8w1jzKKep60HjhpjGoHNwN3W2qMZfh1DVhDy8kdXXuBozT/+0AUUhLyO1hTpqyDk5bYrnFsbD7D0yikU6QqGiIhkoD2SYKNTp5c2NtMRzd7BTZn8xvsC8DBQbYw5ALwN/PHZXmStfQZ45pT77uvzZwvc1fNP1rVHUlxzyThCfo8jvX1Dfg8fvngc7ZEUY5ydqBM5qTDgZ9GsCn7w3BuO/dzeNLOC/KCWQ4iIyOC1RZOsXOfM6aUr1zVSX1VGQZaW5g16Jtha+5a1dh5QClRbaz9ird3j2siy6JFfvc3dN1Q5UuvuG6p4+JdZW80hOcrr9RD2eVixYNoZn+fzGPICXnyeM69zWLFgGiGfB+9ZniciItIrFk86f3rpjgPE4tlp1znomWBjzF8A/wK0093BYTaw3Fr7rFuDy4b2aII1Ow5yw+UTqK8qZcvuoU/n11eVMqEozNMNTdwx5xIHRylyusJwgOurSplTXXryMpTXY5hXU8bHZ0xk0pgw8WSaRCqN3+sh4PNw4HiEdQ2H2LTrCKmekzHmVJdyfVUpReHAcH45IiIyyrR0xln1kvOnl940s4LJWeghnMnf8Flr7d8ZY24AxgGfAh4FRnUI7v30cs/jO3jk03UAQwrC9VWlLLvuIm7/ybaeuuq3Ku6LJFJ8c/EMvsKrFAb9fPYjU9nfGsHn7Z7RtUAybfH1LFEP+jzcNHMid8y5mB//eg/tsQTfXDyDSEKHZIiISGasS6eX2ix1F8gkBPdeJ/048NOeDW6j/tpp2N+dDjrjKW7/yTYeuHUm1146ngfX7x7U9H7I7+HuG6qYUBTm9p9so7PnpLiQTxvjxF2tnXHebumkcmyIb31iBm82dwCGN1s6+PnL+wdsUH7L7MlUluRz6+zJXFJewImuGPuORSkI+plQHMr+FyIiIqPSaD+9NJMQvN0Y8yxwIfBlY0whMOqPRevbz7cznuILj73MTbUT+dntV/H86y08foYwcevsyVx/WSk/+vXbPN3QNGBdEaelUmlePXCcw20RxhUEOH60kzda2s/64W1fa4Tvb3yDf3r+d9x9QxV+nyHg83C4LYI5AKUFZXi9OjBDRETObrSfXppJUvscMAt4y1rbZYwZBwzlKOURpbffat+g+3TDIZ7ZeZi51WX81UerqBgTJpFKE02kCfk9+L0eDh6PsLbhED947s2Tayt7VZaEMcoR4qLWrjgTikL4vR78Hg8//OWbGS3jiSbSrFzbRH1VKXfNu4wpJfmMyw/Q2hWntFCzwSIicna9V9Odlq2r6WcNwcaYamvtLroDMMBF58EqiJPKCoLcduUUHvjF7vfdn0pbnm1s5tnGZqB7l33A5yGeTJNMn3mxytIrp1CmICEuMgb2HO3k0rJC7v/FriFv6Ox93fKPVfNmczsTx+jnVkREBqfApavebtU91WD+lruAZcDf9vOYBX7P0RFlmd/vZfGsSfxg05n7rSbTlmT87NPzIb+HRbMm4dclZXFRZyzF7Clj+cVrh8+powl0B+FrLx3PjdMm0BlLMb7AoUGKiMh5rb+r6ecqm6eXnjWpWWuX9fx7Tj//jOoA3Gts2M+KhWfutzpY9y2cxtg8HTgg7gr6PESTaR5cv/vsTx6EB9fvJppKE/Tpw5uIiAxOaX7AldNLywqDjtYcyKB/4xljfr9nMxzGmK8YY1YbYz7g3tCyJy/oY35NOXOqS8+pzpzqUubVlJOXhd52kts8Hli746CjDcrXNRxEZ2WIiMhgBQM+Fs+aRMjvzARKyO9h0cxJBLK0JjiTUa+w1rYbYz4CzAN+BPyTO8PKvrKiEN9ZUjvkIDynupTvLKmlrEhrKsV9sYTl8Zf3O1rzP7fvJ5bMUnNGERE5LxSFfGc9vXSwViyYRnE4exOJmYTg3gWxC4CHrbXrgPPqiKneIPytm6cP+lNNyO/h2zdPVwCWrLJYdxqUoxAsIiKDVxj2M8+pq+nTyikIZW9JaSZx+4Ax5p+B+cB3jDFBMgvRo0JZUYibPzCJ+qoy1rxygMe27h2wT/DSK6eweNYkxuT5tQRCssq1BuVRnXQoIiKZKS8Ocf+SWpavbmDzrsw3a8+pLuX+JbWUZ3kyMZPk9gfAjcB3rbXHjTETgbvdGdbwygv4yAv4+NNrLmTxrArSFtqjSaKJFCG/l8KQD4+B0sKQukDIsIgl3TmnJp5UCBYRkcyVF4W4/+ZaNjY1s3Jd46BP3V2xYBrzppVnPQBDBiG454CMp4ByY0zvVsBd7gxrZPD7vVSMyRvuYYicxrUG5S7VFRGR8195cYjFsyq6r6bvOPvV9EWzJlEc8mV1CURfgw7BxpgvAl8FmnnvuGQL1LowLhE5g/ygO8tv3KorIiK5oSDkpyDk57MfnspNMyuwFjpi711NLwj6MAbKCoNZ6wIxkEx+4/0FUGWtPerWYERkcLwedxqUa3WPiIg4IRjwMXmE75fK5FfePuCEWwMRkcEblxfgU1dd4GjNT111AeMLstOgXEREZLhlEtHfArYYY9YBsd47rbUPOT4qETmjYMDHwtoKHtrwuiMHZoT8HhbWVgz7pSkREZFsyWQmeC+wge7ewIV9/hGRYVAY9PG1my53pNbXF11OUWhkX7YSERFxUibdIb4OYIwp6Lnd4dagROTsCsN+5lSVMbe6jE27jgy5ztzqMuqryoZtd66IiMhwGPRMsDFmujHmf4DXgNeMMduNMc5MQ4nIkJQXh/j2khnMrS4b0uvnVpfx7SUzhqU/o4iIyHDKZDnEw8Bd1toLrLUXAP8XeMSdYYnIYJUXhfj2zTP4m5tnZHTc998smaEALCIiOSuTRYD51trNvTestVuMMfkujElEMlReHOKmmRO57rJS1jYc5N9++86ADcr/+EMXsHBmxbA2KBcRERluGXWHMMasAB7tuf3HdHeMEJERoLdB+WeuvoAFtRNHdINyERGR4ZZJCP4s8HVgNd0nxf2q5z4RGUFGQ4NyERGR4ZZJd4hjwP9xcSwiIiIiIlmRSXeIDcaYMX1ujzXGrHdnWCIiIiIi7smkO8R4a+3x3hs9M8ND68skIiIiIjKMMgnBaWPMlN4bxpgL6F4bLCIiIiIyqmSye+Ze4NfGmOcBA1wLLHNlVCIiIiIiLspkY9wvjDGzgat67vpLa+27vY8bYy631r7m9ABFRERERJyWUR+lntC7doCHHwVmn/OIRERERERclsma4LMxDtYSEREREXGNkyFYm+REREREZFRwMgSLiIiIiIwKTobguIO1RERERERck9HGOGNMLTC17+ustat7/n3VAC8TERERERlRBh2CjTE/BmqB14B0z90WWO3CuEREREREXJPJTPBV1tppro1ERERERCRLMlkT/IIxRiFYREREREa9TGaCf0p3ED4MxOjuC2yttbWujExERERExCWZhOAfAZ8CXuW9NcEiIiIiIqNOJiG4xVq7xrWRiIjIGaVSaVq74iTTlvZoklgiYFG6zgAAIABJREFURdDvpTDkw+cxlOQF8HrV/l1EZDAyCcH/Y4x5DHia7uUQwHst0kRExB3xZJrWzjhrGw7ykxf2sK81QsjnoSDkoyOaJJpMU1kS5tNXT2VhbQUl+QECPoVhERk+kViCo10JANojSSKJFGG/l8Jwd/Qcl+cnHPQP5xAzCsFhusPvR/vcpxZpIiIuau2Ms6mpmZXrGvmz6y7inz/1QfID3eE3kUrh93opCPnojCd5rukIH/3+86xYMI25Nf9/e3cfH9dV33n8+9M868GK5chKLEtxgBBLOLIA2ZBQStw4y4MdK5jstna7PJSH7m63W2AbYpZ12o0b6oQ2dLvl1ZZSSuBVm/YVHGzsloBdh7YUsB2wFSMphUKwoySyiB3JkuZROvvHjBPFkWRZulczV/N5v15+xTNz9ZsTnbn3fn3m3HMbVFcVLXbzAZSZc6MZjabHtPd4n3YfPaXTZ5Mv26apLqEta5rV2d6oylhIiyuLc6wy51xR3nguOjo63LFjx4rdDADw1XPDaW37yuO68ZV1urX1Kj07mFRNIqJEJJQfAc6OKR7Jh+BkdkxDo1ldfUVC3+x+Vt/597Pa+a4btKQ6Vuz/DQBl4tnB1Av/aE9lL335WDxS8cI/2q+qjfvSJjN7zDnXMdlrl3OzjLik90t6jaQXWuqc+/U5txAA8BJnRzL65IEefext12s0k5MkHfvZ89p15GdTjqxsXXuNNl6R0OuvWaw3X1evTx7o0f/e2KrFjAgD8Fn/UEoff7hLh3sHZvwzqey4PvHVkzrY26+dm9vUsMifIDyVy5k09iVJV0l6q6RvSVou6bwfjQKAcpbJjevbPxrQR299tcKhCnU/fV63fvpbuu/rvZMGYEk6fTap+77eq1s//S11P31e4VCFPnrrq/UvPxpQJseCPgD88+xgStv2XF4Anuhw74C27elS/1DK45ZN73JC8Kucc9sljTjnHpS0QdIb/GkWAJSvsyMZvaZxkWSm39/frY8//PiMvlqU8iMrH3/4cf3+/m7JTK9ZvkhnRzI+txhAuTo3mr9uYbYB+ILDvQM62N2v50fn73h1OSE4W/jv82a2SlKtpKXeNwkAytfY2LieHkwqGg7p7r0ndaj3zKzqHOo9o7v3nlQ0FNLTz49qbIzRYADeG02PaceBbk9q7TjQrZH0mCe1ZuJyQvBnzWyxpO2S9knqlnS/L60CgDJ1djSj5Vck9C8/+vmsA/AFh3rP6F9+/HM1La7U2XkcXQFQHpLprPYe75vxN1WXksqOa9+JPiXT2Utv7IEZh2Dn3Oecc+ecc99yzr3CObfUOffnfjYOAMpNOGTKjjn93td+6Em939v3Q2XGnMIh86QeAFzw3GhWu4+e8rTmriOnXlhf2G8zDsFm1mBmf2Vm/1B43Gpm7/evaQBQfsad04HHn/Z0ZOXA409rPIDLYQIobc5pyot1Z+v02aTm63B1OdMhviDpEUnLCo//TdKHvW4QAJSzVGZcX/ruzzyt+aXv/kypDHOCAXhrOJXzp27an7oXu5wQfKVz7u8kjUuScy4naf5mLwNAGRj3aWRlnIFgAB5LZv2JgSmf6l7sckLwiJktUf5WyTKzN0oa9KVVAFCmRnwaAfGrLoDylYiEfKkbD/tT92IzvmOcpI8qvyrEK8zs25LqJd3hS6sAoEwFfWQFQPmojl9OjCx+3Ytdzrt0S3pY0qjyd4r7qvLzggEAHomFL+cLupmL+lQXQPkyy9+y3cspXE11Cdk8LWZzOUfFL0paKemTkv6fpFcrfytlAIBHgj6yAqB8LKmMaMuaZk9rbl3brPrqmKc1p3I5IXiVc+4DzrnDhT8flPQavxoGAOWowkxNdQlPazbVJVQxX0MrAMpGIhZRZ3uj4hFvvmmKRyq0aXWjYj7NNb7Y5bT6+4WL4SRJZvYGSce8bxIAlK9o2HTH65Z7WvM/vn65YiGmQwDwXmUspO0bWj2ptX1Dq6pi8xOApRmEYDN73My6JL1e0r+a2ZNm9lNJ35HU4XcDAaCcjDtp4+plno6sbGhbpnGxRhoA7y2ujOqWlgatW1k/pzrrVtZrfWuDrqiMetSyS5vJUXajpNskvU3StZLeIunmwt/f7lvLAKAMPTecUahCuvOt13tS7863Xq+wSc8Nz89tSAGUn6tq49q5uW3WQXjdynrt3NymhkVxj1s2vUuGYOfcz6b7Mx+NBIBykcmN64Fv/Eg3vfJK3Xz93EZWbr6+Xm965ZX6w2/8mzI5lkgD4J+GRXH9wTvbdO/tq2b8TVY8UqF7b19VlAAsXd4SaQAAnyUiIe078bRuW321PrL+1ZKkR58YuOw6N19fr4+sf7VOnxvV17qe0W+ue5XXTQWAl7iqNq4NbVfr5uuXat+JPu06cmrS5dOa6hLaurZZm9obVRUNzesUiIkIwQBQQi4sZfbhLx/XX79vjT705lfozdddqU898oRS2fFL/nw8UqE733q9Wq5apHRuTB/+8vGX1AUAP11RGdUVldJ7b7xGt61eJuek4XROqeyY4pGQqmNhmUn11bF5WwViKhwVAaCEREMVLyw+/76/Pqr771itV1xZpS9/6EZ964kzeuj7T005snLH65brLdcv1bmRtM6NZvWxh05oJDOmprqEoqwOAWAeJWIRLY9Fit2MaRGCAaCELKmK6j+/cYU++fc9GsmM6Td3fV+3tV2t97/5Wr2yvkqfeEeLllTHlB0bVyo7rnikQpFQhZ4bTis3Ni7Jac/3+/S1rmdeqPnuG1doyTwtPg8AQUEIBoASEgpV6LbVV+uBb744/eFrXc/o708+q1tWLtWGtqslSSYpbKYLt8BI58a1v+sZ/WPvGY2Nv7gcWjxSoY1tVytUwc0yAGAiQvA0stkxDYykNe6k86mcktkxJSIh1cTDqjCpviqmSJHnswBYeJZUxXTPptfoY195/IXnxsadvtHdr29090uSwhWmaLhCmdy4cuNTrwF8T+drtKSKUWAAuBgheBKj6ZzOJbPae7xPu6e5snHL2mZ1tjdqcSKiyhi/SgDeiIYrtL71Kq3v7tfBnjOTbpMbd8plpl/2bH3LUt3acpWiYeYDA8DFzLng3UWoo6PDHTvmzx2bzwyldLCnX/fs757xldh3b2zV+pYGLS3CGncAFq7nhtO66ytdUwbh6axvWar73tXGXGAAZc3MHnPOTXqHY0LwBGeGUrprT5cO917+mpzrVtbrvs1tBGEAnjo7ktHBnn7dvffkjP9hfk/nKt3a0qDFVcVZexMASgUheAbmEoAvIAgD8EMmN66zIxnt73paD37nySmnaL3nphXaeMMy1VVFmQIBAJo+BDORVfk5wAd7+ucUgCXpcO+ADvb06/bXNqoyyq8WgDei4QpdVRvX+25aoc72ZcqNOw2nckrnxhULV6g6Hla4wlRXFWMVCACYIZKapHPJrO7Z3+1JrXv2d+st1y8lBAPwXChUofqawjdNtcVtCwAEXdl/X5bNjmnv8b4ZzbWbiVR2XPuO9ymbnf6qbQAAABRP2YfggZG0dh855WnNXUdOaWAk7WlNAAAAeKfsQ/C406QXmczF6bNJTbN2PQAAAIqs7EPw+VQuUHUBAAAwd2UfgpM+zd1NMScYAACgZJV9CE5EQr7UjftUFwAAAHNX9iG4Ju7PUmZ+1QUAAMDclX0IrrD8nZa81FSXEOvVAwAAlK6yD8H1VTFtWdvsac2ta5tfXNAeAAAAJafsQ3AkElJne6PiEW9+FfFIhTa1NyoSKvtfLQAAQMkiqUlanIjo7o2tntS6e2OrFldGPKkFAAAAf/gegs3sbWb2hJn92My2TbPdu8zMmVmH3226WGUsrPUtDVq3sn5OddatrNf6lgZVRrkoDgAAoJT5GoLNLCTpM5LeLqlV0hYze9mQq5nVSPptSd/zsz3TWboorvs2t806CK9bWa/7Nrdp6SLmAgMAAJQ6v0eC10r6sXPuJ865jKQvS+qcZLsdku6TlPK5PdO6EIQ/+c5VM54jHI9U6JPvXEUABgAACBC/v7dvlHR6wuOnJL1h4gZm9jpJTc65A2Z251SFzOxDkj4kSc3N3q7mMNHSRXHd/tpGveX6pdp3vE+7jpzS6bPJl23XVJfQr65t1qb2Rl1RGWEKBAAAQIAUNbmZWYWkByS991LbOuc+K+mzktTR0eH8bFdlNKzKaFgfeNO16mxfpnEnnU/llMqOKR4JqSYeVoVJ9TVxVoEAAAAIIL9DcJ+kpgmPlxeeu6BG0ipJj5qZJF0laZ+ZbXLOHfO5bZcUiYS07IrKYjcDAAAAHvM7BB+VdJ2ZXat8+P0VSVsvvOicG5R05YXHZvaopN8phQAMAACA2UlnchoYyUiSzidzSmbHlIiEVJPIR8/6qqhiRZ5K6uu7O+dyZvbfJT0iKSTp8865H5rZPZKOOef2+fn+czU2Nq6zoxnlxp3Op3JKZ8cUK0yHCFeY6iqjCjEdAgAAQJJ0PpnVUCqnvcf7tPvo1NdVbVnTrM72Ri2Kh1WTKM79Fcw5X6fX+qKjo8MdO+bfYHEmN66zIxnt73paD37nySk78D03rtDGtmWqq4oqGiYMAwCA8tU/mNLBnn7tONCtVHb8ktvHIxXavqFV61sa1FDrzwpbZvaYc27Se1AQgi9ydiSjQz392r735Iw7cEfnKt3S0qC6qqgvbQIAAChl/UMpbdvTpcO9A5f9s+tW1mvn5jY1+LDU7HQhmOHLCZ4bTuuuh7p050NdMwrAkpTKjuvOh7p010Ndem447XMLAQAASkv/4OwDsCQd7h3Qtj1d6h+a39tFEIILzo5ktO0rj+ubPf2z+vlv9vRr21ce17nCJHAAAICF7nwyq4M9/bMOwBcc7h3Qwe5+DaeyHrXs0gjBys8BPtTTP+sAfME3e/p1sKdfmdzMRpEBAACCbCiV044D3Z7U2nGgW4PJnCe1ZoIQrPwo8Pa9Jz2ptX3vSZ1lNBgAACxw6Ux+FYiZTiG9lFR2XPtO9CmdmZ8gXPYheGxsXPu7nva0A/d3Pa2xMUaDAQDAwjUwktHuo6c8rbnryKkX1hf2W9mH4LOjGT34nSc9rfngd57U2VFGgwEAwMLlnCZdRnYuTp9Nar4WLiv7EJwbd750YG48eEvPAQAAzNRwyp9pC8NppkPMi/N+daBPdQEAAEpBMjvmS92UT3UvVvYhOO3TLzrNChEAAGABS0RCvtSNh/2pe7GyD8ExnzqQ2ygDAICFrDoentl20ZCaFidUHZ1Z5ppp3bman3cpYTU+/aL9qgsAAFAKzKSmusTLrq1KREP6ozva1NpYq7CZhlJZpbLjikcqtCgeUc45nXzqed35lceVzLz0G/mmuoTM5qf9ZZ/UwhU2aQfORVNdQuGKeepBAACAIqiOh7RlTbPuf+SJF5773Ltfr5ara7X3eJ/+4Ou9k+arprqEtqxp1sGPvEU9zwzqA1987IXXtq5tnreBxLL/zr6uMqr33LjC05rvuXGF6qpintYEAAAoJc+cS6uzvVHxSIWuqUvo23etU/9QWrc88Kjuf+SJKQcYT59N6v5HntAtDzyq/qG0vn3XOl1Tl1A8UqFNqxv19POpeWl/2Y8Eh0IV2ti2TH/4jSc8uWFGPJKvF2IkGAAALGDJ7Jj6nh/Vfe+8QW945ZX6+MNdOtw7MOOfT2XH9YmvntS6lfX629+4Sd/795+r+5lBXVk9PwOJZT8SLEl1VVHt6FzlSa0dnatUVxX1pBYAAECpSkRC+sAXH9MbXrnksgPwRId7B/Txh7v0hldeqQ9+8TFWh5hP0XCFbmlp0K0tDXOqc2tLg9a3NLAyBAAAWPCq42F97t2v16GeM7MOwBcc7h3QoZ5+/eW7Xz9vq0OQ1grqqqLa+a4bZh2Eb21p0M533aDFjAIDAIAyYCa1XF2rHQe6Pam340C3Wq+unbfVIQjBEyypjum+O9r0qTvaFI/M7FcTj1ToU3e06f472rRknuawAAAAFNuSyoj2Hu/z5JoqKT9HeN+JPi2pjHhS71LK/sK4i9VVRdXZ3qg3X1ev/V1P68HvPDnl8h7vvWmFNtywTHVVUaZAAACAsvLcaFa7j57ytOauI6d02+plWh7zPwgTgicRDVfoqtq43nfTCnW2L1Nu3Gk4lVM6N65YuELV8bDCFaa6qhirQAAAgLLknDy9z4KUr+ecpyWnRAieRihUofqaeP5BbXHbAgAAUEqGUzl/6qb9qXsxvsMHAADAZUtmxy690SykfKp7MUIwAAAALlsi4s96vvO1TjDTIaaRzuQ0MJKRJJ1P5pTMjikRCakmkf+11VdFFYvyKwQAAOXHr/V852udYBLcJM4nsxpK5bT3eJ92Hz015eoQW9Y0q7O9UYviYdUk5mc5DwAAgFJgls9DXl4c11SXYJ3gYukfTGnfiad1ywOP6v5HnpiyY0+fTer+R57QLQ88qn0nnlb/YGqeWwoAAFA89VVRbVnT7GnNrWubtbRmfu67QAieoH8opW0Pd+kTXz0544WfU9lxfeKrJ7Xt4S71DxGEAQBAeYhFw+psb5zxDcYuJR6p0KbVjYrO05xgQnBB/2BK2/Z0zfre14d7B7RtD0EYAACUj0XxsLZvaPWk1vYNrapNzN9MXUKw8nOAD/b0zzoAX3C4d0AHu/s1nMp61DIAAIDSVZOIaH1Lg9atrJ9TnXUr67W+tUHV8fm7xooQLGkoldOOA92e1NpxoFuDyflZ5BkAAKDYGmrj2rm5bdZBeN3Keu3c3KaGRXGPWza9sg/B6Ux+FYiZzgG+lFR2XPtO9CmdIQgDAIDy0LAorp3vbNO9t6+a8RzheKRC996+qigBWGKJNA2MZLT76ClPa+46ckq3rV6m5awhDAAAykRDbVyd7ct08/VLte9En3YdmXqZ2a1rm7WpvVG18fC8ToGYqOxTmnPydH07KV/POU9LAgAAlLzqeETV8Yh+/aYVum31MjknDadzSmXHFI+EVB0Ly0xaWhObt1UgplL2IXg45c+0heE00yEAAEB5ikXDJf+NeNnPCU5mx3ypm/KpLgAAAOau7ENwIuLPUHy8yEP8AAAAmFrZh+DquD9D9X7VBQAAwNyVfQg2y1+l6KWmuoTMPC0JAAAAD5V9CK6vimrLmmZPa25d26ylNTFPawIAAMA7ZR+CY9GwOtsbZ7yw86XEIxXatLqx6Mt+AAAAYGplH4IlaVE8rO0bWj2ptX1Dq2oTzAcGAAAoZYRgSTWJiNa3NMz6ntcXrFtZr/WtDUW78wkAAABmhhBc0FAb187NbbMOwutW1hft3tcAAAC4PITgCRoWxbXznW269/ZVM54jHI9U6N7bVxGAAQAAAoTJqxdpqI2rs32Zbr5+qfad6NOuI6d0+mzyZds11SW0dW2zNrU3qjYeZgoEAABAgBCCJ1Edj6g6HtGv37RCt61eJuek4XROqeyY4pGQqmNhmUlLa2KsAgEAABBAhOBpxKJhLY/yKwIAAFhomBMMAACAssMwJ7DApDM5DYxkJEnnkzkls2NKREKqKaxfXV8VVYxvOAIplc7q56NZSZP37ZWVEcVjXJ8AoPiCcC7iTAgsEOeTWQ2lctp7vE+7j059QeeWNc3qbG/UonhYNQkCUxAMjmY0nB6bcd9Wx0KqrYwWoaUAyl2QzkXmnCvKG89FR0eHO3bsWLGbAZSM/sGUDvb0a8eBbqWy45fcPh6p0PYNrVrf0qCGWpb2K2XPDqZ0aBZ9e0tLg66ibwHMo1I8F5nZY865jklfIwQDwdY/lNK2PV063Dtw2T/LTV5KG30LIChK9Xg1XQjmwjggwPoHZ3/QkaTDvQPatqdL/UMpj1uGuXqWvgUQEEE9FxGCgYA6n8zqYE//rA86FxzuHdDB7n4Np7IetQxzNTia0SEP+3YomfGoZQDwUkE+FxGCgYAaSuW040C3J7V2HOjWYDLnSS3M3XB6zNO+PZ8a86QWAFwsyOciQjAQQOlM/srbmVx4MBOp7Lj2nehTOkMQLrZUOutL36bSjPQD8FbQz0WEYCCABkYy2n30lKc1dx059cKajiien49mfenbC+sLA4BXgn4uIgQDAeScJl17cS5On00qgIvFLDj0LYCgCPrxihAMBNBwyp+viobTTIcoNvoWQFAE/XhFCAYCKJn150KnlE91MXP0LYCgCPrxihAMBFAiEvKlbjzsT13MHH0LICiCfrwiBAMBVB0PB6ouZo6+BRAUQT9eEYKBADKTmuoSntZsqkvIzNOSmAX6FkBQBP14RQgGAqi+Kqota5o9rbl1bbOW1sQ8rYnLd2VlxJe+ra+mbwF4K+jnIkIwEECxaFid7Y2KR7zZheORCm1a3ago80aLLh6L+NK3MZ/m7gEoX0E/FxGCgYBaFA9r+4ZWT2pt39Cq2gRzRktFdSzkad/WxAnAAPwR5HMRIRgIqJpEROtbGrRuZf2c6qxbWa/1rQ2qjkc8ahnmqrYyqls87NtFiahHLQOAlwryuYgQDARYQ21cOze3zfrgs25lvXZublPDorjHLcNcXUXfAgiIoJ6LzAXwXpodHR3u2LFjxW4GUDL6B1M62NOvHQe6lcqOX3L7eKRC2ze0an1rAyGpxD07mNIh+hZAAJTiucjMHnPOdUz6GiEYWBiGU1kNJnPad6JPu46cmvR+7k11CW1d26xN7Y2qjYeZAhEQQ8mMzqfGZty3NbEQUyAAFEWpnYsIwUAZSWdyGhjJyLn8/ddT2THFIyFVx8Iyk5bWxFgFIqBS6ax+Ppqdsm/rq2OsAgGgJJTKuWi6EMzl4MACE4uGtTzKrr0QxWMRLY8xeg+g9AXhXMSFcQAAACg7hGAAAACUndIepy6yC/NZJOl8MqdkdkyJSEg1hYWc66uiipX4UD/KTzKd1XOjWUmTf26XVEaU4Cv1QMpmxzQwkta4k86nJvRtPKwKk+qrYoowJxhACQhChiLBTeJ8MquhVE57j/dp99Gpr2zcsqZZne2NWhQPqyZBqEBxnRvNaDQ9NuPPbWUspMWVrCAQBKPpnM4ls/m+neZq6y1r8327OBFRZYzDO4D5F6QMxeoQF5n1GnctDWqoZU1OFMds15K9paVBV/G5LWlnhvLHpHv2z7xv796YPyYtZZ1gAPOoFDMUS6TNUP9QStv2dOlw78Bl/yx3Z0Kx8LlduM4MpXTXHPr2vs1tBGEA86JUz0XThWAujCvoH5x950nS4d4BbdvTpf6hlMctA6b2LJ/bBWsuAVjK9+1de7p0hr4F4LOgZihCsPLzVw729M+68y443Dugg939Gk5lPWoZMLVzoxkd8vBz+/xoxqOWYa5G0znvjkk9/RrN5DxqGQC8VJAzFCFY0lAqpx0Huj2pteNAtwaTnHDgv9H0mKef25H0mCe1MHfnklnds9+bvr1nf7fOjfIPcwD+CHKGKvsQnM7kr2CcyQTumUhlx7XvRJ/SjLzAR8l01pfPbTJNWCq2bHbM+7493qdsln/kAPBW0DNU2YfggZGMdh895WnNXUdOvbA2HuCH50azvnxun2PEsOgGRtLafcSPY1La05oAEPQMVfYh2DlNuobdXJw+m1QAF91AgPC5XbjGferbcfoWgMeCfi4q+xA8nPJnyH04zXQI+IfP7cJ13qe+9asugPIV9HNR2YfgpE/z5FLMv4OP+NwuXPQtgKAI+vGq7ENwIhLypW487E9dQOJzu5D51rc+1QVQvoJ+LvI9BJvZ28zsCTP7sZltm+T1j5pZt5l1mdkhM7vG7zZNVB0PB6ouIPG5XchqfOoDv+oCKF9BPxf5GoLNLCTpM5LeLqlV0hYza71osx9I6nDOtUl6SNL9frbp5W2UmuoSntZsqkvIzNOSwEvwuV24Knzq2wr6FoDHgn4u8nskeK2kHzvnfuKcy0j6sqTOiRs45w4750YLD78rabnPbXqJ+qqotqxp9rTm1rXNWloT87QmMNGSyogvn9v6aj63xVZfFdOWtT70bU3c05oAEPQM5XcIbpR0esLjpwrPTeX9kv5hshfM7ENmdszMjg0MzO3WfBPFomF1tjcqHvHmVxGPVGjT6kZFmVsJHyViEV8+tzHmjRZdJBLyvm/bGxUJlf0lIAA8FvQMVTJHRTP7NUkdkj412evOuc865zqccx319fWevveieFjbN1w8S2N2tm9oVW2CuXfwX2Us5OnntipGAC4VixMR3b3Rm769e2OrFldGPKkFABcLcobyOwT3SWqa8Hh54bmXMLP1kj4haZNzbt5va1STiGh9S4PWrZxbuF63sl7rWxtUHeeEA/8trozqFg8/t1dURj1qGeaqMhb27pjU0qDKKP8wB+CPIGcov0PwUUnXmdm1ZhaV9CuS9k3cwMxeK+kvlA/AZ3xuz5QaauPaublt1p24bmW9dm5uU8Mi5t1h/lzF53bBWroorvvm2Lf3bW7TUvoWgM+CmqHM+XxvOjN7h6Q/lhSS9Hnn3L1mdo+kY865fWZ2UNINkp4p/Mgp59ym6Wp2dHS4Y8eO+dLe/sGUDvb0a8eBbqWy45fcPh6p0PYNrVrf2kCQQNE8O5jSIT63C9KZofwx6Z79M+/buze2an1LAwEYwLwqxQxlZo855zomfc3vEOwHP0OwJA2nshpM5rTvRJ92HTk16X2xm+oS2rq2WZvaG1UbDzMFAkX3/GhGI+mxGX9uq6IhpkAExGgmp3OjWe07Pn3f/mqhb6+ojDAFAkBRlFqGIgTPUjqT08BIRs7l72Odyo4pHgmpOhaWmbS0JsYqECg5yXRWz41mp/zc1lfHWAUioLLZMQ2MpDXupPOpF/u2Jh5WhUn1NXFWgQBQEkolQ00XghkqmEYsGtZyRlMQMIlYRMtjfDOxEEUiIS27orLYzQCASwpChmLIAAAAAGWntCM6AOAFF75elKTzyZyS2TElIiHVFNbVrK+KKlbiIy8AykMQjlccLQGgxJ1PZjWUymnv8T7tPjr1hSZb1jSrs71Ri+LvX3bBAAAJ60lEQVRh1SSYEgNg/gXpeMWFcQBQwma95FBLgxpqWSINwPwpxeMVq0MAQAD1D6W0bU+XDvcOXPbPciMUAPOpVI9X04VgLowDgBLUPzj7E4okHe4d0LY9XeofSnncMgB4qaAerwjBAFBiziezOtjTP+sTygWHewd0sLtfw6msRy0DgJcK8vGKEAwAJWYoldOOA92e1NpxoFuDyZwntQDgYkE+XhGCAaCEpDP5q6pnclHJTKSy49p3ok/pDEEYgLeCfrwiBANACRkYyWj30VOe1tx15NQL63UCgFeCfrwiBANACXFOk66rORenzyYVwIWAAJS4oB+vCMEAUEKGU/58DTicZjoEAG8F/XhFCAaAEpLMjvlSN+VTXQDlK+jHK0IwAJSQRCTkS9142J+6AMpX0I9XhGAAKCHV8XCg6gIoX0E/XhGCAaCEmElNdQlPazbVJWTmaUkACPzxihAMACWkviqqLWuaPa25dW2zltbEPK0JAEE/XhGCAaCExKJhdbY3Kh7x5vAcj1Ro0+pGRZkTDMBjQT9eEYIBoMQsioe1fUOrJ7W2b2hVbYL5wAD8EeTjFSEYAEpMTSKi9S0NWreyfk511q2s1/rWBlXHIx61DABeKsjHK0IwAJSghtq4dm5um/WJZd3Keu3c3KaGRXGPWwYALxXU45W5AN5Ls6Ojwx07dqzYzQAA3/UPpnSwp187DnQrlR2/5PbxSIW2b2jV+tYGAjCAeVWKxysze8w51zHpa4RgAChtw6msBpM57TvRp11HTun02eTLtmmqS2jr2mZtam9UbTzMFAgARVFqxytCMAAsAOlMTgMjGTknDadzSmXHFI+EVB0Ly0xaWhNjFQgAJaFUjlfThWAuGQaAgIhFw1oe5bANoPQF4XjFhXEAAAAoO4RgAAAAlB1CMAAAAMoOIRgAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdgJ5xzgzG5D0Mx/f4kpJP/exPoqL/l246NuFjf5d2Ojfha1Y/XuNc65+shcCGYL9ZmbHprrFHoKP/l246NuFjf5d2Ojfha0U+5fpEAAAACg7hGAAAACUHULw5D5b7AbAV/TvwkXfLmz078JG/y5sJde/zAkGAABA2WEkGAAAAGWHEAwAAICyQwiewMzeZmZPmNmPzWxbsduDuTGzJjM7bGbdZvZDM/vtwvN1ZvZNM/tR4b+Li91WzJ6ZhczsB2a2v/D4WjP7XmE//lszixa7jZgdM7vCzB4ys14z6zGzG9l/Fw4z+0jh2HzSzHabWZz9N7jM7PNmdsbMTk54btL91fL+pNDPXWb2umK0mRBcYGYhSZ+R9HZJrZK2mFlrcVuFOcpJ+p/OuVZJb5T0m4U+3SbpkHPuOkmHCo8RXL8tqWfC4/skfdo59ypJ5yS9vyitghf+r6SvO+dWSlqtfD+z/y4AZtYo6X9I6nDOrZIUkvQrYv8Nsi9IettFz021v75d0nWFPx+S9Gfz1MaXIAS/aK2kHzvnfuKcy0j6sqTOIrcJc+Cce8Y59/3C388rfwJtVL5fHyxs9qCk24vTQsyVmS2XtEHS5wqPTdIvSXqosAn9G1BmVivpFyX9lSQ55zLOuefF/ruQhCUlzCwsqVLSM2L/DSzn3D9JOnvR01Ptr52SvujyvivpCjO7en5a+iJC8IsaJZ2e8PipwnNYAMxshaTXSvqepAbn3DOFl56V1FCkZmHu/ljSxySNFx4vkfS8cy5XeMx+HFzXShqQ9NeF6S6fM7Mqsf8uCM65Pkl/KOmU8uF3UNJjYv9daKbaX0sicxGCseCZWbWkr0j6sHNuaOJrLr9GIOsEBpCZbZR0xjn3WLHbAl+EJb1O0p85514raUQXTX1g/w2uwtzQTuX/sbNMUpVe/lU6FpBS3F8JwS/qk9Q04fHywnMIMDOLKB+A/8Y5t6fwdP+Fr10K/z1TrPZhTt4kaZOZPan89KVfUn4O6RWFr1cl9uMge0rSU8657xUeP6R8KGb/XRjWS/qpc27AOZeVtEf5fZr9d2GZan8ticxFCH7RUUnXFa5MjSo/QX9fkduEOSjMD/0rST3OuQcmvLRP0nsKf3+PpL3z3TbMnXPu48655c65Fcrvr//onPtVSYcl3VHYjP4NKOfcs5JOm9n1hadukdQt9t+F4pSkN5pZZeFYfaF/2X8Xlqn2132S3l1YJeKNkgYnTJuYN9wxbgIze4fycwxDkj7vnLu3yE3CHJjZL0j6Z0mP68U5o/9L+XnBfyepWdLPJP0n59zFk/kRIGZ2s6Tfcc5tNLNXKD8yXCfpB5J+zTmXLmb7MDtm1q78RY9RST+R9D7lB2/YfxcAM/s/kn5Z+ZV8fiDpA8rPC2X/DSAz2y3pZklXSuqX9LuSvqpJ9tfCP3z+VPkpMKOS3uecOzbvbSYEAwAAoNwwHQIAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdgjBAAAAKDuEYAAoAjPbZGbbLr3ly35uhZmd9KE9N5vZTRMef8HM7pjuZwAgyMKX3gQA4DXn3D6V1l0pb5Y0LOlfi9wOAJgXjAQDgMcKo7W9hdHUfzOzvzGz9Wb2bTP7kZmtNbP3mtmfFrb/gpn9iZn9q5n9ZKYjsGYWMrNPmdlRM+sys98oPH+zmT1qZg8V2vE3hTs0yczeUXjuscJ77jezFZL+i6SPmNlxM3tz4S1+8eI2mdnVZvZPhe1OTtgWAAKFEAwA/niVpD+StLLwZ6ukX5D0O8rfvvtiVxde3yhp5wzf4/2SBp1zayStkfRBM7u28NprJX1YUqukV0h6k5nFJf2FpLc7514vqV6SnHNPSvpzSZ92zrU75/55mjZtlfSIc65d0mpJx2fYVgAoKUyHAAB//NQ597gkmdkPJR1yzjkze1zSikm2/6pzblxSt5k1zPA9/oOktgkjx7WSrpOUkXTEOfdU4f2PF95zWNJPnHM/LWy/W9KHpqk/WZuOSvq8mUUKrxOCAQQSI8EA4I/0hL+PT3g8rskHICZubzN8D5P0W4XR23bn3LXOuW9MUm9sive8lJe1yTn3T5J+UVKfpC+Y2btnURcAio4QDADB9Yik/1oYlZWZvdrMqqbZ/glJryjMAZakX57w2nlJNZd6QzO7RlK/c+4vJX1O0utm0W4AKDqmQwBAcH1O+WkO3y9c+DYg6fapNnbOJc3sv0n6upmNKD+14YKvSXrIzDol/dY073mzpDvNLKv89ApGggEEkjnnit0GAMA8MbNq59xwITR/RtKPnHOfLna7AGC+MR0CAMrLBwsXyv1Q+Qvp/qLI7QGAomAkGABKkJndIOlLFz2dds69oRjtAYCFhhAMAACAssN0CAAAAJQdQjAAAADKDiEYAAAAZYcQDAAAgLLz/wEyGkqAbA8RowAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Zk//s8958nkQAYmgRwwYCEHIaEYEfAUBNQaIIpxK+xXbbXQ79budrVSqS5uF5YuglVrf+1u4aut+iraeubgykmiVmU5LUTMASwigUASCDnP6Znn/v0xCQbIYZI8z2TCfN6vFy/JzOTOHRLvuZ77ue7rElJKEBERERFFE8NgT4CIiIiIKNwYBBMRERFR1GEQTERERERRh0EwEREREUUdBsFEREREFHVMgz2B/hgxYoTMyMgY7GkQERERUQTbt2/fGSmlq6vnhmQQnJGRgb179w72NIiIiIgoggkhvu7uOaZDEBEREVHUYRBMRERERFGHQTARERERRR0GwUREREQUdRgEExEREVHUYRBMRERERFGHQTARERERRR0GwUREREQUdYZkswwiomjk9wdQ1+qFKoFmjwK3PwC72Yg4mwkGAbgcVpjNxsGeJhER3F4/zrb5AQDN7k7rlT0Yeg6PMcNuNQ/mFBkEExFFujavgnNuP949cBKv7j6Oqnr3Ja9Jd9qxYMpoFE1KRaLdjBgrl3ciCr9zbT60eQPB9WpPD+vVNcH1KsZqRGKMZRBmCggp5aB84YHIz8+XbJtMRNGgtsmD7eU1WL6pDB6/2uvrbWYDnpyTg1nZyUiKt4VhhkREQacbPdhRXoMVm0Nfr5YV5mBmdjJGJuizXgkh9kkp87t8jkEwEVFkqm3y4LG3SrGzoq7Pnzsjy4Wn5ucyECaisKhp8mDpANarVfNzkazDetVTEMyDcUREEWggATAA7Kyow2NvlaK2yaPxzIiILnS6sf8BMBBcr5a+VYqaMK9XDIKJiCJMm1fB9vKafr+hdNhZUYft5TVo8ykazYyI6ELn2nzYodV6VVaDhjafRjPrHYNgIqIIc87tx/JNZZqMtXxTGc61n9AmItJamzeAFZu1Wa9WbC5DqzegyVihYBBMRBRB/P7gqepQDpWEwuNXseHASfj94XtjIaLo4Pb6tV+vDp6E2xueC3ddg2AhxItCiFohxKFunhdCiOeFEF8KIUqFEJP1nA8RUaSra/Xi1d3HNR1z/e7jqGv1ajomEdHZNj9e3aP9enU2THev9N4J/iOA23p4/jsAxrX/WQzgP3WeDxFRRFMluqyrORBV9W6oQ68QEBFFOKnTehWuwmW6BsFSyo8A1PfwkiIAL8ugXQCGCSFG6TknIqJI1uzR5xCbXuMSUfRq0WldafGGZ70a7JzgVABVnT4+0f7YJYQQi4UQe4UQe+vqBnYCkYgoUrl1yt31MCeYiDQ21NerwQ6CQyalXCulzJdS5rtcrsGeDhGRLuxmoy7j2nQal4iil27rlSk869VgB8EnAaR3+jit/TEioqgUZzMNqXGJKHrF6rSu6DXuxQY7CN4A4L72KhFTATRKKU8N8pyIiAaNQQDpTrumY6Y77TAITYckIoLQab0SYVqv9C6R9iqAzwBkCiFOCCEeFEL8XyHE/21/yXsAjgL4EsA6AD/Scz5ERJHO5bBiwZTRmo65cMpouOJsmo5JRDQ8xowF1+iwXsVaNR2zO7ruN0spF/TyvATwkJ5zICIaSsxmI4ompeL5HUc0KUBvMxswb1IqzMbBvvFHRJcbu9UcXK8+0HC9ykuFNUxnGLgqEhFFmES7GU/OydFkrCfn5CAxxqzJWEREF4uxGrGsUJv1allhDhzW8B3iZRBMRBRhYqwmzMpOxoysgVXCmZHlwqzsZMRYeCiOiPSRGGPBTK3Wq5xkDIuxaDSz3jEIJiKKQEnxNjw1P7ffbywzslx4an4ukuKZC0xE+hqZYMOqAa5Xq+bnIjnM65WQ4epNp6H8/Hy5d+/ewZ4GEZHuaps82F5eg+WbykLKubOZDXhyTg5mZSczACaisDrd6MGO8hqs2Bz6erWsMAezcpJ1C4CFEPuklPldPscgmIgosrX5FJxr82PDgZNYv/s4qurdMBkELCYDfIoKRZVId9rx91NGY96kVAyLMTMFgogGRUObD63eADYc/Ga9uli6046F7euVw2LUNQWCQTAR0WXA61NQ1+oDADS7Fbj9AdjNRsTZgwGvK9YatlPVREQ9cXv9ONvmh5RAi1eBxx+AzWxErNUEIcK3XvUUBHOrgIgowvkUFfWtPmwqrcZLnx3rdmfl/mkZmJObAqfDAouJRz6IaPDYrWakWSO7Mg13gnvg9wdQ1+qFKoFmzzdXMXE2EwwiWNTezF0XItJRfasPO8prsOzdQyHn2K0omoCZ2clwOsJ3ypqIKBJxJ7iP2rwKzrn92FxajVd2fd1t/t29U69AYW4KEu1mxFj5T0lE2jrb4sXSNz/HtvKakD/H41ex5I1SzM5Oxqq7JmJ4mDovERENNYzcLlLb5MHOylos31SG6781Ao/ekonUYXZ4FfX8TrDVZMDJBjc2l57Cr3ccwZNzcjAjM4knsYlIM/Wtvj4HwJ1tK68B3gRWF+cikTvCRESXYBDcSW2TB4+//TliLCb86cFrUXK4Dk9vrew2/+6uyWn4UcGVePGTY9hWVoNf3jmRgTARDZhPUbGjvKbfAXCHbeU12F5eg6JJqcwRJiK6CHOC29U2efBvG7/A7RNTcLrJjTVbKkPOv1tyayZGxtvx3ufV+Ne5VzEQJqIBOd3oQcHTO0Nag3pjMxtQ8ugMjEzgukRE0aennGBuDSCYA/zxkTr8/dQr8Pq+KqzYVB7ym4/Hr2LFpnK8vq8Kfz/1Cvz1SB3afIrOMyaiy1UgoGJTabUmATAQXKM2lVYjENBmPCKiywWDYAANbj9iLCas/egoSirr+jVGSWUd1n50FHaLCQ1tfo1nSETRor7Nh5c+O6bpmC99dgz1bT5NxyQiGuqiPgj2+wM4dLIR1Y3ufgfAHUoq61Dd6Mah6kb4/QGNZkhE0URRZZfnEAaiqt4NRR16qW9ERHqK+iD4TJsPoxJsWLOlUpPx1mypxKh4G85w14WI+qHZo086VYtO4xIRDVVRXx3CaAB2VNRqmn/3QUUtFkxJ12Q8or4KBFTUt/mgqBLNHgWBQABGY7DJi8kg4IyxwGiM+uvfiOXV6S6SV2FOMBFRZ1H/Tuj2qXhz/wlNx3xj/wm4NQqqiULlU1ScbvTgYFUDzrb64FNU+BX1gv+ebfXhQFUDTjd64GNQFJGsOnWhZIk0IqILcVUEdMm/Iwqn+lYfDtc0wR9QcXHqZ+Cij1UJ+AMqDtc0ob6VaTuRJs6mzw06vcYlIhqqon5VbPPpc+vRrdO4RBc72+JFs0eBbN/YrW324EyrwIhYKxRFRUCV8PlVuP0BnGnxIhCQGJlgg1SBJrcfUkq21o0gJoNAutOu6cV0utMOk0FoNh4R0eUg6neCvTqlLTD/jsKhvtUHn1+FBHC21YezrT6MGeFA9qh4jIy3IT7GDLvVhPgYM0bG25A9Kh5jRjjOv1YC8CsqznFHOGI4Yyy4f1qGpmPePy0DTgcvdIiIOov6nWCbWZ/rACvz70hnPkWF16dAQuBUgxupiTbEWMx498BJvLrnOKrq3TAZBCwmA3yKCkWVSHfaseCa0SialAqHxYBTDW5kDHfA41Pgs5qYNxoBjEYD5uSm4OmtoXWt7I3NHBzPyJ1gIqILRH0QHGPV5xCKXuMSdWh2+6ACaHJ7kTHCgZ0Vtfjlf5fj+m+NwKO3ZCJ1mB1eRYXHH4DNbITVZMDJBjc2l57Cb0u+xOPfycaMrCQ0tnkRb7egye3DiDi21o0ETocFK4omYMkbpQMea0XRBDgdFg1mRUR0eYn6IFgJSF3y75SLTyMRaSjQfgCuza8g0WHDz98uRZzVjD89eC1KDtfh6a2VXf5OpzvtuGtyGn5UcCVe/OQYtlfU4D/uzEWz1weL0YJAQGX5tAhgMRkwMzsZs7OTsa28pt/jzM5OxqzsZO7wExF1IepXRqMQuGtymqZjFk9Og1Hw1iPpp9nnR0BKxFrM+LeNh1A8OR156Qm4Z90uPLf9SLcXdVX1bjy3/QjuWbcLeekJKJ6cjn/beAixVjNUKdHsY8vvSOF0WLDqromYnZ3cr8+fnZ2MVXdNRCJ3gYmIuhT1QbDBIFAw3qVZbrDNbMBN410wMP+OdKSqEgYh8NHhOtw7LQOv76vCik3lIeeQevwqVmwqx+v7qnDvtAx8VFkHgxBQ2Vo3ogyPteKp4lysKc4NeY2ymQ1YU5yL1cW5rPpBRNSDqE+HEAJ4+8BJLLk1Eys2lQ94vCW3ZuKtAyex+PqxGsyOqGv+gIQSAOLtZqz96ChKKuv6NU7H5303Px2+gOSCEIGcDguKJqXihnEubCqtxkufHes21eV70zNQODEFToeFKRBENKi8PgV17ZWHmt0K3P4A7GYj4uzBdxqXwwKrZXDfdaL+Pc9kEEiOs2FkvB0Fma5+BxMAUJDpwsh4O3yKCrOJO8GkH6vZgP1f16O60T2g31kgGAjfMG4EIIBpVzo1miFpyWIyYGSCDd+fnoGiSSlQVIkWjwKvosJqMiC2oyW2w8oqEEQ0qJrdfjR5lAsqFV2sc6WieJsJcXbzIMyU6RA41ejB3LwUPPnu51h841gUZLr6NU5BpguLbxyLJ9/9HHNyU3Cq0aPxTIm+0ewOIC3RjjVbKjUZb82WSqQNs6PZzSYvkUxVJfyBYAMURZVQ1GDpu0D742qA9cmJaPDUNHqw4WA1Zj5TgtVbuj6gDQTPp6zeUomZz5Rgw8Fq1AxSzBT1O8FWkwHbyk7jkdmZWPTSXqwuzsMN40ZgzZbQanTazAYsuTUTI+PtWPTSXjx+eza2fnEa064cHobZU7SymAR2VNRqUkcWCOYIf1BRi3umpGsyHmmrzavgnNsf3FnZ3cPOypTgzkqi3YwYa9Qv70QURjVNHix9uxQ7K0K/O+nxq3jinUPYXlGDVfNzkRwf3jKdUb8THGs1YfmmckwZ48SUsU48tH4/DhxvwGuLpuLhWeOQ7rR3+XnpTjsenjUOry2aigPHG/DQ+v2YMtaJKWOcWLG5HLF8AyIduX0q3tx/QtMx39h/Am6dOihS/9U2efDOgZOY+asSrH6/l52V9ysx81cleOfASdQ28W4UEYVHTaMHS9/qWwDc2c6KOix9qxQ1YV63oj5SE0Ig3WnHwnW78NaPrsOTOISNpafw3qHTmJmVhEdvyUTKMDv8ARUevwqb2QCz0YDqBjc2lZ7C8x98iYAqMSPLheXzJmD+7z5ButMOwRJppCMhoGltayA4Hn9rI0ttkweP9fGNxeNX8fjbh7CtvAZPzc9FUph3VogoujS7/dheXtPjOhVrMSLRYcG5Vh9afF2n3e2sqMP2shoUTUpBrC08OcJRHwRbTALFk9Pw7PYjmP+7T7B+0VTMykrGis1l2FpWg61lwUL1F7ef7WAzG7B83lWYMsaJ+b/7BHUtPjwyexzbJpOu2rz65O62dbM4Ufj1JwDubGdFHR57q5SBMBHpqsmjYMXmsgses1uM+FVxLnJSE2ASAk0e//mNxHibGYqUOHSiAUve/BzuTu87KzaXoSAziUFwuAgBFOam4D8//BvqWnyY/exHWFaYjW0P34RNpdVY355/p6gSSqcfVLrTjoVTRmNObgq2fnEas5/9CEAwKL59YspgfTsUJbyKPmkLPp3Gpb5p8yq97qx0d2He2c6KOmwvr8Ed305FzCCXIiKiy4/XF6wC0fl8yv+772pkj0rAuwdO4j/er+ixOsT2h29C+alG/ODlfQCCd7I2HDyJB6ZnhKV8GldFBA/Hda4TvGJzOZ7aUol/uvlb+P29VyPGYkKrVzl/FeOwmtDmU/BBeS1mPvPhBYHDklszYTUZeFuZdKVVc5eL8Q5GZDjn9mP5pgt3VowGgVnZSbh94iikDrPDq6jw+AOwmY2wmgw42eDG5tJT2FFRi0CnoHj5pjLclJnEIJiINFfX6sOre44DAK5w2rF+0VSUVNbhx6+W9Hhwu6M6xPMfHMGywhx88tgMLFy3C1/Xu7F+93HMzUtBGoNg/Xn9El6/gqljh19QJ9inqHh662E8vfUwAMDWXouzxaPA081uWUGmC1PHDofHr4D/tKSneJ1qKuo1LoXO7w9csrMyLy8FD1yXgZLDdXh6a/Bw3MU7welOO+6anIYfFVyJFz85hg0HqwG076wcOIkfXDcGZrNxsL4tIroMSRkMaK9w2vHnH07Hz/tZHWJGlgt//uF0fPf3n+LrejdkmJqXRn2k1uJV8J8lf8M/FIzFw7PGA0CXzQc8igpPi6/bcQoyXXh41ngYBPD8ji/x0Ixv6TZnIrMxeKBTy8Nx6U47zEbewxhsda1evLo7uLPisBixujgPp5vc+PsX/gfXf2sEHr0l8/xOsFcJwGq6cCd43cdH8cjs8bj1qpH42RsH0eoLYP3u4yialIKUYTGD/N0R0eWkxaMAANYvmtrnALiznRV1+PnbpVi/aCque2onWryKltPsVtQHwR5/ABsOVmNu3iiMjLdh8Q1j+1UnOHtkPAwCOHHOjY2lp/Dg9WPCMHuKVs4YC+6bmoGV7w281XeH+6ZlwOmwajYe9Y/avrPisBix7v58rP3oKOJtZvzpB9fi4yNnzu8EXyzdacff5afjRzOuxIt/PYaPPWew7v58LHppL6rq3egmbZiIqN/c/gD+331Xo6Syrt8BcIedFXUoyarDuvuuhscfnkPaUZ8A2JED2bnR0mhnDF5bPC20OsGLp2G085vdlY5xLMytJJ3dnJ2kWW6wzWzAzVlJCNs9KOpWc/vOyuriPLz86THcfXU68q9IxD1rd+FXWw+fD4BjLUakJ9oRawmmOFTVu/GrrYdxz9pdyL8iEXdfnY6XPz2G1cV5F4xLRKQVu9mI7FEJl1SHuNjF61V3VmwuQ86oBNhM4Undivqd4FibCfPyUnCyoQ0//csBrC7Og8UUvCU8ZrgDT9yejeGx1kvqBJ9t8V5wQv9cmx+LXt6LR24Zj7m5oxBri/p/WtLRmRYvXv7sGJbeloVfbOx58QnF0tuy8NJnx/DQTVciOaHrCz8KD7c/gHl5KTjb6sH3rhuDdR8dxY6KWtgtRvxu4bdDKjn05IYvMDMrCYtuHIvDNU2YmzsqbDsrRBQ9RiVasX5X1SV3zvtbIq2jOsSCa8PTvTTqIzWDEFh0wxjc/fvP4PGreGj9fszNHXVJOoMAYBTi0qoPUmLDgWpsLD0FAFizpRKv/3AaDGyWQTryBSRe+vRr7HjkJtyc5cIHA7gNdXOWCzeMc+EXG8uw6PqxGs6S+sNuNuKB6zJQ2+w9HwAPpOTQd69Jx4PXD4OVh+KISGMtnsD56hAdBrJeAThfHWJYGPZjov6efbzdiI+PnLngKmZj6Snc9V+fYdPnp7qtx+pVVGxqf11HAAwEr2L++uUZxNuj/vqCdNTqVTAvLwX/W3UOP7hhLAoyXf0apyDThR/cMBYHqs5hbu4otPp4y3ywDY81o+pcG860+PBlbTM+eWwGapq8mPlMCVZv6aVt8pZKzHymBDVNXnzy2Ax8WduMsy0+nDjXhuEOVv4gIm11VIcAgiXSBrJeXdGeflrF6hDh0+S+9CoGAAKqDKljXFc6rmLibRZd5kzk9gfwk1njUPj8xzAKgdXFef060Dky3o5FL+1FQEps/qcb0Oz2h2H21BOfIpE5Mh4/Xr9Pk5JD9724C//fwqvhCzDfm4i01VEdQusSaeGqDhH1O8Gdr2J6oqgSbb5ArwEwEN6rGIpOiTEW7CivhcevotUXwEPr9+PA8Qa8tmhqaAc6F03FgeMNeGj9frT6AvD4VXxQXovEGF64DTaryYCdFbX4w/emaFJy6A/fm4KSylo2QiEizbnbzxpoWSINQNjOMET9TnCLTiemw3UVQ9HJYhJ4ZdexCx7bWHoK7x06jZlZSXj0lkykDLPDH1Dh9auwth/orG5wY1PpKTz/wZcXdBUDgJd3HUNh7sgwfhfUFa9fRc6oeE1LDmWPjAvpDgERUV/YzUZdSqSFqzpE1G8NuHW62uBJbNJTQO3+DkbHmUwBAPKi/wLdtvSuqndfUCqQBocEMNYV22vJoVCt2FyGsa44TcYiIuos1mYKqURaqDpKpIWrwlbU7wRrVWf1knHDdBVD0am1izsNXbXWvVh3rXXPj8uDcYPObjHgL3tOaLZz21Fy6O5r0jQZj4ioQ5zd2GWJtP4Kd4m0qN8JjrPpc2KadYJJT53vYDgsRvx24WTkpSfgnnW78Nz2Iz2eyH1u+xHcs24X8tIT8NuFk+HoVLzc4+MdjMHm9qldHtYdiPW7j8Pt5TY/EWmrqxJpA7V+93G0eNgxLmy6O0QUKeMRXayjI2FHa93X91VhxabykK/GPX4VKzaV4/V9VVh3f/75QJidDiNDKId1B3M8IiIg9OICfRHO4gJR/47nsBqw4JrRmo65cMpoOKxMhyD9xFmDdxpWF+dh7UdHUVLZvwMJJZV1WPvR0fOtdXkHY/DxsC4RDRVDfb2K+iDY41cxNy9Fs9xgm9mAObkpPIlNujIYBO6ffgVON7n7HQB3KKmsw+kmN+6bfgU7HUYAHtYloqFiqK9XUR8E+xWJ2mYvlhXmaDLessIc1DV74Ocxe9KR1SRw39QMrNlSqcl4a7ZU4v5pGbAxHWLQxVj0uYtkZ9tkItKYXusKS6SFydlWH4bFmHHtGCdmZPWv9WyHGVkuXDvWiYQYC+pbfRrNkOhScRYTdlTUaHoid0d5DWKtTIcYbA6dfgZ6jUtE0UuvFLpwpeZFfRBsNxvx6+1H8EV1I5bPm9DvQHhGlgvL503AFycb8dy2wyyRRrqqd/vxyq6vNR3zlV1fo76NF2+RgId1iWgoEEKf9SpcmXlRHwTH2kzYcLAaMRYTnt1Wice/k42Vd0wIOUfYZjZg5R0T8Ph3svHstkrEWEzYWHqKB4xIV6pOJ3JD6ApOOlOlxF2Tta3pWzw5DZK93IlIYy6HRZfiAklxVk3H7E7UB8EdVzH//OcDuGfKaDz1fgU8/gC2PXwTHrsts9srnHSnHY/dloltD98Ejz+Ap96vwD1TRuOf/3wgrFcxFJ2a3fqcnG3W6aQvhe5cqw8F412aHta9abwL59r8moxHRNTBajGhaFKqpuvVvLxUWJgTHB4dVzGtvgC+/4c9uPPbabCZjSj8zccIqBK/v/dqlCwpwOZ/uh5v/sN0bP6n61GypAC/v/dqBFSJwt98DJvZiDu/nYbv/2EPWn2BsF7FUHQa6idyqXs2sxEvfnIMS27N1GS8Jbdm4oW/fgUrDz0SkQ7ibSZNiwsk2MN3Jz3q79l3XMU8/8ERtPoCeGj9fszNHYWXH7gWn/3tDH74yj5U1bthMxkQazOhxaPAo6hId9qxcMpovPzAtXjh46PYWHoKQPivYig6DfUTudS9jhStW68aiYJM14BK4BVkujAy3o6NpeV47DtZGs6SiCgozm7GrOxkbK+owc6K/q9XM7JcmJWTjFidOvl2JeqDYOCbq5gn3jkEANhYegrvHTqNmVlJePSWTKQMs8MfUOFTVFhMBpiNBlQ3uLGp9BSe3noYgU6JlOG+iqHoNNRP5FL3BILpVj974yDW3Z8PAP0KhAsyXVh841gsemlvMEVL43kSEXVITrBh1fxcLH2rtF+B8IwsF1bNz0VyvE2H2XWP73jo+iomoEpsLavB1rIaAIDJIGAxGeBTVCjdnB4ajKsYil7pTrumh+NYQSAyKAGJe6degV++V4FFL+3F6uI83DBuBNZsqQypJJ7NbMCSWzMxMt6ORS/tRasvgJ9MvaLbdYuISAvJ8TasujMX28trsGJzWcjr1bLCHMzKSQ57AAwwJ/i8jquY7kqkKapEmy/QYwA8GFcxFJ1i2O77snXO7ceN7QfjOlK0DhxvwGuLpuLhWeN6PKz78KxxeG3RVBw43oCH1u9Hqy8Am9mAG8e50MCDcUSks+QEG4ompWDHIwUhFRfY8dMCFE1KGbTYSQzFsjn5+fly7969uoxd0+gZUlcxFJ2OnWmF0SAw+9kPNWmYYTMbsO3hmxCQEhnDHRrMkPqr4nQTfrfzb5g6djgef/vz848bDQIzs5JQmDvqfIqWx6/CZr4wReuDitoLUrT+486J+PRvZ/DQzd9C1sj4wfiWiCgKeX0K6lp9kBJo8Srw+AOwmY2ItZogBJAUZw3L+SkhxD4pZX5XzzEd4iIdVzEFmUnYcPAk1u8+3uUt546DcfMmpSLBZmIKBIWVoqqoafJdkMs+EMsKc3CqoQ3OWFY1GWwJNjM2HKzG7RNHYmZWEnZU1ALoX4rWzKwkJDrM2Fh6Co/fnh2274GIyGoxIc0S2WFmZM9ukMTazIi1mfHA9AzMzUsZ9KsYoospAQmryXC+3fdAT+ReO9aJFo8CJTD07gxdbkxGgXSnHT/9y0G88L1rAOB8INyZokoovu5L2s3MSsKiG8fiwT/uQbrTDpORR+OIiDpjTnAPrBYT0hJjkO6MQfaoeHx7dCKyR8Uj3RmDtMQYBsA0aGJtJrz4yTHsPnZWk3bfu786ixf++hWrQ0QAZ4wF903LQKsvgAf/uAfzJ6dh+byr+tTFcvm8qzB/choe/GOwdvn90zLgdHCXn4ioMwbBREOQxWjA/1adQ4Ldiqe3VAyo3ffTWyqQYLfiwIkGWNhQYdAZjQbMzU254GDcnmP1eG3xVDx6y/geD5o8est4vLZ4KvYcq7/gYNyc3BQYDdwJJiLqjAfjiIagQEDFC58cw6+3H8a6+/Ox9qOjuOFbI3DLVSOxqbS611z2Obkp2PrFaXz85ZnztWT/efZ4PHDdGAZLEcCnqHj3wEkseaP0/GNdHYzz+lVYezkYt6Y4F0WTUnmBQ0RRqaeDcQyCiYao041uFDxdAqMQWF2ch9NNbvx6xxEsvmEsbs5OQozFhFavcr6CgMNqQptPwQfltVj78VH8ZOY4jIwPNmUISImSRwswMoG1giNFfasPj71Rim3lNV0+H8rBuNnZyVhdnNXm1hAAACAASURBVItEh0XPqRIRRSwGwUSXIZ+i4p0DJ/CzN4JltObmjsKD14/Bh4fr8Mb+E922+y6enIabxrvwwl+/Ot/ue3VxLu7gbmHEOdvixdI3P+82EO7J7OxkrLprIoaz4gcRRTEGwUSXqfpWH372xkFsLw9WD+hPLdlZ2UlYU5zH3cIIVd/qw47yGix791DItctXFE3ArOxk/kyJKOqxTjDRZSoQUPGTmeMgZbCMVl9ryc7MSsJPZo6DEhh4ww3Sh9NhQdGkVNwwzoVNpdV46bNj3eZ7f296BgonpsDpsHBXn4ioF9wJJhqi2rwK3jlwEis3l2N1cR7Otnjxy/8uD3m38PHvZGN4rBU/e+MgnijMxh3fTkVMhBc2j3aBgIr6Nh8UVaLFo8CrqLC2p7yYDAJOh5UHG4mIOuFOMNFl6Jzbj+Wbgu29H1q/H3NzR+G1xVPx1yNn8Oe9Vd3uFn43Px3XjxuBFz7+Jid4+aYy3JSZxCA4whmNBrji2tuzJwzuXIiIhjq+4xENQX5/AO8eOHnBru/G0lN479BpzMxKwqO3ZPZYRuvZ7UcuKKPl8avYcOAkfnDdGJjNbAJDRESXPwbBRENQXasXr+4+fsnjfc0J7mz97uMompSClGExusyZiIgokjAIJhqCVIku0x0upqgSii8Q0phV9W70EicTERFdNnh8mGgIavYoQ2pcIiKiSKN7ECyEuE0IUSmE+FIIsbSL50cLIXYKIf5XCFEqhLhd7zkRDXVuf2i7u33l0WlcIiKiSKNrOoQQwgjgtwBmAzgBYI8QYoOUsqzTy/4FwF+klP8phMgB8B6ADD3nRTTU2U36HF6z6TQuaaNzibRmjwK/EoDZZERcR4m0GAuMRt7gIyIKhd45wVMAfCmlPAoAQojXABQB6BwESwDx7X9PAFCt85yIhrxYmz7/6+o1Lg2MT1FR3+rDwaoGSEiMiLXCp6jwKSosJgOa3H6cafFCAMhLT2SzDCKiEOi9SqYCqOr08Yn2xzr7BYD/I4Q4geAu8D92NZAQYrEQYq8QYm9dXZ0ecyUaUtKd9ogej7RR3+rD7q/O4nSTB17lm3QVCSAgJTqfZfT4VZxu8mD3V2dR3+oL+1yJiIaSSNj2WQDgj1LKXwkhpgF4RQgxQUp5QdsrKeVaAGuBYMe4QZgnUcSItRmx4JrRWL2lUrMxF04ZjTjuBEeUsy1eHK5phscfQKzNjKNnWvHm/hPdNkK5a3IarhjhgMcfQOXpJoxPjsPwWOsgzJyIKPLpvRN8EkB6p4/T2h/r7EEAfwEAKeVnAGwARug8L6IhTQlIzM1Lgc2szf/CNrMBc3JT4A/03nKZwqO+1YdTDW5ICXxd34Z71n6G57Yf6bY0XlW9G89tP4J71n6Gr+vbICVwqsGNc9wRJiLqkt5B8B4A44QQY4QQFgD3ANhw0WuOA5gJAEKIbASDYOY7EPXAGWNBXYsXywpzNBlvWWEO6po9cDq4axgJfIqKM80eBCSw9uOjWLGp/ILugD3x+FWs2FSOtR8fRUACdS0e+BRe3BARXUzXIFhKqQD4MYAtAMoRrALxhRBiuRBiXvvLfgpgkRDiIIBXAXxPSsl0B6IeGI0GpCTYce0YJ2ZkuQY01owsF64d60TKsBgYDUKjGdJANLT54Fclnt1+GCWV/dsTKKmsw7PbD8MfkGho424wEdHFdD8+LKV8T0o5Xkp5pZRyZftjT0opN7T/vUxKeZ2UMk9KOUlKuVXvORFdDpwOC8pPNWH5vAn9DoRnZLmwfN4ElFc3wemwaDxD6o9AQIU3oGLX0bP9DoA7lFTWYdfRs/ApKgJMdSEiugBr6BANURaTAdeNc+G5bYfx+HeysfKOCSHnCNvMBqy8YwIe/042ntt2GNePc7GkVoRo9Pjh9atYo9GhxzVbKuFRVDR6/JqMR0R0ueC7HtEQ5nRY8HhhNla/XwmPP4BtD9+Ex27L7LbcWbrTjsduy8S2h2+Cxx/A6vcr8XhhNhK5CxwxFFXF5tLqkHOAe+Pxq3jv82oo3AkmIroA6yERDXHDY614qjgXO8prUPibj7H4hrH4/b1XI8ZiQqtXgcevwmY2wGE1oc2n4IPyWhT+5mMsK8zB6uJcBsARxuuXeGP/CU3HfH3fCdz57TRNxyQiGuoYBBNdBpwOC4ompeKGcS5sKq3GD1/Zh6p6N2wmA2JtJrR4FHgUFelOO743PQNb//kmdhWLUFLKbsug9VdVvRsXttUgIiIGwUSXCYvJgJEJNnx/egaKJqVAUSVaPAq8igprezBsMgg4HVZWgYhgLV5Fn3E9gd5fREQURRgEE11mjEYDXHG24AcJgzsX6juvTjV9fQqDYCKizngvlIgogtjNRl3Gtek0LhHRUMUgmIgogjis+tyg02tcIqKhikEwEVEEkVJ2W+Kuv9KddrARJxHRhRgEExFFmHunXhHR4xERXQ54f4yIKIIIIXDjeBee2XZYk4YZNrMBN45zQQhWBCGi8PH6FNS1+gAAzW4Fbn8AdrMRcfZg6OlyWGC1DG4YyiCYiCiCGA0Cr+4+jifnXIXH3/58wOP965yrsH7PcfzDjVdqMDsiop41u/1o8ih498BJvLrneJd1z9Oddiy4ZjSKJqUi3mZCnN08CDNlOgQRUURxOSxIHWaH02HGzKykAY01MysJiQ4z0obZMSLOqtEMiYi6VtPowYaD1Zj5TAlWb6nstvFPVb0bq7dUYuYzJdhwsBo1jZ4wzzSIQTARUQQxm42Yk5uClZvL8It5V/U7EJ6ZlYRfzLsKKzeXYU5uCsxGLvdEpJ+aJg+Wvl2KJ945FHIql8ev4ol3DmHp26WoaQp/IMxVkYgowgyzm7HuvmuwcnMZ5k9Ow/J5V8FmDm25tpkNWD7vKsyfnIaVm8uw7v5rMCxmcG41ElF0qGn0YOlbpdhZUdevz99ZUYelb4U/EGZOMBFRhAmoEgeqGvD+FzV4/4sazM0dhdcWT8Vfj5zBn/dWdZtj9938dFw/bgRe+PgrbCw9BQCYkZWEtGHallwjIurQ7PZje3lNvwPgDjsr6rC9rAZFk1IQawvPhbsYirUj8/Pz5d69ewd7GkREujh5zo2Zz5RccEvRaBCYmZWEwtxRSBlmhz+gwutXYTUbYDYaUN3gxqbSU/igohYB9Zt13WY2YMcjBUhNZCBMRNrrar3qLz3WKyHEPillflfPcSeYiCiCeH3BU9UXv6EEVImtZTXYWlYDADAZBCwmA3yKCkXtfjPD41ex4eBJPDA9Y9DLERHR5aW79aq/wr1eMSeYiCiC1LX68Oqe472+TlEl2nyBHgPgDut3Hz9fr5OISCuhrld9Ec71ikEwEVEEkRLdlhXqr6p6N4Zg5hsRRbihvl4xCCYiiiAtHkWfcb36jEtE0Wuor1cMgomIIojbH9BlXI9O4xJR9Brq6xWDYCKiCGI3G3UZ12bSZ1wiil5Dfb1iEExEFEFibfqciNZrXCKKXnF2fdYVvca9GINgIqIIIkSw8YWW0p12CKHpkEREAPRZr8KFQTARUQRxOSxYcM1oTcdcOGU0kuKsmo5JRGQxCdw1OU3TMYsnp8FiDE94yiCYiCiCWC0mFE1Khc2szfJsMxswLy8VFuYEE5HG6lv8KBjv0nS9umm8C/VtrBNMRBSV4m0mLCvM0WSsZYU5SAhTfh0RRRe3P4AXPzmGJbdmajLeklsz8cJfv4LHx+oQRERRKc5uxqzsZMzIcg1onBlZLszKSUaszazRzIiIvmExGbDhYDVGxttRkDmw9aog04WR8XZsLD0Fi4npEEREUSs5wYZV83P7HQjPyHJh1fxcJMfbNJ4ZEVFQnDV4l+lnbxzE4hvH9jsQLsh0YfGNY/GzNw4CAGKtrA5BRBTVTAaBlXdMxMo7JoScc2czG7DyjglYecdEmAwsCUFE+hFCIN1pR6svgEUv7cXdV6dj2ZzsPq1Xy+Zk4+6r07Hopb1o9QXaq9mEZ+1iEExEFIHqW31Y+ubnmL7qAyTFW7HjkQI8dltmt+WD0p12PHZbJnY8UoCkeCumr/oAS9/8HOdaw3PAhIiij9kkUNxeHaLVF8BD6/fjwPEGvLZoKh6eNa7H9erhWePw2qKpOHC8AQ+t34/W9jzgu69Og8UUniBYSCnD8oW0lJ+fL/fu3TvY0yAi0oVPUfHugZNY8kbp+cfsFiPW3DURE9KGwSgEWrwKPP4AbGYjYq0mBKTEoRMNWPLm53B3OlSypjgXRZNSw5ZjR0TR43SDGy2+AOb85mN4/Or5x40GgZlZSSjMHYWUYXb4Ayo8fhU2swFmowHVDW5sKj2FDypqEVC/iUNtZgM2/+MNcFiMGDlMm3rBQoh9Usr8Lp9jEExEFFlON3pQ8PTOC95ULhZrMSLRYcG5Vh9aejhJbTMbUPLoDIxMYG4wEWmrqr4NJqPAe5+fwopN5d2+zmQQsJgM8CkqFLX7uHPZnGwUThgFvyqR7ozRZI49BcHcGiAiiiCBgIpNpdU9BsAA0OILoOqcu8cAGAA8/uB4gUDP4xER9ZUQwEeH6zD9yhE9HopTVIk2X6DHALgg04XpV45AyeHasHW4ZBBMRBRB6tt8eOmzY5qO+dJnx8JWfJ6IoofLYcHZFh/MRoGHZ40fUHWIh2eNh9kocK7NH7YOlwyCiYgiiKJKVNW7NR2zqt7d4w4MEVF/dHS4/NGf9mFkvA2Lbxjbr+oQi28Yi5HxNvzoT/vC2uGSbYSIiCJIs0fRZdwWjwIk6DI0EUWxeJsJz98zGb98rww/vnkc/IFYvLZ4Gj6srMUb+090eVGf7rSjeHIabspMQmObD644K375XhmeXzA5rB0uGQQTEUUQr1+fdqFehTnBRKSPA1UNePfgKbx78BSWFWbjlqtGYlxSLJ64PRvDY62XVIc42+KFKiWGOyzYd6we9/9hDwBg+rdGIE2jqhChYDoEEVEEsZr1uQ3IEmlEpIcmj4JfbPzi/McrNpdj5jMf4uiZVoweHgNXnBUJdjMSY8xIsJvhirNi9PAYHK1rxcxnPsSKzd9UlfjXDV+g0a3P3bCucCeYiCiCxNn0WZb1GpeIopfXp+DdAycvqWbjU1Q8vfUwnt56GABgMxkQazOhxaPA08NdKY9fxYaDJ/HA9AxYLfqvWdwaICKKICaD6LbLUn+lO+1soUxEmqtr9eHVPcd7fZ1HUXGmxddjANxh/e7jqAtTp0sGwUREEcQZY8H90zI0HfP+aRlwOsJTcoiIooeU0KWaTbj6uDEIJiKKIEajAXNyU0IuMdQbmzk4npE7wUSksRa9qtl4w5MXzCCYiCjCOB0WrCiaoMlYK4omwOmwaDIWEVFnbp2q2Xh0GvdiDIKJiCKMxWTAzOxkzM5OHtA4s7OTMSs7mZUhiEgXdp2q2djC1CyDKyMRUQRyOixYddfEfgfCs7OTsequiUjkLjAR6SRWp6ozeo17MQbBREQRanisFU8V52JNcW6f2pCuKc7F6uJcDI/lYTgi0o8Q0KWajQjTEQYWjiQiimBOhwVFk1JxwzgXNpVW46XPjnXbhvR70zNQODEFToeFKRBEpDuXw4IF14zG6i2Vmo25cMpoJMWF5wKeQTARUYSzmAwYmWDD96dnoGhSChRVosWjwKuosLYXoTcZBJwOK6tAEFHYWC0mFE1KxfMfHLmkYUZ/2MwGzMtLhSVMOcEMgomIhgij0QBXnC34QcLgzoWICADibSYsK8zBE+8cGvBYywpzkGAPX2jK+2VERERE1C9xdjNmZSdjRpZrQOPMyHJhVk4yYm1mjWbWOwbBRERERNRvyQk2rJqf2+9AeEaWC6vm5yI53qbxzHrGIJiIiIiIBiQ53oZVd+Zi5R0T+lTNZuUdEwYlAAaYE0xEREREGkhOsKFoUgoKMpOw4eBJrN99vNtqNgunjMa8SalIsJnCmgLRGYNgIiIiItJErM2MWJsZD0zPwNy8FEgJtHgVePwB2MxGxFpNEAJIirOGrQpEdxgEExEREZGmrBYT0iyRHWb2KydYCDFP64kQEREREYVLryG6EGL+xQ8B+K0QwgQAUsq39JgYEREREZFeQtmn/jOALQBqEQyAAcABYC4ACYBBMBERERENKaEEwdMBrAKwR0r5nwAghCiQUn5f15kREREREemk15xgKeUeALMBWIQQO4UQUxDcASYiIiIiGpJCOrYnpVQB/FoI8TqA5/SdEhERERGRvvpUHUJKWS2l/Dsp5diLnxNC/Ea7aRERERER6UfLtsnXaTgWEREREZFutAyCiYiIiIiGBAbBRERERBR1tAyCRe8vISIiIiIafCE3dRZCTJRSft7DS36twXwiitenoK7VBwBoditw+wOwm42Iswf/2VwOC6wR3hebiIiIiC7Vlwjud0IIK4A/AviTlLKx85NSyj9qOK9B1ez2o8mj4N0DJ/HqnuOoqndf8pp0px0LrhmNokmpiLeZEGc3D8JMiYiIiKg/hJSh970QQowD8ACAuwHsBvAHKeU2nebWrfz8fLl3715dxq5p9GB7eQ1WbC6Dx6/2+nqb2YBlhTmYlZ2M5ASbLnMiIiIior4TQuyTUuZ3+VxfguD2wYwA7gDwPIAmBHOBH5dSvjXQiYZKryC4psmDpW+VYmdFXZ8/d0aWC6vm5yI5noEwERERUSToKQgO+WCcECJXCPEsgHIANwOYK6XMbv/7s5rMdBDVNPY/AAaAnRV1WPpWKWqaPBrPjIiIiIi01pfqEL8BsB9AnpTyISnlfiDYRQ7Av+gxuXBpdvuxvbym3wFwh50VddheVoMWj1+jmRERERGRHvoSBBcCWC+ldAOAEMIghIgBACnlK3pMLlyaPApWbC7TZKwVm8vQ6FY0GYuIiIiI9NGXIHg7AHunj2PaHxvSvL5gFYhQDsGFwuNXseHgSXh9DISJiIiIIlVfgmCblLKl44P2v8doP6Xwqmv14dU9xzUdc/3u4+frCxMRERFR5OlLENwqhJjc8YEQ4moAlxbQvYgQ4jYhRKUQ4kshxNJuXvN3QogyIcQXQoj1fZjTgEmJLusAD0RVvRt9LLpBRERERGHUl2YZ/wzgdSFENYJl0UYC+G5Pn9BeTu23AGYDOAFgjxBig5SyrNNrxgH4OYDrpJTnhBBJffweBqTFo0/aQouX6RBEREQUnYZC192Qv7qUco8QIgtAZvtDlVLK3sogTAHwpZTyKAAIIV4DUASg8ym0RQB+K6U81/51akOdkxbc/oAu43p0GpeIiIgoUg2lrrt9DcGvAZDR/nmThRCQUr7cw+tTAVR1+vgEgGsves14ABBCfALACOAXUsr3Lx5ICLEYwGIAGD16dB+n3T272ajZWJ3ZTPqMS9SbQEBFfZsPiirR7FHgVwIwm4yIs5lgMgg4YywwGvuSCUVERNS7ULvuVtW7sXpLJZ7/4Migdt0NOQgWQrwC4EoABwB0bHNKAD0FwaHOYRyAAgBpAD4SQkyUUjZ0fpGUci2AtUCwY9wAv+Z5sTZ9tuL1GpeoOz5FRX2rD6VVDVAhMSLWCq+iwuMPwGY2osntx5kWLwSAvPREOB0WWEwMhomIaOBqmjxY+nbfmo55/CqeeOcQtlfUDErX3b5EavkAcmTf+iyfBJDe6eO09sc6OwHgf9pTK74SQhxGMCje04ev029CBLfltTwcl+60QwjNhiPqVX2rD2XVjYi1mVF2uglv7j+Bqno3TAYBi8kAn6JCUSXSnXbcNTkNyQl2fFnbjJyUBDgdlsGePhERDWE1jX0PgDvr6Lob7kC4L0HwIQQPw53qw+fsATBOCDEGweD3HgALL3rNOwAWAPiDEGIEgukRR/vwNQbE5bBgwTWjsXpLpWZjLpwyGklxVs3GI+rJ2RYvDtc0o7KmGc9sO4zrvzUCj96SidRhdvgVFUpAwmQUMJsMONngxubSU1j38VE8Mns8jAaB8clxGB7L31ciIuo7rbvuFk1KQawtPDnCfQmCRwAoE0LsBuDteFBKOa+7T5BSKkKIHwPYgmC+74tSyi+EEMsB7JVSbmh/7hYhRBmCaRZLpJRn+/G99IvVYkLRpFQ8/8ERTRpm2MwGzMtLhYU5wRQG9a0+nDznxu8/Oop4mxl/evBaePwBDHNYYDcb0eL55kRurM2EWJsJSbFW/KjgSrz4yTF8fOQMHpk1HgYhkMgdYSIi6iOtu+4WZCZFZBD8i/58ASnlewDeu+ixJzv9XQJ4pP1P2Hl9Clo8fiwrzMET7xwa8HjLCnPQ4vXD6zMPeukPurz5FBW1zR78ruRL3H11OlKG2TA81oqNB6vPn8jtKh1iwTWjMTcvBd+/LgPVDcHPf3j2eDisJuYIExFRyPTquvvA9IywxFB9KZH2oRDiCgDjpJTbhRAxCO7uDml1rT784JW9eG3RVMzIcg1oO39GlgsFmS7cs24XXl00FWkMgklHjW0+7P7qLB64fgxccTZ8+uUZ/PK/yy9Ih+h8MM7aKR3ityVf4vHvZGP6t0bAFWfB/3x1Fs4YC1xhPpRARERDl15dd+fmpYQlhupLdYhFCJYocyJYJSIVwH8BmKnP1MKjo2PcwnW78OcfTsfP+5nYPSPLhf+4Mxff/f2n7BhHugsEVDR5FaQOi0HqsBj8y7ufI84aTIcoOVyHp7dWdlub8a7JaefTIbZX1ODfiyai2aOgyavAGVBZPo2IiEIy1Lvu9iXMfgjB5hf/AwBSyiPh7u6mh46OcV/Xu/Hd33+K9YumoiSrrtcadx1sZgOWFeagINOF7/7+U3zd/svAjnGkp0aPH+XVjchLT8S/b/4CxZPTcbrJjXvW7eq1NuNz24/gvz78G5bcmomR8Xb8++Yv8HhhDg5WnUNijBlOBw/JERFR74Z6192+bPl4pZS+jg+EECYE6wQPaZ07xn1d78Z1T+1EUrwVOx4pwGO3ZSLdae/y89Kddjx2WyZ2PFKApHgrrntq5/kAGGDHONJXmy+AvPRh+PTLM7h3WgZe31eFFZvKQ87L8vhVrNhUjtf3VeHeaRn49MgZTEobhjYff2+JiCg0Q73rbl92gj8UQjwOwC6EmA3gRwA26jOt8OmqY9yil/fBbjFizV0T8cqD18IoBFq8yvncylirCQEpcehEA2Y9+yHcXQQO7BhHejIZBZQAEG83Y+1HR1FS2XUKz8UH4y7W8XnfzU8HhIDJyALXREQUmqHedbcvQfBSAA8C+BzADwG8J6Vcp8uswqi7zm5uXwA/fvXAN6+zGJHosOBcqw8tIeyWsWMc6ckkBP73RAOqG90XBMBGg8Cs7CTcPnFUjwfjdlTUItAeFJdU1uGGcSMAAVyTkThY3xIREQ0xQ73rbl++yj9KKX8N4HzgK4T4SftjQ1aoHeNafAG0+EJL/mbHONKb268iLdGOh//yzYXavLwUPHBdRp8Oxm04WA0AWLOlEq//cBrcPm3K3BAR0eVvqHfd7UtO8P1dPPY9jeYxaGJtRiy4ZrSmYy6cMhpx3AkmHVlMAjsqauHxq3BYjPjtwsnIS0/APet24bntR7pdkDoOxt2zbhfy0hPw24WT4bAY4fGr+KCiFhYTr96IiCg0HV13tRTOrru9BsFCiAVCiI0AxgghNnT6sxNAvf5T1Ff1OQ+KJqXCZtamLFRHx7jqBo8m4xF1xe1T8eb+E3BYjFh3f/6ADsatuz8fDosRb+w/AbdGBc+JiOjy19F1V+sYKlxdd0OZ9acAfgWgov2/HX9+CuBW/aYWHh6/ivJTjVhWmKPJeMsKc1B2qpHVIUhXQgR3dVcX5/V4MK43JZV1WPvRUawuzkNVvRvcByYior6It5k0jaES7OG7k95rECyl/FpKWSKlnCal/LDTn/1SyiFfDNduNuIHL+9DQaYLM7JcAxqro2Pcopf3sToE6arNG8C8vBTUNLn7HQB3KKmsQ02TG3NzR7FEGhER9Umc3YxZ2cmaxFCzcpIRazNrNLPehbx/LYSYL4Q4IoRoFEI0CSGahRBNek4uHDpOIC5ctwv/cWduv3+IHR3jFq7bdcG4RHrwKioeuC4Dq7dUajLe6i2VePD6MfApTIcgIqK+SU6wYdX8gcVQq+bnIjnepvHMetaXJI7VAOZJKROklPFSyjgpZbxeEwsXQ/vJxo6Ocf9eNAEr75gQcn6LzWzAyjsm4N+LJpzvGJfutMPAzrOkI6fDjE+Png05B7g3Hr+Kz46eRWJM+K7AiYjo8pEcb8OqO3P7FUMNRgAM9C0IrpFSlus2k0GSFGvFginBk41adYwLnmwM/w+ToofBIPDq7uOajrl+93EYDMwKJiKi/klOsKFoUkroMdRPC1A0KWVQAmCgb3WC9woh/gzgHQDejgellG9pPqswMpuNKJqUiud3HDm/qzaQjnE2swHzJqXCbORWMOlHAJrWZUT7eAyBiYhoIGJtZsTazHhgegbm5qVASlwSQwkBJMVZw1YFojt9CYLjAbQBuKXTYxLAkA6CASDRbsayOTl44u1D5x/rb8e4J+fk8JYy6a7Zo8+Z1GbvkD/rSkREEcBqMSHNEtnno0KenZTy+3pOZDDFWE2YnZ2M7eU12FnR9Un7UDrGzchyYVZ2MmIi/IdOQ59WucAX87JOMBERRYm+VIcYL4TYIYQ41P5xrhDiX/SbWnglxdvw1ABPNj41PxdJg5TXQtHFatIn3cbCNB4iIooSfXnHWwfg5wD8ACClLAVwjx6TGiwdgfDKO/t2svGXd05gAExhFWPVJ49Kr3GJiIgiTV/u28dIKXcLccHRmcsugTAp3oY7v52KgswkbDhwEut3H+/yAFK6046FU0ajaFIqhsWYmQJBYSUR/B3U8nBcutMOqdloREREka0vkdsZIcSVCL7/QghRDOCULrMaZDEWE2IsJvzgujEompQCVQYPInWcbIyzmWAQgCvOxioQNChiLAbcNTkNz20/otmYxZPTEGPmTjAREUWHvgTBDwFYCyBLCHESwFcA/o8us4oQgCDuPgAAIABJREFUZrMRKcNiBnsaRJdQAhIzs5LwXx/+TZNDcjazATdnJUFReTCOiIiiQ8jbmFLKo1LKWQBcALKklNdLKY/pNjMi6pbLYcWJBjeW3JqpyXhLbs3EiQY3XGzyQkREUaIv1SF+IoToqBX8rBBivxDilt4+j4i0ZzYbkZs2DCkJdhRk9q+iSYeCTBdSEuzITRvG9B4iIooafXnHe0BK2YRgs4zhAO4FsEqXWRFRrxLtZjR7/Fh849h+B8IFmS4svnEsmj1+NnkhIqKo0pcguKMsxO0AXpZSftHpMSIKsxirCQWZSXjls2O4++p0LJuT3afSfsvmZOPuq9PxymfHUJCZxAonREQUVfryrrdPCLEVwBgAPxdCxAHgKRqiQZQUb8O/zZuAx94qRazFhNcWTcWHh+vwxv4T3Zb2K56chpvGu/DCX79Ci+8Ma1wTEVFUElKGVhlUCGEAMAnAUSllgxBiOIDU9qYZYZWfny/37t0b7i9LFLFqmzzYXl6Dle+V47orR6AwdxRShtnhD6jw+FXYzAaYjQZUN7ixqfQUPv3bGTxxezZmZSczACYiosuWEGKflDK/q+d63QkWQmRJKSsQDIABYOxFDTOIaJAlxdtwx7dTcVN7k5ent1aiqt4Nk0HAYjLAp6hQVIl0px1/P2U0/m3eVWzyQkREUS2Ud8BHACwG8KsunpMAbtZ0RkTUL2zycvnz+wOoa/We/9m6/QHYO/9sHVaY2fCEiCgkvQbBUsrF7f+dof90iGig2OTl8tPmVXDO7ce7B07i1R5auS9ob+WeaDcjxspdfiKinvQlJ/huAO9LKZuFEP8CYDKAFVLK/9Vzgl1hTjARRYvaJg+2lddgxaaykLoDBit/5GA2872JiHrMCe7LPdFl7QHw9QBmAXgBwH9pMUEiIrpUbZMHj71ViifePhRye2yPX8UTbx/CY2+VorbJo/MMiej/b+/+o+M66zuPf77zeyzJjpXIk1iR47CksVRHMVQxSSgQbxx+2bWoydmStCUUCu12l/KjsLibdXoaL6wTWuh2293lRymBU7vshoBdu20auw50acBWwHGMJBeapnYUMlFQIlvy/NQ8+8eMEtmWJY10rzRX836d42PPzJ3vPNa997kf3XnucxFc1YTgscrfmyR93jm3X1LM+yYBAMYD8KH+wVm9/1D/IEEYAKZQTQgeMLPPSfolSX9tZvEq3w8AmIGzuaIe6UvPOgCPO9Q/qAN9aZ3NFz1qGQAsHtWE2H8n6WFJb3HOvSSpWdLHfWkVANSxFzMF7djXO+UykZBpSSysSGjqKSvv3derF88WvGweACwKM7582Dl31sz2SEqZ2arK0/3+NAsA6lOhMKY9RwcuGAMcDpk2tq/Q26+7Qq2XJJUrll6e/i4eCWngpYz2H/uJDvY/r7HSKxc8Zwsl7T06oF9//dVMnwYAE8w4BJvZByX9nqS0XrldspPU6UO7AKAuPT+S0+7DJ895bsv1K/Xe16/Wo/80+PKNUBKRkBoTEY1ki8oWS2prTuqdr71Sv3XLv9GXvvO09j7x7Mvv33X4pLZcv1Kty5k6DwDGVTOR5IckXeuc+6lfjQGAeldyenke4IZYWPfffr2eO53Ru//8sH7zja/S537159QQK4ff8ZtlNCYiGs0X9fd9z+vdf35YH7r1Gr3lZy/Xf3rwCY3mx3RqKKPSzGbDBIC6UU0IPiVp2K+GAACkkWz5IraGWFhfuKtLn//2U3rjNZdp/wffoL964ln9xlcfv/jNMm5Ypf0ffIMe6X1O//fxU/rCXV16/wM9Gs2PaSTHxXEAMFE1F8Y9JelRM/tdM/vo+B+/GgYA9ShTKM9Gef/t1+trh0/q7re3Kx4J67bPfkv3P3xi0gAslc8e3//wCd322W8pHgnr7re362uHT+r+26+XJGULY5O+DwDqVTVngk9W/sTE/MAA4ItENKQt16/UcCanj71lje7Ze3zSqdLOHxM8Llso6e5vHteGNS26d8ta/cOPntcvdF6heIQZLQFgompmh/h9STKzxsrjEb8aBQD1qikR1Xtfv1qN8cg5ATgWCenDt75at6xZMeWY4D/++x8rXyzpUP+g7tFx3f32dnVcsUxNiegC/88AoLZUMzvEWklfVXl+YJnZC5Le7Zz7oU9tA4C6E4+a8sWSvvfs0MsB+J7N7bqt4/JzxgRHQqZYJKR8saRiyb08JvjgR9+kR3qf0737+nSof1Ab16R0TapB8cjU8wkDQL0x52Z2ybCZ/aOku51zhyqPb5H0Kefczf41b3JdXV2up6dnvj8WAHz3k+GMimNOt332W2qKR7Tr/Tfq8L8M6VN/06eff/Vl084T/J1/fkH/+W3tWn91s+78wnd1JlfUIx95kyJh0xXLkgv93wOAeWVmjzvnuiZ7rZoxwQ3jAViSnHOPmlnDnFsHAHhZIhLS7u+fUlM8ood+6/W6Z+9xNcWj+ov3ve6ceYLPd/48wQf603rot16vrf/zO9p37Fm964a2BfjfAEDtqiYEP2Vm21UeEiFJv6LyjBEAAI+M5Ma0+8hJ7Xr/jfrUX/fq9te26bnTGb3rC9+94C5yE50ayuiPDvxI//tb/6yPv+VaXb40qU/9da92vf9GvfeBI9rcuVLLOW0BAC+rZjjEckm/L+nnVb5T3D9I+n3n3Iv+NW9yDIcAsFidGjqrR3qfU0MsorZLl+jz335Kj564cHaI6dxybYs+8MZX6dRPz2okV9Sbf/ZytTVzxzgA9cWT4RCVsPvbnrUKAHCBkWxRt3VcruMDw7MOwJJeft8vdbXp5ldfxs0yAOA8M5440sweMbNLJjxebmYP+9MsAKhPTcmIjg8M69nhzKwD8LhHTwzq2eGMjj87rKWJaka/AcDiV83s6Zc5514af1A5M7zC+yYBQP1yTrpyeVKffviEJ/U+/fAJXXlJUqWZjXwDgLpRTQgumdmq8QdmdpXKY4MBAB6JRUwH+5+f8iK4amQLJf19//OKMU8wAJyjmu/H7pb0/8zsW5JM0hskfcCXVgFAncrkS/r695/xtOaD339G3a9p9bQmAARdNRfG/a2ZvVbSjZWnPuyce2H8dTP7We4eBwBzY6ZJ5wGei1NDGXEeGADOVdWVEpXQu+8iL39V0mvn3CIAqGNnc2P+1M37UxcAgqqaMcHT4UQDAMxRrujNWODz5X2qCwBB5WUI5iI5AJijRNTLbvkV8Yg/dQEgqOgVAaCGLE1GA1UXAILKyxCc97AWANSlaNjU1pz0tGZbc1LRMCPWAGCiqkKwmXWa2RYz2zr+Z/w159yNU70XADC95iUxvfum1Z7WvOum1WpuiHtaEwCCbsazQ5jZlyR1SvqhpPErLJykh3xoFwDUpXA4pF/oXKk//LsTntwwIxENaXPnSoVDnAkGgImqmSLtRudch28tAQBIkpobYtrRvVYff/DYnGvt6F6r5oaYB60CgMWlmuEQj5kZIRgAfBaLhHRre0q3tafmVOe29pQ2tqcUY2YIALhANWeCv6JyEH5OUk7leYGdc67Tl5YBQB1rbohp5zuvk74uPdKXrvr9t7WntPOd12k5Z4EBYFLVhOA/k/Srkp7UK2OCAQA+ubQxrvtu79Sb+9Lavuf4jMYIJ6Ih7eheq43tKQIwAEyhmhA86Jzb61tLAAAXaG6IqXtdq95wTYv2HXtWDzz2tE4NZS5Yrq05qffcvFqbrlup5oYYQyAAYBrVhOAfmNkuSX+l8nAISZJzjtkhAMBHsUhIly9L6NduXq3udStVLDmNZIvKFUuKR0JqTEQUCZmaG+LMAgEAM1RNCE6qHH7fPOE5pkgDgHkSDofU0pQoP1i2sG0BgKCbcQh2zv2anw0BAAAA5ks1N8tISHqfpJ+VlBh/3jn3Xh/aBQAAAPimmisnvirpcklvkfQtSVdKOuNHowAAAAA/VROCX+2c2y5p1Dn3gKRNkl7nT7MAAAAA/1QTgguVv18ys7UqX5axwvsmAQAAAP6qZnaIz5vZcknbJe2V1CjpHl9aBQAAAPiomtkhvlj557ckvcqf5gAAAAD+m/FwCDNLmdmfmdnfVB53mNn7/GsaAAAA4I9qxgR/WdLDklZWHv+TpA973SAAAADAb9WE4Mucc/9HUkmSnHNFSWPTvcnM3mpmJ8zsx2a2bYrl3mlmzsy6qmgTAAAAULVqQvComV2q8q2SZWY3Shqe6g1mFpb0p5LeJqlD0h1m1jHJck2SPiTpe1W0BwAAAJiVakLwR1WeFeJVZvYdSV+R9MFp3rNe0o+dc0855/KS/lJS9yTL7ZB0n6RsFe0BAAAAZqWaENwr6RuSjkhKS/qCyuOCp9Iq6dSEx89UnnuZmb1WUptzbn8VbQEAAABmrZoQ/BVJayR9StL/kPQzKt9KedbMLCTpM5J+ZwbLfsDMesysZ3BwcC4fCwAAgDpXzc0y1jrnJo7nPWRmvdO8Z0BS24THV1aeG9ckaa2kR81Mki6XtNfMtjjneiYWcs59XtLnJamrq8tV0W4AAADgHNWE4O+b2Y3Oue9Kkpm9TlLPNO85IukaM7ta5fD7Lkl3jr/onBuWdNn4YzN7VNLHzg/AAAAACI5cvqjB0bwk6UymqExhTMloWE3JcvRsaYgpHqsmhnpv2k83sydVnhEiKukfzexk5fFVkvqneq9zrmhm/1Hl+YXDkr7knPuhmd0rqcc5t3eu/wEAAADUhjOZgk5ni9pzdEC7j5zUqaGMGmNhLW+I6cXRvEbyY2prTuqOG1ape12rliYiakpGF6St5tzUIwvM7KqpXnfO/aunLZqBrq4u19PDyWIAAIBakR7O6kBfWn/wdyf0yXesVUfrMkXMdDpbULZQUiIa0tJEVEXndPyZl7R9zw/1sTdfq43tKaWWJXxpk5k97pyb9B4U054JXoiQCwAAgOBIn85q2zeO6ZfXr9K+D75Be44O6L/9bb9ODWUuWHb8TPC+D75BfT8Z1rZvHNPOrZ1KLfUnCF/MtGeCaxFnggEAAGpDejirzzzSr9++9Wf06IlB7djfq2yhNO37EtGQtm/q0C3XtuiPD/6TPvrmNZ4H4TmdCQYAAAAmcyZT0Hf/+QV95LY1+t1vHNOh/gunsT1/TPC4bKGku795XBvWtOi//WKnvvvjF3RrR0qNifkZI0wIBgAAwKyczhbVdXXzOQE4GQvrD2/vnHZM8Me//qQy+TEd6h/U737jmP7rO9ZqOFMkBAMAAKB25fJFjWQL6vnXF18OwF9898+p/YplMxoTfOAjb1LfT4b16195XIf6B/Vo/6C6Vi9XLh+dl+nTqrljHAAAACBJGhzNqzER1Y79vbqqOanvfGKD0qdzuvUzj+r+h09MGoAl6dRQRvc/fEK3fuZRpU/n9J1PbNBVzUnt2N+rxnj05fmF/UYIBgAAQNUaE2HtOTqgVFNcX/uNm/Vf9hzX3d88PqOL4qRXxgT/lz3H9bXfuFmpprj2PjGgxkTY55aXEYIBAABQtTOZMe0+clK73n/jRS+Km4nxMcG73n+jdh0+qTOZsenf5AFCMAAAAGbl9zZ36NETg7MOwOMO9Q/q0RODumdzh0ctmx4hGAAAAFUbyRbVfsUy7djf60m9Hft71XHFMo3kip7Umw4hGAAAAFW7tDGqPUcHZjwGeDrZQkl7nxjQpQ3zM0UaIRgAAABVyxWddh856WnNXYdPKlecn7sZE4IBAAAwKxebBq1W6k2FEAwAAICqjWT9GbvLmGAAAADUrEzBn6nMsj7VPR8hGAAAAFVLRv25qUUiws0yAAAAUKMaE5FA1T0fIRgAAABVM5PampOe1mxrTsrM05IXRQgGAABA1S5dEtUdN6zytOad61eppTHuac2LIQQDAACgasl4VN3rWpWIehMnE9GQtlzfqrhPY43PNz+DLgKqUBjT4GhOJSedyRaVKYwpGQ2rKRFRyKSWhrii87SiAAAAas2SeFjbN3Xo7m8en3Ot7Zs61BCfv1xFCJ7E2VxRL2YK2nN0QLsPn5x04ua25qTuWL9K3etatTwZ1ZI4P0oAAFBfli+J6db2lA70p3Wof3DWdTasadHGjpQuWRLzsHVTM+fm59Z0Xurq6nI9PT2+1H7+dFYH+tK6d1/vjO6FnYiGdM/mDm1sT2nF0oQvbQIAAKhl6dNZbXvo2KyC8IY1Ldq5tVMpH3KUmT3unOua9DVC8CueP53VJ+awAu/b2kkQBgAAdem54awO9qW1Y//MTyRu39ShjR0pXwKwRAiekbkE4HEEYQAAUM9eOpvXaG5Me58Y0K4phpTeuX6VtqxrVUMs7OsQiKlCMANZVR4DfKBvbmNZJOlQ/6AO9KX1jte0akmMHy0AAKgvlyyJ6ZIl0ntuukq/cP1KOSeN5IrKFsaUiIbVGI/ITGppjM/bLBAXQ1KT9GKmoHv39XpS6959vXrTtSsIwQAAoG4l41FdGY8udDOmVPfzBBcKY9pzdGBGY1dmIlsoae/RARUKY57UAwAAgPfqPgQPjua0+/BJT2vuOnxSg6M5T2sCAADAO3UfgktOkw7anotTQxmVgne9IQAAQN2o+xB8JlsMVF0AAADMXd2H4IxPY3ezjAkGAACoWXUfgpM+Tc+RWOBpPwAAAHBxdR+CmxL+TGXmV10AAADMXd2H4JCV71zipbbmpELmaUkAAAB4qO5DcEtDXHesX+VpzTvXr1JLE7dOBgAAqFV1H4Kj0bC617UqEfXmR5GIhrRlXaui4br/0QIAANQskpqk5cmo7tnc4UmtezZ3aPmS2r5NIAAAQL0jBEtaEo9oY3tKG9a0zKnOhjUt2tie0pIYF8UBAADUMkJwxYqlCd23tXPWQXjDmhbdt7VTK5YyFhgAAKDWEYInGA/Cn/rFtTMeI5yIhvSpX1xLAAYAAAgQvrc/z4qlCb3jNa1607UrtPfogHYdPqlTQ5kLlmtrTuqX16/SlnWtumRJlCEQAAAAAUJym8SSWERLYhH9+uuvVve6lSo56Uy2qHxxTLFIWE2JiEImtTQlmAUCAAAggAjBUwiFTNFwSMWSUzhkCpkpHCr/iYSMsSQAAAABRQieRL5Y0tBoXvuOPasHHnv6osMh7rpptTZ3rlRzQ0yxCJEYAAAgKMw5t9BtqFpXV5fr6enxpfbQaF4H+9Lavue4soXStMsnoiHt6F6rW9tTam6I+dImAAAAVM/MHnfOdU32GqcvJ/jpSE6fePCYPv7gsRkFYEnKFkr6+IPH9IkHj+mnIzmfWwgAAAAvEIIrhkbz2vb1J/VIX3pW73+kL61tX39SL47mPW4ZAAAAvEYIVnkM8MG+9KwD8LhH+tI60JdWvjizs8gAAABYGIRglc8Cb99z3JNa2/cc1xBngwEAAGpa3YfgsbGS9h17dsZjgKeTLZTrjY1xNhgAAKBW1X0IHjqb1wOPPe1pzQcee1pDZzkbDAAAUKvqPgQXS27SeYDn4tRQRsVS8KaeAwAAqBd1H4LPZIu+1B3xqS4AAADmru5DcK4w5k9dZogAAACoWXUfguPRsC91uY0yAABA7ar7pNaUiASqLgAAAOau7kNwJGRqa056WrOtOalIyDytCQAAAO/UfQhuXhLTXTet9rTmXTetVnND3NOaAAAA8E7dh+BwOKTNnSuViHrzo0hEy/XCnAkGAACoWXUfgiWpuSGmHd1rPam1o3utmhtintQCAACAPwjBKs/kcGt7Sre1p+ZU57b2lDa2p5gZAgAAoMaR1iqaG2La+c7rZh2Eb2tPaec7r9NyzgIDAADUPELwBJc2xnXf7Z369O2dMx4jnIiG9OnbO3X/7Z26tJGL4QAAAIKAyWzP09wQU/e6Vr3hmhbtO/asHnjsaZ0ayigRCakxEdFItqhssaS25qTec/NqbbpupZobYgyBAAAACBBC8CRikZAuX5bQr75uld669nJJ0plMUZnCmJLRsJqS5R9bS2NM8Sg/QtSWsbGShs7mVSw5nckWlSuMKR4NqykRUSRkal4SUzjML21BlMsXNTial3SRPqkhpniMPgnAwgtCf0VvOYmzuaJezBS05+iAdh8+qVNDmQuWaWtO6o71q9S9rlXLk1EtifOjxMLKF0saGs2f8w3G+dqak7rrptXa3Mk3GEFyJlPQ6Wyx3CcdmaJPuqHcJy1NRNSUjC5ASwHUuyD1V+acW5APnouuri7X09PjS+3nT2d1oC+te/f1KlsoTbt8IhrSPZs7tLE9pRVLE760CZjO0GheB/vS2r7n+Iy32x3da3Vre4op/WpcerjcJ+3YP/M+afumcp+UWkafBGD+1GJ/ZWaPO+e6Jn2NEPyK509n9YmHjulQ/2DV792wpkX3be0kCGPe/XQkp21ff1KP9KWrfu/4rCZc1Fmb0qez2jaHPmnn1k6l6JMAzINa7a+mCsF8F1oxlwAsSYf6B/WJh47p+dNZj1sGXNzQaH7WAViSHulLa9vXn9SLlXFbqB3p4dkfUKRyn7TtoWNK0ycB8FlQ+ytCsMpjgA/0pWe98sYd6h/Ugb60zuaLHrUMuLh8saSDfelZB+Bxj/SldaAvrXxx+q+uMD/OZAre9Um9aY1kCx61DADOFeT+ihAs6cVMQffu6/Wk1r37evXiWQ448N/QaF7b9xz3pNb2Pcc1xNngmnE6W9SO/d70STv292o4wy/mAPwR5P6q7kNwoTCmPUcHZjSAeyayhZL2Hh1QoTDmST1gMmNjJe079qyn2+2+Y89qbIyzwQstly963yc9MaAc31AB8FjQ+6u6D8GDozntPnzS05q7Dp/U4GjO05rARENn83rgsac9rfnAY09r6Cxngxfa4Gheu4/40SexbgF4K+j9Vd2H4JLTpHPYzcWpoYxKwZt0AwFSLDlfttsiG+6Ccz71SQGcCAhAjQt6f1X3IfhM1p9T7n7VBST/tq8RttsF59c6GMmxbgF4K+j9Vd2H4IxPY3ezjAmGj3I+bV85ZohYcPRJAIIi6P1V3YfgZDTsS92ET3UBSYr7tH1xG+WF51ufFKFPAuCtoPdXvh/xzOytZnbCzH5sZtsmef2jZtZrZsfM7KCZXeV3myZqSkQCVReQ2G4Xs0af1oFfdQHUr6D3V76GYDMLS/pTSW+T1CHpDjPrOG+xH0jqcs51SnpQ0v1+tul8IZPampOe1mxrTipknpYEzhEJmS/bbYQNd8GZT32SsWoBeCzo/ZXfZ4LXS/qxc+4p51xe0l9K6p64gHPukHPubOXhdyVd6XObztHSENcd61d5WvPO9avU0uT9/a+Bcc1LYrrrptWe1rzrptVqboh7WhPVa2mI6Y4bvO+TVjSxbgF4K+j9ld8huFXSqQmPn6k8dzHvk/Q3k71gZh8wsx4z6xkcnNut+SaKRsPqXteqRNSbH0UiGtKWda2KhhlbCf+EwyFt7lzp6Xa7uXOlwpwJXnDxWMT7Pun6VsUYEwzAY0Hvr2omqZnZr0jqkvTpyV53zn3eOdflnOtqaWnx9LOXJ6O6Z/P5ozRm557NHVq+JOpJLWAqzQ0x7ehe60mtHd1r1dwQ86QW5m5pIqLtm7zpk7Zv6tCyJOOBAfgjyP2V3yF4QFLbhMdXVp47h5ltlHS3pC3OuXm/1dqSeEQb21PasGZu4XrDmhZtbE9pSYwDDvwXi4R0a3tKt7Wn5lTntvaUNranmBmihjQlo971SR0pNSb4xRyAP4LcX/l91Dsi6Rozu9rMYpLeJWnvxAXM7DWSPqdyAH7e5/Zc1IqlCd23tXPWK3HDmhbdt7VTK5YyFhjzp7khpp3vvG7WQfi29pR2vvM6LecscM1JLUto5xz7pJ1bO5WiTwLgs6D2V+Z8vjedmb1d0h9JCkv6knPuk2Z2r6Qe59xeMzsg6TpJP6m85aRzbstUNbu6ulxPT48v7X3+dFYH+tK6d1+vsoXpbxyQiIZ0z+YObWxPEYCxYIZG8zrYl9b2PcdnvN3u6F6rje0pAnCNSw+X+6Qd+2feJ23f1KGNHSkCMIB5VYv9lZk97pzrmvQ1v0OwH/wMwZJ0Nl/Ui2cL2nt0QLsOn5z0vthtzUn98vpV2rKuVZcsiTIEAgsuXyxpaDSvfcee1QOPPX3R7fY9N6/WputWqrkhxhCIgBjJFjScKWrvE1P3SXdW+qRliQhDIAAsiFrrrwjBs1QojGlwNKeSk85ki8oXxxSLhNWUiChkUktTglkgUHPGxkoaOptXseQ0ki2qWCopEgqpMRFRJGRqbogzC0RA5fJFDY7m5Zw0kiuqVBpTKBRWYzwiM2lFU5xZIADUhPP7q2xhTIno/PdXU4VgTl9OYaxUUmn8dwQnjbny35JUctJYcYwQjJqTL44pVyx/DVUcc8oUSkpGTWMlp7GSU75QVDLOWcIgM5PkpFxRSkb18sTyrhS8kxoAFqd4LKIra/xb8tpu3QIZPpvXSG5Me44OaPeRi5/Kv+OGVepe16rGeFjLljCuEgvrpbN5jVax3TbEw7qE7TYQzmQKOp0tznjdLk1E1JTkFx0AmArDIc7z3HBWB2cxqPvW9pQuX8ZFKFgYbLeL16wvNGlPKcW6BVDnGBM8Q+nTWW176JgO9Vd/RzqmI8JCYbtdvFi3ADA3U4VgBrRWPDc8+4ONJB3qH9S2h44pfTrrccuAi2O7XbzSrFsA8BUhWOUxwAf70rM+2Iw71D+oA71pnc7kPWoZcHEvebzdDp9lu60VZzIFHfBw3Y5kCx61DAAWD0KwpJHcmHbs7/Wk1o79vTqTHfOkFjCVUY+325Ec222tOJ0terpuhzNFT2oBwGJS9yE4mytoz9GBGV1wMqN6hZL2PjGgbI4zL/BPxqftNsN2u+By+aIv6zaXJwgDwER1H4JfOFvQ7iMnPa256/BJvXCWMAH//NSn7fanbLcLbnA078u6HRxluAsATFT3Idg5TTrn5lycGsoogJNuIEDYbhcv1i0AzI+6D8EjWX++IhzJ8dUj/MN2u3ixbgFgftR9CM4U/Lm3y0CMAAAO30lEQVQYKOtTXUBiu13MWLcAMD/qPgQno2Ff6iYi/tQFJLbbxYx1CwDzo+5DcGMiEqi6gMR2u5ixbgFgftR9CDaT2pqTntZsa07KzNOSwDnYbhcv1i0AzI+6D8GXLYnqjhtWeVrzzvWr1NIY97QmMNGlbLeLVktDzJd1u6KJdQsAE9V9CE7Eo+pe16pE1JsfRSIa0pbrWxX3aVwfIElJtttFKx6L+LJuY4wJBoBz1H0IlqTGeFjbN3V4Umv7pg41JTjYwH8NHm+3jXG221qxNBHxdN0uSzIeGADORwiWtGxJTLe2p7RhTcuc6mxY06KNHSktTcY8ahlwcZd4vN0uW8J2WyuaklFt9HDdNiaiHrUMABYPQnDF5csS2rm1c9YHnQ1rWrRza6dSSxMetwy4OLbbxSvFugUAX5kL4L00u7q6XE9Pjy+1nxvO6mBfWjv29ypbKE27fCIa0vZNHdrYkeJggwXDdrt4pYezOsC6BYBZMbPHnXNdk75GCL7Q6UxeZ7Jj2vvEgHYdPqlTQ5kLlmlrTurO9au0ZV2rmuJhhkBgwQ2fzWskN/PttjEWZghEQIxkCxrOFGe8bpclIgyBAAARgmctmyvohbMFOSeN5IrKFsaUiIbVGI/ITGppjHM1PWpOJlfQT9luF6VcvqjB0fxF1+2KpjizQADABFOFYC4ZnkIiHtWVcc6mIFiSbLeLnpkkJ0VD5b/Hb4ThSsE7qQEAC4UQDAA17kymoNPZovYcHdDuIxcfDnHHDavUva5VSxMRNSX5RQgApsJwCACoYbO+MK49pdQyLowDUN8YDgEAAZQ+ndW2bxzTof7BGb8nWyjp7m8e14H+NFOkAcAUmCcYAGpQejirbQ9VF4AnOtQ/qG0PHVP6dNbjlgHA4kAIBoAacyZT0IG+9KwD8LhD/YM60JvWSLbgUcsAYPEgBANAjTmdLWrH/l5Pau3Y36vhTNGTWgCwmBCCAaCG5PLlWSBmchHcTGQLJe19YkC5PEEYACYiBANADRkczWv3kZOe1tx1+KQGR/Oe1gSAoCMEA0ANcU6TzgM8F6eGMgrgbJgA4CtCMADUkJGsP8MWRnIMhwCAiQjBAFBDMoUxX+pmfaoLAEFFCAaAGpKMhn2pm4j4UxcAgooQDAA1pDHhz408/aoLAEFFCAaAGmImtTUnPa3Z1pyUmaclASDwCMEAUENaGmK644ZVnta8c/0qrWiKe1oTAIKOEAwANSQei6h7XasSUW+650Q0pC3XtyrGmGAAOAchGABqzNJERNs3dXhSa/umDi1LMh4YAM5HCAaAGtOUjGpje0ob1rTMqc6GNS3a2JFSYyLqUcsAYPEgBANADUotS2jn1s5ZB+ENa1q0c2unUksTHrcMABYHQjAA1KjU0oR2/mKnPvmOtTMeI5yIhvTJd6wlAAPANBgoBgA1LLUsoe51K3XLtSu094kB7Tp8UqeGMhcs19ac1J3rV2nLulYtS0QYAgEA0yAEA4tMLl/U4GheknQmU1SmMKZkNKymysVRLQ0xxWPs+kHSmIiqMRHVe29erV+4fqWck0ZyRWULY0pEw2qMR2QmrWiKMwsEgJoQhGMRR0JgkTiTKeh0tqg9Rwe0+8jFzxbeccMqda9r1dJERE1JzhYGSTwW0ZX8AgOghgXpWGTOuQX54Lno6upyPT09C90MoGakh7M60JfWjv29yhZK0y6fiIa0fVOHNranlFrGuFEAwNzV4rHIzB53znVN+hohGAi29Omstj10TIf6B6t+LzMIAAC8UKvHoqlCMLNDAAGWHp59pyNJh/oHte2hY0qfznrcMgBAvQjqsYgQDATUmUxBB/rSs+50xh3qH9SB3rRGsgWPWgYAqBdBPhYRgoGAOp0tasf+Xk9q7djfq+FM0ZNaAID6EeRjESEYCKBcvnzl7UwuPJiJbKGkvU8MKJcnCAMAZiboxyJCMBBAg6N57T5y0tOauw6ffHlORwAAphP0YxEhGAgg5zTp3ItzcWooowBOFgMAWCBBPxYRgoEAGsn681XRSI7hEACAmQn6sYgQDARQpjDmS92sT3UBAItP0I9FhGAggJLRsC91ExF/6gIAFp+gH4sIwUAANSYigaoLAFh8gn4sIgQDAWQmtTUnPa3Z1pyUmaclAQCLWNCPRYRgIIBaGmK644ZVnta8c/0qrWiKe1oTALB4Bf1YRAgGAigei6h7XasSUW924UQ0pC3XtyrGmGAAwAwF/VhECAYCamkiou2bOjyptX1Th5YlGQ8MAKhOkI9FhGAgoJqSUW1sT2nDmpY51dmwpkUbO1JqTEQ9ahkAoF4E+VhECAYCLLUsoZ1bO2fd+WxY06KdWzuVWprwuGUAgHoR1GORuQDeJ7Wrq8v19PQsdDOAmpEezupAX1o79vcqWyhNu3wiGtL2TR3a2JEiAAMAPFGLxyIze9w51zXpa4RgYHEYyRY0nClq7xMD2nX45KT3c29rTurO9au0ZV2rliUiDIEAAHiq1o5FhGCgjuTyRQ2O5uVc+f7r2cKYEtGwGuMRmUkrmuLMAgEA8FWtHIumCsFcDg4sMvFYRFfG2LUBAAsnCMciLowDAABA3SEEAwAAoO4QggEAAFB3CMEAAACoO4RgAAAA1B1CMAAAAOoOIRgAAAB1hxAMAACAuhPIO8aZ2aCkf/XxIy6T9IKP9bGwWL+LF+t2cWP9Lm6s38VtodbvVc65lsleCGQI9puZ9VzsFnsIPtbv4sW6XdxYv4sb63dxq8X1y3AIAAAA1B1CMAAAAOoOIXhyn1/oBsBXrN/Fi3W7uLF+FzfW7+JWc+uXMcEAAACoO5wJBgAAQN0hBAMAAKDuEIInMLO3mtkJM/uxmW1b6PZgbsyszcwOmVmvmf3QzD5Ueb7ZzB4xsx9V/l6+0G3F7JlZ2Mx+YGb7Ko+vNrPvVfbjr5lZbKHbiNkxs0vM7EEz6zezPjO7if138TCzj1T65uNmttvMEuy/wWVmXzKz583s+ITnJt1freyPK+v5mJm9diHaTAiuMLOwpD+V9DZJHZLuMLOOhW0V5qgo6Xeccx2SbpT0HyrrdJukg865ayQdrDxGcH1IUt+Ex/dJ+qxz7tWSXpT0vgVpFbzw3yX9rXNujaTrVV7P7L+LgJm1SvptSV3OubWSwpLeJfbfIPuypLee99zF9te3Sbqm8ucDkv7XPLXxHITgV6yX9GPn3FPOubykv5TUvcBtwhw4537inPt+5d9nVD6Atqq8Xh+oLPaApHcsTAsxV2Z2paRNkr5YeWyS/q2kByuLsH4DysyWSXqjpD+TJOdc3jn3kth/F5OIpKSZRSQtkfQTsf8GlnPu25KGznv6Yvtrt6SvuLLvSrrEzK6Yn5a+ghD8ilZJpyY8fqbyHBYBM1st6TWSvicp5Zz7SeWl5ySlFqhZmLs/kvSfJJUqjy+V9JJzrlh5zH4cXFdLGpT055XhLl80swax/y4KzrkBSX8g6aTK4XdY0uNi/11sLra/1kTmIgRj0TOzRklfl/Rh59zpia+58hyBzBMYQGa2WdLzzrnHF7ot8EVE0msl/S/n3Gskjeq8oQ/sv8FVGRvarfIvOyslNejCr9KxiNTi/koIfsWApLYJj6+sPIcAM7OoygH4L5xzD1WeTo9/7VL5+/mFah/m5PWStpjZ0yoPX/q3Ko8hvaTy9arEfhxkz0h6xjn3vcrjB1UOxey/i8NGSf/inBt0zhUkPaTyPs3+u7hcbH+ticxFCH7FEUnXVK5Mjak8QH/vArcJc1AZH/pnkvqcc5+Z8NJeSXdV/n2XpD3z3TbMnXPud51zVzrnVqu8v/69c+6XJR2SdHtlMdZvQDnnnpN0ysyurTx1q6Resf8uFicl3WhmSyp99fj6Zf9dXC62v+6V9O7KLBE3ShqeMGxi3nDHuAnM7O0qjzEMS/qSc+6TC9wkzIGZ/bykf5D0pF4ZM/qfVR4X/H8krZL0r5L+nXPu/MH8CBAzu0XSx5xzm83sVSqfGW6W9ANJv+Kcyy1k+zA7ZrZO5YseY5KekvRrKp+8Yf9dBMzs9yX9ksoz+fxA0q+rPC6U/TeAzGy3pFskXSYpLen3JH1Tk+yvlV98/kTlITBnJf2ac65n3ttMCAYAAEC9YTgEAAAA6g4hGAAAAHWHEAwAAIC6QwgGAABA3SEEAwAAoO4QggEAAFB3CMEAsADMbIuZbZt+yQvet9rMjvvQnlvM7OYJj79sZrdP9R4ACLLI9IsAALzmnNur2ror5S2SRiT94wK3AwDmBWeCAcBjlbO1/ZWzqf9kZn9hZhvN7Dtm9iMzW29m7zGzP6ks/2Uz+2Mz+0cze2qmZ2DNLGxmnzazI2Z2zMx+o/L8LWb2qJk9WGnHX1Tu0CQze3vluccrn7nPzFZL+k1JHzGzo2b2hspHvPH8NpnZFWb27cpyxycsCwCBQggGAH+8WtIfSlpT+XOnpJ+X9DGVb999visqr2+WtHOGn/E+ScPOuRsk3SDp/WZ2deW110j6sKQOSa+S9HozS0j6nKS3Oed+TlKLJDnnnpb0vyV91jm3zjn3D1O06U5JDzvn1km6XtLRGbYVAGoKwyEAwB//4px7UpLM7IeSDjrnnJk9KWn1JMt/0zlXktRrZqkZfsabJXVOOHO8TNI1kvKSDjvnnql8/tHKZ45Ieso59y+V5XdL+sAU9Sdr0xFJXzKzaOV1QjCAQOJMMAD4Izfh36UJj0ua/ATExOVthp9hkj5YOXu7zjl3tXPu7yapN3aRz5zOBW1yzn1b0hslDUj6spm9exZ1AWDBEYIBILgelvTvK2dlZWY/Y2YNUyx/QtKrKmOAJemXJrx2RlLTdB9oZldJSjvnviDpi5JeO4t2A8CCYzgEAATXF1Ue5vD9yoVvg5LecbGFnXMZM/stSX9rZqMqD20Y91eSHjSzbkkfnOIzb5H0cTMrqDy8gjPBAALJnHML3QYAwDwxs0bn3EglNP+ppB855z670O0CgPnGcAgAqC/vr1wo90OVL6T73AK3BwAWBGeCAaAGmdl1kr563tM559zrFqI9ALDYEIIBAABQdxgOAQAAgLpDCAYAAEDdIQQDAACg7hCCAQAAUHf+P+mUUkX3oOSAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3zddX3//ef7/Pyc/CxpTw40TSgqNAltWl1aAedspShboIHipu10Kl56XdemXyf7Orsv1k0js8imc99Ld4HbnPpd67VpoZW6LxosuCGuLY6WkrTgGLSkcAgE8vP8Pu/rjySQlqTNST6f5KTncb/demvOOZ/z4mXP8ZPn+Zz3D2OtFQAAAFBKfPPdAAAAADDXCMEAAAAoOYRgAAAAlBxCMAAAAEoOIRgAAAAlJzDfDczEkiVL7PLly+e7DQAAABSxRx555EVrbXSyxxZkCF6+fLkOHTo0320AAACgiBljnpnqMYZDAAAAoOQQggEAAFByCMEAAAAoOYRgAAAAlBxCMAAAAEoOIRgAAAAlhxAMAACAkkMIBgAAQMlZkJtlAAAAoHglUhm9NJKRJA0mskpkcooE/aqMjEbPxWVBRcLB+WyREHw2qXRWvcNpSaMvYCqXU9j/2gsYLQ8pHOKfEAAAQJJeHklrJJXTnkd7tOvgCZ3sS7zumPqaiLasbVD7mjqVhf26oCw0D51Kxlo7L//h2WhtbbVebps8mMhoIJnVY8++IhlpSUVYqWxeyUxOTtCvcMCnF4dSslZqWbZIVU5AlZH5/TQDAAAwn57vT+r+7rg69nUpmcmf83gn6NP2tmZd3RTThdWOJz0ZYx6x1rZO9hiXMc8Q70/qeHxQVZGgjsUH9YNfPjvlp5ib3rJMFy2K6D97h7QiVqmYRy8gAABAMYsPJPUndx/R/mO9035OMpPXrfccVeexuHZsblGsam5zFFeCJ3hhIKn/7B1S13MDuuO+49P+FPPpd69Q80VVelO0QtE5fgEBAADm0/P9hQfgM21ojHoShM92JZjVIca80J/U8/1J3fmzp9Rxb/e0ArA0+imm495u3fmzp/Rcf1IvDCQ97hQAAKA4vDyS1v3d8VkFYEnaf6xXnV1xvTKSdqmzcyMEa3QMcN9IWl/pfEIPHJ/Zi/jA8V59pfMJ9Y2kNZTMuNwhAABA8RlJ5dSxr8uVWh37ujScyrlSazoIwZJGMjk99J8vzjgAj3vgeK8e+tWLGknP3QsIAAAwHxKpjPY82jPtb8/PJZnJa+/hHiVSc3MxseRDcCqd1VAqqzvuO+5KvTvuO67BVFapdNaVegAAAMXopZGMdh084WrNnQdOvLq+sNdKPgQPpDK69/ApVz/F7DtySgNz9CkGAABgPlirSVfQmo2TfQnN1ZoNJR+Ckxmr7//yWVdr/vMjzyqZWXirbgAAAEzXUNKbb72HUnPzbXrJh2Ar682nGBGCAQDA+SuR8WYOVNKjumcq+c0yPPsUk2RyHOZHLpdX30ha2bzVYDKrVCancNCvSieggM+opiwkv7/kP/8CAGYpEvR7UtcJeFP3TCUfglNZd8YCnymdJQRjbqWzefUNp/XDI6f0nYef1sm+hAI+o1DAp3Q2r2zeqr4mot+7crmub1mqmvKQQgHCMABgZiocb2KkV3XPVPIh2LNPMR7VBSbTN5xWZ/fz+vwPu/Trb1qi//6uFapbFFE6m1c6m1co4FMo4FPPKwntO/Kc/qrzCf3p9c3a2HShaspD890+AGABMkaqr4m4Oqy0viYiY1wrd1YlfxmoPOzN5wCv6gJnemkopT/+/mH925Mv6R8/8la1rbpI4bErvFZSzr42Qj0c8Klt1UX6x4+8Vf/25Ev64+8f1ktDqXnrHQCwcC0uC2rL2gZXa25d16BoRdjVmlMp+aTm83nzKcY3R59iUNr6htP63J6juvHNyxQOGMkYPfXisH7wy2cnfU/X10R001uW6eIl5dq0+iKlslaf23NUX7xhlS7gijAAoACRcFDta+r01z990pWlZp2gT5tW1yk8R9+ml/yV4JpIUB+44mJXa37giou1ZI4+xaB0pbN57T8W1weuXK4LyoJ6pm9E77vrYf1V55NTfqg72ZfQX3U+qffd9bCe6RvRBWVBfeDK5dp/PK60R+PjAQDnr7KwX9vbml2ptb2tWeXhuRtOWvIhOBIO6rqWpXKC7vxTOEGfrmtZOmefYlC6XhxKqdIJKhL0665/fUod93ZP+5N4MpNXx73duutfn1Ik6FdFOMiwCABAwS4oC+nqppg2NEZnVWdDY1Qbm2NaVDZ330qWfAiWpEjIrz+7/nJXan1+0+UqCxGA4a1cLq+jPf2quyCir3Y+oQeO986ozgPHe/XVzidUd0FEj/X0K5fjajAAoDAXVjvasbllxkF4Q2NUOza3KFbluNzZ2RGCNfopZv2KWl3dWDurOlc31mr9ito5/RSD0vTiUEpvjJbrF0+9NOMAPO6B4736xVMv6Y215XqRq8EAgBmIVTn60o0tuu2GldP+dt0J+nTbDSvnJQBLhOBXXVjt6M83r5pxEL66sVZ/vnnVvLyIKEFGsjK6477jrpS7477jstZITOgEAMzQhdWO2lou0v23rNdnrl2h+prIpMfV10T0mWtX6P4/Wq+2lovmLTuV/OoQE8WqHN124yptPPaCPn/v49MaX+kEffrT6y/XOxtrCcCYM9ZK+46ccmU2rjQ6RvhHj53Sb7fWu1IPAFCaFpWFtKhM+tCVF+v61UtlrTSUyiqZyckJ+lURDsgYKVoRnvf5U4TgM1xY7eg3V12o37gsqnuPnNL/+vdnplxq6v1vvVjXrV6q8pCfIRCYU5mc1fd/+ayrNf/5kWd145uXuVoTAFCaIuGgloWD893GWRGCJzH+Keb3rmhQW8tFRf0pBqXJWuvq2tbS6PJpr22rAQDA+Y0QfBYL4VMMStNQKutR3ZwndQEAKDZMjAMWoJRHG1ukM4RgAEBpIAQDC1DEo2E4DsN7AAAlghAMLEAVjjcjmbyqCwBAsSEEAwtQ0GemXH9xpuprIgr6OSUAAEoDl32ABWhJRVgfuGK5/vxH3a7V/L0rl2tJRdi1enBfLpdX30ha2bzVYDKrTDanYMCvSieggM+opiwkPx9kAGBaCMFnkcnk1DucUt5Kg8msEpmcIsHRXzg+I0XLwwoyhhLzwO/36fqWi/SVnxx3ZcMMJ+jTdasukt/HlnHFKJ3Nq284rSMnX1FeVksqwkpl868u2ziQyOjFoZSMpNX1F6imPKRQgDAMAGdDCJ7ESCqrlxMZ7Xm0R7sOnJhys4wt6xrUvqZOF0SCKgvzT4m5tbgirM9vulyf+cFjs671hfbLtZirwEWpbzitrlP9qnCC6np+QD/45bM62ZeQE/CpwgloKJlVMptXfU1EN71lmWLVEf3qhUE1L61WTTmb+ADAVIy1C29x/NbWVnvo0CFPar8wkNRPuuPquLdr2tsmb7+uWdc0xVTLtsmYY33Daf3x9w+rs/uFGdfY2FSrO96zWhcQmIrOS0MpPREfVNdzA/ra/U/q//qNN2h9Y63KQ6PhN5PLKej3q8IJaDid1U+7X9Bd//qUPnn1pWq+qEqXxSr5cAOgpBljHrHWtk72GN+XTfDCQFKf2X1Et959dNpfMSczed1691F9ZvcRvTCQ9LhD4HQ15SHdflOLNjbVzuj5G5tqdftNLQTgItQ3nFbPywnd+bOnZCTt+8TbtXZ5jXzmtSErE5eL9hmjdctrtO8Tb5eRdOfPnlLPywm9PJye894BYCHgSvCY8QC8/1jvjGtsaIzq9s0tXBHGnOsbTquzO67P7ZneBzgn6NMX2lfqmqYYAbgIpbN5PfXikP5m/6/08XdeqpF0VjXlYf3w8CntOniWIVprG3T96qXqG06pLBTQ//PTJ/X7G96kS5ZUMEYYQEk625VgQrBGxwDf/WiPbr376Kxr/fmNK3XDm+tUFmKMMObW+OSpe4+c0rcffnrKoPTBK5frupalTJ4qYr0DSf2k+3m949JapfNWP//Vi+rYV8AQrbZmXfWmJQr5jB588gVd03Shonw4B1CCCMHn0PNKQlf/5QOuzbK//4/Wq26Ru2u4AtM1cRmtoWRWqWxe4bFJVAGfUU15mFUgilgul9fTfSMysgoHAvrsnsdm9A3Vhsaovti+SqlcVtYaLa8pY/k0ACWHMcFnkcnktOfRHlcCsDQ6Rnjvoz3KZHKu1AMK5ff7FK10dFF1RJfGKrWyrlqXxip1UXVE0UqHAFzk+pMZvTSYUijgn3EAlqT9x3r12T2PKeT366WhpPqTGZc7BYCFreRD8AtDKe06cMLVmjsPnNALQylXawIoDSPpnJYvKdeDx3tnNUdBGg3CDx7v1SWLKzSS5oM5AExU8iE4bzXp2MnZONmXUH7hjTIBUASckE/pXF4d+7pcqdexr0upXF5OqORP9wBwmpI/Kw4ls97UTXlTF8D5zUja++gpV4do/fDwKTEIBgBOV/IhOOHR2N0kY4IBzMBIKq9dB90fojWScidUA8D5ouTX8XKC3nwOCLP0FOZJKp1V79gGCYOJrBKZnCJBvyojo/93j5aHFGYJv6LmxRAtAMDpSv43YaUTXFB1gakMJjIaSGa159Gec26o0L6mTlVOQJUR3qfFZtCjVRwYogUApyv5ECyNBgM3r5TU17BGMOZWvD+pzu74OTdUONmX0JfvO66//umT2t7WrI1NMcWq2UShmLg1Fvj1dRmiBQATlfx39k7Qpy1rG1ytuXVdgyJBv6s1ganEB5LadvcR3XrP9LZMlkaD1q33HNW2u48oPpD0uEMUwqtzhxPgnAQAE5V8CE6kc9q0ZqlrY4OdoE/Xr16qkTRfPcJ78f6ktu0+MqsNFbbtJggXkwrHmy/ovKoLAAtVyYdgn8/I5vPa3tbsSr3tbc2yNi8fu3LBY4OJjDq7465sqNDZFdcQO4oVBWPcH1JVXxOR4ZQEAKchBBujv33oaf3GZVFtaIzOqtaGxqh+Y0VU3/y3p+XnNw48NpDMurqhQn+Cby+KgZG0ZZ37Q7Q4IwHA6Uo+BEfLQ6pbFNGx5wf1xfZVMw7CGxqj+mL7Kh17blDLFkW0pDLscqfAa1Lp0VUg3NxQYe/hHqUYxjPvXklktGm1+0O0+hNc6QeAiUo+BAeDfl3XslTbfnBYPa+M6HPXXa7bblg57V9ATtCn225YqT+97nL1vDKibT84rOtaliroL/l/WniodzjtyYYK4+sLY/5UOgH9+PHnXRui9bnrmnXf0ecZEwwAZyCpSVoUCerT1zbqw986qK5TA2q6qFI/+dQ79JlrV0w5Nq++JqLPXLtCP/nUO9R0UaUePzWgD3/roP742kYtKmPtVXjLWm82VLDW1ZKYAZ8x+tbPn9YVb1jsyhCtt16yWP/w8NPyMUQLAE7DpQFJZeGA3rmiVj95PK4/2PlLXd9ykT7y65fozcsWaUNjrZygX8OprJKZvJygT+XhgJKZnF4ZTuuloZS+9dDT+uGR53R1Y602rKhVGbtxwWNDSW+GLbChwvwLBYze85Zlet9dD+vuP3ibtuvojCY/bmiMqqN9pW78+kP6wJUXK8S3UwBwGtLamNoqR1/avEp/svsx/fDIc/rR0ed1dWOt2lou0tJFEeVyeWVyVpms0Ug6p1OvJHTvkef002MvKJe3urqxVl/avEq1VWw8AO8lPNr4gA0V5l/AZ9TWslR/8+B/6savP6SdH71CGxtj59wIZZwT9Gl7W7PWXVKjG7/+kAZTWbWtWqqAnyvBADARIXiC8SB8/7EX9PkfPq4fd8X14664pNFfTKGAT+lsXtn8a98ZO0GfvnjDSl3dWEsAxpxhQ4XzV3wgrUVlQX363SvUcW+3rvnqz7S9rUk/+dQ7dO+RU9p5YOotsbeua9B1LUv148ef1zVf/Zkkaft1TSoP+RUfSKmmnAm7ADCOEHyG2ipH7WuW6jcui+rew6f0v/79GZ3sSyibt8qmX7tKVl8T0fvferGuX71Ui8qCDIHAnGJDhfNXIpPTw4+9qKveuETrV0T1wPFedezr1u33Hdd/e+ebdOcHfk1locDrhmiNpLP6afcLuvorDyqdHb1ivH5FVFe9cYn2Pfac3nLxBfP8vwwAigu/8SZRFgqoLBTQzVct1/WrL1LeSoPJrFKZnMJBvyqdgHxGilY6rAKBeVNfE3F1cpzbGzRgZiJBv75wb7c6b/kNfWrjZZKkB473Kp3N6y9+/IT+4sdPSJKcgE8VTkBDyayS2dcPk1i/IqpPbbxMQb9Rx75u/csn3z6n/zsAoNgRgs8iGPRr6aKy+W4DeJ1IyKctaxv05fuOu1Zz67oGlYUYDjHfKseuxm+56xe6+/ffpo+9/Q16+6VLdMd9x08bE5zM5pUcev2Sdk7Qp0+/e4WaLqzS4vKQbvzGQ6fVBQCM4jImsAAl0nm1r6lzdUOFTavrNJJmYtx8841tm9w7lNaN33hI0cqw3hSt0Pc+dqU+tfHSsy7b+KmNl+p7H7tSb4pWKFoZ1o3feEi9Q2nV10TETu4AcDouDQAL1FO9Q9re1qxb7zk661rb25r1VO+gli+pcKEzzEa0PKwt6xr05f99XL1D6Vcnxr3r8gt1aW2Fbv2tJi2uCCuTy786Jjjo9+mloZTy1mpxeUiPPN2nD37r4Ks1t65rULSSibsAMBFXgoEFKOAzOtLTr/Uroq5sqLB+RVSP9QwowOXCeRcM+l93lb9jX7eu/sqDeurFYTUsLlO0MqzqSFAXlAVVHQkqWhlWw+IyPdU7rKu/8qA69nW/+lwn6NOmNXXMXwCAM3AlGFiAjE969+UX6sP/cEDfufkK/cndR2a8ocKXbmzR7/39L/SN322Vj5xUFC6IBPW565r1P+5+7Sp/oRPjxn3uumZdwC6WAPA6/MoDFqBszsrI6n1rG/TeO3+uL7av1G03rJz2GGEn6NNtN6zUF9tX6r13/lzvW9sgY6wyOfZNLgZl4YA2NsXOepU/mc3rxaH0WQPwhsaoNjbFWMIRACZBCAYWoHDAqPu5Ab31DYt1SbRCb7t9v2qrwrr/lvX6zLUrzjp56jPXrtD9t6xXbVVYb7t9vy6JVuitb1is7ucG5AQ4JRSL2ipHt29umfFwlw2NUd2+uYVNfABgCsbahXflp7W11R46dGi+2wDmTSaT0zMvJ/RU75BiVY6+2vmEHjjeq0jIrztuWqWVyxbJb4yGUlklMzk5Qb8qwgHlrNXRZ1/Rp3/wmBLp3KtrycYHknpjtEINi8sYO1pkXhhIqrM7ri/cO/1tkz93XbM2NsUIwABKnjHmEWtt66SPEYKBhSk+kNR9jz+ny2JVyuetup8feN1ashUhvy4oD+nl4bSGJix/NnEtWZ/P6In4gN59+UWKEZqK0kg6q5dHMtr7aM9Zt03+3XUN2rSmjl0sAWAMIRg4D42ksnqmb0Rf63xC16+uUyhgFK109ODxF/T9Xz47ZVB6z1uW6R0ratU7mFQ6a/XDwz365MbLdPHiMoJTkctkcuodTr26i2U+n5PPxy6WADCVs4VgfuMBC1RZOKAl5SH93+vfpK92PqHKcEAf+fVLdMni8rOuJZvK5iVrtffRUxpMZfWpjZdpSXmIALwA5K1Vfvy6hZVSWSkSHH9MyufyEiEYAKaF33rAAhYdG77wsbe/Qd3PD+h3/+7f9bY3LlFby0WSJCPJb4zGV/9NZfO698hz+vl/vqhbrrlMTRdWaWm182odFKfBREYDyaz2PNqjXQenHg6xZW2D2tfUqcoJqDLCsmgAcDYMhwDOAy8MJNX93ICqy0KnDYcI+IxCAZ/S2byyeXvacIj+kbSaLqpi8lSRi/ePTozr2Df9iXHb20YnxsWqeW0BlLZ5HRNsjLlW0tck+SX9rbV2xxmPN0j6tqRFY8dss9b+6Gw1CcHA641Pnjp84mX5fOasW+uuqb+AyVMLQHwgqW27Z74Ryo7NLUx2BFDS5i0EG2P8kp6QdI2kZyUdlLTFWts14Zi7JP2HtfZvjDHNkn5krV1+trqEYGBqZ06eSmdzCgWYPLXQxPuT2jbDnQDHEYQBlLr5nBi3TtKvrLVPjTXyPUntkromHGMlVY39XC3plMc9Aee1YNCvpYvK5rsNzMJgIqPO7visArAk7T/Wq86uuNrXLFWFwxhhAJjI68tBdZJOTrj97Nh9E/2ZpPcbY56V9CNJn5iskDHmY8aYQ8aYQ729s/vFAADFbCCZVce+rnMfOA0d+7rUn8i6UgsAzifF8J3oFkn/YK1dJum3JH3XGPO6vqy1d1lrW621rdHozLYRBYBil0qPrgIxnUlw05HM5LX3cI9SaYIwAEzkdQjukVQ/4faysfsm+oikf5Ika+3DkhxJSzzuCwCKUu9wWrsOnnC15s4DJ9Q7nHa1JgAsdF6H4IOSLjXGXGKMCUl6n6S9ZxxzQtLVkmSMadJoCGa8A4CSZK0mXQd4Nk72JbQAV8MEAE95GoKttVlJH5d0n6RuSf9krX3cGPMFY8ymscP+SNJHjTGHJe2S9CG7EBcvBgAXDCW9GbYwlGI4BABM5PkioWNr/v7ojPs+N+HnLklv87oPAFgIEpmcJ3WTHtUFgIWqGCbGAQDGRIJ+T+o6AW/qAsBCRQgGgCJS4XjzBZ1XdQFgoSIEA0ARMUaqr4m4WrO+JiJjXC0JAAseIRgAiki0PKQtaxtcrbl1XYNqK8Ou1gSAhY4QDABFJBwKqH1NnZygO6dnJ+jTptV1CjEmGABOQwgGgCJT5QS0va3ZlVrb25pVHWE8MACciRAMAEWmMhLUxqaYNjTObov4DY1RbWyOqcIJutQZAJw/CMEAUIRi1Y52bG6ZcRDe0BjVjs0tilU5LncGAOcHQjAAFKlYlaMdN7bothtWTnuMsBP06bYbVhKAAeAcGCgGAEUsVu2ofc1SrV9Rq72He7TzwAmd7Eu87rj6moi2rmvQpjV1qnYCDIEAgHMgBANAkatwgqpwgrr5quW6fvVSWSsNpbJKZnJygn5VhAMyRqqtDLMKBABMEyEYABYYYyRZKegb/Xt8Iwybt/PZFgC8KpXOqnc4LUkaTGSVyOQUCfpVObZaTbQ8pHBofmMoIRgAitxgIqOBZFZ7Hu3RroNTD4fYsrZB7WvqVOUEVBlhOASAubeQzlfG2oV35aC1tdUeOnRovtsAAM/F+5Pq7I6rY1+Xkpn8OY93gj5tb2vWxqaYYtVMjAMwd4rxfGWMecRa2zrpY4RgAChO8YGktu0+ov3Hegt+LkukAZhLxXq+OlsIZok0AChC8f6Z/0KRpP3HerVt9xHFB5IudwYAp1uo5ytCMAAUmcFERp3d8Rn/Qhm3/1ivOrviGkpmXOoMAE63kM9XhGAAKDIDyaw69nW5UqtjX5f6E1lXagHAmRby+YoQDABFJJUenVU9nUkl05HM5LX3cI9SaYIwAHct9PMVIRgAikjvcFq7Dp5wtebOAydeXa8TANyy0M9XhGAAKCLWatJ1NWfjZF9CC3AhIABFbqGfrwjBAFBEhpLefA04lGI4BAB3LfTzFSEYAIpIIpPzpG7So7oAStdCP18RggGgiESCfk/qOgFv6gIoXQv9fEUIBoAiUuEEFlRdAKVroZ+vCMEAUESMkeprIq7WrK+JyBhXSwLAgj9fEYIBoIhURfzasrbB1Zpb1zVoUSToak0AiJaHPDlf1VaGXa05FUIwABSR4VRe7Wvq5ATdOT07QZ82ra7TIKtDAHBZOBTw5HwVYkwwAJSewWRW3c/1a3tbsyv1trc1q+u5fs+WMgJQ2qqcgKvnq+rI3M1fIAQDQBFJZXL6P77ziNaviGpDY3RWtTY0RrV+RVQf/c4jSmXd2dYUACaqjAS1sSnmyvlqY3NMFc7cDd0iBANAEQmPLTm09Zu/0JdubJnxL5YNjVF96cYWbf3mLyRJoQCnewDeiFU72rF5duerHZtbFKtyXO7s7FgzBwCKSOXY0kDP9CX03jt/rp0fvUIPNPaqY1+XkplzX811gj5tb2vW+hVRvffOn+uZsS1NK1kiDYCHYlWOdtzYos7ueMHnq43NsTkPwBIhGACKSsBnVF8T0cm+hJ7pS+htt+/XN3/v13T/Leu193CPdh44oZNjwXai+pqItq5r0KbVdep6rl9vu33/aY8FfKyRBsBbsWpH7WuWav2K2tPOVxUhvy4oD+nl4bSG0rnXzldr6lTtBOZ0CMRExlo7L//h2WhtbbWHDh2a7zYAwHW5XF7f+vnT+uK+7tPuj4T8uuOmVVq5bJH8xmgolVUyk5MT9KsiHFDOWh199hV9+gePKZE+fcvRz7Y16cNvu0R+gjCAOZJIZfTSSEaSNJjIKpHJKRL0q3Js4tvisqAiYe/DrzHmEWtt62SPcSUYAIqI3+/TdS1L9Rc/Pn7a14mJdE4f3/Xoq7fPvLIyFSc4Wo8ADGAuDCYyGkhmtefRHu06OPU3V1vWNqh9TZ2qnIAq52kdc2ZKAECRqSkPqaN95VmPGUrndPLlxFkDsCR1tK9UTXnIzfYAYFLx/qT2Hj6lq7/ygL583/FJA7AknexL6Mv3HdfVX3lAew+fUrw/OcedjiIEA0CRCQV8uroppmuaYrOqc01TTBubYqwMAcBz8YGktt19RLfec3Rak+IkKZnJ69Z7jmrb3UcUH5j7IMyZEQCKUE15SDtuWjXjIHxNU0w7blqlC7gKDMBj8f6ktu0+ov3Hemf0/P3HerVt99wHYUIwABSpxRVh3f6eFt3xnpZpb0vqBH264z0t+vJ7WrS4IuxxhwBK3WAio87u+IwD8Lj9x3rV2RXXUDLjUmfnxsQ4AChiNeUhta+p09svjereI6f07YefnnKiyYeuWq62VUtVUx5iCASAOTGQzKpjX5crtTr2dWn9ito5WzKNEAwARS4U8OnCakcfvmq52tcsVTZvNZTMKpXNKxzwqcIJKOAzqikPswoEgDmTSo+uAjHdMcDnkszktfdwj26+arnCIe8jKiEYABYIv9+naOXYrkrV89sLAPQOp7Xr4AlXa+48cELXr16qZXMQgvm+DAAAAAWzVlMugzZTJ/sSmqt93AjBAAAAKNhQMutN3ZQ3dc9ECAYAAEDBEpmzb1lCLpkAACAASURBVNYzU0mP6p6JEAwAAICCRYJ+T+o6AW/qnokQDAAAgIJVON5MXvOq7pkIwQAAACiYMaNrlLupviYiM0crPRKCAQAAULBoeUhb1ja4WnPrugbVVs7NbpeEYAAAABQsHAqofU3dtLd1Pxcn6NOm1XUKMSYYAAAAxazKCWh7W7Mrtba3Nas6Mnf7uBGCAQAAMCOVkaA2NsW0oTE6qzobGqPa2BxThRN0qbNzIwQDAABgxmLVjnZsbplxEN7QGNWOzS2KVTkud3Z2hGAAAADMSqzK0Y4bW3TbDSunPUbYCfp02w0r5yUAS9LcDbwAAADAeStW7ah9zVKtX1GrvYd7tPPACZ3sS7zuuPqaiLaua9CmNXWqdgJzOgRiIkIwAAAAXFHhBFXhBHXzVct1/eqlslYaSmWVzOTkBP2qCAdkjFRbGZ6zVSCmwnAIAAAAeMIYSVYK+kb/Ht8Iw+btfLYliSvBAAAAcMlgIqOBZFZ7Hu3RroNTD4fYsrZB7WvqVOUEVBmZn+EQxtr5T+KFam1ttYcOHZrvNgAAADAm3p9UZ3dcHfu6lMzkz3m8E/Rpe1uzNjbFFKv2ZmKcMeYRa23rZI9xJRgAAACzEh9IatvdR7T/WO+0n5PM5HXrPUfVeSzOEmkAAABYWOL9SW3bXVgAnmj/sV5t231E8YGky52dHSEYAAAAMzKYyKizOz7jADxu/7FedXbFNZTMuNTZuRGCAQAAMCMDyaw69nW5UqtjX5f6E1lXak0HIRgAAAAFS6VHV4GYziS46Uhm8tp7uEep9NwEYUIwAAAACtY7nNaugydcrbnzwAn1DqddrTkVQjAAAAAKZq0mXQd4Nk72JTRXq/cSggEAAFCwoaQ3wxaGUgyHAAAAQJFKZHKe1E16VPdMhGAAAAAULBL0e1LXCXhT90yEYAAAABSswvFm42Gv6p6JEAwAAICCGSPV10RcrVlfE5ExrpacEiEYAAAABYuWh7RlbYOrNbeua1BtZdjVmlMhBAMAAKBg4VBA7Wvq5ATdiZNO0KdNq+sUYkwwAAAAilmVE9D2tmZXam1va1Z1ZG7GA0uEYAAAAMxQZSSojU0xbWiMzqrOhsaoNjbHVOEEXers3AjBAAAAmLFYtaMdm1tmHIQ3NEa1Y3OLYlWOy52dHSEYAAAAsxKrcrTjxhbddsPKaY8RdoI+3XbDynkJwJLk+cALY8y1kr4myS/pb621OyY55nck/ZkkK+mwtXar130BAADAPbFqR+1rlmr9ilrtPdyjnQdO6GRf4nXH1ddEtHVdgzatqVO1E5jTIRATeRqCjTF+SV+XdI2kZyUdNMbstdZ2TTjmUkl/Iult1tqXjTG1XvYEAAAAb1Q4QVU4Qd181XJdv3qprJWGUlklMzk5Qb8qwgEZI9VWhudsFYipeH0leJ2kX1lrn5IkY8z3JLVL6ppwzEclfd1a+7IkWWtf8LgnAAAAeCgcCmhZaO5WepiJGY0JNsbUTPPQOkknJ9x+duy+iS6TdJkx5iFjzC/Ghk8AAAAAnjlnCDbGfHbCz83GmCckPWKMedoY81YXeghIulTSeklbJH3TGLNokj4+Zow5ZIw51Nvb68J/FgAAAKVqOleCN0/4+Q5Jn7TWXiLpdyR99RzP7ZFUP+H2srH7JnpW0l5rbcZa+1+SntBoKD6NtfYua22rtbY1Gp3dWnQAAAAobYUOh1hqrf0XSbLWHpAUOcfxByVdaoy5xBgTkvQ+SXvPOOYejV4FljFmiUaHRzxVYF8AAADAtE1nxPIbjDF7JRlJy4wxZdbakbHHzrqmhbU2a4z5uKT7NLpE2t9bax83xnxB0iFr7d6xx95ljOmSlJP0aWvtSzP9HwQAAACcy3RCcPsZt32SZIyJSfqbcz3ZWvsjST86477PTfjZSrpl7A8AAADguXOGYGvtg1PcH9foGsCSJGPM/7TWfsLF3gAAAABPuLlt8ttcrAUAAAB4xs0QDAAAACwIhGAAAACUHDdDsHGxFgAAAOCZaYdgY8yqcxzytVn2AgAAAMyJQq4Ef8MYc8AY8/vGmOozH7TW/oN7bQEAAADemXYItta+XdLvanQb5EeMMTuNMdd41hkAAADgkYLGBFtrn5T0WUmfkfQOSX9tjDlmjNnsRXMAAACAFwoZE9xijPmqpG5J75R0vbW2aeznr3rUHwAAAOC66WybPO5/SvpbSf/DWpsYv9Nae8oY81nXOwMAAAA8UkgIbpOUsNbmJMkY45PkWGtHrLXf9aQ7AAAAwAOFjAnulBSZcLts7D4AAABgQSkkBDvW2qHxG2M/l7nfEgAAAOCtQkLwsDHmLeM3jDG/JilxluMBAACAolTImOA/lPTPxphTGt0i+UJJ7/WkKwAAAMBD0w7B1tqDxphGSSvG7jpurc140xYAAADgnUKuBEvSWknLx573FmOMrLXfcb0rAAAAwEPTDsHGmO9KeqOkRyXlxu62kgjBAAAAWFAKuRLcKqnZWmu9agYAAACYC4WsDnFUo5PhAAAAgAWtkCvBSyR1GWMOSEqN32mt3eR6VwAAAICHCgnBf+ZVEwAAAMBcKmSJtAeNMRdLutRa22mMKZPk9641AAAAwBvTHhNsjPmopO9LunPsrjpJ93jRFAAAAOClQibG/YGkt0kakCRr7ZOSar1oCgAAAPBSISE4Za1Nj98wxgQ0uk4wAAAAsKAUEoIfNMb8D0kRY8w1kv5Z0g+9aQsAAADwTiEheJukXkmPSfo/Jf3IWnurJ10BAAAAHipkibRPWGu/Jumb43cYYz45dh8AAACwYBRyJfiDk9z3IZf6AAAAAObMOa8EG2O2SNoq6RJjzN4JD1VK6vOqMQAAAMAr0xkO8XNJz2l02+S/nHD/oKQjXjQFAAAAeOmcIdha+4ykZyRd6X07AAAAgPcK2TFuszHmSWNMvzFmwBgzaIwZ8LI5AAAAwAuFrA7xZUnXW2u7vWoGAAAAmAuFrA4RJwADAADgfFDIleBDxpj/T9I9klLjd1prd7veFQAAAOChQkJwlaQRSe+acJ+VRAgGAADAgjLtEGyt/bCXjQAAAABzpZDVIS4zxtxvjDk6drvFGPNZ71oDAAAAvFHIxLhvSvoTSRlJstYekfQ+L5oCAAAAvFRICC6z1h44476sm80AAAAAc6GQEPyiMeaNGp0MJ2PMezS6nTIAAACwoBSyOsQfSLpLUqMxpkfSf0l6vyddAQAAAB4qZHWIpyRtNMaUS/JZawe9awsAAADwTiGrQ3zSGDO+VvBXjTG/NMa861zPAwAAAIpNIWOCb7bWDmh0s4zFkj4gaYcnXQEAAAAeKiQEm7G/f0vSd6y1j0+4DwAAAFgwCgnBjxhjfqzREHyfMaZSUt6btgAAAADvFLI6xEckrZH0lLV2xBizWBJbKQMAAGDBOWcINsY0WmuPaTQAS9IbjGEUBAAAABau6VwJvkXSxyT95SSPWUnvdLUjAAAAwGPnDMHW2o+N/b3B+3YAAAAA7xWyTvBvj02GkzHms8aY3caYN3vXGgAAAOCNQlaH2G6tHTTG/LqkjZL+TtL/601bAAAAgHcKCcG5sb/bJN1lrd0nKeR+SwAAAIC3CgnBPcaYOyW9V9KPjDHhAp8PAAAAFIVCQuzvSLpP0rutta9IqpH0aU+6AgAAADw07RBsrR2RtEfSsDGmQVJQ0jGvGgMAAAC8Mu0d44wxn5D0p5Liem27ZCupxYO+AAAAAM8Usm3yJyWtsNa+5FUzAAAAwFwoZEzwSUn9XjUCAAAAzJVCrgQ/JekBY8w+SanxO621X3G9KwAAAMBDhYTgE2N/QmJ9YAAAACxg0w7B1trPS5IxpmLs9pBXTQEAAABemvaYYGPMSmPMf0h6XNLjxphHjDGXe9caAAAA4I1CJsbdJekWa+3F1tqLJf2RpG960xYAAADgnUJCcLm1dv/4DWvtA5LKXe8IAAAA8FhBq0MYY7ZL+u7Y7fdrdMUIAAAAYEEp5ErwzZKiknZL+oGkJWP3AQAAAAtKIatDvCzpv3nYCwAAADAnClkd4ifGmEUTbl9gjLnPm7YAAAAA7xQyHGKJtfaV8RtjV4Zr3W8JAAAA8FYhIThvjGkYv2GMuViSdb8lAAAAwFuFrA5xq6R/M8Y8KMlIerukj3nSFQAAAOChQibG/W9jzFskXTF21x9aa18cf9wYc7m19nG3GwQAAADcVsiVYI2F3nunePi7kt4y644AAAAAjxUyJvhczKR3GnOtMea4MeZXxphtUz7ZmJuMMdYY0+piTwAAAMDruBmCXzdJzhjjl/R1Sb8pqVnSFmNM8yTHVUr6pKR/d7EfAAAAYFJuhuDJrJP0K2vtU9batKTvSWqf5LgOSbdLSnrcDwAAAOBqCE5Pcl+dpJMTbj87dt+rxibb1Vtr952tuDHmY8aYQ8aYQ729vbNuFgAAAKWroIlxxpgWScsnPs9au3vs7yumeNrZ6vkkfUXSh851rLX2Lkl3SVJrayvrEwMAAGDGph2CjTF/L6lF0uOS8mN3W0m7z/K0Hkn1E24vG7tvXKWklZIeMMZI0oWS9hpjNllrD023NwAAAKAQhVwJvsJa+7pJbedwUNKlxphLNBp+3ydp6/iD1tp+SUvGbxtjHpD034slAOdyefWNpJXNWw0ms0plcgoH/ap0Agr4jGrKQvL7vR5WDQCjUumseodHR54NJrJKZHKKBP2qjIyeyqPlIYVDBX3BBwAlq5Cz5cPGmGZrbdd0n2CtzRpjPi7pPkl+SX9vrX3cGPMFSYestXsL7HdOpLN59Q2nde+RU/r2w0/rZF/idcfU10T0wSuX67qWpaopDykUIAwD8MZgIqOBZFZ7Hu3RroMnpjwnbVnboPY1dapyAqqMBOehUwBYOIy10xtea4x5h6S9kp6XlNLousDWWtviXXuTa21ttYcOeXOxuG84rfu749q+56iSmfw5j3eCPnW0r9TVTTHVlIc86QlA6Yr3J9XZHVfHvq5pn5O2tzVrY1NMsWpnDjoEgOJljHnEWjvpHhSFhOBfSbpF0mN6bUywrLXPuNFkIbwKwS8NpbTtB4/pJ93xgp97TVNMO25apcUVYdf7AlCa4gNJbdt9RPuPFb4izobGqHZsblGsiiAMoHSdLQQX8h1+r7V2r7X2v6y1z4z/canHedc3nJ5xAJakn3THte0Hj+nl4clWigOAwsT7Zx6AJWn/sV5t231E8QGWXweAyRQSgv/DGLPTGLPFGLN5/I9nnc2hdDav+7vjMw7A437SHVdnd1zp7Lm/sgSAqQwmMursjs84AI/bf6xXnV1xDSUzLnUGAOePQkJwRKNjgd8l6fqxP9d50dRc6xtOa/ueo67U2r7nqPq4GgxgFgaSWXXsm/Yc5LPq2Nel/kTWlVoAcD6Z9uoQ1toPe9nIfMnl8rr3yKlpTTiZjmRmtN6Hr1rO8mkACpZKj64C4eY5ae/hHt181XKWTwOACaad0owxjjHmD4wx3zDG/P34Hy+bmwt9I2l9++GnXa357YefVt8IV4MBFK53OK1dB0+4WnPngROvri8MABhVyKXK72p0R7d3S3pQo7u/DXrR1FzK5u2ka27Oxsm+hLJ5dnYGUDhr5ck5aZoLAQFAySgkBL/JWrtd0rC19tuS2iS91Zu25s5g0puxckMe1QVwfvPq3DGU4pwEABMVEoLHpxe/YoxZKalaUq37Lc2tVCbnTV1WiAAwAwmPzklJj+oCwEJVyCyJu4wxF0jartGd4yokfc6TruZQOOj3pC7bKAOYiYhH5yQn4E1dAFioClkd4m/HfnxQ0hu8aWfuVTrezJb2qi6A81uFR+cOr+oCwEJVyOoQMWPM3xlj/mXsdrMx5iPetTY3Aj6j+pqIqzXrayIK+IyrNQGUBmPkyTnJcEoCgNMU8p39P0i6T9LSsdtPSPpDtxuaazVlIX3wyuWu1vzglctVUx52tSaA0hAtD2nL2gZXa25d16DaSs5JADBRISF4ibX2nyTlJclam5W04Gda+P0+XdeyVE7QnTG8TnC0np8rwQBmIBwKqH1NnavnpE2r6xRiTDAAnKaQs+ywMWaxJCtJxpgrJPV70tUcqykPqaN9pSu1OtpXqqY85EotAKWpygloe1uzK7W2tzWrOsJ4YAA4UyEh+BaNrgrxBmPMQ5K+I+kTnnQ1x0IBn65uiumaptis6lzTFNPGphgrQwCYlcpIUBubYtrQGJ1VnQ2NUW1sjqnCCbrUGQCcPwpJa12S7pZ0UFJc0jc1Oi74vFBTHtKOm1bNOAhf0xTTjptW6QKuAgNwQaza0Y7NLTMOwhsao9qxuUWxKsflzgDg/GDsNPfSNMb8k6QBSf84dtdWSYustb/tUW9Tam1ttYcOHfKkdt9wWvd3x7V9z1ElM+fe8MIJ+tTRvlIbm2IEYACui/cn1dkdV8e+rmmfk7a3NWtjc4wADKDkGWMesda2TvpYASG4y1rbfK775oKXIViS0tm8+obTuvfIKX374ad1si8hJ+BThRPQUDKrZDav+pqIPnTVcrWtWqqa8hBDIAB4ZiiZUX8iq72He7TzwAmd7Eu87pj6moi2rmvQpjV1qnYCDIEAAJ09BBcyW+KXxpgrrLW/GCv6VkneJdF5FAr4dGG1o/evq9e1Ky+UJA0mskpkcooE/aocm2SypDwoJ8QvGgDeqnCCqnCCuvmq5bp+9VJZKw2lskpmcnKCflWEAzJGqq0MswoEAEzTOUOwMeYxja4IEZT0c2PMibHbF0s65m1782MwkdFAMqs9j/Zo18Gpr7psWdug9jV1qnICqowQhgF4KxwKaFmIlR4AwA3nHA5hjLn4bI9ba59xtaNp8HI4xIzH3zXFFKtm/B0AAECxmNVwiPkIufMlPpDUtruPaP+x3mk/J5nJ69Z7jqrzWJyZ2AAAAAsEs7nGxPuT2ra7sAA80f5jvdq2+4jiA0mXOwMAAIDbCMEaHQPc2R2fcQAet/9Yrzq74hpKZlzqDAAAAF4gBEsaSGbVsa/LlVod+7rUn8i6UgsAAADeKPkQnEqPrgIxnUlw05HM5LX3cI9SaYIwAABAsSr5ENw7nNaugydcrbnzwAn1DqddrQkAAAD3lHwItlaTrgM8Gyf7EprmRnwAAACYByUfgoeS3gxbGEoxHAIAAKBYlXwITmRyntRNelQXAAAAs1fyITgS9HtS1wl4UxcAAACzV/IhuMI556Z5RVUXAAAAs1fyIdgYqb4m4mrN+pqIjHG1JAAAAFxU8iE4Wh7SlrUNrtbcuq5BtZVhV2sCAADAPSUfgsOhgNrX1MkJuvNP4QR92rS6TiHGBAMAABStkg/BklTlBLS9rdmVWtvbmlUdYTwwAABAMSMES6qMBLWxKaYNjdFZ1dnQGNXG5pgqnKBLnQEAAMALhOAxsWpHOza3zDgIb2iMasfmFsWqHJc7AwAAgNsIwRPEqhztuLFFt92wctpjhJ2gT7fdsJIADAAAsIAwePUMsWpH7WuWav2KWu093KOdB07oZF/idcfV10S0dV2DNq2pU7UTYAgEAADAAkIInkSFE1SFE9TNVy3X9auXylppKJVVMpOTE/SrIhyQMVJtZZhVIAAAABYgQvBZ5K2VNLqhhqzkH/t7fCOMXC4vEYJRZBKpjF4ayUiSBhNZJTI5RYJ+VY6tWrK4LKhImG8uFqJUOqve4bSkyV/baHlI4RCndQCYDs6Wk3hlJK3hVE57Hu3RroNTD4fYsrZB7WvqVB72a1FZaB46BV7z8khaIwW8b8vCfl3A+3ZBGExkNJDMTvu1rXICqozwQQcAzsbYsaudC0lra6s9dOiQJ7Wf70/q/u64OvZ1KZnJn/N4J+jT9rZmXd0U04XVTIzD/OB9e/6K9yfVOYPXdmNTTDFeWwAlzhjziLW2ddLHCMGviQ8ktW33Ee0/1lvwc1kiDfOF9+35i9cWAGbnbCGYJdLGPN8/8182krT/WK+27T6i+EDS5c6AqfG+PX/FeW0BwFOEYI2OAb6/Oz7jXzbj9h/rVWdXXP0jaZc6A6b2ssvv21d43xaNwURGnS6+tkPJjEudAcD5gxAsaTiVU8e+Lldqdezr0lAq50ot4GxGXH7fDvO+LRoDyayrr21/IutKLQA4n5R8CE6kMtrzaM+0JpxMRzKT197DPUqkuPIC7/C+PX+l0llPXttUmiAMABOVfAh+aSSjXQdPuFpz54ETr67TCniB9+35q3c47clrO76+MABgVMmHYGs16Zqbs3GyL6EFuOgGFhDet+cvXlsAmBslH4KHkt58RTiU4qtHeIf37fmL1xYA5kbJh+BExpvJQEmP6gIS79vzGa8tAMyNkg/BkaDfk7pOwJu6gMT79nzGawsAc6PkQ3CFE1hQdQGJ9+35jNcWAOZGyYdgY6T6moirNetrIjLG1ZLAaXjfnr94bQFgbpR8CF5cFtSWtQ2u1ty6rkHRirCrNYGJeN+ev6LlIU9e29pKXlsAmKjkQ3AkHFT7mjo5QXf+KZygT5tW1yns0bg+QOJ9ez4LhwKevLYhxgQDwGlKPgRLUnnYr+1tza7U2t7WrIowv2zgvTKX37flvG+LRpUTcPW1rY4wHhgAzkQIlrSoLKSrm2La0BidVZ0NjVFtbI6puizkUmfA1C5w+X27iPdt0aiMBLXRxde2wgm61BkAnD8IwWMurHa0Y3PLjH/pbGiMasfmFsWqHJc7A6bG+/b8FeO1BQBPGbsA99JsbW21hw4d8qT28/1J3d8dV8e+LiUz+XMe7wR92t7WrI3NMX7ZYN7wvj1/xfuT6uS1BYAZMcY8Yq1tnfQxQvDr9Y+kNZTKae/hHu08cEIn+xKvO6a+JqKt6xq0aU2dKkJ+hkBg3r0yktZwAe/b8pCfIRALxFAyo/5EdtqvbbUTYAgEAIgQPGOJVEYvjWRkrTSUyiqZyckJ+lURDsgYKVoRZjY9ig7v2/NXKp1V73B6yte2tjLMKhAAMMHZQjBThs8iEg5qWZirKVhYeN+ev8KhgJaFOG0DKH7jH9olaTCRVSKTUyToV+XYajXR8pDC83w+42wKAAAAVwwmMhpIZrXn0R7tOjj18K0taxvUvqZOVU5AlZH5uXDDcAgAAADM2own8jbFFKv2ZiIvwyEAAADgmfhAUtvuPqL9x3qn/ZxkJq9b7zmqzmPxeVnSkXWCAQAAMGPx/qS27S4sAE+0/1ivtu0+ovhA0uXOzo4QDAAAgBkZTGTU2R2fcQAet/9Yrzq74hpKZlzq7NwIwQAAAJiRgWRWHfu6XKnVsa9L/YmsK7WmgxAMAACAgqXSo6tATGcS3HQkM3ntPdyjVHpugjAhGAAAAAXrHU5r18ETrtbceeDEq+sLe40QDAAAgIJZq0nXAZ6Nk30JzdXqvYRgAAAAFGwo6c2whaEUwyEAAABQpBKZnCd1kx7VPZPnIdgYc60x5rgx5lfGmG2TPH6LMabLGHPEGHO/MeZir3sCAADA7ESCfk/qOgFv6p7J0xBsjPFL+rqk35TULGmLMab5jMP+Q1KrtbZF0vclfdnLngAAADB7FY43Gw97VfdMXl8JXifpV9bap6y1aUnfk9Q+8QBr7X5r7cjYzV9IWuZxTwAAAJglY6T6moirNetrIjLG1ZJT8joE10k6OeH2s2P3TeUjkv5lsgeMMR8zxhwyxhzq7Z3driQAAACYnWh5SFvWNrhac+u6BtVWhl2tOZWimRhnjHm/pFZJd0z2uLX2Lmttq7W2NRqNzm1zAAAAOE04FFD7mjo5QXfipBP0adPqOoXOhzHBknok1U+4vWzsvtMYYzZKulXSJmttyuOeAAAA4IIqJ6DtbWdO95qZ7W3Nqo7MzXhgyfsQfFDSpcaYS4wxIUnvk7R34gHGmDdLulOjAfgFj/sBAACASyojQW1simlD4+y+pd/QGNXG5pgqnKBLnZ2bpyHYWpuV9HFJ90nqlvRP1trHjTFfMMZsGjvsDkkVkv7ZGPOoMWbvFOUAAABQZGLVjnZsbplxEN7QGNWOzS2KVTkud3Z2xs7V3nQuam1ttYcOHZrvNgAAADAm3p9UZ3dcHfu6lMzkz3m8E/Rpe1uzNjbHPAvAxphHrLWtkz02dwMvAAAAcN6KVTtqX7NU61fUau/hHu08cEIn+xKvO66+JqKt6xq0aU2dqp3AnA6BmIgQDAALRCqdVe9wWpI0mMgqkckpEvSrcmwiSbQ8pHCI0zqA+VPhBFXhBHXzVct1/eqlslYaSmWVzOTkBP2qCAdkjFRbGZ6zVSCmwtkSAIrcYCKjgWRWex7t0a6DU19Z2bK2Qe1r6lTlBFQZmZ8rKwAgjS6ftqzIP5QzJhgAitiMx9g1xRSrnttJJgBQbBgTDAALUHwgqW13H9H+Y9PfJTOZyevWe46q81h8XmZbA8BCUTQ7xgEAXhPvT2rb7sIC8ET7j/Vq2+4jig8kXe4MAM4PhGAAKDKDiYw6u+MzDsDj9h/rVWdXXP9/e/cfHMdZ33H887V0ujtZthIZWUlkCYcmRNa4tqCyS4EyNvF0CAbLeGjBbgcKFPqTAi3tmDJup/V4aoa2aRkYCg00tIMNTGoSFXegtXEHpkxjy2CbRDaQCWBHg4VqJ/6lO+kkffvHrZNDlmz92NXd7r1fM57o9lbffSbPPquPVs8+dzVfCKllAJAchGAAqDCX82PafbA/lFq7D/brUm4slFoAkCSEYACoICOjxVUgZvIQ3EzkCxPqPTmgkVGCMACUIgQDQAUZujaq/cfOhlpz39Gzz68vDAAoIgQDQAVx15TrAM/HuYs5xXA1TACIFCEYACrI1Xw00xaujjAdAgBKEYIBoILkCuOR1M1HVBcA4ooQDAAVJJuqiaRupjaaugAQV4RgAKggDZloPsgzqroAEFeEYACoIGZSW1M21JptTVmZhVoSAGKPEAwAFaR5cZ22r2sPteaO9e1aviQdak0AiDtCMABUkHRdrXq6WpVJhXN5zqQWacvag5oCAgAAEgNJREFUVtUxJxgAfgYhGAAqzNJMrXZt7gyl1q7NnWrMMh8YACYjBANAhVmSTWnTqhZt7GieV52NHc3a1NmihkwqpJYBQHIQggGgArU0ZrR325o5B+GNHc3au22NWpZmQm4ZACQDIRgAKlTL0oz2vmmN9mxdPeM5wpnUIu3ZupoADAC3wEQxAKhgLY0Z9XTdpQ33LVfvyQHtO3pW5y7mbtivrSmrHevbtaWrVY2ZWqZAAMAtEIIBoMI1ZFJqyKT0zleu1BvX3iV36erImPKFcWVSNWpI18pMWr4kzSoQADBDhGAgYUZGxzR0bVSSdCU3plxhXNlUjZYEKwQ0L65Tuo6hH0fpulqtoO8AIBRcTYGEuJIr6HJ+TI+dGND+Y9P/yXz7unb1dLVqaaZWS7L8yRwAUJ3M3cvdhlnr7u72vr6+cjcDqBiDl/I6dHpQuw/2K1+YuOX+mdQi7drcqU2rWtTSyMNTAIBkMrPj7t491XvcCQZibvByXju/fEpHzgzN+HvyhQl9+NEndOjMIKsIAACqEkukATE2eCmvnQdmF4BLHTkzpJ0HTmnwcj7klgEAUNkIwUBMXckVdOj04JwD8HVHzgzpUP+gruYLIbUMAIDKRwgGYupyfky7D/aHUmv3wX5dyo2FUgsAgDggBAMxNDJaXAViJg/BzUS+MKHekwMaGSUIAwCqAyEYiKGha6Paf+xsqDX3HT37/PrCAAAkHSEYiCF3TbkO8Hycu5hTDFdMBABgTgjBQAxdzUczbeHqCNMhAADVgRAMxFCuMB5J3XxEdQEAqDSEYCCGsqmaSOpmaqOpCwBApSEEAzHUkInmwx6jqgsAQKUhBAMxZCa1NWVDrdnWlJVZqCUBAKhYhGAghpoX12n7uvZQa+5Y367lS9Kh1gQAoFIRgoEYStfVqqerVZlUOEM4k1qkLWtbVcecYABAlSAEAzG1NFOrXZs7Q6m1a3OnGrPMBwYAVA9CMBBTS7IpbVrVoo0dzfOqs7GjWZs6W9SQSYXUMgAAKh8hGIixlsaM9m5bM+cgvLGjWXu3rVHL0kzILQMAoLIRgoGYa1ma0d43rdGeratnPEc4k1qkPVtXE4ABAFWLSYBAArQ0ZtTTdZc23LdcvScHtO/oWZ27mLthv7amrHasb9eWrlY1ZmqZAgEAqFqEYCAhGjIpNWRSeucrV+qNa++Su3R1ZEz5wrgyqRo1pGtlJi1fkmYVCABA1SMEAwmTrqvVijqGNgCgfHIjBV0YLkiSruTGlCuMK5uq0ZJgJaJl9Sll0+X9ayQ/KQEAABCKZ4dHNTwyrsdODGj/semn5m1f166erlbVp2t0e31dGVoqmbuX5cDz0d3d7X19feVuBgAAAALnL+V1+PSgdh/sV74wccv9M6lF2rW5U/evatEdjdE8pG1mx929e6r3uBMMAACAeRm8nNeHvnxKR84Mzfh78oUJffjRJ3TozGBZVitiiTQAAADM2flLee08MLsAXOrImSHtPHBKg5fzIbfs5gjBAAAAmJNnh0d1+PTgnAPwdUfODOlQ/6CeGx4NqWW3RggGAADAnAyPjGv3wf5Qau0+2K9rI+Oh1JoJQjAAAABmLTdS0GMnBmb0ENxM5AsT6j05oNxIIZR6t0IIBgAAwKxdGC5o/7Gzodbcd/Ts8+sLR40QDAAAgFlz15TrAM/HuYs5LdTqvYRgAAAAzNrV/Fg0dUeiqTsZIRgAAACzlitE8xBbPqK6kxGCAQAAMGvZVE0kdTO10dSdjBAMAACAWWvIRPPBw1HVnYwQDAAAgFkzk9qasqHWbGvKyizUktMiBAMAAGDWltWntH1de6g1d6xvV3NDOtSa0yEEAwAAYNay6ZR6ulqVSYUTJzOpRdqytlXpiOYaT0YIBgAAwJzUp2u0a3NnKLV2be7U4vTCBGCJEAwAAIA5ur2+TvevatHGjuZ51dnY0axNnS26rb4upJbdGiEYAAAAc3ZHY0Z7t62ZcxDe2NGsvdvWqGVpJuSW3RwhGAAAAPPSsjSjv37TGu3ZunrGc4QzqUXas3V1WQKwJC3MQmwAAABItDsaM9q85k5tuG+5ek8OaN/Rszp3MadNL23WplXLdOj0BR36/pDamrLasb5dW7patbiuZkGnQJQydy/Lgeeju7vb+/r6Ij9ObqSgC8MFSdKV3JhyhXFlUzVaki3+7rCsPqVsOhV5O4DZ4LxNLvoWQFxUyvXKzI67e/dU73EneArPDo9qeGRcj50Y0P5jxd9iJmtrymr7unb1dLWqPl2j28v0WwxwHedtctG3AOIiTtcr7gRPcv5SXodPD2r3wX7lCxO33D+TWqRdmzt1/6oW3dG48PNZAInzNsnoWwBxUYnXq5vdCSYElxi8nNfOA6d05MzQrL+3XE82Apy3yUXfAoiLSr1e3SwEszpE4PyluXeeJB05M6SdB05p8HI+5JYB0+O8TS76FkBcxPV6RQhWcf7K4dODc+68646cGdKh/kE9NzwaUsuA6XHeJhd9CyAu4ny9IgRLGh4Z1+6D/aHU2n2wX9dGxkOpBdwM521y0bcA4iLO16uqD8G5kYIeOzEwowncM5EvTKj35IByI4VQ6gFT4bxNLvoWQFzE/XoVeQg2s9eZ2ffM7Ckz2znF+2kz+2Lw/uNmtjLqNpW6MFzQ/mNnQ6257+jZ59fGA6LAeZtc9C2AuIj79SrSEGxmNZI+IekBSZ2StptZ56Td3iXpWXe/R9KDkj4SZZsmc9eUa9jNx7mLOcVw0Q3ECOdtctG3AOIi7terqO8Er5f0lLs/7e6jkr4gqWfSPj2SPhd8/Yik+83MIm7X867mx6KpOxJNXUDivE0y+hZAXMT9ehV1CG6VdK7k9TPBtin3cfcxSZckLZtcyMzeY2Z9ZtY3NDS/JxBL5QrRTMDOR1QXkDhvk4y+BRAXcb9exebBOHf/tLt3u3t3c3NzaHWzqZrQapXK1EZTF5A4b5OMvgUQF3G/XkUdggcktZW8XhFsm3IfM6uV1CjpQsTtel5DpjZWdQGJ8zbJ6FsAcRH361XUIfiYpHvN7G4zq5P0Vkm9k/bplfT24Os3S/q6L+BnOZtJbU3ZUGu2NWW1cLOaUY04b5OLvgUQF3G/XkUagoM5vn8g6WuSTkv6krs/aWZ/ZWZbgt0+I2mZmT0l6Y8k3bCMWpSW1ae0fV17qDV3rG9Xc0M61JpAKc7b5KJvAcRF3K9Xkc8Jdvf/cPeXuvvPufueYNufu3tv8HXe3X/V3e9x9/Xu/nTUbSqVTafU09WqTCqc/xWZ1CJtWduqdETzZACJ8zbJ6FsAcRH361VsHoyLUn26Rrs2T16+eG52be7U4jQ/bBA9ztvkom8BxEWcr1eEYEm319fp/lUt2tgxv1UnNnY0a1Nni26rrwupZcD0OG+Ti74FEBdxvl4RggN3NGa0d9uaOXfixo5m7d22Ri1LMyG3DJge521y0bcA4iKu1ytbwIUYQtPd3e19fX2R1D5/Ka/Dpwe1+2C/8oWJW+6fSS3Srs2d2tTZwg8blA3nbXLRtwDiohKvV2Z23N27p3yPEHyj54ZHdW1kXL0nB7Tv6NkpPxe7rSmrHevbtaWrVYvravhzI8qO8za56FsAcVFp1ytC8BzlRgq6MFyQe/FzrPOFcWVSNWpI18pMam5I88Q1Kg7nbXLRtwDiolKuVzcLwXyE0E1k0ymtSKfK3QxgVjhvk4u+BRAXcbhe8WAcAAAAqg4hGAAAAFWHEAwAAICqQwgGAABA1SEEAwAAoOoQggEAAFB1CMEAAACoOoRgAAAAVJ1YfmKcmQ1J+nGEh3iRpP+LsD7Ki/5NLvo22ejfZKN/k61c/ftid2+e6o1YhuComVnfdB+xh/ijf5OLvk02+jfZ6N9kq8T+ZToEAAAAqg4hGAAAAFWHEDy1T5e7AYgU/Ztc9G2y0b/JRv8mW8X1L3OCAQAAUHW4EwwAAICqQwgGAABA1SEElzCz15nZ98zsKTPbWe72YH7MrM3MjphZv5k9aWbvC7Y3mdl/mdkPgv/eXu62Yu7MrMbMvmNmXwle321mjwfj+ItmVlfuNmJuzOw2M3vEzM6Y2Wkz+yXGb3KY2QeCa/MTZrbfzDKM3/gys8+a2U/N7ImSbVOOVyv6WNDPp8zs5eVoMyE4YGY1kj4h6QFJnZK2m1lneVuFeRqT9Mfu3inpFZJ+P+jTnZIOu/u9kg4HrxFf75N0uuT1RyQ96O73SHpW0rvK0iqE4R8kfdXdOyStVbGfGb8JYGatkv5QUre7r5ZUI+mtYvzG2cOSXjdp23Tj9QFJ9wb/3iPpkwvUxp9BCH7BeklPufvT7j4q6QuSesrcJsyDu//E3b8dfH1FxR+grSr26+eC3T4naWt5Woj5MrMVkjZLeih4bZJeK+mRYBf6N6bMrFHSayR9RpLcfdTdnxPjN0lqJWXNrFZSvaSfiPEbW+7+DUkXJ22ebrz2SPoXL/pfSbeZ2Z0L09IXEIJf0CrpXMnrZ4JtSAAzWynpZZIel9Ti7j8J3jovqaVMzcL8/b2kP5U0EbxeJuk5dx8LXjOO4+tuSUOS/jmY7vKQmS0W4zcR3H1A0t9IOqti+L0k6bgYv0kz3XitiMxFCEbimVmDpH+T9H53v1z6nhfXCGSdwBgyszdI+qm7Hy93WxCJWkkvl/RJd3+ZpGuaNPWB8RtfwdzQHhV/2blL0mLd+Kd0JEgljldC8AsGJLWVvF4RbEOMmVlKxQD8eXc/EGwevP5nl+C/Py1X+zAvr5K0xcx+pOL0pdeqOIf0tuDPqxLjOM6ekfSMuz8evH5ExVDM+E2GTZJ+6O5D7l6QdEDFMc34TZbpxmtFZC5C8AuOSbo3eDK1TsUJ+r1lbhPmIZgf+hlJp93970re6pX09uDrt0t6bKHbhvlz9w+5+wp3X6nieP26u/+6pCOS3hzsRv/GlLufl3TOzO4LNt0vqV+M36Q4K+kVZlYfXKuv9y/jN1mmG6+9kt4WrBLxCkmXSqZNLBg+Ma6Emb1exTmGNZI+6+57ytwkzIOZvVrSNyV9Vy/MGf0zFecFf0lSu6QfS/o1d588mR8xYmYbJH3Q3d9gZi9R8c5wk6TvSPoNdx8pZ/swN2bWpeJDj3WSnpb0DhVv3jB+E8DM/lLSW1Rcyec7kn5LxXmhjN8YMrP9kjZIepGkQUl/IelRTTFeg198Pq7iFJhhSe9w974FbzMhGAAAANWG6RAAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABVhxAMAACAqkMIBgAAQNUhBANAGZjZFjPbees9b/i+lWb2RATt2WBmryx5/bCZvflm3wMAcVZ7610AAGFz915V1qdSbpB0VdK3ytwOAFgQ3AkGgJAFd2vPBHdTv29mnzezTWb2P2b2AzNbb2a/aWYfD/Z/2Mw+ZmbfMrOnZ3oH1sxqzOyjZnbMzE6Z2W8H2zeY2X+b2SNBOz4ffEKTzOz1wbbjwTG/YmYrJf2OpA+Y2Qkz++XgEK+Z3CYzu9PMvhHs90TJvgAQK4RgAIjGPZL+VlJH8G+HpFdL+qCKH9892Z3B+2+QtHeGx3iXpEvuvk7SOknvNrO7g/deJun9kjolvUTSq8wsI+lTkh5w91+Q1CxJ7v4jSf8o6UF373L3b96kTTskfc3duyStlXRihm0FgIrCdAgAiMYP3f27kmRmT0o67O5uZt+VtHKK/R919wlJ/WbWMsNj/IqkNSV3jhsl3StpVNJRd38mOP6J4JhXJT3t7j8M9t8v6T03qT9Vm45J+qyZpYL3CcEAYok7wQAQjZGSrydKXk9o6hsQpfvbDI9hkt4b3L3tcve73f0/p6g3Ps0xb+WGNrn7NyS9RtKApIfN7G1zqAsAZUcIBoD4+pqk3w3uysrMXmpmi2+y//ckvSSYAyxJbyl574qkJbc6oJm9WNKgu/+TpIckvXwO7QaAsmM6BADE10MqTnP4dvDg25CkrdPt7O45M/s9SV81s2sqTm247t8lPWJmPZLee5NjbpD0J2ZWUHF6BXeCAcSSuXu52wAAWCBm1uDuV4PQ/AlJP3D3B8vdLgBYaEyHAIDq8u7gQbknVXyQ7lNlbg8AlAV3ggGgApnZz0v610mbR9z9F8vRHgBIGkIwAAAAqg7TIQAAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKrO/wNzbMHz4ssEyQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3jV5Z3v/c+9zitHiCQRQhC1CokY0Aaqta0wxtoWBKXOTLHTXW2ndp7pHNrucaS1uFu57EbtjJ3OM9NndDr2cA06HYtKwT1qLDrdrQ5EBxGToJYqJw2RIDmt87qfP1ZCQwgkK/n9VlZY79d1ecFa67e++Urgl0/u3AdjrRUAAABQSDyT3QAAAACQa4RgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAguOb7AbGY8aMGXbu3LmT3QYAAADy2IsvvviutbZypNemZAieO3euWlpaJrsNAAAA5DFjzFuneo3pEAAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwpuRhGQAAAMhfkVhCR/oTkqSeSFKRREphv1el4Uz0PKvIr3DQP5ktEoIBAADgjKP9cfXHUnp850E9tGOf9ndFTrqmtiKsNYvnaNWiGhUFvZpeFJiETiVjrZ2UDzwRjY2NlmOTAQAA8sc7x6J6pq1D67e2KppIj3p9yO/RuuX1uqquWmeXh1zpyRjzorW2caTXGAkGAADAhHR0R/W1R3dpW3vnmN8TTaR1+2O71dzeoQ2rG1Rd5k4QPhUWxgEAAGDc3jkW1dpN2QXgoba1d2rtpl3q6I463NnpEYIBAAAwLkf743qmrWPcAXjQtvZONbd26L3+uEOdjY4QDAAAgHHpj6W0fmurI7XWb21VXyzlSK2xIAQDAAAga5FYQo/vPDimRXBjEU2ktfnlg4rEEo7UG42rIdgY8y/GmMPGmN2neN0YY75njHnDGLPLGHOpm/0AAADAGUf6E3poxz5Ha27cvu/4/sJuc3sk+IeSPnaa1z8u6YKB/26R9H2X+wEAAIADrNWI+wBPxP6uiHK1e6+rIdha+5+Suk5zySpJP7YZL0iaZoyZ6WZPAAAAmLjeaNKdujF36g432XOCayTtH/L4wMBzJzHG3GKMaTHGtHR2TmwFIgAAACYmknBnEVvUpbrDTXYIHjNr7f3W2kZrbWNlZeVktwMAAFDQwn6vK3VDPnfqDjfZIfigpNohj2cPPAcAAIA8VhJy5+Bht+oON9kheLOk/zGwS8Rlko5Za9+e5J4AAAAwCmOk2oqwozVrK8IyxtGSp+T2FmkPSXpe0jxjzAFjzOeNMX9ijPmTgUuekLRX0huSHpD0p272AwAAAGecVeTXmsVzHK1545I5qiwJOlrzVFwdb7bWrhnldSvpS272AAAAAOeFg36tWlSj7/3idUcOzAj5PVq5sEZBl+YaDzfZ0yEAAAAwRRUFvVq3vN6RWuuW16s4mJsALBGCAQAAME7TiwK6qq5ay+ZPbOeuZfMr1VRfrWlFAYc6Gx0hGAAAAON2dnlIG1Y3jDsIL5tfqQ2rG1RdFnK4s9MjBAMAAGBCqstC+t/XN+iu6xYo5D8xXpYEvKqdHlZJ4MSpDiG/R3ddt2BSArDk8sI4AAAAFIazy0Na3jBTS+dVqTeWUMjvldcYdUcTiibSCvk9Kgv5lbJW0XhKJWG/igPenE6BGIoQDAAAAEd4Bzb5fabtsB7asU/7uyInXVNbEdaaxXO0alHN8esng8nsUja1NDY22paWFtc/TiqVVld/XMm0VU80qVQqJa/Xq9KQTz6PUUVRQF4vM0oAAAA6jkXV3Nah9Vtbx7RlWsjv0brl9Wqqq1Z1uTvTIYwxL1prG0d6jZHgEcSTaXX1xXXoaL+KQj6F/V4lkumBoXyjeDKtY4mU9h3pV830IlUUBxTwEYYBAEBh6uiOau2ju7StvXPM74km0rr9sd1qbu+YlHnBhOBhuvriOvRev8rDAf3Xm0e1cftbpxzKv3HJOVpRFtJrHd2aNS0ThgEAAApJx7HsA/BQ29o7tXbTrpwHYYYvhzjSG1N3JKFXDnTr6vue093/0T5iAJak/V0R3f0f7br6vuf0yoFudUcSOtIby3HHAAAAk6cnklBzW8e4A/Cgbe2dam7tUG804VBnoyMED+jqiyuaSGv9llZ97dFXxnz8XzSR1tcefUXrt2Tmvxzti7vcKQAAQH7ojia1fmurI7XWb23VsUjSkVpjQQhWZg5wJJ7UHY/v1jPth8dV45n2w7rj8d3qjycVT078/GwAAIB8Fosn9fjOg2MeOBxNNJHW5pcPKhbPTRAmBEvqicT1y9ffHXcAHvRM+2H98o131R1hNBgAAJzZOvviemjHPkdrbty+T505+ql6wYfgVCqtaNLqmz9/1ZF639z8qmJJq1SK0WAAAHDmslanXDs1Xvu7IsrV7r0FvztETzyhra8ccnQof+srh/QHi2drWjjoSE0gG7F48vh30T2RpCKJlMJ+r0rDmX/ulcUBBQMF/08fADBBvVF3pi30xnIzHaLgvxL2xVL6yQtvOVrzJy+8peUXz9S0sKNlgdPqiSTUHc3MzxrLKT1lIZ9Kw/5J6BQAcCaIJFKu1I26VHe4gg/B6bQ7Q/npqXcQH6awsZ7Ss78ronue3KPv/eJ110/pAQCc2cJ+ryt1Qz536g5X8HOC+1wacu/L0cpGYPCUntsf231SAPZ5jIoCXvk8J57NPnhKz9pHd6mjO5rLdgEAZ4iSkDtjqW7VHa7gR4JdG8qP52YoH4Vt+Ck9Xo9RU12VPnHxTNVMCyueTCueTCvg8yjg8+jgexFt3fW2nmk/rFTaTtopPQCAqc+YzDQ7J3+iXlsRljGjX+eEgh8JDvrc+SMIuFQXGDT8lJ6VC2fpZ39yuZZfPPP432srKWWtBmfnBH0eLb94pn72J5dr5cJZkibnlB4AwNRXWRzQmsVzHK1545I5qirNzcYCBT8SPNWH8lG4Bk/pKQ54dc8NCxX0GckY7X23Tz976cApF8Z98tLZOmdGsVYunKlrLjpbf/3Iy1q/tVVL51WpJMRCOQDA2AQDPq1aVKPv/eJ1R3bZCvk9WrmwRgHmBOeGkVFthbPbONRWhGWUo7F8FKTBU3q8xugHNy3W9CK/3urq16fuf17fbX79eAAePid4f1dE321+XZ+6/3m91dWv6UV+/eCmxfIak9NTegAAZ4aykE/rltc7Umvd8nqVh3M3iFjww5Uhv9ENl87Wfc2vO1bz998/27UVk4D0u1N6/uYPFins9+q+5tf07J5OeT1G11xUfXxOcCyZVjSRUsjvVXDYnOD1W9q0dF6lvtJ0of7mDxbpridade3CWZrNHsIAgDEqDfvVVFet5vbfTc8bj2XzK9VUX53Tn0gW/Fe7tJVWLJyl7z/3G8eG8pc3zFI6V8edoCBZK11SO121FWHd++QePbunUysXztLnrpirZ1/r1Hee2nPa6RB/uvR8/cuv3tTmlw9Jkm69Zp4WzZ6Ws1N6AABnjurykDasbtDaTbvGFYSXza+clAXaxk7Br3qNjY22paXFkVpvH4tIsnrilXe0fkvbhOutW1GnTyw4WzJGM8s5LQPuaDvULb9Xeu71d/W3T72me25YqHe6I7r3yT1j+mYu5Pfo1mvm6eyysP76kZf11Y9eqI9cMEPJtFQ3sywH/wcAgDPNWPesHxTyezJ71tdXuxaAjTEvWmsbR3qt4EeCvR4plpCuOH+Gls6r1LN7xj+Uv3Repa54XyZIBH3MCYZ7fN7MIrh/3PaGHvhso+7/z71Z/d2NJtLHp0M88NlG/fnGl3TlhVXye6feN8UAgPxQXR7SqkWztHRelTa/fFAbt5/69NIbl8zRykU1Kg/5Jm1RdsGPBB96r1+ReErJtFUskdbfDsytzNbSeZX6atOFCvo98nmNwn6vZk0rcqRHYLi334vopy379b6qUv37i/sn/M3b77+/Vr/p7NHvv79WMznvO29FYgkd6c9sZdcTSSqSSCns96p0YCHJWUV+hYPs8AFg8g3er6yVemPJ4+tTSoI+GZPZXi2YgzUojASfRmVxUM0HDmvuWUXyeY2++JHz9OELZmT9Y+X6mWXyeY3S1uq1jj411VXnoHsUqmTaqqs/rne6IxMKwJL07J5OffiCGXq3L64k533npaP9cfXHUnp850E9tOPUIytrFs/RqkU1Kgp6Nb0oMAmdAih0PZGEuqPJE+5XJQGvphcHdLQvrt546oT7VVnIp9IwI8Fj5uRIsCQdfC+iVw8e08zykHqiSSVSaZUXBfTcnsN65DT7rd5w6WxdOa9Kx/rj8ns9Kg359PaxqC6qKVcNo2lw0b6uPnX1xvWpB15wbEHnw1+4TBUlAc2pKHagQzjlnWNRPTOOOXZX1VXr7HJOAQSQO+OeE1xXrWqX7leMBI9ietiv9/rjKhv4TiSeSstIuqCqRLd/ok5nlQSVSKUVTaQV8nvk93p0pDemtLUyA9f7vR71xVN6rz+u6UX8OBLusmnp2dc6HQnAUmaO8HOvdeq6S2ocqQdndHRH9bVHs1ttHU2kdftju9Xc3sFx2ABypqM7qrVT7H5V8IdlSFJR0Kel86r0o1//VkcH5ttZScnU70bJjSS/58QjMBKp3x1He7Q/oR/9+rdaOq9KReyzCpelrNXPXjrgaM1HXjqgNNMh8sY7x6Lj3m5IyhyHvXbTLnV0Rx3uDABO1DFF71eE4AFVZSF9a+UCPfLSfm3eeUgjbZg6Yj6wVpt3HtIjL+3Xt1YuUBWjLsgBn9eMOE1nIvZ3ReT1sqtJPjjaH9czbaffeH74aYAj2dbeqebWDr3XH3ejTQBQTySh5lHuV2MxeL/qjSYc6mx0DFkOUVUW0t2rG9Tc1qFP/+C/dMX5M7S8YeaI18aSaW3Z9bZ+/Zt3dfsn6tRUV00ARs70x1Lu1I27UxfZ6Y+ltH5r6wnPeT1GTXVVYzoNMDXkO/b1W1u1dF6V2KwGgBu6o8mT7lfjNXi/ytWWaYTgYarKQlrRMFNXXpjZ427w5C2fxyjg8yieTCuZtsf3uPvmyotUGvSqLMxKbORONOnMXODhYg7NMcb4RWIJPb7z4AnzvUc6DXCke9JIpwFGE2ltfvmgbrr8HLZPA+CoWDx50v1qIgbvV5/74NycbJ9GCB7mcHdUbW93q7wooKUXVuoTF8+Ux5iT9rhLW6v+aFKdPTG90RFX3cwyRoKRM0V+ryt1wwF36mLsjvQn9NCOfZKk4oD3+GmAn/7Bf+lD75uhv/roPNVMCyueTCueTCvg8ygwZCT4gV/u1VevvlDXXHS2/vqRl9UXT2nj9n26duEszSYEA3BQZ1/8+P3KKcfvV4Tg3OrsjuqNw71KpDLf0bx+uFcBn0czSoJKJNNKpqyi8ZT6Ykm92xtTLJHWOTOKlUil9cbhXhlJlQRh5MDg4QiO1w1xS5hs1mbmZxcHvMdPAywL+fWvn/+A9nX1K+DLLOWwyiyQHJz4EPR5tPzimcdHgn8ZfVcPfLZRX/hRi/Z3RUZa5gAAEzJ4v3JSLu9XfMUb0Nkd1TvDViXufbdPPzvNPsGfvHS2zpnxuz1VB99PEIbbfB6j2oqwozef2orwaRdZITd6o0lJ0j03LNSPf/2mfv/9tZlj2I0Z8z1p5cKZiiWtfvzrN3XPDQv1pY0vqTeWzPX/CoAz3OD9yvG6ObpfsTuEpP5YUl1DVk+/1dWvT93/vL7b/PopQ8b+roi+2/y6PnX/83qrq//48139cfXH+WIDd1UUBfTZy+c6WvOzl89VRXHQ0ZrIXiSR0sqFs3SkL6qbrjhX04v847onTS/y66YrztWRvqiubZipaIJFjwCcFXHpvpKr+xUhWFJPLKm0tUpb6f5f7tX6LW1jnuQdTaS1fkub7v/lXqWtlLZWPS59ZwQM8no9WtEwSyG/M/+EQ/5MPS8jwZMu7Pfqc1fM1dllYYX93gndk8J+r84uC+vzHzpXIR/zvQE4K+zS+pRc3a8KPgQnEinFk2mlrXRf82t6ds/49rl7dk+n7mt+TWkrJZJpJRh1gcsqigNav2qBI7XWr1qgimJ2OMkHFSV+7T/ar5rpYUfuSTXTwzpwtF8VJSyKA+CsEpfWkbhVd7iCD8HvRTPTIF7Ye2TcX2wGPbunUy/sPSI7pC7gloDPo6vqqnV1XfWE6lxdV62muurjC64wuRIpq/qZZY7ek+pmlSmRYmUcAGcZk1mP4KTairBMjn4oWfBf9awyB1/c++QeR+rd++QexZJpVmIjJyqKA9rwyYvHHYSvrqvWhk9erOmMAueNoM8jK+PoPclaoyDf5ABwWGVxQGsWz3G05o1L5qiqNDfrUwr+rmittHXXIUc3en7ilUMiAyNXzioJ6u4bGnTvDQ1jniMc8nt07w0NuueGBp1VwmK4fJJKW1fuSckRz30HgPELBnxatajG0fUpKxfWKMCc4NyIJ60eeemAozX//cUDiif5goPcqSgOaNWiGj37V8v0jeV1p/zxVG1FWOtW1OnZv1qmVYtqGAHOQ4mUO/ekJNMhALigLOTTuuX1jtRat7xe5S7tgz+Sgt8n2Frr0kbPfMFBbgV8Hp1dHtLNH5yrVYtmKZm26o0mFUumFfR5VBLyyecxqigOsgtEHrNy6Z7Ez6cAuKA07FdTXbWa2zu0rX386xiWza9UU321SkK5W8Rb8CHYrQ2Ze2PsDoHJ4fV6VFk6cGBL+eT2guy5t/k89yQA7qguD2nD6gat3bRrXEF42fxKbVjdoOocHzZW8CE4lnRm3t1w8SRfcDA5Uqm0uvrjSqYze1anUil5vV6VDo4EFwXk9Rb8TKi85do9iW0bAbiouiykDdc3qLmtQ+u3to5pXUPI79G65fVqqq/OeQCWCMHubfTsUl3gVOLJtLr64jp0tF9FIZ/Cfq8SybQiibTCfqN4Mq1jiZT2HelXzfQiVRQH2BYtD3FPAjBVVZeHtGrRLC2dV6XNLx/Uxu37TnnM+41L5mjlohqVh3w5nQIxVMGH4OKgO38EbtUFRtLVF9eh9/pVHg7ohd926aEdp77xrFk8R9eWhfRaR7dmTSvikIw8wz0JwFRWEvKrJOTX5z44V9cunCVrM1NPo4mUQn6vSoI+GSNVlQZztgvEqRT8XdEzsNGzkwtRaivCYt0RcuVIb0w90aRe3n9s1B9B7e+K6J4n9+h7v3hd65bXqyTol7WWbdLyjBv3JADIpWDAp9mB/I6ZBf+zUJ/X6DOXzXW05v+4bK78zLlEDnT1xRVNpPWtLa/q9sd2j3lv2Wgirdsf261vbXlV0URaR/s44TBfBHxGf/SBcxyt+ZnLzuGwDAAYpuDvismU1dV1VY5u9HxVXZUSaXcWtwCD4sm0+uNJfePxV8a9Lc229k594/FX1BdPKu7SgixkJ5W2Wjbf2XvS0nlVHJYBAMMUfAiuKgmqvaNH31p5kSP1vrXyIu3p6FFVae5XOaKw9ETiem5P54T2ZZQyQfi5PZ3qjjAanA+SKas33+3THSucuSf9rxUX6c13+5TkG3MAOEHBh2C/36uG2dM0oySoprqqCdVqqqvSjJKgGmZPYzoEXJVKpRVJprV+a6sj9dZvbVU0mVYqRVCabEf64jq/qkQzSgK6av7E7klXza/SWSUBnV9Voi6mvADACUhqkqaH/Xq3N6ZbPnLeuINwU12VbvnIeTrSG9P0osnZ6gOFoyee0Oadh8Y8B3g00URaP3/5kHriCUfqYfyCPo/+rvl1dUcT+sJHzht3EL5qfpW+8JHz1BNN6LtPv6YA35gDwAm4K0oqCvq0bF6VHvzVb3X9JbN113ULxjwfL+T36K7rFuj6S2brwV/9VkvnVakoz1dDYurrjab00I59jtbcuH2feqMcqDDZSkJ+bX75kMpDfv3k+Te1+tLZunPlRVndk+5ceZFWXzpbP3n+TZWF/Pr5rrcnbR9OAMhXpLUBVWUhfWvlAt22aZdKAj49fMvlev4374660fPl58/QD365V73xpO5e3aCqSTjxBIXHWjm6hZaUqWdZOzXpBrdt/PK/7dSDNy/W/f+5V2G/Vw/fcpn+7+vv6t9a9p/ynvSHjbX60AUz9INf/laRREq3fOQ83fzgDrZtBIAREIKHqCoL6e7VDXq6rUOf/ucXdMX5M/RXH52nWdPCSqTSiifTCvg88ns9OvReRFt2va3/d9sbuv0TdWqqqyYAI2d6ou5MW+iNJV2pi7ErCnh1w6WzdV/z67r5wR2654aFeq8/rk//83+ddE+KJdIK+k+8J33/ud/o6x+v07SigG5+cIf64il98f2zVRzgxDgAGIoQPExVWUjXX1KTOfJv50F956k92t8Vkc9jFPB5FE+mlUzb4yPB31p5kaYV+ZkCgZxyai7wyXWZDjHZykN+rVg4S99/7jfqi6f0pY0v6dqGmfrXP75Mz//m3VHvSV9a9j794Jd79fNdb0vKTI9Y3jBLZWFOBgSAoUhuIygK+FQU8OmPrzhXqxbNUtpKPdHfHflXGvLJY6TK0hC7QGBShP3ujOqFJvkIS0her0dlQZ9uvWae1m9pkyT9fNfbemL3O7pqftWoP536zlOvKTVkT+Bbr5mnsqBPXuZDAMAJCMGn4fd7NWta0WS3AZykJOTOP1236iI75UUBXfG+GVo6r1LP7snsA51KWz3V2qGnWjsk6aSR4JEsnVepD71vhsqLGAUGgOEYxgSmqNqKcF7Xw/gFfB5VlYb01aYLtXRe5YjXJNNW/fHUaQPwV5suVFVpSAGOTAaAk3BnBKYgj5HWLJ7jaM0bl8xhB4E8UlEcUM30sL74kfO0bkVdVlukrVtRpy9+5DzVTA9rejGjwAAwEn72CUxBPdGkVi6ape/94nVHFsmF/B5du3CWeqLsDpFPzioJap4xSqetHr7lcj2357AeeenAKbdIu+HS2bpyXpX6ognNP7uMAAwAp2HsFNwYtLGx0ba0tEx2G8Ck2d/Vr6db31HQ59Xtj+2ecL27rlugaCKlj150tmormAefb+LJtLr64np5/1FZZcJxIpVWNJFWaGCLtCO9MXmM1DB7uiqKA0yBAABJxpgXrbWNI73GSDAwBXmM9OCv39SDNy3WsvmV2tbeOe5ay+ZX6gPnVejmH+7Qxxac7WCXcErA59HZ5SFVllSrqz+uZNqqN5pUIpWW3+tRScinuWcVqaI4yC4QADBGhGBgCookUvrMZXO15v4XtOlPr9Ad2j2uILxsfqXuXLlAq//xV7rlI+crwj7Bec3r9aiydOBQnvLJ7QUApjp+XgZMQbFkWlfVVaknltTqf/yVvv7xOt113YKsFk/ddd0Cff3jdVr9j79STyyp36urUjzpziEcAADkG0IwMAWVhnz6u+bX9c2VF6mzN66r7/tPRRMpPf2VK3Xbx+adcruz2oqwbvvYPD39lSsVTaR09X3/qc7euL618iJ99+nX2CcYAFAw+IoHTEEeY/Tf+4/q2oaZaqqrUnPbYa3f2qa7n9yjv/i99+mfPvN+FQV86osljy+eKg761B9P6hdth3XV3z53fNS3qa5KFUUB7TzwnjyG+aQAgMJACAamoKDP6IZLZ+vL/7ZTD968WJLU3HZY8WRa33nqNX3nqdckSSFfZtFUbzSp6AhTHZrqqnTLR87TzQ/u0BevPE8hdhQAABQIvuIBU9C0UEDLG2YpZa1ufnCHrr9k9ohzgqPJtN7tjZ8UgAfnBF9/yWzd/OAOpazV8otncbwuAKBguB6CjTEfM8bsMca8YYxZO8Lrc4wx24wx/22M2WWM+YTbPQFTnd/vVWnIp1uvmae+eEpf2viSXth7RA/fcvmY5gQ/fMvlemHvEX1p40vqi6d06zXzVBLyye/l+2IAQGFwdTqEMcYr6R8kXS3pgKQdxpjN1trWIZd9Q9JPrbXfN8bUS3pC0lw3+wLOBKVBnz54/gwtnVepZ/d06ue73tYTu9/RVfOr9FcfnadZ08JKpNKKJ9MK+DIHKhx6L6Itu97Wd556Tal05qCcpfMq9cHzZ6iURXEAgALi9le9JZLesNbulSRjzMOSVkkaGoKtpLKB35dLOuRyT8AZoSjo04zigL7SdKEk6dk9nUqlrZ5q7dBTrR2SJJ/HKODzKJ5MK5k++XTIpfMq9ZWmCzWjOKCiACEYAFA43P6qVyNp/5DHByR9YNg135T0lDHmzyUVS2pyuSfgjFFZljk44ZYPn6cPXzBD9z65R9HE7+b/JtNWyfjJB2CE/B7des081Z1dplnloeN1AAAoFPkw9LNG0g+ttX9jjLlc0k+MMQustSes5DHG3CLpFkmaM2fOJLQJ5KfKspCspEQqrYdvuVzP7TmsR146oP1dkZOura0I64ZLZ+vKeVU61h/X+6pKCMAAgILkdgg+KKl2yOPZA88N9XlJH5Mka+3zxpiQpBmSDg+9yFp7v6T7JamxsfHkn+sCBayqLKSSkE9H+xO6oKpEt3+iTmeVBJVIpY/vE+z3enSkN6a0taoqDerC6hKmQAAACpbbXwF3SLrAGHOuMuH3U5JuHHbNPklXSfqhMaZOUkhSp8t9AWecooBPRQGfqooD6uyLKW2lnmhS8WRKAV9mN4maaSFVlobYBQIAUPBcDcHW2qQx5s8kPSnJK+lfrLWvGmPulNRird0s6X9KesAY8xVlFsndZK1lpBcYJ7/fq1nTiia7DQAA8prrPwu11j6hzLZnQ5+7Y8jvWyVd4XYfAAAAwCB+JgoAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHB8k90AAGBsUqm0uvrjSqateqJJxRIpBf1elYZ88nmMKooC8noZ2wCAsSAEA0CeiyfT6uqLa8uuQ/rR829qf1fkpGtqK8L67OVztaJhliqKAwr4CMMAcDrGWjvZPWStsbHRtrS0THYbAOC6rr64nmnr0LrHdyuaSI96fcjv0fpVC3RVXX5UVZoAACAASURBVLUqigM56BAA8pcx5kVrbeNIrzFUAAB56khvTLc9sku3PrJrTAFYkqKJtG59ZJdue2SXjvTGXO4QAKYuQjAA5KGuvrjW/uwVPd3WMa73P93WobU/e0VH++IOdwYAZwZCMADkmXgyrWfaOsYdgAc93dah5rYOxZNjG0UGgEJCCAaAPNPVF9e6x3c7Umvd47vVxWgwAJyEEAwAeSSVSmvLrkNjngM8mmgiUy+VYjQYAIYiBANAHunqj+tHz7/paM0fPf+muvoZDQaAoQjBAJBHkmk74j7AE7G/K6JkeupthwkAbiIEA0Ae6YkmXanb61JdAJiqODEOAPJILJFypy47RADIoVg8qc6BRbk9kaQiiZTCfq9Kw5noWVkcUDAwuTGUEAwAeSTo97pSl2OUAeRCTySh7mhSj+88qId27DvlMe9rFs/RqkU1Kgv5VBr2T0KnhGAAyCulIXduy27VBYBBHceiam7r0Pqtrafd4WZ/V0T3PLlH3/vF61q3vF5NddWqLg/lsNMMhgYAII/4PEa1FWFHa9ZWhOXzGEdrAsBQHd1RrX10l25/bHdWx7zf/thurX10lzq6oy53eDJCMADkkYqigD57+VxHa3728rmqKA46WhMABnUci2rtpl3a1t45rvdva+/U2k25D8KEYADII16vRysaZinkd+b2HPJn6nkZCQbggp5IQs1tHeMOwIO2tXequbVDvdGEQ52NjhAMAHmmojig9asWOFJr/aoFqigOOFILAIbrjia1fmurI7XWb23VsUjutnMkBANAngn4PLqqrlpX11VPqM7VddVqqqtmZwgArojFM7tAOHnM++aXDyoWz00Q5s4IAHmoojigDZ+8eNxB+Oq6am345MWazigwAJd09sX10I59jtbcuH3f8f2F3UYIBoA8dVZJUHff0KB7b2gY8xzhkN+je29o0D03NOisEhbDAXCPtXLlmHebo1Pe2TgSAPJYRXFAqxbV6MMXVGrLrkP60fNvnnLz+Zs+OFfLL56liuIAUyAAuM6t49h7Y7mZDkEIBoA8F/B5dHZ5SDd/cK5WLZqlZNqqN5pULJlW0OdRScgnn8eoojjILhAAcibi0jHvUZfqDkcIBoApwuv1qLJ04FSl8sntBQDCLh3zHvK5U3c4fl4GAACArJW4dBy7W3WHIwQDAAAga8bIlWPeTY5mdRGCAQAAkLXK4oDWLJ7jaM0bl8xRVWludrYhBAMAACBrwYBPqxbVOHrM+8qFNQowJxgAAAD5rCzk07rl9Y7UWre8XuXh3O3ZQAgGAADAuJSG/Wqqq9ay+ZUTqrNsfqWa6qtVEvI71NnoCMEAAAAYt+rykDasbhh3EF42v1IbVjeouizkcGenRwgGAADAhFSXhbTh+gbddd2Ck+YIlwS8qp0eVkngxLm+Ib9Hd123YFICsMRhGQAAAHBAdXlIqxbN0tJ5VeqNJRTye+U1Rt3RhKKJtEJ+j8pCfqWsVTSeUknYr/KQL6dTIIYiBAMAAMAR1mZ+fabtsB7asU/7uyInXVNbEdaaxXO0alHN8esng7GT+dHHqbGx0ba0tEx2GwAAABjQcSyq5rYOrd/aqmgiPer1Ib9H65bXq6muWtXl7kyHMMa8aK1tHOk1RoIBAAAwIR3dUa19dJe2tXeO+T3RRFq3P7Zbze0dLIwDAADA1NJxLKq1m7ILwENta+/U2k271NEddbiz0yMEAwAAYFx6Igk1t3WMOwAP2tbeqebWDvVGEw51NjpCMAAAAMalO5rU+q2tjtRav7VVxyJJR2qNBSEYAAAAWYvFk3p858ExLYIbi2girc0vH1QsnpsgTAgGAABA1jr74npoxz5Ha27cvk+dfXFHa54KIRgAAABZs1Yj7gM8Efu7IjnbOzjrEGyMeZ8x5pPGmHo3GgIAAED+6426M22hN5Yn0yGMMduMMTMGfv8ZSU9I+rikfzPG/LnL/QEAACAPRRIpV+pGXao73FgOy6i01r478Pu/kHS5tfaIMaZI0guS/t617gAAAJCXwn6vK3VDPnfqDjeW6RAJY0zNwO97JfUN/D4mKTddAgAAIK+UhNw5eNitusON5aN8RdJTxpifSXpV0i+MMU9K+pCkB91sDgAAAPnJGKm2Iuzo4rjairCMcazcaY06EmytfVbSByW9LSkh6UVJUUl/bq39jqvdAQAAIC9VFge0ZvEcR2veuGSOqkqDjtY8lTGNN1trj0n6/umuMcb8vbWWhXIAAAAFIBjwadWiGn3vF687cmBGyO/RyoU1CuTRnOCxusLBWgAAAMhzZSGf1i13ZtfcdcvrVR7OzXxgicMyAAAAME6lYb+a6qq1bH7lhOosm1+ppvpqlYT8DnU2OkIwAAAAxq26PKQNqxvGHYSXza/UhtUNqi4LOdzZ6TkZgnO0lg8AAAD5pLospA3XN+iu6xYo5B9bvAz5PbrrugWTEoClMS6MkyRjzMXW2ldOc8nfneJ9Hxt4zSvpn621G0a45g8kfVOSlfSytfbGsfYFAACAyVddHtKqRbO0dF6VNr98UBu37xtx+7TairBuXDJHKxfVqDzky+kUiKGMtXZsFxrzS0lBST+U9K8DO0aM9h6vpNckXS3pgKQdktZYa1uHXHOBpJ9K+j1r7VFjTJW19vDp6jY2NtqWlpYx9Q0AAIDcisWT6uyLy1qpN5ZUNJFSyO9VSdAnY6Sq0mBOdoEwxrxorW0c6bUxjwRbaz88EFg/J+lFY8x2SQ9aa58+zduWSHrDWrt3oJGHJa2S1Drkmi9I+gdr7dGBj3PaAAwAAID8Fgz4NDuQu50exiOrOcHW2tclfUPSbZKulPQ9Y0y7MWb1Kd5SI2n/kMcHBp4b6kJJFxpjfmWMeWFg+sRJjDG3GGNajDEtnZ2d2bQNAAAAnGDMIdgY02CMuU9Sm6Tfk3SttbZu4Pf3TaAHn6QLJC2VtEbSA8aYacMvstbeb61ttNY2VlZObBsOAAAAFLZsRoL/XtJLkhZaa79krX1Jkqy1h5QZHR7JQUm1Qx7PHnhuqAOSNltrE9ba3yozh/iCLPoCAAAAspJNCF4uaaO1NiJJxhiPMaZIkqy1PznFe3ZIusAYc64xJiDpU5I2D7vmMWVGgWWMmaHM9Ii9WfQFAAAAZCWbENwsKTzkcdHAc6dkrU1K+jNJTyozjeKn1tpXjTF3GmNWDlz2pKQjxphWSdsk3WqtPZJFXwAAAEBWslm2F7LW9g4+sNb2Do4En4619glJTwx77o4hv7eSvjrwHwAAAOC6bEaC+4wxlw4+MMa8X9LJOyADAAAAeS6bkeAvS/p3Y8whZY5IPlvSH7rSFQAAAOCibA7L2GGMmS9p3sBTe6y1CXfaAgAAANyT7VEeiyXNHXjfpcYYWWt/7HhXAAAAgIvGHIKNMT+RdL6knZJSA09bSYRgAAAATCnZjAQ3Sqof2M0BAAAAmLKy2R1itzKL4QAAAIApLZuR4BmSWo0x2yXFBp+01q489VsAAACA/JNNCP6mW00AAAAAuZTNFmnPGWPOkXSBtbZ54LQ4r3utAQAAAO4Y85xgY8wXJD0i6Z8GnqqR9JgbTQEAAABuymZh3JckXSGpW5Ksta9LqnKjKQAAAMBN2YTgmLU2PvjAGONTZp9gAAAAYErJZmHcc8aYr0sKG2OulvSnkn7uTlsAgOESiZQ6+2JKW6knmlQkkVLY71VpyCePkSqLg/L7WaoBAGORTQheK+nzkl6R9EVJT1hrH3ClKwDAcf2xpI5GEnp850E9tH2f9ndFTrqmtiKsNUvmaNWiGk0P+1UUzOb2DgCFx4z1ADhjzF9aa/9utOdyobGx0ba0tOT6wwJAzh3ujqq5rUN3bmlVNJEe9fqQ36M7VtSrqa5aVWWhHHQIAPnLGPOitbZxpNeymRP82RGeu2lcHQEARnW4O6rbNu3S1x/dPaYALEnRRFpff3S3btu0S4e7oy53CABT16gh2Bizxhjzc0nnGmM2D/lvm6Qu91sEgMIzGIC3tXeO6/3b2jsJwgBwGmOZNPZrSW8rc2zy3wx5vkfSLjeaAoBC1h9LqrmtY9wBeNC29k41t3XouktqVBRgjjAADDXqXdFa+5aktyRd7n47AICjkYTu3NLqSK07t7TqynlVhGAAGCabE+NWG2NeN8YcM8Z0G2N6jDHdbjYHAIUmkUjp8Z0HxzwHeDTRRFqbdx5UIpFypB4AnCmyWRh3j6SV1tpya22ZtbbUWlvmVmMAUIg6+2J6aPs+R2tu3L5PnX0xR2sCwFSXTQjusNa2udYJAEBpqxH3AZ6I/V0RpTnfEwBOkM0ksRZjzL9JekzS8SEFa+0mx7sCgALVE01OqboAMFVlE4LLJPVL+uiQ56wkQjAAOCTi0tzdKHOCAeAEYw7B1tqb3WwEACCF/V5X6oZcqgsAU1U2u0NcaIx5xhize+BxgzHmG+61BgCFpzTkzlZmbtUFgKkqm4VxD0j6mqSEJFlrd0n6lBtNAUCh8hiptiLsaM3airA8xtGSADDlZROCi6y124c9x0oLAHBQZXFQa5bMcbTmjUvmqLI05GhNAJjqsgnB7xpjzldmMZyMMTcoc5wyAMAhfr9XqxbVKOTP5vZ8aiG/RysX1cjvdaYeAJwpsrkrfknSP0mab4w5KOnLkv4fV7oCgAI2PezXHSvqHal1x4p6TS/yO1ILAM4kYw7B1tq91tomSZWS5ltrP2StfdO1zgCgQBUFfWqqq9ay+ZUTqrNsfqWa6qpVFGBRHAAMl83uEH9pjBncK/g+Y8xLxpiPjvY+AED2qspCunt1w7iD8LL5lbp7dYOqypgLDAAjyWY6xOestd3KHJZxlqTPSNrgSlcAgONB+NvXLxjzHOGQ36NvX7+AAAwAo8jmZ2SDG+x8QtKPrbWvGmPYdAcAXFRVFtJ1l9ToynlV2rzzoDZu36f9XZGTrqutCOvTS+Zo5aIaTSvyMwUCAEaRzV3yRWPMU5LOlfQ1Y0yppLQ7bQEABhUFfCoK+PTHV5yrVYtmKW2lnmhS0URKIb9XpSGfPEaqLA2xCwQAjFE2IfjzkhZJ2mut7TfGnCWJo5QBIEf8fq9mTSua7DYA4Iwwagg2xsy31rYrE4Al6TxmQQAAAGAqG8tI8Fcl3SLpb0Z4zUr6PUc7AgAAAFw2agi21t4y8Osy99sBAAAA3JfNPsG/P7AYTsaYbxhjNhljLnGvNQAAAMAd2SwjXmet7THGfEhSk6QfSPr/3GkLAAAAcE82ITg18OtySfdba7dKCjjfEgAAAOCubELwQWPMP0n6Q0lPGGOCWb4fAAAAyAvZhNg/kPSkpGuste9JqpB0qytdAQAAAC4acwi21vZLelxSnzFmjiS/pHa3GgMAAADcMuYT44wxfy7pf0nq0O+OS7aSGlzoCwAAAHBNNscm/6WkedbaI241AwAAAORCNnOC90s65lYjAAAAQK5kMxK8V9KzxpitkmKDT1pr/9bxrgAAAAAXZROC9w38FxD7AwMAAGAKG3MIttZ+S5KMMSUDj3vdagoAAABw05jnBBtjFhhj/lvSq5JeNca8aIy5yL3WAAAAAHdkszDufklftdaeY609R9L/lPSAO20BAAAA7skmBBdba7cNPrDWPiup2PGOAAAAAJdltTuEMWadpJ8MPP4jZXaMAAAAAKaUbEaCPyepUtImST+TNGPgOQAAAGBKyWZ3iKOS/sLFXgAAAICcyGZ3iKeNMdOGPJ5ujHnSnbYAAAAA92QzHWKGtfa9wQcDI8NVzrcEAAAAuCubEJw2xswZfGCMOUeSdb4lAAAAwF3Z7A5xu6T/a4x5TpKR9GFJt7jSFQAAAOCibBbG/Ycx5lJJlw089WVr7buDrxtjLrLWvup0gwAAAIDTshkJ1kDo3XKKl38i6dIJdwQAAAC4LJs5waMxDtYCAAAAXONkCGaRHAAAAKYEJ0MwAAAAMCU4GYLjDtYCAAAAXJPVwjhjTIOkuUPfZ63dNPDrZad4GwAAAJBXxhyCjTH/IqlB0quS0gNPW0mbXOgLAAAAcE02I8GXWWvrXesEAAAAyJFs5gQ/b4whBAMAAGDKy2Yk+MfKBOF3JMWU2RfYWmsbXOkMAAAAcEk2I8E/kPQZSR+TdK2kFQO/npYx5mPGmD3GmDeMMWtPc90njTHWGNOYRU8AAABA1rIZCe601m7OprgxxivpHyRdLemApB3GmM3W2tZh15VK+ktJ/5VNfQAAAGA8sgnB/22M2Sjp58pMh5D0uy3STmGJpDestXslyRjzsKRVklqHXbde0t2Sbs2iHwAAAGBcspkOEVYm/H5UmWkQg1MiTqdG0v4hjw8MPHecMeZSSbXW2q2nK2SMucUY02KMaens7MyibQAAAOBEYx4Jttbe7PQHN8Z4JP2tpJvG8PHvl3S/JDU2NlqnewEAAEDhyOawjJCkz0u6SFJo8Hlr7edO87aDkmqHPJ498NygUkkLJD1rjJGksyVtNsastNa2jLU3AAAAIBvZTIf4iTIh9RpJzykTaHtGec8OSRcYY841xgQkfUrS8cV11tpj1toZ1tq51tq5kl6QRAAGAACAq7IJwe+z1q6T1Get/ZGk5ZI+cLo3WGuTkv5M0pOS2iT91Fr7qjHmTmPMyvE2DQAAAExENrtDJAZ+fc8Ys0DSO5KqRnuTtfYJSU8Me+6OU1y7NIt+AAAAgHHJJgTfb4yZLmmdMlMaSiSNGGYBAACAfJbN7hD/PPDb5ySd5047AAAAgPvGPCfYGFNtjPmBMeb/DDyuN8Z83r3WAAAAAHdkszDuh8oscJs18Pg1SV92uiEAAADAbdmE4BnW2p9KSkvHd35IudIVAAAA4KJsQnCfMeYsSVaSjDGXSTrmSlcAAACAi7LZHeKryuwKcZ4x5leSKiXd4EpXAAAAgIuyCcGtkh6V1K/MSXGPKTMvGAAAAJhSspkO8WNJ8yV9W9LfS7pQmaOUAQAAgCklm5HgBdba+iGPtxljWp1uCAAAAHBbNiPBLw0shpMkGWM+IKnF+ZYAAAAAd406EmyMeUWZHSH8kn5tjNk38PgcSe3utgcAAAA4byzTIVa43gUAAACQQ6OGYGvtW7loBAAAAMiVbOYEAwAAAGcEQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHAIwQAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcAjBAAAAKDiEYAAAABQc32Q3kM8SiZQ6+2JKW6knmlQkkVLY71VpyCePkSqLg/L7vZPdJgAAQF6JxZPq7ItLknoiQzJUOBM9K4sDCgYmN4YSgkfQH0vqaCShx3ce1EPb92l/V+Ska2orwlqzZI5WLarR9LBfRUH+KAEAQGHriSTUHU1mMtSO02SoxZkMVRbyqTTsn4ROJWOtnZQPPBGNjY22paXFldqHu6NqbuvQnVtaFU2kR70+5PfojhX1aqqrVlVZyJWeAAAA8l3HsUyGWr917Blq3fJMhqoudydDGWNetNY2jvgaIfh3DndHddumXdrW3pn1e5fNr9TdqxsIwgAAoOB0dEe1dgIZasPqBlW7kKFOF4JZGDdgIgFYkra1d+q2Tbt0uDvqcGcAAAD5q+PY+AOwlMlQazftUkeOMxQhWJk5wM1tHeP+5A3a1t6p5rYO9ceTDnUGAACQv3oiCecyVGuHeqMJhzobHSFY0tFIQnduaXWk1p1bWnW0P3efQAAAgMnSHU1q/VZnMtT6ra06FsndQGLBh+BEIqXHdx4c0wTusYgm0tq886ASiZQj9QAAAPJRLJ50PkO9fFCxHP1EveBDcGdfTA9t3+dozY3b96mzL+ZoTQAAgHzS2RfXQzvcyFBxR2ueSsGH4LTViHvYTcT+rojSU2/TDQAAgDGzLmWoXG1cVvAhuCfqzpC7W3UBAADyQa9LWac3xnSInIi4NHc3ypxgAABwBpvqGargQ3DY73WlbsilugAAAPnAtQzly02GKvgQXBryTam6AAAA+aDEpazjVt3hCj4Ee4xUWxF2tGZtRVge42hJAACAvGJcylAmRxmq4ENwZXFQa5bMcbTmjUvmqLLU+fOvAQAA8kVlcUBrFjufoapKg47WPJWCD8F+v1erFtUo5HfmjyLk92jlohr5vQX/RwsAAM5gwYDP+Qy1sEYB5gTnzvSwX3esqHek1h0r6jW9yO9ILQAAgHxWFvJp3XJnMtS65fUqD+duTRUhWFJR0Kemumotm185oTrL5leqqa5aRQEWxQEAgDNfadjvXIaqr1ZJKHcDiYTgAVVlId29umHcn8Rl8yt19+oGVZUxFxgAABSO6vKQNkwwQ21Y3aDqHGcoY3N1Np2DGhsbbUtLiyu1D3dH1dzWoTu3tCqaSI96fcjv0R0r6tVUV00ABgAABavjWCZDrd869gy1bnm9muqrXQvAxpgXrbWNI75GCD5Zfzypo/0Jbd55UBu37xvxXOzairBuXDJHqxbVaFqRnykQAACg4PVGEzoWSWrzy6NnqJWLalQe8rk6BeJ0IZjkNpKB7wvef850LZtfpZDfq75YUtFEWiG/R8VBn6KJlLojicylU+/7CAAAAMeVhPwqCfn1uQ/O1bULZ8laqTeWVDSRUsjvVUnQJ2OkqtJgznaBOBVC8DCnmg4R8nlUEvKpN5pUNDnkeaZDAAAAnCAY8Gl2nv+UPL+7y7HD3VHdtmmXtrV3nvRaNJlWtDd+8vOJtL7+6G493dbBwjgAAIApgt0hBpwuAI/FtvZO3bZplw53Rx3uDAAAAE4jBEvqjyXV3NYx7gA8aFt7p5rbOtQfTzrUGQAAANxACJZ0NJLQnVtaHal155ZWHe1POFILAAAA7ij4EJxIpPT4zoNj2s9uLKKJtDbvPKhEIuVIPQAAADiv4ENwZ19MD23f52jNjdv3qbMv5mhNAAAAOKfgQ3DaasSNnCdif1dEafYOBgAAyFsFH4J7ou4sYnOrLgAAACau4ENwxKW5u1HmBAMAAOStgg/BYb87R/aFXKoLAACAiXM9BBtjPmaM2WOMecMYs3aE179qjGk1xuwyxjxjjDnH7Z6GKg25c2ieW3UBAAAwca6GYGOMV9I/SPq4pHpJa4wx9cMu+29JjdbaBkmPSLrHzZ6G8xiptiLsaM3airA8xtGSAAAAcJDbI8FLJL1hrd1rrY1LeljSqqEXWGu3WWv7Bx6+IGm2yz2doLI4qDVL5jha88Ylc1RZGnK0JgAAAJzjdgiukbR/yOMDA8+dyucl/Z+RXjDG3GKMaTHGtHR2Tux446H8fq9WLapRyO/MH0XI79HKRTXyewt+ujUAAEDeypukZoz5I0mNku4d6XVr7f3W2kZrbWNlZaWjH3t62K87VgyfpTE+d6yo1/QivyO1AAAA4A63Q/BBSbVDHs8eeO4ExpgmSbdLWmmtzflRa0VBn5rqqrVs/sTC9bL5lWqqq1ZRgEVxAAAA+cztELxD0gXGmHONMQFJn5K0eegFxphLJP2TMgH4sMv9nFJVWUh3r24YdxBeNr9Sd69uUFUZc4EBAADynash2FqblPRnkp6U1Cbpp9baV40xdxpjVg5cdq+kEkn/bozZaYzZfIpyrhsMwt++fsGY5wiH/B59+/oFBGAAAIApxFhrJ7uHrDU2NtqWlhbX6vfHkzran9DmnQe1cfs+7e+KnHRNbUVYn14yRysX1WhakZ8pEAAAAHnGGPOitbZxpNdIbiMoCvhUFPDppsvP0bULZ8laqTeWVDSRUsjvVUnQJ2OkGcV+hQIsgkN+icWT6uyLS5J6IklFEimF/V6VhjP/3CuLAwryTduUFIkldKQ/IWnkz+1ZRX6Fg9yTAGAs+Eo4gp5IQt3RpB7feVAP7ciMBPs8RgGfR/FkWsm0VW1FWGsWz9GqRTUqC/lUGuYLDybXSH9vh+Pv7dT0Xn9cfbHUmD+3xUGvphUFJqFTAJg6mA4xTMexqJrbOrR+a6uiifSo14f8Hq1bXq+mumpVlzMnGJODv7dnrneORfXMOD63V9VV62w+twAK3OmmQxCCh+jojmrtpl3a1p79YRzL5ldqw+oGVbM4DjnG39szF59bAJiY04XgvDksY7J1HBv/FxtJ2tbeqbWbdqmjO+pwZ8Cp8ff2zPUOn1sAcBUhWJm5lM1tHeP+YjNoW3unmls71BtNONQZcGr8vT1zvdcf1zMOfm6P9ccd6gwAzhyEYEnd0aTWb211pNb6rf9/e/cfHMdd3nH880h3ujtZsvwjshIUmYQmQdaAY0A2tFAmJpoOwRk79dCCTQfKUOhPCrS0uO04ncaTGWf6Iy0DQ6GBJu0kBiZ1iRt3oLVxB6a0sR1wnEQ2JRPAjgcrin9IlnR3OklP/7i1rciSo0i7utu992vGY93u6nvf0fPs957b/e5urwbyY6G0BVwNeZtcw8XxUGM7VBwPpS0ASJKaL4KLo+Wr6WdzwclsFEoT2vPUKRVHKSgQHfI2ufLFUiSxzRc50g8Ak9V8Edw/PKpdh06E2uYjB09cuk8rEAXyNrnOjJQiie3F+wsDAMpqvgh217T33JyPk2fziuFNNxAj5G1yEVsAWBg1XwQPFaI5/TtU5LQyokPeJhexBYCFUfNFcL4UzQUjhYjaBSTyNsmILQAsjJovgnPp+kjazaaiaReQyNskI7YAsDBqvghuyqZi1S4gkbdJRmwBYGHUfBFsJnUsy4XaZseynMxCbRJ4GfI2uYgtACyMmi+CWxc1aMvalaG2uXXdSq1ozoTaJjAZeZtcyxvTkcS2tYnYAsBkNV8EZxpS2rSmXdl0OH+KbLpOG29tVwPz7xAh8ja5cpl0JLHNRDTXGADiquaLYElanE1p+4auUNravqFLLTnm3iF66BlWqgAAFKFJREFU5G1yLcrUhxrbpgwFMABMRREsqTmXVs+qNq3vbJ1XO+s7W9XT1aambDqkngEzI2+Ta0ljg24PMbYtjQ0h9QwAkoMiONDWktXOzavn/KGzvrNVOzevVtvibMg9A2ZG3ibXtcQWACJlHsNnaXZ3d/vhw4cjabtvoKB9x/q0Y2+vCqWJS8tTdaaGVJ1GxyY0NnH5b5ZN12n7hi71dLXxYYOKmSlvZ0LexsfpgYL2E1sAmBMze9Ldu6ddRxF8paFCSQP5MT39wnnJpGuaMiqOTahQGlc2Xa9Mqk4vDRXlLq3uWKKWbIpTyai4i3m756lTeuTgCZ08m79im45lOW1dt1Ib17STtzEyMDKqoeL4rGPb1FDPFAgAFZUvlnRmpCRJupAfU740rly6Xs3B9SfLG9PKZaL/DLpaEcyVMNOoM5NM+snZET38xE9n/MD5wFtfq9UdS8rbAxV28fvs+tev0HveeJ3qzDRUHLv05a0pk9KEuwqj45Jf3h7x8ZaVS7W+c4Wy6XoNF8dUKE0om67TokxKhdK4BkdKEnEFUEHnRkY1UhzXY0dOadehmb+0b1m7UpvWtKsxU6+lFfrSzpHgKV4cLJ9Wvufx2Z96vPvOLvWsatMKTj2iQmaaDtHUUK+lixp0bnhUQ6Pjl5ZfOmW+qk1tLeRtNZtpOkQ2VaembEpDhTEVxiYtD2J7+6o2XUtsASyguU7finK8YjrELL04WNBndh/VgeP9r/p313e26r7NqymEseD6BgvaNo+85eKp6kVsAcRFtY5XVyuCuTtEYD4FsCQdON6vz+w+qhcHCyH3DJhZ38DcBx2pnLfbdh9VH3lbdU4TWwAxEdfxiiJY0khxTPuO9c05eBcdON6vfcf6NDI6FlLPgJldyJfCy9vePg0VSiH1DPM1MDKq/SHGdjA/GlLPAODlzoU8Xp0fWbjxiiJY0rl8Sfc83htKW/c83qtzIxQTiN5gYUw79oaTtzv29mogz5e3ajFUHA81thcK46+8IQDMwUjI49VwceHGq5ovgkul8hWMs5nAPRuF0oT2HDmlUokPHUSnODoWft4+dUpFzmJUXKFYiiS2hSJfzgGEKx/ReJVfoPGq5ovg/uGidh08EWqbjxw8of7hYqhtApP1D49q16Eo8pbT5pX20kgpkti+xBkqACE7E9F4dWaBxquaL4InXNPew24+Tp7NayJ+N91AjHhEeRvDm8UkDrEFEBdxH69qvgi+UIjm9G9U7QKSNBRRfg0VydtKI7YA4iLu41XNF8H5iObuFpgTjAiRt8lFbAHERdzHq5ovgnPp+kjazUbULiBFmLcp8rbSiC2AuIj7eFXzRXBzNhWrdgFJaooov6JqF7NHbAHERdzHq5ovgutM6liWC7XNjmU51VmoTQIvYxHlrZG3FUdsAcRF3Mermi+CWxdltGXdylDb3LpupVqbw3/+NXBR66IGbVkbft6uaM6E2iZevWsa05HEtrWJ2AII1/KYj1c1XwSn0/XatKZd2XQ4f4psuk4b17QrXV/zf1pEKNOQCj9vb21XA/NGKy6bSUcS2wzXKQAIWS7m4xWVmqSlubTuvrMrlLbuvrNLSxvTobQFXM3ibErbN4STt9s3dKklx5zRatGUqQ81ts1ZCmAA0WgMebxalFm48YoiWFJjJqWeVW1a39k6r3bWd7aqZ1WbGhsoJhC95lw6vLztalNTli9v1aKlsUG3hxjbxbmGkHoGAC+3NOTxaknjwo1XFMGBFYuzum/z6jkHcX1nq+7bvForFjMXGAunrSWrnfPM252bV6uNvK061xJbADER1/HKPIbP0uzu7vbDhw9H0vaLgwXtO9anex7vVaE08YrbZ9N1uvvOLvWsaqMARsX0DZTzdsfe2eft9g1d6ulqo0iqcqcHCtpPbAHEQDWOV2b2pLt3T7uOIvhKI6NjOjdS0p4jp/TIwRPTPhe7Y1lOH1i3UhvXtGtJY5opEKi4oUJJA/kx7Xnqct42NdRr6aIGnRse1dDouDqW5bQ1yNuWbIopEDExmB/VhcL4y2I71eTYNmfqmQIBoCLOj4xquDj78WpRQ32kUyAogueoVBpX/3BREy5dKIypUBpXNl2v5mxKdSa1Nme5CwSqTr5Y0pmRkiTpQn5M+dK4cul6NQcXvi1vTCuXofiNo0KxpJdGSnKXhoqXx6SmTEpmUmtThrtAAKgKFz+LKj1eXa0I5vDlVaTT9XrNksZKdwOYlQv5kgYLY3rsyCntOjTzt+8ta1dq05p2Lc6m1JyjGI6TbCat6/kCAyAGcjEYrzgSDCTAnOcEr2pTWwvzRgEAycSRYCDB+gYL2vavR3XgeP+sf6dQmtCffeMZ7Tvexx0EAAA1iQmtQIz1DRS0bferK4AnO3C8X9t2H1XfYCHkngEAUN0ogoGYupAvad+xvjkXwBcdON6vfb19GiqUQuoZAADVjyIYiKnBwph27O0Npa0de3s1kB8LpS0AAOKAIhiIoeJo+S4Qs7kIbjYKpQnteeqUiqMUwgCA2kARDMRQ//Codh06EWqbjxw8of7h0VDbBACgWlEEAzHkrmnvAzwfJ8/mFcM7JgIAMCcUwUAMDRWimbYwVGQ6BACgNlAEAzGUL41H0m4honYBAKg2FMFADOUiet56NhX9c9wBAKgGFMFADDVlo3nYY1TtAgBQbSiCgRgykzqW5UJts2NZTmahNgkAQNWiCAZiqHVRg7asXRlqm1vXrdSK5kyobQIAUK0ogoEYyjSktGlNu7LpcHbhbLpOG29tVwNzggEANYIiGIipxdmUtm/oCqWt7Ru61JJjPjAAoHZQBAMx1ZxLq2dVm9Z3ts6rnfWdrerpalNTNh1SzwAAqH4UwUCMtbVktXPz6jkXwus7W7Vz82q1Lc6G3DMAAKobRTAQc22Ls9r5y6t1711vuGKOcM8trdq5qVM9t7y8SM6m63TvXW+gAAYA1Cxz90r34VXr7u72w4cPR/4++WJJZ0ZKkqQL+THlS+PKpevVHMydXN6YVi7DKWRUh6FCSQP5MS3J1ensyLjMpMF8SYXShLLpOi3OpeUuLWus1/nChFqyKaZAxAxjEoC4qJbxysyedPfu6dZxJcw0zo2MaqQ4rseOnNKuQyd08mz+im06luW0Ze1KbVrTrsZMvZY2NlSgp8BlpYnyF9qH/ufkrPL24vaofoxJAOIiTuMVR4KnOD1Q0P5jfdqxt1eF0sQrbp9N12n7hi7dvqpN17ZwWhmVQd4mF7EFEBfVOF5d7UgwRfAkfYMFbdt9VAeO97/q3+UCI1QKeZtcxBZAXFTreHW1IpgL4wKnB+YePEk6cLxf23YfVd9gIeSeATMjb5OL2AKIi7iOVxTBKs9f2X+sb87Bu+jA8X7t6+3T+ZHRkHoGzIy8TS5iCyAu4jxeUQRLGimOa8fe3lDa2rG3V8PF8VDaAq6GvE0uYgsgLuI8XtV8EZwvlvTYkVOzmsA9G4XShPY8dUr5YimU9oDpkLfJRWwBxEXcx6vIi2Aze7eZ/dDMnjOzbdOsz5jZ14L1T5jZDVH3abIzIyXtOnQi1DYfOXji0r3xgCiQt8lFbAHERdzHq0iLYDOrl/R5SXdI6pK0xcy6pmz2EUnn3P0mSfdLui/KPk3lrmnvYTcfJ8/mFcObbiBGyNvkIrYA4iLu41XUR4LXSXrO3Z9391FJX5W0aco2myQ9FPz8qKTbzcwi7tclQ4WxaNotRtMuIJG3SUZsAcRF3MerqIvgdkknJ71+IVg27TbuPiZpQNLyqQ2Z2cfM7LCZHe7vn98ViJPlS9FMwC5E1C4gkbdJRmwBxEXcx6vYXBjn7l9y9253725tbQ2t3Vy6PrS2JsumomkXkMjbJCO2AOIi7uNV1EXwKUkdk15fHyybdhszS0lqkXQm4n5d0pRNxapdQCJvk4zYAoiLuI9XURfBhyTdbGY3mlmDpPdL2jNlmz2SPhT8/F5J3/YFfJazmdSxLBdqmx3Lclq4Wc2oReRtchFbAHER9/Eq0iI4mOP7e5K+JemYpK+7+7Nmdo+ZbQw2+7Kk5Wb2nKQ/kHTFbdSitLwxrS1rV4ba5tZ1K9XalAm1TWAy8ja5iC2AuIj7eBX5nGB3/3d3v8Xdf87d7w2W3e3ue4KfC+7+K+5+k7uvc/fno+7TZLlMWpvWtCubDudPkU3XaeOt7cpENE8GkMjbJCO2AOIi7uNVbC6Mi1Jjpl7bN0y9ffHcbN/QpUUZPmwQPfI2uYgtgLiI83hFESxpaWODbl/VpvWd87vrxPrOVvV0tWlJY0NIPQNmRt4mF7EFEBdxHq8oggPXtmS1c/PqOQdxfWerdm5erbbF2ZB7BsyMvE0uYgsgLuI6XtkC3oghNN3d3X748OFI2j49UND+Y33asbdXhdLEK26fTddp+4Yu9XS18WGDiiFvk4vYAoiLahyvzOxJd++edh1F8JXOj4xquDiuPU+d0iMHT0z7XOyOZTltXbdSG9e0a1FDPacbUXHkbXIRWwBxUW3jFUXwHOWLJZ0ZKcm9/BzrQmlc2XS9mjIpmUmtTRmuuEbVIW+Ti9gCiItqGa+uVgTzCKGryGXSuj6TrnQ3gFeFvE0uYgsgLuIwXnFhHAAAAGoORTAAAABqDkUwAAAAag5FMAAAAGoORTAAAABqDkUwAAAAag5FMAAAAGoORTAAAABqTiyfGGdm/ZJ+GuFbXCPppQjbR2UR3+QitslGfJON+CZbpeL7WndvnW5FLIvgqJnZ4ZkesYf4I77JRWyTjfgmG/FNtmqML9MhAAAAUHMoggEAAFBzKIKn96VKdwCRIr7JRWyTjfgmG/FNtqqLL3OCAQAAUHM4EgwAAICaQxEMAACAmkMRPImZvdvMfmhmz5nZtkr3B/NjZh1mdsDMes3sWTP7RLB8mZn9p5n9KPh/aaX7irkzs3oz+4GZPR68vtHMngj246+ZWUOl+4i5MbMlZvaomR03s2Nm9vPsv8lhZp8KxuZnzGyXmWXZf+PLzL5iZi+a2TOTlk27v1rZZ4M4HzWzN1eizxTBATOrl/R5SXdI6pK0xcy6KtsrzNOYpD909y5Jb5P0u0FMt0na7+43S9ofvEZ8fULSsUmv75N0v7vfJOmcpI9UpFcIw99J+qa7d0q6VeU4s/8mgJm1S/p9Sd3u/gZJ9ZLeL/bfOHtQ0runLJtpf71D0s3Bv49J+sIC9fFlKIIvWyfpOXd/3t1HJX1V0qYK9wnz4O4/c/fvBz9fUPkDtF3luD4UbPaQpLsq00PMl5ldL2mDpAeC1ybpXZIeDTYhvjFlZi2S3inpy5Lk7qPufl7sv0mSkpQzs5SkRkk/E/tvbLn7dySdnbJ4pv11k6R/8rL/lbTEzK5bmJ5eRhF8Wbukk5NevxAsQwKY2Q2S3iTpCUlt7v6zYNVpSW0V6hbm728l/bGkieD1cknn3X0seM1+HF83SuqX9I/BdJcHzGyR2H8Twd1PSforSSdULn4HJD0p9t+kmWl/rYqaiyIYiWdmTZL+RdIn3X1w8jov3yOQ+wTGkJndKelFd3+y0n1BJFKS3izpC+7+JknDmjL1gf03voK5oZtU/rLzGkmLdOWpdCRINe6vFMGXnZLUMen19cEyxJiZpVUugB92993B4r6Lp12C/1+sVP8wL2+XtNHMfqLy9KV3qTyHdElwelViP46zFyS94O5PBK8fVbkoZv9Nhh5JP3b3fncvSdqt8j7N/pssM+2vVVFzUQRfdkjSzcGVqQ0qT9DfU+E+YR6C+aFflnTM3f9m0qo9kj4U/PwhSY8tdN8wf+7+J+5+vbvfoPL++m13/4CkA5LeG2xGfGPK3U9LOmlmrw8W3S6pV+y/SXFC0tvMrDEYqy/Gl/03WWbaX/dI+mBwl4i3SRqYNG1iwfDEuEnM7D0qzzGsl/QVd7+3wl3CPJjZOyR9V9LTujxn9E9Vnhf8dUkrJf1U0q+6+9TJ/IgRM7tN0qfd/U4ze53KR4aXSfqBpF9z92Il+4e5MbM1Kl/02CDpeUkfVvngDftvApjZX0h6n8p38vmBpN9QeV4o+28MmdkuSbdJukZSn6Q/l/QNTbO/Bl98PqfyFJgRSR9298ML3meKYAAAANQapkMAAACg5lAEAwAAoOZQBAMAAKDmUAQDAACg5lAEAwAAoOZQBAMAAKDmUAQDQAWY2UYz2/bKW17xezeY2TMR9Oc2M/uFSa8fNLP3Xu13ACDOUq+8CQAgbO6+R9X1VMrbJA1J+l6F+wEAC4IjwQAQsuBo7fHgaOr/mdnDZtZjZv9tZj8ys3Vm9utm9rlg+wfN7LNm9j0ze362R2DNrN7M/tLMDpnZUTP7zWD5bWb2X2b2aNCPh4MnNMnM3hMsezJ4z8fN7AZJvyXpU2Z2xMx+MXiLd07tk5ldZ2bfCbZ7ZtK2ABArFMEAEI2bJP21pM7g31ZJ75D0aZUf3z3VdcH6OyXtnOV7fETSgLuvlbRW0kfN7MZg3ZskfVJSl6TXSXq7mWUlfVHSHe7+FkmtkuTuP5H095Lud/c17v7dq/Rpq6RvufsaSbdKOjLLvgJAVWE6BABE48fu/rQkmdmzkva7u5vZ05JumGb7b7j7hKReM2ub5Xv8kqTVk44ct0i6WdKopIPu/kLw/keC9xyS9Ly7/zjYfpekj12l/en6dEjSV8wsHaynCAYQSxwJBoBoFCf9PDHp9YSmPwAxeXub5XuYpI8HR2/XuPuN7v4f07Q3PsN7vpIr+uTu35H0TkmnJD1oZh+cQ7sAUHEUwQAQX9+S9NvBUVmZ2S1mtugq2/9Q0uuCOcCS9L5J6y5Ian6lNzSz10rqc/d/kPSApDfPod8AUHFMhwCA+HpA5WkO3w8ufOuXdNdMG7t73sx+R9I3zWxY5akNF/2bpEfNbJOkj1/lPW+T9EdmVlJ5egVHggHEkrl7pfsAAFggZtbk7kNB0fx5ST9y9/sr3S8AWGhMhwCA2vLR4EK5Z1W+kO6LFe4PAFQER4IBoAqZ2Rsl/fOUxUV3f2sl+gMASUMRDAAAgJrDdAgAAADUHIpgAAAA1ByKYAAAANQcimAAAADUnP8HJJeUXFEO9rAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Rc5X3v/88zM3tmj662bElgWYoTLpaEEQoRbq4FB9OQ2Njg0J6YJCdt0vLraZLThnNS3BCTFpfUkJ6kTVdPT2iTNsmKnaaJwQbTEgyGpklaWyS2YiQbCCE2NsgCGes293l+f0gmsqzbSHtLM573ay0ve2b2fP3F2mx9tOe5GGutAAAAgGISmO8GAAAAgLlGCAYAAEDRIQQDAACg6BCCAQAAUHQIwQAAACg6ofluYCYWL15sly1bNt9tAAAAII899dRTr1hrq8d7rSBD8LJly9Te3j7fbQAAACCPGWN+OdFrDIcAAABA0SEEAwAAoOgQggEAAFB0CMEAAAAoOoRgAAAAFB1CMAAAAIoOIRgAAABFhxAMAACAolOQm2UAAAAgf8USKb06lJIk9cfSiqUyijpBlUeHo+eiEkfRiDOfLRKCAQAA4I1TQ0kNJTLaeeC4tu8/qmO9sXOOqa+KauNVDVrfWqeSSFALS8Lz0KlkrLXz8hfPRltbm2XbZAAAgPzx8um4Huvq1pbdnYqnslMe7zoBbV7TrGubanVBpetLT8aYp6y1beO9xp1gAAAAzEp3X1x/cn+H9h7umfZ74qms7njgkPYc7tbWDS2qrfAnCE+EiXEAAACYsZdPx7VpR24BeLS9h3u0aUeHuvviHnc2OUIwAAAAZuTUUFKPdXXPOACfsfdwj/Z0duu1oaRHnU2NEAwAAIAZGUpktGV3pye1tuzu1GAi40mt6SAEAwAAIGexREo7Dxyf1iS46Yinstp18LhiiZQn9abiawg2xnzNGHPSGHNogteNMebLxpjnjDEdxpgr/ewHAAAA3nh1KKXt+496WnPbvqOvry/sN7/vBP+TpOsnef29ki4Z+XWrpL/zuR8AAAB4wFqNuw7wbBzrjWmuVu/1NQRba/9dUu8kh6yX9A077D8lLTDGXOhnTwAAAJi9gXjan7oJf+qONd9jguskHRv1+MWR585hjLnVGNNujGnv6ZndDEQAAADMTizlzyS2uE91x5rvEDxt1tr7rLVt1tq26urq+W4HAACgqEWdoC913ZA/dcea7xB8XFL9qMdLR54DAABAHitz/dl42K+6Y813CN4l6b+PrBLxVkmnrbUvzXNPAAAAmIIxUn1V1NOa9VVRGeNpyQn5vUTadkk/lrTcGPOiMeZjxpjfN8b8/sghD0t6XtJzkv5e0h/42Q8AAAC8sajE0carGjytecvKBlWXRTytORFf7zdbazdO8bqV9HE/ewAAAID3ohFH61vr9OXHn/VkwwzXCWjdFXWK+DTWeKz5Hg4BAACAAlUSCWrzmmZPam1e06zSyNwEYIkQDAAAgBlaWBLWtU21WtU4u5W7VjVWa3VzrRaUhD3qbGqEYAAAAMzYBZWutm5omXEQXtVYra0bWlRb4Xrc2eQIwQAAAJiV2gpXf3FTi+6+cYVc5+x4WRYOqn5hVGXhs4c6uE5Ad9+4Yl4CsOTzxDgAAAAUhwsqXa1puVDXLK/RQCIl1wkqaIz64inFU1m5TkAVrqOMtYonMyqLOioNB+d0CMRohOBJpFIZ9QwmlLVSfzytWCqjqBNUuRtSwEjVpRE5czSDEQAAIN8FRxb5fazrpLbvP6pjvbFzjqmvimrjVQ1a31r3+vHzwQyvUlZY2trabHt7u2/1hxJpnYqltPPAcW3fN/wFDAWMwqGAkums0lk7/AVcOfwFXBh1VBLh5wkAAFC8uk/HtaerW1t2d05ryTTXCWjzmmatbqpVbaU/wyGMMU9Za9vGfY0QfLaTfXE92tWtzz/cpXdevFjvu/xC1S2IKjUSfkMBIycU0PHXYtrd8ZJ++PNX9Jn3Nem6plrVzMN4FgAAgPnW3RfXph0d2nu4J+f3+jkxjhA8TSf74rp9R4fKI44++s5lSqayqihxFHWCGhg1HKLMDSmWyuj0UFIRJ6iv/ccL6k+kdM+GFoIwAAAoKt2n49p0/8wC8Bl+BeHJQjCf4Y842RfX53Yd0s1X1qtugatFpRE9ePDElONZbrhiiT76jmU6/trw+/9s3QqCMAAAKAr9sZT2dHXPKgBL0t7DPdrT2a31rUtU5joedTc57gRreAzwgx0ndFF1qRaVufrRc6/kPJ7l7Rcv1qsDcT3fM6i1VyxRSZifLwAAwPnt+KmYrv3iE55tm/zYbdeobmHUg86GTXYnmHWCJZ2KpVRb4erCyhLd9dDTuuOBQ9P+YsZTWd3xwCHd9dDTurCyRDUVrk4NpXzuGAAAYH4lkmntPHDckwAsDWeqXQePK5FMe1JvKkUfglOpjDpefE0X15Tpszt/NuPb+XsP9+izO3+mi2vK1PHia0qlMh53CgAAkD96BpPavv+opzW37TuqnsGkpzUnUvQh+ORAQq1LK/XkkR5PxrM8eaRHrUsrdXIg4VGHAAAA+cdajTtvajaO9cY0VyN1iz4Eh4JGGStt2d3pSb0tuzuVscN1AQAAzlcDcX+GLQwkGA4xJ0JBo10HTng6nuXBgycIwQAA4LwW82noZ3yOhpQW/RIGsWTWl/EsN1yxRCr1tCwwLZlMVr1DSaWzVv3xtFLpjJzQ8HbfoYBRVUlYwWDR//wLAJilqBP0pa4b8qfuWEUfggt9PAtwRjKdVe9gUh3HXlNWVovLIkqks4qnMnKdoPpiKb0ykJCRdEX9QlWVhhUOEYYBADNT5voTI/2qO1bRh+D+uD/Lmc3VeBZAknoHk+o8cVplrqPOl/v0vZ+8qGO9MS1wQ6qpcHWyL67X4mnVV0X1/iuXqrYyqudO9qt5SaWqSsPz3T4AoAAZM7x5mJc3E+urojJzNKK06EOwV2OBz63LEmmYG68OJPRMd7+OdPfr7/b+XH/3oSv1/iuXyhipL5ZSPJWV6wRUEXVkrXTitSH97j/t1/9YdZGCAaNLa8u1qCwy3/8ZAIACU10a1sarGnTvI0c8q3nLygbVlM/N96SiD8GFPp4Fxa13MKnjp2L6yr8/rz+89hLt/MQ79eDBE/rWvoM61huTGwqozA1pIJ5WPJ1VfVVUH1z5Bu38xDt1sj+uv37sWd22+lIFjNFC7ggDAHIQCYe0vrVOX378Wc92jFt3RZ3CjAmeG4U+ngXFK5nO6mR/XP/SflR/seFyPXG4Rx/5x336/V9/k77y4beoNDwcfmOpjKJOUGVuSIPJtB7vOqn3fvnf9SfXN+kvNlyu//v4s/rQ25apNBJijDAAICcVbkib1zTrjgcOzbrW5jXNqozOXX4q+qRW6ONZULxODyXVefw1feLaS/WZHT/TOy5epN2ffJcePHhC/983nxr3nK6vimrjVQ3a/cl36dHOl/XZ+w/p8xsu1w+fPamqkrCqK9x5+C8BABSq8qij1U212nO4e1abjq1qrNbq5lqVuY6H3U2u6G/7lISD2nhVg6c1b1nZoLJw0f98AR9lMln1JdJ6+8XVuufhLm16b6MioaCu+9KTuveRIxP+UHesN6Z7Hzmi6770pCKhoDa9t1H3PNylt19crb5EWpmMP2PkAQDnr9pKV1s3tGhVY/WM3r+qsVpbN7Sodo5vxBhbgGt5tbW12fb2dk9qpVIZnRxI6NovPunZeJbHbrtaNRWuHNZihU96BxPqi6V04OhresuyKt2569CMfgJf1Vitu9at0E9+2avW+gUqjzqqKmWSHAAgd92n49rT1a0tuzunlalcJ6DNa5q1urnWtwBsjHnKWts23mtFn9IcJ6hwaPiL4IXNa5oVCQUIwPDVUDKjcCioFXWVMw7AkrT3cI/u3HVIl9VVygkFNZRkVRMAwMzUVrpa37pEj912jW6/frnqq6LjHldfFdXt1y/XY//rGq1vXTLnd4DP4DN7SaXhkK5eXq1VjdWzHs9y9fJqlUT4Z4W/yqNBPdc9qMMv9c/qnJWGg/Dqxlo1Xliui2vZ5hAAMHNlrqMy19FH375MN1yxRNYO751wZuOmskhIxkg15ZE5WwViIqQ1SSWRkIYSaf35+sv1Wf1sxh8r//n6yxUJGpUwHhg+G4hlVFPu6oP/8F+e1Nuyu1OPfupqDcQyqmRuHABgliLhkJbmeR7iM/sRiytcRYJGd669THffuEKuM71/GtcJ6O4bV+hzay9TJGi0mNn1mANuOKAHD57wbLOXeCqrhzpOyA1zSQAAFAe+442yuMJVaTiolqWVevRTV09rPMujn7paLUsrVRIOEoAxZ4YSWW3ff9TTmtv2HdVQgtUhAADFIb/vU8+DmgpXZW5Ip4ZSantDlVY11sh1ghpMpF/ffrY0ElI8ldFALK1gwOiimjKGQGDOebm2tR/1AADIZyS3cZSEQyoJh1RTGlbPYEJZKwWMUSQ4/HsoYFThhnRRdRmrQGBe9MdTvtQdSKR9qQsAQL4hBE/CcYJasqBkvtsAzuHVWOBz67JEWj5LpTKv/2DeH08rkc4oEgqq3A0pYKTq0ogcZ35nWwNAoSAETyKTyap3KKl01g5/w0llFHGGv+GEAkZVJWEFuROMeRD1Kei487xcDcY3lEjrVCylg0dPKRAwWlwWUSKdfX3JocFEWq8MJJTJWrU2LNTCqMNSjQAwBa6S40ims+odTOqhjhP6+o9fGHesZH1VVB952zKtbVmiqtKwwiHCMOZOuevP/7p+1cXMneyLq+ulPlWWhPXMyQF97ycvTnhNev+VS1W3sETPdfer6cIK1TBZFwAmxHe8MXoHk9rT1a07dx6a9CPnY70x/fnuLv3l94/orvUrtLqpVlWl4TnsFMXMmOHQ4+VktvqqqAw/y+WVnr64njs5oOd6BvSFR45MeU36qz3P6v89+XN9+j3L5QQDMpKqCcIAMC6+5Y3y6kBCf/zdg/rj73ZMe8xlPJXVH3+3Q3/83YN6dSDhc4fAsJqyiDaubPC05i0rG1RTTmDKFz19cZ04Hdd9P3heWx7qyumatOWhLt33g+d14nRcPX1xnzsFgMJECB7RO5jU7d/r0J6ukzN6/56uk7r9ex06NZj0uDPgXI4T1PrWumlv6jIV1wloXWsdq53kiaFEWq8MJvWlPc/oiSMz2xb7iSM9+tKeZ/TKYFJDSVb9AICx+I6n4THAe7pennEAPmNP10k92tWtZJoNB+C/hVFHm9c2e1LrzrXNWljieFILs9efSOtHP39lxgH4jCeO9OhHP39F/XFCMACMRQiW1DuY0J07n/ak1p07D6l3kGER8F9JJKTrmmq1qrF6VnVWNVZrdVMtG77kiVQqo/54Wl945Ign9b7wyBENxNNKsfwdAJyl6ENwJpPVgwdf8mzd1Xgqqwc7XlImw91g+K+mwtU9G1pmHIRXNVbrng0trCKQR16LJ7W744Sn16TdPzuh1+IM1QKA0Yo+BL86mNQ3/vMFT2t+48cv6FXGBmOO1FS4+oubWnT3jSumPUbYdQK6+6YV2koAzjuJtNV3f/KipzX/5akXlUhbT2sCQKEr+hCcymQ9XWZKGl6qKMWdYMyRk31x/cn9HaqtcPXYbdfo9uuXq74qOu6x9VVR3X79cj122zWqLXe1aUeHTrJ6QF7JWuvLNSlrCcEAMFrRDwL0a8JIf4KJKPDfyb64PrfrkG6+sl6S1SsDCa1aXqP3XX6hAsZoIJF+fVexskhIWWsVSw7vLiZZ3XxlvT6365D+bN0K7gjnCb+uSQNxxgQDwGhFH4K9Gnc3VsKnusAZQ4m0njhyUh95+xuVzVrFUxlZSf/29Muv7yrmhgIqc0MaiKcVT2df31XsmuU1ChijhSUhfeTtb9QTR05q7RVLmByXB/xaXSaZJgQDwGhF/x0v4tN2x2yjDL+diqW0oCSsskhQfbG0fvHqoP5g20/O+sEuns4qPvCr8eljdxVruqBC5ZGgFpSEdWooRQjOA1En6Etd16e6AFCoij6plUT8+cZQEuYbDvyTSmXU8eJraqiKKpPVrHYVS2elhkVRdbz4Gsto5YHSiD8/iPhVFwAKVdGHYGs14SSimaqvioo5KPBTz2BCl9aUycp4squYrNGltWXqYY3reRcKGl+uSU7QeFoTAApd0Ydg1wno/Vcu9bTmzVcuVdSj7WyB8YSCRq4T9GxXsR/+/BVFQ0GFAgSl+RYw0offuszTmv/9rcsUMHxtAWC0ok9qqYzVtY01015fdSquE9C7G2uUzHArGP7JZIeHNHi5q1gsnRWn7fxLpq2ubfL4mtRUowTbuQPAWYo+BEcco1++OqhPv2e5J/U+/Z7l+mXvoG8T7gBJCgakh7zeVazjhPjEfP4NxNP66z3P6k/XXeZJvT9bd5n+6tFnNMCyjQBwlqJPaq4TUOOFlVpSGdU1y2e29ewZ1yyv1pLKqJouqFSUiXHwUSLFrmLnq1gqo10HT2hRSVirm2pmVWt1U42qSsJ6sOMlxZn0CABnKfoQXOo4Ko+E1DMQ162//qYZB+Frllfr1l9/k3oG4iqLhFhqCr6y8mdXMStC8Hw7s0TaH/3zAd3662+acRBe3VSjW3/9Tfqjfz4gSXJD/GAOAKMVfQgOBgMKBaWrli3SN370gn7zLfXavLZp2uPxXCegzWub9Jtvqdc3fvSCrlq2SKGgFGSCEXw0wK5i560yd/gH6MFkRr/zj/t105uX6u4bV+R0Tbr7xhW66c1L9Tv/uF+DycxZdQEAw7gqSip3w0plrP7HNRfrS3ueUXkkpG//3lv15DM9+u7Izltj1VdFdfOVS3X1pdX66n/8Qv2JV/Sp1ZeqqsRRuRueh/8KFBO/Jjmxq9j8M2b4+nKsN6bBZEYf3/YT3dByob5969v045+/om37jk54TbplZYPedtFiffUHz+vBjpfOeo3FIQDgbIRgDe/uFg4FdUGFq1vf9SZ1vdynD371v/SOixbrf//Gci1ZEFUqk1U8lZXrBOQEAzrxWkwPdbyk+37wvG677lI1XVChCyrckVpFf4MdPmNXsfNXSTigjVc16N5RK3882PGSHj70sq5trDnrmpRMZxUOnX1N+svvP6NM9uxhLbesbFAp8xQA4CyE4BFVpWG9OpDQssWlSmWy+tbvvlVPHjmpv/z+ER3rjSkUMAqHAkqms0pn7et3gj++6mKdHkpq2eJShYJGC0u5Cwz/savY+SuVsVrXukRffvzZs1b/yGStvt/Zre93dkvSOdekibhOQDdcsUQp1r8DgLPwHW+URWUR9Q4mVV8VVSQU0iU1ZbrjfU1aVBY5507wqwMJZa1VdVlElW5QUSdIAMacCQbM6x+Ze6W+KspmGXmgdyClipKQNq9p1h0PHJrwuHTWKp2cevjK5jXNCkp6dTCpmgrXw04BoLDxuf0YVaVhLV1YqmDA6OKaMjVdODzMYWFJWItKHS0sCeuCCldNF1bo4uoyBQNGdQtLCcCYU9WlYX34rW/wtOaH3/oGLS6PeFoTuYulMrrnX4/o6uXVWtU4u2UbVzVW6+rl1fr8vx5miTQAGIMQPI5wKKALKl1dVF2mknBQoaBRKGAUcQIKBYxCQaOScFAX1ZTrgkqXMcCYc44T1NqWJZ7uKra2ZYmcIOfyfIs6Qe06eELPdPfrz9dfPuMgvKqxWn++/nI9092vBzteYok0ABiD73iTCAYDqi53dWFlVJfUlqvxgkpdUluuCyujqi53WQYN82pB1PF0V7EFJY4ntTA7Z5Yy++S2n+ql00O6c+1lM1oi7XNrL9NLp4f0yW0/PasuAGAYIRgoUCWRkN69vEbXNs5uV7FrG2u0ankNG7zkiTNLpA0mM/rI1/ar80SfVtRV6NFPXa3br1+u+qrouO+rr4rq9uuX69FPXa0VdRV6+kSfPvK14XWCWSINAM5lrC28GcNtbW22vb19vtsA8kJ3X1yf2fEzPXb4ZM7vvbaxRp/fcLlqmTCVNxLJtL76wxfOWiLthpYL9bF3vVGJVEaVJWG5TlCDifTrk3VLIyHFUxn1DSUVdoL66g9+cdY6wbdfv1wfe+cbFWZIBIAiY4x5ylrbNu5rhGCgcPUOJpVIZhTPZPWfP39Vf/bQ02ctqzUR1wnoc2sv09suWqRIMCA3zOom+eT4qZiu/eITZ30tgwGjaxtrtKblQi1ZEFUmk1U6YxUKGgVHrRP8+OGTZ60T7DoBPXbbNapbOP4dZAA4n00Wgvn8EyhQyXRWQ8m0Nu88pL2He7R5TZMe/dTV2v2zl/St//rlhLuKfejX3qD3XX6hvv/0y7rmL5/QqsZqbVm/QqWREJM880SFe+4SaTNdJ3jzmmZVRrnUA8BYXBmBAtUfS+rJIz3ae7hHkrRld5fueeSI/ue7L9ZXPvwWlYRDGhr1kXlJJKShZFqPd53UtV98UsmRrZf3Hu7Rk409es9ltVpczrCIfFAedbS6qVZ7Dne//vUdazrrBK9qrNbq5lqVuUx6BICxGA4BFKBMJquX+uJa/cUnJx3+4IYCKnNDGoinFU9PcpwT0J7brtaFFa6CLJOWN7r74tq0o2PCIDyZVY3V2rqhhfHeAIraZMMh+G4HFKD+ZEq7DpyYcvxvPJ3VKwPJSQOwJMVTWT148IT6kykv28Qs1Va42npTy4yWSCMAA8DkGA4BFKCBeEbb9x/1tOa2fUd1wxVLtID5U3mlttLV+tYlumZ5jXYdPK5t+45OON77lpUNWtdap0o3xBAIAJgCIRgoQNZq3CA0G8d6YyrA0VFFocx1VOY6+u23vUE3XLFE1koDibTiqYxcJ6iySEjGDG+nHWG9ZwCYFq6WQAHqj/szbGEgkfalLmanP5ZSXzytnQeOa/v+4TvBZSPL2p0aTGpgZEOMjVc1aH1rnSrckMqj3AkGgMkQgoECNJ21gGdWd/LVBjD3uk/HtaerW1t2d571dR9IZjSQ/NWnAcd6Y7r3kSP68uPPavOaZq1uqlVtJWOCAWAivk+MM8Zcb4w5Yox5zhizaZzXG4wxe40xPzXGdBhj3ud3T0Chizr+7PzlsqNYXunui2vT/R2644FD0/7BJ57K6o4HDmnT/R3q7ov73CEAFC5fQ7AxJijpbyW9V1KzpI3GmOYxh31W0nestW+W9AFJ/9fPnoDzQZnrz4c4ftVF7rpPz3x5NGl4/edNOwjCADARv+8Er5T0nLX2eWttUtK3Ja0fc4yVVDHy50pJJ3zuCSh4ATO8GoCX6quiCrBoYl7oj6W0p2vijTKma+/hHu3p7NaAT2PIAaCQ+f0tr07SsVGPXxx5brQ/lfQhY8yLkh6W9EmfewIKXk1ZRBtXNnha85aVDaphx7i80BdPa8vuTk9qbdndqdMxJjwCwFj5cN9no6R/stYulfQ+Sd80xpzTlzHmVmNMuzGmvadndndHgELnOEGtb62b9gYKU3GdgNa11slht7h5l0gOrwLh1eTHeCqrXQePK5EkCAPAaH5/xzsuqX7U46Ujz432MUnfkSRr7Y8luZIWjy1krb3PWttmrW2rrq72qV2gcCyMOtq8duwQ+5m5c22zFpawpFY+6BlM+rIRSs9g0tOaAFDo/A7B+yVdYox5ozEmrOGJb7vGHHNU0rWSZIxp0nAI5lYvMIWSSEjXNdVqVePsfihc1Vit1U21KmGThbzARigAMDd8DcHW2rSkT0h6RFKXhleBeNoYc5cxZt3IYf9L0u8ZYw5K2i7pt63lcg1MR02Fq3s2tMw4CK9qrNY9G1pUU8FY4HwxEPdn2AIboQDA2Xy/9WOtfVjDE95GP3fnqD93SnqH330A56szQfjRrm5teahzWmNJXSegO9cOb6hAAM4vMZ82LGEjFAA4G59/AueBmgpXN725Ttcsr9GuA8e1bd/RcT9Sr6+K6paVw1vrLihxGAKRh9gIBQDmBt8BgfNESTikknBIv/uON2p96xJlrdQfTyueysh1gip3QwoYqbrcZRWIPMZGKAAwN7gqAucZxwlqyYKS+W4DM2RGNkLxcnJcfVVUxnhWDgDOC9wOAoA8Ul0a1sar/NgIJeJpTQAodIRgAMgjkXDI+41QrqhTmDHBAHAWQjAA5JkKN6TNa7zZCGXzmmZVRhn5BgBjEYIBIM+URx2t9mojlOZalbnsBggAYxGCASAP1Va62jrLjVC2bmhRLetAA8C4CMEAkKdqK1xtvalFd9+4YtpjhF0noLtvXEEABoApMFAMAPKYEwro7RdV6bHbrtGug1NvhLLuijol02nWggaAKRCCASBPvTqQ0Kbv/UyPdnUrGg7qC++/XN/82K8paIwGEr/aCKUsElLGWh168TWt/tKTiiUzuq6pVlvff7kWlbE0GgCMhxAMAHmodzD5egCWpFgyo09sP/D662XhoBaWhnVqMKmBZOac9z/a1S19T7r35hYtLA3PWd8AUCj4vAwA8kwyndVjXd2vB+DxDCQzOnYqNm4APuPRrm7t6epWMp31o00AKGiEYADIM72DSW3eeciTWpt3HlLvYNKTWgBwPiEEA0AeyWSyeqjjhOIpb+7exlPD9TIZ7gYDwGiEYADII71DSX39xy94WvPrP35BvUPcDQaA0QjBAJBH0lk77hJos3GsN6Z01npaEwAKHSEYAPJIfzztS90Bn+oCQKEiBANAHkmkJl7tYVZ1WSECAM5CCAaAPBJxgr7UDYe43APAaFwVASCPlLv+7GHkV10AKFSEYADII6GAUX1V1NOa9VVRhQLG05oAUOgIwQCQR6pKwvrI25Z5WvMjb1umqtKIpzUBoNARggEgjwSDAa1tWSLX8eby7DrD9YLcCQaAsxCCASDPVJWGtWX9Ck9qbVm/QlWlYU9qAcD5hBAMAHkmHAro2qZaXddUO6s61zXVanVTLStDAMA4uDICQB6qKg1r6/svn3EQvq6pVlvff7kWchcYAMZFCAaAPLWoLKJ7bm7RF25umfYYYdcJ6As3t+jem1u0qIzJcAAwERaOBIA8VlUa1vrWOr3rkmo91HFCX//xCzrWGzvnuPqqqH777cu05vIlqioNMwQCAKZACAaAPBcOBXRBpavfefsyrW9donTWaoSLpOYAACAASURBVCCeViKdVSQUUJkbUihgVFUaYRUIAJgmQjAAFIhgMKDqcnf4QeX89gIAhY4QDAAFIpXKqGcwoayV+uNpxVIZRZ2gyt2QAkaqLo3IcYLz3SYAFARCMADkuaFEWqdiKe08cFzb9x2dcEzwxpUNWt9ap4VRRyURLu8AMBljrZ3vHnLW1tZm29vb57sNAPDdyb649nR1666HOhVPZac83nUCunNts1Y31aqmwp2DDgEgfxljnrLWto33GrcKACBPneyL6/YdHdp7uGfa74mnsvrM/Yf0aFe37tnQQhAGgAmwhg4A5KGZBODR9h7u0e07OnSyL+5xZwBwfiAEA0CeGUqktaere8YB+Iy9h3u0p6tbQ8m0R50BwPmDEAwAeeZULKW7Hur0pNZdD3Xq1FDKk1oAcD4hBANAHkmlMtp54Pi0JsFNRzyV1a4Dx5VKZTypBwDnC0IwAOSRnsGEtu876mnNbfuOqmcw4WlNACh0hGAAyCNZq3HXAZ6NY70xZQtvNUwA8BUhGADySH/cn0lsftUFgEJFCAaAPBLzaexunDHBAHAWQjAA5JGoE/SlrutTXQAoVIRgAMgj5a4/G3n6VRcAChUhGADySMBI9VVRT2vWV0UVMJ6WBICCRwgGgDxSXRrRxpUNnta8ZWWDqstdT2sCQKEjBANAHnGcoNa31sl1vLk8u05A61rr5AS53APAaFwVASDPLIw6unNtsye17lzbrIUljie1AOB8QggGgDxTEglpdVOtVjVWz6rOqsZqrW6qVUmYSXEAMBYhGADyUE2Fq3s2tMw4CK9qrNY9G1pUU8FYYAAYDyEYAPLUmSD8+ZtWTHuMsOsE9PmbVhCAAWAKfEYGAHmspsLVjW+u09XLa7TrwHFt23dUx3pj5xxXXxXVB1c2aF1rnRaUOAyBADCvYomUXh1KSZL6Y2nFUhlFnaDKo8PXpkUljqKR+Z2vwFUSAPJcSTikknBIv/uON2p96xJlrdQfTyueysh1gip3QwoYqbrcZRUIAPPq1FBSQ4mMdh44ru37J/6hfeNVDVrfWqeSSFALS8Lz0KlkrLXz8hfPRltbm21vb5/vNgAAADDi5dNxPdbVrS27OxVPZac83nUC2rymWdc21eqCSn+GbxljnrLWto33GneCAQAAMCvdfXH9yf0d2nu4Z9rviaeyuuOBQ9pzuFtbN7Sodo7nMfC5GQAAAGbs5dNxbdqRWwAebe/hHm3a0aHuvrjHnU2OEAwAAIAZOTWU1GNd3TMOwGfsPdyjPZ3dem0o6VFnUyMEAwAAYEaGEhlt2d3pSa0tuzs1mMh4Ums6CMEAAADIWSyR0s4Dx6c1CW464qmsdh08rlgi5Um9qRCCAQAAkLNXh1Lavv+opzW37Tv6+vrCfiMEAwAAIGfWatx1gGfjWG9Mc7V675Qh2BizYC4aAQAAQOEYiKf9qZvwp+5Y07kT/IoxZo8x5mMEYgAAAEhSLOXPJLa4T3XHmk4I7pL0V5LeLennxpidxpgPGGOi/rYGAACAfBV1gr7UdUP+1B1rOiE4Za19yFr7QUlLJX1L0m9JetEYs83X7gAAAJCXylx/Nh72q+5Y0wnB5swfrLUxa+13rLUbJL1J0iO+dQYAAIC8ZYxUX+XtwID6qqiMmfo4L0wnBH9rvCettaettV/3uB8AAAAUgEUljjZe1eBpzVtWNqi6LOJpzYlMGYKttX85nULGmL+ZfTsAAAAoBNGIo/WtdXIdb1bcdZ2A1l1Rp4hPY43H8nKd4Hd4WAsAAAB5riQS1OY1zZ7U2rymWaWRuQnAEptlAAAAYIYWloR1bVOtVjVWz6rOqsZqrW6u1YKSsEedTY0QDAAAgBm7oNLV1g0tMw7CqxqrtXVDi2orXI87m5yXIXiO5vIBAAAgn9RWuPqLm1p0940rpj1G2HUCuvvGFfMSgCVp2guxGWMut9b+bJJD/nqC910/8lpQ0j9Ya7eOc8xvSfpTSVbSQWvtLdPtCwAAAPPvgkpXa1ou1DXLa7Tr4HFt23dUx3pj5xxXXxXVLSsbtK61TqXh4JwOgRjNWGund6AxP5AUkfRPkr5lrT09jfcEJT0j6TpJL0raL2mjtbZz1DGXSPqOpHdba08ZY2qstScnq9vW1mbb29un1TcAAADmViyR0qtDKVkrDSTSiqcycp2gyiIhGTO8vFo04vjehzHmKWtt23ivTftOsLX2XSOB9aOSnjLG7JP0j9baRyd520pJz1lrnx9p5NuS1kvqHHXM70n6W2vtqZG/Z9IADAAAgPzUH0upL57WzgPHtX3/8J3gsnBQC0vDOjWY1EAyo/qqqDZe1aD1rXWqcEMqj/ofhseT07501tpnjTGfldQu6cuS3myMMZI+Y63dMc5b6iQdG/X4RUm/NuaYSyXJGPNDDQ+Z+FNr7b+NLWSMuVXSrZLU0ODtwswAAACYne7Tce3p6taW3Z2Kp7KvPz+QzGgg+athEcd6Y7r3kSP68uPPavOaZq1uqlVt5dyPCZ72xDhjTIsx5kuSuiS9W9IN1tqmkT9/aRY9hCRdIukaSRsl/b0xZsHYg6y191lr26y1bdXVs1uGAwAAAN7p7otr0/0duuOBQ2cF4MnEU1nd8cAhbbq/Q919cZ87PFcuq0P8jaSfSLrCWvtxa+1PJMlae0LSZyd4z3FJ9aMeLx15brQXJe2y1qastb/Q8BjiS3LoCwAAAPOk+3Rcm3Z0aO/hnhm9f+/hHm3aMfdBOJcQvEbSNmttTJKMMQFjTIkkWWu/OcF79ku6xBjzRmNMWNIHJO0ac8wDGr4LLGPMYg0Pj3g+h74AAAAwD/pjKe3p6p5xAD5j7+Ee7ens1kA85VFnU8slBO+RFB31uGTkuQlZa9OSPiHpEQ0Po/iOtfZpY8xdxph1I4c9IulVY0ynpL2SPm2tfTWHvgAAADAP+uJpbdndOfWB07Bld6dOx9Ke1JqOXCbGudbagTMPrLUDZ+4ET8Za+7Ckh8c8d+eoP1tJt438AgAAQAFIJIdXgZjuGOCpxFNZ7Tp4XB99+zJFwjmt3TAjudwJHjTGXHnmgTHmLZLOXQEZAAAA572ewaS27z/qac1t+46qZzDpac2J5BKz/0jSvxhjTmh4i+QLJP03X7oCAABAXrNW4+4INxvHemOa5j5us5bLZhn7jTGNkpaPPHXEWjt3o5cBAACQNwbi/ozfHUjMzbjgXAdcXCVp2cj7rjTGyFr7Dc+7AgAAQF6LpTK+1I37VHesaYdgY8w3JV0k6YCkM91ZSYRgAACAIhN1gr7UdUP+1B0rlzvBbZKaR1ZzAAAAQBErc/1ZwcGvumPlsjrEIQ1PhgMAAECRM0aqr4pOfWAO6quiMsbTkhPKJQQvltRpjHnEGLPrzC+/GgMAAED+qi4Na+NVDZ7WvGVlg2rKI57WnEgu95v/1K8mAAAAUFgi4ZDWt9bpy48/68mGGa4T0Lor6hSeozHB074TbK19UtILkpyRP++X9BOf+gIAAECeq3BD2rym2ZNam9c0qzI6N+OBpRxCsDHm9yR9V9JXRp6qk/SAH00BAAAg/5VHHa1uqtWqxupZ1VnVWK3VzbUqcx2POptaLmOCPy7pHZL6JMla+6ykGj+aAgAAQGGorXS1dUPLjIPwqsZqbd3QotoK1+POJpdLCE5Ya1/fzNkYE9LwOsEAAAAoYrUVrrbe1KK7b1wh15levHSdgO6+ccW8BGApt4lxTxpjPiMpaoy5TtIfSHrQn7YAAABQSGorXa1vXaJrltdo18Hj2rbvqI71xs45rr4qqltWNmhda50q3dCcDoEYzUx37wtjTEDSxyT9hiQj6RFr7d/72NuE2trabHt7+3z81QAAAJhCIplWz2BS1koDibTiqYxcJ6iySEjGSDXlkTlZBcIY85S1tm2813K5E/xJa+1fS3o9+Bpj/nDkOQAAAEDS8PJpS8Nzt9LDTOQyJvgj4zz32x71AQAAAMyZKSO6MWajpFskvXHMDnHlknr9agwAAADwy3TuU/9I0ksa3jb5/4x6vl9Shx9NAQAAAH6aMgRba38p6ZeS3uZ/OwAAAID/ctkxboMx5lljzGljTJ8xpt8Y0+dncwAAAIAfcpm2d6+kG6y1XX41AwAAAMyFXFaH6CYAAwAA4HyQy53gdmPMP0t6QFLizJPW2h2edwUAAAD4KJcQXCFpSMM7xp1hJRGCAQAAUFCmHYKttb/jZyMAAADAXMlldYhLjTGPGWMOjTxuMcZ81r/WAAAAAH/kMjHu7yX9iaSUJFlrOyR9wI+mAAAAAD/lEoJLrLX7xjyX9rIZAAAAYC7kEoJfMcZcpOHJcDLG3Kzh7ZQBAACAgpLL6hAfl3SfpEZjzHFJv5D0IV+6AgAAAHyUy+oQz0tabYwplRSw1vb71xYAAADgn1xWh/hDY8yZtYK/ZIz5iTHmN6Z6HwAAAJBvchkT/FFrbZ+GN8tYJOnDkrb60hUAAADgo1xCsBn5/X2SvmGtfXrUcwAAAEDByCUEP2WM+b6GQ/AjxphySVl/2gIAAAD8k8vqEB+T1CrpeWvtkDFmkSS2UgYAAEDBmTIEG2MarbWHNRyAJelNxjAKAgAAAIVrOneCb5N0q6T/M85rVtK7Pe0IAAAA8NmUIdhae+vI76v8bwcAAADwXy7rBP/myGQ4GWM+a4zZYYx5s3+tAQAAAP7IZXWIzdbafmPMOyWtlvRVSf/Pn7YAAAAA/+QSgjMjv6+RdJ+1dreksPctAQAAAP7KJQQfN8Z8RdJ/k/SwMSaS4/sBAACAvJBLiP0tSY9Ieo+19jVJVZI+7UtXAAAAgI+mHYKttUOSdkoaNMY0SHIkHfarMQAAAMAv094xzhjzSUmfk9StX22XbCW1+NAXAAAA4Jtctk3+Q0nLrbWv+tUMAAAAMBdyGRN8TNJpvxoBAAAA5koud4Kfl/SEMWa3pMSZJ621X/S8KwAAAMBHuYTgoyO/wmJ9YAAAABSwaYdga+2fSZIxpmzk8YBfTQEAAAB+mvaYYGPMCmPMTyU9LelpY8xTxpjL/GsNAAAA8EcuE+Puk3SbtfYN1to3SPpfkv7en7YAAAAA/+QSgkuttXvPPLDWPiGp1POOAAAAAJ/ltDqEMWazpG+OPP6QhleMAAAAAApKLneCPyqpWtIOSd+TtHjkOQAAAKCg5LI6xClJ/9PHXgAAAIA5kcvqEI8aYxaMerzQGPOIP20BAAAA/sllOMRia+1rZx6M3Bmu8b4lAAAAwF+5hOCsMabhzANjzBskWe9bAgAAAPyVy+oQd0j6D2PMk5KMpHdJutWXrgAAAAAf5TIx7t+MMVdKeuvIU39krX3lzOvGmMustU973SAAAADgtVzuBGsk9D40wcvflHTlrDsCAAAAfJbLmOCpGA9rAQAAAL7xMgQzSQ4AAAAFwcsQDAAAABQEL0Nw0sNaAAAAgG9ymhhnjGmRtGz0+6y1O0Z+f+sEbwMAAADyyrRDsDHma5JaJD0tKTvytJW0w4e+AAAAAN/kcif4rdbaZt86AQAAAOZILmOCf2yMIQQDAACg4OVyJ/gbGg7CL0tKaHhdYGutbfGlMwAAAMAnudwJ/qqkD0u6XtINktaO/D4pY8z1xpgjxpjnjDGbJjnu/cYYa4xpy6EnAAAAIGe53AnusdbuyqW4MSYo6W8lXSfpRUn7jTG7rLWdY44rl/SHkv4rl/oAAADATOQSgn9qjNkm6UEND4eQ9Ksl0iawUtJz1trnJckY821J6yV1jjlui6R7JH06h34AAACAGcllOERUw+H3NzQ8DOLMkIjJ1Ek6NurxiyPPvc4Yc6Wkemvt7skKGWNuNca0G2Pae3p6cmgbAAAAONu07wRba3/H67/cGBOQ9EVJvz2Nv/8+SfdJUltbm/W6FwAAABSPXDbLcCV9TNJlktwzz1trPzrJ245Lqh/1eOnIc2eUS1oh6QljjCRdIGmXMWadtbZ9ur0BAAAgfySSafUMJiVJ/bG0YqmMok5Q5dHh6FldGlYknNPGxZ7L5W//pqTDkt4j6S5JH5TUNcV79ku6xBjzRg2H3w9IuuXMi9ba05IWn3lsjHlC0v8mAAMAABSe/lhKffG0dh44ru37j+pYb+ycY+qrotp4VYPWt9apwg2pPOrMQ6e5heCLrbW/aYxZb639+sgkuR9M9gZrbdoY8wlJj0gKSvqatfZpY8xdktpzXW0CAAAA+an7dFx7urq1ZXen4qnshMcd643p3keO6MuPP6vNa5q1uqlWtZXuhMf7JZcQnBr5/TVjzApJL0uqmepN1tqHJT085rk7Jzj2mhz6AQAAQB7o7otr0/0d2nt4+osXxFNZ3fHAIe053K2tG1pUWzG3QTiX1SHuM8YslLRZ0i4NL3N2ry9dAQAAoCB0n45r047cAvBoew/3aNOODnX3xT3ubHK5rA7xDyN/fFLSm/xpBwAAAIWiP5bSnq7uGQfgM/Ye7tGezm6tb12iMnduxghP+06wMabWGPNVY8y/jjxuNsZ8zL/WAAAAkM/64mlt2T12D7SZ2bK7U6djaU9qTUcuwyH+ScMT3JaMPH5G0h953RAAAADyXyI5vArEZJPgchFPZbXr4HElknMThHMJwYuttd+RlJWGV36QlPGlKwAAAOS1nsGktu8/6mnNbfuOvr6+sN9yCcGDxphFkqwkGWPeKum0L10BAAAgr1mrcdcBno1jvTHZOdoXOJcl0m7T8KoQbzLG/FBStaSbfekKAAAAeW0g7s+whYHE3AyHyCUEd0q6X9KQpH5JD2h4XDAAAACKTCzlz6jYuE91x8plOMQ3JDVK+rykv5F0qYa3UgYAAECRiTpBX+q6IX/qjpXLneAV1trmUY/3GmO8WRMDAAAABaXMzSVGzn/dsXK5E/yTkclwkiRjzK9Jave+JQAAAOQ7Y6T6qqinNeurojLG05ITmjIEG2N+ZozpkPQWST8yxrxgjPmFpB9LavO7QQAAAOSf6tKwNl7V4GnNW1Y2qKY84mnNiUznfvNa37sAAABAQYmEQ1rfWqcvP/6sJxtmuE5A666oU3iOxgRPeSfYWvvLyX7NRZMAAADIPxVuSJvXNE994DRsXtOsyujcjAeWchsTDAAAALyuPOpodVOtVjVWz6rOqsZqrW6uVZnreNTZ1AjBAAAAmLHaSldbN7TMOAivaqzW1g0tqq1wPe5scoRgAAAAzEpthautN7Xo7htXyHWmFy9dJ6C7b1wxLwFYym2dYAAAAGBctZWu1rcu0TXLa7Tr4HFt23dUx3pj5xxXXxXVLSsbtK61TpVuaE6HQIxGCAYAAIAnylxHZa6jj759mW64YomslQYSacVTGblOUGWRkIyRasojc7YKxEQIwQAAAPBUJBzS0nB+x0zGBAMAAKDoEIIBAABQdAjBAAAAKDqEYAAAABQdQjAAAACKDiEYAAAARYcQDAAAgKJDCAYAAEDRIQQDAACg6BCCAQAAUHQIwQAAACg6hGAAAAAUHUIwAAAAig4hGAAAAEWHEAwAAICiQwgGAABA0SEEAwAAoOgQggEAAFB0CMEAAAAoOqH5bgCAt1KpjHoGE8paqT+eViyVUdQJqtwNKWCk6tKIHCc4320CADCvCMHAeWIokdapWEo7DxzX9n1Hdaw3ds4x9VVRbVzZoPWtdVoYdVQS4RIAAChOxlo73z3krK2tzba3t893G0DeONkX156ubt31UKfiqeyUx7tOQHeubdbqplrVVLhz0CEAAHPPGPOUtbZtvNe4DQQUuJN9cd2+o0N7D/dM+z3xVFafuf+QHu3q1j0bWgjCAICiw8Q4oIDNJACPtvdwj27f0aGTfXGPOwMAIL8RgoECNZRIa09X94wD8Bl7D/doT1e3hpJpjzoDACD/EYKBAnUqltJdD3V6Uuuuhzp1aijlSS0AAAoBIRgoQKlURjsPHJ/WJLjpiKey2nXguFKpjCf1AADId4RgoAD1DCa0fd9RT2tu23dUPYMJT2sCAJCvCMFAAcpajbsO8Gwc640pW3grJgIAMCOEYKAA9cf9mcTmV10AAPINIRgoQDGfxu7GGRMMACgShGCgAEWdoC91XZ/qAgCQbwjBQAEqd/3Z7NGvugAA5BtCMFCAAkaqr4p6WrO+KqqA8bQkAAB5ixAMFKDq0og2rmzwtOYtKxtUXe56WhMAgHxFCAYKkOMEtb61Tq7jzf/CrhPQutY6OUEuCQCA4sB3PKBALYw6unNtsye17lzbrIUljie1AAAoBIRgoECVREJa3VSrVY3Vs6qzqrFaq5tqVRJmUhwAoHgQgoECVlPh6p4NLTMOwqsaq3XPhhbVVDAWGABQXAjBQIE7E4Q/f9OKc8YIL3BDurSmTAvGLH3mOgF9/qYVBGAAQNHi889JJJJp9QwmJUn9sbRiqYyiTlDl0eF/turSsCJ8hIw8UFPh6sY31+nq5TXKZrOSjIyR+mIpxVNZuU5AFVFH1kqyVsFgQAtKHIZAAACKFt8Bx9EfS6kvntbOA8e1ff9RHeuNnXNMfVVUG69q0PrWOlW4IZVHmVSE+ZVKZyUrPXjwpWmdt6l0VgrPQ6MAAOQBY62d7x5y1tbWZtvb232p3X06rj1d3dqyu1PxVHbK410noM1rmrW6qVa1lXysjPnx8um4HpvBeXttU60u4LwFAJynjDFPWWvbxn2NEPwr3X1xbdrRob2He3J+76rGam3d0KJaxldijnHeAgAwvslCMBPjRnSfnnmQkKS9h3u0aUeHuvviHncGTOxlzlsAAGaEEKzhMcB7urpnHCTO2Hu4R3s6uzUQT3nUGTCx00NJPebhedsXS3rUGQAA+Y8QLKkvntaW3Z2e1Nqyu1OnY2lPagGTGUhkPD1v++MZT2oBAFAIij4EJ5LDq0BMZzLRdMRTWe06eFyJJEEY/oknUr6ct/EEn2IAAIpD0YfgnsGktu8/6mnNbfuOvr6+MOCHV4ZSvpy3rwwRggEAxaHoQ7C1Gnc91dk41htTAS66gQLCeQsAwOwUfQgeiPszbGEgwXAI+IfzFgCA2Sn6EBxL+TMZKO5TXUDivAUAYLaKPgRHnaAvdd2QP3UBifMWAIDZ8j0EG2OuN8YcMcY8Z4zZNM7rtxljOo0xHcaYx4wxb/C7p9HK3FBB1QUkzlsAAGbL1xBsjAlK+ltJ75XULGmjMaZ5zGE/ldRmrW2R9F1J9/rZ07k9SvVVUU9r1ldFZYynJYGzcN4CADA7ft8JXinpOWvt89bapKRvS1o/+gBr7V5r7dDIw/+UtNTnns5SXRrWxqsaPK15y8oG1ZRHPK0JjLa4xPHlvK0u47wFABQHv0NwnaRjox6/OPLcRD4m6V/He8EYc6sxpt0Y097TM7ttYkeLhENa31on1/Hmn8J1Alp3RZ3CjK2Ej9yI48t5G/FprDEAAPkmbybGGWM+JKlN0hfGe91ae5+1ts1a21ZdXe3p313hhrR5zdhRGjOzeU2zKqOMq4T/yiJBT8/bcpcADAAoHn6H4OOS6kc9Xjry3FmMMasl3SFpnbU24XNP5yiPOlrdVKtVjbML16saq7W6uVZlruNRZ8DEKkvCutbD87YiGvaoMwAA8p/fIXi/pEuMMW80xoQlfUDSrtEHGGPeLOkrGg7AJ33uZ0K1la62bmiZcaBY1VitrRtaVFvhetwZMLELOG8BAJgRY33eJ9UY8z5JfyUpKOlr1tq7jTF3SWq31u4yxuyRdLmkl0bectRau26ymm1tbba9vd2XfrtPx7Wnq1tbdncqnspOebzrBLR5TbNWN9cSJDBvXj4d12OctwAAnMUY85S1tm3c1/wOwX7wMwRL0kA8pdOxtHYdPK5t+47qWG9MZeGgFpaGdWowqYFkRvVVUd2yskHrWutU6YYYAoF51xdLqj+eOeu8HWv0eVseCTIEAgBwXiMEz1AskdKrQylJUn8srVgqo6gTVPnIxLdFJY6iEcIv8suZ89ZaaSCRVjyVkesEVRYJyRhpcakjN8x5W4gSybR6BpOSxr8mVZeGFQkzMRfA/MuX69VkIZir5Tj6Yyn1xdPaeeC4tu+f+I7axqsatL61ThVuSOVRQgXm13jn7XifYHDeFh6uSQAKRSFdr7gTPMaMxwQ31aq2krGVmB+ct+cvvrYACkU+Xq8YDjFN3X1xbdrRob2Hc9+Mg1n2mC+ct+cvvrYACkW+Xq8mC8F5s1nGfOs+PfMvniTtPdyjTTs61N0X97gzYGKct+cvvrYACkWhXq8IwRoev7Knq3vGX7wz9h7u0Z7Obg3EUx51BkyM8/b8xdcWQKEo5OsVIVhSXzytLbs7Pam1ZXenTsfSntQCJsN5e/7iawugUBTy9aroQ3AiOTyDcToDuKcjnspq18Hj/3979x9b1Xnfcfzzxb6+9xoDCdRxUmNKsqQl1kpIZljWdlUoaEpCBhXK1sKmZl3W7GfXdusmNolNG6pEtR/ZqkZduyRLNgXaiqGGlanZQplSrVrANL8NWaKkNUHB8UhiYux7fW1/98c9BMfYhtjn+Po55/2SEL73Hj/3kZ/nfP3xuc85R+UhfukgOczb9GJsAYQi9HqV+RDce2ZIuw93x9rmrkPdb18bD0gC8za9GFsAoQi9XmU+BLtrwmvYzcTx1wcV4EU3EBDmbXoxtgBCEXq9ynwI7i8lc8i9v8xHj0gO8za9GFsAoQi9XmU+BA9WRhJpt5RQu4DEvE0zxhZAKEKvV5kPwcVcXSLtFuqTaReQmLdpxtgCCEXo9SrzIbipUB9Uu4DEvE0zxhZAKEKvV5kPwWZS2+JirG22LS7KLNYmgXdg3qYXYwsgFKHXq8yH4Ob5DdqyelmsbW5ds0yXLcjH2iYwFvM2vRhbAKEIvV5lPgTnG+q1aVWrCrl4fhSF3DxtvK5VDay/Q4KYt+nF2AIIRej1KvMhWJIWFuq1fUN7LG1t39CuRUXW3iF5zNv0YmwBhCLkekUIlrSgmNP6a1u0dkXzjNpZcFgtAgAAENxJREFUu6JZ69tb1FTIxdQzYHLM2/RibAGEIuR6RQiOtCwqaOfmldMexLUrmrVz80q1LCzE3DNgcszb9GJsAYQi1HplHuC9NDs6OryzszORtnv6Snr0aI927O9SqTJ6we0LuXnavqFd69tb+GWDmmHephdjCyAUk9WrpoY6XTq/QW+cGVL/0LkbYcxGvTKzI+7eMeFrhODz9Zcq6hsc1r6nTmjXoe4J74vdtriorWuWaeOqVi0q1PNxI2qOeZtejC2AUJytV/3ligq5OtWZ6XSpolJlVIXcPC0s5DTirtLQiJqKucTr1VQhmLMlJnD274K1H7hMt37wCs0zU395WKXKiAq5OjXl6zUaDaD83PZALTUVcmoq5PTrH1quX7zuvXLXefPWTLpsQZ4rBQSmMlotMhdbk85uDwCz7WwmOnD0Ne0+PPkf7VtWL9OmVa01zVAcCR5n2ofyr21RyyI+egQQr5N9JR2YRk1ad22LLqcmAZhF016+lWCGYjnEReo5XdK2vU/r4LHed/29nIQCIG7UJAChmKv1aqoQzNUhIj190x88STp4rFfb9j6tntOlmHsGIItOUpMABCLUDEUIlvTWYEWPHu2Z9uCddfBYrx7t6lF/qRJTzwBk0RsDQzoQY016c2Aopp4BwDuFnKEIwZJOl4a1Y39XLG3t2N+lvsHhWNoCkE0D5ZFYa9KZ8siFNwSAaQg5Q2U+BJeHhvXwkycuagH3xShVRrXvqRMqDxGEAbx7g+VKIjVpsMwnVADiFXqGynwI7j0zpN2Hu2Ntc9ehbvWe4eNHAO/eqYFKIjXp1AAhGEC8Qs9QmQ/B7prwGnYzcfz1Qa4dDGBaqEkAQhF6vcp8CO4vJXPIvb/McggA7x41CUAoQq9XmQ/Bg5VkThgpJdQugHSjJgEIRej1KvMhuJhL5vaxBW5LC2AaqEkAQhF6vcp8CG4q1AfVLoB0oyYBCEXo9SrzIdhMaltcjLXNtsVFmcXaJICMoCYBCEXo9SrzIbh5foO2rF4Wa5tb1yzTZQvysbYJIBuWNOYSqUnNTdQkAPEKPUNlPgTnG+q1aVWrCrl4fhSF3DxtvK5VDay/AzANxXwukZqUT2jtHoDsCj1DZT4ES9LCQr22b2iPpa3tG9q1qMjaOwDT15ivi7Umzc8TgAEkI+QMRQiWtKCY0/prW7R2RfOM2lm7olnr21vUVMjF1DMAWXRpY4PWxViTLmlsiKlnAPBOIWcoQnCkZVFBOzevnPYgrl3RrJ2bV6plYSHmngHIosupSQACEWqGMg/wXpodHR3e2dmZSNs9fSU9erRHO/Z3qVQZveD2hdw8bd/QrvXtLfyyARC7k30lHaAmAQjAXMxQZnbE3TsmfI0QfL7+UkV9g8Pa99QJ7TrUPeF9sdsWF7V1zTJtXNWqRYV6lkAASMybA0M6Ux656Jo0v6GOJRAAamKuZShC8DSVh4bVe2ZI7tX7WJcqIyrk6tSUr5eZdNmCPFeBADBrBssVnRqoTFqTmpvyXAUCwJwwVzLUVCGYyxhMId9Qr6UN/IgAzA3FfE5L83zqBGDuCyFDcWIcAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBz6mvdgblssFzRqYGKJOmtwWENVkZUzNVpQbH6Y1vSmFMxn6tlF4HzMG/Ti7EFEIoQ6hUheAJvDAxpoDyih588od2Hu3X89cHztmlbXNSW1cu0aVWrGvN1urSxoQY9Bc5h3qYXYwsgFCHVK3P3mrzxTHR0dHhnZ2cibZ/sK+nA0R7t2N+lUmX0gtsXcvO0fUO71l3bossXFRLpE3AhzNv0YmwBhGIu1iszO+LuHRO+Rgg+p+d0Sdv2Pq2Dx3rf9feuXdGsnZtXqmUhv3Qwu5i36cXYAgjFXK1XU4VgToyLnOyb/uBJ0sFjvdq292n1nC7F3DNgcszb9GJsAYQi1HpFCFZ1/cqBoz3THryzDh7r1aNdPXpzYCimngGTY96mF2MLIBQh1ytCsKSB8oh27O+Kpa0d+7t0pjwSS1vAVJi36cXYAghFyPUq8yF4sFzRw0+euKgF3BejVBnVvqdOaLBciaU9YCLM2/RibAGEIvR6lXgINrObzex5M3vRzLZN8HrezL4Vvf64mS1Puk9jnRqoaPfh7ljb3HWo++1r4wFJYN6mF2MLIBSh16tEQ7CZ1Um6R9ItktolbTGz9nGb3SnpDXe/WtLdkr6cZJ/Gc9eE17CbieOvDyrAi24gIMzb9GJsAYQi9HqV9JHgNZJedPeX3H1I0jclbRq3zSZJD0Zf75G0zsws4X69rb80nEy75WTaBSTmbZoxtgBCEXq9SjoEt0o6PubxK9FzE27j7sOS+iQtGd+Qmd1lZp1m1tnbO7MzEMcarCSzALuUULuAxLxNM8YWQChCr1fBnBjn7t9w9w5372hubo6t3WKuLra2xirUJ9MuIDFv04yxBRCK0OtV0iH4hKS2MY+XRs9NuI2Z1UtaJOlUwv16W1OhPqh2AYl5m2aMLYBQhF6vkg7BhyVdY2ZXmlmDpE9K2jdum32S7oi+vl3S930W7+VsJrUtLsbaZtviomZvVTOyiHmbXowtgFCEXq8SDcHRGt/fk/SIpKOSvu3uz5nZX5rZxmiz+yQtMbMXJf2BpPMuo5akJY05bVm9LNY2t65ZpuamfKxtAmMxb9OLsQUQitDrVeJrgt393939/e7+U+7+pei5P3P3fdHXJXf/JXe/2t3XuPtLSfdprGI+p02rWlXIxfOjKOTmaeN1rcontE4GkJi3acbYAghF6PUqmBPjktSYr9P2DeMvXzw92ze0a36eXzZIHvM2vRhbAKEIuV4RgiVd2tigdde2aO2KmV11Yu2KZq1vb9EljQ0x9QyYHPM2vRhbAKEIuV4RgiOXLypo5+aV0x7EtSuatXPzSrUsLMTcM2ByzNv0YmwBhCLUemWzeCGG2HR0dHhnZ2cibZ/sK+nA0R7t2N+lUmX0gtsXcvO0fUO71re38MsGNcO8TS/GFkAo5mK9MrMj7t4x4WuE4PO9OTCkM+UR7XvqhHYd6p7wvthti4vaumaZNq5q1fyGOj5uRM0xb9OLsQUQirlWrwjB0zRYrujUQEXu1ftYlyojKuTq1JSvl5nU3JTnjGvMOczb9GJsAYRirtSrqUIwtxCaQjGf09J8rtbdAN4V5m16MbYAQhFCveLEOAAAAGQOIRgAAACZQwgGAABA5hCCAQAAkDmEYAAAAGQOIRgAAACZQwgGAABA5hCCAQAAkDlB3jHOzHol/STBt3iPpP9LsH3UFuObXoxtujG+6cb4plutxvd97t480QtBhuCkmVnnZLfYQ/gY3/RibNON8U03xjfd5uL4shwCAAAAmUMIBgAAQOYQgif2jVp3AIlifNOLsU03xjfdGN90m3Pjy5pgAAAAZA5HggEAAJA5hGAAAABkDiF4DDO72cyeN7MXzWxbrfuDmTGzNjM7aGZdZvacmX0uen6xmf2nmb0Q/X9prfuK6TOzOjN7wsy+Gz2+0swej/bjb5lZQ637iOkxs0vMbI+ZHTOzo2b2c+y/6WFmX4hq87NmttvMCuy/4TKz+83sNTN7dsxzE+6vVvWVaJyfNrMbatFnQnDEzOok3SPpFkntkraYWXtte4UZGpb0h+7eLulGSb8bjek2SQfc/RpJB6LHCNfnJB0d8/jLku5296slvSHpzpr0CnH4e0nfc/cVkq5TdZzZf1PAzFol/b6kDnf/aUl1kj4p9t+QPSDp5nHPTba/3iLpmujfXZK+Nkt9fAdC8DlrJL3o7i+5+5Ckb0raVOM+YQbc/VV3/1H09Vuq/gJtVXVcH4w2e1DSx2vTQ8yUmS2VtEHSvdFjk/QxSXuiTRjfQJnZIkkflXSfJLn7kLu/KfbfNKmXVDSzekmNkl4V+2+w3P0xSa+Pe3qy/XWTpH/2qv+RdImZXTE7PT2HEHxOq6TjYx6/Ej2HFDCz5ZKul/S4pBZ3fzV66aSklhp1CzP3d5L+WNJo9HiJpDfdfTh6zH4crisl9Ur6p2i5y71mNl/sv6ng7ick/bWkblXDb5+kI2L/TZvJ9tc5kbkIwUg9M2uS9K+SPu/up8e+5tVrBHKdwACZ2W2SXnP3I7XuCxJRL+kGSV9z9+slndG4pQ/sv+GK1oZuUvWPnfdKmq/zP0pHiszF/ZUQfM4JSW1jHi+NnkPAzCynagB+yN33Rk/3nP3YJfr/tVr1DzPyYUkbzezHqi5f+piqa0gviT5eldiPQ/aKpFfc/fHo8R5VQzH7bzqsl/Syu/e6e0XSXlX3afbfdJlsf50TmYsQfM5hSddEZ6Y2qLpAf1+N+4QZiNaH3ifpqLv/7ZiX9km6I/r6DkkPz3bfMHPu/ifuvtTdl6u6v37f3X9F0kFJt0ebMb6BcveTko6b2Qeip9ZJ6hL7b1p0S7rRzBqjWn12fNl/02Wy/XWfpE9FV4m4UVLfmGUTs4Y7xo1hZrequsawTtL97v6lGncJM2BmH5H0A0nP6Nya0T9VdV3wtyUtk/QTSb/s7uMX8yMgZnaTpC+6+21mdpWqR4YXS3pC0q+6e7mW/cP0mNkqVU96bJD0kqRPq3rwhv03BczsLyR9QtUr+Twh6TdUXRfK/hsgM9st6SZJ75HUI+nPJX1HE+yv0R8+X1V1CcyApE+7e+es95kQDAAAgKxhOQQAAAAyhxAMAACAzCEEAwAAIHMIwQAAAMgcQjAAAAAyhxAMAACAzCEEA0ANmNlGM9t24S3P+77lZvZsAv25ycw+NObxA2Z2+1TfAwAhq7/wJgCAuLn7Ps2tu1LeJKlf0g9r3A8AmBUcCQaAmEVHa49FR1P/18weMrP1ZvbfZvaCma0xs18zs69G2z9gZl8xsx+a2UsXewTWzOrM7K/M7LCZPW1mvxk9f5OZ/ZeZ7Yn68VB0hyaZ2a3Rc0ei9/yumS2X9FuSvmBmT5rZz0dv8dHxfTKzK8zssWi7Z8dsCwBBIQQDQDKulvQ3klZE/7ZK+oikL6p6++7xrohev03Szot8jzsl9bn7akmrJX3GzK6MXrte0ucltUu6StKHzawg6euSbnH3n5HULEnu/mNJ/yDpbndf5e4/mKJPWyU94u6rJF0n6cmL7CsAzCkshwCAZLzs7s9Ikpk9J+mAu7uZPSNp+QTbf8fdRyV1mVnLRb7HL0haOebI8SJJ10gaknTI3V+J3v/J6D37Jb3k7i9H2++WdNcU7U/Up8OS7jezXPQ6IRhAkDgSDADJKI/5enTM41FNfABi7PZ2ke9hkj4bHb1d5e5Xuvt/TNDeyCTveSHn9cndH5P0UUknJD1gZp+aRrsAUHOEYAAI1yOSfjs6Kisze7+ZzZ9i++clXRWtAZakT4x57S1JCy70hmb2Pkk97v6Pku6VdMM0+g0ANcdyCAAI172qLnP4UXTiW6+kj0+2sbsPmtnvSPqemZ1RdWnDWf8maY+ZbZL02Sne8yZJf2RmFVWXV3AkGECQzN1r3QcAwCwxsyZ3749C8z2SXnD3u2vdLwCYbSyHAIBs+Ux0otxzqp5I9/Ua9wcAaoIjwQAwB5nZByX9y7iny+7+s7XoDwCkDSEYAAAAmcNyCAAAAGQOIRgAAACZQwgGAABA5hCCAQAAkDn/Dy/HGzKHtEOpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde5iV5X3v/8+9zmuOMDizlAEkSY0zIwzEjsRDmkiB5gCCQX9toMk2h53s69dz7c4OrcG2Uhuiu7rbbnv9anfb2Oyt3WkkQiDdRCiabmMKQyqIM2CMMSDoYsnAHNd53b8/1owZcE5r5nnWrMV6v67LC9dhvn71Wd7PZ551P/dtrLUCAAAAKolnthsAAAAAio0QDAAAgIpDCAYAAEDFIQQDAACg4hCCAQAAUHF8s93AdFxxxRV28eLFs90GAAAAStjhw4ffstY2jvVaWYbgxYsXq7Ozc7bbAAAAQAkzxvx0vNeYDgEAAICKQwgGAABAxSEEAwAAoOIQggEAAFBxCMEAAACoOIRgAAAAVBxCMAAAACoOIRgAAAAVpyw3yyiWZCqj2GBKktQfzyiezirs96o2nP/P1lgdUDDAf0IAxcGYBKBcxJNpnRtKSxp7vJpX5Vc46J/NFgnBY+mPp9WXyGjnC6f1xKGTOtUTf8d7FjaEtemGRdqwvFl1IZ9qw7N7IAFcvhiTAJSL80MpDSWzUx6vqoJeza0KzEKnkrHWzso/eCY6OjqsW9smR3sT2tcd1bY9XUqkc28/7/MYBXwepTI5ZXI/+28W8nu0dW2bVrdGFKkPudITgMo13pg0HsYkALPlzd6E9k9jvFrVGtGVLo1XxpjD1tqOMV8jBP9MtC+hLTuO6sDxmLweo9WtTfrY0qvUPCesdCanTNbK5zXy+zw6fSGuPUff0P7jZ5XNWa1sadT2je2K1HHSAeCM0WNSoRiTABRTqY5XhOApiPYmtOVb+YO3ftl8ffaWxUqks5pTHVDY79VAIqNUJquAz6uakE/xdFbnB1IKB7z6u+de064jZzjpAHDM6DFpuhiTABTDm70J/X6JjlcThWBWh1B+vt2+7qgOvtqjRzZfr8/csljzaoLqGUzrtbcGFetP6kI8rZ6htC7E04r1J/XaW4M6P5TWvJqgPnPLYj2y+XodfLVH+7qiGkikZ/tfCUAZGxmTZnJCkaQDx2OMSQBcdX4opf0OjlcXhlIOdTY5boyT1JfI6KGnT+jvP3ODGmtDOnVuSMYYvXy2X0/+8PVxJ3Xfcf0CzZ8bVn88o7b5dfr7z9yg//d/Htat1zapJsRNKQCmpy+R0bY9XY7U2ranizEJgGuGklnHx6s5VY6Um1TFXwlOpvJ3XG+/Y5kWzKnSGxfi+lGsX5949Hn9t30/GjMAS9Kpnrj+274f6ROPPq8fxfr1xoW4Fsyp0vY7lmnXkdNKpjJF/jcBcDkYGZOmclPJVCTSOcYkAK6IJ9OujFfxZHG+var4EBwbTCnan1DbVbWKDST16L++qm27u6d8QBPpnLbt7taj//qqYgNJtV1Vqzf6Em+v5QkAhYgNpvTEoZOO1nz84EnGJACOOzeUdmW8Gllf2G0VPx3CWuk/3rJY/YmMHt73sp45Mb05LSM/t+WjLfr8BxarDO83xGUim82pZyilTM6qP5FRNpuV1+tVbcgnn8eooSogr7fif/8tWdZq3G+gputUT5wxCYDjyn28qvgzYS5nFfD59NyP35p2AB7xzImYnnvlLQW8PuU446DIUpmc3uxN6MipCzo3mFIqk1M6k9NgKv9nKpPTucGUXjh1QW/2JpTKOPP1FZw1kHBn2sJAkukQAJxV7uNVxV8Jrgp61ZfI6MG9Jxyp9+DeE7r12ibVhSr+Py2KqGcwpTMXhlQfDugHP+mZdJee2+pCejnap/lzqtRQPTs79WBs8XTWlboJl+oCqFzlPl5V/JVgK6vdR844Oql7z9EzKsf1l1Gezg0k1RdP68ipXq15+Fk9sPfEhDd0PrD3hNY8/KyOnOpVXzytcwPJIneMiYT9Xlfqhnzu1AVQucp9vKr4EJxMW33zh687WvOfDr+uZIYQDPf1DKaUSOf0x7tf0j1PHSvohs57njqmP979khLpnM5z01TJqHHpWyS36gKoXOU+XlV8CLay7kzqFiEY7kplchpKZfTlnS9Oe5HyA8dj+vLOFzWYyjBHuEQYk5+24qSFDWEZ42hJACj78ariQ7Brk7oTzL+Du/rjKT17IubILj3PnoipL87V4FLQWB3QphsWOVpz84pFaqoNOloTAOZV+V0ZrxprijNeVXwITrp09SuVIQTDPdlsTvFMztFdehKZnLJZrgbPtmDApw3LmxXyOzM8h/werV/WrABzggE4LBz0uzJeBV2aa3ypig/Brk3qLtIBRGXqT6W16wVnb+j89pEz6k8VZ4FyTKwu5NPWtW2O1Nq6tk31YeYDA3BHVdDr6HhVHSxefqr4EFwddOfk4FZdQMpPt3Fjlx6m8ZSG2rBfq1sjWtnSOKM6K1satbotopqQ36HOAOBic6sCWuXgeDWnqnjLdlZ8CPZ63JnU7fVwFwrcU+679GBykfqQtm9sn/aJZWVLo7ZvbFekLuRwZwBwsSvLdLyq+BA8ryqgT914taM1P3Xj1bqihg0I4J7+hDvTFthVrLRE6kLa/vF23X/7kinPuQv5Pbr/9iUEYABFFakL6StlNl5V/Hf2wYBP69rn66GnX3ZkfmXI79G69vnchAJXOTUX+J11mQ5RaiL1IW1YPl+3XtukXUdO6/GD4+8GuHnFIq1f3qz6kI8pEACK7sr6kNa2X1XQeFUd8BZ1CsRoFR+CJak26NMf3Xadtux4cca1/nj9dWyZDNeV+y49KExNyK+akF+fvXmxbls2X9bmr9on0lmF/F7VBH0yRmqqDfILOIBZNacqoDlV0qdvunrC8aqxJli0VSDGQ1pT/iaUldc2aVVLk/YfPzvtOqtamnTrtU1cgYHryn2XHkxPMODTggDHCEDpCwf9WhAs7TxU8XOCR0TqQ/rTjUu1qqVpWj+/qqVJf7pxKXPwUBQel3bp4X5OAEClIASPEqkL6U8/vlRf2bi0oEndX9m4lACMogoHPK7s0hMO8FU6AKAy8L3aJSL1IX1syZX64DWN2n30jP7nv/103Endn3z/1Vq3bL5qAl7Vz9KkblSmwWRO65fP11/8y48cu6HztmXzNZjMqqHagQYBAChxxpbhwqAdHR22s7PTldpn+xLqfqNP9VUBBTxG1SGfPMa8Y1J3zloNJTNKZq16h1JqvapOTVwJRpF0n+nT86++paDPq3ueOjbjevffvkSJdFY3/9wVar2qzoEO4YZsNqeeoZQyOav+REbJdFZBv1e1IZ98HqOGqoC8Xr7gA4ARxpjD1tqOsV7jSvAosb6EXjk7oFdiA3pw74mLrrBdUeXX/LlhnTkf11tDP1ujNeT36IsfvlZ+r0dGUiNBGEUQT2d13+5u7bv7g1rZ0qgDx2PTrrWypVHvf3eDVj/0PX3r1252sEs4JZXJqWcwpd1Hz+ix518b99upu25arHXt89VQHVDARxgGgIkQgofF+hI605vQo//6qp45EVPA59F/+fB7dWtLk6oDPg0kMoqnswr7vaoJ+TSYyuhfus/qL/7lFW3b3a1br23U765+rySCMNw3Mmd906M/0I5fu0X36ti0gvDKlkbdt36JNv7Vc5KkIMGp5PQMprS/O6qtO49d9Iu5z2MU8HmUyuSUyVmd6onrT/Z0679+94S2bViiVa0RNVQzTQsAxkMIljSUzOitwZQe3veynjkR073rWrWm7Up9+8gZ/aevH9apnvg7TjgLG8LadMMi7b/7Q3q6603dt7tbkvSlj7SoOuRTFcsYwUW1w8vwxQZS2vhXz+nxz9+o1S0RbdvTNaU5wiG/R1vXtmnFuxq08a+eU2wgdVFdlIZzA0ltefJFPd0dlddj9OHrIvrY0qvUPCesVCanVCangM+jgM+j0xfi2nP0De0/flZf/OZRrWmNaPsdSzWvJjjb/xoAUJJIapL6kxl9/8dv6aXTvXr6dz+ogz/p0Uf+/Hv6wM9dof/8S9eqeU5YyUzu7TnBwVEnnEeeeUV/8NFWPf27H9Tmv/mBvv/jt9RQPZ8QDFeZ4SXSTvXEFRtIac3D39PWta16+nc/pN1Hz0y6S8+69vn67ktvas3D37voNcMSaSWjZzD1dgBev2y+PnvLYp3sGXp7moOVlLVWI3d1BH0erV16lX7t1vfo7557TbuOnJGelB64s11zuSIMAO9Q8Uktnc6qP5HR1577Sf5r5V3HVBv063997v165uWY/ut3T4wbJu64fsHbJ5x9x6Pa8Wu3aPPfPK9b39ukhnBW/lneCQWXr7qwV5tuWKQH9p54+7lte7r11b0n9Fu/+HP660/9vKoCPg0mM0qkcwr5PaoO+jQ0PI1n1UPPKpW5+Irx5hWLVB/mSnApSGVy2t8d1fd//JYe2Xy9gj4jGaNX3xrUkz98fcIx6eorqrV+2VX68HVX6r9884j2dUe1YXkzc4QB4BIVvzpErD+ux//tlD629Co99PQJrWtv1pt98XfcGDeekRvjrqwLa/fR07p7zbX652NvaNOKhWqsdXYzA2BENpvTm31JrXromQk/pyGfRzWh/Jz2RGaC9/k92n/3rbqyPiQvO2bMujd7E1r7F9/TI7/688rlrLrf7Ct4TGq9sk4ej9Gv/6/D2vNbH9SV9dyrAKDyTLQ6RMWH4NfPD+m5V96SrLRwXpUe/V7+xrhC3Xpto77wwXfr1LkhWVl94JpGLZhb5UiPwFjODST0f45FHVsi7SNLIppXQ1CabdlsTn///de0YG6VrqoPvX2vQqFGbtZ9ozeh188P6TM3L2b5NAAVZ6IQXPEjYi5ndfN7rlBd2D/tACxJz5yI6dHvvaq6sF+3/FyjcmX4ywXKS20ooF9sbdLKlsYZ1VnZ0qhfbG1SbYh5o6WgZyilU+eHtLAhPO0ALOXHpIf3vayFDWGdPD+knqGUw50CQHmr+BDs93p07HSvzvTGp32yGfHMiZjO9MZ17Eyv/J6K/08LlwV8HgV9Xn3l4+3TDsIrWxr1lY+3K+TzMme0RGRyVp96/yL94NVzjoxJP3j1nD71/kXK5PjFHABGq/izXjqX04K5YT046gajmXhw7wktmBNWOjfzrWyByTRUB+T3Gt1/+1Ldf/uSt9cPnkzI79H9ty/R/bcvld9rWD2ghGSzVjIeR8ckYzz5ugCAt1V8CA76PNp//OyUbjiZikQ6p385fpZNB1A082qCCvm9uuk9Ddp/96360keu1cKGsW/KXNgQ1pc+cq32332rbn5Pg8J+L+vIlhivx2jP0TOOjknfefEMNzwCwCUqfom0eCqnJ3/4uqM1v/nD17Xhfc2O1gQm0lAdUE3Qp57BlFa1NOljS6+SxxgNJDNvr29dE/QpZ62S6ay8HqPmudVMgShBmZzVNx0ek/7p8Ov6+PsWOFoTAMpdxYdgYzTmmpszcaonLq65oNgCPo+urA+psSagnqGUMjkrn8coHPDIa4x8XiOfx6MFc6u4KljCrKwrY9LPttUAAEiEYA0ls+7UTblTF5iM1+tRY+3wUmf1s9sLCjeQyLhT16WxDgDKVcV/F5qcYAOBmbh0Ny4AmAr3xiRCMACMVvEheKp30xeKG+MATEfYpe3WQz62cQeA0So+qdWF/WVVF8DlrSbkziw1t+oCQLmq+FHR7zVa2BB29EaUhQ1h+b3ceITZkUxlFBvM7w7WH88omckq6POqNpz/372xOqBgoOL/1y9ZRnJlTGJEAoCLVfyV4IaqgP7DjYsdrXnXTYvVUM3aqyiu/nhap8/Htf/4WR073as3exO6MJRSfzyjC0Mpvdmb0LHTvdrXfVanz8fVH0/PdssYg89r9Mn3X+1ozU/deLX83oof7gHgIhU/Knq9Ht22bL5jc4NDfo/Wtc9nCSoUVbQ3ocM/Pa/YQFIN1QEtvqJajbVB1YX9Cge9qgv71Vgb1OIrqtVQHVBsIKnDPz2vaG9itlvHJc4NpPShaxsdHZM+eE2jzg1/OwAAyOM7UeU3Gti2YYm++M2jM661bcMSNbAFLYrobF9CP44NqL7Kr3nVAX37lbf0xKGTY36dvrAhrE03LNJty+bLWqsfxwZkjNRUF5qFzjGWRDqnr33/Nd277jr9wbdenHG9P1x3nR458Io++4F3OdAdAFw+Kv5KsJTfZGBVa0RrWiMzqrOmNaLVrRF24ULRnO1NKNaf0FVzwuo606c1Dz+rB/aeGHc+6ameuB7Ye0JrHn5WXWf6dNWcsGL9CZ3t44pwqQj7vdp15Iwaqv1a1dI0o1qrWpo0t9qvbx99g9UhAOASpLVhDdUBbb9j6bSD8JrWiLbfsVRzuQqMIumPp3UhkdKcqqDu2/2S7nnqmBLpqa0xm0jndM9Tx3Tf7pc0pyqoC/GUBhLMES4FI6s4/N43jujzH3z3tIPwqpYmff6D79bvfePIRXUBAHmE4FHm1QT11Tvb9eCd7VOejxfye/Tgne164M52zavhZjgUz1Aqq7Dfpy/vfFEHjsemVePA8Zi+vPNFhQM+DbKjWEkwJj9tZTCV1ee+dkgbr1+g+9ZfV9CYdN/667Tx+gX63NcOaTCVza8OwW0KAHARLg1coqE6oA3Lm/UL1zRq99Ezeuz518adW/npmxdr7dL5aqgOMAUCRZVMZZST1fdejk07AI84cDym77XEtLqlSclUhuXTZlljdUCbblikB/ae0GAqq19//Ie6rf0q/eMXbtT//dFb+t+dp8Ydk36lY6E+cM0V+tt//Ym+ffSNt1/bvGKRmmr5JR0ARjPW2tnuoWAdHR22s7PT9X9ONptTz1BKmZzVQCKjZCanoM+jmpBPPo9RQ3WQVSAwK872x5XKWK1+6NkpT4GYSMjv0b67P6SA16ipLuxAh5iJ0+fjWvXQMxcdW6/HaFVLk9a2X6X5c8JKZ3NKpnMK+j3yez06cyGu3Uff0L8cP6ts7mfjesjv0f67b1XzXI4rgMpjjDlsre0Y6zUu+UzA6/WosXb4rvn62e0FGM3rMdr1wmlHArCUnyP87SNn9Ms3LHCkHmamLuTT1rVtuuepY28/l81Zfbcrqu92RSVJPo9RwOdRKpNTJjf+xYyta9tUH2aoB4BL8R0+UIaGkjk9ceikozUfP3hSQ0lnQjVmpjbs1+rWiFa2NI77nkzOaiiVnTAAr2xp1Oq2iGpCbOMOAJciBANlysltdd2oh5mJ1Ie0fWP7hEF4IitbGrV9Y7sirAENAGMiBANlqN+l5cwGkhlX6mJ6InUhbf94u+6/fUlBq0Pcf/sSAjAATIKJYkAZcmou8DvrskxaqYnUh7Rh+Xzdem2Tdh05rccPjr8b4OYVi7R+ebPqQz6mQADAJAjBQBkK+93Z/YtdxUpTTcivmpBfn7158fCW1/mr9ol0ViG/VzVBX37769qgAhxDAJgSQjBQhtza/YtdxUpbMODTAtZxBgBHMCcYKEMju4o5iV3FAACVhBAMlKGqgEebVixytObmFYtUFeCrdABAZSAEA2Uom7PasGz+lFcMmEzI79H6ZfOVm2DNWQAALieEYKAMzQkF5PEYbV3b5ki9reva5DNG9VUBR+oBAFDqCMFAGfL7vfIYow++t3HamymMWNnSqA+9t1HyGPm9DAkAgMrAGQ8oU7VBn+LpjP5kw9IZ7Sr2JxuWaiiVUS0rQwAAKgghGChTVUGf5oYDujCU1L3rrpvWrmJ/uO46XRhKam44oCqW3gIAVBDOekAZaxzeFvdHZwfUelWtnv7dD2n30TOT7iq2rn2+Yv0JnbkQ1zVNNW/XQWmLJ9M6N5TfMrs/nlE8nVXY71VtOD+Uz6vyKxxkpzgAsy+Zyig2mJI09njVWB1QcJYvvhCCgTLXWBeSldT9Rp88npTet2COVrY0KeT3ajCZUSKdU8jvUXXQp0Q6qwuDKZ0bTKk/kVHrVXUE4DJwYSilwWRWO184rScOjf8LzqYbFmnD8mZVB72aw02OAGZBfzytvkRmyuNVXcin2vDs/PJurC2/JZE6OjpsZ2fnbLcBlJShVEbnh9I6cvK8PB6jeTVBZbM5pbNWfq+R1+vRuYGkctZq+cK5mlPlZwpEGXizN6H93VFt29OlRDo36ftDfo+2rm3TqtaIrqznFxwAxRPtTWjfNMar1a0RRVwar4wxh621HWO+RggGLi/pdFaxwaRyVupPZJTKZBXweVUb8sljpMbaEKtAlIloX0JbdhzVgeOxgn92ZUujtm9sV4Qr/QCKoFTHq4lCsOtnQmPMR4wxJ4wxrxhjtozx+iJjzAFjzL8bY44aYz7mdk/A5czv92r+nCotmFul1qvqtGzhXLVeVacFc6s0f04VAbhMvNk7/ROKJB04HtOWHUcV7Us43BkAXCxapuOVq2dDY4xX0iOSPiqpTdImY8ylq/t/WdI3rLXvk/QJSX/lZk8AUOouDKW0vzs67RPKiAPHY9rXFVXvUMqhzgDgYv3xtPY5OF4NJNIOdTY5ty8JrZD0irX2VWttStI/StpwyXuspLrhv6+XdMblngCgpA0ms9q2p8uRWtv2dGkgmXWkFgBcqi+RcXS86o1nHKk1FW6H4GZJp0Y9fn34udH+SNInjTGvS/qOpN8cq5Ax5gvGmE5jTGcsNrPfNgCgVMWTae184fSUbiqZikQ6p11HTiueLN7VFQCVIZnKuDJeJVPFCcKlMDlwk6SvWWsXSPqYpK8bY97Rl7X2UWtth7W2o7FxZtvEAkCpOjeU1hOHTjpa8/GDJ99eXxgAnBIbTLkyXo2sL+w2t0PwaUkLRz1eMPzcaJ+T9A1JstY+Lykk6QqX+wKAkmStxlxXcyZO9cRVhgsBAShx5T5euR2CD0m6xhjzLmNMQPkb33Zd8p6TklZJkjGmVfkQzHwHABVpIOHO14ADyeLNswNQGcp9vHI1BFtrM5J+Q9JeSd3KrwLxkjHmPmPM+uG3/Z6kzxtjjkh6QtKnbTkuXgwADoin3bmJLeFSXQCVq9zHK9e3i7LWfkf5G95GP3fvqL/vknSL230AQDkI+72u1A353KkLoHKV+3hVCjfGAQCG1YTcuTbhVl0AlavcxytCMACUEGOkhQ1hR2subAjLGEdLAkDZj1eEYAAoIfOq/Np0wyJHa25esUiNNUFHawJAY3XAlfGqqbY44xUhGABKSDjo14blzQr5nRmeQ36P1i9rVtCluXsAKlcw4HNlvAowJxgAKlN10Kuta9scqbV1bZtqggRgAO6oC/kcHa/qw8W7f4EQDAAlZk5VQKtaI1rZMrPdMVe2NGp1W0T1VQGHOgOAi9WG/Vrt4HhVE/I71NnkCMEAUIKurA9p+8b2aZ9YVrY0avvGdkXqQg53BgAXi5TpeGXKcV+Kjo4O29nZOdttAIDr3uxNaH93VNv2dCmRzk36/pDfo61r27S6LUIABlBU0d6E9pXYeGWMOWyt7RjzNUIwAJS2C0MpDSaz2nXktB4/eFKneuLveM/ChrA2r1ik9cuaVR30ag5TIADMgoFEWr3xzNTGq+XNqg/5XJ0CQQgGgDLVM5jS/u6o/vQ73dq24TotWTBHXmM0kMwokc4q5PeqJuhT1lode/2Ctu58SX/wsVatao2ooZogDGB2JFMZxQZTslbvGK+MkZpqg0VZBWKiEMwWQgBQos4NJLXlyRf1dHdUkvQbT7zw9ms1Aa/mVgd0fjClgVT2op/74jePak1rRNvvWKp5rA8MYBYZI8lKfk/+z5GNMGxu9i/CEoIBoAT1DKYuCsCXGkhlNZB659eMI57ujkpPSg/c2a65XBEGUCT98bT6EhntfOG0njg0/nSITTcs0oblzaoL+VQbLt6KEKOxOgQAlJhUJqf93dFxA/BUPd0d1b7uqFKZyW9QAYCZivYmtOvIGa166Bk9sPfEmAFYkk71xPXA3hNa9dAz2nXkjKK9iSJ3mkcIBoAS0zOY0tadxxyptXXnMfUMphypBQDjifYltOVbR3XPU8emtDKEJCXSOd3z1DFt+dZRRfuKH4QJwQBQQrLZnHYfPTPlk8hkEul8vWyWq8EA3BHtTWjLjqM6cDw2rZ8/cDymLTuKH4QJwQBQQnqGUnrs+dccrfnY86+pZ4irwQCc1x9Pa193dNoBeMSB4zHt64pqIJF2qLPJEYIBoIRkcnbceXTTdaonrkwJ3IkN4PLTl8ho254uR2pt29Ol3njGkVpTQQgGgBLSn3DnBDDgUl0AlSuZyq8C4eT0rV1HTiuZKs54RQgGgBKSTGcnf9N06rJCBACHxQZTeuLQSUdrPn7wpGJFupmXEAwAJSTod2cHpYCP4R6As6yVK9O3irWZMaMiAJSQ2pA7exi5VRdA5XJrmtVAkukQAFBxfB6jhQ1hR2subAjL5zGO1gSAuEvTtxIu1b0UIRgASkhDVUB33bTY0Zp33bRYDdVBR2sCQNil6Vshnzt1L0UIBoAS4vV6tK59vkJ+Z4bnkD9fz8uVYAAOq3FpmpVbdS9FCAaAEtNQHdC2DUscqbVtwxI1VAccqQUAoxkjV6ZvmSL9zk4IBoASE/B5tKo1ojWtkRnVWdMa0erWCCtDAHBFY3VAm25Y5GjNzSsWqam2ONO3GBkBoAQ1VAe0/Y6l0w7Ca1oj2n7HUs3lKjAAlwQDPm1Y3uzo9K31y5oVYE4wAFS2eTVBffXOdj14Z/uUTzIhv0cP3tmuB+5s17waboYD4K66kE9b17Y5Umvr2jbVh4u3nCMLRwJACWuoDmjD8mb9wjWN2n30jB57/rUxF6df2BDWp29erLVL56uhOsAUCABFURv2a3VrRPuOR3XgeGzadVa2NGp1W0Q1Ib+D3U3M2GJty+Ggjo4O29nZOdttAEBRZbM59QyllMlZDSQySmZyCvo8qgn55PMYNVQHWQUCwKyI9iW0ZcfRaQXhlS2N2r6xXZG6kON9GWMOW2s7xnqNK8EAUCa8Xo8aa4dPEvWz2wsAjBapC2n7x9u1rzuqbXu6lEjnJv2ZkN+jrWvbtLot4koAngwhGAAAADMWqQ9pw/L5uvXaJu06clqPHzw57vStzSsWaf3yZrP0esAAACAASURBVNWHfEWdAjEaIRgAAACOqAn5VRPy67M3L9Zty+bLWmkgmVEinVXI71VN0CdjpKbaYNFWgRgPd04AAADAFcZIspLfk/9zZCMMm5v9e9K4EgwAAABH9MfT6ktktPOF03ri0PjTITbdsEgbljerLuRTbXh2pkOwOgQAAABmLNqbmN6Nca0RRerduTGO1SEAAADgmmhfQlu+VdgSaYl0Tvc8dUz7jkddWyJtIswJBgAAwLRFe6e/RrAkHTge05YdRxXtSzjc2cQIwQAAAJiW/nha+7pntluclA/C+7qiGkikHepscoRgAAAATEtfIqNte7ocqbVtT5d64xlHak0FIRgAAAAFS6byq0BM5Sa4qUikc9p15LSSqeIEYUIwAAAAChYbTOmJQycdrfn4wZOKDaYcrTkeQjAAAAAKZq3GXAd4Jk71xFWs1XsJwQAAACjYQMKdaQsDSaZDAAAAoETF01lX6iZcqnspQjAAAAAKFvZ7Xakb8rlT91KEYAAAABSsJuTOxsNu1b0UIRgAAAAFM0Za2BB2tObChrCMcbTkuAjBAAAAKFhjdUCbbljkaM3NKxapqTboaM3xEIIBAABQsGDApw3LmxXyOxMnQ36P1i9rVoA5wQAAAChldSGftq5tc6TW1rVtqg8XZz6wRAgGAADANNWG/VrdGtHKlsYZ1VnZ0qjVbRHVhPwOdTY5QjAAAACmLVIf0vaN7dMOwitbGrV9Y7sidSGHO5sYIRgAAAAzEqkLafvH23X/7UumPEc45Pfo/tuXzEoAlqTiTbwAAADAZStSH9KG5fN167VN2nXktB4/eFKneuLveN/ChrA2r1ik9cubVR/yFXUKxGiEYAAAADiiJuRXTcivz968WLctmy9rpYFkRol0ViG/VzVBn4yRmmqDRVsFYjyEYAAAADgqGPBpQaC0YyZzggEAAFBxCMEAAACoOIRgAAAAVBxCMAAAACoOIRgAAAAVhxAMAACAikMIBgAAQMUhBAMAAKDiEIIBAABQcQjBAAAAqDiEYAAAAFQcQjAAAAAqDiEYAAAAFYcQDAAAgIpDCAYAAEDFIQQDAACg4hCCAQAAUHEIwQAAAKg4hGAAAABUHEIwAAAAKo7rIdgY8xFjzAljzCvGmC3jvOeXjTFdxpiXjDGPu90TAAAAKpvPzeLGGK+kRyStkfS6pEPGmF3W2q5R77lG0u9LusVae94Y0+RmTwAAAMCUrgQbY3yj/r7GGNNhjGmYwo+ukPSKtfZVa21K0j9K2nDJez4v6RFr7XlJstaenVrrAAAAwPRMGoKNMZ+WFDXGvGyM+aiko5K+KumIMWbTJD/eLOnUqMevDz832nslvdcY85wx5gfGmI+M08cXjDGdxpjOWCw2WdsAAADAuKYyHeL3JF0rqVbSEUnvs9b+2BgTkfS0pCcc6OEaSbdKWiDpe8aYpdbaC6PfZK19VNKjktTR0WFn+M8EAABABZvKdIistfYta+1PJA1Ya38sSdba6BR+9rSkhaMeLxh+brTXJe2y1qaH/xkvKx+KAQAAAFdMJQSfNMZ8xRjz3yUdN8b8mTHmFmPMH0p6Y5KfPSTpGmPMu4wxAUmfkLTrkvc8pfxVYBljrlB+esSrhfxLAAAAAIWYSgj+pKQ+5a/Yrpf0feVXc2iS9OmJftBam5H0G5L2SuqW9A1r7UvGmPuMMeuH37ZX0jljTJekA5K+aK09N41/FwAAAGBKjLXOTK81xvyltfY3HSk2iY6ODtvZ2VmMfxQAAADKlDHmsLW2Y6zXnNws4xYHawEAAACuYdtkAAAAVBxCMAAAACqOkyHYOFgLAAAAcM2UQ7AxZukkb/nzGfYCAAAAFEUhV4L/yhhz0Bjza8aY+ktftNZ+zbm2AAAAAPdMOQRba39B0q8qvwPcYWPM48aYNa51BgAAALikoDnB1tofSfqypC9J+pCkvzDGHDfGbHSjOQAAAMANhcwJbjfGPKz8zm+/KOk2a23r8N8/7FJ/AAAAgON8Bbz3LyX9D0l/YK2NjzxprT1jjPmy450BAAAALikkBK+VFLfWZiXJGOORFLLWDllrv+5KdwAAAIALCpkTvE9SeNTjquHnAAAAgLJSSAgOWWsHRh4M/32V8y0BAAAA7iokBA8aY64feWCM+XlJ8QneDwAAAJSkQuYE/46kfzLGnFF+i+QrJf2KK10BAAAALppyCLbWHjLGtEi6dvipE9batDttAQAAAO4p5EqwJN0gafHwz11vjJG19h8c7woAAABw0ZRDsDHm65LeI+kFSdnhp60kQjAAAADKSiFXgjsktVlrrVvNAAAAAMVQyOoQx5S/GQ4AAAAoa4VcCb5CUpcx5qCk5MiT1tr1jncFAAAAuKiQEPxHbjUBAAAAFFMhS6Q9a4y5WtI11tp9xpgqSV73WgMAAADcMeU5wcaYz0v6pqS/Hn6qWdJTbjQFAAAAuKmQG+N+XdItkvokyVr7I0lNbjQFAAAAuKmQEJy01qZGHhhjfMqvEwwAAACUlUJC8LPGmD+QFDbGrJH0T5K+7U5bAAAAgHsKCcFbJMUkvSjpP0n6jrX2Hle6AgAAAFxUyBJpv2mt/XNJfzPyhDHmt4efAwAAAMpGIVeC7xrjuU871AcAAABQNJNeCTbGbJK0WdK7jDG7Rr1UK6nHrcYAAAAAt0xlOsT3Jb2h/LbJfzbq+X5JR91oCgAAAHDTpCHYWvtTST+VdJP77QAAAADuK2THuI3GmB8ZY3qNMX3GmH5jTJ+bzQEAAABuKGR1iAck3Wat7XarGQAAAKAYClkdIkoABgAAwOWgkCvBncaY/y3pKUnJkSettTsc7woAAABwUSEhuE7SkKRfGvWclUQIBgAAQFmZcgi21n7GzUYAAACAYilkdYj3GmP2G2OODT9uN8Z82b3WAAAAAHcUcmPc30j6fUlpSbLWHpX0CTeaAgAAANxUSAiustYevOS5jJPNAAAAAMVQSAh+yxjzHuVvhpMx5k7lt1MGAAAAykohq0P8uqRHJbUYY05L+omkT7rSFQAAAOCiQlaHeFXSamNMtSSPtbbfvbYAAAAA9xSyOsRvG2NG1gp+2BjzQ2PML032cwAAAECpKWRO8GettX3Kb5YxT9KnJG13pSsAAADARYWEYDP858ck/YO19qVRzwEAAABlo5AQfNgY813lQ/BeY0ytpJw7bQEAAADuKWR1iM9JWi7pVWvtkDFmniS2UgYAAEDZmTQEG2NarLXHlQ/AkvRuY5gFAQAAgPI1lSvBd0v6gqQ/G+M1K+kXHe0IAAAAcNmkIdha+4XhP1e63w4AAADgvkLWCf5/hm+GkzHmy8aYHcaY97nXGgAAAOCOQlaH2Gqt7TfGfEDSakl/K+n/c6ctAAAAwD2FhODs8J9rJT1qrd0jKeB8SwAAAIC7CgnBp40xfy3pVyR9xxgTLPDnAQAAgJJQSIj9ZUl7JX3YWntBUoOkL7rSFQAAAOCiKYdga+2QpJ2SBo0xiyT5JR13qzEAAADALVPeMc4Y85uS/lBSVD/bLtlKanehLwAAAMA1hWyb/NuSrrXWnnOrGQAAAKAYCpkTfEpSr1uNAAAAAMVSyJXgVyU9Y4zZIyk58qS19iHHuwIAAABcVEgIPjn8V0CsDwwAAIAyNuUQbK39Y0kyxtQMPx5wqykAAADATVOeE2yMWWKM+XdJL0l6yRhz2BhznXutAQAAAO4o5Ma4RyXdba292lp7taTfk/Q37rQFAAAAuKeQEFxtrT0w8sBa+4ykasc7AgAAAFxW0OoQxpitkr4+/PiTyq8YAQAAAJSVQq4Ef1ZSo6Qdkp6UdMXwcwAAAEBZKWR1iPOSfsvFXgAAAICiKGR1iKeNMXNGPZ5rjNnrTlsAAACAewqZDnGFtfbCyIPhK8NNzrcEAAAAuKuQEJwzxiwaeWCMuVqSdb4lAAAAwF2FrA5xj6T/a4x5VpKR9AuSvuBKVwAAAICLCrkx7v8YY66XdOPwU79jrX1r5HVjzHXW2pecbhAAAABwWiFXgjUceneP8/LXJV0/444AAAAAlxUyJ3gyZswnjfmIMeaEMeYVY8yWcX/YmDuMMdYY0+FgTwAAAMA7OBmC33GTnDHGK+kRSR+V1CZpkzGmbYz31Ur6bUn/5mA/AAAAwJicDMFjWSHpFWvtq9balKR/lLRhjPdtk/RVSQmX+wEAAAAcDcGpMZ5rlnRq1OPXh5972/DNdguttXsmKm6M+YIxptMY0xmLxWbcLAAAACpXQTfGGWPaJS0e/XPW2h3Df944zo9NVM8j6SFJn57svdbaRyU9KkkdHR2sTwwAAIBpm3IINsb8naR2SS9Jyg0/bSXtmODHTktaOOrxguHnRtRKWiLpGWOMJF0paZcxZr21tnOqvQEAAACFKORK8I3W2nfc1DaJQ5KuMca8S/nw+wlJm0detNb2Srpi5LEx5hlJ/5kADAAAADcVMif4+bFWdpiItTYj6Tck7ZXULekb1tqXjDH3GWPWF1ILAAAAcEohV4L/Qfkg/KakpPLrAltrbftEP2St/Y6k71zy3L3jvPfWAvoBAAAApqWQEPy3kj4l6UX9bE4wAAAAUHYKCcExa+0u1zoBAAAAiqSQEPzvxpjHJX1b+ekQkn62RBoAAABQLgoJwWHlw+8vjXpusiXSAAAAgJIz5RBsrf2Mm40AAAAAxVLIZhkhSZ+TdJ2k0Mjz1trPutAXAAAA4JpC1gn+uvI7un1Y0rPK7/7W70ZTAAAAgJsKCcE/Z63dKmnQWvuYpLWS3u9OWwAAAIB7CgnB6eE/Lxhjlkiql9TkfEsAAACAuwpZHeJRY8xcSVsl7ZJUI2nMnd8AAACAUlbI6hD/Y/hvn5X0bnfaAQAAANw35ekQxpiIMeZvjTH/PPy4zRjzOfdaAwAAANxRyJzgr0naK2n+8OOXJf2O0w0BAAAAbiskBF9hrf2GpJwkWWszkrKudAUAAAC4qJAQPGiMmaf8VskyxtwoqdeVrgAAAAAXFbI6xN3KrwrxbmPMc5IaJd3pSlcAAACAiwoJwV2SviVpSPmd4p5Sfl4wAAAAUFYKmQ7xD5JaJP2ppL+U9F7lt1IGAAAAykohV4KXWGvbRj0+YIzpcrohAAAAwG2FhOAfGmNutNb+QJKMMe+X1OlOW6Uhnkzr3FB+t+j+eEbxdFZhv1e14fx/tnlVfoWD/tlsEXiHdDqr2GBSOSv1J0Z9bkM+eYzUWB2U3++d7TYxDclURrHBlKSxx6TG6oCCgUKGdQCoXJOOlsaYF5VfEcIv6fvGmJPDj6+WdNzd9mbH+aGUhpJZ7XzhtJ44dFKneuLveM/ChrA23bBIG5Y3qyro1dyqwCx0CvzMUDKj8/F0/nN7cILP7Yr853Zu2K+qIIGpHPTH0+pLZKY8JtWFfKoN8ws6AEzEWGsnfoMxV0/0urX2p452NAUdHR22s9Odi9Bv9ia0vzuqbXu6lEjnJn1/yO/R1rVtWtUa0ZX1IVd6AiZzti+hfd1R3bd76p/be9e1aXVrRE11fG5LWbQ3f2wLHZNWt0YUYUwCUOGMMYettR1jvjZZCC5FboXgaF9CW3Yc1YHjsYJ/dmVLo7ZvbFeEQIEiO9uX0Jdm8Ln96sZ2gnCJYkwCgJmZKAQXsjrEZe3N3umfbCTpwPGYtuw4qmhfwuHOgPHNJABL+c/tl3Yc1Vk+tyUnypgEAK4iBCs/B3h/d3TaJ5sRB47HtK8rqgtDKYc6A8Y3lMxon1Of2+6ohlIZhzrDTPXH084d266oBhJphzoDgMsHIVjSUDKrbXucWe1t254uDSazjtQCJnI+ntZ9u5353N63u0vnhwhKpaIvkXF0TOqN8wsOAFyq4kNwPJm/m34qN5xMRSKd064jpxVPEijgnnQ66/zn9oXTSqf5BW62JVMZV8akJFf6AeAiFR+Czw2l9cShk47WfPzgybfXFwbcEBtM6omDzn9uY4NJR2uicLHBlCtj0sj6wgCAvIoPwdZqzDU3Z+JUT1xluOgGykjOpc9tjs/trGNMAoDiqPgQPJBw5yvCgSRfPcI9/S59bt2qi6ljTAKA4qj4EBx3aQ5kgrmVcBGf28sXxxYAiqPiQ3DY73WlbsjnTl1AcvFz61JdTB1jEgAUR8WH4JqQr6zqApJU69Lny626mDrGJAAojooPwcZICxvCjtZc2BCWMY6WBC7icelz6+FzO+sYkwCgOCo+BM+r8mvTDYscrbl5xSI11gQdrQmM1lgd1KYVLnxua0OO1kThGqsDroxJTbWMSQAwWsWH4HDQrw3LmxXyO/OfIuT3aP2yZgWZWwkX+f1e5z+3y5vl91b8kDDrggGfK2NSgDnBAHARzniSqoJebV3b5kitrWvbVB3kZAP3zQ37de86Zz63965r09wqvyO1MHN1IZ+jY1J9mPnAAHApQrCkuVUBrWqNaGVL44zqrGxp1Oq2iOZUBRzqDBhfVdCn1U59blsjqgoQlEpFbdjv3LFti6gmxC84AHApQvCwK+tD2r6xfdonnZUtjdq+sV2ROuZUonia6kL66gw/t1/d2K4mPrclJ8KYBACuMrYM99Ls6OiwnZ2drtR+szeh/d1RbdvTpUQ6N+n7Q36Ptq5t0+q2CCcbzJqzfQnt647qvt1T/9zeu65Nq1sjBOASF+3NH1vGJAAonDHmsLW2Y8zXCMHvdGEopcFkVruOnNbjB0/qVE/8He9Z2BDW5hWLtH55s6oDXqZAYNYNpTI6P5TWrhcm/tz+6vDndk6VnykQZWIgkVZvPDPlMak+5GMKBACIEDxt8WRa54bSslYaSGaUSGcV8ntVE/TJGKmxJsgqECg56XRWscGkclbqT2SUTGcV9HtVG/LJY6TG2hCrQJSpZCqj2GDq7TEpl8vK4/nZmNRUG2QVCAAYZaIQzGWgCYSDfi0IcjUF5cXjMfJ7PcrkrLweI7/XyOvJ/+XzGG4EuAwYI8lKyYwU9uvtjTBsrvwuagDAbCEEA5eJVCannsGUdh89o8eef23cr8zvummx1rXPV0N1QAEfkbgc9MfT6ktktPOF03ri0PjTITbdsEgbljerLuRTbZhf4AFgIkyHAC4DPYMp7e+OauvOY1O+eWrbhiVa1RpRQzXz2UvZtG+Ma40oUs+NcQAqG3OCgcvYuYGktjz5op7ujhb8s2taI9p+x1LNY5vvkhTtS2jLjqM6cDxW8M+yRBoATByC+S4UKGM9g6lpB2BJero7qi1PvqjzgymHO8NMRXunH4Al6cDxmLbsOKpoX8LhzgDg8kAIBspUKpPT/u7otAPwiKe7o9rXHVUqM/lX7SiO/nha+7qj0w7AIw4cj2lfV1QDibRDnQHA5YMQDJSpnsGUtu485kitrTuPqYerwSWjL5HRtj1djtTatqdLvfGMI7UA4HJCCAbKUDab0+6jZ6Z0o9RUJNL5etksV4NnWzKVXwXCyWO768hpJVMEYQAYjRAMlKGeoZQee/41R2s+9vxr6hniavBsiw2m9MShk47WfPzgScW40g8AFyEEA2Uok7NjrhU7E6d64sqw2cKss1auHNsyXAgIAFxFCAbKUH/Cna+2B1yqi6lz6xgMJDm2ADAaIRgoQ8l01p26rBAx6+IuHduES3UBoFwRgoEyFPR7XanLNsqzL+zSsQ353KkLAOWKMx5QhmpDvrKqi6mrcekYuFUXAMoVIRgoQz6P0cKGsKM1FzaE5fMYR2uicMbIlWNrOLQAcBFCMFCGGqoCuuumxY7WvOumxWqoDjpaE4VrrA5o0w2LHK25ecUiNdVybAFgNEIwUIa8Xo/Wtc9XyO/M/8Ihf76elyvBsy4Y8GnD8mZHj+36Zc0KMCcYAC5CCAbKVEN1QNs2LHGk1rYNS9RQHXCkFmauLuTT1rVtjtTaurZN9WHmAwPApQjBQJkK+Dxa1RrRmtbIjOqsaY1odWuElSFKSG3Yr9WtEa1saZxRnZUtjVrdFlFNyO9QZwBw+eCsB5SxhuqAtt+xdNpBeE1rRNvvWKq5XAUuOZH6kLZvbJ92EF7Z0qjtG9sVqQs53BkAXB6MLcO9NDs6OmxnZ+dstwGUjJ7BlPZ3R7V15zEl0pNveBHye7RtwxKtbo0QgEtctDehfd1RbdvTNeVju3Vtm1a3RQjAACqeMeawtbZjzNcIwcDlIZXJqWcwpd1Hz+ix51/TqZ74O96zsCGsT9+8WGuXzldDdYApEGViIJFWbzyjXUdO6/GDJ8c9tptXLNL65c2qD/mYAgEAIgQDFSWbzalnKKVMzmogkVE6m5Pf61FNyCefx6ihOsgqEGUqmcooNpiStdJAMqNEOquQ36uaoE/GSE21QVaBAIBRJgrB3DIMXMaspGzO6qJcZK0kQnA58nk9Cvo8yuSsvB6jsN/I4zHyeY18HiMvO2IAwJQRgoHLxFSnQ9x102Kta2c6RDnh2AKA85gOAVwGpntj3KrWCOsDlziOLQBMH3OCgcvYuYGktjz5op7ujhb8syNLpM2rYUvdUsSxBYCZmSgE830ZUMZ6BlPTDkmS9HR3VFuefFHnB1MOd4aZ4tgCgLsIwUCZSmVy2t8dnXZIGvF0d1T7uqNKZSb/qh3FwbEFAPcRgoEy1TOY0tadxxyptXXnMfVwxbBkcGwBwH2EYKAMZbM57T56Zko3Sk1FIp2vl81yxXC2cWwBoDgIwUAZ6hlK6bHnX3O05mPPv6aeIa4YzjaOLQAUByEYKEOZnB1zrdiZONUTVyZXfqvFXG44tgBQHIRgoAz1JzKu1B1wqS6mjmMLAMVBCAbKUDKddacuqwjMOo4tABSH6yHYGPMRY8wJY8wrxpgtY7x+tzGmyxhz1Biz3xhztds9AeUu6Pe6UpetdmcfxxYAisPVUdEY45X0iKSPSmqTtMkY03bJ2/5dUoe1tl3SNyU94GZPwOWgNuQrq7qYOo4tABSH25cGVkh6xVr7qrU2JekfJW0Y/QZr7QFr7dDwwx9IWuByT0DZ83mMFjaEHa25sCEsn8c4WhOF49gCQHG4HYKbJZ0a9fj14efG8zlJ/zzWC8aYLxhjOo0xnbFYzMEWgfLTUBXQXTctdrTmXTctVkN10NGaKBzHFgCKo2QmiRljPimpQ9KDY71urX3UWtthre1obGwsbnNAifF6PVrXPl8hvzP/C4f8+XperhbOOo4tABSH2yH4tKSFox4vGH7uIsaY1ZLukbTeWpt0uSfgstBQHdC2DUscqbVtwxI1VAccqYWZ49gCgPvcDsGHJF1jjHmXMSYg6ROSdo1+gzHmfZL+WvkAfNblfoDLRsDn0arWiNa0RmZUZ01rRKtbI6weUEI4tgDgPldHRmttRtJvSNorqVvSN6y1Lxlj7jPGrB9+24OSaiT9kzHmBWPMrnHKAbhEQ3VA2+9YOu2wtKY1ou13LNVcrhSWHI4tALjLWFt+W2l2dHTYzs7O2W4DKBk9gynt745q685jSqQn3xQh5Pdo24YlWt0aISSVOI4tAEyfMeawtbZjzNcIwcDlIZXJqWcwpd1Hz+ix51/TqZ64fB6jgM+jVCanTM5qYUNYn755sdYuna+G6gBfk5eJsY5tyOdRTcingURGiUyOYwsAYyAEAxUknkzr3FBaktQfzyiezirs96o2nN8s4Yoqv0JB/2y2iGlKpjKKDaYkjX1sG2sCCvrZFAPA7Jt0vKoOKBhwf7yaKAQzWgKXid6hlAaSWe184bSeOHRSp3ri73jPwoawNt2wSBuWN6sm6FV9FV+Xl4OhZEbn4+n8sT04wbFdkT+2c8N+VQUZ3gEUX388rb5EZsrnorqQT7Xh2bkww5Vg4DLwZm9C+7uj2rana8rzRreubdOq1oiurA8VoUNM19m+hPZ1R3Xf7qkf23vXtWl1a0RNdRxbAMUT7c2PV4Wei1a3RhRx6VzEdAjgMhbtS2jLjqM6cLzwnRRXtjRq+8Z2RQhLJelsX0JfmsGx/erGdoIwgKIo1XPRRCGYOyeAMvZm7/QHHUk6cDymLTuOKtqXcLgzzNRMArCUP7Zf2nFUZzm2AFwWLdNzESEYKFO9Q/mls6Y76Iw4cDymfV1R9cVTDnWGmRpKZrTPqWPbHdVQKuNQZwBwsf542rnxqiuqgUTaoc4mRwgGytRAMqtte7ocqbVtT5f6E1lHamHmzsfTum+3M8f2vt1dOj9UvJMKgMrSl8g4ei7qjRfvl3ZCMFCGEsn8SgFTufFgSvXSOe06clqJJGFptqXTWeeP7QunlU7zSw4AZyVTGVfORckifXtFCAbK0FtDaT1x6KSjNR8/eFJvccVw1sUGk3rioPPHNjaYdLQmAMQGU66ci0bWF3YbIRgoQ9ZqzLUXZ+JUT1xluFjMZSfn0rHNcWwBOKzcz0WEYKAMDSTc+apoIMkNVLOt36Vj61ZdAJWr3M9FhGCgDMVdmt+ZYN7orOPYAigX5T5eEYKBMhT2e12pG/K5UxdT59qxdakugMpV7uciQjBQhmpCvrKqi6mrdekYuFUXQOUq93MRIRgoQ8ZICxvCjtZc2BCWMY6WxDR4XDq2Ho4tAIeV+7mIEAyUoSuq/Np0wyJHa25esUiNNUFHa6JwjdVBbVrhwrGtDTlaEwAaqwOunIuaaotzLiIEA2UoFPRrw/JmhfzO/C8c8nu0flmzgswbnXV+v9f5Y7u8WX4vwz0AZwUDPlfORQHmBAOYSE3Qq61r2xyptXVtm2pDBOBSMTfs173rnDm2965r09wqvyO1AOBSdSGfo+ei+nDx7l8gBANlqr4qoFWtEa1saZxRnZUtjVrdFlFdOOBQZ5ipqqBPq506tq0RVQW4KQ7A/9/e3QfHdZV3HP892l3t6sVWIqNsiGLjQAKWJnEElV0ClImx0yE4Y6WGFmw6BIZCXynQ0o7bjum0nsw405e0DAyFBpq0QwxMcLEbd6CxcQcG0tgKOI4jGUhDcCKwIqxEtiXti6Snf+xNrCqSLEv3anV3v58Zj7X33n32jM49/+kUdgAAE+xJREFU5z46e+650VhWlwqvv2rPqjGzeH+0kwQDMXZlU0a7t66dd+ezYU2Ldm9dq+xy5osuNVcsz+iuBdbtXVvX6grqFkDEsjG9FpnH8DmpnZ2d3t3dXe5iAEvG6aGcDvX2a9eBHuWKExc9PpOq0c7N7drUniUBXuKeO5vTwd5+/fWDc6/bT97Wrk1tWRJgAIuqf6jUXy2la5GZPerundPuIwkGKsPZ0YLO5ca1/7E+3X/k1LTPc1/ZXKft61dpS0erlqUTTIGIiZHCmJ4fKWr/sdnr9r1B3V5Wn2IKBICyOJ8ramh0bM7XoqZMMtIpECTBQBXJ5Yv6xUhR7qXnrxfGxlWbTKgxnZSZ1NKYZhWImCoWxzUwnNeES+dyY8oVx5VJJbQsk1SNSS3LMqwCAWBJyBfGNDBceOlaVGPjmvAL16IrlqUXZRWI2ZJghgqACpNKJpROjmtswpWoMdWYKVFjSiZMyZrSP8RTKpXQVZfVl7sYAHBRE8Egq5kkl4YLUl1KLz0IY3x8QlqkpdBmQhIMVIjC2IQGhwt68PjPdN/DT8/4FdQdN63WbWuvUnNDrWqTjBoCAMLz/EhBI/lx7TvWpz1HZ54OsW3dKnV1tKo+ndDl9eWZmsd0CKACDA4XdKi3Xzv3nZjzzQi7uq7XxrasmhuYFwwAWLj53qS9sS2rK5u4MW5OSIKBC86cz2vH1x7XQ739l/zeW9qy2v3OG7SCxyUDABag/2xOO/Ye1+GTA5f83iiXSJstCea7UCDGBocL806AJemh3n7t+Nrjen64EHLJAADV4vTQ/BNgSTp8ckA79h5X/9lcyCWbHUkwEFOFsQkd6u2fdwL8ood6+3Wwt1+FsYt/dQUAwGTPj5Sm4803AX7R4ZMDOtjTrxdGFm9QhiQYiKnB4YJ27jsRSqyd+05okNFgAMAlGsmPa9eBnlBi7TrQo+H8eCix5oIkGIih8fEJPXj8Z3O68WAucsVSvPFxRoMBAHMzmi9q37G+UK9F+x/r02i+GEq8iyEJBmJocKSg+x5+OtSY9z38tAYX8WsoAEC8nRkpas/RU6HGvP/IKZ0ZIQkGMIOxCZ927cWFeGZwVGMT8VstBgBQHu6K5Fq0WAuXkQQDMXQuNxZJ3PMRxQUAVJ6orhnn84tzLSIJBmIoX4zmxoE8K0QAAOZoNKJrUS6iuFORBAMxlE5F87x1HqMMAJiruoiuRZlkNHGn4ooHxNCyTDJWcQEAlacxomtGVHGnIgkGYihZY1rZXBdqzJXNdUrWWKgxAQCVy0yRXItskS5FJMFADDXX1+qOm1aHGvOOm1aruSEdakwAQOVaUZ/StnWrQo25ff0qtTQuzrWIJBiIoUSiRretvUqZVDhNOJMqxUswEgwAmKO6dEpdHa2hXou23Nga2X0vU5EEAzHV3FCrXV3XhxJrV9f1am6oDSUWAKB61KcT2rm5PZRYOze3qyG9OAmwRBIMxFZtskYb27K6pS27oDi3tGW1qS3LyhAAgEt2eX2tNrZltWFNy4LibFjTok3tWV1Wv3gDMlz1gBhrbqjV7nfeMO9E+Ja2rHa/8wZdzigwAGCermzKaPfWtfNOhDesadHurWuVXZ4JuWSzM1+sZ9OFqLOz07u7u8tdDGDJGBwu6FBvv3buO6Fc8eIPvMikarSr63ptasuSAAMAQnF6KKdDvf3adaBnzteinZvbtak9G1kCbGaPunvntPtIgoHKUBib0OBwQQ8e/5nue/jpaZ/nvrK5Tu9/02ptvuEqNTfUMgUCABCqF0YKGs6Pa/9jfbr/yKkZr0Xb16/Slo5WNdQmIp0CQRIMVJHx8QkNjhQ0NuE6nxtTfmxC6WSNGjNJJWtMzQ1pVoEAAERqNF/UmZGi3KXz+THliuPKpBJqTCdlJrU0phdlFYjZkmAeDzWLfGFMA8MFSdK50TGNFsdVl0poWV3p19bSUKt0Lb9CLC2JRI1algVfKzWVtywAgOpUl07p6nSq3MWYFRncNM6NFnU2N6Z9x/q05+jMQ/nb1q1SV0erlmeSWla3tCsaAAAAFzAdYor+oZwOzmdSd1tW2abFvasRAAAAM2M6xBz1n81px78f1+GTA3N+T644ob/4+gkdPNlfluU9AAAAcOm4NTzQP5TTjr2XlgBPdvjkgHbsPa7+s7mQSwYAAICwkQSrNAf4YG//vBPgFx0+OaCDPf06nyuGVDIAAABEgSRY0tncmHYd6Akl1q4DPRoaHQslFgAAAKJR9UlwvlBaBWIuN8HNRa44of2P9SlfIBEGAABYqqo+CR4YLmjP0VOhxrz/yKmX1hcGAADA0lP1SbC7pl0HeCGeGRxVDFeeAwAAqBpVnwSfz0UzbeF8nukQAAAAS1XVJ8GjxfFI4uYiigsAAICFq/okuC6ViCRuJhlNXAAAACxc1SfBjZloHpoXVVwAAAAsXNUnwWbSyua6UGOubK6TWaghAQAAEKKqT4JbGmq1bd2qUGNuX79KVyxLhxoTAAAA4an6JDhdm1RXR6syqXB+FZlUjbbc2Kpa5gQDAAAsWVWfBEvS8kxSOze3hxJr5+Z2NdUxHxgAAGApIwmWtKwupU1tWW1Y07KgOBvWtGhTe1aNmVRIJQMAAEAUSIID2aaMdm9dO+9EeMOaFu3eulbZ5ZmQSwYAAICwkQRPkl2e0e5fW6s7b79+znOEM6ka3Xn79STAAAAAMcLk1SmyTRl1dVylm193hfY/1qf7j5zSM4OjevNrmrXhtSt0+Edn9N3/HdTK5jptX79KWzpa1ZRJMgUCAAAgRszdy12GS9bZ2end3d2Rf85ovqgzI0VJ0rnRMY0Wx1WXSmhZcOPbivqU6tIkv1haOG8rF3ULIC6WSn9lZo+6e+d0+xgJnsbzIwWN5Me171if9hwtjQRPtbK5TtvWrVJXR6vq0wldXl9bhpICF3DeVi7qFkBcxKm/YiR4itNDOR3q7deuAz3KFScuenwmVaOdm9u1sS2rK5uYE4zy4LytXNQtgLhYiv3VbCPBJMGT9J/Nacfe4zp8cuCS38vqECgXztvKRd0CiIul2l/NlgSzOkTg9ND8K0+SDp8c0I69x9V/NhdyyYCZcd5WLuoWQFzEtb8iCVZp/sqh3v55V96LDp8c0MGefr0wUgipZMDMOG8rF3ULIC7i3F+RBEsayY9r14GeUGLtOtCj4fx4KLGA2XDeVi7qFkBcxLm/qvokeDRf1L5jfXOawD0XueKE9j/Wp9F8MZR4wHQ4bysXdQsgLuLeX0WeBJvZ283sh2b2pJntmGZ/2sy+Eux/xMxWR12myc6MFLXn6KlQY95/5NRLa+MBUeC8rVzULYC4iHt/FWkSbGYJSZ+RdKukdknbzKx9ymEflPS8u18r6W5Jd0VZpqncNe0adgvxzOCoYrjoBmKE87ZyUbcA4iLu/VXUI8HrJT3p7k+5e0HSlyV1TTmmS9J9wc8PSNpoZhZxuV5yPjcWTdx8NHEBifO2klG3AOIi7v1V1Elwq6RnJr1+Ntg27THuPiZpSNKKqYHM7MNm1m1m3QMDC7sDcbLRYjQTsHMRxQUkzttKRt0CiIu491exuTHO3T/v7p3u3tnS0hJa3LpUIrRYk2WS0cQFJM7bSkbdAoiLuPdXUSfBfZJWTnp9dbBt2mPMLCmpSdKZiMv1ksZMMlZxAYnztpJRtwDiIu79VdRJ8FFJ15nZNWZWK+k9kvZPOWa/pDuCn98l6Vu+iM9yNpNWNteFGnNlc50Wb1YzqhHnbeWibgHERdz7q0iT4GCO7x9I+qakXklfdfcnzOyvzWxLcNgXJK0wsycl/ZGkly2jFqUV9SltW7cq1Jjb169SS2M61JjAZJy3lYu6BRAXce+vIp8T7O7/6e6vdffXuPudwbZPuvv+4Oecu/+6u1/r7uvd/amoyzRZXTqlro5WZVLh/CoyqRptubFV6YjmyQAS520lo24BxEXc+6vY3BgXpfp0Qjs3T12+eH52bm5XQ5qLDaLHeVu5qFsAcRHn/ookWNLl9bXa2JbVhjULW3Viw5oWbWrP6rL62pBKBsyM87ZyUbcA4iLO/RVJcODKpox2b10770rcsKZFu7euVXZ5JuSSATPjvK1c1C2AuIhrf2WLuBBDaDo7O727uzuS2KeHcjrU269dB3qUK05c9PhMqkY7N7drU3uWiw3KhvO2clG3AOJiKfZXZvaou3dOu48k+OVeGCloOD+u/Y/16f4jp6Z9LvbK5jptX79KWzpa1VCb4OtGlB3nbeWibgHExVLrr0iC52k0X9SZkaLcS8+xzhXHlUkl1JhOykxqaUxzxzWWHM7bykXdAoiLpdJfzZYE8wihWdSlU7o6nSp3MYBLwnlbuahbAHERh/6KG+MAAABQdUiCAQAAUHVIggEAAFB1SIIBAABQdUiCAQAAUHVIggEAAFB1SIIBAABQdUiCAQAAUHVi+cQ4MxuQ9NMIP+IVkn4RYXyUF/Vbuajbykb9Vjbqt7KVq35f5e4t0+2IZRIcNTPrnukRe4g/6rdyUbeVjfqtbNRvZVuK9ct0CAAAAFQdkmAAAABUHZLg6X2+3AVApKjfykXdVjbqt7JRv5VtydUvc4IBAABQdRgJBgAAQNUhCQYAAEDVIQmexMzebmY/NLMnzWxHucuDhTGzlWZ22Mx6zOwJM/tosL3ZzB4ysx8H/19e7rJi/swsYWY/MLMHg9fXmNkjQTv+ipnVlruMmB8zu8zMHjCzk2bWa2Y30X4rh5l9POibT5jZHjPL0H7jy8y+aGbPmdmJSdumba9W8qmgno+b2RvKUWaS4ICZJSR9RtKtktolbTOz9vKWCgs0JumP3b1d0hsl/X5QpzskHXL36yQdCl4jvj4qqXfS67sk3e3u10p6XtIHy1IqhOEfJX3D3ddIulGleqb9VgAza5X0h5I63f16SQlJ7xHtN87ulfT2Kdtmaq+3Srou+PdhSZ9dpDL+PyTBF6yX9KS7P+XuBUlfltRV5jJhAdz95+7+/eDncypdQFtVqtf7gsPuk3R7eUqIhTKzqyVtlnRP8NokvU3SA8Eh1G9MmVmTpLdK+oIkuXvB3V8Q7beSJCXVmVlSUr2kn4v2G1vu/m1Jg1M2z9ReuyT9q5f8j6TLzOyVi1PSC0iCL2iV9Myk188G21ABzGy1pNdLekRS1t1/Huw6LSlbpmJh4f5B0p9Kmgher5D0gruPBa9px/F1jaQBSf8STHe5x8waRPutCO7eJ+lvJZ1SKfkdkvSoaL+VZqb2uiRyLpJgVDwza5T0NUkfc/ezk/d5aY1A1gmMITO7TdJz7v5oucuCSCQlvUHSZ9399ZKGNWXqA+03voK5oV0q/bFzlaQGvfyrdFSQpdheSYIv6JO0ctLrq4NtiDEzS6mUAH/J3fcGm/tf/Nol+P+5cpUPC/JmSVvM7GmVpi+9TaU5pJcFX69KtOM4e1bSs+7+SPD6AZWSYtpvZdgk6SfuPuDuRUl7VWrTtN/KMlN7XRI5F0nwBUclXRfcmVqr0gT9/WUuExYgmB/6BUm97v73k3btl3RH8PMdkvYtdtmwcO7+Z+5+tbuvVqm9fsvd3yvpsKR3BYdRvzHl7qclPWNmrws2bZTUI9pvpTgl6Y1mVh/01S/WL+23sszUXvdLel+wSsQbJQ1NmjaxaHhi3CRm9g6V5hgmJH3R3e8sc5GwAGb2FknfkfS4LswZ/XOV5gV/VdIqST+V9BvuPnUyP2LEzG6W9Al3v83MXq3SyHCzpB9I+k13z5ezfJgfM+tQ6abHWklPSfqASoM3tN8KYGZ/JendKq3k8wNJv6XSvFDabwyZ2R5JN0t6haR+SX8p6euapr0Gf/h8WqUpMCOSPuDu3YteZpJgAAAAVBumQwAAAKDqkAQDAACg6pAEAwAAoOqQBAMAAKDqkAQDAACg6pAEAwAAoOqQBANAGZjZFjPbcfEjX/a+1WZ2IoLy3Gxmb5r0+l4ze9ds7wGAOEte/BAAQNjcfb+W1lMpb5Z0XtL3ylwOAFgUjAQDQMiC0dqTwWjqj8zsS2a2ycy+a2Y/NrP1ZvZ+M/t0cPy9ZvYpM/uemT011xFYM0uY2d+Y2VEzO25mvx1sv9nM/tvMHgjK8aXgCU0ys3cE2x4NPvNBM1st6XckfdzMjpnZrwQf8dapZTKzV5rZt4PjTkw6FgBihSQYAKJxraS/k7Qm+Ldd0lskfUKlx3dP9cpg/22Sds/xMz4oacjd10laJ+lDZnZNsO/1kj4mqV3SqyW92cwykj4n6VZ3/yVJLZLk7k9L+idJd7t7h7t/Z5YybZf0TXfvkHSjpGNzLCsALClMhwCAaPzE3R+XJDN7QtIhd3cze1zS6mmO/7q7T0jqMbPsHD/jVyWtnTRy3CTpOkkFSUfc/dng848Fn3le0lPu/pPg+D2SPjxL/OnKdFTSF80sFewnCQYQS4wEA0A08pN+npj0ekLTD0BMPt7m+Bkm6SPB6G2Hu1/j7v81TbzxGT7zYl5WJnf/tqS3SuqTdK+ZvW8ecQGg7EiCASC+vinpd4NRWZnZa82sYZbjfyjp1cEcYEl696R95yQtu9gHmtmrJPW7+z9LukfSG+ZRbgAoO6ZDAEB83aPSNIfvBze+DUi6faaD3X3UzH5P0jfMbFilqQ0v+g9JD5hZl6SPzPKZN0v6EzMrqjS9gpFgALFk7l7uMgAAFomZNbr7+SBp/oykH7v73eUuFwAsNqZDAEB1+VBwo9wTKt1I97kylwcAyoKRYABYgszsBkn/NmVz3t1/uRzlAYBKQxIMAACAqsN0CAAAAFQdkmAAAABUHZJgAAAAVB2SYAAAAFSd/wMDa7QrLC733wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zedX3//+f7Ol850rRJStOUwixNQgkVQwURaCWIs9hCxa8U55z6k+2m8+ZkX6TKypDOreg2nfvt9/2uzMPkNmAOCtQWh6QWxhTWhlOQJAWs0gMlDU2b43W+3r8/ktS0zelKPp/kuno97rebt/Y6vfKi/fjOs5+8D8ZaKwAAACCfeGa7AQAAAGCmEYIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyjm+2G5iKefPm2cWLF892GwAAAMhizz///DvW2vLRXsvJELx48WI1NzfPdhsAAADIYsaYN8d6jekQAAAAyDuEYAAAAOQdQjAAAADyDiEYAAAAeYcQDAAAgLxDCAYAAEDeIQQDAAAg7xCCAQAAkHdy8rAMAAAAZK9YPKnO/rgkqTeSVCSRUtjvVXF4MHqWFwYUDMxuDCUEAwAAwBG9kYR6okk99tIhPbBnvw50RU57T3VZWOsvWaS1y6tUEvKpOOyfhU4lY62dlS88HQ0NDZZjkwEAALJHR3dUTW0d2rSjVdFEesL3h/webVxdp8baSlWWhlzpyRjzvLW2YbTXuBMMAACAaenoiWrDIy3a1d456c9EE2nd8eiv1NTeoc3r6lVZ4k4QHgsL4wAAADBlHd1RbdiaWQAeaVd7pzZsbVFHT9ThzsZHCAYAAMCU9EYSamrrmHIAHrarvVNNrR3qiyYc6mxihGAAAABMSU80qU07Wh2ptWlHq7ojSUdqTQYhGAAAABmLxQd3gZjMIrjJiCbS2vbyIcXiMxOEXQ3BxpjvG2OOGGN+NcbrxhjzXWPMG8aYFmPMxW72AwAAAGd09sf1wJ79jta8f/f+E/sLu83tO8E/lPShcV7/fUlLhv53i6T/43I/AAAAcIC1GnUf4Ok40BXRTO3e62oIttb+l6Sucd6yVtKP7KDnJJ1ljDnbzZ4AAAAwfX1Rd6Yt9MXOgOkQk1Al6cCIxweHnjuNMeYWY0yzMaa5s3N6KxABAAAwPZFEypW6UZfqnmq2Q/CkWWu3WGsbrLUN5eXls90OAABAXgv7va7UDfncqXuq2Q7BhyRVj3i8cOg5AAAAZLGikDsHD7tV91SzHYK3SfrDoV0iLpXUba09PMs9AQAAYALGSNVlYUdrVpeFZYyjJcfk9hZpD0h6VtJSY8xBY8xnjTF/Yoz5k6G3PC5pn6Q3JN0r6fNu9gMAAABnlBcGtP6SRY7WvHnFIlUUBx2tORZX7zdba9dP8LqV9AU3ewAAAIDzggGf1i6v0nd//rojB2aE/B6tuahKgTyZEwwAAIAcVRLyaePqOkdqbVxdp9LwzMwHlgjBAAAAmKLisF+NtZVaVTO9nbtW1ZSrsa5SRSG/Q51NjBAMAACAKassDWnzuvopB+FVNeXavK5elSUhhzsbHyEYAAAA01JZEtLmG+r1jeuXKeQ/OV5WFgW0YvFZqiwKnPR8yO/RN65fNisBWHJ5YVyuS6XS6hqIK5m26o0mlUim5Pd5VRzyyecxKisIyOvl3xEAAACVpSGtXb5AK5dWKBQwGoilZYzUE0komkgr5PeoJOyXtVJBwKNo0qo05JvRKRAjEYJHEU+m1dUf18sHjsvKal5RULFkWtFESiG/Vz2RhN7pi8lIuqh6jsoKAwr4CMMAACC/JdJWkvTvuw/qgT37daArctp7qsvCWn/JIq1dXnXi/bOBEHyKrv64Wt/qVlHIr7a3e/TwCwfH/Av86MULVVka1htHelW3oFRlhYFRKgIAAJz53u6OamdbhzbtaB13y7QDXRF984m9+u7PX9fG1XW6urZS80tnfjqEGdyqN7c0NDTY5uZmx+se7YvptY5etR7u0bee2HvSX2DI51FRyKe+aFLR5Ijn/R7ddu1S1Z1dovMrizW3aGY2eAYAAMgWHT1Rbdjaol3tnRl/1s2FccaY5621DaO9xp3gIV39cR06FtE//9c+PbW3UwGfR1+59nytrKlQYWAo/A5NhygK+dQfT+rnbUf03Z+/oU3b27RyablubTxfHmM0hzvCAAAgT7zdHdVXH5laAJakXe2d2rC1ZcYXyBGCNTgH+EhPVH/f9Jqe2tupO6+r1TV187W95bD++L7nx5wOcfOKc7Tz1qv0ZOvbunt7myRpw+/XqDDoY44wAAA44x0biGtnW8eUA/CwXe2damrt0Or6s3VWwczcTCSpSTo+ENcvfv2OXj3UrSe/fKXCfp+u+fbTuuc/20cNwNLgfJZ7/rNd13z7aYX9Pj355Sv16qFu/eKNd3R8ID7D/wUAAAAzbyCW0qYdrY7U2rSjVf2xlCO1JiPvQ3AqlVZvLKkf/uI32vr5y7X5p+366iOvTPoM7Ggira8+8oo2/7RdWz9/uX74i9+oN5ZUKjX9M7QBAACyVSSW0GMvHZp0ZppINJHWtpcPKRJLOFJvInkfgo9H4tr+8lv6waffq7u2vaqd7UemVGdn+xHdte1V/eDT79WOlrd0PMLdYAAAcOY6OpDQA3v2O1rz/t37dXSAEDwjBuJpzS8Nqfm3XVMOwMN2th9R85tdqigOaiDOnWAAAHDmslZjThudqgNdEc3UxmV5H4KtrC5/1zzd9ZNXHal317ZX9f4l5bLKva3nAAAAJqsvmnSnbsyduqfK+xAc8Hj0+CuHHZ3P8vgrh+X35P0fLQAAOINFEu4sYou6VPdUeb9FWtJa3ffcm47WvO+5N/XhC892tCYwWYlESp39MaWt1BtNKpZMKejzqjjkk8dI5YVB+f3e2W4TAJDjwi59Lwn5ZuZ7VN6H4FyfzwIMG4gldSyS0Mv7j8njMZpXFFQsmT5xyEt/LKl3+mJKpa2WL5qjOWG/CoJ5PwQAAKaoKOTO9xC36p4q778D9rs076Q/PjPzWQBJOtITVdvhHpUWBPTakT49/MJBHeiKnHbcd3VZWB+9eKGq5hTojY5e1Z5doooZPJ0HAHDmMGbw8DAnbyZWl4VljGPlxpX3Idi1+SzxmdvsGfmtsyeqN4706Y3OPv3Dztf1J1eep3/+5HtOHPc9PB1i5HHff/j9/9GXrl4iv9cjI6mcIAwAyNDcAr/WX7JI33xir2M1b16xSOVFQcfqjSfvV28FXTremGOTMRM6e6J6qzuqLc/sk5G044tXaPHcQu0/OqDO3piORxI6NpDQ8UhCnb0x7T86oHPnFmrHF6+QkbTlmX16qzuqzp7obP+nAAByTDjo19rlVQr5nck8Ib9Hay6qUnCG1q3k/Z3gXJ/Pgvw1EEvqnf64vv/f+3THh2t16FhER/vjJ02HONWJ6RBlBTpvXpGuWFKu//fnr+tPVr5LhSGfCgJctwCAySsIerVxdZ3uePRX0661cXWdCoMzt3A7729XeoxRdVnY0ZrVZWF5ZmpCC/JWbyypF/d36bZra9TZG9Ov3+nTTVue1XeaXh9zftaBroi+0/S6btryrH79Tp86e2O67doavbi/S70u7fcIADhzzSkI6OraSq2qKZ9WnVU15Wqsq9RZBQGHOptY3ofggoBXN1680NGaH3vPQhUE2IIK7kkkUuqNJvXec+fqaH9cW57Zp03b2ya933U0kdam7W3a8sw+He2P673nzVVfNKnEDO3NCAA4c8wvDWnzuvopB+FVNeXavK5elTO8PiXvQ3BpyK/rLlrg6HyW1fULVBqeuX/JIP8cj8bV1RdTPGX17abX9NTezinVeWpvp77d9JriSauj/VEdj8Yd7hQAkA8qS0L6mxvq9Y3rl006U4X8Hn3j+mWzEoAlQrC8Xo9Kgj7ddu1SR+rddu1SlQR98nqYDgH3xJJW1XML9MtfvzPlADzsqb2d+uWv39GiOYWKJdngGgAwNfNLQ1pdf7Z23rpSt39o6ZjTTavLwrr9Q0u1889XanX92bMSgCUWxkmSSgsCuvxd87Ryafm0AsXKpeW6/F3zVDqD81mQn0IBj473J/Uth7al+dYTe7Xy/AqVFjIkAACm7qyCgM4qkP7osnP0kYsWyFqpL5Y8cXBTUdAnY6TyouCM7QIxFr7jaXA7s4rikG5tPF+SphSEVy4t162N56uyOMT2aHBdKmW1o+WtSc8Bnkg0kdaOV97Sxy+pdqQeACC/hYN+LQz6Z7uNcZHWhpQVBlQ1J6w/vvI8bbyuNqP5LBuvq9UfX3mequaENaeQu8BwXzxp9dALBx2t+R/PH1Sc6RAAgDzBneAR5hYFtdQYpdJWD95ymZ7ee0QPjbPf6o0XL9RVSyvUH02oZn4JARgzxlrr6DGV0uD2aVaEYABAfiAEn6KsMKAV585VV39cNfOLdceHazW3KKhEKq1oIq2Q3yO/16OjfTEZI80vCans7BKmQGBG9cbc2dO3L8oWaQCA/EAIHkXA59H80pDKiyrVNRBXMm0H91BNpeX3elQU8mnx3AKVFQbZBQKzIp50Zi7w6XUJwQCA/EAIHkcylVZsKGwkU1bxVFpGg9MlUmmrZDIlL8fMYhaEXVpRG5rllboAAMwUEtwoeiMJ9UST+snLb+nfdr855pzgT6wY3P6jJORTcTi7V0DizFIYdOf/um7VBQAg2/Ad7xQd3VH9vP2Ivr791XG3nzrQFdHm/2zXd3a+pr+87gJ9oKZClaWzs9kz8o/XM/gPMScXx1WXhZneAwDIG6zmGqGjJ6qvPfKKvvrIK5PefzWaSOurj7yirz3yijp6oi53CAwqCHr1yUsXO1rzDy9drMIg0yEAAPmBEDykozuqr219RTvbj0zp8zvbj+hrWwnCmBnFAb9W15896f2sJxLye7T6wrNVlOUbmwMA4BRCsAbnAO/ae2TKAXjYzvYjemrvEfVFEw51BozO6/Uo5DX6+poLHKn39TUXKOAzTIfIcqlUWp29UR3ujui1jl69cvC4Xuvo1eHuiDp7o0ql3Nk1BADORMwJ1uCeq3f95FVHav3ltld1xZJyFYW4owZ3FYcDev+75qmxtkJNbVP/B1xjbYXev2SeSsIc9pKt4sm0uvrj2t7ylv712d+OuVj3U5ct1nX1C1RWGGDvcgCYQN6PkrF4Uttb3pr0HOCJRBNpbW95S7G4O4cZAMMCPo/CAZ/uXrtMjbUVU6rRWFuhu9cuU4HfR2jKUl39cT360iGt/Ntd+qsdbScCsM9jVBDwyjd09/5AV0R/taNNK/92lx596ZC6+uOz2TYAZL28vxP8zkBc9z33pqM173vuTa2+8GxVsYcwXFZWGNDRvpj+YnWdGmsrdddPxt/VZFjI79FdH7lAl543V0GfhyO/s9TRvphuf7hFTW1H5PUYXXtBpT584dmqOiusWDKtaCKlkN+roM+jQ8cj2tFyWDvbj+grD7WosbZC93y0XnOLgrP9nwEAWSnvU5pNy9FtpqTBetY6WhIY09yioIwxWlZVoie/fJV++sph3fc/Y+9v/clLz9HvLztbPZG4SsN+AnCW6uqPnwjAay5aoM9cvlhPvdapv/3ZXh3oisjnMQr4PIon00qmrarLwvroxQv1+ZW/p+//4rfa9vJbuv3hFn3rxov4OwaAUeR9CO6LuTNtoY/pEJhBZYUBFQV96uqP6z3nzNGVS8sV8ns1EEsqmkgr5PeoIOhTNJFSfzQpv9ejJZUlTIHIUvFkWk1tb+vZXx/VP918sd7uiegT3/sfvf9d8/S/P7h03DvB9z6zT7dec76uvWC+vvLQy3qyrUPXL6/i7xoATpH3ITiSSLlSNxp3py4wloDPo/mlIZUXBdQ1EFcybZVIemSM5PN4FPR5VBjwaklFMbtAZLmu/pju+Wm77v1Ug7b81z6VhPz6t8++96Q7wac69U7wM9F3dO+nGvTF+1/QlUvmaX5peBb+SwAge+V9CA66dHeEuy6YLV6vR+XFQ6cXls5uL8hcKpXWT14+rLvXXqgf/fK3+th7qvV2T0Q33fvchKdYfqfpdf3fp3+t265dqvklYf3ol7/V3Wsv1E9aDusz71ssr5dxCQCG5X0ILgq680fgVl0AZ7aj/XEdPD6goN/oD9+3WFv+a5+e2ts56c9HE2lt2t6mlUvLdcuV5+mNI706cGxAR/vjqijhaHcAGJb3Sc0Yo+qysKOL46rLwjKGHzdjdqRS6RPTIXqjSSWSKfl9XhWHfPJ5jMoKAtwRzGKJVFo3LK/S4e5oxgF4pOHPfbyhWvVVZynBQRoAcJK8D8FBv9GNFy/Ut5ted6zmx96z0LVpFsBYhg9UaDlwXGlZzSsKKp5MK55MK+DzqCeS0Dt9MRlJF1XP4UCFLJVKWx04NqAjvbEpB+BhT+3t1BVL5imVTqusiB0iAGCkvP8OmE5Lq+sXKOR35o8i5PfowxcukGWPNMygrv64dv/mqN7uiSqaHH9RZjSR1ts9Ue3+zVEOVMhCqbTV4rmF+tYTex2p960n9uqcuYVKpRmTAGCkvA/BsURaQb9Ht1271JF6t127VCGfx7ET6ICJHO2Lae/bPYqOstOJlZSyVqPFn2gipb1v9+hoX8z1HjF54aBXO9uPOHqK5c/bjygc8DpSDwDOFHk/HUJGSqXTuvS8uVq5tHxaP35cubRcl543V6l0WmJOMGZAV39ch4+ffDjLvnf69fALB8fdRuuceYWSJGulw8cj8hjDgQpZIpZI6+EXDjpa86EXDur6d1c5WhMAcl3e3wmWpB/84rfyeYy+3Hi+Vi4tn1KNlUvL9eXG8+X3GH3vl791tkFgFPFkWu/0RU/c5X2za0A3bXlW32l6fcyFnsPbaN205Vm92TUgafBucWdfVPEkP73IFm6cYgkAOFneh+BwwKM5BQHt7xqQx0i3XHGeNl5XO+k5wiG/Rxuvq9UtV5wnjxkMInMLAgr7+dEj3NU9EFcqbZW20pZn9mnT9rZJ/wh9eButLc/sU9oOzkPtHmB+cDYYiLlz0M4AB/gAwEnyPgTLGl1dU6END7ecOD1uUVmBHrzlMn25cYmqy0Y/Zam6LKwvNy7Rg7dcpkVlBZIGT5/b8HCLPlBTITEbAi5KpdKKptJKW+nbTa9Naxutbze9prSVYsm0UmyjNetiLt2R504/AJws7+cEzy0M6KUDx/X5Ve/Sp3+wR9+88SIVBAb/bXDu3ELd8eFazS0KKpFKK5pIK+T3yO/16Ghf7MQ3K5/H6NhAQl956GXd+sHzdbgnqroFHNUF93RHE5KVntt31LFttD5YN1/d0YTKCoMOdYmpCDq0U82p2A4PAE6W96Oi1+tR/cJSLSgN65Jzy/SF+1/Q1hcOSbLyjPjTMZK8xpx0g9drJMlq6wuH9IX7X9Al55ZpQWlY9VWl8nq4FQz3JNNpxZJpR7fRiiXTSnIneNZxiiUAzAxGRUllhUFFEkndcuV5kqSftBzW4796W1fXVGh1/dkn3jcy1saSaW1vOayftx9RKm1PHFH6dneUO2lwnbXSjpa3HN1G6/FX3tLHL6l2pB6mLm2tK6dYptm7HABOQgjW4I8JVy6t1MZHX9HH3lOtK5bM07ee2KuftXboZ60dkganPAR8HsWTaSVHbDof8nv0tQ/XaH5JWP/23Jv6q+sv5MeOcF08afWQw9to/cfzB3XDuxc6WhOZC/s9+nhDtf72Z685VvOmS6pZrAsApyCtDSkrDOjutcv0yIsH9dL+43rwc5eetDAumbYaiKdOBOATC+M+d6le2n9cj7x4UHevXcZeq5gR1lpXttHipMNsYHTV+eWOnmJ55ZKpbf0IAGcy7gSPMLcoqG/eeJGa2jr0ie/9jy7/vXn63x9cqgVnhU9bGPfW8Yi2txzWlmf26a6PXKDG2koCMGZMXyzpUl220Zptw4t1b7t2qTZtb5t2vduuXcpiXQAYBSH4FGWFAV2/vEpXLinX9pa39Lc/26sDXZHTpkNUl4X1qfct1qa1y1RWGGAKBGaUe9toEYJnm9fr0YULS0+sNZjuKZYLSsO6kMW6AHAaQvAoAj6P5peG9On3Ldba5QuUTFv1RZOKJdMK+jwqCvnk8xiVFQb5xoJZ4db8zhDzRrPC3MKgIvHfLdadShD+3WLdiOayWBcATkMIHofX61F5cWjwAT9JRBYpCrm0jZZLdZGZgM+jlTWnL9adzG4gIb9Ht127lMW6ADABvuMBucjKlW20kD2GF+ve/nCLwn6vHvzcpXr6tU499MLBUf/eq8vCuvHihbrq/HJ9779/o0jiqO75aD1rFQBgDIRgIAel0lafvHSx/vrx6S+cGvaHly5WKsXuENlkqot1//IjF+gaFusCwLgIwUAO8niMrq6t0N8/ObkfkU8k5PfoA7UV8jDHPeuwWBcA3GFycV/QhoYG29zcPNttALPm4LEB3fvMPtWdXaLbH35l2vXu+eiFevVwj2654jwtnFPgQIdwQyqVVtdAnMW6ADBJxpjnrbUNo73GnWAgBxWFvKosDqmsIKDG2go1tR2Zcq3G2gqVFQR0dklIJSyMy2os1gUA5/DzMiAHFQf8WrN8gTZsbdEtV56nxtqKKdVprK3QLVeepw1bW/SRixaoMOh3uFMAALITt32AHOT1ehT2eXTrNUv16R/s0TdvvEirllZo047WSW+jtXF1nc4qCOjTP9ijr324ViGfhx+lZ7lEIqXO/pjSVuqNJhVJpBT2e1Uc8sljpPLCoPzs9QwAk0IIBnJUcTigq5aWq6m9Q1+4/wV9pP5sPXjLZXr21+/o/t37x9xG6+YVi3TZ783T957Zp5+0HNaqmnJdtbRcJWF2EshWA7GkjkUSeuylQ3pgnL/b9SsWae3yKs0J+1UQZHgHgPGwMA7IYV39cUXiKf3FY69oV3unvB6jq2sqtLr+7BPbaMWTaQV8J2+j9fP2I0qlrVbVlOuv1l6ogoCX7bSy1JGeqJraOnT39snf5b/zujo11laqoiQ0Ax0CQPYab2Gc6yHYGPMhSf8gySvpX6y1m095fZGkf5V01tB7NlhrHx+vJiEY+J2jfTH1RpP6xRvvnDYd4tRttIYNT4e4/F3zVBzyaW4Rx+pmoyM9Ud2+tUW72jM/NnlVTbnuWVdPEAaQ12YtBBtjvJJek3SNpIOS9khab61tHfGeLZJetNb+H2NMnaTHrbWLx6tLCAZO1tUf1+HjAyoJB7S95a0Jp0NcV79APZG4FpxVwB3gLDWdADyMIAwg383mFmkrJL1hrd031MiDktZKah3xHiupZOj3pZLecrkn4IxTVhhQUdCnrv64Viwu06qaCoX8XvXHkidOFSsM+hRNpDQQTcrv9WhJZQkHKmSpgVhSTW0d0wrAkrSrvVNNbR26/t1VKggwRxgARnJ7VKySdGDE44OS3nvKe+6S9DNjzBclFUpqdLkn4IwU8Hk0vzSk8qLAiQMVEkmPPEbyeTwK+jwqDHi1pKKYXSCy3LFIQndvb534jZNw9/ZWXbW0ghAMAKfIhlFxvaQfWmv/zhhzmaT7jDHLrLUnrQAxxtwi6RZJWrRo0Sy0CeQGDlTIbYlESo+9dMiR47AlKZpIa9tLh/T/XH4u26cBwAhu/yz0kKTqEY8XDj030mcl/ViSrLXPSgpJmndqIWvtFmttg7W2oby83KV2AWB2dfbH9MDu/Y7WvH/3fnX2xxytCQC5zu0QvEfSEmPMucaYgKSbJG075T37JV0tScaYWg2G4OlNhAOAHJW2GnVR43Qc6IoonXu7YQKAq1wNwdbapKQ/lfSEpDZJP7bWvmqMudsYs2bobX8u6XPGmJclPSDpj2wubl4MAA7ojSZzqi4A5CrX5wQP7fn7+CnP3Tni962SLne7DwDIBZFEypW6UZfqAkCuYn8kAMgiYZcWr4VYFAcAJyEEA0AWKQ658wM6t+oCQK4iBANAFvGYwZP9nFRdFhZbQwPAyQjBAJBFyguDWr/C2b3Qb16x6Hd7RwMAJBGCASCr+P1erV1epZDfmeE55PdozfIq+b0M9wAwEqMiAGSZOWG/7ryuzpFad15XpzkFfkdqAcCZhBAMAFmmIOhTY22lVtVM73TMVTXlaqytVEGARXEAcCpCMABkoYqSkO5ZVz/lILyqplz3rKtXRQlzgQFgNIRgAMhSw0H4r29Ydtoc4cqigFYsPkuVRYGTng/5PfrrG5YRgAFgAvyMDACyWEVJSNe/u0pXLa1QyG80EEvLGKknklA0kVbI71FJ2C9rpYKAR7Gk1VkFfqZAAJhVsXhSnf1xSVJvJKlIIqWw36vi8ODYVF4YUHCWxylGSQDIcrFkWrLSv+8+qAf27NeBrshp76kuC2v9JYu0dnmVYsm0CgKjFAIAl/VGEuqJJvXYS4cmNV6VhHwqDs/O4l1jrZ2VLzwdDQ0Ntrm5ebbbAADXvd0d1c62Dm3a0apoIj3h+0N+jzaurtPVtZWaX8p0CAAzp6M7qqYpjFeNtZWqdGm8MsY8b61tGPU1QjAAZKeOnqg2bG3RrvbOjD+7qqZcm9fVq5J5wQBmQLaOV+OFYBbGAUAWert76t9QJGlXe6c2bG1RR0/U4c4A4GQdOTpeEYIBIMscG4hrZ1vHlL+hDNvV3qmm1g4dH4g71BkAnKw3klCTg+NVXzThUGcTIwQDQJYZiKW0aUerI7U27WhVfyzlSC0AOFVPNOnoeNUdSTpSazIIwQCQRSKxhB576dCkFpVMRjSR1raXDykSm7m7KwDyQyyedGW8isVnJggTggEgixwdSOiBPfsdrXn/7v06OkAIBuCszv64K+PV8P7CbiMEA0AWsVaj7qs5HQe6IsrBjYAAZLlcH68IwQCQRfqi7vwYsC82c/PsAOSHXB+vCMEAkEUiCXcWsUVdqgsgf+X6eEUIBoAsEvZ7Xakb8rlTF0D+yvXxihAMAFmkKOTLqboA8leuj1eEYADIMtVl4ayuBwCSZIw745UxjpYcEyEYALLIWQVerb9kkaM1b16xSHMK/I7WBIDywoAr41VFcdDRmmMhBANAFjncHdfa5VUK+Z0ZnkN+j9ZcVKW3uqOO1AOAYcGAz5XxKsCcYADIP8Uhn1LplDaurnOk3sbVdUrZlHcP2H0AACAASURBVIqZEwzABSUhn6PjVWl45sYqQjAAZBGfx+gT39utq2srtKqmfFq1VtWU6+raSn3iX3bL55mhSXYA8kpx2K/G2kpHxqvGukoVhWZu6hYhGACySFlBQJ+6bLG+/O8vafO6+il/Y1lVU67N6+r15X9/UZ+6bLHKCmdmjh2A/FNZGnJkvKosCTnc2fgIwQCQRbxej66rX6AXDxzXnz34ov7mhgv1jeuXTXrOXcjv0TeuX6a/uaFef/bgi3rxwHFdV79AXu4EA3BRZUlIm2+on9J4NRsBWJKMzcED5RsaGmxzc/NstwEArogn03rspUO67aEWSdJ/feUqeY1X214+pPt379eBrshpn6kuC+vmFYu05qIqpWxKV37zaUnSt26s19rlVQr4uOcBwH190YS6I8nJjVfLq1Qa8rk6BcIY87y1tmHU1wjBAJB9uvrjuv2hFj3Z1iFJKisM6NHPv09maAPNvlhS0URKIb9XRcHBhSTWpnX9//esuvrjkqRraiv1zRvrNacwMDv/EQDyViyeVGd/XNaePl4ZI1UUB2dkF4jxQjDLhQEgC5UVBrT5oxdKD0tPtnWoqz+uK7/11InXK4sCOmdegd58Z0AdffHTPn9NbaU2f/RCAjCAWREM+LQwkN0xM7u7A4A8NrcoqHturNcH2zq08bFfKZpIn3itoy8+avgN+T3atHaZGmsrCcAAMA5CMABksbLCgNYur9IVS8q1veUt/euzvx1zjt0fvW+xVl+4QGWFAeYAA8AECMEAkOUCPo/ml4b06fct1trlC5RMW/VFk4ol0wr6PCoK+eTzGJUVBtkFAgAmiRAMADnC6/WovHhoG6HS2e0FAHIdPy8DAABA3iEEAwAAIO8QggEAAJB3CMEAAADIO4RgAAAA5B1CMAAAAPIOIRgAAAB5hxAMAACAvEMIBgAAQN4hBAMAACDvEIIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyDiEYAAAAecc32w0AAADgzBKLJ9XZH5ck9UaSiiRSCvu9Kg4PRs/ywoCCgdmNoYRgAAAAOKI3klBPNKnHXjqkB/bs14GuyGnvqS4La/0li7R2eZVKQj4Vh/2z0KlkrLWz8oWno6GhwTY3N892GwAAABjS0R1VU1uHNu1oVTSRnvD9Ib9HG1fXqbG2UpWlIVd6MsY8b61tGO017gQDAABgWjp6otrwSIt2tXdO+jPRRFp3PPorNbV3aPO6elWWuBOEx8LCOAAAAExZR3dUG7ZmFoBH2tXeqQ1bW9TRE3W4s/ERggEAADAlvZGEmto6phyAh+1q71RTa4f6ogmHOpsYIRgAAABT0hNNatOOVkdqbdrRqu5I0pFak0EIBgAAQMZi8cFdICazCG4yoom0tr18SLH4zARhQjAAAAAy1tkf1wN79jta8/7d+0/sL+w2QjAAAAAyZq1G3Qd4Og50RTRTu/dOeos0Y0y5pIWSUpL2WWv7XOsKAAAAWa0v6s60hb7YzEyHmDAEG2PqJH1X0mJJiyS9KKnCGPO0pC9Za7td7RAAAABZJ5JIuVI36lLdU01mOsT3JX3BWvsuSe+X1G6tPVfSLyR9z83mAAAAkJ3Cfq8rdUM+d+qeajIhOGyt3StJ1trdki4c+v29ki5wsTcAAABkqaKQOwcPu1X3VJMJwb82xmw0xlxujPk7SS9JkjHGP8nPAwAA4AxjjFRdFna0ZnVZWMY4WnJMkwmxn5FULOmrkqKSvjT0fIGkT7nUFwAAALJYeWFA6y9Z5GjNm1csUkVx0NGaY5kwBFtrj1trv2Ktvc5ae4e1tnfo+W5r7XPD7zPG/KObjQIAACB7BAM+rV1epZDfmYkBIb9Hay6qUiCL5gRP1uUO1gIAAECWKwn5tHF1nSO1Nq6uU2l4ZuYDS8zpBQAAwBQVh/1qrK3UqpryadVZVVOuxrpKFYX8DnU2MUIwAAAApqyyNKTN6+qnHIRX1ZRr87p6VZaEHO5sfE6G4BlaywcAAIBsUlkS0uYb6vWN65dNeo5wyO/RN65fNisBWMrs2OQLrbWvjPOWfxjjcx8aes0r6V+stZtHec//knSXJCvpZWvtzZPtCwAAALOvsjSktcsXaOXSCm17+ZDu371fB7oip72vuiysm1cs0prlVSoN+WZ0CsRIxlo7uTca84ykoKQfSvq3yRyXbIzxSnpN0jWSDkraI2m9tbZ1xHuWSPqxpA9Ya48ZYyqstUfGq9vQ0GCbm5sn1TcAAABmViyeVGd/XNZKfbGkoomUQn6vioI+GSNVFAdnZBcIY8zz1tqG0V6b9J1ga+0VQ4H1M5KeN8bslvQDa+2T43xshaQ3rLX7hhp5UNJaSa0j3vM5Sf9krT029HXGDcAAAADIbsGATwsDM7fTw1RkNCfYWvu6pL+QdLukqyR91xjTboxZN8ZHqiQdGPH44NBzI50v6XxjzC+MMc8NTZ84jTHmFmNMszGmubOzM5O2AQAAgJNMOgQbY+qNMd+W1CbpA5I+Yq2tHfr9t6fRg0/SEkkrJa2XdK8x5qxT32St3WKtbbDWNpSXT28bDgAAAOS3TO4E/6OkFyRdZK39grX2BUmy1r6lwbvDozkkqXrE44VDz410UNI2a23CWvsbDc4hXpJBXwAAAEBGMgnBqyXdb62NSJIxxmOMKZAka+19Y3xmj6QlxphzjTEBSTdJ2nbKex7V4F1gGWPmaXB6xL4M+gIAAAAykkkIbpIUHvG4YOi5MVlrk5L+VNITGpxG8WNr7avGmLuNMWuG3vaEpKPGmFZJuyTdZq09mkFfAAAAQEYyWbYXstb2DT+w1vYN3wkej7X2cUmPn/LcnSN+byXdOvQ/AAAAwHWZ3AnuN8ZcPPzAGPMeSafvgAwAAABkuUzuBP+ZpP8wxrylwSOS50v6uCtdAQAAAC7K5LCMPcaYGklLh57aa61NuNMWAAAA4J5Mj/K4RNLioc9dbIyRtfZHjncFAAAAuGjSIdgYc5+k35P0kqTU0NNWEiEYAAAAOSWTO8ENkuqGdnMAAAAAclYmu0P8SoOL4QAAAICclsmd4HmSWo0xuyXFhp+01q4Z+yMAAABA9skkBN/lVhMAAADATMpki7SnjTHnSFpirW0aOi3O615rAAAAgDsmPSfYGPM5SQ9J+uehp6okPepGUwAAAICbMlkY9wVJl0vqkSRr7euSKtxoCgAAAHBTJiE4Zq2NDz8wxvg0uE8wAAAAkFMyCcFPG2O+JilsjLlG0n9I+ok7bQEAAADuySQEb5DUKekVSX8s6XFr7R2udAUAAAC4KJMt0r5orf0HSfcOP2GM+dLQcwAAAEDOyORO8KdGee6PHOoDAAAAmDET3gk2xqyXdLOkc40x20a8VCypy63GAAAAALdMZjrELyUd1uCxyX834vleSS1uNAUAAAC4acIQbK19U9Kbki5zvx0AAADAfZmcGLfOGPO6MabbGNNjjOk1xvS42RwAAADghkx2h/impI9Ya9vcagYAAACYCZnsDtFBAAYAAMCZIJM7wc3GmH+X9Kik2PCT1tqtjncFAAAAuCiTEFwiaUDSB0c8ZyURggEAAJBTJh2CrbWfdrMRAAAAYKZksjvE+caYncaYXw09rjfG/IV7rQEAAADuyGRh3L2SviopIUnW2hZJN7nRFAAAAOCmTEJwgbV29ynPJZ1sBgAAAJgJmYTgd4wxv6fBxXAyxtyoweOUAQAAgJySye4QX5C0RVKNMeaQpN9I+gNXugIAAABclMnuEPskNRpjCiV5rLW97rUFAAAAuCeT3SG+ZIwZ3iv428aYF4wxH5zocwAAAEC2yWRO8GestT0aPCxjrqRPStrsSlcAAACAizIJwWbo1w9L+pG19tURzwEAAAA5I5OFcc8bY34m6VxJXzXGFEtKu9MWAAAAclUsnlRnf1yS1BtJKpJIKez3qjg8GD3LCwMKBjKJoc7L5Kt/VtJySfustQPGmLmSOEoZAAAAkqTeSEI90aQee+mQHtizXwe6Iqe9p7osrPWXLNLa5VUqCflUHPbPQqeSsdaO/wZjaqy17caYi0d73Vr7giudjaOhocE2NzfP9JcFAADAGDq6o2pq69CmHa2KJiaeLBDye7RxdZ0aaytVWRpypSdjzPPW2obRXpvMneBbJd0i6e9Gec1K+sA0egMAAECO6+iJasMjLdrV3jnpz0QTad3x6K/U1N6hzevqVVniThAey4Qh2Fp7y9Cvq9xvBwAAALmkozvzADzSrvZObdjaMuNBOJN9gj82tBhOxpi/MMZsNca8273WAAAAkM16Iwk1tXVMOQAP29XeqabWDvVFEw51NrFMtkjbaK3tNca8X1KjpO9J+r/utAUAAIBs1xNNatOOVkdqbdrRqu5I0pFak5FJCE4N/bpa0hZr7Q5JAedbAgAAQLaLxQd3gZjMIrjJiCbS2vbyIcXiMxOEMwnBh4wx/yzp45IeN8YEM/w8AAAAzhCd/XE9sGe/ozXv373/xP7CbsskxP4vSU9IutZae1xSmaTbXOkKAAAAWc1ajboP8HQc6Ipogt17HTPpEGytHZD0mKR+Y8wiSX5J7W41BgAAgOzVF3Vn2kJfbGamQ0z6xDhjzBcl/aWkDv3uuGQrqd6FvgAAAJDFIonUxG+agqhLdU+VybHJX5K01Fp71K1mAAAAkBvCfq8rdUM+d+qeKpM5wQckdbvVCAAAAHJHUSiTe6mzX/dUmXyVfZKeMsbskBQbftJa+/eOdwUAAICsZoxUXRZ2dHFcdVlYxjhWblyZ3AneL+lJDe4NXDzifwAAAMgz5YUBrb9kkaM1b16xSBXFQUdrjmXSd4KttV+XJGNM0dDjPreaAgAAQHYLBnxau7xK3/35644cmBHye7TmoioFsm1OsDFmmTHmRUmvSnrVGPO8MeYC91oDAABANisJ+bRxdZ0jtTaurlNpeGbmA0uZTYfYIulWa+051tpzJP25pHvdaQsAAADZrjjsV2NtpVbVlE+rzqqacjXWVaoo5Heos4llEoILrbW7hh9Ya5+SVOh4RwAAAMgZlaUhbV5XP+UgvKqmXJvX1auyJORwZ+PLaHcIY8xGSfcNPf4DDe4YAQAAgDxWWRLS5hvq1dTWoU07Wic1Rzjk92jj6jo11lXOeACWMgvBn5H0dUlbNXhS3DNDzwEAACDPVZaGtHb5Aq1cWqFtLx/S/bv3j7p9WnVZWDevWKQ1y6tUGvLN6BSIkYy1dla+8HQ0NDTY5ubm2W4DAAAAo4jFk+rsj8taqS+WVDSRUsjvVVHQJ2OkiuLgjOwCYYx53lrbMNprk74TbIx5UtLHrLXHhx7PkfSgtfZaZ9oEAADAmSAY8GlhYOZ2epiKTBbGzRsOwJJkrT0mqcL5lgAAAAB3ZRKC08aYE8eCGGPO0eDcYAAAACCnZHKf+g5J/22MeVqSkXSFpFtc6QoAAABwUSbHJv+nMeZiSZcOPfVn1tp3hl83xlxgrX3V6QYBAAAAp2U0Y3ko9G4f4+X7JF087Y4AAAAAl2UyJ3gixsFaAAAAgGucDMEskgMAAEBOcDIEAwAAADnByRAcd7AWAAAA4JqMFsYZY+olLR75OWvt1qFfLx3jYwAAAEBWyeTY5O9Lqpf0qqT00NNW0lYX+gIAAABck8md4EuttXWudQIAAADMkEzmBD9rjCEEAwAAIOdlcif4RxoMwm9LimlwX2Brra13pTMAAADAJZncCf6epE9K+pCkj0i6bujXcRljPmSM2WuMecMYs2Gc933UGGONMQ0Z9AQAAABkLJM7wZ3W2m2ZFDfGeCX9k6RrJB2UtMcYs81a23rK+4olfUnS/2RSHwAAAJiKTELwi8aY+yX9RIPTIST9bou0MayQ9Ia1dp8kGWMelLRWUusp79sk6R5Jt2XQDwAAADAlmUyHCGsw/H5Qg9MghqdEjKdK0oERjw8OPXeCMeZiSdXW2h3jFTLG3GKMaTbGNHd2dmbQNgAAAHCySd8JttZ+2ukvbozxSPp7SX80ia+/RdIWSWpoaLBO9wIAAID8kclhGSFJn5V0gaTQ8PPW2s+M87FDkqpHPF449NywYknLJD1ljJGk+ZK2GWPWWGubJ9sbAAAAkIlMpkPcp8GQeq2kpzUYaHsn+MweSUuMMecaYwKSbpJ0YnGdtbbbWjvPWrvYWrtY0nOSCMAAAABwVSYh+F3W2o2S+q21/ypptaT3jvcBa21S0p9KekJSm6QfW2tfNcbcbYxZM9WmAQAAgOnIZHeIxNCvx40xyyS9Laliog9Zax+X9Pgpz905xntXZtAPAAAAMCWZhOAtxpg5kjZqcEpDkaRRwywAAACQzTLZHeJfhn77tKTz3GkHAAAAcN+k5wQbYyqNMd8zxvx06HGdMeaz7rUGAAAAuCOThXE/1OACtwVDj1+T9GdONwQAAAC4LZMQPM9a+2NJaenEzg8pV7oCAAAAXJRJCO43xsyVZCXJGHOppG5XugIAAABclMnuELdqcFeI84wxv5BULulGV7oCAAAAXJRJCG6V9IikAQ2eFPeoBucFAwAAADklk+kQP5JUI+mvJf2jpPM1eJQyAAAAkFMyuRO8zFpbN+LxLmNMq9MNAQAAAG7L5E7wC0OL4SRJxpj3Smp2viUAAADAXRPeCTbGvKLBHSH8kn5pjNk/9PgcSe3utgcAAAA4bzLTIa5zvQsAAABgBk0Ygq21b85EIwAAAMBMyWROMAAAAHBGIAQDAAAg7xCCAQAAkHcIwQAAAMg7hGAAAADkHUIwAAAA8g4hGAAAAHmHEAwAAIC8QwgGAABA3iEEAwAAIO8QggEAAJB3CMEAAADIO4RgAAAA5B1CMAAAAPIOIRgAAAB5hxAMAACAvEMIBgAAQN4hBAMAACDvEIIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyDiEYAAAAeYcQDAAAgLxDCAYAAEDeIQQDAAAg7xCCAQAAkHcIwQAAAMg7hGAAAADkHUIwAAAA8g4hGAAAAHmHEAwAAIC8QwgGAABA3iEEAwAAIO8QggEAAJB3CMEAAADIO4RgAAAA5B1CMAAAAPIOIRgAAAB5hxAMAACAvEMIBgAAQN4hBAMAACDvEIIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyjm+2G8hmsXhSnf1xSVJvJKlIIqWw36vi8OAfW3lhQMEAf4TILpFYQkcHEpJGv27nFvgVDvpns0UAAGYdCW4UvZGEeqJJPfbSIT2wZ78OdEVOe091WVjrL1mktcurVBLyqThMqMDsOjYQ10AsNenrtiDo1ZyCwCx0CgDA7DPW2tnuIWMNDQ22ubnZldod3VE1tXVo045WRRPpCd8f8nu0cXWdGmsrVVkacqUnYCJvd0e1cwrX7dW1lZrPdQsAOEMZY5631jaM+hoh+Hc6eqLasLVFu9o7M/7sqppybV5Xr8oSAgVmFtctAACjGy8EszBuSEf31IOEJO1q79SGrS3q6Ik63Bkwtre5bgEAmBJCsAbnADe1dUw5SAzb1d6pptYO9UUTDnUGjO3YQFw7Hbxujw/EHeoMAIDsRwiW1BNNatOOVkdqbdrRqu5I0pFawHgGYilHr9v+WMqRWgAA5IK8D8Gx+OAuEJNZTDQZ0URa214+pFicIAz3RGIJV67bSIyfYgAA8kPeh+DO/rge2LPf0Zr3795/Yn9hwA1HBxKuXLfD+wsDAHCmy/sQbK1G3U91Og50RZSDm24gh3DdAgAwPXkfgvui7kxb6IsxHQLu4boFAGB68j4ERxLuLAaKulQXkLhuAQCYrrwPwWG/15W6IZ87dQGJ6xYAgOlyPQQbYz5kjNlrjHnDGLNhlNdvNca0GmNajDE7jTHnuN3TSEUhX07VBSSuWwAApsvVEGyM8Ur6J0m/L6lO0npjTN0pb3tRUoO1tl7SQ5K+6WZPp/coVZeFHa1ZXRaWMY6WBE7CdQsAwPS4fSd4haQ3rLX7rLVxSQ9KWjvyDdbaXdbagaGHz0la6HJPJykvDGj9JYscrXnzikWqKA46WhMYaW6B35XrtryI6xYAkB/cDsFVkg6MeHxw6LmxfFbST0d7wRhzizGm2RjT3Nk5vWNiRwoGfFq7vEohvzN/FCG/R2suqlKAuZVwUTjod+W6Dbo01xgAgGyTNQvjjDF/IKlB0rdGe91au8Va22CtbSgvL3f0a5eEfNq4+tRZGlOzcXWdSsPMq4T7CoJeR6/bwiABGACQP9wOwYckVY94vHDouZMYYxol3SFpjbU25nJPpykO+9VYW6lVNdML16tqytVYV6mikN+hzoCxzSkI6GoHr9uzCgIOdQYAQPZzOwTvkbTEGHOuMSYg6SZJ20a+wRjzbkn/rMEAfMTlfsZUWRrS5nX1Uw4Uq2rKtXldvSpLQg53BoxtPtctAABTYqzL56QaYz4s6TuSvJK+b639hjHmbknN1tptxpgmSRdKOjz0kf3W2jXj1WxoaLDNzc2u9NvRHVVTW4c27WhVNJGe8P0hv0cbV9epsa6SIIFZ83Z3VDu5bgEAOIkx5nlrbcOor7kdgt3gZgiWpL5oQt2RpLa9fEj3796vA12R095TXRbWzSsWac3yKpWGfEyBwKw7PhBXfyx10nUb8nlUFPKpL5pUNJk+6botDHiZAgEAOKMRgqcoEkvo6EBC1kp9saSiiZRCfq+Kgj4ZM7hNVThI+EV2Gb5uJak3klQkkVLY71Xx0IJNrtvcxd8tgFwRiyfV2R+XNPp4VV4YUDDg/kYC44VgtjEYxfAdtcdeOqQH9gzeUSsKeDWnMKBj/XH1xVOqLgtr/SWLtHZ5lQqD3FHD7BuIJXUskhi8bsf5Ccb6FYPX7ZywXwVBhoBccGwgroFTxqRTjRyTCoJezWFMAjALeiMJ9USTkx6vSkI+FYdn5x/v3Ak+xVTnVl5dW6n5pcytxOw40jM4l/3u7ZO/bu+8rk6NtZWqYE5wVmNMApArpryuqrZSlS6NV0yHmKSOnqg2bG3RrvbMD+NglT1my5GeqG6fxnV7z7p6gnCWYkwCkCuydbwaLwRnzWEZs+3t7qn/5UnSrvZObdjaoo6eqMOdAWObTgCWBq/b27e26AjXbdZhTAKQKzpydLwiBGtwDvDOto4p/+UN29XeqabWDnUPxB3qDBjbQCypJqeu27YODcSTDnWG6Trm8Jh0nDEJgEt6Iwnnvhe1dqgvmnCos4kRgiX1x1LatKPVkVqbdrSqL5ZypBYwnmORhO7e7sx1e/f2Vh0bmLmBB+MbcHhM6mdMAuCSnmjS0fGqOzJzN2TyPgRHYoOr6SczgXsyoom0tr18SJEYgQLuSSRSzl+3Lx1SIkFYmm2MSQByRSyedGW8is3QTybzPgQfHUjogT37Ha15/+79J/byBNzQ2R/TA7udv247+2OO1kTmGJMA5IrO/rgr49Xw/sJuy/sQbK1G3cNuOg50RZSDm24gh6Rdum7TXLezjjEJQK7I9fEq70NwX9SdW+59MRYZwT29Ll23btXF5DEmAcgVuT5e5X0Ijrg0BzLK3Eq4iOv2zMXfLYBckevjVd6H4LDf60rdkM+duoDk4nXrUl1MHmMSgFyR6+NV3ofgopAvp+oCklTs0vXlVl1MHmMSgFyR6+NV3odgY6TqsrCjNavLwjLG0ZLASTwuXbcerttZx5gEIFfk+niV9yF4boFf6y9Z5GjNm1csUnlR0NGawEjlhUGtX+HCdVvs/LntyAxjEoBcUV4YcGW8qiiemfEq70NwOOjX2uVVCvmd+aMI+T1ac1GVgsythIv8fq/z1+3yKvm9eT8kzDrGJAC5IhjwuTJeBZgTPHMKg15tXF3nSK2Nq+tUFOSbDdw3J+zXndc5c93eeV2d5hT4HamF6StweEwqZEwC4JKSkM/R8ao0PHPrFwjBks4qCOjq2kqtqimfVp1VNeVqrKtUaUHAoc6AsRUEfWp06rqtrVRBgIVT2WKOw2PSWYxJAFxSHPY7972orlJFoZm7IUMIHjK/NKTN6+qn/Je4qqZcm9fVq7KEOZWYORUlId0zzev2nnX1quC6zTqMSQByRWWOjlfG5uBZmg0NDba5udmV2m93R7WzrUObdrQqmkhP+P6Q36ONq+vUWFfJNxvMmiM9UTW1deju7ZO/bu+8rk6NtZUE4CzHmAQgV3R0D34vyqbxyhjzvLW2YdTXCMGn6x6Iqy+W0raXD+n+3ftHPRe7uiysm1cs0prlVSoKeJkCgVk3EE/q2EBC214a/7r9xNB1e1aBnykQOeL4QFz9GYxJhQEvUyAAzIq+aELdkeSkx6vSkM/VKRCE4AzFk2l19cfVE4nr/2/v7mPrqu87jn++vr4PfgghTt1LyUNDB11sQQjMZNB2FWnCBA2KK9qthU2lFSt77Npu3ZRNyqYtqpRqW9mqVl076GBToa0oajIytYM0U6u1g5gCIcRhIEoDKXHdJCTxw32w/d0f90CMYzvBPuden3PeLynKvece/+5X/p3f9379u79zTj6bUZOZhspjKlXHVchm1J5v1oS7ytVxndeSU0dbTrlmVpZgYahWxzU4XNaES6dKp4/bRYVmNZnUuajAVSBi5tRoVSdLY8pnTaOV2uzK1JwkSW25jEarEzqv0KxFLZzoCKD+jo9UNFIe16lSVS25mWuoUmVc7YWsWvMZLYnwj/bZimCmgaY4NlzR7v4Bbd2x/3VT+e25jJa05XR8uKKhyul7WheyTdrWe6k2dBXV0cbMCxovm83owvNbGx0GQjLT14vF9pze+qZW/fQXIxoYqry2/bWvF7uKKi5mOQSA+plp+dZsNdTWTd3a0FXUBQ3IV8wET3J0qKwt33pKD/UPvOGfva6rqO3vv0xLuSA9gJAMnCxpywP7tOfg4Bv+WU6MA1BPCzVfzTYTzHeigWPDlTkXwJL0UP+AtnzrKR0frpx9ZwA4i4ETc/9AkaQ9Bwe15YF9GjhZCjkyAHi9IzHNVxTBqq0B3t0/1My/hAAAEDRJREFUMOcC+FUP9Q/o4f4BVcbOfkYkAMzk1GhVD/cPzPkD5VV7Dg7q4QMDGipVQ4oMAF7v+EhtGWlY+eqVkfpNJlIEqzYLvHXH/lDa2rpjv44xGwxgHk6WxrRt14FQ2tq264BOjI6F0hYATDVSHg81Xw2Xx8++Y0hSXwSPj0/owX0/O6fr2Z2LUrXW3vg4s8EA3rhyZUw7njgcak7a+eRhlSsUwgDCNVquRpKvRsv1+fYq9UXwsZGK7vnRC6G2ec+PXtCxOk7nA0iOweGK7tt7KNQ27330kAb5hgpAyI6OVCPJV0dHKILrYmzCp72Q83y8eGxUYxPxu+oGgMZzVyQ5KYYXAgKwwMU9X6W+CD5ViuYrwqGI2gWQbFHljqEyOQlAuOKer1JfBJer0SzALnOFCABzMBpRTipF1C6A9Ip7vkp9EZzPZiJpl9soA5iLlohyUqE5mnYBpFfc81XqK7VFhWjuHB1VuwCSrT2i3BFVuwDSK+75KvVFcHOTaUVHS6htruhoUXOThdomgHQwUyQ5yUhJAEIW93yV+iK4ozWnW69ZFWqbt16zSh1t+VDbBJAOnW053XzVylDbvGXdSr15ETkJQLiWtmYjyVed7fXJV6kvgjOZJt245kIVsuH8KgrZWnsZZoIBzEE+16zetctCzUmbL1+mHGuCAYSsJZ+NJF9Fdb7WVKkvgiWpoy2nbb2XhtLWtt5L1dGWC6UtAOl0XqFZWzd1h9LW1k3dWtzCemAA0WjNZ0LNV235+v3BThGs2pUcNnQVdV1XcV7tXNdV1MauIleGADAvi1qy2thV1PrVnfNqZ/3qTm3sLqq9kA0pMgB4vSWtOW0IMV+d31q/iUSqtUBHW07b33/ZnAvh67qK2v7+y7SEWWAAISguLmj7TWvm/MGyfnWntt+0RsXzCiFHBgCvd0FM85V5DO+l2dPT4319fZG0fWy4ot39A9q6Y79K1bPf8KKQbdK23ku1satIAQwgdAMnSnq4f0Dbdh0455y0dVO3NnYXKYAB1NWREyXtXmD5yswec/eeaV+jCD5TZWxCx4YrenDfz3TPj16Y9r7YKzpa9JF3rNKmyy5UR1uOJRAAIjNUqurE6Jh2PnlY9z56aMacdMu6ldq8dpkWF5pZAgGgIV4ZqWi4PH7O+aotl4l0CQRF8ByNj0/o2EhFYxOuodKYymMTyjc3qb3QrOYmU0dbnqtAAKibcmVMg8MVuUtD5TGVquMqZDNqzzfLTHrzojxXgQCwIIyWqzo6Up0xX3W25+tyFYjZimBOGZ5FJtOkzkXB9PzixsYCAPlcs5bnSNsAFr6WfFbL8wv7Gym+wwcAAEDqUAQDAAAgdSiCAQAAkDoUwQAAAEgdimAAAACkDkUwAAAAUociGAAAAKlDEQwAAIDUoQgGAABA6lAEAwAAIHUoggEAAJA6FMEAAABIHYpgAAAApA5FMAAAAFKHIhgAAACpQxEMAACA1KEIBgAAQOpQBAMAACB1KIIBAACQOs2NDmAhGy1XdXSkKkk6NTqm0eq4WrIZLWqp/dqWtmbVks82MkTgDBy3yUXfAoiLOOQriuBpHB+paKQ8rh1PHNZ9ew/pxWOjZ+yzoqNFN1+1Ur1rl6k1n9GS1lwDIgVO47hNLvoWQFzEKV+Zuzfkjeejp6fH+/r6Imn7yImSdvcPaNuuAypVJ866fyHbpK2burWhq6gLFhciiQk4G47b5KJvAcTFQsxXZvaYu/dM+xpF8GkDJ0va8sA+7Tk4+IZ/dv3qTm2/aY2K5/Ghg/riuE0u+hZAXCzUfDVbEcyJcYEjJ+beeZK05+CgtjywTwMnSyFHBsyM4za56FsAcRHXfEURrNr6ld39A3PuvFftOTiohw8M6JWRSkiRATPjuE0u+hZAXMQ5X1EESxopj2vbrgOhtLVt1wENl8dDaQuYDcdtctG3AOIizvkq9UXwaLmqHU8cPqcF3OeiVJ3QzicPa7RcDaU9YDoct8lF3wKIi7jnq8iLYDO73syeMbPnzGzLNK/nzewbweuPmNmqqGOa7OhIVfftPRRqm/c+eui1a+MBUeC4TS76FkBcxD1fRVoEm1lG0hcl3SCpW9LNZtY9ZbfbJB1394sl3SHps1HGNJW7pr2G3Xy8eGxUMbzoBmKE4za56FsAcRH3fBX1TPA6Sc+5+/PuXpH0dUm9U/bplXRP8Ph+SRvMzCKO6zVDpbFo2i1H0y4gcdwmGX0LIC7inq+iLoKXSXpx0vOXgm3T7uPuY5JOSFo6tSEzu93M+sysb3BwfmcgTjZajWYBdimidgGJ4zbJ6FsAcRH3fBWbE+Pc/Svu3uPuPZ2dnaG125LNhNbWZIXmaNoFJI7bJKNvAcRF3PNV1EXwYUkrJj1fHmybdh8za5a0WNLRiON6TXuhOVbtAhLHbZLRtwDiIu75KuoieK+kS8zsIjPLSfqQpJ1T9tkp6dbg8Qckfc/reC9nM2lFR0uoba7oaFH9VjUjjThuk4u+BRAXcc9XkRbBwRrfP5L0XUn9kr7p7k+b2d+a2eZgt7skLTWz5yT9iaQzLqMWpaWtWd181cpQ27xl3Up1tudDbROYjOM2uehbAHER93wV+Zpgd/9Pd3+7u/+Su38m2PZX7r4zeFxy999w94vdfZ27Px91TJO15LPqXbtMhWw4v4pCtkmbL1+mfETrZACJ4zbJ6FsAcRH3fBWbE+Oi1JrPaOumqZcvnputm7rVlufDBtHjuE0u+hZAXMQ5X1EES1rSmtOGrqLWr57fVSfWr+7Uxu6izm/NhRQZMDOO2+SibwHERZzzFUVw4ILFBW2/ac2cO3H96k5tv2mNiucVQo4MmBnHbXLRtwDiIq75yup4IYbQ9PT0eF9fXyRtHzlR0u7+AW3bdUCl6sRZ9y9km7R1U7c2dhf5sEHDcNwmF30LIC4WYr4ys8fcvWfa1yiCz/TKSEXD5XHtfPKw7n300LT3xV7R0aJb1q3U5rXL1JbL8HUjGo7jNrnoWwBxsdDyFUXwHI2Wqzo6UpV77T7Wpeq4CtmM2vPNMpM62/OccY0Fh+M2uehbAHGxUPLVbEUwtxCaRUs+q+X5bKPDAN4Qjtvkom8BxEUc8hUnxgEAACB1KIIBAACQOhTBAAAASB2KYAAAAKQORTAAAABShyIYAAAAqUMRDAAAgNShCAYAAEDqxPKOcWY2KOmnEb7FmyT9IsL20Vj0b3LRt8lG/yYb/Ztsjerft7p753QvxLIIjpqZ9c10iz3EH/2bXPRtstG/yUb/JttC7F+WQwAAACB1KIIBAACQOhTB0/tKowNApOjf5KJvk43+TTb6N9kWXP+yJhgAAACpw0wwAAAAUociGAAAAKlDETyJmV1vZs+Y2XNmtqXR8WB+zGyFme0xswNm9rSZfSLY3mFmD5nZs8H/SxodK+bOzDJm9riZPRg8v8jMHgnG8TfMLNfoGDE3Zna+md1vZgfNrN/MrmH8JoeZfSrIzfvN7D4zKzB+48vMvmpmPzez/ZO2TTterebzQT/vM7MrGxEzRXDAzDKSvijpBkndkm42s+7GRoV5GpP0p+7eLelqSX8Y9OkWSbvd/RJJu4PniK9PSOqf9Pyzku5w94slHZd0W0OiQhj+SdJ33H21pMtV62fGbwKY2TJJfyypx90vlZSR9CExfuPsbknXT9k203i9QdIlwb/bJX2pTjG+DkXwaeskPefuz7t7RdLXJfU2OCbMg7u/7O4/Dh6fUu0DdJlq/XpPsNs9kt7XmAgxX2a2XNImSXcGz03SeyTdH+xC/8aUmS2W9G5Jd0mSu1fc/RUxfpOkWVKLmTVLapX0shi/seXu35d0bMrmmcZrr6R/85r/lXS+mb2lPpGeRhF82jJJL056/lKwDQlgZqskXSHpEUlFd385eOmIpGKDwsL8/aOkP5c0ETxfKukVdx8LnjOO4+siSYOS/jVY7nKnmbWJ8ZsI7n5Y0t9LOqRa8XtC0mNi/CbNTON1QdRcFMFIPDNrl/QtSZ9095OTX/PaNQK5TmAMmdmNkn7u7o81OhZEolnSlZK+5O5XSBrWlKUPjN/4CtaG9qr2x86Fktp05lfpSJCFOF4pgk87LGnFpOfLg22IMTPLqlYAf83dHwg2D7z6tUvw/88bFR/m5Z2SNpvZC6otX3qPamtIzw++XpUYx3H2kqSX3P2R4Pn9qhXFjN9k2CjpJ+4+6O5VSQ+oNqYZv8ky03hdEDUXRfBpeyVdEpyZmlNtgf7OBseEeQjWh94lqd/dPzfppZ2Sbg0e3yppR71jw/y5+1+4+3J3X6XaeP2eu/+WpD2SPhDsRv/GlLsfkfSimf1ysGmDpANi/CbFIUlXm1lrkKtf7V/Gb7LMNF53SvpwcJWIqyWdmLRsom64Y9wkZvZe1dYYZiR91d0/0+CQMA9m9i5JP5D0lE6vGf1L1dYFf1PSSkk/lfSb7j51MT9ixMyulfRpd7/RzN6m2sxwh6THJf22u5cbGR/mxszWqnbSY07S85I+qtrkDeM3AczsbyR9ULUr+Twu6XdUWxfK+I0hM7tP0rWS3iRpQNJfS/q2phmvwR8+X1BtCcyIpI+6e1/dY6YIBgAAQNqwHAIAAACpQxEMAACA1KEIBgAAQOpQBAMAACB1KIIBAACQOhTBAAAASB2KYABoADPbbGZbzr7nGT+3ysz2RxDPtWb2jknP7zazD8z2MwAQZ81n3wUAEDZ336mFdVfKayUNSfphg+MAgLpgJhgAQhbM1h4MZlP/z8y+ZmYbzex/zOxZM1tnZh8xsy8E+99tZp83sx+a2fPnOgNrZhkz+zsz22tm+8zsd4Pt15rZf5vZ/UEcXwvu0CQze2+w7bHgPR80s1WSfk/Sp8zsCTP7teAt3j01JjN7i5l9P9hv/6R9ASBWKIIBIBoXS/oHSauDf7dIepekT6t2++6p3hK8fqOk7ef4HrdJOuHuV0m6StLHzOyi4LUrJH1SUrekt0l6p5kVJH1Z0g3u/iuSOiXJ3V+Q9M+S7nD3te7+g1liukXSd919raTLJT1xjrECwILCcggAiMZP3P0pSTKzpyXtdnc3s6ckrZpm/2+7+4SkA2ZWPMf3+HVJaybNHC+WdImkiqRH3f2l4P2fCN5zSNLz7v6TYP/7JN0+S/vTxbRX0lfNLBu8ThEMIJaYCQaAaJQnPZ6Y9HxC009ATN7fzvE9TNLHg9nbte5+kbv/1zTtjc/wnmdzRkzu/n1J75Z0WNLdZvbhObQLAA1HEQwA8fVdSb8fzMrKzN5uZm2z7P+MpLcFa4Al6YOTXjsladHZ3tDM3ippwN3/RdKdkq6cQ9wA0HAshwCA+LpTtWUOPw5OfBuU9L6Zdnb3UTP7A0nfMbNh1ZY2vOo/JN1vZr2SPj7Le14r6c/MrKra8gpmggHEkrl7o2MAANSJmbW7+1BQNH9R0rPufkej4wKAemM5BACky8eCE+WeVu1Eui83OB4AaAhmggFgATKzyyT9+5TNZXf/1UbEAwBJQxEMAACA1GE5BAAAAFKHIhgAAACpQxEMAACA1KEIBgAAQOr8P634nw7IrhzvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(max_beam):\n", + " fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + " fig.set_figheight(8.27)\n", + " fig.set_figwidth(11.7)\n", + " sns.scatterplot(y='beam_consisentency_{}'.format(i), x=\"min_lengths\" ,data=df[df.names == model_selected],s=500)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ temps\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3SV5Z33//e1zzsJiQSSACFIrZoQMDAa8NQqVKy2KCi1tdinttOOdp6eZuqMo9ZiD9TWQ0efp7Pa31THTkd/xXZqPaBxikXBWlsVcAQxB3VQCaAhECAk2ed9PX8koQEC2Tu5703i/rzWYsHe+97ffMMiKx+uXPf3MtZaRERERETyied4NyAiIiIikmsKwSIiIiKSdxSCRURERCTvKASLiIiISN5RCBYRERGRvOM73g0Mx8SJE+306dOPdxsiIiIiMopt3Lhxt7W2bLDXxmQInj59Ohs2bDjebYiIiIjIKGaMeedor2k7hIiIiIjkHYVgEREREck7CsEiIiIikncUgkVEREQk7ygEi4iIiEjeUQgWERERkbyjECwiIiIieUchWERERETyzpg8LCNXYvEk7d1xAA5EkkQSKcJ+L+PCvX9tZYUBggH9FYqIiIiMNUpwgzgQSdAZTfLYKzt4cP02WjsiR1xTVRpm2dxpLJlTSXHIx7iw/zh0KiIiIiLDYay1x7uHrNXX11u3jk1u2x9lTVMbKxoaiSbSQ14f8ntYvqiWhTMqqCgJudKTiIiIiGTPGLPRWls/2GtaCR6grTPKjY9sZm1ze8bviSbS3PzoFtY0t3Hb0joqihWERUREREY73RjXp21/lBsfzi4AD7S2uZ0bH95MW2fU4c5ERERExGkKwfTuAV7T1DbsANxvbXM7axrb6IomHOpMRERERNygEAx0RpOsaGh0pNaKhkb2R5KO1BIRERERd+R9CI7Fe6dAZHITXCaiiTSrNu0gFlcQFhERERmtXA3BxpifG2N2GWO2HOV1Y4z5sTHmTWPMZmPM6W72M5j27jgPrt/maM2VL207OF9YREREREYft1eCfwFcfIzXPwac0vfrWuD/c7mfI1jLoHOAR6K1I8IYnDwnIiIikjdcDcHW2j8AHce4ZAlwv+31AnCCMWaymz0drivqzraFrpi2Q4iIiIiMVsd7T3Al0Drg8fa+545gjLnWGLPBGLOhvX1kUxwGiiRSjtUaKOpSXREREREZueMdgjNmrb3HWltvra0vKytzrG7Y73Ws1kAhnzt1RURERGTkjncI3gFUDXg8te+5nCkKuXNonlt1RURERGTkjncIXgVc3Tcl4ixgv7X23Vw2YAxUlYYdrVlVGsYYR0uKiIiIiIPcHpH2IPBnoNoYs90Y80VjzN8aY/6275Inga3Am8C9wJfd7GcwZYUBls2d5mjNq+ZNo3xc0NGaIiIiIuIcV39mb61dNsTrFviKmz0MJRjwsWROJT9+5g1HDswI+T0snl1JQHuCRUREREat470dYlQoDvlYvqjWkVrLF9VSEtZ+YBEREZHRTCEYGBf2s3BGBQtqRjZ1YkFNGQtrKygK+R3qTERERETcoBDcp6IkxG1L64YdhBfUlHHb0joqikMOdyYiIiIiTlMIHqCiOMRtl9dx62WzCPkz+6sJ+T3cetksBWARERGRMUSbVw9TURJiyZwpzK8uZ9WmHax8aRutHRGKAl7GFwbY2x2nK56iqjTMVfOmsXhOJSUhn7ZAiIiIiIwhCsGDKAr5KQr5+fzZJ3Lp7CkAHIgkiSRShP1exvXd+DahwE84qPArIiIiMtYoBA9ib0+cnliKx17ZwYPre1eCD1dVGmbZ3GksmVNJQdDL+ILAcehURERERIbD9I7qHVvq6+vthg0bXKn93v4oTze1saKhMaO5wSG/h+WLarlgRgWTSrQnWERERGS0MMZstNbWD/aaVoIHaOuMctMjm1nb3J7xe6KJNDc/uoU1zW26OU5ERERkjNB0iD7v7Y9y48PZBeCB1ja3c+PDm2nrjDrcmYiIiIg4TSGY3j3ATze1DTsA91vb3M6axjb29cQd6kxERERE3KAQDPTEUqxoaHSk1oqGRrpjKUdqiYiIiIg78j4ER2IJHntlR0Y3wWUimkizatMOIrGEI/VERERExHl5H4L39CR4cP02R2uufGkbe3oUgkVERERGq7wPwdYy6BzgkWjtiDAGJ8+JiIiI5I28D8Fd0aQ7dWPu1BURERGRkcv7EBxNunMTW8yluiIiIiIycnkfgsN+ryt1Qz536oqIiIjIyOV9CC4MunNonlt1RURERGTk8j4Ep62lqjTsaM2q0jBp3RknIiIiMmrlfQhOpNJ84vSpjta84vSpJFLOzB0WEREREeflfQiOJ9PMP7WMkN+Zv4qQ38P5p5YRTyoEi4iIiIxWeR+Ci0I+fv7829xyyUxH6n37kpnc98e3KAppT7CIiIjIaJX3IdhgGF/oZ3ZVCfOry0ZUa351GXVVJYwvCmAwDnUoIiIiIk7L+xAc9Bs+e9Z0rr7vRa4976RhB+H51WVce95JXH3fi1x91nTCvrz/qxUREREZtfI+qYX8Hp5pbmNPd4Jr/mMDnzyjiuWXzMh4j3DI72H5JTP45BlVXPMfG9jTneCZ5jYCgbz/qxUREREZtfJ+42pnJMUDL7wDQHc8xVdWvsyldZP51TVn8ezr7Tz08nZaOyJHvK+qNMwVp0/l/FPLuO+Pb/H45qaDrz3wwjt8/LTJFIcCOfs8ZPRLJFK0d8dIWzgQTRJNpAj5vYwL+fAYKCsM4nfp8BYRERE5VN6HYGs5IuQ+vvldntzyHhfUlPOPH61myglhEqk00USakN+D3+th574IT2x+lx8/8yap9KEzgVs7ImhMsPTriSXZG0nQsHknD7zwzlH/U/XZs05kUd0Uxof9FOiwFREREVfl/Xfarmhy0OdTactTjW081dgGgM9jCPg8xJNpkumhE25XbPC6kl92dUZZ27KLb696jWji6GPzWjsi/ODJZu76/et8d/FMFlSXU14cymGnIiIi+SXvQ3A0mcroumTakoxndi1ALMO68v61qzPKNx95lTVNuzJ+TzSR5obfvsrCGeX84PLTFIRFRERckvd3b4Vc2oMZ9GlvZz4bTgAeaE3TLr75yKvs6ow63JmIiIiAQjBFLu29dKuujH49sSRrW3YdMwD7PIaCgBef5+jzpNc07WJdyy564tpaIyIi4rS8T2opa6kqDQ96s9JwVZWGSevOuLy1L5Lg26teO+Q5r8ewcEY5Hz9tMpUnhIkn08STaQI+DwGfhx37IjRsfpenm3cdcqPlLate40OnlFEQyPsvVREREUfl/UpwKpXmE6dPHfK6TFbu+l1x+lSSKYXgfJRIpHhi87uH3AS3ePYUfvu3Z7PotMkE+w5RsfT+B6z/X0nQ52HRaZP57d+ezeLZUw6+N5pI07D5XRIJ7TEXERFxUt4vLyVSlvmnlvGvz/7PIcHl8JW7WDJ9cK5r8BgrdyG/h/NPLSOROvokAHn/2t0T54EX3gagMODljitmE/QZMIatu7v57THmTn/i9KmcOLGQxbMnc9HMSfzTQ5vojqe4/4W3uWT2ZCaXhHP82YiIiLx/GTsGf2xfX19vN2zY4Eit7Xt7uON3LcyuKmHFE70HXiyePYUvnDudda+3Dxla5p9axs+ff5tVm3YCsPySGbyybR83XFzD1NICR3qUsaO1o4cP37GWwoCX+z4/l3Ta0vReJ3eubjnmiLR+Ib+H6y+qZsakYjwewxd/sZ7ueIrn/mkBVfr3JCIikhVjzEZrbf1gr+X9SrDHwH+37uWimZO4eGYFl86u5L3OCJ++94Uh57r+nzVv8K/P/g/XX1TNRTMn8fimHUwqDvPK9rfxZLBtQt5/uvvmQ//zp+YQ9nu5e83rrGtpz/j90USaFU80Mb+6jG8sPJV//tQc/vb/30i3bo4TERFxVN6H4IKgl8+edSLfWbWFh798Lres2sLa5uxDy4KaMr63eBZLf/o815x3EoXBvN9unZciiRSLZ0+hqjTMnatbsgrAA/W/7/qLqrm0bjLRLGZUi4iIyNDyPgQfiKS4aOYkqsYXsPyxLcMOLWub21lut/C9JbOonVJMZySFtnDmn4DPw9c/8kGefWP3sP8t9VvX0s6HT5nI1y84mYRutBQREXGUliuBsN9LR3f8mKElk+kQ61ra6eiOU+DSARwy+k0oDIDxcOfqFkfq3bm6BWM8lBYGHKknIiIivfJ+JdjvMXRGk6xoaDzk+eFOh1jR0MhZJ02gIKggnI88HmjYvDOjm+AyEU2kefLVnXx6bpUj9URERKRX3odgBgktA6dD/OipFlo7Ivg8hoDPQzyZJpm2B6dDfHn+Bw+ZDhFNpGl4dSefUmjJS/Gk5aGXtzta8zcbt7M0g1nWIiIikrm8D8GJAaGlf67re50RPnPfi3zo5In840erj7kSfO9zW7nuwlMPmev6m43bufyvFFryUdpaR08fhN5JJDqBUERExFl5H4ItvaGlMODl3s/Vc88ftlIc8vPLL555yErw4Q5fCX4uupt7P1fPNf+xgdaOCH85C0zySVfUnVFmXVFNhxAREXFS3ofg/tByxxWzuf9Pb/PJM6qGNSd4UnGY+//0NndcMZuvrHyZrphCSz6KJd05KTCe1L8nERERJ+V9CI4n0yyePYU93VGuPmc69/xh67APN7j2vJN4c9cBLq2bTMKlMCSjW9ilySAhTRwRERFxVN6H4JDfyxfOnc67+6NZB+CB+t93ZX0VX/zQBwj6NH0uHxUG3fmScquuiIhIvsr7pDa+0E/r3h527o84crjBzv0Rtu/tYXyh36EOZSzxmN794k6qKg2jU7hFRESclfchOJ60TJ9Q6OjhBidOKCSe1I1x+WhcuPcY7qFkcvhKv8+edSLFYf2nSkRExEl5/zPWoM/wdPMuRw83eKZ5F8vmaU5wPgoYD5fUTeGu379+yL+p4R6+EvL31gt48/7/qyIiIo7K+xDck0jzW4cPN3jo5e1c9leVjtaUscHv8xL0pfjOpTO58eFXgcEPXznc0Q5f+e7imQR9JqMVYxEREclc3odgA64cbiD5qaMnjrWW+dVlLJo1iY/XTRnWyL2LZk7iyc07Of/UctJpS0dPnLJxoRx+JiIiIu9vef8z1h6X5vn2xDXXNR8ZAy++1YEfuGXxTB56uZUVTzRlvN2mf+TeQy+3csvimfjprWe0ECwiIuKovA/BMZcOIXDr0AQZ3bpjKWonFxNJW258eDNrm4c3cWRtczs3PryZSDrNjCnFdOvwFREREUflfQgOunQIgeYE56egz0NR0MezLe3DDsD91ja382xLO+MCPv17EhERcVjef2cdF3JnW7RbdWX0S6QtKxoaHam1oqGReNqigXsiIiLOyvsQDO4cbiD5KeAzrHplp6Mj9x7ftJOgT5uCRUREnJT3Ibgw6OUzZw59uEE2/teZJ1KkY27zUk88zYPrtzlac+VL2+iJa4+5iIiIk/I+BHdFU1xSN5mQ35m/ipDfw6K6yRyIJh2pJ2OLte6M3LPaDyEiIuKovA/BFstTr73H8kW1jtS75ZJaVm95D+3izE8HoglX6nbF9J8qERERJ+V9CO6KJvneE02ceVIpH6kpG1Gtj9SUMe8DpaxoaKJLI63yklN7gY+sq39PIiIiTsr7ENw/z3fZPS/w3cWzWDDMILygpozvLp7FsnteACCu0JKXwi6N3Av53KkrIiKSr/I+BPeHlvauOEt/+jzf/NgMbr1sVsZ7hEN+D7deNotvfmwGS3/6PO1d8b7nFVryUZFLo/HcqisiIpKv8j4EDwwX7V1xLrz7D0QTKX7/jfO54eLqo447qyoNc8PF1fz+G+cTTaS48O4/HAzAh9eV/KKReyIiIqNf3ie1gNdDVWn4kDv6VzQ0cfvqFr7+kZP52WfPoCDgozuWJJpIE/J7KAz66IkneaZpFxfc9Szxw45IrioNE9AJX3nJ7zUsmzuNO1a3OFbzqnnTCHg1J1hERMRJeR+CJxQG+OxZ0/nBk02HPB9PpvnRU6/zo6deByDk81AU8tEVTRJNHvvmp6vPns6EwqBrPcvolUhZFs+Zwo+fecORm+RCfg+Xzp5CPKVpIyIiIk7K++VKr9fD4tlDzwmOJtPs7ooPGYBDfg+X1k3G69HKXT5KW8vzb+52bOTe8kW1/PGNdqwGBYuIiDgq70MwQGlhkO8tmelIre8tmUWpVoHzl4X9kQRnnlQ67Ekj/RbUlHHmSaV0RpM6LENERMRhCsFAwOdh4YxJLJxRPqI6C2eUc+GMCu0HzmMej+G8U8v4639/ie+NcOTe9xbP4q///SXOO6UMj36yICIi4iiltT6lhQFu/0TdsIPwwhnl3P6JOsYXBhzuTMYSj4EHX9rG/55/iiMj9748/xRWrt+GR1+pIiIijtK31gEmFAW544rZ3HFFXVah5c4r6rjzitlMKNI2iHxXXhSkojhEaaGfuqknjGjkXt3UExhf6GdycYjycaEcfyYiIiLvb2Ys3nBTX19vN2zY4Fr9eDJNR3ecJzbv5D/+/PYh49P6VZWG+dw507nktCmUFga0BUIO2rEvwuJ/eY6ffOYM7v3DVp5u3kXA5+HrHzmZj8woP+bIvR8/8ybxZJoLasq55ryT+MovN7Lqax+m8gTNChYREcmWMWajtbZ+0NcUgo8ulUrT0RMnmbZ0RZPEkmmCfaPSfB5DaWFQUyDkCD2xJI+8soMfNDRxxxWz2dMV4wf/1XTIyLSigJfxhQH2dsfpiv/liO2Q38M3PzaDCUVB/umhTdy8aAaX/VUlBYG8n2YoIiKStWOFYH1nPQav10NZ/4+hS45vLzJ2FAR9XDijgjVNbXxl5ctcWjeZX117Nu/ti4CBiUVBksk0qbTF6zH4fB52d8WwFiafEOa+57by+OZ3WVBTxsIZFQrAIiIiLtB3VxEXlBeHuH1pHTc8vJklc6ZQVhSkwO8l6PfgNYbOaOLgdojikJ+ycUGi8RRFIT9L5kyhK57k9qV1lBdrL7CIiIgbtB1CxEXv7Y/SFY0TDvh57JUdPLh+21H3mC+bO40lcyqJxBMUhQJMKlEAFhERGQntCRY5DnZ3RomnLWubd7GioTGjY5RDfg/LF9WyoKacgMcwUSvBIiIiw3asEOz6SANjzMXGmBZjzJvGmBsHeX2aMWatMea/jTGbjTEfd7snEbft3h8laeHmR1/l5ke3ZBSAAaKJNDc/uoWbH32VpO0N0iIiIuI8V0OwMcYL/AT4GFALLDPG1B522beA/7TW/hXwaeCnbvYk4rYDkQQJLDc9spm1ze3DqrG2uZ2bHtlMwlq6ogmHOxQRERG3V4LnAW9aa7daa+PAr4Alh11jgeK+P5cAO13uScRV8WSKZ5p2DTsA91vb3M4zTbuIJlJDXywiIiJZcTsEVwKtAx5v73tuoO8A/8sYsx14EvjaYIWMMdcaYzYYYza0t48sXIi4JRZPEk1aVjQ0OlJvRUMjsaQlFk86Uk9ERER6jYZjzpYBv7DWTgU+DjxgjDmiL2vtPdbaemttfVlZWc6bFMlEJJXisVd2ZLwHeCjRRJpVm3YQSWk1WERExEluh+AdQNWAx1P7nhvoi8B/Alhr/wyEgIku9yXiigORFA+u3+ZozZUvbeNARCFYRETESW6H4PXAKcaYDxhjAvTe+LbqsGu2ARcAGGNm0BuCtd9BxqzB5gCPpnoiIiLicgi21iaBrwKrgSZ6p0C8Zoz5njFmcd9l/wBcY4zZBDwIfN6OxeHFIsABlyY5dMW0J1hERMRJrh+bbK19kt4b3gY+d8uAPzcC57rdh0guOLUX+Mi62g4hIiLipNFwY5zI+0bY73WlbsjnTl0REZF8pRAs4qCikDs/XHGrroiISL5SCBZxWFVpeFTXExEREYVgEUeNC3tZNneaozWvmjeN4rBWgkVERJykECzioO5oiiVzKgn5nfnSCvk9LJ5dqekQIiIiDlMIFnFQeVGQrmiC5YtqHam3fFEtXbEE5eNCjtQTERGRXgrBIg7y+70Uhf3Mry5nQc3IjvdeUFPGgppyikJ+/F59qYqIiDhJ31lFHDY+7GfD23v44eV1ww7CC2rK+OHldWx4aw/jC/wOdygiIiIKwSIOKwj6OPuDE7n79818f8ksbr1sVsZ7hEN+D7deNovvL5nF3b9v5qwPTqQgoJviREREnKYQLOKC8uIQ//DRGr712BbKi4M8fd18bri4+qjjzqpKw9xwcTVPXzef8uIg33psC//w0RrKi7UXWERExA3GWnu8e8hafX293bBhw/FuQ2RIbfujrGlq40dPtbBiyUxmTT0BrzF0xZJEEylCfi9FQR8pa9myfR/LH3uN6y+q5oIZFVQoAIuIiIyIMWajtbZ+sNf0c1YRl+zpihFJpKirLGHVVz/EE5t3cvvqFlo7IhQFvIwvDLC3O05XPEVVaZir5k1j1Vc/xL7uOJF4ij1dMSYUBY/3pyEiIvK+pBAs4oKO7jjRRJoVTzTydPMuAj4PX//Iyfzss2dQEPDRHUsSTaQJ+T0UBn30xJM807SLC+56lngyzQU15ay4bBZ7u+OMLwwc709HRETkfUfbIUQcFk+maT8Q5ZbHXuPp5l2DXhPyeSgK+eiKJokm04Nec0FNOd9bMpOycSECPm3fFxERydaxtkPoO6uIww5E4jz3xu6jBmAAn8cQ9nvxecxRr3m6eRd/fHM3nZG4G22KiIjkNW2HEHFQKpUmmrR85/HXDnk+HPDyz1fUUVtZgs8YOqOJg9shikN+kn03xl3/21eJxFMH3/ftVa/xoZPLSKXSeHVghoiIiGMUgkUcdCCeoOHVnUQTf9ni8G9Xn8GMySU89soOfvi7Zlo7Ike8r6o0zLK501jzjfNpenc/f3P/RgCiiTQNr+7kU3OnckJYN8mJiIg4RUtLIg7qiaV44IV3ADixNMzzNyygrTPGBXet446+yRCDae2IcMfqFi64ax1tnTGev2EBJ/bNFH7ghXfoiaUGfZ+IiIgMj1aCRRyUSvcG2hNLw/z6S+dw0yObWdvcnvH7o4k0Nz+6hQU1Zfz6S+dw5c/+xDsdEVKD3zsnIiIiw6SVYBEHdceSAKy85qysA/BAa5vbuemRzay85qzeuvGkYz2KiIiIQrCIoyKJFP929Rmsa2kfdgDut7a5nXUt7dx79RlE49oOISIi4iSFYBEHBX0eZkwuYUVDoyP1VjQ0Uju5RHOCRUREHKbvrCIOmjw+xGOv7DhkOsRIRBNpVm3aweTxIUfqiYiISC+FYBEHdUVSPLh+m6M1V760ja6ItkOIiIg4SSFYxGFHG4M2WuqJiIiIQrCIo7qimU1xKAp4qRofpijgzaxuTNMhREREnKQ5wSIOiiQG37Yw3GOT+0WPUldERESGRyFYxEFh/5EruyM5NrlfyJfZirGIiIhkRtshRBxUFPrL/yudOjb58LoiIiIycvrOKuKwqtIwHnDs2GSdmCwiIuI8hWARBwX9hmVzp7FkzhTHjk1etWknIR2WISIi4ih9ZxVxUEdXgivrpzp6bPInz5jKnu64Qx2KiIgIKASLOKow6COatI4emxxLWgqD+qGNiIiIkxSCRRw0Lux15djkcWFNhxAREXGSQrCIg7qiLh2bHNWcYBEREScpBIs4yFp3jk221tGSIiIieU8hWMRBmR6bnHVdHZssIiLiKIVgEQcd7djkkdKxySIiIs5SCBZx0GDHJjtBxyaLiIg4SyFYxEFuHW+sY5NFREScpRAs4iBjeo9NdlJVaRhjHC0pIiKS9xSCRRxUFPKybO40R2teNW8a47QSLCIi4iiFYBEHHYikWDKnkpDfmS+tkN/D4tmVdEY0HUJERMRJCsEiDuqKJml6dz/LF9U6Um/5oloa392vEWkiIiIOUwgWcVAkkeJv7t/I/OoyFtSUjajWgpoy5leXcc39GzUiTURExGEKwSIO6h+RdtW9L/DDy+uGHYQX1JTxw8vruOreFwCNSBMREXGa7rYRcVD/KLN3OiJc+bM/sfKas1hX086KhkaiifSQ7w/5PSxfVMv86jKu/NmfeKfvCGaNSBMREXGWVoJFHDRwRNo7HRHOvX0t5cVBnr5uPjdcXH3U8WlVpWFuuLiap6+bT3lxkHNvX3swAGtEmoiIiPO0vCTioLLCAMvmTuOO1S0Hn7vm/o2EA17u/MRpPPDFM/EaQ1csSTSRIuT3UhT0kbKWLdv3sfDuZ4nED93/e9W8aZSPC+b6UxEREXlfUwgWcVAw4GPJnEp+/Mwbh2x/iMRTfPXBVw4+Lgp4GV8YYG93nK740W966x+RFtCeYBEREUdpO4SIw4pDviFHpHXFU7TujRwzAEPviLSSsP6vKiIi4jSFYBGHjQv7WTijwpERaQtrKygK+R3qTERERPopBIu4oKIkxG1LRzYi7baldVQUhxzuTEREREAhWMQ1FcUhbru8jlsvm5XxMcohv4dbL5ulACwiIuIybTYUcVFFSYglc6Ywv7qcVZt2sPKlbbT2jT4bqKo0zFXzprF4TiUlIZ+2QIiIiLhMIVjEZUUhP0UhP184ZzqXzp6CtdAVS5JOp/B4ekekGQPl44KaAiEiIpIj2g4hkmPGABZiyd7f+w/CsGl7PNsSERHJKxmvBBtjKoDKvoc7rLVt7rQk8v5yIJKgM5rksVd28OD6o2+HWDZ3GkvmVFIc8jEurO0QIiIibjLWHnv1yRgzB/hXoATY0ff0VGAf8GVr7cuudjiI+vp6u2HDhlx/WJGste2PsqapjRUNjYccnnE0Ib+H5YtqWTijgooS3RgnIiIyEsaYjdba+sFey2Ql+BfAl6y1Lx5W9Czg34HZI+5Q5H2orTPKjY9sZm1ze8bviSbS3PzoFtY0t2lChIiIiIsy2RNceHgABrDWvgAUOt+SyNjXtj/KjQ9nF4AHWtvczo0Pb6atM+pwZyIiIgKZheD/MsY0GGOuNMac0/frSmNMA/A7txsUGWsORBKsaWobdgDut7a5nTWNbXRFEw51JiIiIv2G3A5hrf26MeZjwBIG3BgH/MRa+6SbzYmMRZ3RJCsaGh2ptaKhkfnV5ZobLCIi4rCMpkNYa/8L+Jp+msYAACAASURBVK9jXWOM+Rdr7dcc6UpkjIrFe6dAZHITXCaiiTSrNu3gC+dMJxjQWG8RERGnOPld9VwHa4mMSe3dcR5cv83Rmitf2sals6cwVSFYRETGiFQqTUdPnGTaciCaJJFM4fd5GRfy4fMYSgsCeL3H97gKfVcVcZC1DDoHeCRaOyIMMclQRERkVIgn03R0x9ncuo80lolFQWLJNNFEipDfS2ckwe6uGAaYXTWe0sIAAd/xCcMKwSIO6oom3akbc6euiIiIUzq64zTu3E9RyE/je5389uXttHZE8HkMAZ+HeDJNMm2pKg3zidOnUlES5s1dB6idUkJpYSDn/ToZgo2DtUTGpEgi5UrdqEt1RUREnLCnK8brbQdoaTvAXb9/nQ+dPJF//Gg1lSeED1kJDvo87NgXoWHzu9z73Fauu/BUvB7DqRXjmFAUzGnP2RybfJq19tVjXPJ/HehHZEwL+72u1A353KkrIiIyUh3dcXbsjfCzP2ylOOTnl188k3Wvt/Ojp1oG3SLYvxL85fkf5OfPv81zb+zmuoWn4jGG8TlcEc5mJfinxpggvSfI/dJau3/gi9baXzjYl8iYVBRyZ4eRW3VFRERGIp5Ms+tAlJ+ue5NPnlHFe50RPn3vC8ecktTaEeH/rHmDf332f7j+omomFYf56bo3+caFp1IY9OVsj3DGH8Va+2HgM0AVsNEYs9IYc6FrnYmMQcb0/g/XSVWlYYw2G4mIyCi0vyfOS2/t4epzpvObja2seKIp4zGh0USaFU808ZuNrVx9znRefGsP+3viLnf8F1lFbWvtG8C3gBuA84EfG2OajTFL3WhOZKwpKwywbO40R2teNW8a5eNyu09KRERkKKlUms5YkrKiEPf8YSvrWoZ3Uuq6lnbu+cNWyopCdMaSpFLOzNofSsYh2BhTZ4y5G2gCPgJcaq2d0ffnu13qT2RMCQZ8LJlTScjvzI9yQn4Pi2dXEtCeYBERGWX2RxM07dzPzv2RYQfgfuta2tm5P0LTu/vZH0041OGxZfOd+l+Al4HZ1tqvWGtfBrDW7qR3dVhEgOKQj+WLah2ptXxRLSVh7QcWEZHRpyee4sQJhdy5usWReneubuHE0kJ64rmZiJRNCF4ErLTWRgCMMR5jTAGAtfYBN5oTGYvGhf0snFHBgpqyEdVZUFPGwtoKikJ+hzoTERFxjs9reLp5V8Z7gIcSTaR5pnkXPm9uboTJJgSvAQbe8VPQ95yIHKaiJMRtS+uGHYQX1JRx29I6KopDDncmIiLijGg8zW9f3u5ozYde3u5YqB5KNiE4ZK3t6n/Q9+cC51sSeX+oKA5x2+V13HrZrIz3CIf8Hm69bJYCsIiIjHrGMOgc4JFo7Yjk7PS1bDYbdhtjTu/fC2yMOQMY8jM3xlxM70EaXuDfrLW3DXLNp4DvABbYZK29Kou+REatipIQS+ZMYX51Oas27WDlS9uOOjj8qnnTWDynkpKQT1sgRERk1OuJubN3N1d7grMJwX8P/MYYs5PeI5InAVce6w3GGC/wE+BCYDuw3hizylrbOOCaU4CbgHOttXuNMeVZfg4io1pRyE9RyM8XzpnOpbOnYC10xZIHj5AsCvowBsrHBTUFQkRExoxY0p1tC3GX6h4u4xBsrV1vjKkBqvuearHWDjXDYh7wprV2K4Ax5lfAEqBxwDXXAD+x1u7t+zi7Mu1JZCwJBnxMDWjSg4iIvD84NQ70cMEcnRiX7XfkucD0vvedbozBWnv/Ma6vBFoHPN4OnHnYNacCGGOep3fLxHestb87vJAx5lrgWoBp05w9jEBEREREslMQdGdhp9CluofL+KMYYx4APgi8AvRv1rDAsUJwpj2cAswHpgJ/MMacZq3dN/Aia+09wD0A9fX1doQfU0RERERGIJ22VJWGHb05rqo0TCqdm5iXTdSuB2qttdl0tgOoGvB4at9zA20HXuzbWvGWMeZ1ekPx+iw+joiIiIjkUDjg4cr6Kn701OuO1fz03CoKArm5PyabTRdb6L0ZLhvrgVOMMR8wxgSATwOrDrvmUXpXgTHGTKR3e8TWLD+OiIiIiORQImU5/9Qyx/YGh/wezjuljHhq9M0Jngg0GmNWG2NW9f861hustUngq8BqoAn4T2vta8aY7xljFvddthrYY4xpBNYC11tr92T/qYiIiIhIrhSFvGzfG+H6i6qHvjgD119UzfZ9EYpDo2xPML1zfLNmrX0SePKw524Z8GcLXNf3S0RERETGgHEBP6dNLQFgfnUZ61rah11rfnUZU0rCnFZZQmEwN7PysxmR9qwx5kTgFGvtGmNMAb3THEREREQkz3i9HoJeD52RBNeedxLAsILw/Ooyrj3vJFr39BD0evB6cnNmXMbbIYwx1wAPAT/re6qS3v28IiIiIpJnEokUG7bt5ZyTJ/LAn9/mk2dUsfySGUfsEfZ5DAUBL77Dwm3I72H5JTP45BlVPPDntznnlIls2LaXRGL0nRj3FXoPv3gRwFr7hk53ExEREclPu7pi/ODJJm65ZCbLL5nJ8ke3cO7JE/n9N87ntZ37AZhYFCSWTB88JTXo87C7KwbAzCkl/L6xjYdf3s6Ky2bx2s5OfvBkE3WVJVSOL3C9/2xCcMxaGzemN8UbY3z0zgkWERERkTyTttDaEeH7T7zGb750Dt+6pJZUKoXHGN7e3cMvX3pn0BnCVaVhPjPvRE6rPIHzTpnAgppyfMbw/Sdeo7UjQo7GBGc1HeJZY8w3gbAx5kLgN8Dj7rQlIiIiIqNZVzQJwH2fn8ue7ihBn4cX39rLBXet47bfNR/1EI3Wjgi3/a6ZC+5ax4tv7SXo87CnO8p9n5/bWzeWzEn/2YTgG4F24FXgS8CT1tqbXelKREREREa1SCLFLZfMwGIZXxji5kdf5eZHtxBNZDbnN5pIc/OjW7j50VcZXxjCYlm+aAbRHO0JziYEf81ae6+19pPW2iustfcaY/7Otc5EREREZNQK+T187LTJFAX83PTIZtY2D29E2trmdm56ZDNFQT+LTptM0OfM4RtDyeajfG6Q5z7vUB8iIiIiMoZUlATxGsMzzbuGHYD7rW1u55mmXXg9hoqSoEMdHtuQN8YZY5YBVwEfOOyEuHFAh1uNiYiIiMjolUpbEilY0dDoSL0VDY3Mry4nN0dlZDYd4k/Au/Qem/zPA54/AGx2oykRERERGd0CPg8PbWjNeA/wUKKJNKs27WDZmVWO1BvKkCHYWvsO8A5wtvvtiIiIiMhYcCCS4sH12xytufKlbVxSN4UTwo6WHVQ2J8YtNca8YYzZb4zpNMYcMMZ0utmciIiIiIxeRxuDNlrqHUs2h2XcAVxqrW1yqxkRERERGRsORBOu1B2Nc4LbFIBFREREBHBsL/CRdXMzJzibleANxphfA48Csf4nrbUPO96ViIiIiIxqYb/Xlbohnzt1D5dNCC4GeoCPDnjOAgrBIiIiInmmKJRNjDz+dQ+X8Uex1v61m42IiIiIyNhhDFSVhh29ma2qNIwxjpU7pmymQ5xqjHnaGLOl73GdMeZb7rUmIiIiIqNVWWGAZXOnOVrzqnnTKB+XmxPjsrkx7l7gJiABYK3dDHzajaZEREREZHQLBnwsmVNJyJ9NnDy6kN/D4tmVBHK0JzibrgustS8d9lxuZliIiIiIyKgT8huWL6p1pNbyRbWE/TnaC0F2IXi3MeaD9N4MhzHmCnqPUxYRERGRPJNKpYkk0syvLmdBTdmIai2oKWNBTTk9iTSplDuj1w6XTQj+CvAzoMYYswP4e+B/u9KViIiIiIxqB+IJVr2yk6vu/TM/vLxu2EF4QU0ZP7y8jmX3/JnHN+3kQNydQzgOl3EIttZutdYuBMqAGmvth6y1b7vWmYiIiIiMWl3RFA+u38Y7HRGu/Nmf+P6SWdx62ayM9wiH/B5uvWwW318yiyt/9ife6Yiw8qVtdEVzc1hGNtMh/s4Y0z8r+G5jzMvGmI8O9T4RERERef+xloPj0d7piHDu7WspLw7y9HXzueHiaqpKw4O+r6o0zA0XV/P0dfMpLw5y7u1reaevTmtHBGtz038204i/YK39v8aYi4AJwGeBB4CnXOlMREREREatA9Ejty1cc/9GwgEvd37iNB744pl4jaErliSaSBHyeykK+khZy5bt+1h497NE4keu+nbFcjN3IZsQ3H+73seB+621rxmTq3HGIiIiIjKaRBOD38AWiaf46oOvHHxcFPAyvjDA3u44XYOE3iPr5mY7RDYheKMx5ingA8BNxphxQG5u3xMRERGRUSXsz2yeb1c8RVc881PlQjmaE5xNCP4iMAfYaq3tMcZMAHSUsoiIiEgeKgplEyOPf93DDXljnDGmpu+Pc/p+P8kYczpwItmFaBERERF5n/AYjnrz23BVlYbxOHMA3ZAyCbHXAdcC/zzIaxb4iKMdiYiIiMioV14UZNm8adzxuxbHal41bxrl40KO1TuWIUOwtfbavt8XuN+OiIiIiIwFfr+XJXMq+fHTbxz1JrlshPweFs+pxO/NzVJwNnOCP9l3MxzGmG8ZYx42xvyVe62JiIiIyGg2Puxn+SW1jtS65ZJaxhf4HamViWyi9nJr7QFjzIeAhcB9wL+605aIiIiIjHYFQR8Xzqg45pHJIZ+HiUUBQr6jx84FNWUsnFFBQSB3t5tl85H6h7YtAu6x1jYYY77vQk8iIiIiMkaUF4e4fWkdNzy8mbXN7QR8Hv7+gpOZX1NOYcBHVzRJJJEi7PdSFPLRHU/yTNMufvzMm8STaRbUlHH70jrKi3OzF7hfNiF4hzHmZ8CFwO3GmCDZrSSLiIiIyPtQfxB+d3+E0sIgj2/ayZce2HjwWOWBqkrDLJs7jaevO5+93TEmlYRzHoAhuxD8KeBi4EfW2n3GmMnA9e60JSIiIiJjzZadnax4ovGQG+V8HkPA5yGeTJNMW1o7ItyxuoUfP/MGyy+pZVKJs2PWMpVxCO47IOMxoMIYM63v6WZ32hIRERGRsWJXZ/Tgdgivx3DRzAo+ftpkKk8IE0umiSZShPxegj4PO/ZFaNj8Lk837+LmR7awpqltdG+HMMZ8Dfg20MZfjku2QJ0LfYmIiIjIGDAwAC+ePYUvnDudda+386OnWmjtiByxElxVGuYTp0/ly/M/yM+ff5tVm3Zyw8Obcx6Es9kO8XdAtbV2j1vNiLyfRWIJ9vQkADgQ+ctNAuPCvV+GEwr8hIO5Gw0jIiIyUj2xJL9vauOlrR385KrTea8zwmfue5EPnTyRf/xoNZUnhIkn08STaQI+D4EBK8H3PreV6y48lYtmTuKfHtrEmqY2LvurypxNiMjmo7QC+91qROT9am9PnJ5Yisde2cGD67cd8yaBJXMqKQh6GV8QOA6dioiIZGdvJMFdT7Vw7+fquecPWykO+fnlF89kW0cPgb6RaBZIWYvte0/Q52HRaZMPrgQ/F93NvZ+r52srX+b86vKchWBjrR36KsAYcx9QDTQAsf7nrbV3udPa0dXX19sNGzbk+sOKZO29/VGebmpjRUNjRqfphPweli+q5YIZFUwqyf2dsiIiIplKJFLc+/xbnFhayOObdnDp7EqCPsPEcSHWtezity9vP+rCzydOn8r86nJ2H4gSS9qD79/W0c3fnPsB/H6vIz0aYzZaa+sHfS2LEPztwZ631n53BL0Ni0KwjAVtnVFu7Nsjla0FNWXctrSOiuMwMkZERCQTO/b2cM9zW/lgWSGnVhSTTlua3uvkztUtGS/8XH9RNTMmFePxGF5v6+TN9m6+9OGTqBxf4EiPjoTgAcWKAKy1XQ70NiwKwTLavbc/yk2PDC8A91MQFhGR0ay1o4c9XTF2HYhRURzi7jWvs64l++9786vL+MbCU2nrjFI+LsiEoiBVpe6H4IwPuzDGzDLG/DfwGvCaMWajMWamIx2KvI/s7YnzdFPbiAIwwNrmdtY0trGvJ+5QZyIiIs5Jpy2te3uoHB8edgAGWNfSzt1rXqdyfJjte3tIZ7lAO1zZnPh2D3CdtfZEa+2JwD8A97rTlsjY1RNLsaKh0ZFaKxoa6Y6lhr5QREQkx1LWUju5mBe27hl2AO63rqWdF7buYcaUYlLp0ReCC621a/sfWGvXAYWOdyQyhkViCR57ZUdGe6EyEU2kWbVpB5FYwpF6IiIiTikIeLEY7lzd4ki9O1e3YK2hIODMTXFDySYEbzXGLDfGTO/79S1gq1uNiYxFe3oSPLh+m6M1V7607eB8YRERkdGkYfNORxd+nnx1J7lZB84uBH8BKAMeBn4LTOx7TkT6WMug42BGorUjQo62R4mIiGQskbI89PJ2R2v+ZuN2kqncfNPLeBqxtXYv8HUXexEZ87qiSXfqxtypKyIiMlwW687CT47WgrOZDvF7Y8wJAx6PN8asdqctkbEpknDnJraoS3VFRESGy72Fn9x8z8tmO8REa+2+/gd9K8PlzrckMnaFHTrh5nAhX25uEhAREclULOnMXuDDxZOjLwSnjTHT+h8YY06EnO1dFhkTikLunHfuVl0REZHhGusLP9l8Z70Z+KMx5lnAAB8GrnWlK5ExypjeM9Gd3CNVVRrGGMfKiYiIOGKsL/xkvBJsrf0dcDrwa+BXwBnW2oN7gnV6nAhMKPCzbO60oS/MwlXzplFWFHS0poiIyEgFvB6qSsOO1qwqDRPwZbNRYfiy+ijW2t3W2if6fu0+7OUHHOxLZEwKB/0smVNJyO/MF3DI72Hx7EqCLv3ISUREZLgmFAb47FnTHa159dnTmVCYm4UfJ6O2fmArAhQEvSxfVOtIreWLaikMKgCLiMjo4/V6WDx7sqMLP5fWTcbryU2kdDIE6yY5EWB8QYALZlSwoKZsRHUW1JSxsLaCEwoCDnUmIiLirMKAj+9c6syO2O8unklRMHc3gudm04VInplUEuK2pXXDDsILasq4bWkdFcUhhzsTERFxzoFYktLCABfUjGxq7gU15YwvCNDp0uzhwTgZguMO1hIZ8yqKQ/zw8jpuvWxWxj8qCvk93HrZLAVgEREZ9RKJFE9s3sk3fv0K15x30rCD8AU15Vxz3kl849ev8MTmnSRydECUsTbzXQzGmDpgOgNGq1lrH3a+rWOrr6+3GzZsyPWHFRmWfT1xumMpVm3awcqXtg06Pq2qNMxV86axeE4lhQGvtkCIiMiot3NfhCvv+TOtHREKA17uuGI2e7pi/OC/mogmhj5II+T38M2PzWBCUZB/emgT3fEUVaVhfn3t2Uw5wZmpE8aYjdba+sFey3jjhTHm50Ad8BrQ/5lZIOchWGQsOaEgwAkF8PmzT+TS2VOwFrpiSaKJFCG/l6KgD2OgrCioKRAiIjJmpNL24MJOdzzFV1a+zKV1k/nVtWfxxzd28+sNrUdd+LmyvooPnTKR+557i8c3v3vwtdaOCKl0bm4zy2b38VnWWmdueRfJQ+Ggn6lB//FuQ0RExBHdsSP37z6++V2e3PIeF9SU848frWbKCWESqTSxRJqg34Pf62HnvghPbH6Xu9e8MWjg7Y7nZl9wNiH4z8aYWmtto2vdiIiIiMiYEDnK3t1U2vJUYxtPNbYB4PMYAj4P8WSaZAarvNF4bvYEZxOC76c3CL8HxOidC2yttXWudCYiIiIio1Yww5PdkmlLMotgm6sT47IJwfcBnwVe5S97gkVEREQkDxWF3Jnp61bdw2XzUdqttatc60RERERExgyPMVSVhge9+W24qkrDeMzoOzHuv40xK40xy4wxS/t/udaZiIiIiIxaBQEvV5w+1dGanzxjKgWB3ExKyiYEh+ndC/xR4NK+X5e40ZSIiIiIjG4lIT+XzJ6S8YFQQwn5PSyqm0JJODez8jPeDmGt/Ws3GxERERGRscPr9VAc9HH9RdWseKJpxPWuv6ia4qAPryc32yGyOSwjBHwRmAkcPM/VWvsFF/oSERERkVGupCDAuSdPZH51Geta2oddZ351GeeePJGSHJ6Yms369QPAJOAi4FlgKnDAjaZEREREZPQL+DyUjwtx3cJTmV9dNqwa86vLuG7hqVSMC+VsPBpkNx3iZGvtJ40xS6y1/2GMWQk851ZjIiIiIjL6lRYGsNbypfNO4sOnTOTO1S1EE0NP0w35PVx/UTW1k4upHB9mfGHuVoEhuxCc6Pt9nzFmFvAeUO58SyIiIiIylkwoClJtDKm05VfXns2zLbt46OXtg45PqyoNc8XpUzm/upzuaIKaScU5D8CQXQi+xxgzHlgOrAKKgFtc6UpERERExpTSwgDzPjCBju44NZPGcfPHZzChKEgilSaaSBPye/B7PezpimEMTCoOUTq5OKdbIAbKZjrEv/X98VngJHfaEREREZGxKuDzMKkkRFlRBR09cZJpS1c0SSKVxu/1UBTyMX1CAaWFwZxNgTiabKZDVAA/AKZYaz9mjKkFzrbW3udadyIiIiIy5ni9HsrG9Q0TKzm+vRxNNuvPvwBWA1P6Hr8O/L3TDYmIiIiIuC2bEDzRWvufQBrAWpsEUkO9yRhzsTGmxRjzpjHmxmNc9wljjDXG1GfRk4iIiIhI1rIJwd3GmAmABTDGnAXsP9YbjDFe4CfAx4BaYFnfNorDrxsH/B3wYhb9iIiIiIgMSzYh+Dp6p0KcZIx5Hrgf+NoQ75kHvGmt3WqtjQO/ApYMct0K4HYgmkU/IiIiIiLDkk0IbgQeAdYDbcC99O4LPpZKoHXA4+19zx1kjDkdqLLWNmTRi4iIiIjIsGUTgu8HauidEPEvwKn0HqU8bMYYD3AX8A8ZXHutMWaDMWZDe/vwz6YWEREREcnmsIxZ1tqB+3nXGmMah3jPDqBqwOOpfc/1GwfMAtYZYwAmAauMMYuttRsGFrLW3gPcA1BfX2+z6FtERERE5BDZrAS/3HczHADGmDOBDce4Hnq3TpxijPmAMSYAfJrefcUAWGv3W2snWmunW2unAy8ARwRgEREREREnDbkSbIx5ld6JEH7gT8aYbX2PTwSaj/Vea23SGPNVeucLe4GfW2tfM8Z8D9hgrV11rPeLiIiIiLghk+0Ql4zkA1hrnwSePOy5W45y7fyRfCwREREROf5i8STt3XEADkSSpNIpvB4v48K90bOsMEAwkM2uXOcN+dGtte/kohERERERGdsORBJ0RpN0xRKE/F68xmCxxFMQ8liwkLKWt/b0MC7kpzjkY1zYf1x6Pb4RXERERETeF9r2RzkQjRMO+Hm6aRcPrt9Ga0fkiOuqSsMsmzuNJXMqaeuM0BNPUVESynm/xtqxN2ihvr7ebtige+dERERERoPdnVHiacva5l2saGgkmkgP+Z6Q38PyRbUsqCkn4DFMLHY+CBtjNlpr6wd7LZvpECIiIiIih9i9P0rSws2PvsrNj27JKAADRBNpbn50Czc/+ipJ2xukc0khWERERESG5UAkQQLLTY9sZm3z8A4zW9vczk2PbCZhLV3RhMMdHp1CsIiIiIgMSzyZ4pmmXcMOwP3WNrfzTNMuoomUQ50NTSFYRERERLIWiyeJJi0rGoY6QDgzKxoaiSUtsXjSkXpDUQgWERERkaxFUikee2VHxnuAhxJNpFm1aQeRVG5WgxWCRURERCRrByIpHly/zdGaK1/axoGIQrCIiIiIjGKDzQEeTfWORSFYRERERLJ2wKVJDl0x7QkWERERkVHKqb3AR9bVdggRERERGaXCfq8rdUM+d+oeTiFYRERERLJWFPKNqbqHUwgWERERkawZA1WlYUdrVpWGMcbRkkelECwiIiIiWSsrDLBs7jRHa141bxrl44KO1jwahWARERERyVow4GPJnEpCfmfiZMjvYfHsSgLaEywiIiIio1lxyMfyRbWO1Fq+qJaScG72A4NCsIiIiIgM07iwn4UzKlhQUzaiOgtqylhYW0FRyO9QZ0NTCBYRERGRYasoCXHb0rphB+EFNWXctrSOiuKQw50dm0KwiIiIiIxIRXGI2y6v49bLZmW8Rzjk93DrZbOOSwAGyN3GCxERERF536ooCbFkzhTmV5ezatMOVr60jdaOyBHXVZWGuWreNBbPqaQk5MvpFoiBFIJFRERExBHW9v6+oLqcj582GY8xdMWSRBMpQn4vRUEfaWuJxlNg/3L98aAQLCIiIiIj1rY/ypqmNlY0NBJNpA8+XxTwMr4wwN7uOF3x1MHnQ34PyxfVsnBGBRUl2g4hIiIiImNMW2eUGx/ZzNrm9iNe64qn6IofuS0imkhz86NbWNPcphvjRERERGRsadsf5caHBw/AmVjb3M6ND2+mrTPqcGfHphAsIiIiIsNyIJJgTVPbsANwv7XN7axpbKMrmnCos6EpBIuIiIjIsHRGk6xoaHSk1oqGRvZHko7UyoRCsIiIiIhkLRZP8tgrOw65CW4kook0qzbtIBbPTRBWCBYRERGRrLV3x3lw/TZHa658aRvt3XFHax6NQrCIiIiIZM1aBj0MYyRa/1979x8b913fcfz1tn1333OcOHXrXBrXTqeB6pjIMeB462CoJhmCmdpphrQmYtDBhvYDjWkbU7rKDBZFzcY2TfuhbQxQgZEAg7TJCB1rMktsE5C4kKSp423dxhwMuXpJ6tTx3flsf/aHL8Nc7fh75+/37pJ7PiQrtr8fv++djz7KvfL15/v9XkmV7N7BhGAAAAAUbCodzraFqQzbIQAAAFChUtm5lQcVIR1S3XyEYAAAABQsHqkNpa5XF07dfIRgAAAAFKzBC+fBw2HVzUcIBgAAQMHMpNameKA1W5viMgu05LIIwQAAAChY85qo9mxvC7Tm3p42bVgbC7TmcgjBAAAAKFgsWqeBrhZ5kWDipBepUf+2FkXZEwwAAIBKts6r02BfRyC1Bvs61BgvzX5giRAMAACAIq2NR7RzS0K97c2rqtPb3qydHQk1eJGAOlsZIRgAAABFSzR6Ori7s+gg3NverIO7O5VY5wXc2c0RggEAALAq9swdDwAAFaBJREFUiXWeDj7UqQO7tvreI+xFanRg19ayBGBJKt3GCwAAANy2Eo2eBro26YH7NujY2XEdOjWmi1dSaojW6o41UV29PqOpmTm1NsW1t6dN/V0tavTqSroFYjFCMAAAAALR4EXU4EX0yP2b9eC2TZKkl1OzSmXnFI/Uam3uwrc76yOKx8oTfm8gBAMAACAQV6dnNJ2Z09Ez4zp8euFMcL7Wprj2bG/TQFeL6mO1uqM+WoZOJXPOleWFV6O7u9sNDw+Xuw0AAADkXJpM6+SFpPYfH1E6O7/ieC9So8G+Du3YktDGxnD2BJvZs8657qWOcSYYAAAAq5K8ltajT57T0OiE759JZ+f12FPndWI0yd0hAAAAcGu5NJnWviOFBeDFhkYntO/IOSWvpQPu7OYIwQAAACjK1ekZnbyQLDoA3zA0OqETI0m9ND0TUGcrIwQDAACgKNOZOe0/PhJIrf3HR3Q9MxdILT8IwQAAAChYKpPV0TPjvi6C8yOdndexs+NKZbKB1FsJIRgAAAAFuzyd1eHTY4HWPHRqTJenCcEAAACoUM5pyfsAr8bFKymV6u69hGAAAAAUbCo9G07dTDh18xGCAQAAULBUNpyL2NIh1c1HCAYAAEDB4pHaUOp6deHUzUcIBgAAQMEavHAePBxW3XyEYAAAABTMTGptigdas7UpLrNASy6LEAwAAICC3Vkf0Z7tbYHW3NvTpuaGWKA1l0MIBgAAQMHisYgGulrkRYKJk16kRv3bWhQLaa9xPkIwAAAAilIfq9VgX0cgtQb7OrQmVpoALBGCAQAAUKQ76qPasSWh3vbmVdXpbW/Wzo6E1tdHA+psZYRgAAAAFG1jo6eDuzuLDsK97c06uLtTiXVewJ3dHCEYAAAAq5JY5+nxhzp1YNdW33uEvUiNDuzaWpYALEmluREbAAAAbmsbGz31dd6tB+7boGNnx3Xo1JguXkm9YlxrU1x7e9rU39WiNdHakm6BWIwQDAAAgECsr49qfb30yP2b9eC2TXJOmsrMKp2dkxepVUOsTmYLt1eLxyJl7ZUQDAAAgEC8ND2j65k5HT0zrsOnF84EN0RrdceaqK5en9HUzJxam+Las71NA10tWhMr35lgc86V5YVXo7u72w0PD5e7DQAAAORcmkzr5IWk9h8fUTo7v+J4L1Kjwb4O7diS0MbGcPYEm9mzzrnupY5xJhgAAACrkryW1qNPntPQ6ITvn0ln5/XYU+d1YjTJ3SEAAABwa7k0mda+I4UF4MWGRie078g5Ja+lA+7s5gjBAAAAKMpL0zM6eSFZdAC+YWh0QidGkpqcngmos5URggEAAFCU65k57T8+Ekit/cdHNJWZC6SWH4RgAAAAFCyVyeromXFfF8H5kc7O69jZcaUy2UDqrYQQDAAAgIJdns7q8OmxQGseOjWmy9OEYAAAAFQo57TkE+FW4+KVlEp1915CMAAAAAo2lZ4Np24mnLr5CMEAAAAoWCobzkVs6ZDq5iMEAwAAoGDxSG0odb26cOrmCz0Em9lbzezfzOwFM9u3xPHfMLMRMztnZifNbHPYPQEAAGB1GrxwHjwcVt18oYZgM6uV9BeS3iapQ9IeM+vIG/ZtSd3OuU5JX5T0B2H2BAAAgNUzk1qb4oHWbG2KyyzQkssK+0xwj6QXnHP/5ZybkfQ5SQOLBzjnhpxz07kvvyHpnpB7AgAAwCrdWR/Rnu1tgdbc29Om5oZYoDWXE3YIbpF0cdHX3819bznvlfT0UgfM7H1mNmxmwxMTq3s0HwAAAFYnHotooKtFXiSYOOlFatS/rUWxkPYa56uYC+PM7J2SuiV9dKnjzrmPOee6nXPdzc3NpW0OAAAAr7AmVqvBvvydrsUZ7OtQQ6w0AVgKPwSPS2pd9PU9ue/9EDPbKekxSf3OuUzIPQEAACAA6+uj2rElod721Z2g7G1v1s6OhBrrowF1trKwQ/BpSa82sx8xs6ikhyUdWzzAzF4r6a+1EIBfDLkfAAAABGhjo6eDuzuLDsK97c06uLtTiXVewJ3dXKgh2Dk3K+n9kr4q6YKkLzjnnjez3zOz/tywj0pqkPR3ZnbGzI4tUw4AAAAVKLHO0+MPderArq2+9wh7kRod2LW1LAFYksyV6gHNAeru7nbDw8PlbgMAAACLTE7PaCozp2Nnx3Xo1JguXkm9YkxrU1x7e9rU39WihmhtqFsgzOxZ51z3UsdKczdiAAAA3PYa66NqrJceuX+zHty2Sc5JU5lZzczOKVpXq4ZYncyk5oZYye4CsZyKuTsEAAAAbi9mkpw0N7/w540HYczPz5ezLUmcCQYAAEBArk7PaDozp6NnxnX49PLbIfZsb9NAV4vqY7W6o4R3hFiMPcEAAABYtUuTaZ28kNT+4yNKZ1c+0+tFajTY16EdWxLa2BjOhXHsCQYAAEBoktfSevTJcxoa9f9U33R2Xo89dV4nRpO33y3SAAAAcHu7NJnWviOFBeDFhkYntO/IOSWvpQPu7OYIwQAAACjK1ekZnbyQLDoA3zA0OqETI0m9ND0TUGcrIwQDAACgKNOZOe0/PhJIrf3HR3Q9MxdILT8IwQAAAChYKpPV0TPjvi6C8yOdndexs+NKZbKB1FsJIRgAAAAFuzyd1eHTY4HWPHRqTJenCcEAAACoUM5pyfsAr8bFKymV6u69hGAAAAAUbCo9G07dTDh18xGCAQAAULBUNpyL2NIh1c1HCAYAAEDB4pHaUOp6deHUzUcIBgAAQMEavHAePBxW3XyEYAAAABTMTGptigdas7UpLrNASy6LEAwAAICC3Vkf0Z7tbYHW3NvTpuaGWKA1l0MIBgAAQMHisYgGulrkRYKJk16kRv3bWhQLaa9xPkIwAAAAilIfq9VgX0cgtQb7OrQmVpoALBGCAQAAUKQ76qPasSWh3vbmVdXpbW/Wzo6E1tdHA+psZYRgAAAAFG1jo6eDuzuLDsK97c06uLtTiXVewJ3dHCEYAAAAq5JY5+nxhzp1YNdW33uEvUiNDuzaWpYALEmluREbAAAAbmsbGz31dd6tB+7boGNnx3Xo1JguXkm9YlxrU1x7e9rU39WiNdHakm6BWIwQDAAAgECsr49qfb30yP2b9eC2TXJOmsrMKlo3p5nZWjXE6mQmNTfESnYXiOWwHQIAAAChMJPkpMnphT9vPAhjfn6+nG1J4kwwAAAAAnJ1ekbTmTkdPTOuw6eX3w6xZ3ubBrpaVB+r1R1l2g5hzrmyvPBqdHd3u+Hh4XK3AQAAgJxLk2mdvJDU/uMjSmdXPtPrRWo02NehHVsS2tgYzoVxZvasc657qWOcCQYAAMCqJK+l9eiT5zQ0OuH7Z9LZeT321HmdGE1yizQAAADcWi5NprXvSGEBeLGh0QntO3JOyWvpgDu7OUIwAAAAinJ1ekYnLySLDsA3DI1O6MRIUi9NzwTU2coIwQAAACjKdGZO+4+PBFJr//ERXc/MBVLLD0IwAAAACpbKZHX0zLivi+D8SGfndezsuFKZbCD1VkIIBgAAQMEuT2d1+PRYoDUPnRrT5WlCMAAAACqUc1ryPsCrcfFKSqW6ey8hGAAAAAWbSs+GUzcTTt18hGAAAAAULJUN5yK2dEh18xGCAQAAULB4pDaUul5dOHXzEYIBAABQsAYvnAcPh1U3HyEYAAAABTOTWpvigdZsbYrLLNCSyyIEAwAAoGB31ke0Z3tboDX39rSpuSEWaM3lEIIBAABQsHgsooGuFnmRYOKkF6lR/7YWxULaa5yPEAwAAICi1MdqNdjXEUitwb4OrYmVJgBLhGAAAAAU6Y76qHZsSai3vXlVdXrbm7WzI6H19dGAOlsZIRgAAABF29jo6eDuzqKDcG97sw7u7lRinRdwZzdHCAYAAMCqJNZ5evyhTh3YtdX3HmEvUqMDu7aWJQBLUmluxAYAAIDb2sZGT32dd+uB+zbo2NlxHTo1potXUq8Y19oU196eNvV3tWhNtLakWyAWIwQDAAAgEOvro1pfLz1y/2Y9uG2TnJOmMrNKZ+fkRWrVEKuTmXTXmoi8aKSsvRKCAQAAEIiXU1ldS8/q6JlxHT69cCb43qa4XrNprZ7/3sv6zpWUWpvi2rO9TQNdLVrn1WltvDxh2JxzZXnh1eju7nbDw8PlbgMAAAA5ycm0TlxIav/xEaWz8yuO9yI1Guzr0M4tCSUaw9kTbGbPOue6lzrGmWAAAACsSvJaWvuePKeh0QnfP5POzuuxp87rxGiSu0MAAADg1pKcTGvfkcIC8GJDoxPad+ScktfSAXd2c4RgAAAAFOXlVFYnLiSLDsA3DI1O6MRIUlPpbECdrYwQDAAAgKJcS89q//GRQGrtPz6iydRsILX8IAQDAACgYJmZhbtA+LkIzo90dl7Hzo4rM1OaIEwIBgAAQMEmrs/o8OmxQGseOjWmieszgdZcDiEYAAAABXNOSz4RbjUuXkmpVHfvJQQDAACgYFPpcLYtTGXYDgEAAIAKlcrOhVI3HVLdfIRgAAAAFCweqQ2lrlcXTt18hGAAAAAUrMEL58HDYdXNRwgGAABAwcyk1qZ4oDVbm+IyC7TksgjBAAAAKFjzmqj2bG8LtObenjZtWBsLtOZyCMEAAAAoWCxap4GuFnmRYOKkF6lR/7YWRdkTDAAAgEq2zqvTYF9HILUG+zrUGC/NfmCJEAwAAIAirY1HtHNLQr3tzauq09verJ0dCTV4kYA6WxkhGAAAAEVLNHo6uLuz6CDc296sg7s7lVjnBdzZzRGCAQAAsCqJdZ4OPtSpA7u2+t4j7EVqdGDX1rIEYEkq3cYLAAAA3LYSjZ4Gujbpgfs26NjZcR06NaaLV1KvGNfaFNfenjb1d7Wo0asr6RaIxQjBAAAACESDF1GDF9F7fuJePbhtk5yTpjKzSmfn5EVq1RCrk5m0YW2sZHeBWA4hGAAAAIGKRet0T7SyYyZ7ggEAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABVhxAMAACAqkMIBgAAQNUhBAMAAKDqmHOu3D0UzMwmJP1PGV76Lkn/W4bXvdUwT/4wT/4wT/4wT/4xV/4wT/4wT/6Ua542O+ealzpwS4bgcjGzYedcd7n7qHTMkz/Mkz/Mkz/Mk3/MlT/Mkz/Mkz+VOE9shwAAAEDVIQQDAACg6hCCC/Oxcjdwi2Ce/GGe/GGe/GGe/GOu/GGe/GGe/Km4eWJPMAAAAKoOZ4IBAABQdQjBAAAAqDqE4Dxm9kkze9HMzi9z3MzsT83sBTM7Z2avK3WPlcDHPD1gZpNmdib38aFS91gJzKzVzIbMbMTMnjezDywxpurXlM95qvo1ZWaemZ0ys7O5efrIEmNiZvb53Hr6ppndW/pOy8vnPD1iZhOL1tMvlKPXSmBmtWb2bTP78hLHqn493bDCPLGecszsO2b2XG4ehpc4XjHveXXleuEK9oSkP5f06WWOv03Sq3MfPybpL3N/VpsndPN5kqR/ds69vTTtVKxZSb/pnPuWma2V9KyZPeOcG1k0hjXlb54k1lRG0pudc1NmFpH0L2b2tHPuG4vGvFfSVefcq8zsYUm/L+lny9FsGfmZJ0n6vHPu/WXor9J8QNIFSeuWOMZ6+oGbzZPEelqs1zm33IMxKuY9jzPBeZxzX5N05SZDBiR92i34hqT1ZnZ3abqrHD7mCZKcc993zn0r9/nLWvgHtCVvWNWvKZ/zVPVya2Qq92Uk95F/dfOApE/lPv+ipB1mZiVqsSL4nCdIMrN7JPVJ+vgyQ6p+PUm+5gn+Vcx7HiG4cC2SLi76+rvizXo59+d+Hfm0mb2m3M2UW+7XiK+V9M28Q6ypRW4yTxJr6savZM9IelHSM865ZdeTc25W0qSkO0vbZfn5mCdJ+pncr2O/aGatJW6xUvyJpN+WNL/McdbTgpXmSWI93eAk/aOZPWtm71vieMW85xGCEZZvaeF53dsk/Zmkp8rcT1mZWYOkL0n6defctXL3U6lWmCfWlCTn3JxzrkvSPZJ6zGxruXuqRD7m6e8l3euc65T0jH5wtrNqmNnbJb3onHu23L1UMp/zVPXraZE3Oudep4VtD79qZm8qd0PLIQQXblzS4v/h3ZP7HhZxzl278etI59xXJEXM7K4yt1UWuT2JX5L0WefckSWGsKa08jyxpn6Yc+4lSUOS3pp36P/Xk5nVSWqUdLm03VWO5ebJOXfZOZfJfflxSa8vdW8V4A2S+s3sO5I+J+nNZva3eWNYTz7mifX0A8658dyfL0p6UlJP3pCKec8jBBfumKR35a5u/HFJk86575e7qUpjZhtv7Bszsx4trLVq+4dTuTn4hKQLzrk/XmZY1a8pP/PEmpLMrNnM1uc+j0v6KUmjecOOSXp37vN3SPonV2VPRfIzT3l7EPu1sA+9qjjnHnXO3eOcu1fSw1pYK+/MG1b168nPPLGeFpjZmtzFzTKzNZLeIin/LlIV857H3SHymNlhSQ9IusvMvivpd7VwUYWcc38l6SuSflrSC5KmJf18eTotLx/z9A5Jv2xms5JSkh6utn84c94g6eckPZfbnyhJvyOpTWJNLeJnnlhT0t2SPmVmtVr4T8AXnHNfNrPfkzTsnDumhf9MfMbMXtDCxasPl6/dsvEzT79mZv1auDPJFUmPlK3bCsN68of1tKSEpCdz5yvqJB1yzv2Dmf2SVHnveTw2GQAAAFWH7RAAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABVhxAMAACAqkMIBoAKYWbrzexXyt0HAFQDQjAAVI71kgjBAFAChGAAqBwHJf2omZ0xs4+a2QfN7LSZnTOzj0iSmd1rZqNm9oSZ/buZfdbMdprZv5rZf+Sepicz+7CZfcbMvp77/i/mvn+3mX0t9xrnzewny/j3BYCyIQQDQOXYJ+k/nXNdkp6R9GpJPZK6JL3ezN6UG/cqSX8kqT33sVfSGyX9lhaetHdDp6Q3S7pf0ofMbFNu7Fdzr7FN0hkBQBXisckAUJnekvv4du7rBi2E4jFJ/+2ce06SzOx5SSedc87MnpN076IaR51zKUkpMxvSQqA+LemTZhaR9JRzjhAMoCpxJhgAKpNJetw515X7eJVz7hO5Y5lF4+YXfT2vHz654fJqOufc1yS9SdK4pCfM7F0h9A4AFY8QDACV42VJa3Off1XSe8ysQZLMrMXMNhRYb8DMPDO7U9IDkk6b2WZJSefc30j6uKTXBdM6ANxa2A4BABXCOXc5d4HbeUlPSzok6etmJklTkt4paa6AkuckDUm6S9J+59z3zOzdkj5oZtlcTc4EA6hK5lz+b8sAALc6M/uwpCnn3B+WuxcAqERshwAAAEDV4UwwAAAAqg5nggEAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABV5/8AXy7ELJvMy+cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Z338e8158mBQGQIEBKpFhMQA4uBIl01VCxtUbAengp9Vldb6K7ubuvu2mot3a6srbXWdrtPd1tpba27aHdbDyi2WBS0tVIICinm4IFqQsAQDRAIM5nT9fyRwEYIJBPuOyTM5/165WVm5p7f/BKTV77cc92/y1hrBQAAAGQTz6luAAAAABhshGAAAABkHUIwAAAAsg4hGAAAAFmHEAwAAICs4zvVDQzE6NGj7cSJE091GwAAABjCtmzZ8q61NtLbY8MyBE+cOFHV1dWnug0AAAAMYcaYt4/3GMshAAAAkHUIwQAAAMg6hGAAAABkHUIwAAAAsg4hGAAAAFmHEAwAAICsQwgGAABA1iEEAwAAIOsMy80yBktnPKnWjrgk6UA0qWgipbDfq/xw17ctkhtQMMC3EAAAYLghwfXiQDSh9lhST2xt1sObG9XUFj3mmJLCsBbPLNWi6cUaEfIpP+w/BZ0CAABgIIy19lT3kLHKykrr1rbJLftjWlfXohVrahVLpPs8PuT3aPmCKZo3uUhFBSFXegIAAEDmjDFbrLWVvT3GmeAeWtpjuu2xGq2vb+33c2KJtO54fLvW1bfo7isrVDSCIAwAADDUcWFct5b9Md32aGYBuKf19a267dEatbTHHO4MAAAATiMEq2sN8Lq6lgEH4MPW17dqXW2LDsYSDnUGAAAANxCCJbXHklqxptaRWivW1Gp/NOlILQAAALgj60NwZ7xrCkR/LoLrj1girdXbmtUZJwgDAAAMVa6GYGPMA8aYPcaY7cd53BhjvmeMecMYU2OMmeFmP71p7Yjr4c2NjtZctanxyHxhAAAADD1unwn+qaSPneDxj0ua1P2xTNJ/uNzPMaxVr3OAT0ZTW1TDcPIcAABA1nA1BFtrX5DUdoJDFkn6me2yUdJIY8w4N3s62sGYO8sWDnayHAIAAGCoOtVrgoslNfW4vbP7vmMYY5YZY6qNMdWtrSc3xaGnaCLlWK2eYi7VBQAAwMk71SG436y191trK621lZFIxLG6Yb/XsVo9hXzu1AUAAMDJO9UhuFlSSY/bE7rvGzR5IXc2zXOrLgAAAE7eqQ7BqyVd1z0lYrak/dba3YPZgDFSSWHY0ZolhWEZ42hJAAAAOMjtEWkPS3pJUpkxZqcx5jPGmL8yxvxV9yFPS9oh6Q1JKyXd5GY/vYnkBrR4ZqmjNZfMKtWY/KCjNQEAAOAcV9+zt9Yu7uNxK+lmN3voSzDg06Lpxfrec687smFGyO/RwmnFCrAmGAAAYMg61cshhoQRIZ+WL5jiSK3lC6aoIMx6YAAAgKGMECwpP+zXvMlFmlt+clMn5pZHNG9KkfJCfoc6AwAAgBsIwd2KCkK6+8qKAQfhueUR3X1lhYpGhBzuDAAAAE4jBPdQNCKkuz9ZobuumKqQv3/fmpDfo7uumEoABgAAGEZYvHqUooKQFk0fr6qyMVq9rVmrNjWqqS16zHElhWEtmVWqhdOLVRDysQQCAABgGCEE9yIv5FdeyK8b50zU5dPGy1rpYGdSsURKIb9XeUGfjJHG5AeZAgEAADAMEYJPIBjwaUKAbxEAAMDphoR3AtHOhN47lJAkHYgmFU2kFPZ7ld89Au2MHL/CQZZBAAAADDeE4F7sPRTXoc6UntjarIc3H39N8OKZpVo0vVg5Qa9G5QROQacAAAAYCNO1advwUllZaaurq12p/c7+mJ6ta9GKNbX92kEu5Pdo+YIpumRykcYWMB0CAABgqDDGbLHWVvb2GGeCe2hpj+n2x2q0vr6138+JJdK64/HtWlffwpg0AACAYYI5wd3e2R/TbY9mFoB7Wl/fqtserVFLe8zhzgAAAOA0QrC61gA/W9cy4AB82Pr6Vq2rbdG+Q3GHOgMAAIAbCMGSDnWmtGJNrSO1VqypVUdnypFaAAAAcEfWh+BoZ0JPbG3u10Vw/RFLpLV6W7OinQlH6gEAAMB5WR+C3zuU0MObGx2tuWpT45H5wgAAABh6sj4EW6te5wCfjKa2qIbh5DkAAICskfUh+GAs6U7dTnfqAgAA4ORlfQiOJd25iK3TpboAAAA4eVkfgkN+ryt1gz536gIAAODkZX0Izgu6s2meW3UBAABw8rI+BKetVUlh2NGaJYVhpbkyDgAAYMjK+hCcTKV11YwJjta8esYEJVOEYAAAgKEq69+zj6esqs6J6AfPv+nIhhkhv0cXnxNRPOXM5hs4fXTGk2rt6NpS+0A0qWgipbDfq/xw169hJDegYCDrfyUBABgUWf8XNy/o039seFO3zi/TiqfqTrrerfPL9OPf/Ulf/Fi5A93hdHAgmlB7LKkntjbr4c2Nvc6lLikMa/HMUi2aXqwRIZ/yw/5T0CkAANkj65dDSNIrTXt10aSI5pZHTqrO3PKILpoU0dad+xzqDMNdy/6YVm/bpUvu26B71jYcd2OWprao7lnboEvu26DV23apZX9skDsFACC7GDsML+CqrKy01dXVjtRqfK9D23bu095DcX1wTL7uf2GHNjS0ZlynqiyiZRedpTf2HFBhTkAVJSNVWpjrSI8YnlraY7rt0Rqtr8/852lueUR3X1mhohEhFzoDACA7GGO2WGsre3ss688Ev9cR1/SSUfr60/Va+mC1rjm/RMsvm6yQv3/fmpDfo+WXTdY155do6YPV+vrT9ZpWMkptB+Mud46hrGX/wAOwJK2vb9Vtj9aopZ0zwgAAuCHrQ3BhTkBP1uxSLJFWRzylm1e9rK2N+/TI0tm6Zd6k445PKykM65Z5k/TI0tna2rhPN696WR3xlGKJtJ6q2aVROYFB/kowVByIJrSurmXAAfiw9fWtWlfbooOxhEOdAQCAw7L+wjiPx+jhTY3vu+/Jmt16evs7uqR8jP7xo2UaPzKsRCqtWCKtkN8jv9ejXfuieqpmt7733BtKpd+/pGTVpkZdVjF+ML8MDCHtsaRWrKl1pNaKNbWqKhujvBAXygEA4KSsD8HGqNeLlVJpq2dqW/RMbYskyecxCvg8iifTSqZPvI66qS0qY1xpF0NcZ7xrCoQT4/YkKZZIa/W2Zt04ZyLj0wAAcFDWL4c4GEv267hk2upQPNVnAD5St7N/dXF6ae2I6+HNjX0fmIFVmxqPzBcGAADOyPoQ7NQZu6N1ulQXQ5u1vb+zcDKa2qIahkNcAAAY0rI+BAd87qxbCHiz/lublfr7zkLGdXlnAQAAR2V9UssNurPOMifodaUuhrZoIuVK3ZhLdQEAyFZZH4Kt1XHHoA1USWGYt6+zVNjvzj9+Qj7+UQUAgJOyPgSHAx5dNWOCozWvnjFBOQFCSzbKC7nzzoJbdQEAyFZZH4ITKatLysf0e4e4voT8Hn2kfIziKS6My0bGuPPOAiP3AABwVtaH4HDAo517o7p1fpkj9W6dX6ad+6KcCc5SI8JeLZ5Z6mjNJbNKVRBmswwAAJyU9SE4mbKqmDBS4wvCqiqLnFStqrKIxheEVVE8UskUi4Kz0YFYSoumFzv6zsLCacVqj7J1MgAATsr6EJwT8CjgNWqPJrTsorOOG4RDPo9G5wUU8vX+Lasqi2jZRWepPZpQwGuUy3SIrJROS3W792v5giknPM7nMcoJeOXznHidw/IFU1S7e7/6uUcLAADop6y/2sZvPPqvVxp16ZQi3be2QdecX6ILJ43Wvz77uv7qorNUVT5GuQGfDsaSiiZSCvu9ygv51BFP6rm6Pbr/tzv0+UsmaeyIsP7rpbf1D/PL9Ogrzbr+gjNP9ZeGU6CjM6nP/myLXvzSXM0tj2h9faskyesxmjd5jD5x3jgVjwyrM5lWLJFSyO9V0OdR876o1tTs1rP1e5TqTrxzyyOqKovow99cr19/4cJT+WUBAHDayfoQ/N6hhP7rD2/r0ilFWnbx2frOutf0fz9Uql/93UV6YmuzPvfQll53ACspDGvxzK7j6nbv13/+oVG3zDtHVtJ//uFtXVYxTsWBrP/2Zp3Dc4KXrNyon39ujm5/rEb5Qb9u/PBEbXitVfc+03Dcn6erZkzQTVVn64EX39KBzoS+8ckKfeqHv5fEnGAAAJxm7DAcaFtZWWmrq6sdqdXUdki/qX1HQZ9X97/wplYtna0NDa1asaa2X1sqh/weLV8wRVVlES1ZuVHLLjpbsURKHz13rEoKcxzpEcNH3e52ffxffytJuuCsQn3nU9P1bN2ejH+eLplcpFt+/ope2tEmSfrV5y/U5HEjXO0dAIDTjTFmi7W2srfHsv5U5cFYUpdOGaslK1/SqqUX6CtPbD/yFnZ/xBJp3fH4ds0tj+g/Pzv7SB22uc1Oed07EJ5ZGNZ3PvVnuv2xmgH9PK2rb9F3PvVn+tQPf6+326JH6gIAAGdk/YVx+SGfnty2Sw/85Sx9dXVmAbin9fWt+urq7XrgL2fpqZpdGsHmBlmrpDCsVUsvyDgA97S+vlW3P1ajVcsucHzuMAAAIATLSjojL6BNf2obcGA5bH19qzb9qU2jcvxczZ+l0tbq/r84Xxsa9jjy8/R8wx6t/IvzNRyXLQEAMJRlfQiWpDlnj9aKNbWO1FqxplYf/uDJzRvG8NXWEdeIUMCxn6c7n6pVfiigtkNxR+oBAIAuWR+C/V6jJ7ft6tdFS/0RS6T1VM0u+X3sc5uNSgrDemJbs6M/T6u3NWvCKJZEAADgpKwPwfFUWg9vbnS05qpNjYonnQlBGF5iibQe3uT8z5NToRoAAHTJ+hBsZHqd23oymtqiMuJMcDayVq78PLEkGAAAZ2V9CD4Yc2eUGSPSshM/TwAADA9ZH4KjLu3ExQ5f2YmfJwAAhoesD8Fhv9eVuiGfO3UxtIUDLv08ufRzCgBAtsr6EJzn0qYWbtXF0Nbfnd18HqOcgFc+T//WjrNjHAAAzsr6v6xWViWFYUcvZiopDMuKK5myVW8/T16P0bzJY/SJ88apeGRYncm0YomUQn6vgj6PmvdFtaZmt56t36PUUTutsGMcAADOy/oQHPB6tHhmqe5Z2+BYzSWzShX0Zv1J9ixlddWMCfruuteP3LNw2njd+OGJ2vBaq+59pqHXf3CVFIZ11YwJuqnqbD3w4ltavW3XkceunjFB4h9VAAA4KuuTWjJldfm08Qr5nflWhPweXVYxXokUoSUbvXcwoapzIgr5PcoNePX9JTM0raRA167cqO+ue/247zg0tUX13XWv69qVGzWtpEDfXzJDuQGvQn6PLj4noraOxCB/JQAAnN6MHYYDSCsrK211dbUjtZr3HtLv3nhXyZTVHY9vP+l6d10xVV6PdOGkiIpH5TjQIYaT+t3t+vcNb6py4kh9cEy+7n9hhzY0tGZcp6osomUXnaU39hzQ5j/t1c1zP6jycSNc6BgAgNOXMWaLtbayt8ey/kywz2u0P5rQrA8Uam555KRqzS2PaNYHCtUeS8rPcoislBP0avW2XbrgrNFa+duBBWBJ2tDQqpW/3aELzhqtJ2t2KyfIdAgAAJxEUpP00SljdeNPN+nOhVMHHITnlkd058KpuvGnm/TRKWMd7hDDRSpldf2cM/XC661aXz+wAHzY+vpWvfB6q66bc+YxF8sBAICTk/Uh2NquK/dvqpqkK//9RX3545N11xVT+71GOOT36K4rpurLH5+sK//9Rd00d5J8HqP0MFxmgpPn9RhdN3uivuXQhZbfWtug6y+YKK9hG24AAJyU9SG4M5mWtVbTSgpUMWGkLv3OC4olUvrNLRfrSx8rO+54qpLCsL70sTL95paLFUukdOl3XlDFhJGaVlKgtKw6k+lB/kowFOSGvHq2vkWxhDP//2OJtJ6ta1FuiOUQAAA4KetHpOUGvXrpzfd0TlG+vjBvkiRpxZo6fXNtg/7uIx/UD//ifOUEfOroTCqWSHdd9R/06VA8qefq9uiS+55XPJnWJeVj9IV5k+QzRjVN+zT77NGn+CvDqXCoM62HNr7taM2HNr6tj08dpzNyHS0LAEBWy/oQbK008Yxc7dwb1Zj8oD7z5x/QxedE9PVf1eneZ17Tvc+8JkkK+TzKC/l0MJZUrMdZ3pDfozsXnqsPjsmTJDXtjerMM3I1HKdu4OQZydGNV9Rdj8UQAAA4K+tDcGFOQFub9mn3/qjyu7c6HjcypJ8vu0C/fb1VP69uUlNbVLFkWrGD8SPPKykM61OVJbpwUkR7DsQkSdFESs37DiltraaMLzglXw9OrQOxpDt1O92pCwBAtsr6EOz1enRe8UglU1YP/O5PunxasXICHllJpaNydMcnJuuMvKASqbQ6E2kF/R75vR69d7Czaz2xJJ/HaO+hhJ7c1qxF04t1XvFIeT2cu8tGsWTKlbqdLtUFACBbZX0IlqTC3IBiiZSumzNR97+wQ/lBnz5z4Qfk6XHZoJHkMeZ9b0t7jSRZPfpysw50JrXsorPUsj+mwtzA4H4BGDJCfncuYAv6uDAOAAAnZf10CEkK+Dy6uGyMVm1s1DXnl2h66Uh9+kd/0Optu9835aFnAO5MpvXEtt369I/+oOmlI3XN+SVatbFRVWVjFPDxbc1WeUF3/l3pVl0AALIVf1m7FeYG9M+LztVtv/yjQn6P/uszH9Lzr7Xq3mca1NQWlc9jFPB5FE+mlUxblRSGdfWMCbq56mz9+Hd/UizRpruvOk+jOAuc1VK262fDyYvjSgrDzJ0GAMBhhOAezsgL6ptXV+jZuhZ9+sd/0IfPHq1//GiZxo8MK5FKHxmR5vd6tGtfVE/V7Nb9v92hr11+ruZNLiIAQ6mU1VUzJui76153rObVMyYomSIEAwDgJELwUQpzA1o0vVgXToroqZpdJzwT/JdzJmrFoqkqzA2wBAKSpEQqrapzIvrB8286smFGyO/RxedElEix+QoAAE4yw3GebWVlpa2urnb9dVKptNoOxZVMWx2MJdWZTCvYPS/Y5zEqzA0yBQLv07z3kL756wZNKynQiqfqTrre8ssma2vjPt328XIVj8pxoEMAALKHMWaLtbayt8c4E3wCXq9HkfxQ1w3G/qIf/F6PXmnaq/nnjlVVWUQbGloHXKuqLKKxI8LauvMt+XmnAQAAR/GXFXDQGbkBXTd7or74i21adtFZqiqLDKhOVVlEyy46S1/8xTZdd8FEnZEbdLhTAACyGyEYcJDX69Hl08YpZa2WPlita84v0fLLJivk79+vWsjv0fLLJuua80u09MFqpazV5RXjWHYDAIDDCMGAwwpzg7pz0bnqiKd086qXtbVxnx5ZOlu3zJukksJwr88pKQzrlnmT9MjS2drauE83r3pZHfGU7lw0VYWcBQYAwHGsCQYcFvB5dNGkMfpIeUTP1bfqyZrdenr7O7qkfEyfI/e+99wbSqW7Llb9SHlEF58TYfIIAAAuIAQDDjsQTej5hj367IVnKW2lDQ2tSqWtnqlt0TO1LZJ0zMi9o1WVRfTZC8/Shvo9WlAxTnkh/2B/GQAAnNYIwYDD2mNJ/dOTr8prjO65epounDRa31rb8L65wcm0VTKeOua5Ib9Ht84v09gR4SNrgv98UoQQDACAwwjBgIM640k9sbX5SOC9edXL+s0tF+pj547T6m3NWrWpsdctlUsKw1oyq1QLpxXrUDyhS7/z2yOPrd7WrBvnTFQwwK8rAABO4a8q4KDWjrge3twoSSofm6ef3DBLz9Xt0dd/Vfe+bbiTqbTiSauAz8jXY03w/1v/hr788cl66faP6IafbFL9Owe1alOjLp82XhMIwQAAOMb1K26MMR8zxjQYY94wxtzWy+Olxpj1xphXjDE1xphPuN0T4BZrpaa2qMrH5unBGz+kLz/2R93x+HbFEmmZ7ilnRpKVZGVlu28fvj+WSOuOx7fry4/9UQ/e+CGVj81TU1tUw3BjRwAAhjRXTy0ZY7ySvi/pUkk7JW02xqy21tb2OOwrkv7bWvsfxpgpkp6WNNHNvgC3HIwlJUk/uWGWbn+0RuvrW7Vw2njd+Ocf0O/feFf3PtNw3OUQi2eW6qa5H9QDv/uTVm/bpdsfrdFPb/iQZn/jWR3sTA72lwIAwGnN7fdXZ0l6w1q7Q5KMMY9IWiSpZwi2kkZ0f14gaZfLPQGuiSZSeuymOXqubo/+sKNN318yQ/sOxXXt/S+978K4ozW1RXXP2gaFnntdyxdM0fxzx+qLv9im5+pb9OhfX6BY4tiL6AAAwMC5vRyiWFJTj9s7u+/r6WuS/q8xZqe6zgL/bW+FjDHLjDHVxpjq1tZWN3oFTlrY79WY/JDu+02DfnLDTD32ys4jyyH64/ByiMde2amf3DBT336mQUUjwgr5vC53DgBAdhkKU/gXS/qptXaCpE9IesgYc0xf1tr7rbWV1trKSCQy6E0C/VFcGNSTNbt095UVuv+FHVpXt2dAddbV7dH9L+zQ3VdW6KmaXSouZNc4AACc5HYIbpZU0uP2hO77evqMpP+WJGvtS5JCkka73BfgivZoSrv3R/XeofiAA/Bh6+r2qO1QXM37o2qPshwCAAAnuR2CN0uaZIz5gDEmIOlaSauPOqZR0iWSZIyZrK4QzHoHDFvXXTBRX1v9qiO1/mn1q7r+gomO1AIAAP/L1RBsrU1K+htJayXVqWsKxKvGmDuNMQu7D/sHSUuNMdskPSzpL61lIBSGp1Ta6tm6Pf1eA9yXWCKt5+r2KN3L1soAAGDgXJ++b619Wl0XvPW876s9Pq+V9GG3+wAGg9dj9NDGtxyt+bONb+nj5411tCYAANluKFwYB5w2Dm+W4SQ2ywAAwHmEYMBBHS5tatERZ7MMAACcRAgGHBR1aVOLWJzpEAAAOIkQDDgo4HPnV8qtugAAZCv+sgIOyg+6c61pnkt1AQDIVoRgwEEej1FJYdjRmiWFYXk8xtGaAABkO0Iw4KCgz+jqGRMcrXnN+RMUYjkEAACO4i8r4KCRoYAWVIxXyO/Mr1bI79GC88arICfgSD0AANCFEAw4yO/3Kj/k063zyxypd+v8MuWFfPJ7+VUFAMBJ/GUFHJYf9GnO2aNVVRY5qTpVZRHNOXu08kNcFAcAgNMIwYDDcoI+jc4N6JZ55ww4CFeVRXTLvHM0OjegnAAhGAAAp/HXFXBBZERIVtKyC8/ShZNG61trGxRLpI887vMYBXwexZNpJdP/uydyyO/RrfPLNHnsCI0rCCkyInQKugcA4PRHCAZc0NYR1zd/Va+/qjpbiVSefr7sAjW1HZLPazQ6L6jOZFqxREohv1dBn0fvHuxUMpVWSWGu9h2KK5If1Dd/Va+vXDZFo3K5KA4AAKcRggGHxZNpPVvXol++0qxfvtKsZ265ULkBv1568z3916a31dQWPeY5JYVhfXrWmfqz0kKFAx5d+p0XJEmzzz5Di6YXs2McAAAOM9bavo8aYiorK211dfWpbgPo1Tv7Y6q6d72K8oNatXS2NjS0asWa2vcthziekN+j5QumqKosoiUrN6rlQKc2/ONcjS1gWQQAAJkyxmyx1lb29hinlwAHpVJpPVWzS0X5Qf38c3P0lSe2647Ht/crAEtSLJHWHY9v11ee2K6ff26OivKDeqpml1Kp/j0fAAD0DyEYcFDbobgefOktrVo6W7c/VqP19a0DqrO+vlW3P1ajVUtn68GX3lLbobijfQIAkO0IwYCDkmmrf7psijY0tA44AB+2vr5VGxpa9dXLprxvggQAADh5hGDAQQdiSU0eV6AVa2odqbdiTa2mjCvQwVjSkXoAAKALIRhwUGGOX09sbe73GuC+xBJprd7WrFE5fkfqAQCALoRgwEHRRFoPb250tOaqTY2KOhSqAQBAF0Iw4LDe5gAPpXoAAIAQDDjKrbW7BztZEwwAgJMIwYCDoomUK3VjLtUFACBbEYIBB4X9Xlfqhnzu1AUAIFsRggEH5YV8w6ouAADZihAMOKykMDyk6wEAAEIw4Ki8kFeLZ5Y6WnPJrFKNCHMmGAAAJxGCAQft2hfTounFCvmd+dUK+T1aOK1YzXtjjtQDAABdCMGAg+LJtOp279fXLj/XkXr/vPBc1e7er3iS6RAAADiJEAw46PB0iOklI1VVFjmpWlVlEU0rGSlJCrk0dQIAgGxFCAYclBf0afK4An36Rxu17KKzBhyEq8oiWnbRWfr0yo2aMq5AeUHWBAMA4CRCMOCgETlePbG1We91JLT0wWpdc36Jll82ud9rhEN+j5ZfNlnXnF+ipQ9W672OhFZva9aIHM4EAwDgJEIw4KD2aEoPb26UJHXEU7p51cva2rhPjyydrVvmTTruuLOSwrBumTdJjyydra2N+3TzqpfVEe9aB7xqU6Pao6wJBgDASbzHCjjIWqmpLfq++56s2a2nt7+jS8rH6B8/WqbxI8NKpNKKJdIK+T3yez3atS+qp2p263vPvaFU2r7v+U1tUdn33wUAAE4SIRhw0MFYstf7U2mrZ2pb9ExtiyTJ5zEK+DyKJ9NKpvtOuAc7e68LAAAGhhAMOCia6N+yhWTaKhnv/xKHWD/rAgCA/mFNMOCgsEujzEI+LowDAMBJhGDAQXkhd95ccasuAADZihAMOMgYHXcCxECVFIZljKMlAQDIeoRgwEGR3IAWzyx1tOaSWaUakx90tCYAANmOEAw4KBjwadH04n5vjtGXkN+jhdOKFWBNMAAAjiIEAw4bEfJp+YIpjtRavmCKCsKsBwYAwGmEYMBh+WG/5k0u0tzyyEnVmVse0bwpRcoL+R3qDAAAHEYIBlxQVBDS3VdWDDgIzy2P6O4rK1Q0IuRwZwAAQCIEA64pGhHS3Z+s0F1XTO33GuGQ36O7rphKAAYAwGUsNgRcVFQQ0qLp41VVNkartzVr1aZGNbVFjzmupDCsJbNKtXB6sQpCPpZAAADgMkIw4LK8kF95Ib9unDNRl08bL2ulg51JxRIphfxe5QV9MkYakx9kCgQAAIOEEAwMkmDApwkBfuUAABgKWBMMAACArEMIBgAAQNYhBAMAAESJv94AACAASURBVCDrnFQINsbkOdUIAAAAMFhO9kxwrSNdAAAAAIOoz0vVjTF/f7yHJHEmGAAAAMNOf84Ef13SKEn5R33k9fP5AAAAwJDSn6GlL0t63Fq75egHjDGfdb4lAAAAwF39CcE3SHrvOI9VOtgLAAAAMCj6XM5grW2w1r57nMdaDn9ujPk3JxsDAAAA3OLkmt4PO1gLAAAAcA0XtgEAACDrEIIBAACQdZwMwcbBWgAAAIBr+h2CjTHn9XHIv55kLwAAAMCgyORM8L8bYzYZY24yxhQc/aC19qfOtQUAAAC4p98h2Fp7oaRPSyqRtMUYs8oYc6lrnQEAAAAuyWhNsLX2dUlfkfQlSRdL+p4xpt4Yc6UbzQEAAABuyGRNcIUx5juS6iR9RNLl1trJ3Z9/x6X+AAAAAMf1Z9vkw/5N0o8kfdlaGz18p7V2lzHmK453BgAAALgkkxC8QFLUWpuSJGOMR1LIWnvIWvuQK90BAAAALshkTfA6SeEet3O67wMAAACGlUxCcMhae/Dwje7Pc5xvCQAAAHBXJiG4wxgz4/ANY8z5kqInOB4AAAAYkjJZE/wFSf9jjNmlri2Sx0r6lCtdAQAAAC7qdwi21m42xpRLKuu+q8Fam3CnLQAAAAxXiURKrR2dSlvpQCypaCKlsN+r/JBPHiNFcoPy+72ntMdMzgRL0kxJE7ufN8MYI2vtzxzvCgAAAMPOoc6k9kYTemJrsx7e1KimtqjyAl6Nyg1ob0dcB+MplRSGtXhWqRZNL9aosF85wUzjqDP6/arGmIcknS1pq6RU991WEiEYAAAgy+1pj2ldXYu+tbZBd10xVQ995kPyGaP2WEKxRFohv0cjQn4lrdX2nft02fd+q1vnl2ne5CKNGREa9H4zid6VkqZYa61bzQAAAGD42dMe05cerdGnZ5Xqqb+9UE9sbdY3fl2vprZjZyiUFIa1eGbXcXW79+tLj9bom1dWDHoQzmQ6xHZ1XQwHAAAASOoKwN9+pl7/smiqWto7dcl9G3TP2oYjAdjnMcoJeOXzGElSU1tU96xt0CX3bVBLe6f+ZdFUffuZeu1pjw1q35mcCR4tqdYYs0lS5+E7rbULHe8KAAAAQ96hzqQ2vvmubrm0XLc/VqP19a3yeozmn1ukT5w3TsUjw+pMphVLpBTyexX0edS8L6o1Nbv1bP0e3fH4ds0tj+gbn6zQxjff1bxzxyonMDhrhDN5la+51QQAAACGn73RhM6fWHgkAC+cNl43fniiNrzWqnufaTjucoirZkzQTVVn64EX39Lqbbt0+2M1+pcrpmrvocTQC8HW2ueNMWdKmmStXWeMyZF0amdbAAAA4JRIJFI6GE2o+u292rSjTd9fMkPvtEd17cqNiiXSx31eU1tU3133un7w/Ju6dX6Z5p87Vl/8xTZtqG9V5cRRSiQCgzI+rd9rgo0xSyX9QtIPu+8qlvR4P573MWNMgzHmDWPMbcc55v8YY2qNMa8aY1b1tycAAACcGq0dncoL+XXfbxq08vpK/c+WJq14qu6EAbinWCKtFU/V6X+2NGnl9ZW67zcNygv61drR2feTHZDJ+eabJc2S9AdJsta+bowZc6InGGO8kr4v6VJJOyVtNsasttbW9jhmkqTbJX3YWru3r5oAAAA49XKCXq3a2KQ7F52n+1/YoQ0NrQOqc/h5dy46T6u3NWvxh0qcbPO4MgnBndbauDFdV/YZY3zqmhN8IrMkvWGt3dH9nEckLZJU2+OYpZK+b63dK0nW2j0Z9AQMG53xpFo74pKkA9Eeu+eEu34NI7kBBQdpHRQAACfrQDSllgMxBf2eAQfgwzY0tOrCSaO1uz2mA9GURoYdavIEMvmL+7wx5suSwsaYSyXdJOnJPp5TLKmpx+2dkj501DHnSJIx5kV1rTH+mrX210cXMsYsk7RMkkpLSzNoGzi1DkQTao8lu3bP2dx4wpmJi6YXa0TIp/yw/xR0CgBAZj45vVjXrtzoSK1vrW3QI0tnO1KrPzKZE3ybpFZJf5T0OUlPW2vvcKAHn6RJkqokLZa00hgz8uiDrLX3W2srrbWVkUjEgZcF3NeyP6bV23YdMzPxaD1nJq7etkst+wd3ViIAAJlKp602vNba7zXAfYkl0nr+tValB2lftkxC8N9aa1daa6+x1l5trV1pjPl8H89pltRzYceE7vt62ilptbU2Ya39k6TX1BWKgWGtpT2m2x6r0R2Pb8/oIoE7Ht+u2x6rUcsgDw0HACATKWv1y5d3OlrzFy/vVCo99ELw9b3c95d9PGezpEnGmA8YYwKSrpW0+qhjHlfXWWAZY0ara3nEjgz6Aoaclv0x3fZo18zEgVhf36rbHiUIAwCGLp/HHPcdzoFqaose2VnObX2uCTbGLJa0RNIHjDE9A2y+pLYTPddamzTG/I2ktepa7/uAtfZVY8ydkqqttau7H/uoMaZWUkrSrdba9wb25QCn3oFoQuvqWgYcgA9bX9+qdbUtWjR9vPJCrBEGAAwth+Ipd+om3Kl7tP5cGPd7SbvVtW3yt3vcf0BSTV9PttY+Lenpo+77ao/PraS/7/4Ahr32WFIr1tT2fWA/rFhTq6qyMYRgAMCQ49Ra4KN1ulT3aH2GYGvt25LelnSB++0Aw1tnvGsKhJMXCaze1qwb50xkfBoAYEgJBzJZVdt/Ib87dY+WyY5xVxpjXjfG7DfGtBtjDhhj2t1sDhhuWjvienhzo6M1V21qPDJfGACAoSKnnydnfB6jnIC332t9+1v3ZGXyKvdIutxaW+dWM8BwZ61cuUhgkKbFAADQb1ZWJYXhY/7ueT1G8yaP0SfOG6fikWF1JtOKJVIK+b0K+jxq3hfVmprderZ+zzGTIEoKw7J97sXmjExCcAsBGDixg7GkO3U73akLAMBABXweXTVjgr677vUj9y2cNl43fniiNrzWqnuf6X0+fklhWFfNmKCbqs7WAy++pdXbdh157OoZExT0eQel/0xCcLUx5ufqGmnWefhOa+2jjncFDFNRl65ojQ3SlbIAAPTXvo6ELp82Xj94/k15jdE9V0/TO+1RXbty4wmvjWlqi+q7617XD55/U7fOL9P8c8fqi7/YppS1umzaeO09FFfRiJDr/WcSgkdIOiTpoz3us5IIwUC3sN+df72GBulfxQAA9FdnMq2CHL/uXDhVEwrDuv+FHdrQ0P/xoLFEWiueqlNVWUQrr69Uc1tUuX6v9rj0rurR+h2CrbU3uNkIcDrIC7mzmN+tugAADNS4gqC2vL1Pcz54hpY/sT2jANzThoZWGSOtWDRVr+zcpxmlIx3utHeZTIc4xxjzrDFme/ftCmPMV9xrDRh+jOla6+SkksKwzOBsngMAQL/FU1bnFOXpxTfedWSDqBffeFfnFOUpkRp62yavlHS7pIQkWWtr1LUNMoBukdyAFs8sdbTmklmlGpMfdLQmAAAny+818vs8+qfVrzpS759Wvyq/1yO/d3DO/GQSgnOstZuOuo9L1oEeggGfFk0vdmzQd8jv0cJpxQqwJhgAMMSkrfTr7S2ObhC1dnuL0oM0FjSTv9TvGmPOVtfFcDLGXK2u7ZQB9DAi5NPyBVMcqbV8wRQVhFkPDAAYeqy1emjjW47W/NnGt2QHaTh+JiH4Zkk/lFRujGmW9AVJf+1KV8Awlh/2a97kIs0tj5xUnbnlEc2bUqS8kN+hzgAAcE4q7c4GUSlnTiz3qd8h2Fq7w1o7T1JEUrm19s+ttW+51hkwjBUVhHT3lRUDDsJzyyO6+8qKQZmTCADAQHS4tJFTR3xwVttmMh3i88aYw7OCv2OMedkY89G+ngdkq6IRId39yQrddcXUfq8RDvk9uuuKqQRgAMCQ59oGUfHB2SAqk8WGN1pr/9UYM1/SGZL+QtJDkp5xpTPgNFBUENKi6eNVVTZGq7c1a9WmxuNuIblkVqkWTi9WQcjHEggAwJAX8DlzEfhg1T1aJiH48LyKT0j6mbX2VWOYXgr0JS/kV17IrxvnTNTl08bLWulgZ1KxREohv1d5QZ+MkcbkB5kCAQAYNvKH+QZRmbzKFmPMM5I+IOl2Y0y+pEFaugwMf8GATxMCTHoAAJwePMaopDDs6MVxJYVheQbpHGsm55s/I+k2STOttYckBSSxlTIAAEAWCvqMrp4xwdGa15w/QaFBWg7R56sYY8q7P53e/d+zjDEzJJ2pzM4kAwAA4DQxMhTQgorxjm4QteC88SrICThSry/9CbF/L2mZpG/38piV9BFHOwIAAMCQ5/d7lR/y6db5ZVrxVN1J17t1fpnyQj75vUPkwjhr7bLu/851vx0AAAAMF/lBn+acPVpVZRFtaGgdcJ2qsojmnD3atYvtepPJnOBrui+GkzHmK8aYR40xf+ZeawAAABjKcoI+jc4N6JZ556iqbGAbRFWVRXTLvHM0OjegnEG8gDyT883LrbUHjDF/LmmepB9L+oE7bQEAAGA4iIwIaXxBSMsuPEvLL5uc0QZRyy+brGUXnqXxBSFFBnmTqEzi9uHtOxZIut9au8YY8y8u9AQAAIBhxOMxGj8yrEQqrUeWXaDnG/boFy/vPO4GUVfPmKCLy8Zo/6G4xo8My+MZ/K0nMgnBzcaYH0q6VNI3jTFBZXYmGQAAAKeZto64vvTLGq2r26PlCybro+eO1aQxebrjE5N1Rl5QiVRasURaIb9Hfq9H7x3sVNpanZEb0Ja32nT9TzZr3uQx+tbV0zQqd3AmQ0iZhdj/I2mtpPnW2n2SCiXd6kpXAAAAGPLiybTW1b6jdXV7JEkr1tTpkvue1453O1R6Ro4i+UEVhP0aleNXQdivSH5QpWfkaEdrhy6573mtWNM1VWJd3R79pu4dxZODtw+bsdb2/2BjvJKK1OMMsrW20YW+TqiystJWV1cP9ssCAACgh937o5p77wbFEscPryGfR3khnw7GkoqdIOSG/B6t/8cqjSsIO9afMWaLtbayt8cymQ7xt5JaJP1G0pruj6cc6RAAAADDSiqV1pPbdp8wAEtSLJnWuwfjJwzAkhRLpPVUzW6lUoNzNjiTNcGfl1RmrX3PrWYAAAAwPLzXEddDG9/q8zifxyjg8yieTCuZPvEKhJ+99JYWTRuvMYMwKSKTENwkab9bjQAAAGD4iKfSvU5/8HqM5k0eo0+cN07FI8PqTKYVS6QU8nsV9HnUvC+qNTW79Wz9HqWOCsVNbVHFh+CZ4B2SNhhj1kjqPHyntfY+x7sCAADAkHYwljzmvoXTxuvGD0/Uhtdade8zDccdkXbVjAm6qepsPfDiW1q9bdf763YeW9cNmYTgxu6PQPcHAAAAslQ0kTryeW7Aq3uunqZ32qO6duXGE64TbmqL6rvrXtcPnn9Tt84v0/xzx+qLv9imjnhXvVg8ddznOqnfIdha+8+SZIzJ67590K2mAAAAMLQFfF3zFXIDXq28vlL3v7BDGxpa+/38WCKtFU/VqaosopXXV2rpg9XqiKeO1HVbJtMhphpjXpH0qqRXjTFbjDHnutcaAAAAhqr8UNe51HuunpZxAO5pQ0Or7n9hh+65epokKS+UyUKFgcskat8v6e+ttWdaa8+U9A+SVrrTFgAAAIYyjzG6fs6Zeqc9OuAAfNiGhla90x7VdXPOlMcMzhbKmYTgXGvt+sM3rLUbJOU63hEAAACGvKDPo+tmT9S31jY4Uu9baxt0/QUTFfJ5HanXl0xC8A5jzHJjzMTuj6+oa2IEAAAAskzQb/RsfUufm2X0VyyR1rN1LQr4HSnXp0xC8I2SIpIelfRLSaO77wMAAECWaY+m9NDGtx2t+dDGt9UeHXrTIfZK+jsXewEAAMAwYa16nQN8tEx2jGtqi8qe+BDH9DsEG2N+I+kaa+2+7tujJD1irZ3vVnMAAAAYmg7EEr3ef/SOcfFkWolUWn6vR4E+doyTBm+zjEyWQ4w+HIClI2eGxzjfEgAAAIa63tYCL5w2Xr/86wt0ecV4Bbvn/Xok+Yw5EjqDPo8unzZOv/zrC7Rw2vhe6g6x5RCS0saYUmttoyQZY86UNEgnrAEAADCUhP3/O8Xh8I5xYb9HktHZkVzlBH3yGqP2WEKxRFohv0cjQn5F8oPqiCUVT1tdMX38MTvGDdZ0iExC8B2SfmeMeV6SkXShpGWudAUAAIAh7fCmFrkBr35yw0wlU1aR/IByAn49sbVZD29u7HXNcElhWItnlmrR9GLlBjxqPRDXT26YqRt+slkd8dTQ2yzDWvtrSTMk/VzSI5LOt9auPfw4u8cBAABkD4/pCrTfvXa68oNeTRydq01/2qtL7tuge9Y2HPeiuaa2qO5Z26BL7tugTX/aq4mjc5Uf9Oq7105XSWFYnsHZNVnGOnQJnjHmZWvtDEeK9aGystJWV1cPxksBAACgF4lESusa9uiDY3KVHwzo9sdqtL4+853j5pZH9I1PVuhgZ1yv7+nQvMlF8nudScLGmC3W2sreHnMyaw/OHncAAAA45fx+r2aUjlJewD/gACxJ6+tbdftjNcoN+nV+6SjHAnBfnHwVLpIDAADIEqlUWkbSc/V7BhyAD1tf36rn6vbIdNcdDIO06gIAAACnk/2xhBIpqxVrah2pt2JNreIpq/3HmT/sNCdDcNzBWgAAABjCPB7pia3Nvc4LHohYIq3V25oH7cK4jGZQGGMqJE3s+Txr7aPd/53taGcAAAAYsg5EU3p4c6OjNVdtatRlFeM1Muxo2V5lsm3yA5IqJL0q6XDkt5IedaEvAAAADHHHG4M2VOqdSCZngmdba6e41gkAAACGjQMurd092Jl0pe7RMll18ZIxhhAMAAAAx9YCH1s35Urdo2VyJvhn6grC70jqVNdcYGutrXClMwAAAAxZYb/Xlbohnzt1j5ZJCP6xpL+Q9Ef975pgAAAAZKG8UEbzFU553aNl8iqt1trVrnUCAACAYcMYqaQw7OjFbCWFYZlB2oM4kzXBrxhjVhljFhtjrjz84VpnAAAAGLIiuQEtnlnqaM0ls0o1Jj/oaM3jySQEh9W1Fvijki7v/rjMjaYAAAAwtAUDPi2aXqyQ35ndLUJ+jxZOK1ZgqK0Jttbe4GYjAAAAGF5GhHxavmCK7nh8+0nXWr5gigrCg7MeWMpss4yQpM9IOldS6PD91tobXegLAAAAQ1x+2K95k4u0rr5F6+tbB1xnbnlE86YUKS/kd7C7E8vk/PVDksZKmi/peUkTJB1woykAAAAMD0UFId19ZYXmlkcG9Py55RHdfWWFikaE+j7YQZmE4A9aa5dL6rDWPihpgaQPudMWAAAAhouiESHd/ckK3XXF1H6vEQ75PbrriqmnJABLmY1IO7w33j5jzFRJ70ga43xLAAAAGG6KCkJaNH28qsrGaPW2Zq3a1Njr+LSSwrCWzCrVwunFKgj5BnUJRE+ZhOD7jTGjJC2XtFpSnqSvutIVAAAAhp28kF95Ib9unDNRl08bL2ulg51JxRIphfxe5QV9MkYakx8ctCkQx5PJdIgfdX/6vKSz3GkHAAAAw10w4NOEwOBNehiIfq8JNsYUGWN+bIz5VfftKcaYz7jXGgAAAOCOTC6M+6mktZLGd99+TdIXnG4IAAAAcFsmIXi0tfa/JaUlyVqblJRypSsAAADARZmE4A5jzBmSrCQZY2ZL2u9KVwAAAICLMlmx/PfqmgpxljHmRUkRSVe70hUAAADgokxCcK2kxyQdUtdOcY+ra10wAAAAMKxkshziZ5LKJX1d0r9JOkddWykDAAAAw0omZ4KnWmun9Li93hhT63RDAAAAgNsyORP8cvfFcJIkY8yHJFU73xIAAADgrj7PBBtj/qiuiRB+Sb83xjR23z5TUr277QEAAADO689yiMtc7wIAAAAYRH2GYGvt24PRCAAAADBYMlkTDAAAAJwWCMEAAADIOoRgAAAAZB1CMAAAALIOIRgAAABZhxAMAACArON6CDbGfMwY02CMecMYc9sJjrvKGGONMZVu9wQAAIDs5moINsZ4JX1f0sclTZG02BgzpZfj8iV9XtIf3OwHAAAAkNw/EzxL0hvW2h3W2rikRyQt6uW4FZK+KSnmcj8AAACA6yG4WFJTj9s7u+87whgzQ1KJtXbNiQoZY5YZY6qNMdWtra3OdwoAAICscUovjDPGeCTdJ+kf+jrWWnu/tbbSWlsZiUTcbw4AAACnLbdDcLOkkh63J3Tfd1i+pKmSNhhj3pI0W9JqLo4DAACAm9wOwZslTTLGfMAYE5B0raTVhx+01u631o621k601k6UtFHSQmtttct9AQAAIIu5GoKttUlJfyNpraQ6Sf9trX3VGHOnMWahm68NAAAAHI/P7Rew1j4t6emj7vvqcY6tcrsfAAAAuKsznlRrR1ySdCCaVDSRUtjvVX64K3pGcgMKBlyPoSd0al8dAAAAp40D0YTaY0k9sbVZD29uVFNb9JhjSgrDWjyzVIumF2tEyKf8sP8UdCoZa+0peeGTUVlZaaurWTYMAAAwVLTsj2ldXYtWrKlVLJHu8/iQ36PlC6Zo3uQiFRWEXOnJGLPFWtvrwAXOBAMAAOCktLTHdNtjNVpf3/+9HGKJtO54fLvW1bfo7isrVDTCnSB8PKd0TjAAAACGt5b9Md32aGYBuKf19a267dEatbQP7sbBhGAAAAAMyIFoQuvqWgYcgA9bX9+qdbUtOhhLONRZ3wjBAAAAGJD2WFIr1tSe8Ji8gFclo8LKC3hPeNyKNbXaH0062d4JsSYYAAAAGeuMd02BOPoiuHDAq29fXaEpxQXyGaP2WEKxRFohv0cjQn4lrdX2nft06y//qGg8deR5sURaq7c168Y5EwdlfBohGAAAABlr7Yjr4c2N77vvR9edr8njCvTE1mZ949f1JxyRtu6Wi1W3e78++7MtRx5btalRl08brwmDEIJZDgEAAICMWasjIffMwrBe/NJctbR36pL7NuietQ29BmCp6zn3rG3QJfdtUEt7p1780lydWRg+8thgTe/lTDAAAAAydjDWtX73zMKwfv65Obp9gCPS5pZH9PPPzdGnfvh7vd0W1cHOwVkXzJlgAAAAZCya6FrPu2rp7IwDcE/r61t1+2M1WrV0tiQplkj18QxnEIIBAACQsZDfox9dd742NLQ6MiJtQ0OrVl53voK+wYmnhGAAAABkLD/k1+RxBX2OSOuvFWtqNWVcgfJDfkfq9YUQDAAAgIzlh729jkgbqMMj0vLDJ54n7BRCMAAAADJ2MJY6ZkTayVq1qVEHY6wJBgAAwBDVc0SaUwZzRBohGAAAABk7PCLN8bqMSAMAAMBQFXVplBkj0gAAADBkhf3uXMAW8nFhHAAAAIaovJA7Gw+7VfdohGAAAABkzBippDDsaM2SwrCMcbTkcRGCAQAAkLFIbkCLZ5Y6WnPJrFKNyQ86WvN4CMEAAADIWDDg06LpxQr5nYmTIb9HC6cVK8CaYAAAAAxlI0I+LV8wxZFayxdMUUF4cNYDS4RgAAAADFB+2K95k4s0tzxyUnXmlkc0b0qR8kJ+hzrrGyEYAAAAA1ZUENLdV1YMOAjPLY/o7isrVDQi5HBnJ0YIBgAAwEkpGhHS3Z+s0F1XTO33GuGQ36O7rph6SgKwJA3ewgsAAACctooKQlo0fbyqysZo9bZmrdrUqKa26DHHlRSGtWRWqRZOL1ZByDeoSyB6IgQDAADAEXkhv/JCft04Z6IunzZe1koHO5OKJVIK+b3KC/pkjDQmPzhoUyCOhxAMAAAARwUDPk0IDO2YyZpgAAAAZB1CMAAAALIOIRgAAABZhxAMAACArEMIBgAAQNYhBAMAACDrEIIBAACQdQjBAAAAyDqEYAAAAGQdQjAAAACyDiEYAAAAWYcQDAAAgKxDCAYAAEDWIQQDAAAg6xCCAQAAkHV8p7oBAAAAnF6inQm9dyghSToQTSqaSCns9yo/3BU9z8jxKxz0n8oWCcEAAABwxt5DcR3qTOmJrc16eHOjmtqixxxTUhjW4pmlWjS9WDlBr0blBE5Bp5Kx1p6SFz4ZlZWVtrq6+lS3AQAAgG7v7I/p2f/f3v3HRn3fdxx/vTHn+4EDBuKYxNhkWqsaDxm3NWxRuyqUrGrnBgirtICyNlu3aj+qddrWiSyia4tQ2LpN035oW9dWabtC27UksNKsC8xStqktmBYINd6WbR3UK44HBELuB2f7vT98pO7FZ3/v/P3eHbnnQ7Lw+fvx228++oh7cf58P3duTHuODCubn5p3fCK2SLsHerR5bbtWLUtE0pOZnXT3/tmu8UowAAAAFmTsWlaPPHFGgyPjgb8nm5/So0+e1dGRMe3b3qv2pdEE4VK4MQ4AAAAVu3g1q10HywvAMw2OjGvXwTMau5YNubO5EYIBAABQkSvpGzp2bqziAHzT4Mi4jg6P6YX0jZA6mx8hGAAAABVJ5ya158hwKLX2HBnWS7nJUGoFQQgGAABA2TK5vA6dGg10E1wQ2fyUDp8eVSaXD6XefAjBAAAAKNuldF4HTpwPteb+4+dfPl84aoRgAAAAlM1ds54DvBAXLmdUrdN7CcEAAAAo2/XsRDR1c9HULUYIBgAAQNky+WhuYstGVLcYIRgAAABlS8aaIqmbWBxN3WKEYAAAAJStJRHNGw9HVbcYIRgAAABlM5M6VyRDrdm5IimzUEuWRAgGAABA2VamYtqxoSvUmjs3dqmtJR5qzVIIwQAAAChbMh7T1r4OJWLhxMlEbJG2rO9QPKK9xsUIwQAAAKhIKt6k3QM9odTaPdCjJfHqBGCJEAwAAIAKLU81a/Padm3qbltQnU3dbbqvp12tqeaQOpsfIRgAAAAVW7UsoX3beysOwpu627Rve6/alyZC7mxuhGAAAAAsSPvShB57oFd7t60LvEc4EVukvdvW1SQAS1J1DmIDAADAq9qqZQkN9N6pe193hw6fHtX+4+d14XLmFeM6VyS1c2OXtvR1aElzU1W34LKE3wAAEIVJREFUQMxECAYAAEAoWlPNak1JD9+zRvevv0vu0vXchLL5SSViTWqJL5aZ1NYSr9opEKUQggEAABCqZDym1fFYrduYEyEYAAAAocrk8rqUzkuSXsxMKJOfVDLWpNuS09FzZSqmZI1DMiEYAAAAobiSvqF0blKHTo3qwInSe4J3bOjS1r4OpeJNWl6jPcHm7jX5wQvR39/vQ0NDtW4DAAAABRevZnXs3Jj2HBlWNj817/hEbJF2D/Ro89p2rVoWzekQZnbS3ftnu8YrwQAAAFiQsWtZPfLEGQ2OjAf+nmx+So8+eVZHR8Y4JxgAAAC3lotXs9p1sLwAPNPgyLh2HTyjsWvZkDubGyEYAAAAFbmSvqFj58YqDsA3DY6M6+jwmF5I3wips/kRggEAAFCRdG5Se44Mh1Jrz5FhvZSbDKVWEIRgAAAAlC2Ty+vQqdFAN8EFkc1P6fDpUWVy+VDqzYcQDAAAgLJdSud14MT5UGvuP37+5fOFo0YIBgAAQNncNes5wAtx4XJG1Tq9lxAMAACAsl3PTkRTNxdN3WKEYAAAAJQtk4/mJrZsRHWLEYIBAABQtmSsKZK6icXR1C0WeQg2s7eb2b+Z2XNmtmuW679pZsNmdsbMjpnZmqh7AgAAwMK0JKJ54+Go6haLNASbWZOkv5D0Dkk9knaYWU/RsG9L6nf3XklfkvQHUfYEAACAhTOTOlckQ63ZuSIps1BLlhT1K8EbJT3n7v/l7jckfV7S1pkD3H3Q3dOFh9+QtDringAAALBAK1Mx7djQFWrNnRu71NYSD7VmKVGH4A5JF2Y8/l7ha6W8V9JTs10ws/eZ2ZCZDY2PL+yt+QAAALAwyXhMW/s6lIiFEycTsUXasr5D8Yj2GhermxvjzOwhSf2SPjbbdXf/uLv3u3t/W1tbdZsDAADAK6TiTdo9ULzTtTK7B3q0JF6dACxFH4JHJXXOeLy68LUfYmb3SXpU0hZ3z0XcEwAAAEKwPNWszWvbtal7YS9Qbupu03097WpNNYfU2fyiDsEnJL3WzH7EzJolPSjp8MwBZvZ6SX+t6QD8fMT9AAAAIESrliW0b3tvxUF4U3eb9m3vVfvSRMidzS3SEOzuE5LeL+lrks5J+qK7f8fMPmpmWwrDPiapRdLfmdkpMztcohwAAADqUPvShB57oFd7t60LvEc4EVukvdvW1SQAS5J5td6gOUT9/f0+NDRU6zYAAAAwwwvpG3opN6nDp0e1//h5XbicecWYzhVJ7dzYpS19HVrS3BTpFggzO+nu/bNdq85pxAAAAHjVa001qzUlPXzPGt2//i65S9dzE8rmJ5WINaklvlhmUltLvGqnQJRCCAYAAECokvGYVsdjtW5jToRgAAAAhCqTy+tSOi9JejEzoUx+UslYk25LTkfPlamYkjUOyYRgAAAAhOJK+obSuUkdOjWqAydK7wnesaFLW/s6lIo3aXkVj0WbiRvjAAAAsGAXr2Z17NyY9hwZVjY/Ne/4RGyRdg/0aPPadq1aFs3pENwYBwAAgMiMXcvqkSfOaHBkPPD3ZPNTevTJszo6MvbqOycYAAAAr24Xr2a162B5AXimwZFx7Tp4RmPXsiF3NjdCMAAAACpyJX1Dx86NVRyAbxocGdfR4TG9kL4RUmfzIwQDAACgIuncpPYcGQ6l1p4jw3opNxlKrSAIwQAAAChbJpfXoVOjgW6CCyKbn9Lh06PK5PKh1JsPIRgAAABlu5TO68CJ86HW3H/8/MvnC0eNEAwAAICyuWvWc4AX4sLljKp1ei8hGAAAAGW7np2Ipm4umrrFCMEAAAAoWyYfzU1s2YjqFiMEAwAAoGzJWFMkdROLo6lbjBAMAACAsrUkonnj4ajqFiMEAwAAoGxmUueKZKg1O1ckZRZqyZIIwQAAACjbylRMOzZ0hVpz58YutbXEQ61ZCiEYAAAAZUvGY9ra16FELJw4mYgt0pb1HYpHtNe4GCEYAAAAFUnFm7R7oCeUWrsHerQkXp0ALBGCAQAAUKHlqWZtXtuuTd1tC6qzqbtN9/W0qzXVHFJn8yMEAwAAoGKrliW0b3tvxUF4U3eb9m3vVfvSRMidzY0QDAAAgAVpX5rQYw/0au+2dYH3CCdii7R327qaBGBJqs5BbAAAAHhVW7UsoYHeO3Xv6+7Q4dOj2n/8vC5czrxiXOeKpHZu7NKWvg4taW6q6haImQjBAAAACEVrqlmtKenhe9bo/vV3yV26nptQNj+pRKxJLfHFMpPaWuJVOwWiFEIwAAAAQpWMx7Q6Hqt1G3MiBAMAACBUmVxel9J5SdKLmQll8pNKxpp0W3I6eq5MxZSscUgmBAMAACAUV9I3lM5N6tCpUR04UXpP8I4NXdra16FUvEnLa7Qn2Ny9Jj94Ifr7+31oaKjWbQAAAKDg4tWsjp0b054jw8rmp+Ydn4gt0u6BHm1e265Vy6I5HcLMTrp7/2zXeCUYAAAACzJ2LatHnjijwZHxwN+TzU/p0SfP6ujIGOcEAwAA4NZy8WpWuw6WF4BnGhwZ166DZzR2LRtyZ3MjBAMAAKAiV9I3dOzcWMUB+KbBkXEdHR7TC+kbIXU2P0IwAAAAKpLOTWrPkeFQau05MqyXcpOh1AqCEAwAAICyZXJ5HTo1GugmuCCy+SkdPj2qTC4fSr35EIIBAABQtkvpvA6cOB9qzf3Hz798vnDUCMEAAAAom7tmPQd4IS5czqhap/cSggEAAFC269mJaOrmoqlbjBAMAACAsmXy0dzElo2objFCMAAAAMqWjDVFUjexOJq6xQjBAAAAKFtLIpo3Ho6qbjFCMAAAAMpmJnWuSIZas3NFUmahliyJEAwAAICyrUzFtGNDV6g1d27sUltLPNSapRCCAQAAULZkPKatfR1KxMKJk4nYIm1Z36F4RHuNixGCAQAAUJFUvEm7B3pCqbV7oEdL4tUJwBIhGAAAABVanmrW5rXt2tTdtqA6m7rbdF9Pu1pTzSF1Nj9CMAAAACq2allC+7b3VhyEN3W3ad/2XrUvTYTc2dwIwQAAAFiQ9qUJPfZAr/ZuWxd4j3Aitkh7t62rSQCWpOocxAYAAIBXtVXLEhrovVP3vu4OHT49qv3Hz+vC5cwrxnWuSGrnxi5t6evQkuamqm6BmIkQDAAAgFC0pprVmpIevmeN7l9/l9yl67kJZfOTSsSa1BJfLDOprSVetVMgSiEEAwAAIFTJeEyr47FatzEn9gQDAACg4RCCAQAA0HAIwQAAAGg4hGAAAAA0HEIwAAAAGg4hGAAAAA2HEAwAAICGQwgGAABAwzF3r3UPZTOzcUn/U4Mffbuk/6vBz73VME/BME/BME/BME/BMVfBME/BME/B1Gqe1rh722wXbskQXCtmNuTu/bXuo94xT8EwT8EwT8EwT8ExV8EwT8EwT8HU4zyxHQIAAAANhxAMAACAhkMILs/Ha93ALYJ5CoZ5CoZ5CoZ5Co65CoZ5CoZ5Cqbu5ok9wQAAAGg4vBIMAACAhkMIBgAAQMMhBBcxs0+Z2fNmdrbEdTOzPzWz58zsjJm9odo91oMA83SvmV01s1OFjw9Vu8d6YGadZjZoZsNm9h0z+8AsYxp+TQWcp4ZfU2aWMLPjZna6ME8fmWVM3My+UFhP3zSzu6vfaW0FnKeHzWx8xnr6xVr0Wg/MrMnMvm1mX5nlWsOvp5vmmSfWU4GZfdfMni3Mw9As1+vmOW9xrX5wHXtc0p9L+kyJ6++Q9NrCx49L+svCn43mcc09T5L0z+7+zuq0U7cmJP2Wu3/LzG6TdNLMnnb34RljWFPB5kliTeUkvdXdr5tZTNK/mNlT7v6NGWPeK+mKu7/GzB6U9PuSfrYWzdZQkHmSpC+4+/tr0F+9+YCkc5KWznKN9fQDc82TxHqaaZO7l3pjjLp5zuOV4CLu/oyky3MM2SrpMz7tG5JazezO6nRXPwLMEyS5+/fd/VuFz1/U9D+gHUXDGn5NBZynhldYI9cLD2OFj+K7m7dK+nTh8y9J2mxmVqUW60LAeYIkM1staUDSJ0oMafj1JAWaJwRXN895hODydUi6MOPx98STdSn3FH4d+ZSZ/Vitm6m1wq8RXy/pm0WXWFMzzDFPEmvq5q9kT0l6XtLT7l5yPbn7hKSrklZWt8vaCzBPkvQzhV/HfsnMOqvcYr34E0m/I2mqxHXW07T55kliPd3kkv7RzE6a2ftmuV43z3mEYETlW5p+v+71kv5M0pM17qemzKxF0pcl/Ya7X6t1P/VqnnliTUly90l375O0WtJGM1tX657qUYB5+ntJd7t7r6Sn9YNXOxuGmb1T0vPufrLWvdSzgPPU8Otphje7+xs0ve3h18zsLbVuqBRCcPlGJc38H97qwtcwg7tfu/nrSHf/qqSYmd1e47ZqorAn8cuSPufuB2cZwprS/PPEmvph7v6CpEFJby+69PJ6MrPFkpZJulTd7upHqXly90vunis8/ISkN1a7tzrwJklbzOy7kj4v6a1m9rdFY1hPAeaJ9fQD7j5a+PN5SU9I2lg0pG6e8wjB5Tss6d2Fuxt/QtJVd/9+rZuqN2a26ua+MTPbqOm11mj/cKowB5+UdM7d/7jEsIZfU0HmiTUlmVmbmbUWPk9K+ilJI0XDDkt6T+Hzd0n6J2+wd0UKMk9FexC3aHofekNx90fcfbW73y3pQU2vlYeKhjX8egoyT6ynaWa2pHBzs8xsiaS3SSo+RapunvM4HaKImR2QdK+k283se5J+T9M3Vcjd/0rSVyX9tKTnJKUl/XxtOq2tAPP0Lkm/YmYTkjKSHmy0fzgL3iTp5yQ9W9ifKEm/K6lLYk3NEGSeWFPSnZI+bWZNmv5PwBfd/Stm9lFJQ+5+WNP/mfismT2n6ZtXH6xduzUTZJ5+3cy2aPpkksuSHq5Zt3WG9RQM62lW7ZKeKLxesVjSfnf/BzP7Zan+nvN422QAAAA0HLZDAAAAoOEQggEAANBwCMEAAABoOIRgAAAANBxCMAAAABoOIRgA6oSZtZrZr9a6DwBoBIRgAKgfrZIIwQBQBYRgAKgf+yT9qJmdMrOPmdkHzeyEmZ0xs49IkpndbWYjZva4mf27mX3OzO4zs381s/8ovJuezOzDZvZZM/t64eu/VPj6nWb2TOFnnDWzn6zh3xcAaoYQDAD1Y5ek/3T3PklPS3qtpI2S+iS90czeUhj3Gkl/JKm78LFT0psl/bam32nvpl5Jb5V0j6QPmdldhbFfK/yM9ZJOCQAaEG+bDAD16W2Fj28XHrdoOhSfl/Tf7v6sJJnZdyQdc3c3s2cl3T2jxiF3z0jKmNmgpgP1CUmfMrOYpCfdnRAMoCHxSjAA1CeT9Ji79xU+XuPunyxcy80YNzXj8ZR++MUNL6rp7v6MpLdIGpX0uJm9O4LeAaDuEYIBoH68KOm2wudfk/QLZtYiSWbWYWZ3lFlvq5klzGylpHslnTCzNZLG3P1vJH1C0hvCaR0Abi1shwCAOuHulwo3uJ2V9JSk/ZK+bmaSdF3SQ5Imyyh5RtKgpNsl7XH3/zWz90j6oJnlCzV5JRhAQzL34t+WAQBudWb2YUnX3f0Pa90LANQjtkMAAACg4fBKMAAAABoOrwQDAACg4RCCAQAA0HAIwQAAAGg4hGAAAAA0HEIwAAAAGs7/Awpxqler9Ue/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3xV5Z3v8e+z75vcNJBECImo1RCUwGCgqG2FGmsrCF5oK06r0zrSc+z0zNEZqx2LbaWdemmtM3M6nUJ1OjpF23pFsNWCoK2K3EYil0SrVcLFJBogJOz7fs4fSTBCSLLDWiFxf96vFy/Ye6/9y8925ZVv1n7W7zHWWgEAAADZxHO8GwAAAAAGGyEYAAAAWYcQDAAAgKxDCAYAAEDWIQQDAAAg6/iOdwMDMWrUKDtu3Ljj3QYAAACGsI0bN75nrS3q6bVhGYLHjRunDRs2HO82AAAAMIQZY9452msshwAAAEDWIQQDAAAg6xCCAQAAkHUIwQAAAMg6hGAAAABkHUIwAAAAsg4hGAAAAFmHEAwAAICsMyw3yxgssXhSze1xSdKBSFKRREphv1d54Y7/2YpyAgoG+J8Q/cP5BADA0MFP3B4ciCTUGk3qyVd36aH1O9TQEjnimLLCsOZPLdfcyaXKD/mUF/Yfh04xHHA+AQAw9Bhr7fHuIWPV1dXWrW2TG/dHtXJ7oxat2KZoIt3n8SG/RwtnTVBNZYlKCkKu9IThi/MJAIDjxxiz0Vpb3eNrhOAPNLZGdctjtVpd15zxe2eOL9Idl1epJJ/ggg6cTwAAHF+9hWBujOvUuH/ggUWSVtc165bHatXYGnW4MwxHnE8AAAxthGB1rNlcub1xwIGly+q6Zq3c1qi2aMKhzjAccT4BADD0EYIltUaTWrRimyO1Fq3Ypv2RpCO1MDxxPgEAMPRlfQiOxTvu2u/PTUv9EU2ktWzzLsXiBJdsxPkEAMDw4GoINsbcb4xpMsZsOcrrxhjzr8aYPxtjao0xU9zspyfN7XE9tH6HozWXrttxaB4ssgvnEwAAw4PbV4J/Kemzvbz+OUmnd/5ZIOlnLvdzBGvV49zWY9HQEtEwHLoBB3A+AQAwPLgagq21L0hq6eWQuZIesB3WSjrBGDPazZ4O1xZ152PmthgfX2cjzicAAIaH470muFRSQ7fHOzufO4IxZoExZoMxZkNz87Hddd9dJJFyrFZ3UZfqYmjjfAIAYHg43iG436y1i6211dba6qKiIsfqhv1ex2p1F/K5UxdDG+cTAADDw/EOwbsklXV7PLbzuUGTG/INq7oY2jifAAAYHo53CF4m6erOKRHTJe231u4ZzAaMkcoKw47WLCsMyxhHS2KY4HwCAGB4cHtE2kOSXpZUYYzZaYy51hjzv4wx/6vzkKclvSXpz5KWSLrezX56UpQT0Pyp5Y7WvGpauYrzgo7WxPDA+QQAwPDg6mes1tr5fbxuJX3dzR76Egz4NHdyqf71uTcc2eAg5PdozqRSBVjDmZU4nwAAGB6O93KIISE/5NPCWRMcqbVw1gQVhFm/mc04nwAAGPoIwZLywn7VVJZo5vhjmzoxc3yRaiaUKDfkd6gzDEecTwAADH2E4E4lBSHdcXnVgIPLzPFFuuPyKpXkhxzuDMMR5xMAAEObscNwP9bq6mq7YcMGV2o37o9q5fZGLVqxrV9rOkN+jxbOmqCaCSUEFhyB8wkAgOPHGLPRWlvd42uE4CO1RRPaH0lq2eZdWrpuhxpaIsoNeHViTkB72+Nqi6dUVhjWVdPKNWdyqQpCPj6yxlH1dD4djvMJAADnEYIHKBJL6P2DCUnSgUhSiVRKfq9XeZ03Ko0c4Vc4SFhB/8TiSTW3x2Wt1BZLKppIKeT3KjfokzFScV6QKRAAADiotxDMbec9OBBJqDWa1J59EeWGfQr7vUpbq3jKyuuxSqWtIomU9uyLaswJYeWHfMoLE4bRu2DAp7EBvuUAABgK+Il8mMb9UTUdiOqEEQGte7tFD60/+sfX86eW65JJY/T2++0qzguppIA1nAAAAMMByyG6aW6Nqi2e0kt/fi/jG5nO/dgo5Qa8KuJmJgAAgCGht+UQjEjr1Lw/qnjK6vblW3XrE1v6vdtXNJHWrU9s0e3LtyqesmpujbrcKQAAAI4VIVgda4Bj6bS+/eRrWl3XPKAaq+ua9e0nX1MslVZbNOFwhwAAAHASIVhSNJnS8/XNAw7AXVbXNev5+mZFEymHOgMAAIAbsj4Ex+JJxZNpLVqxzZF6i1ZsUyyZViyedKQeAAAAnJf1Ibg9kdSTr+7u9xrgvkQTaS3bvFvtCUIwAADAUJX1IfhgPK2H1u9wtObSdTt0MO5MqAYAAIDzsj4EW6se5wAfi4aWiIbh5DkAAICskfUhuC3qzrKFthjLIQAAAIaqrA/BkX5OcvB5jEYEvPJ5TL+OZ0IEAADA0JX12yaH/D3/HuD1GNVUFuviiaNVekJYsWRa0URKIb9XQZ9Hu/ZFtKJ2j1bVNSmVPnLtQ9CX9b9fAAAADFlZH4LzQv4jnpszaYy+et44rXm9WT96tr7HNcNlhWFdMWWsrp9xmu5/8W0t27y7z7oAAAAYGrI+BBvTEWgbWiLKCXh117xJerc1oiuXrO11bFpDS0T3rnxD//H8m7rpogpddOZJ+uYjm9UeT6msMCzTv1UTAAAAOA6y/jP7/LBX86eWKyfg1ZJrqvXbjQ1atHx7v+cGRxNpLVq+Xb/d2KAl11QrJ+DVVdPKlR/O+t8vAAAAhqysT2qtkZQ+efoonTIqR4tfeEtr6ge2dXLX+370+Ukae2JYrZGk8kMBJ1vFMJdKpdVyMK5k2upANKlYIqWg36u8kE8+j1HhiIC83qz/vRQAgEGR9SHYWmn92y0K+rwDDsBd1tQ368LKEu3eF9FnzjzJoQ4x3MWTabW0x7W8drf+6+W31dASkc9jFPB5FE+mlUxblRWGdc054zS7aowKcwIKcGMlAACuyvoQ3B5Lakr5ibpyyVpH6i1asU0PXzdd7XHmBENqaY9r5fZGfe+prfrEx0bpHz9T0eu0kZ+sfF3fueRM1VSWqDCHTxIAAHBL1odgv9do5fb3+r0GuC/RRFovvvmeLuJKcNZ7vy2mmx+t1YiAT7+69uMZTRt5duu7uvOKKo3MDR6HzgEA+OjL+s9cfV6Pfr2hwdGaD69vkJ+1nVmtpT2u257cosv+aqwmlRXoyiVrde/KN466RXfXtJErl6zVpLICXfZXY3Xbk1u0tz0+yJ0DAJAdsj6peT3mqMGku0x2jGtoicjbz53l8NETT6a1pr5Rfz395KNOG8kNeFV2Yli5Ae+Hnu8+beSvp5+s1fVNiied+ZQCAAB8IOuXQ7RFe16729OOcbFkSkFf/3aMa4uxJjhbtbTHFPb7PjRtJBzw6sfzqjShtEA+Y9QaTSiaSCvk9yg/5FfSWm3ZuU83PfqaIvHUofd9sbpMLe0xnVQQPp7/SQAAfORkfQjuaS3wnElj9NVPjNMf33iv1zWcX6gu0/UzT9P9fzpyx7iYQ2uMMbykUmnV7tyv3fsjh4LsL64+W5WjC/Tkq7v0w9/XHfV8mj+1XCtvOF/b9+zX3z6wUWvqm/XJ00fJu8uoKDfI+DQAAByU9T9Vg91GUeUEvPrpVVNUffKJunLxWv342dd7XcP542df15WL16r65BP106umKKfbR9sBAktWer89rtEFId39TL1OLgzrxZtnqrE1pgvuWaO7nun5Fyqp43y665l6XXDPGjW2xvTizTN1cmFYdz9Tr9H5Ib3P2mAAAByV9UltRLAjuOYEvLrvb6bqsU07dduyrRntGHfbsq16bNNO3fc3Uw8F4a66yDLGalVdk0rygvr1187Vt5/coluf2JLR+XTrE1v07Se36NdfO1cleUE9V9ck6cglNwAAYOCyPgRLHR9F//gLk7Tkhbe0qq5pQDVW1TVpyQtv6cdfmKSyQtZvZqtIPK1HN+3U0uvO0bcer9XquoFtwLK6rlnferxWSxeco0c27VSE5TUAADgq60NwyO/RNy+qUEt7YsABuMuquibtbU/o5osqFPZzJThbfWf2BK2pbxpwAO6yuq5Zz9c36bbZExzqDAAAdMn6EJxKW/1V+Ym6fflWR+p9b/lWTS4/UckeJkbgo689llTl6AItWrHNkXq3L9+mCaMLdDCecqQeAADokPUhOC/k1dOv7XF0x7inX9ujvBBXgrNRUV5QT27e5ej5tGzzLo1kC2UAAByV9SG4NZrSg2vfcbTmg2vfUWuEOcHZKJZM66F1O/o8LpPNV5au26F4ijXBAAA4KevnBKfT6teOcZloaImI1RDZydqez6eeNl+JJlIK+fvefKWhJSLL+QQAgKOyPgS3u7SzW3ucK8HZqKcdCOdMGqOvnjdOa15v7nXzlSumjNX1M07T/S8eufkKOxACAOCsrA/BkYQ7NxxFuZEpK3U/n3ICXt01b5LebY3oyiVre10n3NAS0b0r39B/PP+mbrqoQhedeZK++chmtXeeR1GXzlMAALJV1q8J7r5jnJMCLtXF0Bbyd/z/nhPwask11frtxgYtWr49o80yFi3frt9ubNCSa6oPbb7i1nkKAEC2yvqfrLkhdy6Gu1UXQ1teyC9JumveJC1+4S2tqR/YrOA19c1a/MJbumvepA/VBQAAzsj6EGxkHN/hrawwLKO+7/rHR9M1556sd1sjAw7AXdbUN+vd1oiuPvdkhzoDAABdsj4Eh/xG86aMdbTm588ey45xWSon6NHV08fp7mfqHal39zP1umb6OOUGOZ8AAHBS1odgY4xmTxpzaC3nsQr5PZpVNUaGC8FZKZ60WlXX5OhmGc/VNymWZE4wAABOyvoQnExZBXwe3XRRhSP1brqoQkGvh80NslQybfXg2rcdrfnAy2+zDTcAAA7L+hCcSFn94o9vafqpIzWjouiYas2oKNL0U0dq8Z/eUjJFaMlWbmy+AgAAnJX1IViS/uuld9TQEtENNWcMOAjPqCjSDTVnqKElogdecnYbZgwfPW2W4UhdNssAAMBRWR+Cu3aM+4ffvKpIIqUFnzxVC2dX9nuNcMjv0cLZlVrwyVMVSaT0D795taMuO8ZlJbc2tYg5tMYYAAB0yPoQ3LXDV3s8pWt/uV57DyZUXjhCDy84RzfUnH7U8WllhWHdUHO6Hl5wjsoLR2jvwYSu/eV6dvjKcm5tkuL3Zv23KgAAjsr6HR2678TVHk/p60s36ZKq0br2E6folJE5uvXiSo3MDSqRSiuaSCvk98jv9ej9tljHHfvWatmru/VU7Z4P1Q0QWrJSTtCdb6kcRqQBAOCorA/BPe3s9lTtHj295V1dML5Ys6pGS5KMJK/5YAuMWDKt5bV79Fxdk1I93LnPjnHZq6ww7OjNbE5v5gIAAAjB8nTuGHd4aEmlrZ7d1qhntzVKknweo4DPo3gy3ee4qrLCsDzsGJeVQn6PrpgyVveufMOxmvOmsPkKAABOy/rP7AP93DEumbY6GE/1a17r588e69raUAxtyZTVBeOLHd185dPji5Vg7jQAAI7K+qTm8xjNqnJ4x7iJY+TzciU4G+WEvNqzP+Lo5iu790dYXgMAgMOyPgS3x9LKCXodDS05Aa/aY0yHyEaJZFpnlZ6gMQXhXmdO+zxGIwJe+TxH/2VpRkWRxhSENbH0BMWTnE8AADgp6y8vtUWTevmt93TuaaM0o6JIa+qbB1xrRkWRzj1tlFa8tkfnfmyUg11iuEikrN5vi6s9ltSCT50qSVpT3yyvx6imslgXTxyt0hPCiiXTiiZSCvm9Cvo82rUvohW1e7Sq80bLGRVFWvCpU7VnX0QtbTEV5gaP838ZAAAfLVkfgiOJlG5fvl0rb/yUbqg5Q5IGFIS7dozze40Wrdiux68/1+lWMQyk0tIJYZ/OO32Uvv/UNn3+7DJ96ePlGpUX0pr6Jv3o2foeJ0eUFYZ1xZSxun7mx/TegahiSatfvfyOFl4yQYlUqscJJAAAYOCyfjlE11rg+YvXamRO4Jh2jBuZE9D8xWslfXj+MLJHOm1lPB5dc/8r+s4lZ6owx6/d+6K6cvHLunflG0cdndbQEtG9K9/QlYtf1u59URXm+PWdS87U1fe/ImM8SltCMAAATsr6pJYX8kuSmtviuuzfX1RRXlAfK8rNaMe4jxXlqigvqMv+/UU1t8U/VBfZZUTQq2Wv7lYskVZa0i/++Bfdtmyrov3c9jiaSOu2ZVv1iz/+RWl1bJf81ObdGhFgRBoAAE7K+uUQxnywuUFzW1wX/uQFLZxVqc+ceZJOL87tdce4tLUamRPQxrdbdM1/rj9Us6wwLMNwiKwUTaT10Podevi66frW47VaXTewNear6pqUfrxWS6+briuXrNXsqjEOdwoAQHbL+ivB4YBH86eWf+i5RSu264J7ntdb77WrfOQIFeUFVRD268QRfhWE/SrKC6p85Ai91dyuC+55XotWbP/Q+6+aVs6Vuyz2ndkTtKa+ecABuMvqumatqW/WbbMnONQZAADoYuwwXGtYXV1tN2zY4Eitd/dHlExb1dzzfK8fWYd8HuWGfGqLJhVN9nKc36OVN54vv8eopIDtbrPNtt37VRAO6IJ71vR7CURvQn6PVt04Q63RhCpH5zvQIQAA2cMYs9FaW93Ta1l/JTiZtgp6PVo4q/erbdFkWu+1xXsNwJK0cNYEBb0eJbibPyuNyg3oyVd3ORKApY7lFcs279LIHNaYAwDgpKwPwQGvR8/VN+n8iiLNHH/0zQ36Y+b4Ip1fUaRVdY1sm5ylYkmrh9bvcLTm0nU7FEvySxUAAE7K+qQ2Mieg/ZGk4qmUvj934oCD8MzxRfr+3ImKp1I6EEtpZA6bG2Sro41BGyr1AAAAIVher0dzJo3WNfetk6zVbbPP1A8uPSujOcE/uPQsfWf2mZK1uua+dbqkarS8vWyHi4+utmjSnboxd+oCAJCtsj4ES1JhTlDfuOB0XfrvLyqZSmtiaYH+cMP5uvmzFb3OCb75sxX6ww3na2JpgRKptC799xf1jQvOUCFXgbNWJJFypW7UpboAAGSrrJ8TLEkBn0c1lSfp2a2NH5oTXH3yiZo5vlghv1ftseShOcE5QZ+iiZQORBKSpPVvt2jRiu2qqSzWhZUlrAfOYmG/O6PxQj5G7gEA4CTSWqfCnIDuvKJKNZXFh+YEv/KXlg9tV9s926at1St/aTk0J7imslh3XlGlE3MCx6F7DBW5IXd+r3SrLgAA2YqfrN2MzA3qrnmTtHJ7o257cot+9Ozr+tGzr0s6+pzgkN+ju+dVqaayhACMD+1A6BR2IAQAwHmE4MMU5gR06eRSfer0Ii2v3a3/evltNbREFE2mFW2LHzqurDCsa84dp9kTx6gwJ8ASCEiSinICmj+1XHc9U+9Yzaumlas4j3XmAAA4iRDcg4DPo5MKQvrKueM0d/IYJdNWbdGkYsm0gp1XhH0eo8KcIFMg8CHBgE9zJ5fqX597w7Ed4+ZMKlWANcEAADiKENwLr9ejorxQx4OC49sLho/coFcLZ03QrU9sOeZaC2dNUF6IAAwAgNP4DB9wWDyZ1qcrix3ZgfDTlcWKObQFMwAA+AAhGHBQKpVWeyKla+5/RT+8rOqYdiD84WVVuub+V9SeSCmVIggDAOAkQjDgoP3RhJ7Z8q5eb2zXF3/+kr4/96wB7UD4/bln6Ys/f0mvN7br2a3van804XLnAABkF9dDsDHms8aYemPMn40xt/TwerkxZrUx5n+MMbXGmIvd7glwSzSR0n+/8o4k6Z2WiM67c7WK84NadeOMfu1AuOrGGSrOD+q8O1frnc4xaw+ufYcd4wAAcJirN8YZY7ySfirpQkk7Ja03xiyz1m7rdti3Jf3GWvszY8wESU9LGudmX4BbUmkdMSP4ugc2Khzw6u4rJurBaz8urzFqiyUVTaQU8nuVG/QpZa227Nynmp88r0j8w4G3oSUiVkMAAOAst6dDTJP0Z2vtW5JkjHlY0lxJ3UOwlZTf+e8CSbtd7glwTVss2ePzkXhKf/fQq4cel+QGdPKoEXrnvYNq7DZ/+mjaj1IXAAAMjNshuFRSQ7fHOyV9/LBjvivpWWPMNyTlSKrpqZAxZoGkBZJUXl7ueKOAE462bCEc8OrH86o0obRAPmPUGk0omkgr5PcoP+RXsvNK8E2PvnbEleDe6gIAgIEZCnOC50v6pbX2x8aYcyQ9aIw5y1r7oQ+ArbWLJS2WpOrqansc+gT6FOxh58BfXH22KkcX6MlXd+mHv6/rcUvlssKw5k8t18obztf2Pfv1tw9s/NDr7EgIAICz3P7JuktSWbfHYzuf6+5aSb+RJGvty5JCkka53BfgitzQB79XnlwY1os3z1Rja0wX3LNGdz1T32MAljrW/d71TL0uuGeNGltjevHmmTq520103esCAIBj5/ZP1vWSTjfGnKKO8HulpKsOO2aHpAsk/dIYU6mOENzscl+AKzzGqKwwLI+kX3/tXH3r8Vqtruv/6RxNpHXrE1s0c3yRfv21c/XFn7+kdGddAADgHFdDsLU2aYz5O0nPSPJKut9au9UYc7ukDdbaZZL+QdISY8wN6rhJ7m+stSx3wLDk9xrNmzJW884em3EA7m51XbO+9Xitll43XY9u2qmAl+UQAAA4yfXPWK21T6tj7Fn3527r9u9tks5zuw9gMETiac2fVq4/bGsccADusrquWWvGN2v+1HId7OFmOQAAMHBcXgIctPdgXImU1aIV2/o+uB8WrdimeMpq78G+x6gBAID+IwQDDiorDOvJV3cpmnBmd4toIq1lm3dp7FF2mgMAAANDCAYcFE2k9dD6HY7WXLpuh2OhGgAAdCAEAw6y9shtk49VQ0tE3CoKAICzCMGAg9qi7mxvfLTtmAEAwMAQggEHRVza3phtkwEAcBYhGHBQ2O91pW7I505dAACyFSEYcJBb2xuzbTIAAM4iBAMOMqZjTJqTygrDYtdkAACcRQgGHFSUE9D8qeV9HufzGI0IeOXz9J1ur5pWruK8oBPtAQCATnzGCjgoGPBp7uRS/etzb3xotq/XY1RTWayLJ45W6QlhxZJpRRMphfxeBX0e7doX0YraPVpV16RU+oN5aCG/R3MmlSrAmmAAABxFCAYclh/yaeGsCbr1iS2SpDmTxuir543Tmteb9aNn63ucI1xWGNYVU8bq+hmn6f4X39ayzbslSQtnTVBBmG9TAACcxk9XwGF5Yb9qKkv04p+bNauqVO+2RnTlkrW97vrW0BLRvSvf0H88/6ZuuqhCF515klbU7lLNhBLlhvyD2D0AANnB2GG4FVV1dbXdsGHD8W4D6FVja1S3PFar1XXNGb935vgi3XF5lUryQy50BgBAdjDGbLTWVvf0GjfGAS54d//AA7Akra5r1i2P1aqxNepwZwAAQCIEA47bezCuVdsbBxyAu6yua9bKbY3adzDuUGcAAKALIRhw2MFYSotWbHOk1qIV29QeY8tkAACcRggGHBSJJfTkq7t6vQkuE9FEWss271IklnCkHgAA6EAIBhz0/sGEHlq/w9GaS9ft0PsHCcEAADiJEAw4yFr1OAf4WDS0RDQMh7gAADCkEYIBB7VFk+7UjblTFwCAbEUIBhwUSbhzE1vUpboAAGQrQjDgoLDf60rdkM+dugAAZCtCMOCg3JA7O5G7VRcAgGxFCAYcZIxUVhh2tGZZYVjGOFoSAICsRwgGHDRyhF/zp5Y7WvOqaeUqyg06WhMAgGxHCAYcFA76NXdyqUJ+Z761Qn6P5kwqVdCltcYAAGQrQjDgoEQipZDPaOGsCY7UWzhrgkI+owTTIQAAcBQhGHDQvmhc//3KDn26slgzxxcdU62Z44t0QWWxfrVuh/ZF4w51CAAAJEIw4KhY0uqRTTv1lf9cpzsurxpwEJ45vkh3XF6lv/nPdfrtxp2KJdkyDgAAJzF3CXBQ2tpD2yZfc/8r+s+vTNNz25u0aMU2RRPpPt8f8nu0cNYEXVBZrGvuf0V177YdqgsAAJzDlWDAQQe6bZtc926bzvnhc6ocnadVN87QzZ+tOOr4tLLCsG7+bIVW3ThDlaPzNP2Hzx0KwJLUFmVNMAAATuJKMOCgePLIq72X/+xl5YZ8uu/qszW7aowkqS2WVDSRUsjvVW6w49twz76DuuhfXlBbtyD9QV1CMAAATuJKMOCgo22bHE+mtfGdvToQSyhtrdJpK5/p+DttrQ7EElr39t4eQ7QkhRiRBgCAo7gSDDiop+2Nb5tdqQsnnKTXdu7TjvcPalRuULFkuvNKcFqRRErvtcV0ysgcrbrxfP1h27u6ffn2PusCAICB4ycr4KCA16OywrAaWiIqyg1o6XXTtWtvRO+3x/V6U5se3bTz0I1z3ZUVhnXFlLEqLRyhU0fl6g83fEpXLVmr5ra4ygrDCnj50AYAACfxkxVw0MicgL48fZyKcgN6/Prz1Hwgpjffa9OVi1/WvSvf6DEAS1JDS0T3rnxDVy5+WW++16bmAzE9fv15KsoN6Orp4zSSbZMBAHCUscNw9FJ1dbXdsGHD8W4DOEIqlda7B2KKxpNqi6X0k5Wva019c8Z1ZlQU6YaaM5Qb8irs86kkPygvV4MBAMiIMWajtba6p9f4qQo4aH80oUQypXjKDjgAS9Ka+mb9ZOXriietEqmU9kcTDncKAEB2IwQDDjoYTyns9+mlN98bcADusqa+WS+9+Z5Cfp8OxhmRBgCAkwjBgINyQl4diCV19zP1jtS7+5l6tcWSygkxIg0AACcRggEHxRNprajd3a8tkvsjmkhrxWu7FXeoHgAA6EAIBhwUT1o9smmnozV/u3Gn4snhdwMrAABDGSEYcJC19qhj0AaqoSUiK0IwAABOIgQDDjoQS7pSty3KjXEAADiJEAw4KJ50Z+1uPEkIBgDASYRgwEFhvztTHEIu1QUAIFsRggEH5QR9w6ouAADZihAMOCjgNSorDDtas6wwrICPb1UAAJzET1bAQaNyg/ry9HGO1rx6+jiNyg06WhMAgGxHCAYc5PV6NLtqtEJ+Z761Qn6PZlWNltdjHKkHAAA6EIIBh43KDep7c850pNbtc8/kKjAAAC4gBAMOC8hHv/AAACAASURBVPg8unDCSaqpLD6mOjWVxbqw8iTWAwMA4AJ+ugIuKMwJ6M4rqgYchGsqi3XnFVU6MSfgcGcAAEAiBAOuGZkb1F3zJumueRP7vUY45PfornlVunveJI1kGQQAAK5h+CjgosKcgC6dPFafOr1Yy2t3679eflsNLZEjjisrDOuac8ZpdtUYFeYEWAIBAIDLCMGAywI+j04qCOkr547T3MljlExbtUWTiiXTCvo8yg355PMYFeYEmQIBAMAgIQQDg8Tr9agoL9TxoOD49gIAQLbr8zNXY8xEY8xaY0yDMWaxMebEbq+tc7c9AAAAwHn9WXj4M0nflTRR0uuS/mSMOa3zNb9LfQEAAACu6c9yiDxr7e87//0jY8xGSb83xnxZknWvNQAAAMAd/VoTbIwpsNbulyRr7WpjzBWSHpVU6GZzAAAAgBv6sxziTkmV3Z+w1tZKukDSY240BQAAALipzxBsrV1qrV3bw/M7rLXXdT02xvyb080BAAAAbnByIv95DtYCAAAAXMO2VAAAAMg6hGAAAABkHSdDMPu9AgAAYFjodwg2xkzs45B/OcZeAAAAgEGRyZXgfzfGrDPGXG+MKTj8RWvtL51rCwAAAHBPv0OwtfaTkv5aUpmkjcaYpcaYC13rDAAAAHBJRmuCrbVvSPq2pJslnS/pX40xdcaYy91oDgAAAHBDJmuCq4wxP5G0XdKnJV1ira3s/PdPXOoPAAAAcJwvg2P/TdIvJP2TtTbS9aS1drcx5tuOdwYAAIBhKZFIqbk9prSVDkSTiiRSCvu9ygv55DFSUU5Qfr/3uPaYSQieJSlirU1JkjHGIylkrT1orX3Qle4AAAAwbByMJbU3ktCTr+7SQ+t2qKElIp/HKODzKJ5MK5m2KisMa/60cs2dXKoTw36NCGYSR52TyVddKalGUlvn4xGSnpV0rtNNAQAAYHhpao3qD9sb9c9Pb9cnPjZK//iZCpWeEFYsmVY0kVLI71XQ59GufRGtqN2jn67+s/7p4kpdWFmi4vzQoPebSQgOWWu7ArCstW3GmBEu9AQAAIBhpKk1qpsfq1Ve0K9fXftxrXm9WT96tl4NLZEjji0rDOuKKWN1/YzTdP+Lb2vl9kbdeXnVoAfhTKZDtBtjpnQ9MMacLenI/7LDGGM+a4ypN8b82Rhzy1GO+YIxZpsxZqsxZmkGPQEAAOA4amqN6rvLtmjelDJNKivQlUvW6t6Vb/QYgCWpoSWie1e+oSuXrNWksgLNm1Km7y7boqbW6KD2bay1/TvQmKmSHpa0Wx1bJJ8k6YvW2o29vMcr6XVJF0raKWm9pPnW2m3djjld0m8kfdpau9cYU2ytbeqtl+rqarthw4Z+9Q0AAAB3HIwltbx2t8YWjtDiF97SmvrmI445fE3w4WZUFGnBp07VzpaDmj1pjEYEnFsjbIzZaK2t7um1fn8Va+16Y8x4SRWdT9VbaxN9vG2apD9ba9/qbORhSXMlbet2zHWSfmqt3dv5dXoNwAAAABga9kYSygv5PxSAvR6jmspiXTxxtEpPCCueSiuRTMvv8yjg/WBN8Kq6JqXS9tD7vlhdpr0HE46G4N5k+lWmShrX+b4pxhhZax/o5fhSSQ3dHu+U9PHDjjlDkowxL0rySvqutfb3hxcyxiyQtECSysvLM2wbAAAATkokUnpt1z7t3h85FGTnTBqjaz9xita+9X6va4K/9PGT9fWZH9N9f/qLlm3erTX1zfrk6aPkMVJxTmBQxqf1OwQbYx6UdJqkVyWlOp+2knoLwf3t4XRJMySNlfSCMWaitXZf94OstYslLZY6lkMc49cEAADAMWhqi6m0IKz/+/Crygl4dde8SToQTeiLi19WNJE+6vsaWiL64e/qFPJ79N1LztRFZ56kbz6yWXc/U6/ffu2cjronuj97IZMrwdWSJtj+LiLusEtSWbfHYzuf626npFc6l1b8xRjzujpC8foMvg4AAAAGkd9ntKquSV5j9MC10/SzNW9q5fb+r2qNJtK65bHXVFNZrAeunaar71un5+qaNH9aWd9vdkAm0yG2qONmuEysl3S6MeYUY0xA0pWSlh12zBPquAosY8wodSyPeCvDrwMAAIBBdDCe1qObdur/XTUl4wDc3crtTfrZmjf1/66aokc27VSkl6vITsrkSvAoSduMMeskxbqetNbOOdobrLVJY8zfSXpGHet977fWbjXG3C5pg7V2WedrnzHGbFPHMoubrLXvD+C/BQAAAIPESPqrshPVdCA64ADcZeX2Jn1mQokmjz3Bmeb6IZMRaef39Ly19nlHO+oHRqQBAAAcX9t3tyo35NOFP3m+1zXA/RXye/SHG85XWyypytH5DnTY+4i0fi+H6Ay7b0vyd/57vaRNjnQIAACAYSXgM/rdlncdCcBSxxrh3299V35vJqt1B67fX8UYc52kRyT9vPOpUnWs5wUAAECWGRHw6cG1bzta84GX31ZOwP3xaFJmN8Z9XdJ5klolyVr7hqRiN5oCAADA0Jay9qhbIw9UQ0tEqR52lXNDJiE4Zq2Ndz0wxvjUMScYAAAAWaYtmnSnbtyduofLJAQ/b4z5J0lhY8yFkn4r6Sl32gIAAMBQFkmk+j5oAKIu1T1cJiH4FknNkl6T9DVJT1trb3WlKwAAAAxpQZ87N7AFBunGuEzmBH/DWvsvkpZ0PWGM+fvO5wAAAJBFcoOZxMjjX/dwmUTta3p47m8c6gMAAADDiDFGZYVhR2uWFYZljHG05tH0GYKNMfONMU9JOsUYs6zbn9WSWtxvEQAAAENNwGc0b8pYR2t+/uyxri2zOFx/rje/JGmPOrZN/nG35w9IqnWjKQAAAAxtHiPNqhqjnz3/pmM7xl08cYw8g3QluM8QbK19R9I7ks5xvx0AAAAMB/sjSQX9Xt10UYUWLd9+zPVuuqhCIZ9H+yJxjcoLOtBh7zLZMe5yY8wbxpj9xphWY8wBY0yrm80BAABgaEqmrLxGmn7qSM2oKDqmWjMqijT91JHyeDrqDoZMFl3cJWmOtbbAWptvrc2z1ua71RgAAACGrpygT3f8rl5+j9ENNWcMOAjPqCjSDTVnyO81+uHTdcoZgtMhGq21x36tGwAAAMOe1yP9T8Ne7d4flddICz55qhbOrlTI3794GfJ7tHB2pRZ88lR5jbR7X1Sv7twnn2eIrAnuZoMx5teSnpAU63rSWvuY410BAABgSBs5IqAvTx+nr/9qkx64dpqMkcoLR+jhBefo+fomPbJppxpaIke8r6wwrHlTxur8imI1H4jKGCmWSuvrv9qk/1tzhkbmBgal/0xCcL6kg5I+0+05K4kQDAAAkGWCAZ9mV43WPX+o19X3rdNd8yYpr3Mpwykjc3TrxZUamRtUIpVWNJFWyO+R3+vR+20xxZId0ySCXq9a2hP65iOblbJWs6pGK+DzDkr//Q7B1tqvuNkIAAAAhpe8oE/fm3Ombn70NX196SZdUjVa137yVPm7zfo1krzGqPsih66tkX+7sUFP1e6RJN15xUTlhwZnPbCUQQg2xpwh6WeSSqy1ZxljqtRxo9z3XesOAAAAQ1Ze2K8ZZxSrprJYK7c36anaPXp6y7u6YHyxZlWNltQZgj06FIJjybSW1+7Rc3VNSqU7JkHUVBZrRkWxckP+Qes9kxvjlkj6lqSEJFlrayVd6UZTAAAAGB5KCkL658smqqay+NBzXftdGElp2zH2LG0/CMLdrwrXVBbrny+bqJL80GC1LCmzNcEjrLXrDtvPOelwPwAAABhmivND+sGlE3X1OQeUH/ZrTX2TfvRsvRpaIvJ5jAI+j+LJtJJpq7LCsK6YMlbXz/yYWiMJVZyUp+JBDsBSZiH4PWPMaeq4GU7GmHnq2E4ZAAAAWc7v8+jd1qj+96826hMfG6V//EyFSk8IK5ZMK5ZMKejzKujzaNe+iFbU7tGSP76l71xyps4qLTgu/WYSgr8uabGk8caYXZL+IulLrnQFAACAYeP9tphuefQ1hQNe/epvP64/vvHeoSvBhysrDOsL1WW6fuZpuv9Pb+sPWxt1xxUTNTLX/a2SuzPWZrY1nTEmR5LHWnvAnZb6Vl1dbTds2HC8vjwAAAA6tbTHddsTW/S5iaP1fltM//y77Yom0n2+L+T36J8+1zFG7Xev7dGiS8/SiTnOzgg2xmy01lb39Fq/b4wzxvy9MaZrVvBPjDGbjDGf6et9AAAA+GiKJ9N6vr5JXzrnZD22aaduW7a1XwFYkqKJtG5btlWPbdqpL51zstbUNyme7N97nZDJdIivWmtb1bFZxkhJX5Z0hytdAQAAYMhraY8rJ+jTkhfe0qq6pgHVWFXXpCUvvKWcoE8t7XGHOzy6TEJw11iIiyU9YK3dqg9PuAAAAECWSKXSem3XPr3XFh9wAO6yqq5J77fF9dqufUqlBudqcCYheKMx5ll1hOBnjDF5kgbvmjUAAACGjJaDcZ08Mke3L9/qSL3vLd+qk0fmqOXg4FwNziQEXyvpFklTrbUHJQUksZUyAABAFjJGWl3X1O81wH2JJtJaU98kM0jrDPoMwcaY8Z3/nNz596nGmCmSTlZmI9YAAADwERGNp/Xfr7zjaM0H176jaHxwFhr0J8TeKGmBpB/38JqV9GlHOwIAAMCQZ6Ue5wAfi4aWiDIb3jtwfYZga+2Czr9nut8OAAAAhoP2WNKdunF36h4ukznBn++8GU7GmG8bYx4zxvyVe60BAABgqIokUq7UjbpU93CZ3Bi30Fp7wBjzCUk1ku6T9B/utAUAAIChLOjLJEb2X8DrTt3DZfJVumL5LEmLrbUr1DEhAgAAAFkmN+QfVnUPl0kI3mWM+bmkL0p62hgTzPD9AAAA+IjwGKmsMOxozbLCsDxDZURaN1+Q9Iyki6y1+yQVSrrJla4AAAAwpI0IeDVvylhHa37+7LHKCXgdrXk0/Q7BnRtkPCmp3RhTLskvqc6txgAAADB0FYT8mj1pjEJ+ZxYGhPwezaoao/zw4Ky2zWQ6xDckNUr6g6QVnX+Wu9QXAAAAhjCv16P8oE83XVThSL2bLqpQftAn7yCth8hkx7e/l1RhrX3frWYAAAAwvEw/daRmVBRpTX3zgGvMqCjS9FNHOthV3zK5ft0gab9bjQAAAGD4SKXSevzV3Qr6PLqh5gzNqCgaUJ0ZFUW6oeYMBX0ePbF5t1KpobNtcpe3JK0xxqyQFOt60lp7j+NdAQAAYEh7vz2uXfsO6qU339MZJfla8MlT9cnTR+nuZ+oVTfQdZEN+j266qEKVJ+Urkkhp8869ath7UO+3x1WcH3K9/0xC8I7OPwExHxgAACCrxVNpXTa5VFcuWSuvMbpr3iSVF47QwwvO0fP1TXpk0041tESOeF9ZYVjzpozV+RXFaj4Q1d6DCX3zkc1KWauHr5uu+FC7Emyt/Z4kGWNyOx+3udUUAAAAhrZ02mrN682Hrvp+fekmXVI1Wtd+4hSdMjJHt15cqZG5QSVSaUUTaYX8Hvm9Hr3fFlMsmZas1bJXd+up2j2Haj7/erMum1I6KP33OwQbY86S9KA65gPLGPOepKuttVtd6g0AAABDVDJt9eimnR967qnaPXp6y7u6YHyxZlWNliQZSV5j1DXzIZZMa3ntHj1X16RU2n7o/Y9s2qk5k8cMQveZLYdYLOlGa+1qSTLGzJC0RNK5LvQFAACAIcznMT0ud0ilrZ7d1qhntzUeOi7g8yieTCt5WOg9XENLRF4z9Eak5XQFYEmy1q4xxuS40BMAAACGuIPxVL+OS6atkv08VpIOJvp/7LHIaDqEMWahOpZESNKX1DExAgAAAFmmPxMgBiLmUt3DZTIn+KuSiiQ9JulRSaM6nwMAAECWcWq75MMFfe7UPVwm0yH2Svo/LvYCAACAYWJEMJMFBf2X41Ldw/U7ahtj/mCMOaHb4xONMc+40xYAAACGsnTaqqww7GjNssLwERMj3JLJ9eZR1tp9XQ86rwwXO98SAAAAhrpwwKMvVpc5WvPKqWUaEfA6WvNoMgnBaWNMedcDY8zJkgYnqgMAAGBISaSszj+jyLG1wSG/R586vWjQdozLpOtbJf3JGPOgMea/Jb0g6VvutAUAAIChrCgnoJ17I7rpogpH6t10UYV27ouoOC/oSL2+9DsEW2t/L2mKpF9LeljS2dbaQ2uCjTFnOt8eAAAAhqJgwKeqsSdoTEFYMyqKjqnWjIoijSkIq6r0BAV8g7McIqPb76y170lafpSXH1RHSAYAAEAWyA/51BpJaMGnTpUkralvzrjGjIoiLfjUqWp4/6AKwoMzGULKbDlEXwZnjzsAAAAMCXlhv2ZUFOvBl9/W588u08LZlf1eIxzye7RwdqU+f3aZHnz5bc0YX6zckN/VfrtzMm5zkxwAAECWKSkI6btzztItj9UqN+DTw9dN1/OvN+uRTTvV0BI54viywrDmTRmr888o0n1/+ova4u/pjsurVJIfGtS+B++aMwAAAD6SSvJDuuOyKq3c3qi/vu8VnXfaKP3jZyo05oSwEqm0oom0Qn6P/F6Pdu+LaHntHi3+41v6p89VqmZCyaAHYMnZEBx3sBYAAACGkZKCkOZOHqMZFcVatnmXfvRsvRpaIvJ5jAI+j+LJtJKdG2xcNa1c351zpgpCvkFdAtFdRiHYGFMlaVz391lrH+v8e7qjnQEAAGBYyQ35lRvy66vnjtMlk8bIWqktllQ0kVLI71Vu0CdjpOK84KBNgTiafodgY8z9kqokbZXUNcXYSnrMhb4AAAAwTAUDPo0NDO1Vt5l0N91aO8G1TgAAAIBBksmItJeNMYRgAAAADHuZXAl+QB1B+F1JMXXMBbbW2ipXOgMAAABckkkIvk/SlyW9pg/WBAMAAADDTiYhuNlau8y1TgAAAIBBkkkI/h9jzFJJT6ljOYSkD0akAQAAAMNFJiE4rI7w+5luzzEiDQAAAMNOv0OwtfYrbjYCAAAADJZMNssISbpW0pmSDm3wbK39qgt9AQAAAK7JZE7wg5JOknSRpOcljZV0wI2mAAAAADdlEoI/Zq1dKKndWvtfkmZJ+rg7bQEAAADuySQEJzr/3meMOUtSgaRi51sCAAAA3JXJdIjFxpgTJS2UtExSrqTbXOkKAAAAcFEm0yF+0fnP5yWd6k47AAAAGO5i8aSa2+OSpAORpCKJlMJ+r/LCHdGzKCegYCCTa7HOy2Q6RImkf5Y0xlr7OWPMBEnnWGvvc607AAAADBsHIgm1RpN68tVdemj9DjW0RI44pqwwrPlTyzV3cqnyQz7lhf3HoVPJWGv7d6Axv5P0n5JutdZOMsb4JP2PtXaimw32pLq62m7YsGGwvywAAACOonF/VCu3N2rRim2KJtJ9Hh/ye7Rw1gTVVJaopCDU5/EDYYzZaK2t7um1TG6MG2Wt/Y2ktCRZa5OSUv344p81xtQbY/5sjLmll+OuMMZYY0yPjQIAAGBoamyN6pbHa3XrE1v6FYAlKZpI69YntuiWx2vV2Bp1ucMjZRKC240xI9WxVbKMMdMl7e/tDcYYr6SfSvqcpAmS5ncuozj8uDxJfy/plQz6AQAAwHHWuD+qWx6r1eq65gG9f3Vds255bPCDcCYh+EZ1TIU41RjzoqQHJH2jj/dMk/Rna+1b1tq4pIclze3huEWS7pQ0+L8GAAAAYEAORBJaub1xwAG4y+q6Zq3c1qi2aKLvgx2SSQjeJulxSeslNUpaIun1Pt5TKqmh2+Odnc8dYoyZIqnMWrsig14AAABwnLVGk1q0YpsjtRat2Kb9kaQjtfojkxD8gKTx6pgQ8W+SzlDHVsoDZozxSLpH0j/049gFxpgNxpgNzc3H9tsGAAAAjk0s3jEFor9rgPsSTaS1bPMuxeKDE4QzCcFnWWv/1lq7uvPPdZLO7OM9uySVdXs8tvO5LnmSzpK0xhjztqTpkpb1dHOctXaxtbbaWltdVFSUQdsAAABwWnN7XA+t3+FozaXrdhyaL+y2TELwps6b4SRJxpiPS+prTtl6SacbY04xxgQkXamOdcWSJGvtfmvtKGvtOGvtOElrJc2x1jL/DAAAYAizVj3OAT4WDS0R9XN67zHrc7MMY8xr6pgI4Zf0kjFmR+fjkyXV9fZea23SGPN3kp6R5JV0v7V2qzHmdkkbrLXLens/AAAAhqa2qDvLFtpig7Mcoj87xs0+li9grX1a0tOHPXfbUY6dcSxfCwAAAIMjkuhzu4gBibpU93B9hmBr7TuD0QgAAACGj7Df60rdkM+duofLZE0wAAAAIEnKDfVnQcHQqXs4QjAAAAAGpKwwPKTr9YYQDAAAgIyF/R7Nn1ruaM2rppVrRIDlEAAAABiidrRENHdyqUJ+Z+JkyO/RnEml2tFy0JF6fSEEAwAAIGMhv0fb9+zXwlkTHKm3cNYEbduzX0Hf4MRTQjAAAAAylhfy628f2KgZFUWaOf7YdvOdOb5IMyqKdN0DG5UX8jvUYe8IwQAAABiQssKwrlqyVj+8rGrAQXjm+CL98LIqXbVkLTfGAQAAYGjLC3s1f2q53mmJ6Is/f0nfn3uWfnDpWf1eIxzye/SDS8/S9+eepS/+/CW90xLRVdPKlR9mRBoAAACGqLDXe+jGuHdaIjrvztUqzg9q1Y0zdPNnK456VbesMKybP1uhVTfOUHF+UOfduVrvtEQO3Rjn1iYchxucqA0AAICPlGDAp1AsqYWzJujWJ7ZIkq57YKPCAa/uvmKiHrz24/Iao7ZYUtFESiG/V7lBn1LWasvOfar5yfOKxD/YInnhrAkK+owCg7RjHCEYAAAAAxLwefXpymLNrCvS6rpmSVIkntLfPfTqoWNyA16dmBPQ3va42rqF3u5mji/SpyuLFRqkq8ASyyEAAAAwQHlhv/wyvd4Y1xZPqWFvpNcA/MPLquQ3RrmDNBlCIgQDAADgGIwqCMlnpB9cOnFAN8b94NKJ8hlpVH7I5U4/jOUQAAAAOCaj8kNq3B/V9FMLterGGVq2eZeWrtuhhpbIEceWFYZ11bRyzZlUqmgiKa/HDHoAlgjBAAAAcEBJQUg5Ua/2R5L6dEWxLp44Wp4eboxLW6toPCUZqSQ/NKhLILojBAMAAMARuSG/ckN+xeJ+NbfHZW3H84Fu97t5PUanFOUM2hSIoyEEAwAAwFHBgE9jA0M7ZnJjHAAAALIOIRgAAABZZ2hfpwYAAMCwE4sn1dwelyQdiCQVSaQU9nuVF+6InkU5AQWP83IJQjAAAAAccSCSUGs0qSdf3aWH1h99RNr8qeWaO7lU+SGf8sLHZzqEsV237Q0j1dXVdsOGDce7DQAAAHRq3B/Vyu2NWrRim6KJdJ/Hh/weLZw1QTWVJSopcGdOsDFmo7W2uqfXuBIMAACAY9LYGtUtj9dqdV1zv98TTaR16xNbtLKuUXdcXqWSQd4wgxvjAAAAMGCN+6O65bHMAnB3q+uadctjtWpsjTrcWe8IwQAAABiQA5GEVm5vHHAA7rK6rlkrtzWqLZpwqLO+EYIBAAAwIK3RpBat2OZIrUUrtml/JOlIrf4gBAMAACBjsXjHFIj+3ATXH9FEWss271IsPjhBmBAMAACAjDW3x/XQ+h2O1ly6bseh+cJuIwQDAAAgY9aqxznAx6KhJaLBmt5LCAYAAEDG2qLuLFtoi7EcAgAAAENUJJFypW7UpbqHIwQDAAAgY2G/15W6IZ87dQ9HCAYAAEDGckPubDzsVt3DEYIBAACQMWOkssKwozXLCsMyxtGSR0UIBgAAQMaKcgKaP7Xc0ZpXTStXcV7Q0ZpHQwgGAABAxoIBn+ZOLlXI70ycDPk9mjOpVAHWBAMAAGAoyw/5tHDWBEdqLZw1QQXhwVkPLBGCAQAAMEB5Yb9qKks0c3zRMdWZOb5INRNKlBvyO9RZ3wjBAAAAGLCSgpDuuLxqwEF45vgi3XF5lUryQw531jtCMAAAAI5JSX5Id1xWpR9cela/1wiH/B794NKzjksAlqTBW3gBAACAj6ySgpDmTh6jGRXFWrZ5l5au26GGlsgRx5UVhnXVtHLNmVyqgpBvUJdAdEcIBgAAgCNyQ37lhvz66rnjdMmkMbJWaosl5fOmlEx5lRv0yRipOC84aFMgjoblEAAAAHBU2lpJHRtqyEoHIh1/d22EkUqlj1tvXbgSDAAAAEfsPRjXwVhKT766Sw+tP/pyiPlTyzV3cun/b+/ug+K6zjuO/x5g2buAQMbGyMJgdRKPJaogkmC1yttYkZxJii1kxTO1NGnsJG2mL5mm09aNXA9pEkZjpW47nb5M2zTJ2EkjJaktW6oVN7VUZtJ2nEgokbACpHVaVwqO10TYyAh2WeD0D5aGrEHcXe7dXWm/nxlGLPfw8OjMGe1Pl3PvVVW0XNdUVRagU8lcOqlfSTo6OlxfX1+h2wAAAEDaS2MJHR+Mq+fogBKp5c/0epEydXe2atuGRq2pC+fCODM75ZzrWOwYZ4IBAACwIvGLCT3wRL96h0Z8f08iNasHnzyrY0NxbpEGAACAK8tLYwntPZRdAF6od2hEew/1K34xEXBnl0cIBgAAQE5emZjS8cF4zgF4Xu/QiI4NxPXqxFRAnS2PEAwAAICcTCRn1HN0IJBaPUcHdCk5E0gtPwjBAAAAyNpkMqXDp4d9XQTnRyI1qyNnhjWZTAVSbzmEYAAAAGTtwkRKB0+eC7TmgRPndGGCEAwAAIAi5ZwWvQ/wSpwfnVS+7t5LCAYAAEDWxhPT4dRNhlM3EyEYAAAAWZtMhXMRWyKkupkIwQAAAMhaLFIeSl2vIpy6mQjBAAAAyFqNF86Dh8Oqm4kQDAAAgKyZSc31sUBrNtfHZBZoySURggEAAJC1a6si2n1rS6A192xuUUNNNNCaSyEEAwAAIGuxaERd7U3yIsHESS9Sph2bmhQNaa9xJkIwAAAAclIVLVd3Z2sgtbo7W1UdzU8AlgjBAAAAyNE1Ht1rlAAAE25JREFUVZXatqFRW9c3rKjO1vUN2t7aqNVVlQF1tjxCMAAAAHK2ps7T/l1tOQfhresbtH9XmxprvYA7uzxCMAAAAFaksdbTQ3e1ad/Ojb73CHuRMu3bubEgAViS8nMjNgAAAFzV1tR56my7Qbfdcr2OnBnWgRPndH508nXjmutj2rO5RTvam1RdWZ7XLRALEYIBAAAQiNVVlVpdJd235SbduWmtnJPGk9NKpGbkRcpVE62Q2dzt1WLRSEF7JQQDAAAgEK9NpnQxMa3Dp4d18OTcmeDm1Z5uWVOjH7w0rvOvJtRcH9PuW1vU1d6kWq9Cq2KFCcPmnCvID16Jjo4O19fXV+g2AAAAkBYfS+jYYFw9RweUSM0uO96LlKm7s1XbNzSqsS6cPcFmdso517HYMc4EAwAAYEXiFxPa+0S/eodGfH9PIjWrB588q2NDce4OAQAAgCtLfCyhvYeyC8AL9Q6NaO+hfsUvJgLu7PIIwQAAAMjJa5MpHRuM5xyA5/UOjejYQFzjiVRAnS2PEAwAAICcXExMq+foQCC1eo4OaGxyOpBafhCCAQAAkLXk1NxdIPxcBOdHIjWrI2eGlZzKTxAmBAMAACBrI5emdPDkuUBrHjhxTiOXpgKtuRRCMAAAALLmnBZ9ItxKnB+dVL7u3ksIBgAAQNbGE+FsWxhPsh0CAAAARWoyNRNK3URIdTMRggEAAJC1WKQ8lLpeRTh1M4Uegs3svWb2AzN73sz2LnL8d81swMz6zey4md0Udk8AAABYmRovnAcPh1U3U6gh2MzKJf21pPdJapW028xaM4Z9T1KHc65N0mOS/jjMngAAALByZlJzfSzQms31MZkFWnJJYZ8J3izpeefcfzvnpiR9VVLXwgHOuV7n3ET65bcl3RhyTwAAAFihhupK7b61JdCaeza36PpV0UBrLiXsENwk6fyC1z9Kf20pH5H09GIHzOyjZtZnZn0jIyt7NB8AAABWJlpZoa72JnmRYOKkFynTjk1Nqrxa9gT7ZWYfkNQh6eHFjjvnPuec63DOdTQ0NOS3OQAAALxOrVeh7s7Mna656e5sVV0sP/uBpfBD8LCk5gWvb0x/7WeY2XZJD0ra4ZxLhtwTAAAAArAqFtH2DY3aun5lJyi3rm/Q9tZG1XiRgDpbXtgh+KSkm83s58ysUtI9ko4sHGBmb5b0d5oLwC+H3A8AAAAC1Fjnaf+utpyD8Nb1Ddq/q02NtV7AnV1eqCHYOTct6WOSvilpUNLXnXPfN7PPmNmO9LCHJdVI+kczO21mR5YoBwAAgCLUWOtp/11t2rdzo+89wl6kTPt2bixIAJYkc/l6QHOAOjo6XF9fX6HbAAAAwALjiZTGJqd15MywDpw4p/Ojk68b01wf057NLdrR3qQ6ryLULRBmdso517HYsfztPgYAAMBVrcaLqMaL6MNvW6c7N62Vc9J4clpT0zOqrChXTbRCZtL1q6J5uwvEUorm7hAAAAC4OszvNDCT5KQZN/fn/IMwZmdmC9bbPM4EAwAAIBBjE1MaT87o8OlhHTy59HaI3be2qKu9STXRctVVVRagU/YEAwAAIAAvjSV0fDCunqMDSqSWP9PrRcrU3dmqbRsataYunAvj2BMMAACA0MQvJvTAE/3qHfL/VN9EalYPPnlWx4biV98t0gAAAHB1e2ksob2HsgvAC/UOjWjvoX7FLyYC7uzyCMEAAADIydjElI4PxnMOwPN6h0Z0bCCui5NTAXW2PEIwAAAAcjKenFHP0YFAavUcHdBriZlAavlBCAYAAEDWEsmUDp8e9nURnK96qVkdOTOsRDIVSL3lEIIBAACQtZ9MpHTw5LlAax44cU4/mSAEAwAAoEg5p0XvA7wS50cnla+79xKCAQAAkLXxxHQ4dZPh1M1ECAYAAEDWJlPhXMSWCKluJkIwAAAAshaLlIdS16sIp24mQjAAAACyVuOF8+DhsOpmIgQDAAAga2ZSc30s0JrN9TGZBVpySYRgAAAAZO26qoh239oSaM09m1vUUBMNtOZSCMEAAADImheNqKu9SV4kmDjpRcq0Y1OToiHtNc5ECAYAAEBOaqLl6u5sDaRWd2erVnn5CcASIRgAAAA5qquq1LYNjdq6vmFFdbaub9D21kbVxioD6mx5hGAAAADkbE2dp/272nIOwlvXN2j/rjY11noBd3Z5hGAAAACsSGOtp4fuatO+nRt97xH2ImXat3NjQQKwJOXnRmwAAAC4qq2p83Tnpht02y3X68iZYR04cU7nRydfN665PqY9m1u0o71Jq6Lled0CsRAhGAAAAIGojVWqNiZ9aMtNunPTWjknjSenlUjNyIuUqyZaITOpoSaat7tALIXtEAAAAAiUS/9pNvfC0l+cfxDG7OxsYRpbgDPBAAAACMQrE1OaSM7o8OlhHTy59HaI3be2qKu9SVXRcl1TVZjtEOacW35Ukeno6HB9fX2FbgMAAABpL40ldHwwrp6jA0qklj/T60XK1N3Zqm0bGrWmLpwL48zslHOuY7FjnAkGAADAisQvJvTAE/3qHRrx/T2J1KwefPKsjg3FuUUaAAAAriwvjSW091B2AXih3qER7T3Ur/jFRMCdXR4hGAAAADl5ZWJKxwfjOQfgeb1DIzo2ENerE1MBdbY8QjAAAAByMpGcUc/RgUBq9Rwd0KXkTCC1/CAEAwAAIGuTyZQOnx72dRGcH4nUrI6cGdZkMhVIveUQggEAAJC1CxMpHTx5LtCaB06c04UJQjAAAACKlHNa9D7AK3F+dFL5unsvIRgAAABZG09Mh1M3GU7dTIRgAAAAZG0yFc5FbImQ6mYiBAMAACBrsUh5KHW9inDqZiIEAwAAIGs1XjgPHg6rbiZCMAAAALJmJjXXxwKt2Vwfk1mgJZdECAYAAEDWrq2KaPetLYHW3LO5RQ010UBrLoUQDAAAgKzFohF1tTfJiwQTJ71ImXZsalI0pL3GmQjBAAAAyElVtFzdna2B1OrubFV1ND8BWCIEAwAAIEfXVFVq24ZGbV3fsKI6W9c3aHtro1ZXVQbU2fIIwQAAAMjZmjpP+3e15RyEt65v0P5dbWqs9QLu7PIIwQAAAFiRxlpPD93Vpn07N/reI+xFyrRv58aCBGBJys+N2AAAAHBVW1PnqbPtBt12y/U6cmZYB06c0/nRydeNa66Pac/mFu1ob1J1ZXlet0AsRAgGAABAIFZXVWp1lXTflpt056a1ck4aT04rkZqRFylXTbRCZlJDTTRvd4FYCiEYAAAAgZiantXopSk91f+iHn32BZ0fndTa2qjecH21fvjyJb14Manm+pju3bJOd7StVX11pSorCrM715xzBfnBK9HR0eH6+voK3QYAAADSRi9N6fhgXN2HzyqRml12vBcpU0/XRm3b0Kj66nC2RJjZKedcx2LHuDAOAAAAK3JhPKlPPNav+x/r9xWAJSmRmtX9j/XrE4/168J4MuQOX48QDAAAgJyNXprS3sef0zOD8Zy+/5nBuPY+/pxeuTQVcGeXRwgGAABATqamZ3V8MJ5zAJ73zGBcxwbjmpr2dxY5CIRgAAAA5GT00pS6D58NpFb34bMazePZYEIwAAAAsjYzM6un+l/0vQd4OYnUXL2ZmfycDSYEAwAAIGujE1N69NkXAq356LMvaHQiP2eDCcEAAADI2vSsW/SJcCtxfnRS07P5uX0vIRgAAABZey0xHUrd8ZDqZiIEAwAAIGvJ1Ew4dfN0hwhCMAAAALIWjZSHUjdfj1EmBAMAACBrq7yKK6puJkIwAAAAslZRZmqujwVas7k+pooyC7TmUgjBAAAAyFp9VaXu3bIu0Jr3blmn+upooDWXQggGAABA1srLy3RH21p5kWDipBeZq1fOmWAAAAAUs/rqSvV0bQykVk/XRtVXVwZSyw9CMAAAAHJSWVGmbRsadfuGxhXVuX1Do7ZvaMzbnSEkQjAAAABWoL66Uvvf/6acg/DtGxq1//1v0jV5PAssEYIBAACwQtfWRPXZu9v08N1tvvcIe5EyPXx3m/747jZdW5Ofi+EWys+N2AAAAHBVq6+uVFd7k955c4Oe6n9Rjz77gs6PTr5uXHN9TPe9bZ0637RW9dWVed0CsRAhGAAAAIGorCjTmjpPH3rbOnW1r9X0rNN4YlrJ6VlFK8pU41WoosxUXx3N210glkIIBgAAQKDKy8vUsMqbe1FX2F6Wwp5gAAAAlBxCMAAAAEoOIRgAAAAlhxAMAACAkkMIBgAAQMkhBAMAAKDkEIIBAABQcgjBAAAAKDnmnCt0D1kzsxFJ/1uAH32dpJ8U4OdeaZgnf5gnf5gnf5gn/5grf5gnf5gnfwo1Tzc55xoWO3BFhuBCMbM+51xHofsodsyTP8yTP8yTP8yTf8yVP8yTP8yTP8U4T2yHAAAAQMkhBAMAAKDkEIKz87lCN3CFYJ78YZ78YZ78YZ78Y678YZ78YZ78Kbp5Yk8wAAAASg5nggEAAFByCMEAAAAoOYTgDGb2RTN72czOLnHczOwvzOx5M+s3s7fku8di4GOebjOzMTM7nf74ZL57LAZm1mxmvWY2YGbfN7OPLzKm5NeUz3kq+TVlZp6ZnTCzM+l5+vQiY6Jm9rX0evqOma3Lf6eF5XOe7jOzkQXr6VcL0WsxMLNyM/uemT21yLGSX0/zlpkn1lOamb1gZs+l56FvkeNF855XUagfXMQekfRXkr60xPH3Sbo5/fELkv4m/WepeUSXnydJ+jfn3B35aadoTUv6Pefcd81slaRTZvaMc25gwRjWlL95klhTSUnvds6Nm1lE0r+b2dPOuW8vGPMRSa84595oZvdI+qykXy5EswXkZ54k6WvOuY8VoL9i83FJg5JqFznGevqpy82TxHpaaKtzbqkHYxTNex5ngjM4574lafQyQ7okfcnN+bak1WZ2Q366Kx4+5gmSnHM/ds59N/35a5r7B7QpY1jJrymf81Ty0mtkPP0ykv7IvLq5S9Kj6c8fk7TNzCxPLRYFn/MESWZ2o6ROSZ9fYkjJryfJ1zzBv6J5zyMEZ69J0vkFr38k3qyXsiX968inzeznC91MoaV/jfhmSd/JOMSaWuAy8ySxpuZ/JXta0suSnnHOLbmenHPTksYkXZvfLgvPxzxJ0vvTv459zMya89xisfhzSX8gaXaJ46ynOcvNk8R6muck/YuZnTKzjy5yvGje8wjBCMt3Nfe87k2S/lLSkwXup6DMrEbS45J+xzl3sdD9FKtl5ok1Jck5N+Oca5d0o6TNZrax0D0VIx/z9E+S1jnn2iQ9o5+e7SwZZnaHpJedc6cK3Usx8zlPJb+eFniHc+4tmtv28Ftm9q5CN7QUQnD2hiUt/B/ejemvYQHn3MX5X0c6574hKWJm1xW4rYJI70l8XNJXnHOHFhnCmtLy88Sa+lnOuVcl9Up6b8ah/19PZlYhqU7Shfx2VzyWmifn3AXnXDL98vOS3prv3orA2yXtMLMXJH1V0rvN7B8yxrCefMwT6+mnnHPD6T9flvSEpM0ZQ4rmPY8QnL0jkj6YvrrxFyWNOed+XOimio2ZrZnfN2ZmmzW31krtH06l5+ALkgadc3+2xLCSX1N+5ok1JZlZg5mtTn8ek3S7pKGMYUck3Zv+/G5J/+pK7KlIfuYpYw/iDs3tQy8pzrkHnHM3OufWSbpHc2vlAxnDSn49+Zkn1tMcM6tOX9wsM6uW9B5JmXeRKpr3PO4OkcHMDkq6TdJ1ZvYjSX+kuYsq5Jz7W0nfkPRLkp6XNCHpQ4XptLB8zNPdkn7DzKYlTUq6p9T+4Ux7u6RfkfRcen+iJP2hpBaJNbWAn3liTUk3SHrUzMo195+ArzvnnjKzz0jqc84d0dx/Jr5sZs9r7uLVewrXbsH4maffNrMdmrszyaik+wrWbZFhPfnDelpUo6Qn0ucrKiQdcM79s5n9ulR873k8NhkAAAAlh+0QAAAAKDmEYAAAAJQcQjAAAABKDiEYAAAAJYcQDAAAgJJDCAaAImFmq83sNwvdBwCUAkIwABSP1ZIIwQCQB4RgACge+yW9wcxOm9nDZna/mZ00s34z+7Qkmdk6Mxsys0fM7D/N7Ctmtt3M/sPM/iv9ND2Z2afM7Mtm9mz667+W/voNZvat9M84a2bvLODfFwAKhhAMAMVjr6QfOufaJT0j6WZJmyW1S3qrmb0rPe6Nkv5U0vr0xx5J75D0+5p70t68NknvlrRF0ifNbG167DfTP2OTpNMCgBLEY5MBoDi9J/3xvfTrGs2F4nOS/sc595wkmdn3JR13zjkze07SugU1DjvnJiVNmlmv5gL1SUlfNLOIpCedc4RgACWJM8EAUJxM0kPOufb0xxudc19IH0suGDe74PWsfvbkhsuo6Zxz35L0LknDkh4xsw+G0DsAFD1CMAAUj9ckrUp//k1JHzazGkkysyYzuz7Lel1m5pnZtZJuk3TSzG6SFHfO/b2kz0t6SzCtA8CVhe0QAFAknHMX0he4nZX0tKQDkp41M0kal/QBSTNZlOyX1CvpOkk9zrkXzexeSfebWSpdkzPBAEqSOZf52zIAwJXOzD4ladw59yeF7gUAihHbIQAAAFByOBMMAACAksOZYAAAAJQcQjAAAABKDiEYAAAAJYcQDAAAgJJDCAYAAEDJ+T8+hheSkweV1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hV5Z33/8+9zzsnILIDBIJ4TEANDEbqYaoworRFoVXbUaanaUdmfnbmN61TO7QW60jbx0NP07n6tKNTn2mdAZ+ORYlgBwHBnlQIDARIgloPQIAQCack+7zv548kNEJCssNaIWG/X9fFVffea3/zDSXX/mSte31vY60VAAAAkEs8Z7sBAAAAYLARggEAAJBzCMEAAADIOYRgAAAA5BxCMAAAAHKO72w3MBCjR4+2kyZNOtttAAAAYAjbvHnze9baSE+vDcsQPGnSJNXU1JztNgAAADCEGWPe7e01lkMAAAAg5xCCAQAAkHMIwQAAAMg5hGAAAADkHEIwAAAAcg4hGAAAADmHEAwAAICcQwgGAABAzhmWm2UMlmg8qUPtSUnS8WhK0WRaYb9XheGOv7bz8vwKB/1ns0UAAAAMACG4B4fbE2qPp7Via6OWbdqtPS3RU44pKw7rrqsmav608coLejUqL3AWOgUAAMBAGGvt2e4ha1VVVdatbZMPHI1pXX2TlqyqUyyZ6fP4kN+jxXOn6MbJYzR2RMiVngAAAJA9Y8xma21VT69xJribpmMxffXZWq1vaO73e2LJjO5/bofWNjTp4dsqNaaIIAwAADDUcWNcpwNHY1q0PLsA3N36hmYtWl6rpmMxhzsDAACA0wjB6lgDvK6+acABuMv6hmatrWvSkfaEQ50BAADADYRgSe3xtJasqnOk1pJVdWqLpx2pBQAAAHfkfAiOxpNasbWxXzfB9UcsmVH1tkZF40lH6gEAAMB5roZgY8yTxpiDxpgdvbxujDE/NMa8aYypNcZMd7OfnhxqT2rZpt2O1ly6cfeJ+cIAAAAYetw+E/zvkj50mtc/LOmSzj8LJf3Y5X5OYa16nAN8Jva0RDUMJ88BAADkDFdDsLX215JaTnPIfEk/tx1elTTSGDPOzZ5O1hpLuVM37k5dAAAAnLmzvSZ4vKQ93R7v7XzuFMaYhcaYGmNMTXPzmU1x6C6adOcmtphLdQEAAHDmznYI7jdr7ePW2iprbVUkEnGsbtjvdaxWdyGfO3UBAABw5s52CG6UVNbt8YTO5wZNQcidTfPcqgsAAIAzd7ZDcLWkT3dOibha0lFr7f7BbMAYqaw47GjNsuKwjHG0JAAAABzk9oi0ZZJekVRujNlrjPm8MeZvjDF/03nIC5LekvSmpCck3eNmPz05L8+vu66a6GjNBTMmKlIQdLQmAAAAnOPqNXtr7V19vG4lfcHNHvoSDvo1f9p4/fClNxzZMCPk92je1PEKurTWGAAAAGfubC+HGBLygl4tnjvFkVqL505RfpAADAAAMJQRgiWNygvoxsljNKvizKZOzKqIaPaUMRqZF3CoMwAAALiBENxp7IiQHr6tcsBBeFZFRA/fVqkxRSGHOwMAAIDTCMHdjCkK6X99rFLf+ujlCvn791cT8nv0rY9eTgAGAAAYRhhme5KxI0KaWzlOM8tLVL2tUUs37taelugpx5UVh7VgxkTNmzZe+QEvSyAAAACGEUJwD0bmBTQyT/rsNefr1qmlslZqjacUS6YV8ntVEPTJGClSEGQKBAAAwDBECD6NcNCvCUH/2W4DAAAADmNNMAAAAHIOZ4JPI55IqbktIUk6Hk0pmkwr7PeqMNzx1xbJDygY4K8QAABguCHB9eB4NKljsZRWbG3Usk293xh311UTNX/aeBWFfCoMs2wCAABguDAdOxcPL1VVVbampsaV2k1HY1pb36Qlq+r6tY1yyO/R4rlTNHvyGI0ZwYg0AACAocIYs9laW9XTa5wJ7qbpWEyLnq3V+obmfr8nlszo/ud2aG1DE7OCAQAAhglujOvUdDSmRcuzC8DdrW9o1qLltWo6FnO4MwAAADiNEKyONcBr65sGHIC7rG9o1rr6JrXGkg51BgAAADcQgiUdi6W0ZFWdI7UeWlmno9GUI7UAAADgjpwPwfFESs/X7uvXTXD9EUtmtLJ2n+IJgjAAAMBQlfMhuLktof987V1Ha/7Ha++emC8MAACAoSfnQ7CkHucAD6V6AAAAcFbOh+DjMXeWLbS6VBcAAABnLudDcDyZdqVuLOXMGmMAAAA4L+dDcNDndaeuN+f/agEAAIasnE9qeUF3QrBbdQEAAHDmcj4ES1JZcXhI1wMAAICzcj4Eh/we3T59gqM175g+QWE/Z4IBAACGqpwPwbFkRjdWlCjkd+avIuT36M8qShR16YY7AAAAnLmcD8GpdEbvHGrTfXPKHal335xyvXuoTcm0daQeAAAAnJfzITiRtioblafSEWHNLI+cUa2Z5RGVjghrwqg8JdOMSAMAABiqfGe7gbMtP+jVjzf8QVWTRmrh9RdKkjbsas66zszyiBZef6HePHhcL2zfr/s+5MyZZZw7ksm0mtviytiOTVqiybTCfq8KQz55jBTJD8rPWnIAAAZFzodgI6P/2XNYcy4bq5///h19/Moy/Vl5ib79q3rFkn2fzQ35PfrahyfrvIKgfv77d3Tr1PHauveIjMwgdI/hoD2e0uFoUiu2NmrZxt09bqtdVhzWXTMmav608RoV9isvmPM/mgAAuMpYO/zWrlZVVdmamhpHah04GtX/3bRHj//6Lf30s1cpk7FqS6QUKQzp5V0H9cyWvb2GljumT9AN5SVqPh5TfsAnj8fo8/++SX99w4X6RFWZxo5gVFquO3gspjX1TVqysq7fv1QtvmWKbpo8RiVFoUHoEACAc5cxZrO1tqqn13L+dJPHI91SWaqfv/KOJOmnv31b6xoOyusxurGiRF++uVylI8NKpjOKJTMK+T3yez3adySqlbX79cOX3lQ6Y3VjRYnuvv5Chfweza0sldfDmeBcd/BYTP+4vFbrG/q/vCaWzOj+Z3dobX2THrmtkiAMAIBLcv5McPPxqGJJq9Z4So/8d0Ov64F9HqOAz6NEKqNUpue/s5nlES36UIXygz6F/EaRQs4E56qBBOCTzaqIEIQBADgDpzsTzHSIlNU777Vp294jp70hLpWxak+kew3AUscNddv2HtE777UqkRp+v1zAGe3xlNbUN51RAJak9Q3NWlvfpPZEyqHOAABAl5wPwRkrTRqdrwerdzpS7xvVOzVpdIFOk5VxjjscTWrJyrrTHuPzGOUFvPL1sWzmoZV1OtyedLI9AAAg1gTL7zF6buu+ft201B+xZEYvbN+vedNKHamH4SWZTGvF1sZT/j15PUazJ5foI1eM0/iRYcVTGcVTaQV9XgV9HjUeiWpV7X6taziodLffoGLJjKq3NuqvrruA8WkAADgo50NwIpPRf25819Ga//Hau/rwFWMdrYnh4WBrXMs27n7fc/OmlupzfzpJv3njPX3nxV29Thv5RFWZ7pl1kZ787Tuq3rbvxGtLN+7WvKmlGj8qz/X+AQDIFTkfgj3G9BhKzsSelqg8hukQuShjdeLfU37Aq0fvmKpDrXHd+firp73asKclqu+++Lp+tP5Nfe3DkzXnsrH6yjPb1JZIa09LlOU1AAA4LOfXBB+PuXPTUatLdTG0df3/nh/w6qefvUrLt+zVA9U7+73cJpbM6IHqnVq+Za9++tmrlB/oWALRGuffEwAATsr5EBxPpl2pG0s5s8YYw0u089/Tdz8xVU/8+i2tazg4oDrrGg7qiV+/pe9+YqokKebSv1MAAHJVzofgoM+dm42C3pz/q81JIb9H86aWqqUtOeAA3GVdw0Edbkvq1spxCvr49wQAgJNy/pM1L+hOCHarLoa2wpBf98y6SA+tdGbk3j+t3KkvzLpYhSG/I/UAAECHnA/BVh135juprDgs7mPKTUG/0a9fb3Z05N6v32hW0MeNlgAAOCnnQ3BewKPbp09wtOYd0ycoj5muOSmdkZ56te+Re/3dLEPqqJfmtyoAAByV8yPSkimrGytK9JOX/+DI2buQ36M/qyhRMsONcbkonbE9jtzrabOMWDKtkP/0m2VIHePTTn4OAACcmZwPwSUFQW3fd1T3zSnXkpX1Z1zvvjnl2nckqopxRQ50h+Gmp9F486aW6nPXTdKG15tPu1nG7dMn6J6ZF+nJ371/swyJEWkAADgt55dD+P1eXTF+pEpHhDWzPNLrcf25fD2zPKLSEWFdPmGk/EyHyEnRbqPM8gNe/WjBdE0tG6E7n3hVP1j7Rq8bs+xpieoHa9/QnU+8qqllI/SjBdNPzAiWpFiCEWkAADgp588ES1JewKvjsaQWXn+hJGnDruasL1/PLI9o4fUXam9L+/vCC3JL1yiz/IBXT3ymSo//+i1t2NXc7/fHkhktWVmvmeURPfGZKt39sxq1JdIKMCINAABHEYIltcfTmn5+sb73YoM+fmWZPvmBiRpdGNKGXQf7vnw962K9dzymeMrqP155R/9wc4Xa4mmNzBv87wNnX0Gw40fq0TumZh2Au+t636N3TNUXlm45URcAADgj508vReNJrdjaqLsef0X3z52iUXl+7TsS052Pv9K/y9ePv6J9R2IalefX/XOn6M7HX1H1tkZF48lB/k4wFBhj9Jlrz9eBY9EBB+AuG3Y168CxqD597fkyhhFpAAA4KedD8KH2pJZt2i2pY2bwk797Ww9U7+z3pIhYMqMHqnfqyd+9fWI28NKNu3WonRCciwI+o09dPUmPrd7lSL3HVu/Sp6+exI5xAAA4LOc/Wa3tOKv79MJr9I0VO7W2fmBb3a6tP6hvrNippxdeoz0tUVkmWuUkn9fopYYmRzfLeKmhST4vZ4IBAHBSzofg1lhKD9wyWZveadG6hoEF4C7rGg6q5t0WLZ47mZFWOao9nunXZhnZeOrVd9UWZzoEAABOyvkQHE2mNeeysXrw+Z2O1PtG9U596PKxiiUJLbmqt3XkZ1KP88AAADgr50Nw6YiQVm3f7+jl61Xb92tsUciRehhe2vp5BSCbbZMlqTXBlQUAAJyU83OX0rKuXL6ee8U4R2tieIilev5l6ky2TZakuEO/pAEAgA45H4IzGXcuX/eQY5ADepri4MS2yWyWAQCAs3I+BPf38nW22rl8nZO6b2qRH/Dq0Tum6sCxqO584tXTLrnpmjv9k5f/oPvmlGvOZWP1lWe2qa1zu2Q2ywAAwFk5f3rJrRvYoly+zknpjFVZcfjEtsn/tXmPlqysz2ru9JKV9fqvzXv0xGeqlB/wqqw4rDQz9wAAcFTOn14K+r3u1OXydU5KZzK6ffoEXVJS6Ni2yW8ePK50mhAMAICTcj6p5QfdCcFu1cXQlkhb3XLFWEe3Tf7IFWOVSHNlAQAAJ+V8CE6nOy5fO6msONzjHf449xUEfUpZObptcjrDmmAAAJyW8yHY6zG6ffoER2veMX2CvIbtDXJR0G+0escBR+dOv1h3QEEf/54AAHBSzodgGWnmpRGF/M78VYT8Ht1waURs8ZWbkimrZ7bsdbTmf23eqyRrggEAcFTOh+B02urZrY26b065I/Xum1Ou5VsbWQ6RozKWudMAAAwHOR+CPR6jUXkBjS0Ka2Z55IxqzSyPaGxRWOflBeRhOUROao25Mx+61aV51gAA5KqcD8GmcznEAyu2a+H1Fw44CM8sj2jh9RfqgRXbdcOlEZGBc1PUpbnTbs2zBgAgVxGCZfTs1kbdM+ti3f2zGn38yjItvmVyv9cIh/weLb5lsj5+ZZnu/lmN7pl1sZZvbZRhUXBOCrs0dzrkY+QeAABOyvm5SyG/UXHncoirLijWF5Zu0a2V4/T03Vfr5deb9cyWvT2u8SwrDuuO6RN0w6UR/fS3b+v52voTyyHa4inXwhCGtoKQOz9SbtUFACBX5fwnq5V0y9RSfeInv9e/LJguSXq+dr9e2HFAN1aU6Ms3l6t0ZFjJdEaxZEYhv0d+r0f7jkS1sna/fvjSm0pn7InlEH+3dIt+8TfXKsM2tznJmI5fkJy8Oa6sOMzyGgAAHJbzITjg8ygvoBPLIR69Y6o+eMloPbZ6l16sa9KLdU2SJJ/HKODzKJHKKNXtVv2Q36OvfaRCY4vCuvtnNbr35kuV5/c6NnINw0skP6C7rpqoRx3aLEOSFsyYqJLCoGP1AAAAa4JVGPDLI6PrLhp9YjnE1t1H9PTdV+tLsy85sZtcKmPVnkifCMBlxWF9afYlevruq7V19xF9YekWXXVBsa67eLQ8xig/6D+b3xbOkmDAp/nTxjs6d3re1PEKsCYYAABH5fyZYK/XI59H8nike2dfKmngyyHunX2pPEbyejp2okNuKgr5tHjuFN3/3I4zrrV47hSNCOf8jykAAI7j01VSYTigeCqjVDqpv77+wgEth5gyrkg+r1FBwKeicOBsfSsYAgrDfs2ePEZrG5q0vqF5wHVmVUQ0e8oYFYS4qgAAgNNyfjmE1LEuOBTwaWReQNZKF0cK9PTCa/q3HGLhNbo4UiBrpZF5AYUDPgV8/LXmujEjQnr4tkrNqhjY3OlZFRE9fFulxhSFHO4MAABInAk+oTg/oEOtcZWODOvdQ20yki4pKdD9H5ms8wqCpyyHONQaV8baE9OAS0eGFfR5NCqfs8CQWtoS+sGaXfrm/Mu1oaJZS1bVKZbM9Pm+kN+jxXOnaGZ5RD9Ys0tf+dBk/k0BAOACTll2c15BUEVhv0YXBFR8UvAwkvyeU7fAKM4PaHRBQCPCfp1XwB38kBKpjNbWHdCyTXt13SPrVVIU1Lp7Z+ofP1R+4srCycqKw/rHD5Vr3b0zVVIU1HWPrNeyTXu1pv6AEqm+wzMAAMiOscNwnm1VVZWtqalxrX4ilVFLW0KNh9uVH/Ip5PeqLZ5SIpVRwOdRftCnWDKt9lhKpaPyVJwfYAkETth/NKpZ39nwvjO/4YBXj91+hS6fMFJeY9QaTymWTCvk96og6FPaWu3Ye0T3/XK7ook/bpEc8nu0/sszNW5Ez+EZAAD0zhiz2Vpb1dNrLIfoQcDn0dgRIUUKAmppTyiVsUqmPPIYyefxKOjzKD/g1SUlhUyBwPuk0xk9v23/KUsfoom0/nbZ1hOPCwJejcoP6HBbQq3dQu/JYsmMVtbu1+eunSSvl1+0AABwCiH4NLxejyKFnTcmjTi7vWB4ONSW0FOvvtPnca2JtFoT/dtV7uevvKP5U0tVwk1yAAA4hlNLgIMS6YyjWyZL0p6WqBJp1gUDAOAkQjDgoNZYyp26cXfqAgCQqwjBgIOiyd7X956JmEt1AQDIVYRgwEFBl6aEBLgpDgAAR/HJCjioIOjOvaZu1QUAIFcRggEHGWN63RCju5DPo9EFAYX6cea4rDgsYxjFBwCAkzi9BDjI5zG6Y/oEfX/tG+97PuDz6Is3XqyZFSXKD/jUGkspmkwr7PeqIORTWyKll+oP6ocvvXnKDnEfv3KCfMyjBgDAUYRgwEEejzS3slQ/fvkPJzbMeOCWybppylg9v22f/vqpzT2OUCsrDuuuqyZq3b03aE3dAT20sl5Sx45xH7milE1ZAABwGMshAAel0lZGVvfNKVekIKA1X7peQZ9XN33/ZT26elevM4T3tET16Opduun7Lyvo82rNl65XpCCg++aUyxirZIY5wQAAOMlYa939AsZ8SNI/S/JK+jdr7cMnvT5R0s8kjew8ZpG19oXT1ayqqrI1NTUudQwMXDKZ1tpdB3VRJF/5Ab++vmK71jc0n3JcyOdRQahjWUQsdWrAnVUR0TfnX6G2RFJ/aG7T7Mlj5GdCBAAAWTHGbLbWVvX0mqvLIYwxXkk/knSTpL2SNhljqq21dd0O+7qkX1hrf2yMmSLpBUmT3OwLcIvf71XlhJHyGumrz/4xAGe7Jnh9Q7O+ru16+GOVqpzgJwADAOAwt9cEz5D0prX2LUkyxjwtab6k7iHYSirq/O8Rkva53BPgqryAVy/U7j8RgAe6Jnh9Q7PW1jdpbuW4wf4WAAA457l9emm8pD3dHu/tfK67ByV90hizVx1ngf+up0LGmIXGmBpjTE1z86mXl4Ghoj2e1pJVdY6sCV6yqk5tcXaLAwDAaUPhGutdkv7dWjtB0kckPWWMOaUva+3j1toqa21VJBIZ9CaB/ojGk1qxtVGFQZ+W33Odvv2ret3/3I4TkyL6EktmdP9zO/TtX9Vr+T3XqTDoU/W2RkXjSZc7BwAgt7gdghsllXV7PKHzue4+L+kXkmStfUVSSNJol/sCXHGoPallm3Zr2cKr9UD1jh5viuuP9Q3NeqB6h5YtvFpLN+7WoXZCMAAATnI7BG+SdIkx5gJjTEDSnZKqTzpmt6QbJckYM1kdIZj1DhiWrJX+8tpJeu2tlgEH4C7rG5r12lst+uw1k+TyEBcAAHKOqyHYWpuS9LeSVkuqV8cUiJ3GmIeMMfM6D/sHSXcbY7ZJWibps9btuW2AS1pjKd182VgtWVXX98H9sGRVneZcPlat8ZQj9QAAQAfXd4zrnPn7wknPPdDtv+skXed2H8BgKAz5VL11X7/XAPcllszo+W37NG9qqSP1AABAh6FwYxxwzrCSlm3a7WjNpRt3K8O1EQAAHEUIBhzW2xi0oVIPAAAQggFHtcbcWbvLmmAAAJxFCAYcFE26s7FFzKW6AADkKkIw4KCQ350fqaCPH1UAAJzEJyvgoMKQf1jVBQAgVxGCAQcZI5UVhx2tWVYcljGOlgQAIOcRggEHFYS8uuuqiY7WXDBjoopCro/0BgAgpxCCAQcVBvyaN63UsbXBIb9Ht04tVX6Q5RAAADiJEAw4yOv1KOzzaPHcKY7UWzx3ikI+j7we1kMAAOAkQjDgsMJwQDeURzSrInJGdWZVRHRDeURF4YBDnQEAgC6EYMBhAZ9HeQGfvjn/igEH4VkVEX1z/hXKD/gUYDwaAACO424bwAXF+QEdsnF945bLNLviPS1ZVadYMtPn+0L+jqUU1108WiG/R6PyOQsMAIAbCMGAS84rCMoYo2llI7TmSzdoZe0+Ld24W3taoqccW1Yc1oIZE3VLZamORRMaEfYTgAEAcBEhGHBRcX5AIb9Hh9uTqjp/lGZVlCjk96otnlIsmVHI71F+0KdYMq3j0aS8HqMLIgXKC/CjCQCAm/ikBVzU0pbQuvomPfj8Tl130WjNrRyn0pFhpdMZJdNWyZRReyKtfUeiWlm7X7//w3t68NbLdOPkMSrmTDAAAK4x1tqz3UPWqqqqbE1NzdluAzitQ61xLfrldq2pbzrlNZ/HKODzKJHKKJU59Wfwpslj9PDtV+i8guBgtAoAwDnJGLPZWlvV02vcdg64oKUt0WsAlqRUxqo9ke4xAEvSmvomLfrldh1uS7jZJgAAOYsQDDgskcpoXX1TrwG4v9bUN2ltfZMSqb6nSgAAgOwQggGHtbQltHjFDkdqLV6xQy2cDQYAwHGEYMBB6XRGK2v39WsmcH/Ekh310mnOBgMA4CRCMOCglvaEfvbKO47W/Nkr76ilnbPBAAA4iRAMOCiVsT1uhnEm9rREe72BDgAADAwhGHDQ8VjKlbqtLtUFACBXEYIBB8WTaXfqMiECAABHEYIBBwX9XlfqBnz8qAIA4CQ+WQEHFYbc2YncrboAAOQqQjDgIJ/HqKw43K/j8gJe+Tymz2PLisP9Og4AAPQfp5cABxXnBfSZaybpm6vq3/e812M0e3KJPnLFOI0fGVY8lVEsmVbI71XQ51HjkahW1e7XuoaDSp80CeIz10xScX5wML8NAADOeYRgwEFer0e3VJbqOy/uOrFhxryppfrcdZO04fVmfefFXT2OUCsrDuv26RN0z8yL9OTv3lH1tn2SpJC/o56XM8EAADiK5RCAw4rzA1oy/3LlB7z60YLpmlo2Qnc+8ap+sPaNXmcI72mJ6gdr39CdT7yqqWUj9KMF05Uf8GrJ/MtVnB8Y5O8AAIBzH2eCAYcFfB7dOHmMyscU6ntrX9eGXc2nHDM6z6/SUWHtOxzVe+3JE8/HkhktWVmvmeURLbv7apUV5zEZAgAAFxCCARckUxn987o3TgTgEXl+/WLh1coL+GSMdCyaVCyZUcjvUVHYL2ultnhSf/7EazrantSGXc3yGqNv33bFWf5OAAA4NxGCAYcdjya1tr5J6xoOSpLWfOmDygv4tWJro5Zt2t3rmuC7rpqoF/7ug2pPJHXT93+jdQ0HtbauSfOnlaog5B/sbwMAgHOasdb2fdQQU1VVZWtqas52G0CPGg9HdeP3Nmjy2EL9+JNXal39QS1ZVXfiRrnTCfk9Wjx3im6cXKL/7z82q/7Aca27d6bGj+p77BoAAHg/Y8xma21VT6+x2BBwUDyR0oqtjZo8tlA/+VSVvvrsdt3/3I5+BWCpY03w/c/t0Fef3a6ffKpKk8cWqnpbo+KJlMudAwCQWwjBgIOa2xJatmm3fvzJK7Voea3WN5x6U1x/rG9o1qLltfrxJ6u0dONuNbclHO4UAIDcRggGHGSt9ORnqrSu/uCAA3CX9Q3NWlffpJ9+pkrDcNUSAABDGiEYcFBrLKW8gF9LVtU5Um/JqjrlB/xqjbMcAgAAJxGCAQeNGxXUiq2N/V4D3JdYMqPqbY0aN5JtkwEAcBIhGHDQ8WhayzbtdrTm0o27dTyadrQmAAC5jhAMOKy3rZGHSj0AAEAIBhzVGnNn7S5rggEAcBYhGHBQNOnOsoWYS3UBAMhVhGDAQSG/Oz9SQR8/qgAAOIlPVsBBhSH/sKoLAECuGlAINsYUO90IcC7weKSy4rCjNcuKw/IYR0sCAJDz+gzBxpjrjDH1xpidxpgPGGPWSNpkjNljjLlmEHoEho2A1+iO6RMcrfnxKyco6PM6WhMAgFzXnzPB35f0CUl/JWmVpH+y1l4kab6k77jYGzDsxJJWN1wacWxtcMjv0fWXRFy74Q4AgFzVn09qv7V2u7X2FUnN1trfSpK1doskZ6/7AsNcayylJ3/3ju6bU+5IvfvmlOunv32bEWkAADisPyG4+zFfPem1gIO9AMNeNJlW9bZ9GlsU1szyyBnVmlke0diisEpVmpIAACAASURBVJ6v3c+INAAAHNafELzYGJMnSdba57qeNMZcJOnnbjUGDEdhf8fa3a88s00Lr79wwEF4ZnlEC6+/UF95ZpskKcSaYAAAHNVnCLbWVltr23t4/g/W2ke7Hhtj/sXp5oDhpiDkkyS1JdK6+2c1+viVZVp8y+R+rxEO+T1afMtkffzKMt39sxq1JdLvqwsAAJzh5CfrdQ7WAoYlYzpGmu1piaotkdYXlm7RrZXj9PTdV+vl15v1zJa92tMSPeV9ZcVh3TF9gm64NKKf/vZtPV9b/77XDCPSAABwFKeXAAdF8gO666qJenT1rhPPPV+7Xy/sOKAbK0r05ZvLVToyrGQ6o1gyo5DfI7/Xo31HolpZu18/fOlNpTP2fTUXzJioksLgYH8rAACc0wjBgIOCAZ/mTxuvH770hmLJzInn0xmrF+ua9GJdkyTJ5zEK+DxKpDJKnRR6uwv5PZo3dbwCrAkGAMBRTm6bzAVbQFJRyKfFc6ec9phUxqo9kT5tAJakxXOnaESY31UBAHBav0OwMeaKPg755zPsBTgnFIb9mj15jGZVnNmItFkVEc2eMkYFIb9DnQEAgC7ZnAn+38aYjcaYe4wxI05+0Vr77861BQxvY0aE9PBtlQMOwrMqInr4tkqNKQo53BkAAJCyCMHW2g9K+gtJZZI2G2OWGmNucq0zYJgbUxTSwx+r1Lc+enlWI9K+9dHLCcAAALjMWHv6NYmnvMEYr6SPSvqhpGPqWAv8NWvtcufb61lVVZWtqakZrC8HnJHWWFJHoylVb2vU0o27ex2RtmDGRM2bNl4jQj6WQAAA4ABjzGZrbVVPr/X7jhtjTKWkv5Q0V9IaSbdaa7cYY0olvSJp0EIwMJwUhPwqCPn1uWsn6dappbJWao2nFEumFfJ7VRD0yRippDDIFAgAAAZJNred/4ukf1PHWd8Tp7KstfuMMV93vDPgHBMM+DQhwKQHAACGgmw+kedKilpr05JkjPFICllr2621T7nSHQAAAOCCbKZDrJUU7vY4r/M5AAAAYFjJJgSHrLWtXQ86/zvP+ZYAAAAAd2UTgtuMMdO7HhhjrpR06m3uAAAAwBCXzZrgL0r6L2PMPnWMRRsr6c9d6QoAAABwUb9DsLV2kzGmQlJ551O7rLVJd9oCAAAA3JPtvKarJE3qfN90Y4ystT93vCsAAADARdlslvGUpIskbZWU7nzaSiIEAwAAYFjJ5kxwlaQpNtt9lgEAAIAhJpvpEDvUcTMcAAAAMKxlcyZ4tKQ6Y8xGSfGuJ6218xzvCgAAAHBRNiH4QbeaAAAAAAZTNiPSXjbGnC/pEmvtWmNMniSve60BAAAA7uj3mmBjzN2SnpH0r51PjZf0nBtNAQAAAG7KZjnEFyTNkPSaJFlr3zDGlLjSFQAAAIatdDqjlvaEUhmr47GUkqm0/D6vCkM++TxGxXkBeb3ZzGdwXjYhOG6tTRhjJEnGGJ865gQDAAAASqQyamlLqHbPEWVkNbogqHgqo1gyrZDfq2PRpN5rjctImlo2SsX5AQV8ZycMZxOCXzbGfE1S2Bhzk6R7JD3vTlsAAAAYTlraEqrbd1QFIb/qDhzTL7fs1Z6WqHweo4DPo0Qqo1TGqqw4rNunT9CYEWG9efC4ppSOUHF+YND7zSYEL5L0eUnbJf21pBestU+40hUAAACGjUOtcb3edFy7mo7re2te159ePFpfvrlc40eG33cmOOjzqPFIVKtq9+uJ37yle2+6VF6P0aVjCnVeQXBQe84mBP+dtfafJZ0IvsaYv+98DgAAADmopS2hxsNR/euv31JRyK///PwHtOH1Zn3nxV3a0xI95fiuM8H3zLxIT/7uHf3mjfd07+xL5TFGowbxjLDp7y7Ixpgt1trpJz33P9baP3Gls9OoqqqyNTU1g/1lAQAA0E0ildFb77XqB2te161Tx+vAsageW71LsWSmz/eG/B7dN6dcY4vCen5bo75006W6YHSBo2uEjTGbrbVVPb3W55lgY8xdkhZIusAYU93tpUJJLc60CAAAgOHmaHtCG98+pE9fO0mP//otbdjV3O/3xpIZLVlZr5nlES28/kK99vYhFecFFCkKudjxH/VnOcTvJe1Xx7bJ3+32/HFJtW40BQAAgKEtnc7oWDylSEEo6wDcXdf7/ryqTMfiKRWnM4MyPq3PEGytfVfSu5Kucb0bAAAADAtHY0nV7zuqpuPxAQfgLht2NeuDl4xW2mY0Ks+v4nz3b5LLZse424wxbxhjjhpjjhljjhtjjrnZHAAAAIam9kRa55+Xr8dW73Kk3mOrd+n84ny1J9KO1OtLNueaH5U0z1o7wlpbZK0ttNYWudUYAAAAhi6f12hdw8F+3QTXH7FkRi81HJTPaxyp15dsQnCTtbY+2y9gjPmQMWaXMeZNY8yiXo75hDGmzhiz0xizNNuvAQAAgMEVS2T0yy17Ha35zJa9joXqvmQzJ7jGGPN/JT0nKd71pLV2eW9vMMZ4Jf1I0k2S9kraZIypttbWdTvmEklflXSdtfawMaYky+8BAAAAg8wY9TgH+EzsaYlqcM4DZxeCiyS1S7q523NWUq8hWNIMSW9aa9+SJGPM05LmS6rrdszdkn5krT0sSdbag1n0BAwb8URKzW0JSdLxaErRZFphv1eF4Y4fw0h+QMFANj+SAACcPe1xd9buDtaa4H5/4lpr/3IA9cdL2tPt8V5JHzjpmEslyRjzO0leSQ9aa//75ELGmIWSFkrSxIkTB9AKcHYcjyZ1LJbSiq2NWrZpd6+759x11UTNnzZeRSGfCsP+s9ApAAD9F0+5s2wh4VLdk2UzHeJSY8w6Y8yOzseVxpivO9CDT9IlkmZKukvSE8aYkScfZK193FpbZa2tikQiDnxZwH1NR2Oq3rZPN35vgx5d3fP2kVLH5Z9HV+/Sjd/boOpt+9R0NDbInQIAkJ2Q351ZvkEHd4w7nWy+yhPqWLublCRrba2kO/t4T6Oksm6PJ3Q+191eSdXW2qS19m1Jr6sjFAPDWtOxmBY9W6v7n9vR70X+sWRG9z+3Q4uerVXTMYIwAGDoKgi5s4TPrbonyyYE51lrN570XKqP92ySdIkx5gJjTEAdobn6pGOeU8dZYBljRqtjecRbWfQFDDlNR2NatLxW6xsGNjx8fUOzFi0nCAMAhi5rO5bzOamsOCxrHS3Zq2xC8HvGmIvUcTOcjDF3qGM75V5Za1OS/lbSakn1kn5hrd1pjHnIGDOv87DVkg4ZY+okrZd0n7X2UJbfBzBkHI8mtba+acABuMv6hmatrWtSayzpUGcAADhnZJ5XfzHjfEdrfvID52tU/uDcF2NsP+O2MeZCSY9LulbSYUlvS/qktfYd17rrRVVVla2pqRnsLwv0S+PhqG783gZH5hyG/B6tu3emxo9y9jdtAADO1J6WdknSTd9/2bHPvDVfukGSVFacd8b1JMkYs9laW9XTa/0+E2ytfctaO1tSRFKFtfZPz0YABoayeKJjCoSTu+dUb2tUPNHXyiMAAAbfmroDWjx3iiO1Fs+dohd3HnCkVn9kMx3i740xXbOCv2+M2WKMubmv9wG5pLktoWWbdjtac+nG3SfmCwMAMFQcjyX10Mp6zbigWLMqep/c5fMY5QW88nl63wZjVkVEMy4o1pJV9WqND86Jn2xuv/uctfafjTFzJJ0n6VOSnpL0oiudAcOQte7snjNYNwkAANBfXVc9Fzzxqpbfc50e1E6tazgor8do9uQSfeSKcRo/Mqx4KqNYMq2Q36ugz6PGI1Gtqt2vdQ0Hlc5Y3VhRogfnXabb/vfvOusOsc0ypBO72H1E0s87b3AbrJ3tgGGhNebOb6+D9VsxAAD9FfZ7JXXs8Lb/aFSf/9MLdNeMMo0uDGnDroP6zos9z8cvKw7r9ukTdM+si/Xe8ZjyAj7tPxo9sVNcyOcdlP6zmQ6x2RjzojpC8GpjTKGkwdnSAxgmoi799jpYvxUDANBfhZ3zfB+9Y6qe/O3bOtye1L4jMd35+Cv6wdo3TrtB1A/WvqE7H39F+47EdLg9qSd/+7YevWPq++q6LZuv8nlJ0yS9Za1tN8acJ2kgWykD56yu34qdNli/FQMA0G9G+sy15+tQW0yfvnaSHv/1W9qwq//jQWPJjB6o3qmZ5REtvP5CvXnwuD597fl/XHvgsj5DsDGmwlrboI4ALEkXsgoC6Nlw3z0HAID+Kgx59amrJ+mNpuNZB+Duut7351Vluu6iiIqG0JngeyUtlPTdHl6zkv7M0Y6AYcyYjrVOTt4cV1YcFr93AgCGmmgio7eaW7XvaHTAAbjLhl3N+uAlo+X1GuUFR6hoEMbj97km2Fq7sPN/Z/XwhwAMdBPJD+iuqyY6WnPBjIkqKQw6WhMAgDOVTFuNGxHSY6t3OVLvsdW7NK4opFR6cEYiZTMn+OOdN8PJGPN1Y8xyY8yfuNcaMPwEAz7NnzZeIX8295z2LuT3aN7U8QqwJhgAMMQE/UbrGg46ukHUSw0HFfQNzuXPbD6pF1trjxtj/lTSbEk/lfQTd9oChq+ikM/R3XNGhFkPDAAYeqKJjH65Za+jNZ/ZsldRh0J1X7IJwV0zmuZKetxau0pSwPmWgOGtMOzX7MljTrt7Tn/Mqoho9pQxKgj5HeoMAABnubFB1GDJJgQ3GmP+VdKfS3rBGBPM8v1AzhgzIqSHb6sccBCeVRHRw7dVakxRyOHOAABwRnvcnRn2XZtmuC2bEPsJSaslzbHWHpFULOk+V7oCzgFjikJ6+GOV+tZHL+/3GuGQ36NvffRyAjAAYMiLp9wJq/HU4CyH6Pdiw84NMlZIGmOM6br9vcGdtoBzw5gRIc2fVqqZ5SWq3taopRt397qF5IIZEzVv2niNCPlYAgEAGPKCLm0QFfQNzkKDfodgY8zfSfqGpCb9cbtkK6nShb6Ac0ZByK+CkF+fu3aSbp1aKmul1nhKsWRaIb9XBUGfjJFKCoNMgQAADBtubW88FLdN/ntJ5dbaQ241A5zLggGfJgSY9AAAOHe4sUHUYMnmfPMeSUfdagQAAADDRyQ/oL/4wPmO1vzkB84ftA2isjkt9ZakDcaYVZLiXU9aa7/neFcAAAAY0oIBn26tLNUP1r7uyIYZIb9Ht1SWDtrSwGzOBO+WtEYds4ELu/0BAABADnJyg6gHbhncDaKymQ7xT5JkjCnofNzqVlMAAAAY+ro2iFrb0KT1Dc0DrjOrIqIbJw/uBlH9PhNsjLncGPM/knZK2mmM2WyMucy91gAAADDUDdcNorJZDvG4pHuttedba8+X9A+SnnCnLQAAAAwXw3GDqGwWXuRba9d3PbDWbjDG5LvQEwAAAIaZ4bZBVFbTIYwxiyU91fn4k+qYGAEAAAAMqw2isgnBn5P0T5KWq2OnuN90PgcAAACcMBw2iMpmOsRhSf+/i70AAAAAgyKb6RBrjDEjuz0eZYxZ7U5bAAAAgHuymQ4x2lp7pOtB55nhEudbAgAAANyVTQjOGGMmdj0wxpyvjrXBAAAAwLCSzYrl+yX91hjzsiQj6YOSFrrSFQAAAOCibG6M+29jzHRJV3c+9UVr7XtdrxtjLrPW7nS6QQAAAMBpWc2u6Ay9K3t5+SlJ08+4IwAAAMBl2awJ7otxsBYAAADgGidDMDfJAQAAYFhwMgQDAAAAw4KTITjhYC0AAADANVndGGeMqZQ0qfv7rLXLO//36l7eBgAAAAwp/Q7BxpgnJVVK2ikp0/m0lbTchb4AAAAA12RzJvhqa+0U1zoBAAAABkk2a4JfMcYQggEAADDsZXMm+OfqCMIHJMXVMRfYWmsrXekMAAAAcEk2Ifinkj4labv+uCYYAAAAGHayCcHN1tpq1zoBAADAOSGdzqilPaFUxup4LKV0Oi2v16vCkE8+j1FxXkBe79ndriKbEPw/xpilkp5Xx3IISX8ckQbg9KLxpA61JyVJx6MpRZNphf1eFYY7fgzPy/MrHPSfzRYBADgjiVRGLW0J7TvcrryQT2G/V8lURtFkRmG/USKV0dFkWrsPtWv8qDwV5wcU8J2dMJxNCA6rI/ze3O05RqQBfTjcnlB7PK0VWxu1bNNu7WmJnnJMWXFYd101UfOnjVde0KtReYGz0CkAAAPX0pbQviPtGhEO6NW3W0585oV8HhWEfGqNpRRLZU585t1aFNLrTcdUOrIjDA82Y60d9C96pqqqqmxNTc3ZbgPo04GjMa2rb9KSVXWKJfteSh/ye7R47hTdOHmMxo4IDUKHAACcuUOtcR2PpfS7N9/TI6sb9DfXX6iZFSXKD3SG32RaIb9XBSGf2hIpvVR/UI//5i3945wKXXfxaBWGfDqvIOh4X8aYzdbaqh5f628INsaEJH1e0mWSTnw6W2s/50ST2SAEYzhoOhbTouW1Wt/QnPV7Z1VE9PBtlRpTRBAGAAxtLW0JRRNpfX3Fdn3w4tG6acpYrazdr6Ub3+316ueCGefrlspxWlN3QL958z19c/4Vygt4NcrhM8KnC8HZLMJ4StJYSXMkvSxpgqTjZ94ecO45cHTgAViS1jc0a9HyWjUdizncGQAAzkmkMmpPpPTY6np97cOTFfb7dNP3X9Yj/93QYwCWpD0tUT3y3w266fsvK+z36WsfnqzHVterLZFSIjV4A8iyCcEXW2sXS2qz1v5M0lxJH3CnLWD4Otye0Lr6pgEH4C7rG5q1tq5JR9oTDnUGAICzjkcTeu0Ph/QPN1fo4V816KvPbu/X8j9JiiUz+uqz2/Xwrxr0DzdX6LU/HNKx6OB95mUTgpOd/3vEGHO5pBGSSpxvCRje2uNpLVlV50itJavq1BZPO1ILAAAnpdMZRVMZTZ04Sg9W79S6hoMDqrOu4aAerN6paRNHKZbKKJ0enLPB2YTgx40xoyQtllQtqU7So650BQxT0XhSK7Y29vu34L7EkhlVb2tUNJ7s+2AAAAbR8URSB47GVPNOy4ADcJd1DQe16d0WHTga0/HE4Hzm9TsEW2v/zVp72Fr7srX2QmttibX2J242Bww3h9qTWrZpt6M1l27cfWK+MAAAQ0VrLK2xI0J68PmdjtR7sHqnxo4IqTU2OFdA+x2CjTFjjDE/Ncb8qvPxFGPM591rDRh+rFWvNwIM1J6WqIbhJEMAwDkuHPDohe37Hb36+cL2/QoHBmfzjGy+yr9LWi2ptPPx65K+6HRDwHDWGku5UzfuTl0AAAYqmsjoqVffdbTmU6++q2hi6K0JHm2t/YWkjCRZa1OSuGMH6CaadOdHIuZSXQAABmq4X/3MJgS3GWPOU8dWyTLGXC3pqCtdAcNU2O91pW7I505dAAAGqs2lq5RticG5+unL4th71TEV4kJjzO8kRSTd4UpXwDBVEMrmR+rs1wUAYKBcu/qZGJyrn9l8stZJelZSuzp2intOHeuCAXQypmM7SCcvD5UVh2WMY+UAAHBE0OfODWwBl+qeLJuv8nNJFZK+LelfJF2qjq2UAXQ6L8+vu66a6GjNBTMmKlIQdLQmAABnarhf/cwmBF9urf0ra+36zj93S7rMrcaA4Sgc9Gv+tPEK+Z35LTbk92je1PEKurTWGACAgfIYo7LisKM1y4rD8gzS5c9sPqm3dN4MJ0kyxnxAUo3zLQHDW17Qq8VzpzhSa/HcKcoPEoABAENPwGd0x/QJjtb8+JUTFPQOkeUQxpjtxphaSVdK+r0x5h1jzNuSXpFU5XaDwHAzKi+gGyeP0ayKyBnVmVUR0ewpYzQyL+BQZwAAOCdjpVsqSx29+jm3slQZDc6MtP50fYukWyV9SNIFkm6QNLPzvz/sWmfAMDZ2REgP31Y54CA8qyKih2+r1JiikMOdAQDgjEOtCXm90n1zyh2pd9+ccvmMdKg16Ui9vvQZgq21757uz2A0CQxHY4pC+l8fq9S3Pnp5v39LDvk9+tZHLycAAwCGvEQqo++9+IauvWi0Zpaf2dXPmeURXXfRaH3nxdeVSA29EWkAsjR2REhzK8dpZnmJqrc1aunG3T2OTysrDmvBjImaN2288gNelkAAAIa8sN+r6m37dOvUcfrS7EslSRt2NWddZ2Z5RF+afan2HG7X87X79YVZFzvdao8IwYDLRuYFNDJP+uw15+vWqaWyVmqNpxRLphXye1UQ9MkYKVIQZAoEAGDY6Bpl9sWnt+r//OVVWvjBC/XBS0brsdW7FEtm+nx/yO/RfXPKNXlskeKptL749Nb31XUbIRgYJOGgXxOC/rPdBgAAjgh4PSc2iPrL/7NJj94xVReOztfTC6/Ry7sO6pkte3u9+nnH9Am6obxEh9viOtye1Fee2aa2RFplxWEFBmk6BCEYAAAAWTsvP6BPXT1J336hXm2JtL6wdIturRynz3/wAl0Uydf9H5ms8wqCSqYziiUzCvk98ns9OtQaVyqdkWS1fEujnq/df6Lmp6+ZpPMGaYMoQjAAAACy5vV6dOvUcfremj8uf3i+dr9e2HFAN1aUaG7lOEmSkeQzRl1bYMRTGa2s3a+XGg4qnfnjOLSQ36NbKsfJ6xmczTIIwQAAABiQ8/KDemjeZfrKL7efeC6dsXqxrkkv1jVJknweo4DPo0Qqo1Sm9xnAD82/TOflD85ZYCm7HeMAAACAEwI+j2ZPGavZk0t6PSaVsWpPpE8bgGdPLtFNk8cq4Bu8aEoIBgAAwIAV5wf0yO2Vpw3CpzN7cokeub1So/IHdzwoyyEAAABwRjIZq89dd4GuvySib/+qvt8j0r724cm6uKRAmdOcJXYLZ4IBAAAwYAePxfSV5bVa8G+vadM7LXp64dX68s2Xqqw43OPxZcVhffnmS/X0wqu16Z0WLfi31/SV5bU6eCw2qH1zJhgAAAAD0h5PaW19k9Y3dOwU1306xJdvLlfpyLCS6YziyYyCnSPS9h2JamXtfn1/7RsnpkOsb2jW2vomffRPxisvwGYZAAAAGMIOR5N6aGXd+54b8HSIlXW6obxk0EIwyyEAAACQtWQyrRVbG/tc/9uf6RCSFEtmVL21Uclk2sk2e0UIBgAAQNaa2+JatnG3ozWXbtyt5ra4ozV7QwgGAABA1jJW2tMSdbTmnpaoBmtQBCEYAAAAWTseSw2ruicjBAMAACBrUZfW7sZYEwwAAIChKuz3ulI35FLdkxGCAQAAkLXCkDujzNyqezJCMAAAALLmMep1V7iBKisOy2McLdkrQjAAAACyFskP6q4ZEx2tuWDGREUKQ47W7A0hGAAAAFnz+72aP228Qn5n4mTI79G8aePl9w5OPCUEAwAAYEBGhf164JYpjtR64JYpGpXnd6RWf7gego0xHzLG7DLGvGmMWXSa4243xlhjTJXbPQEAAODM5QV9mj15jGZVRM6ozqyKiGZPHqO8wODcFCe5HIKNMV5JP5L0YUlTJN1ljDnl1wVjTKGkv5f0mpv9AAAAwFklRSE9clvlgIPwrIqIHrmtUiVFg7MWuIvbZ4JnSHrTWvuWtTYh6WlJ83s4bomkRyTFXO4HAAAADusKwt/+2OX9XiMc8nv07Y9dflYCsCS5fc55vKQ93R7vlfSB7gcYY6ZLKrPWrjLG3NdbIWPMQkkLJWniRGfvRAQAAMCZKSkK6aN/Ml43lJeoemujlm7crT0t0VOOKysO6y9mTNS8aeM1Ms8/qEsgujs7X7WTMcYj6XuSPtvXsdbaxyU9LklVVVXW3c4AAACQrbyAT3kBn/7qugs0f1qpMlY6Hksplkwr5PeqMOSTx0iRwtCgTYHojdshuFFSWbfHEzqf61Io6XJJG4wxkjRWUrUxZp61tsbl3gAAAOACv9+r0pF5Z7uN03I7BG+SdIkx5gJ1hN87JS3oetFae1TS6K7HxpgNkr5MAAYAABi+4omUmtsSkqTj0ZSiybTCfq8Kwx3RM5IfUPAsLYPo4upXt9amjDF/K2m1JK+kJ621O40xD0mqsdZWu/n1AQAAMHiOR5M6FktpxdZGLdvU+5rgu66aqPnTxqso5FNhePBmA3dnrB1+y2urqqpsTQ0niwEAAIaKpqMxra1v0pJVdYolM30eH/J7tHjuFM2ePEZjRrgzHcIYs9la2+MeFGf3PDQAAACGvaZjMS16tlbrG5r7/Z5YMqP7n9uhtQ1Nevi2So05x+YEAwAA4BzWdDSmRcuzC8DdrW9o1qLltWo6NrjbRRCCAQAAMCDHo0mtrW8acADusr6hWWvrmtQaSzrUWd8IwQAAABiQY7GUlqyqc6TWklV1OhpNOVKrPwjBAAAAyFo80TEFoj83wfVHLJlR9bZGxRODE4QJwQAAAMhac1tCyzbtdrTm0o27T8wXdhshGAAAAFmzVj3OAT4Te1qiGqzpvYRgAAAAZK015s6yhdY4yyEAAAAwREWTaVfqxv5fe3cfHNdV3nH890i62ruybNlyZNmWJac0IbLqkQXIhgChFnYp1MR23Mw09lBIA4G2MKW0pDgN5s3jiZsUpkPbaUsDk0CxEwpJbDAhJI6AlgFsJciOIytt2lI5IpFVv0bR7molnf6hdVA2WuuudPfF2e9nRmOt7tWjx2fOeH++OvfcHNVNRwgGAABA1nwvWIysrixX44KoqivLA50fqchPPOWJcQAAAMjaXN+b8uvRynJ9/vpWtTTUqMJM5+NJxZPj8r0yzfM9jTqnY8+e1S3felKxkVde9c1UN2yEYAAAAGTNTGqsjb7s5ri73vsGrVhSo33d/br9e71T3jjXWBvV1tVNevRjv6njz53TB776+MuOmeWlfZZDAAAAIHvVfrm2rm6SJC2vjerHn+jQwPmE1n3hB7rj4acz7hxx4nRMdzz8tNZ94QcaOJ/Qjz/RoeW1UUnStjVNmuvn5xotIRgAAABZe+5sQpvaGvTa+jm670Nv1if3HdNtDx4L/PCMeHJctz14TJ/cd0z3fejNem39HG1c1aDnzsZz3PkElkMAAAAga7GRMfWfGdY9N71Rd5m3JwAAFIFJREFUtz5wVJ29gzOq09k7qFsfOKp7bnqjjvWf02XVkZA7nRpXggEAAJC1qDex28Njx0/OOABf0Nk7qMeOn5Qk+RXBdpGYLUIwAAAAslbtV2jFkhrtPNATSr2dB3rUsqRG1awJBgAAQLGaGy3Xvu7+wGuApxNPjmv/kX7NjXIlGAAAAEVqKD6mvYf7Qq2551CfhuI8MQ4AAABFyjll3AZtpk6cjsm5UEtmRAgGAABA1obio7mpm8hN3XSEYAAAAGQtlszNsoV4juqmIwQDAAAgaxe2SAsbW6QBAACgaOVqKzO2SAMAAEDRMpMaa6Oh1mysjcos1JIZEYIBAACQtbo5ldq6uinUmtvWNGnRXB6bDAAAgCIVqazQprYG+V44cdL3yrRxVYMqWRMMAACAYjbPr9CODS2h1PrUu1tUE83PemCJEAwAAIAZmhv1tG5FvTqa62ZVp6O5TutW1Kva90LqbHqEYAAAAMzIC7Gkfvj0Sd18zWu09qqZBeG1V9Xp5mteox8+fVJD8WTIHWaWv2vOAAAAeFU5Hx/Vp7/9lMrNdMf1q3TNlZfpzoefVjw5Pu33+l6Zbvntq7R4XlQ339OlMef0livq8nY1mCvBAAAAyFpiZFT7uvsVT47rxZExfXjPE+ruO6t7b36TPrb+yozbpzXWRvWx9Vfq3pvfpO6+s/rwnif04siY4slx7T/Sr8RIfh6bzJVgAAAAZG3wxRHtPdz3sq99++hz+u6x57WueZE+/o6rtHR+VMmxccWT4/K9MnnlZfrl2Zi+c/Q5ffGxZzQ27l72/XsO9enaVUu1rDL3EZUQDAAAgKw5J504HXvF18fGnb7fM6Dv9wxIkirKTJUVZRoZHddoWuhNd+J0TO7ip4SGEAwAAICsDcWDLVsYHXcaHRkLXjeRn+UQrAkGAABA1mLJ4ME2G/Ec1U1HCAYAAEDWol5unuzm88Q4AAAAFKtqPzeranNVNx0hGAAAAFkzU8Zt0GaqsTYqs1BLZkQIBgAAQNbq5lRq6+qmUGtuW9OkRXMjodbMhBAMAACArEUqK7SprUG+F06c9L0ybVzVoErWBAMAAKCYzfMrtGNDSyi1dmxoUU00f7v3EoIBAAAwI3OjntavqFdHc92s6nQ012l9S72qfS+kzqZHCAYAAMCM1df42r2ldcZBuKO5Tru3tKp+nh9yZxdHCAYAAMCs1M/ztfu6Vu3avDLwGmHfK9OuzSsLEoAlHpsMAACAENTX+NrUtlRrr1qk/Uf6tedQn06cjr3ivMbaqLatadLGtgbV+BV5XQIxGSEYAAAAoaj2PVX7nm568+W6dtVSOScNJUYVT47J98pVHamQmbRobiRvu0BkQggGAABAqCKVFVpWWdwxkzXBAAAAKDnFHdEBAABwyYklkjo1nJQkvRAbVSw5pqhXrrmpfYAXVnmKRgqzFvgCQjAAAABCcWZ4RMOJMe3r7tfew5lvjNu6ukmb2hpUFSnXgqrKAnQqmXOuID94Ntrb211XV1eh2wAAAEDK8+fiOnh8QDsP9CieHJ/2fN8r044NLVq3ol6La3KzRZqZPe6ca5/qGFeCAQAAMCsD5+O69YGj6uwdDPw98eS4bnvwmB7tHeBhGQAAALi0PH8uru33ZxeAJ+vsHdT2+49q4Hw85M4ujhAMAACAGTkzPKKDxwdmHIAv6Owd1KM9Azo7PBJSZ9MjBAMAAGBGhhNj2nmgJ5RaOw/06MXEWCi1giAEAwAAIGuxRFL7uvsD3QQXRDw5rv1H+hVLJEOpNx1CMAAAALJ2ajipvYf7Qq2551DfS/sL5xohGAAAAFlzTlPuAzwbJ07HlK/dewnBAAAAyNpQfDQ3dRO5qZuOEAwAAICsxZK5uYktnqO66QjBAAAAyFrUK89JXb8iN3XTEYIBAACQtWo/Nw8ezlXddIRgAAAAZM1MaqyNhlqzsTYqs1BLZkQIBgAAQNYWVnnaurop1Jrb1jSprjoSas1MCMEAAADIWjTiaVNbg3wvnDjpe2XauKpBkRytNU5HCAYAAMCMVEXKtWNDSyi1dmxo0ZxIfgKwRAgGAADADC2oqtS6FfXqaK6bVZ2O5jqtb6nX/KrKkDqbHiEYAAAAM7a4xtfuLa0zDsIdzXXavaVV9fP8kDu7OEIwAAAAZqV+nq/br2vVrs0rA68R9r0y7dq8siABWJLysxEbAAAAXtUW1/ja0LpEa69apP1H+rXnUJ9OnI694rzG2qi2rWnSxrYGzaksz+sSiMkIwQAAAAjF/KpKza+Sbrx6ua5dtVTOSUOJUcWTY/K9clVHKmQm1VVH8rYLRCaEYAAAAIQqGvG0LOIVuo2LYk0wAAAASg4hGAAAACWH5RAAAAAIVSyR1KnhpCTphdioYskxRb1yzY1ORM+FVZ6iBV4uQQgGAABAKM4Mj2g4MaZ93f3aezjz7hBbVzdpU1uDqiLlWlCg3SHMOVeQHzwb7e3trqurq9BtAAAAIOX5c3EdPD6gnQd6FE+OT3u+75Vpx4YWrVtRr8U1udkn2Mwed861T3WMK8EAAACYlYHzcd36wFF19g4G/p54cly3PXhMj/YO8MQ4AAAAXFqePxfX9vuzC8CTdfYOavv9RzVwPh5yZxdHCAYAAMCMnBke0cHjAzMOwBd09g7q0Z4BnR0eCamz6RGCAQAAMCPDiTHtPNATSq2dB3r0YmIslFpBEIIBAACQtVgiqX3d/YFuggsinhzX/iP9iiWSodSbDiEYAAAAWTs1nNTew32h1txzqO+l/YVzjRAMAACArDmnKfcBno0Tp2PK1+69hGAAAABkbSg+mpu6idzUTUcIBgAAQNZiydzcxBbPUd10hGAAAABkLeqV56SuX5GbuulyHoLN7J1m9rSZPWNm26c4/mdm1mNmR83soJktz3VPAAAAmJ1qPzcPHs5V3XQ5DcFmVi7p7yW9S1KLpK1m1pJ22s8ltTvnWiV9U9IduewJAAAAs2cmNdZGQ63ZWBuVWaglM8r1leA1kp5xzv23c25E0r2SNk0+wTnX6ZwbTr38qaRlOe4JAAAAs7SwytPW1U2h1ty2pkl11ZFQa2aS6xDcIOnEpNfPpr6WyfslPTTVATP7oJl1mVnX4ODsHs0HAACA2YlGPG1qa5DvhRMnfa9MG1c1KJKjtcbpiubGODN7j6R2SXdOddw59yXnXLtzrr2uri6/zQEAAOAVqiLl2rEhfaXrzOzY0KI5kfwEYCn3IbhfUuOk18tSX3sZM1sv6TZJG51ziRz3BAAAgBAsqKrUuhX16mie3QXKjuY6rW+p1/yqypA6m16uQ/BhSVea2a+ZWaWkGyTtn3yCmb1O0j9pIgCfzHE/AAAACNHiGl+7t7TOOAh3NNdp95ZW1c/zQ+7s4nIagp1zo5I+IulhScclfcM595SZfc7MNqZOu1NStaR/NbNuM9ufoRwAAACKUP08X7df16pdm1cGXiPse2XatXllQQKwJJnL1wOaQ9Te3u66uroK3QYAAAAmOTs8ohcTY9p/pF97DvXpxOnYK85prI1q25ombWxr0JzK8pwugTCzx51z7VMdy89uxAAAAHjVm19VqflV0o1XL9e1q5bKOWkoMap4cky+V67qSIXMpLrqSN52gciEEAwAAIBQRSOelkW8QrdxUUWzRRoAAACQL1wJBgAAQKhiiaRODSclSS/ERhVLjinqlWtudCJ6LqzyFC3wlWJCMAAAAEJxZnhEw4kx7evu197DmW+M27q6SZvaGlQVKdeCPO4NPBm7QwAAAGDWnj8X18HjA9p5oEfx5Pi05/temXZsaNG6FfVaXJObLdLYHQIAAAA5M3A+rlsfOKrO3sHA3xNPjuu2B4/p0d6BV9/DMgAAAPDq9vy5uLbfn10Anqyzd1Db7z+qgfPxkDu7OEIwAAAAZuTM8IgOHh+YcQC+oLN3UI/2DOjs8EhInU2PEAwAAIAZGU6MaeeBnlBq7TzQoxcTY6HUCoIQDAAAgKzFEknt6+4PdBNcEPHkuPYf6VcskQyl3nQIwQAAAMjaqeGk9h7uC7XmnkN9L+0vnGuEYAAAAGTNOU25D/BsnDgdU7527yUEAwAAIGtD8dHc1E3kpm46QjAAAACyFkvm5ia2eI7qpiMEAwAAIGtRrzwndf2K3NRNRwgGAABA1qr93Dx4OFd10xGCAQAAkDUzqbE2GmrNxtqozEItmREhGAAAAFlbWOVp6+qmUGtuW9OkuupIqDUzIQQDAAAga9GIp01tDfK9cOKk75Vp46oGRXK01jgdIRgAAAAzUhUp144NLaHU2rGhRXMi+QnAEiEYAAAAM7SgqlLrVtSro7luVnU6muu0vqVe86sqQ+pseoRgAAAAzNjiGl+7t7TOOAh3NNdp95ZW1c/zQ+7s4gjBAAAAmJX6eb5uv65VuzavDLxG2PfKtGvzyoIEYEnKz0ZsAAAAeFVbXONrQ+sSrb1qkfYf6deeQ306cTr2ivMaa6PatqZJG9saNKeyPK9LICYjBAMAACAU86sqNb9KuvHq5bp21VI5Jw0lRhVPjsn3ylUdqZCZVFcdydsuEJkQggEAABCqaMTTsohX6DYuijXBAAAAKDmEYAAAAJQcQjAAAABKDiEYAAAAJYcQDAAAgJJDCAYAAEDJIQQDAACg5BCCAQAAUHLMOVfoHrJmZoOS/rcAP/oySf9XgJ97qWGcgmGcgmGcgmGcgmOsgmGcgmGcginUOC13ztVNdeCSDMGFYmZdzrn2QvdR7BinYBinYBinYBin4BirYBinYBinYIpxnFgOAQAAgJJDCAYAAEDJIQRn50uFbuASwTgFwzgFwzgFwzgFx1gFwzgFwzgFU3TjxJpgAAAAlByuBAMAAKDkEIIBAABQcgjBaczsK2Z20syOZThuZvZFM3vGzI6a2evz3WMxCDBOa83snJl1pz4+le8ei4GZNZpZp5n1mNlTZvbRKc4p+TkVcJxKfk6ZmW9mh8zsSGqcPjvFOREzuy81n35mZpfnv9PCCjhON5rZ4KT59IFC9FoMzKzczH5uZt+Z4ljJz6cLphkn5lOKmf3CzJ5MjUPXFMeL5j2volA/uIjdLenvJH01w/F3Sboy9fFGSf+Q+rPU3K2Lj5Mk/Ztz7t35aadojUr6c+fcE2Y2V9LjZvaIc65n0jnMqWDjJDGnEpLe7pwbMjNP0r+b2UPOuZ9OOuf9ks44564wsxsk/ZWk3ytEswUUZJwk6T7n3EcK0F+x+aik45LmTXGM+fQrFxsnifk0WYdzLtODMYrmPY8rwWmccz+SdPoip2yS9FU34aeS5pvZkvx0VzwCjBMkOeeec849kfr8BU38A9qQdlrJz6mA41TyUnNkKPXSS32k3928SdI9qc+/KWmdmVmeWiwKAccJksxsmaQNku7KcErJzycp0DghuKJ5zyMEZ69B0olJr58Vb9aZXJ36deRDZvYbhW6m0FK/RnydpJ+lHWJOTXKRcZKYUxd+Jdst6aSkR5xzGeeTc25U0jlJC/PbZeEFGCdJ+t3Ur2O/aWaNeW6xWPyNpL+QNJ7hOPNpwnTjJDGfLnCSvm9mj5vZB6c4XjTveYRg5MoTmnhe9ypJfyvpwQL3U1BmVi3pW5L+1Dl3vtD9FKtpxok5Jck5N+aca5O0TNIaM1tZ6J6KUYBx+raky51zrZIe0a+udpYMM3u3pJPOuccL3UsxCzhOJT+fJnmrc+71mlj28GEze1uhG8qEEJy9fkmT/4e3LPU1TOKcO3/h15HOue9K8szssgK3VRCpNYnfkvR159z9U5zCnNL048Scejnn3FlJnZLemXbopflkZhWSaiSdym93xSPTODnnTjnnEqmXd0l6Q757KwJvkbTRzH4h6V5Jbzezf0k7h/kUYJyYT7/inOtP/XlS0gOS1qSdUjTveYTg7O2X9N7U3Y1vknTOOfdcoZsqNma2+MK6MTNbo4m5Vmr/cCo1Bl+WdNw594UMp5X8nAoyTswpyczqzGx+6vOopN+S1Jt22n5J70t9fr2kx1yJPRUpyDilrUHcqIl16CXFOXerc26Zc+5ySTdoYq68J+20kp9PQcaJ+TTBzOakbm6Wmc2R9A5J6btIFc17HrtDpDGzvZLWSrrMzJ6V9GlN3FQh59w/SvqupN+R9IykYUl/UJhOCyvAOF0v6Y/MbFRSTNINpfYPZ8pbJP2+pCdT6xMl6S8lNUnMqUmCjBNzSloi6R4zK9fEfwK+4Zz7jpl9TlKXc26/Jv4z8TUze0YTN6/eULh2CybIOP2JmW3UxM4kpyXdWLBuiwzzKRjm05TqJT2Qul5RIWmPc+57ZvaHUvG95/HYZAAAAJQclkMAAACg5BCCAQAAUHIIwQAAACg5hGAAAACUHEIwAAAASg4hGACKhJnNN7M/LnQfAFAKCMEAUDzmSyIEA0AeEIIBoHjslvTrZtZtZnea2S1mdtjMjprZZyXJzC43s14zu9vM/sPMvm5m683sx2b2n6mn6cnMPmNmXzOzn6S+fnPq60vM7Eepn3HMzK4p4N8XAAqGEAwAxWO7pP9yzrVJekTSlZLWSGqT9AYze1vqvCskfV5Sc+pjm6S3Svq4Jp60d0GrpLdLulrSp8xsaerch1M/Y5WkbgFACeKxyQBQnN6R+vh56nW1JkJxn6T/cc49KUlm9pSkg845Z2ZPSrp8Uo19zrmYpJiZdWoiUB+W9BUz8yQ96JwjBAMoSVwJBoDiZJJud861pT6ucM59OXUsMem88Umvx/XyixsuraZzzv1I0tsk9Uu628zem4PeAaDoEYIBoHi8IGlu6vOHJd1kZtWSZGYNZrYoy3qbzMw3s4WS1ko6bGbLJQ045/5Z0l2SXh9O6wBwaWE5BAAUCefcqdQNbsckPSRpj6SfmJkkDUl6j6SxLEoeldQp6TJJO51zvzSz90m6xcySqZpcCQZQksy59N+WAQAudWb2GUlDzrm/LnQvAFCMWA4BAACAksOVYAAAAJQcrgQDAACg5BCCAQAAUHIIwQAAACg5hGAAAACUHEIwAAAASs7/A8okSsMWFyBPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Z338c81p8wk4RRJwimIB4QgBJZGRa0KBbQVBA90q+yqXX2k+9TttnZrtbq4W3lqLbq1dV/uQR7bWp9iD3hCcBcFQVurhcBCxBzUohJOIRI5JJnzXM8fSTCckplw3yFxvu/Xi1eZmXt+ueLebL6553f/LmOtRUREREQkm3hO9QJERERERHqaQrCIiIiIZB2FYBERERHJOgrBIiIiIpJ1FIJFREREJOv4TvUCumPw4MF21KhRp3oZIiIiItKLbdy48WNrbeHxXuuTIXjUqFFUVFSc6mWIiIiISC9mjPnoRK+pHUJEREREso5CsIiIiIhkHYVgEREREck6CsEiIiIiknUUgkVEREQk6ygEi4iIiEjWUQgWERERkayjECwiIiIiWadPbpbRU8LROPta4gAcCicIx5OE/F76hVr/s52W6yeU4z+VS5Q+JB5P0tAcJWXhUKTD+RT04TFQmJeD3+891csUERHJCgrBx/FJS4yWaJIXNu/k6Q3bqWsMH3NMSUGIG84bydxJw8nN8TIoN3AKVip9QUs0wSfheOv5tL6T8+n81vNpUMhPbo7+aYqIiLjJWGtP9RoyVl5ebt3aNnnPgQhrqutZtLKKSDzV5fFBv4eFs8YxvbSYIQOCrqxJ+q69ByOsrq7n/hXpn0/3zR7HjNJiivrrfBIRETkZxpiN1try476mEPyp+oMR7n62krU1DRm/d9rYQh68toxiBRdps/dghLtO4nz60bVlCsIiIiInobMQrBvj2uw50P0ADLC2poG7n62k/mDE4ZVJX3QyARhaz6e7nq1kr84nERERVygE09oDvKa6vtuBpd3amgZWV9WzvyXm0MqkL2qJJljt1PlUXU9LLOHQykRERKSdQjDQEk2yaGWVI7UWrayiOZp0pJb0TZ+E49y/wpnz6f4VVXzSNqFEREREnJP1ITgcbb1rP52bltIRiadYvmUn4aiCSzaKx5POn0+bdxKP6xcrERERJ7kago0xPzPG7DXGbD3B68YY86gx5n1jTKUxZrKb6zmefS1xnt6w3dGaS9dvPzxfWLJLQ3OUp9c7fz41NEcdrSkiIpLt3L4S/Avgi528/iVgdNufBcC/u7yeY1jLcee2noy6xjB9cOiGOCDl0vmU0vkkIiLiKFdDsLX2daCxk0PmAr+0rd4CBhpjhrq5pqM1Rdy56agpqpuZstEhl84nt+qKiIhkq1PdEzwcqOvweEfbc8cwxiwwxlQYYyoaGk7urvuOwi71WkbUw5mVdD6JiIj0Dac6BKfNWvu4tbbcWlteWFjoWN2Q3+tYrY6CPnfqSu/m2vnkUl0REZFsdapD8E6gpMPjEW3P9Zj8oK9P1ZXerZ9L/3d3q66IiEi2OtUheDlwU9uUiCnAAWvt7p5cgDFQUhBytGZJQQhjHC0pfYTHpfPJo/NJRETEUW6PSHsaeBMYY4zZYYy51Rjzt8aYv2075CVgG/A+sAT4upvrOZ7Tcv3ccN5IR2vOP38khfk5jtaUvqEwL4cbznfhfOoXdLSmiIhItnP1M1Zr7Q1dvG6B291cQ1dCOX7mThrOo6++58gGB0G/hzkTh5OjHs6s5Pd7W8+nNQ6eT5OG4/ee6g9tREREPlv0kxXIzfGycNY4R2otnDWOvBwF4Gw2KOTnvtnOnE/3zR7HoFy/I7VERETkUwrBwKDcANNLi5k29uSmTkwbW8iMccUMzA04tDLpi3JzfMxw6nwqLSY3oJviREREnKYQ3GbIgCAPXlvW7eAybWwhD15bRnF/9W4KFPUP8qOTPJ9+dG0ZRTqfREREXGFsH9zft7y83FZUVLhSe8+BCGuq61m0siqtns6g38PCWeOYMa5YAViOsfdghNXV9dy/Iv3z6b7Z45hRWqwALCIicpKMMRutteXHfU0h+Fj7W2I0R5Ms37KTpeu3U9cYPuaYkoIQ888fyZxJw8kLeNUCISfUEkvwSUuc5Zs/PZ98HkPA5yGWSJFIWUoKQvxV2/k0MNevFggREREHKAR3UzgaZ19LHGuhKZogEk8S9HvJz/FhDBTm52gKhKQtGkvQ0BwD4FA4QTieJOT30i/UGnh1PomIiDirsxCsy02dCOX4GZGjO/Pl5MQSKRqbY6yo3MWTb354wk8Wbr5wFLPLhlGQFyDgU7u+iIiIm3QluBPxeJKG5igpC4cin14J7hf04TGtGyP4deVOOtHYHGNNdT0LX9iadk/wornjmV5aTEGeWmxEREROhq4EZ6glmuCTcJyVlbt46q2PTtjDeeOU05lVNoxBIT+5OfpPKUfa1xTl7mfe5pXq+rTfE4mnuHNZJTNLi3nwugmcpp0HRUREXKHkdpS9ByOsrd3L/Suq+PzZg/nO5WMYPjBENJE6fCU4x+dh5/4wKyt389M173Hf7HFMG1Oku/nlsMbmWMYBuKNXquvhGVg8r4xBuiIsIiLiOIXgDvYejHDPc2+TG/Dxq1svYN27DTz8cu0JezivmzyCr089i5+98SGvVNXzwDUTFISFWCLFmur6bgfgdq9U17O6up65k4arR1hERMRh6glus/dghO+/+A5XThjGnoNhHlpVm3YP551XjGFI/xAvvb2Lf7rqXAXhLLfnQISpD69N6/zpStDvYd13pjFkgM4pERGRTHXWE6zLS7T2AP/+vQb+asrp/G5jHYtWVKcdYCLxFItWVPO7jXX81ZTT+cN7DbTEEi6vWHqrZDLFispdjgRgaD2/VlTuIpl0pp6IiIi0UggG9ofj5AZ8PP76NtbVNnSrxrraBh5/fRuhgI/9LXGHVyh9RWNLjCff/NDRmk+++SGNLTFHa4qIiGS7rA/B8XiSrTsPsOtAuNsBuN262gZ2HQizddcB4vGkQyuUviSRssftIT8ZdY1hEqm+17YkIiLSm2V9CP64JcbQAUEeWlXrSL2HVtUytH+Qj3XlLisdirjTCtPkUl0REZFslfUh2OuBNTV7He3hfLVmL17jSDnpY6IufQIQTagnWERExElZH4LDsRTPbNrhaM1lm3YQdihUS9+S49IOghqRJiIi4iz9ZAVXejglO/ULujN62626IiIi2SrrQ3BLLL2Pr30eQ27Ai8+TXp9DOM268tni8xhKCkKO1iwpCKV93omIiEh6sv7yUvQEbQtej2FGaRFXThja6bbJa2r2kjzOnfvq4cxOBbkBbr5wFP9nZbVjNW++cBQFeTmO1RMRERGFYIL+Yy+Gz5k4jFsuHnXEtsk+jyHg8xBLpEik7DHbJi/fsuuIGjnq4cxKXq+H2WXDePjl9HYc7ErQ31rPqyvBIiIijsr6EJyb8+mNTHkBL4vnTWTPwTB/9cSf+PzZg/nO5WM6vRK85Pfb+PbMc7ji3CF8d9kWmtvaIDrWlexSkBdg0dzx3Lms8qRrLZo7noK8gAOrEhERkY6yPgQnkq1XdRubYiy5uZzHX99G/6CfX916wRFXgo929JXg30c+ZsnN5dz2ZAUF+QESSW1ukK0CPg/TS4uZWVrMK9X13a4zs7SYGaXFmgwhIiLiAmNt3wtr5eXltqKiwpFaH33czHObdzK6qB8vbtnJVROHs+dgmIdWpfdxdtDv4c4rxjCkf+jw+9/fe4irJw3n9MF5jqxR+qZ9TVHueqaS1dV7M37vjNIifnRdGaflqxdYRESku4wxG6215cd7LeuvBHs9htkThvDHbfu46aJRPP76toy2T47EUyxaUc3UMYUsuPRM3t97iCsnDFEPpwBw6+fP4MKzTsv4l6pxQ/v3wOpERESylz5nNZDCUJgfzDgAd7SutoHHX99GYX4QiwFl4KzW2BzjrmcquWHJnzAYXrnjMu7+0tgTjk8rKQjxvS+N5ZU7LsNguGHJn7jrmUo+adb22yIiIm7I+ivBA0Je3t5xgF0Hwt0OwO3W1TZwyejBYODzZ5/m0Aqlr4klUqyu2sObf97HY/Mnk+MzNDbHGD4wyL1XlnJafg7xZIpIPEXQ78Hv9bCvKUo8maKxOcbIghCPzZ/Md5dt4ZXqPVw9aYT6gkVERByW9SF4f0uSEYNC3PHbzY7Ue2hVLb/72oXsb0nQL6i7+rPRvuYoP/rvGp746nmkUpb39zbxd0//zxHtEEeP3GsX9Hu450ulnF2UzxNfPY/bf7WRS0YXMnSAsxtwiIiIZLusv7wU8BnW1Ox1ZKYrtPYIv1qzl4BP/RDZKJlM8eKW3fzgmjJyA16e+MMH3Lf8nWPOr0TK0hJLHhGAofX8uW/5Ozzxhw/IC3j5wTVlrKjcTTKpzVdERESclPUhOBxL8cymHY7WXLZpB2GHQrX0LfuaY+zc38LIghA/Xf0ea2oynwwBsKZmLz9Z/R4jTwtR90kL+9QbLCIi4qisD8HGcNw5wCejrjGs++KyVCyZ4sYLRrK57kC3A3C7NTV72bL9ADdeMJKYrgSLiIg4KutDcEs06U7dmDt1pXdLpSw+r5f7V7zT6XE+jyE34MXXxSi97694B7/XS6oPzvMWERHpzbL+xrhowp0rbDGX6krv5vN6eHHLrmN6gL0ew4zSIq6cMLTTbbjX1Owl2aFPOBJP8XLVHq4qG9bT34qIiMhnWtaH4KDfnYvhORpplZWstfy/P310xHNzJg7jlotHZbQN9/Ituw6/9tRbHzFrwlDX1y4iIpJNsj4E9wu685/ArbrSu6Xspz3meQEvi+dNZM/BMNcveavTEWl1jWF+svo9/uO1P3PnFWO44twhfHfZFppjSeoaw6TUDSEiIuKorE9q8aSlpCDk6M1xJQUh4kotWakpmgBaA/CSm8sP70Lo9RiuOLc4rXaI9m24l9xczm1PVtAcS9LcVldEREScoRCcTHHjlNN54KUax2reNOV0ErqbPytF4q03RC6eN/FwAD6ZdojF8yZy+9JNh+uKiIiIM7K+cTWRtMyaMKzL3uCgz8Pg/ADBLnp9g34PV04YRjyhK8HZKMfnYc7EYew5GGbDB408Nn8yE0sGcP2St/jJ6vdO+IlDezvE9UveYmLJAB6bP5kNHzSy52CYq8qGattkERERhxnbB0cvlZeX24qKCkdq7Q9HefP9RvYciPD9FVWHnw/4PHxr+tlMHVtEXsBHUyRBOJ4k5PeSH/TRHEvwavVeHn31/SMmQfzT7HEMGRjkwrMKGBjKcWSN0ndsb2ymsSnGrU9u4F/nTz58NThTU8cUsuDSM/nG0k08cfN5FOQHGFmQ58KKRUREPruMMRutteXHey3r2yGaIkke+K9q7v5iKVPHFLKutoH7Zpcyc9wQXtyyi689tfGEH1/fcN5I1nz7Ml6p2sP9bX2cRf2DPPBSNU/fNoWBoVPwDckpFfR7eO3dBu6fO6HbARg4/L77507g9fcauP68EieXKSIikvWyPgTbtrv5v7tsC0tvO59/vupc3nj/Y2Y+8toxs147qmsMs3hVLY+++h4LZ41j3XemciAcZf6S9TTHkvTBC+zigHjC0tgSY8/BcLcDcLt1tQ1cMnowHzfHiCd1QomIiDgp6xsNmyKtd92XjRjAkAG5fH/FO9z7/NZOA3BHkXiKe5/fyvdXvMOQAbmUjRjQWld382ellIVrJg3noVW1jtR7aFUt104arhFpIiIiDsv6EBxJtN51/8hXJnH3s5Wsrene1bu1NQ3c/Wwlj3zlLwCIJnQ3fzZKpSzr3m1I+5eorkTiKV57t0HbJouIiDgs60Nw0O/l9TsvY0313m4H4HZraxpYU13P69+9jByf16EVSl+StJZnNu3o8jifx5Ab8OLzmC6PXbZph0KwiIiIw7K+Jzg/x4fHGBatrOr64DQsWlnFmjFTyc/J+t8vspLPa457I6XXY5hRWpTWZhnJo3of6hrDeNMIyyIiIpK+rA/Bg3K9/PLNOkc/vl6+ZSd/PUV382ejluixbTAns1nG4boxtdeIiIg4KesvV37SkuTpDdsdrbl0/Xb2tyi0ZKOOO7vlBbwntVlGXuDTlhqnfkkTERGRVlkfgoETBpPeUk/6jhx/a3DNC3hZcnM5v9tYx6IV1RlNG1m0oprfbaxjyc3lh4NwjnaMExERcVTW/2RtH5HmeF2NSMtK7aF18byJJ71ZxuOvb2PxvIlH1BURERFnZH0IDsfdaVuIuFRXejdjDDdfdLpjm2XsORjmpotOxxjdGCciIuKkrA/BIb87V9iCGpGWlQI+w01TRjm6WcbNF45SO4SIiIjDsv4na37QnQEZbtWV3s3vNaypqXd02sia6nr0O5WIiIizsj4EQ+t4qt5cT/qO5miKp976yNGaT731Ec1RTYcQERFxUtaHYL/XcMN5Ix2tOf/8keT41MOZrTRtREREpPfL+hC850CEqyYOI+h35j9F0O9hdtkwdh+IOlJP+hZNGxEREekbsj4EB/1eXqnaw8JZ4xypt3DWOF5+Z49uZMpSmjYiIiLSN2R9UssP+rh/RTXnn1HAtLGFJ1Vr2thCzj+jgEUrq3VjXJbStBEREZG+IetDsKH1Rrb5S97i/jnjux2Ep40t5P4545m/5C1KCkKoIzg7adqIiIhI35D1ITiRtNw45XQammJc+29vcM+XSvnB1ePT7hEO+j384Orx3POlUq79tzdoaIpx45TTSaSsyyuX3krTRkRERHq/rA/Bn4TjXHpOIUG/h4amGDMfeZ1IPMkrd1zGXV8cc8IAUlIQ4q4vjuGVOy4jEk8y85HXaWiKEfR7uHR0Iftb4j38nUhvkJvjcWXaSF6O2iFEREScZKzte1csy8vLbUVFhSO1avYc5N/W/pkpZ57GPc+9ffj5gM/D33/hbL5QWkRuwEdzNEEkniLo95CX46MlluDV6r08+ur7xBKfznD94TUT+OOfP+b2L5zN2CH9HVmj9B0fftyM12OY+chrjmyYEfR7eOWOy0hay6jT8hxYoYiISPYwxmy01pYf77WsbzQcEPSzfMsurpwwhOlji1hTsxeAWCLFwy+/y8MvvwtA0OchP+ijKZIgkjh+uJk+tohBeX5erNzNPVeW9tj3IL1HIpWi/mCMhbPGce/zW0+63sJZ49i9v4WC/BwHViciIiLtsr4dwuc1lBSE+IffbuG2S89k+tii4x4XSaT4uCnWaQC+7dIz+YffbqGkIITPq1vjslEiacnxebjAoWkjF5xZQMDnJZHse5/YiIiI9GZZH4ILcgPcdOEommNJbv3FBq6dPIL755yb0Y1x9885l2snj+DWX2ygOZbk5gtHUZCnK3fZKD/o42dvfMj6D/c5Mm1k/Qf7eOIPH2g6hIiIiMOyPgR7vR6uKmvdMa45luT2pZvY8GEjv14whe9cfk6nN8Z95/Jz+PWCKWz4sJHbl26iOZY8vGOc16Mrwdko4PXwP3WfMCCUw8Orak5q2sjDq2oYEMph8479BLT5ioiIiKOy/sY4aO3/fWHzTu5cVnn4Oa/HMH1sEbPKhjJsYIh4MkU0niLH78Hv9bBrf5gVlbt5tWYvyQ7j0B6aV8bcScMVWrJUMpniiTc+5Ker32XJzeU8/vo2Ljl7MJefO4QVlbtYun47dY3hY95XUhBi/vkjmV02jJff2cPv3/+YBZeeyW1PVvCtmedwy8Vn6BcrERGRDHV2Y5xCcJvG5hh3Lavkler6477u8xgCPg+xROqEM4BnlhazeF4Zg/ICjq5N+pY9B8JMfXgdXmNYPG8iew6G+ema91hwyZldTht5/Pfb+Ob00QzpH+K7y7aQtJZ135nKkAGaFSwiIpIpheA07WuKcvczb58wCHdmZmkxD143gdN0F3/WiyVSPL95B99d1jpy76qyodz6+TN47d0Glm3aQV1j+JhpIyUFIeZNHsFl5xTyxB8+4MXK3QAsnlfG1fpkQUREpFsUgjPQ2BxjTXU9C1/Ymtac16Dfw6K545lRWqwrwHJYY3OM7y7bwurq1pF7x2uvab8SfKL2mhmlRTw0b6LOKxERkW7SnOAMFOQFmDtpOJeMLmRF5S6efPPDE/ZwfvWiUcyaMIyCvICu1MkRkskU35w+GmthTVuwfbmqnperWj9l6Kq9ZvrYIr45fTSJ5MlvuCEiIiLH0pXgTiSTKRpbYiRSlqZIgmgiRU7bx9g+j6EgL0c3K8kxWqIJnt+8kx+srGbxvInsa4rywH9Vp/3Jwj1fKuW0/By+u2wL984q5eq/GE5uQL+vioiIZEpXgrvJ6/VQ2C/Y+mDAqV2L9B2fhOPcv6KKSDzF7Us3cVXZUH69YAp/eO9jflNRd8JPFr5SXsLnRw/mid9/2hN8/4oqLhtTpBAsIiLiMP1kFXFQPJ7khc07j7jq+2Llbl7auofpY4v4zuVjOh2598jq944YuReJp1i+eSf/6+Iz8Pu9p+JbEhER+UxSCBZxUENzlKfXbz/m+Ux7gjtaun47cycNY9jAXFfWLCIiko0UgkUclLIct93haImUJRFLplWzrjFMFzlZREREMqSRBiIOOhRJ9Km6IiIi2cr1EGyM+aIxptYY874x5u7jvD7SGLPWGPM/xphKY8yVbq9JxC3heHpXd30eQ27Aiy/N6SKRNOuKiIhIelxthzDGeIHHgJnADmCDMWa5tbaqw2H/CPzWWvvvxphxwEvAKDfXJeKWkO/4N695PYYZpUVcOWEowweGiCVSxBIpAj4PAZ+HnfvDrKzcfXim8NGCJ6grIiIi3eP2leDzgfettdustTHg18Dco46xQP+2vw8Adrm8JhHX5AeP/b1yzsRhPPO3FzJrwlByTrCpSo7Pw6wJQ3nmby9kzsRhadUVERGR7nM7BA8H6jo83tH2XEf/DPy1MWYHrVeBv3G8QsaYBcaYCmNMRUNDgxtrFXFESUEIgLyAl8fmT2bOxKFgjmx7sEDSWo655msMcyYO5bH5k8kLeI+oJyIiIs7pDZeXbgB+Ya39F2PMhcBTxpjx1tojttey1j4OPA6tO8adgnWKdCk/6OWG80by2Nr3eeKr55FKWVpirTe1bfu4mWc27TjhZhnXTR7B6YPzABiU6+eJr57Hrb/YwPzzR9JPV4JFREQc5fZP1p1ASYfHI9qe6+hW4IsA1to3jTFBYDCw1+W1iTgukbRcNXEYZxflkxfwciiS4KPGFv7u6f/pdNvkusYwP1n9Hv/x2p+584oxlA7pT17AyyNfmUTp0P7Ek11vuSwiIiLpc7sdYgMw2hhzhjEmAFwPLD/qmO3AdABjTCkQBNTvIH1SQW6AcDzB6aflkrLw+O+3sWhFdacBuKNIPMWiFdU8/vttpCycflou4XiCgrwcl1cuIiKSXVwNwdbaBPB3wCqgmtYpEO8YY+43xsxpO+wfgNuMMVuAp4GvWmvV7iB9ktfrYUAoQCJleWT1u6yr7d7vc+tqG3hk9bskUpaBoQDeNEepiYiISHpcbzS01r5E6w1vHZ+7r8Pfq4CL3V6HSE9IJlPEkine2rav2wG43braBi4ZPZgrxg0hmUzh9WpvGxEREafop6qIgw5E4kTjKR5aVetIvYdW1RJJpDgQiTtST0RERFopBIs4KJFKsbJyV9o9wF2JxFO89PYuEroxTkRExFEKwSIOisYtyzbtcLTm7zbuIJpQm7yIiIiTFIJFHGStPe4c4JNR1xjmONtqiIiIyElQCBZxUFM04U7dSNKVuiIiItlKIVjEQdGEO727sYRCsIiIiJMUgkUcFPJ7XakbdKmuiIhItlIIFnFQXo47o7fdqisiIpKtFIJFHGStpaQg5GjNkoIQ2kRRRETEWQrBIg67ccrpXR7j8xhyA158aWyHnE49ERERyYw+YxVxkDGGS88p5MevvHvEhhlej2FGaRFXThjK8IEhookUkXiSoN9Ljs/Dzv1hVlbuZk3NXpKpT6/6Bv0eLh1diDFdh2URERFJn0KwiIO8HsPT67dz3+xzuee5twGYM3EYt1w8inXvNvDwy7XHnSNcUhDiuskj+PrUs/jZGx+yfMsuAP5p9rks3bCd/33pWT36fYiIiHzWKQSLOKgwL8DwgSEK8vzMGj+EK8uGsedgmOuXvNXpVsp1jWF+svo9/uO1P3PnFWO44twhvFS5i0F5fkYMDDG4X04PfhciIiKffeoJFnGQ3+9ldtkwfvHGB9w351yWbapj0YrqTgNwR5F4ikUrqlm2qY775pzLL974gNllw/B79U9VRETESaYv3nVeXl5uKyoqTvUyRI6rJZrgYCTO9557m7U1Dd2uM21sIT+8poz+IR+5AX1oIyIikiljzEZrbfnxXtPlJRGHRZMp1lTvPakADLC2poE11fXEXNqFTkREJJspBIs4rCWaZNHKKkdqLVpZRXNUWyaLiIg4TSFYxEHhaJwXNu9Muwe4K5F4iuVbdhKOxh2pJyIiIq0UgkUctK8lztMbtjtac+n67exrUQgWERFxkkKwiIOs5bhzgE9GXWOYPnj/qoiISK+mECzioKZIwp26UXfqioiIZCuFYBEHhePu3MQWcamuiIhItlIIFnFQyO91pW7Q505dERGRbKUQLOKgfiF3NrVwq66IiEi2UggWcVhJQahX1xMRERGFYBFHBXyG6yaPcLTmvMkjCHj1T1VERMRJ+skq4qDGpjhTzykk6Hfmn1bQ7+GycwppbIk5Uk9ERERaKQSLOCgcT/KzNz7kzivGOFLvzivG8MQfPiAS03QIERERJykEizgo4POwfMsuhvQPMXVM4UnVmjqmkCH9Q7xYuZuAT/9URUREnKSfrCIO6pfTOsXhu8u2sODSM7sdhKeOKWTBpWfy3WVbAMjP0XQIERERJykEizjIGENJQYjmWJLbnqzgy58rYeHs0rR7hIN+Dwtnl/Llz5Vw25MVNMeSlBSEMMa4vHIREZHsohAs4iC/zzCvbTpEcyzJ7Us3sXn7fn592xTumDH6hOPOSgpC3DFjNL++bQqbt+/n9qWbaG7rA/7y50YQ8CkEi4iIOEmfsYo4KQWzyobx76/9mUg8BcCLlbt5aesepo8t4juXj2HYwBDxZIpIPF1TboIAACAASURBVEXQ78Hv9bBrf5gVlbt59NX3Sabs4XJBv4dZE4ZhU6fqGxIREflsUggWcVA8ZcnL8XLnFWNYtKL68PPJlOXlqnperqoHwOcxBHweYokUiQ6h92h3XjGGvICXeCfHiIiISObUDiHiIGPg9XcbuOiswZ3eFJdIWVpiyU4D8NQxhVx01mDWvbsXtQSLiIg4SyFYxEH9Q172NcXwew13zDjnpKZD3DHjHPxewyctcQaG/A6vVEREJLspBIs4qDmaYu6k4Xz9VxsZ0j/IgkvO7NZ0iAWXnMmQ/kG+/quNzJk4nEPRhMsrFxERyS4KwSIOOhRJUL37AI9eP5kHXqqisF8OZxfm8+sFF6Y3HWLBhZxdmE9hvxweeKmKR2+YTNXuAzRFFIJFREScpBvjRBwUjbeONdtct58XtuzmhS27WTirlMvPHcLoonzuvbKU0/JzjpkOsa8pSspaTssLsPHDRm7++QYALjp7MAV5AaIJjYcQERFxkrG27911Xl5ebisqKk71MkSO8W79IfICPqb/eN3hEWnQup3y33/hbL5QWkRuwEdzNEEskSLg85CX46MlluDV6r08+ur7xDoE3qDfw5pvT6U5luCc4n6n4lsSERHps4wxG6215cd7TVeCRRxU3D/Ar96qOyIAA8QSKR5++V0efvldAII+D/lBH02RBJFOrvJG4imWb9nJ/AtKXF23iIhItlFPsIiDDkWSPL1he5fHRRIpPm6KdRqA2y1dv51DkaQTyxMREZE2CsEiDrIW6hrDjtasawzTB7uWREREejWFYBEHuTXFoUkj0kRERBylECzioHDcnbaFiEt1RUREspVCsIiDQn6vK3WDPnfqioiIZCuFYBEH5QfdGbjiVl0REZFspRAs4iBjOOGucN1VUhDCGEdLioiIZD2FYBEHFeYFuOG8kY7WnH/+SIr65ThaU0REJNspBIs4KCfgY+6k4QT9zvzTCvo9zJk4nIB6gkVERBylECzisP5BHwtnjXOk1sJZ4xgQUj+wiIiI0xSCRRzWL+RnRmkx08YWnlSdaWMLmTGumPyg36GViYiISDuFYBEXFA8I8uC1Zd0OwtPGFvLgtWUU9w86vDIREREBhWAR1xT3D/LgNWX84OrxafcIB/0efnD1eAVgERERl6nZUMRFxQOCzJ00jKljili+ZSdL12+nrjF8zHElBSHmnz+SOZOGMyDoUwuEiIiIyxSCRVyWH/STH/Rzy0WjuGriMKyFpmiCSDxJ0O8lP8eHMVDUL0dTIERERHqIQrBID8kJ+BgR0D85ERGR3qBbPcHGmDlOL0REREREpKd0eVnKGHPt0U8BjxljfADW2mfdWJiIiIiIiFvS+Wz2N8AqYC+tARggD7gKsIBCsIiIiIj0KemE4IuAB4EN1tp/BzDGTLXW/o2rKxMRERERcUmXPcHW2g3ATCBgjFlrjDmf1ivAIiIiIiJ9Ulq3qltrU8BPjTG/A37i7pJERERERNyV0XQIa+0ua+1fWmvPPPo1Y8y/OrcsERERERH3OLlt8sUO1hIRERERcY2TIVhEREREpE9QCBYRERGRrONkCDZdHyIiIiIicuqlNR0CwBgzwVr7dieH/NSB9YiIiIhIHxeNJWhojgFwKJwgHE8S8nvpF2qNnoV5AXICacdQV2Ty1f/NGJMD/AL4lbX2QMcXrbW/cHBdIiIiItLHHArHORhJ8MLmnTy9YTt1jeFjjikpCHHDeSOZO2k4/YM++oX8p2ClYKxNf98LY8xo4Bbgy8B64OfW2ldcWtsJlZeX24qKip7+siIiIiJyAvUHIqyurmfRyioi8VSXxwf9HhbOGseM0mKKBwRdWZMxZqO1tvy4r2USgtuKeYGrgUeBg7T2At9jrX32ZBeaLoVgERERkd6j/mCEu5+tZG1NQ8bvnTa2kAevLaO4v/NBuLMQnPaNccaYMmPMI0A18AXgKmttadvfH3FkpSIiIiLSp9Qf6H4ABlhb08Ddz1ZSfzDi8Mo6l8l0iH8FNgETrbW3W2s3QesucsA/urE4EREREem9DoXjrK6u73YAbre2poHVVfU0ReIOraxrmYTgWcBSa20YwBjjMcbkAlhrn3JjcSIiIiLSex2MJFi0ssqRWotWVnEgnHCkVjoyCcGrgVCHx7ltz4mIiIhIlonGWqdApHMTXDoi8RTLt+wkGuuZIJxJCA5aa5vaH7T9Pdf5JYmIiIhIb9fQHOPpDdsdrbl0/fbD84XdlkkIbjbGTG5/YIz5HHDs8LejGGO+aIypNca8b4y5+wTH/KUxpsoY844xZmkGaxIRERGRU8BajjsH+GTUNYbJcHBZt2WyWca3gN8ZY3bROhZtCPCVzt7QNk7tMWAmsAPYYIxZbq2t6nDMaOB7wMXW2k+MMUUZfg8ifUJf2D1HREQkXU0Rd9oWmqI90w6R9k9ca+0GY8xYYEzbU7XW2q5u4TsfeN9auw3AGPNrYC7QsYP6NuAxa+0nbV9nb7prEukL+tLuOSIiIukKx5Ou1I24VPdomV52Og8Y1fa+ycYYrLW/7OT44UBdh8c7gAuOOuYcAGPMG4AX+Gdr7X8fXcgYswBYADBy5MgMly1yaqS7e05dY5jFq2p59NX3XN89R0RExAkhv9eVukGfO3WPlnYINsY8BZwFbAbaI7oFOgvB6a5hNDAVGAG8boyZYK3d3/Ega+3jwOPQumPcSX5NEdfVH4xw93OZDQ+PxFPc+/xWVtfUu7Z7joiIiBPyg+608LlV92iZfJVyYJzNbJ/lnUBJh8cj2p7raAfwp7bWig+MMe/SGoo3ZPB1RHqV+gOZB+CO2nfPURAWEZHeypjWdj4nb44rKQhhjGPlOpXJdIittN4Ml4kNwGhjzBnGmABwPbD8qGOep/UqMMaYwbS2R2zL8OuI9Bp9efccERGRdBXmBbjhPGdbVOefP5KifjmO1jyRTELwYKDKGLPKGLO8/U9nb7DWJoC/A1YB1cBvrbXvGGPuN8bMaTtsFbDPGFMFrAXutNbuy/xbEekd+vLuOSIiIpmYO2k4QX8mcfLEgn4PcyYOx6Z6pus1k3aIf+7OF7DWvgS8dNRz93X4uwW+3fZHpE9za/ecWy4apfFpIiLSqzQ0x/igoZmFs8Zx7/NbT7rewlnj2NZwCEs+I3rgZ17a0d1a+xrwIeBv+/sGYJNL6xLpk/r67jkiIiLpshZu/Nl6po4pZNrYwpOqNW1sIVPHFHLjzzb02GYZaYdgY8xtwDLgP9ueGk5rP6+ItOnru+eIiIikq32zjPlL3uKH15R1OwhPG1vID68pY/6St1rr9tBmGZk0cdwOXAwcBLDWvgdodzeRDvr67jkiIiLpat8s46PGMF/9+Z944JoJ/ODq8Wn3CAf9Hn5w9Xh+eM0EvvrzP/FR20WkntosI5MQHLXWHv5M1hjjo3VOsIi06eu754iIiKSrfbOMvICX+646l+89+zZF/XNY8+2p3PXFMZQUhI77vpKCEHd9cQxrvj2Vov453P3s29x31bnkBVrr9brNMoDXjDH3ACFjzEzg68CL7ixLpG/q67vniIiIpKt9U4vF8yby+OvbWFfbwLraBkIBLw9dN4Gnbr0ArzE0RRPEEkkCPi/5OT6S1rJ1x35mPPIa4dinF3kWz5vI7Us39crNMu4GbgXeBr4GvGStXeLKqkT6qL6+e46IiEi6PB64+aLT2XMwzLraT2fjxxIpXqzcTdLC8IEhYskUsUSKgC9JczTBzv1hVlbuJpb4dJLSutoGLhk9mJsuOh1PD22WkclP1m9Ya38KHA6+xphvtj0nIvT93XNERETS5fcabpwyitn/+vvDz82ZOIxbLh7FuncbePjl2uP+PCwpCHHd5BF8fepZ/OyND1m+ZRcAD62qZcU3LiHH68zc4a5k8lVuPs5zX3VoHSKfCX199xwREZF0WQtrquuJxFPkBbw8Nn8yE0sGcP2St/jJ6vdOeEGorjHMT1a/x/VL3mJiyQAemz+ZvICXSDzFqzX1JHvolrMuQ7Ax5gZjzIvAGR13ijPGrAUa3V+iSN+RE/C5sntOQD3BIiLSy4RjKf7fnz4iL+Blyc3l/G5jHYtWVKe9YVQknmLRimp+t7GOJTeXkxfw8tRbHxF2aMOprqTTDvFHYDet2yb/S4fnDwGVbixKpC/rH/Q5unvOgJD6gUVEpPcxpvWq7mPzJx++Ma472t/XfmNcT3UAdvnT1Vr7EfARcKH7yxHp+/qF/MwoLWZ1TT1ra7r3/xCgdXj4jHHF5Af9Dq5ORETEGS3RJHMmDqP+qBvjumNdbQOXjh7MVWVDaYn1sjnBxphrjTHvGWMOGGMOGmMOGWMOurk4kb6qeECQB689ud1zHry2jOL+QYdXJiIi4oxoIsUtF49i8apaR+otXlXLrZ8/44ipEW7KpHFxMTDHWjvAWtvfWtvPWtvfrYWJ9HXF/YM8eE1Zt3bPUQAWEZHeriDPzx+37Uu7B7grkXiKN7ftY1Buz3wCmkmzYb21ttq1lYh8BhUPCDJ30jCmjili+ZadLF2//YTjYuafP5I5k4YzIOhTC4SIiPR6Ho/h6fXbHa25dP12rpo4zNGaJ5JJCK4wxvwGeB6Itj9prX3W8VWJfIbkB/3kB/3cctEorpo4DGuhKZogEk8S9LfunmMMFPXL0RQIERHpMww4Oheftnq95sa4DvoDLcDlHZ6zgEKwSBpyAj5GBDTpQUREPhsORRLu1I26U/doaf9Ettb+jZsLEREREZG+w6le4KNFe2hOcCbTIc4xxqwxxmxte1xmjPlH95YmIiIiIr1Vjs+d7Y0DvXDb5CXA94A4gLW2ErjejUWJiIiISO+Wm+POfSxu1T1aJiE411q7/qjneqZpQ0RERER6FUvrdCMnlRSEsI5WPLFMQvDHxpizaP2eMcbMo3U7ZRERERHJMrkBD9dNHuFozXmTR5Dr731Xgm8H/hMYa4zZCXwL+N+urEpEREREerVE0jJ9bFHaG0J1Jej38IWxRSRSvezGOGvtNmvtDKAQGGut/by19kPXViYiIiIivVZhXg479oe584oxjtS784ox7NgfprBfz+yYmsl0iG8aY9pnBT9ijNlkjLm8q/eJiIiIyGeP3++lbMRAhg0IMXVM4UnVmjqmkGEDQpSNGIi/F06HuMVae5DWzTJOA24EHnRlVSIiIiLS6w0K+TkUibPg0jO7HYSnjilkwaVncigSZ1Cu3+EVnlgmIbh9F7srgV9aa9/p8JyIiIiIZJncHB9TxxTx1Jsf8uXPlbBwdmnaPcJBv4eFs0v58udKeOrND5k6pojcHtxZNZOvtNEY8zJwBvA9Y0w/oGc6l0VERESkVyrqH+T7c8Zz17OV5Ad8/Pq2Kbz2bgPLNu2grjF8zPElBSHmTR7BZecU8sQfPqAp9jE/uraMov490wvczlib3jQ2Y4wHmARss9buN8acBgxv2zSjR5WXl9uKioqe/rIiIiIicgJ7D0ZYXV3PD16q5uKzBjOrbCjDBoaIJ1NE4imCfg9+r4dd+8OsqNzNH//8MfdeWcqM0mLXArAxZqO1tvx4r3V5JdgYM9ZaW0NrAAY40xh1QYiIiIjIp4r6B7n6L4Zz2Zgilm/eycMv11LXGMbnMQR8HmKJFImUpaQgxPzzR/L9OecyMNffoy0QHaXzVb8NLAD+5TivWeALjq5IRERERPqmtgaDz50+iGljiwj6vTRHE4evBOfl+IjEkxwMx1sP7ant4Y6jyxBsrV3Q9r/T3F+OiIiIiPRF7e0Q96+oIhL/9LaxoM9DftBHUyRBJNHheb+H+2aPc7UdojOZzAn+ctvNcBhj/tEY86wx5i/cW5qIiIiI9AV7D0a469lK7nlu6xEBGCCSSPFxU+yIAAwQiae457mt3PVsJXsPRnpyuUBmI9IWWmsPGWM+D8wAngD+w51liYiIiEhf0B6A19Y0dOv9a2saTkkQziQEJ9v+dxbwuLV2JRBwfkkiIiIi0he0RBOsrq7vdgBut7amgdXV9bTEEg6trGuZhOCdxpj/BL4CvGSMycnw/SIiIiLyGfJJOM79K6ocqXX/iio+aYk7UisdmYTYvwRWAVdYa/cDBcCdrqxKRERERHq1eDzJC5t3HtMDfDSfx5Ab8OLzdD5iNxJPsXzzTuLxZKfHOSXtwWzW2hZjzAtAsTFmZNvTNe4sS0RERER6s4bmKE+v337M816PYUZpEVdOGMrwgSGiiRSReJKg30uOz8PO/WFWVu5mTc1ekqkjZ6QtXb+duZOGMWxgruvrTzsEG2O+AfwTUM+n2yVboMyFdYmIiIhIL5ayHLMt8pyJw7jl4lGse7fh8GYZR49IKykIcd3kEXx96ln87I0PWb5l1+H31zWGSfXQ7OBMtuj4JjDGWrvPrcWIiIiISN9wKPLpTWx5AS+L501kz8EwN/18PX976Zn8542fIy/QGn7D8SQhv5f8oI/mWIJXq/dy08/X883po7ni3CF8d9kWmmPJY+q6KZMQXAcccGshIiIiItJ3hNt6d/MCXpbcXM7jr2/j0tGDWfmNS3hxyy6+9tTGY64UA5QUhLjhvJGs/MYlvFK1h99trGPJzeXc9mQFzbEkkR7qCc7kxrhtwDpjzPeMMd9u/+PWwkRERESk9wr5vAAsnjeR36zfzr1XlpLj8zLzkddYvKr2uAEYWlseFq+qZeYjr5Hj83LvlaX8Zv12Fs+bCECwra7bMrkSvL3tTwDNBxYRERHJavlBH3MmDuNAOMp3rhjLfcu3Hnde8Im2TY7EU9z7/FamjS3k/jnj+f17e7mqbCj5wUziafdlMh3i+wDGmPy2x01uLUpEREREer/bLjmDkN97RAAO+Dx8a/rZTB1b1GlP8KOvvk8skWJtTQP3sZV7ryxlwvCBPbb2TKZDjAeeonU+MMaYj4GbrLXvuLQ2EREREeml+oe81B9MUbnjwOEAfN/sUmaOG3JET7DPYwj4PMQSKRIpe7gneM23L+OVqj3cv6KatTUNzBhbzJgh/RgQ6pkrwcba9OZQGGP+CNxrrV3b9ngq8IC19iL3lnd85eXltqKioqe/rIiIiIi02bW/hWQKZj7yGv1yfCy9bQrrP2jkgf+q5vNnD+5yTvAbf/6Ye75UyvlnFDB/yVsciiZ45Y7L8HpwbE6wMWajtbb8eK9lErXz2gMwgLV2nTEm76RXJyIiIiJ9Tsjv5en1dfTL8fHs1y/mvuVb6Zfj51e3XnDEnOCjHT0neHVNPc9+/WKu/bc3WFG5i+vPK+mR9WcSgrcZYxbS2hIB8Ne0TowQERERkSzTFE3y9IbtLL1tCg+8VMW8ySXsORjm+iVvdbqVcl1jmJ+sfo//eO3P3HnFGIb0D/HAS1UsvW0Ktzy5gdllwxjUA5dZM2mHGAR8H/g8rTvF/R74vrX2E/eWd3xqhxARERE5teoaW3ilag95AR8lp+Xy+OvbWFd77HSIrkwdU8iCS8+kbl8LTdEEl587hJKCXtQO0RZ2/96RFYmIiIhIn9YUSTBz3BC27jzQ7QAMHH7fV8pLuOjswTRFe2bHuLQ3yzDGvGKMGdjh8SBjzCp3liUiIiIivVm/kI+tOw+w60C42wG43braBnYdCLN11wH699Cc4Ex2jBtsrd3f/qDtynCR80sSERERkd7OWhgxKMRDq2odqffQqlpGDAyRSq9T96RlEoJTxpiR7Q+MMafT2hssIiIiIlkm4DOsqdnb6U1wmYjEU7xas5eAzzhSryuZXG++F/iDMeY1wACXAAtcWZWIiIiI9GrhWIpnNu1wtOayTTuY+xfDHa15IpncGPffxpjJwJS2p75lrf24/XVjzLnaPU5EREQkOxjDcecAn4y6xjA9cx04syvBtIXeFSd4+Slg8kmvSERERER6vZZo0p26MXfqHi2TnuCu9FRwFxEREZFTLJpwphf4aDGX6h7NyRCsm+REREREskTQ72SM/FSOz526R+uZryIiIiIinyn9Q/4+VfdoTobgmIO1RERERKQX83sNJQUhR2uWFITwe3umwzajEGyMKTPGzDHGXNv+p/01a+2Uzt4rIiIiIp8dBbkBbrpwlKM1b75wFAV5OY7WPJG0p0MYY34GlAHvAO0dyxZ41oV1iYiIiEgv5vV6uKpsGP/ycq0jG2YE/R5mlw3D6+l9m2VMsdaOc20lIiIiItKnFOQFWDR3PHcuqzzpWovmjqcgL+DAqtKTSTvEm8YYhWARERERASDg8zC9tJiZpcUnVWdmaTEzSosJ9NBkCMjsSvAvaQ3Ce4AorXOBrbW2zJWViYiIiEivV5AX4MHrJsAz8Ep1fcbvn1lazIPXTWBQD14FhsxC8BPAjcDbfNoTLCIiIiJZ7rT8HH40r4zLq+tZ+MLWtHqEg34Pi+aOZ0ZpcY8HYMgsBDdYa5e7thIRERER6bMK8gLMnTScS0YXsqJyF0+++SF1jeFjjispCPHVi0Yxa8IwCvICPdoC0VEmIfh/jDFLgRdpbYcAwFqr6RAiIiIiQsDnYciAIH9z0SjmThpGImVpiiSIJlLk+DzkB334PIaCvJwemwJxIpmE4BCt4ffyDs9pRJqIiIiIHMHr9VDYL9j6YMCpXcuJpB2CrbV/4+ZCRERERER6SiabZQSBW4FzgWD789baW1xYl4iIiIiIazLpRH4KGAJcAbwGjAAOubEoERERERE3ZRKCz7bWLgSarbVPArOAC9xZloiIiIiIezIJwfG2/91vjBlPa5tzkfNLEhERERFxVybTIR43xgwCFgLLgXzgPldWJSIiIiLiokymQ/zftr++BpzpznJERERERNyXdjuEMabYGPOEMea/2h6PM8bc6t7SRERERETckUlP8C+AVcCwtsfvAt9yekEiIiIiIm7LJAQPttb+FkgBWGsTQLKrNxljvmiMqTXGvG+MubuT464zxlhjTHkGaxIRERERyVgmIbjZGHMarVslY4yZAhzo7A3GGC/wGPAlYBxwgzFm3HGO6wd8E/hTBusREREREemWTELwt2mdCnGmMeYN4JfAN7p4z/nA+9babdbaGPBrYO5xjlsE/AiIZLAeEREREZFuySQEVwHPARuAemAJrX3BnRkO1HV4vKPtucOMMZOBEmvtygzWIiIiIiLSbZmE4F8CY4EHgH8FzqF1K+VuM8Z4gB8D/5DGsQuMMRXGmIqGhoaT+bIiIiIikuUy2SxjvLW2Yz/vWmNMVRfv2QmUdHg8ou25dv2A8cA6YwzAEGC5MWaOtbaiYyFr7ePA4wDl5eU2g3WLiIiIiBwhkxC8yRgzxVr7FoAx5gKgoov3bABGG2POoDX8Xg/Mb3/RWnsAGNz+2BizDvjO0QFYRERERPqOaCxBQ3MMgEPhBOF4kpDfS79Qa/QszAuQE8gkhjqvy69ujHmb1okQfuCPxpjtbY9PB2o6e6+1NmGM+Tta5wt7gZ9Za98xxtwPVFhrl5/sNyAiIiIivcOhcJyDkQQvbN7J0xu2U9cYJj/gZVBegE+aYzTFkpQUhLjhvJHMnTSc/kEf/UL+U7JWY23nnQXGmNM7e91a+5GjK0pDeXm5rajQxWIRERGR3qL+QITV1fU8/HItP7h6POOGD8BnDAcjcSLxFEG/h/5BPwlr2bpjPwtfeIfvXD6GGaXFFA8IurImY8xGa+1x96Do8krwqQi5IiIiItJ31B+McPdzlfzV+SNZ8Y1LeGHzTn743zXUNYaPObb9SvCKb1xC9e4D3P1cJQ9eW0Zxf3eC8Il0eSW4N9KVYBEREZHeof5AhB+/UsPfTz+HdbUNLFpZRSSe6vJ9Qb+HhbPGMXVMIY+ueZdvXz7W8SB8UleCRURERESO51A4zlt//pg7Zo7le89Vsrbm2DG2R/cEt4vEU9z7/FamjS3kh9eU8db7HzN9XDH5wZ7pEVYIFhEREZFuORhJUH5GwREBOBTw8i/zyrrsCb7zmbcJx5KsrWnge89V8n+uHs+BcEIhWERERER6r2gsQVMkTsVHnxwOwP/3ps9ROnRAWj3Bq++4jOrdB/hfv9zI2poG1tU0UD5qENGYv0fGp2WyY5yIiIiICAANzTHyg34Wrazi9IIQb9w1jfqDUab/eB2LV9UeNwAD1DWGWbyqluk/Xkf9wShv3DWN0wtCLFpZRX6O//B8YbcpBIuIiIhIxvKDXl7YvJPifjn85msX8Y8vbOXe57emdVMcfNoT/I8vbOU3X7uI4n45LN+yk/yg1+WVt1IIFhEREZGMHQoneXrDdpbeNuWEN8Wlo70neOltU1i6fjuHwsmu3+QAhWARERER6ZZ/mj2OdbUN3Q7A7dbWNLCutoH7Zo9zaGVdUwgWERERkYw1RRKUDh3AopVVjtRbtLKKcUMH0BRNOFKvKwrBIiIiIpKx0/L9vLB5Z9o9wF2JxFMs37KT0/J6ZkSaQrCIiIiIZCyasDy9YbujNZeu30400TO7GSsEi4iIiEi3nGgMWm+p1xmFYBERERHJWFPEnd5d9QSLiIiISK8VjrszyiziUt2jKQSLiIiISMZCfnc2tQj6tFmGiIiIiPRS+UFfn6p7NIVgEREREcmYMVBSEHK0ZklBCGMcLXlCCsEiIiIikrHTcv3ccN5IR2vOP38khfk5jtY8EYVgEREREclYKMfP3EnDCfqdiZNBv4c5E4eT41Kv8dEUgkVERESkW3JzvCycNc6RWgtnjSMvp2cCMCgEi4iIiEg3DcoNML20mGljC0+qzrSxhcwYV8zA3MD/b+/+g6O+7zuPv95a7e53V+KXsBBGlkymyVioRCipoOHSplYgGbc4CBPP1NBc7bv+mPauc+2kSUPOQ64NQ03q+927ubaXduL2Ck3rYENNczlDNZP0xinICchE0t25d66IXK8VhAGh3dVK+twfWhJ5rZW+u/ruD9jnY0aDVt+v3nrzmc+wL776fD/fgDpbHiEYAAAARdu4xtOx/V1FB+HejmYd29+lltVewJ0tjRAMQsuozwAAGAVJREFUAACAFamX9NQj79XRfVt9rxH2wnU6um+rnnqkS+XZFO3tCMEAAAAo2ps3UvrUyUF94Km/1vZ3rdO5Tz6ozzz0QN7t09qaYvrMQw/o3Ccf1PZ3rdMHnjqnT50c1Js3UmXtuxLBGwAAAHeBqfSMzg4n1D8yLkn66L/7htbEw/ryL/yoHu7aJEmaTM8olZmVFw6pMVqf/b6Mfup3v6HrUxlJUv/IuM4OJ7Tvfa2KR8oTTwnBAAAAKMq1ZEaff2HobV+7PpXRQ//hb77/+p54WJvWxfT6taS+lw29i/n8C0P6iQc2lC0EsxwCAAAABctkZnXq4phSmbklz/veVEaDYzeWDMCSlMrM6fTFMWUys0G2mRchGAAAAAUbv5XWifOjgdY8fn5U47fSgdbMhxAMAACAgs056cpEMtCaVyaSmnOBlsyLEAwAAICC3UzN3FF1cxGCAQAAULBkidbuplgTDAAAgGoVC4dKUtcrUd1chGAAAAAUbJVXmq3MSlU3FyEYAAAABasz5X0qXLHammKqs0BL5kUIBgAAQMGaG6I6sKM90JoHd7SreZUXaM18CMEAAAAoWDgcUl93q7xwMHHSC9dpb3erwqHyxFNCMAAAAIqyLhbW5x7uDKTW5x7u1Lp4OJBafhCCAQAAUJR4tF67t7Sot6N5RXV6O5q1e0uL4pHy3BQnEYIBAACwAhtWe/rC/q6ig3BvR7O+sL9LG1aXZy3wbYRgAAAArMjtIPzbj2z1vUbYC9fptx/ZWpEALEnlu+YMAACAu9aG1Z72va9VP/HABp2+OKbj50d1ZSL5jvPammL6mR3t2tvdqrXxcFmXQCxECAYAAEAg4pF6xSP1+vkPvkt93Zs056SbqRlNz8wqUh/SKq9edSY1r/LKtgtEPoRgAAAABKquzhQO1WlmzilUZ6ozU6hu/qO+zqpiPS4hGAAAAIGYnpnTxK1pvTD4up556bW8yyEe37lZD3dtUlNDRJH6ykRic85V5AevRE9PjxsYGKh0GwAAAMiauDWtc8MJHT51WanM3LLne+E6Henbql1bWtTUEClJT2b2snOuZ7Fj1XA1GgAAAHewq5NpfebZQX362UFfAViSUpk5ffrZQX3m2UFdnUyXuMN3IgQDAACgaBO3pnXoK6/oxeFEUd//4nBCh77yiq7dmg64s6URggEAAFCU6Zk5nRtOFB2Ab3txOKGzwwlNz/i7ihwEQjAAAACKMnFrWodPXQ6k1uFTlzVRxqvBhGAAAAAUbHZ2Ti8Mvu57DfByUpn5erOz5bkaTAgGAABAwSampvXMS68FWvOZl17TxFR5rgYTggEAAFCwmTm36D7AK3FlIqmZufJs30sIBgAAQMFupmZKUneyRHVzEYIBAABQsHRmtjR1y7RDBCEYAAAABYuGQyWpW67HKBOCAQAAULBVXv0dVTcXIRgAAAAFq68ztTXFAq3Z1hRTfZ0FWjMfQjAAAAAK1hSP6PGdmwOt+fjOzWpqiAZaMx9CMAAAAAoWCtXp4a5N8sLBxEkvPF8vxJVgAAAAVLOmhoiO9G0NpNaRvq1qaogEUssPQjAAAACKEqmv064tLfrIlpYV1fnIlhbt3tJStp0hJEIwAAAAVqCpIaJjH39v0UH4I1tadOzj79W6Ml4FlgjBAAAAWKH1jVF94dEuPf1ol+81wl64Tk8/2qXfebRL6xvLczPcQuXZiA0AAAB3taaGiPq6W/Xj72nWC4Ov65mXXtOViaQ2rY7qhzY06O/evKXXb6TV1hTTE/9os/a8d5OaGiJlXQKxECEYAAAAgYjU12njGk8/s6NND23dKEm6mZxRMjOrWDikVbH56Lk+HlYsGq5kq4RgAAAABOPa1LSm0rM6dXFMJy6M6spE8h3ntDXFdGB7u/q6WxWPhrQuXt61wLeZc64iP3glenp63MDAQKXbAAAAQNYb11M6N5zQkTNDSmXmlj3fC9fp8J5O7drSoo1rvJL0ZGYvO+d6FjvGlWAAAACsSOJGSp99blD9I+O+vyeVmdOTz1/W2ZGEju3vUsvq0gThfNgdAgAAAEV743pKh04WFoAX6h8Z16GTg0rcSAXc2dIIwQAAACjKtalpnRtOFB2Ab+sfGdfZoYTempoOqLPlEYIBAABQlKn0rI6cGQqk1pEzQ7qVng2klh+EYAAAABQsmc7o1MUxXzfB+ZHKzOn0pTEl05lA6i2HEAwAAICCXZ3K6MSF0UBrHj8/qqtThGAAAABUKee06D7AK3FlIqly7d5LCAYAAEDBJlMzpambLk3dXIRgAAAAFCyZKc1NbKkS1c1FCAYAAEDBYuFQSep69aWpm6vkIdjMHjKz/2Vmr5rZoUWOf9LMhsxs0MzOmdn9pe4JAAAAK9PolebBw6Wqm6ukIdjMQpL+s6SflNQp6YCZdeac9m1JPc65LknPSvqdUvYEAACAlTOT2ppigdZsa4rJLNCSeZX6SvAOSa865/6vc25a0p9J6lt4gnOu3zk3lX35TUn3lbgnAAAArND6eFgHtrcHWvPgjnY1N0YDrZlPqUNwq6QrC15/N/u1fH5O0lcXO2Bmv2hmA2Y2MD6+skfzAQAAYGVi0bD6ulvlhYOJk164Tnu3tSpaorXGuarmxjgz+4SkHklPL3bcOfcHzrke51xPc3NzeZsDAADAO8SjIR3ek7vStTiH93SqIVqeACyVPgSPSWpb8Pq+7Nfexsx2S3pS0l7nXLrEPQEAACAA6+IR7drSot6OlV2g7O1o1u7OFq2NRwLqbHmlDsEXJL3HzN5lZhFJj0k6vfAEM3ufpN/XfAB+s8T9AAAAIEAb13g6tr+r6CDc29GsY/u71LLaC7izpZU0BDvnZiT9iqSvSRqW9OfOue+Y2efNbG/2tKclNUr6CzO7aGan85QDAABAFWpZ7empR7p0dN9W32uEvXCdju7bWpEALEnmyvWA5gD19PS4gYGBSrcBAACABd6amtat9KxOXxrT8fOjujKRfMc5bU0xHdzRrr3drWqIhEq6BMLMXnbO9Sx2rDy7EQMAAOCutzYe0dq49MTO+/WxbZvknDSZnpFpVk4hNUbrZSY1N0bLtgtEPlWzOwQAAADuLmaSnDQ1Pf/n7QdhzM3NVbItSVwJBgAAQECuTU1rKj2rUxfHdOJC/uUQB7a3q6+7VfFoSOvKuCPEQqwJBgAAwIq9cT2lc8MJHTkzpFRm+Su9XrhOh/d0ateWFm1cU5ob41gTDAAAgJJJ3Ejps88Nqn/E/1N9U5k5Pfn8ZZ0dSdx9W6QBAADg7vbG9ZQOnSwsAC/UPzKuQycHlbiRCrizpRGCAQAAUJRrU9M6N5woOgDf1j8yrrNDCb01NR1QZ8sjBAMAAKAoU+lZHTkzFEitI2eGdCs9G0gtPwjBAAAAKFgyndGpi2O+boLzI5WZ0+lLY0qmM4HUWw4hGAAAAAW7OpXRiQujgdY8fn5UV6cIwQAAAKhSzmnRfYBX4spEUuXavZcQDAAAgIJNpmZKUzddmrq5CMEAAAAoWDJTmpvYUiWqm4sQDAAAgILFwqGS1PXqS1M3FyEYAAAABWv0SvPg4VLVzUUIBgAAQMHMpLamWKA125piMgu0ZF6EYAAAABRsfTysA9vbA615cEe7mhujgdbMhxAMAACAgsWiYfV1t8oLBxMnvXCd9m5rVbREa41zEYIBAABQlHg0pMN7OgOpdXhPpxqi5QnAEiEYAAAARVoXj2jXlhb1djSvqE5vR7N2d7ZobTwSUGfLIwQDAACgaBvXeDq2v6voINzb0axj+7vUstoLuLOlEYIBAACwIi2rPT31SJeO7tvqe42wF67T0X1bKxKAJak8G7EBAADgrrZxjac9XffqwQc26PSlMR0/P6orE8l3nNfWFNPBHe3a292qhkiorEsgFiIEAwAAIBBr4xGtjUtP7LxfH9u2Sc5Jk+kZpTKz8sIhNUbrZSY1N0bLtgtEPiyHAAAAQKDqsk+8MJPkpFhk/s/vPwjDuUq19n1cCQYAAEAgbiYzupGa0amLYzpxIf9yiAPb29XX3arVXr1WxcIV6FQyVwVJvFA9PT1uYGCg0m0AAAAgK3E9pbPDCR05M6RUZm7Z871wnQ7v6dTuLS1qWVOaG+PM7GXnXM9ix7gSDAAAgBVJ3Ejp0HOD6h8Z9/09qcycnnz+ss6OJNgiDQAAAHeWxPWUDp0sLAAv1D8yrkMnB5W4kQq4s6URggEAAFCUm8mMzg4nig7At/WPjOvsUEKTqUxAnS2PEAwAAICi3EjN6MiZoUBqHTkzpOvJmUBq+UEIBgAAQMHS0/O7QPi5Cc6PVGZOpy+NKT1dniBMCAYAAEDBxm9N68SF0UBrHj8/qvFb04HWzIcQDAAAgII5p0X3AV6JKxPJsj1HgxAMAACAgk2mSrNsYTLNcggAAABUqWRmtiR1UyWqm4sQDAAAgILFwqGS1PXqS1M3FyEYAAAABWv0SvPg4VLVzUUIBgAAQMHMpLamWKA125piMgu0ZF6EYAAAABSsuSGiA9vbA615cEe7NqyKBlozH0IwAAAAChaN1Kuvu1VeOJg46YXrtHdbqyKsCQYAAEA1W+3V6/CezkBqHd7TqTWx8qwHlgjBAAAAKNKqWFi7t7Sot6N5RXV6O5q1u7NFjV44oM6WRwgGAABA0VrWeDq2v6voINzb0axj+7vUstoLuLOlEYIBAACwIi2rPR17pEtH9231vUbYC9fp6L6tFQnAklS+hRcAAAC4a7Ws8dTXvUkPPrBBpy+N6fj5UV2ZSKoxEtK6hoiu3ZrW5PSs2ppiOrijXXu7W7XGqy/rEoiFCMEAAAAIRKMXVqMX1hM779fHtm2SJN1MziiZmVUsHNKq7I1v6+NhxaKVCb+3EYIBAAAQiGtT05pKz+rUxTGduDB/JThXW1NMB7a3q6+7VfFoSOvikQp0KplzriI/eCV6enrcwMBApdsAAABA1hvXUzo3nNCRM0NKZeaWPd8L1+nwnk7t2tKijWtKsybYzF52zvUsdowrwQAAAFiRxI2UPvvcoPpHxn1/Tyozpyefv6yzIwl2hwAAAMCd5Y3rKR06WVgAXqh/ZFyHTg4qcSMVcGdLIwQDAACgKNempnVuOFF0AL6tf2RcZ4cSemtqOqDOlkcIBgAAQFGm0rM6cmYokFpHzgzpVno2kFp+EIIBAABQsGQ6o1MXx3zdBOdHKjOn05fGlExnAqm3HEIwAAAACnZ1KqMTF0YDrXn8/KiuThGCAQAAUKWc06L7AK/ElYmkyrV7LyEYAAAABZtMzZSmbro0dXMRggEAAFCwZKY0N7GlSlQ3FyEYAAAABYuFQyWp69WXpm4uQjAAAAAK1uiV5sHDpaqbixAMAACAgplJbU2xQGu2NcVkFmjJvAjBAAAAKNj6eFgHtrcHWvPgjnY1N0YDrZkPIRgAAAAFi0XD6utulRcOJk564Trt3daqaInWGuciBAMAAKAo8WhIh/d0BlLr8J5ONUTLE4AlQjAAAACKtC4e0a4tLertaF5Rnd6OZu3ubNHaeCSgzpZHCAYAAEDRNq7xdGx/V9FBuLejWcf2d6lltRdwZ0sjBAMAAGBFWlZ7euqRLh3dt9X3GmEvXKej+7ZWJABLUnk2YgMAAMBdbeMaT3u67tWDD2zQ6UtjOn5+VFcmku84r60ppoM72rW3u1UNkVBZl0AsRAgGAABAINbGI1obl57Yeb8+tm2TnJMm0zNKZWblhUNqjNbLTGpujJZtF4h8CMEAAAAIVCwa1n3RcKXbWBJrggEAAFBzCMEAAACoOYRgAAAA1BxCMAAAAGoOIRgAAAA1hxAMAACAmkMIBgAAQM0hBAMAAKDmmHOu0j0UzMzGJf19BX70PZK+V4Gfe6dhnPxhnPxhnPxhnPxjrPxhnPxhnPyp1Djd75xrXuzAHRmCK8XMBpxzPZXuo9oxTv4wTv4wTv4wTv4xVv4wTv4wTv5U4zixHAIAAAA1hxAMAACAmkMILswfVLqBOwTj5A/j5A/j5A/j5B9j5Q/j5A/j5E/VjRNrggEAAFBzuBIMAACAmkMIBgAAQM0hBOcwsz8yszfN7HKe42Zm/9HMXjWzQTN7f7l7rAY+xulBM7tuZhezH58rd4/VwMzazKzfzIbM7Dtm9quLnFPzc8rnONX8nDIzz8zOm9ml7Dj91iLnRM3sy9n59Ldmtrn8nVaWz3F6wszGF8ynn69Er9XAzEJm9m0ze2GRYzU/n25bZpyYT1lm9pqZvZIdh4FFjlfNe159pX5wFfuSpP8k6Y/zHP9JSe/JfvyopP+S/bPWfElLj5MkfcM593B52qlaM5J+3Tn3LTNbJellM3vROTe04BzmlL9xkphTaUkfds5NmllY0t+Y2Vedc99ccM7PSbrmnHu3mT0m6QuSfroSzVaQn3GSpC87536lAv1Vm1+VNCxp9SLHmE8/sNQ4ScynhXqdc/kejFE173lcCc7hnPu6pIklTumT9Mdu3jclrTWze8vTXfXwMU6Q5Jz7B+fct7Kf39T8P6CtOafV/JzyOU41LztHJrMvw9mP3Lub+yQ9k/38WUm7zMzK1GJV8DlOkGRm90naI+mLeU6p+fkk+Ron+Fc173mE4MK1Srqy4PV3xZt1Pjuzv478qpn9cKWbqbTsrxHfJ+lvcw4xpxZYYpwk5tTtX8lelPSmpBedc3nnk3NuRtJ1SevL22Xl+RgnSfp49texz5pZW5lbrBb/XtJvSJrLc5z5NG+5cZKYT7c5Sf/DzF42s19c5HjVvOcRglEq39L887q3SfpdSc9XuJ+KMrNGSV+R9GvOuRuV7qdaLTNOzClJzrlZ51y3pPsk7TCzrZXuqRr5GKe/lLTZOdcl6UX94GpnzTCzhyW96Zx7udK9VDOf41Tz82mBH3POvV/zyx7+uZl9qNIN5UMILtyYpIX/w7sv+zUs4Jy7cfvXkc65v5IUNrN7KtxWRWTXJH5F0p86504ucgpzSsuPE3Pq7Zxzb0nql/RQzqHvzyczq5e0RtLV8nZXPfKNk3PuqnMunX35RUk/Uu7eqsAHJe01s9ck/ZmkD5vZf8s5h/nkY5yYTz/gnBvL/vmmpOck7cg5pWre8wjBhTst6Wezdzd+QNJ159w/VLqpamNmG2+vGzOzHZqfa7X2D6eyY/CHkoadc/82z2k1P6f8jBNzSjKzZjNbm/08JukjkkZyTjst6fHs549K+mtXY09F8jNOOWsQ92p+HXpNcc591jl3n3Nus6THND9XPpFzWs3PJz/jxHyaZ2YN2ZubZWYNkj4qKXcXqap5z2N3iBxmdkLSg5LuMbPvSvpXmr+pQs6535P0V5J+StKrkqYk/ZPKdFpZPsbpUUm/bGYzkpKSHqu1fzizPijpH0t6Jbs+UZL+paR2iTm1gJ9xYk5J90p6xsxCmv9PwJ87514ws89LGnDOndb8fyb+xMxe1fzNq49Vrt2K8TNO/8LM9mp+Z5IJSU9UrNsqw3zyh/m0qBZJz2WvV9RLOu6c++9m9ktS9b3n8dhkAAAA1ByWQwAAAKDmEIIBAABQcwjBAAAAqDmEYAAAANQcQjAAAABqDiEYAKqEma01s39W6T4AoBYQggGgeqyVRAgGgDIgBANA9Tgm6YfM7KKZPW1mnzazC2Y2aGa/JUlmttnMRszsS2b2v83sT81st5n9TzP7P9mn6cnMftPM/sTMXsp+/ReyX7/XzL6e/RmXzezHK/j3BYCKIQQDQPU4JOnvnHPdkl6U9B5JOyR1S/oRM/tQ9rx3S/o3kjqyHwcl/ZikT2n+SXu3dUn6sKSdkj5nZpuy534t+zO2SbooAKhBPDYZAKrTR7Mf386+btR8KB6V9P+cc69Ikpl9R9I555wzs1ckbV5Q45RzLikpaWb9mg/UFyT9kZmFJT3vnCMEA6hJXAkGgOpkkp5yznVnP97tnPvD7LH0gvPmFrye09svbricms4593VJH5I0JulLZvazJegdAKoeIRgAqsdNSauyn39N0j81s0ZJMrNWM9tQYL0+M/PMbL2kByVdMLP7JSWcc/9V0hclvT+Y1gHgzsJyCACoEs65q9kb3C5L+qqk45JeMjNJmpT0CUmzBZQclNQv6R5JR5xzr5vZ45I+bWaZbE2uBAOoSeZc7m/LAAB3OjP7TUmTzrl/XeleAKAasRwCAAAANYcrwQAAAKg5XAkGAABAzSEEAwAAoOYQggEAAFBzCMEAAACoOYRgAAAA1Jz/D+xO5uSa3ztpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXRcd33v+89XmtHskfWQyJYUrEhxAsGyMLIKskngsLBqU6AmVuKWNvZpC4VL7rqnDxTO4eI0qLdFJwdDWzjtWbSH0FIO3GtzCnViN6YNdVDSe3myZWqbRFaAkzZyFDwRsSNZ1jxp9Lt/SApCliyN9Nt6yLxfa3lJs2fPN18r8pqPtr779zPnnAAAAIBCUrTcDQAAAABLjRAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcCLL3cBCrFu3zm3YsGG52wAAAMAKdurUqZ8456pnem5VhuANGzaou7t7udsAAADACmZmz8z2HOMQAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHBW5WYZSyWZzuqFkawk6XJyVMlsTvFoscrj41+2taVRxWPR5WwRAAAAC0AInsGlkYxG0jkdOd2vQyf7dP5i8qpz6qvi2ru1Qe0tdSqNFev60pJl6BQAAAALYc655e4hb62trS6sbZMvDKb06LmEOo/1KJUdm/P8IFqkjl1N2rGpVjdUBqH0BAAAgPyZ2SnnXOtMz3EleIrEUEr3PnhWXb0D835NKjum+x56Qsd7Ezqwp1m1FQRhAACAlY4b4yZcGEzp3sP5BeCpunoHdO/hs0oMpTx3BgAAAN8IwRqfAf5Gb0LfWGAAnvSN3gE9ei6hF0cynjoDAABAGAjBkkbSOX3s4R4vtT72cI+upHNeagEAACAcBR+Ck+ms/v7sc/O6CW4+UtkxPXz2OSXTWS/1AAAA4F/Bh+AXRrL6f777jNea//d3n3lpfWEAAACsPAUfgiXNuA7wSqoHAAAAvwo+BF9OjYZSdzikugAAAFi8gg/B6Ww4N7GlRv3MGAMAAMC/gg/BJZFwvgSx4oL/0gIAAKxYBZ/U1sTC2TSvNFYcSl0AAAAsXsGHYEmqr4qv6HoAAADwq+BDcLykSL/0uhu91vzl192oeJQrwQAAACtVwYfgbM5pR2ONgqifL0UQLdLPN9Yom+PGOAAAgJWq4ENwVTyqHw+m9OG3bfRS78Nv26gfD6W0rizmpR4AAAD8K/gQHI9FtbmuUvXXl2pHY82iau1orFH99aXavL5SMcYhAAAAVqyCD8G53Jh+PJjSTWtL9bs7btX2jdULqrN9Y7V+d8etumltqS4MJpVjHAIAAGDFKvgQ/JPhtK6LR3TqmRe173Pf0bteX6+Od26a94xwEC1Sxzs36V2vr9e+z31H33vmRVWWRvWT4XTInQMAAGChCj4EyyQn08ceflJXMjn91sHv6XTfi/ry+2/TB3feOutyZ/VVcX1w56368vtv0+m+F/VbB7+nK5mc/ujhJ+WcSbbEfw8AAADMWzg7RawizknHzj6nVPan4wt/f/bH+toTF7SjsUb/6Rc2av11cWVzY0plxxREixQtLtJzLyb18Nkf68+/8SPlxtxLr01lx/S17z+nd7XWL8dfBwAAAPNQ8CE4m3P66veevep4bszp6z0Jfb0nIUmKFJlKIkXKjI5pdEronclXTj2ru37O79rDAAAA8KfgQ7BzTucvJuc8b3TMaTSTm1fN8xeTcrp2UAYAAMDyKfiZ4OH0aEh15xeYAQAAsPQKPgSnR8NZyiyTJQQDAACsVAUfguMhbWoRsFkGAADAilXwIbgsCGcsOqy6AAAAWLyCD8HRIpt1LeCFqq+KK1pc8F9aAACAFavgk9q6sph+/bYNXmv+xu0btK4s5rUmAAAA/Cn439kXFxfpjuZX6FP/9NTPbJixUEG0SO987StUXMSWcfhZ2WxOA1fSGnPS5dSoktmc4tFilQcRFZlUvSamKLPkAAAsiYIPwZK0tiymP9r9Gn3k776/6Fofa3+N1nIVGFOMpEd1KZnVkdP9OnSib8Z1qeur4tq7rUHtLXW6Ph5VaYx/mgAAhKngxyEkqSRSpLc23aCdm2pmPSdSZCotKVbkGld4d26q0Vs33aCSCF9WjHt+KKUHT/drx58+pk/+41Ozbsxy/mJSn/zHp7TjTx/Tg6f79fxQaok7BQCgsHC5aYo/2r1Zzj2hR3ufV3GRaeemGv3ia1+huuviSo+OKZXNKYgWKxYpUv+LSR07+2M92vu8cmNOOxpr9Ee7Ny/3XwEryPNDKX3k8Fl19Q7M+zWp7Jjue/AJHT+X0Cf2NKumIgixQwAACpc5t/q2921tbXXd3d3e6mVGx/T0T4b1+f/3aX1g56v1vwauqCIe1WNPPa+/+96zs/76+pded6O2b6zRUDKrV1av0Z8d/4He9+ZbdPO6Mq4GF7iFBODp2hqrCcIAACyCmZ1yzrXO9BxJTdLgSEbfe+aiPrDj1crknPovJXX3A9/Wfz3+w2v++vq/Hv+h7n7g2+q/lFQm5/SBHa/WqWcuanAks8R/A6wkI+lR/dO5xKICsCR19Q7o+LmERjLhbO0NAEAhK/gQnMuNaSg9qttuWSuZ6WMPP6l7H/z+vFeKSGXHdO+D39fHHn5SMtNtr1yrofSocrlwtmPGyncpmVXnwz1ean3s4R5dGsl6qQUAAH6q4EPwYCqrFy6nVRIp1kePfH/BV++6egf00SPfV0lxsV4YTmkwRXApRNlsTkdO93tZbk8a/yHr6Ol+ZbM5L/UAAMC4gg/BI5mcNqxbo8efGvDy6+vHnxrQzWvLNJIhtBSi54fTOnSiz2vNgyf69Pxw2mtNAAAKXcGH4KCkSJncmDqP+fn1deexHqVzYwpKCv5LW5DGnGadI1+o8xeTGlt9968CALCiFXxSM0lHTz/n9dfXf3/mObFfXGEaToVzE9twmpvjAADwqeBD8Eh6TIdO+v/19UiaG+MKUXKes7vz2XxlqhQzwQAAeMVmGQrn19coTEF05p8r8918ZboY604DAOBVwYfgyyGt4sCvrwtTeRC96tjuLev13jdt0GM/GNCffH3mrZMnN1/5D9tfqc9/89909Mxzc9YFAAALV/Ah2Ncs8NV1+fV1oaqviuv8xaTWlBTrk7+8RReGkrr7c9+55vfa5OYr//3x/6UPv22j3vaaG/R/fvWMrmRyqq+KL2H3AAAUhoL/HWs8WhxK3SASTl2sbEG0SHu3NmhNSbE+9+5WfeXUeXU+fC6vzVc6Hz6nr5w6r8+9u1VrSoq1b1tDaN+nAAAUqoK/ElwWhPMlCKsuVrZkJqfdLet187o1euCfn9ZjTy1s7enJ1/3Ju7botTdWTmydHPPYKQAAha3grwSbyfuvm+ur4jLWSCtIRUWmIFKki1cyCw7Akx57akAXr2QURIpUNM9VJAAAwPwQgiXt3dbgtea+bQ2sE1ygisyUHnV+N18ZdSrmpyoAALwq+BD8YjKr3VvWz7q0Vb6CaJHu2LJeg8lwVp3AynZ9PKIjp/u9br5y9Ey/roszXgMAgE8FH4LLg4i+/uQFdexq8lLvD97ZpEeeuMBMcIF6YSQbyuYrL4zwQxUAAD4VfAguMtPffOvfdNsta9XWWL2oWm2N1XrDzWv1hW//m4r49XVBci6czVfc1ftnAACARSj4EByLmH75dTfq7ge+rc72zQsOwm2N1eps36y7H/i23vX6GxWww1dBGk6Fs0kKm68AAOBXwSe164IS7Wper8vpUd31mW/q99+xSfffuXneM8JBtEj337lZv/+OTbrrM9/U5fSodr12vSpLS0LuHCtRMqRNUth8BQAAvwo+BEejxSoPIvrw2zZqYDijt376n5XK5vRPH3yLPvL2jbMun1ZfFddH3r5R//TBtyiVzemtn/5nDQxn9OG3bVRZEFG0uOC/tAWJzVcAAFgduHtLUnksoje+cp22b6zWY08NqPPYOX3ikaf0uz//Kn3211+v0pKIrqRHlcqOKYgWaU0sopHMqL5x7nnt+NTjyoyOrwSwfWO13vjKdSrnpriCxeYrAACsDryzSiqNRbRuTYk+uPPVksY3KciMjulPvv4D/cnXfyBJCiJFKgsiGk6NKjV69fJX2zdW64M7X611a0pUWsKXtZDVV8W93hznezMXAADAOMRLqisCra8MdM+bb1HHOzddNROcGh3TT4YzVwXgIFqkjndu0j1vvkXrKwNVVwRL2TZWmHhJkfZu9b/5SmkJ4xAAAPjEJcspqisCOUnZ3Ji+fM/tevyp5/XV7z0741W9+qq4fvl1N+otG2s0OJLRq2rKCMBQMjOm9pY6/fk3fuhlw4wgWqTdW+o0kslprYf+AADAOELwNDUVgcqCiC6NZHVrTZnu+8VNWlsWUzY39tJMcLS4SC8MpzXmnGrKY3p1bRkjEHjJ0wPD6tjVpPseemLRtTp2NenpgcvasK7MQ2cAAGASyW0GpSURlZZEVLOmRANX0hpz0uXUqDKjOZVExleTqLsuUHV5wCoQ+BmRItPZ/kHd2bJebY3V6uodWHCttsZqbd9YrSOnn9Oraso9dgkAAAjB1xCNFmv9daXL3QZWESuS3vaaG/SbXzihL773Nt374NkFBeG2xmp9/K5m/cbnv6O/+PetKuJnLQAAvOKtFfBoNOdkcrp7a4N+9bPf0n9u37ygzVf+c/tm/epnv6W7tzbIzCmbY99kAAB8IgQDHsUipnM/HtIbblmrm6vL9KZPdKmmIqZHP7R9XpuvPPqh7aqpiOlNn+jSzdVlesMta3Xux0Nsww0AgGeMQwAeXReUqPEVlXp6YPildaff/8VTipcU649/6bX60vveoGIzDadHlcrmFESLVRaLKOecnnj2Re389ONKZnIvrTvdfympTTdUsg03AACeEYIBjya34b4wlFRFPKp73nyL3nzrOv3xI0/ptw+dfum8spJiXb+mRJeuZDScyb10fHLd6U03VCiZzenCUFJb6q/jBkwAADzjnRXwrDwW0dYNa/WFb/6rLo1k1VBVqi/fc7s+uPPWa45DfHDnrfryPberoapUl0ay+sI3/1VbN6xlG24AAELAuyvg2eQ23P/H9lfp08d/oPJYRO/7dzfrzpY67XndjTKThpLZl9adrohH5Zw0NuZ0aSSjo6ef0+X0KNtwAwAQIt5dgRBM7h54z5tvUXV5iUpLojpyul+HTvbNugPh3q0Nam+p0+/ueJUGLmfYhhsAgBCZc6tv6aXW1lbX3d293G0Ac7owmNKj5xLqPNYzr22Ug2iROnY1acemWt1QSQAGAGAxzOyUc651pudCnwk2s7eb2VNm9iMz2z/D8w1m1mVm/2JmZ83sF8PuCVgKiaGU7n3wrO576Il5BWBJSmXHdN9DT+jeB88qMZQKuUMAAApXqCHYzIolfUbSOyQ1SdprZk3TTvuopL91zv2cpLsl/UWYPQFLITGY0v7DC9stTpK6ege0/zBBGACAsIR9JXibpB855552zmUkfVlS+7RznKSKic8rJT0Xck9AqC4nszp+LrHgADypq3dAx3sSGk5lPXUGAAAmhR2C6ySdn/L42YljU/2hpF8zs2clfU3S78xUyMzuMbNuM+seGFhcuADCNJQaVeexHi+1Oo/1aDA56qUWAAD4qZWwTvBeSV9wzt0o6RclfcnMrurLOfeAc67VOddaXV295E0C85HOjOrI6f55zwDPJZUd09Ez/UpnCMIAAPgUdgjul1Q/5fGNE8emep+kv5Uk59y3JQWS1oXcFxCKgSsZHTrZ57XmwRN9GriS8VoTAIBCF3YIPinpVjO72cxKNH7j29Fp5/RJ2iFJZrZJ4yGYeQesSs5pxnWAF+P8xaRW4UqGAACsaKGGYOfcqKTflvSIpHMaXwXiSTP7mJntnjjtP0p6v5mdkXRI0nvcaly8GJA0nApnbGE4zTgEAAA+hb5jnHPuaxq/4W3qsT+Y8nmPpDeF3QewFJLZXCh1UyHVBQCgUK2EG+OAl414tDiUukEknLoAABQqQjDgUVkQzi9XwqoLAEChIgQDHplJ9VVxrzXrq+Iy81oSAICCRwgGPKpeU6K9Wxu81ty3rUE15TGvNQEAKHSEYMCjWElE7S11CqJ+/mkF0SLt3lKnEmaCAQDwihAMeFYRRNSxq8lLrY5dTaqMMw8MAIBvhGDAs/J4VDs31aqtcXHbe7c1VmtnU63KgqinzgAAwCRCMBCC2spAB/Y0LzgItzVW68CeZtVWBJ47AwAAEiEYCE1tRaADdzXr/js3z3tGOIgW6f47NxOAAQAIGcOGQIhqKwO1t6zX9o01OnqmXwdP9On8xeRV59VXxbVvW4N2t9SpMogwAgEAQMgIwUDIyoKoyoKo3nP7Tbpjy3o5Jw2nR5XK5hREi1UWi8hMWlsaVTxG+AUAYCkQgoGQXRrJaCSd05HT/Tp0cvxKcFlJsa5fU6JLVzIazuRUXxXX3q0Nam+pU2msWNeXlix32wAAvKyZc265e8hba2ur6+7uXu42gDldGEzp0XMJdR7rUSo7Nuf5QbRIHbuatGNTrW6oZCYYAIDFMLNTzrnWmZ7jSjAQksRQSvc+eFZdvQPzfk0qO6b7HnpCx3sT3BwHAECIWB0CCMGFwZT2H84vAE/V1Tug/YfPKjGU8twZAACQCMGAd5dGMnr0XGLBAXhSV++Ajvck9OJIxlNnAABgEiEY8GwknVPnsR4vtTqP9ehKOuelFgAA+ClCMOBRMp3VkdP987oJbj5S2TEdPdOvZDrrpR4AABhHCAY8emEkq0Mn+7zWPHiiTy+MEIIBAPCJEAx45Jxm3BFuMc5fTGoVrmQIAMCKRggGPBpOjYZTNx1OXQAAChUhGPAomQ3nJrZUSHUBAChUhGDAo3i0OJS6QSScugAAFCpCMOBRWRDOJoxh1QUAoFARggGPzKT6qrjXmvVVcZl5LQkAQMEjBAMerS2Nau/WBq81921rUHVZzGtNAAAKHSEY8Gg4k1N7S52CqJ9/WkG0SLu31GkoxTrBAAD4RAgGPBodc3r+ckodu5q81OvY1aTEUFKjYywUDACAT4RgwKPLqVHd9Rff0s9vqlFbY/WiarU1VmvHphrt+ctvh7b+MAAAhYoQDHiUnljP9zf/5oQO7GlecBBua6zWgT3Nes/fnBivOzrmrUcAAEAIBryKTawT3HthWO/+/Hf1X+56re6/c/O8Z4SDaJHuv3OzPn7Xa/Xuz39XvReGJUklEf6pAgDgE++sgEflU9bz7b0wrNs//g1tekW5Hv3Qdn3k7RtnXT6tviquj7x9ox790HZtekW5bvv4N14KwNPrAgCAxeOdFfAoUmSqr4rr/MXkS8f2/OW3VRZE9Ne/8Xq9s3m9JGk4PaqxsZyKiopVFhv/Z/jjF0f0tj/756vmf+ur4ooUsVAwAAA+cSUY8KiqtETvvn3DVcdzY04vDGeUc04myTmn9Oj4R5OUc07PX04rN8MqEO++fYOq1rBOMAAAPnElGPCouLhI72xerz/5+lNKZcdvZvur33i9Nr2iUkdO9+vj/9j7M1eJJ9VXxbV3a4OOf/AtOvfjQf1vXzwlaXxG+J3N61XMlWAAALziSjDgWdWaEnW2b9ZNVXF98yNtSgylteNTj+mTjzw1YwCWpPMXk/rkI09px6ceU2IorW9+pE03VcXV2b5ZVWtKlvhvAADAy585t/oW4W9tbXXd3d3L3QYwq4tXMsqMjuneB8+qq3cg79e3NVbr43c1KxYp0vWEYAAAFsTMTjnnWmd6jivBQAiyiwjAktTVO6B7HzyrTI71gQEACAMhGPDscjKr4+cSCw7Ak7p6B3S8J6HhVNZTZwAAYBIhGPBsKDWqzmM9Xmp1HuvRYJItkwEA8I0QDHiUzozqyOn+l1aGWKxUdkxHz/QrnSEIAwDgEyEY8GjgSkaHTvZ5rXnwRJ8GrmS81gQAoNARggGPnNOsy6At1PmLSa3CRVwAAFjRCMGAR9O3PPZWN804BAAAPhGCAY+S2VwodVMh1QUAoFARggGP4tHiUOoGkXDqAgBQqAjBgEdlQWRV1QUAoFARggGPzKT6qrjXmvVVcZl5LQkAQMEjBAMeVa8p0d6tDV5r7tvWoJrymNeaAAAUOkIw4FGsJKL2ljoFUT//tIJokXZvqVMJM8EAAHhFCAY8qwgi6tjV5KVWx64mVcaZBwYAwDdCMOBZeTyqnZtq1dZYvag6bY3V2tlUq7Ig6qkzAAAwiRAMhKC2MtCBPc0LDsJtjdU6sKdZtRWB584AAIBECAZCU1sR6MBdzbr/zs3znhEOokW6/87NBGAAAELGsCEQotrKQO0t67V9Y42OnunXwRN9On8xedV59VVx7dvWoN0tdaoMIoxAAAAQMkIwELKyIKqyIKr3vnGD7tiyXs5Jw+lRpbI5BdFilcUiMpNqymOsAgEAwBJhHAJYYmaSnBQtGv84uRGGG3PL2RYAAAWFK8FAyC4nsxpKjerI6X4dOjn7OMTerQ1qb6lTRRBReZxxCAAAwmTOrb6rT62tra67u3u52wDmlBhM6fi5hDqP9SiVHZvz/CBapI5dTdq5qVa1ldwYBwDAYpjZKedc60zPcSUYCEliKKX9D55VV+/AvF+Tyo7pvoee0PHeBCtEAAAQImaCgRAkBlPafzi/ADxVV++A9h8+q8RQynNnAABAIgQD3l1OZnX8XGLBAXhSV++AjvckNJzKeuoMAABMIgQDng2lRtV5rMdLrc5jPRpMjnqpBQAAfooQDHiUzoyvAjGfm+DmI5Ud09Ez/UpnCMIAAPhECAY8GriS0aGTfV5rHjzRp4ErGa81AQAodIRgwCPnNOM6wItx/mJSq3AlQwAAVjRCMODRcCqcsYXhNOMQAAD4RAgGPEpmc6HUTYVUFwCAQkUIBjyKR4tDqRtEwqkLAEChIgQDHpUF4WzCGFZdAAAKFSEY8MhMqq+Ke61ZXxWXmdeSAAAUPEIw4FH1mhLt3drgtea+bQ2qKY95rQkAQKEjBAMexUoiam+pUxD1808riBZp95Y6lTATDACAV4RgwLOKIKKOXU1eanXsalJlnHlgAAB8IwQDnpXHo9q5qVZtjdWLqtPWWK2dTbUqC6KeOgMAAJMIwUAIaisDHdjTvOAg3NZYrQN7mlVbEXjuDAAASIRgIDS1FYEO3NWs++/cPO8Z4SBapPvv3EwABgAgZKEPG5rZ2yX9maRiSX/lnDswwzm/IukPJTlJZ5xz+8LuC1gKtZWB2lvWa/vGGh0906+DJ/p0/mLyqvPqq+Lat61Bu1vqVBlEGIEAACBkoYZgMyuW9BlJb5X0rKSTZnbUOdcz5ZxbJd0r6U3OuUtmVhNmT8BSKwuiKguieu8bN+iOLevlnDScHlUqm1MQLVZZLCIzqaY8xioQAAAskbCvBG+T9CPn3NOSZGZfltQuqWfKOe+X9Bnn3CVJcs49H3JPwLKIlUR0YwkrPQAAsBIsaCbYzKrmeWqdpPNTHj87cWyqV0t6tZl908y+MzE+AQAAAIRmzhBsZh+d8nmTmf1A0ikz+zcze4OHHiKSbpW0XdJeSZ8zs+tm6OMeM+s2s+6BgQEP/1kAAAAUqvlcCd4z5fM/lvQB59zNkn5F0qfneG2/pPopj2+cODbVs5KOOueyzrl/lfQDjYfin+Gce8A51+qca62uXtz6qwAAAChs+Y5DrHfO/YMkOedOSIrPcf5JSbea2c1mViLpbklHp53zkMavAsvM1ml8POLpPPsCAAAA5m0+d+ncYmZHJZmkG82s1Dk3MvHcNddxcs6NmtlvS3pE40ukfd4596SZfUxSt3Pu6MRzv2BmPZJykj7snHthoX8hAAAAYC7zCcHt0x4XSZKZ1Ur6y7le7Jz7mqSvTTv2B1M+d5I+NPEHAAAACN2cIdg59/gsxxMaXwNYkmRm/8059zseewMAAABC4XPb5Dd5rAUAAACExmcIBgAAAFYFQjAAAAAKjs8QbB5rAQAAAKGZdwg2s9fOccqfLbIXAAAAYEnkcyX4L8zshJn9BzOrnP6kc+4L/toCAAAAwjPvEOyce7Okf6/xbZBPmdlBM3traJ0BAAAAIclrJtg590NJH5X0EUlvkfTnZtZrZnvCaA4AAAAIQz4zwc1m9mlJ5yT9vKQ7nHObJj7/dEj9AQAAAN7NZ9vkSf9N0l9J+n3nXHLyoHPuOTP7qPfOAAAAgJDkE4J3SUo653KSZGZFkgLn3Ihz7kuhdAcAAACEIJ+Z4OOS4lMel04cAwAAAFaVfEJw4Jwbnnww8Xmp/5YAAACAcOUTgq+Y2esmH5jZ6yUlr3E+AAAAsCLlMxP8e5K+YmbPaXyL5Bsk/WooXQEAAAAhmncIds6dNLNGSRsnDj3lnMuG0xYAAAAQnnyuBEvSVkkbJl73OjOTc+6L3rsCAAAAQjTvEGxmX5L0SkmnJeUmDjtJhGAAAACsKvlcCW6V1OScc2E1AwAAACyFfFaHeELjN8MBAAAAq1o+V4LXSeoxsxOS0pMHnXO7vXcFAAAAhCifEPyHYTUBAAAALKV8lkh73MxuknSrc+64mZVKKg6vNQAAACAc854JNrP3S/qqpM9OHKqT9FAYTQEAAABhyufGuN+S9CZJQ5LknPuhpJowmgIAAADClE8ITjvnMpMPzCyi8XWCAQAAgFUlnxD8uJn9vqS4mb1V0lck/X04bQEAAADhyScE75c0IOn7kv53SV9zzt0XSlcAAABAiPJZIu13nHN/JulzkwfM7AMTxwAAAIBVI58rwe+e4dh7PPUBAAAALJk5rwSb2V5J+yTdbGZHpzxVLuliWI0BAAAAYZnPOMS3JP1Y49sm/+mU45clnQ2jKQAAACBMc4Zg59wzkp6RdHv47QAAAADhy2fHuD1m9kMzGzSzITO7bGZDYTYHAAAAhCGf1SE+KekO59y5sJoBAAAAlkI+q0MkCMAAAAB4OcjnSnC3mf1PSQ9JSk8edM4d9t4VAAAAEKJ8QnCFpBFJvzDlmJNECAYAAMCqMu8Q7Jz7zTAbAQAAAJZKPqtDvNrMHjWzJyYeN5vZR8NrDQAAAAhHPjfGfU7SvZKykuScOyvp7hYdrogAACAASURBVDCaAgAAAMKUTwgudc6dmHZs1GczAAAAwFLIJwT/xMxeqfGb4WRmv6zx7ZQBAACAVSWf1SF+S9IDkhrNrF/Sv0r6tVC6AgAAAEKUz+oQT0vaaWZrJBU55y6H1xYAAAAQnnxWh/iAmU2uFfxpM/uemf3CXK8DAAAAVpp8ZoLf65wb0vhmGWsl/bqkA6F0BQAAAIQonxBsEx9/UdIXnXNPTjkGAAAArBr5hOBTZvZ1jYfgR8ysXNJYOG0BAAAA4clndYj3SWqR9LRzbsTM1kpiK2UAAACsOnOGYDNrdM71ajwAS9ItZkxBAAAAYPWaz5XgD0m6R9KfzvCck/TzXjsCAAAAQjZnCHbO3TPxsS38dgAAAIDw5bNO8LsmboaTmX3UzA6b2c+F1xoAAAAQjnxWh+hwzl02s38naaekv5b038NpCwAAAAhPPiE4N/Fxl6QHnHPHJJX4bwkAAAAIVz4huN/MPivpVyV9zcxieb4eAAAAWBHyCbG/IukRSW9zzr0oqUrSh0PpCgAAAAjRvEOwc25E0hFJV8ysQVJUUm9YjQEAAABhmfeOcWb2O5L+L0kJ/XS7ZCepOYS+AAAAgNDks23yByRtdM69EFYzAAAAwFLIZyb4vKTBsBoBAAAAlko+V4KflvSYmR2TlJ486Jz7lPeuAAAAgBDlE4L7Jv6UiPWBAQAAsIrNOwQ75/5IksysbOLxcFhNAQAAAGGa90ywmW02s3+R9KSkJ83slJm9JrzWAAAAgHDkc2PcA5I+5Jy7yTl3k6T/KOlz4bQFAAAAhCefELzGOdc1+cA595ikNd47AgAAAEKW1+oQZtYh6UsTj39N4ytGAAAAAKtKPleC3yupWtJhSX8nad3EMQAAAGBVyWd1iEuSfjfEXgAAAIAlkc/qEP9kZtdNeXy9mT0STlsAAABAePIZh1jnnHtx8sHEleEa/y0BAAAA4conBI+ZWcPkAzO7SZLz3xIAAAAQrnxWh7hP0v9nZo9LMklvlnRPKF0BAAAAIcrnxrh/NLPXSbpt4tDvOed+Mvm8mb3GOfek7wYBAAAA3/K5EqyJ0PvwLE9/SdLrFt0RAAAAELJ8ZoLnYjMeNHu7mT1lZj8ys/2zvtjsl8zMmVmrx54AAACAq/gMwVfdJGdmxZI+I+kdkpok7TWzphnOK5f0AUnf9dgPAAAAMCOfIXgm2yT9yDn3tHMuI+nLktpnOK9T0ickpULuBwAAAPAagjMzHKuTdH7K42cnjr1k4ma7eufcsWsVN7N7zKzbzLoHBgYW3SwAAAAKV143xplZs6QNU1/nnDs88fG2WV52rXpFkj4l6T1zneuce0DSA5LU2trK+sQAAABYsHmHYDP7vKRmSU9KGps47CQdvsbL+iXVT3l848SxSeWSNkt6zMwk6QZJR81st3Oue769AQAAYOVIpbP6yUhWknQ5OapkNqd4tFjl8fHoua40qiAWXc4W87oSfJtz7qqb2uZwUtKtZnazxsPv3ZL2TT7pnBuUtG7ysZk9Juk/EYABAABWn8GRjIbTOR053a9DJ/t0/mLyqnPqq+Lau7VB7S11KosVq7K0ZBk6zS8Ef9vMmpxzPfN9gXNu1Mx+W9Ijkoolfd4596SZfUxSt3PuaJ79AgAAYAW6MJjSo+cS6jzWo1R2bNbzzl9M6pOPPKU//8YP1bGrSTs21eqGymAJOx1nzs1vvNbM3iLpqKQLktIaXxfYOeeaw2tvZq2tra67m4vFAAAAK0FiKKX9h8+qqzf/xQvaGqt1YE+zaiv8B2EzO+Wcm3EPinyuBP+1pF+X9H39dCYYAAAABezCYEr3PriwACxJXb0D2n/4bGhBeDb5LJE24Jw76pz7V+fcM5N/QusMAAAAK9rgSEaPnkssOABP6uod0PGehIaSM624G458rgT/i5kdlPT3Gh+HkPTTJdIAAABQWIbTOXUem/ftYtfUeaxH2zfWqCLupdyc8rkSHNd4+P0FSXdM/HlnGE0BAABgZUulszpyuv+aN8HlVS87pqNn+pVKZ73Um8u8rwQ7534zzEYAAACwevxkJKtDJ/u81jx4ok93bFmvG5dgDeF8NssIJL1P0mskvTS17Jx7bwh9AQAAYAVzTjOuA7wY5y8mNc+FyxYtn3GIL2l8R7e3SXpc47u/XQ6jKQAAAKxsw6nRcOqmw6k7XT4h+FXOuQ5JV5xz/0PSLklvCKctAAAArGTJbC6UuqmQ6k6XTwienFJ+0cw2S6qUVOO/JQAAAKx08WhxKHWDSDh1p8tnibQHzOx6SR0a3zmuTNIfhNIVAAAAVrSyIJ8Yufx1p8tndYi/mvj0cUm3hNMOAAAAVgMzqb4q7vXmuPqquMy8lbumeY9DmFmtmf21mf3DxOMmM3tfeK0BAABgpVpXGtXerQ1ea+7b1qDqspjXmrPJZyb4C5IekbR+4vEPJP2e74YAAACw8gWxqNpb6hRE84mT16gXLdLuLXWKhTRrPF0+Xa9zzv2tpDFJcs6NSlqa2/cAAACw4pTFitWxq8lLrY5dTSoPliYAS/mF4CtmtlaSkyQzu03SYChdAQAAYMWrLC3Rjk21amusXlSdtsZq7WyqVUW8xFNnc8snBH9I46tC3GJm35T0RUm/E0pXAAAAWBVuqAx0YE/zgoNwW2O1DuxpVm1FMPfJHuWzBkWPpAcljWh8p7iHND4XDAAAgAJWWxHo43c169FzCXUe61EqOzbna4JokTp2NWlnU+2SB2ApvxD8RUlDkv7LxON9Gt9K+V2+mwIAAMDqckNloDu2vELbN9bo6Jl+HTzRN+PyafVVce3b1qDdLXUqjxUv6QjEVPmE4M3OuamTz11m1uO7IQAAAKxOFfESVcSl37z9Jt2xZb2ck4bToxrN5RQpLlZZLCIzqbostmSrQMwmn5ng703cDCdJMrM3SOr23xIAAABWM5vY8cJMkpOyufGPL22E4dxytfaSOa8Em9n3Nb4iRFTSt8ysb+LxTZJ6w20PAAAAq8XlZFZDqVEdOd2vQydnH4fYu7VB7S11qggiKo9Hl6FTydwcSdzMbrrW8865Z7x2NA+tra2uu5uL0AAAACtFYjCl4wu5MW5TrWorw7kxzsxOOedaZ3puzivByxFyAQAAsHokhlLa/+BZdfUOzPs1qeyY7nvoCR3vTSzLEml+9rkDAABAQUoMprT/cH4BeKqu3gHtP3xWiaGU586ujRAMAACABbmczOr4ucSCA/Ckrt4BHe9JaDiV9dTZ3AjBAAAAWJCh1Kg6j/lZMbfzWI8Gk6Neas0HIRgAAAB5S2fGV4GYz01w85HKjunomX6lM0sThAnBAAAAyNvAlYwOnezzWvPgiT4NXMl4rTkbQjAAAADy5pxmXAd4Mc5fTC7ZPhqEYAAAAORtOBXO2MJwmnEIAAAArFDJbC6UuqmQ6k5HCAYAAEDe4tHiUOoGkXDqTkcIBgAAQN7Kgjk3Hl5RdacjBAMAACBvZlJ9VdxrzfqquMy8lpwVIRgAAAB5q15Tor1bG7zW3LetQTXlMa81Z0MIBgAAQN5iJRG1t9QpiPqJk0G0SLu31KmEmWAAAACsZBVBRB27mrzU6tjVpMr40swDS4RgAAAALFB5PKqdm2rV1li9qDptjdXa2VSrsiDqqbO5EYIBAACwYLWVgQ7saV5wEG5rrNaBPc2qrQg8d3ZthGAAAAAsSm1FoAN3Nev+OzfPe0Y4iBbp/js3L0sAlqSlG7wAAADAy1ZtZaD2lvXavrFGR8/06+CJPp2/mLzqvPqquPZta9DuljpVBpElHYGYihAMAAAAL8qCqMqCqN77xg26Y8t6OScNp0c1msspUlysslhEZlJNeWzJVoGYDeMQAAAA8GrMOUnjG2rISdnc+MfJjTByubFl620SV4IBAADgxaWRjEbSOR053a9DJ2cfh9i7tUHtLXUqjRXr+tKSZehUMjeR1FeT1tZW193dvdxtAAAAYMKFwZQePZdQ57EepbJzX+kNokXq2NWkHZtqdUNlODfGmdkp51zrTM9xJRgAAACLkhhK6d4Hz6qrd2Der0llx3TfQ0/oeG+CJdIAAACwulwYTGn/4fwC8FRdvQPaf/isEkMpz51dGyEYAAAAC3JpJKNHzyUWHIAndfUO6HhPQi+OZDx1NjdCMAAAABZkJJ1T57EeL7U6j/XoSjrnpdZ8EIIBAACQt2Q6qyOn++d1E9x8pLJjOnqmX8l01ku9uRCCAQAAkLcXRrI6dLLPa82DJ/r0wgghGAAAACuUc5pxHeDFOH8xqaVavZcQDAAAgLwNp0bDqZsOp+50hGAAAADkLZkN5ya2VEh1pyMEAwAAIG/xaHEodYNIOHWnIwQDAAAgb2VBOBsPh1V3OkIwAAAA8mYm1VfFvdasr4rLzGvJWRGCAQAAkLe1pVHt3drgtea+bQ2qLot5rTkbQjAAAADyFo9F1d5SpyDqJ04G0SLt3lKnWEizxtMRggEAALAgpbFidexq8lKrY1eT1sSWJgBLhGAAAAAs0PWlJdqxqVZtjdWLqtPWWK2dTbW6rrTEU2dzIwQDAABgwW6oDHRgT/OCg3BbY7UO7GlWbUXgubNrIwQDAABgUWorAn38rmbdf+fmec8IB9Ei3X/n5mUJwJK0NAuxAQAA4GXthspAu5pfoe0ba3T0TL8OnujT+YvJq86rr4pr37YG7W6p05qS4iUdgZiKEAwAAAAvrist0XWl0ntuv0l3bFkv56Th9KgyozmVRIpVFovITKouiy3ZKhCzYRwCAAAAXhVN7HhhJslJOTf+8aWNMJxbrtZewpVgAAAAeHE5mdVQalRHTvfr0MnZxyH2bm1Qe0udKoKIyuPRZehUMrcCkni+WltbXXd393K3AQAAgAmJwZSOn0uo81iPUtmxOc8PokXq2NWknZtqVVsZzo1xZnbKOdc603NcCQYAAMCiJIZS2v/gWXX1Dsz7NansmO576Akd702wRBoAAABWl8RgSvsP5xeAp+rqHdD+w2eVGEp57uzaCMEAAABYkMvJrI6fSyw4AE/q6h3Q8Z6EhlNZT53NjRAMAACABRlKjarzWI+XWp3HejSYHPVSaz4IwQAAAMhbOjO+CsR8boKbj1R2TEfP9CudWZogTAgGAABA3gauZHToZJ/XmgdP9GngSsZrzdkQggEAAJA35zTjOsCLcf5icsn20SAEAwAAIG/DqXDGFobTjEMAAABghUpmc6HUTYVUd7rQQ7CZvd3MnjKzH5nZ/hme/5CZ9ZjZWTN71MxuCrsnAAAALE48WhxK3SASTt3pQg3BZlYs6TOS3iGpSdJeM2uadtq/SGp1zjVL+qqkT4bZEwAAABavLAhn4+Gw6k4X9pXgbZJ+5Jx72jmXkfRlSe1TT3DOdTnnRiYefkfSjSH3BAAAgEUyk+qr4l5r1lfFZea15KzCDsF1ks5PefzsxLHZvE/SP8z0hJndY2bdZtY9MLC4XUkAAACwONVrSrR3a4PXmvu2NaimPOa15mxWzI1xZvZrklol/fFMzzvnHnDOtTrnWqurq5e2OQAAAPyMWElE7S11CqJ+4mQQLdLuLXUqeTnMBEvql1Q/5fGNE8d+hpntlHSfpN3OuXTIPQEAAMCDiiCijl3Tb/damI5dTaqML808sBR+CD4p6VYzu9nMSiTdLeno1BPM7OckfVbjAfj5kPsBAACAJ+XxqHZuqlVb4+J+S9/WWK2dTbUqC6KeOptbqCHYOTcq6bclPSLpnKS/dc49aWYfM7PdE6f9saQySV8xs9NmdnSWcgAAAFhhaisDHdjTvOAg3NZYrQN7mlVbEXju7NrMLdXedB61tra67u7u5W4DAAAAExKDKR0/l1DnsR6lsmNznh9Ei9Sxq0k7m2pDC8Bmdso51zrTc0s3eAEAAICXrdrKQO0t67V9Y42OnunXwRN9On8xedV59VVx7dvWoN0tdaoMIks6AjEVIRgAAABelAVRlQVRvef2m3THlvVyThpOjyqVzSmIFqssFpHZ+PJqsZLljaGEYAAAAHhxOZnVUGpUR07369DJ8SvBZSXFun5NiS5dyWg4k1N9VVx7tzaovaVOFUFE5fHluRLMTDAAAAAWbcEzwZtqVVvJTDAAAABWmcRQSvsfPKuu3vnv6pvKjum+h57Q8d7EsqwOsWJ2jAMAAMDqkxhMaf/h/ALwVF29A9p/+KwSQynPnV0bIRgAAAALcjmZ1fFziQUH4EldvQM63pPQcCrrqbO5EYIBAACwIEOpUXUe6/FSq/NYjwaTo15qzQchGAAAAHlLZ8ZXgZjPTXDzkcqO6eiZfqUzSxOECcEAAADI28CVjA6d7PNa8+CJPg1cyXitORtCMAAAAPLmnGbcEW4xzl9MaqlW7yUEAwAAIG/DqXDGFobTjEMAAABghUpmc6HUTYVUdzpCMAAAAPIWjxaHUjeIhFN3OkIwAAAA8lYWhLPxcFh1pyMEAwAAIG9mUn1V3GvN+qq4zLyWnBUhGAAAAHmrXlOivVsbvNbct61BNeUxrzVnQwgGAABA3mIlEbW31CmI+omTQbRIu7fUqYSZYAAAAKxkFUFEHbuavNTq2NWkyvjSzANLhGAAAAAsUHk8qp2batXWWL2oOm2N1drZVKuyIOqps7kRggEAALBgtZWBDuxpXnAQbmus1oE9zaqtCDx3dm2EYAAAACxKbUWgA3c16/47N897RjiIFun+OzcvSwCWpKUbvAAAAMDLVm1loPaW9dq+sUZHz/Tr4Ik+nb+YvOq8+qq49m1r0O6WOlUGkSUdgZiKEAwAAAAvyoKoyoKo3vvGDbpjy3o5Jw2nR5XK5hREi1UWi8hMqimPLdkqELNhHAIAAAChMJPkpn2U5MbccrYliSvBAAAA8ORyMquh1KiOnO7XoZOzj0Ps3dqg9pY6VQQRlceXZxzCnFv+JJ6v1tZW193dvdxtAAAAYEJiMKXj5xLqPNajVHZszvODaJE6djVp56Za1VaGc2OcmZ1yzrXO9BxXggEAALAoiaGU9j94Vl29A/N+TSo7pvseekLHexMskQYAAIDVJTGY0v7D+QXgqbp6B7T/8FklhlKeO7s2QjAAAAAW5HIyq+PnEgsOwJO6egd0vCeh4VTWU2dzIwQDAABgQYZSo+o81uOlVuexHg0mR73Umg9CMAAAAPKWzoyvAjGfm+DmI5Ud09Ez/UpnliYIE4IBAACQt4ErGR062ee15sETfRq4kvFaczaEYAAAAOTNOc24DvBinL+Y1FKt3ksIBgAAQN6GU+GMLQynGYcAAADACpXM5kKpmwqp7nSEYAAAAOQtHi0OpW4QCafudIRgAAAA5K0sCGfj4bDqTkcIBgAAQN7MpPqquNea9VVxmXktOStCMAAAAPJWvaZEe7c2eK25b1uDaspjXmvOhhAMAACAvMVKImpvqVMQ9RMng2iRdm+pUwkzwQAAAFjJKoKIOnY1eanVsatJlfGlmQeWCMEAAABYoPJ4VDs31aqtsXpRddoaq7WzqVZlQdRTZ3MjBAMAAGDBaisDHdjTvOAg3NZYrQN7mlVbEXju7NoIwQAAAFiU2opAB+5q1v13bp73jHAQLdL9d25elgAsSUs3eAEAAICXrdrKQO0t67V9Y42OnunXwRN9On8xedV59VVx7dvWoN0tdaoMIks6AjEVIRgAAABelAVRlQVRvfeNG3THlvVyThpOj0ouJ1mxymIRmUk15bElWwViNoxDAAAAwKsx5ySNb6ghJyWz4x8nN8LI5caWrbdJXAkGAACAF5dGMhpJ53TkdL8OnZx9HGLv1ga1t9SpNFas60tLlqFTydxEUl9NWltbXXd393K3AQAAgAkXBlN69FxCncd6lMrOfaU3iBapY1eTdmyq1Q2V4dwYZ2annHOtMz3HlWAAAAAsSmIopXsfPKuu3oF5vyaVHdN9Dz2h470JlkgDAADA6nJhMKX9h/MLwFN19Q5o/+GzSgylPHd2bYRgAAAALMilkYwePZdYcACe1NU7oOM9Cb04kvHU2dwIwQAAAFiQkXROncd6vNTqPNajK+mcl1rzQQgGAABA3pLprI6c7p/XTXDzkcqO6eiZfiXTWS/15kIIBgAAQN5eGMnq0Mk+rzUPnujTCyOEYAAAAKxQzmnGdYAX4/zFpJZq9V5CMAAAAPI2nBoNp246nLrTEYIBAACQt2Q2nJvYUiHVnY4QDAAAgLzFo8Wh1A0i4dSdjhAMAACAvJUF4Ww8HFbd6QjBAAAAyJuZVF8V91qzviouM68lZ0UIBgAAQN7Wlka1d2uD15r7tjWouizmteZsCMEAAADIWzwWVXtLnYKonzgZRIu0e0udYiHNGk9HCAYAAMCClMaK1bGryUutjl1NWhNbmgAsEYIBAACwQNeXlmjHplq1NVYvqk5bY7V2NtXqutIST53NjRAMAACABbuhMtCBPc0LDsJtjdU6sKdZtRWB586ujRAMAACARamtCPTxu5p1/52b5z0jHESLdP+dm5clAEvS0izEBgAAgJe1GyoD7Wp+hbZvrNHRM/06eKJP5y8mtemGMm296TqdfOZFnbswrPqquPZta9DuljqtKSle0hGIqcw5tyz/4cVobW113d3dof93kumsXhjJSpIuJ0eVzOYUjxarPD7+s8Pa0qjisWjofeDlge8nAEChWCnveWZ2yjnXOtNzXAmewaWRjEbSOR053a9DJ8d/ipmuviquvVsb1N5Sp9JYsa5fpp9isPLx/QQAKBSr6T2PK8HTXBhM6dFzCXUe61EqOzbn+UG0SB27mrRjU61uqFz6eRasbHw/AQAKxUp8z7vWlWBC8BSJoZT2Hz6rrt6BvF+7XHc2YuXi+wkAUChW6nvetUIwq0NMuDC48P95ktTVO6D9h88qMZTy3BlWI76fAACFYrW+5xGCNT6/8ui5xIL/503q6h3Q8Z6EXhzJeOoMqxHfTwCAQrGa3/MIwZJG0jl1HuvxUqvzWI+upHNeamF14vsJAFAoVvN7XsGH4GQ6qyOn++c1wD0fqeyYjp7pVzKd9VIPqwvfTwCAQrHa3/NCD8Fm9nYze8rMfmRm+2d4PmZm/3Pi+e+a2Yawe5rqhZGsDp3s81rz4Im+l9bGQ2Hh+wkAUChW+3teqCHYzIolfUbSOyQ1SdprZk3TTnufpEvOuVdJ+rSkT4TZ03TOacY17Bbj/MWkVuGiG/CA7ycAQKFY7e95YV8J3ibpR865p51zGUlfltQ+7Zx2Sf9j4vOvStphZhZyXy8ZTo2GUzcdTl2sbHw/AQAKxWp/zws7BNdJOj/l8bMTx2Y8xzk3KmlQ0trphczsHjPrNrPugYHF3YE4VTIbzgB2KqS6WNn4fgIAFIrV/p63am6Mc8494Jxrdc61VldXe6sbjxZ7qzVVEAmnLlY2vp8AAIVitb/nhR2C+yXVT3l848SxGc8xs4ikSkkvhNzXS8qCyKqqi5WN7ycAQKFY7e95YYfgk5JuNbObzaxE0t2Sjk4756ikd098/v+3d+cxdpVlHMe/P8owLVStQK3YFpsIBtFABawalbBpVExJECMSBfe4RY1b1ATcYsS4xKiJRsGgCC5RwaogEiVBDVvZ1ygqKrigqCgCtcDjH/dUxmGmPcXOnHM9309yM/fe8+bcp0+fzPvMOe+55yjgRzWP93JOYOXOi7bpPlfuvIj5W9WsPrGeJElDMe5z3pw2wc0a3zcA5wDXA1+vqmuTvD/J2mbYycAuSW4E3gI84GvU5tIuO07woiftvk33ecya3Vm6eHKb7lPjwXqSJA3FuM95c74muKrOqqrHVtVjquqDzXsnVNW65vndVfWCqtqjqtZU1S/nOqapFk1OcMTq5Syc2DapWDixHWv3Xc7kHK2TUb9ZT5KkoRj3OW9sLoybSztOLuD4w6d/ffGDc/zhe7PTpA3LkFlPkqShGOc5zyYYePiOO3Do45Zx8F7/27dOHLzXUg7bexlLdtxhG0WmcWQ9SZKGYpznPJvgxiMftpATj9znQf8nHrzXUk48ch+WPXThNo5M48h6kiQNxbjOeZnHL2LYZg444IBav379nOz7D7ffzQ+v/yMf+N513L3xvi2OXzixHccfvjeH7b3MhkUPYD1Jkoaij3Nekkur6oAZt9kEP9Df7vwX/9xwL+uuvIXTL/7NjPfFXrnzIo5ZsztrVy9npx0WeMpas7KeJElD0bc5zyb4Qbprw0Zuu3MjVaP7WN+98V4WTixg8eT2JLB08aRX7as160mSNBR9mfM21wR7G6rNWDQ5wYrJia7D0P8J60mSNBTjMOd5YZwkSZIGxyZYkiRJg2MTLEmSpMGxCZYkSdLg2ARLkiRpcGyCJUmSNDg2wZIkSRocm2BJkiQNzljeMS7Jn4Bfd/DRuwJ/7uBzx415asc8tWOe2jFP7ZmrdsxTO+apna7y9OiqWjrThrFsgruSZP1st97T/cxTO+apHfPUjnlqz1y1Y57aMU/t9DFPLoeQJEnS4NgES5IkaXBsgrfO57oOYEyYp3bMUzvmqR3z1J65asc8tWOe2uldnlwTLEmSpMHxSLAkSZIGxyZYkiRJg2MTPE2SLyS5Nck1s2xPkk8muTHJVUn2m+8Y+6BFng5KcnuSK5rHCfMdYx8kWZnkvCTXJbk2yZtmGDP4mmqZp8HXVJKFSS5OcmWTp/fNMGYyydeaerooyar5j7RbLfP00iR/mlJPr+wi1j5IsiDJ5Um+O8O2wdfTJlvIk/XUSHJTkqubPKyfYXtv5rztu/rgHjsF+DTwpVm2PwfYs3k8GfhM83NoTmHzeQL4cVU9b37C6a17gLdW1WVJHgJcmuTcqrpuyhhrql2ewJraABxSVXckmQB+kuTsqrpwyphXAH+tqj2SHA18GHhhF8F2qE2eAL5WVW/oIL6+eRNwPfDQGbZZT/fbXJ7Aeprq4Kqa7cYYvZnzPBI8TVWdD/xlM0OOAL5UIxcCS5LsNj/R9UeLPAmoqt9X1WXNvUZQLgAABKVJREFU838w+gW6fNqwwddUyzwNXlMjdzQvJ5rH9KubjwC+2Dz/BnBoksxTiL3QMk8CkqwADgdOmmXI4OsJWuVJ7fVmzrMJ3nrLgd9OeX0zTtazeWpzOvLsJI/vOpiuNacRnwhcNG2TNTXFZvIE1tSmU7JXALcC51bVrPVUVfcAtwO7zG+U3WuRJ4DnN6djv5Fk5TyH2BefAN4B3DfLdutpZEt5AutpkwJ+kOTSJK+eYXtv5jybYM2Vyxjdr3tf4FPAmR3H06kki4FvAm+uqr93HU9fbSFP1hRQVfdW1WpgBbAmyRO6jqmPWuTpO8CqqtoHOJf7j3YORpLnAbdW1aVdx9JnLfM0+Hqa4ulVtR+jZQ+vT3Jg1wHNxiZ4690CTP0Lb0Xznqaoqr9vOh1ZVWcBE0l27TisTjRrEr8JnFZV35phiDXFlvNkTf23qvobcB7w7Gmb/lNPSbYHHgbcNr/R9cdseaqq26pqQ/PyJGD/+Y6tB54GrE1yE/BV4JAkX542xnpqkSfr6X5VdUvz81bgDGDNtCG9mfNsgrfeOuDY5urGpwC3V9Xvuw6qb5I8ctO6sSRrGNXa0H5x0uTgZOD6qvr4LMMGX1Nt8mRNQZKlSZY0zxcBzwRumDZsHXBc8/wo4Ec1sLsitcnTtDWIaxmtQx+UqnpXVa2oqlXA0Yxq5cXThg2+ntrkyXoaSbJTc3EzSXYCngVM/xap3sx5fjvENEm+AhwE7JrkZuA9jC6qoKo+C5wFPBe4EbgTeFk3kXarRZ6OAl6b5B7gLuDoof3ibDwNeAlwdbM+EeDdwO5gTU3RJk/WFOwGfDHJAkZ/BHy9qr6b5P3A+qpax+iPiVOT3Mjo4tWjuwu3M23y9MYkaxl9M8lfgJd2Fm3PWE/tWE8zWgac0Ryv2B44vaq+n+Q10L85z9smS5IkaXBcDiFJkqTBsQmWJEnS4NgES5IkaXBsgiVJkjQ4NsGSJEkaHJtgSeqJJEuSvK7rOCRpCGyCJak/lgA2wZI0D2yCJak/TgQek+SKJB9J8vYklyS5Ksn7AJKsSnJDklOS/CzJaUkOS/LTJD9v7qZHkvcmOTXJBc37r2re3y3J+c1nXJPkGR3+eyWpMzbBktQf7wR+UVWrgXOBPYE1wGpg/yQHNuP2AD4G7NU8jgGeDryN0Z32NtkHOAR4KnBCkkc1Y89pPmNf4AokaYC8bbIk9dOzmsflzevFjJri3wC/qqqrAZJcC/ywqirJ1cCqKfv4dlXdBdyV5DxGDfUlwBeSTABnVpVNsKRB8kiwJPVTgA9V1ermsUdVndxs2zBl3H1TXt/Hfx/cqGn7rKo6HzgQuAU4JcmxcxC7JPWeTbAk9cc/gIc0z88BXp5kMUCS5UkesZX7OyLJwiS7AAcBlyR5NPDHqvo8cBKw37YJXZLGi8shJKknquq25gK3a4CzgdOBC5IA3AG8GLh3K3Z5FXAesCvwgar6XZLjgLcn2djs0yPBkgYpVdPPlkmSxl2S9wJ3VNVHu45FkvrI5RCSJEkaHI8ES5IkaXA8EixJkqTBsQmWJEnS4NgES5IkaXBsgiVJkjQ4NsGSJEkanH8DXKGKswZqbRsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXzV9X338ffn3OWcEAJEkiAhSG01JNJAbaC6bi0MWm2xoMxeK26dtV3Zda3benPNldbhtcnDzXbdunWPbtd0nb3ZBbZ1KFS8LhWKduvqIFigmMSbOUuMGiNBbpJzf77XH0lshADnJL9fbvy9no8HD3J+53c+fMSTx3nzy+f3/ZpzTgAAAECQhCa6AQAAAGC8EYIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgRCa6gdGYPXu2W7BgwUS3AQAAgEls//79rzrnqkd6bkqG4AULFqi1tXWi2wAAAMAkZmY/P9tzjEMAAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAmZKbZYyXZDqro/1ZSdLJZE7JbF6JaFjTEwN/bReUR5Uoi05kiwAAABgFQvAIjvVn1J/Oa/uBLm3dd0SdvckzzqmvSmj90vlau6RO5WVhzSqPTUCnAAAAGA1zzk10DyVraWlxfm2b/PLxlHa3d2vzzjalsoXznh+PhrRpdZNWNtZqzoy4Lz0BAACgdGa23znXMtJzXAkepvtESl+475D2dPQU/ZpUtqBb7j+sXR3dumNds2orCcIAAACTHTfGDXr5eEobt5UWgIfb09GjjdsOqftEyuPOAAAA4DVCsAZmgHe3d486AA/Z09GjXW3deq0/41FnAAAA8AMhWFJ/Oq/NO9s8qbV5Z5v60nlPagEAAMAfgQ/ByXRW2w90FXUTXDFS2YJ2HOxSMp31pB4AAAC852sINrN/MrNXzOzwWZ43M/uamT1rZofM7HI/+xnJ0f6stu474mnNLXuPvL6+MAAAACYfv68Ef1PS1ed4/gOSLhn8tUHS3/vczxmc04jrAI9FZ29SU3DlOQAAgMDwNQQ7534kqfccp6yV9G034HFJM83sQj97Ot2pVM6fuml/6gIAAGDsJnomuE5S57DHLwweO4OZbTCzVjNr7ekZ2yoOwyWz/tzElvKpLgAAAMZuokNw0ZxzdzrnWpxzLdXV1Z7VTUTDntUaLh7xpy4AAADGbqJDcJek+mGP5w0eGzcVcX82zfOrLgAAAMZuokPwDkm/NbhKxBWSjjvnXhrPBsyk+qqEpzXrqxIy87QkAAAAPOT3EmlbJf1EUoOZvWBmnzCz/25m/33wlAclPSfpWUl3SfpdP/sZyQXlUa1fOt/Tmjcsm6/qijJPawIAAMA7vv7M3jm3/jzPO0mf8rOH80mURbV2SZ2+9sNnPNkwIx4Nac3iOpX5NGsMAACAsZvocYhJobwsrE2rmzyptWl1k6aVEYABAAAmM0KwpFnlMa1srNWKhWNbdWLFwmqtaqrVzPKYR50BAADAD4TgQXNmxHXHuuZRB+EVC6t1x7pm1VbGPe4MAAAAXiMED1NbGdefX9es269dpHj0jX81FbGw6mclVBF746hDPBrS7dcuIgADAABMISxme5o5M+Ja3XyhljfU6FQ6q3g0rLCZTqSySmULikdDqoxHlXdOqUxeFYmopsXCjEAAAABMIYTgEYQHF/nd3f6Ktu47os7e5Bnn1FcltH7pfK1dUvf6+QAAAJgabGCVsqmlpaXFtba2+lK7+3hKu9q7tXlnW1FLpsWjIW1a3aRVjbWqncE4BAAAwGRhZvudcy0jPceV4GG6T6S08b5D2tPRU/RrUtmCbrn/sHZ1dDMXDAAAMEVwY9yg7uMpbdxWWgAebk9HjzZuO6TuEymPOwMAAIDXCMGSTiaz2tXePeoAPGRPR492tXXrVCrrUWcAAADwAyFY0olUTpt3tnlSa/PONh1P5jypBQAAAH8EPgSnMzltP9BV1E1wxUhlC9pxsEvpDEEYAABgsgp8CO7py2jrviOe1tyy94h6+jKe1gQAAIB3Ah+CndOI6wCPRWdvUlNw5TkAAIDACHwIPpX2Z2yhz6e6AAAAGLvAh+B0Nu9L3VTOn7oAAAAYu8CH4Hg07E/diD91AQAAMHaBD8HlZf6EVb/qAgAAYOwCH4Lzeaf6qoSnNeurEsoXuDMOAABgsgp8CA6FTL92+TxPa15/+TyFzDytCQAAAO8EPgSbScsvrVY86s1fRTwa0nsvrRYZGAAAYPIKfAgOmem+A126+aoGT+rdfFWDth3o4kowAADAJBb4EByLmKrKY5pTmdDyhuox1VreUK05lQnNnhZTWTjwf7UAAACTVuCTmnPSNYvn6tbtP9OG91w86iC8vKFaG95zsW7d/jOtbp4rbosDAACYvAIfgntPZVVZFtHn3tegT2/9qW75YKNuv3ZR0TPC8WhIt1+7SLd8sFGf3vpTfe59Daosi+hoX8bnzgEAADBakYluYKJFwqa+TF7V08v0jzcu1e0Ptmt6WUT3fPIKPfZ0j+594gV19ibPeF19VULXXz5P7720Wt/4t//SI+3d+scbl6r7REp9mbyiYWaCAQAAJqvAh+CKsoi+19qphjnT9bXdz+jRp3okSQ8eflkrF9boD9/foLkzE8rmC0plC4pHQ4qGQ3rxtaQeOPSSvvbDZ19fEzhspg+3zNOOg1368DvrJ/I/C5NQMp3V0f6sJOlkMqdkNq9ENKzpiYFvwwvKo0qURSeyRQAAAiPwIThXcOrtz6jrtaR2d7zy+vF8wenhtm493NYtSYqETLFISJlcQbmzbISxu+MV/dLbLtCrfZmznoPgOdafUX86r+0HurR135Gz/mRh/dL5WrukTuVlYc0qj01ApwAABIc5N/XCWktLi2ttbfWk1pHePvWeyugjdz2uVLYw5nrxaEj3fPIKVVXENL9qmgcdYip7+XhKu9u7tXlnW1Hvr3g0pE2rm7SysVZzZsTHoUMAAN68zGy/c65lpOcCf2OcK0iPPt3jSQCWpFS2oMee7tEU/LcFPNZ9IqUv3HdIt9x/uOj3Vypb0C33H9YX7juk7hMpnzsEACC4Ah+C887pX554wdOa9z7xggqMQwTay8dT2rjtkPZ09Izq9Xs6erRxG0EYAAC/BD4ER8I24ozmWHT2JhVmdYjAOtaf0e727lEH4CF7Onq0q61br/Wz3B4AAF4LfAjuT+f9qZvxpy4mv/50Xpt3tnlSa/PONvX59B4FACDIAh+CUzlvZoFPl/ZoxhhTSzKd1fYDXZ7OmO842KVkOutJPQAAMCDwIbg8Gi7qvEjIVB4LKxIqbswhESuuLt5cjvZntXXfEU9rbtl75PX1hQEAgDcCv07w0EYFpwuHTKsaa/TBt1+oupkJpXMFpbJ5xaNhlUVC6notqZ2HXtLujlde3yzjDXXjgf+rDSTn5MuMOauNAADgrcAntUjIVF+VeENwWbN4rj7+7gV69OkefeXhp866ucGvXT5Pv7v8rfqnHz+vHQdffMNzxV4xxpvLqVTOn7ppf+oCABBUgR+HqCqP6beuXCBJmhYL6+s3XK7F9TP0kbse11/veuasV/U6e5P6613P6CN3Pa7F9TP09Rsu17TBEYgbr1ygqmll4/WfgEkkmfXnJraUT3UBAAiqwIfgcDikD779Ql0wLaq7bmzR9/d3avMD7SVtbrD5gXZ9f3+n7rqxRRdMi+oDb79QYa4EB1KiyBnzUsUjzJgDAOClwI9D5PMFdZ9I6Z9/+wp96f916NGnRre269Dr/vm3r1D38aTmTC9TOBz4f2METoVPs+B+1QUAIKgCn9J6+zOaEY/op0deG3UAHvLoUz06cOQ1zSiPqpcNDgLJbGAm3Ev1VQkZP1gAAMBTgQ/BZpKT6bYHnvSk3p8+8KScM0JLQFUmwvroFRd5WvOjV1ykmYmopzUBAAi6wIfgXN5p56EXPd3c4MGfvahsnjWtgiiZKWjlwlrFo958a8WjIa1srFVfhtUhAADwUuBDcDbvdO8TL3ha8/v7X1COEBxImZzTtx9/Xjdf1eBJvZuvatC3fvK8MjneTwAAeCnwIdjJ+bO5gQgtQeSc07f+/eeaU5nQ8obqMdVa3lCtOZUJffvffy7HbhkAAHgq8CHYv80NWNc1iIY2tfijew9qw3suHnUQXt5QrQ3vuVh/dO/Bwbq8nwAA8FLgQ3A6580s8OkybG4QSEPvp75MXp/8Vqs+/M56bbqmsegZ4Xg0pE3XNOrD76zXJ7/Vqr7MwPsok+P9BACAlwK/+Khvmxv4VBeT2/D3U18mr09teUIfar5Q92y4Qv/2zKv6bmvnWbfh/vWWev3yJbP1jX/9L/3gUPsbnuf9BACAtwIfgqeV+fNX4FddTG4j/X+3gXX4VD+rXLd8sFEXVJQpmy8olS0oHg0pGg7p6Kn0wFVkN3h+EXUBAMDo8cmqgatwXt4c5/VmCZg6QvaL99O0WFhfvn6xXj6R1EfuevwNy/BFQqZYJKRMrqBc4Rc3vcWjId18VYOuumyO/ujeg+rL5FVflRC7cAMA4K3AzwTHIqbffJf3mxuURQL/VxtIkbDpo1cs0LRYWHfd2KLv7+/U5gfaz1iHOldw6s/k3xCApYF1pjc/0K7v7+/UXTe2aFosrN+6YoGibMENAICnAn8lOF9wWrGwRl/d9bQnG2bEoyEtb6g5I9wgGHJ5p6suq1X9rITu/NFzo96Ke+h1X/nwYjXNrVS24M8NnAAABFXgLy/l8k7Pv9qnW6+5zJN6/+uay/T8q33KEVoCqaaiTIloWL19mVEH4CGPPtWj3r6MyqNh1UyPe9QhAACQCME62pfRW2sqNLsippULa8ZUa+XCGl1QEdNbayrU25fxqENMJaGQKZMvaPPONk/qbd7ZpnS+wDcqAAAeC/xna1kkpL/Z9YxOpLL65HsuHnUQXrmwRp98z8U6mcrqrx95WjFmOAPpZCarHQde9GS0RhqYEf7BwRd1MpP1pB4AABgQ+KRWEY9qx8EXNSMe1Xd+8rzWXT5Pt625rKTNDW5bc5nWXT5P3/nJ86qMR/WDQy+pIh71tW9MTqdSeW3dd8TTmlv2HtGpFJtlAADgpcDfGDe0pNVnvntAd9+0VHf+6DklouGSNzdIZvPa8J6LddPd+1jSKsCck6fL7UkD9Rz3WQIA4KnAh+DyWFjXXz5PX931jG66e5++fP1ivdaf0W/843/o3W+drT98f4Pmzkwomy8onS2obHBzgxdfS+qBQy/p7x/7T33xA42aWR7TTXfvU18mr9955zxNi7HDVxCdTPkztnAqnfOlLgAAQRX4EDwjHtU1i+fq7x/7zzdsc/t/fvsK/eQ/X9VXHn5Knb3JMzY3qK9K6IZl8/WpFW/TN/71Of3g0EuSBsYjVjfPVWUiNsH/ZZgIXs0Cn1mXcQgAALwU+BAcDodUWRbRzVc1aPMD7ZKkHxx6SQ8eflkrF9a84UpwJldQLPLGK8Ffefhp5YetCXzzVQ2qLIsozDxEICWi/vwEIB7hJwsAAHgp8CFYkmaUx/Tut83W8obq19d2zRecHm7r1sNt3ZLOvs3tcMsbqvXLb5utGeVcBQ6qirg/31J+1QUAIKgCvzqEJMUiIdVMj+tzqy7V8obqEc852za3Q5Y3VOtzqy5VzfS4YmyZHGj1VYlJXQ8AABCCX1c1Laa6WQn9znsu1qZrGktaIm3TNY36nfdcrLpZCc2axlXgIAuZtH7pfE9r3rBsPquNAADgMX7GOswFFWVqMFOh4HTPhiv12FOv6N4nXjjrEmnXXz5P722oUV8qq4VzKgnA0MlUTmuWzNXXfviMJzfJxaMhfWjxXJ1MsToEAABeMjcFFyBtaWlxra2tvtXP5Arq7cvoYOcxOQ2E42y+oFS2oPjgEmlHT6UVMql53ixVTYsxAgFJUmdvvx5pe1llkbBuuf/wmOvdfu0ipbJ5vf+yOaqvKvegQwAAgsPM9jvnWkZ6jivBI4hFQpozI67qilr19meUKzidSuWUzRcUDYdUEY9owQXlqppWxioQeIOQSXf/+/O6+2NLtWJhtfZ09Iy61oqF1XrXxVW66Zv7dPWiOR52CQAACMHnEA6HVD09PvBgxsT2gqkhmc3ro1cs0Po7H9e23323btXhUQXhFQurdduaRVr3dz/Whve8VUnWCQYAwFP8DB/wUDpX0MrGGp1M57Tu736sL36gUbdfu6ikGy1vv3aRvviBRq37ux/rZDqnX22sUSbnzyYcAAAEFSEY8ND0eER/s+sZ/cmay9RzKqP3ffVHSmXzeuSz79Xnr24463Jn9VUJff7qBj3y2fcqlc3rfV/9kXpOZfSnay7TXz/yNOsEAwDgMT5ZAQ+FzPTTzmP6UPOFWtVYo13tr2jzznZ96aGn9Ae/+jb9w0ffqfJYRH3p3Os3Wk4ri6g/k9MP21/Ryr967PWrvqsaa1RVHtOBF15TyJg9BwDAS4RgwENlEdP1l8/TZ757QHfftFSStKv9FWVyBX3l4af1lYefliTFIwM3WJ5K5ZQaYdRhVWONNrznYt109z79znsvVpzVRwAA8BSfrICHZsZjWt08V3nndNPd+3TdO+aNOBOcyhX06qnMGQF4aCb4unfM001371PeOa1++1y24gYAwGO+h2Azu9rMnjKzZ81s4wjPzzezPWb2UzM7ZGYf9LsnwC/RaFjT4xHdfFWD+jJ5fWrLE3r8uaO6Z8OVRc0E37PhSj3+3FF9assT6svkdfNVDaqIRxQN8+9VAAC85Os4hJmFJX1d0vskvSBpn5ntcM61DTvtjyV9zzn392bWJOlBSQv87Avw0/SyiH7prbO1vKFajz7Vox8cekkPHn5ZKxfW6A/f36C5MxPK5gvK5AqKRQY2X3nxtaQeOPSSvvLw08oXBjawWd5QrV9662xN56Y4AAA85/en6zJJzzrnnpMkM7tH0lpJw0Owk1Q5+PUMSS/63BPgq/KyiGZPi+mzqy6VJD36VI/yBaeH27r1cFu3JCkSMsUiIWVyBeUKZ+7auLyhWp9ddalmT4upPEYIBgDAa35/utZJ6hz2+AVJ7zrtnD+R9LCZ/b6kaZJWjVTIzDZI2iBJ8+fP97xRwEvVlQObrGz4lYv1K5fM1l889JRS2V/M/+YKTrnMmRtgxKMh3XxVgxrnVGrujPjrdQAAgLcmwyWm9ZK+6Zz7SzO7UtJ3zGyRc+4Ndww55+6UdKcktbS0nHnpDJhkqivjcpKy+YLu2XClHnvqFd37xAvq7E2ecW59VULXXz5P722o0fH+jN5WU0EABgDAR36H4C5J9cMezxs8NtwnJF0tSc65n5hZXNJsSa/43Bvgu5rKuCriER3rz+qSmgrd8sFGXVBRpmy+8Po6wdFwSEdPpVVwTjXTy3RpbQUjEAAA+MzvT9p9ki4xs7doIPx+RNINp51zRNJKSd80s0ZJcUk9PvcFjJvyWETlsYhqpsXU05dWwUknUzllcnnFIgOrSdTNjKt6epxVIAAAGCe+hmDnXM7Mfk/SQ5LCkv7JOfekmd0mqdU5t0PS/5R0l5l9VgM3yX3MOce4A950otGw5s4sn+g2AACAxmEm2Dn3oAaWPRt+7NZhX7dJerfffQAAAABD+NkrAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAInMhENwAERT5fUG9/RrmC08lUTulsXmXRsKbHI4qETFXlMYXD/LsUAIDxQAgGfJbJFdTbl9EDh17Ut37yvDp7k2ecU1+V0I1XLtA1zXNVNS2mWIQwDACAn8w5N9E9lKylpcW1trZOdBvAefX2ZbS7vVubth9WKls47/nxaEib1y7SysZaVU2LjUOHAAC8eZnZfudcy0jPcbkJ8MnRU2l9/t5DuvneQ0UFYElKZQu6+d5D+vy9h3T0VNrnDgEACC5CMOCD3r6MNv7Lz/RIe/eoXv9Ie7c2/svPdKwv43FnAABAIgQDnsvkCtrd3j3qADzkkfZu7WrvViZX3FVkAABQPEIw4LHevow2bT/sSa1N2w+rl6vBAAB4jhAMeCifL+iBQy8WPQN8PqnsQL18nqvBAAB4iRAMeKi3P6Nv/eR5T2t+6yfPq7efq8EAAHiJEAx4KFdwI64DPBadvUnlClNvKUMAACYzQjDgoZOpXFHnRUKm8lhYkZAVdf6pIusCAIDisGMc4KF0Nj/i8XDItKqxRh98+4Wqm5lQOldQKptXPBpWWSSkrteS2nnoJe3ueEX5Ea76plkhAgAATxGCAQ+VRcNnHFuzeK4+/u4FevTpHn3l4afOum3yr10+T7+7/K36px8/rx0HX3zD82yjDACAtwjBgIemx3/xLTUtFtaXr1+sl08k9ZG7Hj/nihGdvUn99a5n9L8f+0/dfFWDrrpsjv7o3oPqy+TPqAsAAMaOy0uAhyIhU31VQtNiYd11Y4u+v79Tmx9oL2nb5M0PtOv7+zt1140tmhYLq74qUfTsMAAAKA6XlwAPVZXHdOOVC3ThjITu/NFzevSpnlHVGXrdl69frJeOJ1U1rczLNgEACDyuBAMeCodDWrN4rl4+kRx1AB7y6FM9evlEUmsWz1WYK8EAAHiKEAx4LFdw+ouHnvKk1l889BRrBAMA4ANCMOChdCan+3/a5em2ydsPdCmdYZ1gAAC8RAgGPNTTl9HWfUc8rbll7xH19LFtMgAAXiIEAx5yTr5sm+yYiAAAwFOEYMBDfm1vfCrNOAQAAF4iBAMeSp5l2+SxSvlUFwCAoCIEAx5KjLBtshfiEX/qAgAQVIRgwEMVPm1v7FddAACCihAMeMhMqq9KeFqzviohY68MAAA8RQgGPFQ9Lab1S+d7WvOGZfNVM51tkwEA8BIhGPBQWSyitUvqFI96860Vj4a0ZnGdYswEAwDgKUIw4LHKeESbVjd5UmvT6ibNSDAPDACA1wjBgMemJ6Ja1VirFQurx1RnxcJqrWqqVUU86lFnAABgCCEY8EHtjLjuWNc86iC8YmG17ljXrNrKuMedAQAAiRAM+Ka2Mq47rmvW7dcuOmNGuCIWVv2shCpib5z1jUdDuv3aRQRgAAB8xrAh4KPaGXGtXTJXyxtqdCqdVTwaVthMJ1JZpbIFxaMhVcajyjunVCavikRUM+IRRiAAAPAZIRjwmXMDv+9uf0Vb9x1RZ2/yjHPqqxJav3S+1i6pe/18AADgH3NT8BO3paXFtba2TnQbwHl1H09pV3u3Nu9sUypbOO/58WhIm1Y3aVVjrWpnMA4BAMBYmNl+51zLSM9xJRjwSfeJlDbed0h7OnqKfk0qW9At9x/Wro5u5oIBAPARN8YBPug+ntLGbaUF4OH2dPRo47ZD6j6R8rgzAAAgEYIBz51MZrWrvXvUAXjIno4e7Wrr1qlU1qPOAADAEEIw4LETqZw272zzpNbmnW06nsx5UgsAAPwCIRjwUDqT0/YDXUXdBFeMVLagHQe7lM4QhAEA8BIhGPBQT19GW/cd8bTmlr1H1NOX8bQmAABBRwgGPOScRlwHeCw6e5OsHQwAgMdKDsFm9jYz+zUza/KjIWAqO5XyZ2zhVJpxCAAAvHTeEGxme8xs9uDXH5X0oKQPSPqumf2+z/0BU0oym/elbsqnugAABFUxm2VUO+deHfz6DyRd6Zw7amblkh6X9Le+dQdMMYlo2Je68Yg/dQEACKpixiGyZlY3+PUpSX2DX6cl8ckMDFMR92cTRr/qAgAQVMV8sn5W0sNm9i+SnpT0QzN7SNIvS7rbz+aAqcZMqq9KeHpzXH1VQmaelQMAACriSrBz7lFJvyTpJUlZSfslpST9vnPuK752B0wx1dNiWr90vqc1b1g2XzXTyzytCQBA0BX1M1bn3HFJf3+uc8zsb51z3CiHQCuLRbR2SZ2+9sNnPNkwIx4Nac3iOsWYCQYAwFNerhP8bg9rAVNWZTyiTau9WUFw0+omzUgwDwwAgNfYLAPw2PREVKsaa7ViYfWY6qxYWK1VTbWqiEc96gwAAAwhBAM+qJ0R1x3rmkcdhFcsrNYd65pVWxn3uDMAACB5G4K5fx0YprYyrjuua9bt1y5SPFrct1o8GtLt1y4iAAMA4LOihw3N7O3OuZ+d45S/Ocvrrh58LizpH51zd4xwzn+T9CeSnKSDzrkbiu0LmMxqZ8S1dslcLW+o0Y6DXdqy98iIy6fVVyV0w7L5WrOkTjPiEUYgAADwmTnnijvR7F8llUn6pqT/M7hixPleE5b0tKT3SXpB0j5J651zbcPOuUTS9yT9qnPumJnVOOdeOVfdlpYW19raWlTfwGSRzuTU05eRc9KpdE6pbF7xaFgVZRGZSTXTy1gFAgAAD5nZfudcy0jPFX0l2Dn3K4OB9eOS9pvZXkl3O+ceOcfLlkl61jn33GAj90haK6lt2DmflPR159yxwT/nnAEYmKrKYhHNi7HSAwAAk0FJM8HOuWck/bGkz0t6r6SvmVmHma07y0vqJHUOe/zC4LHhLpV0qZn92MweHxyfOIOZbTCzVjNr7enpKaVtAAAA4A2KDsFm1mxmX5XULulXJX3IOdc4+PVXx9BDRNIlkpZLWi/pLjObefpJzrk7nXMtzrmW6uqxLT0FAACAYCvlSvDfSnpC0mLn3Kecc09IknPuRQ1cHR5Jl6T6YY/nDR4b7gVJO5xzWefcf2lghviSEvoCAAAASlJKCF4taYtzLilJZhYys3JJcs595yyv2SfpEjN7i5nFJH1E0o7TzrlfA1eBZWazNTAe8VwJfQEAAAAlKSUE75KUGPa4fPDYWTnncpJ+T9JDGhij+J5z7kkzu83M1gye9pCko2bWJmmPpJudc0dL6AsAAAAoSSm3qsedc6eGHjjnTg1dCT4X59yDkh487ditw752kj43+AsAAADwXSlXgvvM7PKhB2b2TklnrvoPAAAATHKlXAn+jKTvm9mLGtgieY6kX/elKwAAAMBHpQKMVK0AACAASURBVGyWsc/MFkpqGDz0lHMu609bAAAAgH9K3b5qqaQFg6+73MzknPu2510BAAAAPio6BJvZdyS9VdIBSfnBw04SIRgAAABTSilXglskNQ2u5gAAAABMWaWsDnFYAzfDAQAAAFNaKVeCZ0tqM7O9ktJDB51za87+EgAAAGDyKSUE/4lfTQAAAADjqZQl0h4zs4skXeKc2zW4W1zYv9YAAAAAfxQ9E2xmn5R0r6R/GDxUJ+l+P5oCAAAA/FTKjXGfkvRuSSckyTn3jKQaP5oCAAAA/FRKCE475zJDD8wsooF1ggEAAIAppZQb4x4zsy9KSpjZ+yT9rqQf+NMW8OaTzebV05dWwUknUzkls3klomFNj0cUMql6WpmiUcbsAQAYD6WE4I2SPiHpZ5J+R9KDzrm7fOkKeBPpT+d0LJnV9gNd2rr3iDp7k2ecU1+V0Ppl87V2SZ1mJaIqLyt1R3MAAFAKK3YDODP7tHPub853bDy0tLS41tbW8f5jgZK9ciKlXe3duu2BNqWyhfOeH4+GdOs1TVrVWKuayvg4dAgAwJuXme13zrWM9FwpM8E3jnDsY6PqCAiAV06k9Plth/TF+w4XFYAlKZUt6Iv3Hdbntx3SKydSPncIAEBwnTcEm9l6M/uBpLeY2Y5hv/ZI6vW/RWDqGQrAezp6RvX6PR09BGEAAHxUzODhv0t6SQPbJv/lsOMnJR3yoylgKutP57SrvXvUAXjIno4e7Wrv1rXvqFN5jBlhAAC8dN5PVufczyX9XNKV/rcDTH3Hklnd9kCbJ7Vue6BN722oIQQDAOCxUnaMW2dmz5jZcTM7YWYnzeyEn80BU002m9f2A11FzwCfTypb0I4DXcpm857UAwAAA0q5Me7LktY452Y45yqdc9Odc5V+NQZMRT19aW3de8TTmlv2HlFPX9rTmgAABF0pIbjbOdfuWyfAm0DBacR1gMeiszepAnszAgDgqVIGDVvN7LuS7pf0+mUp59w2z7sCpqiTqdyUqgsAQFCVEoIrJfVLev+wY04SIRgYlPRpdjfFTDAAAJ4qOgQ7527ysxHgzSARDftSN+5TXQAAgqqU1SEuNbPdZnZ48HGzmf2xf60BU8/0uD9LmflVFwCAoCrlxri7JH1BUlaSnHOHJH3Ej6aAqSpkUn1VwtOa9VUJhczTkgAABF4pIbjcObf3tGPcrQMMUz2tTOuXzfe05g3L5qt6etzTmgAABF0pIfhVM3urBm6Gk5ldr4HtlAEMikbDWrukTvFoKd9aZxePhrRmSZ2iYW/qAQCAAaV8sn5K0j9IWmhmXZI+I+l/+NIVMIXNSkR16zVNntS69ZomzSqPelILAAD8QtEh2Dn3nHNulaRqSQudc7/snHvet86AKaq8LKJVjbVasbB6THVWLKzWqsZalce4KQ4AAK+VsjrEp81saK3gr5rZE2b2/vO9Dgiimsq4vrSuedRBeMXCan1pXbNqKpkFBgDAD6WMQ3zcOXdCA5tlXCDpo5Lu8KUr4E1gKAj/2XWLip4RjkdD+rPrFhGAAQDwWSk/Zx1apOmDkr7tnHvSzFi4CTiHmsq4rn1Hnd7bUKMdB7q0Ze8RdfYmzzivviqh31g2X2uW1GlmeZQRCAAAfFbKJ+1+M3tY0lskfcHMpksq+NMW8OZRHouoPBbRb7/7LVq7ZK4KTjqZyimVzSseDWt6PKKQSdXT46wCAQDAOCklBH9C0hJJzznn+s3sAklspQwUKRoNa+7M8oluAwAAqIgQbGYLnXMdGgjAknQxUxAAAACYyoq5Evw5SRsk/eUIzzlJv+ppRwAAAIDPzhuCnXMbBn9f4X87AAAAgP9KWSf4w4M3w8nM/tjMtpnZO/xrDQAAAPBHKbeib3LOnTSzX5a0StI3JP1vf9oCAAAA/FNKCM4P/r5a0p3OuZ2SYt63BAAAAPirlBDcZWb/IOnXJT1oZmUlvh4AAACYFEoJsf9N0kOSrnLOvSapStLNvnQFAAAA+KjoEOyc65e0XVKfmc2XFJXU4VdjAAAAgF+K3jHOzH5f0v+S1K1fbJfsJDX70BcAAADgm1K2Tf60pAbn3FG/mgEAAADGQykzwZ2SjvvVCAAAADBeSrkS/JykR81sp6T00EHn3F953hUAAADgo1JC8JHBXzGxPjAAAACmsKJDsHPuTyXJzCoGH5/yqykAAADAT0XPBJvZIjP7qaQnJT1pZvvN7DL/WgMAAAD8UcqNcXdK+pxz7iLn3EWS/qeku/xpCwAAAPBPKSF4mnNuz9AD59yjkqZ53hEAAADgs5JWhzCzTZK+M/j4NzWwYgQAAAAwpZRyJfjjkqolbZP0L5JmDx4DAAAAppRSVoc4JukPfOwFAAAAGBelrA7xiJnNHPZ4lpk95E9bAAAAgH9KGYeY7Zx7bejB4JXhGu9bAgAAAPxVSggumNn8oQdmdpEk531LAAAAgL9KWR3iFkn/ZmaPSTJJvyJpgy9dAQAAAD4q5ca4/2dml0u6YvDQZ5xzrw49b2aXOeee9LpBAAAAwGulXAnWYOh94CxPf0fS5WPuCAAAAPBZKTPB52Me1gIAAAB842UI5iY5AAAATAlehmAAAABgSvAyBGc8rAUAAAD4pqQb48ysWdKC4a9zzm0b/P2Ks7wMAAAAmFSKDsFm9k+SmiU9KakweNhJ2uZDXwAAAIBvSrkSfIVzrsm3TgAAAIBxUspM8E/MjBAMAACAKa+UK8Hf1kAQfllSWgPrAjvnXLMvnQEAAAA+KeVK8DckfVTS1ZI+JOmawd/PycyuNrOnzOxZM9t4jvN+zcycmbWU0BMAAABQslKuBPc453aUUtzMwpK+Lul9kl6QtM/Mdjjn2k47b7qkT0v6j1LqAwAAAKNRSgj+qZltkfQDDYxDSPrFEmlnsUzSs8655yTJzO6RtFZS22nnbZb0JUk3l9APAAAAMCqljEMkNBB+36+BMYihkYhzqZPUOezxC4PHXmdml0uqd87tPFchM9tgZq1m1trT01NC2wAAAMAbFX0l2Dl3k9d/uJmFJP2VpI8V8effKelOSWppaXFe9wIAAIDgKGWzjLikT0i6TFJ86Lhz7uPneFmXpPphj+cNHhsyXdIiSY+amSTNkbTDzNY451qL7Q0AAAAoRSnjEN/RQEi9StJjGgi0J8/zmn2SLjGzt5hZTNJHJL1+c51z7rhzbrZzboFzboGkxyURgAEAAOCrUkLw25xzmyT1Oee+JWm1pHed6wXOuZyk35P0kKR2Sd9zzj1pZreZ2ZrRNg0AAACMRSmrQ2QHf3/NzBZJellSzfle5Jx7UNKDpx279SznLi+hHwAAAGBUSgnBd5rZLEmbNDDSUCFpxDALAAAATGalrA7xj4NfPibpYn/aAQAAAPxX9EywmdWa2TfM7P8OPm4ys0/41xoAAADgj1JujPumBm5wmzv4+GlJn/G6IQAAAMBvpYTg2c6570kqSK+v/JD3pSsAAADAR6WE4D4zu0CSkyQzu0LScV+6AgAAAHxUyuoQn9PAqhAXm9mPJVVLut6XrgAAAAAflRKC2yTdJ6lfAzvF3a+BuWAAAABgSillHOLbkhZK+jNJfyvpUg1spQwAAABMKaVcCV7knGsa9niPmbV53RAAAADgt1KuBD8xeDOcJMnM3iWp1fuWAAAAAH+d90qwmf1MAytCRCX9u5kdGXx8kaQOf9sDAAAAvFfMOMQ1vncBAAAAjKPzhmDn3M/HoxEAAABgvJQyEwwAAAC8KRCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4EQmugEAAAC8uSTTWR3tz0qSTiZzSmbzSkTDmp4YiJ4XlEeVKItOZIuEYAAAAHjjtf6M+tJ5bT/Qpa37jqizN3nGOfVVCa1fOl9rl9RpWllYM8tjE9CpZM65CfmDx6KlpcW1trZOdBsAAAAY9PLxlHa3d2vzzjalsoXznh+PhrRpdZNWNtZqzoy4Lz2Z2X7nXMtIz3ElGAAAAGPSfSKlL9x3SHs6eop+TSpb0C33H9aujm7dsa5ZtZX+BOGz4cY4AAAAjNrLx1PauK20ADzcno4ebdx2SN0nUh53dm6EYAAAAIzKa/0Z7W7vHnUAHrKno0e72rp1vD/jUWfnRwgGAADAqPSl89q8s82TWpt3tulUOu9JrWIQggEAAFCyZDqr7Qe6iroJrhipbEE7DnYpmc56Uu98CMEAAAAo2dH+rLbuO+JpzS17j7y+vrDfCMEAAAAomXMacR3gsejsTWq8Vu8lBAMAAKBkp1I5f+qm/al7OkIwAAAASpbM+nMTW8qnuqcjBAMAAKBkiWjYl7rxiD91T0cIBgAAQMkq4v5sPOxX3dMRggEAAFAyM6m+KuFpzfqqhMw8LXlWhGAAAACU7ILyqNYvne9pzRuWzVd1RZmnNc+GEAwAAICSJcqiWrukTvGoN3EyHg1pzeI6lfk0a3w6QjAAAABGZVpZWJtWN3lSa9PqJlWUjU8AlgjBAAAAGKWZ5TGtbKzVioXVY6qzYmG1VjXVakZ5zKPOzo8QDAAAgFGbMyOuO9Y1jzoIr1hYrTvWNau2Mu5xZ+dGCAYAAMCY1FbG9efXNev2axcVPSMcj4Z0+7WLJiQAS9L4LMQGAACAN7U5M+K6pvlCLW+o0Y6DXdqy94g6e5NnnFdfldANy+ZrzZI6VcTC4zoCMRwhGAAAAJ6IhkOS5bV0QZVWLKxRPBpWXzqnVLageDSkaWURpbJ5nUrlfnH+BCEEAwAAYMxeOZHSrvZu3fZAm1LZwuvH45GQKuIRnUrllMoNOx4N6dZrmrSqsVY1jEMAAABgqnnlREqf33ZIezp6zngulSsodSpz5vFsQV+877Aeae/Wl9Y1j3sQ5sY4AAAAjNq5AnAx9nT06PPbDumVEymPOzs3QjAAAABGpT+d06727lEH4CF7Onq0q71b/ZmcR52dHyEYAAAAo3IsmdVtD7R5Uuu2B9p0rD/rSa1iEIIBAABQsmw2r+0Hut5wE9xYpLIF7TjQpWw270m98yEEAwAAoGQ9fWlt3XvE05pb9h5RT1/a05pnQwgGAABAyQpOI26GMRadvUkVnKclz4oQDAAAgJKdTPlzE5tfdU9HCAYAAEDJkj7N7qaYCQYAAMBklYiGfakb96nu6XwPwWZ2tZk9ZWbPmtnGEZ7/nJm1mdkhM9ttZhf53RMAAADGZnrcn42H/ap7Ol9DsJmFJX1d0gckNUlab2ZNp532U0ktzrlmSfdK+rKfPQEAAGDsQibVVyU8rVlflVDIPC15Vn5fCV4m6Vnn3HPOuYykeyStHX6Cc26Pc65/8OHjkub53BMAAADGqHpamdYvm+9pzRuWzVf19LinNc/G7xBcJ6lz2OMXBo+dzSck/d+RnjCzDWbWamatPT1j25oPAAAAYxONhrV2SZ3iUW/iZDwa0poldYqGx+eWtUlzY5yZ/aakFkl/MdLzzrk7nXMtzrmW6urq8W0OAAAAZ5iViOrWa06fdB2dW69p0qzyqCe1iuF3CO6SVD/s8bzBY29gZqsk3SJpjXNufLYJAQAAwJiUl0W0qrFWKxaO7QLlioXVWtVYq/LY+NwUJ/kfgvdJusTM3mJmMUkfkbRj+Alm9g5J/6CBAPyKz/0AAADAQzWVcX1pXfOog/CKhdX60rpm1VSOzyzwEF9DsHMuJ+n3JD0kqV3S95xzT5rZbWa2ZvC0v5BUIen7ZnbAzHacpRwAAAAmoaEg/GfXLSp6RjgeDenPrls0IQFYksy5cdqg2UMtLS2utbV1otsAAADAMP2ZnI71Z7XjQJe27D2izt6kZpdHNXdWQi8eS+rV/qzqqxL6jWXztWZJnWaWR30dgTCz/c65lpGeG7/BCwAAALyplcciKo9F9LErL9KHFs+VJJ1M5pTM5pWIhjU9MRA9LyiPKlE2fjfBjYQQDAAAAE8c68+oP53X9gNd2rpv4Erw6eqrElq/dL7WLqlTeVlYs8pjE9Ap4xAAAADwwMvHU9rd3q3NO9uUyhbOe348GtKm1U1a2VirOTP8mQlmHAIAAAC+6T6R0hfuO6Q9HcVvaJbKFnTL/Ye1q6Nbd6xrVu2baXUIAAAAvLm9fDyljdtKC8DD7eno0cZth9R9IuVxZ+dGCAYAAMCoHOvPaHd796gD8JA9HT3a1dat1/ozHnV2foRgAAAAjEp/Oq/NO9s8qbV5Z5v60nlPahWDEAwAAICSJdNZbT/QVdRNcMVIZQvacbBLyXTWk3rnQwgGAABAyY72Z7V13xFPa27Ze0RH+wnBAAAAmKSc04jrAI9FZ29S47V6LyEYAAAAJTuVyvlTN+1P3dMRggEAAFCyZNafm9hSPtU9HSEYAAAAJUtEw77UjUf8qXs6QjAAAABKVhH3Z+Nhv+qejhAMAACAkplJ9VUJT2vWVyVk5mnJsyIEAwAAoGQXlEe1ful8T2vesGy+qivKPK15NoRgAAAAlCxRFtXaJXWKR72Jk/FoSGsW16nMp1nj0xGCAQAAMCrlZWFtWt3kSa1Nq5s0rWx8ArBECAYAAMAozSqPaWVjrVYsrB5TnRULq7WqqVYzy2MedXZ+hGAAAACM2pwZcd2xrnnUQXjFwmrdsa5ZtZVxjzs7N0IwAAAAxqS2Mq4/v65Zt1+76IwZ4UjIVB4LKxJ647IP8WhIt1+7aEICsCSNz0JsAAAAeFObMyOu1c0XanlDjQ52HlMoZJpdUaZ0rqBUNq94NKyySEivnkqrUHBaPH+WpsXC4zoCMRwhGAAAAJ5wg793Hkvqn//j5+rsTZ5xTn1VQr/5rou0uH7W6+dPBHNuIv/40WlpaXGtra0T3QYAAAAGvXw8pd3t3dq8s02pbOG858ejIW1a3aSVjbWaM8OfcQgz2++caxnpOa4EAwAAYEy6T6T0hfsOaU9HT9GvSWULuuX+w9rV0c2NcQAAAJhaXj6e0sZtpQXg4fZ09GjjtkPqPpHyuLNzIwQDAABgVI71Z7S7vXvUAXjIno4e7Wrr1mv9GY86Oz9CMAAAAEalP53X5p1tntTavLNNfem8J7WKQQgGAABAyZLprLYf6CrqJrhipLIF7TjYpWQ660m98yEEAwAAoGRH+7Pauu+IpzW37D2io/2EYAAAAExSzmnEdYDHorM3qfFavZcQDAAAgJKdSuX8qZv2p+7pCMEAAAAoWTLrz01sKZ/qno4QDAAAgJIlomFf6sYj/tQ9HSEYAAAAJauI+7PxsF91T0cIBgAAQMnMpPqqhKc166sSMvO05FkRggEAAFCyC8qjWr90vqc1b1g2X9UVZZ7WPBtCMAAAAEqWKItq7ZI6xaPexMl4NKQ1i+tU5tOs8ekIwQAAABiV8rKwNq1u8qTWptVNmlY2PgFYIgQDAABglGaVx7SysVYrFlaPqc6KhdVa1VSrmeUxjzo7P0IwAAAARm3OjLjuWNc86iC8YmG17ljXrNrKuMednRshGAAAAGNSWxnXn1/XrNuvXVT0jHA8GtLt1y6akAAsSeOzEBsAAADe1ObMiGt184Va3lCjHQe7tGXvEXX2Js84r74qoRuWzdeaJXWaFguP6wjEcIRgAAAAeGJmeUwzy6WPXXmRPrR4rpyTTqVzSmXzikfDqiiLyGxgebVEWXRCeyUEAwAAwBMnk1mdSOW0/UCXtu4buBI8uzyqubMSevFYUq/2Z1VfldD6pfO1dkmdKuMRTU9MTBg259yE/MFj0dLS4lpbWye6DQAAAAzqPp7SrvZubd7ZplS2cN7z49GQNq1u0qrGWtXO8Gcm2Mz2O+daRnqOK8EAAAAYk+4TKW2875D2dPQU/ZpUtqBb7j+sXR3drA4BAACAqaX7eEobt5UWgIfb09GjjdsOqftEyuPOzo0QDAAAgFE5mcxqV3v3qAPwkD0dPdrV1q1TqaxHnZ0fIRgAAACjciKV0+adbZ7U2ryzTceTOU9qFYMQDAAAgJKlMwOrQBRzE1wxUtmCdhzsUjozPkGYEAwAAICS9fRltHXfEU9rbtl7RD19GU9rng0hGAAAACVzTiPuCDcWnb1JjdfqvYRgAAAAlOxUyp+xhVNpxiEAAAAwSSWzeV/qpnyqezpCMAAAAEqWiIZ9qRuP+FP3dIRgAAAAlKwi7s/Gw37VPR0hGAAAACUzk+qrEp7WrK9KyMzTkmdFCAYAAEDJqqfFtH7pfE9r3rBsvmqml3la82wIwQAAAChZWSyitUvqFI96Eyfj0ZDWLK5TjJlgAAAATGaV8Yg2rW7ypNam1U2akRifeWCJEAwAAIBRmp6IalVjrVYsrB5TnRULq7WqqVYV8ahHnZ0fIRgAAACjVjsjrjvWNY86CK9YWK071jWrtjLucWfnRggGAADAmNRWxnXHdc26/dpFZ8wIL55Xqf/xKwu0eF7lG47HoyHdfu2iCQnAkjR+gxdTUDKd1dH+rCTpZDKnZDavRDSs6YPzKheUR5UoG7/L9pjaeD8BAN7MamfEtXbJXC1vqNHMREi9/XmZSSeSWaWyBX3oHfNUmYjKOamqPKzXUgXNiEfGdQRiOELwCI71Z9Sfzmv7gS5t3XdEnb3JM86pr0po/dL5WrukTuVlYc0qj01Ap5gKeD8BAIIiW3CSpG/9pLOoz7yh8yeCOTdxf/hotbS0uNbWVl9qv3w8pd3t3dq8s02pbOG858ejIW1a3aSVjbWaM2P8L+VjcuP9BAAIisn4mWdm+51zLSM+Rwj+he4TKW3cdkh7OnpKfu1EDXVj8uL9BAAIisn6mXeuEMyNcYNePj76/3mStKejRxu3HVL3iZTHnWEq4v0EAAiKqfqZRwjWwMzm7vbuUf/PG7Kno0e72rr1Wn/Go84wFfF+AgAExVT+zCMES+pP57V5Z5sntTbvbFNfOu9JLUxNvJ8AAEExlT/zAh+Ck+msth/oKmqAuxipbEE7DnYpmc56Ug9TC+8nAEBQTPXPPN9DsJldbWZPmdmzZrZxhOfLzOy7g8//h5kt8Lun4Y72Z7V13xFPa27Ze+T19WARLLyfAABBMdU/83wNwWYWlvR1SR+Q1CRpvZk1nXbaJyQdc869TdJXJX3Jz55O55xGXMNuLDp7k5qCi27AA7yfAABBMdU/8/y+ErxM0rPOueeccxlJ90hae9o5ayV9a/DreyWtNDPzua/XnUrl/Kmb9qcuJjfeTwCAoJjqn3l+h+A6SZ3DHr8weGzEc5xzOUnHJV1weiEz22BmrWbW2tMztjsQh0tm/RnATvlUF5Mb7ycAQFBM9c+8KXNjnHPuTudci3Oupbq62rO6iWjYs1rDxSP+1MXkxvsJAP5/e/cea1lZ3nH8+3PmcM7AKCMwDnRmcIxgKDYwIp1qtASQGhUzJIhxSqhovaReUo2tjTUBUdOUpto0bRObFgh4wWqk4KhQSoQEbQQZLnI1FRWt4wU7VBSBcYCnf+w1cNycM7OGzjlr7a7vJ9k5a+/1Zu1nnnly3ues/a69NBSTPuctdBO8FVg76/ma5rU5xyRZCuwPbFvguB63fGbpRB1X/WY9SZKGYtLnvIVugm8ADk/ynCT7AJuAzWNjNgNnNtunAVfXIt7LOYG1Byzbq8dce8AyFm9Vs/rEepIkDcWkz3kL2gQ3a3zfCVwJ3AV8tqruSPKhJBubYecDBya5G3gP8KSvUVtIB+47xe//9qF79ZinbziUlcun9+oxNRmsJ0nSUEz6nLfga4Kr6vKqel5VPbeq/qJ57eyq2txsP1xVr62qw6pqQ1V9Z6Fjmm3Z9BSnrF/NzNTeScXM1NPYePRqphdonYz6zXqSJA3FpM95E3Nh3ELad3oJZ508/vXFT81ZJx/JftM2LENmPUmShmKS5zybYOCZ++7Dy35zFScc8X/71okTjljJSUeuYsW+++ylyDSJrCdJ0lBM8pxnE9w4eP8Zzj31qKf8n3jCESs599SjWPWMmb0cmSaR9SRJGopJnfOyiF/EsNcce+yxtWXLlgU59o/vf5gv3/UTPvylO3l4x2O7HT8z9TTOOvlITjpylQ2LnsR6kiQNRR/nvCQ3VtWxc+6zCX6ynz34K365/VE2f2MrF3/9+3PeF3vtAcs4fcOhbFy/mv32WeJH1pqX9SRJGoq+zXk2wU/RQ9t3sO3BHVSN7mP98I5HmZlawvLppSSwcvm0V+2rNetJkjQUfZnzdtUEexuqXVg2PcWa6amuw9D/E9aTJGkoJmHO88I4SZIkDY5NsCRJkgbHJliSJEmDYxMsSZKkwbEJliRJ0uDYBEuSJGlwbIIlSZI0ODbBkiRJGpyJvGNckp8C3+vgrQ8C/ruD95005qkd89SOeWrHPLVnrtoxT+2Yp3a6ytOzq2rlXDsmsgnuSpIt8916T08wT+2Yp3bMUzvmqT1z1Y55asc8tdPHPLkcQpIkSYNjEyxJkqTBsQneM//UdQATwjy1Y57aMU/tmKf2zFU75qkd89RO7/LkmmBJkiQNjmeCJUmSNDg2wZIkSRocm+AxSS5Icm+S2+fZnyR/l+TuJLcmOWaxY+yDFnk6Psn9SW5pHmcvdox9kGRtkmuS3JnkjiTvmmPM4GuqZZ4GX1NJZpJ8Pck3mjx9cI4x00k+09TT9UnWLX6k3WqZpzck+emsenpzF7H2QZIlSW5O8sU59g2+nnbaTZ6sp0aSe5Lc1uRhyxz7ezPnLe3qjXvsQuAfgI/Ps/+VwOHN43eAjzU/h+ZCdp0ngK9U1asXJ5zeegT4k6q6KcnTgRuTXFVVd84aY021yxNYU9uBE6vqgSRTwFeTXFFV180a8ybgf6rqsCSbgL8CXtdFsB1qkyeAMyxn9AAABOxJREFUz1TVOzuIr2/eBdwFPGOOfdbTE3aVJ7CeZjuhqua7MUZv5jzPBI+pqmuB+3Yx5BTg4zVyHbAiySGLE11/tMiTgKr6UVXd1Gz/gtEv0NVjwwZfUy3zNHhNjTzQPJ1qHuNXN58CXNRsfw54WZIsUoi90DJPApKsAU4GzptnyODrCVrlSe31Zs6zCd5zq4H/mvX8BzhZz+fFzceRVyR5ftfBdK35GPEFwPVju6ypWXaRJ7Cmdn4kewtwL3BVVc1bT1X1CHA/cODiRtm9FnkCeE3zceznkqxd5BD74m+BPwMem2e/9TSyuzyB9bRTAf+e5MYkb51jf2/mPJtgLZSbGN2v+2jg74HLOo6nU0mWA5cA766qn3cdT1/tJk/WFFBVj1bVemANsCHJb3UdUx+1yNMXgHVVdRRwFU+c7RyMJK8G7q2qG7uOpc9a5mnw9TTLS6vqGEbLHt6R5LiuA5qPTfCe2wrM/gtvTfOaZqmqn+/8OLKqLgemkhzUcVidaNYkXgJ8qqr+dY4h1hS7z5M19euq6mfANcArxnY9Xk9JlgL7A9sWN7r+mC9PVbWtqrY3T88DXrjYsfXAS4CNSe4B/gU4Mcknx8ZYTy3yZD09oaq2Nj/vBS4FNowN6c2cZxO85zYDr2+ubnwRcH9V/ajroPomycE7140l2cCo1ob2i5MmB+cDd1XV38wzbPA11SZP1hQkWZlkRbO9DPg94JtjwzYDZzbbpwFX18DuitQmT2NrEDcyWoc+KFX151W1pqrWAZsY1coZY8MGX09t8mQ9jSTZr7m4mST7AS8Hxr9Fqjdznt8OMSbJp4HjgYOS/AD4AKOLKqiqfwQuB14F3A08CLyxm0i71SJPpwFvS/II8BCwaWi/OBsvAf4AuK1ZnwjwfuBQsKZmaZMnawoOAS5KsoTRHwGfraovJvkQsKWqNjP6Y+ITSe5mdPHqpu7C7UybPP1xko2MvpnkPuANnUXbM9ZTO9bTnFYBlzbnK5YCF1fVvyX5I+jfnOdtkyVJkjQ4LoeQJEnS4NgES5IkaXBsgiVJkjQ4NsGSJEkaHJtgSZIkDY5NsCT1RJIVSd7edRySNAQ2wZLUHysAm2BJWgQ2wZLUH+cCz01yS5K/TvLeJDckuTXJBwGSrEvyzSQXJvnPJJ9KclKS/0jyreZueiQ5J8knknytef0tzeuHJLm2eY/bk/xuh/9eSeqMTbAk9cf7gG9X1XrgKuBwYAOwHnhhkuOacYcBHwWOaB6nAy8F/pTRnfZ2Ogo4EXgxcHaS32jGXtm8x9HALUjSAHnbZEnqp5c3j5ub58sZNcXfB75bVbcBJLkD+HJVVZLbgHWzjvH5qnoIeCjJNYwa6huAC5JMAZdVlU2wpEHyTLAk9VOAv6yq9c3jsKo6v9m3fda4x2Y9f4xfP7lRY8esqroWOA7YClyY5PULELsk9Z5NsCT1xy+ApzfbVwJ/mGQ5QJLVSZ61h8c7JclMkgOB44Ebkjwb+ElV/TNwHnDM3gldkiaLyyEkqSeqaltzgdvtwBXAxcDXkgA8AJwBPLoHh7wVuAY4CPhwVf0wyZnAe5PsaI7pmWBJg5Sq8U/LJEmTLsk5wANV9ZGuY5GkPnI5hCRJkgbHM8GSJEkaHM8ES5IkaXBsgiVJkjQ4NsGSJEkaHJtgSZIkDY5NsCRJkgbnfwHWyKnG6zi6FQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3hU93nn/c89o5k5IwkBsiURZCnODwekEEFcmTpJuzExadziACZua9i2SeONt1eTPu1mm5jUwZs1dYLtbtOmm+fZ2k3aJFchSR1siPHWNQ5Ot2lSEC6oWBKx100ky7asIAxImhnNaL7PH5KwLASakc7RD5/367q40Jw5c3NbHq75cHSf79eccwIAAADCJDLXDQAAAACzjRAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABCp2SuG5iOyy+/3F155ZVz3QYAAADmsaNHj/7MOVc12XMLMgRfeeWVamlpmes2AAAAMI+Z2U8v9hzjEAAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQW5GYZsyWVyerUYFaSdC6VUyo7rGQsqkXJkW/bZaUxJROxuWwRAAAA00AInsTpwSENZoa171i39hzpVFdf6oJz6iqT2npNvTatqVVpIqqlpfE56BQAAADTYc65ue6haM3NzS6obZNfOpPWE+092nmgTelsfsrzvVhEOzY06vqGGi1b7AXSEwAAAIpnZkedc82TPceV4HF6zqb1mYdadaijt+DXpLN53fHwCR3s6NGuLU2qqSAIAwAAzHfcGDfqpTNpbd9bXAAe71BHr7bvbVXP2bTPnQEAAMBvhGCNzAA/0d4z7QA85lBHrw629eiVwSGfOgMAAEAQCMGSBjPD2nmgzZdaOw+0aSAz7EstAAAABCP0ITiVyWrfse6CboIrRDqb1/7j3Uplsr7UAwAAgP8CDcFm9lUze9nMTlzkeTOzL5nZs2bWamZXB9nPZE4NZrXnSKevNXcf7jy/vjAAAADmn6CvBP+NpBsu8fwvS7pq9Ndtkv6/gPu5gHOadB3gmejqS2kBrjwHAAAQGoGGYOfcP0rqu8QpmyR93Y34kaQlZvaGIHuaqD+dC6ZuJpi6AAAAmLm5ngmuldQ17vHzo8cuYGa3mVmLmbX09s5sFYfxUtlgbmJLB1QXAAAAMzfXIbhgzrn7nXPNzrnmqqoq3+omY1Hfao3nlQRTFwAAADM31yG4W1LduMdXjB6bNeVeMJvmBVUXAAAAMzfXIXi/pN8aXSXiWklnnHMvzmYDZlJdZdLXmnWVSZn5WhIAAAA+CnqJtD2SfihphZk9b2a3mtnvmNnvjJ7yqKTnJD0r6QFJvxtkP5O5rDSmrdfU+1pz29p6VZUnfK0JAAAA/wT6M3vn3NYpnneSPh5kD1NJJmLatKZWX/reM75smOHFItq4ulaJgGaNAQAAMHNzPQ4xL5QmotqxodGXWjs2NKosQQAGAACYzwjBkpaWxnV9Q43WrZzZqhPrVlZpfWONlpTGfeoMAAAAQSAEj1q22NOuLU3TDsLrVlZp15Ym1VR4PncGAAAAvxGCx6mp8PSFm5p09+ZV8mKv/daUx6OqW5pUefy1ow5eLKK7N68iAAMAACwgLGY7wbLFnjY0vUHXrahWfyYrLxZV1Exn01mls3l5sYgqvJiGnVN6aFjlyZjK4lFGIAAAABYQQvAkoqOL/D7R/rL2HOlUV1/qgnPqKpPaek29Nq2pPX8+AAAAFgYbWaVsYWlubnYtLS2B1O45k9bB9h7tPNBW0JJpXiyiHRsatb6hRjWLGYcAAACYL8zsqHOuebLnuBI8Ts/ZtLY/1KpDHb0FvyadzeuOh0/oYEcPc8EAAAALBDfGjeo5k9b2vcUF4PEOdfRq+95W9ZxN+9wZAAAA/EYIlnQuldXB9p5pB+Axhzp6dbCtR/3prE+dAQAAIAiEYEln0zntPNDmS62dB9p0JpXzpRYAAACCEfoQnBnKad+x7oJugitEOpvX/uPdygwRhAEAAOar0Ifg3oEh7TnS6WvN3Yc71Tsw5GtNAAAA+Cf0Idg5TboO8Ex09aW0AFeeAwAACI3Qh+D+dDBjC/0ZxiEAAADmq9CH4HRuOJC6mYDqAgAAYOZCH4K9WDSQuomSYOoCAABg5kIfgssTwWyaF1RdAAAAzFzoQ/Cwc6qrTPpas64yqTx3xgEAAMxboQ/BueG8PnT1Fb7WvPnqK5Qd9mfdYQAAAPgv9CE4m3O67m1V8mL+fCu8WETvfVuVsjmuBAMAAMxXoQ/B5V6JvvqDn+hTH1jhS71PfWCFvvJP/65yj5lgAACA+Sr0IdhM+teu01pWkdR1K6pmVOu6FVVaVpHUsedfkZlPDQIAAMB3oQ/BpfGotl5Tr08/eFy/89636PqV1dOqc/3Kav3Oe9+iTz94XNvW1qs8zpVgAACA+Sr0IbgkKm1aU3t+JvjWX3iTdtzYUPCMsBeLaMeNDbr1F950/vHG1bWKRrkUDAAAMF+F/nLl2dSwEiUR/e1/ula7/r5DT57s1Qeb3qBvfuxaff/HvXrwqefV1Ze64HV1lUndfPUVeu/bqvSVf/p37XykXdetqNLffuxaJUpMZ1JZLfJic/BfBAAAgKmEPgQvSkb1bM+Anunp15MneyVJ3219UY+eeEnXr6zWH/7SCi1fklR2OK90Ni8vFlEsGtELr6T0SOuL+tL3ntVwfmQliCdP9uqXVy3TW6vL9daasrn8zwIAAMAlmFuAmzo0Nze7lpYWX2p1nx5U3knv/+L3lc5efG3fkogpXhLRUC6vXP7i3zMvFtHj/+W9iphUu7TUlx4BAABQPDM76pxrnuy50M8Ee/GIvnv8hUsGYEnK5Z0Gh4YvGYAlKZ3N65HWF+TFQ/+tBQAAmLdCn9QGM3ntOdLpa83dhzs1mGHHOAAAgPkq9CFY0qQ3vs2negAAAPBX6EPwuXQ2kLr9mVwgdQEAADBzoQ/BU80CjymJmErjUZVEClv/N50dnklbAAAACFDol0hLxqKTHo9GTOsbqvUr73iDapcklcnllc4Oy4tFlSiJqPuVlA60vqgnOl4+v0TaeF7J5HURXsPDefUNDimXdzqXzimTHVYiFtUir0QlEVNlaVzRaOj/XQoAwKwIfQhe5F34Ldi4erk++p4r9eSPe/Un/3DyoptlfOjqK/S7171FX/3BT7T/+AtT1kU4DeXy6hsY0iOtL+hrP/zJRd9PH37Xlbqxabkqy+KKlxCGAQAIEusEnx7ULQ/8SF19KZXFo7r35tV66WxK9z12sqBRCS8W0ac+sELLKpL69IPHNTA0rLrKpL5527WqXcI6wWHXNzCkg+09unPfiYLfT3dtWqX1DTWqLIvPQocAALx+sU7wJVSXJ7R1bb3K4lE98OFm/d3RLu18pL3gWeF0Nq+dj7Tr74526YEPN6ssHtW2tfWqXuQF3Dnmu1P9GX36weP69IOtRb2fPv1gqz794HGd6s8E3CEAAOEV+p/Zx2JRbV5TqzddVqb7//G581snF2vsdX/yq6u1um6JYsx2hlrfwJBu/06rDra/PK3XH2x/Wbd/p1X33bxaS7kiDACA70hqkmJRU9/A0LQD8JgnT/aqb2BI8WhhK0jg9Wkol9fB9pemHYDHHGx/WY+392gox8YrAAD4LfQhOJsd1plUTjsPtPlSb+eBNp1J5ZRlibTQ6hvI6M59T/tS6859J9Q3wFgEAAB+C30IfiU9pAOtLxQ8szmVdDavA//2gl5JD/lSDwvL8HBe3z3+oq/vp++2vqjhYa4GAwDgp9CH4EzO6cGnnve15t8dfV6Z3MJbdQMzd2pgSF//0U98rfn1H/5Epwb4RxUAAH4KfQjOOzfpuq0z0dWXUn4BLj2HmcsO5wt6PxWzA2FXX0pZrgQDAOCr0K8OcS6dC6Ruf5qZ4DC62PtppjsQnssE8z4FACCsQh+Cg7rzfihHCA6jyWaB/diBMOPTjDEAABgR+hCcjEUDqesFVBfzW2LcdsfjdyC85YEfXfJmua6+lP7s4DP6X9//v/rUB1boA29fdn4HQklsowwAgM9C/8lalgjm3wFB1cX8VpoY+cfPVDsQXmwmeLIdCCWpNM4/qgAA8FPok1pJ1FRXmfT15ri6yqRibJgRSs6N/P/ffkPDa3YgLHYmeOx19968Wrv+vl3cZwkAgL9CH4IjJv3mtVfq84+2+1bzt669UhEjBIeRF4/osxsa9Pzp1PkgO92Z4CdP9uoXr7pcn93QoGQ89D+0AQDAV6H/ZB3KOV3fUC0v5s+3wotF9L6GamXY6jaUTNLbly/WfY+dVFk8qi9vu1qr6xbrlgd+pD87+MxFf+IwNhN8ywM/0uq6xfrytqtVFo/qvsdO6u3LF8/ufwQAACEQ+hDcn87pzw8+o89tfLsv9f77xrfrzx7/sfpZ0iqUIibtO/aComaXnAm+mIkzwVEz7T/2Aj9ZAADAZ6EPwanssPYff0GXlca1vqF6RrXWN1SrsjSu77a+qHSWJdLCKJ11+uaRTt178+rXzAQX68mTvbr/H5/TvTev1p4jnb5twwwAAEaEPgSPLZH2B986ptv+w5unHYTXN1Trtv/wZv3Bt45JkrwS7uYPIyend9Yt1UtnU9MOwGOePNmrl86mtOaKJXLizjgAAPwU+hBc7o3cGzgwNKzf/usjuumdV+juzasKnhH2YhHdvXmVbnrnFfrtvz5yfl3XsboIl/50Th99z5W677GTvtS777GTuvUX3sQOhAAA+Cz0Idhs5M58aSQIf3z3U/rRc6f0zdvepdtvWHH+uYnqKpO6/YYV+uZt79KPnjulj+9+6nwArqtMihHOcEqURPTkj3t9G19IZ/P6/o972SwDAACfhf5yZbkX1dZr6nXvuCt33219UY+eeEnXr6zWH/7SCi1fklR2OK+hXF7xkohi0YheeCWlR1pf1J/8w481nH/tj6q3ra3XIq4Eh1JJNKLvPPW8rzUffOp5bX5nra81AQAIu9AntUXxmDauWa4vfe+Z11y9G847/UNbj/6hrUfSyA5f8ZKIhnJ55fIXn8/0YhF9cPVylSdigfeO+Sdi5uvGK9LI8mmsDgEAgL9C/zPWaDSiZElEOzY0XvK8XN5pcGj4kgFYknZsaJRXElE0QmgJo6CWxhtgyT0AAHwV+hAsSYuScb13RZXWrayaUZ11K6v03hVVqkjGfeoMC01QS+Olc9wYBwCAnwjBkuIlEZXGS/THm94x7SC8bmWV/njTO1QWL+EmphALamm8RJQl9wAA8FPoZ4LHVJbFdcpl9N9ufLvWr/yZdh5oK+gOfy82MkrxnrdeLi8W0dIyrgKHWVBL47HkHgAA/uKTdZzLyhMyM62uW6zH/8t79UjrC9p9uHPSG53qKpPatrZeNzYt19nUkBYnYwRgnF9yz8+b41hyDwAA/xGCJ6gsi6s8UaK+gSGtvbJS61ZWy4tFNZDJKZ3Ny4tFVJYoUTo7rIF0TrFoRFfVVDACAUlSVVn8giX3Zmrb2npVL0r4Vg8AADATPKl4SUTLFntaU7dEl5XFlSiJKB6NqDQ+8nuiJKLLyuJaU79UyxZ7BGCcl4iXaNOa2oJ3HJyKF4to4+paxdmGGwAAX3El+BKi0YiqFnkjDxbPbS9YOMoTUe3Y0Kg7Hj4x41o7NjRqkUcABgDAb1zCBHyWG87rfQ3Vviy5976Gag3l/NmCGQAAvIoQDPhoeDivVC6vD3/1X/SFm5pmtOTeF25q0oe/+i9K5/IaHiYIAwDgJ0Iw4KNzQ1ntP/aCftwzoF//y3/WH29apbs3ryp4RtiLRXT35lX6402r9Ot/+c/6cc+Avnv8BZ0bygbcOQAA4UIIBnzUnx7WniOdkqSf9qX0nnsOqboioSc+eZ1uv2GF6iqTk76urjKp229YoSc+eZ2qKxJ6zz2H9NPRZdZ2H+5Uf5od4wAA8BM3xgE+ck4XrBH8sa8fVWVZXPt+9926sWm5JKk/k1M6OywvFlV5omT0tXl98H/+k/oGhl7z+q6+lJybnf4BAAgLQjDgo3PpC8cW/uq3fk4Nb1isfce6tefIyOYr5fGolpbFdXpgSP1Dw6qrTGrrNfX67id+Qe0vntF/+vrR19Toz+Rm6z8BAIBQYBwC8NH4rbbfWJnUD25fp56zGV3/p0/q3sdOnr9K3D80rK7TKfUPjYw5dPWldO9jJ3X9nz6pnrMZ/eD2dXrjuNGJdJZxCAAA/BR4CDazG8zspJk9a2bbJ3m+3swOmdm/mlmrmf1K0D0BQUnGRtb0fWNlUt/6z+/WZ/ed0B0Pn3hNOL6UdDavOx4+oc/uO6Fv/ed3nw/CHptlAADgq0BDsJlFJX1Z0i9LapS01cwaJ5z2WUnfds69U9Itkv7fIHsCglTujUwY7f7YtfrMQ6061NE7rTqHOnr1mYdatftj176mLgAA8EfQV4LXSnrWOfecc25I0jclbZpwjpNUMfr1YkkvBNwTEJiISd/46Fo9ebJ32gF4zKGOXj15slff+Og1ijC4BACAr4L+aK2V1DXu8fOjx8b7nKTfMLPnJT0q6fcmK2Rmt5lZi5m19PbOLFwAQakuT+jNVeXaeaDNl3o7D7TpzVWLVD22fTcAAPDFfLi+tFXS3zjnrpD0K5K+YWYX9OWcu9851+yca66qmtl2tEBQ8s5p37HugmeAp5LO5rX/eLfy7BgHAICvgg7B3ZLqxj2+YvTYeLdK+rYkOed+KMmTdHnAfQGB6B0YOr9Zhl92H+5U74S1gwEAwMwEHYKPSLrKzN5kZnGN3Pi2f8I5nZKulyQza9BICGbeAQvSZJtlzBSbZQAA4L9AQ7BzLifpE5Iek9SukVUgnjazu8xs4+hp/1XSx8zsuKQ9kj7iHB/5WJj608FsasFmGQAA+CvwdZecc49q5Ia38cfuHPd1m6T3BN0HMBtSAW1qwWYZAAD4az7cGAe8boxtluE3NssAAMBfhGDAR0FtasFmGQAA+IsQDPjITKob3erYL3WVSZn5WhIAgNAjBAM+qiqLa+s19b7W3La2XtWLEr7WBAAg7AjBgI8S8RJtWlMrL+bPXy0vFtHG1bWKMxMMAICvCMGAzyq8Eu3Y0OhLrR0bGrU4yTwwAAB+IwQDPluUjGl9Q43WrZzZ9t7rVlZpfWONyr2YT50BAIAxhGAgADWLPe3a0jTtILxuZZV2bWlSTYXnc2cAAEAiBAOBqanwtOumJt29eVXBM8JeLKK7N68iAAMAEDCGDYEAxUoievdbKvXEJ6/T/uPd2n24U119qQvOq6tMatvaem1cXauhXE6xKP8+BQAgSIRgICCn+jPa/p1/0+PtPUrGo7rvQ+/QN279eUXN1J/JKZ0dlheLqjxRomHndOL5V7T+i99XamhY72+o0a4PvUOXlbM0GgAAQSAEAwHoGxg6H4AlKTU0rE/sOXb++fJ4VEvL4jo9MKT+oeELXv94e4/0Henem5u0tCw+a30DABAW/MwV8NlQLq8n2nvOB+DJ9A8Nq+t0atIAPObx9h4dbO/RUC4fRJsAAIQaIRjwWd/AkHbsO+FLrR37TqhvYMiXWgAA4FWEYMBHw8N5PdL6gtJZf67eprMj9YaHuRoMAICfCMGAj/oGh/S1H/7E15pf++FP1DfI1WAAAPxECAZ8lMu7SZdAm4muvpRyeedrTQAAwo4QDPjoXDoXSN3+gOoCABBWhGDAR5nsxVd7mFFdVogAAMBXhGDAR4lYNJC68RL+qgIA4Cc+WQEfLfKC2X8mqLoAAIQVIRjwUUnEVFeZ9LVmXWVSJRHztSYAAGFHCAZ8VFka14ffdaWvNT/8ritVWZbwtSYAAGFHCAZ8FI1GdGPTcnkxf/5qebGRelGuBAMA4CtCMOCzyrK4dm5a5UutnZtWqbIs7kstAADwKkIw4LN4SUTXN9To/Q01M6rz/oYarW+oYWUIAAACwKcrEIDKsrh2fegd0w7C72+o0a4PvUNLuQoMAEAgCMFAQC4rT+iem5t0381NBc8Ie7GI7ru5Sffe3KTLyrkZDgCAoLD4KBCgyrK4Nq2p1S9eVaVHWl/Q1374E3X1pS44r64yqY+8+0pteMdyVZbFGYEAACBghGAgYPGSiJYt9vTb775Sm9YsVy7v1J/OKZPLK1ESUblXopKIqbIswSoQAADMEkIwMEui0YiqFnkjDxbPbS8AAIQdIRiYJdnssHoHMso76Vw6p1R2WMlYVIu8EkVMqipLKBaLznWbAACEAiEYCNhgJqfTqaz2HevWnsOdF50J3rq2XpvW1GppMqbSBH81AQAIkjnn5rqHojU3N7uWlpa5bgOY0stn0zrY3qO7HmlTOpuf8nwvFtGdNzZqfUONqiu8WegQAIDXLzM76pxrnuw5LjcBAXn5bFq3723VoY7egl+Tzub1Rw+d0OPtPbpnSxNBGACAgLAOExCA6QTg8Q519Or2va16+Wza584AAIBECAZ8N5jJ6WB7z7QD8JhDHb062N6jwaGcT50BAIAxhGDAZ6dTWd31SJsvte56pE2nB7O+1AIAAK8iBAM+ymaHte9Yd0E3wRUinc1r/7FuZbPDvtQDAAAjCMGAj3oHMtpzuNPXmrsPd6p3IONrTQAAwo4QDPgo7zTpOsAz0dWXUn7hrWQIAMC8RggGfHQuHcxNbEHVBQAgrAjBgI9SAc3uppkJBgDAV4RgwEfJWDSQul5AdQEACCtCMOCjRV4wmzAGVRcAgLAiBAM+iphUV5n0tWZdZVIR87UkAAChRwgGfFRVltDWtfW+1ty2tl5VizxfawIAEHaEYMBHsVhUm9bUyov581fLi0W0cU2tYlH+qgIA4Cc+WQGfLU3GdOeNjb7UuvPGRi0tjflSCwAAvIoQDPisNFGi9Q01WreyakZ11q2s0vqGGpXGuSkOAAC/EYKBAFRXeLpnS9O0g/C6lVW6Z0uTqiuYBQYAIAiEYCAgY0H48zetumBG+PLSmJpqK3T5hFEHLxbR529aRQAGACBg/JwVCFB1hafN76zVe1dUKxaRMjknM+lsKqt0Ni8vFlFFMibnpHjUNOykJaUxRiAAAAgYn7RAwDK5vOSkB492a8+RTnX1pS44p64yqa3X1GvTmlplcnmVxuegUQAAQsScc3PdQ9Gam5tdS0vLXLcBTOmlM2k90d6jnQfalM7mpzzfi0W0Y0Ojrm+o0bLFjEMAADATZnbUOdc82XNcCQYC0nM2rc881KpDHb0FvyadzeuOh0/oYEePdm1pUg1zwQAABIIb44AAvHQmre17iwvA4x3q6NX2va3qOZv2uTMAACARggHfnR4c0hPtPdMOwGMOdfTqYFuPXhkc8qkzAAAwhhAM+GwwM6ydB9p8qbXzQJsGMsO+1AIAAK8iBAM+SmWy2nesu6Cb4AqRzua1/3i3UpmsL/UAAMAIQjDgo1ODWe050ulrzd2HO3VqkBAMAICfCMGAj5zTpOsAz0RXX0oLcCVDAADmtSlDsJktmY1GgNeD/nQumLqZYOoCABBWhVwJ/pmZHTSzWwnEwKWlssHcxJYOqC4AAGFVSAhul/Rnkt4n6f+a2T4zu8XMksG2Biw8yVg0kLpeSTB1AQAIq0JCcNY594hz7j9KukLS30r6NUnPm9nuQLsDFphyL5hNGIOqCwBAWBUSgm3sC+dcyjn3befcFklvlvRYYJ0BC5CZVFfp7w9J6iqTMpv6PAAAULhCQvDfTnbQOXfGOfc1n/sBFrTLSmPaek29rzW3ra1XVXnC15oAAITdlCHYOfcnhRQys7+YeTvAwpZMxLRpTa28mD+rD3qxiDaurlUioFljAADCys91gt/jYy1gwSpNRLVjQ6MvtXZsaFRZggAMAIDf2CwD8NnS0riub6jRupVVM6qzbmWV1jfWaElp3KfOAADAGEIwEIBliz3t2tI07SC8bmWVdm1pUk2F53NnAABA8jcEc/86ME5Nhacv3NSkuzevKnhG2ItFdPfmVQRgAAACVvDio2b2Dufcv13ilD+/yOtuGH0uKumvnHO7Jjnn1yR9TpKTdNw5t63QvoD5bNliTxua3qDrVlRr//Fu7T7cqa6+1AXn1VUmtW1tvTauqVVZPMoIBAAAATPnXGEnmv0fSQlJfyPpb51zZwp4TVTSjyW9X9Lzko5I2uqcaxt3zlWSvi3pfc6502ZW7Zx7+VJ1m5ubXUtLS0F9A/NFKpPVqcGsnJP6Mzmls8PyYlGVJ0pkNrK8WjIRm+s2AQB43TCzo8655smeK/hKsHPuF0cD60clHTWzw5L+2jn3+CVetlbSs86550Yb+aakTZLaxp3zMUlfds6dHv1zLhmAgYXmXCqrs+mc9h3r1p4jI1eCy+NRLS2L6/TAkPqHhlVXmdTWa+q1aU2tKrwSLUoShgEACFJRe7E6554xs89KapH0JUnvNDOT9EfOub2TvKRWUte4x89L+vkJ57xNkszsBxoZmficc+7vJxYys9sk3SZJ9fX+bkYABKXnTFoH23u080Cb0tn8+eP9Q8PqH3p1LKKrL6V7HzupL33vGe3Y0Kj1DTWqWcxMMAAAQSn4xjgzazKzL0pql/Q+SR90zjWMfv3FGfRQIukqSddJ2irpATNbMvEk59z9zrlm51xzVdXMlp4CZkPP2bS2P9SqOx4+8ZoAfCnpbF53PHxC2x9qVc/ZdMAdAgAQXsWsDvEXkp6StNo593Hn3FOS5Jx7QdJnL/Kabkl14x5fMXpsvOcl7XfOZZ1z/66RGeKriugLmHd6zqS1fW+rDnX0Tuv1hzp6tX0vQRgAgKAUE4I3SNrtnEtJkplFzKxUkpxz37jIa45IusrM3mRmcUm3SNo/4ZyHNXIVWGZ2uUbGI54roi9gXjmXyupge8+0A/CYQx29OtjWo/501qfOAADAmGJC8EFJyXGPS0ePXZRzLifpE5Ie08gYxbedc0+b2V1mtnH0tMcknTKzNkmHJH3KOXeqiL6AeeVsOqedB9qmPrEAOw+06Uwq50stAADwqmJujPOcc/1jD5xz/WNXgi/FOfeopEcnHLtz3NdO0idHfwELWmZoZBWIQmeAp5LO5rX/eLc++u4rlYgXdR8rAAC4hGKuBA+Y2dVjD8zs5yRduJyoKigAACAASURBVOo/EGK9A0Pac6TT15q7D3eqd2DI15oAAIRdMZeW/kDS35nZCxrZInmZpF8PpCtggXJOk+4INxNdfSkVuKcNAAAoUDGbZRwxs5WSVoweOumc444dYJz+dDDzu/0Z5oIBAPBTsUOG10i6cvR1V5uZnHNf970rYIFKZYcDqZsOqC4AAGFVcAg2s29IeoukY5LGPpGdJEIwMCoZiwZS1ysJpi4AAGFVzJXgZkmNo6s5AJhEuRfMCg5B1QUAIKyKWR3ihEZuhgNwEWZSXWVy6hOLUFeZlJmvJQEACL1iQvDlktrM7DEz2z/2K6jGgIWoqiyurdfU+1pz29p6VS9K+FoTAICwK+ZnrJ8Lqgng9SIRL9GmNbX60vee8WXDDC8W0cbVtYozEwwAgK8KvhLsnPu+pJ9Iio1+fUTSUwH1BSxYFV6Jdmxo9KXWjg2NWpxkHhgAAL8VHILN7GOSHpT0l6OHaiU9HERTwEK2KBnT+oYarVtZNaM661ZWaX1jjcq9mE+dAQCAMcXMBH9c0nsknZUk59wzkqqDaApY6GoWe9q1pWnaQXjdyirt2tKkmgrP584AAIBUXAjOOOeGxh6YWYlG1gkGMImaCk+7bmrS3ZtXyYsV9lfNi0V09+ZVBGAAAAJWzLDh983sjyQlzez9kn5X0neDaQt4fahZ7GnTmuW6bkW19h/v1u7DnerqS11wXl1lUtvW1mvjmlot9koYgQAAIGBW6N4XZhaRdKukX5Jkkh5zzj0QYG8X1dzc7FpaWubijwamLTOUU+/AkJyT+jM5pbPD8mJRlSdKZCZVL0qwCgQAAD4ys6POuebJnivmSvDvOef+XNL54Gtmvz96DMAUEvESXRFnpQcAAOaDYmaCPzzJsY/41AcAAAAwa6a8LGVmWyVtk/SmCTvELZLUF1RjAAAAQFAK+dnsP0t6USPbJv+PccfPSWoNoikAAAAgSFOGYOfcTyX9VNK7gm8HAAAACF4xO8ZtMbNnzOyMmZ01s3NmdjbI5gAAAIAgFHOr+r2SPuicaw+qGQAAAGA2FLM6RA8BGAAAAK8HxVwJbjGzb0l6WFJm7KBzbq/vXQEAAAABKiYEV0ga1MiOcWOcJEIwAAAAFpSCQ7Bz7reDbAQAAACYLcWsDvE2M3vCzE6MPm4ys88G1xoAAAAQjGJujHtA0mckZSXJOdcq6ZYgmgIAAACCVEwILnXOHZ5wLOdnMwAAAMBsKCYE/8zM3qKRm+FkZjdrZDtlAAAAYEEpZnWIj0u6X9JKM+uW9O+SfiOQrgAAAIAAFbM6xHOS1ptZmaSIc+5ccG0BAAAAwSlmdYjfN7OxtYK/aGZPmdkvTfU6AAAAYL4pZib4o865sxrZLOMySb8paVcgXQEAAAABKiYE2+jvvyLp6865p8cdAwAAABaMYkLwUTP7B42E4MfMbJGkfDBtAQAAAMEpZnWIWyWtkfScc27QzC6TxFbKAAAAWHCmDMFmttI516GRACxJbzZjCgIAAAALVyFXgj8p6TZJ/2OS55yk9/naEQAAABCwKUOwc+620d/XBd8OAAAAELxi1gn+1dGb4WRmnzWzvWb2zuBaAwAAAIJRzOoQO5xz58zsFyStl/QVSf8rmLYAAACA4BQTgodHf98g6X7n3AFJcf9bAgAAAIJVTAjuNrO/lPTrkh41s0SRrwcAAADmhWJC7K9JekzSB5xzr0iqlPSpQLoCAAAAAlRwCHbODUraJ2nAzOolxSR1BNUYAAAAEJSCd4wzs9+T9N8k9ejV7ZKdpKYA+gIAAAACU8y2yb8vaYVz7lRQzQAAAACzoZiZ4C5JZ4JqBAAAAJgtxVwJfk7Sk2Z2QFJm7KBz7k997woAAAAIUDEhuHP0V1ysDwwAAIAFrOAQ7Jz775JkZuWjj/uDagoAAAAIUsEzwWa2ysz+VdLTkp42s6Nm9vbgWgMAAACCUcyNcfdL+qRz7o3OuTdK+q+SHgimLQAAACA4xYTgMufcobEHzrknJZX53hEAAAAQsKJWhzCzHZK+Mfr4NzSyYgQAAACwoBRzJfijkqok7ZX0HUmXjx4DAAAAFpRiVoc4Len/CbAXAAAAYFYUszrE42a2ZNzjpWb2WDBtAQAAAMEpZhzicufcK2MPRq8MV/vfEgAAABCsYkJw3szqxx6Y2RslOf9bAgAAAIJVzOoQd0j6JzP7viST9IuSbgukKwAAACBAxdwY9/dmdrWka0cP/YFz7mdjz5vZ251zT/vdIAAAAOC3Yq4EazT0PnKRp78h6eoZdwQAAAAErJiZ4KmYj7UAAACAwPgZgrlJDgAAAAuCnyEYAAAAWBD8DMFDPtYCAAAAAlPUjXFm1iTpyvGvc87tHf392ou8DAAAAJhXCg7BZvZVSU2SnpaUHz3sJO0NoC8AAAAgMMVcCb7WOdcYWCcAAADALClmJviHZkYIBgAAwIJXzJXgr2skCL8kKaORdYGdc64pkM4AAACAgBRzJfgrkn5T0g2SPijpxtHfL8nMbjCzk2b2rJltv8R5HzIzZ2bNRfQEAAAAFK2YK8G9zrn9xRQ3s6ikL0t6v6TnJR0xs/3OubYJ5y2S9PuS/qWY+gAAAMB0FBOC/9XMdkv6rkbGISS9ukTaRayV9Kxz7jlJMrNvStokqW3CeTsl3SPpU0X0AwAAAExLMeMQSY2E31/SyBjE2EjEpdRK6hr3+PnRY+eZ2dWS6pxzBy5VyMxuM7MWM2vp7e0tom0AAADgtQq+Euyc+22//3Azi0j6U0kfKeDPv1/S/ZLU3Nzs/O4FAAAA4VHMZhmepFslvV2SN3bcOffRS7ysW1LduMdXjB4bs0jSKklPmpkkLZO038w2OudaCu0NAAAA80dmKKfegSFJ0rlUTqnssJKxqBYlR6JnVVlciXhRGxf7rpg//RuSOiR9QNJdkv6jpPYpXnNE0lVm9iaNhN9bJG0be9I5d0bS5WOPzexJSX9IAAYAAFh4zqWyOpvOad+xbu050qmuvtQF59RVJrX1mnptWlOrCq9Ei5KxOei0uBD8Vufcr5rZJufc10Zvkvs/l3qBcy5nZp+Q9JikqKSvOueeNrO7JLUUu9oEAAAA5qeeM2kdbO/RzgNtSmfzFz2vqy+lex87qS997xnt2NCo9Q01qlnsXfT8oBQTgrOjv79iZqskvSSpeqoXOecelfTohGN3XuTc64roBwAAAPNAz9m0tj/UqkMdhS9ekM7mdcfDJ3Swo0e7tjSppmJ2g3Axq0Pcb2ZLJe2QtF8jy5zdG0hXAAAAWBB6zqS1fW9xAXi8Qx292r63VT1n0z53dmnFrA7xV6Nffl/Sm4NpBwAAAAvFuVRWB9t7ph2Axxzq6NXBth5tWrNc5d7szAgXfCXYzGrM7Ctm9r9HHzea2a3BtQYAAID57Gw6p50HJu6BNj07D7TpTCrnS61CFDMO8TcaucFt+ejjH0v6A78bAgAAwPyXGRpZBeJSN8EVI53Na//xbmWGZicIFxOCL3fOfVtSXhpZ+UHScCBdAQAAYF7rHRjSniOdvtbcfbjz/PrCQSsmBA+Y2WWSnCSZ2bWSzgTSFQAAAOY15zTpOsAz0dWXkpulfYGLWSLtkxpZFeLNZvYDSVWSbg6kKwAAAMxr/elgxhb6M7MzDlFMCG6T9JCkQUnnJD2skblgAAAAhEwqG8xUbDqguhMVMw7xdUkrJX1e0l9IeptGtlIGAABAyCRj0UDqeiXB1J2omCvBq5xzjeMeHzIzf9bEAAAAwIJS7hUTI+e+7kTFXAl+avRmOEmSmf28pBb/WwIAAMB8ZybVVSZ9rVlXmZSZryUvasoQbGb/Zmatkn5O0j+b2U/M7N8l/VBSc9ANAgAAYP6pKotr6zX1vtbctrZe1YsSvta8mEKuN98YeBcAAABYUBLxEm1aU6svfe8ZXzbM8GIRbVxdq/gszQRPeSXYOffTS/2ajSYBAAAw/1R4JdqxoXHqEwuwY0OjFidnZx5YKm4mGAAAADhvUTKm9Q01WreyakZ11q2s0vrGGpV7MZ86mxohGAAAANNWs9jTri1N0w7C61ZWadeWJtVUeD53dmmEYAAAAMxITYWnXTc16e7Nq+TFCouXXiyiuzevmpMALBW3TjAAAAAwqZrFnjatWa7rVlRr//Fu7T7cqa6+1AXn1VUmtW1tvTauqdVir2RWRyDGIwQDAADAF+VeTOVeTB9995X64Orlck7qz+SUzg7Li0VVniiRmVS9KDFrq0BcDCEYAAAAvkrES3RFfH7HTGaCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChUzLXDQAAAOD1JZsdVu9ARnknnUvnlMoOKxmLapFXoohJVWUJxWLROe2REAwAAABfDGZyOp3Kat+xbu053KmuvtQF59RVJrV1bb02ranV0mRMpYm5iaPmnJuTP3gmmpubXUtLy1y3AQAAgFEvn03rYHuP7nqkTelsfsrzvVhEd97YqPUNNaqu8ALpycyOOueaJ3uOK8EAAACYkZfPpnX73lYd6ugt+DXpbF5/9NAJPd7eo3u2NAUWhC+GG+MAAAAwbdMJwOMd6ujV7Xtb9fLZtM+dXRohGAAAANMymMnpYHvPtAPwmEMdvTrY3qPBoZxPnU2NEAwAAIBpOZ3K6q5H2nypddcjbTo9mPWlViEIwQAAAChaNjusfce6C7oJrhDpbF77j3Urmx32pd5UCMEAAAAoWu9ARnsOd/pac/fhTvUOZHyteTGEYAAAABQt7zTpOsAz0dWXUn6WVu8lBAMAAKBo59LB3MQWVN2JCMEAAAAoWiqg2d00M8EAAACYr5KxaCB1vYDqTkQIBgAAQNEWecFsPBxU3YkIwQAAAChaxKS6yqSvNesqk4qYryUvihAMAACAolWVJbR1bb2vNbetrVfVIs/XmhdDCAYAAEDRYrGoNq2plRfzJ056sYg2rqlVLDo78ZQQDAAAgGlZmozpzhsbfal1542NWloa86VWIQjBAAAAmJbSRInWN9Ro3cqqGdVZt7JK6xtqVBqfnZviJEIwAAAAZqC6wtM9W5qmHYTXrazSPVuaVF0xO7PAYwjBAAAAmJGxIPz5m1ZdMCO8vCKhX3xrpZZXJF5z3ItF9PmbVs1JAJak2bvmDAAAgNet6gpPm99Zq/euqFZZIqJzqWGZSWdTWaWzeXmxiCqSMTknLfKiGhzKa0lpbFZHIMYjBAMAAMAXmVxectLuH3Vpz5FOdfWlLjinrjKprdfUa9OaWmVyeZXG56BRSeacm5s/eQaam5tdS0vLXLcBAACAUS+dSeuJ9h7tPNCmdDY/5fleLKIdGxp1fUONli0OZhzCzI4655one44rwQAAAJiRnrNpfeahVh3q6C34NelsXnc8fEIHO3q0a0uTargxDgAAAAvFS2fS2r63uAA83qGOXm3f26qes2mfO7s0QjAAAACm5fTgkJ5o75l2AB5zqKNXB9t69MrgkE+dTY0QDAAAgGkZzAxr54E2X2rtPNCmgcywL7UKQQgGAABA0VKZrPYd6y7oJrhCpLN57T/erVQm60u9qRCCAQAAULRTg1ntOdLpa83dhzt1apAQDAAAgHnKOU26DvBMdPWlNFur9xKCAQAAULT+dC6Yuplg6k5ECAYAAEDRUtlgbmJLB1R3IkIwAAAAipaMRQOp65UEU3eiwEOwmd1gZifN7Fkz2z7J8580szYzazWzJ8zsjUH3BAAAgJkp94LZeDiouhMFGoLNLCrpy5J+WVKjpK1m1jjhtH+V1Oyca5L0oKR7g+wJAAAAM2cm1VUmfa1ZV5mUma8lLyroK8FrJT3rnHvOOTck6ZuSNo0/wTl3yDk3OPrwR5KuCLgnAAAAzNBlpTFtvabe15rb1tarqjzha82LCToE10rqGvf4+dFjF3OrpP892RNmdpuZtZhZS2/vzLbmAwAAwMwkEzFtWlMrL+ZPnPRiEW1cXatEQLPGE82bG+PM7DckNUu6b7LnnXP3O+eanXPNVVVVs9scAAAALlCaiGrHhomTrtOzY0OjyhKzE4Cl4ENwt6S6cY+vGD32Gma2XtIdkjY65zIB9wQAAAAfLC2N6/qGGq1bObMLlOtWVml9Y42WlMZ96mxqQYfgI5KuMrM3mVlc0i2S9o8/wczeKekvNRKAXw64HwAAAPho2WJPu7Y0TTsIr1tZpV1bmlRT4fnc2aUFGoKdczlJn5D0mKR2Sd92zj1tZneZ2cbR0+6TVC7p78zsmJntv0g5AAAAzEM1FZ6+cFOT7t68quAZYS8W0d2bV81JAJYkc7O1QbOPmpubXUtLy1y3AQAAgHFeGRzSQGZY+493a/fhTnX1pVQSMcVLIhrK5ZXLO9VVJrVtbb02rqlVWTwa6AiEmR11zjVP9tzsrEYMAACA170lpXEtKZU+8q436oOrl0uSzqVySmWHlYxFtSg5Ej0vK40pmYjNZauEYAAAAPjj9OCQBjPD2nesW3uOjFwJnqiuMqmt19Rr05palSaiWjqLN8ONxzgEAAAAZuylM2k90d6jnQfalM7mpzzfi0W0Y0Ojrm+o0bLFwcwEMw4BAACAwPScTeszD7XqUEfhG5qls3nd8fAJHezoef2tDgEAAIDXt5fOpLV9b3EBeLxDHb3avrdVPWfTPnd2aYRgAAAATMvpwSE90d4z7QA85lBHrw629eiVwSGfOpsaIRgAAADTMpgZ1s4Dbb7U2nmgTQOZYV9qFYIQDAAAgKKlMlntO9Zd0E1whUhn89p/vFupTNaXelMhBAMAAKBopwaz2nOk09eauw936tQgIRgAAADzlHOadB3gmejqS2m2Vu8lBAMAAKBo/elcMHUzwdSdiBAMAACAoqWywdzElg6o7kSEYAAAABQtGYsGUtcrCabuRIRgAAAAFK3cC2bj4aDqTkQIBgAAQNHMpLrKpK816yqTMvO15EURggEAAFC0y0pj2npNva81t62tV1V5wteaF0MIBgAAQNGSiZg2ramVF/MnTnqxiDaurlUioFnjiQjBAAAAmJbSRFQ7NjT6UmvHhkaVJWYnAEuEYAAAAEzT0tK4rm+o0bqVVTOqs25lldY31mhJadynzqZGCAYAAMC0LVvsadeWpmkH4XUrq7RrS5NqKjyfO7s0QjAAAABmpKbC0xduatLdm1cVPCPsxSK6e/OqOQnAkjQ7C7EBAADgdW3ZYk8bmt6g61ZUa//xbu0+3KmuvtQF59VVJrVtbb02rqlVWTw6qyMQ4xGCAQAA4As3+vuvNl+hG5uWS5L6Mzmls8PyYlGVJ0aiZ1k8qlQ2f/78uUAIBgAAwIy9dCatJ9p7tPNAm9LZ/PnjNeVxvfHyUv30Z4Pq6R86f9yLRbRjQ6Oub6jRssWMQwAAAGCB6Tmb1mceatWhjt4Ln+sfek34HZPO5nXHwyd0sKOHG+MAAACwsLx0Jq3teycPwIU41NGr7Xtb1XM27XNnl0YIBgAAwLScHhzSE+090w7AYw519OpgW49eGbzwinFQCMEAAACYlsHMsHYeaPOl1s4DbRrIDPtSqxCEYAAAABQtlclq37Hu19wENxPpbF77j3crlcn6Um8qhGAAAAAU7dRgVnuOdPpac/fhTp0aJAQDAABgnnJOk26GMRNdfSm5WVo8mBAMAACAovWnc8HUzQRTdyJCMAAAAIqWygZzE1s6oLoTEYIBAABQtGQsGkhdrySYuhMRggEAAFC0ci+YjYeDqjsRIRgAAABFM5PqKpO+1qyrTMrM15IXRQgGAABA0S4rjWnrNfW+1ty2tl5V5Qlfa14MIRgAAABFSyZi2rSmVl7MnzjpxSLauLpWiYBmjSciBAMAAGBaShNR7djQ6EutHRsaVZaYnQAsEYIBAAAwTUtL47q+oUbrVlbNqM66lVVa31ijJaVxnzqbGiEYAAAA07ZssaddW5qmHYTXrazSri1NqqnwfO7s0gjBAAAAmJGaCk9fuKlJd29eVfCMsBeL6O7Nq+YkAEvS7CzEBgAAgNe1ZYs9bWh6g65bUa39x7u1+3CnuvpSF5xXV5nUtrX12rimVmXx6KyOQIxHCAYAAIAvlpTGtaRU+si73qgPrl4u56T+TE7p7LC8WFTliRKZSVXliVlbBeJiCMEAAADwVTIR0xWJ2Fy3cUnMBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQqdkrhuYz1KZrE4NZiVJ51I5pbLDSsaiWpQc+bZdVhpTMhGbyxaxgPB+AgCExUL4zCMET+L04JAGM8Pad6xbe450qqsvdcE5dZVJbb2mXpvW1Ko0EdXS0vgcdIqFgPcTACAsFtJnnjnn5uQPnonm5mbX0tISSO2XzqT1RHuPdh5oUzqbn/J8LxbRjg2Nur6hRssWe4H0hIWL9xMAICzm42eemR11zjVP+hwh+FU9Z9PavrdVhzp6i37tupVV2rWlSTUVBBeM4P0EAAiL+fqZd6kQzI1xo146M/3/eZJ0qKNX2/e2quds2ufOsBDxfgIAhMVC/cwjBGtkfuWJ9p5p/88bc6ijVwfbevTK4JBPnWEh4v0EAAiLhfyZRwiWNJgZ1s4Dbb7U2nmgTQOZYV9qYWHi/QQACIuF/JkX+hCcymS171h3QQPchUhn89p/vFupTNaXelhYeD8BAMJioX/mBR6CzewGMztpZs+a2fZJnk+Y2bdGn/8XM7sy6J7GOzWY1Z4jnb7W3H248/zaeAgX3k8AgLBY6J95gYZgM4tK+rKkX5bUKGmrmTVOOO1WSaedc2+V9EVJ9wTZ00TOadI17Gaiqy+lBbjoBnzA+wkAEBYL/TMv6CvBayU965x7zjk3JOmbkjZNOGeTpK+Nfv2gpOvNzALu67z+dC6Yuplg6mJ+4/0EAAiLhf6ZF3QIrpXUNe7x86PHJj3HOZeTdEbSZRMLmdltZtZiZi29vTO7A3G8VDaYAex0QHUxv/F+AgCExUL/zFswN8Y55+53zjU755qrqqp8q5uMRX2rNZ5XEkxdzG+8nwAAYbHQP/OCDsHdkurGPb5i9Nik55hZiaTFkk4F3Nd55V7JgqqL+Y33EwAgLBb6Z17QIfiIpKvM7E1mFpd0i6T9E87ZL+nDo1/fLOl7bhb3cjaT6iqTvtasq0xq9qaaMZ/wfgIAhMVC/8wLNASPzvh+QtJjktolfds597SZ3WVmG0dP+4qky8zsWUmflHTBMmpBuqw0pq3X1Ptac9vaelWVJ3ytiYWB9xMAICwW+mde4DPBzrlHnXNvc869xTl39+ixO51z+0e/TjvnftU591bn3Frn3HNB9zReMhHTpjW18mL+fCu8WEQbV9cqEdCcDOY33k8AgLBY6J95C+bGuCCVJqLasWHi8sXTs2NDo8oSBJYw4/0E/P/t3XmsHWUZx/HvTygtUKBKa0EKNBGSigYqkCoBCZtEhZQESSQEAde4RUwUoyYiyB9iXGLURKNAWATFgCAiiA2SoIatrGWLYkQEERBkE6gFHv84U3u53NtOEe7Mdb6fZHLPOfNmztOnT877nFnOSBqK6Tzn2QQDr95kI/Z/w3z2XfS//erEvovmccBO85mzyUYvU2SajqwnSdJQTOc5zya4sdUWszj50J1f8n/ivovmcfKhOzN/81kvc2SajqwnSdJQTNc5L1P4Qwwvm913372WL1/+imz77489w+V3PMBJv7ydZ1Y9v87xs2a8ii8etBMH7DTfhkUvYj1Jkoaij3NekuuravcJ19kEv9ijT/2bf618jotuvo9zrr1nwvtib/uajTliyXYsXbwNm260gYesNSnrSZI0FH2b82yCX6KnV67i4adWUTW6j/Uzq55j1owNmD1zQxKYN3umV+2rNetJkjQUfZnz1tYEexuqtdh45gwWzJzRdRj6P2E9SZKGYjrMeV4YJ0mSpMGxCZYkSdLg2ARLkiRpcGyCJUmSNDg2wZIkSRocm2BJkiQNjk2wJEmSBscmWJIkSYMzLe8Yl+Qh4C8dvPVc4B8dvO90Y57aMU/tmKd2zFN75qod89SOeWqnqzxtX1XzJloxLZvgriRZPtmt97SGeWrHPLVjntoxT+2Zq3bMUzvmqZ0+5snTISRJkjQ4NsGSJEkaHJvg9fODrgOYJsxTO+apHfPUjnlqz1y1Y57aMU/t9C5PnhMsSZKkwXFPsCRJkgbHJliSJEmDYxM8TpLTkjyY5NZJ1ifJt5PcleSWJLtOdYx90CJP+yR5LMlNzXL8VMfYB0m2TXJFktuT3Jbk2AnGDL6mWuZp8DWVZFaSa5Pc3OTpxAnGzExyblNP1yRZOPWRdqtlno5J8tCYevpgF7H2QZINktyY5OIJ1g2+nlZbR56sp0aSu5OsaPKwfIL1vZnzNuzqjXvsdOC7wJmTrH8nsGOzvAX4XvN3aE5n7XkC+G1VHTw14fTWs8Cnq+qGJJsB1ydZVlW3jxljTbXLE1hTK4H9qurJJDOA3yW5tKquHjPmA8A/q2qHJIcDXwXe00WwHWqTJ4Bzq+oTHcTXN8cCdwCbT7DOelpjbXkC62msfatqshtj9GbOc0/wOFV1JfDIWoYcApxZI1cDc5JsPTXR9UeLPAmoqvur6obm8ROMPkC3GTds8DXVMk+D19TIk83TGc0y/urmQ4AzmsfnAfsnyRSF2Ast8yQgyQLgIOCUSYYMvp6gVZ7UXm/mPJvg9bcN8Ncxz+/FyXoyezSHIy9N8saug+lacxjxzcA141ZZ9XR+1QAABD1JREFUU2OsJU9gTa0+JHsT8CCwrKomraeqehZ4DNhyaqPsXos8Aby7ORx7XpJtpzjEvvgW8Fng+UnWW08j68oTWE+rFfDrJNcn+fAE63sz59kE65VyA6P7de8CfAe4sON4OpVkNnA+8KmqerzrePpqHXmypoCqeq6qFgMLgCVJ3tR1TH3UIk+/ABZW1c7AMtbs7RyMJAcDD1bV9V3H0mct8zT4ehpjr6raldFpDx9PsnfXAU3GJnj93QeM/Ya3oHlNY1TV46sPR1bVJcCMJHM7DqsTzTmJ5wNnV9XPJhhiTbHuPFlTL1RVjwJXAO8Yt+q/9ZRkQ2AL4OGpja4/JstTVT1cVSubp6cAu011bD2wJ7A0yd3AT4D9kvxo3BjrqUWerKc1quq+5u+DwAXAknFDejPn2QSvv4uAo5qrG98KPFZV93cdVN8k2Wr1eWNJljCqtaF9cNLk4FTgjqr65iTDBl9TbfJkTUGSeUnmNI83Bt4O3Dlu2EXA0c3jw4Df1MDuitQmT+POQVzK6Dz0Qamqz1fVgqpaCBzOqFaOHDds8PXUJk/W00iSTZuLm0myKXAgMP5XpHoz5/nrEOMk+TGwDzA3yb3AlxhdVEFVfR+4BHgXcBfwFPC+biLtVos8HQZ8NMmzwNPA4UP74GzsCbwXWNGcnwjwBWA7sKbGaJMnawq2Bs5IsgGjLwE/raqLk3wZWF5VFzH6MnFWkrsYXbx6eHfhdqZNnj6ZZCmjXyZ5BDims2h7xnpqx3qa0HzggmZ/xYbAOVX1qyQfgf7Ned42WZIkSYPj6RCSJEkaHJtgSZIkDY5NsCRJkgbHJliSJEmDYxMsSZKkwbEJlqSeSDInyce6jkOShsAmWJL6Yw5gEyxJU8AmWJL642Tg9UluSvK1JMcluS7JLUlOBEiyMMmdSU5P8ockZyc5IMnvk/yxuZseSU5IclaSq5rXP9S8vnWSK5v3uDXJ2zr890pSZ2yCJak/Pgf8qaoWA8uAHYElwGJgtyR7N+N2AL4BLGqWI4C9gM8wutPeajsD+wF7AMcneV0z9rLmPXYBbkKSBsjbJktSPx3YLDc2z2czaorvAf5cVSsAktwGXF5VlWQFsHDMNn5eVU8DTye5glFDfR1wWpIZwIVVZRMsaZDcEyxJ/RTgK1W1uFl2qKpTm3Urx4x7fszz53nhzo0at82qqiuBvYH7gNOTHPUKxC5JvWcTLEn98QSwWfP4MuD9SWYDJNkmyWvXc3uHJJmVZEtgH+C6JNsDD1TVD4FTgF1fntAlaXrxdAhJ6omqeri5wO1W4FLgHOCqJABPAkcCz63HJm8BrgDmAidV1d+SHA0cl2RVs033BEsapFSNP1omSZrukpwAPFlVX+86FknqI0+HkCRJ0uC4J1iSJEmD455gSZIkDY5NsCRJkgbHJliSJEmDYxMsSZKkwbEJliRJ0uD8BwI7j7+VuyHtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXRc9X3v+893pNHskWUJC8YyFhKEBCwLR3aJ7JDQJtaxmyeBDW7aYjdtaXJD72rS25O0aUyo6Dn4cOOkbdKHQ9ctaXrSZh07TakBB6cl2BFJTx5qy6mtGEkmhKQyAoSwjWVJM6PRzO/+IQkUWbI00t6yhv1+rcWSZ8+er7/YW2t/vPV7MOecAAAAgDCJXOoGAAAAgIVGCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFTfKkbmIsrrrjCXXPNNZe6DQAAACxiR48efdk5l5jqvYIMwddcc43a2toudRsAAABYxMzsP6d7j+EQAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdApys4yFkkxndHooI0k6nxxRMpNVPFqkpfHRP7bLS6OKx6KXskUUkPTwiPoGhyVNfT0llpQoVsK3JAAAC4E77hTODg1rKJ3Vo8d6tPdIt06dSV5wTk1lXNvX12rrumqVxoq0rLTkEnSKQnA+mVF/amTW11O5V6ylcf5xBQBAkMw5d6l7yFtjY6MLatvkF8+ldKizV7sOdCiVyc14vheNqKW5XptWV2lFhRdITyhcvedSOjiH62nz6ipVcT0BADAvZnbUOdc45XuE4Nf09qe0c1+7Wrv68v5sU11Cu7c1qKqc4IJRXE8AAFxaFwvBTIwb8+K5uQcWSWrt6tPOfe3q7U/53BkKUS/XEwAAixohWKNjgA919s45sIxr7erTwY5evTI07FNnKETnkxkd9PF6GkhlfOoMAACMIwRLGkpntetAhy+1dh3o0GA660stFKb+1Iiv19O55IgvtQAAwGtCH4KT6YwePdYzq0lLs5HK5LT/eI+SaZ7ehVF6eCSQ6yk9TBAGAMBPoQ/Bp4cy2nuk29eaew53v7q+MMKlb3A4kOtpfH1hAADgj9CHYOc05bqt83HqTFIFuOgGfMD1BABAYQh9CB5IBfNj5oE0P74OI64nAAAKQ+hDcDITzCS2VEB1sbhxPQEAUBhCH4LjJUWB1PWiwdTF4hYP6O/dK+Z6AgDAT6EPwWWx4oKqi8WtzAvoegqoLgAAYRX6ECxJNZXxRV0PhcMsmOvJzNeSAACEXuhDcM45/Wpjja8171hfI8d0/lBKLCnR9vW1vtbcsaFWy5fGfK0JAEDYhT4Enxkc1tZ11fKi/vxReNGItqyt1hnWdQ2lWElxINdTCWOCAQDwVehD8OVLSnTs1Fl94t2rfKn3iXev0vFTZ1W5pMSXeig85V6xWprrfanV0lyvijjjgQEA8FvoQ7CZ6bOPn9SK8rg2rkrMq9bGVQmtKI/rM4+flDGIM7SWxqPavLpKTXXzu56a6hLaXF+lMi/qU2cAAGBc6EOwNLoj1x8+dFx3vePaOQfhjasSuusd1+oPHzru+45hKDxVFZ52b2uYcxBuqkto97YGVZV7PncGAAAkQvCrO3ENDmf14b9v0y+/pUYtt6ye9ZhOLxpRyy2r9ctvqdGH/75Ng8OjmxoMssNX6FWVe9p9e4Puv21NXtfT/betIQADABCw0A82TA6/thPX4HBWH9nzA93acKW+8uGb9K2n+/TQD56b8sluTWVc77/xKr3z+oS++H9+oq+1d/5sXXb4gkafCG9dt1IbVy3X/uM92nO4e9rraceGWm1ZV60Kr5ghEAAABCz0IXiqHb6+1v6Cvn7iRW2qW64/eNcqrbwsrkw2p1QmJy8aUbQooudfSeqx9hf0l998RtnchcuhscMXxpV5UZV5UX3w7dfo1rUr5dzoTyBSmay8aJHKYsUyk5YvjbEKBAAACyT0IXi6nbiyOadvdPTqGx29kqTiiKmkOKLhkZxGpgi9s62L8IqVFOuqEq4LAAAWg9CPCZ7tDl8jOaeh4eysAjA7fAEAACxuoX8sVVoS0fb1tfrs4yd9q7ljQ61KS/ixNn5WJpNV32BaOSedT40oPZJVrLhIS71iRUxKLIkpOsXwHAAA4L/Qh+DBdE5b1q3UX37zR0plcvOu50UjunXtSg2ms6pc4kODKHhD6RGdTWZ0vPusIhHTFWUxpUdyr44JHkyP6OWBtLI5p3W1y7QsHlVpLPTfmgAABCr0d9qB1Ii+9+zLammu1z2PnJh3vZbmej1+4kW9/U1X+NAdCt1L/Sl1vtCvitISPf3SgP75IquN/NKNV6l6Wame6T2v1VeWazlLpAEAEJjQjwlOZrK677FOvfXaSl92+HrrtZXadaBTKZZIC72+/pSeeWlAz/QN6I4Hv6c/P/ijVwOwVxzRFWUl8opHvwVPnUnqzw/+SHc8+D090zegZ14aUF9/6lK2DwDA61ronwSPb2Kw/cHv6+GP3KwWnVBrV1/edZrqEtq1dY1uf+A7kqRYcej/fRFqff0pPX8upQf/7Vk9ebJPJcUR/eG7r9fGuuVaUlKsgdSIkpms4tEilXnFGhwe0Tc7X9JffvMZ7XqsUxtXJfSxzddLkhI8EQYAwHehD8FLxzYlGBrO6vlXkrr3lhu0ue5l7TrQ8TNjhKdbIs2LRtTSXK+b33SFnn8lqaGxzTeWstlBaA2lR/Ty4LA+f/BpPXmyT/feslq/WL9CXzv+vH77y0d16kzyguuppjKu7etrdejj79QTHS/qvsdGN1/55HvqtMQrVilLqwEA4KvQ31nHl0jb+Z7V+usnf6wnT/bpC7/xFh36+EYdPzX1RKZYcUQvD6SVyzmtrVmmjhfOaeOfPqmNqxL67PvXave/drJEWoidT4/ouz9+WU/1nNMTH3uHDv/kjN7zF9/Wz7/pCv3Bu1ap+rL4BddTzytJHWh/QQ88+Yw+9d7VeuJj79COL3xf3/3xy6pcspIQDACAz0J/Zy2PF+lT712t588ldeQnZ/TAjhtlkl4eSOvHLw/qq22npp3I9CuNNapeViqT9MCOG/WHDx3XL1x3hT71vtWqiPMkOIwymazOp0b0pe/8RPt+52bdu/+Elsai+t8fequefLpPf/qNkxedGPc7G9+ov/vOT3Wwq1f7fudm7fjC97Tx+uWqjGdZPg0AAB+ZczNv/rDYNDY2ura2Nl9qZbM5vdif1pb/+W964NfeolzOqfPFfv3J4ydntWSaF43oE+9epdUryhWJmD7yv49q/0d/QSsqPBVFeBwcNn3nk9rz76f0vjdfqc89cVK3NFTrxf5k3tfTivK4Hmvv0cd/cZX+5cQL2r6hRomlM2/qAgAAXmNmR51zjVO+RwjO6e++81PVVJbqygrv1XGc+RqfyPTCuZROnR3SB99+jYqKmBwXNs+dHdJ3nnlZclLN5aV68NvPzvl6uusd1+rU6SE5Of38dQldtaw0gI4BAHj9ulgIDn1KOzM0rOdeGVJNZXzOAViSnjzZp88ffFo1lXGdOjukM0PDPneKQpDLOb39jVeoPB6dcwCWRq+nB7/9rMrjUd38poRyBfiPVQAAFrPQh+CRnNOvv7VW33/29JwDy7gnT/bp+8+e1q+/tfZnVpBAeESLIjrRc07Pn0v6cj09fy6pE8+fUzQS+m9VAAB8Ffo7azbrJIvoTx4/6Uu9P3n8pMwio3UROplcTlcti/t6PV11WVyZ3Py39AYAAK8JfQguipgOtD8/q0lLs5HK5PT1Hz7PpLiQihVHdKjrJV+vp292vcTmKwAA+Cz0d9aRnNNDP3jO15r/dPQ5hkOEVHI4p3/2+Xp66AfPKelTqAYAAKNCH4Kd3JTrts7HqTNJORGCw8hMgVxP/FwBAAB/hT4ED6RGgqmbzgZSF4vbUEB/7+PbcQMAAH+EPgSnR4L5MfNwhtASRoFdTwHVBQAgrEIfguMBbUXrscVtKHnRYL6lmBgHAIC/Qn9nLfOKC6ouFrfyeLSg6gIAEFahD8EmqaYy7mvNmso4E5lCKlpkgVxP0SKuKAAA/BT6EFxcZPrAW6/2teav33S1okWh/6MNpcrSEv3GTdfMeF5xxFRaUqTiWawn/Ztvu0aVS2I+dAcAAMaF/mf2pweG9c5VCX3+4NO+bHDgRSN6x3UJnR4c1vJyz4cOUUiKiiK6de1K/dkTJ3/meiqKmDavXq73vflKVV8WV3okp1QmKy9apFhxRD2vJHWg/QUd6npJ2QlrTHvRiG5pWMnmKwAA+Cz0ITiVyelL3/2p7r3lBn3q4R/Ou94f33KDHmh9Rh/8+Tf40B0KUeWSEu3aukafeKhdkrRl7Up98OZr9OTTffrTb5ycch3hmsq4funGq/Q7G9+ov/vOT7X/+POSpF1b16hyScmC9g8AQBiE/mf28WiR9h9/XpVLotpUt3xetTbVLdeyJVF9rf0FecWsDhFWJcWjPw1oXrNCD+y4UWtrKnTHF76vPz/4o2k30jh1Jqk/P/gj3fGF72ttTYUe2HGjmtes0DuuT6iElSEAAPBd6J8Ej6/i8PtfPa4v3rleknSo66W862yqW64Pv+NafehLR36mLsLnfDKj/vSwWm69QXc/3K7Wrr5ZfzaVyWnXY51qqkvo07c3qD81rCUlRSrzWB0CAAA/hf4Rk9noj6IHh7P60JeOaNuNV+m+LTfMer1XLxrRfVtu0LYbr9KHvnREg8PZ0dUhGMIZWkPDWXnFxXkH4Ilau/p098Pt8qLFGmT3QQAAfBf6EJxYUqLt62slSYPDWX1kzw905Kdn9JW7btIfvOv6aZe7qqmM6w/edb2+ctdNOvLTM/rInh9ocGxr2x0barV8KbP5wyg9PKKcnL79dN+cA/C41q4+fftkn+Sc0sPBbO8NAEBYmXNu5rMWmcbGRtfW1uZbvZ6zSW363JMXzObfVLdczQ1XauVlcWWyOaUzOcWiEUWLInr+laQea39B35xiNv+hj29U9TJ/14pFYXjpfFLDI06bP/ct31YbOfjxd6qkyLS8nGsKAIB8mNlR51zjVO8xcFVSuVesluZ63fPIiVePZXNO3+jo1Tc6eiWNrutaUhzR8EhOI7np/+HQ0lyvijh/rGFVFDHtP9bjSwCWRscIf+348/qV9Vf5Ug8AAIwK/XAISVoaj2rz6io11SWmPWck5zQ0nL1oAG6qS2hzfRWTmEJsKJ3T3iPdvtbcc7hbQ2l/QjUAABhFCB5TVeFp97aGiwbhi2mqS2j3tgZVsUFG6E23DNpiqQcAAAjBP6Oq3NPu2xt0/21r8lod4v7b1hCAIUk6n8oEUncgzcQ4AAD8xODVSaoqPG1dt1IbVy3X/uM92nO4e9odvnZsqNWWddWq8IoZAgFJ8m0s8IV1WSYNAAA/EYKnUOZFVeZF9cG3X6Nb166Uc6NP4lKZrLxokcpixTKTli+NqYSd4TBBPBrM9cAOhAAA+IsQfBGxkmJdVcIfEWYvqJ0C2YEQAAB/MSYY8NH4DoR+YgdCAAD8RwgGfFRaEtH2DbW+1tyxoValJQyHAADAT4RgwEfZnNPWtStnvbrITLxoRFvWrlTuIutTAwCA/BGCAR9d5pUoEjG1NNf7Uq/llnoVm6mitMSXegAAYBQhGPBRNFqkiJnecX1izhuvjGuqS+id1yekiClaxLcqAAB+4s4K+GxprFjJzIj+x9Y3z2sHwv+x9c0aGh7RUlaGAADAd4RgwGelsWIti5folaG07r3lhil3IPSKI7qirERe8aTjYzsQ/vEtN+iVobSWxUtUyjJ9AAD4jrsrEIDE2BbaP3ppQKuvXKonPvZO9fanVOYVKx4t0kBqRMlMVvFokcq8YiUzWQ2kRlRV7qnvfErPv5LUdcvLXq0DAAD8RQgGApIo9+QkFUWkVMbp8E/OaO+R6bfh3r6+VlvXVevqy0uVzYkADABAgAjBQIByTnriRK92HehQKpOb9rxTZ5L67OMn9Zff/JFamuu1aXXVAnYJAED4EIKBgPT2p3T3w+1q7eqb9WdSmZzueeSEDnb1ave2BlXxNBgAgEAEPjHOzN5jZifN7Bkz2znF+7Vm1mpm/2Fm7Wb2vqB7AoL24rmUdu7LLwBP1NrVp5372tXbn/K5MwAAIAUcgs2sSNIDkt4rqV7SdjObvIvAH0n6qnPu5yTdIemvg+wJCNrZoWEd6uydcwAe19rVp4MdvXplaNinzgAAwLignwRvkPSMc+5Z59ywpK9I2jrpHCepfOzXFZKeD7gnIFBD6ax2HejwpdauAx0aTGd9qQUAAF4TdAiulnRqwuvnxo5N9N8kfcDMnpP0dUm/O1UhM7vLzNrMrK2vb35P2ICgJNMZPXqs56KT4PKRyuS0/3iPkumML/UAAMCoxbBZxnZJX3LOXSXpfZK+bGYX9OWce9A51+ica0wk5rcdLRCU00MZ7T3S7WvNPYe7dXqIEAwAgJ+CDsE9kmomvL5q7NhEH5L0VUlyzn1PkifpioD7AgLhnKZcB3g+Tp1JyjlfSwIAEHpBh+Ajkq4zszeYWYlGJ77tn3ROt6RNkmRmqzUaghnvgII0kBoJpm46mLoAAIRVoCHYOTci6aOSHpfUqdFVIJ4ys/vMbMvYab8v6cNmdlzSXkl3OsdzLxSmZCaYSWypgOoCABBWgW+W4Zz7ukYnvE08du+EX3dIujnoPoCFEI8WBVLXKw6mLgAAYbUYJsYBrxtlXjD/rgyqLgAAYUUIBnxkJtVUxn2tWVMZl5mvJQEACD1CMOCjy0uj2r6+1teaOzbUKlEW87UmAABhRwgGfBSPRbV1XbW8qD/fWl40oi1rqxULaKwxAABhRQgGfFYaK1JLc70vtVqa67UkRgAGAMBvhGDAZ8tKS7RpdZWa6ua3s2FTXUKb66t0WWmJT50BAIBxhGAgACsqPO3e1jDnINxUl9DubQ2qKvd87gwAAEiEYCAwVeWePn17g+6/bc2sxwh70Yjuv20NARgAgICx+CgQoBUVnpobrtTGVcu1/3iP9hzu1qkzyQvOq6mMa8eGWm1ZW60lsSKGQAAAEDBCMBCgM4PDOtTZq88//rS+8n/fpFsaVkqSBtIjSmWy8qJFKouNfhs6l9Mv//V39bF3X69Nq6tUuYQgDABAUBgOAQTk9EBan3yoXZ94qF1n0xmd6DmnrHMySc45xaOjX01S1jm1P3dOZ9MZfeKhdn3yoXadHkhf6v8FAABet3gSDATgzOCwdv7zD/VEZ6/+9jfeotVXVujRYz369L92TTscYvv6Wh382DvV+cI5/V//cFT6Z+mz72/QMp4IAwDgO54EAz4bHsnpUGevnu7t13c+2aTe/rQ2fe5Jffbxk1MGYEk6dSapzz5+Ups+96R6+9P6zieb9HRvvw529mp4JLfA/wcAALz+8SQY8NmZwWF94d9+rH/87bfr7ofb1drVN+vPpjI53fPICTXVJfSPv/12/cbffV+/cF1CKypYKQIAAD/xJBjwUTab02Ptz+t/3bkh7wA8UWtXn+5+uF3/684Neqz9eWWzPA0GAMBPhGDAR2eGhrWqaqmePNk35wA8rrWrT0+e7NOqqjKdGRr2qUMAACARggFfjeScrk2UadeBDl/q7TrQoWsTSzWSc77UAwAAowjBgI9ixaZHj/UolfFn+EIqk9P+4z2KFZsv9QAAwChCMOCjwXROe490+1pzz+FuDaYZEwwAgJ8IwYDPplsGbbHUAwAAhGDAVwOpkWDqpoOpCwBAWBGCAR8lM9lA6qYCqgsAQFgRggEfxaNFgdT1ioOpCwBAWBGCAR+VecFswhhUXQAAwooQDPjITKqpjPtas6YyLmOFNAAAfEUIBnyUWFKi7etrfa25Y0Otli+N+VoTAICwIwQDPoqVFGvrump5UX++tbxoRFvWVquEMcEAAPiKEAz4rNwrVktzvS+1WprrVRFnPDAAAH4jBAM+WxqPavPqKjXVJeZVp6kuoc31VSrzoj51BgAAxhGCgQBUVXjava1hzkG4qS6h3dsaVFXu+dwZAACQCMFAYKrKPe2+vUH337Zm1mOEvWhE99+2hgAMAEDAGGwIBKiqwtPWdSu1cdVy7T/eoz2Hu3XqTPKC82oq49qxoVZb1lWrwitmCAQAAAEjBAMBK/OiKvOi+uDbr9Gta1fKOWkgPaJUJisvWqSyWLHMpOVLY6wCAQDAAmE4BLDAzCQ5KRoZ/Tq+EYbLuUvZFgAAocKTYCBg55MZ9adG9OixHu09Mv1wiO3ra7V1XbXKvWItjTMcAgCAIJlzhff0qbGx0bW1tV3qNoAZ9Z5L6WBnr3Yd6FAqk5vxfC8aUUtzvTavrlJVBRPjAACYDzM76pxrnOo9ngQDAentT2nnw+1q7eqb9WdSmZzueeSEDnb1skIEAAABYkwwEIDecynt3JdfAJ6otatPO/e1q7c/5XNnAABAIgQDvjufzOhgZ++cA/C41q4+Hezo1UAq41NnAABgHCEY8Fl/akS7DnT4UmvXgQ6dS474UgsAALyGEAz4KD08ugrEbCbBzUYqk9P+4z1KDxOEAQDwEyEY8FHf4LD2Hun2teaew93qGxz2tSYAAGFHCAZ85JymXAd4Pk6dSaoAVzIEAGBRIwQDPhpIBTNsYSDNcAgAAPxECAZ8lMxkA6mbCqguAABhRQgGfBSPFgVS1ysOpi4AAGFFCAZ8VOYFswljUHUBAAgrQjDgIzOppjLua82ayrjMfC0JAEDoEYIBHyWWlGj7+lpfa+7YUKvlS2O+1gQAIOwIwYCPYiXF2rquWl7Un28tLxrRlrXVKmFMMAAAviIEAz4r94rV0lzvS62W5npVxBkPDACA3wjBgM+WxqPavLpKTXWJedVpqktoc32VyryoT50BAIBxhGAgAFUVnnZva5hzEG6qS2j3tgZVlXs+dwYAACRCMBCYqnJPu29v0P23rZn1GGEvGtH9t60hAAMAEDAGGwIBqqrwtHXdSm1ctVz7j/doz+FunTqTvOC8msq4dmyo1ZZ11arwihkCAQBAwAjBQMDKvKjKvKg++PZrdOvalXJOGkiPKJXJyosWqSxWLDNp+dIYq0AAALBACMHAAomVFOuqEr7lAABYDBgTDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQifwEGxm7zGzk2b2jJntnOacXzGzDjN7ysz2BN0TAAAAwq04yOJmViTpAUm/KOk5SUfMbL9zrmPCOddJulvSzc65s2a2PMieAAAAgFk9CTaz4gm/LjOzRjOrnMVHN0h6xjn3rHNuWNJXJG2ddM6HJT3gnDsrSc65l2bXOgAAADA3M4ZgM7tTUq+ZPW1m75XULukzko6b2fYZPl4t6dSE18+NHZvoeknXm9l3zOz7Zvaeafq4y8zazKytr69vprYBAACAac1mOMTvS1olaamk45J+zjn3YzOrkvSEpL0+9HCdpI2SrpL0bTN7s3PulYknOecelPSgJDU2Nrp5/p4AAAAIsdkMh8g65152zv1E0oBz7seS5JzrncVneyTVTHh91dixiZ6TtN85lxn7PZ7WaCgGAAAAAjGbENxtZp82s/8pqcvM/szMbjazP5b0wgyfPSLpOjN7g5mVSLpD0v5J5zyi0afAMrMrNDo84tl8/icAAACAfMwmBH9AUr9Gn9hukfRdja7msFzSnRf7oHNuRNJHJT0uqVPSV51zT5nZfWa2Zey0xyWdNrMOSa2SPuGcOz2H/xcAAABgVsw5f4bXmtlfOed+15diM2hsbHRtbW0L8VsBAACgQJnZUedc41Tv+blZxs0+1gIAAAACw7bJAAAACB1CMAAAAELHzxBsPtYCAAAAAjPrEGxmb57hlL+YZy8AAADAgsjnSfBfm9lhM/sdM6uY/KZz7kv+tQUAAAAEZ9Yh2Dn3C5J+TaM7wB01sz1m9ouBdQYAAAAEJK8xwc65H0n6I0mflPROSX9pZl1mti2I5gAAAIAg5DMmuMHMPq/Rnd/+i6RbnXOrx379+YD6AwAAAHxXnMe5fyXpbyV9yjmXHD/onHvezP7I984AAACAgOQTgpslJZ1zWUkys4gkzzk35Jz7ciDdAQAAAAHIZ0zwQUnxCa9Lx44BAAAABSWfEOw55wbGX4z9utT/lgAAAIBg5ROCB83sxvEXZvYWScmLnA8AAAAsSvmMCf6vkv7JzJ7X6BbJKyT9aiBdAQAAAAGadQh2zh0xszpJq8YOnXTOZYJpCwAAAAhOPk+CJWm9pGvGPnejmck59w++dwUAAAAEaNYh2My+LOmNko5Jyo4ddpIIwQAAACgo+TwJbpRU75xzQTUDAAAALIR8Voc4odHJcAAAAEBBy+dJ8BWSOszssKT0+EHn3BbfuwIAAAAClE8I/m9BNQEAAAAspHyWSPuWmV0t6Trn3EEzK5VUFFxrAAAAQDBmPSbYzD4s6SFJfzN2qFrSI0E0BQAAAAQpn4lxH5F0s6R+SXLO/UjS8iCaAgAAAIKUTwhOO+eGx1+YWbFG1wkGAAAACko+IfhbZvYpSXEz+0VJ/yTpa8G0BQAAAAQnnxC8U1KfpB9K+m1JX3fO3RNIVwAAAECA8lki7Xedc38h6QvjB8zs98aOAQAAAAUjnyfBvznFsTt96gMAAABYMDM+CTaz7ZJ2SHqDme2f8NZSSWeCagwAAAAIymyGQ3xX0gsa3Tb5zyYcPy+pPYimAAAAgCDNGIKdc/8p6T8lvS34dgAAAIDg5bNj3DYz+5GZnTOzfjM7b2b9QTYHAAAABCGf1SE+K+lW51xnUM0AAAAACyGf1SF6CcAAAAB4PcjnSXCbmf2jpEckpccPOuf2+d4VAAAAEKB8QnC5pCFJ75pwzEkiBAMAAKCgzDoEO+d+K8hGAAAAgIWSz+oQ15vZITM7Mfa6wcz+KLjWAAAAgGDkMzHuC5LulpSRJOdcu6Q7gmgKAAAACFI+IbjUOZYl6GUAACAASURBVHd40rERP5sBAAAAFkI+IfhlM3ujRifDyczer9HtlAEAAICCks/qEB+R9KCkOjPrkfQTSR8IpCsAAAAgQPmsDvGspM1mtkRSxDl3Pri2AAAAgODkszrE75nZ+FrBnzezH5jZu2b6HAAAALDY5DMm+IPOuX6NbpZxuaRfl7Q7kK4AAACAAOUTgm3s6/sk/YNz7qkJxwAAAICCkU8IPmpm39BoCH7czJZKygXTFgAAABCcfFaH+JCkdZKedc4NmdnlkthKGQAAAAVnxhBsZnXOuS6NBmBJutaMURAAAAAoXLN5EvxxSXdJ+rMp3nOS/ouvHQEAAAABmzEEO+fuGvvaFHw7AAAAQPDyWSf4l8cmw8nM/sjM9pnZzwXXGgAAABCMfFaHaHHOnTezn5e0WdIXJf1/wbQFAAAABCefEJwd+9os6UHn3AFJJf63BAAAAAQrnxDcY2Z/I+lXJX3dzGJ5fh4AAABYFPIJsb8i6XFJ73bOvSKpUtInAukKAAAACNCsQ7BzbkjSo5IGzaxWUlRSV1CNAQAAAEGZ9Y5xZva7kv5YUq9e2y7ZSWoIoC8AAAAgMPlsm/x7klY5504H1QwAAACwEPIZE3xK0rmgGgEAAAAWSj5Pgp+V9KSZHZCUHj/onPuc710BAAAAAconBHeP/Vci1gcGAABAAZt1CHbO/XdJMrOysdcDQTUFAAAABGnWY4LNbI2Z/YekpyQ9ZWZHzeyG4FoDAAAAgpHPxLgHJX3cOXe1c+5qSb8v6QvBtAUAAAAEJ58QvMQ51zr+wjn3pKQlvncEAAAABCyv1SHMrEXSl8def0CjK0YAAAAABSWfJ8EflJSQtE/SP0u6YuwYAAAAUFDyWR3irKT/J8BeAAAAgAWRz+oQT5jZZRNeLzOzx4NpCwAAAAhOPsMhrnDOvTL+YuzJ8HL/WwIAAACClU8IzplZ7fgLM7takvO/JQAAACBY+awOcY+k/2Nm35Jkkn5B0l2BdAUAAAAEKJ+Jcf9qZjdKumns0H91zr08/r6Z3eCce8rvBgEAAAC/5fMkWGOh97Fp3v6ypBvn3REAAAAQsHzGBM/Epjxo9h4zO2lmz5jZzmk/bPZLZubMrNHHngAAAIAL+BmCL5gkZ2ZFkh6Q9F5J9ZK2m1n9FOctlfR7kv7dx34AAACAKfkZgqeyQdIzzrlnnXPDkr4iaesU5+2S9BlJqYD7AQAAAHwNwcNTHKuWdGrC6+fGjr1qbLJdjXPuwMWKm9ldZtZmZm19fX3zbhYAAADhldfEODNrkHTNxM855/aNfb1pmo9drF5E0uck3TnTuc65ByU9KEmNjY2sTwwAAIA5m3UINrO/k9Qg6SlJubHDTtK+i3ysR1LNhNdXjR0bt1TSGklPmpkkrZC038y2OOfaZtsbAAAAkI98ngTf5Jy7YFLbDI5Ius7M3qDR8HuHpB3jbzrnzkm6Yvy1mT0p6Q8IwAAAAAhSPmOCvzfVyg4X45wbkfRRSY9L6pT0VefcU2Z2n5ltyacWAAAA4Jd8ngT/g0aD8IuS0hpdF9g55xou9iHn3NclfX3SsXunOXdjHv0AAAAAc5JPCP6ipF+X9EO9NiYYAAAAKDj5hOA+59z+wDoBAAAAFkg+Ifg/zGyPpK9pdDiEpNeWSAMAAAAKRT4hOK7R8PuuCcdmWiINAAAAWHRmHYKdc78VZCMAAADAQslnswxP0ock3SDJGz/unPtgAH0BAAAAgclnneAva3RHt3dL+pZGd387H0RTAAAAQJDyCcFvcs61SBp0zv29pGZJbw2mLQAAACA4+YTgzNjXV8xsjaQKScv9bwkAAAAIVj6rQzxoZssktUjaL6lM0pQ7vwEAAACLWT6rQ/zt2C+/JenaYNoBAAAAgjfr4RBmVmVmXzSzfxl7XW9mHwquNQAAACAY+YwJ/pKkxyWtHHv9tKT/6ndDAAAAQNDyCcFXOOe+KiknSc65EUnZQLoCAAAAApRPCB40s8s1ulWyzOwmSecC6QoAAAAIUD6rQ3xco6tCXGtm35GUkPT+QLoCAAAAApRPCO6Q9LCkIY3uFPeIRscFAwAAAAUln+EQ/yCpTtL/K+mvJF2v0a2UAQAAgIKSz5PgNc65+gmvW82sw++GAAAAgKDlE4J/YGY3Oee+L0lm9lZJbcG0BQAAgEKVTGd0eigjSTqfHFEyk1U8WqSl8dHoeXlpVPFY9FK2OHMINrMfanRFiKik75pZ99jrqyV1BdseAAAACsXZoWENpbN69FiP9h7p1qkzyQvOqamMa/v6Wm1dV63SWJGWlZZcgk4lc85d/ASzqy/2vnPuP33taBYaGxtdWxsPoQEAABaLF8+ldKizV7sOdCiVyc14vheNqKW5XptWV2lFhRdIT2Z21DnXONV7Mz4JvhQhFwAAAIWjtz+lux9uV2tX36w/k8rkdM8jJ3Swq1e7tzWoqjyYIDydfFaHAAAAAH7Gi+dS2rkvvwA8UWtXn3bua1dvf8rnzi6OEAwAAIA5OTs0rEOdvXMOwONau/p0sKNXrwwN+9TZzAjBAAAAmJOhdFa7DvizYu6uAx0aTGd9qTUbhGAAAADkLZnO6NFjPbOaBDcbqUxO+4/3KJnO+FJvJoRgAAAA5O30UEZ7j3T7WnPP4e5X1xcOGiEYAAAAeXNOU64DPB+nziQ1w+q9viEEAwAAIG8DqZFg6qaDqTsZIRgAAAB5S2aCmcSWCqjuZIRgAAAA5C0eLQqkrlccTN3JCMEAAADIW5k348bDi6ruZIRgAAAA5M1MqqmM+1qzpjIuM19LTosQDAAAgLxdXhrV9vW1vtbcsaFWibKYrzWnQwgGAABA3uKxqLauq5YX9SdOetGItqytViygscaTEYIBAAAwJ6WxIrU01/tSq6W5XktiCxOAJUIwAAAA5mhZaYk2ra5SU11iXnWa6hLaXF+ly0pLfOpsZoRgAAAAzNmKCk+7tzXMOQg31SW0e1uDqso9nzu7OEIwAAAA5qWq3NOnb2/Q/betmfUYYS8a0f23rbkkAViSFmYhNgAAALyurajw1NxwpTauWq79x3u053C3Tp1JXnBeTWVcOzbUasu6ai0pKVrQIRATEYIBAADgi8tKS3RZqXTn267WrWtXyjlpID2iXC6rSKRIZbFimUmJstiCrQIxHYZDAAAAwFfj+12YSXJSemT06/hGGC6Xu0SdvYYnwQAAAPDFuaFhDaSzevRYj/YemX44xPb1tdq6rlplsSJVXKLhEOacuyS/8Xw0Nja6tra2S90GAAAAxrx4LqVDnb3adaBDqczMT3q9aEQtzfXatLpKKyqCmRhnZkedc41TvceTYAAAAMxLb39Kdz/crtauvll/JpXJ6Z5HTuhgVy9LpAEAAKCwvHgupZ378gvAE7V29Wnnvnb19qd87uziCMEAAACYk3NDwzrU2TvnADyutatPBzt61Z8c9qmzmRGCAQAAMCcD6ax2HejwpdauAx06n8r6Ums2CMEAAADIWyqd0aPHemY1CW5W9TI57T/eo1Q640u9mRCCAQAAkLeXhzLae6Tb15p7Dnfr5SFCMAAAABYp5zTlOsDzcepMUgu1ei8hGAAAAHkbSI0EUzcdTN3JCMEAAADIWzITzCS2VEB1JyMEAwAAIG/xaFEgdb3iYOpORggGAABA3sq8YDYeDqruZIRgAAAA5M1MqqmM+1qzpjIuM19LTosQDAAAgLxdURrV9vW1vtbcsaFWibKYrzWnQwgGAABA3rxYVFvXVcuL+hMnvWhEW9ZWKxbQWOPJCMEAAACYk7JYkVqa632p1dJcr6XewgRgiRAMAACAOaooLdGm1VVqqkvMq05TXUKb66tUHi/xqbOZEYIBAAAwZysqPO3e1jDnINxUl9DubQ2qKvd87uziCMEAAACYl6pyT5++vUH337Zm1mOEvWhE99+25pIEYElamIXYAAAA8Lq2osLTrWuv1MZVy7X/eI/2HO7WqTPJC86rqYxrx4ZabVlXraWxogUdAjERIRgAAAC+KI+XqDwu/dbbrtata1fKOWkgPaJUJisvWqSyWLHMpERZbMFWgZgOwyEAAADgq6JIRBHTqxtflIzlXTMpYosjgPIkGAAAAL4YSo/obDKjR4/1aO9FhkNs31CrreuqtSweVWns0sRRc85dkt94PhobG11bW9ulbgMAAABjXupP6WBnr+57rEOpTG7G871oRPfeUq/Nq6u0PKCJcWZ21DnXONV7PAkGAADAvLzUn9In97Wrtatv1p9JZXL61MMn9ERnrz6zrSGwIDydxTAkAwAAAAVqLgF4otauPn1yX7te6k/53NnFEYIBAAAwJ0PpER3s7J1zAB7X2tWng529Ghoe8amzmRGCAQAAMCdnkxnd91iHL7Xue6xDZ4cyvtSaDUIwAAAA8pbJZPXosZ5ZTYKbjVQmp/3HepTJZH2pNxNCMAAAAPLWN5jW3sPdvtbcc7hbfYNpX2tOhxAMAACAvOWcplwHeD5OnUkqt0Cr9xKCAQAAkLfzqWAmsQVVdzJCMAAAAPKWDGjsbur1MibYzN5jZifN7Bkz2znF+x83sw4zazezQ2Z2ddA9AQAAYH7i0aJA6noB1Z0s0BBsZkWSHpD0Xkn1krabWf2k0/5DUqNzrkHSQ5I+G2RPAAAAmL+lXjAbDwdVd7KgnwRvkPSMc+5Z59ywpK9I2jrxBOdcq3NuaOzl9yVdFXBPAAAAmKeISTWVcV9r1lTGFTFfS04r6BBcLenUhNfPjR2bzock/ctUb5jZXWbWZmZtfX3z25UEAAAA85NYEtP2DbW+1tyxoVaJpZ6vNaezaCbGmdkHJDVK+pOp3nfOPeica3TONSYSiYVtDgAAAD8jGi3S1nXV8qL+xEkvGtGWddWKFi1MPA36d+mRVDPh9VVjx36GmW2WdI+kLc65hVkhGQAAAPOyLB7VvbdMnu41N/feUq9lpVFfas1G0CH4iKTrzOwNZlYi6Q5J+yeeYGY/J+lvNBqAXwq4HwAAAPikNFaszaur1FQ3v5/SN9UltHl1lUpLFmZSnBRwCHbOjUj6qKTHJXVK+qpz7ikzu8/Mtoyd9ieSyiT9k5kdM7P905QDAADAIrO83NNntjXMOQg31SX0mW0NWl6+MGOBx5lzC7Q3nY8aGxtdW1vbpW4DAAAAY17qT+lgZ6/ue6xDqUxuxvO9aET33lKvzaurAgvAZnbUOdc41XsL98wZAAAAr1vLyz3d9nPVeueq5dp/rEd7Dnfr1JmkiiOmkuKIhkdyGsk51VTG9WsbarVlXbUuK40u6BCIiQjBAAAA8EVpSbFKS4p159uu1q1rV0qSzidHlMxkFY8WaWl8NHpeXhpVPLZwk+CmQggGAACAL84ODWsondWjx3q098jok+DJairj2r6+VlvXVas0VqRlpSWXoFPGBAMAAMAHL55L6VBnr3YdmP2Y4Jbmem1aXaUVFYwJBgAAQIHp7U/p7ofb1do1+119U5mc7nnkhA529Wr3tgZVLfDqEItmxzgAAAAUnhfPpbRzX34BeKLWrj7t3Neu3v6Uz51dHCEYAAAAc3J2aFiHOnvnHIDHtXb16WBHr14ZGvaps5kRggEAADAnQ+msdh3o8KXWrgMdGkxnfak1G4RgAAAA5C2ZzujRYz2zmgQ3G6lMTvuP9yiZzvhSbyaEYAAAAOTt9FBGe490+1pzz+FunR4iBAMAAGCRck5TrgM8H6fOJLVQq/cSggEAAJC3gdRIMHXTwdSdjBAMAACAvCUzwUxiSwVUdzJCMAAAAPIWjxYFUtcrDqbuZIRgAAAA5K3MC2bj4aDqTkYIBgAAQN7MpJrKuK81ayrjMvO15LQIwQAAAMjb5aVRbV9f62vNHRtqlSiL+VpzOoRgAAAA5C0ei2rrump5UX/ipBeNaMvaasUCGms8GSEYAAAAc1IaK1JLc70vtVqa67UktjABWCIEAwAAYI6WlZZo0+oqNdUl5lWnqS6hzfVVuqy0xKfOZkYIBgAAwJytqPC0e1vDnINwU11Cu7c1qKrc87mziyMEAwAAYF6qyj19+vYG3X/bmlmPEfaiEd1/25pLEoAlaWEWYgMAAMDr2ooKT80NV2rjquXaf7xHew5369SZ5AXn1VTGtWNDrbasq9aSkqIFHQIxESEYAAAAvristESXlUp3vu1q3bp2pZyTBtIjcrmsLFKkslixzKREWWzBVoGYDsMhAAAAEAgzSU5KjYx+Hd8II5fLXcq2JPEkGAAAAD45OzSsoXRWjx7r0d4j0w+H2L6+VlvXVas0VqRll2g4hDnnLslvPB+NjY2ura3tUrcBAACAMS+eS+lQZ692HehQKjPzk14vGlFLc702ra7SiopgJsaZ2VHnXONU7/EkGAAAAPPS25/S3Q+3q7Wrb9afSWVyuueREzrY1csSaQAAACgsL55Laee+/ALwRK1dfdq5r129/SmfO7s4QjAAAADm5OzQsA519s45AI9r7erTwY5evTI07FNnMyMEAwAAYE6G0lntOtDhS61dBzo0mM76Ums2CMEAAADIWzKd0aPHemY1CW42Upmc9h/vUTKd8aXeTAjBAAAAyNvpoYz2Hun2teaew906PUQIBgAAwCLlnKZcB3g+Tp1JaqFW7yUEAwAAIG8DqZFg6qaDqTsZIRgAAAB5S2aCmcSWCqjuZIRgAAAA5C0eLQqkrlccTN3JCMEAAADIW5kXzMbDQdWdjBAMAACAvJlJNZVxX2vWVMZl5mvJaRGCAQAAkLfLS6Pavr7W15o7NtQqURbzteZ0CMEAAADIWzwW1dZ11fKi/sRJLxrRlrXVigU01ngyQjAAAADmpDRWpJbmel9qtTTXa0lsYQKwRAgGAADAHC0rLdGm1VVqqkvMq05TXUKb66t0WWmJT53NjBAMAACAOVtR4Wn3toY5B+GmuoR2b2tQVbnnc2cXRwgGAADAvFSVe/r07Q26/7Y1sx4j7EUjuv+2NZckAEvSwizEBgAAgNe1FRWemhuu1MZVy7X/eI/2HO7WqTPJC86rqYxrx4ZabVlXrSUlRQs6BGIiQjAAAAB8cVlpiS4rle5829W6de1KOScNpEeUymTlRYtUFiuWmZQoiy3YKhDTYTgEAAAAfBUZ2/HCTJKTiiKjX1/dCMO5S9Xaq3gSDAAAAF+cT2bUnxrRo8d6tPfI9MMhtq+v1dZ11Sr3irU0Hr0EnUrmFkESz1djY6Nra2u71G0AAABgTO+5lA529mrXgQ6lMrkZz/eiEbU012vz6ipVVQQzMc7MjjrnGqd6jyfBAAAAmJfe/pR2Ptyu1q6+WX8mlcnpnkdO6GBXL0ukAQAAoLD0nktp5778AvBErV192rmvXb39KZ87uzhCMAAAAObkfDKjg529cw7A41q7+nSwo1cDqYxPnc2MEAwAAIA56U+NaNeBDl9q7TrQoXPJEV9qzQYhGAAAAHlLD4+uAjGbSXCzkcrktP94j9LDCxOECcEAAADIW9/gsPYe6fa15p7D3eobHPa15nQIwQAAAMibc5pyHeD5OHUmuWD7aBCCAQAAkLeBVDDDFgbSDIcAAADAIpXMZAOpmwqo7mSEYAAAAOQtHi0KpK5XHEzdyQjBAAAAyFuZF8zGw0HVnYwQDAAAgLyZSTWVcV9r1lTGZeZryWkRggEAAJC3xJISbV9f62vNHRtqtXxpzNea0yEEAwAAIG+xkmJtXVctL+pPnPSiEW1ZW60SxgQDAABgMSv3itXSXO9LrZbmelXEF2Y8sEQIBgAAwBwtjUe1eXWVmuoS86rTVJfQ5voqlXlRnzqbGSEYAAAAc1ZV4Wn3toY5B+GmuoR2b2tQVbnnc2cXRwgGAADAvFSVe9p9e4Puv23NrMcIe9GI7r9tzSUJwJK0cAMvAAAA8LpVVeFp67qV2rhqufYf79Gew906dSapspIiLVtSorODwxoYzqqmMq4dG2q1ZV21KrziBR0CMREh+CKS6YxOD2UkSeeTI0pmsopHi7R0bND25aVRxWOX5i8OhYfrCQDwelfmRVXmRXXn267WrWtXSlq89zxC8BTODg1rKJ3Vo8d6tPfI6L9iJqupjGv7+lptXVet0liRlpWWXIJOUQi4ngAAYVFI9zxzzl2S33g+GhsbXVtbWyC1XzyX0qHOXu060KFUJjfj+V40opbmem1aXaUVFQs/ngWLG9cTACAsFuM9z8yOOucap3yPEPya3v6Udu5rV2tXX96fvVQzG7F4cT0BAMJisd7zLhaCWR1izIvn5v6XJ0mtXX3aua9dvf0pnztDIeJ6AgCERaHe8wjBGh2/cqizd85/eeNau/p0sKNXrwwN+9QZChHXEwAgLAr5nkcIljSUzmrXgQ5fau060KHBdNaXWihMXE8AgLAo5Hte6ENwMp3Ro8d6ZjWAezZSmZz2H+9RMp3xpR4KC9cTACAsCv2eF3gINrP3mNlJM3vGzHZO8X7MzP5x7P1/N7Nrgu5potNDGe090u1rzT2Hu19dDxbhwvUEAAiLQr/nBRqCzaxI0gOS3iupXtJ2M6ufdNqHJJ11zr1J0uclfSbIniZzTlOuYTcfp84kVYCLbsAHXE8AgLAo9Hte0E+CN0h6xjn3rHNuWNJXJG2ddM5WSX8/9uuHJG0yMwu4r1cNpEaCqZsOpi4WN64nAEBYFPo9L+gQXC3p1ITXz40dm/Ic59yIpHOSLp9cyMzuMrM2M2vr65vfDMSJkplgBmCnAqqLxY3rCQAQFoV+zyuYiXHOuQedc43OucZEIuFb3Xi0yLdaE3nFwdTF4sb1BAAIi0K/5wUdgnsk1Ux4fdXYsSnPMbNiSRWSTgfc16vKvOKCqovFjesJABAWhX7PCzoEH5F0nZm9wcxKJN0haf+kc/ZL+s2xX79f0jfdAu7lbCbVVMZ9rVlTGdfCjWrGYsL1BAAIi0K/5wUagsfG+H5U0uOSOiV91Tn3lJndZ2Zbxk77oqTLzewZSR+XdMEyakG6vDSq7etrfa25Y0OtEmUxX2uiMHA9AQDCotDveYGPCXbOfd05d71z7o3OufvHjt3rnNs/9uuUc+6XnXNvcs5tcM49G3RPE8VjUW1dVy0v6s8fhReNaMvaasUCGieDxY3rCQAQFoV+zyuYiXFBKo0VqaV58vLFc9PSXK8lMQJLmHE9AQDCopDveYRgSctKS7RpdZWa6ua36kRTXUKb66t0WWmJT52hEHE9AQDCopDveYTgMSsqPO3e1jDnv8SmuoR2b2tQVbnnc2coRFxPAICwKNR7ni3gQgy+aWxsdG1tbYHUfvFcSoc6e7XrQIdSmdyM53vRiFqa67W5vorAggtwPQEAwmIx3vPM7KhzrnHK9wjBF3plaFiD6az2H+/RnsPdU+6LXVMZ144NtdqyrlpLSor4kTWmxfUEAAiLxXbPIwTPUTKd0emhjJwb3cc6lcnKixapLFYsMylRFmPWPmaN6wkAEBaL5Z53sRDMNlQXEY9FdVUseqnbwOsE1xMAICwK4Z7HxDgAwP/f3v2H2l3XcRx/vnAjw1kDZ7WcOWhCUOiasBJtrFXSD9n+SGiEqf2kX2RQRvWHaf1R0Q+igqKmTE1L0bQlLhs1WIWabq7NX5SRlUuazVJHIs29++N8146He7fvhbzf7/g+H3C459zvh3Pe98Wb+33f7/me+5WkwXEIliRJ0uA4BEuSJGlwHIIlSZI0OA7BkiRJGhyHYEmSJA2OQ7AkSZIGxyFYkiRJg3NEXjEuyaPAnzt46QXAPzp43SONObVjTu2YUzvm1J5ZtWNO7ZhTO13ldFJVHT/VhiNyCO5Kkrumu/SeDjKndsypHXNqx5zaM6t2zKkdc2qnjzl5OoQkSZIGxyFYkiRJg+MQPDPf67qAI4Q5tWNO7ZhTO+bUnlm1Y07tmFM7vcvJc4IlSZI0OB4JliRJ0uA4BEuSJGlwHIInJLk8ye4k90yzPUm+meTBJDuSLJvtGvugRU4rkzyeZHtzu3i2a+yDJCcm2ZzkviT3JrlwijWD76mWOQ2+p5IcneS3SX7X5HTpFGuel+Tapp/uSLJ49ivtVsucLkjy6Fg/va+LWvsgyVFJ7k5y8xTbBt9PBxwmJ/upkeShJDubHO6aYntv9nlzunrhHlsPfBu4cprtbwFObm6vAb7TfB2a9Rw6J4BfVdXZs1NOb+0DPlFV25IcC2xNsqmq7htbY0+1ywnsqaeBVVW1N8lc4NdJNlbV7WNr3gv8s6qWJFkLfBl4RxfFdqhNTgDXVtVHO6ivby4E7gdeMMU2++mgQ+UE9tO411fVdBfG6M0+zyPBE6pqC/DYIZasAa6skduB+UkWzk51/dEiJwFV9UhVbWvuP8noF+gJE8sG31Mtcxq8pkf2Ng/nNrfJTzevAa5o7l8PvCFJZqnEXmiZk4Aki4C3AeumWTL4foJWOam93uzzHIJn7gTgr2OPH8ad9XROb96O3JjklV0X07XmbcRXA3dMbLKnxhwiJ7CnDrwlux3YDWyqqmn7qar2AY8Dx81uld1rkRPA25u3Y69PcuIsl9gX3wA+BeyfZrv9NHK4nMB+OqCAnyfZmuQDU2zvzT7PIVjPlW2Mrtd9KvAt4KaO6+lUknnADcDHq+qJruvpq8PkZE8BVfVMVS0FFgHLk7yq65r6qEVOPwUWV9UpwCYOHu0cjCRnA7uramvXtfRZy5wG309jzqyqZYxOe/hIkhVdFzQdh+CZ2wWM/4W3qPmexlTVEwfejqyqW4C5SRZ0XFYnmnMSbwCurqofT7HEnuLwOdlTz1ZV/wI2A2+e2PS/fkoyB3ghsGd2q+uP6XKqqj1V9XTzcB1w2mzX1gNnAKuTPAT8CFiV5AcTa+ynFjnZTwdV1a7m627gRmD5xJLe7PMcgmduA3Be8+nG1wKPV9UjXRfVN0lecuC8sSTLGfXa0H5x0mRwGXB/VX19mmWD76k2OdlTkOT4JPOb+88H3gQ8MLFsA3B+c/8c4Jc1sKsii31g4AAAAr5JREFUtclp4hzE1YzOQx+UqvpMVS2qqsXAWka9cu7EssH3U5uc7KeRJMc0H24myTHAWcDkf5HqzT7P/w4xIckPgZXAgiQPA59j9KEKquq7wC3AW4EHgX8D7+6m0m61yOkc4ENJ9gFPAWuH9ouzcQbwLmBnc34iwGeBl4E9NaZNTvYULASuSHIUoz8Crquqm5N8HrirqjYw+mPiqiQPMvrw6truyu1Mm5w+lmQ1o/9M8hhwQWfV9oz91I79NKUXAzc2xyvmANdU1c+SfBD6t8/zssmSJEkaHE+HkCRJ0uA4BEuSJGlwHIIlSZI0OA7BkiRJGhyHYEmSJA2OQ7Ak9USS+Uk+3HUdkjQEDsGS1B/zAYdgSZoFDsGS1B9fAl6eZHuSryS5KMmdSXYkuRQgyeIkDyRZn+T3Sa5O8sYkv0nyh+ZqeiS5JMlVSW5rvv/+5vsLk2xpXuOeJK/r8OeVpM44BEtSf3wa+GNVLQU2AScDy4GlwGlJVjTrlgBfA17R3N4JnAl8ktGV9g44BVgFnA5cnOSlzdpbm9c4FdiOJA2Ql02WpH46q7nd3Tyex2go/gvwp6raCZDkXuAXVVVJdgKLx57jJ1X1FPBUks2MBuo7gcuTzAVuqiqHYEmD5JFgSeqnAF+sqqXNbUlVXdZse3ps3f6xx/t59sGNmnjOqqotwApgF7A+yXnPQe2S1HsOwZLUH08Cxzb3bwXek2QeQJITkrxohs+3JsnRSY4DVgJ3JjkJ+HtVfR9YByz7/5QuSUcWT4eQpJ6oqj3NB9zuATYC1wC3JQHYC5wLPDODp9wBbAYWAF+oqr8lOR+4KMl/muf0SLCkQUrV5LtlkqQjXZJLgL1V9dWua5GkPvJ0CEmSJA2OR4IlSZI0OB4JliRJ0uA4BEuSJGlwHIIlSZI0OA7BkiRJGhyHYEmSJA3OfwGqh/f88GV1OAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXhUd53//9d7JnOXQGgDIZQQSmspSUpTrClbb1sErZpKWqxfhb3x7mf3e311L3fdX79Su7harrq47q1+/e13q3Xdei3tul3aYuluLYiudxVChbRNUu1WBdISIhQCZGYyk/n8/siAaQhkJjknyXCej+viInPOmXfeHE+cV08+5/Mx55wAAACAIAlNdQMAAADAZCMEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCmb6gbGY86cOW7RokVT3QYAAACmsT179vzGOVc92r6SDMGLFi1SW1vbVLcBAACAaczMfn2ufQyHAAAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgVOSi2VMlvRAVr2nBiRJJ5JZJTODSkTCmpkYOm3VFVHFopxCAACAUkOCG8WJZEZ9qawe3dutB3bv14GjybOOqatKaO11C9W6rFaV8TLNTESmoFMAAACMhznnprqHojU3Nzu/lk3uOZ7S9s4ebdzWoVQmN+bx8UhIG1oataqhRjWz4r70BAAAgOKZ2R7nXPNo+7gTPExPX0rrH27Xzq7egt+TyuR01yPPantXjzataVJNJUEYAABguuPBuLye4ymt31JcAB5uZ1ev1m9pV09fyuPOAAAA4DVCsIbGAG/v7Bl3AD5tZ1evtnf06GQq41FnAAAA8AMhWFJfKquN2zo8qbVxW4eOJ7Oe1AIAAIA/Ah+C0wNDs0AU8hBcIVKZnLbu61Z6gCAMAAAwXfkags3s62Z22MyePcd+M7MvmdkLZtZuZtf62c9oek8N6IHd+z2tuXnX/jPzCwMAAGD68ftO8DckveM8+98paXH+z+2S/sHnfs7inEadB3giDhxNqgRnngMAAAgMX0Owc+6/JB09zyGtku53Q56SdJGZXeJnTyOdTPkzbOFkmuEQAAAA09VUjwmulXRg2OuD+W1nMbPbzazNzNp6eyc2i8NwycygZ7WGS/lUFwAAABM31SG4YM65e51zzc655urqas/qJiJhz2oNFy/zpy4AAAAmbqpDcLekumGvF+S3TZoZcX8WzfOrLgAAACZuqkPwVkl/kJ8l4npJx51zL09mA2ZSXVXC05p1VQmZeVoSAAAAHvJ7irQHJP1E0hIzO2hmHzGz/2lm/zN/yOOSXpT0gqSvSvpffvYzmuqKqNZet9DTmuuWL9TcmTFPawIAAMA7vv7O3jm3doz9TtLH/OxhLLFomVqX1epL3/2FJwtmxCMhrb6mVlHGBAMAAExbUz0cYlqojJdpQ0ujJ7U2tDRqVoLxwAAAANMZIVjSzEREqxpqtKJ+YrNOrKiv1qrGGs2IRzzqDAAAAH4gBOfVzIpr05qmcQfhFfXV2rSmSTWVcY87AwAAgNcIwcPUVMa16dYm3XPLUsUjrz418ytjevMVVZpf+eoH3uKRkO65ZSkBGAAAoIQweHWEmllxtS6brxuXzFVFPKQTyUGZSX3JjFKZnOKRkCoTETknzYyHdWogp1nxMoZAAAAAlBBC8CgyOSdJ2vzUAT2we78OHE2edUxdVUJrr1uo1mW1Z44HAABAabChWcpKS3Nzs2tra/Ol9qHjKe3o7NHGbR0FTZkWj4S0oaVRKxtqNG8WwyEAAACmCzPb45xrHm0fd4KH6elL6c6H27Wzq7fg96QyOd31yLPa3tXDuGAAAIASwYNxeYeOp7R+S3EBeLidXb1av6VdPX0pjzsDAACA1wjBkl7pH9COzp5xB+DTdnb1antHj471D3jUGQAAAPxACJbUnx7Uxm0dntTauK1Dp9KDntQCAACAPwIfgpPpjB7d213QQ3CFSGVy2rqvW8l0xpN6AAAA8F7gQ/CR/owe2L3f05qbd+3XkX5CMAAAwHQV+BDsnEadB3giDhxNqgRnngMAAAiMwIfgk6msP3XT/tQFAADAxAU+BKey/jzElvapLgAAACYu8CE4Hgn7UjdW5k9dAAAATFzgQ/CMmD+L5vlVFwAAABMX+BCcc051VQlPa9ZVJZTjyTgAAIBpK/AhODuY03uuXeBpzduuXaDsICEYAABgugp8CE5nc7rxymrFI96cingkpBuurObBOAAAgGks8CF4RrxMX//Rr3THTUs8qXfHTUt03w9/qRlxxgQDAABMV4EPwSEz/ezAK5pXmdCNS6onVOvGJdWaV5nQ3oPHFDLzqEMAAAB4LfAhOBEJ6bZrF+izW5/VxtalWlE/viC8or5aG1uX6rNbn9V7X7dA5VGmSAMAAJiuAv87ezOpdVmtrqyZqXu2dei2a+v0pivm6ItPPK9UJjfm++ORkO64aYnmVSZ0z7YO3d26VA2XVIr7wAAAANNX4ENw/0BOFdGwjp4a0H8+16P/fK5H7266RA9+9Hp9/+e9eujpgzpwNHnW++qqErrt2gW64cpq3ffDX+rb7Z2SpDcvrlZFNKxTA4O6uGKy/zUAAAAohLkSnM+2ubnZtbW1eVLrN6dSOn4qq5Yv/+BVd37DIdPK+rlqabpE8y9KKDOYUyqTUzwSUiQc0kvHknqs/WV9t+uwBnO/PYfxSEjb/ujNmlVRpjkVcU96BAAAQPHMbI9zrnm0fYG/Ezw46PRY+0tnDX0YzDl9p6NH3+nokSSVhUzRspAGsjllc+f+D4dUJqdtz7yk911X52vfAAAAGL/APxg3kHV66OmDYx6XzTn1DwyeNwCf9m97DmogW3p32AEAAIIi8CHYOTfqmN+JOHA0KSdCMAAAwHQV+BB8Ip31pe7JFCvGAQAATFeBD8ED2bGnQRtfXUIwAADAdBX4B+MSEX8WtYj7VBelKz2QVe+pAUnSiWRWyeygEmVhzUwM/RhWV0QViwb+RxIAgEkR+E/cipg/p8Cvuig9J5IZ9aWy+va+l/Qvu359znmnf3f5pXr3NfNVGS/TzERkCjoFACA4Ap/UwqGhAOLlw3F1VQmFQ6wZB6nneErf7Tqszz323HlXIDxwNKlN/9mlv9vxc/35zVfprfVzVTOLeaYBAPBL4McEl8fC+v3rF3la8w+uX6SKGMMhgq6nL6VPP/yM7nz4mYKW4JaG5pm+8+Fn9OmHn1FPX8rnDgEACK7Ah+CZ0Yhami5RPOLNqYhHQmq5+hLNiPHr7CDrOZ7Sp7c8ox1dh8f1/h1dh/XpLQRhAAD8EvgQHA6HFA+bPrf6Kk/qfW71VYqWGcMhAuxEMqOdzx8edwA+bUfXYX3v+cM6mcp41BkAADgt8CFYkmYmonrTFXO0qmHuhOqsapirNy2eo8pE1KPOUIpOpLP67Lef86TWn299Tn0pf+ayBgAgyAjBkqJlISWiZbq7dem4g/Cqhrm6u3WpyiNlipZxWoMqPZDVY+0vFTwGeCypTE6Ptb+k9ABBGAAAL5HW8qoqooqETB9+42W6e/VVBY8RjkdCunv1VfrwGy9TJGS6uIK7wEH2m/4BffOpX3ta85tP/Vq/yc8vDAAAvEEIzjt6akB3PvyM1n3tp8rmnJ78kxv0qXcsUV1VQpJUFjKVR8Mqy4/1ratK6FPvWKIn/+QGZXNO6772U9358DN6hbASaC4nT6fbk4bqOedpSQAAAi/w8wRLQ0snb+88pJ/89xF9Zd21OtSXVMuXf6A/fMvl+sfff50qomU6mcoqmRlUIhLWjHiZTg1k9d3Ow2r58g/0iZWL9ZV11+p/P7RPT3b26JZltQyJCKiTaX+GLZxkOAQAAJ4iBEs6eiqtL/xHl776gWbd+18vqjIe0f0fWq7v/bxXf/jNPedc4es91y7Q/R9arq//6Ff6Qeo3+uoHmvVHm5/WWxbP0bxZiSn4l2CqJTODvtRNDfhTFwCAoAp8CB4czOnb+17W3a1X6/4f/0rvfV2dDvUl9f6vPjXmCl9/t/0X+r/f/2/dcdMSzatM6P4f/0p3t16tb7e/rA+/YZHCYe4GB03Mp98A8JsFAAC8FfgQfOTUgA4e61csYvqDNyzSvf/1or73fG/B709lctr4WKduXFKt299yuV44fEIHXunXkVMDmlvJsrdBMyPmz4+UX3UBAAiqwH+yZgZzunVZrV4+nio6AA93+n3va65TU+1Fygx6M0UWSouZqa4q4enDcXVVCZmx+AoAAF4K/O9YB3NOB17p10vHk+MOwKd97/levXQ8qYOv9GuQx/kDKRYx3XbtAk9rvvd1C3wbZgEAQFAF/pN1MOe0aHaFvvjE857U++ITz+vS2RUazBGCgyiXk1qa5o85z/TIKffOJR4J6V1Xz5fjP6oAAPBU4IdDJGJhPbrP2xW+vtt1WO9bXudJPZSWdCanWCSkO25aoo2PdZ7ZHg6ZVjXM1buuvkS1FyWUzuaUygwqHgkrVhZS97GktrW/rB1dh1/1H1B33LRE8bKQZ9cnAAAYEvgQnM7k9O9PH/S05kNPH9Qtr631tCZKhEmDuZyuv3y2blxSre8936vV18zXh9+4SN/7ea/+6jvPn3fKvf9142v09R/9Slv3vaQbl1Tr+stnazCXkxgTDACApwIfgiV/VvhCcP30xaN68xVz9PlbrtavjpxS56G+oqfce/91dVo0u0KS03/9olevf82cyfsHAAAQAIEPwf1pfxYh6Gdxg0BKREN60xVzdDKdVTqb030//KV2dB0u+P2np9xbWT9Xf7xqsWKRkN6yuFplzDkNAICnAv/Jms76M9ZywKe6mN7KQiHlJGVyTn/95M+LCsDD7eg6rL9+8ufKDDrlnFQWZjgEAABeCnwIjo3xFP94scJXgDnpqRePeDLl3lMvHhHzQgAA4L3AJzVW+IKXsrmc0tmcp1PupbM5ZVl8BQAATwU+BOecU11VwtOadVUJ5ZjXNZCck7a1ezvl3uPPvMTdYAAAPBb4EJyIhPS+Zm/n9H3/dXVKRMKe1kRpGMg6PeTxlHv/tuegBrLEYAAAvBT4ECyZbriyeswVvgoVzz/Nj2Byzvky5R4rxgEA4K3Ah+DZFVG9fDylO25a4km9O25aopf7Upo9I+ZJPZSWk+msT3WZcg8AAC8FPgSHwyFdvWCW5s9K6MYlE7uDe+OSas2fldDVtbMUDjGlVRD5N+UeIRgAAC8FPgRL0uyKmJIDWd3+lsvHHYRvXFKt299yuZKZrGZXcBc4qPwaCx5njDkAAJ4iBGtoTt8b62v0L0/9Wu99XZ023NxQ8BjheCSkDTc36L2vq9O/PPVrrVhSwxzBATYj7tOUez7VBQAgqPhkzauqiOru1qX61L+3KxEJ68GPXq/v/7xXDz19cNQHneqqErrt2gW64cpq3ffDXyqZOaIvvKdJF1dEp6B7TBtu6Nrw8uE4r6fwAwAAhOBXmT0jpr+87Rpt7+zR7973U73xNXP0/759ieZflFBmMKdUJqd4JKRIOKSXjiX1WPvLuvcHL+rP332V3tZQQwCGBnNOv3/9In3+8U7Pav7B9Ys0OMjsEAAAeIkQPEJVRVS3LKvVWxZX67H2l/RX33leB44mVRYyRctCGsjmlM0NLbDxgTcs0sbWpaqqiDIEApKkUMi0smGu/ubJ5z1ZMCMeCemtDXMV4kFLAAA8ZaU4/2hzc7Nra2vz/fsMDuZ0tH9A2ZzTyVRW6WxOsbKQZsTLVBYyVVXEmAUCr3LwlX599QcvqvGSSn3q35+ZcL0vvOdqPfdyn25/8+VacHG5Bx0CABAcZrbHOdc82j7uBJ9HOBxS9cz40ItZU9sLSsOMeFg1M+OqKo9qVcNcbe88PO5aqxrmqqo8qksq46rkwTgAADzF7/ABD82MRrR62Xyt39Ku299yuVY1zB1XnVUNc3X7Wy7X+i3tevc181URi3jcKQAAwUYIBjwUDoeUKAvpk29bog/9027d+toFuueWpUVNuXfPLUt162sX6EP/tFuffNsSxctCDLsBAMBj/I4V8NjMRFQ3LKnW9q4efWzz03p30yV68PbX6yf//Rtt3rX/nFPurVu+UK9/zRzd94MX9e32l7Wivlo3LKlWZYJZRwAA8BoPxgE+OHpqQKnMoDY88qx2dB1WOGRaWT9XLU2XnJlybyCbU7Ts1VPufbfrsAZzTivr52rjLUuViISZeg8AgHGa0gfjzOwdkv5eUljS15xzm0bsXyjpnyVdlD9mvXPucb/7AvxUVRHV4b6UPvKmy/SGK2bri088r+909Og7HT2SdNaUe6fFIyF9+l31aphXqbKQEYABAPCJr2OCzSws6SuS3impUdJaM2sccdifSfqWc+61kt4v6f/zsydgMhzuS+lTW9q17ms/1d79x/TgR6/Xn6xafGb1t2zOqX9g8EwArqtK6E9WLdaDH71ee/cf07qv/VSf2tKuw32pqfxnAABwwfL7TvBySS84516UJDN7UFKrpI5hxzhJlfmvZ0l6yeeeAF/1p7Pa3tmjnV29kqRvt7+sx589pJX1c8dcgfBL331Bg/lgvLOrV9s7e3TLa2tVHmX4PgAAXvL7k7VW0oFhrw9K+p0Rx3xW0nfM7I8kVUhaNVohM7td0u2StHDhQs8bBbzySjKjux/reNW2wZwraDjESHc/1qEblswlBAMA4LHpMEXaWknfcM4tkPQuSd80s7P6cs7d65xrds41V1dXT3qTQCEymUE9urd7zCWTRw6HOJdUJqete7uVyQx62SYAAIHndwjullQ37PWC/LbhPiLpW5LknPuJpLikOT73Bfii91RaD+za72nNzbv2q/dU2tOaAAAEnd8heLekxWZ2mZlFNfTg29YRx+yXtFKSzKxBQyG41+e+AF/knEadB3giDhxNaowbxgAAoEi+hmDnXFbSxyU9IalTQ7NAPGdmd5vZ6vxhfyrpo2a2T9IDkj7oSnHyYkDSiVS2pOoCABBUvj9tk5/z9/ER2z4z7OsOSW/0uw9gMiR9GrubYkwwAACemg4PxgEXjEQk7EvduE91AQAIKkIw4KGZcX9+ueJXXQAAgooQDHgoZDqzKpxX6qoSCpmnJQEACDxCMOCh6oqY1i73djGXdcsXqnpm3NOaAAAEHSEY8FAkElbrslrFI978aMUjIa1eVqtImB9VAAC8xCcr4LGLExF95uZGT2p95uZGXVwe8aQWAAD4LUIw4LHyWJlWNdRoRf3ElvdeUV+tVQ01Ko/yUBwAAF4jBAM+mFsZ1xfWNI07CK+or9YX1jRpbiVjgQEA8AMhGPDJ6SD8+VuXnjVGeFFVQi1L52rRiJkk4pGQPn/rUgIwAAA+4/esgI/mVsZ1y2trdcOSuaqMh3Ssf1BmUl8yo1Qmp3gkpMpERM5JF5WHdSKV00XlEYZAAADgMz5pAZ+lsznJSd/8yQE9sHu/DhxNnnVMXVVCa69bqNZltUpncyqPTkGjAAAEiDnnprqHojU3N7u2trapbgMY06HjKe3o7NHGbR1KZXJjHh+PhLShpVErG2o0bxbDIQAAmAgz2+Ocax5tH3eCAZ/09KV058Pt2tnVW/B7Upmc7nrkWW3v6tGmNU2qYVwwAAC+4ME4wAeHjqe0fktxAXi4nV29Wr+lXT19KY87AwAAEiEY8Nwr/QPa0dkz7gB82s6uXm3v6NGx/gGPOgMAAKcRggGP9acHtXFbhye1Nm7r0Kn0oCe1AADAbxGCAQ8l0xk9ure7oIfgCpHK5LR1X7eS6Ywn9QAAwBBCMOChI/0ZPbB7v6c1N+/aryP9hGAAALxECAY85JxGnQd4Ig4cTaoEZzIEAGBaIwQDHjqZyvpTN+1PXQAAgooQDHgomfHnIbaUT3UBAAgqQjDgoUQk7EvdeJk/dQEACCpCMOChGXF/FmH0qy4AAEFFCAY8VleVmNb1AAAAIRjwVFV5WGuvW+hpzXXLF2pORcTTmgAABB0hGPBQ9/EBtS6rVTzizY9WPBLS6mtqdeBYypN6AABgCCEY8NDMeJliZaYNLY2e1NvQ0qhYmWkmY4IBAPAUIRjwUFnIdOs//FgrG+ZqRX31hGqtqK/WyoYa3foPP1ZZyDzqEAAASIRgwFNV5VF94PWLtOnxDm1a0zTuILyivlqb1jRp0+PP6QOvX6SqipjHnQIAEGz8jhXwUDgc0s1N8/VX33lekvQXt16tHZ2HtXFbh1KZ3Jjvj0dC2tDSqJUNNfqLbc/pPzsOa/27rlKYO8EAAHiKEAx4rKoiqo2tS3XHQ+16ZN8htd21Ujcumaut+7q1edd+HTiaPOs9dVUJrVu+UKuvqVWszNR8zw5J0hdva1JVRXSy/wkAAFzwCMGAx6JlIa1sqNHbGmr0ZGePmu/ZodrKhB774zfq5qb5kqST6axSmUHFI2HNiA39GFbGy/Suv/uhuvuGQvLbGmq0qqFG0TJGLQEA4DVCMOCDqoqoNr3naunfpSc7e9Tdl9Rr795+Zv+iqoSumj9Tz710Qr8a5c7w2xpqtOk9V+ti7gIDAOALQjDgk9kzYvrCbU16e2ePNjz67KvGBP/qaHLU8BuPhLSxdalWNdQQgAEA8BEhGPBRVUVUrctq9ebF1Xqs/SX9809+dc4xwR98wyK1XD1fVRVRhkAAAOAzQjDgs2hZSPNmxfWhNyxS67L5yuacTqaySmdzipWFNCNeprKQqaoixiwQAABMEkIwMEnC4ZCqZ8aHXsya2l4AAAg6fucKAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAicsqluAAiK9EBWvacGJEknklklM4NKRMKamRj6MayuiCoW5UcSAIDJwCcu4LMTyYz6Ulk9urdbD+zerwNHk2cdU1eV0NrrFqp1Wa0q42WamYhMQacAAASHOeemuoeiNTc3u7a2tqluAxhTz/GUtnf2aOO2DqUyuTGPj0dC2tDSqFUNNaqZFZ+EDgEAuHCZ2R7nXPNo+7gTDPikpy+l9Q+3a2dXb8HvSWVyuuuRZ7W9q0eb1jSpppIgDACAH3gwDvBBz/GU1m8pLgAPt7OrV+u3tKunL+VxZwAAQCIEA547kcxoe2fPuAPwaTu7erW9o0cnUxmPOgMAAKcRggGP9aWy2ritw5NaG7d16Hgy60ktAADwW4RgwEPpgaFZIAp5CK4QqUxOW/d1Kz1AEAYAwEuEYMBDvacG9MDu/Z7W3Lxr/5n5hQEAgDcIwYCHnNOo8wBPxIGjSZXgTIYAAExrBU+RZmbVkhZIGpT0onPupG9dASXqZMqfYQsn0wyHAADAS2OGYDNrlPQlSYskLZT0M0lzzez7kj7hnDvua4dACUlmBn2pm/KpLgAAQVXIcIivS/qYc+4KSW+S1OWcu0zSjyTd52dzQKlJRMK+1I2X+VMXAICgKiQEJ5xzz0uSc26XpKvzX39V0lU+9gaUnBlxfxZh9KsuAABBVUgI/m8z22BmbzSzv5a0V5LMLFLg+4HAMJPqqhKe1qyrSsjM05IAAAReISH2w5JmSrpTUkrSJ/LbyyV9wKe+gJJUXRHV2usWelpz3fKFmjsz5mlNAACCbswQ7Jw75pz73865m51zdznnTuS3H3fOPXX6ODP7sp+NAqUgFi1T67JaxSPe/JIkHglp9TW1ijImGAAAT3k5nOGNHtYCSlZlvEwbWho9qbWhpVGzEowHBgDAa4zpBTw2MxHRqoYaraivnlCdFfXVWtVYoxnxiEedAQCA0wjBgA9qZsW1aU3TuIPwivpqbVrTpJrKuMedAQAAydsQzPPrwDA1lXFturVJ99yytOAxwvFISPfcspQADACAz4pZNvlq59wz5znk78/xvnfk94Ulfc05t2mUY/6HpM9KcpL2OefWFdoXMJ3VzIqrddl83bhkrrbu69bmXft14GjyrOPqqhJat3yhVi+r1ax4GUMgAADwmTnnCjvQ7AeSYpK+IelfClku2czCkn4u6W2SDkraLWmtc65j2DGLJX1L0ludc6+Y2Vzn3OHz1W1ubnZtbW0F9Q1MF+mBrHpPDcg56WQ6q1RmUPFIWDNiZTKT5s6MMQsEAAAeMrM9zrnm0fYVfCfYOffmfGD9sKQ9ZrZL0j855548z9uWS3rBOfdivpEHJbVK6hh2zEclfcU590r++5w3AAOlKhYt04IoMz0AADAdFDUm2Dn3C0l/JulTkm6Q9CUz6zKzNed4S62kA8NeH8xvG+5KSVea2Y/M7Kn88ImzmNntZtZmZm29vb3FtA0AAAC8SsEh2MyazOxvJXVKequkdzvnGvJf/+0EeiiTtFjSjZLWSvqqmV008iDn3L3OuWbnXHN19cSmngIAAECwFXMn+MuSnpZ0jXPuY865pyXJOfeShu4Oj6ZbUt2w1wvy24Y7KGmrcy7jnPulhsYQLy6iLwAAAKAoxYTgFkmbnXNJSTKzkJmVS5Jz7pvneM9uSYvN7DIzi0p6v6StI455REN3gWVmczQ0POLFIvoCAAAAilJMCN4uKTHsdXl+2zk557KSPi7pCQ0No/iWc+45M7vbzFbnD3tC0hEz65C0U9IdzrkjRfQFAAAAFKWYR9XjzrmTp184506evhN8Ps65xyU9PmLbZ4Z97SR9Mv8HAAAA8F0xd4JPmdm1p1+Y2esknT3rPwAAADDNFXMn+I8l/ZuZvaShJZLnSXqfL10BAAAAPipmsYzdZlYvaUl+0/POuYw/bQEAAAD+KXb5quskLcq/71ozk3Pufs+7AgAAAHxUcAg2s29Keo2kvZIG85udJEIwAAAASkoxd4KbJTXmZ3MAAAAASlYxs0M8q6GH4QAAAICSVsyd4DmSOsxsl6T06Y3OudXnfgsAAAAw/RQTgj/rVxMAAADAZCpmirTvm9mlkhY757bnV4sL+9caAAAA4I+CxwSb2UclPSTpH/ObaiU94kdTAAAAgJ+KeTDuY5LeKKlPkpxzv5A014+mAAAAAD8VE4LTzrmB0y/MrExD8wQDAAAAJaWYEPx9M/u0pNpsm/MAACAASURBVISZvU3Sv0n6tj9tAQAAAP4pJgSvl9Qr6RlJfyjpcefcXb50BQAAAPiomCnS/sg59/eSvnp6g5l9Ir8NAAAAKBnF3An+wCjbPuhRHwAAAMCkGfNOsJmtlbRO0mVmtnXYrpmSjvrVGAAAAOCXQoZD/FjSyxpaNvmvh20/Iandj6YAAAAAP40Zgp1zv5b0a0mv978dAAAAwH/FrBi3xsx+YWbHzazPzE6YWZ+fzQEAAAB+KGZ2iL+U9G7nXKdfzQAAAACToZjZIXoIwAAAALgQFHMnuM3M/lXSI5LSpzc657Z43hUAAADgo2JCcKWkfklvH7bNSSIEAwAAoKQUHIKdcx/ysxEAAABgshQzO8SVZrbDzJ7Nv24ysz/zrzUAAADAH8U8GPdVSXdKykiSc65d0vv9aAoAAADwUzEhuNw5t2vEtqyXzQAAAACToZgQ/Bsze42GHoaTmd2moeWUAQAAgJJSzOwQH5N0r6R6M+uW9EtJv+dLVwAAAICPipkd4kVJq8ysQlLIOXfCv7YAAAAA/xQzO8QnzOz0XMF/a2ZPm9nbx3ofAAAAMN0UMyb4w865Pg0tljFb0u9L2uRLVwAAAICPignBlv/7XZLud849N2wbAAAAUDKKeTBuj5l9R9Jlku40s5mScv60BVx40gNZ9Z4akCSdSGaVzAwqEQlrZmLox7C6IqpYtJgfSQAAMF7FfOJ+RNIySS865/rNbLYkllIGxnAimVFfKqtH93brgd37deBo8qxj6qoSWnvdQrUuq1VlvEwzE5Ep6BQAgOAw59z5DzCrd851mdm1o+13zj3tS2fn0dzc7Nra2ib72wJF6zme0vbOHm3c1qFUZuxfnMQjIW1oadSqhhrVzIpPQocAAFy4zGyPc655tH2F3An+pKTbJf31KPucpLdOoDfggtXTl9L6h9u1s6u34PekMjnd9ciz2t7Vo01rmlRTSRAGAMAPY4Zg59zt+b9X+N8OcGHoOV58AB5uZ1ev1m9pJwgDAOCTYuYJfm/+YTiZ2Z+Z2RYze61/rQGl6UQyo+2dPeMOwKft7OrV9o4enUxlPOoMAACcVswUaRuccyfM7E2SVkm6T9L/9actoHT1pbLauK3Dk1obt3XoeDLrSS0AAPBbxYTgwfzfLZLudc5tkxT1viWgdKUHhmaBKOQhuEKkMjlt3det9ABBGAAALxUTgrvN7B8lvU/S42YWK/L9wAWv99SAHti939Oam3ftPzO/MAAA8EYxIfZ/SHpC0k3OuWOSqiTd4UtXQIlyTqPOAzwRB44mNcZMhgAAoEgFh2DnXL+kRyWdMrOFkiKSuvxqDChFJ1P+DFs4mWY4BAAAXip4xTgz+yNJfy6pR79dLtlJavKhL6AkJTODYx80Dimf6gIAEFTFLJv8CUlLnHNH/GoGKHWJSNiXuvEyf+oCABBUxYwJPiDpuF+NABeCGfFi/rty6usCABBUxXyyvijpe2a2TVL69Ebn3N943hVQosykuqqEpw/H1VUlZOZZOQAAoOLuBO+X9KSG5gaeOewPgLzqiqjWXrfQ05rrli/U3JkxT2sCABB0Bd8Jds59TpLMbEb+9Um/mgJKVSxaptZltfrSd3/hyYIZ8UhIq6+pVZQxwQAAeKrgO8FmttTMfibpOUnPmdkeM7vKv9aA0lQZL9OGlkZPam1oadSsBOOBAQDwWjHDIe6V9Enn3KXOuUsl/amkr/rTFlC6ZiYiWtVQoxX11ROqs6K+WqsaazQjHvGoMwAAcFoxIbjCObfz9Avn3PckVXjeEXABqJkV16Y1TeMOwivqq7VpTZNqKuMedwYAAKQiZ4cwsw2Svpl//XsamjECwChqKuPadGuTtnf2aOO2joLGCMcjIW1oadSqxhoCMAAAPiomBH9Y0uckbdHQSnE/yG8DcA41s+JqXTZfNy6Zq637urV51/5Rp0+rq0po3fKFWr2sVrPiZQyBAADAZ+acm+oeitbc3Oza2tqmug2gKOmBrHpPDcg56WQ6q1RmUPFIWDNiZTKT5s6MMQsEAAAeMrM9zrnm0fYVfCfYzJ6U9F7n3LH864slPeicu8mbNoELWyxapgVRZnoAAGA6KObBuDmnA7AkOedekTTX+5YAAAAAfxUTgnNmdmYpLDO7VENjgwEAAICSUszvZu+S9EMz+74kk/RmSbf70hUAAADgo2KWTf5PM7tW0vX5TX/snPvN6f1mdpVz7jmvGwQAAAC8VtRTOvnQ+9g5dn9T0rUT7ggAAADwWTFjgsdiHtYCAAAAfONlCOYhOQAAAJQEL0MwAAAAUBK8DMEDHtYCAAAAfFPUg3Fm1iRp0fD3Oee25P++/hxvAwAAAKaVYpZN/rqkJknPScrlNztJW3zoCwAAAPBNMXeCr3fONfrWCQAAADBJihkT/BMzIwQDAACg5BVzJ/h+DQXhQ5LSGpoX2DnnmnzpDAAAAPBJMXeC75P0+5LeIendkm7O/31eZvYOM3vezF4ws/XnOe49ZubMrLmIngAAAICiFXMnuNc5t7WY4mYWlvQVSW+TdFDSbjPb6pzrGHHcTEmfkPTTYuoDAAAA41FMCP6ZmW2W9G0NDYeQ9Nsp0s5huaQXnHMvSpKZPSipVVLHiOM2SvqCpDuK6AcAAAAYl2KGQyQ0FH7frqFhEKeHRJxPraQDw14fzG87w8yulVTnnNt2vkJmdruZtZlZW29vbxFtAwAAAK9W8J1g59yHvP7mZhaS9DeSPljA979X0r2S1Nzc7LzuBQAAAMFRzGIZcUkfkXSVpPjp7c65D5/nbd2S6oa9XpDfdtpMSUslfc/MJGmepK1mtto511ZobwAAAEAxihkO8U0NhdSbJH1fQ4H2xBjv2S1psZldZmZRSe+XdObhOufccefcHOfcIufcIklPSSIAAwAAwFfFhOArnHMbJJ1yzv2zpBZJv3O+NzjnspI+LukJSZ2SvuWce87M7jaz1eNtGgAAAJiIYmaHyOT/PmZmSyUdkjR3rDc55x6X9PiIbZ85x7E3FtEPAAAAMC7FhOB7zexiSRs0NKRhhqRRwywAAAAwnRUzO8TX8l9+X9Ll/rQDAAAA+K/gMcFmVmNm95nZf+RfN5rZR/xrDQAAAPBHMQ/GfUNDD7jNz7/+uaQ/9rohAAAAwG/FhOA5zrlvScpJZ2Z+GPSlKwAAAMBHxYTgU2Y2W5KTJDO7XtJxX7oCAAAAfFTM7BCf1NCsEJeb2Y8kVUu6zZeuAAAAAB8VE4I7JD0sqV9DK8U9oqFxwQAAAEBJKWY4xP2S6iV9XtKXJV2poaWUAQAAgJJSzJ3gpc65xmGvd5pZh9cNAQAAAH4r5k7w0/mH4SRJZvY7ktq8bwkAAADw15h3gs3sGQ3NCBGR9GMz259/famkLn/bAwAAALxXyHCIm33vAgAAAJhEY4Zg59yvJ6MRAAAAYLIUMyYYAAAAuCAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4ZVPdAAAAAC4syXRGR/ozkqQTyaySmUElImHNTAxFz9nlESVikalskRAMAAAAb7zSP6D+9KAe3dutB3bv14GjybOOqatKaO11C9W6rFblsbAuLo9OQaeSOeem5BtPRHNzs2tra5vqNgAAAJB36HhKOzp7tHFbh1KZ3JjHxyMhbWhp1MqGGs2bFfelJzPb45xrHm0fd4IBAAAwIT19Kd35cLt2dvUW/J5UJqe7HnlW27t6tGlNk2oq/QnC58KDcQAAABi3Q8dTWr+luAA83M6uXq3f0q6evpTHnZ0fIRgAAADj8kr/gHZ09ow7AJ+2s6tX2zt6dKx/wKPOxkYIBgAAwLj0pwe1cVuHJ7U2buvQqfSgJ7UKQQgGAABA0ZLpjB7d213QQ3CFSGVy2rqvW8l0xpN6YyEEAwAAoGhH+jN6YPd+T2tu3rX/zPzCfiMEAwAAoGjOadR5gCfiwNGkJmv2XkIwAAAAinYylfWnbtqfuiMRggEAAFC0ZMafh9hSPtUdiRAMAACAoiUiYV/qxsv8qTuS7yHYzN5hZs+b2Qtmtn6U/Z80sw4zazezHWZ2qd89AQAAYGJmxP1ZeNivuiP5GoLNLCzpK5LeKalR0lozaxxx2M8kNTvnmiQ9JOkv/ewJAAAAE2cm1VUlPK1ZV5WQmaclz8nvO8HLJb3gnHvROTcg6UFJrcMPcM7tdM71518+JWmBzz0BAABggmaXR7T2uoWe1ly3fKGqZ8Q8rXkufofgWkkHhr0+mN92Lh+R9B+j7TCz282szczaensntjQfAAAAJiYRi6h1Wa3iEW/iZDwS0uprahXzaazxSNPmwTgz+z1JzZK+ONp+59y9zrlm51xzdXX15DYHAACAs5THwtrQMnKk6/hsaGlURWxyArDkfwjullQ37PWC/LZXMbNVku6StNo5l/a5JwAAAHjg4vKoVjbUaEX9xG5Qrqiv1qrGGl1UHvWos7H5HYJ3S1psZpeZWVTS+yVtHX6Amb1W0j9qKAAf9rkfAAAAeGjerLg2rWkadxBeUV+tTWuaVFMZ97iz8/M1BDvnspI+LukJSZ2SvuWce87M7jaz1fnDvihphqR/M7O9Zrb1HOUAAAAwDdVUxvUXtzbpnluWFjxGOB4J6Z5blk5JAJYkc5O1QLOHmpubXVtb21S3AQAAgGGO9Q/oVHpQW/d1a/Ou/TpwNKkZ0bAurojqlVMDOjkwqLqqhNYtX6jVy2pVEQ37OgTCzPY455pH2zc5sxEDAADggndReVQXlUsffP2levc18yVJJ5JZJTODSkTCmpkYip6zyyNKxCJT2SohGAAAAN54pX9A/elBPbq3Ww/sHroTPFJdVUJrr1uo1mW1Ko+FdfEkPgw3HMMhAAAAMGGHjqe0o7NHG7d1KJXJjXl8PBLShpZGrWyo0bxZ/owJZjgEAAAAfNPTl9KdD7drZ1fhC5qlMjnd9ciz2t7Vc+HNDgEAAIAL26HjKa3fUlwAHm5nV6/Wb2lXT1/K487OjxAMAACAcXmlf0A7OnvGHYBP29nVq+0dPTrWP+BRZ2MjBAMAAGBc+tOD2ritw5NaG7d16FR60JNahSAEAwAAoGjJdEaP7u0u6CG4QqQyOW3d161kOuNJvbEQggEAAFC0I/0ZPbB7v6c1N+/aryP9hGAAAABMU85p1HmAJ+LA0aQma/ZeQjAAAACKdjKV9adu2p+6IxGCAQAAULRkxp+H2FI+1R2JEAwAAICiJSJhX+rGy/ypOxIhGAAAAEWbEfdn4WG/6o5ECAYAAEDRzKS6qoSnNeuqEjLztOQ5EYIBAABQtNnlEa29bqGnNdctX6jqGTFPa54LIRgAAABFS8Qial1Wq3jEmzgZj4S0+ppaxXwaazwSIRgAAADjUh4La0NLoye1NrQ0qiI2OQFYIgQDAABgnC4uj2plQ41W1FdPqM6K+mqtaqzRReVRjzobGyEYAAAA4zZvVlyb1jSNOwivqK/WpjVNqqmMe9zZ+RGCAQAAMCE1lXH9xa1NuueWpQWPEY5HQrrnlqVTEoAlaXImYgMAAMAFbd6suFqaLtGNS+Zq675ubd61XweOJs86rq4qoXXLF2r1slpVRMOTOgRiOEIwAAAAPOHyf//u79Tp5qb5kqST6axSmUHFI2HNiA1Fz4sSEfWlsmeOnwqEYAAAAEzYoeMp7ejs0cZtHUplcme2110U15J5M/T8oZM6cCx1Zns8EtKGlkatbKjRvFkMhwAAAECJ6elL6c6H27Wzq/esfQeOpV4Vfk9LZXK665Fntb2rhwfjAAAAUFoOHU9p/ZbRA3Ahdnb1av2WdvX0nR2U/UQIBgAAwLi80j+gHZ094w7Ap+3s6tX2jh4d6x/wqLOxEYIBAAAwLv3pQW3c1uFJrY3bOnQqPehJrUIQggEAAFC0ZDqjR/d2v+ohuIlIZXLauq9byXTGk3pjIQQDAACgaEf6M3pg935Pa27etV9H+gnBAAAAmKac06iLYUzEgaNJuUmaPJgQDAAAgKKdTGX9qZv2p+5IhGAAAAAULZnx5yG2lE91RyIEAwAAoGiJSNiXuvEyf+qORAgGAABA0WbE/Vl42K+6IxGCAQAAUDQzqa4q4WnNuqqEzDwteU6EYAAAABRtdnlEa69b6GnNdcsXqnpGzNOa50IIBgAAQNESsYhal9UqHvEmTsYjIa2+plYxn8Yaj0QIBgAAwLiUx8La0NLoSa0NLY2qiE1OAJYIwQAAABini8ujWtlQoxX11ROqs6K+Wqsaa3RRedSjzsZGCAYAAMC4zZsV16Y1TeMOwivqq7VpTZNqKuMed3Z+hGAAAABMSE1lXH9xa5PuuWVpwWOE45GQ7rll6ZQEYEmanInYAAAAcEGbNyuulqZLdOOSudq6r1ubd+3XgaPJs46rq0po3fKFWr2sVhXR8KQOgRiOEAwAAABPXFQe1UXl0gdff6nefc18OSedTGeVygwqHglrRqxMZlL1jNikzQJxLoRgAAAAeCoRi2hBLDLVbZwXY4IBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFTNtUNTGfJdEZH+jOSpBPJrJKZQSUiYc1MDJ222eURJWKRqWwRJYTrCQAQFKXwmUcIHsUr/QPqTw/q0b3demD3fh04mjzrmLqqhNZet1Cty2pVHgvr4vLoFHSKUsD1BAAIilL6zDPn3JR844lobm52bW1tvtQ+dDylHZ092ritQ6lMbszj45GQNrQ0amVDjebNivvSE0oX1xMAICim42eeme1xzjWPuo8Q/Fs9fSmt39KunV29Rb93RX21Nq1pUk0lwQVDuJ4AAEExXT/zzheCeTAu79Dx8f+PJ0k7u3q1fku7evpSHneGUsT1BAAIilL9zCMEa2j8yo7OnnH/j3fazq5ebe/o0bH+AY86QyniegIABEUpf+YRgiX1pwe1cVuHJ7U2buvQqfSgJ7VQmrieAABBUcqfeYEPwcl0Ro/u7S5oAHchUpmctu7rVjKd8aQeSgvXEwAgKEr9M8/3EGxm7zCz583sBTNbP8r+mJn9a37/T81skd89DXekP6MHdu/3tObmXfvPzI2HYOF6AgAERal/5vkags0sLOkrkt4pqVHSWjNrHHHYRyS94py7QtLfSvqCnz2N5JxGncNuIg4cTaoEJ92AB7ieAABBUeqfeX7fCV4u6QXn3IvOuQFJD0pqHXFMq6R/zn/9kKSVZmY+93XGyVTWn7ppf+pieuN6AgAERal/5vkdgmslHRj2+mB+26jHOOeyko5Lmj2ykJndbmZtZtbW2zuxJxCHS2b8GYCd8qkupjeuJwBAUJT6Z17JPBjnnLvXOdfsnGuurq72rG4iEvas1nDxMn/qYnrjegIABEWpf+b5HYK7JdUNe70gv23UY8ysTNIsSUd87uuMGfGykqqL6Y3rCQAQFKX+med3CN4tabGZXWZmUUnvl7R1xDFbJX0g//Vtkr7rJnEtZzOprirhac26qoQmb1QzphOuJwBAUJT6Z56vITg/xvfjkp6Q1CnpW86558zsbjNbnT/sPkmzzewFSZ+UdNY0an6aXR7R2usWelpz3fKFqp4R87QmSgPXEwAgKEr9M8/3McHOucedc1c6517jnLsnv+0zzrmt+a9Tzrn3OueucM4td8696HdPwyViEbUuq1U84s2piEdCWn1NrWI+jZPB9Mb1BAAIilL/zCuZB+P8VB4La0PLyOmLx2dDS6MqYgSWION6AgAERSl/5hGCJV1cHtXKhhqtqJ/YrBMr6qu1qrFGF5VHPeoMpYjrCQAQFKX8mUcIzps3K65Na5rG/T/iivpqbVrTpJrKuMedoRRxPQEAgqJUP/NsEidi8Exzc7Nra2vzpfah4ynt6OzRxm0dSmVyYx4fj4S0oaVRqxprCCw4C9cTACAopuNnnpntcc41j7qPEHy2Y/0DOpUe1NZ93dq8a/+o62LXVSW0bvlCrV5Wq4pomF9Z45y4ngAAQTHdPvMIweOUTGd0pD8j54bWsU5lBhWPhDUjViYzqXpGjKf2UTCuJwBAUEyXz7zzhWCWoTqPRCyiBbHIVLeBCwTXEwAgKErhM48H4wAAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOCU5IpxZtYr6ddT8K3nSPrNFHzfUsN5KgznqTCcp8JwngrHuSoM56kwnKfCTNV5utQ5Vz3ajpIMwVPFzNrOtfQefovzVBjOU2E4T4XhPBWOc1UYzlNhOE+FmY7nieEQAAAACBxCMAAAAAKHEFyce6e6gRLBeSoM56kwnKfCcJ4Kx7kqDOepMJynwky788SYYAAAAAQOd4IBAAAQOIRgAAAABA4heAQz+7qZHTazZ8+x38zsS2b2gpm1m9m1k93jdFDAebrRzI6b2d78n89Mdo/TgZnVmdlOM+sws+fM7BOjHBP4a6rA8xT4a8rM4ma2y8z25c/T50Y5JmZm/5q/nn5qZosmv9OpVeB5+qCZ9Q67nv6fqeh1OjCzsJn9zMweG2Vf4K+n08Y4T1xPeWb2KzN7Jn8e2kbZP20+88qm6htPY9+Q9H8k3X+O/e+UtDj/53ck/UP+76D5hs5/niTpB865myennWkrK+lPnXNPm9lMSXvM7EnnXMewY7imCjtPEtdUWtJbnXMnzSwi6Ydm9h/OuaeGHfMRSa84564ws/dL+oKk901Fs1OokPMkSf/qnPv4FPQ33XxCUqekylH2cT391vnOk8T1NNwK59y5FsaYNp953AkewTn3X5KOnueQVkn3uyFPSbrIzC6ZnO6mjwLOEyQ55152zj2d//qEhv4PtHbEYYG/pgo8T4GXv0ZO5l9G8n9GPt3cKumf818/JGmlmdkktfj/t3d/oVLUYRjHvw8pFBoJ2h/zVAcyCAo9KRwSTURKosIu8kLCtIKiPxBdZFQXZXVR0B+CboI0DNMiMs1CMylBEAmzRI2kjKK0SDDSJJHUp4uZk+viyT2QZ0bm+cBydnZ+zL7n5WXn3Znf7NRCh3kKQFIXcDOwsJ8hja8n6ChP0bna7PPSBA/cGODnluXdZGfdn0nl6cg1kq6qOpiqlacRrwE+b1uVmmrxH3mC1FTfKdmtwF5gne1+68n2EWA/MHJwo6xeB3kCuK08HfuepEsGOcS6eAV4FDjWz/rUU+FUeYLUUx8Dn0jaIunek6yvzT4vTXCcLl9S3K97PPAqsLLieColaTiwHHjY9oGq46mrU+QpNQXYPmq7B+gCeiVdXXVMddRBnj4Eum2PA9Zx/GhnY0i6Bdhre0vVsdRZh3lqfD21mGJ7AsW0hwclTa06oP6kCR64PUDrN7yu8rVoYftA3+lI26uBoZJGVRxWJco5icuBpbbfP8mQ1BSnzlNq6kS2/wDWAze2rfq3niQNAc4D9g1udPXRX55s77N9uFxcCEwc7NhqYDIwU9KPwDvAdElvtY1JPXWQp9TTcbb3lH/3AiuA3rYhtdnnpQkeuFXA3PLqxmuB/bZ/rTqoupF0Ud+8MUm9FLXWtA9OyhwsAr6x/XI/wxpfU53kKTUFks6XNKJ8fg5wA7CzbdgqYF75fBbwmRt2V6RO8tQ2B3EmxTz0RrH9uO0u293AbIpamdM2rPH11EmeUk8FScPKi5uRNAyYAbT/ilRt9nn5dYg2kt4GpgGjJO0GnqK4qALbrwGrgZuAXcBfwF3VRFqtDvI0C7hf0hHgEDC7aR+cpcnAHcD2cn4iwBPApZCaatFJnlJTMBp4U9JZFF8C3rX9kaRngC9sr6L4MrFE0i6Ki1dnVxduZTrJ00OSZlL8MsnvwJ2VRVszqafOpJ5O6kJgRXm8YgiwzPbHku6D+u3zctvkiIiIiGicTIeIiIiIiMZJExwRERERjZMmOCIiIiIaJ01wRERERDROmuCIiIiIaJw0wRERNSFphKQHqo4jIqIJ0gRHRNTHCCBNcETEIEgTHBFRH88Dl0vaKukFSfMlbZa0TdLTAJK6Je2UtFjSt5KWSrpe0kZJ35V300PSAklLJG0qX7+nfH20pA3le+yQdF2F/29ERGXSBEdE1MdjwPe2e4B1wBVAL9ADTJQ0tRw3FngJuLJ83A5MAR6huNNen3HAdGAS8KSki8uxa8v3GA9sJSKigXLb5IiIeppRPr4ql4dTNMU/AT/Y3g4g6WvgU9uWtB3obtnGB7YPAYckradoqDcDb0gaCqy0nSY4IhopR4IjIupJwHO2e8rHWNuLynWHW8Yda1k+xokHN9y2TdveAEwF9gCLJc09DbFHRNRemuCIiPr4Ezi3fL4WuFvScABJYyRdMMDt3SrpbEkjgWnAZkmXAb/Zfh1YCEz4f0KPiDizZDpERERN2N5XXuC2A1gDLAM2SQI4CMwBjg5gk9uA9cAo4Fnbv0iaB8yX9He5zRwJjohGkt1+tiwiIs50khYAB22/WHUsERF1lOkQEREREdE4ORIcEREREY2TRqH83gAAAC5JREFUI8ERERER0ThpgiMiIiKicdIER0RERETjpAmOiIiIiMZJExwRERERjfMPlvLgqxn0muYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ reps\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hU5bk3/u8zM2tmTY4kMIkkBNAqOQBJxEARrUKJ1QoSRNwVWrVbi91v3bt92263tBbbmtoi1h58f/ZtYbt3rW/RVgVFYkWDoK2WQmBDxBxAqRwSOgkEyGnO8/z+SIIh5DCTWWslk/X9XFcuyczkzgNe15p7nvXc9y2klCAiIiIiMhPLSC+AiIiIiMhoTIKJiIiIyHSYBBMRERGR6TAJJiIiIiLTYRJMRERERKZjG+kFDMeECRPk1KlTR3oZRERERDSK7d2795SU0tXfc3GZBE+dOhVVVVUjvQwiIiIiGsWEEEcHeo7HIYiIiIjIdJgEExEREZHpMAkmIiIiItNhEkxEREREpsMkmIiIiIhMh0kwEREREZkOk2AiIiIiMh0mwURERERkOnE5LIOIyOx8/iCaO/wAgDZPEJ5ACE7FimRn12XdlWiHw85LPBHRQHiFJCKKI22eAFq9QbyyvwHP7TmG4y2ei16Tk+7EitmTUVacjRTVhmSnMgIrJSIa3YSUcqTXELWSkhLJsclEZDbuc15U1rpRXlEDbyA85OtVxYI1iwpQmp+JzFTVgBUSEY0uQoi9UsqS/p7jTjARURxwt3qxenM1dtQ1R/wz3kAYD718EJV1bqxdVojMFCbCREQ9WBhHRDTKuc95sXpTdAlwbzvqmrF6UzXcrV6NV0ZEFL+YBBMRjWJtngAqa93DToB77KhrRmWNG+3egEYrIyKKb0yCiYhGsVZvEOUVNZrEKq+owTlPUJNYRETxjkkwEdEo5fN3dYGIpAguEt5AGFsONMDnZyJMRKRrEiyE+C8hRJMQ4uAAzwshxJNCiA+FENVCiFl6roeIKJ40d/jx3J5jmsbcuPvY+f7CRERmpvdO8G8B3DTI858HcEX3130A/q/O6yEiihtSot8+wLE43uJBHHbGJCLSnK5JsJTyHQAtg7ykDMDvZJddAMYJISbquSYionjR7tXn2EK7j8chiIhG+kxwNoDjvb4/0f3YRYQQ9wkhqoQQVc3NsVVJExHFA08gpEtcr05xiYjiyUgnwRGTUq6XUpZIKUtcLtdIL4eISHdOxapLXNWmT1wiongy0klwA4CcXt9P6n6MiMj0klR9hnrqFZeIKJ6MdBK8BcBd3V0i5gI4J6U8OcJrIiIaFYQActKdmsbMSXdCCE1DEhHFJb1bpD0H4K8AcoUQJ4QQ9woh/kUI8S/dL3kNwBEAHwLYAOBreq6HiCieuBLtWDF7sqYxV86ZjIxkh6YxiYjika73xKSUK4Z4XgK4X881EBHFK4fdhrLibDz51mFNBmaoigVLirJh55lgIqIRPw5BRESDSFFtWLOoQJNYaxYVINXJ88BERACTYCKiUS3ZqaA0PxML8mLrirMgz4XSgkwkqYpGKyMiim9MgomIRrnMVBVrlxUOOxFekOfC2mWFyExRNV4ZEVH8YhJMRBQHMlNUrL21EI8unQFViezSrSoWPLp0BhNgIqJ+8HAYEVGcyExVUVachfm5GdhyoAEbdx/D8RbPRa/LSXdi5ZzJWFKcjVTVxiMQRET9YBI8CJ8/iOYOPwCgzROEJxCCU7EiubuwxJVoh8POf0IiMk6SqiBJVXDPvKm4pSgLUgLtviC8gRBUxYokhw1CABnJDnaBIKIREw85FDO4frR5Amj1BvHK/gY8t2fgnZYVsyejrDgbKaoNyU7utBCRcRx2GybxQzgRjTLxlEOJrla98aWkpERWVVXpEtt9zovKWjfKK2oi6supKhasWVSA0vxMZKbyzB0RERGZ02jMoYQQe6WUJf0+xyT4E+5WL1ZvqsaOuuaof5bV10RERGRWozWHGiwJZneIbu5zw/+fBwA76pqxelM13K1ejVdGRERENHrFaw7FJBhd51cqa93D/p/XY0ddMypr3Gj3BjRaGRFR/wKBEBrPduLEmU7UnmzFvmNnUHuyFSfOdKLxbCcCgdBIL5GITCCecyhWVQBo9QZRXlGjSazyihrMz81gSyIi0kWnL4gznkBX0ckgLdJWzOkqOklzKkhw8FJPRPqI5xzK9DvBPn9XBWMkB7gj4Q2EseVAA3z+oCbxiIh6NLV6sXl/AxY+sRPrXq/vNwEGgOMtHqx7vR4Ln9iJzfsb0MRjWkSkg3jPoUyfBDd3+PHcnmOaxty4+9j53nhERFpoavXiwU3VeGjzwYjfcLyBMB7afBAPbqpmIkxEmov3HMr0SbCUGHA3ZbiOt3gQh003iGiU6kmAYyk6YSJMRFqL9xzK9Elwu0+fLfcOneISkbl0+oJ4U6uik1o3OnlUi4g00u7V53qiV27Wl+mTYJ9OFdTeICuziSh2ZzwBlG/Vpujkka01ONPJ7jVEpA29ch2fQTmU6ZNgVbHqE9emT1wiMo9AIKR90cn+BrZPIyJNOOM8hzJ9Epzg0OcfWq+4RGQeTe0+PLd76KITm0UgwW6FzSKGfO3G3cfQ1O7TYnlEZHKJOrVf1CtuX6ZvHhkKS+SkOzU92J2T7kQozMo4IopNeICiE6tFoDQ/AzfPnIjscU74gmF4AyGoihUOmwUNZz2oqD6J7XVNF12Ljrd4wMsTEWkhLPXJocIGVcaZPgm2CoHbZk3CLyoPaxZz+axJsIqhd2SIiAbTX9HJkqIs3HPNVOw81IyfvtHVK9hmEbDbLPAHwwh2f7C/bdYkfG3+p/Bf736MLQcaL4zLwl0i0kAgFNYlhwqEtDkCNhTTJ8FCCMyf5sKv3/5Ik3N3qmLB9dNcEEyCiShGvYtOEu1WrFtehH+0evDFp/+Gay+fgH//XO6gO8Eb/nwE37phGm6cfgn+48UD6PB3xTOq6ISIxjZ/MKxLDuUPMgk2RFhKbN7fgAduzEX51tqY4z1wYy427W/AvddcqsHqiMjMegp3E+1WbLi7BOvfOYIUVcHv7/30BTvBffXdCf6z9xQ23F2CVc9UocMfgoOFu0SkgSTVhp9uO4SHF0/Hdze/H3O87y+ejqf/8nc8cFOuBqsbmukL4/zBMNIS7Mge58TCvIyYYi3My0D2OCfGJ9gN28onorErqbs4ZN3yIvzuvY9x+1U5KMpJxR0bduEXlYcHHZv8i8rDuGPDLhTlpOL2q3Lwu/c+xrrlRRfEJSKKhYBAWqKCopxUzM91xRRrfq4LhTmpSEuyQ8CYu+mmT4KDIYn501ywCIGvL7xi2P8T5+e68PWFV8AiBK6f5kIgyMoTIopNWErcPW8KTnd4cde8qXhh73GUb62Namxy+dZavLD3OO6aN7U7zhTDik6IaGxzKAJ3zp2Ku57+G+677rKYcqj7rrsMdz39N9w1dyqcNmPSU9MnwUmqDfuOnUFzmw9feWYPHro5H48unQFVieyfRlUseHTpDDx0cz6+8sweNLf5sPfoGSSp3GkhotgEQ2HcOXcqXEkq1r9zBDvrhzc1bmd9M9a/cwSuJBV3zZ2KYIhJMBHFTlUseKvOjdMdAax6pgq3X5WDNYvzo8qh1izOx+1X5WDVM1U43RHAW3VuOOxMgg0hBDB7ajp+9mY9frniSjz6Wi12HTmN5++bi3//3DTkpDv7/bmcdCf+/XPT8Px9c7HryGk8+lotfrniSvzszXrMuTQdrIsjoljZrBZ81NyGxnOeYSfAPXbWN6PxnAcfNbfBZuUFiohi1+oJ4dldRwEAHf4Q7t+4D/uPncXzq+bim6VXDJpDfbP0Cjy/ai72HzuL+zfuO1+4++yuozjnMaaDjem3K8cnKNiyvxGPlM08v9OypCgLkEBOWgIeujkf45McCITC8AbCUBULFKsFp9t98AXDgOzqMNHzBvVI2Uz85cNT+PLVU0b4b0ZE8c5qEchKdeIbz+/XJN7j2+rxwlevhjWCoRpEREOR/fQyf7X6JF47+A8szMvAv38uF1njnBflUI1nPdhafRJPvvVhv73MjTqxZfok+HRnAO42LxyKBXv+3oKnVs7CP1o9uGPDrgvO3fXtw9lDVSx44Mbc8y2IPnPFBJxs9eJ0ZwCTHMpI/JWIaIxQrALb65o0HZv8Vl0T7piTo0k8IjK3/nqZA12DyN6oceONGjeAgXOoAeMa1Mvc9MchpARuLc7Gr3Z8iA13lwxYeBIMS3T6Qxf9z+tdeLLh7hL8aseHWFacbdinGCIau7yBMF7ad2LI10UzNvnFfSc0S6qJyNy8EfYcHyiHGohRvcxNvxMcDkvsPNR8wXGI4eh9HOLtQ81YemW2lsskIpPSY2wyEZEWenqZa82oXuamT4JDUuJMpx//aNWm8OQzV0zA6U7/RW88RETR6ujnlmB/Y5P7GmpscqefE+OIKHZ69Rw3qpe56Y9D2CwCtxZn4/Ft9ZrEe3xbPZYVZ0d0W5KIaDC9R4cm2q14auWsYQ3LeGrlLCTaP9lZMWokKRGNbSEpB+wAMVw56U7DepmbPgkGgJ2HmjUtPHn7UDMMGnZCRGNY37HJsQzL2HB3yflE2GFQI3oiGttCoTBumzVpyNdFU7ewfNYkw3qZ8zhEWEZUeBKNF/edwJLiLE1jEpH59AzdWbe8SJOahXXLi3D/xn0c5kNEmgh0T9399dsfXfDhfLh1C6pi6Zq6GzLmbpXpr4RWq9C8UOR4i4d9OIkoZgLA3fOmaFqzcNe8KbxRRUSaSFJt+NXOj/DAjbko31oLILa6hQduzMXTf/k7Hrwpz5D1mz4J7vTpUyDCwhMiipXNKnDX1VOx6Mk/axLv8W31qPj6Z6BYeRyCiGInJfA/x8/gxumX4KbpmbilKLvfWQt99dQt/Prtj87PWnj1QAMuSXFi/4mPYVRrAdNfCb0BfZJVveISkXnYrRZsr3VrWrOwvdYNxca9YCKKnS8Ywp1zp+AHWw7ioUUFeHHf8OoWXtx3HA8tKsAPthzEnXOnsE+wURxx3uOOiMaudl8Iz+46qmnMZ3cdxednTERagqZhiciEfMEwFhdmISctAWteOTjsY1s76pqxRh7EI2UzUJQzDmc7/RqvtH+m3wmO9x53RDS26VGzQESkhfFJdigWgZYO/6AJcCTdIXbWN6Olww/FIpCeZNdjuRevy5DfMsrlpDs1fWPQumceEZlTu/fiYRmaxO1nCAcRUbRUxYJTbQGUV9Rc8Phwu0OUV9Rg7mXjMT5ZMWT9pk+Ck51WrJg9Ges0GpYBACvnTEaK0/T/tEQUIw9rFohoFPMHw6iobrzgDHB/3SFsFgG7zQJ/MIxgWA7YHcIbCKPi/UbcMTsHMGA/0fSZWjgMlBVn48m3DmtSfKIqFiwpyubYZCKKmVOnmgWVNQtEpAFfQOLF7lkLiXYr1i0vwj9aPfji03/DtZdPwL9/LnfQneANfz6Cb90wDTdOvwT/8eIBdPhDeGHvCdx65dADOLRg+iQ4VVUQDPmxZlEBHnr5YMzx1iwqgN0qkOo05jwLEY1deg214LAMItKChMTxFs/5qZbr3zmCFFXB7+/9dFR9gv/sPYUNd5dg1TNVON7igTSoSZrpC+OsVgsEgIX5GfhsniumWJ/Nc2FhfmZXXA7LICINaF1jwJoFItJKT93CuuVF+N17H+P2q3JQlJOKOzbswi8qDw9Yb9XTJ/iODbtQlJOK26/Kwe/e+xjrlhd1xdVphkNfpk+CASDRYUO7P4Af31qIBcNMhBfkufDjWwvR7vcjkbssRKQBVRFYMXuypjFXzpkM1cZLPxHFzh8MY0lRFk53eHHXvKl4Ye/w+gS/sPc47po3Fac7vLilcCICQWPGJvNKCKDDF4QvIPGDLQexfFYO1izOh6pE9k+jKhasWZyP5bNy8IMtB+ELSHToVNFNROZyuj2AsiuzI74eDaWnZuF0hzE9OIlobFMVK+65ZipcSSrWv3Nk2H2Cd9Y3Y/07R+BKUnHvtZfCYdAHddMnwaFQGN5QGLuOnMbrH7hx/8Z92H/sLJ5fNRffLL1iwFuHOelOfLP0Cjy/ai72HzuL+zfuw+sfuLHryGn4gmGEQsZ8iiGisSvRYYNFAA/cmKtJvAduzIVVdMUlIopVWqKC42c60XjOM+wEuMfO+mY0nvPgxJlOpCWyRZohznkD8AXCeLxXi7RXq09iW40b31h4OX5z51VIsNvQ4QvCGwhDVSxIdNjQ6Q/irdom/NP6XfD32rZ/fFs9rp+WgXPeANITHSPxVyKiMcKhCLz8PyeRPc6J+bmumN5k5ue6cEmKE69Wn0RZ8UQNV0lEZuUPSkwdn4gHXqzWJN7j2+rxwlevhj9oTGGc6ZPgYHjwHndffXbvoD3u/njf3It63L3W0+OOiCgGMgw8u+tjtLT7seHuEgAYViI8P9eF+667DKueqUJ6kh1LipgEE1HsHDaB7XVNmrSYBbpyqLfqmrBijjE5lOmPQ/TtcffUyln9VjYGwxKd/hCC3f1/+1Y2PrVyFhLtXb03X9h7Aj6DPsUQ0dgVCHe1H+rwh7DqmSrcftXwahZuvyoHq56pQoc/hOMtHgTYx5yINNAZCOOl7hxKKy/uOwGPRkn1UEyfBEt5YY+7WCobN9xdgkS71dAed0Q0dvUem9zhD+H+jfsgIPDmN6/HgzflDlqz8OBNuXjzm9dDQOD+jfvQ4f+k5RDHJhORFgQwYBu04dI63mBMfxyi581g3fKimCsbe+Lcv3GfYT3uiGjs6j02ufc0ppt++Q6u+VTXNKascU4EQuHzNQuK1YLGsx5srT6J/2/Hh/jWDdPw1MpZ56cxAYDXz+sTEcWuU6dcp9Oga5Tpk2Bfd4+7f7RqU9n4mSsm4JbCifAH+CZDRLHpaRPUexpTz3XqjRo33qhxA8BFNQu9lW+txfxc1/lpTB3+EOzsE0xEGvAF9cl1fOwTbAxnd4+73t0hYvH4tnrce+2lUBWrJvGIyLx6xhsPdaeqb81CXz09OHumMXFsMhFpwaFTrsM+wQZJS1Sw81CzppWNbx9qNqzHHRGNXQICd8+botmdqn+0enDXvCkQ4Fh3Iopdsk4fqPWK25fpk2B/UOpS2WhUjzsiGrucdgvunKvtnaq7506F0847VUSkjYEKdEdLvMGYPgkG4ruykYjGrmBYYnutW9M7Vdvr3AiGOdGSiGKXYLfgi5+eomnML316ChIM+qBu+iS4zRvQKS5bEBFRbAJBif/3t6Oaxnx211EEeKeKiDTQ4QtjceHEiHuXD0VVLFhUOBEdBnXYMn0SrFcFol+nikkiMg8JqcudKvYxJyIttHkDeOODf2DNogJN4j28uADbDv7DsF7mpk+CnTpVNrI7BBHFql2nO0rsY05EWvAGwnhkay0+fVk6PpvniinWZ/NcmHNpOsorauE1qM2s6ZPgRIc+FYh6xSUi89DtThX7mBORBno2Eles34UfLpmBBcNMhBfkufDDJTOwYv0uAIBq45lgQ1gt+lQ2Wi1sQUREseGdKiIazXp6jje3+7HsV+/iu5/Px6NLZ0R8RlhVLHh06Qx89/P5WPard9Hc7r8grt5MnwTbrAJ3ztW2svHOuVNgYxJMRDHinSoiGs0s4pONxOZ2P274+TvwBkJ485vX48GbcgfcZMxJd+LBm3Lx5jevhzcQwg0/f+d8ApyT7oTFoOzU9FdCf1Diumku/OzNQ5q0IVIVC667wgV/iC2IiCh2OelOTYvjjOzBSURjW0aSAyvmTMa61z/pZV5eUYvHttXj65+9HL+58yok2G3o8AXhDYShKhYkOmzo9AfxVm0TFv7sbfj7HPtaOWcyMpJVQ9Zv+iS41RPAr98+gocXT8d3N78fc7zvL56Op3Z8iK8tuFyD1RGRmTkUgS99egp+8qc6zWLeOXeKYSNJiWhsUxQryoqz8eT2wxdsJPqDYfz0jUP46RuHAACqzYIk1YZ2bxDeQWodVMWCJcXZUKwcm2wIbyCMLQcakZ6oYGFeRkyxFuZlIC1RwavVJw2rbCSiMUwKLMjL0LQH5/zcDHBqMhFpJc2pYM3iwVukeYNhnGr3D5oAA10t0tISFC2XNyjTJ8E9hSff/uMBrLrusmEnwgvzMrDqusvw7T8eAGBcZSMRjV3jE+34+FQHHl48XZN43188HR+f7sD4RIcm8YiIEhw23JCfOezOED0W5LlQmp+JBLtxhxRMnwT3VCB2+EO497d7sGzWJDyyZHpUlY2PLJmOZbMm4d7f7kGHP3RBXCKi4bJaLSiclIoJSXZN7lSNT7KjMDuV3WuISFMZKSoeW1YYU4u0x5YVIiPFmLPAPUyfqfVUNh5v8aDDH8L9G/fhlsKJeP6+ufjL4VP4Q9XxfotSctKd+EJJDq69YgKe/vPf8Wr1yQueM6qykYjGtvREB9p9Aay67jIAwPa6pqhj9NypajzrQTp3gYlIBz2J8Ju1bpRvrYmo2YCqWPDw4gKU5mcangADgJAy/sZnlpSUyKqqKk1iBQIhbHj37xdUNgKA1SKwMC8DiwonImucE4FQGL5AGA7FAsVqQeNZD7ZWn8RbdU0IhS/8N3zwplx85TOXGXawm4jGtpYOP9a8/D5unpmF0+0+/PhPtRG/wXz38/kYn+TAa+834kdLZyIt0W7AionIrDr9QZzpDGDL/gZs3H1swI3ElXMmo6w4G+MSFF2PQAgh9kopS/p9zuxJMAA0nPVg4RM7B31TsVkE7DYL/MEwguGB/81UxYLt356P7HFsQ0RE2jnd7sODL1XDqVhx72cujepOlScQwmO3FWJ8EneBicgYgUAIzR0+hCXQ5g3CGwhBVaxIVm2wCMCVrBqyWcgkeAidviA272/AQ5sPxhzrx7fOwNIrsw092E1E5tDS4UdlrRs/fPUDXPOpCRfcqfIHw7DbLrxT9d5Hp/CDW6ajND+TO8BEZEqDJcHM1PBJZWNlrRs76pqHHWckKhuJyDzSE+1YWpyN665wofr4WYQhu7qdyU++BACHzYLls7JRXjYD6Yl22NkXmIjoIszWuvUc6H5wU/WwEuGRqmwkInPxBUIIhSWOnOrA73cfHfA4xBfnTMGM7HHwBUJMgonIcD5/EM0dXaOQ2zxBeAIhOBUrkp1dqacr0Q7HCG8a8jhEH02t3riqbCQi83Cf86Ky1o3yisivT2sWdV2fMlN5fSIi/bV5Amj1BvHK/gY8t2fgwrgVs7sK41JUG5Kd+g3I4JngKI22ykYiInerF6tjuFO1dlkhMvlBnYh0NBo/qI9oEiyEuAnALwFYAfynlHJtn+cnA3gGwLju16yWUr42WEy9k+Aeo6WykYjMzX3Oi9Wbh5cA92AiTER6Gq0f1AdLgnXN4IQQVgBPAfg8gAIAK4QQfQdMfw/AH6WUVwK4A8Cv9FxTNBTFiqxxCZiUloD8iSm4cnIa8iemYFJaArLGJTABJiLdtXkCMRftAsCOumZU1rjR7g1otDIioi7uc8NPgIGu69PqTdVwt3o1Xtng9M7i5gD4UEp5RErpB/A8gLI+r5EAUrr/nAqgUec1ERHFjVZvEOUVNZrEKq+owTlPUJNYRERAfH9Q1zsJzgZwvNf3J7of6+0HAL4khDgB4DUA/9ZfICHEfUKIKiFEVXNzbP/QRETxwOfvKi6J5GxdJLyBMLYcaIDPz0SYiLQRzx/UR8P9/BUAfiulnATgZgDPCiEuWpeUcr2UskRKWeJyuQxfJBGR0Zo7/HhuzzFNY27cfex82yIioljE+wd1vZPgBgA5vb6f1P1Yb/cC+CMASCn/CkAFMEHndRERjXpSot/uNLE43uJBHDYFIqJRKN4/qOudBO8BcIUQ4lIhhB1dhW9b+rzmGICFACCEyEdXEszzDkRkeh0+fXZDOngcgog0EO8f1HVNgqWUQQD/CmAbgFp0dYH4QAjxiBBiSffLvg1glRDiAIDnAHxZxmPzYiIijXkDobiKS0Tm0u7V5wN1u04bAH3pPuGhu+fva30ee7jXn2sAXKP3OoiI4o2qWPWJa9MnLhGZiyfOP6iPhsI4IiLqR4JDn2RVr7hEZC7OOP+gziSYiGiUCoUkctKdmsbMSXciFOaJMyKKXZKqz4ECveL2xSSYiGiUsloEbps1SdOYy2dNglUITWMSkTkJAV0+qBt1iWISTEQ0SgkhMH+aC6qizaVaVSy4fpoLgkkwEWnAlWjHitmTNY25cs5kZCQ7NI05ECbBRESjlEUAm/c34IEbczWJ98CNudi0vwEWXvmJSAMOuw1lxdmaflBfUpQNO88EExGZW0aSA5kpKi5JcWJ+bmyTMufnunBJihMTU1RkJKsarZCIzC5FtWHNogJNYq1ZVIBUpzHngQEmwUREo5aiWFFWnI2HX3kf91132bAT4fm5Ltx33WV4+JX3saQ4G4qVl34i0kayU0FpfiYW5MX2QX1BngulBZlIUhWNVjY0XgmJiEaxNKeCb30uF6ueqcLtV+VgzeL8iG89qooFaxbn4/arcrDqmSp8+3O5SEsw7g2GiMwhM1XF2mWFw06EF+S5sHZZITJTjL1LZdyecxwKhcJo6fQjGJZo8wYRCoVgtVqRrNpgswikJ9hh5Y4KEekowWHDDfmZqKx14/6N+3BL4UQ8v2ou3j7UjBf3neh3ZGlOuhPLZ03C9dNcePovf8er1bVduyz5mUiw87JPRNrLTFGx9tZCVNa6UV5RA28gPOTPqIoFaxYVoLQg0/AEGABEPE4oLikpkVVVVbrF9wfDaOnwo/FMJxJUG5yKFe3eILyBEFTFiiTVBk8ghA5vENlpCUhPtMNuYzJMRPppavXiwU3V2FHXDKtFYGFeBhYVTkTWOCcCoTC8gTBUxQLFakHjWQ+2Vp/EW3VNCIUlFuS58NiyQmSMwJsMEZlLuzeAc54gthxowMbdxwb8oL5yzmQsKc5GqmrT9QiEEGKvlLKk3+eYBF+opcOPxrOdSHXaUVF9Er/ffXTA/4FfnDMFiwon4pzHj6xxXckwEZFemlq9eLPWjfKtF+6y2CwCdpsF/mAYwV6DMFTFgocXF6A0P5MJMBEZyucPornDDymBdl+vjUSHDUIAGckOQ7pAML7WO3YAACAASURBVAmO0Ol2H9q8Qfz1o9P44dYPIt7K//7i6bj6U+ORrNowPsmY3nZEZE6d/iDOdAawZf/QuyxlxdkYl6DwCAQRmRaT4Ai0dPjh8Yfw8CsHsb2uKeqfX5iXgfKlM+BUrEjjjjAR6SwQCKG5w4ewBNp6HddKVm2wCMCVrLILBBGZ3mBJMLcH0HUG2OMP4uFXPhhWAgyg6+dePohHyqYj0WHjGWEi0pWiWJE1LmGkl0FEFLeYqQFo8/jx58Onhp0A99he14S/fHgKrR6/RisjIiIiIj2Yfic4FArDG5T4wasfaBLv+1s+wLWXuxAKhdk+jYh001N0AgBtniA8gRCcihXJ3dOWXIl2OHgWmIhoQKa/Qrb5A6h4vzGiIrhIeANhVLzfiH+aPQnjnCySIyJttXkCaPUG8cr+Bjy3Z+DCuBWzuwrjUlQbkp0ckEFE1Jfptyo7fSE8u+vokK+zWQQS7FbYLGLI1z676yg6fSEtlkdEdJ77nBdbDjRi4c92Yt22+n4TYAA43uLBum31WPizndhyoBHuc16DV0pENPqZfic4FEa/byRWi0BpfgZunjkR2eOc8AfD8AfDsNsssNssaDjrQUX1SWzvbkbf2/EWD0LabCwTEQEA3K1erN7cNSwjUt5AGA+9fBCVde4RGUlKRDSamX4nuMMXvOixJUVZeOlfrsaimRPh6O7yIAGEpERPuuuwWbBo5kS89C9XY0lR1sVx/RfHJSIaDvc5L1Zvii4B7m1HXTNWb6qGu5U7wkREPUy/E+wJfHJsIdFuxbrlRXDYBCAEjpzqwEv7Tgx45u62WZMwZUIilhRNxI3TL8F/vHgAHf6ueF4/j0MQUezaPAFU1rqHnQD32FHXjMoaN8qKs3QdUUpEFC9MvxPcs9ObaLfi6S/PRlqCgqMtnbhj/V/xi8rDg565+0XlYdyx/q842tKJtAQFT395NhLtXSMA2SeYiLTQ6g2ivKJGk1jlFTU45+FdKiIigEkwktSuzfAn/qkYTsWK9X8+gvKttRF3i/AGwijfWov1fz4Cp2LFE/9UfEFcIqLh8vm7ukBo2b1my4EG+Hhci4iISbCAwN3zpiAn3YmfVx7Czvrh3XLcWd+Mn1ceQk66E3fNmwKBobtIEBENprnDj+f2HNM05sbdx873FyYiMjPTJ8GqYsFXrr0Mu46cHnYC3GNnfTN2HTmNVddeBqdi1WiFRGRWUvbfvSYWx1s8kHLo1xERjXWmT4JTHDb4Q2E8vq1ek3iPb6uHPxRGMo9DEFGM2r36HFto76crDhGR2Zg+U+sIhLD1gMYT46ob8aW5U+DgbjARxaB39xoteXWKS0TUIx5Gu5s+Ce70h/DivhOaxnxh7wksmzUJ6YmahiUik9HrWJVq4wd0ItJHPI12N30SHJZSlzN3YR66I6IY6dVlht1riEgP7nNeVNa6UV5RM+gd9p7R7k++dRhrFhWgND8TmanGT7Q0/Zlg3c7ceXm7kYhiI0TXjomWctKdEGxeQ0Qa6xnt/tDLB6NqM/vQywexevPITLQ0fRLsC2pzFrgvf5BJMBHFxpVox4rZkzWNuXLOZGQkOzSNSUTmFq+j3U2fBOt25o5FcUQUI4fdhrLibKiKNpdqVbFgSVE27DwTTEQa0Xq0e7s3oNHKhmb6JDjREdnZOJtFIMFuhc0S2X3ESOMSEQ0mRbVhzaICTWKtWVSAVCevTUSknXge7W76q6HV0nVGrm9xnNUiUJqfgZtnTkT2OCd8wTC8gRBUxQqHzYKGsx5UVJ/E9romhMIXFsHlpDthNf3HCyLSQrJTQWl+JirrYttpWZDnQmlBJpLUkanCJqKxR6/R7vfMm2pI+zTTJ8HjE+y4c+4U/Pi1uvOPLSnKwj3XTMXOQ8346Rv1A7b3uG3WJHxt/qfwX+9+jC0HGs8/d+fcKZiQxDN3RKSNzFQVa5cVDvvM3YI8F9YuK0RmivHV10Q0duk12v2WoixMMiAJNv1+pcNuw+LCLKiKBYl2K55aOQtFOam4Y8Mu/KLy8IDt0463ePCLysO4Y8MuFOWk4qmVs5Bot0JVLFhcmMUzd0SkqcwUFWtvLcSjS2dEfEZYVSx4dOkMJsBEpIt4H+1u+p1gAEh22PCjshnISnNi/TtHsLM+8p0WbyCM8q21mJ/rwoa7S3DyrAcp7MFJRDrITFVRVpyF+bkZ2HKgARt3D9yIfuWcyVhSnI1U1cYjEESki3gf7c5sDV1n7q69woXvbK6OKgHubWd9M4QA1i4r5BsOEekmSVWQpCq4Z95U3FKUBSm73jB6ahaSHDYIAWQkO3hHioh0Fe+j3ZkEo6u9x3aN2ntsr3VjSVEWE2Ei0pXDbjPkzBwR0UDifbS76c8EA9q293hkq7HtPYiIiIhGQryPdjd9EqxXew+fn4kwERERjV3xPtrd9EmwXu09mjv8msYkIiIiGk3ifbS76ZPgeG/vQURERDQS4n20u+mT4Hhv70FEREQ0UuJ5tLvpk+B4b+9BRERENFJ6RrsvyHPFFGckRrubPgmO9/YeRERERCOpZ7T7cBPhkRrtbvokON7bexARERGNtHgc7W76TK2nvYeWxXFGtvcgIiIiGg3ibbS76ZPgnvYe67bVaxbTyPYeRERERKNFPI12N30S3NPe48m3DmsyMMPo9h5EREREo008jHY3/ZlgIL7bexARERFR9JgEI77bexARERFR9JgEd4vX9h5EREREFD0mwb3EY3sPIiIiIooeD6/2EW/tPYiIiIgoekyC+xFP7T2IiIiIKHpMggcRD+09iIiIiEYbnz+I5g4/AKDNE4QnEIJTsSK5u4OWK9EOxwjnWBH/diFEJoDs7m8bpJRufZZERERERPGozRNAqzeIV/Y34Lk9Ax8pXTF7MsqKs5Gi2pDsHJkjpUJKOfgLhCgG8GsAqQAauh+eBOAsgK9JKffpusJ+lJSUyKqqKqN/LRERERENwH3Oi8paN8oraiIaQKYqFqxZVIDS/ExkpurTXEAIsVdKWdLfc5HsBP8WwFellH/rE3QugP8GUBTzComIiIgobrlbvVi9uRo76poj/hlvIIyHXj6Iyjr3iHTZiqQPWGLfBBgApJS7ACRqvyQiIiIiihfuc16s3hRdAtzbjrpmrN5UDXerV+OVDS6SJPhPQogKIcQXhBDzur++IISoAPC63gskIiIiotGpzRNAZa172Alwjx11zaiscaPdG9BoZUMb8jiElPLrQojPAyhDr8I4AE9JKV/Tc3FERERENHq1eoMor6jRJFZ5RQ3m52YYNnshou4QUso/AfjTYK8RQvwfKeW/abIqIiIiIhrVfP6uLhCRFMFFwhsIY8uBBtwzb6oh7dO0HJt8jYaxiIiIiGgUa+7w47k9xzSNuXH3sfP9hfWmZRJMRERERCYhJfrtAxyL4y0eDNG9VzNMgomIiIgoau3eoD5xffrE7UvLJFhoGIuIiIiIRjFPIKRLXK9OcfuKOAkWQswc4iW/jHEtRERERBQnnIpVl7iqTZ+4fUVTevcrIYQDXRPkfi+lPNf7SSnlbzVcFxERDSIQCKG5w4ewBNq8QXgCITgVK5JVGywCcCU6oOj0BkVEBABJqj4dHPSK21fEv0VK+RkhxBUA7gGwVwixG8B/Synf1G11RER0gU5fEGc8AbyyvwHP7T7Wb1FKTroTK+ZMRllxNtKcChIcxryhEJG5CNF1vdGyOC4n3Qlh0AHbqM4ESykPA/gegAcBXA/gSSFEnRBimR6LIyKiTzS1erF5fwMWPrET616vH/CN53iLB+ter8fCJ3Zi8/4GNBk8ipSIzGFCgoIVsydrGnPlnMlwJTk0jTmQaM4EFwohfg6gFsBnAdwipczv/vPPdVofERGhKwF+cFM1Htp8MOLG9N5AGA9tPogHN1UzESYizXUGwygrzoaqaNNnQVUsWFKUjQ7/6OsO8X8A7ANQJKW8X0q5DwCklI3o2h0mIiId9CTAO+qah/XzO+qamQgTkeY6/SFYLBJrFhVoEm/NogLYhESnf5R1hwCwCMBGKaUHAIQQFiFEAgBIKZ/VY3FERGbX6QvizVr3sBPgHjvqmlFZ60anQTssRDT22awCf9hzAvNzXViQ54op1oI8F+bnuvB81QnYrMYcCo4mCa4E4Oz1fUL3Y0REpJMzngDKt9ZoEuuRrTU40xnQJBYRkdcfxkv7TmDlhl34ya2Fw06EF+S58JNbC7Fywy68uO9ExEe+YhVNEqxKKdt7vun+c4L2SyIiIqCrDdor+xs0e0PwBsLYsr8BAYMa0RPR2CZEVyHu0RYPvvCb9/Cjshl4dOmMiM8Iq4oFjy6dgR+VzcAXfvMejrZ4cLzFY9j0tWiS4A4hxKyeb4QQVwEYsieGEOImIUS9EOJDIcTqAV7zT0KIGiHEB0KIjVGsiYhozGpq9+G53cc0jblx9zE0tfs0jUlE5tTp++QD9dEWD655bAcyUhzY/q35ePCmXOSkO/v9uZx0Jx68KRfbvzUfGSkOXPPYDhzt1e3GqDPB0TSP/N8AXhBCNKJrRPIlAL4w2A8IIawAngJwA4ATAPYIIbZIKWt6veYKAN8BcI2U8owQIiPKvwMR0ZgUltC0/ybQFS8sNQ1JRCblC158l2rV7/bCabfi8dtm4tl7Pw2rEGj3BeENhKAqViQ5bAhJiYMnzqL052/D00/C6+8nrh6iGZaxRwiRByC3+6F6KeVQh8vmAPhQSnkEAIQQzwMoA9D7gNsqAE9JKc90/56mSNdERDSWtXv1KWJr97E4johiN9CxB48/hH99bv/575PsVqQl2nGmw4/2CHZ5HRq1XBtKtGOEZgOY2v1zs4QQkFL+bpDXZwM43uv7EwA+3ec10wBACPEuACuAH0gpX+8bSAhxH4D7AGDyZG0bMw+EY0mJaCR5dDq76+WZYCLSQKpTieh17f4Q2v2R39VKVSOLG6uIk2AhxLMAPgVgP4CeK6gEMFgSHOkargAwH8AkAO8IIWZKKc/2fpGUcj2A9QBQUlKi6808jiUlotFAqwb0fTlsxuyyENHYZrMKXcYmG9UiLZrMrQRAgZQymgS0AUBOr+8ndT/W2wkAf+s+WvF3IcQhdCXFe6L4PZppavXizVo3yrfWDFqR3TOW9Mnth7FmcQFuyM9ERopq4EqJaKxL1mk3RK+4RGQu6Ql23HX1VDxaUatZzLuvnor0xFE2NhnAQXQVw0VjD4ArhBCXCiHsAO4AsKXPa15G1y4whBAT0HU84kiUv0cTHEtKRKOJEBiwunq4ctKdEEb1HyKiMc1qteCWwixNxyYvLsyC1TL6hmVMAFAjhNgmhNjS8zXYD0gpgwD+FcA2ALUA/iil/EAI8YgQYkn3y7YBOC2EqAGwA8ADUsrT0f9VYsOxpEQ02iSpVqyYrW0NxMo5k5Gi8vgWEWkjPdGO8rIZmsQqL5uB9ES7JrEiEc2V8AfD+QVSytcAvNbnsYd7/VkC+Fb314jQeizp0iuzkWDnmwwRxSbZrmBJcRaefOuwJgMzVMWCW4qykOjgcQgi0obdZsHC/EzckJ+JN2vdw45zQ34mSvMzYTewZiHi3ySlfBvAxwCU7j/vAbBPp3UZimNJiWg0slotcNosWLOoYNDX2SwCCXYrbEPcQlyzqACqzWLYrUYiMof0RDvW3jYTN+RnDuvnb8jPxNrbZiLNwF1gILruEKvQ1aIsHV1dIrIB/BrAQn2WZgy9xpJ+5ZpL2T6NiGKW7LTj+lwXFuS5zt+tsloESvMzcPPMicge54QvGD7fiN5hs6DhrAcV1Sexva4Joe7JGAvyXLg+14UUp7FvMkRkDuOTHHhseSE+V+vGmlcurK2yWQTsNgv8wTCCvab1qIoF5WUzUJqfaXgCDAAi0mYPQoj96Bp+8Tcp5ZXdj70vpZyp4/r6VVJSIquqqjSJ1XCmE3ds2KV5e4/nV81FdlqCZjGJyLxaOvzwBkJY8/JBJDpsuOeaqdh5qBkv7TsxYAvH22ZNwvxpLvzXux+jwxdE+dIZcCrWEXmjISLz8AfDaOnwo/r4WYQhMSHJcdEH9VPtPggARTlpSE+063oEQgixV0pZ0t9z0Rxc9Ukp/aK7rFgIYUNXn+C4xrGkRDTapSfa0dzqxfcWF+C9D0/hjg27hmzh+IvKw/j12x9hzaICzLt8AhSLYAJMRLrzBUIIhSWOnOrA73cfHfCD+hfnTMGM7HHwBUKGngPuLZok+G0hxHcBOIUQNwD4GoBX9VmWcTiWlIhGu+ZWLxrPefHzykPYWR95Aa83EMZDLx/E/FwXvlk6DQDgYj9zItKJ+5wXlbVulFcMPWth7et1+MX2Q1izqACl+ZnITDX+2hRN6r0aQDOA9wF8FcBrUsqHdFmVgTiWlIhGs05fEKc6/FEnwL3trG/GzysP4VSHH51+fkAnIu25W71YvbkaD70c5ayFlw9i9eZquEegxWw0SfC/SSk3SClvl1Iul1JuEEJ8Q7eVGYRjSYloNGvzBfHeR6eGnQD32FnfjPc+OoU2ne5+EZF5uc95sTrGWQurNxmfCEeTqd3dz2Nf1mgdI4ZjSYlotAoEQmjzBvH4tnpN4j2+rR7t3iACvFNFRBpp8wRQqdWshRo32r3GtZkdMgkWQqwQQrwK4NLek+KEEDsAtOi/RH1xLCkRjVZnvX5UVDdq2sKx4v1GnPX6NYlHRNTqDaK8QptZC+UVNTjnMe5uVSQ7we8BeAJAXfd/e76+DeBG/ZZmDI4lJaLRyheUeHHfCU1jvrD3BHxBtq8hotj5/EHtZy0caIDPoNqFIZNgKeVRKeVOKeXVUsq3e33tk1LG/eGynrGkWp0N5lhSItJKWEqdWjgyCSai2DV3+PHcnmOaxty4+xiaO4y5WxVx5ieEWCaEOCyEOCeEaBVCtAkhWvVcnBEiHUsaKY4lJSKt6FXE1u7lmWAiip3UadaCUZ/To9n+XAdgiZQyVUqZIqVMllKm6LUwI/UeSxoLjiUlIi35g9rcYrw4LpNgIopdvM9aiCYJdkspa3VbyQiy2yxIsNvwo7KZAybCNotAgt0K2wA7vAvyXPhR2Uwk2m0jNvmEiMYWp2LVJa6qU1wiMpd4n7UQTfVWlRDiDwBeBuDreVBKuUnzVY2A9EQ7Tksfvr94OkrzTuHHf6rFtZdPwM0zJyJ7nPOiudcNZz2oqD6Jdz86he9+Ph/XXD4BqmLhWFIi0kySTgW2esUlInPR7YO6zZgP6tFcCVMAdAL4XK/HJIAxkQQDwPgkB0Jhieumjcf83Ovxyv4G/PSN+gHnXq+YPRnfv2U6wjIEh82K8UmOEVg1EY1VdqsFOelOTc/c5aQ7YbfybhURxS7eP6hH/FuklP+s50JGg9PtPnT6Q3j3w9MRzb1et60eT751GGsWFeCayyfgdLuPiTARaWZ8oh13zp2KH7+m3Um0u66eyusUEWmiZ9aC1h/UjZq1EE13iGlCiO1CiIPd3xcKIb6n39KM1dLhhzcQxg+3fjCsudc/3PoBvIEwzhjU1oOIxj6r1YJbiiZq2sJxceFEdq8hIk24Eu26zFrISDbmg3o0V9YNAL4DIAAAUspqAHfosSij+YNhdPqD+N4r78c09/p7r7yPDn9Qt4puIjKf8YkOPLJkuiaxHimbjvGJ3AUmIm047DaUFWdr+kF9SVE27AadCY5m1QlSyt19Hov7YRkA0Obx4+36Zk3mXr9d34xWD3eDiUgbdpsFpQWXoDQ/I6Y4pfkZuCH/EnavISJNpag2TWctpDqNK9yN5mp4SgjxKXQVw0EIsRzASV1WZaBQKAxPMKzp3GtvMIxQiLvBRKSN9EQ7HrutcNiJcGl+Bh67rZDda4hIc8lOBaX5mZrMWigtyESSatzE3WiS4PsB/AZAnhCiAcD/BvC/dFmVgdr8AWzZ36jp3OtXDzSizR/QJB4REdDVvWbd8iKsW14Y8a1HVbFg3fJCPL68iMVwRKSbzFQVa5cVDjsRXpDnwtplhchMUTVe2eCEjHI2nRAiEYBFStmmz5KGVlJSIquqqjSJdeJMJ1Zs2KV5ZeNzq+ZiUlqCZjGJiICuGoaWDj+2Vjfimb9+PGALx7vnTcXimVlIT7TzCAQRGcJ9zovKWveQHbZ6qIoFaxYVoLQgU7cEWAixV0pZ0t9zER+8EEJ8A8B/A2gDsEEIMQvAainlG9osc2TE+9xrIjIXu82CS1JV/PO8qSgrzkIwLNHuDcIXDMNhsyBJtcFmEUhPdLALBBEZKjNVRVlxFubnZmDLgQZs3H1swA/qK+dMxpLibKSqNkOPQPQWzenje6SUvxRC3AhgPIA7ATwLIK6T4DavPscWjJp7TUTmZLVa4Eru3jlJHdm1EBH1SFIVJKkK7pk3FbcUZUHKrpyoZ+puksMGIYCMZIdhXSAGEk0S3LOlcDOA30kpPxDCqHbG+tHqLPDFcY2Ze01EREQ02jjsNkyyj+4R7dEcFNsrhHgDXUnwNiFEMoC4b4EQ73OviYiIiCh60aTo9wIoBnBEStkphBgPIO5HKcf73GsiIiIiit6QO8FCiLzuPxZ3//ey7qK4KYguiR6VLN1zr7WUk+6EhcXYRERERKNWJEnstwDcB+CJfp6TAD6r6YoMlpHkwIo5k7Hu9XrNYnbNvTa21x0RERERRW7IJFhKeV/3fxfovxzjKYoVZcXZeHL7YU2K5FTFgiXF2VCs3AomIiIiGq0iztSEELd3F8NBCPE9IcQmIcSV+i3NOGlOBWsWazP3+uHFBUhLGJl+d0REREQUmWi2K9dIKduEENcCKAXwNIBf67MsYyU4bLhBq7nX+ZlIGOUtQYiIiIjMLpokuKfx7SIA66WUFQDs2i9pZGSkqHgsxrnXjy0rRIbBc6+JyJwCgRAaz3bixJlO1J5sxb5jZ1B7shUnznSi8WwnAuxVTkQ0qGi2LBuEEL8BcAOAx4QQDkSXRI96PYnwm7VulG+NfO71w4sLUJqfyQSYiHTX6QvijCeAV/Y34LlBRpKumDMZZcXZSHMqSHDw7hQRUV9CShnZC4VIAHATgPellIeFEBMBzJRSGj42uaSkRFZVVekWv9MfxJnOALbsH3rudVlxNsYlKDwCQUS6a2r1Rv0hfc3iAtzAD+lEZFJCiL1SypJ+n4s0Ce4OZAWQiV47yFLKYzGvMEp6J8E9AoEQmjt8CEugzfvJ3Otk1QaLAFzJKrtAEJEhmlq9eHBTNXbUNUf9szyuRURGC4XCaOn0IxiWaPMG4QuE4OjOoWwWgfQEO6wG5FCDJcERb18KIf4NwPcBuPHJuGQJoDDmFY5SimJF1riEkV4GEZncUAlwkt2KtEQ7znT40e6/+CzwjrpmPLipmokwEenOHwyjpcOPrdWNeOavH+N4iwfjVBsyUlQ0tXpx1htETroTd189FYsLs5CeaIfdNjIbitHcw/8GgFwp5Wm9FkNERBfq9AXxZq37ggTYabfiieWFKMhOhU0ItHoD8AbCUBULUlQFQSlx8MRZPPDS+/B0J8U76ppRWevG0iuzeXyLiHTR0uHH9lo3HvtTHf7vl2Zh41fmQgig1dPrGuVUICXQeLYTi5/8Mx78fB4W5mciPdH4XgvRnAneAeAGKWVQ3yUNzajjEEREI63hrAcLn9h5/gzwf951FfInpnYVxu0ZpDBudlfNQu3Jc/jK7/YC6DojvP3b85E9TttR8UREp9t9WP3S+/jagk8hI1mN+BrV1ObFr3Z8hLW3zcT4JIfm69LkTLAQ4mkAuQAqAPh6HpdS/kyLRUaDSTARmUEgEMKGd/+Oda/XY0q6ExtXzcXO+maUV0RRGLeoAPNzXVi5YReOtnjw4E25+Mo1l0JRrAb8DYjIDFo6/Hiy8hC+Ov9TeKu2Kepr1GfzM/CbnR/hG6XTkKbxjrBWSfD3+3tcSvnDGNY2LEyCicgMGs504o4Nu2AB8IevzsN3Ng+/MO4ntxbiC795D2EAz6+ai+w01jsQUez8wTB21LlRPDkNq2Mo3l27rBD7j53BgrxMTc8Ia1IY15PsCiGSur9v12Z5RETUn7AEjrd48O6DC4adAANd54G/s7kaG1fNxTWP7UA48qZARESDaunwozBn3LATYKDrGrV6UzV+cmshWjr8uCTVmALeiFNtIcQMIcT/APgAwAdCiL1CiOn6LY2IyNzavUH8511XYWd987DfXHrsqGvGzvpmbLjrKrT7Rry0g4jGgFAoDH8wiLdqmzS5Rm2vdcMfCiIUGvoohRai2W9eD+BbUsopUsopAL4NYIM+yyIiIk8ghPyJqSivqNEkXnlFDQompsLLkcpEpIGWTj+sFqum1yirsKKl069JvKFEkwQnSil39HwjpdwJIFHzFREREQBgcroTr+xviKjAJBLeQBhbDjQgJ43dIYgodqoidLlGORShSbyhRJMEHxFCrBFCTO3++h6AI3otjIjI7DyBMJ7bo+1Qzo27j8Gj0RsWEZnbOU9Il2tUq8eYu1XRJMH3AHAB2ATgJQATuh8jIiKd9NdjczTFIyLzklKfa1SEjctiFk13iDMAvq7jWoiIqJd2rz4FbCyMIyItxPs1KpruEG8KIcb1+j5NCLFNn2UREZFHpwI2FsYRkRbi/RoVzXGICVLKsz3fdO8MZ2i/JCIiAgCnTlPdVBunxRFR7FRFu6EWvTk0HJYxmIiPQwAICyEmSymPAYAQYgqAMd1yPRAIobnDh7AE2rxBeAMhqIoVyaoNFgG4Eh0cPUpEuklSo7lEj3xcIjKXZFWJq7h9RXMlfAjAX4QQbwMQAD4D4D5dVjXCOn1BnPEE8OqBRvz+b0f7PfSdk+7EFz89BbcUZSHNqSDBwTcVItKWEF3XGi0LT3LSnRDGdB8iojEu3q9REe83SylfBzALwB8APA/gKinl+TPBY2V6XFOrF68caMTCJ3Zi7Z/qBvwfe7zFg7V/qsPCJ3bilQONaGr1GrxSIhrrXIl2rJg9WdOYK+dMRkayhyCbNgAAIABJREFUQ9OYRGROKU6rLteoVKcxO8FRHbqQUp6SUm7t/jrV5+lnNVzXiGhq9eI7m97Hdza9H3HjZ28gfP5nmAgTkZYcdhvKirM1O3enKhYsKcqGnWeCiUgDiYqiyzUqwW7M3XUtTx7H9Q22ngR4e13TsH5+e10TE2Ei0lyKasOaRQWaxFqzqACpTh7dIiJtWK0WqIrQ9BqlKgJWy+ibGDeUuC2S6/QF8VZ907AT4B7b65qwo74JnX724CQibSQ7FZTmZ2JBniumOAvyXCgtyESSQQUnRGQOyaodn83P0OQa9dn8DCSrdo1WNjRjelCMcmc9AfxgyweaxPr+lg9wtjOgSSwiIgDITFWxdlnhsN9kFuS5sHZZITJTVI1XRkRmZ7dZ4LBZ8ZNbY7tG/eTWQqg2K+wGtUcDtE2C/RrGMkwgEMLW6saIzwAPxRsIY2t1IwJsRk9EGspMUbH21kI8unRGxOfvVMWCR5fOYAJMRLpKT7RDsQo8unTmsK5Rjy6dCcUqkJZo3C4wAAgZxYBmIUQhgKno1VpNSrlJ+2UNrqSkRFZVVWkSq/GsB19Y/1fN23v84b6rkTXOqVlMIiIAaPcGcM4TxJYDDdi4+9iALRxXzpmMJcXZSFVtPAJBRIZo6fDjbKcPDpstsmtUUTb8wSDGJTh0S4CFEHullCX9PRdxhYQQ4r8AFAL4AEDPtqkEYHgSrKVQWGqaAANd7dNC4bg9Ik1Eo1iSqiBJVXDPvKm4pSgLUgLtvk+G+SQ5bBACyEh2sAsEERkqPdGOJIcNLR1+LMzLwM0zJ8IixEXXqLCU8AVCsFoEstMSDT0C0Vs0ZcJzpZTalP+NIh0+fYrYOlgcR0Q6cthtmGRQGyEiokjZbRZckqrClWRHS6cfwbCEzSLgtFtgFQI2q4DNYsGktATDukAMJJor6F+FEAVSyhrdVjMCPDqd3fX6eSaYiIiIzMlqtcCV3F2LkDqyaxlINEnw79CVCP8DgA9dfYGllLJQl5UZxKHTFvxIbe0TERER0dCiSYKfBnAngPfxyZnguJek6nM7Ua+4RERERBS7aDK1ZinlFt1WMkIsQiAn3al5dwiLiOsBekRERERjWjT37P9HCLFRCLFCCLGs50u3lRkkwW7F8lmTNI15+1WTkGBnVTYRERHRaBVNEuxE11ngzwG4pftrsR6LMlKqqmBxUVbEjZ2HoioWLCrMQqrT2IbPRERERBS5iI9DSCn/Wc+FjBSr1YIUhw0P3JiL8q21Mcd74MZcpDhsI972g4iIiIgGFs2wDBXAvQCmAzg/f1NKeY8O6zJUaoId11w+AfNzXdhZ3zzsOPNzXbjm8glITeAuMBEREdFoFs0ZgGcBXALgRgBvA5gEoE2PRRnNbrMgI1nFt0qn4f9v7/5j477v+46/3uT9+B7FHxbt0zmmyDjZElOcS7EZpSZZtpo1sSaRIzlaClRKW6ApkAJLi3Qphggz5GEmvMntVhTd2q5ZknnBKgVDpsSclS4dDTbtkroSnUqKS9GFkSCUueTEWjYpknfHO/KzP+7kqhLFn98v7/vl9/kADOl433vzY36h9734uc/3833koeymajzyUFafGXy3ci0e26MBAACE3EZ2h/j7zrmfMbMjzrn/ZmanJf1ZUAPbbu27UnLO6Zf/yTv1j991n37zG6+oWF57Jzgv2aB/+dMPqedtrerYnQns3tcAAADwz0ZCcLn255tm9rCkH0na4/+Q6ufe5rQeMtPSstOXP/k+ffOVa/rKd15bcfu0zvaMPvaevfrJh/ZovlhW9/2tBGAAAICI2EgI/pyZ7ZZ0UtKwpGZJTwYyqjpq35XSwXfcq+vzi+q+v0VPfHif7m1Oq7y0rGJ5WV6yQcnGBr0+V5KZdH+rp/a3tbIEAgAAIEI2sjvE52t//aakdwYznHBIJRp0f5unbHNO1xcWVVl2mitWVF5aVrKxQc1eQg/e26T2XWl2gQAAAIigjewOkZP0byU94Jz7kJn1SHqfc+4LgY2uzhobG5RtqW2E0VbfsQAAAMA/G/kM/1lJ35D0QO3xX0v6Nb8HBAAAAARtIyH4Pufc/5C0LEnOuYqkpbVeZGYfNLNXzOxVMzuxynH/zMycmfVvYEwAAADAhm0kBM+b2b2SnCSZ2Xslzaz2AjNrlPS7kj4kqUfSsdoyituPa5H0aUl/sYHxAAAAAJuykRD8GVV3hXinmX1L0pck/eoarzko6VXn3Pecc4uSvizpyArHDUl6RlJxA+MBAAAANmUjIXhc0lclXZCUl/RfVF0XvJoOSVdvefxa7WtvMbP3SOp0zp3bwFgAAACATdtICP6SpG5Vd4j4j5LereqtlDfNzBok/ZakX1/HsZ80szEzG5uent7KtwUAAEDMbeRmGQ87525dzztqZuNrvGZKUuctj/fWvnZTi6SHJf2JmUnS/ZKGzeywc27s1kLOuc9J+pwk9ff3uw2MGwAAAPg7NjIT/J3axXCSJDP7CUljqxwvVZdOvMvM3mFmKUk/q+q6YkmSc27GOXefc+5B59yDkl6UdEcABgAAAPy05kywmX1X1R0hkpK+bWaTtcdvlzSx2mudcxUz+xVV9xdulPRF59xfmdlTksacc8OrvR4AAAAIwnqWQzy2lW/gnPu6pK/f9rUn73LsI1v5Xn4rLVY0Pb8oSbpRqKhQXlIm2aiWTPXHlt2VUjq1kRUlAAAACIM1E5xz7gfbMZAwuVEoa7ZY0XMXp3TmwqSuXi/ccUxne0bHDnTpSF+HWr2EWjLJOowUAAAgfKIwkWjORe8as/7+fjc2Fsyy4fxMUSNX8ho6N65ieXnN471kg04e6tHgvpxybV4gYwIAAIiCsE0kmtlLzrkV70ZMCL5FfraoE2cva3Ri41uwDXRndepor3KtBGEAABA/YZxIXC0Eb2R3iB0tP7P5ACxJoxPTOnH2svKz3PQOAADES362qBNfvawnvvbyugKwJBXLy3riay/rxFfrk58IwapO3Y9cyW86AN80OjGtkfG85opln0YGAAAQblGdSCQES5otVjR0bq37fqzP0LlxzRQqvtQCAAAIsyhPJMY+BJcWq4u31zt1v5ZieVnDl6ZUWiQIAwCAnS3KE4mxD8HT84s6c2HS15qnz0++tS0IAADAThT1icTYh2DntOL2HVtx9XpBEdx0AwAAYN2iPpEY+xA8Vwzmt425EsshAADAzhX1icTYh+BCeSmQusWA6gIAAIRB1CcSYx+CM8nGQOp6iWDqAgAAhEHUJxJjH4KbvWDuWx1UXQAAgDCI+kRi7EOwWfUe1n7qbM/IzNeSAAAAoRL1icTYh+DsrpSOHejytebxg13a05L2tSYAAECYRH0iMfYhOJ1K6Ehfh7ykPz8KL9mgw/s7lGJNMAAA2MGiPpEY+xAsSa1eQicP9fhS6+ShHrVlWA8MAAB2tqhPJBKCJbVkkhrcl9NAd3ZLdQa6sxrsyanZS/o0MgAAgPCK8kQiIbgm1+bp1NHeTQfhge6sTh3tVa7V83lkAAAA4RTliURC8C1yrZ5OfbRXTz/+8Lqn9r1kg55+/GECMAAAiKWoTiSa26570/mov7/fjY2NBVZ/rljWTKGi4UtTOn1+csVbAna2Z3T8YJcO93WozUuwBAIAAMRafqaokSt5DZ0bV7G8vObxXrJBJw/1aLAnF1gANrOXnHP9Kz5HCL670mJF0/OLcq56C79ieUleslHN6YTMpD0taXaBAFAXN/uTJN0oVFQoLymTbFRLbT1ddldK6RQX6QLYXmGbSFwtBNMhV5FOJbSXNxEAIXKjUNZssaLnLk7pzIW7v8EcO9ClI30davUSasnwSRWA7dHsJdXsJfWJ9z+oj+x/INQTicwEA0BEbPqjxn055dq4ZgFA/DATDAARl58t6sRXL2t0YnrdrymWl/XE117WyESei3cB4DbsDgEAIZefKerE2Y0F4FuNTkzrxNnLys8WfR4ZAEQXIRgAQuxGoayRK/lNB+CbRiemNTKe11yx7NPIACDaCMEAEGKzxYqGzo37Umvo3LhmChVfagFA1BGCASCkSovVXSDWcxHcehTLyxq+NKXSIkEYAAjBABBS0/OLOnNh0teap89PvrW/MADEGSEYAELKOa24D/BWXL1eUAR3xgQA3xGCASCk5orBLFuYK7EcAgAIwQAQUoXyUiB1iwHVBYAoIQQDQEhlksHcUtSr861KASAMCMEAEFLNXjA39QyqLgBECSEYAELKTOpsz/has7M9IzNfSwJAJBGCASCksrtSOnagy9eaxw92aU9L2teaABBFhGAACKl0KqEjfR3ykv60ai/ZoMP7O5RiTTAAEIIBIMxavYROHurxpdbJQz1qy7AeGAAkQjAAhFpLJqnBfTkNdGe3VGegO6vBnpyavaRPIwOAaCMEA0DI5do8nTrau+kgPNCd1amjvcq1ej6PDACiixAMABGQa/V06qO9evrxh9e9RthLNujpxx8mAAPAClgcBgARkWvzdKTvAT3y0B4NX5rS6fOTunq9cMdxne0ZHT/YpcN9HWrzEiyBAIAVEIJXUVqsaHp+UZJ0o1BRobykTLJRLbULS7K7Ukqn+BEC2D7NXlLNXlKfeP+D+sj+B+ScNFeqqFhekpdsVHM6ITNpT0uaXSAA1E0UMhQJbgU3CmXNFit67uKUzly4+0zLsQNdOtLXoVYvoZYMMy0Atk86ldBefgkHEDJRylDmnKvLN96K/v5+NzY2Fkjt/ExRI1fyGjo3rmJ5ec3jvWSDTh7q0eC+nHJtrLkDAADxFMYMZWYvOef6V3yOEPy38rNFnTh7WaMT0xt+LVdfAwCAuAprhlotBLM7RE1+ZvMnT5JGJ6Z14uxl5WeLPo8MAAAgvKKaoQjBqq5fGbmS3/TJu2l0Yloj43nNFcs+jQwAACC8opyhCMGSZosVDZ0b96XW0LlxzRQqvtQCAAAIsyhnqNiH4NJi9QrG9SzgXo9ieVnDl6ZUWiQIAwCAnSvqGSr2IXh6flFnLkz6WvP0+cm39sYDAADYiaKeoWIfgp3TinvYbcXV6wVFcNMNAACAdYt6hop9CJ4rBjPlPldiOQQAANi5op6hYh+CC+WlQOoWA6oLAAAQBlHPULEPwZlkYyB1vUQwdQEAAMIg6hkq9iG42UtEqi4AAEAYRD1DxT4Em0md7Rlfa3a2Z2Tma0kAAIBQiXqGin0Izu5K6diBLl9rHj/YpT0taV9rAgAAhEnUM1TsQ3A6ldCRvg55SX9+FF6yQYf3dyjFmmAAALCDRT1DxT4ES1Krl9DJQz2+1Dp5qEdtGdYDAwCAnS/KGYoQLKklk9TgvpwGurNbqjPQndVgT07NXtKnkQEAAIRXlDMUIbgm1+bp1NHeTZ/Ege6sTh3tVa7V83lkAAAA4RXVDGUugvf37e/vd2NjY4HUzs8UNXIlr6Fz4yqWl9c83ks26OShHg325AjAAAAgtsKYoczsJedc/4rPEYLvNFcsa6ZQ0fClKZ0+P7nifbE72zM6frBLh/s61OYlWAIBAABiL2wZihC8SYVSWa8vlOVc9T7WxfKSvGSjmtMJmUn37UrKSxF+AWy/cnlJ0/MlLTvpRrGiQnlJmWSjWryEGkzK7korGdDdnABgLaXFiqbnF++aofa0pLdlF4jVQjDbGKzgRqGs2WJFz12c0pkL1d9iEg2mVKJBi5VlVZadOtszOnagS0f6OtTqJdSSIQwDCN5CqaI3CuVqf1plluXYwWp/2p1JqilNqwewvdKphPamwt17mAm+zabXs+zLKdfGmmAAwbk2W+1PTz2//v705GPV/rSHaxYAxBDLIdYpP1vUibOXNToxveHXsjsEgCBdmy3qs1voT88c7SUIA4id1UIwW6TV5Gc2H4AlaXRiWifOXlZ+tujzyADE3VYCsFTtT589e1nX6E8A8BZCsKprgEeu5Df9BnPT6MS0RsbzmiuWfRoZgLhbKFX8609X8lpYrPg0MgCINkKwpNliRUPnxn2pNXRuXDMF3mQA+OONQllPPe9Pf3rq+XG9scAv6QAgEYJVWqzuArGei0zWo1he1vClKZWYbQGwReXykv/96eKUyuUlX+oBQJTFPgRPzy/qzIVJX2uePj+p6flFX2sCiJ/p+ZLOnA+iP5V8rQkAURT7EOycVtxncyuuXi8ogptuAAiZ5YD60zL9CQAIwXPFYJYtzJVYDgFga24E1J+CqgsAURL7EFwIaG1ckTV3ALaI/gQAwYl9CM4kg7lvtbcN98MGsLMF1p8CqgsAURJ4CDazD5rZK2b2qpmdWOH5z5jZuJldNrMXzOztQY/pVs1eMPe1DqougPhoCaiPBFUXAKIk0BBsZo2SflfShyT1SDpmZj23HfaXkvqdc72SviLpN4Ic051jlDrbM77W7GzPyMzXkgBiqCGg/tRAfwKAwGeCD0p61Tn3PefcoqQvSzpy6wHOuVHn3ELt4YuS9gY8pr8juyulYwe6fK15/GCX9rSkfa0JIH6yu9I6dtD//pRt8XytCQBRFHQI7pB09ZbHr9W+dje/JOmPVnrCzD5pZmNmNjY9vbXbh94qnUroSF+HvKQ/Pwov2aDD+zuUYk0wgC1KJhv97099HUo2xv5yEAAIz4VxZvZzkvol/eZKzzvnPuec63fO9WezWV+/d6uX0MlDt6/S2JyTh3rUlmG9HQB/7M4k9eRj/vSnJx/r0e6mpC+1ACDqgg7BU5I6b3m8t/a1v8PMBiU9Iemwc27bb2XUkklqcF9OA91bC9cD3VkN9uTU7PEmA8AfTemEf/1pX05NKX5JBwAp+BB8QdK7zOwdZpaS9LOShm89wMx+XNIfqBqArwU8nrvKtXk6dbR30280A91ZnTraq1wra+0A+GtPq6dnttifnjnaqz30JwB4i7mA7+9rZh+W9NuSGiV90Tn3tJk9JWnMOTdsZiOSfkzSD2svmXTOHV6tZn9/vxsbGwtkvPmZokau5DV0blzF8vKax3vJBp081KPBnhwBGECgrs1W+9NTz6+/Pz35WI8G9+UIwABiycxecs71r/hc0CE4CEGGYEmaK5Y1U6ho+NKUTp+f1NXrhTuO6WzP6PjBLh3u61Cbl2AJBIBtsbBY0RsLZQ1fXL0/fbzWn+5pSrIEAkBsEYI3qbRY0fT8opyT5koVVZaWlGhsVHM6ITNpT0uaXSAA1EW5vKTp+ZKWnXSjWFF5aUnJxka1eAk1mJRt8dgFAkDsrRaC6ZCrWK79gmAmyUnlpeqfN2+EsbS09seRABCEyvKylm/OYTipUutPkrTspEplqV5DA4BI4DOyFbyxsKiF0pKeuzilMxfu/nHjsQNdOtLXoaZ0o3Y3peowUgBx8+bCouY30J92pRt1D/0JAO7Acojb/GimqBc2cWHco/tyur+NC08ABIf+BAAbw5rgdcrPFnXi7GWNTmz8jnRskQYgSPQnANg41gSvw49mNv8GI0mjE9M6cfay8rNFn0cGIO7oTwDgP0KwqmuAX7iS3/QbzE2jE9MaGc/rzYVFn0YGIO7e9Lk/zdCfAEASIViStFBa0tC5cV9qDZ0b13yJq7IB+GPe5/40R38CAEmEYBVKZT13cWpdF5msR7G8rOFLUyqUyr7UAxBf9CcACE7sQ/DrC2WduTDpa83T5yf1+gJvMgC2hv4EAMGJfQh2Tivus7kVV68XFMFNNwCEDP0JAIIT+xA8V6wEU7cUTF0A8UF/AoDgxD4EF8rBXCRSDKgugPigPwFAcGIfgjPJxkDqeolg6gKID/oTAAQn9iG42UtEqi6A+KA/AUBwYh+CzaTO9oyvNTvbMzLztSSAGKI/AUBwYh+C721K6tiBLl9rHj/YpWxz2teaAOKH/gQAwYl9CM6kkzrS1yEv6c+Pwks26PD+DqUDWssHID7oTwAQnNiHYElqSjfq5KEeX2qdPNSjXWneYAD4Y5fP/amZ/gQAkgjBkqTdTSk9ui+nge7sluoMdGc12JPTPU0pn0YGIO7u8bk/tdGfAEASIfgt97d5OnW0d9NvNAPdWZ062qtcq+fzyADEHf0JAPxnLoL3z+zv73djY2OB1P7RTFEvXMlr6Ny4iuXlNY/3kg06eahHgz053mAABIr+BAAbY2YvOef6V3yOEHynNxcWNV9a0vClKZ0+P6mr1wt3HNPZntHxg1063NehXalGlkAA2BYzC4ua20B/ak41sgQCQGwRgjepUCrr9YWynJPmShUVy0vyko1qTidkJmWb01xlDaAubu9Pi5UlpRL0JwC41WohmNsGrSKTTmpvOlnvYQDAHRINDWow6eaiiOXafIaZ1GBc8AGgvm7+oi5JNwoVFcpLyiQb1ZKpRs97m5LK1DljEYIBIEIWShW9USjruYtTOrPKcohjB7t0pK9DuzNJNaVp9QC2xxsLi1ooLVV71IVVetSBao9qSjdqd52WbLEcAgAi4tpsUSNX8nrq+fVfGPfkYz0a3JfTHi6MAxCwzV68++i+nO5vC6ZHsSYYACLu2mxRnz17WaMT0xt+7UB3Vs8c7SUIAwhMfraoE1voUUFt47haCGbZGACE3FYCsCSNTkzrs2cv69ps0eeRAUB1BnizAViq9qgTZy8rv809ihAMACG2UKpo5Ep+028uN41OTGvkSl4LixWfRgYA1TXAL/jVo8bzenNh0aeRrY0QDAAh9kahrKeeH/el1lPPj+uN2tXaAOCHhdKShs7506OGzo1rvrTkS631IAQDQEiVy9UrrNdzgcl6FMvLGr44pXJ5+95kAOxchVLZ/x51aUqF0vb8sk4IBoCQmp4v6cz5SV9rnj4/qen5kq81AcTT6wtlnbngf496fZs+sSIEA0BILTutuMfmVly9XnjrxhoAsBUuoB61XRuXEYIBIKRuFIO5iC2ougDiZS6gXjJX2p4eRQgGgJAqBLR2t8iaYAA+iHqPIgQDQEhlko2B1PUCqgsgXgLrUYnt6VGEYAAIqRYvEam6AOKlOaBeElTd2xGCASCkGkzqbM/4WrOzPaMG87UkgJiygHqUbVOPIgQDQEhld6V17GCXrzWPH+xStsXztSaAeLq3KaljBwLoUc1pX2veDSEYAEIqmWzUkb4OeUl/WrWXbNDhvg4lG2n9ALYuk07636P2dyi9Tdct0AkBIMR2Z5J68rEeX2o9+ViPdjclfakFAJLUlG7UyUP+9KiTh3q0K719F+4SggEgxJrSCQ3uy2mgO7ulOgPdWQ3uy6kpxUVxAPyzuymlR/3qUT053dOU8mlkayMEA0DI7Wn19MzR3k2/yQx0Z/XM0V7taWUtMAD/3d/m6dQWe9Spo73KbXOPMrdd96bzUX9/vxsbG6v3MABgW12bLWrkSl5PPT+uYnl5zeO9ZIOefKxHg/tyBGAAgfvRTFEvXMlr6Nz6e9TJQz0a7MkFFoDN7CXnXP+KzxGCASA6FhYremOhrOGLUzp9flJXrxeUaDClEg1arCyrsuzU2Z7Rxw926XBfh+5pSrIEAsC2eXNhUfOlJQ1f+tsedbvO9oyO13rUrlRjoEsgCMEAsMMUSmW9vlCWJN0oVFQoLymTbFRLphp479uVlJfiIjgA9XGzRzknzZUqKpaX5CUb1ZxOyEzKNqe3ZReI1UIw0wMAECE3CmXNFit67uKUzly4+yzLsQNdOtLXoVYvoZYMYRjA9sqkk9qbDnfvYSYYACIiP1NdE7zh9Xb7csq1sSYYQPwwEwwAEZefLerEVy9rdGJ63a8plpf1xNde1shEvi5XXgNAmLFFGgCEXH6mqBNnNxaAbzU6Ma0TZy8rP1v0eWQAEF2EYAAIsRuFskau5DcdgG8anZjWyHhec8WyTyMDgGgjBANAiM0WKxo6N+5LraFz45opVHypBQBRRwgGgJAqLVZ3gVjPRXDrUSwva/jSlEqLBGEAIAQDQEhNzy/qzIVJX2uePj+p6flFX2sCQBQRggEgpJzTivsAb8XV6wVFcGdMAPAdIRgAQmquGMyyhbkSyyEAgBAMACFVKC8FUrcYUF0AiBJCMACEVCbZGEhdLxFMXQCIEkIwAIRUsxfMTT2DqgsAUUIIBoCQMpM62zO+1uxsz8jM15IAEEmEYAAIqeyulI4d6PK15vGDXdrTkva1JgBEESEYAEIqnUroSF+HvKQ/rdpLNujw/g6lWBMMAIRgAAizVi+hk4d6fKl18lCP2jKsBwYAiRAMAKHWkklqcF9OA93ZLdUZ6M5qsCenZi/p08gAINoIwQAQcrk2T6eO9m46CA90Z3XqaK9yrZ7PIwOA6CIEA0AE5Fo9nfpor55+/OF1rxH2kg16+vGHCcAAsAIWhwFAROTaPB3pe0CPPLRHw5emdPr8pK5eL9xxXGd7RscPdulwX4favARLIABgBYRgAIiQZi+pZi+pT7z/QX1k/wNyTporVVQsL8lLNqo5nZCZtKclzS4QALAKQjAARFA6ldDeFC0cADaLNcEAAACIHUIwAAAAYocQDAAAgNghBAMAACB2CMEAAACIHUIwAAAAYocQDAAAgNghBAMAACB2zDlX7zFsmJlNS/pBHb71fZL+pg7fF8HivO5cnNudi3O7M3Fed656ndu3O+eyKz0RyRBcL2Y25pzrr/c44C/O687Fud25OLc7E+d15wrjuWU5BAAAAGKHEAwAAIDYIQRvzOfqPQAEgvO6c3Fudy7O7c7Eed25QnduWRMMAACA2GEmGAAAALFDCAYAAEDsEIJvY2ZfNLNrZvbyXZ43M/sdM3vVzC6b2Xu2e4zYuHWc14/Xzud3zezbZrZ/u8eIzVnr3N5y3AEzq5jZx7ZrbNia9ZxbM3vEzC6a2V+Z2Te3c3zYvHX05DYz+19mdql2bn9xu8eIjTOzTjMbNbPx2nn79ArHhCZHEYLv9KykD67y/Ickvav23ycl/f42jAlb96xWP6/fl/STzrkfkzSkEC7gx109q9XPrcysUdIzkv54OwYE3zyrVc6tmd0j6fckHXZXkupYAAAEYElEQVTO/QNJP7NN48LWPavV/91+StK4c26/pEck/QczS23DuLA1FUm/7pzrkfReSZ8ys57bjglNjiIE38Y596eSrq9yyBFJX3JVL0q6x8zetj2jw2atdV6dc992zr1Re/iipL3bMjBs2Tr+zUrSr0r6n5KuBT8i+GUd5/a4pLPOucna8ZzfiFjHuXWSWszMJDXXjq1sx9iwec65HzrnvlP7+w1JVyR13HZYaHIUIXjjOiRdveXxa7rzBCPafknSH9V7EPCHmXVI+qj41GYnerek3Wb2J2b2kpn9Qr0HBN/8J0n7JP0/Sd+V9Gnn3HJ9h4SNMLMHJf24pL+47anQ5KhEPb4pEFZmNqBqCP5AvccC3/y2pM8655ark0rYQRKS/qGkRyVlJP25mb3onPvr+g4LPvhpSRcl/ZSkvyfp/5jZnznnZus7LKyHmTWr+unbr4X5nBGCN25KUuctj/fWvoaIM7NeSZ+X9CHn3Ov1Hg980y/py7UAfJ+kD5tZxTn3tfoOCz54TdLrzrl5SfNm9qeS9ksiBEffL0o65ao3M3jVzL4vqVvS+foOC2sxs6SqAfgPnXNnVzgkNDmK5RAbNyzpF2pXN75X0oxz7of1HhS2xsy6JJ2V9PPMIu0szrl3OOcedM49KOkrkv45AXjHeE7SB8wsYWZNkn5C1TWIiL5JVWf4ZWY5SQ9J+l5dR4Q11dZwf0HSFefcb93lsNDkKGaCb2NmZ1S9EvU+M3tN0r+WlJQk59x/lvR1SR+W9KqkBVV/W0XIreO8PinpXkm/V5sxrDjn+uszWmzEOs4tImqtc+ucu2Jm/1vSZUnLkj7vnFt1qzyEwzr+3Q5JetbMvivJVF3S9Dd1Gi7W7x9J+nlJ3zWzi7Wv/StJXVL4chS3TQYAAEDssBwCAAAAsUMIBgAAQOwQggEAABA7hGAAAADEDiEYAAAAsUMIBgAAQOwQggEgQmobzNO7AWCLaKQAEHJm9qCZvWJmX5L0sqSTZnbBzC6b2b+55ZgJM/tDM7tiZl+p3UVNZnbKzMZrx//7ev6/AEBYcLMMAAg5M3tQ1VvGvl9Sq6SPSfplVe+kNSzpN1S9zez3JX3AOfctM/uipHFJ/1XStyV1O+ecmd3jnHtz2/8nACBkmAkGgGj4gXPuRUn/tPbfX0r6jqRuSe+qHXPVOfet2t//u6QPSJqRVJT0BTM7quptSgEg9hL1HgAAYF3ma3+apH/nnPuDW5+szRbf/tGec85VzOygpEdVnUH+FUk/FexQASD8mAkGgGj5hqRPmFmzJJlZh5ntqT3XZWbvq/39uKT/WzuuzTn3dUn/QtL+bR8xAIQQM8EAECHOuT82s32S/tzMJGlO0s9JWpL0iqRP3bIe+PcltUl6zsw8VWeRP1OXgQNAyHBhHADsALXlEM875x6u81AAIBJYDgEAAIDYYSYYAAAAscNMMAAAAGKHEAwAAIDYIQQDAAAgdgjBAAAAiB1CMAAAAGLn/wMt+z5TybCBhAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3iU1b0v8O+a++QKgUkgF4xQSMIloRgpQtUgQaxcgoJ7Kz1bWi10H93t3nqK2irubiktgrva7mMvpvWp2qI94gUMtmgQsLUgt0IEkgBSICSQBAIkmczMO5d1/kiCARIyk3nfN5f3+3mePCZzWVlkfNb8Zr2/9fsJKSWIiIiIiIzE1NsTICIiIiLSG4NgIiIiIjIcBsFEREREZDgMgomIiIjIcBgEExEREZHhWHp7Aj0xdOhQmZmZ2dvTICIiIqI+bM+ePWellK7O7uuXQXBmZiZ2797d29MgIiIioj5MCHGiq/uYDkFEREREhsMgmIiIiIgMh0EwERERERkOg2AiIiIiMhwGwURERERkOAyCiYiIiMhwGAQTERERkeEwCCYiIiIiw+mXzTL04lMCqHcrAIAmTwAefxBOqxnxztY/myvWBruNf0IiIiKi/oYRXCeaPH40egNYv68ar+86iaoGz1WPyUhy4r4bR6BoYhoSHBbEO629MFMiIiIi6gkhpeztOUQsPz9fatU2ufaiF6XltVix8RC8/lC3j3dYTVg+eywKc1KQkujQZE5EREREFDkhxB4pZX5n93EnuIPaRi+eeKcMWyrqw36O1x/Ck+8eQGlFLVbdnYuUBAbCRERERH0dD8a1qb3oxRNvRxYAd7Sloh5PvF2G2kavyjMjIiIiIrUxCEZrDnBpeW2PA+B2WyrqUXqoFs1ev0ozIyIiIiItMAgG0OgNYMXGQ6qMtWLjIVz0BFQZi4iIiIi0Yfgg2Ke0VoEI5xBcOLz+EDbsr4ZPYSBMRERE1FdpGgQLIV4WQtQJIQ50cb8QQvxcCHFUCFEmhJik5Xw6U+9W8Pquk6qOuXbnyUv1hYmIiIio79F6J/h3AO64xv1fAzC67WspgF9qPJ+rSIlO6wBHo6rBg35YeY6IiIjIMDQNgqWUHwNouMZDigC8KlvtADBICDFcyzldqdmrTdpCs4/pEERERER9VW/nBKcBqOrw86m2264ihFgqhNgthNhdXx9dFYeOPP6gamN15NVoXCIiIiKKXm8HwWGTUr4kpcyXUua7XC7VxnVazaqN1ZHDos24RERERBS93g6CqwFkdPg5ve023cQ5tGmap9W4RERERBS93g6CNwC4v61KxBQAF6WUp/WcgBBARpJT1TEzkpwQQtUhiYiIiEhFWpdIex3AdgBZQohTQogHhRD/KoT417aHvA/gGICjAIoBPKTlfDrjirXhvhtHqDrmoskjkBxvV3VMIiIiIlKPptfspZT3dXO/BPCwlnPojt1mQdHENPz8oyOqNMxwWE2Yl5cGG3OCiYiIiPqs3k6H6BMSHBYsnz1WlbGWzx6LRCfzgYmIiIj6MgbBAOKdVhTmpGB6dnRVJ6Znu1A4NgVxDqtKMyMiIiIiLTAIbpOS6MCqu3N7HAhPz3Zh1d25SElwqDwzIiIiIlIbg+AOUhIcWHVXLlbOHw+HNbw/jcNqwsr54xkAExEREfUjTF69QkqiA0UTU1GQlYwN+6uxdudJVDV4rnpcRpITiyaPwLyJaUh0WJgCQURERNSPMAjuRJzDijiHFQ9MzcTcvFRICTT7AvD6g3BYzYizWyAEkBxvZxUIIiIion6IQfA12G0WpNv4JyIiIiIaaBjhERH1Qz4lgHq3AgBo8gTgCQThtJgR31ai0RVrg50f4omol1y1RvmDcFr71hrFFfIa+sMLSETG0uTxo9EbwHv7a/CHnSe6PLPw9cnXYW5eKhIcFsQ7eWaBiPTRvkat31eN13d1fa7qvhtHoGhiWq+uUaK1aVv/kp+fL3fv3q3Z+P3pBSQi46i96MVHlXX4r/cOhtXh0mE14T/njsNtWclISWT1GiLSVu1FL0rLa7Fi46Gw16jls8eiMCdFszVKCLFHSpnf6X0Mgi/XF19AIqLaRi9+8PZn2FxRF/FzZ2Qn48d3T2AZRyLSTG2jF0+8XYYtFfURP1fLXgvXCoJZJ7iD2kYvnninDE++eyCsABgAvP4Qnnz3AJ54pwy1jV6NZ0hERlR7secBMABsrqjDD97+jGsUEWmi9mLPA2AA2FJRjyfe1j+OYhDcpr++gEQ0sDV5/NhSWdfjALjd5oo6bK2sQ7PXr9LMiIha16jS8toex0/ttlTUo/RQra5rFINg9O8XkIgGtiZfAD9876AqY/3nhoNo9AZUGYuICAAavQGs2HhIlbFWbDyEix791igGwejfLyARDVw+JYCSspqw07O64/WHUFJWA5/CNYqIoudTWosIqLlGbdhfrdsaZfgguL+/gEQ0cJ1rUfDajhOqjvnajhM416KoOiYRGVO9W8Hru06qOubanScvlafVmuGD4P7+AhLRwBUModMSjdGoavAgqM5nfiIyOCm1WaP0Klxm+CC4v7+ARDRwuX3aXFFy80oVEamgWaMzBs0arX1XMnwQHO4LaDEJxNjMsJhEeOPq9AIS0cDl8Qc1GderaDMuERmLN6DNWuLTaNwrGb7nb1dvMmaTQGFOMu6cMBxpg5zwBULw+oNwWM2wW0yovuDBxrLT2FxRh2Do6m1fr0ZvXkRkHHaLNvsUNo3GJSJjcVjNmoxrt2gz7pUMHwQ7O3kB5+Wl4oFpmdh6uB7PfVDZZdvkBZPS8VDBKLz8yXFs2F9z2f0OnV5AIhq44hzaLNFajUtExhJn12iN0mjcKxl+OyDe+cUfOtZmxouLJiEvIxH3Fu/AC6VHuswXrmrw4IXSI7i3eAfyMhLx4qJJiLV9Efh2HJeIqCcEBDKSnKqOmZHkhEB4aV1ERNcSklKTNSqk08EqwwfBQOsfPNZmRvHifLy5pworSsojapu8oqQcb+6pQvHifMTazKr/D0FExmS3CiyclK7qmPfckA4H0yGISAWBYAgLVF6jFk5KRyCoTxBs+O1Km0VgwaR0jE6Ox0sfH8PWyp51jWt/3uqFeTha1wSbmW8yRBQdm8WE2bmp+OW2z1WpZe6wmjB7QipsVq5PRBQ9JShRMMaFX6m4Rt06xgVFpzqOhl8JzzX5MWfCMJxp9FwzAA6nOsTWynqcafTgzgnDcI51gokoSs3eIAQkHpuVpcp4j83KAoREE1snE5EK4uwWvPzJcSxTaY1aNisLv/3rP3TLCTb8TrDHH4QwmbFmU+Vlt/e0OsSaTZWYNmooq0MQUdSkBH62+SiWzcrCX46exZaKnl2pAoDp2S7MHDcMq/9UgcfuyFZxlkRkZH+vOo/v3PYlTM+Ofo26ZbQLv/vbcfUm1w3DB8FD4mx45++Xt02OpjqE1x/CpoNnMP/Labr9G4hoYGpvlrH983P49i2jYILA5oq6iMeZkZ2MJbeMxI6j51rHZbMMIlKBlK1XqrYfO4slN4+ElOhRWmlBlgtLbh6J7cfO4vFZWZDgwThdmITAW3tPAVCvOsS6vadgEjx9TUTR8fqDeGBaJp79czkA4MGvXo/lc3LgCDOn12E1YfmcHDz41esBAKv+XI4Hv3o9r1QRkSrOuRVMzBiMH79fgSWv7MY9N2T0aI2654YMLHllN378fgXyMgajoVmflFLDB8FAa0CrZnUItdswE5ExJcXasPVwPZ4pmoBfbfsci37zKfadvIA3lkzBI4Wju6xEk5HkxCOFo/HGkinYd/ICFv3mU/xq2+d4pmgCth2uR1KMTed/CRENREkxNrxXVgOvPwS3EsTDa/f2aI16eO1euJUgvP4QSspqMFinNcrw6RDtlxtXL8xTrTpE64vJy41EFB0hBM63KJcd3H2v7DTeP3AGM7KT8b3bs5A6yAl/MASvPwSH1QSr2YSaCx6UlJ3Gzz86eunMwtbKetw8eijOtSgQvFJFRCowmQRe33nystt6uka1W7vzJObkpuoyf8MHwS1KEPPyUrutDhGO9jeZubnD4VF4uZGIonfXxDTcW7zjstuCIYkPDtXig0O1AFqr19gsJiiBEAKdtHFvt2ZTJd5YMkXT+RKRcQiBTq9+93SNAlrH0+tzuuHTIZxWMx6YlnlVdYieWrOpEg9+9Xq2TSaiqEkpsfVwfbfpWYGQRIsS7PbNxesPYdvhet0OnRDRwNYcZrnFcNeoS+P69LmabvggeEi8Naw3mXC1v8kMibOqMh4RGVdQyksHd9Wybu+pqy4/EhH1hFqx05V8Go17JcMHwUpAmzcZRaeWf0Q0cJlNIqyDtuE082lX1eCBOYzHERF1x2bRZi3Rq+uu4XOCgc7zWfrSeERkTC2+zs8W9LSZz6VxeWaBiFQQq1Fntxi7Pimlhg+Cmzza5J2wLSkRRauzer7RNPP5Ylx9LjUS0cAmZet6o+bmX0aSE1Kni+mGT4fwaFQ0nsXoiShadusXuyFqNfMBALvF8Es/EanAaTNhwaR0VcdcOCkdMTZ9doINvxKG29UkUnyTIaJoxbZdElSzmU/HcYmIouEPSszITlYtlnJYTbgtOxlKkAfjdBHv0KaKg1bjEpFxmIRARpJTlWY+L318DKsX5iEjycm27kSkiiExVpy64MGyWVmqjLdsVhZOXfDAFWdXZbzuGD4IBtBlW7++Mh4RGZPNIvCDr+Wo1sznTKMHP/hajm4nr4loYHParchNG4TURCcKslxRjVWQ5UJqohO5aYMuSwXTkuFXwninGffdOELVMRdNHoEEp+HPHBJRlCwmgdz0Qao288lNHwSLmTvBRKSOWLsZjR4/lt4ysstA2GExYWicDY4uUkULslxYestINHn9iNMxXcvwkVqLN4iiiWn4+UdHVDkx7bCaMC8vDc3eIBK5IUxEUVACEu+V1ajazKekrAZFX05VZTwiokExNhRkJeOZ9w7inhsycPPoofjZ5iP411tGoiA7GbE2C5q9AXj8QTitZsQ5LHArAXxUXoeX/nIM/z5jNIYlOPGH7Sfw9LxxSIyx6TZ3wwfB/qBEnN2E5bPH4sl3D0Q93vLZY2G3CLi7qO9JRBQuf1DiD5+eUHXM3396AndOGK7qmERkbCYBLL11FJ4vPYz/9ZUR+NN3b8H6fdX49mt7uizjeN+NrY8rP30Rv//0JB4pHKN7eoLh0yFMJoHSijrclpOM6dnR5bNMz3bhtpxklJbXwsSOTESkAjbzIaK+rMUXwIfltfju63uxcv541Db6MOOnW7F6U+d1zIHWdWj1pkrM+OlW1Db6sHL+eHz39b34sLwWLYp+fRYMHwQDwONvfQZvIICf3JXb40B4erYLP7krF95AAE+8Hf2OMhFRs0ZNd5p9bOZDROo47/Hjl1uP4vffmoKn1h/Ak+8eiKiM45PvHsBT6w/g99+agl9uPYrzLX6NZ/wFwwfB7rZPHP/0yx0IBUNYOX8CVs4fH3bNO4fVhJXzx2Pl/AkIBUP4p1/uAABdP8kQ0cDEZj5E1Jf5/UGs31eNl78xGU9vOIAtFT2rYrOloh5PbziAl78xGRv2VcOv0xpl+CC4/dNKfbOCB17dBSGAGdkubH60AI/fkdVlubOMJCcevyMLmx8twIxsF0wCeODVXahvVi4bl4iop9jMh4j6snq3D0Nibdj5j4YeB8DttlTUY+c/GjA4xop6t0+lGV6b4Q/GxbTVonPF2fDb+2+E1x/Cjs/P4UfvH8K0UUPxvduzkDrICX8wBK8/BIfVBKvZhJoLHpSUncb/3XIUT905FlNGDcFv778R83/xCeqbFTh1avlHRAMXm/kQUV8WksDUUUMx8/ltqoy3YuMhfPjIrQhJVYbrluGD4Pi2er5//NcpgBD4UclBbK6oAwB8cKgWHxyqBdBar9NmMUEJhBC44tX5/jufYUZ2Mp4pGo8//usU3Pbcx4h3GP5PS0QqyEhyqnqYjc18iEgtFpPA23urVS/jeNekNFXG647hr4lZTALPLpgAm9mMp9cfuBQAR2pzRR2eXn8ANrMZq+4eDwurQxBRlGLsJk2a+cTqWIyeiAYuJRjC67tOqjrm2p0noQT0SSk1/HblIIcVt2UlY3NF3WUBsNkkUJiTjDsnDEfaICd8gRC8/iAcVjPsFhOqL3iwsew0NlfUIdi2M7y5og4zx6VgRnYKBjl5uZGIohMISk2a+QSCOl1rJKIBTUBoUsZRQJ+NRMMHwZ5gAEpQ4ofvHbx027y8VDwwLRNbD9fjuQ86r3OXkeTEgknpeKhgFF7+5Dg27K8BAPxww0Hc/KgLnkAAVgt3W4io5xrcfiTF2rBsVhZWlJRHPd6yWVmwmgUa3AqSExwqzJCIjKy/l3E0fDpEICix8bPWtqSxNjNeXDQJeRmJuLd4B14oPXLNQs8vlB7BvcU7kJeRiBcXTUKszQyvP4SNn9Vwp4WIopaSYMP6fdUYluBEQVZ0zXwKslwYluDEu/uqkZygX1tSIhq4+nsZR8MHwR4lhNd2nECszYzixfl4c08VVpSUR1ToeUVJOd7cU4XixfmItZnx2o4T8CgskUZE0Wlfnx5btx9LbxnZ40C4IMuFpbeMxGPr9nN9IiLVOK3aXPF26HQl3fBBcEi2te9bmIeXPj6GrZU9q3O3tbIeL318DKsX5qGqwaNbeQ8iGrja1ye3EsSSV3bjnhsysHxOTkTNfJbPycE9N2RgySu74VaCXJ+ISDVxGlXC0mrcKxk+CHb7ApiXl4ozjZ4eB8DttlbW40yjB3Nzh8PNtqREFKWO64hbCeLhtXux7+QFvLFkCh4pHH3NZj6PFI7GG0umYN/JC3h47V64lWCHsbg+EVH0JKTqZRczkpyQ0OeTOg/G+YN4YFom7i3eocp4azZV4o0lU9iWlIii1lm+3Xtlp/H+gTOYkZ3cbTOfn3909FL1mo68CtcnIoqezdxaxnH1pkrVxlw0eQTsZn32aA0fBCfF2PDOPnULPW87XI/5E/Up9ExEA1dX7Y2DIRl2M5/O2Ng2mYhU4A9KzM1LVbWM45zcVCg6FRcw/EpoMgm8tfeUqmOu23sKJjbLIKIohZsXFwhJtCjBsALgSMYlIurO3z4/i+Wzx6oy1vLZY/HJ0ehSUyNh+CAYgCaFnomIoiUgNMm306sQPRENbFaLwEWPH5OvT8L07OjKOE7PdmHy9Ulo9AZ0u1pl+CC4RaMDIlqNS0TGYbMILJyUruqY99yQ3mWaBRFRJDxKEDNzUvDA73bimXnjexwIT8924Zl54/HA73aiMCdFtxjK8CuhT6P+1HrlsxDRwDYnNzXskmjdcVhNmJ2bqspYRERmIWAxm/BQwWjc/YtP8IOv5WDl/PERlXFcOX88fvC1HNz9i0/w0PTRsJlNMAt9rlYZPgjWqiCzXicbiWjgUgISVrPAsllZqozX3jZZqw//RGQssQ4z/nTgNAbHWpGbPggzn/8YXn8QHz5yKx6/I+uaZRwfvyMLHz5yK7z+IGY+/zFy0wdhcIwV7x84jViHPs0yDH86IsauzR9aq3GJyDhi7SZ8euw8po4aioIsV1S1zAuyXJg2aigO1jTiK9cnqThLIjKqFl9rV8uGZgW//caNAIAVG8vx7KZKfPe2L+HX/3IDYmwWuH2BS2UcY+0WtCgBfFRehxk/3QYlEMKM7GQsuWUkHvzdLiTF2fC18cMxJFb7+Rs+CAZaP5GoeZhN7YMsRGRUAhPSE1F5pgmPFI4BgB4FwgVZLjxSOAbVFzyYkJbIY3FEpAqBL4oBPPi7XVi9MA+3jnHhx38qx3MfHMZzHxwGADgsJsQ5LGj2BuDtcCXKYTXhmXnjMCTOjgd/twtuJQh3g0e3Ncrw1+wtJoH7bhyh6piLJo+AlSXSiChKiQ4rzCaBs00++AJBLL15ZI/aJi+9eSR8gSDONvlgFQIJTpvGMyciI2jyXt3VctfxBryxdAq+d/uYS5uC3kAIZ5uVSwFwRpIT37t9DN5YOgW7jjdc1dWySaeuu4bfCfYoQdw8eqiqhZ6/+qWhaGHHOCKKktlsgkUITP3SUPz4/UOYk5uGkUNj8cbSm7Ctsg7r9p7q9CpWRpITCyel49asZJx3+3C+xY+Ssmr8YPZYmEwCZn5IJyIVeAPhd7X0+UOwX9HV8vnSI512tfR1Mq4WDB8Em00CxX/5B5bNysKKkvKox1s2KwsvfXxMtYMsRGRsiTE2XGhoxlOzx+Gp9Z8hzmbBgzdfj1GuWDx5Zw6GxNmvapt8rtmHQDAEQOLtvdVoVgL4UdEEtPj9SImP6+1/EhENEA5r5+efou1qadeoaMGVDJ8O4VaC2LC/BsMSnCjIiq7Qc0GWC8MSnHiv7DRaFO4EE1H0bBYThsQ6cLHFh6fnjMOUkUPw9d98ig37T1+q8iAAWMQXLTB8gRDW7z+Nr//mU0wZOQT/OWccLrb4MDTWwZbJRKSaOLtGXS3DHDdaht8J9rWlLTy2bj+KF+cD6PnBk6W3jMSSV3YDwGWJ30RE0UiKtUFKicO1TcgZHo8///stKCmrwXMfVKKqwXPVLktGkhOLJo/A03PGor7Ji9MXPRiTEo/BscwFJiL1BKXUpLhASOrTa8HwQbDD1rrl7laCWPLKbqxemIebRw/Fmk2VYeUIO6wmLJuVhWEJTix5ZfelxG4Hd1uISEVD4uzIEgLlNRdxzq3gy+mDMD07GQ6r+aryQ15/EBfcCs65FXiUIMamJjIAJiLVBYMSCyal44XSI6qNuXBSOgI6NRwzfBDcccu9/WTj3NzheGPJFGw7XN/9wZMxLvz2r//Ae2WX5xPHOQz/pyUilSXF2nDj9UPQ4Fawv+o8Lnj9GBJnRzAYgj8o4Q8ItChBnGv2wSSAzKFxSBqewBQIItKEPxhCwRgXfrXtc9WKC9w6xgV/UJ+r6YaP1Gxm01Vb+ZGcbPz5R0evOtmYkeSEjR3jiEgDNosJwxIdcMWloKFFQSAk0ewNwB8MwWpurcWZOSQGSbF2VoEgIk0lOK34xdbPVS0u8Nu//gPfvzNHhdl1z/CR2pBYG/5lSman97W3rhYAIK/4L9BlMef7b8rEkDi7mtMkIrqM2WyCK96B4YlOjE6Jx9jURIxOicfwRCdc8Q4GwESkOatZ4O9V51UtLrDv1AVYzfqsX4bfCTabTZibNxw//fCLHOB5eal4YFomth6uv3Tw5EoZSU4smJSOhwpG4eVPjmPD/hoArVv5c3KH8w2IiIiIBrSkGBvuvylT1eICj8wcg6RYfTYSDb8TDABDYu14Zt44xNrMeHHRJORlJOLe4h14ofRIlyceqxo8eKH0CO4t3oG8jES8uGgSYm1mPFM0DkN0evGIiIiIeovZbMLc3FQEpcSSV3bjnhsyetTV8p4bMrDkld0ISok5uam6bSQKqVMZCjXl5+fL3bt3qzpmg1vBqYYW/LT0cI8/xTxaOAYZSTE8hU1ERESGoARCWL+vGsvWlQEA5uYOx4NfvT7C4gKnAQBrFuaiaGKaqod5hRB7pJT5nd1n+HSIdv5ACD/bfKRHATDQuv1vFgI/vnuCyjMjIiIi6ptsFhNm5KRgZk4KPiyv7bK4QMeulp0VF5iZk4LCnBRdq9kwCAbQ5PGjtLwWmyvqunxMOC3/NlfUofRQLYompiLOYdVqukRERER9RlKsDasWTADeAj4sr424bfLMnBSsWjBB9yvpDIIBNHoDWLHx0GW3mU0ChTnJuHPCcKQNcsIXCMHrD8JhNcNuMaH6ggcby05jc0XdZSXSVmw8hIKsZAbBRKQpnxJAvVsBADR5AvD4g3BazYh3ti7rrlgb7DYu8USkjyFxdjy7MBe3l9di+foDl9UNDoQkAm3NxDpyWE1YUTQehTkpvZJKavgV0qcEsH5f9WUvVjTVIbz+EDbsr8YDUzP5BkREqmvy+NHobV23Xt91ssv16b4bR6BoYhoSHBbEO/mhnIi0lxRrQ9HENNw82oWSshq8sv14l2vUN6ZmYvaEVCTF2nqtoY/hD8adOt+C+4p3oKrBg1ibGasX5uFMo6dHbZMfW7cfbiWIjCQnXl8yBemDY1SZIxERANRe9KK0vBYrNh4Ke31aPnssCnNSkJLo0GGGREStgsFQlw19LCahW0Ofax2M0zz0FkLcIYSoFEIcFUI80cn9I4QQW4QQfxdClAkh7tR6Th1JiUsBcPHifLy5pworSsrDbv/n9YewoqQcb+6pQvHifMTazKhq8KAffrYgoj6sttGLJ94pw5PvHohofXry3QN44p0y1DZ6NZ4hEVHnJIBgSOKy0KgPBEqaXq8XQpgBvAhgJoBTAHYJITZIKTsm4D4F4P9JKX8phBgL4H0AmVrOq6NmbwAAsHphHl76+FhU1SHax3l47V40+wKqzZGIjK32ohfff6cMWyp6tj5tqajH998uw0/uzkVKAneEiUg7SiCEBreC98pq8Or2rtMh7r8pE3NzezcdQuvfOhnAUSnlMSmlAuANAEVXPEYCSGj7PhFAjcZzuozHH8S8vFScafT0OABut7WyHmcaPZibOxxe/9UJ4EREkWqvXvNRDwPgdh9V1GNzeS2avX6VZkZEdLkGt4J391Wj4LktWLmx/JoNx1ZuLEfBc1vw7r5qNLQd8tWb1kFwGoCqDj+farutox8C+F9CiFNo3QX+TmcDCSGWCiF2CyF219dH92bQkdNqxgPTMrFmU6Uq463ZVIkHv3o9HBazKuMRkbF1Vr2mp54pOYSLHl6lIiL1nWv24bF1+/HYurKIUrYeW1eGx9btx7lmn8YzvFpfaJt8H4DfSSnTAdwJ4DUhxFXzklK+JKXMl1Lmu1wu1X75kHgrth6uD/sF647XH8K2w/UYEsfT2EQUHZ8SwHtlNaquTyVlNfApDISJSD0NbgWPv1WG0vKu+y1cS2l5HR5/qwzndd4R1joIrgaQ0eHn9LbbOnoQwP8DACnldgAOAEM1ntclSkDirb2nVB1z3d5TUIK9n/BNRP1bvVvBHz49oeqYv//0xKX6wkRE0VICIZQeOtPjALhdaXkdPiw/AyWgzof+cGgdBO8CMFoIcb0QwgbgXgAbrnjMSQAzAEAIkYPWIFi9fIcwdJWz0lfGIyLj4k8o60wAACAASURBVPpERH3ZObcPT284qMpYT68/iHNu/dIiNA2CpZQBAP8GYBOAcrRWgTgohHhGCDGv7WH/B8ASIcR+AK8D+IbUsXhxk0b5cU1eXm4kouhotY40c30iIhUEgyG8t/+0yilbpxEM6rMbrHlLMynl+2g98Nbxtqc7fH8IwDSt59EVj0ZVHFgdgoii5dNqfdLxciMRDVzn3Ape23Fc1TFf3X4cRXmpSNahnGNfOBjXq5xWbao4sDoEEUVLq9qZdrPhl34iUoESDGmSsqXotBNs+JUwzqHNZrhW4xKRccTatVlHYuz8kE5E0dMqtUqvhmOGD4KFaO1coqaMJCeE9u2wiWiAk9BmfWLtGiJSg2YppYo+KaWGD4JdsTbcd+MIVcdcNHkEkuPtqo5JRMYTYzNhwaR0VcdcOCkdMRqlgRGRsWiVsqVXG2XDB8F2mwVFE9PgsKrzp3BYTZiXlwYbc4KJKEr+gMSM7GRV16fbspPhD/FgHBFFL76fp5QaPggGgASHBctnj1VlrOWzxyLRyXxgIopecpwd1Rc9WDYrS5Xxls3KQs0FD5LjtT91TUQDn0kITVK2TDrllDIIBhDvtKIwJwXTs6Nrxzw924XCsSmIc7BlMhFFz2o1Y0LaIKQmOlGQFd36VJDlQmqiE+PTB8HK6hBEpAK7RWChyilb99yQDgfTIfSVkujAqrtzexwIT892YdXduUjRoa4dERnHYKcVTV4/lt4ysseBcEGWC0tvGYkmrx+DY/ghnYjUMchhw+zcVFVTtmZPSEVijE2V8brDILiDlAQHVt2Vi5Xzx4f9gjqsJqycP54BMBFpIsZuQUFWMn6//TjuuSEDy+fkRLQ+LZ+Tg3tuyMDvtx9HQVYyYmxM1yIidVitZsQ7LKqmbMU5LLpdreJqeIWURAfm5g1HQVYyNuyvxtqdJzstBJ2R5MSiySMwLy8N8Q4zEpz6fGohIuNJTnDgh/PG4/G3yxBns+CNJVOw7XA91u091eX6tHBSOm4d48Jv//oPNCtn8ezdubp0YCIiY4m3WzB11FAUZLmwtbK+x+MUZLkwddRQzQ7bdUZI2f8qRubn58vdu3drMnaDW8Hm8lr88L2DmDZqKGbnDkfqICf8wRC8/hAcVhOsZhNqLnhQUnYaf/v8LH44dxxm5KQgKZaBMBFpp67Riw/La/Hj98vDXp+evDMHhTkpDICJSDP1jV7UXPTi+dLDPQqEC7JceKRwDFITHXCpvFYJIfZIKfM7vY9B8BfONfvwxFuf4cPy2qvus5gEbBYTlEAIgdDVf7OZOSlYtWAChsSxPjARaadFCeB8ix8b9n1xperK9an9SlXRxDQMirEyBYKINFff6MWRumaUn2nEmk2V8Pq/KMXYVQzlsJqwbFYWcoYlYHRynOoBMMAgOCwNbgWPryvrNAAO18ycFKxemIvB3BEmIo35/UHUu30ISaDJG4DXH4SjLT/PJABXvINVIIhIV3WNXpSfbsSgGBuqGlpgMQsMjbPDFwhdWqPsFhPONvsQCIaQkRSLCy0KcoYnaHa16lpBMLcHACiBEDaX10YVAAPAh+W1KC2vRdHENN26nRCRMVmtZqQOiuntaRARXZKc4IDdYkKzL4jtn5/DH3ae6PLcwtcnX4cvj0hC5pAY3apBXIk7wQDOXPSi4Lktl23d95TDasLW703HsETm3xEREZFx1F70orS8Fis2HgorpnJYTVg+eywKc1KQolHcdK2dYMNvVwaDIZSU1XT7YllMAjE2Myyma3cx8fpbxwsG2ZaUiIiIjKG20Ysn3inDk+8eCHtT0esP4cl3D+CJd8pQ2+jVeIZXM3w6REOLgle2H7/qdrNJoDAnGXdOGI60Qc6r8lmqL3iwsew0NlfUIXjFQblXth9H0cRUuNialIiIiAa42outAfCWip6VSNtSUY8n3i7TveeC4YPgQEhela8yLy8VD0zLxNbD9Xjug8ou81kWTErHQwWj8PInx7Fhf82l+6oaPJ1WkCAiUsuVB+N8gSDslg4H42LtsFrNvT1NIhrgmjx+lJbX9jgAbreloh6lh2pRNDEVcQ59OlsaPghu8gYufR9rM2P1wjycafTg3uId19zOr2rw4IXSI/jVts+xbFYWZo0bhsfW7YdbCQIAmr0BIFHz6RORwbT4Ajjv8WP/yfMwma4+ee32BXC22YdgSGLiiMEY7LQixm74pZ6INNLoDWDFxkOqjLVi4yEUZCUzCNaLz98atMbazChenI+XPj4WUaFnrz+EFSXlKMhyoXhxPpa8shtuJQhfgDnBRKSu9vJDiTE2HK5rxlvX6Bi3YFI60gbH4Ghtk6blh4jIuHxKAOv3VatSWABojak27K/GA1MzYdehvrnhg2B72+XC1QvzIg6AO2p/3uqFeXh47V6WSCMiVdU3enG0rhlH65uvKkR/pSuvVFnNJghAk0L0RGRc9W4Fr+86qeqYa3eexNy8VKTrEAQbPlKLd1gwLy8VZxo9UfW8BloD4TONHszNHa5r72siGtjaW5K+9JdjWFFSHtHJ6xUl5XjpL8dQc9GL+l44fU1EA5eU6PRqVDSqGjzQq3qv4YNgi0lgyc3XY82mSlXGW7OpEktvGdltKTUionC0+AI461bwfOnhqK5UPV96GGfdClqUQPdPICIKQ7NXm/Wk2afPOmX4IDjeZsZfjpxVNZ/lr0fPIoEHUYhIBU2+AP72+VlVrlT97fOzlx0GJiKKhqftXJXavBqNeyXDB8FnW/ya5LPUuxVVxyQi4/H7g2jyBlS9UtXsDcCv0xsMEQ1sTo3KMDos+pR3NHwQ3N/zWYho4LrgVbAxjI6W4fL6Q9j4WQ0uePkhnYiiF6fR+Setxr2S4YPg/p7PQkQDly8gsW7vKVXHfHPPKfgC/JRORNETorUko5oykpwQOh2rMnwQ3N/zWYho4ArJqztaRquqwYMQL1URkQpcsTbcd+MIVcdcNHkEkuPtqo7ZFcMHwf09n4WIBi6tDrE1e/khnYiiZ7dZUDQxDQ6rOuGkw2rCvLw02JgTrI/+ns9CRAOXolHnSSXAIJiI1JHgsOCHc8epMtZ/zRuHRKd+8ZPhg+D+ns9CRAOXZleqNBqXiIxpYsYgFGS5ohqjIMuFvIxBKs0oPIYPgvt7PgsRDVy8UkVEfV2jN4Cv/2YHlt4ysseBcEGWC0tvGYmvF+/ARY9+hQUMHwT393wWIhq4bGaTJleqbGbDL/1EpAKfEsD6fdU45/ZjySu7cc8NGVg+JyfsmMphNWH5nBzcc0MGlryyG+fcfmzYXw2fTp0tuRKiNZ9l+eyxqoy1fPZYXfNZiGjgGhJrw79MyVR1zPtvysSQOF6pIqLo1buVSw3H3EoQD6/di30nL+CNJVPwSOHoLj/EZyQ58UjhaLyxZAr2nbyAh9fuhVtpPaugZ8MxRmsA4p1WFOakoLSiFlsqet6adHq2C4VjUxDnsKo4OyIyKrPZhLl5w/HTDytVaZjhsJowJ3c4zCYeWiCi6HXWcOy9stN4/8AZzMhOxvduz0LqICf8wRC8/hAcVhOsZhNqLnhQUnYaP//oKIKhy0s26tlwjEFwm5REB1bdnYsn3i7rUSA8PduFVXfnIiXBocHsiMiohsTa8cy8cXjsrc+iHuuZonEYEstdYCJSR1cNx4IhiQ8O1eKDQ7UAAItJwGYxQQmEEAh1H+Hq1XCM6RAdpCQ4sOquXKycPz6ifJaV88czACYiTdgsJhSOHYbCnOSoxinMScbMnGGwWbjsE5E6wm04FghJtCjBsAJgQL+GY9wJvkJKogNFE1NRkJWMDfursXbnyU47NmUkObFo8gjMm5iGRIeFKRBEpJmkWBueXZCLx98qQ2l5XcTPL8xJxrMLcjE41qbB7IjIqPp7wzEGwZ2Ic1gR57DigamZmJuXCilbt+a9/iAcVjPi7BYIASTH21kFgoh0MSTOjtUL81BaXoun1x8IK0fYYTXhmaLxmJmTwgCYiFTX38s4Mgi+BrvNgnQb/0RE1Dckxdowf2IabhntQklZDV7ZfrzLK1WLp2ZizoRUJMXamAJBRJpobzjW2TrUU3o2HGOER0TUj9gsJgxLdOCbUzNRNDEVgZBEszcAXyAEu8WEOIcFFpNAUqydVSCISFPtDcdWb6pUbUw9G44xCCYi6ofMZhNc8W2HcRN7dy5EZEztDcd+/tER1co46tlwjNfIiIiIiKhH+nPDMQbBRERERNQj7Q3Hpme7ohqnNxqOMQgmIiIioh5rbzjW00C4txqOMQgmIiIioqj0x4ZjPBhHRERERFHrbw3HGAQTERERkSr6U8MxBsFEREREpKr+0HCMOcFEREREZDgMgomIiIjIcBgEExEREZHhRBUECyHi1JoIEREREZFeot0JPqTKLIiIiIiIdNTtsT0hxKNd3QWAO8FERERE1O+EsxP8YwCDAcRf8RUX5vOJiIiIiPqUcAq47QXwrpRyz5V3CCG+pf6UiIiIiIi0FU4Q/E0A57q4L1/FuRARERER6aLbdAYpZaWU8mwX99W2fy+E+B81J0ZEREREpBU1c3qnqTgWEREREZFmeLCNiIiIiAyHQTARERERGY6aQbBQcSwiIiIiIs2EHQQLISZ085CfRTkXIiIiIiJdRLIT/AshxE4hxENCiMQr75RS/k69aRERERERaSfsIFhKeTOArwPIALBHCLFWCDFTs5kREREREWkkopxgKeURAE8BeBzArQB+LoSoEELcrcXkiIiIiIi0EElOcK4Q4nkA5QBuAzBXSpnT9v3zGs2PiIiIiEh14bRNbvc/AH4D4AdSSk/7jVLKGiHEU6rPjIiIiIhII5EEwbMBeKSUQQAQQpgAOKSULVLK1zSZHRERERGRBiLJCS4F4Ozwc0zbbURERERE/UokQbBDStnc/kPb9zHqT4mIiIiISFuRBMFuIcSk9h+EEDcA8Fzj8UREREREfVIkOcH/AeBNIUQNWlskDwPwz5rMioiIiIhIQ2EHwVLKXUKIbABZbTdVSin92kyLiIiuxe8Pot7tQ0gCTd4APP4gnFYz4h0WmATgirXDajX39jSJiPqsSHaCAeBGAJltz5skhICU8lXVZ0VERJ1q8QVw3uPH+n3VeH3nSVQ1eGAxCdgsJiiBEAIhiYwkJ+6bPAJFE9Mw2GlFjD3SpZ6IaOALe2UUQrwGYBSAfQCCbTdLAAyCiYh0UNfoRWl5LVa+X46vfmkovnd7FtIGOeELhOD1B+GwmmG3mFB9wYONZafx4pajePLOHBTmpCA5wdHb0yciA+kPV6si2R7IBzBWSim1mgwREXWurtGLx98uQ7zdij88+BVsPVyP5z6oRFXD1eeTM5KcWDApHQ8VjMLLnxzHh+W1ePbuXAbCRKS5zq5WXamvXK0S4ca0Qog3AXxXSnla2yl1Lz8/X+7evbu3p0FEpIu6Ri/+c8MBzMlNw5lGD9ZsqoTXH+r2eQ6rCctmZWFYghMlZdX4r3njGQgTkWbar1Y9U3LosjXqypStdg6rCU/PGavp1SohxB4pZX6n90UQBG8BMBHATgC+9tullPPUmGQk9AqCg8EQGloUBEISTd4AfP4g7G1b+RaTQFKMDWZzJFXmiIgi0+ILoKSsBulJMXjp42PYWlkf8RgFWS4svWUkTjW0YE5eKmJszBEmInW1X63aUlEPs0mgMCcZd04Yfs2Urc0VdQiGJKZnuzS7WnWtIDiSlfCH6kyn71MCITS4FZSU1eCV7ce73MpffFMm5uSmIinWBpuFwTARqe+8x494h7XHATCAS8/75/wMnG/xMwgmIlV1DIDn5aXigWmZEaVsbdhfg8ffLtM9bSvsnWAAEEJcB2C0lLJUCBEDwCylbNJsdl3Qcie4wa1gc3ktlq8/EPZW/oqi8ZiRk4KkWJsmcyIiY/L7gyitrEPNBQ9WlJRHPd7yOTlIHeREYVZyrx9IIaKBocUXwLv7qrFyYzlWL8zrccrWY+v248nZOZj/5TRVP6irlQ6xBMBSAElSylFCiNEAfiWlnNHN8+4A8DMAZgC/kVKu6uQx/4TWnWYJYL+UctG1xtQqCD7X7MMTb32GD8trI97Kn5mTglULJmBInF31eRGRMdVcaMG5ZgX3/Hp7WG8o3XFYTXjz2zdhSJwNqYPY9Z6Iold9wYN5//MX/M+iSVGnbH1n7V5s+M7NSBvkVG1+aqVDPAxgMoBPAUBKeUQIkdzNLzYDeBHATACnAOwSQmyQUh7q8JjRAL4PYJqU8nx3Y2qlwa1cCoB7upWPt4DVC3MxmDvCRKQCi1lgc0VdtwFwnM2MwbE2nHcraFaCXT7O6w/ho4o63Dc5Q+2pEpEB+f1BrN9XjWeKJqiSsvVM0QRs2FeNb027XperVZEEwT4ppSKEAAAIISxo3bm9lskAjkopj7U95w0ARQAOdXjMEgAvSinPA4CUsi6COalCCYSwubwWf/v8LF5cNAlnGj24t3jHNdMhqho8eKH0CH617XMsm5WFWeOG4bF1+1FaXouiiWnMESaiqLUoIby199RVtzttZvz3wlyMTUuERQg0ev3w+kNwWE1IcFgRkBIHTl3Asrc+g+eKoHjd3lMo+nKaXv8EIhrA6t0+1DZ6YbeYehwAt9taWY+bRw/F6UYv6t0+Xa5WRRIEbxNC/ACAUwgxE8BDAN7r5jlpAKo6/HwKwFeueMwYABBCfILWlIkfSin/fOVAQoilaE3HwIgRIyKYdvca3ApW/akcxYvzL32SMZsEZo1LCSsdYkVJOQqyXChenI/vrN2Lm0e7MCyRZYiIKDoCuOpK1G/uvwE5wxOxfl81fvLniq5rcN44AqWP3Iry0xfxrVf3XLqvqsEDofXEicgQQhK4a2Ia7i3eocp4azZV4o0lUxDSqSNFJEHwEwAeBPAZgG8DeF9KWazSHEYDKACQDuBjIcQEKeWFjg+SUr4E4CWgNSdYhd8LoLUMWklZzWVb+T1Oh0DrVn5JWQ2+OTWT5dOIKCotvi92ca9LcmLtkinYWlmPf3t96zVTJKoaPFi9qRI//+gIls8ei08en45FxTtwom0ta7lGygQRUbiCIYmth+tVObMAtKZsbTtcj/k6Xa2KJEr7jpSyWEp5j5RyoZSyWAjx7908pxpAx+Sz9LbbOjoFYIOU0i+l/AeAw2gNinXR0KKg6nwLzjR6sOsfDXhx0STkZSTi3uIdeKH0SKcBMIBL6RD3Fu9AXkYiXlw0Cbv+0YAzjR6cPN+ChhZFr38CEQ1QvkDrG8t1SU788dtT8dT6A3jy3QNhv+F4/SE8+e4BPLX+AP747am4Lqn1sIkSUOcNi4iMLRiSnaZsRWPd3lMI6rQVHEkQvLiT277RzXN2ARgthLheCGEDcC+ADVc85l207gJDCDEUrekRxyKYV1QCIYm7JqbhF1uOonhxPt7cU4UVJeURvcmsKCnHm3uqULw4H7/YchR3T0y7rIwaEVFPOKytS/TaJVPw/Xdaa3D2xJaKenz/nTKsXTIFAGDnmQUiUoHFLLrcLOypqgYPLGZ9kra6TYcQQtwHYBGA64UQHQPYeAAN13qulDIghPg3AJvQmu/7spTyoBDiGQC7pZQb2u67XQhxCEAQwDIp5bme/XMiFwy2buWrebJx2+F6LJiUruY0iciAEpxW/Ob+G7C1sr7HAXC7LRX12Jpdj+L7b0CC06rSDInIyDqmbKk6rk4pW+HkBP8NwGkAQwH8d4fbmwCUdfdkKeX7AN6/4ranO3wvATza9qU7fyiE8y0KzjR6VDvZeK6t1TIRUTSsZoGc4Yn4t9e3qjLeio2HsPnRAlh12mUhooHNq1FqlU+lHOPudBsESylPADgB4Cbtp6M/s8mkyclGk4lvMkQUnXibGS/vPqHqoZMN+6vxzanXqTIeERlbjEa1fJ02fTpahp0YJoS4WwhxRAhxUQjRKIRoEkI0ajk5XUhtTjZ2X0KZiOjazrb48fquk6qOuXbnSZx1+1Udk4iMKd4ZXpExi0kgxmaGJcwNwniHem2TryWS37IawFwpZfQN7PuQoNTmZOO8iamqjklExiPl1XWCo1XV4IHkZ3QiUoHFJJCR5LxqnTKbBApzksPqtXBlJYiMJGfYwXLU84/gsbUDLQAGWtMhtHiTMZt4+pqIotPsDWgzrk+bcYnIWJJibFh8UyZ+tPGL8DCaXgsAsPimTCTF2nWZfyRB8G4hxB/RWtLM136jlPJt1WeloxaN3gxaFL7JEFF0PH5tTkh7NRqXiIzFbDZhTm4qnvugEmYhsHphHs40enBv8Y5uG/q8UHoEv9r2OZbNysKsccPw2Lr9CEqJObmpMPfBneAEAC0Abu9wmwTQr4Ngn0YnGxWdTjYS0cDl1OjQicOiz6ETIhr4kmJt+MldE5CS6Ii41Gx7r4WCLBeKF+ej9qIXSbE2DWd7ubCDYCnlN7WcSG/R6gSiQ6eTjUQ0cMVpdDhEq3GJyHhsFhOmfWkoHn+7LKpeC0IAz96dC5uOzXwiqQ4xRgixWQhxoO3nXCHEU9pNTR9anUDU62QjEQ1cQrTmzqkpI8kJwQqORKQSJRDC1so6dRr6HK7Tta17JOF2MYDvA/ADgJSyDK1tkPu19pONatLzZCMRDVwJTjPuu3GEqmMumjwCiewYR0QqOef24ekNB1UZ6+n1B3HO7ev+gSqJJAiOkVLuvOK2fn/6q/1ko5r0PNlIRANXgzuAoolpcFjVuTzosJowLy8N59yKKuMRkbEFgyG8t/+0qr0WSspOIxjUZzc4kpX1rBBiFNq6QAghFqK1nXK/1n6yUc03GT1PNhLRwCUAlJ++iOWzx6oy3vLZY3Ho9EVwdSIiNZxzK3htx3FVx3x1+3HdPqhHEvk9DODXALKFENUA/gPA/9ZkVjpLirVhRdF4VcZaUTRe15ONRDRwtfiC+Nare1CQ5cL0bFdUY03PdqEgy4Ulr+5Bi8ISaUQUPSUY0qTXgtLXdoKllMeklIUAXACypZRflVIe12xmOrJZTJiRk4KZOSlRjTMzJwWFOSm6nmwkooGrvYTjouId+MlduT0OhKdnu/CTu3KxqHgHAOh68ISIBq7+3tAnkuoQ/y6EaK8V/LwQYq8Q4vbuntdfJMXasGrBhB4HwjNzUrBqwQQM5i4wEamkPU3rRIMH//zrv+FHReOxcv74sNO3HFYTVs4fjx8Vjcc///pvONG2Y2PnB3UiUoFmDX10uloVyUr4gJSyEa3NMoYA+BcAqzSZVS8ZEmfHswtzsWZhbkRvMmsW5mL1wlwMieNhOCJST0KHKg4nGjyY9uwWJCfYsfnRAjx+R1aXlW0ykpx4/I4sbH60AMkJdkx7dsulAPjKcYmIekqrK996XVGPpJht+1mKOwG8KqU8KMTAqzaZFGtD0cQ03DzahZKyGryy/XiXfa+/MTUTsyekIinWxhQIIlKd1dxawrHjGrTk1T1w2sxYs2ACXnvwKzALgWZfAF5/EA6rGXF2C4JS4sCpCyh8fhs8V+yoZCQ5YTUPuKWbiHqBVj0R9GroE8lv2SOE+ADA9QC+L4SIBzAgE8tsFhOGJTrwzamZKJqYikBIotkbgC8Qgt1iQpzDAotJICnWzioQRKSZpBgb7r8pEys3ll92u0cJ4t9e33fp5zibGYNjbTjvVtDczWVElnAkIrWYxNUf1KOVkeSESac91kiC4AcBTARwTErZIoQYAmBAtlJuZzab4Ip3tP6Q2LtzISLjMZtNmJubiv/+oPKadTiblSCale7fhFjCkYjUZLcILJyUjudLj6g25j03pMOh09X1bn+LECK77duJbf8dKYSYBOA6RBZEExFRhFjCkYj6qkEOG2ar3Gth9oRUJMbos06FE8Q+CmApgP/u5D4J4DZVZ0RERJd0LOH4YXltj8dhCUciUpvVaka8w4Jls7KwoqS8+yd0Y9msLMQ5LLCa+8jBOCnl0rb/Ttd+On1LMBhCQ4uCQEiiyRuAzx+Eve0Ft5gEkmJsMOv0QhGRcbWXcMRb6FEgzBKORKSVeLsFU0cNRUGWC1sr63s8TkGWC1NHDdXssF1nwv5NQoh7APxZStkkhHgKwCQAK6SUf9dsdr1ECYTQ4FbwXlkNXt3edXWI+2/KxNxcVocgIu21l3C8vbwWy9cfuGaOcDuH1YQVReNRmJPCAJiINBFjt2BorA2PFI4BgB4FwgVZLjxSOAZDY22IsekXBAspZXgPFKJMSpkrhPgqgB8BWAPgaSnlV7ScYGfy8/Pl7t27NRm7wa2gtLwWT0fwJvNM25sMc+2ISGvtH9JZwpGI+pL6Ri+O1DWj/Ewj1my69mHedg6rCctmZSFnWAJGJ8fBleBQfV5CiD1SyvxO74sgCP67lPLLQoifAPhMSrm2/TY1JxsOrYLgc80+PP5WGUrL6yJ+bmFOMp5dwIYZRKSPjulaLOFIRH1BXaMX5acbkRhjw7bKOqzbe6rLD+oLJ6Xj1qxkXGxRkDM8AckaBMCAekFwCYBqADPRmgrhAbBTSpmn1kTDpUUQ3OBW8Ni6/T0KgNsV5iRjzcI8XnYkIiIiQ2pRAjjf4sf+k+dhMgkMibPDHwzB6w/BYTXBajbhXLMPISkxMWMwBsVYNU2BuFYQHMlv/ScAdwB4Tkp5QQgxHMAyNSbY25RACKWHzkQVAANAaXkdPiw/g/kT03n5kYiIiAwnxmZBjM2C5Fgb6t0+hCTQ5A1ACQRhs7QWF0gb5IAr3qFbFYiuhB0EtzXIWA8gRQgxou3mCm2mpa9zbh+e3nBQlbGeXn8QN492YXiiU5XxiIiIiPobq9WM1EExvT2Nawo7BBdCfAdALYAPAWxs+yrRaF66CQZDeG//6bASuMPh9YdQUnYaweCA7ChNRERENCBEkg7x7wCypJTntJpMbzjnVvDajuPdPs5iErBZTFACIQRC186jfnX7cRTlpWqW5E1ERERE0YkkCK4CcFGrifQWJRjq9OSi2SRQmJOMOycMR9ogfbdSrQAAIABJREFUJ3yBELz+IBxWM+wWE6oveLCx7DQ2V9QheEVQXNXggcKdYCIiIqI+K5Ig+BiArUKIjQB87TdKKX+q+qx01OwNXHXbvLxUPDAtE1sP1+O5Dyq7LO+xYFI6HioYhZc/OY4N+2suH9d39bhERERE1DdEEgSfbPuytX0NCB5/8NL3sTYzVi/Mw5lGD+4t3nHNPOGqBg9eKD2CX237HMtmZWHWuGF4bN1+uJXW8bxKsMvnEhEREVHviqQ6xH8BgBAiru3nZq0mpaf2UmaxNjOKF+fjpY+PRdTyz+sPYUVJOQqyXChenI8lr+yGWwmyRBoRERFRHxZJdYjxQoi/AzgI4KAQYo8QYpx2U9NHvKP1c8DqhXkRB8Adba2sx0sfH8Pqha29Q+Ic+vW+JiIiIqLIRLJd+RKAR6WU10kprwPwfwAUazMt/ZiEwOKp1+FMo6fHAXC7rZX1ONPowf1Tr4NJsF0pERERUV8VSRAcK6Xc0v6DlHIrgFjVZ6Qzu8WE+6dkYs2mSlXGW7OpEotvyoTDYlZlPCIiIiJSXyRB8DEhxHIhRGbb11NorRjRr9mtApsralVtlrG5vBY2qyrDEREREZEGIgmCHwDgAvA2gLcADG27rV9r9ATx2o4Tqo752o4TaPSwOgQRERFRXxVJdYjzAL6r4Vx6hZTotA5wNKoaPJDXbipHRERERL0o7CBYCPEhgHuklBfafh4M4A0p5SytJqeHJq9fk3HZLIOItBQMhtDQoiAQkmjyBuAPBGG1mBHvsMBiEkiKscFsZqlGIqKuRFLHa2h7AAy07gwLIZI1mJOu1MoFvnpcpkMQkfqUQAgNbgVlVRcQgsTQOPtlbd0bPX6cbfZBAMjLGIykWBvrlhMRdSKSIDgkhBghpTwJAEKI6wD0+4v+Tqs2VRxYHYKI1NbgVnCo5iLiHFYcOtOIt/aeumZb95REJ47WNWFsaiKSYgdMo08i6gd8SgD1bgUA0OQJwOMPwmk1I97ZGnq6Ym2w23q3p0Ikv/1JAH8VQmwDIADcDGCpJrPSkVZNLdgsg4jUdK7Zh8O1TaisbcKaTZURtXU3mwTGpMRjSJxdxxkTkRE1efxo9Aawfl81Xt91sssP6vfdOAJFE9OQ4LAg3tk7JbUiORj3ZyHEJABT2m76Dynl2fb7hRDjpJQH1Z6g1kyi9cVQ83BcRpITJl59JCKVNLgVVJ/34NdRtHV/tHAMTEJgMHeEiUgj/7+9+w+u66zzO/75SvenLFm2k6ubtWwlbIeNLIIstrJJWWYaYXUXcGIvLp1Ze2FngA6dKdthy/6Bpxml3WgoTtpmdmiX7TJAM+yuzWypSdQIml1lDbsFgq2A7QTJYTNQ5DjkRokTyZLuT+npH/cqGFuW9eOce+/Reb9mPLF8jx5/ozP+ns899znPk5nKaWQ8o8HhsZu+UX/4yef1ub/9Bw3s71L/rrTSrYkqVlq2qqjmnHvVOfdE5der17z85x7WVTVtzXEd3tvh6ZhH9naoraX6JxPAxlMoLeiVKzk9MvLjdW3r/sjIj5W5klOh5M9zEADCLTOd09Gvn9f9jz234uetcsUF3f/Yczr69fPKTOd8rvB6Xt6vDOQ+wdFoow72tCsR9eZHkYg26EBPu6I8lQ3AA1NzBX3nhVc92db9Oy+8qqm5gkeVAUBZZiqnoyfP69SFtfWpUxcmdfRk9YOwl0ktsA/JbU1GNXBvlydjPXBvl7Y2sV0cgPWbn1/QdL7k6bbu0/mS5ue5GwzAG1eyRY2MZ9YcgBedujCpkbGMZnxaunYp3K6U1BSP6J/tSquvM7Wucfo6U+rflVZTjZ92BLAxTOWKeuLcS55u6z58/iVNVfEiA2Bjm86VNDg85slYg8NjmspWb58FL0NwoD9ja9uc0EOHutcchPs6U3roULfaNjMXGIA35grz+toPXvR0zP/5zIuaK7COOYD1yxfKq0B4+UZ96Nwl5QvVCcKrumVpZt2S7rj6+5xzJyv/vfsG3xYYi0H4b8YzGnxi+ScbFyWiDXrg3vKTjQRgAF5acM6Xbd0X2NcdgAcmZws6cWbC0zGPn57Qfbu3a0cVPlVfzbbJX5bULelHkhbToZN00oe6aqZtc0IfeEe77rmzTUNnL+n46RuvcXdkb3mNuy1NUaZAAPDcTM6fuyEzee4EA1g/5+TLG/VqvU9fTXK72znnzdNjda4pFlFTLKJ/+Rtv0cGe7Vpw0pVc6c1tSVsSETWYlGpJsAoEAN/kfVrOrMC27gA84N8b9fqbDvE9M+tyznkz+zkAotFGbd/SVOsyAISUb9u6+zQugHDJ+vSGOlelN+qrCcFfUTkIvywpr/K6wM451+1LZQAQcpvi/kyz8mtcAOHi2xv1SHXeqK+mE35J0oclPatfzAkGAPikscF82dY90hDIvY0A1JnmhD9vqP0a91qrmdA66Zwbcs791Dn3s8VfvlUGACGX2hTTh+++3dMxP3z37bq1Je7pmADCyaz8xtpLO7clZVV6n76aEPxDMztuZofN7NDiL98qA4CQi0YbdW/3dk+3db+3ezsP9ALwRGpTTIf3dHg65pG9HWqr0hv11XTCpMpzgX9T0n2VX/f6URQAoGxLMqr/cOBtnoz1Rwfepi1s6w7AI/FYRAd72j19o35gd7ti9TYn2Dn3ET8LAQBcryke0XvubNO+zjY9deGVNY+zr7NNfXe2saY5AE9tTkQ0sL9L9z/23LrHGtjfpdZk9XrUiqO7mSXM7BNm9nkz+/LiLz+LAwCUN/H57KG3a19n25q+f19nmz576O3sagnAcy3JqPp3pdXXmVrXOH2dKfV3pdWcqN6nVau5f/3nkm6T9FuSvi1ph6QrfhQFAPhli0H4s4fevuKPHhPRhje/hwAMwC/p1oSOHepecxDu60zp2KFupavcp8ytcG86M/uhc+4dZnbeOddtZlFJf++cu9vfEq/X29vrRkdHq/3XAkDNzRVKen2uqCfOvaS/+P7Pbrit+4feebvu272dbd0BVE1mKqeR8YwGh8eUK958Nd1EtEED+7vU35X2LQCb2TPOud6lXltNZyxW/vuGmd0l6WVJa/tsDgCwJovbun/0XXfovt2/8ua27vnivOJs6w6ghtKtCR3s2a577mzT0LlLOn564oZv1I/s7dCBnna1JiJVnQJxtdWE4C+Y2VZJA5KGJDVLesCXqgAAy2JbdwD1qDkRVXMiWnmjvl3OSTP5knLFeSWijWqOR2QmtbXEq7YKxI2sZnWIL1Z++21Jv+pPOQAAAAi6eCyiHXU+FWs1q0OkzexLZvbNytddZvYx/0oDAAAA/LGaCWOPSnpS0vbK1z+W9AdeFwQAAAD4bTUh+Fbn3F9JWpAk51xJ0rwvVQEAAAA+Wk0InjWzWyQ5STKzuyVN+VIVAAAA4KPVzFj+lMqrQvyqmX1HUkrSB32pCgAAAPDRakLwmKSvS5pTeae4x1SeFwwAAAAEymqmQ3xFUqek/yjpv0r6NZW3UgYAAAACZTV3gu9yznVd9fUpMxvzuiAAAADAb6u5E/yDysNwkiQze6ekUe9LAgAAAPx10zvBZvasyitCRCV918wmKl/fLumCv+UBAAAA3lvJdIh7fa8CAAAAqKKbhmDn3M+qUQgAAABQLauZEwwAAABsCIRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhI7vIdjM3mtmz5vZC2Z2dJnj/rmZOTPr9bsmAAAAhJuvIdjMGiX9iaT3SeqSdNjMupY4rkXSJyV93896AAAAAMn/O8F7Jb3gnPuJc64g6auSDi5x3KCkhyTlfK4HAAAA8D0Et0u6eNXXL1b+7E1m9uuSdjrnhpcbyMw+bmajZjY6OTnpfaUAAAAIjZo+GGdmDZIekfSHNzvWOfcF51yvc643lUr5XxwAAAA2LL9D8CVJO6/6ekflzxa1SLpL0rfM7P9JulvSEA/HAQAAwE9+h+Azkt5qZm8xs5ik35E0tPiic27KOXerc+4O59wdkp6WdMA5N+pzXQAAAAgxX0Owc64k6fclPSlpXNJfOed+ZGYPmtkBP/9uAAAA4EYifv8FzrlvSPrGNX/2wA2OvcfvegBgI8gXSpqcLUiSrmRLyhbnlYw2qiVZbuupTTHFY763eAAILDrkMrjIAKg3V7JFTedKevzsJZ04M6GLl7PXHbNzW1KH93ToYE+7NiciaklGa1ApANQ3c87VuoZV6+3tdaOj/k0b5iIDoB5lpnIaGc9ocHhMueLCTY9PRBs0sL9L/bvSSrcmqlAhANQXM3vGObfkgguE4GtwkQFQjzLTOR09eV6nLqx+nfS+zpSOHepWejM9CkC4LBeCa7pOcL3JTOd09Ovndf9jz60oAEtSrrig+x97Tke/fl6ZaTa8A+C9zNTaA7AknbowqaMn6VEAcDVCcAUXGQD16Eq2qJHxzJp706JTFyY1MpbRTK7oUWUAEGyEYHGRAVC/pnMlDQ6PeTLW4PCYprIlT8YCgKBjaQN5f5G55842NSd4UA7A+uQL5Qd0Vzo962ZyxQUNnbukj77rDla2AeCrIKywFfouyEUGQL2anC3oxJkJT8c8fnpC9+3erh30JwA+CNIKW6GfDuHXRWbx3Q8ArJVzWvICsh4XL2cVwEWBAARAZiqnoXMvad8j39LDTz5/w/518XJWDz/5vPY98i0NnXtJmanaPE8V+lsBXGQA1KuZnD/zd2fyzAsG4K3FFbZW83zV4gpbIxcyNVnGMfR3grnIAKhX2eK8L+PmfBoXQDgFdYWt0IdgLjIA6lUy2ujLuImIP+MCCJ8gr7AV+hDMRQZAvWpO+DNjza9xAYRPkJdxDH0I5iIDoF6ZlZ+i9tLObUmZeTokgJDya4WtfKE6QTj0IZiLDIB6ldoU0+E9HZ6OeWRvh9pa4p6OCSCcgr7CVuhDMBcZAPUqHovoYE+7ElFvWnUi2qADu9sVY7oWAA8EfYWt0IdgLjIA6tnmREQD+7s8GWtgf5dak0zVAuCNoK+wFfoQLHGRAVC/WpJR9e9Kq68zta5x+jpT6u9Ks6U7AM8EfYUtQrC4yACob+nWhI4d6l5zj+rrTNVkIXoAG1vQV9giBFdwkQFQz9KbEzr2gW595rfvWvH0rUS0QZ/57bvoTQB8EfQVtvjc/iqLF5mR8YwGh8dWtORHItqggf1d6u9Kc5EB4Kt0a0IHe7brnjvbNHTuko6fnljyoZSd25I6srdDB3ra1ZqI8OkUAF8srrDl5cNx1VxhixB8DS4yAOpZcyKq5kRUH33XHbpv93Y5V36IJFecVyLaqOZ4RGZSW0ucB3QB+Gpxha2Hn3zeszGrucIWIXgJXGQA1Lt4LKIdMVo4gNpZXGHrc3/7D55smFHtFbbooMvgIgMAAHBjiyts3f/Yc+seq9orbPFgHAAAANYkyCtsEYIBAACwZkFdYYsQDAAAgHUJ4jKOTHgFAADAugVthS1CMAAAADwRpBW2CMEAAADwVBBW2GJOMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdCK1LqCeZfNFvTZXlCRdyZaULc4rGW1US7L8Y7ulKapkPFrLEgGEVL5Q0uRsQdLS/Sm1KaZ4jBYPADdCh1zC63MFzeXn9fjZSzpxZkIXL2evO2bntqQO7+nQwZ52NcUbtbUpVoNKAYTNlWxR07nSivvT5kRELUnerAPAtcw5V+saVq23t9eNjo76MvbLUzk9NZ7R4PCYcsWFmx6fiDZoYH+X9u1K67bWhC81AYAkZaZyGllDf+rflVaa/gQghMzsGedc75KvEYJ/ITOd09GT53XqwuSqv7evM6Vjh7qV3syFBoD36E8AsHrLhWAejKt4eWrtFxhJOnVhUkdPnldmOudxZQDCLkN/AgDPEYJVngP81HhmzReYRacuTGpkLKM35goeVQYg7K5kixrxsD/N5IoeVQYAwUYIljSXn9fg8JgnYw0Oj2k2P+/JWAAwnSt52p+msiVPxgKAoAt9CM7mi3r87KUVPWSyErnigobOXVI2z90WAOuTL5R86U/5AkEYAEIfgl+bK+rEmQlPxzx+euLN9YUBYK0mZwu+9KfF9YUBIMxCH4Kd05LrbK7HxctZBXDRDQB1hv4EAP4JfQieyfnzseBMno8bAawP/QkA/BP6EJwt+vMQW86ncQGEB/0JAPwT+hCcjDb6Mm4i4s+4AMKD/gQA/gl9CG5ORAI1LoDwoD8BgH9CH4LNpJ3bkp6OuXNbUmaeDgkghOhPAOCf0IfgW5qiOrynw9Mxj+ztUKo57umYAMIntSnmS39qa6E/AUDoQ3AyHtXBnnYlot78KBLRBh3Y3a64T3P5AIRHPBbxpT/FmBMMAIRgSWqKN2pgf5cnYw3s79KmOBcYAN7YnIh42p9ak8wHBgCJECxJ2toU075dafV1ptY1Tl9nSv1daW1pinlUGYCwa0lG1e9hf2pORD2qDACCjRBccVtrQscOda/5QtPXmdKxQ91Kb054XBmAsEvTnwDAc+YCuH9mb2+vGx0d9WXsl6dyemo8o8HhMeWKCzc9PhFt0MD+LvV3pbnAAPBVZiqnEfoTAKyYmT3jnOtd8jVC8PXemCtoNj+voXOXdPz0hC5ezl53zM5tSR3Z26EDPe3aFGtkCgSAqpjJFTWVLa24P7UmIkyBABBahOA1yuaLem2uKOekmXxJueK8EtFGNccjMpNSzXFWgQBQE/lCSZOzhRv2p7aWOKtAAAi95UIwjwkvIxmPakecOygA6k88FtGOGC0cANaKDrqMYnFek7N5LTjpSq6kbHFeyWijWhIRNZiU2hRXlDvBAGpg8ZMqSbqSvao/VZZAu6UpqiRv4gHghgjBS5jLl/R6tqjHz17SiWXm3B3e26GDPe3amoyqKc6PEoD/Xp8raC4/X+5PZ5bpT3vK/akp3qitPLMAANdhTvA1XpkuP3394BMrf/r6gXu71L8rrTaevgbgo7WuXrNvV1q3tdKfAIQPD8at0CvTOX365HmdujC56u/t60zpoUPdBGEAvshM53R0Hf2JdYIBhNFyIZjNMirWE4Al6dSFSX365Hm9Mp3zuDIAYffy1NoDsFTuT0dPnleG/gQAbyIEqzwHeGQ8s+YLzKJTFyY1Mp7RXKHkUWUAwu71uYKe8qo/jWX0xlzBo8oAINgIwZJezxb14BNjnoz14BNjer3yxDYArNdcfl6Dw970p8HhMc3m5z0ZCwCCLvQhuFgsP2W9kodMViJXXNDQ2UsqFrnQAFifbL7ofX86d0nZPG/UASD0IXhyNq8Tpyc8HfP46QlNzuY9HRNA+Lw2V9SJM973p9f4tAoACMELTkuus7keFy9ntRC8RTcA1BnnU38K4KJAAOC50IfgKzl/HmLza1wA4THjUx+ZydOfACD0ITjr09zdHHOCAawT/QkA/BP6EJyMNvoybsKncQGEh2/9KUJ/AgDfQ7CZvdfMnjezF8zs6BKvf8rMxszsvJk9ZWa3+13T1VoSkUCNCyA8mn3qI36NCwBB4msINrNGSX8i6X2SuiQdNrOuaw77oaRe51y3pK9JetjPmq7VYNLObUlPx9y5LakG83RIACFkPvUnoz8BgO93gvdKesE59xPnXEHSVyUdvPoA59wp59xc5cunJe3wuaZfktoU1+G9HZ6OeWRvh1ItCU/HBBA+tzRFdXiPD/2pOe7pmAAQRH6H4HZJF6/6+sXKn93IxyR9c6kXzOzjZjZqZqOTk+vbPvRq0WijDva0KxH15keRiDboQE+7oo2hn24NYJ2S8aj3/Wl3u+I8swAA9fNgnJl9SFKvpP+01OvOuS8453qdc72pVMrTv3trMqoH7r12lsbaPHBvl7Y2RT0ZCwCa4o0a2O9NfxrY36VNcQIwAEj+h+BLknZe9fWOyp/9EjPrl3S/pAPOuapvtdYUj6h/V1p9nesL132dKfXvSqspxkMnALyxtSmmfV71p660tjTFPKoMAILN7xB8RtJbzewtZhaT9DuShq4+wMzeIenPVA7Ar/hczw21bU7ooUPda77Q9HWm9NChbrVtZi4wAG/d1prQsXX2p2OHupWmPwHAm8z5vH+mmb1f0h9LapT0ZefcZ8zsQUmjzrkhMxuR9HZJP698y4Rz7sByY/b29rrR0VFf6n1lOqeR8YwefGJMueLCTY9PRBv0wL1d6t+VJgAD8NXLUzk9NZ7R4PDK+9PA/i71d6UJwABCycyecc71Lvma3yHYD36GYEmaK5T0+lxRQ2cv6fjpCV28nL3umJ3bkvrdvR060NOuLU1RpkAAqIo35gqazc9r6Nzy/elIpT9tijUyBQJAaBGC16hYnNfkbF4LTrqSKylXnFci2qiWREQNJqVaEqwCAaAmsvmiXpsryjlpJv+L/tQcj8hMSjXHWQUCQOgtF4K5fbmMaLRR27c01boMALhOMh7Vjjgr0QDAWhGCl5EvlDQ5W5AkXcmWlC3OKxltVEuy/GNLbYopzjQIAACAX7L4aZW0dIa6pSmqZI3fyJPglnAlW9R0rqTHz17SiTM3nnN3eE+HDva0a3MiopYkd2QAAEC4vT5X0Fx+fsUZqineqK01em6BOcHXyEyVV4dY9dPXu9JKt/L0NQAACKe1rmCzb1dat/mUoXgwboUy0zkdPXlepy6sfltm1uEEAABhVa8ZarkQzNIGFZmptZ88STp1YVJHT55XZjrncWUAAAD16+WAZihCsMpzgEfGM2s+eYtOXZjUyFhGM7miR5UBAADUr9fnCnrKwwz1xlzBo8pujhAsaTpX0uDwmCdjDQ6PaSpb8mQsAACAejaXn/c0Q83m5z0ZayVCH4LzhfIqECuZwL0SueKChs5dUr5AEAYAABtXNl/0JUNl89X5RD30IXhytqATZyY8HfP46Yk31xcGAADYiF6bK/qSoRbXF/Zb6EOwc1pyDbv1uHg5qwAuugEAALBiQc9QoQ/BMzl/pi3M5JkOAQAANq6gZ6jQh+Bs0Z8J2DmfxgUAAKgHQc9QoQ/ByWijL+MmIv6MCwAAUA+CnqFCH4KbE5FAjQsAAFAPgp6hQh+CzaSd25KejrlzW1Jmng4JAABQV4KeoUIfglObYjq8p8PTMY/s7VBbS9zTMQEAAOrJLU1RXzJUqrk6GSr0ITgei+hgT7sSUW9+FIlogw7sbleMOcEAAGADS8ajvmSouE9zja8V+hAsSZsTEQ3s7/JkrIH9XWpNMh8YAABsfE3xRk8z1KZ49W4iEoIltSSj6t+VVl9nal3j9HWm1N+VVnMi6lFlAAAA9WtrU0z7PMxQW5piHlV2c4TginRrQscOda/5JPZ1pnTsULfSmxMeVwYAAFC/bgtohjIXwP19e3t73ejoqC9jZ6ZyGhnPaHB4TLniwk2PT0QbNLC/S/1daQIwAAAIrZencnqqzjKUmT3jnOtd8jVC8PVmckVNZUsaOndJx09PLLkv9s5tSR3Z26EDPe1qTUSYAgEAAELvjbmCZvPzK85Qm2KNvk6BIASvUb5Q0uRsQc6V97HOFeeViDaqOR6RmdTWEmcVCAAAgGtk80W9Nle8YYZKNcersgrEciGYZQyWEY9FtCPGjwgAAGA1kvGodsTr+1NyEh4ABNDiJ1WSdCVbUrY4r2S0US2VJRpTm2KK8yYeQI0EoUfRIQEgQK5ki5rOlfT42Us6cebG8+0O7+nQwZ52bU5E1JKs77sxADaOIPUo5gQDQECsefWaXWmlW1m9BoC/6rFH8WAcAARcZjqnoyfP69SFyVV/L+uYA/Bbvfao5UIwm2UAQJ3LTK394iJJpy5M6ujJ88pM5zyuDACC26MIwQBQx65kixoZz6z54rLo1IVJjYxlNJMrelQZAAS7RxGCAaCOTedKGhwe82SsweExTWVLnowFAFKwexQhGADqVL5QfsJ6JQ+YrESuuKChc5eULxCEAaxf0HsUIRgA6tTkbEEnzkx4Oubx0xNvrt0JAOsR9B5FCAaAOuWcllxjcz0uXs4qgIsCAahDQe9RhGAAqFMzOX8+EpzJMx0CwPoFvUcRggGgTmWL876Mm/NpXADhEvQeRQgGgDqVjDb6Mm4i4s+4AMIl6D2KEAwAdao5EQnUuADCJeg9ihAMAHXKTNq5LenpmDu3JWXm6ZAAQiroPYoQDAB1KrUppsN7Ojwd88jeDrW1xD0dE0A4Bb1HEYIBoE7FYxEd7GlXIupNq05EG3Rgd7tizAkG4IGg9yhCMADUsc2JiAb2d3ky1sD+LrUmmQ8MwDtB7lGEYACoYy3JqPp3pdXXmVrXOH2dKfV3pdWciHpUGQAEu0cRggGgzqVbEzp2qHvNF5m+zpSOHepWenPC48oAILg9ylwA98/s7e11o6OjtS4DAKoqM5XTyHhGg8NjyhUXbnp8Itqggf1d6u9KE4AB+K4ee5SZPeOc613yNUIwAATHTK6oqWxJQ+cu6fjpCV28nL3umJ3bkjqyt0MHetrVmogwBQJA1dRbjyIEA8AGky+UNDlbkHPSTL6kXHFeiWijmuMRmUltLXFWgQBQM/XSo5YLwTwmDAABFI9FtCNGCwdQn4LQo3gwDgAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhE4gd4wzs0lJP6vBX32rpFdr8PfCX5zXjYtzu3FxbjcmzuvGVatze7tzLrXUC4EMwbViZqM32noPwcV53bg4txsX53Zj4rxuXPV4bpkOAQAAgNAhBAMAACB0CMGr84VaFwBfcF43Ls7txsW53Zg4rxtX3Z1b5gQDAAAgdLgTDAAAgNAhBAMAACB0CMHXMLMvm9krZvbcDV43M/ucmb1gZufN7NerXSNWbwXn9Xcr5/M4xajyAAAE9UlEQVRZM/uume2udo1Ym5ud26uO22NmJTP7YLVqw/qs5Nya2T1mdtbMfmRm365mfVi7FfTkVjP732Z2rnJuP1LtGrF6ZrbTzE6Z2VjlvH1yiWPqJkcRgq/3qKT3LvP6+yS9tfLr45L+tAo1Yf0e1fLn9aeS/qlz7u2SBlWHE/hxQ49q+XMrM2uU9JCkv65GQfDMo1rm3JrZFkmfl3TAOfc2Sf+iSnVh/R7V8v9uPyFpzDm3W9I9kv6LmcWqUBfWpyTpD51zXZLulvQJM+u65pi6yVGE4Gs45/5O0uVlDjko6Suu7GlJW8zsV6pTHdbqZufVOfdd59zrlS+flrSjKoVh3Vbwb1aS/o2k/yXpFf8rgldWcG6PSDrpnJuoHM/5DYgVnFsnqcXMTFJz5dhSNWrD2jnnfu6c+0Hl91ckjUtqv+awuslRhODVa5d08aqvX9T1JxjB9jFJ36x1EfCGmbVL+oD41GYj+jVJW83sW2b2jJn9Xq0Lgmf+m6Rdkl6S9KykTzrnFmpbElbDzO6Q9A5J37/mpbrJUZFa/KVAvTKzPpVD8LtrXQs888eSPu2cWyjfVMIGEpH0jyXtk5SU9D0ze9o59+PalgUP/Jaks5LeI+kfSfobM/t759x0bcvCSphZs8qfvv1BPZ8zQvDqXZK086qvd1T+DAFnZt2Svijpfc6512pdDzzTK+mrlQB8q6T3m1nJOfdYbcuCB16U9JpzblbSrJn9naTdkgjBwfcRScdceTODF8zsp5I6JZ2ubVm4GTOLqhyA/9I5d3KJQ+omRzEdYvWGJP1e5enGuyVNOed+XuuisD5m1iHppKQPcxdpY3HOvcU5d4dz7g5JX5P0rwnAG8bjkt5tZhEza5L0TpXnICL4JlS+wy8zS0u6U9JPaloRbqoyh/tLksadc4/c4LC6yVHcCb6GmZ1Q+UnUW83sRUn/XlJUkpxz/13SNyS9X9ILkuZUfreKOreC8/qApFskfb5yx7DknOutTbVYjRWcWwTUzc6tc27czP6PpPOSFiR90Tm37FJ5qA8r+Hc7KOlRM3tWkqk8penVGpWLlfsNSR+W9KyZna382b+T1CHVX45i22QAAACEDtMhAAAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAqSywDy9GwDWiUYKAHXOzO4ws+fN7CuSnpM0YGZnzOy8mf3RVcdcMLO/NLNxM/taZRc1mdkxMxurHP+fa/n/AgD1gs0yAKDOmdkdKm8Z+y5JmyV9UNK/UnknrSFJD6u8zexPJb3bOfcdM/uypDFJ/0PSdyV1OuecmW1xzr1R9f8JAKgz3AkGgGD4mXPuaUm/Wfn1Q0k/kNQp6a2VYy46575T+f1fSHq3pClJOUlfMrNDKm9TCgChF6l1AQCAFZmt/NckfdY592dXv1i5W3ztR3vOOVcys72S9ql8B/n3Jb3H31IBoP5xJxgAguVJSR81s2ZJMrN2M2urvNZhZv+k8vsjkv5v5bhW59w3JP1bSburXjEA1CHuBANAgDjn/trMdkn6nplJ0oykD0mal/S8pE9cNR/4TyW1SnrczBIq30X+VE0KB4A6w4NxALABVKZDPOGcu6vGpQBAIDAdAgAAAKHDnWAAAACEDneCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDr/H8P1kfQzT1YZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXzV5Z3n/9d17k9uIZAEAkG8gRCUQDFabyvUWLoFwSrtqNPWGbu6u+3ub8Zure50tK20Xe9au52daQen7rTdUXe8mYrgDhoVtd6MAj+JSggiRW4CSSCQ23N/rv0jCQUkkOR8vweS834+Hj4kJ+d8uIDH48rnXOdzfT7GWouIiIiISC7xnOoFiIiIiIhkm5JgEREREck5SoJFREREJOcoCRYRERGRnKMkWERERERyju9UL2AkJk6caKdPn36qlyEiIiIip7ENGzbst9aWHu97ozIJnj59OuvXrz/VyxARERGR05gx5uPBvqdyCBERERHJOUqCRURERCTnKAkWERERkZyjJFhEREREco6SYBERERHJOUqCRURERCTnKAkWERERkZyjJFhEREREcs6oHJaRLbF4kraeOABdkSSRRIqw30thuO+vrTQ/QDCgv0IRERGRI42GHEoZ3HF0RRJ0RpM88+4eHntnJ7vaI594TmVJmBsumMayeVMoCvkoDPtPwUpFRERETh+jKYcy1tpT8htnora21ro1NrmlI0p9Ywsr1mwmmkif9Pkhv4e7Fs+mrrqc8uKQK2sSEREROd2djjmUMWaDtbb2uN9TEvxHLZ1R7ny6gZe3tA37tQtnlXLvtTWUFykRFhERkdxyuuZQJ0qCdTGuX0vHyP/xAF7e0sadTzfQ0hl1eGUiIiIip6/RmkMpCaavfqW+sWXE/3gDXt7SRv3mFrqjCYdWJiIiInL6Gs05lJJgoDOaZMWazY7EWrFmMx2RpCOxRERERE5nozmHyvkkOBbvu8E4lALuoYgm0qzatIdYXImwiIiIjF2jPYdyNQk2xjxijGk1xrw/yPeNMebnxphtxpgGY8x8N9dzPG09cR57Z6ejMR99e+fh3ngiIiIiY9Foz6HcPgn+R+DzJ/j+vwNm9P93K/ALl9fzCdZy3B52mdjVHmEUNt0QERERGbLRnkO5mgRba18F2k/wlGXAb2yft4BxxpjJbq7pWN1Rd47cu2MqhxAREZGxa7TnUKe6JngKsOuIr3f3P/YJxphbjTHrjTHr29oyu4F4pEgi5VisI0VdiisiIiJyOhjtOdSpToKHzFq70lpba62tLS0tdSxu2O91LNaRQj534oqIiIicDkZ7DnWqk+A9QOURX0/tfyxrCkK+URVXRERE5HQw2nOoU50ErwK+1t8l4iKgw1q7N5sLMAYqS8KOxqwsCWOMoyFFRERETiujPYdyu0XaY8CbQJUxZrcx5uvGmP9ojPmP/U95DtgObAMeBr7h5nqOpzQ/wA0XTHM05o0XTqOsMOhoTBEREZHTyWjPoVw9b7bW3nCS71vgm26u4WSCAR/L5k3h5y996Eiz55Dfw9K5UwioJlhERETGsNGeQ53qcojTQlHIx12LZzsS667FsykOqx5YRERExr7RnEMpCQYKw37qqstZOCuzrhMLZ5VSN7ucgpDfoZWJiIiInL5Gcw6lJLhfeXGIe6+tGfE/4sJZpdx7bQ3lRSGHVyYiIiJy+hqtOZSxo3C+b21trV2/fr0rsVs6otQ3trBizeYh1beE/B7uWjybutnlSoBFREQkZ52OOZQxZoO1tva431MS/End0QQdkSSrNu3h0bd3HncudmVJmBsvnMbSeVMoDvlUAiEiIiI573TLoZQEj1AsnqStJ461fXOso4kUIb+XgqAPY6CsMKguECJySgzsTwBdkSSRZIqwz0th/6WS0vwAwYAu6YrIqXFsDpVMpfB5s59DnSgJ1g55AsGAj6n6ISIip5GuSILOaJJnNzXzT29/POgpy59eeAZXz62gKOSjMKxPqkQkuzzG4DEwUBSRSIPP2zdgw2PAnAZnsDoJFhEZJVo6orzU1MoPnv1gyPV237v6XD5bVUZ5se4siIj7emNJDkYSPPPuHh47QTnEDRdOY9m8KYwP+8kLunfgqHIIEZFRrqUzyl89/R4vbmkd9muvnFXGj6+do8u7IuKq1s4oLzS2sGL1MC7GLZnNVdXllOli3NBkKwlOpdK098ZJpi1d0SSJZAq/z0thyIfPYyjJC+D1qsuciLirpSPKX/3LyBLgAUqERcRNrZ1R7ni6gZe3tA37tQtnlXLftTWuJMInSoKVwR1HPJlmX0eUFxtb2fDxQfYcjNDWFWNfZ4y2rhh7DkbY8PFB6htb2NcRJZ7MfFSgiMjxdEUSvNzUmlECDPDillbWNbXSHU04tDIRkT6ZJMAAL29p446nG2jtjDq8shPTra9jtPfE2dzcQUHIz+Z9nTy1cfeg9SzXzZ9KeXGYba1dzK4opiQ/cApWLCJjWVcsyfef/cCRWN9b9QGXzyhVS0cRcUxvLMkLjS0jToAHvLyljfrGFq751BTystSUQCfBRzjQHaNpXydNLV1cv/JNflb/4XETYIBd7RF+Vv8h1698k6aWLpr2dXKgO5blFYvIWBaLJ1nd0Dyk2rqhiCbSrG5oJhZPOhJPRORgJMGK1ZsdiXXP6s0c7M3ep1VKgvu198TZczDC37+6nRWrG4f8QyeaSLNidSN//+p29hyMcLC/b6eISKYO9Mb57VsfOxrzt299zIFe7VMikrlEIsUz7+5x9I36qnf3kEikHIl3MkqC6asBbu2K8tP6raxrGtlx/rqmNn5av5WWLtUIi4gzUmkG/TRqpHa1R0hpixIRB7R2x3js7Z2Oxnz07Z20ZumTdSXBQEdvnNe37R9xAjxgXVMbr2/bT4dOWUTEAT0xd8oWelQOISIOSFt33qins9S4LOeT4FQqTWcsyQNrmxyJ98DaJjpjSVI6ahGRDEVc+kgwGs/OR40iMrZ1R915Q93t0gHAsXI+Ce6IJli96eQXT3weQ17Ai89jTvi8aCLNmoZmOtSGSEQyFPS5s0UHXIorIrllqG/Uh5pDDYhmqSY451uk9cZTPLlx9yce93oMddVlfGHOZKaMCxNPpokn0wR8HgI+D3sORVjTsJcXt7SSOubc/okNu7l2/lRK8rP1pxCRsagg5M4W7VZcEcktIf/x31Afm0PFkmmiiRQhv5fgSXIocO8A4Fg5vxOmrf1EPcvSuRXcfOl0drb3Hj4xsUDKWgb+qYI+D4vnTOYbC87mkdd3sGpT8+HX99WzjL5JfCJyevEYQ2VJ2NGau8qSMB4ztNMYEZETKTxOz/GBHGrd1jYefL7phLMWjpdDDRbXDTmfBB9Zz5If8HL/8rkEfQaMYfv+npMOyzhjYj5L505m0bmT+M6Tm+jpr7XrjqnmTkQyE/AZls+fykP1HzoW80vnTyWgce8i4gBjOPxGfSCH2tcZ4fqH3zphmenArIVfvvIRty+qOiqHqiwJk6336Tm/E8b625nlB7z86s8uYHyen4/be4c1LOPj9l7G5/n51Z9dQH7AC0A8S/UsIjK2La6pGPQjx+EK+T18YU6FI7FERIrCXm64YBr5AS8P31TLExt2jWjWwhMbdvHwTbXkB7zceOE0isOaGJcVYX9f0vqTL88j7Pey8rWRDctY+dp2wn4vP/nyPABC/XFFREbqQFcCbJrvLKpyJN53FlVhbZoDGuojIg7ojKS4fMZEHvzSXFa+uj2jWQsrX93Og1+ay2XnTKQjou4QWZEf9LF0bgWVJWEeynBYxkP1W6ksCXN1zWTygzlfaSIiGYokUvz8pY+4avYkFs4qzSjWwlmlXHXuJH7+4ras3bwWkbHNWnhnRzvtPXFHZi2098R5+w/tZOtaVc4nwcbAX1x5Dm9tP+DIP+Bb2w/wl1fNyFo9i4iMXQOfVL350QFuufwsFlSNLBFeUFXKLZefxVvbDgAQ8umTKhHJXE8syfxp41mxZrMj8Vas2cz5Z4zP2kCfnD+u9HkMUYyjwzIWzCzD71UWLCKZKQj5uPnS6Vz/8Ft4jeH+5XO5fMZEHljbNKSSrZDfw+2LqphUFOaWX68nZS2P33KRWqSJiCP8XkN94/4hl5CeTDSR5vWP9rPo3EmOxDuZnD8JthbWNDg8LOO9ZtIaGCciGQr5Da9/dIBoIk1PPMU3H93IuzsP8fgtF3Fb3QwqS8LHfV1lSZjb6mbw+C0X8e7OQ3zz0Y30xFNEE2ne+OgAIb/epItI5nxeD/9n/S5HYz7+zi78Wepgk/PHAcm0HdKwjOE0en5iw26++Kmp2fojiMgYlUhZHn9n51GPPduwl+fe38eVs8r49ueqqBgXJpFKE02kCfk9+L0emg9FWN2wl5+/tO0T+9Nj7+zkmk9NyeYfQ0TGKK/HDKmPuc9jCPg8xJNpkscZjnGkXe0RvEOcLJepnE+CLYMPyxhpo+dd7RH+OFZDRGRk0pbj7j+ptOX5zS08v7kFGP4PGA3zEREnHDlr4UjHO0iMJVMEfUObGNcdU01wVhxvWEamjZ5BwzJEJHNdg/yAOVYybUnGh77nDPaDS0RkOI6XJy2dW8HNl03ntQ/3n/Ag8cu1lXxj4dk88vtPToyLOVRjfDI5XxN85LAMpxo9g4ZliEjmYi7tI9GkLi2ISOaCvj+mkfkBL39743xqzxjP9Svf4ifPbz3hwLGfPL+V61e+Re0Z4/nbG+cfzp+ArE21zPkkeKAF0f3LnWn0fP/yuYCGZYhI5oIutTILamyyiDggL9i3Rw1M3X16427uXvXBsA4S7171AU9v3H3U1N2BuG7L+Z1wYFjGvs6II32C93VGNCxDRBzh1g+CbP2AEZGxr7IkzE++PJeHX93Oi1taRxTjxS2tPPzqdn7y5bmDdr1xQ84nwQGv4ZbLz3S0T/CtnzmLgC/n/2pFJEMWHP+BUFkS1rVdEXFEOODhO4uqaO9JjDgBHvDillYO9iS4Y1HV4U/p3ZbzmVpe0MNr25xt9Pz7bfvJC+T8X62IZCjs93DdfGfbLS6fP5U8lWuJiBOs4VPTxnPP6g8cCfeD1R8wb9p4yFIr85zP1DoiKR57e+fJnzgMj769k46Ibl+LSGbiScuVs8oI+Z3ZqkN+D5+dVXb4QrCISCYKg16ee2+voweJz723l8KAToKzwg7ShzMTu9ojqA2niGQq6DfsPhjh9kVVjsS7fVEVuw9GCKlcS0Qc0B5J8Nu3PnY05m/f+pj23oSjMQeT8zthV9Sdv+hsNXoWkbHLWphZXkhFcZgFVaUZxVpQVUpFcZiZkwpVEywijkin3TlIPMnMH8fkfBLs1BH+J+OqT7CIZOZgTwKvF9q6o9z6mbNGnAgvqCrl1s+cRVt3FJ+B9t64wysVkVzU49KBX088OweJOZ8Eu3UDMeRSf08RyR3RRIqfPv8hF0yfwG/e2MGXzq/kriXVQ64RDvk93LWkmi+dX8lv3tjBhdMn8ODzW7M2jUlExraIWwN9hjEBMxM5nwQXhNzp5+tWXBHJHSG/l1Wbmtl9sJf/tOAcntiwi3d3HuLxWy7itroZg7ZPqywJc1vdDB6/5SLe3XmIJzbs4j8tOIddB3t5tmHvUVOeRERGyq29JFttZnM+UzOm7weGkzUtlSVhTJbae4jI2DUwdOcvH3+X//XnF3Dr5WfRuK+TP/3Vv3Hp2RP59ueqqBgXJpFKE02kCfk9+L0emg9FWN2wl5WvbedbV82kelIRsWSKv3z83aPiiohkYrQfJOb8TlgQ8nLDBdO436FhGQA3XjiNQp0Ei0iGLPbwm/Q//1/vcP/yuZw1MZ9/+vcX8UpTKw8+38Su9gg+jyHg8xBPpkmm+16zfP5UvrnwHA72xDjYm+A7T26iJ57qH5ahq3EikjmDcecgMUuNgnM+U9t3KMayeVP4+UsfOnJJLuT3sHTuFPZ2RCkOBxxYoYjkqoCvb1jGz+o/pCee4puPbuTqmsl8/fIzObs0n+9+oZoJBUESqTSxRJpg/0nwge4YyVQasDy9cQ/PNuw9HHP5/KkqhxARR4T8huXzp/JQ/YeOxfzS+VM1MS5bIokUjXs7uGvxbEfi3bV4Npv3dmStqFtExq5DPQkWzCw96iLcsw17+cqv3qasMMi5FcVMLg4xPhxgQr6f8eEAk4tDnFtRTGlhkK/86u2jEuCQ38MVM0s52JOdHpwiMrYZY1gyt8LRgT6LayqyVlKa80lwwOfh3/9mA5+tLmPhrMz6cC6cVcqV1WXc8psNWSvqFpGxK5pI8cjrO44alvEPXzuftX/xGfZ3x/mguYN9HVEO9cbp6E1yqDfOvo4oHzR3sL8rztq/+Az/8LXzD7/29kVV/Or3fyCa1Jt0EclcMmUJ+DyODvQJej3EU9npYJPzmVphyMfSuRW8ua2Ne6+tGXEivHBWKfdeW8Mb29q4umayukOISMYGukNMKgrz5fOn8PodC/F5PLR1xyjJDzB9Yj6lhUGKwn7CQS9FYT+lhUGmT8ynJD9AW3cMn8fD63cs5MvnT2FSUZhnG/aqhaOIOCKRsvzDa9u56KwJjgz0ueisCaz8/XaSqezcW8j5TM1jDLdcfia7D0b4ny9u5cdfnMO6LW38YPUHQ6oRDvk9fO/qc1lYVcr/fHErl5zT15Teo/YQIpKhgS4Of/PSVn5z86fZ1tpNcZ6fCfkBnt22n8fe2XncCymVJWFuuGAaV8+twFrLxwd6+faiWXztkX87Kq6ISKZ+/cbHXHzWRG6rmwnAuqa2YcdYUFXKbXUz2dUe4TdvfMwtl53l9DKPK+dPggtCXnYfjNDWHWXx3Cn8oa2HScVBHr/14qH14bz1YiYVBdne1sPiuVNo646y+1CEwpBOWkQkM57+Fo6P3HQBbV1RJo8Ls7m5k6seeoX71zYNeiN7V3uE+9c2cdVDr7C5uZPJ48K0dUV55KYLqCwJ49F7dBFxwMDEuP/6z+8SSaS49fKzRjTQ59bLzyKSSPFf/7mvjWO2JsYZa0dfq5za2lq7fv16R2LtPtjLwZ44ezuilBeFeKh+K+ua2vB6DFfOKmNxzeTDfTiPvH090IfzpS2tpNL28LuYls5o30WV/ABTx+c5skYRyU2JRIrt+3swHsgP+PnrZ97j5S3DP2VZOKuUHy6bQ088gbVwVmkBfm/On4GISIb+/50H+eLfvQFAfsDL/cvnEvAZSgtDvNLUypMbdw/6adXy+VO5oqqMtq4o8aQ93MYR4HffvIR5leMdWaMxZoO1tvZ438v5z8T8XsOug72cMSGfB9Y2HXWMP1DRYADsMf+Ho7rYDbzu9kVVfHygh7KioPuLF5Exze/3Mi4vQDyVHnECDPDyljb+mvdYsew8/B6PEmARccSR7RaPauN42ZmcOeHoNo5HDvQ50B0jlkyDtax6t/moLjYAgSztUTmfBEfiaarKC1m3te1wIrt0bgU3XzqddVvbDjejP1ZlSZjr5k/lGwvO5pHXd7BqUzPrmtq4fMZEFlSVEnGg57CI5LZYPEkay6tb20acAA94eUsbr8xqo25WGbF4kmAg57d/EcnQ8ZoAPNuwl+fe33f403ToOzT0mj+OwIgl00d9mj6UuG7I+V0wFPDQHbU8sLbp8FH+vs4I1z/81gkvxu1qj/Cz+g/55SsfcfuiKhadO4nvPLmJB9Y2ccXMMsIO9cwTkdzVEUuQTltWrNnsSLwVazazoKqUjmiCMiXBIpIhzyAT41Jpy/ObW3h+cwvAJ6ZankhlSRhPlibG5XymZi2saWjGawwP31TLExt2sWJ145Cnx0UTaVasbuSJDbt4+KZavMbw3HvNnOTfWETkpHwewzPvNjsyzRL69qtVm5rxeXUzTkQyF+ifGHcyybSlN546aQIMfRPjsjVrIeeT4GTK8uTG3dy/fC4rX90+otYe0FcTvPLV7dy/fC5PbNidtR53IjJ29cbTPPbOTkdjPvr2TnrjKtcSkcwVBnwsrnF4YtycCorDfkfinUzOJ8HWWj5VOZ59nZERJ8AD1jW1sa8zwryp47AoCRaRzFjLoG3QRmpXe4RR2BRIRE5D4aCfwqDP0YlxBUEfQX922szmfBLcE09x86XTeWBtkyPxHljbxNcvO5OemMaSikhmuqPu9MrsjmWnB6eIjH1Bv4dLzp7oyMS4S86e6Nip8lDkfBIc8BrWbW1ztObula1takEkIhmLJNx5Mx11Ka6I5J5xeQFK8gLcVjdzxInwwKyFCfkBivMCDq9wcDmfqfm8Hp7auNvRmE9u3I1fF09EJENunYgEs3TpRERyQ3lxiMnFoYwmxk0uDlFWFHJ5pUfL+R45HmNcqbnzGCXBIpKZwpA7l0PciisiucsAk/sn7D5+68VDnhjX0RunYlw4S03RjpbzSbBbtXE9qrkTkQwZw3F7cGaisiSM3qOLiJNaOqLc+S8NvLyljbsWV/O5cycxo6zghBPj0tYyIT/Ahh3t3PS/3mHhrFLuvbaG8iyeBuf8Z2Ixl2rjYkm1IBKRzOQFPNxwwTRHY9544TTyAtm5eS0iY19XJEF9Y8vhqZYr1jRy5U9fYfv+HqZNyKO0MEhx2M/4PD/FYT+lhUGmTchje1sPV/70FVasaQT6plrWb26hO5rI2tpz/iQ45FIbDtXciUim4gnL0nkV/PylDx25vBvye7h6bgVxvUkXEYd0RpOfmGoZT6Z58PmtPPj8VgBCPg8FIR/d0STRE+w/fVMtyyjIUslWzmdqbs2nztbcaxEZu5o7ogS9Hu5aPNuReHctnk3Q62FvR9SReCKS22LxJM+8u+ekb9KjyTT7u+MnTIBhYKrlHmLx7JSU5nwSHPB6qCwJOxqzsiSctZF/IjJ2hf1enm1o5oqqUhbOyqwH58JZpVxRVcqqTc2EfCqHEJHMtfXEXZlq2dYTdzTmYHI+U5uQH+CrF013NObXLp7OhPygozFFJPcUhHzcs7qReCrFD5fNGXEivHBWKT9cNod4KsWKNY36pEpEHDHap1rmfBLs9XpYOneyo3Ovr66ZjNej69cikhlPf3eIP/nlW2Atdy85lx9dc96wenD+6Jrz+N6Sc8Fa/uSXb1FZEsaT8zu/iDhhtE+11FYIlOQHuWfZuY7EumfZeZToFFhEHFBWEOSGC6fR1h3nmr97nWQqzZwpxbxw2xXc8fmqQUu5KkvC3PH5Kl647QrmTCkmkUpzzd+9Tlt3nBsvnEZZYXYb0ovI2DTap1rqMzEg4PNQVz2JuuoW6htbRxynrrqMq6rLVQ8sIo7w+70smzeFn7/4IW3dca566NXDPThrzxjPwlllhPxeemLJwz0484M+ookUXZG+NkPv7Gg/3IIo5PewdN4UjXUXEUeEXeqwla17C9oJ+5XkB7jvuhrqqstG9Pq66jLuu66G8fnZm3ktImPf+LCfu5b8sTvEijWNfO5nr9LaGSXk9+I1Bo8xBLx9EzC9xhDye2npjPK5n716OAEGuHvJbMbnaVqciDhjtHfY0knwESYUBLl/+VzqG1u4+5n3h9SXM+T3sGLZedRVlysBFhHH5QV9XFVdfrgZ/dK5Fdx86XTWbW3j3rVN7GqPfKIHZ2VJmOvmT+Wxf/9pHnl9B6s2NbNwVil11eXkBbTti4gzRvtUS2OzdQXPQbW1tXb9+vWuxY8n07T3xFnd0Myv39wx6Nzrmy6ZzpI5FZTkB1QCISKuau2Msq21m8Z9nTywtmnIb9JvX1RF9aQizikroCyL40hFZOyLxZP86vUd3L+2ybGYd3y+iq9fdiYBh0oijDEbrLW1x/2ekuDBpVJp2nvjJNOW7miSWDJNsP/ExecxlOQH1QVCRFzX3hNnX0eEn76wdUT3Fuqqy/jWVTOZXBzWJ1Yi4qg9ByNc+dN1jk21fPFbC5gy3rn5DSdKgvW52Al4vR5KB25RF5/atYhIboon07R1xfjJ81t5ccvILu7WN7ZiLdzx+VnkB3365EpEHFMU8nHX4tl893fvZxzrrsWzKQ5nLzVVEnwCiUSKtp4YaQtd0SSxZIqgz0thyIfHQGl+EL9LNyNFRAA6euNs+PjgiBPgAS9uae27u5Dnp1RlESLikMKwn7rqcuq39N1bGKmFs0qpm11OQSh7l3d1HHAcvbEkew5FeKGxhYbdHezriNLeE+dAd7z/Y8koDbs7eL6xhT2HIvRmqamziOSWVCpNTyLFPas/cCTeD1Z/QE8iRSqV+ceWIiIDyotD3HttTUZTLe+9tobyLL9B10nwMVo7ozTu7aQ4L8DW1m6e2rh70Itx182fypTxeWxr6aJ6cpEunYiIozqiCda+v8+RWjuAaCLN8x/sY/n5UzXUR0QcVV4U4t4v1lDf2MKKNZuHfHn3rsWzqZtdnvUEGLKQBBtjPg/8D8AL/IO19t5jvj8N+DUwrv85d1prn3N7XcfT1n/7eltb90lvX+9qj/Cz+g/55SsfcfuiKvxeDwb0MaOIOCaaSPG//+1jR2P+9q2PWVIz2dGYIiLQdyK8bF4FC6rKWLVpD4++vXPQg8QbL5zG0nlTKA75sloCcSRXk2BjjBf4W+AqYDfwjjFmlbV28xFP+2vgn621vzDGzAaeA6a7ua7jaeuM0twRZeVr21nXNPSalmgizYrVjSyoKuW2upmAEmERcUYqjaP9N6EvnqohRMQtBSE/BSE/N18ynavnVmAtdMeSRBMpQn4vBUEfxkBZYdCxNmgj5fZJ8IXANmvtdgBjzOPAMuDIJNgCRf2/LgaaXV7TJ/TGkuzvifNQ/dZhJcBHGnjdHZ+fRX7Ip4b0IpKxbpfuG/ToHoOIuCwY8DH1NM+F3F7dFGDXEV/vBj59zHO+DzxvjPkvQD5Qd7xAxphbgVsBpk2b5ugiu2JJ3vho/4gT4AHrmtq4fMZESvIrlASLSMaiidSoiisiMiAWT9LWEwegK5IkkkgR9nsp7G+BVpofIHiKc6XTIVO7AfhHa+1PjDEXA781xpxnrT3qAztr7UpgJfQNy3DqN08kUnRFkzzg0LSTB9Y2sWBmGSXhlNqniUhGgi7181WfYBFxS1ckQWc0yTPv7uGxdwavCb7hgmksmzeFopCPwvCpqQl2eyfcA1Qe8fXU/seO9HXgnwGstW8CIWCiywaz8nYAACAASURBVOs67FA0zpqGZkdvX695r5lD0bgj8UQkdxWE3DmncCuuiOS2lo4oqzY1c+VP13H/2qZB7zTsao9w/9omrvzpOlZtaqalI5rllfZxOwl+B5hhjDnTGBMArgdWHfOcncCVAMaYavqS4MzqEoYhlrQ8uXG3ozGf2LCbWHL0jaMWkdOLxxgqS5wbHwp9JzAeo3HvIuKsls4od/5LA9/93ftDPliMJtJ893fvc+e/NNDSmf1E2NUk2FqbBP4zsBZopK8LxAfGmHuMMUv7n/ZfgVuMMZuAx4A/s9ZmLYNMW+vK7et09v4IIjJG5QW8LJ8/1dGYXzp/KvkBlWqJiHNaOqLc+XTDiCfGvbyljTufzn4i7PpnYv09f5875rG7j/j1ZuBSt9cxmK6oO7eku6O6eCIimSkO+Vkyt4JfvPKRIyVbIb+HxTUVFIUDDqxORKSvBri+MbORydCXCNdvbmHZvIqs9Q3O+dsR8aQ7DTPjSSXBIpIZr9dDUdDH7YuqHIl3+6IqioI+vB6VQ4iIMzqjSVas2XzyJw7BijWb6Yhkr4VjzifBYZc6OITUGUJEHFCcF+DScyayoKo0ozgLqkq57JyJFOfpFFhEnBGL93WBcLK5wKpNe4jFs5MI53wSrNvXInI6C/g8lBWG+FbdzBEnwguqSvlW3UzKCkNqjyYijmnrifPYOzsdjfno2zsP9xd2W85nagGvh8qSsKOX4ypLwgS8+kEjIs4oyQ9greU/fOYsLp8xkQfWNg3p5CXk93D7oipmTy5iyvgw4/N1CiwizrHWndHu2eotkPNJ8IT8AF+9aDo/fq7RsZhfu3g6EwqCjsUTEZlQEKTKGNJpy+O3XswrTa08uXH3oI3ol8+fyhVVZfREE8yaVKQEWEQc1+1Wc4EsjXbP+STY6/Vw9dzJ/PSFoZ2snEzI72FJzWRdPBERx5XkB7jgzAm098SZNamQ736hmgkFQRKpNNFEmpDfg9/r4UB3DI+BSUUhSiYXqQRCRFwRGeWj3XM+CQaYkB/knqXn8p2n3ss41j3LzmVCvk6BRcQdAZ+HScUhSgvKae+Nk0xbuqNJEqk0fq+HgpCP6RPyKMkP6s24iLjKteYCvuw0F1ASTN8PlbrZk6jb3EJ9Y+uI49RVl3FV9SSduoiI67xeD6WFob4vik/tWkQkN4325gLK1vqV5Ae477oa6qrLRvT6uuoy7ruuRnV3IiIikhOMwZXR7tma7K4k+AgTCoLcv3wu9y+vIeQf2l9NyO/h/uU1PLB8ri7DiYiISM4ozQ9wwwXTTvo8n8eQF/DiG0KJ1o0XTqOsMDv5lMohjlGSH+CaeVP4zIxSVjc08+s3dwx6+/qmi6ezpKaCkvyASiBEJKti8eThXppdkSSRRIqw30thuG9bL80PEAxoixcR9wQDPpbNm8LPX/rwqOYCXo+hrrqML8yZzJRxYWLJNNFEipDfS9DnYc+hCGsa9vLillZS6T/2Qwv5PSydO4WAaoJPnWQqTcpaJheHTnj7OmUtKWtJptJKgkUkK7oiCTqjfVOaHntn56Bv0m+4YBrL5k2hKOSjMOw/BSsVkVxQFPJx1+LZfPd37wOwdG4FN186nXVb23jw+aZB96jr5k/lGwvO5pHXd7BqUzMAdy2eTXE4e6mpsdnqSOyg2tpau379eldit3ZGqW9s4Z7Vm496V+PzGAI+D/FkmuQx71ruXjKbuupyyopCrqxJRASgpaNvf1qxZvOQh2Xctbhvfyov1v4kIu5o6Yjyg2ffZ3HNFPZ1RoY90GdSUZg1DXv43tLzKHc4lzLGbLDW1h73e0qC/6i1M8odTzfw8pa2Yb924axS7ru2RomwiLiipTPKnRnsT/deW+P4DxcRkQGn6x51oiRYn+H3yyQBBnh5Sxt3PN1Aa2fU4ZWJSK5r6Rj5Dxfo25/ufLqBFu1PIuKClo4o/y3DPeq/nYI9Skkw0BtLUt/YMuJ/vAEvb2mjvrGF3nh2xv2JyNjXFUk4tz9tbqE7mnBoZSIif9yjXspwj3rpFOxRSoKBg5EE96ze7Eise1Zv5mCvfsiIiDM6o0lWrHFmf1qxZjMdEb1JFxHnjOY9KueT4EQixTPv7hlSAfdQRBNpVr27h0SW5l6LyNgViyed35827SGmT6tExAGjfY/K+SS4rSfGY2/vdDTmo2/vpK0n5mhMEck9bT1xHnvHjf0p7mhMEclNo32PyvkkOG05bg+7TOxqj5AefU03ROQ0Y13an0ZhUyAROQ2N9j0q55Pgrqg7R+5uxRWR3NHt0j7SHdP+JCKZG+17VM4nwRGXanejqgkWkQxpfxKR09lo36NyPgkO+92ZTx1yKa6I5A7X9ief9icRydxo36NyPgkuDLkzo9qtuCKSOwpc2kfciisiuWW071E5nwR7DFSWhB2NWVkSxmMcDSkiOci4tD8Z7U8i4oDRvkflfBJcmh/khgunORrzxgunUVro/PxrEcktpfkBbrjA+f2prDDoaEwRyU2jfY/K+STY7/eybN4UQn5n/ipCfg9L503B7835v1oRyVAw4OOaTzm7Py2bN4WAaoJFxAHBgM/5HGpu9vYoZWrA+LCfu5fMdiTW3UtmMz7P70gsEcltiUQKay23L6pyJN7ti6rAWk20FBHHFIV83LXYmRzqrsWzKQ5n786CkmAgL+ijrrqchbNKM4qzcFYpddXl5AV06UREMncoGufJDbuZVBRmQVVm+9OCqlImFYV5cuNuDkU1MU5EnFEY9juXQ80upyCUvYNEJcH9yopC3HdtzaD/iD6PIS/gxTfIjbeFs0q579oayopUCywizoglLU9u3M13ntzErZ85a8SJ8IKqUm79zFl858lNPLFhN7GkRsaJiHPKi0Pce4Ic6mQWzirl3mtrKM9yDqUjyyMMJML1jS386LlGLjtnIl+YM5kp48LEk2kSqTR+r4eAz8OeQxHWNOzl9Y/2890vVFNXXa4EWEQclbb28EjSW369nvuXz+XyGRN5YG0T0UT6pK8P+T3cvqiKSUVhbvn1enriKXraI6Q1N1lEHFZeFOLeL/blUCvWbB7yHnXX4tnUzS7PegIMYOwo3Axra2vt+vXrXYvfFU3QGUnSsOsQxgMTC4LEkmmiiRQhv5egz8P+7hg2DTWV4ygK+yjM4vG9iOSGD5o7WPzz3x/12NU1k/n6ZWfyytY2nty4+3CSfKTKkjDL50/lipml/Or3f+DZhr1Hff+5/+9yZlcUubp2EclN3dEEHZEkqzbt4dG3dw66R9144TSWzptCccjnagmEMWaDtbb2eN/TSfAx2nvibG7uoCDkp6m1i6f6f8j4PIaAz0M8mSaZtlSWhLlu/lQmjw/zh/3dzK4opiQ/cKqXLyJjSDz5yZOUZxv28tz7+7hyVhnf/lwVFePCJFJpook0Ib8Hv9dD86EIqxv28vOXtpFKf/KgI57UxTgRcUdByE9ByM/Nl0zn6rkVWAvdseThg8SCoA9joKwweMo71SgJPsKB7hhbW7poaunipy9s5bJzJvLtz1UxZVz4EyfBA+UQD7+2nW9dNROvxzCzvJAJBeq/KSLOGGwkaSpteX5zC89vbgH4xJv0k9FYdxFxm8cYPAYG3soH+rcdY/oGlZnToBBBSXC/9p44ew5G+PtXt1MU8vNPX/8067a28eDzTYMe5V83fyrfWHA2j7y+g9c+3M+36mbiMYbxOhEWEQcMdXRoMm1Jxod+uquxySLilt5YkoORBJt2HsTjMZ8oKe2JJdnfHSOVtsybNp7xYT95wVOzJ2knpO8jx9bOKH+3bhtfOr+SfZ0Rrn/4rRMWde9qj/Cz+g/55SsfHb548nfrtvGXV80kP+gj4FPjDRHJTMDrobIkfNw34iNVWRImoGE+IuKC1s4ojXs7Kc4LsLW1+3BJ6bEGDhKnjM9jW0sX1ZOLTklzASXBwKHeOG/vOMDXLpnOyle3s66pbcivjSbSrFjdeLgF0dt/OEBJXkCdIkQkYxPyA3z1oun8+LlGx2J+7eLpKtsSEce1dUbZ1trNtrbuk3awOfYg0e/1YIDSLOdOOX8ckEql6YolKS0IDTsBPtK6pjZWvrqd0oIQXbEkqdTJW4OIiJyI1+vh6rmTHR1JuqRmMt5B+p2LiIxEW2eU5o4oK1/bzorVjUNqjwZ/PEhc+dp2mjuitHVGXV7p0XI+Ce6IJmhs7qC5IzLiBHjAuqY2mjsiNO7toCOacGiFIpLLJuQHuWfpuY7EumfZuUzI1ymwiDinN5Zkf0+ch+q3ZnSQ+FD9Vvb3xOmNJx1e4eByPgnujac4Y0I+D6xtciTeA2ubOKMkn95hXFIRERlMwOehbvYk6qrLMopTV13GVdWTdF9BRBzVFUvyxkf7HTlIfOOj/XRFlQRnjc9reHFL65CP7k8mmkjz0pZWfF593CgizijJD3DfdTUjToTrqsu477oada4REUclEim6oklHDxK7o0kSiewcJOZ8EhyNp3lq425HYz65cbdjSbWICMCEgiD3L5/L/ctrhlwjHPJ7uH95DQ8sn6vLcCLiuEPROGsamh09SFzzXjOHonFH4p1MzneHMAZH2w9BXzydA4uI00ryA1wzbwqfmVHK6oZmfv3mjkHbD910yXSWzKmgJD+gEggRcUUsaXnS4YPEJzbs5tr5Ux2NOZicT4J7Y+4cuasmWETcEPB5mFQc4s8vmc6yeRUk05buaJJYMk3Q56Eg5MPnMZTkB9UFQkRclbbWlYPEtM3OOLmcT4JjSXfKFuIuxRURgb72aaWF/T01i0/tWkQkN7l1ia07qprgrHCq/+axgvr4UURERMYwtw784kklwVlREHLnMNytuCIiIiKng7Df60rckEtxj5XzSTD0XSI5neOJiIiInG5G+0FizifBpfkB/vTTZzga8yufPoOyQrUjEhERkbEr4PW4cpAY8GYnPc35JDgY8HF1TYVjtcEhv4clNRUEfNk5yhcRERE5FSbkB/jqRdMdjfm1i6dnra95zifBAEUhH3ctnu1IrLuXzKY4rHpgERERGdu8Xg9Xz53s8EHi5Ky1d1QSDBSG/dRVl/PZWaUZxfnsrFKurC6nIOR3aGUiIiIip68J+UHuWXquI7HuWXYuE/KzV06qJLhfeXGI/35tDQtHmAgvnFXKf7+2hvKikMMrExERETk9BXwe6mZPoq66LKM4ddVlXFU9KasTLpUEH6G8KMS9X6zhR9ecN+Sj/ZDfw4+uOY97lQCLiIhIDirJD3DfdTUjToTrqsu477oaxucHHF7ZiRmbpdF0TqqtrbXr1693LX53NEFHJMmqTXt49O2dxx0JWFkS5sYLp7F03hSKQz6VQIiIiEhOa++JU9/Ywt3PvE80cfJBGiG/h3uWncdV1eWuJcDGmA3W2trjfk9J8OBi8SRtPXGshe5YkmgiRcjvpSDowxgoKwyqC4SIiIhIv3gyTXtPnNUNzfz6zR2DHiTedMl0lsypoCQ/4GoJxImSYLUxOIFgwMfUgP6KRERERIYi4PMwqTjEn18ynWXzKkimLd3RJLFkmqDPQ0HIh89jKMkPZq0LxGCU4YmIiIiIo7xeD6WF/Xelik/tWgZz0vNnY8wcY8xbxphdxpiVxpjxR3zvbXeXJyIiIiLivKEUYfwC+D4wB9gK/N4Yc3b/93QbTERERERGnaGUQxRaa/+1/9cPGmM2AP9qjPkqMPpu1YmIiIhIzhtSTbAxptha2wFgrX3ZGHMd8BRQ4ubiRERERETcMJRyiPuA6iMfsNY2AFcCT7uxKBERERERN500CbbWPmqtfes4j++01t4y8LUx5m+cXpyIiIiIiBuc7E58qYOxRERERERc496IDhERERGR05SSYBERERHJOU4mwad29p2IiIiIyBANOQk2xsw5yVP+R4ZrERERERHJiuGcBP+dMeZtY8w3jDGfmAJtrf1H55YlIiIiIuKeISfB1trLgT8FKoENxphHjTFXubYyERERERGXDKsm2Fr7IfDXwB3AFcDPjTFbjDHXurE4ERERERE3DKcmuMYY8xDQCHwWuNpaW93/64dcWp+IiIiIiON8w3ju3wD/APyVtTYy8KC1ttkY89eOr0xERAaVSKRo64mRttAVTRJJpAj7vRSGfHgMlOYH8fu9p3qZIiKnreEkwYuBiLU2BWCM8QAha22vtfa3rqxORESO0htLcjCS4Jl39/DY2zvZ1R7B5zEEfB7iyTTJtKWyJMwNF05j2bwpjA/7yQsOZ6sXEckNw9kZ64E6oLv/6zzgeeASpxclIiKf1NoZ5YXGFn78XCOXnTORb3+uiinjwsSSaaKJFCG/l6DPw55DEdY07OVvX97GX32hmquqyykrCp3q5YuInFaGkwSHrLUDCTDW2m5jTJ4LaxIRkWO0dka54+kGCoN+/unrn2bd1jYefL6JXe2RTzy3siTMdfOn8o0FZ/PI6zuob2zhvmtrlAiLiBxhON0heowx8we+MMacD3xy9z2GMebzxpgmY8w2Y8ydgzzny8aYzcaYD4wxjw5jTSIiY15rZ5Tvr3qf5fMrmVtZzPUPv8XP6j88bgIMsKs9ws/qP+T6h99ibmUxy+dX8v1V79PaGc3yykVETl/GWju0JxpzAfA40EzfiORJwJ9Yazec4DVeYCtwFbAbeAe4wVq7+YjnzAD+GfistfagMabMWtt6orXU1tba9evXD2ndIiKjWW8syeqGZqaW5LHy1e2sa2obdowFVaXc+pmz2N3ey5K5FeQFVCMsIrnBGLPBWlt7vO8NeSe01r5jjJkFVPU/1GStTZzkZRcC26y12/sX8jiwDNh8xHNuAf7WWnuw//c5YQIsIpJLDkYSFIb8I06AgcOv+5PaSg72JpQEi4jrUqk07b1xkmlLVzRJLJEi2N/BxucxlOQF8HqHNa7CccPdCS8Apve/br4xBmvtb07w/CnAriO+3g18+pjnzAQwxrwOeIHvW2v/9dhAxphbgVsBpk2bNsxli4iMPolEivf2HKK5IzLiBHjAuqY2Lp8xEY+BsvyA2qeJiCviyTTtPXGebWjmN2/uGPTewtcuns7VNRWU5AcI+E5NMjycYRm/BR4ELqMvGb4AOO7x8jD5gBnAAuAG4GFjzLhjn2StXWmtrbXW1paWljrw24qInN5au2NMKQ7zwNomR+I9sLaJinFhWrtjjsQTETlSe0+c3727mwUPvsyP1jSe8N7Cj9Y0suDBl/ndu7tp74lneaV9hnMSXAvMtkMtIu6zB6g84uup/Y8daTfwb/2lFX8wxmylLyl+Zxi/j4jImOP3GV7c0ko0kXYkXjSR5qUtrdxwYeXJnywiMgwHumPc8VQD9Y1Dr2qNJtJ858n3qKtu4b7raphQEHRxhZ80nPPn9+m7DDcc7wAzjDFnGmMCwPXAqmOe8zv6ToExxkykrzxi+zB/H1ekUmnauqLs7YiwtaWLxuZDbG3pYm9HhLauKKmUMz+YRESOpzee5qmNux2N+eTG3UQcSqpFRKDvBHi4CfCR6htbueOpBg5m+UR4OCfBE4HNxpi3gcOfpVlrlw72Amtt0hjzn4G19NX7PmKt/cAYcw+w3lq7qv97nzPGbAZSwO3W2gMj+LM4ZqCepflgL3khH2G/l0QyTTyZJmAN8WSajkSKnQd6mTI+75TWs4jI2GVg0I8TR8rpeCKS2+LJNC9s3jfiBHhAfWMrLzTu45p5U7OWUw0nCf7+SH4Da+1zwHPHPHb3Eb+2wLf6/zvl2nviNB/qpTgcYF9nFE+3YWJB8IiJTGkiiRT7u2OkUpayohBbWzqpGNeXDIuIOKU3lnInbtyduCKSe/Z3x/jeqg8ciXX3Mx9w+TmlTB4XdiTeyQynRdorxpgzgBnW2vr+aXFj6nrxge4YXdEk+7viJNOwtbWbpzbuPuFEpikleRzqiVMQ9GOtzXo9i4iMXbGkO8lqLKlyCBHJXCqVZnXDXkfvLax+by83XzI9K+3ThtMd4hbgSeDv+x+aQl8975jQ3hMnlkjTfCjCR/u7uX7lm0ObyLTyTT7a303zoQixZDrr9SwiMnYFXWpjFlT5log4YH93jN++tcPRmL95cwf7s9TBZjg74TeBS4FOAGvth0CZG4vKtngyTTSepK07xsrXtrNideOQ39VEE2lWrG5k5WvbaeuKEYknieuURUQcUBhyZ6iFW3FFJLck0taVewuJ1HAakY3ccJLgmLX28DGnMcYHZGeVLuuKxOmIJnmofmtGE5keqt9KRzRJZ0SnwSLijMoSZ2vjnI4nIrmrO5p0J27cnbjHGk4S/Iox5q+AsDHmKuAJ4Fl3lpU9qVSaZBre+Gi/IxOZ3vhoP6k0ap8mIhkrCHn50wvPcDTmVz59BkU6CRYRB0QS7txbiLoU91jDSYLvBNqA94D/ADxnrf2uK6vKoq54gq5Y0tGJTN2xJF3xhCPxRCR3FQb8LJk7mZDfmRrekN/D4prJ5Af9jsQTkdzm1v2CQBYuxcHwkuD/Yq192Fr7JWvtcmvtw8aYv3BtZVkST6ZZ09Ds6M3GNe81E1czehHJkNfrIezzcNfi2Y7Eu2vxbEI+D16PcSSeiOS2gqA7nyq5FfdYw0mCbzrOY3/m0DpOmVjC8qTDE5me2LCbWHJMlEuLyClWGA5wRVUpC2eVZhRn4axSrqgqpSisfuYi4gxjjCv3FozJzhv1kybBxpgbjDHPAmcaY1Yd8d/LQLv7S3SXte7cbLRj486giJxiAZ+HvICPHy6bM+JEeOGsUn64bA75AZ+mW4qIYwI+w/L5Ux2N+aXzp2atjeNQzpvfAPbSNzb5J0c83gU0uLGobOqKuXSzMaqJTCLijJL8AAdsjO8tOZe6WftZsWbzkEq4Qv6+UopLz5lIyO9hvKZaioiDfB7D4poKfvHKR46UlYb8Hr4wpwKfNzsnwSdNgq21HwMfAxe7v5zsc6unb9ylSU8ikpsmFAQxxjCvspgXbruC1Q3NPPr2zkEnWt544TSW1FTQGYlTHPYrARYRx40LB+hNpLl9URUrVjdmHO/2RVWEfB6Ks1S2NeTKY2PMtcB99A3IMP3/WWttkUtry4qwSxOZQi7FFZHcVZIfoCDoo70nzoXTS1g4q4yQ30tPLEk0kSbk95Af9BFNpOiNJvF7PcwoL1IJhIi4wuv1EPR6uOisCSyoKs2o1eyCqlIuOmsCgSxe3h3O9bv7gauttZmn+qeRfJduILoVV0RyW8DnYVJxiNKCAO29cZJpSyLpwWPA5/EQ9HnID3iZUVaoLhAi4rpxeQEO9ca5rW4mwIgS4QVVpdxWNxO/1zAuL3ufWg0nU2sZawkwgNfT99Ghk5fjKkvC+PTDR0Rc5PV6KC0M9X1RfGrXIiK5K+DzMLEwRPPBXm69/CwunzGRB9Y2Dfnewu2LqqieVITXQGlBKKufXA0nCV5vjPk/wO+A2MCD1tqnHV9VFk3IC/DVi6bz4+ecy++/dtF0JhSo/k5ERETGvpL8ANZaulq6mFaSx+O3XswrTa08uXH3oPcWls+fyhVVZbR1RTEGJo8LZ/3uwnCS4CKgF/jcEY9ZYFQnwcGAjyU1k/npC0N713IyAxOZAj7VBIuIiEhumFAQpMoYNjd3AHDmhHy++4VqJhQESaTSh+8t+L0eDnTHiPU3Jgj7vcyaVHRKLu8OOQm21v65mws5lQqDPn6w9FzueOq9jGP9YOm5FIVUDywiIiK5pSQ/wIVnTqC9J05LR+TwxAQDeI3hyELRkN/DpKIQJZNP3eXd4XSHmAn8Aii31p5njKkBllprf+ja6rKkMOxnwcwy6qrLqG9sHXGcuuoyFlSVURDyO7g6ERERkdHhj5d3yw9f3u2OJkmk0vi9HgpCPqZPyKMkP3jKL+8OJ/V+GPhvQALAWtsAXO/Gok6F8uIQP/7iHOqqy0b0+rrqMn78xTmUF4UcXpmIiIjI6GXpm9B71Cxde+on6w7nc/s8a+3bx8xzdmfc2ilSVhTiR9fMoa66le8/+8GQbzZ+/+pzWTirjDIlwCIiIpLD4sk07T1xVjc08+s3d7CrPYLPYwj4PMSTaZJpS2VJmJsuns6SmgpK8gOnfzkEsN8YczZ9CT3GmOX0jVMeU8qLQyypmczlM0pZ814zv33r40FvNn71ojNYXFNBccinEggRERHJae09cV5sbOH7z37AZedM5Nufq2LKuDCxZJpYMkXQ5yXo87DnUIQ1DXt5qH4r37/6XK6sLqfkFFyMM3aIx9HGmLOAlcAlwEHgD8BXrLU7XFvdIGpra+369etd/31i8SRtPXGshe5YkmgiRcjvpSDowxgoKwyqC4SIiIjkvAPdMe586j3CAS83Xzad1z7czz+v3zXoQeKXayu5fMZEHvn9DiLxFPdeN4cJBUHH12WM2WCtrT3u94aaBB8RLB/wWGu7nFjcSGQrCRYRERGRE2vviXP3797n382ZzIHuGD/+v41DLin9q3/X10bt/763lxXXnOd4q7QTJcFDLsIwxvyFMWagV/BDxpiNxpjPnex1IiIiIjI2xZNpXmlq5SsXn8HTG3dz96qh3akCiCbS3L3qA57euJuvXHwG65paiSczn9kwVMOpRL7ZWttJ37CMCcBXgXtdWZWIiIiInPbae+LkB308/Op2XtwysjazL25p5eFXt5Mf9NHeE3d4hYMbThI80BbiC8BvrLUfHPGYiIiIiOSQVCrNe3sOsb87PuIEeMCLW1o50B3nvT2HSKWycxo8nCR4gzHmefqS4LXGmEIge2fWIiIiInLaaO+Nc8aEfO5Z/YEj8X6w+gPOmJBPe292ToOHkwR/HbgTuMBa2wsEgDE7SllEREREBmcMvLyldcg1wCcTTaRZ19SKyVKdwUmTYGPMrP5fzuv//1nGmPnAGQyvz7CIiIiIjBHReJr//W8fOxrzt299TDSenUKDoSSx3wJuBX5ynO9Z4LOOrkhERERETnsWjtsHOBO72iNka6DySZNgvMxcPwAAIABJREFUa+2t/f9f6P5yRERERGQ06Ikl3YkbdyfusYbTJ/hL/ZfhMMb8tTHmaWPMp9xbmoiIiIicriKJlCtxoy7FPdZwanrvstY+YYy5DKgDHgB+CXzalZWJiMigUqk07b1xkmlLVzRJLJEi6PdSGPLh8xhK8gJ4vcO5+ywiMjxBnzt7TCBLe9dwkuCBtHwxsNJau8YY80MX1iQiIoOIJ9O098RZ3dDMr9/ccdx6vMqSMDddPJ0lNRWU5AcIuPSDSkRyW0HIP6riHms4SfAeY8zfA1cB9xljggyvxZqIiGSgvSdOfWMLdz/z/lEtiXweQ8DnIZ5Mk0xbdrVH+OGaRh58vol7lp1HXXU5JfmBU7hyERmLPKbvTbeTl+MqS8J4stQibThJ8JeBzwMPWmsPGWMmA7e7sywRETnSge4YdzzVQH1jK16PYdG55XxhzmSmjAsTS6aJJlKE/F6CPg97DkVY07CXF7e08p0nG6irLuO+62qYUBA81X8MERlD8gJels+fykP1HzoW80vnTyU/4HUs3okMOQm21vYaY54Byo0x0/of3uLOskREZEB7T/xwArx0bgU3XzqddVvbePD5pkHLIa6bP5VvLDibR17fwapNzdzxVAMPLJ/LeJ0Ii4hDikN+lsyt4BevfOTIwIyQ38PimgqKwtnZp4acBBtj/gvwPaCFP45LtkCNC+s6LcTiSdp6+kb3dUWSRBIpwn4vheG+v7bS/ADBgOaFiIh74sk09Y37ePOjA/ztjfPZ1xnh+offOuEPnF3tEX5W/yG/fOUjbl9UxaJzJ/H/2rv/4Ljvu87jr/f+Xkuy4k3kDVYkBEeIJWxFFMXUodzFRKYtNlbrhBkcfqSEuTJzwHGU6cVcRrkjGg6nuevcMHfHXaFc3d7FPUjc2mfDlTi4cICL4xRHcSWn9IqxY8NGjVzb+rG/P/fHysXnyPJK+n5396t9PmY09mq/+9Yn/k4++9JnPz/+5Quv6aWJjD4w0MkcYQCeCIdDWhuP6KPvvU+jRyZWXO+j771Pa+MRhWs0H2IpCe6XJN3nnHvbr8Y0imtzBV3NFnXo9EUdeOX8LUda9jzQreGBTq1NRNSWrM0kbgDNZWomp2f/8Kx++/FBfeJPv64vvjFZ9WuzhbJGj0zoofs69NuPD+oXn/+y/vG9d+nu9qSPLQbQTNrXxPQD33WXHrqvY0n9080euq9D7/muu9S+pnafVplz1Z3LYWbHJW13ztVmB+NFDA4OulOnTvlSO3Mlq2MTGY0eHa9qaD8RDWlkR5+GetNKtyd8aROA5lQqlfXJPz+nzjuS+v1XL6z4DebHvq9Ll67M6YkHe9g+DYBnpmbyenNqVh8/9tVl9VMP3dehjwx9t7pSazyfsmVmrzrnBhd6bikjwV+X9EUzOyopd/2bzrmPr7B9DSNzNau9nxvT8bNLG2l56vNndOxsRvt29yu9liAMwBtvz+R18ZuzCoe0ogAsVV7/g/fepQuXZ/X2TF7r6asAeCTVEpNzTj/3j79TP3jvXXruC29UPZD40ffep75vW6vOdcmar1lYylDAeUkvSYpJarvha1XIXMlq78GlBeAbHT87qb0Hx5S5mvW4ZQCaVb5U1gcHOvXcF97wpN5zX3hDuwc6lS+tfAELANzozta47rt7rTam2/TZD2/VLw/dq67UwlOvulJJ/fLQvfrsh7dqY7pNG+9eW5fda5ayO8SvSZKZtc4/nvarUbV2ba6gYxOZZQfg646fndSx8YyGBzbUbKNnAKtXuez0xa9OerLqWqp8cvUnX53UB9/V6Uk9ALhRqiWmB77jTk3N5LXx7jY99SO9urM1rkKprGyhrEQ0pGg4pLencwqZdPfahFLftrZui3WXsjvEJkmfkZSaf/wNST/tnPuKT22rmavZokaPjntSa/TouB66bz0hGMCKFctOL375TU9rvvDlN7VrYIOnNQHgulgkpLvbE+poTX/raPfpbFGFUlnRcEitiYh67lyjVEu8ZrtA3MpS5gR/QtJHnHPHJcnMHpL025Ie9KFdNZPLV3aB8HKk5fBrF/XEgz1snwZgRSIh8/QkJqmyfVrY6vvGA2D1C4dD6mibX3vQXt+23MpSxp9brgdgSXLOfVFSi+ctqrHJmbwOvHLe05rPnzz/rf2FAWC5ZvMlf+oW/KkLAEGypN0hzGxElSkRkvSTquwYEWjOyZeRlip3ngOAW/LqE6qb5XyqCwBBspSR4CckdUg6KOlFSXfNfy/QprP+bHs8nav7dsoAAi4Z82exSCLKHsEAsJTdIS5L+uc+tqUu5nz6WDDLx40AVmitTwts/aoLAEFS9XCAmb1kZnfc8HidmX3Bn2bVTjIa9qVuIuJPXQDNIxK2W+6zuVxdqaQiYRbGAcBSPhO7yzn3zesP5keG13vfpNpqTfizg4NfdQE0j9SamH56a4+nNR/f2qNUS+03pQeARrOUEFw2s+7rD8zs2yUFfvmXmXwZaWEHIgArFQ6H9KP9Gzybw5uIhrSzf0Pd9+YEgEawlJ71KUl/ZmafMbP/LulPJf2qP82qnY6WmPY80H37C5fgsS3dWt/GSAuAlUu1xDQ6vMmTWqPDm5RqiXlSCwCCruoQ7Jz735LeJel/SvqspO9zzn1rTrCZfY/3zfNfPBbR8ECnpyMtu+7vVIw5wQA8EIuE9HBvWtt70yuqs703raHedN2OJwWARrOk3tA59w3n3JH5r2/c9PRnFnxRAKxNRDSyo8+TWiM7+tSeZD4wAO+kWmLa98jmZQfh7b1p7Xtks9YxCgwA3+LlkEBgJ5m1JaMa6k1r28aOFdXZtrFDQ31ptbL9EACP3dka17OP9uu5R/ur/uQqEQ3puUf79bFH+3VnK1O0AOBGXg5ZBnqRXLo9oX27+7X34JiOn51c8uu3bezQvt39Sq9N+NA6AKiMCA8PdOoH7+3QkbFL2n/i3IInXnalkvrQgz3asXmDUi0xpkAAwALMeXS+r5l92Tn3Lk+K3cbg4KA7deqUL7UzV7I6NpHR6NHxqo4sTURDGtnRp6G+NAEYQM2USmVNzeZVLDtNZ4vKFcuKR0JqTUQUCZlSLXF2gQDQ9MzsVefc4ELPeTkSnPewVt2k2xMaHtigh+5br8OvXdTzJ8/fcqTlsS3d2jXQqfZEhCkQAGoqHA6po23+F+/2+rYFAIJoSSHYzPol9dz4Oufcwfk/3+1py+qoNRFVayKqJx7s0Y/ev0HOSdO5orKFkhLRsFrjEZlJ69vi7AIBAAAQQFWHYDP7XUn9kr4i6fo8ASfpoA/tagjxWET3xNjpAQAAYLVZSsJ7t3POm33EAAAAgDpaypLhE2ZGCAYAAEDgLWUk+NOqBOG/l5RTZV9g55zr96VlAAAAgE+WEoI/KemnJL2uf5gTDAAAAATOUkLwpHPusG8tAQAAAGpkKSH4r8zseUn/S5XpEJL+YYs0AAAAICiWEoKTqoTfH77he6t6izQAAACsTlWHYOfcz/jZEAAAAKBWlnJYRkLSz0r6HkmJ6993zj3hQ7sAAAAA3yxln+DPSLpb0nsl/YmkeyRd86NRAAAAgJ+WEoK/yzk3ImnGObdf0g5J3+9PswAAAAD/LCUEF+b//KaZbZLULmm9900CAAAA/LWU3SE+YWbrJI1IOiypVdLTvrQKAAAA8NFSdof4nfm//omk7/SnOQAAAAi6XL6oyZm8JOnaXFFzhZKS0bDakpXo2dESUzy2lLFY7y1ld4i0pH8raYNz7v1m1idpq3Puk761DgAAAIFxba6gq9miDp2+qAOvnNeFqbl3XNOVSmrPA90aHujU2kREbcloHVoqmXOuugvN/lDSf5P0lHPufjOLSPor59xmPxu4kMHBQXfq1Kla/1gAAADcQuZKVscmMho9Oq5soXzb6xPRkEZ29GmoN610e+K21y+Hmb3qnBtc6LmlLIy7yzn3e5LKkuScK0oqVfHD32dmb5jZ18xs7yLXPWJmzswWbCgAAAAaU+ZqVns/N6anPn+mqgAsSdlCWU99/oz2fm5MmatZn1v4TksJwTNmdqcqRyXLzN4t6cpiLzCzsKT/JOn9kvok7ZmfRnHzdW2SfknSXy6hPQAAAKizzJWs9h4c0/Gzk8t6/fGzk9p7sPZBeCkzkj+iyq4Q32lmfy6pQ9Kjt3nNFklfc859XZLM7LOShiWN33TdqKRnJX10Ce0BgKYVhEUnAFa/a3MFHZvILDsAX3f87KSOjWc0PLBBrYnazBFeSg85LulzkmZVOSnu85K+epvXdEq6cMPjN3XTARtm9i5JXc65o2bWUCGYNxkAjSZIi04ArH5Xs0WNHr15bHN5Ro+O66H71jdkCP60pKuq7BAhSY+pcpTyjy33h5tZSNLHJX2oims/LOnDktTd3b3cH1kV3mQANKJqF51cmJrTx77whn7zj//a90UnAJpXLl/JStXOAb6dbKGsw69d1BMP9tRkkHEpu0OMO+f6bve9m57fKunfOOfeO//4VyXJOfcb84/bJf1fSdPzL7lb0pSkXc65W27/4OfuEI24shEAMleXP+du28YO7dvdr/Ra+igA3nnz8qz2/PaXFhwsXK6uVFIH/um7dc+6NZ7U82p3iC/PL4a7XvT7Jd0uib4i6V4z+w4zi0n6cVXmFUuSnHNXnHN3Oed6nHM9kr6k2wRgPwVxZSOA1S+oi04ArG7OydMALFXqVTk+u2K3DcFm9rqZjUn6Pkl/YWbnzOxvJJ2QtOh2ZvPbqP2CpC9ImpD0e865r5jZM2a2a+XN9w5vMgAakdeLTqazBY9aBqDZTWeL/tTN+VP3ZtVMuNi5kh/gnPsDSX9w0/eevsW1D63kZy1XkFc2AljdgrzoBMDqNle47XERy5L1qe7NbjsS7Jz728W+atFIv3n9JnNlrja/wQBY3fxadJLL00cBWLlkNOxL3UTEn7o3W8qc4FWJNxkAjWpyJq8Dr5z3tObzJ89/a+tHAFiJ1oQ/Ozj4VfdmTR+CeZMB0KiCvugEwOpmVtnNwUtdqaTMPC15S00fgnmTAdCogr7oBMDq1tES054HvD274bEt3VrfFve05q00fQjmTQZAowr6ohMAq1s8FtHwQKcSUW/iZCIa0q77OxVjTnBt8CYDoFEFfdEJgNVvbSKikR23PDdtSUZ29Kk9WZv5wBIhmDcZAA0r6ItOAKx+bcmohnrT2raxY0V1tm3s0FBfuqZbODZ9COZNBkCjCvqiEwDNId2e0L7d/csOwvU62r3pQzBvMgAaVdAXnQBoHum1Ce37YL9+/QObqp4jnIiG9Osf2FSXACwRgnmTAdCwgr7oBEBzSbcnNDywQS9/5CE9+b77bjnI2JVK6sn33aeXf+UhDQ9sqEsAlqo7NnlVu/4m85t//NeeHJjBmwwAL11fdPLU58+suFatF50AaD6tiahaE1E98WCPfvT+DXKusmNWtlBSIhpWazwiM2l9W7zuWYneULzJAGhc1xedHDub0fGzk8uuU49FJwCaVzwW0T2xxs5DTT8dQgr2ykYAq19QF50AQCMjBM/jTQZAIwviohMAaGTmAni+7+DgoDt16pQvtTNXsjo2kdHo0fGq5ggnoiGN7OjTUF+aNxkAvpvOFnRlrqjDr13U8yfPL3jse1cqqce2dGvXQKfaExE+nQLQtMzsVefc4ILPEYLfiTcZAI0uly9qcibf0ItOAKDeFgvBjT1juU6CtLIRQHMKwqITAGhk9KCL4E0GAABgdWJhHAAAAJoOIRgAAABNh8/6ASCACoWSJmdyKjvpWraouUJJyWhYbYmIQiZ1tMQVjbJmAUB9lEplTc3mVSw7XcsWlSuUFJ/voyIhU2pNTOFwfcdiCcEAECCzuaIuzxV06PRFHVhk95o9W7o1PNCpdcmo1sTp6gHURr5Y1tRMXkfGLmn/iXO37KMe39qjnf0blGqJKRapTxhmizQACIi3rlb2MX/mSPX7mD+9s09DvWmtZx9zAD6bmsnr5YmMRg6dqbqPGh3epId700q1xHxpE/sEA0DAvXU1qycPjun42cklv3bbxg49u7ufIAzAN29P57T3xdf10kRmya/d3pvWvkc2687WuOftWiwEszAOABrcSgKwJB0/O6knD47pratZj1sGAJUR4OUGYEl6aSKjvS++rsszeY9btjhCMAA0sNlcUccmMssOwNcdPzupYxMZzeaLHrUMACpzgF+eyCw7AF/30kRGxyYyyhdvP43CK4RgAGhgl+cKeubIuCe1njkyrsuzBU9qAYBUGQUeOXTGk1ojh85oqoajwYRgAGhQhUJJh05frGqBSTWyhbIOn76oQqHkST0Aza1UKuvI2CVP+6gjY5dUKtVmNJgQDAANanImpwMnz3ta8/mT5zU5k/O0JoDmNDWb1/4T5zytuf/EOU3N1mY0mBAMAA2q7LTgHpsrcWFqTuXgbQoEoAEVy86XPqpYo06KEAwADepa1p9FbH7VBdBc/OpLpmvURxGCAaBBzfk0dzfLnGAAHsj51JfkarRDBCEYABpUMhr2pW7Cp7oAmkvcp76kVscoE4IBoEG1JSKBqguguQS9jyIEA0CDCpnUlUp6WrMrlVTIPC0JoElFQuZLHxWpUSdFCAaABtXREteeLd2e1nxsS7c62hKe1gTQnFJrYnp8a4+nNR/f2qNUS9zTmrdCCAaABhWNhjU80KlE1JuuOhENaddAp6Jhun4AKxcOh7Szf4OnfdTO/g0KMxIMAFiXjOrpnX2e1Hp6Z5/WrYl6UgsAJCnVEtPo8CZPao0Ob1KqJeZJrWoQggGgga2JRzTUm9a2jR0rqrNtY4eGetNaE2NRHADvxCIhPdyb1vbe9IrqbO9Na6g3XbOdISRCMAA0vPVrE3p2d/+yg/C2jR16dne/1q9lLjAA76VaYtr3yOZlB+HtvWnte2Sz1tVwFFiSzLngnZ85ODjoTp06Ve9mAEBNvXU1q2MTGT1zZFzZwu03k09EQ3p6Z5+GetMEYAC+m5rJ6+WJjEYOnam6jxod3qSh3rRvAdjMXnXODS74HCEYAIJjNl/U5dmCDp++qOdPnteFqbl3XNOVSuontnRr10Cn7lgTZQoEgJrJF8uamsnryNgl7T9x7pZ91Ice7NGOzRuUaon5OgWCEAwAq0yhUNLkTE5lJ13LFpUvlhSLhNWWiChkUkdbgl0gANRNqVTW1GxexbLTdLaoUKiscjmk1kREkZAp1RKvyS4Qi4VghgcWMZcr6O3ZgiTp2lxRc4WSktGw2pKVf7Y710SVjLPSGkDthUKmaDikYtkpHDKFzBQOVb4iIWPBB4C6yhdLyhUrUyKKJae5bFnJqKlUdiqVnfKFYt0zFCF4AZdn85rNlXTo9EUdeOXWHzfueaBbwwOdWhMPa92a2k7mBtCcqv2o8fGtPdrZ7/9HjQBwoyBlKKZD3OTvr2T18kRGo0erX3gysqNPD/emdXc7C08A+Ge5i04e7k3XdO9NAM2pETMUc4KrlLma1d6DYzp+dnLJr922sUP7dvcrzQpsAD54ezqnvS++rpcmMkt+7fXth+5src1RpACaT6NmqMVCMJ+Rzfv7K8u/eZJ0/Oyk9h4cU+Zq1uOWAWh2UzP5ZQdgSXppIqO9L76uyzN5j1sGAMHNUIRgVeavvDyRWfbNu+742UkdG8/om7O80QDwRr5Y1ssTmWUH4Otemsjo2ERG+eLtP6IEgGoFOUMRgiXN5koaPTruSa3Ro+OayZU8qQUAUzN5jRw640mtkUNnNMVoMAAPBTlDNX0InssVdOj0xaomcFcjWyjr8GsXNZcreFIPQPMqlco6MnbJ0/7pyNgllUqMBgNYuaBnqKYPwW/PFnTglfOe1nz+5Plv7S8MAMs1NZvX/hPnPK25/8Q5TTFlC4AHgp6hmj4EO6cF97BbiQtTcwrgphsAGkyx7Hzpn4plOigAKxf0DNX0IXg6W/Snbs6fugCaxzW/+ief6gJoLkHPUE0fgucK/kzAzvpUF0DzyPnUj+TYIQKAB4KeoZo+BCejYV/qJiL+1AXQPOI+9U8cowzAC0HPUE3fE7YmIoGqC6B5tPnUj/hVF0BzCXqGavoQbCZ1pZKe1uxKJWXmaUkATSgSMl/6p0iIDgrAygU9QzV9CL5zTVR7Huj2tOZjW7rV0Rr3tCaA5pNaE9PjW3s8rfn41h6lWuifAKxc0DNU04fgZDyq4YFOJaLe/FMkoiHtur/Tt7l8AJpHOBzSzv4NnvZPO/s3KMxIMAAPBD1DNX0IlqQ18bBGdvR5UmtkR59a4gRgAN5ItcQ0OrzJk1qjw5uUaol5UgsApGBnKEKwpHVrYnq4N61tGztWVGfbxg4N9aV1xxreZAB4IxYJ6eHetLb3pldUZ3tvWkO9aXaGAOCpIGcoesN5d7cntG93/7Jv4raNHdq3u1/ptQmPWwag2aVaYtr3yOZlB+HtvWnte2Sz1jEKDMAHQc1Q5gJ4vu/g4KA7deqUL7X//kpWL09kNHp0XNnC7TeUT0RDGtnRp6G+NAEYgK+mZvJ6eSKjkUNnqu6fRoc3aag3TQAG4LtGzFBm9qpzbnDB5wjB7/TN2bxmciUdfu2inj95fsFzsbtSST22pVu7BjrVEgszBQJATeSLZU3N5HVk7JL2nzinC1NzioRMsUhI+WJZxbJTVyqpDz3Yox2bNyjVEmMKBICaabQMRQheprlcQW/PFuRc5RzrbKGkRDSs1nhEZlJHa5xdIADURTZX0DdmC5Kka3NFzRVKSkbDaktWNpnvaIkpHuNQDAD10SgZarEQTA+5iGQ8qnvi0Xo3AwC+5dpcQVezRR06fVEHXrn1KMueB7o1PNCptYmI2pL0YwBqKwgZipFgAAiIzJWsji1nvl1vWul21iwAaD6MBANAwGWuZrX3c2M6fnay6tdkC2U99fkzOnY2w+41AHATVksAQIPLXMlq78GlBeAbHT87qb0Hx5S5mvW4ZQAQXIRgAGhg1+YKOjaRWXYAvu742UkdG89oOlvwqGUAEGyEYABoYFezRY0eHfek1ujRcV2ZK3pSCwCCjhAMAA0ql6/sAlHNIrhqZAtlHX7tonJ5gjAAEIIBoEFNzuR14JXzntZ8/uR5Tc7kPa0JAEFECAaABuWcFtwHeCUuTM0pgDtjAoDnCMEA0KCms/5MW5jOMR0CAAjBANCg5golX+pmfaoLAEFCCAaABpWMhn2pm4j4UxcAgsT3EGxm7zOzN8zsa2a2d4HnP2Jm42Y2ZmYvm9m3+90mAAiC1oQ/h3r6VRcAgsTXEGxmYUn/SdL7JfVJ2mNmfTdd9leSBp1z/ZJekPQxP9sEAEFhJnWlkp7W7EolZeZpSQAIJL9HgrdI+ppz7uvOubykz0oavvEC59xx59zs/MMvSbrH5zYBQCB0tMS054FuT2s+tqVb69vintYEgCDyOwR3Srpww+M35793Kz8r6Q8XesLMPmxmp8zs1OTkyo4PBYAgiMciGh7oVCLqTVediIa06/5OxZgTDACNszDOzH5S0qCk5xZ63jn3CefcoHNusKOjo7aNA4A6WZuIaGTHzbPIlmdkR5/ak8wHBgDJ/xB8UVLXDY/vmf/e/8fMhiQ9JWmXcy7nc5sAIDDaklEN9aa1bePKfvnftrFDQ31ptSaiHrUMAILN7xD8iqR7zew7zCwm6cclHb7xAjP7Xkn/VZUA/JbP7QGAwEm3J7Rvd/+yg/C2jR3at7tf6bUJj1sGAMHlawh2zhUl/YKkL0iakPR7zrmvmNkzZrZr/rLnJLVK+n0zO21mh29RDgCaVnptQvs+2K9f/8CmqucIJ6Ih/foHNhGAAWAB5gJ4iPzg4KA7depUvZsBADU3nS3oylxRh1+7qOdPnteFqbl3XNOVSuqxLd3aNdCp9kSEKRAAmpaZveqcG1zoOVZIAECAtCaiak1E9cSDPfrR+zfIOWk6V1S2UFIiGlZrPCIzaX1bnF0gAGARhGAACDAzSe6mPyW5cvA+5QOwepRKZU3N5lUsO13LFpUrlBSPhtWWiCgSMqXWxBQO13eTMkIwAATItbmCrmaLOnT6og68cuvpEHse6NbwQKfWJiJqSzIdAkBt5ItlTc3kdWTskvafOHfLPurxrT3a2b9BqZaYYpH6hGHmBANAQGSuZHVsIqPRo+PKFsq3vT4RDWlkR5+GetNKt7MwDoC/pmbyenkio5FDZ6ruo0aHN+nh3rRSLTFf2rTYnGBCMAAEQOZqVnsPjun42aWfmMkWaQD89vZ0TntffF0vTWSW/NrtvWnte2Sz7mz1/kj3xUJww5wYBwBYWObK8gOwJB0/O6m9B8eUuZr1uGUAUBkBXm4AlqSXJjLa++LrujyT97hliyMEA0ADuzZX0LGJzLID8HXHz07q2HhG09mCRy0DgMoc4JcnMssOwNe9NJHRsYmM8sXbT6PwCiEYABrY1WxRo0fHPak1enRcV+aKntQCAKkyCjxy6IwntUYOndFUDUeDCcEA0KBy+couENUsMKlGtlDW4dcuKpcnCANYuVKprCNjlzzto46MXVKpVJvRYEIwADSoyZm8Drxy3tOaz588r8kaz7sDsDpNzea1/8Q5T2vuP3FOU7O16aMIwQDQoJzTgntsrsSFqTkFcFMgAA2oWHa+9FHFGh32QwgGgAY1nfVn2sJ0jukQAFbuml99lE91b0YIBoAGNVco+VI361NdAM0l51NfkqvRDhGEYABoUMlo2Je6iYg/dQE0l7hPfVStjlEmBANAg2pNRAJVF0BzafOpL/Gr7s0IwQDQoMykrlTS05pdqaTMPC0JoElFQuZLHxUJ1aaTIgQDQIPqaIlpzwPdntZ8bEu31rfFPa0JoDml1sT0+NYeT2s+vrVHqZba9FGEYABoUPFYRMMDnUpEvemqE9GQdt3fqRhzggF4IBwOaWf/Bk/7qJ39GxRmJBgAsDYR0ciOPk9qjezoU3uS+cAAvJNqiWl0eJMntUaHNynVEvOHtH7KAAAOBElEQVSkVjUIwQDQwNqSUQ31prVtY8eK6mzb2KGhvrRaE1GPWgYAlZ0cHu5Na3tvekV1tvemNdSbrtnOEBIhGAAaXro9oX27+5cdhLdt7NC+3f1Kr0143DIAqIwG73tk87KD8PbetPY9slnrajgKLEnmAnh+5uDgoDt16lS9mwEANZW5ktWxiYxGj44rW7j9ZvKJaEgjO/o01JcmAAPw3dRMXi9PZDRy6EzVfdTo8CYN9aZ9C8Bm9qpzbnDB5wjBABAc09mCrswVdfi1i3r+5HldmJp7xzVdqaQe29KtXQOdak9EmAIBoGbyxbKmZvI6MnZJ+0+cu2Uf9aEHe7Rj8walWmK+ToEgBAPAKpPLFzU5k5dz0nSuqGyhpEQ0rNZ4RGbS+rY4u0AAqJtSqayp2byKZafpbFG5YlnxSEitiYgiIVOqJV6TXSAWC8EsE15EoVDS5ExOZSddyxY1VygpGQ2rLRFRyKSOlriiPh0ZCADVMJPkbvpTkisHb4ADwOpRLjsVSmWVnVQsOxXLZYXLplLZyTmncqmscKi+GYoQvIDZXFGX5wo6dPqiDizyceOeLd0aHujUumRUa+L8UwLw37W5gq5mi5X+6ZVF+qcHKv3T2kREbUmmQwCojSBlKKZD3OStq5WFJ88cqX7hydM7+zTUm9Z6Fp4A8NGyF8b1ppVup38C4K9GzFDMCa7SW1ezevLgmI6fnVzya7dt7NCzu/sJwgB8kbma1d4V9E9skQbAT42aoRYLwewTPG8lN0+Sjp+d1JMHx/TW1azHLQPQ7DJXlh+ApUr/tPfgmDL0TwB8ENQMRQhWZf7KsYnMsm/edcfPTurYREaz+aJHLQPQ7K7NFbzrn8Yzms4WPGoZAAQ7QxGCJV2eK+iZI+Oe1HrmyLguz/ImA8AbV7NFjR71pn8aPTquK3P8kg7AO0HOUE0fgguFkg6dvljVBO5qZAtlHT59UYVCyZN6AJpXLl/0vn967aJyfFoFwANBz1BNH4InZ3I6cPK8pzWfP3lekzM5T2sCaD6TM3kdeMWP/invaU0AzSnoGarpQ3DZacE97FbiwtSc2KcewEo5n/qnAG4KBKABBT1DNX0Ivpb152NBv+oCaB7TPvUj0zn6JwArF/QM1fQheM6neSdZ5gQDWCH6JwCNLOh9VNOH4GTUn3OrEz7VBdA8fOufIvRPAFYu6Bmq6UNwW8Kf86r9qgugebT61I/4VRdAcwl6hmr6EBwyqSuV9LRmVyqpkHlaEkATMp/6J6N/AuCBoGeopg/BHS1x7dnS7WnNx7Z0q6PN+/OvATSXjpaY9jzgff+0vi3uaU0AzSnoGarpQ3A0GtbwQKcSUW/+KRLRkHYNdCoabvp/WgArFI9FvO+f7u9UjDnBADwQ9AxFUpO0LhnV0zv7PKn19M4+rVsT9aQWAKxNRDSyw5v+aWRHn9qTzAcG4J0gZyhCsKQ18YiGetPatrFjRXW2bezQUG9aa2K8yQDwRlsy6l3/1JdWa4Jf0gF4J8gZihA8b/3ahJ7d3b/sm7htY4ee3d2v9WuZCwzAW+n2hPatsH/at7tfafonAD4IaoYyF8DzMwcHB92pU6d8qf3W1ayOTWT0zJFxZQvl216fiIb09M4+DfWmCcAAfJW5UumfRo9W3z+N7OjTUF+aAAzAd42YoczsVefc4ILPEYLfaTZf1OXZgg6fvqjnT55f8FzsrlRSP7GlW7sGOnXHmihTIADUxHS2oCtzRR1+bfH+6bH5/qk9EWEKBICaabQMRQheply+qMmZvJyTpnNFZQslJaJhtcYjMpPWt8YV42Q4AHVw2/6pLc4uEADqplAoaXImp7KTrmX/oY9qS0QUMqmjLVGTXSAWC8EMXy4gXyxraiavI2OXtP/EOV2YmlMiElJrIqLpbFHZYlldqaQe39qjnf0blGqJKRZhejWA2onHIrqHT6AANKhoNKwNd6ypdzMWxUjwTaZm8np5IqORQ2eqns8yOrxJD/emlWqJ+dImAAAALN1iI8EMX97g7emcnnxhTB99YayqACxJ2UJZH31hTE++MKa3p3M+txAAAABeIATPm5rJa++Lr+ulicyyXv/SREZ7X3xdl2fyHrcMAAAAXiMEqzIH+OWJzLID8HUvTWR0bCKjfLG6UWQAAADUByFYlVHgkUNnPKk1cuiMphgNBgAAaGhNH4JLpbKOjF2qeg7w7WQLlXqlEqPBAAAAjarpQ/DUbF77T5zztOb+E+c0NctoMAAAQKNq+hBcLLsFTzNZiQtTcyqWg7f1HAAAQLNo+hB8LVv0pe60T3UBAACwck0fgnOFkj912SECAACgYTV9CI5Hw77U5RhlAACAxtX0Sa0tEQlUXQAAAKxc04fgSMjUlUp6WrMrlVQkZJ7WBAAAgHeaPgSn1sT0+NYeT2s+vrVHqZa4pzUBAADgnaYPweFwSDv7NygR9eafIhGt1AszEgwAANCwmj4ES1KqJabR4U2e1Bod3qRUS8yTWgAAAPAHIViVnRwe7k1re296RXW296Y11JtmZwgAAIAGR1qbl2qJad8jm5cdhLf3prXvkc1axygwAABAwyME3+DO1riefbRfzz3aX/Uc4UQ0pOce7dfHHu3Xna0shgMAAAgCNrO9SaolpuGBTv3gvR06MnZJ+0+c04WpuXdc15VK6kMP9mjH5g1KtcSYAgEAABAghOAFxCIh3d2e0M882KPhgQ0qlp2ms0XlimXFIyG1JiKKhEyplji7QAAAAAQQIXgR4XBIHW2JyoP2+rYFAAAA3uEzfAAAADQdQjAAAACaDiEYAAAATYcQDAAAgKZDCAYAAEDTIQQDAACg6RCCAQAA0HQIwQAAAGg65pyrdxuWzMwmJf1tHX70XZK+UYefC39xX1cv7u3qxb1dnbivq1e97u23O+c6FnoikCG4XszslHNusN7tgLe4r6sX93b14t6uTtzX1asR7y3TIQAAANB0CMEAAABoOoTgpflEvRsAX3BfVy/u7erFvV2duK+rV8PdW+YEAwAAoOkwEgwAAICmQwgGAABA0yEE38TMftfM3jKzM7d43szsN83sa2Y2ZmbvqnUbsXRV3NefmL+fr5vZX5jZ/bVuI5bndvf2huseMLOimT1aq7ZhZaq5t2b2kJmdNrOvmNmf1LJ9WL4q+uR2M/tfZvba/L39mVq3EUtnZl1mdtzMxufv2y8tcE3D5ChC8Dt9StL7Fnn+/ZLunf/6sKTfqkGbsHKf0uL39W8k/RPn3GZJo2rACfy4pU9p8XsrMwtLelbSH9WiQfDMp7TIvTWzOyT9Z0m7nHPfI+nHatQurNyntPj/tz8vadw5d7+khyT9ezOL1aBdWJmipF9xzvVJereknzezvpuuaZgcRQi+iXPuTyVNLXLJsKRPu4ovSbrDzL6tNq3Dct3uvjrn/sI5d3n+4Zck3VOThmHFqvh/VpJ+UdKLkt7yv0XwShX39jFJB51z5+ev5/4GRBX31klqMzOT1Dp/bbEWbcPyOef+zjn35fm/X5M0IanzpssaJkcRgpeuU9KFGx6/qXfeYATbz0r6w3o3At4ws05JHxSf2qxG3y1pnZl90cxeNbOfrneD4Jn/KKlX0iVJr0v6Jedcub5NwlKYWY+k75X0lzc91TA5KlKPHwo0KjPbpkoIfk+92wLP/AdJTzrnypVBJawiEUnfJ+lhSUlJJ8zsS865r9a3WfDAeyWdlvRDkv6RpJfM7P84567Wt1mohpm1qvLp279o5HtGCF66i5K6bnh8z/z3EHBm1i/pdyS93zn3dr3bA88MSvrsfAC+S9KPmFnROff5+jYLHnhT0tvOuRlJM2b2p5Lul0QIDr6fkbTPVQ4z+JqZ/Y2kjZJO1rdZuB0zi6oSgP+Hc+7gApc0TI5iOsTSHZb00/OrG98t6Ypz7u/q3SisjJl1Szoo6acYRVpdnHPf4Zzrcc71SHpB0j8jAK8ahyS9x8wiZrZG0verMgcRwXdelRF+mVla0n2Svl7XFuG25udwf1LShHPu47e4rGFyFCPBNzGzA6qsRL3LzN6U9K8lRSXJOfdfJP2BpB+R9DVJs6r8tooGV8V9fVrSnZL+8/yIYdE5N1if1mIpqri3CKjb3Vvn3ISZ/W9JY5LKkn7HObfoVnloDFX8fzsq6VNm9rokU2VK0zfq1FxU7wck/ZSk183s9Pz3/pWkbqnxchTHJgMAAKDpMB0CAAAATYcQDAAAgKZDCAYAAEDTIQQDAACg6RCCAQAA0HQIwQAAAGg6hGAACJD5DebpuwFghehIAaDBmVmPmb1hZp+WdEbSiJm9YmZjZvZrN1xz1sz+h5lNmNkL86eoycz2mdn4/PX/rp7/LQDQKDgsAwAanJn1qHJk7IOS1kp6VNLPqXKS1mFJH1PlmNm/kfQe59yfm9nvShqX9N8k/YWkjc45Z2Z3OOe+WfP/CABoMIwEA0Aw/K1z7kuSfnj+668kfVnSRkn3zl9zwTn35/N//++S3iPpiqSspE+a2W5VjikFgKYXqXcDAABVmZn/0yT9hnPuv9745Pxo8c0f7TnnXNHMtkh6WJUR5F+Q9EP+NhUAGh8jwQAQLF+Q9ISZtUqSmXWa2fr557rNbOv83x+T9Gfz17U75/5A0i9Lur/mLQaABsRIMAAEiHPuj8ysV9IJM5OkaUk/Kakk6Q1JP3/DfODfktQu6ZCZJVQZRf5IXRoOAA2GhXEAsArMT4c44pzbVOemAEAgMB0CAAAATYeRYAAAADQdRoIBAADQdAjBAAAAaDqEYAAAADQdQjAAAACaDiEYAAAATef/Adz7toaLX09IAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXzV9X3//8f7XJ9cQiQJBIJ4gSEogWK0qFWhQNkEofWiU7fWzk67r92+m37ntLPYrrSd07a67tZfV63e1nbTblUUBFsEBNdanYKFiIR4gQgETCLhKsm5Pu/fHyGImEBOzudzknCe99uNW83JyStvQm/v88r7vF6vt7HWIiIiIiKSTzyDvQARERERkVxTEiwiIiIieUdJsIiIiIjkHSXBIiIiIpJ3lASLiIiISN7xDfYCBmLUqFF2woQJg70MERERERnCNm7c+IG1try3zw3LJHjChAls2LBhsJchIiIiIkOYMea9vj6ncggRERERyTtKgkVEREQk7ygJFhEREZG8oyRYRERERPKOkmARERERyTtKgkVEREQk7ygJFhEREZG8oyRYRERERPLOsLwsI1di8SRtnXEADkeSRBIpwn4vxeHuH1t5YYBgQD9CEck97U8iItnRDtmLw5EEh6JJlm1q5vFXd7KrPfKx51SXhbn+gvEsmjaWkpCP4rB/EFYqIvlG+5OIiDOMtXaw15Cx+vp669a1yS0Ho6xpbGHJyq1EE+mTPj/k97B4/mTm1FZSWRpyZU0iIqD9SUQkU8aYjdba+l4/pyT4Qy2Hoty1tIF129oy/tpZk8q596o6Kkv0QiMiztP+JCKSuRMlwWqMO6Ll4MBfYADWbWvjrqUNtByKOrwyEcl32p9ERJynJJjuGrs1jS0DfoHpsW5bG2u2ttARTTi0MhHJd9qfRETcoSQYOBRNsmTlVkdiLVm5lYORpCOxRES0P4mIuCPvk+BYvLvLuj9NJv0RTaRZvrmZWFwvNCKSHe1PIiLucTUJNsY8aoxpNcZs6ePzxhjzQ2PM28aYBmPMdDfX05u2zjiPv7rT0ZiPvbLz6PxOEZGB0v4kIuIet0+C/x34oxN8/o+BiUf+3AL82OX1fIy19DpnMxu72iMMw6EbIjLEaH8SEXGPq0mwtfZ/gPYTPGUR8HPb7WVghDFmjJtrOl5H1J23BTtiertRRLKj/UlExD2DXRM8Fth1zMe7jzz2McaYW4wxG4wxG9rasuuSPlYkkXIs1rGiLsUVkfyh/UlExD2DnQT3m7X2IWttvbW2vry83LG4Yb/XsVjHCvnciSsi+UP7k4iIewY7CW4Gqo/5eNyRx3KmKOQbVnFFJH9ofxIRcc9gJ8HLgS8emRIxAzhord2bywUYA9VlYUdjVpeFMcbRkCKSh7Q/iYi4x+0RaY8DLwE1xpjdxpgvG2P+0hjzl0ee8iywHXgbeBi41c319Ka8MMD1F4x3NOYNF46nojjoaEwRyT/an0RE3OPqe2LW2utP8nkLfNXNNZxMMOBj0bSx/PD5txwZSB/ye1g4dSwB1dyJSJa0P4mIuGewyyGGhJKQj8XzJzsSa/H8yZSGVW8nIs7Q/iQi4g4lwUBx2M+c2kpmTcpu6sSsSeXMmVxJUcjv0MpEJN9pfxIRcYeS4CMqS0Pce1XdgF9oZk0q596r6qgsCTm8MhHJd9qfREScZ+wwvD+zvr7ebtiwwZXYLQejrGlsYcnKrf2qwQv5PSyeP5k5kyv1AiMirtL+JCKSGWPMRmttfa+fUxL8cR3RBAcjSZZvbuaxV3ayqz3ysedUl4W54cLxLJw2ltKQT28xikhOaH8SEek/JcEDFIsnaeuMYy10xJJEEylCfi9FQR/GQEVxUF3WIjIotD+JiJzciZJgtQmfQDDgY1xAPyIRGXq0P4mIZEeNcSIiIiKSd3SMICIiIiKO6inZAjgcSRJJpAj7vRQfmVVeXhggOMjvZikJFhERERFHHI4kOBRNsmxTM4+/2nfz7vUXjGfRtLGUhHwUhweneVeNcSIiIiKStQGPcaytpLLUnTGOaowboFQqTXtXnGTacjiaJJZIEfR7KQ758HkMZQUBvF6VVYuIiEh+azkU5a6nGli3ra3fXxNNpLn76S2s2dYyKBf6KAnuRTyZpr0zzjMNe/j5Szv6PMr/4kUTuLKuirLCAAGfkmERyZ3hUG8nIvmh5WDmCfCx1m1r466lDTlPhLVDHqe9M86axhbuWbblI0f5IZ+HopCPjmiSaDLNrvYI31nZyPefa+Jbi85jTm0lZYWBQVy5iOSD4VRvJyKnvsORBGsaWwacAPdYt62NtY0tLJxalbMLflQTfIx9HTHufLKBNY2tBHwe/nb22cycVEFhoDv57TlpKQr56Iwneb6xlR8+/zbxZJo5tRX889V1nFYUdHxdIiIwNOvtRCS/Ne+PMPsH6/u1J51MyO9h7e0zGTsy7MDKuqkmuB/aO+NHE+B7FtQyd/Jontm8h6/8YuMJT1rW3n45q7e+z7dWNHLnkw3cf81URupEWEQcNhzr7UTk1BaLJ3mmYY8jCTB071krGvbwpYtOz0k5lwpZ6a4BXrP1fTbvOsDq2y4j6PMy94EXuG9VU68JMMCu9gj3rWpi7gMvEPR5WX3bZd1f3/g+8aQz/2cQEYHuE+CvLc2u3u5rSxtoORR1eGUiks/aOuP85/++52jM//jf9472O7hNSTCwrzPGvz7/FktvvYTv/rqRu5/e0u/fanpOWr7760aW3noJ/7r2LfZ1xlxesYjki556u+ezrLd7/ki9XUc04dDKRETo87BwqMQ7kbxPglOpNM9s3sujX7qQe5Zvyeqk5Z7lW3j0SxeyomEvqZROg0Uke4eiSZas3OpIrG+t2MrBSNKRWCIih6Pu7CcdLsU9Xt4nwfs645SGfbzybrsjnY2vvNtOcdDLvhwd5YvIqcutertYXImwiGQvlki5Ejeao7LSvE+C46k0F581yrGTliUrt3LJ2eXEdRIsIlka7vV2InJqC/q87sTN0UVkeZ8E+zyGZzY7f9Li8xpH4olIfhvO9XYicmorCLqTBLsV93h5nwTHU2kef3WnozEfe2WnJkSISNb6W2/n8xgKAl58nv798p2rejsROfVVlzk309eNeCeS93OCDaZfJyPH3xh3IrvaIxh0Eiwi2emr3s7rMcypreCKKWMYOyJMPJkmnkwT8HkI+Dw0H4iwsmEva7e1kkp//EKkXNXbicipLeT3cPX0cTy45i3HYl4zfRxhf25OgvM+Ce7rRCTTG+M+FjemkxYRyU5v9XYLp1Zx0yUT2NneRcDX/WaeBVLWYo9+nYf5U8Zw68yzePTFHSzfvOejcXNUbycip7ZoIs3sSRX82wvvOHZj3KcnVRBxqeHueHmfBPf2gx7ojXHHiuboH1BETl3H1sUVBrzcd81Ugj4DxrD9g06efG13n/vT1dPHcfqoQhZOHcO8c0fz909spjOe+lhcEZGBSqbS7NjXyR3zalhyXB40EHfMq+G9fZ1MGlPqwOpOLu+PA449ci8vCmR1Y1x50YfXJYdc6pgUkfxh6U5oCwNeHvnSBYws8PNeexfXPfQSD65564T704Nr3uK6h17ivfYuRhb4eeRLF1AY8FJdFubjBRIiIpmLpyzVIwuoKg0zs6Y8q1gza8qpKg0zbmQBiRxN2Mr7JLg41H0YXl4UcOTGuJ5EuCeuiMhAFQS66+2+//lphP1eHvrtdpasaMxof1qyopGHfrudsN/L9z8/jWumj6MgR/V2InJqKwx6efTFHbR1RLnlsjMHnAjPrCnnlsvOpK0jyiO/e5dCTYfIEdN90vLYzTMcuTHusZtndHc2qi9ORLIUS1iurBtDdVmYB9a8yfqmge1P65vaeGDNm1SXhVkwdQwxNcaJiAMMhj/s2s9phSF+/vsdXHt+Nd9aeC4hf//Sy5Dfw7cWnsu151fz89/v4LTCEJt2H8jZcIG8T4LLCwM88Plpjt4Y98Dnp1FRHHRohSKSr4pCXkJ+Ly9v3zfgBLjH+qY2Xt6+j7DPq3eqRMQRfq/hmunj+PsnNvOlS85gZIGfMSNC/PKWi7htzsQ+x51Vl4W5bc5EfnnLRYwZEWJkgZ8vXXIGf//EZq49fxz+HN21kPc7oc/rYUxpmD975H8dibdk5VbW3j4Tr9FRsIhkx+vpHmd2/6omR+Ldv6qJmTUVFIVVFSwi2fN5DQvqqvj5SzsAeOR377J2Wytej2H2pAr+7jM1VI0Ik0iliSbShPwe/F4Pew5EWNGwlx8+/zaptGX2pApuvuxMQn4P8+uq8OVogk3eJ8GdiQTLNjU7emPc8s3N/OmMakq8Og0WkYGLJdKscPhGy5UNe7j+wmoIORJSRPKYxxgCPg//8Rcz+OffbDv6jlUqbXluawvPbW0Bui/0Cfg8xJNpkr3MLl+7rZWUtfznX8wg4PXQz3t/sl9/br7N0HUoknLlxrhDEY1IE5HsRBOWJ17b7WjMX23cTTShk2ARyV4yZdnxQSebdx84YclWMm3piqd6TYB7rG9qY/PuA+z4oOOEz3NS3ifB1tKvG+Mysas9gtVrjIhkyWLd2Z80JE1EHJCylgmjCvnm8jccifeN5W8wYVRRrzdduiHvk+C+bozLOq5ujBORLLm2P0X1TpWIZM9rYGXDXkdLtp59fS856otTEuzW1Xy6MU5EsuXWKLN4UvuTiGQvmkzzn6+852jM//jf94gmdRKcE/2dZZepoC/vf7QikqWwS5dahHRZhog4wGOMKyVbaozLkeKQf1jFFZH8URh0Z4CPW3FFJL8cdq1kKzclpXmfBJsjN8Y5qbosjMYEi0i2PB539qdc1duJyKkt5lZJaY5utcz7JLgk7OX6C8Y7GvOGC8dTGtZJsIhkJ+j18IUZpzsa8wszTifoUzmEiGTPrb0kmKPLMvI+CS70+1k0bexJa4N9HkNBwIvvJIUqIb+HhVPHUhDQ240ikp1IIs2CuipH96cFdVV0qXFXRBxQEHQnCXYr7vHyPlNLptIEvIbF8ydz99Nbjj7u9Rjm1FZwxZQxjB0RJpZME02kCPm9BH0emg9EWNmwt/uWk2Pm2S2eP5mg15BMpvAqERaRLBgD77R28M0rz+Wupa8ffXyg+9M/LjyXd1oPc0Z50WD8dUTkFGPpLrFysjmuuiycs0nmeZ+ltXXGefi32/nLy89i1rZy1m1rY+HUKm66ZALr32zje8819fqPW10W5urp47h15lk8+uIOlm/ew6xJ5Xy6toIfrn+bWy49k3FKgkUkC0UhL683H+SznxjL7EkVrN3WOuD9afakCi6dWM6yTc1MrR4xCH8bETnVFAQ8XD19HA+uecuxmNdMH0dBjibYGDsMrzarr6+3GzZscCTWrvYuLr1vHevuuJwCn4932jpofP8Q969q6tfw55Dfwx3zaqgdXcJZ5UV0JZPMuv8Ffvv3s6guK3BkjSKSn1KpNHsPRbnp31/hP26awTsfdLB1b+b70+QxJZw1qog/e/RlHv3ShYwpDePN1QwiETll7d7fxf7OONf+5CVHLswI+T386isXMbIwwLiRzuRQxpiN1tr63j6X9zXBHdEkC6dW8Ycd7WDg0RffZcmKxn7/Y0YTaZasaOTRF98FA3/Y0c6VdWN0Y5yIZM3r9RD2efibWROxBn7624HtTz/97btYA38zayIhn0cJsIg4wucxNB+McMe8Gkfi3TGvhj0HIvhzNMIm75PgSCLFTZdM4JNnjuKupQ2saWwdUJw1ja3ctbSBT541ii9/6gzdGCcijigOBzj/jDLuWtrA2m0D25/Wbuven84/4zRKwgGHVygi+WrvwSjnVZVSVRpmZk15n8/rT/PuzJpyqkrDnDu2lL0Ho24s9+Prysl3GcJOKwzQlUiyvqmNddvasoq1blsb67e1cf7pIwj78/5HKyIO6IwnWdvY6sj+tLaxhfl1Ywj4lAiLSPaCPg/PvfE+hQEft1x2JgDrm9oybt6dWVPOLZedye72LlZteZ+LzjotJ+vP+0zN6zWUeAMsWbnVkXhLVm5l7e0zsTnrbRSRU1lXLOXo/jSzpoIRalcQEQcUBX18a0UjL975ab6z8g2uPb+aP/vkeEYVh1jf1Hry5t1ZZ/PB4SixpOU/XtrB3QvO5ZJ7n+d/7piZk/XnfTlEUcjLsk3NjhR0Q3cN3vLNzRSFNIxeRLITiSVc2Z8isYQj8UQkvxljuPHi03nhzRbunj+ZkQV+9hyIct1DL/Hgmrf6HJ22qz3Cg2ve4rqHXmLPgSgjC/zcPX8yLzS18MWLT8fk6NrdvE+CD0dSPP7qTkdjPvbKTg5HVBMsItnZ15VwZX/a16UkWESyF/QbvjBjAj9e/w6W7uEC9yx/I6Pm3XuWv8GjL76LBX68/h2+OGMCQV9u0tO8L4cAHB3y7EY8EclP1rqzPw3DyZgiMgQFfB6e37aHf//zT/KNZW8MuHl3TWMr1sK///knWbuthT+5YJzDK+2dToKj7pyIaESaiGSrI+rOPqL9SUScEE9YSsN+Xt3RPuAEuMfaba1seK+dkpCPWDI3v6nnfRLsVK3dx+OqHEJEshNxaR/R/iQiTkimLZ86exTffOYNR+J9Y/kbXDqxnGRKSXBOhF26mi/kU2OciGRH+5OIDGUeAytf3+to8+7K1/fiyVF2mvdJcFHInbJot+KKSP7Q/iQiQ1kqbfnFy+85GvMXL79HSifBuWFM97w6J1WXhcnRdA8ROYVpfxKRoSztUvNuOkfNu3mfBBeFvFx/wXhHY95w4XiKddIiIlkqCbuzP5WG/Y7GFJH81OlSk21XPDfNu3mfBEdiaRZ9YiwhvzM/ipDfw6JpY+mKqfFERLJzsCvFwmlVju5PV06t4oDmBIuIA9xqso24NLTgeHmfBCfTFo+BO+bVOBLvjnk1eI7EFRHJhrWWZDrt6P6USqV1rbuIOCLoUvNuri7LyPsk2O8zPLN5L6NLwsysKc8q1syackaXhHmmYS9+n4ruRCQ71sIKh/enFa/v1WUZIuKIwqA7SbBbcY+X94WrqZTlFy/voL0jzsM31gOwvqkt4zgza8q55bIzuflnGygrCvDHU0Y7vVQRyTMpa/mvDbsc35+uOG+M00sVkTyUSlmqy8KONsdVl4VJ5ejd9Lw/Ce7pbOyMp7j5Zxu49vxqFi+o7XcNXsjvYfGCWq49v5qbf7aBznhK15KKiCP8Xo8r+5PPm/dbv4g4wOsxXD3d2SuOr5k+Dm+ORtjk/U54bGdjZzzFVx97jU07D/DLm2dw25yJfY4nqi4Lc9ucifzy5hls2nmArz72Gp3x1DGxdC2piGRH+5OIDGkGZp5T7mjz7uXnlEOOKkrzvhyit2tJn2nYy7Nb3mf2pAr+7jM1VI0Ik0iliSbShPwe/F4Pew5EWNGwlx8+/3avx/bRuKZDiEh2eruFyYn9KZajzmsRObWlUpanNjVzx7walqxozDreHfNqWLqpmT+/eEL2i+uHvE+C++pATKUtz21t4bmtLQD4PIaAz0M8me7X5IdAjjobReTU5dr+pHIIEXGAx2MYWRA42rw7kJ6FHj3Nux3RJB6VQ+RGUbB/vwck05aueKrfo8/6G1dEpC8F/eyQznR/6m9cEZETMUfKIe5Z9jq3XHbmgKfY9DTv3rPsdS4/pzxnt1rmfRJsjHHpWlKNSBOR7FjrzrXJatwVEScYDE9taubWWWc70rx766yzWbqpGZOjouC8T4L9XsM1Dnc2Xnv+OPxeJcEikp1wwONK53VBQCfBIpK9oN9QdqQc4oIzyrJq3r3gjDJGl4QZVRgglKOS0rx/z97nMcyvq+LHL7zTaxNKpkJ+D1dMqcLnyfvfL0QkS8mUZfakCv7Nwf3p05MqSKTVGCcizlhQV8Xnf/J7/vWG6cDAmnd7yiH++rHX+O+/vDhnd1rmfRJsAYN1tLPRGKtrSUUkaxVFQRqaDzq6P+0+EGHSmBIHVici+a406CeRtEfLIe67ZiqXThzF/aua+tW8G/J7+IcrJjG6JMzNP9vA7Z85h7DPw4gCf07Wn/fHlWUFAd75oJMZZ57myLWkM848je1tnZQVBh1aoYjkK7/fS924EVSVOnNtclVpmLpxI/BrOoSIOCAY8OHzeLj4rFEnLIc4vnm3r3KIS84ahdfjIeDTtck54fV6qBs7gobdB7htzjnAwK8lvW3OOTTvj1A3bgRej2qCRSR7I8N+DkUT3HLZmUB21ybvbu9iZI5OWEQkPxQEvByMcDSHGmg5xG1zzsFjoDCH02uMHYZtwvX19XbDhg2OxYsn06xs2MOYEWHSaUvj+4e4f1VTv2rwQn4Pd8yroXZ0CR6PYe+BCPPrqjQnWEQc03ooyjeWb2FB3VjePxTJeH8aXRJmRUMz/7jwPCpKQjlYsYjkk9aDUdo6ohyMJHvNoU5UDtGTQ5WGfZQXhxzfo4wxG6219b1+Tklwt/bOOPc8vYU/njKGgM9QXhzihaZWnnhtN7vaIx97fnVZmGumj+PymgraDkeJJy2/fn0vSz57HiMLA46uTUSk5VCUu5Y2UBTw8eVPncELb7adfH86p5xHfvcuHfEk915VR6USYBFxSeuhKG+3dhBLphhZGOx3DrW/M0bQ5+XsiiJXfklXEtxPrYeifG3p6xQEvHz5U2ewc18XAb+H04qCHzvK39cRI5ZMc3pZAY/87l264in+6aopOmUREce1d8b59oo3+D8zz+aVd9v57q8bueSsUcyvG3PCtxp//84H/MMf13LhGWX8eP3bLF5wrn5JFxHXtByMsu39Q4woCLCrvROft+8cKplKU11WyIGuOJPGlLj2S/qJkuC8rwnu0d4Z54PDUb6+YDK/f/sD/vSR/z36IgNgAK/5cHxzLJn+yIvMJWeP4oPDUfxej15kRMQx8WSaNY3vs/QPe1j6hz0snl/Lb/7mMlY07OF7zzWxqz3ysbcaq8vC3HDheO5ZMJnn3nifuQ/8DwAzzhrFZ6eNVbmWiLiisjREYdDLwUiS5v1dRx83gM989AoMj8cwqjjIWeWFFIUGp1dBJ8F0v8js2NdBJJ7mgTVvUhz8+NuNvb3IHPt24+FYktvmnEM44GHCaUV6kRERR7x/MMLM763/SH1dwOfh/376bD5dW0FBwEdnLHn0lKUw6KMrnuT5xlZ++PzbxJMffl3I72H9381kdKmzt9CJiBwvFk/S1hnHWuiIJYknUwR8XoqCPoyBiuJgTqZA6CT4JA52xUmkLA+sefNo53WmnY097phXw8GuOOUqixCRLKVSaZZv3vuxJrh4Ms33nnuT7z33JgAhn4eikI+OaJJosu+GuWgizTMNe7np4gl4NSZNRFwUDPgYFxjaaebQXl0OpFJpoqk0L2/f95HRQ6m07deg52Otb2rj0omjmDd5NKlUWi8yIpKVfZ1xfvHyjpM+L5pME+2I9yvmz1/awaKpVepfEJG8l/dZ2sFoglgizf2rmk74vOMHPffl/lVNRJNpDkYTTi5TRPJQPJXutbM6G7vaI8RTujZZRCTvk+BkuntGcH9mbvZHNJHm2df3kNSLjIhkqSOadCduzJ24IiLDSd4nwbGE5YnXdjsa81cbdxNLDr+GQxEZWiKJlCtxoy7FFREZTvI+CbbWuvJ2o0VJsIhkJ+jSlJmA+hVERJQEu/W2YEdMJy0ikp2ikDu9y27FFREZTvI+CY6dYJzQsXweQ0HAi89jTv5kIK63G0UkSwZDddnJZ/qGfB5GFQUI9ePkuLoszEdH1ouI5Ke8Pw4I+3sf1Oz1GObUVnDFlDGMHREmlkwTTaQI+b0EfR6aD0RY2bCXtdtaPzInuEeoj7giIv3l9xqumT6OB9a89ZHHAz4Pfzv7bGZOqqAw0D0fOJJIEfZ7KQr56OzjsgyAa88fh9+rJFhEJO+T4N7eFlw4tYqbLpnA+jfbjl5LerzqsjBXTx/HrTPP4tEXd7B8856TxhURyYTPa5hfV8WPX3jn6ASbexbUMnfyaJ7ZvIev/GJjn/vT9ReMZ+3tl7N66/t8a0Uj0H1j3BVTqvCpJlhEROUQAa/n6NuNhQEvP7phOlOrS7nu4Zd5cM1bfTbN7WqP8OCat7ju4ZeZWl3Kj26YTmGg+/S3uiysa5NFJGvWgsFyx7wayosCrL7tMoI+L3MfeIH7VvX+Czp070/3rWpi7gMvEPR5WX3bZZQXBbhjXg3GWKxV466IiOuZmjHmj4wxTcaYt40xd/Xy+fHGmHXGmD8YYxqMMVe4vaZjnVYY4AszJlAY8PLwjfX8auMulqxo7Pfc4GgizZIVjfxq4y4evrGewoCXL140gdMKgy6vXEROdWUFAbZ/0MmlE0fx9Fc/xXd/3cjdT2/JaH+6++ktfPfXjTz91U9x6cRRbG/rpEz7k4gIxs0TAWOMF3gTmAvsBl4FrrfWbj3mOQ8Bf7DW/tgYMxl41lo74URx6+vr7YYNGxxb5/sHI/xh5wH+a8Ouj1ydnKmZNeX8SX01nxg/gtGlJ29mERE5mfcPRgHL1556nXXbBr4/zZpUzr2fq8MCo0t1ZbKIuCuRSNHWGSNt4fAxfQvFIR8eA+WFQfw56J8yxmy01tb39jm3C1cvBN621m4/spBfAouArcc8xwIlR/67FPhocW0OBP1e2jvjWSXAAOub2phbW6mmOBFxTNDv4dmGvVklwADrtrWxprGF+XVjHFqZiMjHdcWS7I8kWLapmcdf2dl338KF41k0bSwjw34KgoPTR+V2OcRYYNcxH+8+8tixvgn8mTFmN/As8Ne9BTLG3GKM2WCM2dDWlt2LwfG6YimWrNx68if2w5KVW+nUjGARcYj2JxEZLloPRXlqUzOzv7+e+35zkr6F3zQx+/vreWpTM62Hojleabeh0L11PfDv1tpxwBXAL4wxH1uXtfYha229tba+vLzcsW8eiXX/ttLfGruTiSbSLN/cTCSWcCSeiOQv7U8iMly0Hopy59IG7n4qw76Fp7Zw59KGQUmE3U6Cm4HqYz4ed+SxY30Z+G8Aa+1LQAgY5fK6jtrXleDxV3c6GvOxV3ayr0svMiKSHe1PIjIc9CTAAy3bWretbVASYbeT4FeBicaYM4wxAeA6YPlxz9kJzAYwxtTSnQQ7W3qFmG4AACAASURBVO9wAtbS53H9QO1qj6AJRCKSLe1PIjLUdcWSrG5scaxvoSuedGhlJ+dqEmytTQJ/BawCGoH/tta+YYz5ljFm4ZGn/T/gZmPMZuBx4Es2h0MsO6Lu/LA7Yrn7RxSRU5P2JxEZ6vZHEixZ4UzfwrdWbGV/Dt+pcr0dz1r7LN0Nb8c+ds8x/70VuMTtdfQlknCnSSTqUlwRyR/an0RkKEskUs73LWxq5i8uOSMn49OGQmPcoAq79EMO+TQmTUSyo/1JRIay1o4Yj7/ifN9Ca0fM0Zh9yfskuCjkzmG4W3FFJH9ofxKRoSztUt9COkdFsXmfBBvTPbTZSdVlYYxxNKSI5CHtTyIylA33voW8T4JPK/Bz/QXjHY15w4XjKS8KOhpTRPKP9icRGcqGe99C3ifB4aCfRdPGEvI786MI+T0snDqWoK5OFpEsaX8SkaHMqb3peEFfbtLTvE+CAQqDXhbPn+xIrMXzJ1MU1AuMiDijwOH9qVD7k4g4pDjkH1Zxj6ckGBhREGB2bSWzJmV3HfOsSeXMmVxJaUHAoZWJSL4b6fD+NEL7k4g4ZLj3LSgJPmJ0aYh7r6ob8AvNrEnl3HtVHZUlIYdXJiL5TvuTiAxFRSGvK30LJTmaYKMk+BiVJSH+6XN1fOez5/W7ziXk9/Cdz56nFxgRcZX2JxEZaooDfhZOq3K0b+HKqVUUBnNTDmFyeEOxY+rr6+2GDRtci3+wK05HLMXyzc089srOXmfgVZeFueHC8SycNpaigFclECKSEwe64nRmsD8VBrwqgRAR1+w7HOU3b7Rw99Nbso71nc+ex7xzKxlV7Nwv7caYjdba+l4/pyS4b5FYgn1dCaztnlkXTaQI+b0UBX0YA+VFQXVZi8ig0P4kIkNBPJmm9XCUxcu2sG5b24DjzJpUzpJF51FRHCLg4HSIEyXBujboBMJBP+NydCQvIpIJ7U8iMhQEfB4KAj6+vWgKX+f1ASXCsyaV8+1FUygIeB1NgE9GSbCIiIiIDFhZYYB9NsY3FpzLnEkfsGTlVqKJ9Em/LuT3sHj+ZC45exQhv4eRhbkt3VISfAKpVJr2rjjJtOVwNEkskSLo91Ic8uHzGMoKAni96i0UERGR/HZaURBjDNOqS1l92+WsaNhz0r6FBXVVHIrEKQ37c54Ag5LgXsWTado746xo2MPPXtrR5z/gjRdNYEFdFWWFgZwe34uIiIgMNWWFAYqCPto741w4oYxZkyoI+b10xpJEE2lCfg+FQR/RRIquaBK/18PEypJBy6HUGHec9s44axtbWLxsS7+P8pcsOo/ZtZWUDcJvMSIiIiJDzbHvpndEkyTTaXweD0U976YXBvF63L8VQ41x/bSvI8ZdT77O6saWfn9NNJHmjicamFtbyb1XT+G0oqCLKxQREREZ+rxeD+U9o85KB3ctfdF7+Ee0d8YzToCPtbqxhbuefJ39nXGHVyYiIiIiTlMSTHcN8NrGlgEnwD1WN7awprGFePLkZRQiIiIiMniUBNN9Crx4WfY3nQAsXraFdp0Gi4iIiAxpeZ8Ep1JpVjTs6VcTXH9EE93xUimdBouIiIgMVXmfBLd3xfnZSzscjfmzl3bQ3qXTYBEREZGhKu+T4GTa9joHOBu72iMk08Nv9JyIiIhIvsj7JPhwNOlK3A6X4oqIiIhI9vI+CY4lUu7E1YQIERERkSEr75PgoN/rSlxdoywiIiIydOV9plYccufSPLfiioiIiEj28j4J9nkM1WXhfj2vIODF1497rqvLwv16noiIiIgMjrw/riwrCHDjRRP49srGjzzu9Rjm1FZwxZQxjB0RJpZME02kCPm9BH0emg9EWNmwl7XbWkkdNwnixosmUFYYzOVfQ0REREQykPdJsNfrYUFdFd97runohRkLp1Zx0yUTWP9mG997rqnXEWrVZWGunj6OW2eexaMv7mD55j0AhPzd8bw6CRYREREZsvK+HAKgrDDAkkXnURjw8qMbpjO1upTrHn6ZB9e81ecM4V3tER5c8xbXPfwyU6tL+dEN0ykMeFmy6DzKCgM5/huIiIiISCby/iQYuic5zK6tpKaymB+seZP1TW39/tpoIs2SFY3MrCnn8ZtnUF1WoMkQIiIiIkOckuAjEsk0/7L2rYwS4GOtb2rDawzfvWqKwysTEfm4RCJFW2eMtO2+9CeSSBH2eykO+fAYKC8M4ndpBKSIyMnE4knaOuMAHI4cs0eFu1PP8sIAwcDgpqFKgoHDkQRrGltYu601qzhrt7WyZmsLi6ZVURTyO7Q6EZEPdcWS7I8kWLapmcdf2dlnz8L1F45n0bSxjAz7KQhqqxeR3DgcSXAomuzeo149wR51QfceVRLyURwenJzJWGtP/qwhpr6+3m7YsMGxeM37I8z+wfqjjXHZCPk9rL19JmNHnnzsmohIJloPRVnd2MKSFVv7tV+F/B4WL5jM3NpKKkpCOVihiOSzloNR1jS2sGRlBnvU/MnMqa2kstSdPcoYs9FaW9/b5/K+eDUW7/5txYkEGLprhJdvbiYWTzoST0QEuhPgO5c2cPdTW/q9X0UTae5+agt3Lm2g9VDU5RWKSD5rORTlrqcauPvpDPeop7dw11MNtAzCHpX3SXBbZ5zHX93paMzHXtl5tA5GRCRbPQnwum0D61lYt61NibCIuKblYJS7styj7lqa+0Q475Nga+lzDNpA7WqPMAyrTERkCOqKJVnd2DLgF5ce67a1saaxhS69SyUiDurpq3Jkj9raQkc04dDKTi7vk+COqDsvCB0xvdCISPb2RxIsWbHVkVjfWrGV/V25e4ERkVPfoWiSJSud2aOWrNzKwUju8qe8T4IjiZQrcaMuxRWR/JFIpJzvWdjUTEL7k4g4YLj3VeV9Ehx2aY5myKf5nCKSndaOGI+/4nzPQmtHzNGYIpKfhntfVd4nwUUhd+ZnuhVXRPJH2qWehbR6FkTEAcO9ryrvk2Bjuoc2O6m6LIwxjoYUkTykngURGcqG+x6V90lweWGA6y8Y72jMGy4cT0Vx0NGYIpJ/1LMgIkPZcN+j8j4JDgZ8LJo2lpDfmR9FyO9h4dSxBFQTLCJZcmpfOl7Ql/dbv4g4YLj3VWknBEpCPhbPn+xIrMXzJ1MaVj2wiGSvOOQfVnFFJL8M976qASXBxpgypxcymIrDfubUVjJrUnlWcWZNKmfO5EqK9AIjIg5Qz4KIDGVejzt7lDdHR7Qn/TbGmEuMMY3GmDeMMZ80xqwGXjXG7DLGXJSDNeZEZWmIe6+qG3AiPGtSOfdeVUdlScjhlYlIvioKeV3pWSjR9BoRcYDfa7hm+jhHY157/jgC3qFTDvEA8HngL4CVwD9aa88CFgHfc3FtOVdZEuLez9Xxnc+e1+9avJDfw3c+e54SYBFxXHHAz8JpVY72LFw5tYrCoN6tEpHsRROWy88pd3SPumxiuWsNd8frz6r91trXrbUvAW3W2t8BWGtfA5w9Ax8CKktDLJpWxdrbZ3LnH9X0ecxfXRbmzj+qYe3/m8miaVVKgEXEcV6vh7DP42jPQsjnwetRPYSIZK8jmuTRF3dwx7waR+LdMa+GR373bs5GpPXnPbFjE+WvHfe5gINrGTKKQn6KQn5uungCV06twtrumXXRRIqQ30tR0IcxUFEc1BQIEXFVcTjA5TXlzJpUzrptbQOOM2tSOZfXlFMSPiW3bREZBJFEiuWb9zDv3NHMrClnfdPA96iZNeWMLgnzTEMjN33qDAdX2bf+JMGLjTEF1toua+3TPQ8aY84Cfu7e0gZfMOBjXEC1cyIyeAI+DwUBH99eNIWv8/qAEuFZk8r59qIpFAS8BDQeTUQc0jMi7e+f2MzDN9YDDCgRnllTzi2XncnNP9sADKERadba5dbarl4ef8dae1/Px8aYf3V6cSIiAmWFAUJ+D99YcO6Aeha+seBcQn4PIwt1CiwizukZZdYZT3HzzzZw7fnVLF5Qm9EetXhBLdeeX83NP9tAZzz1kbhuc/K7XOJgLBEROcZpRUGMMUyrLmX1bZezomEPj72yk13tkY89t7oszA0XjmdBXRWHInFKw34lwCLiuJ4xjrvaI3TGU3z1sde4sm4Mv7x5Bi+82cYTr+3uc4+6Zvo4Lj+nnEd+9y7PNDR+5HO5GuOo9/pFRIaJssIARUEf7Z1xLpxQxqxJFYT8XjpjSaKJNCG/h8Kgj2giRVc0id/rYWJliUogRMQV5YUBrr9gPPetajr62DMNe3l2y/vMnlTB332mhqoRYRKp9NE9yu/1sOdAhBUNe/nh82+TStuPxLzhwvFUFAdzsn4lwSIiw0jA52F0aYjyogDtXXGSaUsi6cFjwOfxEPR5KAx4mVhRrCkQIuKqYMDHomlj+eHzbxFNpI8+nkpbntvawnNbWwDweQwBn4d4Mk3yuKT3WCG/h4VTx+Zs6ICTSbB2WxGRHPF6PZQXHxnNWDq4axGR/FUS8rF4/mTufnpLn89Jpi3J+Mln/y6eP5nScO7OZ/v9HpkxZspJnvIvWa5FRERERIaR4rCfObWVA75xt8esSeXMmVxJUSh3l/lkUij2/xljXjHG3GqM+di5g7X2351bloiIiIgMB5WlIe69qm7AifCsSeWDcvNuv5Nga+2lwJ8C1cBGY8xjxpi5rq1MRERERIaFypIQ936ubkBjHAcjAQYw1vZdoNzrFxjjBT4L/BA4RHct8D9Ya5c6v7ze1dfX2w0bNuTq24mIiIhIP3REExyMJFm+ufmkYxwXThtLacjnagmEMWajtba+t8/1u/rYGFMH/DkwH1gNXGmtfc0YUwW8BOQsCRYRERGRoaco5Kco5Oemiydw5dQqrIWOWJJoIkXI76Uo6MMYqCgO5mwKRF8yacH7V+CndJ/6Hk3rrbV7jDFfd3xlIiIiIjIsBQM+xgWG9iTeTFY3H4hYa1MAxhgPELLWdllrf+HK6kREREREXJDJdIg1QPiYjwuOPCYiIiIiMqxkkgSHrLUdPR8c+e8C55ckIiIiIuKuTJLgTmPM9J4PjDHnAx9v+RMRERERGeIyqQn+W+BXxpg9dI9FGw38iSurEhERERFxUb+TYGvtq8aYSUDNkYearLUJd5YlIiIiIuKeTGdXXABMOPJ1040xWGt/7viqRERERERclMllGb8AzgI2AakjD1tASbCIiIiIDCuZnATXA5Ntpvcsi4iIiIgMMZlMh9hCdzOciIiIiMiwlslJ8ChgqzHmFSDW86C1dqHjqxIRERERcVEmSfA33VqEiIiIiEguZTIi7QVjzOnARGvtGmNMAeB1b2kiIiIiIu7od02wMeZm4AngJ0ceGgs87caiRERERETclEk5xFeBC4H/BbDWvmWMqXBlVSIiIiIybKVSadq74iTTlsPRJIlkCr/PS3HIh89jKCsI4PVmMp/BeZkkwTFrbdwYA4Axxkf3nGAREREREeLJNO2dcRp2HSCNZVRRkFgyTTSRIuT3ciiS4IOOGAaYWj2SssIAAd/gJMOZJMEvGGP+AQgbY+YCtwLPuLMsERERERlO2jvjbN1zkKKQn63vH+LJ13azqz2Cz2MI+DzEk2mSaUt1WZirp4+jsjTM262HmVxVSllhIOfrzSQJvgv4MvA68BXgWWvtw66sSkRETiiRSNHWGSNt4XA0SSSRIuzvfqvRY6C8MIjfr95lEcmNfR0x3mw5TFPLYX6w+k0+dfYo/u4zNYwdEf7ISXDQ56H5QISVDXt5+LfbuX3uOXg9hnMqizmtKJjTNWeSBP+1tfZfgKOJrzHmb448JiIiOdAVS7I/kmDZpmYef2Unu9ojH3tOdVmY6y8cz6JpYxkZ9lMQzGSrFxHJTHtnnOb9EX7yP9spCfn5zy9/kvVvtvG955r63KOunj6OW2eexaMv7uC3b33A7XPOwWMMI3N4Imz6ewuyMeY1a+304x77g7X2E66s7ATq6+vthg0bcv1tRUQGVeuhKKsbW1iyYivRRPqkzw/5PSxeMJm5tZVUlIRysEIRyTfxZJrtH3Tw4Oo3uXLqWN4/FOH+VU393qPumFfD6JIwz2xu5ra553DGqCJHa4SNMRuttfW9fu5kSbAx5nrgBuBTwG+P+VQxkLbWznZqof2VqyT4+M7GWCJF0D+0OhtFJD+0Hopy59IG1m1ry/hrZ00q55+vqlMiLCKOazsU5ddv7OXsimIe+p/trG/KfI+aWVPOLZedyduth/njc8dQ7uBedaIkuD/vkf0e2Ev3tcnfP+bxw0BD9ssbeno6G1c07OFnL+3o8yj/xosmsKCualA7G0Xk1JdNAgywblsbdy5tUCIsIo5KpdIciiUpLwoNOAEGjn7dn9RXcyiWpCyVzskh40mTYGvte8B7wEWur2YIaO+Ms7axhcXLtnzkKP/4zsZd7RG+vbKR7z3XxJJF5zG7tnJQOhtF5NTWFUuyurFlwAlwj3Xb2ljT2MJnPzGWgoBqhEUkewejCRr3HKTlcGzACXCP9U1tXDpxFCmbZmSBn7JC95vkMqkJvgr4Z6ACMEf+WGttiXvL651b5RD7OmLc9eTrrG5swesxzKmt4IopYxg7Ikw8mSaeTBPweQgc09m4dlsrqbRlbm0l9149JeedjSJyams+EGH299f3q77uZEJ+D2v/30zGjgg7sDIRyXe793exvzPOtT95ybE96ldfuYiRhQHGjSxwYIUnLofI5Kz5PmChtbbUWltirS0ejATYLe2d8aMJ8MKpVTz5lxcxf8oYgkfKHCyQsvbo7SBBn4f5U8bw5F9exMKpVaxubOGuJ19nf2d80P4OInJqSSRSLNvU7MiLC0A0kWb5pmYSiZQj8UQkv/m8hrXbWh3do57f1orPaxyJdzKZvCfWYq1tzPQbGGP+CPgXwAv81Fp7by/P+TzwTbpzzc3W2hsy/T7ZiCfTrG1s4ffvfMCPbphO0GfAGLZ/0Hl00PPxesZ7nD6qkIVTxzDv3NH8/RObWdPYwqJpY1UjLCJZa+2I8fgrOx2N+dgrO1k4tYqxDp2yiEj+isbTPPnabkdjPvHabhZ9YqyjMfuSSRK8wRjzX8DTQKznQWvt0r6+wBjjBX4EzAV2A68aY5Zba7ce85yJwNeAS6y1+40xFRn+HbLW3hnn3l838siXLiCdtjS+f4i/evwPJ/zNZld7hAfXvMW/vfAOd8yroXZ0CY986QK++p8buXRiOaNL1XwiItlJW3r9Jfx4RQEvIwsD7O+M0xE/8SnvrvYIaV14LyIOMKZ/e1QmdrVHyM05cGZJcAnQBXzmmMcs0GcSDFwIvG2t3Q5gjPklsAjYesxzbgZ+ZK3dD2Ctbc1gTVlLpdKsaNjDdz5XR9jv5YE1b2ZU3B1NpFmyopGZNeXcNuccvvO5OlY07OHPL56g8WkikpWOaLLXx8MBL9+/po7JY0vxGcOhaIJoIk3I76Ek5CdpLVt2H+COJ18n0ktS3BHrPa6ISCa6Yu6UVnWd5Jd5p/Q7CbbW/vkA4o8Fdh3z8W7gk8c95xwAY8yLdJdMfNNa+5vjAxljbgFuARg/fvwAltK79q44u/Z3cdFZp3H/qqasx3vcMa+G32//gPauOOXFOg0WkYGL9FK7+9Mvnk/tmFKWbWrmn36zre8b4y4Yz5rbLqdx70H+4ucbP/L5qGqCRcQBsaQztcDHi7sU93j9Pqo0xpxjjFlrjNly5OM6Y8zXHViDD5gIzASuBx42xow4/knW2oestfXW2vry8nIHvm23ZNryhU+O5+Xt+xwZ7/Hy9n184ZPjSer9RhHJUsj/4RZ9elmYF++cRcuhGLN/sJ77VvV+HSl0v51436omZv9gPS2HYrx45yxOL/twIkRQPQsi4oBj9ygnBV2Ke7xMvsvDdNfuJgCstQ3AdSf5mmag+piPxx157Fi7geXW2oS19l3gTbqT4pxIpSwYD/evanIk3v2rmjDG0x1XRCQLxSE/0J0A/9dXLubry7Zw99Nb+t2JHU2kufvpLXx92Rb+6ysXH02Ee+KKiGSjNOzOXlKaoz0qkyS4wFr7ynGPnayw7FVgojHmDGNMgO6keflxz3ma7lNgjDGj6C6P2J7BurLi9RhWNuxxdLzHs6/vwevJVVm3iJyqjOkubXjs5hl87ansboz72lMNPHbzDKrLwhhtTyLiAJ/XUF3m7Nzx6rJwzkakZZIEf2CMOYvuZjiMMdfQfZ1yn6y1SeCvgFVAI/Df1to3jDHfMsYsPPK0VcA+Y8xWYB1wh7V2X4Z/jwFLpi1PODze41cbd6scQkSyVhL28tMv1LO+qc2RG+PWN7Xx0y/WUxLWjXEikr2yggBfvGiCozFvvGhCTm6Lg8yS4K8CPwEmGWOagb8F/s/Jvsha+6y19hxr7VnW2u8ceewea+3yI/9trbW3W2snW2unWGt/OYC/x4BZrCvjPT68VkNEZGAOdaUoCvlZsnLryZ/cD0tWbqUo6OdQl6ZDiEj2vF4PV9ZVOVYbHPJ7WFBXlbN30/u9amvtdmvtHKAcmGSt/ZS1dodrK8uRvkYQZavTpbEhIpI/isJe52+M29xMUdjrSDwRkbLCAEsWnedIrCWLzqOsMOBIrP7IZDrE3xhjemYFP2CMec0Y85mTfd1Q19/xHj6PoSDgxdfP305iSSXBIpKdw5EUj7/q/I1xhyPan0TEGQGfh9m1lcytrezzOf3JoebWVjKntjKnN+5mUhh2k7X2X4wx84DTgC8AvwCec2VlORL2934i4vUY5tRWcMWUMYwdESaWTBNNpAj5vQR9HpoPRFjZsJe121pJ9VL/G/LppEVEsudGuZaIiJPKCgPce/UU7JOWNY2tGedQc2oruPfqKYzM4SkwZJYE96TvVwA/P9LgNux7jItCH/8RLJxaxU2XTGD9m21877neZ3FWl4W5evo4bp15Fo++uIPlm/ecNK6ISCbcKtfSjXEi4oYvf+oMrrugmlHFIdY3tZ48h5p1Nh8cjlIYHJycKZMz543GmOfoToJXGWOKgdxc6eGigNdzdLxHYcDLj26YztTqUq57+GUeXPPWCYfRP7jmLa57+GWmVpfyoxumUxjoPv2tLgsT0JXJIpKl3m6Mc4JujBMRJ7V3xvnGsjdo70yw50CU6x56qX851EMvsedAlPbOBN9Y9gb7O+M5XXcmmdqXgbuAC6y1XUAAGMhVykOKz2v4wowJFAa8PHxjPb/auIslKxozGka/ZEUjv9q4i4dvrKcw4OWLMybgz9GMOxE5dfVVrpUtlWuJiFPiyTQvNLVyw4zx/GrjLu5Z/kZGOdQ9y9/gVxt3ccOM8axvas3ZlcnQj3IIY8wka+02YNqRh848Baogjkpby6cnVVA9MsxD/7N9wFcn93zd966dysTKYlJWI9JEJDtulVWpXEtEnNLeGSfk9zqSQ/1JfTXtnXFGl4acXGKf+rMT3g7cAny/l89Z4NOOrijHOmMpNr7XTjJlB/yP12N9UxtzayvZsGMfF501ilFFDi1SRPJSz41xTjaz6cY4EXFKKpWmofkAew5GHMmhLp04Cl+zobyoAm8OykpP+h2stbcc+d9ZvfwZ1glwj5rKYkeH0U8aXYJeY0QkW+WFAa6/YLyjMW+4cDwVxbm5jUlETm3tXXHGlIS4f1WTI/HuX9XE6JIQ7V25qQ3OZE7wtUea4TDGfN0Ys9QY8wn3lpY7699sc3QY/Qtvtum+OBHJWjDgY9G0sY7exrRw6lgCqgkWEQcYYO22VkdzqOe3tebsIDGTnXWxtfawMeZTwBzgEeDf3FlW7qSt5cnXdjsa84nXdpNWTbCIOKAk5GPx/MmOxFo8fzKlYdUDi4gzOuMpV3KoznhuJthkkgT3rGg+8JC1diXdEyKGNa/HuDKMPlf3XovIqa047GdObSWzJpVnFWfWpHLmTK6kKOR3aGUiIsP7Qp9MkuBmY8xPgD8BnjXGBDP8+iGpK+bObxtdOfotRkROfZWlIe69qm7AifCsSeXce1UdlSW56bgWkfww3HOoTJLYzwOrgHnW2gNAGXCHK6vKoZhL8+jiDtXHiIgAVJaEuPdzdXzns+f1u0Y45Pfwnc+epwRYRFwRS7qTrOZqVnC/i8OstV3GmGVApTGmp115mzvLyp1wwKVh9C7FFZH8VVkaYtG0KmbWVLB8czOPvbKzzytJb7hwPAunjaU05FMJhIi4IujShT4BX24KDfqdBBtj/hr4BtDCh9clW6DOhXXlTLFLQ+Pdiisi+a0o5Kco5Oemiydw5dQqrIWOWJJoIkXI76Uo6MMYqCgOagqEiLhquOdQmXyXvwFqrLX73FrMYPB5jCvD6H1qjBMRFwUDPsYF9Mu2iAwej0sX+uQqhcrkvHkXcNCthQyWsoIAN140wdGYN140gbJCDaMXERGRU1d5YZA//eTpjsb8s0+eTnlxbnoYMkmCtwPrjTFfM8bc3vPHrYXlitfrYUFdlaPD6BfUVWlEmoiIiJzS/H4vV051OIeaWoU/B1cmQ2ZJ8E5gNd2zgYuP+TPslRUGWLLoPEdiLVl0HmWFw358soiIiMhJjQz7uWeBMxf63LNgMiMLctfIm8l0iH8EMMYUHfm4w61F5VrA52F2bSVzaytZ3dgy4DhzayuZU1uZs65GERERkcFUEPQxp7aSNY0tPL+tbcBxPj2pnDm1lRTksNeh39maMeY8Y8wfgDeAN4wxG40x57q3tNwqKwxw79VTmFtbOaCvn1tbyb1XT2GkToFFREQkj1SUOHOhT0WO55kba23/nmjM74G7rbXrjnw8E/iutfZi95bXu/r6erthwwZXYrd3xlnb2MLiZVuI9uPCi5Dfw5JF5zGntlIJsIiIiOSt1kNR1jS28K0VW/udQ92zYDJzaitdS4CNMRuttfW9fi6DJHiztXbqyR7LBTeTYOi+qaS9M86Khj387KUdfQ6j/9LFE5g/pYqywoBKIERERCTvdcWT7O9KsHzTiS/0+dMjF/qMKPC7WgLhVBL8Sw9UyAAAIABJREFUFPAa8IsjD/0ZcL619nOOrDIDbifBPVKpNO1dcZJpS0c0SSyZJujzUBTy4fMYygqDmgIhIiIicpxEIkVbZ4y0hcPRDy/0KQ758BgoLw7lZArEiZLgTFLvm4B/BJbSfVPcb488dsryej0fzqorHdy1iIiIiAwXfr+XqhEFg72ME8pkOsR+4P+6uBYRERERkZzIZDrEamPMiGM+HmmMWeXOskRERERE3JNJMcYoa+2Bng+OnAxXOL8kERERERF3ZZIEp40x43s+MMacTndtsIiIiIjIsJJJY9zdwO+MMS8ABrgUuMWVVYmIiIiIuCiTxrjfGGOmAzOOPPS31toPej5vjDnXWvuG0wsUEREREXFaRtOJjyS9K/r49C+A6VmvSERERETEZU5OKdatESIiIiIyLDiZBKtJTkRERESGBffvqxMRERERGWKcTILjDsYSEREREXFNRo1xxpg6YMKxX2etXXrkf2f08WUiIiIiIkNKv5NgY8yjQB3wBpA+8rAFlrqwLhERERER12RyEjzDWjvZtZWIiIiIiORIJjXBLxljlASLiIiIyLCXyUnwz+lOhN8HYnTPBbbW2jpXViYiIiIi4pJMkuBHgC8Ar/NhTbCIiIiIyLCTSRLcZq1d7tpKRESk31KpNO1dcZJpy+FoklQqhdfrpTjkw+cxlBUE8Ho1Cl5EpC+ZJMF/MMY8BjxDdzkE8OGItFNRLJ6krbN7/PHhSJJIIkXY76U43P1jKy8MEAxkNGVORCQr8WSa9s44e/Z3URDyEfZ7SSTTRBJpwn5DPJnmYCLFzn1djB1ZQFlhgIBPybCI5NZwyKEy+e5hupPfzxzz2Ck5Iu1wJMGhaJJlm5p5/NX/v717j67zKu88/nt07rrGMpISy1IdSrAkHNsExYTbEDeCBhwscJhV7BYooWHWKsyipVC8Sk3X4IE6oZNhOqUthFLCTB3WNHGxiaFJnDppCwm2k9pKkGzIgiDHSU7UKLFu5372/CEpdWxZ1uV9j87x+/2slRVL59XjHb0rWz/ts/fzDurkcOqca9oaE9p6dbt617eqPh5WXSKyBCMFECTD41k989KEGhJRPfKL4QvOT++pj+unyRGtuGQyDAOA3yopQ5lzbkn+4sXo7u52R44c8aV28nRaBwaS2rm/X+nchbc+xyNV2rGpSz2dLWppiPsyJgB4YSyj0XReP3zy3+c9P73lNa9SXTys5bWxEowUQFCVY4Yys0edc90zvjbXEGxmcUkflfQ6SS+P1Dl3kxeDnA+/QnByJK3te/p08PjQvL92Y0eTdm1Zq5Z6gjAAbw2PZ5XKFvTHex9f8Pz033uvVHU0pGWsCAPwQblmqNlC8Hw2iv0fSZdK+nVJD0laKWl08cMrD8nTC795knTw+JC27+lTciTt8cgABFk2X9RENr/gACxNzk9/vPdxjWfzyuZp7gPAW5WaoeYTgl/jnNshadw5d4ekTZLe6M+wSms0ldOBgeSCb960g8eHdKA/qbF0zqORAQi60VRWD50Y8mR+eujEkEZSWY9GBgCVnaHmE4KnR/WSma2R1CCp2fshld5IOq+d+/s9qbVzf79Op/Ke1AIQbIVCUal80dP5KZ0vqlBgNRiANyo5Q80nBH/dzJZJ2iFpn6R+Sbf6MqoSymQnTzDOZQP3XKRzRe07dkqZLEEYwOKMZnPad/QZT+en7x17RqNZ3q0CsHiVnqHmHIKdc99wzr3onHvIOfdq51yzc+6v/RxcKQyNZ3Xn4UFPa+4+NPhybzwAWKixdMGX+WksXfC0JoBgqvQMNecQbGYtZvY3ZvaDqY+7zOyj/g2tNJzTjD3sFuPkcEoV2HkOQJlhfgJQzip9jprPdohvSbpX0oqpj38q6fe8HlCpjaX9WXIfy7AdAsDijPp0QIT5CYAXKj1DzScEv8o59/8kFSXJOZeXVPHvqaVy/vwnpH2qCyA4vNpnd25d5icAi1fpGWo+IXjczJZr8lHJMrNrJJ32ZVQllIiEfKkbD/tTF0BwMD8BKGeVPkeF53HtpzTZFeLVZvZDSU2S3u/LqEqoNj6fb8HS1wUQHMxPAMpZpc9R81kJ7pf0D5IOS0pKul2T+4IrmpnU1pjwtGZbY0JmnpYEEEBVPs1PVfOZ+QFgFn7MUaUyn6nw25I6JH1J0v+W9FpNPkq5oi2vjmjr1e2e1ty2oV1NtTFPawIInubamLZu8H5+aq6Le1oTQDDVJkK+ZKj6RPmtBK9xzv2Oc+7g1D83S3qdXwMrlbFsXr3rWxWPeLM0Eo9UafO6Vo2k6RMMYHEikZD389P6VkVCLAUDWLzxdMGXDDXqU9eJs81n1I9NHYaTJJnZGyUd8X5IpZXJO/18aEw7NnV5Um/Hpi79fGhUmTyNOAEs3rJERDtu8GZ++vwNXVpWHfGkFgBUR0MaTWc9zVCj6ayqo6U5GHfBEGxmj5tZn6Q3SPqRmT1lZr+Q9LCkbr8H6Leic/rgNw/p2tVN2tjRtKhaGzuadO3qJn3wm4dVpBs9AA9Ux8J6R2eLJ/NTT2eLqqMcigPgjYZ4RJFwyLsM1dGkSDikhkTUoxHObi4rwTdIeo+k6yVdLuntkq6d+vO7fBtZiUwvuW+7/RH96fvWLvgmbuxo0p++b6223f6IJPFYUgCeaa6P65Yti5ufbtmyVs317AUG4J1QqEr1sbB++OSQJxnqhz8bUn0srFBVaboLXHBJwDn3y1IMZKlk85PN6H85nNJvfO1H2n3zNXqwY0g79/fPqVF9PFKlHZu6dO3qJv3G136kX049PjCbJwQD8M50EL5/IKmd98x9fvr8DV3q6WwhAAPwRUN1VGvblum2+47rv/euWXCGuu2+47rpba9WQ3VpVoElyVwFvm3f3d3tjhzxZjvy8WdHdP3/+pdXfO72D71BXZc1aN+xU9p9aHDG52K3NSa0bUO7Nq9rVf+zp3Xztx99xev/+Mm3qeOyek/GCADTJrJ5vTiR076jF56fete36pLqCFsgAPhqeDyrp4cndNuBn+o339g+7wz1dz8e1Kd6Xqu2xmotq/E2BJvZo865GbfvBj4EP/3ihN56y8FzPp+IhvTlG6/UmpWXKGSmsUxe6VxB8UhItbGwCs7piadf0mfuflyp7Lmrvv/62Y1auazakzECwNlyuYKGxjMqusltXdPzU108rCqTmuridIEAUDIvjGX00+So+p8d0V/805Pa2fu6C2aoHXt/ok/82mvUdVm9XttSp+U+tJedLQQHfnkgGqpSW2PinN9UUtmCPnHn0Zc/ro2GtKwmqhfHsxqbIfSeqa0xoSg/fAD4KBIJacUl/KINoDwsr41ptZkKRae//cgGPXTied1y7wmdHE6dk6HaGhN6/1Ur9bcf2aDxdE4dl9Z7vgI8F4EPwctrovrgNav0pe8PzHrdWLagsey5S/oz+dCbVvny2wwAAEC5aqyJasPlyzU8nlXHpXX63Ls7tbw2plyhqHSuqHikSpFQlV4Yy8hMurQ+rsbL6hUNL83CYeBDcChUpfesu0y33X9iTpu4LyQeqdINay8r2clGAACAchENV+nShriaals0PJFVvug0ls4rVygqEqpSbTysVcur1VgTW/KsFPgQLEnLa2L6wubX6Q/vfnzRtb7Q+zotr2EVGAAABFcoVKWm6Ue0NyztWM6Hjaua/K2lp+tS9XQ2L6pOT2ez3tF56ZIt6wMAAGBuSGtTGmuiuuXGtQsOwj2dzbrlxrVLsrEbAAAA88N2iDMUi043veVy/acrmvSlHwzMudHzH72rU69prlWxWHnt5gAAAIKIleApz4+k9Yd7+rTtGz/W4aeG9Z2PXaNPv/O1amtMzHh9W2NCn37na/Wdj12jw08Na9s3fqw/3NOn50fSJR45AAAA5ouVYEkTmbwODCR18PiQJOl7fc/q+088p+s6mvXpd67WiksSyhWKyuSKik2193jmpZTu6XtW//PAz1SYWgE+eHxIBwaSeu/rW3lCEwAAQBkjqUl6MZXTF+7pf8XnCkWn+/qTuq8/KUkKV5mi4Spl80XlZ9n28IV7+vX21c2EYAAAgDIW+O0QuVxBe4+euuD+33zRaSJbmDUAS1I6V9S+o6eUy83+VDkAAAAsncCH4KHxjO48NOhpzd2HBjU0nvG0JgAAALwT+BBcdNLJ4bk9DnmuTg6nRKMIAACA8hX4EDyazldUXQAAACxe4ENwyqe9u2n2BAMAAJStwIfgRCTkS924T3UBAACweIEPwXVxf1qZ+VUXAAAAixf4EFxlOu9T4RaqrTGhKvO0JAAAADwU+BDcVBPT1g3tntbctqFdTXVxT2sCAADAO4EPwZFISL3rWxWPePOtiEeqtHl9qyKhwH9rAQAAyhZJTdKyRESfv6HLk1qfv6FLy6ojntQCAACAP3wPwWZ2vZmdMLMnzWz7LNfdaGbOzLr9HtPZqmNh9XS2aGNH06LqbOxoUk9ni6qjHIoDAAAoZ76GYDMLSfqqpHdJ6pK01czOWXI1szpJn5T0Yz/HM5vm+rhu2bJ2wUF4Y0eTbtmyVs317AUGAAAod36vBG+Q9KRz7ufOuayk70jqneG6nZJukZT2eTyzmg7CX3rfmjnvEY5HqvSl960hAAMAAFQQv9+3b5V08oyPn5b0xjMvMLOrJLU55/ab2WfOV8jMPibpY5LU3u5tN4czNdfH9d7Xt+rtq5u17+gp7T40qJPDqXOua2tM6Dc3tGvz+lZdUh1hCwQAAEAFWdLkZmZVkm6T9NsXutY593VJX5ek7u5u5+e4qqNhVUfD+p23XK7e9StUdNJoOq90rqB4JKS6eFhVJjXVxekCAQAAUIH8DsGnJLWd8fHKqc9Nq5O0RtKDZiZJl0raZ2abnXNHfB7bBUUiIa24pHqphwEAAACP+R2CD0u6wswu12T4/YCkbdMvOudOS3rV9Mdm9qCkT5dDAAaAcpbJ5jU0npUkjabySuUKSkRCqktMTutNNVHF2KYFAOfl6wzpnMub2Sck3SspJOmbzrmfmNkXJB1xzu3z8+9frEKhqOGJrPJFp9F0XplcQbGp7RDhKlNjdVQhtkMAKKHRVE4j6bz2Hj2lOw+f/8zC1qvb1bu+VfXxsOoS9C4HgLOZc75ur/VFd3e3O3LEv8XibL6o4fGs7ul7Rnc8/NR5f8h8+E2rdMPaFWqsiSoaJgwD8FfydFoHBpLaub9f6VzxgtfHI1XasalLPZ0tammgew2A4DGzR51zMz6DghB8luHxrB4YSGrH3ifm/ENmZ+8aXdfZosaaqC9jAoDkSFrb9/Tp4PGheX/txo4m7dqyVi20cQQQMLOFYJYvz/DCWEafvatPn7mrb04BWJLSuaI+c1efPntXn14Yy/g8QgBBlDy98AAsSQePD2n7nj4lR5a0FTsAlBVC8JTh8ay23/247h9Izvh6uMpUHQ0pXGUzvn7/QFLb735cL04dVAEAL4ymcjowkFxwAJ528PiQDvQnNZbOeTQyAKhsHB3W5B7gBwaSrwjAoSpTT2ez3n3lZWq9JKFMvvhyn+BYuEqnXkppf9+zeuD48yoUJ7eU3D+Q1IGBpHrXt7JHGIAnRtJ57dzf70mtnfv7de3qZtXGOSgHAIRgTa4C79j7xMsfb163Qje9ZZUe/OmQ/uy+E+c9GHfjVSv1u9f+qr75w6e079gzkqQde5/Q265o0qUcQgGwSJnsZBeIuW7PupB0rqh9x07ppjevon0agMAL/HJloVDUPX3PKJ0rqiYa0le3XaV1bQ36wO2P6CsHfjZjAJakk8MpfeXAz/SB2x/RurYGfXXbVaqJhpTOTdYrFLz5oQUguIbGs7rz8KCnNXcfGny5vzAABFngQ/DwRFZ3PPyUaqIh3f7hbv39oye1856BeR2M23nPgP7+0ZO6/cPdqomGdMfDT2l4gh8yABbHOZ33F/GFOjmcUgU2BQIAzwX+/bB80enkcEpf3XaVvv7PP9eDJxZ2+GT66259/zp9fPdjyhf5KQNgccbSeX/qZvypCwCVJPArwaPpvDavW6HnRlILDsDTHjwxpOdGUnrP2st8++EFIDhSuYIvddM+1QWAShL4EJzJFXTTW1bpy/ee8KTel+89oY++9XJl8uwJBrA4iUjIl7rxsD91AaCSBH47xLLqqO567GlPT18/9NMhbblqpSf1AARXbdyfKdqvugAwLZPNv3wIdzSVVypXUCISUl1icv5pqokueZcaZkKT7n7saU9L3vXY07rxDYRgAItjNtmO0cvDcW2NCdnMz/wBgEUbTeU0kp5s73jn4cHztpndenW7ete3qj4eVl1iaXqXB347BKevAZSrppqotl7d7mnNbRva1VwX87QmAEiTj3jfd+wZXXfbg7r13pmfsyBN5qRb7z2h6257UPuOPaPk6aV5pHvgQ7Bfp6THOX0NYJFi0bB617cqHvFmqo5HqrR5Xaui7AkG4LHkSFrb/6FPn/vuE/NqM/u57z6h7f/Qp+RI6YNw4ENwKuvPKWm/TnUDCJb6eFg7NnV5UmvHpi41JNgFB8BbydNpbd/Tp4PHF9Zl6+DxIW3fU/ogHPgQzOlrAOWsLhFRT2eLNnY0LarOxo4m9XS1qDa+NHvvAFycRlM5HRhILjgATzt4fEgH+pMaS+c8GtmFBT4Ec/oaQLlraYhr15a1Cw7CGzuatGvLWrXUxz0eGYCgG0nntXN/vye1du7v1+lU6baTBj4ET5++9hKnrwF4raU+rl3vW6svvnfNnPcIxyNV+uJ71xCAAfgik53sAuFlm9l9x04pky1NEA58COb0NYBK0dIQV+/6FXrgU9fqs9evPu8v8G2NCX32+tV64A+uVe/6FQRgAL4YGs/qzsODntbcfWjw5f7Cfgv8e/bTp6///J9+5slvMpy+BuCn2nhEtfGIbnrzKr1n3Qo5N9nlJp0rKB4JqTYWlpnUXBdjHgLgq0pvMxv4ECz9x+nrz333iUXX4vQ1gFKIRcNaucRPWwIQbGNpf7Yt+NW+9myB3w4hcfoaAABgvvxqB5suUZtZQvAUTl8DAADMXaW3mSUEn4HT1wAAAHNT6W1m2VB2lunT19eubta+Y6e0+9DgjJu+2xoT2rahXZvXt6ohHmYLBAAACJTpNrNeHo4rZZtZQvAMOH0NAAAwu+k2s7fee8KzmqVsM0sIngWnrwEAAGZW6W1m2RMMAACABZluM+uFz99Q2jazhGAAAAAsSF0ious8ajN7XWdp28wSggEAALAgo6mcHjrxvG5+26t17eqFBeFrVzfp5re9Wg+deF5j6ZzHIzw/NrwCAABgQUbSef3J936ikJluff86ve2KV+nL956Y0x7heKRKn/n11bq0PqGb7ziignN6y2uaSrYazEowAAAA5i2TzWvv0VNK54oazxb08d2P6ejgS/rOzdfo93uuUFtjYsava2tM6Pd7rtB3br5GRwdf0sd3P6bxbEHpXFH7jp1SJluaxyazEgwAAIB5GxrP6s7Dg6/43Pf6ntX3n3hO13U069PvXK0VlySUKxSVzhUVj1QpEqrSMy+ldE/fs/rzf3pShaJ7xdfvPjSo96xbUZLuXIRgAAAAzJtzmvFBGYWi0339Sd3Xn5QkhatM0XCVsvmi8meF3rOdHE7JzX6JZwjBAAAAmLex9Ny2LeSLTvlsYe51M6XZDsGeYAAAAMxbKjf3YDsfaZ/qno0QDAAAgHlLRPx5slucJ8YBAACgXNXG/dlV61fdsxGCAQAAMG9mOm8btIVqa0zIzNOS50UIBgAAwLw11US19ep2T2tu29Cu5rqYpzXPhxAMAACAeYtFw+pd36p4xJs4GY9UafO6VkXZEwwAAIByVh8Pa8emLk9q7djUpYZE6br3EoIBAACwIHWJiHo6W7Sxo2lRdTZ2NKmnq0W18YhHI7swQjAAAAAWrKUhrl1b1i44CG/saNKuLWvVUh/3eGSzIwQDAABgUVrq49r1vrX64nvXzHmPcDxSpS++d82SBGCJxyYDAADAAy0NcfWuX6FrVzdr37FT2n1oUCeHU+dc19aY0LYN7dq8vlUN8XBJt0CciRAMAAAAT9TGI6qNR3TTm1fpPetWyDlpLJNXOldQPBJSbSwsM6m5LlayLhDnQwgGAACAp2LRsFZGyztmsicYAAAAgVPeEX2JZbJ5DY1nJUmjqbxSuYISkZDqpnrYNdVEFSvz33IAXJwKhaKGJ7LKF51G03llcgXFIiHVxcMKV5kaq6MKhVjnALA0UpmcXpjISZo5Qy2vjigRW5q9wNNIcDMYTeU0ks5r79FTuvPw+Td1b726Xb3rW1UfD6susbQ3EkAwZPNFDY9ndU/fM7rj4afOOz99+E2rdMPaFWqsiSoaJgwDKI0XJ7KayBTmnKGqYyEtq44uwUglc84tyV+8GN3d3e7IkSO+1E6eTuvAQFI79/crnSte8Pp4pEo7NnWpp7NFLQ2lb+8BIDiGx7N6YCCpHXufmPP8tLN3ja7rbFFjzdL8kAEQHM+dTuuBBWSo6zpbdKlPGcrMHnXOdc/4GiH4PyRH0tq+p08Hjw/N+2uXqtEzgGB4YSyj7Xc/rvsHkvP+2nd0tmjXjVdqeW3Mh5EBQPlmqNlCMO+RTUmeXvjNk6SDx4e0fU+fkiNpj0cGIOiGx7MLDsCSdP9AUtvvflwvTp1xAAAvPVehGYoQrMk9wAcGkgu+edMOHh/Sgf6kxtI5j0YGIOiy+aIeGEguOABPu38gqQMDSWXzF36LEgDm6sWJyW1aXmWolyZK98s6IVjSSDqvnfv7Pam1c3+/TqfyntQCgOHxrHbsfcKTWjv2PqFhVoMBeGgiU/A0Q41nCp7UmovAh+BMdrILxFw2cM9FOlfUvmOnlMkShAEsTqFQ1D19z3g6P93T94wKBVaDASxeKpPzJUOlMqV5Rz3wIXhoPKs7Dw96WnP3ocGX+wsDwEINT2R1x8NPeVrzjoef0nAJ324EcPF6YSLnS4aa7i/st8CHYOc0Yw+7xTg5nFIFNt0AUGbyRefL/JQvMkEBWLxKz1CBD8FjaX+2LYxl2A4BYHFG/ZqffKoLIFgqPUMFPgSncv5swE77VBdAcGR8mkcydIgA4IFKz1CBD8GJSMiXuvGwP3UBBEfMp/mJxygD8EKlZ6jAz4S18XBF1QUQHHU+zSN+1QUQLJWeoQIfgs2ktsaEpzXbGhMy87QkgAAKV5kv81O4igkKwOJVeoYKfAhuqolq69XtntbctqFdzXUxT2sCCJ7G6qg+/KZVntb88JtWqbGG+QnA4i2vjviSoZpqSzNHBT4Ex6Jh9a5vVTzizbciHqnS5nWtirInGMAihUJVumHtCk/npxvWrlCIlWAAHkjEIr5kKL/OQ5wt8CFYkurjYe3Y1OVJrR2butSQYL8dAG801kS1s3eNJ7V29q5RY03Uk1oAIEnVsZCnGaomVrpFREKwpLpERD2dLdrY0bSoOhs7mtTT1aLaeMSjkQEIumi4Std1tugdnS2LqvOOzhb1dLbQGQKAp5ZVR3WdhxnqkurS/aLObDilpSGuXVvWLvgmbuxo0q4ta9VSH/d4ZACCrrEmql03XrngIPyOzhbtuvFKLWMVGIAPLq3QDGWuAp/v293d7Y4cOeJL7eTptA4MJLVzf7/SuQs3lI9HqrRjU5d6uloIwAB8NTye1QMDSe3Y+8Sc56edvWvU09lCAAbgu+dOp/VAmWUoM3vUOdc942uE4HONpXM6ncpr37FT2n1ocMbnYrc1JrRtQ7s2r29VQzzMFggAJZHNFzU8ntU9fc/ojoefOu/89NtvXqVNV65QY02ULRAASualiazGM4U5Z6iaaMjXLRCE4AXKZPMaGs/KucnnWKdzBcUjIdXGwjKTmutidIEAsCQKhaKGJ7LKF53G0nll8kXFwlWqjYcVrjI11sToAgFgyaQyOb0wkTtvhmqqjZWkC8RsIZg2BrOIRcNaGeVbBKD8hEJVaqqbevuwYWnHAgBnS8QiWhkr73fJeY8MAAAAgUMIBgAAQODwXv8spvcES9JoKq9UrqBEJKS6qYdhNNVEFWO7BIAlML3fTpp5flpeHVGizN+KBIClRIKbwWgqp5F0XnuPntKdh89/snHr1e3qXd+q+nhYdQl+2ADw34sTWU1kCnOen6pjIS0rYfN5AKgUdIc4y4L7BHe2qKWBPsEA/LPQHpzXdbboUuYnAAFEi7Q5So6ktX1Pnw4eH5r31/LEOAB+Yn4CgPmbLQRzMG5K8vTCf8BI0sHjQ9q+p0/JkbTHIwMQdM8xPwGA5wjBmtwDfGAgueAfMNMOHh/Sgf6kxtI5j0YGIOhenJh8VLJX89NLE1mPRgYAlY0QLGkkndfO/f2e1Nq5v1+nU3lPagHARKbg6fw0nil4UgsAKl3gQ3AmO9kFYi6HTOYinStq37FTymQJwgAWJ5XJ+TI/pTK8WwUAgQ/BQ+NZ3Xl40NOauw8NvtxfGAAW6oWJnC/z03R/YQAIssCHYOc0Y5/NxTg5nFIFNt0AUGaYnwDAP4EPwWNpf7YtjGXYDgFgcZifAMA/gQ/BqZw/h0TSPtUFEBzMTwDgn8CH4EQk5EvdeNifugCCg/kJAPzjewg2s+vN7ISZPWlm22d4/VNm1m9mfWb2gJn9it9jOlNtPFxRdQEEB/MTAPjH1xBsZiFJX5X0LkldkraaWddZl/2bpG7n3FpJd0m61c8xnTtGqa0x4WnNtsaEzDwtCSCAmJ8AwD9+rwRvkPSkc+7nzrmspO9I6j3zAufcQefcxNSHj0ha6fOYXqGpJqqtV7d7WnPbhnY118U8rQkgeJZXR3yZn5pqmZ8AwO8Q3Crp5BkfPz31ufP5qKQfzPSCmX3MzI6Y2ZGhocU9PvRMsWhYvetbFY94862IR6q0eV2rouy5A7BIiVjEl/kp5tNeYwCoJGVzMM7MfktSt6Qvz/S6c+7rzrlu51x3U1OTp393fTysHZvO3qWxMDs2dan34Oi8AAAKRElEQVQhwX47AN6ojoU8nZ9qYgRgAJD8D8GnJLWd8fHKqc+9gpn1SPqcpM3OuYzPYzpHXSKins4WbexYXLje2NGknq4W1cYjHo0MQNAtq47qOg/np0uqox6NDAAqm98h+LCkK8zscjOLSvqApH1nXmBmr5f0NU0G4Od9Hs95tTTEtWvL2gX/oNnY0aRdW9aqpT7u8cgABN2lzE8A4DlzPj8/08zeLekrkkKSvumc+6KZfUHSEefcPjM7IOlKSc9Ofcmgc27zbDW7u7vdkSNHfBlv8nRaBwaS2rm/X+lc8YLXxyNV2rGpSz1dLfyAAeCr506n9QDzEwDMmZk96pzrnvE1v0OwH/wMwZI0ls7pdCqvfcdOafehQZ0cTp1zTVtjQts2tGvz+lY1xMNsgQBQEi9NZDWeKcx5fqqJhtgCASCwCMELlMnmNTSelXPSWCavdK6geCSk2lhYZlJzXYwuEACWRCqT0wsTufPOT021MbpAAAi82UIwbQxmEYuGtTLKtwhA+UnEIloZ4x0oAFiosmmRBgAAAJQKy5yzmN4OIUmjqbxSuYISkZDqpvoAN9VEFWOlGAAA4BUqIUOR4GYwmsppJJ3X3qOndOfh8x882Xp1u3rXt6o+HlZdgrclAQBAsFVShuJg3FkW3CKts0UtDbQgAgAAwVSOGYruEHOUHElr+54+HTw+NO+vpRk9AAAIqnLNULOFYA7GTUmeXvjNk6SDx4e0fU+fkiNpj0cGAABQvio1QxGCNbl/5cBAcsE3b9rB40M60J/UWDrn0cgAAADKVyVnKEKwpJF0Xjv393tSa+f+fp1O5T2pBQAAUM4qOUMFPgRnspMnGOeygXsu0rmi9h07pUyWIAwAAC5elZ6hAh+Ch8azuvPwoKc1dx8afLk3HgAAwMWo0jNU4EOwc5qxh91inBxOqQKbbgAAAMxZpWeowIfgsbQ/S+5jGbZDAACAi1elZ6jAh+BUruBL3bRPdQEAAMpBpWeowIfgRCTkS9142J+6AAAA5aDSM1TgQ3BtPFxRdQEAAMpBpWeowIdgM6mtMeFpzbbGhMw8LQkAAFBWKj1DBT4EN9VEtfXqdk9rbtvQrua6mKc1AQAAykmlZ6jAh+BYNKze9a2KR7z5VsQjVdq8rlVR9gQDAICLWKVnqMCHYEmqj4e1Y1OXJ7V2bOpSQ4L9wAAA4OJXyRmKECypLhFRT2eLNnY0LarOxo4m9XS1qDYe8WhkAAAA5auSMxQheEpLQ1y7tqxd8E3c2NGkXVvWqqU+7vHIAAAAylelZihzFfh83+7ubnfkyBFfaidPp3VgIKmd+/uVzhUveH08UqUdm7rU09VCAAYAAIFVjhnKzB51znXP+Boh+Fxj6ZxOp/Lad+yUdh8anPG52G2NCW3b0K7N61vVEA+zBQIAAAReuWUoQvACZbJ5DY1n5dzkc6zTuYLikZBqY2GZSc11MbpAAAAAnKVcMtRsIZg2BrOIRcNaGeVbBAAAMB+VkKE4GAcAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKnIp8YZ2ZDkn65BH/1qyT9+xL8vfAX9/Xixb29eHFvL07c14vXUt3bX3HONc30QkWG4KViZkfO9+g9VC7u68WLe3vx4t5enLivF69yvLdshwAAAEDgEIIBAAAQOITg+fn6Ug8AvuC+Xry4txcv7u3Fift68Sq7e8ueYAAAAAQOK8EAAAAIHEIwAAAAAocQfBYz+6aZPW9mT5zndTOzPzezJ82sz8yuKvUYMX9zuK+/OXU/HzezH5nZulKPEQtzoXt7xnVXm1nezN5fqrFhceZyb83sWjM7amY/MbOHSjk+LNwc5uQGM/uemR2burcfKfUYMX9m1mZmB82sf+q+fXKGa8omRxGCz/UtSdfP8vq7JF0x9c/HJP1VCcaExfuWZr+vv5D0dufclZJ2qgw38OO8vqXZ763MLCTpFkn3lWJA8My3NMu9NbNLJP2lpM3OuddJ+s8lGhcW71ua/f/bj0vqd86tk3StpP9hZtESjAuLk5f0B865LknXSPq4mXWddU3Z5ChC8Fmcc/8saXiWS3olfdtNekTSJWZ2WWlGh4W60H11zv3IOffi1IePSFpZkoFh0ebw/6wk/VdJd0t63v8RwStzuLfbJO1xzg1OXc/9rRBzuLdOUp2ZmaTaqWvzpRgbFs4596xz7rGpP49KGpDUetZlZZOjCMHz1yrp5BkfP61zbzAq20cl/WCpBwFvmFmrpPeJd20uRq+VtMzMHjSzR83sQ0s9IHjmLyR1SnpG0uOSPumcKy7tkDAfZrZK0usl/fisl8omR4WX4i8FypWZbdRkCH7rUo8FnvmKpM8654qTi0q4iIQlvUHSdZISkh42s0eccz9d2mHBA78u6aikX5P0q5LuN7N/cc6NLO2wMBdmVqvJd99+r5zvGSF4/k5Jajvj45VTn0OFM7O1kr4h6V3OuReWejzwTLek70wF4FdJereZ5Z1z313aYcEDT0t6wTk3LmnczP5Z0jpJhODK9xFJu9zkwwyeNLNfSOqQdGhph4ULMbOIJgPw3znn9sxwSdnkKLZDzN8+SR+aOt14jaTTzrlnl3pQWBwza5e0R9IHWUW6uDjnLnfOrXLOrZJ0l6TfJQBfNPZKequZhc2sWtIbNbkHEZVvUJMr/DKzFkmrJf18SUeEC5raw/03kgacc7ed57KyyVGsBJ/FzO7U5EnUV5nZ05L+RFJEkpxzfy3p+5LeLelJSROa/G0VZW4O9/XzkpZL+supFcO8c657aUaL+ZjDvUWFutC9dc4NmNk/SuqTVJT0DefcrK3yUB7m8P/tTknfMrPHJZkmtzT9+xINF3P3FkkflPS4mR2d+twfSWqXyi9H8dhkAAAABA7bIQAAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYACrIVIN55m4AWCQmUgAoc2a2ysxOmNm3JT0haYeZHTazPjP7b2dcc9zM/s7MBszsrqmnqMnMdplZ/9T1f7aU/y0AUC54WAYAlDkzW6XJR8a+WVK9pPdL+i+afJLWPkm3avIxs7+Q9Fbn3A/N7JuS+iX9raQfSepwzjkzu8Q591LJ/yMAoMywEgwAleGXzrlHJL1z6p9/k/SYpA5JV0xdc9I598OpP/9fSW+VdFpSWtLfmNkWTT6mFAACL7zUAwAAzMn41L9N0p8657525otTq8Vnv7XnnHN5M9sg6TpNriB/QtKv+TtUACh/rAQDQGW5V9JNZlYrSWbWambNU6+1m9mbpv68TdK/Tl3X4Jz7vqTfl7Su5CMGgDLESjAAVBDn3H1m1inpYTOTpDFJvyWpIOmEpI+fsR/4ryQ1SNprZnFNriJ/akkGDgBlhoNxAHARmNoOcY9zbs0SDwUAKgLbIQAAABA4rAQDAAAgcFgJBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOD8f/9cZPnyKyQ3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3iU5Z0//vc9x2cykwMDk0BCMCqQBCFBjBRQayhBLEcr2CrdltYWtpfdbmu/RdlabCu1X0RbXffnbiurW+sW7VdEweAuyNHWShEoBMgBLCIhgSQQkpBkznP//pgEQ8hhJvM8Tw7zfl0XF2QOn9wk13XP57mf+/O5hZQSRERERETxxNDfAyAiIiIi0huTYCIiIiKKO0yCiYiIiCjuMAkmIiIiorjDJJiIiIiI4o6pvwfQFyNGjJBZWVn9PQwiIiIiGsAOHjx4QUrp6uq5QZkEZ2Vl4cCBA/09DCIiIiIawIQQn3b3HLdDEBEREVHcYRJMRERERHGHSTARERERxR0mwUREREQUd5gEExEREVHcYRJMRERERHGHSTARERERxR0mwUREREQUdwblYRl68foCqGvxAQAuuwNw+4OwmY1ItIV/bC67BVYLf4REpD/OT0Q0kLm9flxs9QPoeo4anmCGzWruzyEyCe7KZbcfTZ4ANh+uwmsfnUFlvfua12Q6bXjg1jFYNDkDSYoJibb+/UUSUXzg/EREA1lDqw8t3mDEc5TdakRKgqUfRgoIKWW/fONYFBQUSK2OTa5p9GBHWQ3WbC2Fxx/q9fWK2YDV8yagKDcNacmKJmMiIgI4PxHRwHa+0YOdfZijZuWmYaRGc5QQ4qCUsqDL55gEf6amyYNVm0qwu7wu6vfOzHFh7b15SEviBw0RqY/zExENZAN1juopCWZhXJuaxr7/8gBgd3kdVm0qQU2TR+WREVG84/xERAPZ+UE6RzEJRniP3Y6ymj7/8trtLq/DjtIaNHv8Ko2MiOId5yciGsgaWn3YqeIc1djqU2lkvWMSDKDJE8CaraWqxFqztRSN7oAqsYiIOD8R0UDW4g2qOkc1e4OqxIpE3CfBXl+4yjqSDdyR8PhD2HKkCl4fP2iIKDacn4hoIHN7/ZrMUW6vPnesNE2ChRAvCyFqhRDHunleCCGeF0J8LIQoEUJM0XI8Xalr8eG1j86oGnPD/jNX+ncSEfUV5yciGsgutvo1maPa+wtrTeuV4N8BuLuH578IYFzbnxUA/kPj8VxDSnTZwy4WlfVuDMKmG0Q0wHB+IqKBbLDPUZomwVLK9wHU9/CSRQB+L8P2AUgRQozSckydNXu0uS3Y7OXtRiKKDecnIhrIBvsc1d97gjMAVHb4+mzbY9cQQqwQQhwQQhyoq4utArEjt1+bDdgejeISUfzg/EREA9lgn6P6OwmOmJTyRSllgZSywOVyqRbXZjaqFqsjxaRNXCKKH5yfiGggG+xzVH8nwVUAMjt8PbrtMd04FNOgiktE8YPzExENZIN9jurvJHgLgK+3dYmYBqBRSnlOzwEIAWQ6barGzHTaIISqIYkoDnF+IqKBbLDPUVq3SHsNwIcAsoUQZ4UQ3xJCfEcI8Z22l7wL4BSAjwGsB/CQluPpistuwQO3jlE15tKpY5CaaFU1JhHFH85PRDSQDU8wazJHuRz6zFFad4d4QEo5SkppllKOllK+JKX8jZTyN23PSynld6WUN0opJ0kpD2g5nq5YLSYsmpwBxazOj0IxG7AwPwMW7rkjohhxfiKigcxmNWsyR1k12mvcWX9vhxgQkhQTVs+boEqs1fMmINnG/XZEpA7OT0Q0kNmtRlXnKIdVv4t0JsEAEm1mFOWmYWZObF0nZua4UDQhDQ7FrNLIiCjecX4iooEsJcGCWSrOUckJFpVG1jsmwW3SkhWsvTevz7/EmTkurL03D2lJisojI6J4x/mJiAaykYN0jhJyEJ6fWVBQIA8c0Gb7cE2jBzvKarBmayk8/lCvr1fMBqyeNwFFE9L4AUNEmuL8REQD2flGD3YOsDlKCHFQSlnQ5XNMgq/V7PGj0R3AliNV2LD/TJfnYmc6bVg6dQwWTs5AsmLiLUYi0gXnJyIayBpbfWj2BiOeoxwWo6ZbIJgE95HXF0Bdiw9Shs+x9viDUMxGOKwmCAGkJlpZZU1E/YLzExENZG6vHxdb/d3OUS6HVZcuED0lwSwT7oHVYsJoC39ERDTwcH4iooHIFwihvsWH4pJqvPLhaVTWu5GimJCapKC2yYMGTwCZThuWTc/C/Lx0OO0WWEz9U6LGGbQHwWAI9a0+BEISlz0B+ANBmE1GJCommAwCzgQLjEbWFhIRERHVt/iws6wGP3vnOG4fOwI/uisbGSk2eAMheANBWE1GWE0GVDW4sbXkHJ7dcQI/W3ATZuWmwWnXrytEOybBXWi/iimpbEAIEiMcVngDoStL+U1uPy40eyEA5GcO69erGCKKT7xIJ6KB5GKzF6vePAqbxYg/fPtz+NPJC3hmewUq690wGQQsJgN8gRACIYlMpw1fLsjEQzNvxMt/Po3tx2uwdvEkDNfppLh2TII7qW/xobS6EQ7FjNLzTXjz0NluN3UvnjIaack2fFx7GRPSk/vlKoaI4gsv0olooKlv8eGnm4/jnpszcLHZi6/+51+vWQlun6M6rgT/Zu/f8eicHAx3WPHTzcex5p6JGKZjLsXCuA4uNntxouYySs814eltFRG391g5JxsTRiVhfFqi7lcxRBQ/Ol6k76mo7fUivTA7Fc0ePy/SiUgzvkAIW0uqMSrFhvXvn4LdasKDt2Vhz4m63ueo8S68/MFptHgDWP75G3CuwY15eemqXrizO0QE6lt8OFvfil/vOIE9FXVRv78w24UfFo1HpjNB16sYIooPvEgnooHofKMHJWcbsPlvVZibl47zTe6o56iRSTa8W1KNRTdnIG90CkYmq9czmN0heuELhFB72dPnBBjAlfet+mIO7FYTbz8SkWrqW3youuTGb98/FdUc5fGHsKa47MpFukEIXqQTkWqCwRCOVjWgodWPr06/Di/GMEet+PwNqKp342hVA1yOVF1qGpipIdzY+YOPL/Q5AW63p6IOH3x8AY2tPpVGRkTxTq2L9F/vOIGayx74Ar2vzhARRaK+1YfrhtuRqJiiToA72lNRhxffPwWHYsJ1w+2o1ymPivskOBgMockbwNPbKlSJ9/S2CjR5AwgG+UFDRLHjRToRDVRCAJ9caEZ1o1uVOaq60Y1PLjRDCJUG2Iu4T4IbPX4UH6mOaO9KJDz+8AbxRo9flXhEFL94kU5EA5nHF0J6sk3VOSo92QaPT585Ku6T4FZfEBsPnVU15hsHz6LVF1Q1JhHFn0gv0k0GgQSLESZDz8snvEgnIjWZTQI7y2tVXUjcVV4Ls0mfpeC4L4wLSdll+45YVNa7ERqEXTeIaGDp7iLdaBAoyk3F3EmjkJFigy8Qgi8QgsVkgKVDD86d5bUIhq6ei944eBb3ThkNp12v/wURDVUefwhvqryQuPHQWdxzc4aqMbsT9yvBzZ5ARK+LdKXlSlwvV4KJKDZdXaQvzE/Hm9+ZjnmTRsHa1oVGAghKifZ012oyYN6kUXjzO9OxMD/9qvfzIp2I1KTFQqJe4n4l2NtNpXTnlZbuzr3uaqUFAHx+JsFEFJuOF+l2ixHrluTDahKAEDh1oaXXRvTXjbBjYf4ozLlpJB7ZeAQtbdu0eJFORGqIdOtn52OTe+PWaUtp3CfBNrPxmscW5qfjwduzrjr3urPO515vOVJ91fNKF3GJiKLRfpFutxjx0jduRSgkUXa+Cf/02t963INXWe/GcztO4jd7/46Vc7KROzIJL33jVnzrdx+hxRfkRToRqcLbzTzU1UJiV8cmd7eQ2N0CpdriPgm2Wz/7EbSvtFxs9uL+F/f1+iHzq+0n8MLuj/HjL+Zes9LSMS4RUV+0X6T/6suTYTMb8WyUvYI7NqJ/uGg8fvXlyfjOfx/kRToRqUIxX7urdmF++pVjk9sXEjuvBLffrXqo8Ea8/MG1C4lWnQ4cY6aG8KpufbMPL33jVqx//xR2ltdG/F6PP4THtxzHrJzUKystTgdPZCKi2DkUExbmpyPTGW5BFOuJlivnZGNB3ig4FE79RBS7BOtnF9TtC4nnm9z46kt/xe1jR+BHd2X3uBK8/k+n8MPZ469ZSOwYV0txPxOGQhKLp4xGzsjEqBPgjtrf96sv56Pi/GUWnhBRzAwC+P6ssdhzok6VRvR3jBuBH8wehwjre4mIehQIyisLieuXFeDF908hSTHjD9/63FUrwZ11Xgn+k+cC1i8rwPJXDsDpsCAQ1CeHivskuL7Vh/mTRmL/6YY+J8DtdpbXoig3DXMnjcSllvBRgkREfZWoGNHqC6naiL5wfCoSuRJMRCowGgQWTxmNcamJ+P1fTuO+WzJxvsmN+9f3vqW0Y93CyCQbfv+X01i3JB8f116GUacr9bhvkWYzGyEMBjxRfLzH10XaIu3nxcdhMBi4546IYuZuO9xC1RMtj1brVnlNREOb0SAwf9JIXGzx4OszsvDGwUqsKS6LeM5qr1t442Alvj4jCxdbPJg7aaRuSXDcLwc4HWa8dejaD5m+VjZ6/CHsLKvBPZPTO38rIqKoeP1SkxMtv3TzaFVjElH8CkHA5VDw4vunYq5b+EpBJiT0268V90mwPyDx33/99KrHuqps7KynysZX932KeZNGaT52IhrapEYnWn52rAYRUd8l24w4erYR1Y1u1eoWIIDbxw5XaYQ9i/vtECH52ekkdosRLyydgvzMZNy/fh+e23Gy2w+g9v0s96/fh/zMZLywdArsFuOV5yLoBU1E1KPL3shOtIxWs4fbIYgodg2tQYweZlO1bmF0ig0NrdrMfZ3FfRLc3PYhY7cYsX5ZQUz7WdYvK7iSCLdo9OFFRPHDp1HDeF+ASTARxc5iEthZXqtq3cKu8lpYTCyM04Wn7eSkdUvyY97P8uL7p7BuSf5VcYmI+qqrEy3VwMJdIlKD2xfCmyrXLWw8dBZulZLq3sR9Emw1GbAwPx3nm9TZz3K+yY0FeaNg0em0EyIauiI9eTLS7jXRxiUi6okQ0KRuQa/SuLifCR2KCQ/eloX71+9TJd7T2yrw+vJpPJGJiGJmNISLcDt/yPS1ew0QjhdpskxE1JNWrzZ3vVt1auMY95maYjZg74k6VfezvH+yDvffmqlKPCKKXwlWI742LQu/fLfsymOxdq/5+rQsrgQTkSq8mtUtcDuELvxBbfpw+nU68o+Ihq6GlgDm542CYjao0r1GMRswL28ULrX4dP6fENFQpJi1SSOtOm0pjfvlACm12c/CFJiIYmUwACYD8OQ9EzEqxRZ18W5795rCbBfWLyvAuQY3zAYgEPfLH0SkBq2OYNfraPe4nwqb3H5N4l72sEUaEcXGIAR2V9ThtrEjsP5PsXWvWf+nU7h9rAs7y2thENwTTESx84ckMp02VWNmOm0I6HTYQtwnwWrtBb42LlukEVFsrCaBmdmp2FlWi93lsXWv2V1eh53lNZiVkwaF3WuISAWBYAhf/dx1qsb8h89dB3+Qe4J1oVkfThP7cBJRbJKsZviDEmu2lqoS74niUviCEomKWZV4RBTffIEQCrNdve4NVkwGjHBYer0AV8wG3DnepVthXNzvCdaqlRlbpBFRrLyhIDYfrlK1e82WI1X46rRMWHlgBhHFyKGY4PMH8ejdOfj5O59drFtMBvxg1lgU5qTCbjGh2ROA2x+EzWyEQzGhxRfArrJaPL/r46sS3kfvzoHRACSY9cmhmKmh6z6cscYjIopVkzuI1z46o2rMDfvPYEF+OpIUVcMSURyymQ1461AV5k4ahS/kuLCrvA6Pz8/F7Akj8c6Ravzjqwe7beP4wK1jsPOHd+K90vN4orgMX8hx4faxI/A/x87hgan6tJmN++0QyQlGPHDrGFVjLp06BikJvN1IRLHRrHsN29cQkQr8QYn6Vh8+PHUB3581Fnt+VAiryYjZz+7Fum1d9zEHwvPQum0VmP3sXlhNRuz5USG+P2ssPjx1ARdafLq1mY37JLixNYhFkzNU63WnmA1YmJ+BhlZtuk4QUfxo1qjLTLOX3WuIKHYhCXxpcgZ2ldVgZHICfl58HI+9fSziLVwefwiPvX0MPy8+jpHJCdhVVoN7J2dAp+YQTIIBwCAkVs+boEqsx+dPgFFwmYWIYucJaNNlxqtRXCKKL8GQxJ4TdVi7OB+rNpX0uYvN7vI6rNpUgrWLJ2PvibprjnvXStwnwaGQxIFPL+HObBdm5aTGFGtWTiruHO/CgU8vIcT7jUQUI0Wj4jUru9cQkQqCIYnFUzLUa+NYVoMlUzJ0y6GYBEuJrOF2VJy/jH+eNQ6F2a4+xSnMduGfZ41D+fnLuG64nUkwEcXMYdWoe41GcYkovpiMAgZhUK2N45qtpYAwwGjQ50CfuE+CbVYjKi+14vTFFixdvw/33ZKJ1fNzI94jrJgNWD0/F/fdkoml6/fh9MUWVF5qhc3ClRYiik1IanMaEy/SiUgNwxJMmrRxTEngscm68PpDyByWgKe3VaDFF8R3NxzC4TMNeH35NDxcNK7bD6BMpw0PF43D68un4fCZBnx3wyG0+IJ4elsFMoclwKvRSXREFD8CwRAWTxmtaswlU0YjoFPlNRENbQ2t2rRxbGzVp24h7u+JKWYD3vpb7VVXMe+UnMO7x85jVk4qfnRXNtJTbPAHQ/D4Q1DMBpiNBlQ3uFFccg7P7/r4qg3cHn8Iu8prcb9OPe6IaOjyBkIoHO/Cb/b+XZWVlvbTmFgYR0Rq0aKNo17iPgl2+0N489DZax4PhiS2l9Zge2kNAMBkELCYDPAFQgj0UrW48dBZ3HNzhibjJaL44VDMeGZbBVbOycaa4rKY462ck42X/vwJVt6do8LoiCjeDfY2jnG/HUIgsquOQEii1RfsNQFGhPGIiHpjEMDfKi9hZJKtz0W77QqzXRiZZMPhsw3QqeaEiIY4t1+bu0oejeJ2FvdJcKtPmx+0W6O4RBQ/EixGLJkyGo9sPIIVn78hpu41Kz5/Ax7ZeAT33TIadhbuEpEKbBq1cVR0auMY90mwVgVs3gAL44goNokWE+bnpSMoJZa/ciCm7jXLXzmAoJSYNymdLdKISBUORaM2jhrF7Szuk2C1jkvuzGqK+x8tEcWoweNHgtWIx+ffpEr3mp/Ovwl2ixENbh7rTkTq0KKNo17ifjkgwarNkrtWcYkofggBnLnYipvHpKAw24U9FXV97l5TmO3C5DEpOFPfghtSHf38PyOiocBsFHjg1jFYt61CtZhLp46B1aRP4ULcJ8HBYLgZvZrFbJlOm27nXhPR0NXiDSLBYsQ//Oc+/NvSKQCAPRV1UXevad8T/A//uQ+/++ZUtHiDGME8mIhidL7RgwX56Xh+10nV2jjOz0vHuUYvUpO0XxGO+3v2JqPQpBm9yRD3P1oiipHVZMDO8lpcbPH3uCe4u+41nfcEX2zxY1d5LSzcrkVEKlDMRrxXeh6r501QJd7qeROw/fh53baUxv1MaDIaUDjepdre4PZm9CYjexARUWw8gc/6mKuxJxgI9zFn4S4RqcGhmPBEcRmmXu/EzJzY2jjOzHFh6vVOrNlaplthXNxvhzAZBN46XKVqM/pNh6vwvZljVRgdEcWzrvqYx3KiJdri8RKdiNQgEL7oXrp+HzY9dBsexzHsLq+LOs7MHBeeWDgR9/77B8h02nSbo+I+CXYmWJA5LOFKM/o9FdH/8tq1N6OXEnDarSqOkojiUau3637jsZxoCWjXH52I4ovJKPC1adfhl++W495//wAblk9DUU4a1mwtjWiPsGI2YPW8CZh6vRP3/vsHqGv24cdzc2A2cjuELozG8CbsxzcfVaUZ/eObj2J+XjqMPJKJiGIU6baFaE60BAAft0MQkQosJgPumjASitmAumYfZj/7Pjz+IN57+E48end2j1u2Hr07G+89fCc8/iBmP/s+6pp9UMzheHrVLcT9SjAAOO0WrPpiLpa/cgDrluTjjnEj8PS2ioivYlbOycbIJBuWv3IAP1t4E5x2iw6jJqKhzqpRH3MWxhGRGgJBCavZgJ/Ovwn/8tZRAMCarWV4alsF/vkLY/Hbr92CBIsJLd7AlS1bdqsJrb4AdpXVYtav9151Uf7T+TdBMRngD+pzoc4kGOEPhFm5adh+vAbf3XAIC/JG4fXl07D3RB02HjrbZfu0TKcNS6aMxp3jXXjpz5/gnZIyzM5NQ1FuGj9giEgVWp3sxhPjiEgNzgQLjlQ14uYxKZiVk4qd5bUAwnebntl+As9sPwEAUEwGOBQTmj0BeLq5EzUrJxU3j0lBdaMb+ZnDdBk/Z8I2TrsFaxdPAt7sW+HJ7Nw0rF08CcO4CkxEKglJbfqYhyT7mBNR7IxGA9KTbWjx+vGDonEAcCUR7sgTCMHT7Os2zqycVPygaBzMJoH0hATdtpQyCe5guMOKp5bk4a6yGqzefCyiwhPFbMDaeyehKDeNCTARqcpmMeArBZlXVlPUcP+tmbCZeaIlEanDabfgo08u4uYxw/Ct26/HneNd+OX/lEW8pfTHX8zF2FQHhiVY8LczlzBn4igdRh3GJLgTp92CRZMzcMc4F4pLqvHKh6dRWe9GICQR6FBRnem04RszsjBvUjqcdgu3QBCR+qTAneNd+P92f6zaaUyfH+cCe6QRkVosJgNuG+fCk8Wl+E7hjfAHQ/jjiun408k6/PFAZbdbSr9SkIk7xrnQ0OqDK9GKZ987gZ/Mn6BrPiXkILwtVlBQIA8cOKD59/H6Aqhr8UFKoNkbgMcfhGI2wmE1QQgg1WGFhSsqRKSRYDCEneW1qLzUqkof89Xzc5HpTMCsnDR2sCEiVV1s9mLVm0cx7QYn7rppJI6ebYDBIDDcYYU/GILXH4K1bUvpxWYvQlJiUkYKth8/j32n6rF28SQMd6jfXlYIcVBKWdDVc1wJ7kKrN4BLbj82H67Ca/vPoLLefc12iEynDQ9MHYNFkzMwzGZGAgtNiEhlRqMBeaOTEQxJVfqYpyfbkJeRzASYiFTXvqV0Z1kN5v3bn7DijhvwhdzUK90hfOYQLKZwdwi71YhdZbVYtekoVs+bgHVL8vplSylXgjupbfJgR1kNniiOvNHz4/MnoCg3DalJiiZjIqL45QuEUFxShZHJNrz4/qk+JcLtfczPN3owPy+d27eISDO+QAj1Lb6rtpR27g6h55bSnlaCmQR3UNvkwaObSvp85N9T9+YxESYi1dW3+LD67aOYOykd55vcfepj/u7RavziHnawISJ9BIMh1Lf6EAhJNHsC8AZCsLYlwyaDgNNu1eWuFJPgCMSSALdjIkxEWrnY7MWjb5bAZjbiW7dfH1Ufc7c/iKcW52my346IaCDjnuBetHoD2FFWE1MCDAC7y+uwo6wG99ycgQQLf7REpJ7hDivWLcnHjrIafPWlv+K2G0f02sf8xT+dws8W3MQWjkREXeBKMICqBjdm/WqPai2Idv6fQmSkdH1eNhFRLLrab9dV4e6yGVmYzxaORBTnuBLcA78/iM2Hq1RJgAHA4w9hy+EqfPu262Fm+zQiUpnFZMDIZAXfnJGFRZPT+32/HRHRYBX3SXBdixev7T+jaswN+89g0eR0pKckqBqXiKid0WiAK7Gt/iC5f8dCRDQYxf09spBEl4UlsaisdyM0+HaZEBEREcWNuE+CL3sCgyouEREREcVO8yRYCHG3EKJCCPGxEGJVF8+PEULsFkL8TQhRIoSYq/WYOnL7g5rE9WgUl4iIiIhip+meYCGEEcALAGYDOAvgIyHEFillaYeX/QTA/5NS/ocQYgKAdwFkaTmujmwmbYrXFI3iEhEREQ10HQ/LuOwJwB8IwmwyIrG9eDfBAqOxfzckaF0YNxXAx1LKUwAghHgdwCIAHZNgCSCp7d/JAKo1HtNVHIo2PwKt4hIRERENVO1tHEsqGxCCxAiHFb5ACL5ACBaTAU1uPy40eyEA5GcO69c2jlp/1wwAlR2+Ptv2WEc/A/APQoizCK8Cf6+rQEKIFUKIA0KIA3V1sR1q0Vmms/eeviaDQILFCFMELYciiUdEREQ0lNS3+LD/k4s43+SBJ/DZtlAJICglOvYM8PhDON/kwf5PLqK+xaf7WIGB0SLtAQC/k1L+SggxHcCrQoiJUsqrGvdKKV8E8CIQPixDrW/uUIx44NYxWLet4qrHjQaBotxUzJ00ChkpNngDIXj8QShmI6wmA6oa3Nhacg47y2sR7NQKYunUMUjkSjARERHFiYvNXpyouQyPPwiHYsapCy14s4ej3RdPGY3rRtjh8QdRcb4J49MSdT/aXetMrQpAZoevR7c91tG3ANwNAFLKD4UQCoARAGo1HhsAIBCUWJCfjud3nbxyYMbC/HQ8eFsW9pyowzPbK3r8BT5UeCNe/uA0thwJ7+JQzAbMz0uHP6jO4RtERF0ZDPvtiCg+1Lf4cK7BDSmBT+tb8U+v/a3HQ8gq6914bsdJ/Gbv37FyTjZyRybhXIMbBiF0PeJd02OThRAmACcAzEI4+f0IwFIp5fEOr/kfAH+UUv5OCJELYCeADNnDwNQ8NjkYDOFIVSNOnL+MNcWlWLckH+eb3Hh6W0VEp8gpZgNWzsnGyCQbHtl4BI8vmIBxqQ7kZw7jaU1EpLqu9tt1vlM1UPbbEdHQ5wuEcPpiM9y+EJ7dcQJ7KqLfslqY7cLDReNhsxiQNdyh6pzVb8cmSykDQoh/ArANgBHAy1LK40KIJwAckFJuAfB/AKwXQjyM8LaRb/SUAKvNaDTgumE2OCxGbFg+LepfoMcfwpriMhRmu7Bh+TTYLIbwCgwTYCJSWX2LD6XVjXAoZpSeb+r1VmNasg0f117GhPRkOHVcXSGi+NHY6oM/KPucAAO48r6Vc7LR2OqDK0lRc4jd0nzjqpTyXYQL3jo+9niHf5cCuE3rcfTEE5Q4fbEVf/yoMqZfoFEIfOXWTNgzzCqPkIjiXft+u4qay73eqep8q9FoEP2y346IhrZgMARPMIR9py72OX9qt6eiDneMG4E5E0YiGAzpsp0r7u+R+f1BlJxtQI867AgAACAASURBVOWlVuwsj20b8s7yWlReakXJ2Qb4eVgGEamkvsWHqktu/Pb9U1hTXBbRVi3gsztVv33/FKouuXGpnyqwiWhoavT44fWH8HSn5gJ99fS2CngCITR6/KrE603cJ8F1LV6MTrGp+gscnWJDXYtXlXhEFN98gRBqL3vw6xhvNf56xwnUXPbAF2DRLhGpIxAKYWtJdcQX5r3x+EN492g1Ajo1F4j7JNhkFNhZXqvqL3BXeW1E/YSJiHrT2OrDBx9fUOVW4wcfX0BjK1eDiUgdXr/ExkNnVY35xsGz8Ab0KQ2L+yS41RfCmyr/AjceOotWlZJqIopfwWAITd6AqneqmrwBBNnCkYhUIKXssjg3FpX1blx9rIZ24j4JFoAmv0CuAxNRrBo9fhQfUfdW49aSat322xHR0NbsDWgUV5+6qrhPgls1+kG3+lgYR0SxafUFNbnVyPmJiNTg1ajGwKdTc4G4T4I1+wWy+ISIYhTS6FZjSL9W7EQ0hNnMRk3iKhrF7Szuk2DFrM2PwMoTmogoRs2ewX2rkYiGNoeizXETWsXtLO4ztSSbNgdbaBWXiOLHYL/VSERDm8VoQKbTpmrMTKdNt6Pe4z4JNhuFJr9As5GlcUQUm0hvNZoMAgkWY8StGfW61UhEQ9twuwVfm5bV6+uimaO+Pj0Lw+36nG6pz3rzAOZMsODr07Pw5NYy1WIum54Fp06/QCIauuzWrqdoo0GgKDcVcyeNQkaKDd5ACB5/EIrZCKvJgKoGN7aWnMPO8loEQ9fu/+0uLhFRNIxGAxbmj8Kv37v6KPe+zlGK2YAFeaNg1OmshbifCY1GAxbkpeNX2ytUaUOkmA2Yn5eu2y+QiIYuoyF8p6pjcdzC/HQ8eFsW9pyowzPbK7osnMt02rB4ymg8VHgjXv7gNLYcqb7qOR7mQ0RqcdqteGLRTXhk41EAsc1RTyyaqOsiopCDsEq4oKBAHjhwQLV4vkAImw9XYeXGkphjPb0kD4smZ+i2n4WIhi6/P4j/+vA0fvluOewWI9Ytycf5Jjee3hbZRbtiNmDlnGyMTLLhkY1H0OIL4sdzc/DN266H2cg5iojUUd/iw+q3j2LupPQ+z1HvHq3GL+6ZhGF2i6pjE0IclFIWdPUcZ0EAFpMBs3LTMDs3LaY4s3PTUJSbxgSYiFRhNhsxPy8dw+1mrF9WgDcOVmJNcVnEd608/hDWFJfhjYOVWL+sAMPtZszPS2cCTESqctoteHzBTdh4qG9z1MZDlXh8wU2qJ8C94UzYxmm3YO3iSX1OhGfnpmHtYvWvYIgovqXYzPjDt6fhxfdPYU9FXZ9i7Kmow4vvn8Iflk9DSgI71xCRumoaPVi1qQS7y/s2R+0ur8OqTSWoafKoPLKeMQnuYLjDiqeW5OHpJXnX9A/urrJRMRvw9JI8rFuSh+EOFsMRkbqCIYnDlQ19ToDb7amow5HKBoS6KJQjIuqry24/dpTV9DkBbre7vA47SmvQrOOx7nFfGNeZ027BoskZuGOcCyWVDQhBYoTDek1l44VmLwSA/MxhcNot3AJBRJpo8gTws3eOqxLrp1uO4/axLjgUrgYTkTqaPAGs2VqqSqw1W0tRmJ2q2xzFJLgLXn8QwZDEqQst+MP+T7utbPzq1OswMSMFXn+QSTARqc7rC2Dz4SpVOtcA4f13W45U4cEZWbBaOP0TUWwG+xzFzK2TmkYPthypxqxf78Ha/y3vMgEGgMp6N9b+bzlm/XoPthypRk2jvvtYiGjoq2vx4bWPzqgac8P+M6hr8akak4ji02Cfo5gEd1DT5MGqt0rw2NvHoqpsfOztY1j1lv4buoloaJMS3V6IdxTNaUyV9W4Mws6YRDQARTpHRUPPOYr3w9rUNIYT4FgrG9fem4e0JEXl0RFRPGr2BLp8PNYT45q9XcclIopGd3NUzHF1mqOYBEP9ysZFk9NZeEJEMXP7g9c8FuuJcQDg6SIuEVG0upqj1KDXHMXtEFC/srHRzVUWIoqdzWy88m+7xYgXlk5BfmYy7l+/D8/tONljzcJzO07i/vX7kJ+ZjBeWToHd8lksxWTs8n1ERNHoOEepSa85Ku6TYK0qG70+JsJEFBuHEr5ZZ7cYVTkxrj0Rbo9LRBSLRJs2c4lWcTuL+yR4sFc2EtHQJUR4a8O6JfmqnBi3bkk+Mp02iN7r54iIIpLptA3oeD2J+yR4sFc2EtHQ5bJb8Ni8XJxvcqtyYtz5Jjd+MjcXqYk83ZKIYmcxCSyeMlrVmEumjIbFqE96GvdJ8GCvbCSioctqMWFSegqe3lahSrynt1VgYkYKLNwTTEQqqG/2o3C8C4pZnXRSMRtw53gX6lvZJ1gXg72ykYiGLq8vgHdKqlWtWSguqWbNAhGpwu0P4uUPTmPlnGxV4q2ck42X/vwJPD52h9DFYK9sJKKhq67Fhz/89VNVY/73Xz9lzQIRqcJiMmDLkWqMTLKhMNsVU6zCbBdGJtnwTsk5WEzcDqELraqkWX1NRLFizQIRDWSJbbnOIxuPYMXnb+hzIlyY7cKKz9+ARzYeAaBfDhX3SXB79bWaWH1NRGpgzQIRDWQGIZDptKHFF8TyVw7gvlsysXp+bsR7hBWzAavn5+K+WzKx/JUDaPEFkem0waBTEhX3SbDLbsEDt45RNebSqWNYfU1EMWPNAhENZFaTwJK27hAtviC+u+EQDp9pwOvLp+HhonHdLjJmOm14uGgcXl8+DYfPNOC7Gw6hpW0f8H23jIai03aIuL9nb7WYcM/NGXh+10lVik8UswGLJmew+pqIYhZpzYLJIGAxGeALhBAI9b7XgTULRKSGFMWCeXnp+I+9f7+SQ71Tcg7vHjuPWTmp+NFd2UhPscEfDMHjD0ExG2A2GlDd4EZxyTk8v+tjBDvMWYrZgHmT0pGcYNFl/HGfBAPhD5CVc7Kxprgs5lgr52TDZOBeCCKKXXf74owGgaLcVMydNAoZKTZ4AyF4/EEoZiOsJgOqGtzYWnIOO8trr/qA6S0uEVE0zGYjEhXTNTlUMCSxvbQG20trAER+ob5yTjYciglmnfoEx/1MGAyGsOVINUYlhysbY2lI317ZuOVINb45IwtGnX6JRDQ0tdcsdCyOW5ifjgdvy8KeE3V4ZntFl4VzmU4bFk8ZjYcKb8TLH5zGliPVVz3HmgUiUkui1YQZN47oMYcKhCQCvbQ9K8x2YcaNI64U2+kh7rO0+lYfXvnwtKqVja98eFq3Rs9ENHR1rFmwW4x4YekU5Gcm4/71+/DcjpPddo6orHfjuR0ncf/6fcjPTMYLS6fAbglvgWDNAhGpKcFqwgi7BQ8XjY8ph3q4aDxG2C1IsDAJ1k0gJFFZ71a1srGy3h3Rvjwiop5YLSYsmpyB4XYz1i8rwBsHK7GmuCzi+gWPP4Q1xWV442Al1i8rwHC7GQvzWbNAROpyJSlIT1aw4o4b+pRDrbjjBqQnK3AlKRqP9Gpxvx3icocWRO2VjQvyRuH15dOw90QdNh462+3txiVTRuPO8S689OdP8E7J1fuJmz0BIFnz4RPREJekmPCHb0/D2v8t7/N2rfb3/WH5NCTb4n7aJyINuJIUSAD+YAivr5iOvRW1vedQ2alobPVhbKpD9wQYYBIMbxetgmKpbLwSN6DOMadERIcrG2KqVwDCifAXJ47E6BR1+6ITEbVLTVLgUEy41OrHuFQHHpubi+EO6zU51MVmL0JSIjXRivFpDl23QHQU90mwtZsWRH2tbGyn15F/RDS0NXkC+Nk7x1WJ9dMtx3H7WBccilmVeEREnSVYTEiwmJBqt6CuxYuQDN919wWCsJjC3SQyUhS4EhXdukB0J+6T4EirECOpbOxLXCKi7nh9AWw+XKVKD3MgvEd4y5EqPDgjC9Z+WnkhovhgNhuRnpLQ38PoUdwvV5oMQpNjk9krmIhiVdfiw2sfnVE15ob9Z1DXwu41RERxnwQ7EyxYNj1L1ZjLpmfBaWcLIiKKjZTotg1aX1XWuyHZvIaIiEmw0WjA/Lz0iNt59EYxh+MZuRJMRDFq7tC9RtW4Xm3iEhENJnGfBAOA027BmkUTVYm1ZtFEOO36nHlNREObu4vuNWrwaBSXiGgwYRKMcCeHWblpmJ2bFlOc2blpKMpNY2cIIlKFrZvuNbFSeFgGERGT4HZOuwVrF0/qcyI8OzcNaxdPwjCuAhORShwadZnRKi4R0WDCJLiD4Q4rnlqSh6eX5EV15N/TS/KwbkkehjtYDEdE6hECmnSvESxZICJin+DOnHYLFk3OwB3jXCguqcYrH57u9si/b8zIwrxJ6XDaLdwCQUSqc9kteODWMVi3rUK1mEunjkFqIi/YiYiYBHfBYjJgZLKCb87IwqLJ6QiEJJo9AXgDIVhNBjgUE0wGAafdyi4QRKQZq8WERZMz8Pyuk6ocmKGYDViYnwEL9wQTETEJ7onRaIArUQl/kdy/YyGi+JSkmLB63gQ89vaxmGOtnjcByTZO+0REAPcEExENaIk2M4py0zAzxxVTnJk5LhRNSINDMas0MiKiwY1JMBHRAJeWrGDtvXl9ToRn5riw9t48pCUpKo+MiGjwYhJMRDQIpCUpWPulPDx5z8Soutc8ec9EJsBERF3g5jAiokEiLVnBosnpKMxOxZYjVdiw/0y33WuWTh2DhZMzkKyYuAWCiKgLTIKJiAYRh2KGQzHjwRlZWJCfDimBZm8AHn8QitkIh9UEIYDURCu7QBAR9YBJMBHRIGS1mDDawimciKiv+rQnWAixUO2BEBERERHppddlBCHEvZ0fAvCCEMIEAFLKTVoMjIiIiIhIK5HcS/sjgG0AahFOgAHADmABAAmASTARERERDSqRJMEzAKwF8JGU8j8AQAhRKKX8pqYjIyIiIiLSSK97gqWUHwGYDcAihNgthJiK8AowEREREdGgFFFpsZQyBOBfhRBvAHhO2yEREREREWkrqu4QUspqKeWXpZQ3dH5OCPFv6g2LiIiIiEg7ah6bfJuKsYiIiIiINKNmEkxERERENCgwCSYiIiKiuKNmEix6fwkRERERUf+L+OB5IcQkKeXRHl7yryqMh4iIiIgGOa8vgLoWHwDgsjsAtz8Im9mIRFs49XTZLbBaIk5DNRHNd/93IYQVwO8A/EFK2djxSSnl71QcFxERERENMpfdfjR5Ath8uAqvfXQGlfXua16T6bThgVvHYNHkDCQpJiTazP0wUkBIGfm5F0KIcQAeBHAfgP0A/ktK+Z5GY+tWQUGBPHDggN7floiIiIi6UdPowY6yGqzZWgqPP9Tr6xWzAavnTUBRbhrSkhVNxiSEOCilLOjyuWiS4LZgRgD3AHgeQBPCe4F/LKXcFOtAI8UkmIiIiGjgqGnyYNWmEuwur4v6vTNzXFh7bx7SktRPhHtKgiMujBNC5AkhngVQBuALABZIKXPb/v2sKiMlIiIiokGlprHvCTAA7C6vw6pNJahp8qg8sp5F0x3i3wAcApAvpfyulPIQED5FDsBPtBgcEREREQ1cl91+7Cir6XMC3G53eR12lNag2eNXaWS9iyYJngdgg5TSDQBCCIMQIgEApJSvajE4IiIiIhq4mjwBrNlaqkqsNVtL0egOqBIrEtEkwTsA2Dp8ndD2GBERERHFGa8v3AUikiK4SHj8IWw5UgWvT59EOJokWJFSNrd/0fbvBPWHREREREQDXV2LD699dEbVmBv2n7nSX1hr0fQJbhFCTGnfCyyEuAXAtc3fOhFC3I3wQRpGAP8ppVzbxWu+DOBnACSAI1LKpVGMi4go7gyGRvRENLRJiS77AMeist6NKBuX9Vk0M+QPALwhhKhGuC3aSABf6ekNbe3UXgAwG8BZAB8JIbZIKUs7vGYcgH8BcJuU8pIQIjXK/4Nm+CFDRAPNYGpET0RDW7NHm20LzV59tkNEnMFJKT8SQuQAyG57qEJK2VsJ31QAH0spTwGAEOJ1AIsAdNxBvRzAC1LKS23fpzbSMWmFHzJENBBF2oi+st6Nddsq8Pyuk5o3oiei+OX2BzWJ69EobmfRLmPeCiCr7X1ThBCQUv6+h9dnAKjs8PVZAJ/r9JrxACCE+ADhLRM/k1L+b+dAQogVAFYAwJgxY6IcduT4IUNEA1FNkwer3oquD6fHH8Jjbx/DjvIazRrRE1H8spmNmsRVTNrE7SyawzJeBfAMgNsRToZvBdDlCRxRMgEYB6AQwAMA1gshUjq/SEr5opSyQEpZ4HK5VPi212r/kHns7WMRVzq2f8isekv/Js9EFB8GayN6IhraHIo2W0K1ittZNN0hChDet/uQlPJ7bX/+uZf3VAHI7PD16LbHOjoLYIuU0i+l/ATACYSTYl3xQ4aIBqLB3IieiIY2IcLbQ9WU6bRBCFVDdiuaJPgYwsVw0fgIwDghxPVCCAuA+wFs6fSatxFeBYYQYgTC2yNORfl9YsIPGSIaqAZzI3oiGtpcdgseuFXdLapLp45BaqJV1ZjdiSYJHgGgVAixTQixpf1PT2+QUgYA/BOAbQDKAPw/KeVxIcQTQoiFbS/bBuCiEKIUwG4AK6WUF6P/r/QdP2SIaCAa7I3oiWhos1pMWDQ5A4o5mnSye4rZgIX5GbDotCc4mk0XP+vLN5BSvgvg3U6PPd7h3xLAD9v+6E6rD5kHZ2SxfRoRxSTSRvQmg4DFZIAvEEIg1HODzQ37z2BBfjpGc34iIhUkKSasnjcBj719LOZYq+dNQLJNv7kpmhZpe4UQ1wEYJ6XcIYRIQLibw6Cm1Wkn/JAholh114jeaBAoyk3F3EmjkJFigzcQgscfhGI2wmoyoKrBja0l57CzvBbBTkmxno3oiWjoS7SZUZSbhh3lsW0rnZnjQtGENDgU/VrORpylCSGWI9yizAngRoTbn/0GwCxthqaPwX7aCRENXV01ol+Yn44Hb8vCnhN1eGZ7Rbd9zBdPGY2HCm/Eyx+cxpYj1VfH1akRPRHFh7RkBWvvzetzg4GZOa5+aeMYzVLldxE+/OKvACClPDmQTnfrq8F+2gkRDV0dG9HbLUasW5KP801u3L9+X699zJ/bcRK/2ft3rJyTjTk3jcQjG4+gxReOp1cjeiKKH2lJCtZ+KS+isxbaKWZD+KyFCWn90sc8miTYK6X0iba+FUIIE4BBv9452E87IaKhq70Rvd1ixPplBXjx/VPYUxHdYRlristQmO3C+mUFWP7KAbT4gro1oiei+JKWrGDR5HQUZqdiy5EqbNjf/am7S6eOwcLJGUhWTLpugegomiR4rxDixwBsQojZAB4C8I42w9LPYD/thIiGrvaG8euW5EedAHfU/r51S/Lx3Q2HdGtET0Txx6GY4VDMeHBGFhbkp0PK8N1xXyAIi8kIh9UEIYDURKtuXSC6E01Pi1UA6gAcBfCPAN6VUj6myah0NNhPOyGioctoAJbNuA7nm9x9ToDb7amow/kmN74+4zoY1elmRETULZPRAKvJAJNRwGgQMIjw3yajgNVkgFGvEzF6GmMUr/2elPJfAaxvf0AI8f22xwa1TKdN1eI4tU9PIaL4ZDYa8LVpWZj/b39SJd7T2ypQ/L07YDHyThURacMXCKG+xYfikmq88uHpbrdDLJuehfl56XDaLbCY+ufKPJrvuqyLx76h0jj6jc1i0OS0E7uVHzJEFBsJiZ1lNar2Md9VXoOQVCceEVFH9S0+bD5chcJnduMXW8u6XWCsrHfjF1vLUPjMbmw+XIX6Fp/OIw3rNQkWQjwghHgHwPUdT4oTQuwGUK/9ELVVWe/W5LSTM/WtqsQjovjV6gvhv//6qaoxX933KVpVSqqJiNpdbPbi0Y0lWLmxJOILd48/hJUbS/DoxhJcbPZqPMJrRbId4i8AziF8bPKvOjx+GUCJFoPSk9VkQNm5RlVPOyk914iMFG6JIKLYCGjTx7z/d+IR0VBS3+LDqjeP4r2ymj69/72yGuBNYN2SPAyzW1QeXfd6Xf6UUn4qpdwjpZwupdzb4c8hKeWgb4brUEz49u8PojDbhZk5rphizcxxoTDbheW/P8jCOCKKWatXm1aLrT62cCQidfgCIewsq+lzAtzuvbIa7CirgS+g352qiPcACCHuFUKcFEI0CiGahBCXhRBNWg5ODwIi3K9u/T783y/l9TkRnpnjwv/9Uh6Wrt+HTKcNgmstRBQjr0YfBnp+yBDR0Fbf4sPqzbHfSQeA1ZuP6bo/OJqNsOsALJRSJkspk6SUiVLKJK0GpherWWDJlNH4tN6Nr/z2L/jFool48p6JEe8RVswGPHnPRPxi0UR85bd/waf1btx3y2jV9hgTUfzSah6x9lMlNhENLcFgCO+UVKtavFtcUo1gUJ8L9WhmwhopZZlmI+knwxQL5uWlQzEb8Gm9G7c9tRupSVbs/GEhHr07u9t2Z5lOGx69Oxs7f1iI1CQrbntqNz6td0MxGzBvUjpSEvTb00JEQ1OSTZtTlLSKS0Txpb7Vh99/eFrVmK98eBr1rfqsBkezcfWAEOKPAN4GcKWET0q5SfVR6chsNiJRMWHlnGysKQ7n+Mt/fxA2ixFPL56EV7/1ORiFQLM3AI8/CMUcPu0kKCWOnW1A0bN74e6wv27lnGw4FBPM7EZPRDEyG4UmfczNRm7XIqLY+YNSk+Jdf1CqGrM70STBSQBaAdzV4TEJYFAnwQCQaDVhxo0jUJjtunIqk9sXxD+9dvjKaxwWI4bZLbjU4kNzN0UlhdkuzLhxBBJZFEdEKnAmWPD16Vl4cqt6N+GWTc+C025VLR4Rxa8mt1+buB4/0qF9l62IszUp5Te1HEh/SrCaMMJuwcNF4wGgy+NJm31BNPu6v9opzHbh4aLxGGG3IMHCJJiIYmc0GrAgLx2/2l6hyp47xWzA/Lx0GA1cCSai2Km1F7gzr069zKPpDjFeCLFTCHGs7es8IcRPtBuavlxJCtKTFay44wasnp8bVWHc6vm5WHHHDUhPVuBKUjQeKRHFE6fdgjWLJqoSa82iiXDq2IOTiIY2rYpsLTptKY3mu6wH8C8A/AAgpSwBcL8Wg+ovriQFY1MdGOty4PUV0/Fw0bgeC+MeLhqH11dMx1iXA2NTHUyAiUh1FpMBs3LTMDs3LaY4s3PTUJSbBgs7QxCRShKsxkEVt7No7tsnSCn3C3HVbbRBf1hGZ6lJChyKCZda/RiX6sBjc3Mx3GGFPxiCxx+CYjbAbDTgYrMXISmRmmjF+DQHt0AQkWacdgvWLp4EvIk+NaSfnZuGtYsn6XoSExENfRLQpHhXn7K46JLgC0KIGxH+P0MIsQTh45SHnASLCQkWE1LtFtS1eBGSwGVPAL5AEBZTuJtERooCV6LCLhBEpIvhDiueWpKHu8pqsHrzsYj24ilmA9Ysmoii3DQmwESkugSLAYunjMZzO06qFnPJlNFIMA+8leDvAngRQI4QogrAJwD+QZNRDRBmsxHpKQn9PQwiIgDhFeFFkzNwxzgXikuq8cqHp7tcgcl02vCNGVmYNykdTruFWyCISBOBoMSsnFT8Zu/fVSve/UJOKgIhfQrjhJTRLToLIewADFLKy9oMqXcFBQXywIED/fXtiYj6XTAYQn2rD4GQRLMnAG8gBKvJAIdigskg4LRb2QWCiDTl9wexo6IW1Q3uK2ctxGL1/Fykp9hQlJum2p12IcRBKWVBV89FvBIshPg+gP8CcBnAeiHEFACrpJTbVRklERFFzGg0wJXYVoyb3L9jIaL4ZDYbkTc6BZC46qyFvijMdiE92Ya80Sm6bTWN5rs8KKVsQviwjOEAvgZgrSajIiIiIqIBb5jNjMseP1Z8/gYUZrv6FKMw24UVn78Blz1+DEvQ71j3aJLg9vtqcwH8Xkp5vMNjRERERBRnEqwmFGan4tUPT+O+WzL7dNbCfbdk4tUPT6MwO1XXblvRfKeDQojtAK4H8C9CiEQA+uxcJiIiIqIBKTVJwc8XTsSjm0rgsJjw+vJp2HuiDhsPne22eHfJlNG4c7wLL/35EzT7LuCpe/OQqvN5CxEXxgkhDAAmAzglpWwQQgwHkNF2aIauWBhHRERENLDUNnmwo6wGT75bhttuHIF5eaOQnmK75qyF6gY3ikvO4S9/v4DH5uaiKDdNswQ4psI4IUSOlLIc4QQYAG7odGDGkOX3B6/qE+z2B2Ezh/sEGwTgslth1qmXHREREdFAlpqk4J6bM3Bndiq2HK7CM9srUFnvhskgYDEZ4AuEEAhJZDpt+OrUMfj5wpuQkmDutwPHIvmuPwSwAsCvunhOAviCqiMaAFq9AVxy+7H5cBVe23+m26X8B6aOwaLJGRhmMyPByhPjiIiIKL61Hzj27duux6LJ6VcWEj3+IJSOC4kD4MCxqPsEDwRabodoX8p/org04hOZHp8/QdOlfCIiIiKKXk/bISJOwYUQ97UVw0EI8RMhxCYhxM1qDXIgqG3y4NFNJfjxW5EdSQoAHn8IP37rGB7dVILaJo/GIyQiIiIiNUSzDr1aSnlZCHE7gCIALwH4jTbD0l97Ary7vG+NnneX1zERJiIiIhokokmCg21/zwPwopRyKwCL+kPSX6s3gB1lNX1OgNvtLq/DjrIatPoCKo2MiIiIiLQQTRJcJYT4LYCvAHhXCGGN8v0D1iW3H08Ul6oS64niUlxq9asSi4iIiIi0EU0S+2UA2wDMkVI2AHACWKnJqHTk9wex+XBVxHuAe+Pxh7DlcBX8/mDvLyYiIiKifhFxXy8pZasQYjOANCHEmLaHy7UZln7qWrx4bf8ZVWNu2H8GiyanIz0lQdW4RETtgsEQ6lt9CIQkLnsC8PqDsLa1HzIZBJwJFhj7uf0QEdFAFnESLIT4HoCfAqjBZ8clSwB5GoxLNyGJLvsAx6Ky3o3Q4Os8R0SDgC8QQn2LD8Ul1Xjlw9OorHdDMRngUExo9gTgCYSQ6bRh2fQszM9Lh9NugcXEZJiIqLNoTnj4PoBs4nOuOwAAIABJREFUKeVFrQbTHy57tCli0youEcWv+hYfdpbVYM3WUnzn8zfgt1+7BXZLOPltP9HSoZjQ4gtgV1kt7npuL1bPm4BZuWlw2odEHTMRkWqiSYIrATRqNZD+4tZo766He4KJSEUXm71Y9eZRTL/Ria3fuwPvHKnGP756sPsTLW8dg63fuwPvlZ7HoxtLsHbxJAx3WPth5EREA1M0SfApAHuEEFsBeNsflFL+WvVR6chmMmoSV9EoLhHFn/oWH365tQyP3J2N/Z/UY/aze3ss5q2sd2Pdtgo8v+skVs+bgEfuzsYvt5bhJ/MnYBhXhImIAESXBJ9p+2PBEOkPDAAOJZofQf/HJaL44guE8MHJOvxg9ng8vuVYVP3MPf4QHnv7GGbmuPDEwon488k6zJk4inuEiYgQXXeInwOAEMLR9nWzVoPSW6bTpmpxXKbTplosIopv9S0+5I5KijoB7mh3eR0exzE8NjcX9S0+jExWVB4lEdHV/P4g6lq8CMlwnVR73UKiYoJBAC67FWZz/941j6Y7xEQAryLcHxhCiAsAvi6lPK7R2HThUIx44NYxWLetQrWYS6eOQSJXgokoRsFgCNWNbpRVN6lyomVRThpyRyXC5WD7NCLSRqs3gEtuPzYfrsJr+8+gst4Nk0HAYjLAFwghEJLhuoWpY7BocgaG2cxIsPZPzhTNd30RwA+llLsBQAhRCGA9gBkajEs3gaDEgvx0PL/rpCoHZihmA+bnpcMfVOfwDSKKX/WtPrgcVizdqs6Jlmu2luK9h+8Mx03kajARqau2yYMdZTV48t0y3D52BH50VzYyUmzwBkLw+INQzEZYTQZUNbixteQcXtj9MR6bm4ui3DSkJuk/J0WTBNvbE2AAkFLuEULYNRiTrpwJFhypasTqeRPw2NvHYo63et4E1F32ID9zmAqjI6J4ZjIKvHOgWtUTLYtLqnH/1ExV4hERtatt8uDRTSVItJrxh299DntO1OGZ7RXddrBZPGU0Hiq8ES9/cBrvldXgqXvzdE+Eo7kfdkoIsVoIkdX25ycId4wY1IxGA9KTbfjc9U7MzHHFFGtmjgufu8GJ9JQEGA1CpRESUbxq9gTx2kfqn2jZ7GELRyJST22TBz/dcgxLpmQiPzMZ96/fh+d2nOy23qqy3o3ndpzE/ev3IT8zGUumZOKnW46htsmj67ijSYIfBOACsAnAmwBGtD026DntFpSda8ITCyf2ORFur74uq25iU3oiUo0WJ1oSEaml1RvAnopafG16Ft44WIk1xWUR373y+ENYU1yGNw5W4mvTs7CnohatPv0OG4umO8QlAP+s4Vj6jcVkwG3jXHiyuBQ//mIuinLSsGZraUS/RMVswOp5EzD1eieee+8EfjJ/AtsPEZEqmjU6ebLZyxMtiUgdl9x+JCpmvPj+Keyp6FsBb/v7vlKQiUutfiRY9CmUizhbE+L/b+/+g+Ou7zuPv96r3dV3rV8gkJdaSHFyJUiKEUoiXCBJwUFpkopawaEztds0vxo6c2mvIb00nmTEzdWTnCFtptNe22uuyUF6Nbk74gQXtwmYmLRNSI2gtiCS6TBNImMni8AgW7JWuyt97o+VQRhZP79f7ffr7/Mx45FX+923Pt7v+L0vfb+f7+drD5nZRXMeX2xm3w5mWGuvsSatz/S2665vPa18cVoP3X6DPv2eK8+73FlLY0affs+Veuj2G5QvTuuubz2tz/S2sxA9AN9MlrijJYDwKhanNfjsSzoxNrniAHzWI0+P6sTYpAaffUnFNepRy4nalzrnXjr7wDn3opmtD2BMFXNJbbXuvLVTDw/n1Ptn/6Tb3vEG/dUH3qp16aQmpkrKF2fkpRKqqU7qTKGk7ww/p94/+yf193borls7CcAAfJUJaA1Nr8JrcwK4MIxOTOnyizK6/f8c9qXeF779tP7fb1+n0YkpbbhonS81F7KcEDxjZq3OuRFJMrPXSXLBDKtyGmvS6utq1juuaNIDgyf023/zuI6dnJSXTKjWS2o8X1K+NKOWxow+dP1GPfiJG9RYk2YKBADfBbXeOOuYA/BDssr08NHnfF3B5jtHn9P2NVrBZjmd8LOS/tnMvivJJL1D0m2BjKrC0smELmvw9OHrN6qva4NKM07j+ZKmSjOqng3DyYSpsaaaVSAABCZhwdzRkrYFwA9nCjP6+hPP+lrzvieeVd+bm32teT7LuTDuW2b2FknXzn7rE865588+b2Zvivrd485VVZV4ZUH5hsqOBUD8NNVUa/vmVt31LX/vaMmNMgD4wRTMCjZr9Xv6ss7hO+eed849MPvn+XOe/hsfxwUAsZdKVamvq1leyp/pVl4qoa1dzUpxy2QAPjgzFcwFbGcKa3NhnJ+dkBNsAOCzizMp3XFzhy+17ri5QxevS/lSCwCmSv7MBT5XIaC65/IzBF9wF8kBQKWtq06qpz3ryx0te9qza7b+JoALn19nqc5VvUaLDXBODABCbn29pzu3da7qjpZ3buvU+nrmAgPwT30mmDNLQdU9l58huOBjLQDAHGeD8Odv2bTkoy9eKqHP37KJAAwgEKkqO+9NxVaqpTGjVNXazLBd1nkxM+uUtHHu65xze2e/XnuelwEAfLC+3tP73tysG65cr32Hj2vPoZF5r8xuaczo1ze3amtXsy5al2IKBIBANK5L6zev26jP7R/2reYHr9uoxppq3+otZMmd0cy+IqlT0g8lnZ2x7CTtDWBcAIB5rEsntS6d1G+97fXq69qgGSedzpeUL07LS1WpzksqYVJTnccqEAACVVWV0K90btAfP/i0LzfM8FIJ3dy5Yc3uwbCcwwPXOuf8uUQZALAqqVTVmtxWFAAW0liT1q6+TfrUfYOrrrWrb5Maa9I+jGpplnOY4FEzIwQDAABAUvkuuze1Z/Wu9uyq6ryrPaue9qzSa7QyhLS8I8FfVTkI/0zSlMrrAjvnXGcgIwMAAEDoNdaktfv9V0lflx4azi379e9qz2r3+6/SxWt4FFhaXgj+sqQPSHpSr8wJBgAAQMxdUlutO2/t1C8N59R//1NLmiPspRLa1bdJPe3ZNQ/A0vJC8Khzbl9gIwEAAEBkNdak1dfVrHdc0aQHBk/onkd/fN4VbD50/Ub1XrVBjTXpNZ0CMddyQvC/mtkeSX+n8nQISa8skQYAAIB4SycTuqzB04ev36i+rg0qzTiN50uaKs2oOplQrZdUMmFqrKles1Ugzmc5ITijcvj9pTnfY4k0AAAAvEpVVUJNdbM36Wmo7FjOZ8kh2Dn34SAHAgAAAKyV5dwsw5P0UUlvkvTy/Tedcx8JYFwAAABAYJYzE/lvJF0m6d2SvivpckmngxgUAAAAEKTlhOCfd871S5pwzt0jqVfSLwQzLAAAACA4ywnBxdmvL5nZJpWnOa/3f0gAAABAsJazOsSXzOxiSf2S9kmqlXRHIKMCAAAAArSc1SH+evav35X0hmCGAwAAAARvydMhzCxrZl82s3+YfdxhZh8NbmgAAABAMJYzJ/huSd+WtGH28b9J+oTfAwIAAACCtpwQfKlz7v9KmpEk51xJ0vRiLzKz95jZ02b2jJntXGC795uZM7PuZYwJAAAAWLblhOAJM7tE5Vsly8yulTS20AvMrErSn0t6r6QOSdvNrGOe7eok/Z6kf1nGeAAAAIAVWU4I/qTKq0K8wcy+J+mrkn53kddslvSMc+7fnXMFSV+T1DfPdrsk3Skpv4zxAAAAACuynBA8JOkbkh6TlJP0P1WeF7yQZknH5jx+dvZ7LzOzt0hqcc7tX8ZYAAAAgBVbTgj+qqQ2SZ+X9GeS3qjyrZRXzMwSkr4o6feXsO1tZjZgZgOjo6Or+bEAAACIueXcLGOTc27ufN6DZja0yGuOS2qZ8/jy2e+dVSdpk6RHzEySLpO0z8y2OucG5hZyzn1J0pckqbu72y1j3AAAAMCrLCcEP2Fm1zrnfiBJZvYLkgYWec1jkq4ws9erHH5/TdKOs08658YkXXr2sZk9Iuk/nxuAK2WqUNLoREGSdHqypMnitDKpKtVlym9bU01a1enlvIUAAAAIg0UTnJk9qfKKEClJ3zezkdnHr5N0dKHXOudKZvY7Kq8vXCXpK865H5rZH0oacM7tW+0/IAinJ4s6lS/p/sPHde9jIzp2cvI127Q0ZrT9mlb1dTWr3kuqLpOqwEgBAACwEubcwjMLzOx1Cz3vnPuJryNagu7ubjcwEMzB4txYXgeGc9q1f0j54syi23uphPp7O9TTnlW2wQtkTABwLs5UAcDizOxx59y896BYtENWIuRWSu5UXju/MaiDR5d+4V2+OKPPfvMpHTia0+5tncrWE4QBBIczVQDgj0WPBIdREEeCc2PLD8Dn2tLWRBAGEBjOVAHA8ix0JHg5S6RdsE5PFnVgOLeqACxJB4+O6sBQTuP5ok8jA4Cys2eqPvvNp5YUgKVXzlTt/Magcqe4FxEAzEUIlnQqX9Ku/Yut9rY0u/YPaWyy5EstAJBmz1TtXfmZqoNHR7VzL0EYwNqZKpT07Itn9OyLZzR84pSe+MmLGj5x6uXvTRUqn5Vif9XEVKE8t26pR1YWky/OaN+R4/rI9Ru5KAXAqvl9pqqva4NqPeYIAwhGlK5biP2R4NGJgu59bMTXmnsOjbx81TYArAZnqgBERW4sr31HTuimLz6iu7799LwBWJKOnZzUXd9+Wjd98RHtO3JCubHKnKWKfQh2TufdSSt17OSkIni9IYCQCepMVRhOQwK4sETxuoXYh+DxfDAfBuNTfMgAWB3OVAGIgqhetxD7EDxZnA6kbj6gugDigzNVAMIuyitsxT4EZ1JVgdT1ksHUBRAfnKkCEHZRvm4h9iH47C1Go1IXQHxwpgpAmEX9uoXYh2CpvFRHmOsBiCfOVAEIs6hftxD7EJxOmt7/lst9rXnrWy5Xuir2by2AVar1gjmjFFRdAPES9esWYp/UXjhd1I1vbJKX8uet8FIJ3fDGJr3A1dcAVsksmDNVZr6WBBBTUb9uIfYheLI4ra9878f61Luv9KXep959pb78zz9izh2AVWuqSWv7Na2+1tyxuVXr66p9rQkgnqJ+3ULsQ3AmVaV9R07osvqMbryyaVW1bryySZfVZ/R3gz9lzh2AVatOJ9XX1ezrmaqtVzcrTX8C4IOoX7cQ+xB8dm7cH9x3RLf94htWHIRvvLJJt/3iG/QH9x15VV0AWI16L6n+3g5favX3dqiBlWsA+CTq1y3EPgSfnXM3UZjWx+4Z0K++tUX9N7cv+ciLl0qo/+Z2/epbW/SxewY0UZhmzh0A39RlUuppz2pL2+rOVG1pa1JPR1a1XsqnkQGIu6hftxD7EDx3zt1EYVof3/OEDo+8pK997Frd3nPFeXduS2NGt/dcoa997FodHnlJH9/zhCYK5TkszLkD4Kdsg6fd2zpXHIS3tDVp97ZOZes9n0cGIM6ift2CuQjeP7O7u9sNDAz4Vu/4i5O66YuPvGqx56qE6aa29ert/DltuCij4vSM8sUZeamEUlUJnXhpUg8M/lTfOfqcpmdeeQ+9VEIPf/JGNV/MWsEA/JUby+vAcE679g8taXF6L5VQf2+HejqyBGAAgZgvQ61UEBnKzB53znXP9xyTw/TKnLvPfvOpl783PeP04FBODw7lJEnJhCmdTKhQmlFp5vy/ODDnDkBQsg2e+ro26MYr12vfkePac2hk3jU6Wxoz2rG5VVu7mtXgJZkCASAw82WolVrrDEVa0ytz7g4czeng0dF5tynNOJUKCy/ZwZw7AEGr9VKq9VL6yPUb9StXb5Bz5TU188Vpeakq1VYnZSatr6tmFQgAgVtKhlqKSmQopkPMkTuV1869gyvaicy5AwAAcRXWDMV0iCWqknTHzW9ST9vzy55z97afv1QccwEAAHGUrfe0+5bOSF23QAie9dypvD49+xtMf2+7Hrr9Bj0weGLROXc3d27Qgz/8mW78o0e0pa1Jd27r1HqOBgMAgJiJ2nULTIeQdGaqpG8ePq7PfOOVSd3pZEL/6Z0/r3e2r9e6dFITU6WXV4eoqU7qTKGk7ww/pz/9zjMqlF75befzt2zS+97crHVpfr8AAADxNFUoaXSiUPHrFhaaDkEIlnT8pUnd9McLL+/hJROq9ZIaz5eULy2wXSqhh3//RjVfxBJpAAAAlbRQCI79zTKKxWndf/j4onNX8qUZPT9eWDAAS1K+OKN9h4+rWFx4JQkAAABUTuxD8OjElO49NOJrzT2HRjQ6MeVrTQAAAPgn9iF4xmneSdurcezkpBa4nwYAAAAqLPYh+HS+FKm6AAAAWL3Yh+DJgObu5pkTDAAAEFqxD8GZVDDLc3gB1QUAAMDqxT4E13nBrOcbVF0AAACsXuxDcMLKdy7xU0tjRgnztSQAAAB8FPsQ3FRTre2bW32tuWNzq5rquHUyAABAWMU+BKdSVerrapaX8uet8FIJbe1qVqoq9m8tAABAaJHUJF2cSemOmzt8qXXHzR26eF3Kl1oAAAAIBiFY0rrqpHras9rS1rSqOlvamtTTntW6NBfFAQAAhBkheNb6ek93butccRDe0takO7d1an09c4EBAADCjhA8x9kg/PlbNi15jrCXSujzt2wiAAMAAEQI5+3Psb7e0/ve3KwbrlyvfYePa8+hER07Ofma7VoaM/r1za3a2tWsi9almAIBAAAQISS3eaxLJ7UundRvve316uvaoBknnc6XVChNK52sUp2XVMKkpjqPVSAAAAAiiBC8gETClKpKqDTjVJUwJcxUlSj/SSaMuSQAAAARRQieR6E0o5MTBT0weEL3PPrj806H+OB1G3Vz5wY11qSVThKJAQAAosKcc5Uew7J1d3e7gYGBQGqfnCjo4eGc+u9/SvnizKLbe6mEdvVt0k3tWTXWpAMZEwAAAJbPzB53znXP9xyHL+d4YXxKn75vUJ+6b3BJAViS8sUZfeq+QX36vkG9MD4V8AgBAADgB0LwrJMTBe38+pN6aDi3otc/NJzTzq8/qRcnCj6PDAAAAH4jBKs8B/jh4dyKA/BZDw3ndGA4p0JpaUeRAQAAUBmEYJWPAvff/5Qvtfrvf0onORoMAAAQarEPwdPTM3pg8MSS5wAvJl8s15ue5mgwAABAWMU+BJ88U9A9j/7Y15r3PPpjnTzD0WAAAICwin0ILs24edcBXo1jJydVmone0nMAAABxEfsQfDpfCqTueEB1AQAAsHqxD8FTxelg6rJCBAAAQGjFPgRXp6oCqcttlAEAAMIr9kmtzktGqi4AAABWL/YhOJkwtTRmfK3Z0phRMmG+1gQAAIB/Yh+CG9el9cHrNvpa84PXbVRjTbWvNQEAAOCf2IfgqqqEbu7cIC/lz1vhpcr1qjgSDAAAEFqxD8GS1FiT1q6+Tb7U2tW3SY01aV9qAQAAIBiEYJVXcripPat3tWdXVedd7Vn1tGdZGQIAACDkSGuzGmvS2v3+q1YchN/VntXu91+lizkKDAAAEHqE4Dkuqa3Wnbd26gu3di55jrCXSugLt3bqrls7dUktF8MBAABEAYvZnqOxJq2+rma944omPTB4Qvc8+mMdOzmpZMKUTiZUKM2oNOPU0pjRh67fqN6rNqixJs0UCAAAgAghBM8jnUzosgZPv7G5Re/ZdJkk6fRkSZPFaWVSVarLlN+2ppq0qtO8hQDW3lShpNGJgiT6E4DwiUKPokPO4/RkUafyJd1/+LjufWxEx05OvmablsaMtl/Tqr6uZtV7SdVlUhUYKYC4oT8BCLMo9ShzzlXkB69Gd3e3GxgYCKR2biyvA8M57do/pHxxZtHtvVRC/b0d6mnPKtvgBTImAJDoTwDCLYw9yswed851z/scIfgVuVN57dw7qINHR5f92i1tTdq9rVPZej5oAPiP/gQgzMLaoxYKwVzNNSs3tvKdJ0kHj45q595B5U7lfR4ZgLijPwEIs6j2KEKwyvNXDgznVrzzzjp4dFQHhnIazxd9GhmAuKM/AQizKPcoQrCkU/mSdu0f8qXWrv1DGpss+VILAOhPAMIsyj0q9iF4qlC+gnEpE7iXIl+c0b4jxzVV4IMGwOrQnwCEWdR7VOxD8OhEQfc+NuJrzT2HRl5eGw8AVor+BCDMot6jYh+CndO8a9itxrGTk4rgohsAQob+BCDMot6jYh+Cx/PBHHIfn+J0I4DVoT8BCLOo96jYh+DJ4nQgdfMB1QUQH/QnAGEW9R4V+xCcSVUFUtdLBlMXQHzQnwCEWdR7VOAh2MzeY2ZPm9kzZrZznuc/aWZDZjZoZg+b2euCHtNctV4yUnUBxAf9CUCYRb1HBRqCzaxK0p9Leq+kDknbzazjnM3+VVK3c65T0n2S7gpyTK8do9TSmPG1ZktjRma+lgQQQ/QnAGEW9R4V9JHgzZKecc79u3OuIOlrkvrmbuCcO+icOzP78AeSLg94TK/SVJPW9mtafa25Y3Or1tdV+1oTQPzQnwCEWdR7VNAhuFnSsTmPn5393vl8VNI/zPeEmd1mZgNmNjA6urpb881VnU6qr6tZXsqft8JLJbT16malmXMHYJXoTwDCLOo9KjQXxpnZb0jqlvSF+Z53zn3JOdftnOtuamry9WfXe0n19547S2Nl+ns71JBhvh0Af9CfAIRZlHtU0CH4uKSWOY8vn/3eq5hZj6TPStrqnJsKeEyvUZdJqac9qy1tqwvXW9qa1NORVa2X8mlkAOKO/gQgzKLco4IOwY9JusLMXm9maUm/Jmnf3A3M7M2S/krlAPxcwOM5r2yDp93bOle8E7e0NWn3tk5l6z2fRwYg7uhPAMIsqj3KXMD3pjOzX5b0J5KqJH3FOfc5M/tDSQPOuX1mdkDSVZJ+OvuSEefc1oVqdnd3u4GBgUDGmxvL68BwTrv2DylfnFl0ey+VUH9vh3o6snzAAAgU/QlAmIWxR5nZ48657nmfCzoEByHIECxJ4/mixiZL2nfkuPYcGpn3vtgtjRnt2NyqrV3NavCSnGIEsCboTwDCLGw9ihC8QlOFkkYnCnKufB/rfHFaXqpKtdVJmUnr66q5yhpARdCfAITZuT3KNC2nte9RC4Xg0KwOEWZmktw5XyW5mej9AgHgwkJ/AhBGM7MHWc/2pjMFvapHTU8vPl0iaKyVM4/Tk0Wdypd0/+Hjuvex8x/K335Nq/q6mlXvJVWX4XQjgODRnwCE2YtnCjozNb3kHrWuukoXr0tXYKRMh3iNFU/qbs8q28CFJwCCQ38CEGY/G8vr4RX0qJvas7osoB7FnOAlyp3Ka+feQR08uvw70rEEEYAg0Z8AhFlYexRzgpcgN7bynSdJB4+OaufeQeVO5X0eGYC4oz8BCLOfRbRHEYJVnmN3YDi34p131sGjozowlNN4vujTyADEHf0JQJi9eKagh33sUS+dKfg0ssURgiWdype0a/+QL7V27R/S2GTJl1oAQH8CEGZnpqZ97VETU9O+1FqK2IfgqUL5KuulTOBeinxxRvuOHNdUgQ8aAKtDfwIQZpNTxUB61OTU2pyxin0IHp0o6N7HRnytuefQiEYn1u5wPoALE/0JQJi9cKYYSI964QwheE04p3nXsFuNYycnFcFFNwCEDP0JQJhFvUfFPgSP54M5LTg+xelGAKtDfwIQZlHvUbEPwZPFYCZg5wOqCyA+6E8AwizqPSr2ITiTqgqkrpcMpi6A+KA/AQizqPeo2IfgWi8ZqboA4oP+BCDMot6jYh+CzaSWxoyvNVsaMzLztSSAGKI/AQizqPeo2Ifgppq0tl/T6mvNHZtbtb6u2teaAOKH/gQgzC5ZlwqkRzXVrk2Pin0Irk4n1dfVLC/lz1vhpRLaenWz0sy5A7BK9CcAYZapTgXSo6oDmmt8rtiHYEmq95Lq7+3wpVZ/b4caMsy3A+AP+hOAMFtXXeVrj6qpXrtf0gnBkuoyKfW0Z7WlrWlVdba0NamnI6taL+XTyADEHf0JQJhdvC6tm3zsURetS/s0ssURgmdlGzzt3ta54p24pa1Ju7d1Klvv+TwyAHFHfwIQZpdFtEeZi+D9M7u7u93AwEAgtXNjeR0YzmnX/iHlizOLbu+lEurv7VBPR5YPGACBoj8BCLOfjeX1cMh6lJk97pzrnvc5QvBrjeeLGpssad+R49pzaGTe+2K3NGa0Y3OrtnY1q8FLcooRwJqgPwEIs5fOFDQxNb3kHlWTrgp0CgQheIWmCiWNThTkXPk+1vnitLxUlWqrkzKT1tdVc5U1gIo4tz8VStNKJ+lPAMJhcqqoF84Uz5uhmmqr12QViIVCMJcJL6A6ndTlad4iAOFlJslJ06789ewi824megc4AFw4MtUpXV4d7rNQJDwAiJDTk0Wdypd0/+Hjuvex859q3H5Nq/q6mlXvJVWXCfcHEQBUAtMhACAiVnxhXHtW2QYujAMQP0yHAICIy53Ka+c3BnXw6OiSX5Mvzuiz33xKB47mWCINAM7BOsEAEHK5sbx27l1eAJ7r4NFR7dw7qNypvM8jA4DoIgQDQIidnizqwHBuxQH4rINHR3VgKKfxfNGnkQFAtBGCASDETuVL2rV/yJdau/YPaWyy5EstAIg6QjAAhNRUobwKxFIugluKfHFG+44c11SBIAwAhGAACKnRiYLufWzE15p7Do1odKLga00AiCJCMACElHOadx3g1Th2clIRXBkTAHxHCAaAkBrPBzNtYXyK6RAAQAgGgJCaLE4HUjcfUF0AiBJCMACEVCZVFUhdLxlMXQCIEkIwAIRUrRfMTT2DqgsAUUIIBoCQMpNaGjO+1mxpzMjM15IAEEmEYAAIqaaatLZf0+przR2bW7W+rtrXmgAQRYRgAAip6nRSfV3N8lL+tGovldDWq5uVZk4wABCCASDM6r2k+ns7fKnV39uhhgzzgQFAIgQDQKjVZVLqac9qS1vTqupsaWtST0dWtV7Kp5EBQLQRggEg5LIwNLuFAAAJcElEQVQNnnZv61xxEN7S1qTd2zqVrfd8HhkARBchGAAiIFvvafctnfrc+zYteY6wl0roc+/bRAAGgHkwOQwAIiLb4Kmva4NuvHK99h05rj2HRnTs5ORrtmtpzGjH5lZt7WpWg5dkCgQAzIMQDAARUuulVOul9KHrXqdfuXqDnJPGp0rKF6flpapUW52UmXRpTUpemvALoDKmCiWNThQkSacnS5osTiuTqlLd7MW5TTVpVacrG0MJwQAQIacnizqVL+n+w8d172PlI8HJhCmdTKhQmlFpxqmlMaPt17Sqr6tZ9V5SdRnCMIC1MV+POldYepQ55yryg1eju7vbDQwMVHoYALCmcmN5HRjOadf+IeWLM4tu76US6u/tUE97VtkG5gQDCFYYe5SZPe6c6573OUIwAIRf7lReO/cO6uDR0WW/ltUhAAQtrD1qoRDM6hAAEHK5sZV/uEjSwaOj2rl3ULlTeZ9HBgDR7VGEYAAIsdOTRR0Yzq34w+Wsg0dHdWAop/F80aeRAUC0exQhGABC7FS+pF37h3yptWv/kMYmS77UAgAp2j2KEAwAITVVKF9hvZQLTJYiX5zRviPHNVUgCANYvaj3KEIwAITU6ERB9z424mvNPYdGXl67EwBWI+o9ihAMACHlnOZdY3M1jp2cVAQXBQIQQlHvUYRgAAip8XwwpwTHp5gOAWD1ot6jCMEAEFKTxelA6uYDqgsgXqLeowjBABBSmVRVIHW9ZDB1AcRL1HsUIRgAQqrWS0aqLoB4iXqPIgQDQEiZSS2NGV9rtjRmZOZrSQAxFfUeRQgGgJBqqklr+zWtvtbcsblV6+uqfa0JIJ6i3qMIwQAQUtXppPq6muWl/GnVXiqhrVc3K82cYAA+iHqPIgQDQIjVe0n193b4Uqu/t0MNGeYDA/BPlHsUIRgAQqwuk1JPe1Zb2ppWVWdLW5N6OrKq9VI+jQwAot2jCMEAEHLZBk+7t3Wu+ENmS1uTdm/rVLbe83lkABDdHmUugvfP7O7udgMDA5UeBgCsqdxYXgeGc9q1f0j54syi23uphPp7O9TTkSUAAwhcGHuUmT3unOue9zlCMABEx3i+qLHJkvYdOa49h0Z07OTka7Zpacxox+ZWbe1qVoOXZAoEgDUTth5FCAaAC8xUoaTRiYKck8anSsoXp+WlqlRbnZSZtL6umlUgAFRMWHrUQiGYy4QBIIKq00ldnqaFAwinKPQoLowDAABA7BCCAQAAEDuEYAAAAMQOIRgAAACxQwgGAABA7BCCAQAAEDuEYAAAAMQOIRgAAACxE8k7xpnZqKSfVOBHXyrp+Qr8XASL/XrhYt9euNi3Fyb264WrUvv2dc65pvmeiGQIrhQzGzjfrfcQXezXCxf79sLFvr0wsV8vXGHct0yHAAAAQOwQggEAABA7hODl+VKlB4BAsF8vXOzbCxf79sLEfr1whW7fMicYAAAAscORYAAAAMQOIRgAAACxQwg+h5l9xcyeM7OnzvO8mdmfmtkzZjZoZm9Z6zFi+ZawX399dn8+aWbfN7Or13qMWJnF9u2c7a4xs5KZ3bpWY8PqLGXfmtmNZnbYzH5oZt9dy/Fh5ZbQkxvM7O/M7Mjsvv3wWo8Ry2dmLWZ20MyGZvfb782zTWhyFCH4te6W9J4Fnn+vpCtm/9wm6S/XYExYvbu18H79kaQbnHNXSdqlEE7gx3ndrYX3rcysStKdkh5ciwHBN3drgX1rZhdJ+gtJW51zb5L0q2s0Lqze3Vr4/+3HJQ05566WdKOkPzaz9BqMC6tTkvT7zrkOSddK+riZdZyzTWhyFCH4HM65f5R0coFN+iR91ZX9QNJFZvZzazM6rNRi+9U5933n3IuzD38g6fI1GRhWbQn/ZyXpdyV9XdJzwY8IflnCvt0haa9zbmR2e/ZvRCxh3zpJdWZmkmpnty2txdiwcs65nzrnnpj9+2lJw5Kaz9ksNDmKELx8zZKOzXn8rF67gxFtH5X0D5UeBPxhZs2SbhFnbS5Eb5R0sZk9YmaPm9lvVnpA8M1/l9Qu6YSkJyX9nnNuprJDwnKY2UZJb5b0L+c8FZoclazEDwXCysy2qByC317pscA3fyLp0865mfJBJVxAkpLeKukmSRlJj5rZD5xz/1bZYcEH75Z0WNI7Jf0HSQ+Z2T85505VdlhYCjOrVfns2yfCvM8Iwct3XFLLnMeXz34PEWdmnZL+WtJ7nXMvVHo88E23pK/NBuBLJf2ymZWcc9+s7LDgg2clveCcm5A0YWb/KOlqSYTg6PuwpN2ufDODZ8zsR5LaJB2q7LCwGDNLqRyA/9Y5t3eeTUKTo5gOsXz7JP3m7NWN10oac879tNKDwuqYWaukvZI+wFGkC4tz7vXOuY3OuY2S7pP0HwnAF4z7Jb3dzJJmtk7SL6g8BxHRN6LyEX6ZWVbSlZL+vaIjwqJm53B/WdKwc+6L59ksNDmKI8HnMLN7Vb4S9VIze1bSf5GUkiTn3P+Q9PeSflnSM5LOqPzbKkJuCfv1DkmXSPqL2SOGJedcd2VGi+VYwr5FRC22b51zw2b2LUmDkmYk/bVzbsGl8hAOS/h/u0vS3Wb2pCRTeUrT8xUaLpbubZI+IOlJMzs8+73PSGqVwpejuG0yAAAAYofpEAAAAIgdQjAAAABihxAMAACA2CEEAwAAIHYIwQAAAIgdQjAAAABihxAMABEyu8A8vRsAVolGCgAhZ2YbzexpM/uqpKck9ZvZY2Y2aGb/dc42R83sb81s2Mzum72Lmsxst5kNzW7/R5X8twBAWHCzDAAIOTPbqPItY6+XVC/pVkm/rfKdtPZJukvl28z+SNLbnXPfM7OvSBqS9L8kfV9Sm3POmdlFzrmX1vwfAQAhw5FgAIiGnzjnfiDpl2b//KukJyS1Sbpidptjzrnvzf79f0t6u6QxSXlJXzazbSrfphQAYi9Z6QEAAJZkYvarSfpvzrm/mvvk7NHic0/tOedcycw2S7pJ5SPIvyPpncEOFQDCjyPBABAt35b0ETOrlSQzazaz9bPPtZrZdbN/3yHpn2e3a3DO/b2k2yVdveYjBoAQ4kgwAESIc+5BM2uX9KiZSdK4pN+QNC3paUkfnzMf+C8lNUi638w8lY8if7IiAweAkOHCOAC4AMxOh3jAObepwkMBgEhgOgQAAABihyPBAAAAiB2OBAMAACB2CMEAAACIHUIwAAAAYocQDAAAgNghBAMAACB2/j+34v5k6NuElwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3jddX3//8fr/D75WdKeHEyaUpjQJJS0w7QCDm1HELWl0aKb7WdThxfsuj7ul05nJ0Y3OnZV3fSz7dJ9h3Mbc5/W78QKpcUvWCy4ObENSENJijKE/oLTSGjSJOf3eX3/SMJCSZqcnPf75KTnfrsurvb8evZFcl3P8zjv8/phrLUCAAAAyolnvgcAAAAAFBshGAAAAGWHEAwAAICyQwgGAABA2SEEAwAAoOz45nsAc7FkyRK7fPny+R4GAAAAStgTTzzxS2ttZKrHFmQIXr58ubq7u+d7GAAAAChhxpgXp3uM6RAAAAAoO4RgAAAAlB1CMAAAAMoOIRgAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdhbkYRnFkkxl1D+SkiSdjWcUT2cV9ntVHR77sUUqAwoG+BECKD76E4BSthB6FB1yCmfjaQ0lMrr/qZPadeiYjg/E3/CcprqwtqxZps7VjaoJ+VQd9s/DSAGUG/oTgFK2kHqUsdbOyz9ciPb2duvWscmxwYT298W0fV+vEuncjM8P+T3q2tCqjpaoorUhV8YEABL9CUBpK8UeZYx5wlrbPuVjhOD/ERtKaNvuHh042p/3a9c3R7Rjc5uiNbzRAHAe/QlAKSvVHnW+EMzCuHGxwYT+dI6/PEk6cLRff7q7R7GhhMMjA1Du6E8AStlC7VGEYI3NX9nfF9MP5vjLm/CDo/16pC+m4UTaoZEBKHdn42k9cpT+BKA0LeQeRQiWNJTIaPu+Xkdq3bm3V4PxjCO1AGAokdGde+lPAErTQu5RZR+Ck6mMHug5NasJ3LORSOe0t+eUkineaAAUhv4EoJQt9B5V9iG4fySl//uTFx2t+W8/efG1vfEAYK7oTwBK2ULvUWUfgiVNuYddKdUDUL7oTwBK2ULuUWUfgs8m3LnkPuxSXQDlg/4EoJQt9B5V9iE4mc66UjeRcWZ+DIDyRX8CUMoWeo8q+xAc9Hndqest+x8tgAIFfO70EfoTACcs9B5V9p2wIuhOCHarLoDyURn0uVKX/gTACQu9R5V9CLaSmurCjtZsqgtr4R1GDaAUudGfAMApC7lHlX0Irgh4dMvVSx2t+f6rl6rCz5UWAIUJu9SfwvQnAA5Y6D2q7ENwKmN1Q3O9Qn5nfhQhv0e/3lyvVJaFJwAKZI0r/QkAnJDJypUelc0V5/v0sg/BkcqATg7G9ambVjhS71M3rdCpM3HVVwcdqQegfC2uDOilwYQ+t/FKR+p9fuOVemkoocVV9CcAhYuM9ygnM9RLQwktKVKGKvsQHAz41Na4SO+4PKL1zZGCaq1vjugdV0R01dJFCri06wSA8uH1erS6aZFWNdVq3YrC+tO6FRG1NdVq9dJF8nqMQyMEUM78fq9WNtaq6aIK3VDgt0w3NNer6aIKrWyolZ/dIYrH7zV64sVXddv1l835jWbdiohuu/4yPfHCqwp4eYMB4IxMzupD3/iJbn97Yf3p9rdfpg994yfKFOlrRgAXvmw2p5eGErpkcYX+4IbLC+pRf3DD5bpkcYVeHowrW6QppWUfgtPprAbjGX3+gWd02z3d+sBbmtS1sWXW81tCfo+6NrboA29p0m33dOvzDzyjwXhGaZc2kAZQPtLprO576qReGUk70p9eGUnr/qdO0p8AOGJgNKVFIZ+eePGMtn798YJ61NavP64nXzyj2gq/BkZTLo98TNmH4DOJlPb1nFIindNIKquP7XxSTx07o2/ddo0+3nH5tFt1NNWF9fGOy/Wt267RU8fO6GM7n9RIKqtEOqd9T5/SmURxfoEALlynh5PadfCYJDnSnyRp58FjOj2cLNr/A4ALlzGSldGde59xpEf9+d5nZK2RKdIX6u7scryAJDNW9z554nX3PdDzkh488rJuaK7XJ9+5Qg2Lwkpnc0qkcwr5PfJ7PTp1Jq69PS/pb3/w3BtWMX77iRPa7PCWIQDKT85Kxwfir7uv0P50fCAuZkQAcEIma1+7kDihkB6VSOf04NOn9IH2pqKMv+xDcM7aN7zJSFI2Z/Vwb0wP98YkST6PUcDnUSqTm3FO3dibDO8yAAoznMhMeX8h/UmShpNT1wWAfKSzb7yQKBXWo779xAm971eLcyGx7EPw2WneZM6VyVllUrOfRzecYM4dgMLEZzl3N9/+lGBOMAAHWE19IfFc+fSo4wNx2SKdu1v2c4JTGXdWIKYyvMkAKIxTG9CfK+gr+9YPwAHTfVtVcN1kcTJU2XdCt47mC3EsKYACVYf8C6ougPKSXOAXEss+BFeF3JkR4lZdAOXDGE27unqumurCRVt5DeDC5tqFxCIdOFb2ITjg9bjyJhMo0mknAC5cVSGvtqxZ5mjNrWuXqYYP6QAcsNAvJJZ9UltcGdBvX7Pc0Zofuna5FlcV59xrABeu6oBfm1Y3ODY3OOT36OZVDaoMMh0CQOFcu5BYpHULZR+CvV6Pbl71JkffZDa2vUleD983AiiM1+tR2OdR14ZWR+p1bWhVyOehPwFwhGsXEiuLcyGx7EOwJC2uDOrOTVc6UuvOziuL9ssDcOGrDgf0jhURrW+OFFRnfXNE71gRUU044NDIAJQ7r9ejTQ5fSLy5iBcSCcGSAj6POlovVkdLfUF1OlrqdWPLxUW7jA/gwhfweVQR8OkvOq+aNgj7PEYVAa9807xxrG+O6C86r1JlwEd/AuCousqg7ux06kLiStUV8UIiqyPG1VUG9IVb2vTp7/Rof9/pvF/f0VKvL9zSposqucoCwFl1lQG9kk3orvdepQNHT+svv9enX3vzEr3nqjepcVFYyUxOiXRWIb9XQZ9HJ8/Eta/nJf3ov3+pz7y7Reub6xX0GPoTAMcFfB51tFysjpbYtPlpNifGjV1IjBb1g7qxC/B43/b2dtvd3e1K7YGRlPb3vazP3f/M687Cnk7I79GdnSt1Y0uUNxgArhgYSenEwKi+vP9nuv7yJXpn68V64PAp7Tp0bMrTmprqwtqyZpluXtWgh3tf1n/8/Jf6RMcVaqqroE8BcEVsKKHP7H5ajxw9La/HqKOlfsYP6o8cPa1szuqG5nr95earFK0JOT4uY8wT1tr2KR8jBL/e6aGE+l4a0qKKgB5//hX9209enPZN5rfeeomuuWyxzoym1PKmGtW78MsDUN5SmZye/+Ww/s/3f6abVzXq5aG4vvTQs7P+kP6pm1bo4pqwHjh8Uh+/8QpduqSKKREAHHV6KKG/fLBXH1t/uV4aTKgm7Nejz57Wd548MW2GuuXqpVq3ol5D8bTeVBvSVw/8XJ95T6vjWYoQPEunhxL69O4eVQf9uvVty/XiK6MK+j1aXBVUOptTKpNTwOeR3+vRK8NJJTM5XVJXoX/60Qs6m0zrC5vbCMIAHNU/lND3nnlJb66v1t0/fF6PPtufd411KyK6/e2X6bnTZ/XuK9+kCH0KgENGkxk90HNKly6pVKQ6pMf/+xX9+d7Zf5v++Y1X6ppfWaz+swm98MsRbVzVoIqAc7N1zxeCmRM87vRQQp/fc0Tvv7pJLw/F9cGvP/66X2DI51FVyKfhREaJSccETr7S8vk9R/Tnm1YShAE4IpvNaSiZUaQqNOcALOm11/1me5OGkhnVZXPycqAPAAe8Gk9rSVVQjYsq9Nn7n9aBo7PvU4l0Tn/63adfW7x7NpHRq6NpR0Pw+RCCNfYp5tFnT+u3r13+2huN12N005XR1+azpDI5JTM5BX0eBc6Zz7J9b99rV1oeffa0459iAJSnwURafacGFTubnHMAnvDos/26/vIlytqcLqrwF3UFNoALUzqdVc+JM1rZUJt3AJ7swNF+fVZP687Oleo5cUb1lQH5XTqSeTKSmsY+xVSH/K8F4E2rGnTrr12q/3rul/qrh58978KT/73+zfqn//yF9hw+JWnsSksxP8UAuHCNprK6ZHGlPnlvjyP1vvTQs/r2716r0VRWdZWOlARQxk4PJ7WyoUY//Fn/nAPwhANH+/XD5n6944olOj2cVONFFQ6Ncnpl/33YxKeYU4NxHfrFgL669Wq99dI6ffDuH+uLD00dgCXp+EBcX3zoWX3w7h/rrZfW6atbr9ahXwzo1GBcPSfOKJ3OFvn/BMCFxuc1euTo6VnNrZuNRDqnHxw9LZ+XE+MAFM7nNTLGaPu+Xkfqbd/XKxlTtB5V9iG4fySppYvC+tqB5/TPv7NG3/3pCd1x35FZv+kk0jndcd8RffenJ/TPv7NGXzvwnJYuCqt/JOnyyAFc6BKpnL7z5AlHa9775AnHQjWA8uY1RnueOuXoB/UHDp/ixLhimbjSsmNzm+7+4fNzOihDkvb3ndbdP3xeOza3jV1pKdIvEMCFyxhN+23UXB0fiIvuBMAJ8XROuw4dc7TmzoPHFE8V54N62Yfg0VROr46m9Mpoas4BeML+vtMaGK81ypUWAAUaTbozrWo0xXQtAM5w44N6sZR9CDaSPnTtcv3Znmccqff5Pc/ow9cu50oLgIIlM+58mE65VBdAeTmbSLtSdziZcaXuuco+BMtKj/Q5vPCkwCvKACCN7UPuhiAnxgFwgFvrCxJF2lyg7Duh12v0zcdfcLTmvz7+QtEmdQO4cFUG3dlq0a26AMpL2KW9fEM+9/cIlgjBstad+SwL8DRqACUmZ62a6sKO1myqCytHgwLggKqQOx+o3ap7rrIPwSMuzTsZSRVnPguAC1c44NFvtjc5WvODa5pcu3oDoLx4jFz5oO4pUjot+xAcd2neSYLV1wAKZY3ecUXEsbnBIb9Hb788IlbuAnBCfVVQW9Yuc7Tm1rXLVF8dcrTmdMo+BAdcWiDiVl0A5WNxZUAvDSb0uY1XOlLv8xuv1EtDCS2uDDpSD0B5y1mrzlUNjn5Q37SqQbks+wQXRfUCn88C4MLW0lCjVU21WrciUlCddSsiamuqVevFNWLRAgAn9I+k9J/P/VJdG1odqde1oVX/8fN+9Y+kHKk3k7IPwR5j3JnPYvi+EUBhBkZTiqey+tA3fqLb337ZnIPwuhUR3f72y/Shb/xEo+msBkaL8wYD4MJmrfTp7zytt15Wp/XNhX1QX98c0Vsvq9O23UeK9jm97ENwwGf0/quXOlrzA29ZqoC37H+0AApkjPTg0y/plZG0brunWx94S5O6NrbM+qvHkN+jro0t+sBbmnTbPd16ZSSt7z39kviMDsAJw4mxTQC23P247ty0cs5BeH1zRHduWqktdz8+VpfDMorD5zHa0ObsfJYNVzXI5+VdBkBhRpJZfefJE2N/T2X1sZ1P6qljZ/St267Rxzsun/ZbrKa6sD7ecbm+dds1eurYGX1s55MaGV+se++TJzTi0nHMAMrLxOYC/cMpbf7aj/SZd7forveuzOuD+l3vXanPvLtFm7/2I/UPj31LVazDMsp+4mpsKKW6ioA+ddMKbd/bV3C9T920QlVBn2JDSdWx+ARAgc7dx/yBnpf04JGXdUNzvT75zhVqWBRWOptTIp1TyO+R3+vRqTNx7e15SX/7g+eUzdnz1gOAuZq83WL/cEo3fuWH6trQou9//B3a23NKOw8em7LnNNWFtXXtMm1sa9DDz7ysG7/yw9c9XqzDMso+BPu8Ri+8MqLrfmWJ1q2I6NFn++dca92KiK77lSV68ZVh1VURgAEUZnSaK7bZnNXDvTE93BuTNPaNVsDnUSqTUyY382S6UbZwBOCAqTYB2L6vT1946Fn9wa+/Wf/w229RRcCnkWTmtQ/qlUGfRlMZ/aDvtG748mNKZd64E0SxNhco+xAc8Hr0yXsP658/skYf77hCkuYUhNetiOjjHVfI7zX643t79G8ffavTQwVQZpJTvDlMJZOzyuQRbKd60wGAfJnxwzLOvdqbyuT0Vw//TH/18M8kSSGfR1Uhn4YTGSVm6D9NdeGirVso+znBHmN0fCCuLXc/rsWVAd1+/WVzWnhy+/WXaXFlQFvuflzHB+LsDgGgYEGH1iqci33MATghUhnQljUzH5aRyOT0y+HUjAFYmjgsozjfppd9J5w4Nrl/OKX3fe1HilQH9eZIlb51+7WzW3hy+7V6c6RKkeqg3jdpUjfHJgMoVFXQpX3MXaoLoLwEAz51rm50+LCMRgWYE1wck1cgTp7U/c4rL9bl9VW64z0tWlwVfMPCk1eGk8pZq8WVAT3xwoA+/M+HXlc3mebrRgCFme6rxkIU86tGABe+mpBPXRtadcd9Rwqu1bWhVbXh4kXTsr8S7J/ia8Ht+/p0w5cf0/O/HNGyxRWKVAdVG/brogq/asN+RaqDWra4Qs/3j+iGLz+m7fveuKuEny3SABSoIuDVB2fxVWM+tqxZpspAca6yALjwVYf96miJOnJYRkdrVFUhv0Mjm1nZXwme7tjkQiZ1SxybDKBwtSG/3rXyYv3dD36uhAPfLoX8Ht208mLVhAMOjA4AxkRrQ9qxuU3bdvfowNH8NxdY3xzRjs1titaEXBjd9Mr+SvBsj03OZ1I3xyYDcILX61FN0Kc/uWmFI/X+5KYVqgn65PXQnwA4K1oT0o73tc3psIz5CMASIVhBl45NDrH6GoADaisCuu7NY/uYF2Ldioje9uYlqq3gKjAAd0RrQ+pc3aBHPrFOn37XivNuLvDpd63QI3+8Tp2rG+YlAEtMh9CiUEAb2hr094/9t2NfN264qoE3GgCOCPg8qq8O6RMF7mP+iY4rVF8dYns0AK6qCvlVFfLr1uuW6+ZVDbJWGk5mlEhnFfJ7VRX0yRipvjpYtF0gplP2Idjv96o65HP22OSQT34vbzQAnFFXGZC1Vr/79st0/eVL9KWHnp3Vh/aQ36NP3bRCrW+qUeNFYV1UyYdzAMURDPi0NFDaMbO0R1ck1UGfo8cmT7fYDgDmanFVUCuMUS5n9a3br9Vjz57WvU+emHL7tKa6sN5/9VK9Y0W9RhJpNV9cQwAGgHOQ1iRVBH1aUhlw5NjkJZUBVZT4Jx8AC1NdZUBrLl2sgZGUmi+uPu8+5h4jXVwTUt2bapgCAaDokqmM+kfGDhA7G88ons4q7Peqenwf4EhlQMF5zkuktXGR8UnZt18/t68bWy6uUUNt6LU6AOCGgM+ji2tDilRFNTCaUiZnNZzIKJ3Nye8d28px+eIK1VUG2QUCQNGdjac1lMjo/qdOatehY9N+W7VlzTJ1rm5UTcin6nDx9gaezFhr5+UfLkR7e7vt7u52pfbpoYT6XhpSbUVg1l83Do6m1PKmGtUTgAEAQJmKDSa0vy+m7ft6Z30hsWtDqzpaoorWupOhjDFPWGvbp3zM7RBsjHmXpL+R5JX0j9baHec8vkzSPZIWjT9nm7X2wfPVdDMES9JoKqNXR9M6fOxVeTzmvMcmr266SIsq/EyBAAAAZSs2lCjJwzLmLQQbY7ySfibpRkknJB2StMVa2zvpOXdL+qm19u+NMa2SHrTWLj9fXbdD8IR0Oqv+kaRyVjqbyCiVySrgG9tNwmOkSHWIXSAAAEBZiw0mtO27cwvAE9wKwucLwW5fvlwr6Tlr7fPjA/mWpE5JvZOeYyXVjP+9VtIpl8c0a36/Vw2LKuZ7GAAAACXpbDyt/X2xggKwJB042q/9vTF1rm5QVag4c4TdvozZKOn4pNsnxu+b7M8k/ZYx5oSkByX9/lSFjDG3G2O6jTHd/f2F/aABAABQuKFERtv39c78xFnYvq9Xg/GMI7VmoxS+y98i6V+stUslvUfSN40xbxiXtfZua227tbY9Eins+FAAAAAUJpka2wXCiRN3JSmRzmnP4ZNKpooThN0OwSclNU26vXT8vsk+KunfJcla+2NJIUlLXB4XAAAACtA/ktKuQ8ccrbnz4LHX9hd2m9sh+JCky40xlxpjApI+KGnPOc85JukGSTLGtGgsBDPfAQAAoIRZqym3kS3E8YG4irV7r6sh2FqbkfR7kh6S1Cfp3621zxhj7jTGbBp/2h9Lus0Yc1jSLkkfsQtx82IAAIAyMpxwZ9rCcLI40yFc39x2fM/fB8+573OT/t4r6W1ujwMAAADOiaezrtRNuFT3XKWwMA4AAAALTNjvdaVuyOdO3XMRggEAAJC3qpA7EwrcqnsuQjAAAADyZozUVBd2tGZTXVjGOFpyWoRgAAAA5C1SGdCWNcscrbl17TLVVwcdrTkdQjAAAADyFgz41Lm6USG/M3Ey5Pdo06pGBZgTDAAAgFJWE/Kpa0OrI7W6NrSqNlyc+cASIRgAAABzVB32q6MlqvXNkYLqrG+OqKM1qqqQ36GRzYwQDAAAgDmL1oa0Y3PbnIPw+uaIdmxuU7Qm5PDIzo8QDAAAgIJEa0La8b423fXelbOeIxzye3TXe1fOSwCWinBiHAAAAC580dqQOlc3aN2Keu05fFI7Dx7T8YH4G57XVBfW1rXLtGl1o2pDvqJOgZiMEHweyVRG/SMpSdLZeEbxdFZhv1fV45O2I5UBBQP8CAEUH/0JQCmqCvlVFfLr1uuW6+ZVDbJWGk5mlEhnFfJ7VRX0yRipvjpYtF0gpkOHnMLZeFpDiYzuf+qkdh2a/lPMljXL1Lm6UTUhn6rD8/MpBkB5oT8BWAiCAZ+WlvgHcWOtne8x5K29vd12d3e7Ujs2mND+vpi27+tVIp2b8fkhv0ddG1rV0RJVtLb481kAlA/6EwDkxxjzhLW2fcrHCMH/IzaU0LbdPTpwtD/v187XykYA5YH+BAD5O18IZneIcbHBub/BSNKBo/3atrtHsaGEwyMDUO7oTwDgPEKwxubY7e+LzfkNZsKBo/3a3xvTcCLt0MgAlDv6EwC4gxAsaSiR0fZ9vY7U2r6vV4PxjCO1AID+BADuKPsQnEyNrbKezSKT2Uikc9pz+KSSKd5oABSG/gQA7in7ENw/ktKuQ8ccrbnz4LHX9u8EgLmiPwGAe8o+BFurKffZLMTxgbgW4KYbAEoM/QkA3FP2IXg44c7XgsNJvm4EUBj6EwC4p+xDcDyddaVuwqW6AMoH/QkA3FP2ITjsd+fc6tA8n4cNYOGjPwGAe8o+BFeF3DnX2q26AMoH/QkA3FP2IdgYqaku7GjNprqwjHG0JIAyRH8CAPeUfQheUuHXljXLHK25de0yRaqCjtYEUH4ilQFX+lN9Nf0JAMo+BJ9NZXX95UsU8jvzowj5Pfq1Ny/REEeTAihQMOBT5+pGR/vTplWNCjAnGAAIwZmc1df/4xf61E0rHKn3qZtW6O4fPq9Mjo04ARSuJuRT14ZWR2p1bWhVbZj5wAAgEYJ1NpHRnsOndHFNWOtWRAqqtW5FRBfXhPVAz0uu7e8JoLxUh/3qaIlqfXNh/Wl9c0QdrVFVhfwOjQwAFrayD8HJ8f0y/+Tew7r97ZfNOQivWxHR7W+/TH9y7+GxupmcY2MEUN6itSHt2Nw25yC8vjmiHZvbFK0JOTwyAFi4yj4EB8f34RxJZXXbPd36wFua1LWxZdZz8EJ+j7o2tugDb2nSbfd0ayQ1FqoDvrL/0QJwULQmpB3va9Nd712ZV3+6670rCcAAMIWynxxWPWm/zJFUVh/b+aRubnuTvnXbNXrsZ/2698kTOj4Qf8PrmurCev/VS/WOKyL6xn/+Qg/09E1bFwCcEK0NqXN1g9atqNeewye18+CxafvT1rXLtGl1o2pDPqZAAMAUyj6p+TxGTXXh172RPNDzkh488rJuaK7XJ9+5Qg2Lwkpnc0qkcwr5PfJ7PTp1Jq69PS/pb3/wnLLnLIJrqgvL52EjTgDOqwr5VRXy69brluvmVQ2yVhpOZpRIZxXye1UV9MkYqb46yC4QAHAeZR+C6yoC+vC1y/UX+15/JTebs3q4N6aHe2OSxsJywOdRKpObceeHD1+7XHWV7MMJwD3BgE9LA2XfwgGUqGQqo/6RlCTpbDyjeDqrsN+r6vEdaiKVAQXnuYeVfQf1ej3a2Nagv3r4WSXS0y9my+SsMuPzfc8n5B+r5+VKMAAAKDNn42kNJTK6/6mT2nVo+ilbW9YsU+fqRtWEfKoOz8+ULVZvSaqrDGh750pHam3vXKm6yoAjtQAAABaK2GBCew6f0g1fflRffOjZKQOwJB0fiOuLDz2rG778qPYcPqXYYKLIIx1DCNbYTg43tER1Y0u0oDo3tkTV0RJlZwgAAFBWYkMJbftuj+6478h5v1mfLJHO6Y77jmjbd3sUGyp+ECatjaurDGjHLVfNOQjf2BLVjluu0kVcBQYAAGUkNpjQtt09OnC0f06vP3C0X9t2Fz8IE4InWVwV1Bfe36Yvvb8tr304v/T+Nn3x/W1aXMViOAAAUD7OxtPa3xebcwCecOBov/b3xjScSDs0spmV/cK4c9VVBtS5ulHXXx7R3p5TuufHL0w7qfsj1y3XhqsaVFcZYAoEAAAoO0OJjLbv63Wk1vZ9vVq3or5oe5sTgqcQ8Hl0cW1Iv3PdcnWublAmZzWcyCiZySno86gq5JPPY1RXGWQXCAAAUJaSqbFdIGY7B3gmiXROew6f1K3XLS/K9mmE4PPwej2KVI8fNVo7v2MBAAAoJf0jKe06dMzRmjsPHtPNqxqKsg863+EDAAAgb9Zq2m3Q5ur4QFz2/GeSOYYQDAAAgLwNJzLu1E26U/dchGAAAADkLZ6e+STduUi4VPdchGAAAADkLez3ulI35HOn7rkIwQAAAMhbVcidxWtu1T0XIRgAAAB5M2bs3AQnNdWFZYq0+ywhGAAAAHmLVAa0Zc0yR2tuXbtM9dXFOYGXEAwAAIC8BQM+da5uVMjvTJwM+T3atKpRAeYEAwAAoJTVhHzq2tDqSK2uDa2qDRfvHDdCMAAAAOakOuxXR0tU65sjBdVZ3xxRR2tUVSG/QyObGSEYAAAAcxatDWnH5rY5B+H1zRHt2NymaE3I4ZGdHyEYAAAABYnWhLTjfW26670rZz1HOOT36K73rpyXACxJxZt4AQAAgAtWtDakztUNWreiXnsOn9TOgxafN6sAACAASURBVMd0fCD+huc11YW1de0ybVrdqNqQr6hTICYjBAMAAMARVSG/qkJ+3Xrdct28qkHWSsPJjBLprEJ+r6qCPhkj1VcHi7YLxHQIwQCwACVTGfWPpCRJZ+MZxdNZhf1eVY+vrI5UBhQM0OIBzI9gwKelJd6DSnt0AIDXORtPayiR0f1PndSuQ9N/1bhlzTJ1rm5UTcin6vD8fNUIAKXMWGvnewx5a29vt93d3fM9DAAoqthgQvv7Ytq+r1eJdG7G54f8HnVtaFVHS1TR2uIvOgGA+WaMecJa2z7VY1wJBoAFIDaU0Lbv9ujA0f5ZvyaRzumO+45o/9HYvK2+BoBSxRZpAFDiYoMJbdudXwCe7MDRfm3b3aPYUMLhkQHAwkUIBoASdjae1v6+2JwD8IQDR/u1vzem4UTaoZEBwMJGCAaAEjaUyGj7vl5Ham3f16vBeMaRWgCw0BGCAaBEJVNju0DMZhHcbCTSOe05fFLJFEEYAAjBAFCi+kdS2nXomKM1dx489tr+wgBQzgjBAFCirNWU+wAX4vhAXAtwZ0wAcBwhGABK1HDCnWkLw0mmQwAAIRgASlQ8nXWlbsKlugCwkBCCAaBEhf1eV+qGfO7UBYCFhBAMACWqKuTOoZ5u1QWAhYQQDAAlyhipqS7saM2murCMcbQkACxIhGAAKFGRyoC2rFnmaM2ta5epvjroaE0AWIgIwQBQooIBnzpXNyrkd6ZVh/webVrVqABzggGAEAwApawm5FPXhlZHanVtaFVtmPnAACARggGgpFWH/epoiWp9c6SgOuubI+pojaoq5HdoZACwsBGCAaDERWtD2rG5bc5BeH1zRDs2tylaE3J4ZACwcBGCAWABiNaEtON9bbrrvStnPUc45PforveuJAADwBRcnxxmjHmXpL+R5JX0j9baHVM85zck/ZkkK+mwtXar2+MCgIUmWhtS5+oGrVtRrz2HT2rnwWM6PhB/w/Oa6sLaunaZNq1uVG3IxxQIAJiCqyHYGOOV9FVJN0o6IemQMWaPtbZ30nMul/Snkt5mrX3VGFPv5pgAYCGrCvlVFfLr1uuW6+ZVDbJWGk5mlEhnFfJ7VRX0yRipvjrILhAAcB5uXwleK+k5a+3zkmSM+ZakTkm9k55zm6SvWmtflSRr7WmXxwQAC14w4NPSADs9AMBczWlOsDGmbpZPbZR0fNLtE+P3TXaFpCuMMT8yxjw+Pn0CAAAAcM2MIdgY89lJf281xvxM0hPGmBeMMW91YAw+SZdLWidpi6SvG2MWTTGO240x3caY7v7+fgf+WQAAAJSr2VwJ3jzp71+S9IfW2ksl/Yakr8zw2pOSmibdXjp+32QnJO2x1qattb+Q9DONheLXsdbeba1tt9a2RyKF7ZcJAACA8pbvdIgGa+33JMlae1BSeIbnH5J0uTHmUmNMQNIHJe055zn3aewqsIwxSzQ2PeL5PMcFAAAAzNpsVlVcZozZI8lIWmqMqbDWjo4/dt59d6y1GWPM70l6SGNbpP2TtfYZY8ydkrqttXvGH3unMaZXUlbSp6y1r8z1fwgAAACYyWxCcOc5tz2SZIyJSvr7mV5srX1Q0oPn3Pe5SX+3kj4x/h8AAADguhlDsLX2sWnuj2lsD2BJkjHm76y1v+/g2AAAAABXOHls8tscrAUAAAC4xskQDAAAACwIhGAAAACUHSdDsHGwFgAAAOCaWYdgY8xVMzzlbwocCwAAAFAU+VwJ/pox5qAx5n8bY2rPfdBa+y/ODQsAAABwz6xDsLX2ekn/S2PHID9hjNlpjLnRtZEBAAAALslrTrC19ueSPivp05LeIelvjTFHjTGb3RgcAAAA4IZ85gS3GWO+IqlP0q9Lutla2zL+96+4ND4AAADAcbM5NnnC30n6R0mfsdbGJ+601p4yxnzW8ZEBAAAALsknBG+QFLfWZiXJGOORFLLWjlprv+nK6AAAAAAX5DMneL+k8KTbFeP3AQAAAAtKPiE4ZK0dnrgx/vcK54cEAAAAuCufEDxijLl64oYx5i2S4ud5PgAAAFCS8pkT/EeSvm2MOaWxI5IvlvSbrowKAAAAcNGsQ7C19pAxplnSivG7nrXWpt0ZFgAAAOCefK4ES9IaScvHX3e1MUbW2n91fFQAAACAi2Ydgo0x35T0K5KekpQdv9tKIgQDAABgQcnnSnC7pFZrrXVrMAAAAEAx5LM7xBGNLYYDAAAAFrR8rgQvkdRrjDkoKTlxp7V2k+OjAgAAAFyUTwj+M7cGAQAAABRTPlukPWaMuUTS5dba/caYCkle94YGAAAAuGPWc4KNMbdJulfSP4zf1SjpPjcGBQAAALgpn4VxH5P0NklDkmSt/bmkejcGBQAAALgpnxCctNamJm4YY3wa2ycYAAAAWFDyCcGPGWM+IylsjLlR0rclPeDOsAAAAAD35BOCt0nql/S0pN+V9KC19g5XRgUAAAC4KJ8t0n7fWvs3kr4+cYcx5g/H7wMAAAAWjHyuBH94ivs+4tA4AAAAgKKZ8UqwMWaLpK2SLjXG7Jn0ULWkAbcGBgAAALhlNtMh/kvSSxo7NvmvJ91/VlKPG4MCAAAA3DRjCLbWvijpRUnXuj8cAAAAwH35nBi32Rjzc2PMoDFmyBhz1hgz5ObgAAAAADfkszvEFyXdbK3tc2swAAAAQDHksztEjAAMAACAC0E+V4K7jTH/r6T7JCUn7rTW7nZ8VAAAAICL8gnBNZJGJb1z0n1WEiEYAAAAC8qsQ7C19nfcHAgAAABQLPnsDnGFMeYRY8yR8dttxpjPujc0AAAAwB35LIz7uqQ/lZSWJGttj6QPujEoAAAAwE35hOAKa+3Bc+7LODkYAAAAoBjyCcG/NMb8isYWw8kY836NHacMAAAALCj57A7xMUl3S2o2xpyU9AtJv+XKqAAAAAAX5bM7xPOSOowxlZI81tqz7g0LAAAAcE8+u0P8oTFmYq/grxhjnjTGvHOm1wEAAAClJp85wbdaa4c0dljGYkm/LWmHK6MCAAAAXJRPCDbjf75H0r9aa5+ZdB8AAACwYOQTgp8wxjyssRD8kDGmWlLOnWEBAAAA7slnd4iPSlot6Xlr7agxZrEkjlIGAADAgjNjCDbGNFtrj2osAEvSZcYwCwIAAAAL12yuBH9C0u2S/nqKx6ykX3d0RAAAAIDLZgzB1trbx/9c7/5wAAAAAPfls0/wB8YXw8kY81ljzG5jzK+6NzQAAADAHfnsDtFlrT1rjPk1SR2SviHp/3FnWAAAAIB78gnB2fE/N0i621q7T1LA+SEBAAAA7sonBJ80xvyDpN+U9KAxJpjn6wEAAICSkE+I/Q1JD0m6yVp7RlKdpE+5MioAAADARbMOwdbaUUn3SxoxxiyT5Jd01K2BAQAAAG6Z9Ylxxpjfl/R5STH9z3HJVlKbC+MCAAAAXJPPscl/KGmFtfYVtwYDAAAAFEM+c4KPSxp0ayAAAABAseRzJfh5SY8aY/ZJSk7caa39suOjAgAAAFyUTwg+Nv5fQOwPDAAAgAVs1iHYWvvnkmSMqRq/PezWoAAAAAA3zXpOsDFmpTHmp5KekfSMMeYJY8yV7g0NAAAAcEc+C+PulvQJa+0l1tpLJP2xpK+7MywAAADAPfmE4Epr7YGJG9baRyVVOj4iAAAAwGV57Q5hjOmS9M3x27+lsR0jAAAAgAUlnyvBt0qKSNot6TuSlozfBwAAACwo+ewO8aqkP3BxLAAAAEBR5LM7xPeNMYsm3b7IGPOQO8MCAAAA3JPPdIgl1tozEzfGrwzXOz8kAAAAwF35hOCcMWbZxA1jzCWSrPNDAgAAANyVz+4Qd0j6T2PMY5KMpOsl3e7KqAAAAAAX5bMw7v8zxlwt6Zrxu/7IWvvLiceNMVdaa59xeoAAAACA0/K5Eqzx0Lt3moe/KenqgkcEAAAAuCyfOcEzMVPeacy7jDHPGmOeM8Zsm/bFxtxijLHGmHYHxwQAAAC8gZMh+A2L5IwxXklflfRuSa2SthhjWqd4XrWkP5T0EwfHAwAAAEzJyRA8lbWSnrPWPm+tTUn6lqTOKZ63XdIXJCVcHg8AAADgaAhOTXFfo6Tjk26fGL/vNeOL7ZqstfvOV9wYc7sxptsY093f31/wYAEAAFC+8loYZ4xpk7R88uustbvH/7xmmpedr55H0pclfWSm51pr75Z0tyS1t7ezPzEAAADmbNYh2BjzT5LaJD0jKTd+t5W0+zwvOympadLtpeP3TaiWtFLSo8YYSbpY0h5jzCZrbfdsxwYA5SaZyqh/ZOwLuLPxjOLprMJ+r6rDY209UhlQMJDXdQ4AcEw2m9PAaEqZnNXZREbJdFZBv1fVIZ98HqO6ioC8Xrdn5Z5fPh3yGmvtGxa1zeCQpMuNMZdqLPx+UNLWiQettYOSlkzcNsY8KumTBGAAmNrZeFpDiYzuf+qkdh06puMD8Tc8p6kurC1rlqlzdaNqQj5Vh/3zMFIA5SiVyWlgJKW9Pad0z49fmLZHffja5drY1qC6yoACvvkJw8ba2c0sMMZ8Q9JfW2t78/oHjHmPpP8jySvpn6y1dxlj7pTUba3dc85zH9UsQnB7e7vt7iYnAygvscGE9vfFtH1frxLp3IzPD/k96trQqo6WqKK1oSKMEEA5GxhJ6ZG+mLruPzLrHrW9c6VuaImqrjLgypiMMU9Ya6fcfjefEPwOSXskvSwpqbF9ga21ts2pgc4WIRhAuYkNJbRtd48OHM1/YfD65oh2bG5TtIYgDMAdrwwnte07T+v7fbG8X3tjS1Q7brlKi6uCjo/rfCE4n+vP35D025LeJelmSRvH/wQAuCg2OPcALEkHjvZr2+4exYbYhRKA8wZGUnMOwJL0/b6Ytn3nab06MtVGY+7JJwT3W2v3WGt/Ya19ceI/10YGANDZeFr7+2JzDsATDhzt1/7emIYTaYdGBgBjc4Af6YvNOQBP+H5fTPv7YkplZp5G4ZR8QvBPjTE7jTFbjDGbJ/5zbWQAAA0lMtq+L6+lGNPavq9Xg/GMI7UAQBq7Ctx1/xFHanXdf0QDRbwanE8IDmtsLvA7NTYNYmJKBADABcnU2C4Qs1lgMhuJdE57Dp9UMkUQBlC4bDanvT2nHO1Re3tOKZstztXgWW+RZq39HTcHAgB4vf6RlHYdOuZozZ0Hj+nmVQ1ayh7CAAo0MJrSPT9+wdGa9/z4BXWublCk2v2FvPkclhGS9FFJV0p6bWTW2ltdGBcAlD1rNeUem4U4PhDXLDcFAoDzyuSsKz0qkytOk8pnOsQ3NXai202SHtPY6W9n3RgUAEAaTrgzbWE4yXQIAIU761aPcqnuufIJwW+21nZJGrHW3iNpg6S3ujMsAEA8nXWlbsKlugDKS9KlXpIs0g4R+YTgiX11zhhjVkqqlVTv/JAAAJIU9ntdqRvyuVMXQHkJutSjinWMcj4rI+42xlwkqUtjJ8dVSfqcK6MCAKgq5M7iNbfqAigv1S71Erfqniuf3SH+cfyvj0m6zJ3hAAAmGCM11YUdXXjSVBeWMY6VA1DGfB7jSo/yeYrTpGZ9vdkYEzXGfMMY873x263GmI+6NzQAKG+RyoC2rFnmaM2ta5epvjroaE0A5amuIqAPX7vc0Zofvna56iqL06PymXTxL5IektQwfvtnkv7I6QEBAMYEAz51rm5UyO/M/LiQ36NNqxoVYE4wAAd4vR5tbGtwtEdtbGuQt9SuBEtaYq39d0k5SbLWZiSxxBgAXFQT8qlrQ6sjtbo2tKo2zHxgAM6pqwxoe+dKR2pt71ypusqAI7VmI58QPGKMWSzJSpIx5hpJg66MCgAgSaoO+9XREtX65khBddY3R9TRGlVVyO/QyABgbCeHG1qiurElWlCdG1ui6miJFm1nCCm/EPwJje0KcZkx5keS/lXS77syKgDAa6K1Ie3Y3DbnILy+OaIdm9sUrXH/GFIA5aeuMqAdt1w15yB8Y0tUO265ShcV8SqwlN8Wab2SvitpVGMnxd2nsXnBAACXRWtC2vG+Nu3vi2n7vl4l0jNvJh/ye9S1oVUdrVECMABXLa4K6gvvb9M7+2Lquv/IrHvU9s6V6miJFj0AS5KxszxE3hjz75KGJP3f8bu2Slpkrf2AS2ObVnt7u+3u7i72PwsA8244kdZgPKM9h09q58FjU25N1FQX1ta1y7RpdaNqQz6mQAAomlQmp4GRlPb2nNI9P35h2h71keuWa8NVDaqrDLg6BcIY84S1tn3Kx/IIwb3W2taZ7isGQjCAcpdMZdQ/kpK10nAyo0Q6q5Dfq6qgT8ZI9dVBdoEAMG+y2ZwGRlPK5KyGExllcjn5PB5VhXzyeYzqKoNF2QXifCE4n+j95PhiuImib5VEEgWAeeDzehT0eeTzGnk9RmH/2J8+r1HQ55GXEzEAzKNcziqdzSmbs8rkrOLpnDI5q+z4/bnszNMl3DbjnGBjzNMa2xHCL+m/jDHHxm9fIumou8MDAEw2268aP3ztcm1sc/+rRgCYbDSZ0avxtO5/6qR2nWfK1pa1y9S5ulEXhf2qCM7P1o0zTocwxlxyvsettS86OqJZYDoEgHI0MJLSI3NYdHJDS7Soe28CKE+nhxLa3xfTnXtnv3j3cxtb1dESVb1Li3cdmRNcSgjBAMrNK8NJbfvO0/p+Xyzv105sP7S4iuOSAbjj9FBCn97dowNH+/N+7frmiL6wuc2VIOzUnGAAwDwYGEnNOQBL0vf7Ytr2naf16kjK4ZEBQGEBWJIOHO3Xp3f36PRQwuGRnR8hGABKWCqT0yN9sTkH4Anf74tpf19Mqcz8L0YBcOEYTWa0vy825wA84cDRfu3vi2k0lXFoZDMjBANACRsYSanr/iOO1Oq6/4gGuBoMwEGvxtO6c2+vI7Xu3NurV0fTjtSaDUIwAJSobDanvT2nZrXAZDYS6bF62RLYmgjAwpdOZ3X/Uycd7VF7njqpdDrrSL2ZEIIBoEQNjKZ0z49fcLTmPT9+QQOjXA0GULj+kaR2HTzmaM2dB4+pfyTpaM3pEIIBoERlcnbKPTYLcXwgrkxu4e0KBKD05Kxc6VHFalGEYAAoUWcT7iwQGXapLoDy4laPcqvuuQjBAFCiki7Ni0uyQwQAB8Rd6lEJ5gQDQHkL+r2u1OUYZQBOCLvUo0Iu1T0XnRAASlR1yLeg6gIoLwu9RxGCAaBE+TxGTXVhR2s21YXl8xhHawIoTx4jV3pUsVoUIRgASlRdRUAfvna5ozU/fO1y1VUGHa0JoDxFKoPasnaZozW3rl2mSHXI0ZrTIQQDQInyej3a2NagkN+ZVh3yj9XzciUYgAP8fq86Vzc62qM2rW6U31uceEoIBoASVlcZ0PbOlY7U2t65UnWVAUdqAYAkXRT263MbWx2p9bmNrbqowu9IrdkgBANACQv4PLqhJaobW6IF1bmxJaqOlig7QwBwVEXQp46WqNY3Rwqqs745oo6WqCoCxVu4SzcEgBJXVxnQjluumnMQvrElqh23XKWLuAoMwAX1NSF9YXPbnIPw+uaIvrC5TfU1xZkLPMFYu/COz2xvb7fd3d3zPQwAKKqBkZQe6Yup6/4jSqRnPvAi5Pdoe+dKdbRECcAAXHd6KKH9fTHdubd31j3qcxtb1dESdS0AG2OesNa2T/kYIRgAFo5UJqeBkZT29pzSPT9+QccH4m94TlNdWB+5brk2XNWgusoAUyAAFM1oKqNXR9Pa89RJ7Tx4bNoe9b/WLtOm1Y1aVOF3dQoEIRgALjDZbE4DoyllclbDiYysyclYj6pCPvk8RnWVQXaBADBv0ums+keSylnpbCKjbDYrr9er6pBPHiNFqkNF2QXifCGYY4POI5nKqH8kJUk6G88ons4q7PeqOjz2Y4tUBhQs4gRuAJiQymSVzIx93ZjJWsXTOYX9RtmcVTZnlUpnFA4Wb5U1AEyWyeWUm7jOaqVUVgqPZ96clTKZbNG2QpsOCW4KZ+NpDSUyuv+pk9p1aPpL+VvWLFPn6kbVhHyqDvNmA8B9Z0ZTGklmZ92fKoNeLapgPjCA4nh1NKXRPHpURdCri+apRzEd4hyxwbFJ3dv3zX5Sd9eGsUnd0drirmoEUF5eHkzokTn0pxtaorqY/gTAZaXYo5gTPEuxoYS27e7RgaP9eb92fXNEOza3KVrk7T0AlAf6E4BSVqo96nwhmCXD42KDc//lSdKBo/3atrtHsaGEwyMDUO5epj8BKGELtUcRgjU2B3h/X2zOv7wJB472a39vTMOJtEMjA1DuzoyO7Q3sVH8aHE05NDIAGJsD7GSPOlPEHkUIljSUyGj7vl5Ham3f16vBeMaRWgAwksw62p+Gk1lHagGAJI063KNGitijyj4EJ1Nju0DMZgL3bCTSOe05fFLJFEEYQGHiybQr/Sme5NsqAIVb6D2q7ENw/0hKuw4dc7TmzoPHXttfGADm6pXRtCv96ZVRQjCAwi30HlX2IdhaTbmHXSGOD8S1ADfdAFBi6E8AStlC71FlH4KHE+5MWxhOMh0CQGHoTwBK2ULvUWUfguNpdyZgJ1yqC6B80J8AlLKF3qPKPgSH/V5X6oZ87tQFUD7oTwBK2ULvUWUfgqtCvgVVF0D5oD8BKGULvUeVfQg2RmqqCztas6kuLGMcLQmgDNGfAJSyhd6jyj4ERyoD2rJmmaM1t65dpvrqoKM1AZSfxRV+V/pTpIr+BKBwC71HlX0IDgZ86lzdqJDfmR9FyO/RplWNCjDnDkCBwkG/K/0p6NI8PgDlZaH3qLIPwZJUE/Kpa0OrI7W6NrSqNsx8OwDOqAx6He1PVUECMADnVDjcoyqL2KMIwZKqw351tES1vjlSUJ31zRF1tEZVFfI7NDIA5W5RRUA3ONifaisCDo0MAKSLHO5Ri4rYowjB46K1Ie3Y3DbnX+L65oh2bG5TtCbk8MgAlLuL6U8ASthC7VHGLsDzM9vb2213d7crtWODCe3vi2n7vl4l0rkZnx/ye9S1oVUdrVHeYAC46uXBhB6hPwEoUaXYo4wxT1hr26d8jBD8RsOJtAbjGe05fFI7Dx6b8lzsprqwtq5dpk2rG1Ub8jEFAkBRDI6mNJzMzro/VQW8TIEAUDRnRlMayaNHVQa8rk6BIATPUTKVUf9IStaOnWOdSGcV8ntVFfTJGKm+OsguEADmRTyZ1iuj6Wn7U6QqyC4QAObNuT0qlckq4Ct+jzpfCGYbg/MIBnxaGuBHBKD0hIN+LQ3yDRSA0uQZP/HCGElWytqxP187CKMELsKS8AAAAOCIs/G0hhIZ3f/USe06NP10iC1rlqlzdaNqQj5Vh+fnAz3TIQAAAFCwOW8u0BJVtLb4C+O4EgwAAICCxIYS2vbdHh042j/r1yTSOd1x3xHtPxqbly3S2CcYAAAAcxYbTGjb7vwC8GQHjvZr2+4exYYSDo/s/AjBAAAAmJOz8bT298XmHIAnHDjar/29MQ0n0g6NbGaEYAAAAMzJUCKj7ft6Ham1fV+vBuMZR2rNBiEYAAAAeUumxnaBmM0iuNlIpHPac/ikkqniBGFCMAAAAPLWP5LSrkPHHK258+Ax9Y+kHK05HUIwAAAA8matptwHuBDHB+JFO0eDEAwAAIC8DSfcmbYwnGQ6BAAAAEpUPJ11pW7Cpbrncj0EG2PeZYx51hjznDFm2xSPf8IY02uM6THGPGKMucTtMQEAAKAwYb/Xlbohnzt1z+VqCDbGeCV9VdK7JbVK2mKMaT3naT+V1G6tbZN0r6QvujkmAAAAFK4q5M7Bw27VPZfbV4LXSnrOWvu8tTYl6VuSOic/wVp7wFo7On7zcUlLXR4TAAAACmSM1FQXdrRmU11Yxjhaclpuh+BGSccn3T4xft90Pirpe1M9YIy53RjTbYzp7u8v7FQSAAAAFCZSGdCWNcscrbl17TLVVwcdrTmdklkYZ4z5LUntkr401ePW2rutte3W2vZIJFLcwQEAAOB1ggGfOlc3KuR3Jk6G/B5tWtWowIUwJ1jSSUlNk24vHb/vdYwxHZLukLTJWpt0eUwAAABwQE3Ip64N5y73mpuuDa2qDRdnPrDkfgg+JOlyY8ylxpiApA9K2jP5CcaYX5X0DxoLwKddHg8AAAAcUh32q6MlqvXNhX1Lv745oo7WqKpCfodGNjNXQ7C1NiPp9yQ9JKlP0r9ba58xxtxpjNk0/rQvSaqS9G1jzFPGmD3TlAMAAECJidaGtGNz25yD8PrmiHZsblO0JuTwyM7P2GKdTeeg9vZ2293dPd/DAAAAwLjYYEL7+2Lavq9XiXRuxueH/B51bWhVR2vUtQBsjHnCWts+1WPFm3gBAACAC1a0NqTO1Q1at6Jeew6f1M6Dx3R8IP6G5zXVhbV17TJtWt2o2pCvqFMgJiMEn0cylVH/SEqSdDaeUTydVdjvVfX4pO1IZUDBAD9CAAAASaoK+VUV8uvW65br5lUNslYaTmaUSGcV8ntVFfTJGKm+Oli0XSCmQ4Kbwtl4WkOJjO5/6qR2HZr+U8yWNcvUubpRNSGfqsPz8ykGAACg1AQDPi0t8QuFzAk+x5zns7REFa0t7oRuAAAATI85wbMUG0po23d7dODo7E+kS6RzuuO+I9p/NDYvKxsBAACQv5I5MW6+xQYT2rY7vwA82YGj/dq2u0exoYTDIwMAAIDTCMEamwO8vy825wA84cDRfu3vjWk4kXZoZAAAAHADIVjSUCKj7ft6Ham1fV+vBuMZR2oBAADAHWUfgpOpsV0gZrMIbjYS6Zz2HD6pZIogDAAAUKrKPgT3j6S069AxR2vuPHjstf2FAQAAUHrKPgRbqyn3AS7E8YG4FuDOcwAAAGWj7EPwcMKdaQvDSaZDAAAAlKqyD8HxdNaVugmX6gIAAKBwZR+Cw353zq0OzfN52AAAAJhe2YfgqpA7h+a5VRcAAACFK/sQbIzUVBd2tGZTXVjGOFoSAAAADir7EPz/t3f/sIMmbgAAEOlJREFUsXXdZx3HP098r31uasdtUueWujaZtq6OCYkBJ4xSiXqN2DprcRt1EglsaJ00JDo0GH8QgTwEUYWH+CUEG0zrCBNLBiphMaTQkRIYrOsSdyRpZ6coajWnZvW8pHWaxNe+th/+uLfFcpzk2j7H9xyf90uKYvuePHnqr/LcT4+/55ymW2q1Z3trqDX37mjVxoa6UGsCAAAgPKkPwXW1GfV0NCvIhvOtCLJrtGtbs2rZEwwAABBbqQ/BkrQuyKi3uz2UWr3d7WrMsR8YAAAgzgjBkhpyWe3cnFdXW9Oy6nS1NWlne171QTakzgAAABAFQnBZvjFQ3+6tSw7CXW1N6tu9Vfl1QcidAQAAIGyE4Dny6wL1PbxVjz+0peI9wkF2jR5/aAsBGAAAIEHYvDpPvjFQT8eduv+ejeo/PaKDJ4Z1/uLENce1rM9p745W7epoVmOQYQsEAABAghCCF1AfZFUfZPXovZv0wW13yl26PDmtQnFGQbZG9XUZmUkbG+q4CwQAAEACsR2iAmaSfN7vknzWq9kWAAAAlogzwQt4c6KoS4VpHTk1okMnr78dYs/2VvV0NGtdkFFDju0QAAAASWHuyTub2dnZ6QMDA5HUHh0v6NjQqPYfHVShOHvT44PsGvV2t2vn5rzyjVwYBwAAEBdm9ry7dy70GmeC5xi9VNC+fzij42fHKv4zheKsfuurL+rY2VHuEAEAAJAQ7AkuGx0vaN/hxQXguY6fHdO+w2c0eqkQcmcAAAAIGyFYpT3Ax4ZGlxyA33L87JiODY7qcqEYUmcAAACIAiFY0qXCtPYfHQyl1v6jgxqfmA6lFgAAAKKR+hA8OVW6C0QlF8FVolCcVf/pEU1OEYQBAADiKvUheOzKlA6dHA615sETwxq7MhVqTQAAAIQn9SHYXQveB3g5zl+cUALvPAcAAJAaqQ/BlwvRbFu4PMl2CAAAgLhKfQieKM5EUrcQUV0AAAAsX+pDcC5bE0ndIBNNXQAAACxf6kNwfRDNQ/OiqgsAAIDlS30INpNa1udCrdmyPiezUEsCAAAgRKkPwU231GrP9tZQa+7d0aqNDXWh1gQAAEB4Uh+C62oz6uloVpAN51sRZNdo17Zm1bInGAAAILZSH4IlaV2QUW93eyi1ervb1ZhjPzAAAECcEYIlNeSy2rk5r662pmXV6Wpr0s72vOqDbEidAQAAIAqE4LJ8Y6C+3VuXHIS72prUt3ur8uuCkDsDAABA2AjBc+TXBep7eKsef2hLxXuEg+waPf7QFgIwAABAgrB5dZ58Y6Cejjt1/z0b1X96RAdPDOv8xYlrjmtZn9PeHa3a1dGsxiDDFggAAIAEIQQvoD7Iqj7I6tF7N+mD2+6Uu3R5clpT0zOqzdSovi4jM2ljQx13gQAAAEggQnAFzCS5NOOl3996EIbPejXbApBik1PTGrsyJUl6c2JaE8UZ5bI1aijfnabpllrV1TLiAeB6mJALeHOiqEuFaR05NaJDJ6+/HWLP9lb1dDRrXZBRQ47tEACix3wCgHCYe/LOZnZ2dvrAwEAktUfHCzo2NKr9RwdVKM7e9Pggu0a93e3auTmvfCMXxgGIDvMJABbHzJ53984FXyME/7/RSwXtO3xGx8+OLfrPcos0AFFiPgHA4t0oBHOLtLLR8aW/wUjS8bNj2nf4jEYvFULuDEDaMZ8AIHyEYJX22B0bGl3yG8xbjp8d07HBUV0uFEPqDEDaMZ8AIBqEYEmXCtPaf3QwlFr7jw5qfGI6lFoAwHwCgGikPgRPTpWusq7kIpNKFIqz6j89oskp3mgALA/zCQCik/oQPHZlSodODoda8+CJ4bfv3wkAS8V8AoDopD4Eu2vB+2wux/mLE0rgTTcAxAzzCQCik/oQfLkQzY8FL0/y40YAy8N8AoDopD4ETxRnIqlbiKgugPRgPgFAdFIfgnPZmkjqBplo6gJID+YTAEQn9SG4Psgkqi6A9GA+AUB0Uh+CzaSW9blQa7asz8ks1JIAUoj5BADRSX0IbrqlVnu2t4Zac++OVm1sqAu1JoD0YT4BQHRSH4LrajPq6WhWkA3nWxFk12jXtmbVsucOwDIxnwAgOqkPwZK0Lsiot7s9lFq93e1qzLHfDkA4mE8AEA1CsKSGXFY7N+fV1da0rDpdbU3a2Z5XfZANqTMAacd8AoBoEILL8o2B+nZvXfIbTVdbk/p2b1V+XRByZwDSjvkEAOEzT+DzMzs7O31gYCCS2qPjBR0bGtX+o4MqFGdvenyQXaPe7nbtbM/zBgMgUswnAFgcM3ve3TsXfI0QfK3LhaLGJ6bVf3pEB08M6/zFCXVvvkPv27JBT794QUeHXlPL+pz27mjVro5mNQYZfsQIYEUwnwCgcoTgJZqYLOrC1aIk6c2JaU0UZ5TL1qihfGHJhrVZ5ep4cwGw8phPAOIsLjPqRiGYy4QX8PrVKV2dnNGRUyM6dLJ0pmW+lvU57dneqp6OZq2tq9Fta2ur0CmAtGE+AYizJM0ozgTP89p4Qc8sYc/dA5vzuqORPXcAosN8AhBncZxRbIeo0OilgvYdPqPjZ8cW/We5+hpAlJhPAOIsrjPqRiGYW6SVvTa+9MWTpONnx7Tv8BmNXiqE3BmAtGM+AYizpM4oQrBK+1eeGRpd8uK95fjZMR0bHNUbV6dC6gxA2jGfAMRZkmcUIVjS1ckZ7T86GEqt/UcHdWVyJpRaAMB8AhBnSZ5RqQ/BE5NFHTk1UtEG7koUirPqPz2iicliKPUApBfzCUCcJX1GRR6Czez9ZvaSmZ0zs30LvF5nZn9bfv1bZrYp6p7munC1qEMnh0OtefDE8Nv3xgOApWI+AYizpM+oSEOwmdVI+nNJD0pql7THzNrnHfYxSa+7+7sk/bGkz0TZ03zuWvAedstx/uKEEnjTDQAxw3wCEGdJn1FRnwneIemcu7/s7lOSviKpZ94xPZL+uvzxk5IeMDOLuK+3XS5MR1N3Mpq6ANKD+QQgzpI+o6IOwc2Szs/5/NXy1xY8xt2nJY1L2jC/kJl93MwGzGxgbGx5VyDONVGMZgN2IaK6ANKD+QQgzpI+oxJzYZy7f97dO929s6mpKbS6uWxNaLXmCjLR1AWQHswnAHGW9BkVdQgekdQy5/O7yl9b8Bgzy0hqlHQh4r7eVh9kElUXQHownwDEWdJnVNQh+KSku83sHWZWK+nnJPXPO6Zf0i+WP35E0r/5Cj7L2UxqWZ8LtWbL+pxWblczgNWK+QQgzpI+oyINweU9vp+Q9LSkIUl/5+7fMbPfNbNd5cOekLTBzM5J+pSka26jFqUNa7Pas7011Jp7d7Sqqb4u1JoA0of5BCDOkj6jIt8T7O5Pufu73f2d7v54+Wufdvf+8scFd/+Qu7/L3Xe4+8tR9zRXri6rno5mBdlwvhVBdo12bWtWXUT7ZACkB/MJQJwlfUYl5sK4KK2tq1Fv9/zbFy9Nb3e7bqnjDQZAOJhPAOIsyTOKECzptrW1emBzXl1ty7vrRFdbk3a253Xr2tqQOgOQdswnAHGW5BlFCC67ozFQ3+6tS17ErrYm9e3eqvy6IOTOAKQd8wlAnCV1RtkK3oghNJ2dnT4wMBBJ7dfGC3pmaFT7jw6qUJy96fFBdo16u9u1sz3PGwyASDGfAMRZHGeUmT3v7p0LvkYIvtYbV6d0ZXJG/adHdPDE8ILPxW5Zn9PeHa3a1dGsW2pr+BEjgBXBfAIQZ3GbUYTgJZqYLOrC1aLcS8+xLhRnFGRrVF+XkZnUVF/HVdYAqoL5BCDO4jKjbhSCeWzQDeTqsrqrLlvtNgDgGswnAHGWhBnFhXEAAABIHUIwAAAAUocQDAAAgNQhBAMAACB1CMEAAABIHUIwAAAAUocQDAAAgNQhBAMAACB1EvnEODMbk/TdKvzVt0v6QRX+XkSLdV29WNvVi7VdnVjX1ataa/vD7t600AuJDMHVYmYD13v0HpKLdV29WNvVi7VdnVjX1SuOa8t2CAAAAKQOIRgAAACpQwhenM9XuwFEgnVdvVjb1Yu1XZ1Y19UrdmvLnmAAAACkDmeCAQAAkDqEYAAAAKQOIXgeM/uimX3fzF68zutmZn9qZufM7IyZ/fhK94jFq2Bdf768ni+Y2bNmtm2le8TS3Gxt5xy33cymzeyRleoNy1PJ2prZ/WZ2ysy+Y2b/sZL9YekqmMmNZvaPZna6vLYfXekesXhm1mJmx81ssLxun1zgmNjkKELwtQ5Iev8NXn9Q0t3lXx+X9LkV6AnLd0A3XtdXJP2Mu/+opP2K4QZ+XNcB3XhtZWY1kj4j6Wsr0RBCc0A3WFszu1XSZyXtcvcfkfShFeoLy3dAN/53+5ikQXffJul+SX9oZrUr0BeWZ1rSr7t7u6T3SHrMzNrnHRObHEUInsfdvy7p4g0O6ZH0JS95TtKtZvZDK9Mdlupm6+ruz7r76+VPn5N014o0hmWr4N+sJP2KpL+X9P3oO0JYKljbvZIOu/tw+XjWNyEqWFuX1GBmJqm+fOz0SvSGpXP377n7t8sfvylpSFLzvMNik6MIwYvXLOn8nM9f1bULjGT7mKR/rnYTCIeZNUt6WPzUZjV6t6TbzOzfzex5M/tItRtCaP5M0mZJ/yvpBUmfdPfZ6raExTCzTZJ+TNK35r0UmxyVqcZfCsSVmXWpFILvq3YvCM2fSPoNd58tnVTCKpKR9BOSHpCUk/RNM3vO3f+num0hBO+TdErSeyW9U9K/mtl/uvul6raFSphZvUo/ffvVOK8ZIXjxRiS1zPn8rvLXkHBmtlXSFyQ96O4Xqt0PQtMp6SvlAHy7pA+Y2bS7f7W6bSEEr0q64O5XJF0xs69L2iaJEJx8H5XU56WHGZwzs1cktUk6Ud22cDNmllUpAH/Z3Q8vcEhschTbIRavX9JHylc3vkfSuLt/r9pNYXnMrFXSYUkf5izS6uLu73D3Te6+SdKTkn6ZALxqHJF0n5llzGytpJ9UaQ8ikm9YpTP8MrO8pHskvVzVjnBT5T3cT0gacvc/us5hsclRnAmex8wOqXQl6u1m9qqk35aUlSR3/wtJT0n6gKRzkq6q9H+riLkK1vXTkjZI+mz5jOG0u3dWp1ssRgVri4S62dq6+5CZ/YukM5JmJX3B3W94qzzEQwX/bvdLOmBmL0gylbY0/aBK7aJyPy3pw5JeMLNT5a/9pqRWKX45iscmAwAAIHXYDgEAAIDUIQQDAAAgdQjBAAAASB1CMAAAAFKHEAwAAIDUIQQDAAAgdQjBAJAg5RvMM7sBYJkYpAAQc2a2ycxeMrMvSXpRUq+ZnTSzM2b2O3OOOWtmXzazITN7svwUNZlZn5kNlo//g2r+twBAXPCwDACIOTPbpNIjY++VtE7SI5J+SaUnafVL+n2VHjP7iqT73P0bZvZFSYOS/krSs5La3N3N7FZ3f2PF/yMAIGY4EwwAyfBdd39O0s+Wf/23pG9LapN0d/mY8+7+jfLHfyPpPknjkgqSnjCz3So9phQAUi9T7QYAABW5Uv7dJP2eu//l3BfLZ4vn/2jP3X3azHZIekClM8ifkPTeaFsFgPjjTDAAJMvTkh41s3pJMrNmM9tYfq3VzH6q/PFeSf9VPq7R3Z+S9GuStq14xwAQQ5wJBoAEcfevmdlmSd80M0m6LOkXJM1IeknSY3P2A39OUqOkI2YWqHQW+VNVaRwAYoYL4wBgFShvh/gnd99S5VYAIBHYDgEAAIDU4UwwAAAAUoczwQAAAEgdQjAAAABShxAMAACA1CEEAwAAIHUIwQAAAEid/wN3EbkEx+s1CQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3jV1Z33/c/ap+ydExBJooQg6igkYqA0Mh56gDHWjlCiaKfCTGunnXLfTzudjr1rdabFZ0amHdR22ru9+sxUp52qM2CnHgoF71uFQdtpdThYiJiAtg5yNESCkMM+7/X8kYRGSCA7+f129ub3fl0Xl2QfvizhulY+WXut7zLWWgEAAABe4hvvAQAAAAC5RggGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeExjvAYzG5MmT7fTp08d7GAAAAMhj27dvf9taWznUcwUZgqdPn65t27aN9zAAAACQx4wxbw73HNshAAAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xTkZRm5Ek+k1NGTkCR1RVOKJtOKBP0qi/T9tVWWhFQU4q8QQO4xPwHA2DBDDqErmtSJWEprdxzUmq37tL8zetpraisiWnrlNDXPqVF5OKCySHAcRgrAa5ifAMAZxlo73mPIWmNjo3Xr2uT24zFtbGvXyg2tiiUzZ319OOjTioX1aqqrVvWEsCtjAgCJ+QkAsmWM2W6tbRzyOULw77SfiOnuJ1u0eXdH1u9dMLNSq5Y0qLqcbzQAnMf8BADZO1MI5mBcv/bjo/8GI0mbd3fo7idb1H4i5vDIAHgd8xMAOI8QrL49dhvb2kf9DWbA5t0d2tjaru5Y0qGRAfA65icAcAchWNKJWEorN7Q6UmvlhlYdj6YcqQUAzE8A4A7Ph+B4ou+U9UgOmYxELJnRup0HFU/wjQbA2DA/AYB7XA3BxpgfGmOOGGN2DfO8McZ8xxjzG2NMizFmrpvjGUpHT0Jrtu5ztObqLftO9u8EgNFifgIA97i9EvwjSR8+w/N/KOnS/l/LJf2jy+M5jbUass/mWOzvjKoAm24AyDPMTwDgHldDsLX255I6z/CSZkmP2D4vSZpojLnAzTGdqjvmzseC3XE+bgQwNsxPAOCe8d4TXCNp/6CvD/Q/dhpjzHJjzDZjzLaOjrGdkh4smkw7VmuwmEt1AXgH8xMAuGe8Q/CIWWsftNY2WmsbKysrHasbCfodqzVYOOBOXQDewfwEAO4Z7xB8UFLtoK+n9j+WM6XhQEHVBeAdzE8A4J7xDsHrJH2iv0vEVZKOW2sP53IAxki1FRFHa9ZWRGSMoyUBeBDzEwC4x+0WaWskvShphjHmgDHm08aY/2mM+Z/9L3la0huSfiPpIUmfdXM8Q6ksCWnpldMcrbls3jRVlRU5WhOA9zA/AYB7XP1MzFq79CzPW0mfc3MMZ1MUCqh5To2+8x+vO9KQPhz0afHsGoXYcwdgjJifAMA9470dIi+UhwNasbDekVorFtZrQoT9dgCcwfwEAO4gBEsqiwTVVFetBTPH1nViwcxKNdVXqzQcdGhkALyO+QkA3EEI7lc9IaxVSxpG/Y1mwcxKrVrSoOrysMMjA+B1zE8A4DxjC/D+zMbGRrtt2zZXarcfj2ljW7tWbmgd0R68cNCnFQvr1VRfzTcYAK5ifgKA7BhjtltrG4d8jhB8uu5YUsejKa3beVCrt+zT/s7oaa+prYho2bxpWjynRhPCAT5iBJATzE8ACkE8kVJHT0KS1BVNKZpMKxL0q6z/XEJlSUhFIffPKBCCR2ngH9BaqTueUiyZVjjoV2lRQMZIVWVFnLIGMC6YnwDko65oUidiKa3dcVBrtg7/g/rSK6epeU6NysMBlUXc+0GdEAwA55h0OqPO3oRSGauuWErJVFrBgF9l4YACPqOK4pD8fo59AMidUW/ZqqtW9QR3tmydKQTTKwcACkgilVFnT0LrWw7p4Rf3DrvKcvvV07WoYYoqSkIKBQjDANzVfiKmu59q0ebdHSN+TyyZ0Vd+uksbd7ePy+FdVoIBoEB09iS0sa1d96zdNeJVlnubZ6mprloVJaEcjBCAF7Ufzz4An8qtLjZnWglmeQAACsDR7ri+/PhOffnxlhHfHhdLZvTlx1v05cd36mh33OURAvCirmhSG9vaxxSAJWnz7g5tbG1Xdyzp0MjOjhB8Bul0Rh1dMR0+HtVr7V165cA7eq29S4ePR9XRFVM6PfZrTAHgbDp7ErrriRZtbDsyqvdvbDuiu55o0bH+k9oA4JQTsZRWbmh1pNbKDa06Hk05Umsk2BM8BPbcAcgXiVRGG9veGnUAHrCx7Yiea2vXTXNqmK8AOCKe6OsCMdJPp84mlsxo3c6D+tQ103PSPo2Z8BSdPQmt3XFQ87+xWX+3oW3IACxJ+zuj+rsNbZr/jc1au+OgOllhAeCCzp647ln7qiO17lm7S509bIsA4IyOnoTWbN3naM3VW/ad7C/sNkLwIEe747rr8RbdmeWeuzsfb9Fdj7ew5w6Ao9LpjNbtPHzW+SjgMyoO+RXwmTO+LpbM6Gcth9nKBcAR1mrYxcLR2t8ZVa56NrAdol9nT0J3P/GKnmtrH9X7n2trl56Q7r+1QZM4hQ3AAUd7Enr0pb2nPe73GTXVVenGKy5QzcSI4qnMycsyigI+HXwnqg0th7Vp9xGlM+/+bvLIi3vVPHuKqrhGGcAYdcfd2b/b41LdUxGC1bfnblNb+6gD8IDn2tq1sa1dzey5A+CARDpz2irL4tlT9Klrp+v51zr0jWf3DHtm4Za5U/XZ+Zfoh7/cq3U7D518bn9nVAlWggE4IJ5Mu1I3lnKn7qlIaupbBV6xdpcjtVas3cX+YACO6I79bjWkJOTX95bN1ezaCbrtoZf07Y2vn/HMwrc3vq7bHnpJs2sn6HvL5qok9LsrlN1avQHgLeGgO1ezh3N05bvnQ3A6ndHPWg45erJxfcsh9twBGLNo/ypLScivh25v1E+279fK9W1ZnVlYub5NP9m+Xw/d3ngyCMdcWr0B4C3FRe6EVbfqnsrzIbizN6FHXtx71teN9OCJJD384l519rIaDGBsivq3Vd1/62w9+PM39Pye0TWjf35Phx78+Ru6/9bZkqSQ3/NTPwAHpNNWtRURR2vWVkROO8vgFs/vCU6m7ZAfKY7l4Mn+zqiS6cK7jhpAfikNB7R49hS9dSI66gA84Pk9HXr/pZP1kYYLVBr2/NQPwAE+n9Etc6fq2xtfd6zmrXOnymfOvuDoBM/PhCeip1/PN9aDJ5J0IpbUFDn70xEAbzEy+sz7L9JHv/+iI/UeeGaPfvI/rpZRbr7BADi3GSPNv6xS//TCbx3ZVhoO+vTByyqVowzMdojB/2hOHjyJO7THGIB3lUX8+sXrbzt6ZuE/f/O2yiK52W8H4NzmM0ZP7TioO2+Y4Ui9O2+YoSd3HMzZSrDnQ/DAnjunD56w5w7AWHXH0q7cxtQd42AcgLErDvlVURzS+eURzZ9ROaZa82dU6vzyiCaXhFQc4mBcTgycQHT64EmuTjYCOHcV+m1MAM5tE8JBLZo9RfesfUXLP3DxqIPw/BmVWv6Bi3XP2le0sGGKJkRyc+mY50OwJN1+zYWOHTx560RUn7jmQodGBsDLBvcJdrQufYIBOMDv96k8HNAXr5+hL6z5tb5yY52+dtMshYMji5fhoE9fu2mWvnJjnb6w5tf64vUzVB4OyD+CTlxO8PzBuHDQp09cNV0Lv/sLR+o98MwebfiL9yviUgNpAN4Rdes2JvoEA3BAOp1RTyKtyrIi/fPtV+prT7eprCigxz5zlV54rUOPv3xg2OYCt86dqg9eVqkf/Od/67m2dv3z7Veq/URMPYm0KtIZ+XOwrdTzITjoN9q0u93Rgyeb2tp163trHKkHwLvc+mE6V7cxATi3HY8ltfbXBzXj/DJ9Z9PrJz9Rf3rXW7puZpW+9KEZmjIxomQ6o1gyo3DQp6Dfp0PvRLW+5bC+8x+/Odlm1m+MPto4Vet2HNSfXHWhKkqKXB+/50NwbzyjR19609Gaj770pv5w1gWqKHG0LACPcaufL32CATihN5FWZ29CB9+JatPuIycfT2esnm1t17Ot7ZL6LhwLBXxKpDJKDXMRxqbdR3TN752nt3sS6k2kc5KhPL8n2MqdgycAMFbGyJXbmHLVgxPAuS1jpZvn1OiBZ/ac8XWpjFVvIj1sAB7wwDN7tGROjXJ0YRwhmIMnAPJVZUlIS6+c5mjNZfOmqarM/Y8ZAZz7bMbq+dc6HN1S+sJrHbI5amHj+RAcTXHwBEB+KgoF1DynZsQnrc8mHPRp8ewahdgTDMABaWv1xMsHHK35+MsHlCEE54ZrB0/oDgHAAcVFfq1YWO9IrRUL61VCD3MADgn4jStbSnPVIs3zIbjMpQMibtUF4C298bTmz6jUgplju41pwcxKzZ9ZqZ44n1IBcEavS/NJbyI385TnQ7DPpYMnOfohBsA5LBpPau2Og1r20Ev6+5sbRh2EF8ys1N/f3KBlD76kdTsPKhpPOjxSAF4USzmzF/hUcYf2GJ+N50NwZUmRls5z/uBJZVnY0ZoAvOdob1Jrtu7Tm51Rfez7v9LfNc8a1W1Mf9c8Sx/7/q/0ZmdUq7fs09FeQjCAsRvpXBTwGRWH/AqMcIWwKJCbeOr5z+yDQb+a59ToO5ted+R0Yzjo0+I5NQrm4KYTAOc2a3/XcvHNzqiuvW+zHvrEe7Xpi/O1budBrd6yb9jbmJbNm6bFs2vUevi4rr1v88nn9ndGlaMzJwDOcSWhoWOk32fUVFelG6+4QDUTI4qnMool0woH/SoK+HTwnag2tBzWpt1HTl6W8a66RbmJp54PwZI0KRLUPYvq9ddP7RpzrXsW1WtScdCBUQHwuqFaOH7mke2aUBzUjz/z+1rUMKXvdfGUEqm0QgG/Svu/efTEk7rxu7/Q8SFWfWnhCMAJ6YxVbUXkXT+ML549RZ+6drqef61D33h2z7A/qN8yd6o+O/8S/fCXe7Vu56F3PZemO0TuFBcF1FRX7cjBk6a6ahUP85MRAGQjOkSrxXsW1Wn9n79Pb3T06NVDx9V+IqbOnoSO9iTU2ZNQ+4mYXj10XL890qP1f/4+3bOo7rQatHAE4IRkOqOPNdZKkkpCfn1v2VzNrp2g2x56Sd/e+PqwnSP2d0b17Y2v67aHXtLs2gn63rK5Kgn1da657cpapdK52RNMWutXVR7WfUsadNeTLdq8uyPr9y+YWan7ljSoqpy9wACcMbiFY2VpSKs/c5UOHovqaE9Crx3p1hMvHzjjKktNRbEunlyq5+74gJY99JI6uhOSpDB9ggE4IJW2ap5To3/55X/ru8vm6sGfv6Hn94w8Q8WSGa1c36b5Myr10O2N+vzql7V4do1rF5mdihA8iN9n9Pc3X6FNbUe0ckPriPYIh4M+rVhYr+vqqnPW1w6AN5T2t1qsLA3pqc9eq32dvfrt29164N/2nHF+Glhl+acXfqs7b5ihUMCnpz57rW7+/36pju7EyboAMBYVpUHtfbtX//pnV+m+/7s7qwA82MD7/vXPrtLhd3p14eQSJ4c5LLZD9OvsSSiWzOivnnpFsWRaz93xQd314RnDtk+rrYjorg/P0HN3fFCxZFp/9VSLYsmMjvUkcjxyAOcq09/Ccc3yq3S0J6EHf/GGVq5vG/Eh3oFVlgd/8YaO9iS0ZvlVqq2IyPDzOgAHJNNWk0tD+vW+d0YdgAc8v6dDO/a9o/PKipRM52ZPMMsBkhKpjHoTKa1Yu0ubd3eorCio9144SXOmTtSCmVUKB/3qiaeUSGUUCvhUUhRQLJnWOz0JHe2Oa+eB49q8u0Nf1Sta2TxLJUUBhXLU3gPAuas45NO3/miOkmmrb218bcyrLHd9eKa+9UdzTu69A4CxCAWMYkmje9e/6ki9v13/qtZ//v05a5FGUpPUFU3ohT0d2vJG58lN3X/8g//Sj17cqz1vdentrriOR5Mnf73dFdeet7r0w1/u1R//4L9Obure8kanXtjToRNRVoMBjF37iYRqJxXrV79925FVll/99m3VTirWWyfiDo0QgJdlMtKGlkOOtJiV+j69evqVQ0oN0TbNDZ5fCU6nM4qmMvqH5/boodsb9eDP31B5OKh/+7Pf1y9ef/uM7T3+qLFWn11wiX74n3v1i9jbJzd1f3BGpdLpjPz0CgYwBmXhgLriKT3wzB5H6j3wzB7Nv6xK5ewJBuCAZNrq8ZcPOFrzJ9sP6Ob3THW05nA8n9K6Ekmt23FI9zZfoUd+tVcffW+tGi+cpNsefEnffPa1M7b3+Oazr+m2B19S44WT9NH31uqRX+3Vvc1X6Gc7D6krwY1MAMYm6DeOr7JseOWQAn42BQMYO2vtsDlptPZ3RmVFn+Cc6I6l1d4V09GemD557UV68uUDumfdq1kdPLln3at68uUD+uS1F+loT0yHT8TUHaMPJ4CxSaTcWWVJpLgyDsDYuXXxTnc8NxnK85+JWSvdPKdGR7rieujnb2jT7iOjqjPwvo9dWauGmolcSwpgzAp9lQXAuS2ecudSi0SOLvTx/EpwJmO1/1iv3u5OjDoAD9i0+4iOdid04FivMqRgAGPU5dYqC59UAXDA4At9nBR2qe6pPB+C09Zqxvnljrb3uOz8cqVzdLIRwLkr4dYqS4oQDGDsSorc2VDgVt1TeT4EF4f82rz7iKMHT57fc0TF9OEEMEaFvsoC4Nzm95lhLxUbrdqKSM5u4PV8CE6mrf71v950tOajL72Zs9tOAJy73LremGuTATihsiSkj191oaM1P37VhaosK3K05nA8H4IluXLwBADGKuT3ubLKEqKHOQAHBIN+LWqYonDQmTklHPRpUcMUBXM0R3l+Juxx6eBJT8KdugC847ySkD5+1XRHa37i6uk6rzQ3qywAzn1FAaO/+cjljtT628WXKxzIXR9zz4fgqEttOGI5au8B4Nzl9/v0kdkXOLzKckHO9tsBOLel0xlFkxlVlIR03cyqMdW6bmaVJhWH1JvMKJ1251DwqTwfgosC7vwV8HEjACecV1Kkv13szCrLvc2X67wSVoEBOGPg1t07frxDn/nAxaMOwtfNrNJnPnCx7vjxjpzeuuv5pFYaDhZUXQDekkpn9L7fm6ymurGtsjTVVenaSyYrlcnNCguAc193LK01W/epJ5HWp3+0VUvmTtW9iy8f8adX4aBP9y6+XEvmTtWnf7RVPYm0Vm/Zl7Ne5p4PwT4jVw6e8GkjACd0xVPatLtdyz9w8aiDcFNdlZZ/4GJt2t2urhjnFQA4w9rfNQPoSaT1udUva+veTj22/Cp96UOXDZuvaisi+tKHLtNjy6/S1r2d+tzql9WT6Au++zujObt11/N9copDft06d6q+tfF1x2p+9L1TVUKfYABjlEym1RVL6etP75bfGN1/62wtmFGllRtaR9TbPBz0acXCek0sDulP/2Wr0tbq2ksqVRFJK0ivYABj1BU7fdvCz1oO6+ldb+m6mVX60odmaMrEiJLpjOLJjIqCPgX9Ph16J6r1LYf1rY2vD3m5WLdLTQtO5fkQPCEc1KLZU/SPL/zWkQszwkGfFjZMUXkk5MDoAHjZO7GENrQcOjk3fW71y/pIwwV6bPnVevG3b2v1ln1DtmSsrYho2bxpuvqSyfrBL97Qz1oOn3xuwyuHtHRerSqDzn4CBsB7hstN6YzVs63tera1XZIU8BmFAj4lUhmlRnCjbq6aC3g+BPv9PpUXBXTnDTO0cn3bmOvdecMMlRcFOH0NYMziKavHXz7wrseGW2VJpDIKBd69yvKNZ187bZXlJ9sPaMncqbn83wBwjhrprZapjFUqMfJgGw7k5pMqz4dgqe+O6msumaz5Myr1/J6OUdeZP6NS11wyWSXcxgTAARlrh1zpHcsqy/7OqDK52nAH4JxW6Ldaev5gnCQdjyW1v7NXdzRdpvkzKkdVY/6MSt3RdJn2d/bqeDQ3rT0AnNtGeogtlbHqTaRH9DGjpJydvAZwbnOtuUCO0qnnQ3A6ndHPdh7WHT/eoWgyreXvv1grFtVl1d5jxaI6LX//xYom07rjxzu0vuVwzho9Azh3JVLuzCOJFCEYwNhVlRZp6bxpjtZcNm+aqsrCjtYcjudD8NGehB59ae/JHnfHepOaVlGsx5ZfrTuaLj1je487mi7VY8uv1rSKYh3rTZ7scffIi3t1tCeR2/8RAOecke63y1aYzhAAHBAM+tU8p8bRWy0Xz6lRMEcXjnl+82oinTmtx91HGi7Qp993kS46r0RfubFO55UWKZnOKJbMKNzf3uNod1zxVEayVut2HHrX6ev9nVElWAkGMEaFvt8OwLlvUiSoFYvq9ZWndo251j2L6jWpOHeXjXl+JuweYs/d4NPXCxsukCQZSX5jNNDzIZ7KaH3LYf3H7iPj2uMOwLkr5PeptiIy5OG40aqtiHCtOwDHFBcFdH1dtTa2tWvz7tE3F1gws1JNddUqDuUumno+BEeH6UU35h53WbQCAYChnFcS0sevmq6vPz329o0DPnH1dJ1XWuRYPQCoKg/rviUNuuvJllEF4QUzK3XfkgZVledmL/AAzy8HhAIj+yvI9vT1SOsCwHD8fp8+MvsCR/fbLWq4gD7mABw3EIS/dvOsrJoLfP3mWeMSgCVWglXGnjsAeey8kiLdu/hyffmJV8Zc697my3VeCavAANxRVR7Wze+p0fwZVVq34+BZb7VsnlOjicXBnG6BGMzzSc1njCt77nyGlRYAYxcK+NRUf76aWtu1se3IqOs01VXp+rrz+ZQKgKuKQwEVhwL6s2svUvOcKcrYvp7nsWRa4aBfZeGAfEaqLAvnrAvEcDw/GxYFjG51+ArRj753qsJ8owHgkIqSkO67pUFNdVWjen9TXZXuu6VBk0pCDo8MAIYWDPo1ZWKxpk4qVt0F5XrPtEmqu6BcUycVa8rE4nEPwBIhWBPDIS1smOLonruFV0zRhGK+2QBwznmlRbr/1tm6/9aGrPbb3X9rgx64dTaH4QDgFK6HYGPMh40xe4wxvzHG3D3E89OMMZuNMb82xrQYY250e0yDBfuX5u+8YYYj9e68YYZKw4G8+AkHwLmloiSkm+bU6PkvLdBXF9ad8TKfry6q0/NfWqCb5tSwAgwAQ3B1T7Axxi/pe5Kul3RA0lZjzDprbeugl31V0r9ba//RGFMv6WlJ090c16nKigK65pLJmj+jUs/vGX2Pu/kzKnXNJZNdO2wHAKGAT+dPCOtPr5mu5jlTlMpYdcdSiqcyKgr4VBoOKOAzqigpogsEAJyB22ltnqTfWGvfkCRjzGOSmiUNDsFWUnn/7ydIOuTymE5TXBTQ5JKQ7mi6TJJGFYTnz6jUHU2XaXJJaNxOOQLwDr/fp8qy/pZCE8Z3LABQiNxOazWS9g/6+oCk3z/lNX8j6VljzOcllUhqGqqQMWa5pOWSNG3aNMcHWtnfn275+y/W+y+drAee2aNY8uxXH4eDPt15wwzVnV+uKRPCJ+sAAAAgf+XDkuVSST+y1n7TGHO1pEeNMbOste9KoNbaByU9KEmNjY0ju7EiS5XlYVlJyXRGjy2/Wi/sOaLHXz4wbI+7W+dO1QdnVOl4b0K/V1VKAAYAACgQbofgg5JqB309tf+xwT4t6cOSZK190RgTljRZ0ugbYo5BVXlYpeGAjvUmdWlVqb5yY53OKy1SMp1RLJlROOhT0O/T0e64MtaqqqxIl1WXsgUCAACggLid3LZKutQYc5H6wu9tkpad8pp9kq6T9CNjTJ2ksKTRn05zwECj56qSkDp64icbPSdSaYUCfd0kaiaG86LRMwAAALLnagi21qaMMX8u6RlJfkk/tNa+aoy5V9I2a+06Sf9L0kPGmDvUd0juk9ZaV7Y7ZGug0TMAAADOLa5/hm+tfVp9bc8GP3bPoN+3SrrW7XEAAAAAA/gsHwAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeE5gvAeQz9LpjDp7E0plrLpiKcWTaRUF/SoLBxTwGVUUh+T383MEAABAoSEEDyGRyqizJ6H1LYf08It7tb8zetpraisiuv3q6VrUMEUVJSGFAoRhAACAQmGsteM9hqw1Njbabdu2uVK7syehTW3tWrF2l2LJzFlfHw76tLJ5lq6rq1ZFSciVMQEAACB7xpjt1trGoZ5j+XKQo91x3fV4i+58vGVEAViSYsmM7ny8RXc93qKj3XGXRwgAAAAnEIL7dfYkdPcTr+i5tvZRvf+5tnbd/cQrOtaTcHhkAAAAcBohWH17gDe1tY86AA94rq1dG9valUiNbBUZAAAA44MQrL5V4BVrdzlSa8XaXepkNRgAACCveT4Ep9MZrW85NOI9wGcTS/bVS6dZDQYAAMhXng/Bnb0JPfziXkdrPvziXnX2shoMAACQrzwfglMZO2Qf4LHY3xlVKlN4recAAAC8wvMhuCuWGtHrAj6j4pBfAZ8Z0eu7R1gXAAAAuef5G+PiyfSQj/t9Rk11VbrxigtUMzGieCqjWDKtcNCvooBPB9+JakPLYW3afUTpIVZ943SIAAAAyFueD8FFQf9pjy2ePUWfuna6nn+tQ994ds+w1ybfMneqPjv/Ev3wl3u1buehdz3PNcoAAAD5y/MhuCz8u7+CkpBf9986W2+diOq2h146Y8eI/Z1RfXvj6/qnF36rO2+YoRsuP19ffnynehLp0+oCAAAgv3h+uTLgM6qtiKgk5NdDtzfqJ9v3a+X6tqyuTV65vk0/2b5fD93eqJKQX7UVkRHvHQYAAEDueX65sqI4pNuvnq4LJkT04M/f0PN7OkZVZ+B99986W4ePR1VRUuTkMAEAAOAgz68E+/0+LZ49RW+diI46AA94fk+H3joR1eLZU+RnJRgAACBveT4ES329gh94Zo8jtR54Zg89gvdgkwQAACAASURBVAEAAPKc50NwPJHST3990NFrk9fuOKh4gj7BAAAA+crzIbijJ6E1W/c5WnP1ln3q6OHaZAAAgHzl+RBsrVy5NtmyIwIAACBveT4Eu3W9cXec7RAAAAD5yvMhODrMtcljFXOpLgAAAMbO8yE4MsS1yU4IB9ypCwAAgLHzfAgudel6Y7fqAgAAYOw8H4KNkWorIo7WrK2IyHBXBgAAQN7yfAiuLAlp6ZXTHK25bN40VZVxbTIAAEC+8nwILgoF1DynRuGgM38V4aBPi2fXKMSeYAAAgLzl+RAsSeXhgFYsrHek1oqF9ZoQYT8wAABAPiMESyqLBNVUV60FMyvHVGfBzEo11VerNBx0aGQAAABwAyG4X/WEsFYtaRh1EF4ws1KrljSoujzs8MgAAADgNELwINXlYa26uUFfu2nWiPcIh4M+fe2mWQRgAACAAsLm1VNUTwirec4UzZ9RpXU7D2r1ln3a3xk97XW1FREtmzdNi+fUaEI4wBYIAACAfvFESh09CUlSVzSlaDKtSNCvsv5zU5UlIRWFxjeGEoKHUBoOqjQc1Keuma6PzJ4ia6XueEqxZFrhoF+lRQEZI1WVFdEFAgAAoF9XNKkTsZTW7jioNVuHX0hceuU0Nc+pUXk4oLLI+CwkGmvtuPzBY9HY2Gi3bds23sMAAABAv/bjMW1sa9fKDa2KJTNnfX046NOKhfVqqqtW9QR3tpQaY7ZbaxuHeo6VYAAAAIxJ+4mY7n6qRZt3d4z4PbFkRl/56S5t3N0+LmerOBgHAACAUWs/HtPdT2YXgAfbvLtDdz/ZovYTMYdHdmaEYAAAAIxKVzSpjW3tow7AAzbv7tDG1nZ1x5IOjezsCMEAAAAYlROxlFZuaHWk1soNrToeTTlSayQIwQAAAMhaPNHXBWIkh+BGIpbMaN3Og4onchOECcEAAADIWkdPQmu27nO05uot+072F3YbIRgAAABZs1ZD9gEei/2dUeWqe2/WIdgY83vGmFuMMfVuDAgAAAD5rzvmzraF7niebIcwxmw2xkzu//3HJT0t6Q8l/dgY83mXxwcAAIA8FE2mXakbc6nuqUZyWUaltfbt/t//haSrrbVHjTHFkl6S9F3XRgcAAIC8FAn6XakbDrhT91Qj2Q6RNMbU9P++W1JP/+/jknIzSgAAAOSV0rA7Fw+7VfdUI/lT7pD0rDHmCUmvSvoPY8wzkt4n6V/cHBwAAADykzFSbUXE0cNxtRURGeNYuTM660qwtfZ5SddIOiwpKWm7pJikz1trv+Hq6AAAAJCXKktCWnrlNEdrLps3TVVlRY7WHM6I1puttccl/eOZXmOM+a61loNyAAAAHlAUCqh5To2+8x+vO3JhRjjo0+LZNQrl0Z7gkbrWwVoAAADIc+XhgFYsdKZr7oqF9ZoQyc1+YInLMgAAADBKZZGgmuqqtWBm5ZjqLJhZqab6apWGgw6N7OwIwQAAABi16glhrVrSMOogvGBmpVYtaVB1edjhkZ2ZkyE4R2f5AAAAkE+qy8NadXODvnbTLIWDI4uX4aBPX7tp1rgEYGmEB+MkyRhzhbX2lTO85H8P874P9z/nl/TP1tpVQ7zmjyT9jSQraae1dtlIxwUAAIDxVz0hrOY5UzR/RpXW7Tyo1Vv2Ddk+rbYiomXzpmnxnBpNCAdyugViMGOtHdkLjfmFpCJJP5L0b/0dI872Hr+k1yRdL+mApK2SllprWwe95lJJ/y7pD6y1x4wxVdbaI2eq29jYaLdt2zaicQMAACC34omUOnoSslbqjqcUS6YVDvpVWhSQMVJVWVFOukAYY7ZbaxuHem7EK8HW2vf3B9ZPSdpujNki6V+stc+d4W3zJP3GWvtG/0Aek9QsqXXQaz4j6XvW2mP9f84ZAzAAAADyW1EooKmh3HV6GI2s9gRba1+X9FVJd0n6oKTvGGN2G2OWDPOWGkn7B319oP+xwS6TdJkx5pfGmJf6t0+cxhiz3BizzRizraOjI5thAwAAAO8y4hBsjGkwxnxLUpukP5D0EWttXf/vvzWGMQQkXSppvqSlkh4yxkw89UXW2gettY3W2sbKyrG14QAAAIC3ZbMS/F1JL0uaba39nLX2ZUmy1h5S3+rwUA5Kqh309dT+xwY7IGmdtTZprf1v9e0hvjSLcQEAAABZySYEL5S02loblSRjjM8YUyxJ1tpHh3nPVkmXGmMuMsaEJN0mad0pr/mp+laBZYyZrL7tEW9kMS4AAAAgK9mE4I2SIoO+Lu5/bFjW2pSkP5f0jPq2Ufy7tfZVY8y9xpjF/S97RtJRY0yrpM2S7rTWHs1iXAAAAEBWsjm2F7bWdg98Ya3tHlgJPhNr7dOSnj7lsXsG/d5K+mL/LwAAAMB12awE9xhj5g58YYx5r6TTOyADAAAAeS6bleC/lPQTY8wh9V2RfL6kj7kyKgAAAMBF2VyWsdUYM1PSjP6H9lhrk+4MCwAAAHBPtld5XClpev/75hpjZK19xPFRAQAAAC4acQg2xjwq6RJJOySl+x+2kgjBAAAAKCjZrAQ3Sqrv7+YAAAAAFKxsukPsUt9hOAAAAKCgZbMSPFlSqzFmi6T4wIPW2sXDvwUAAADIP9mE4L9xaxAAAABALmXTIu0FY8yFki611m7svy3O797QAAAAAHeMeE+wMeYzkh6X9P3+h2ok/dSNQQEAAABuyuZg3OckXSvphCRZa1+XVOXGoAAAAAA3ZROC49baxMAXxpiA+voEAwAAAAUlm4NxLxhj/lpSxBhzvaTPSvqZO8PKD8lkWh09cWWs1BVLKZpMKxL0qywckM9IlSVFCgbZFg0AAFBosgnBd0v6tKRXJP0PSU9bax9yZVTjrDee0rFoUmt3HNSaLfu0vzN62mtqKyJaOm+amufUaFIkqOKibG+gBgAAwHgxI70AzhjzBWvt/z7bY7nQ2Nhot23b5krtIydi2tjWrnvXtyqWzJz19eGgT/csqldTXbWqysOujAkAAADZM8Zst9Y2DvVcNnuCbx/isU+OakR56siJmO56skV//dSuEQVgSYolM/rrp3bpridbdOREzOURAgAAwAlnDcHGmKXGmJ9JusgYs27Qr82SOt0fYm4MBODNuztG9f7NuzsIwgAAAAViJBtZfyXpsPquTf7moMe7JLW4Mahc642ntLGtfdQBeMDm3R3a2Naum95To+IQe4QBAADy1VmTmrX2TUlvSrra/eGMj2PRpO5d3+pIrXvXt+qDM6oIwQAAAHksmxvjlhhjXjfGHDfGnDDGdBljTrg5uFxIJtNau+PgiPcAn00smdG6HQeVTKYdqQcAAADnZXMw7n5Ji621E6y15dbaMmttuVsDy5WOnrjWbNnnaM3VW/apoyfuaE0AAAA4J5sQ3G6tbXNtJOMkYzVkH+Cx2N8ZVYa79AAAAPJWNhtXtxljfizpp5JOLnNaa590fFQ51BVLFVRdAAAAjF02IbhcUq+kDw16zEoq6BAcdWnvbow9wQAAAHlrxCHYWvunbg5kvESCflfqhl2qCwAAgLHLpjvEZcaYTcaYXf1fNxhjvure0HKjLOxOKzO36gIAAGDssjkY95Ckv5KUlCRrbYuk29wYVC75jFRbEXG0Zm1FRD7jaEkAAAA4KJsQXGyt3XLKYwV/+quypEhL501ztOayedNUWRZ2tCYAAACck00IftsYc4n6DsPJGHOr+q5TLmjBoF/Nc2oUDmbzVzG8cNCnxXNqFPQ7Uw8AAADOyyapfU7S9yXNNMYclPSXkv4fV0aVY5MiQd2zqN6RWvcsqtek4qAjtQAAAOCOEYdga+0b1tomSZWSZlpr32et3evayHKouCigprpqLZhZOaY6C2ZWqqmuWsUhDsUBAADks2y6Q3zBGDPQK/hbxpiXjTEfOtv7CkVVeVj3LWkYdRBeMLNS9y1pUFU5e4EBAADyXTbbIT5lrT2hvssyzpP0cUmrXBnVOBkIwl+/edaI9wiHgz59/eZZBGAAAIACks3n9gNNv26U9Ii19lVjzDnXCKyqPKyb3lOjD86o0rodB7V6yz7t74ye9rraioj+eN40LZ5To4nFQbZAAAAAFJBsktt2Y8yzki6S9FfGmDJJGXeGNb6KQwEVhwL6s2svUvOcKcpYqSuWUiyZVjjoV1k4IJ+RKsvCdIEAAAAoQNmE4E9LmiPpDWttrzHmPEnn5FXKA4JBv6ZMLB7vYQAAAMBhZw3BxpiZ1trd6gvAknTxObgLAgAAAB4ykpXgL0paLumbQzxnJf2BoyMCAAAAXHbWEGytXd7/3wXuDwcAAABwXzZ9gj/afxhOxpivGmOeNMa8x72hAQAAAO7IprXBCmttlzHmfZKaJP1A0j+5MywAAADAPdmE4HT/fxdKetBau0FSyPkhAQAAAO7KJgQfNMZ8X9LHJD1tjCnK8v0AAABAXsgmxP6RpGck3WCtfUdShaQ7XRkVAAAA4KIRh2Brba+ktZJ6jDHTJAUl7XZrYAAAAIBbRnxjnDHm85L+X0nt+t11yVZSgwvjAgAAAFyTzbXJX5A0w1p71K3BAAAAALmQzZ7g/ZKOuzUQAAAAIFeyWQl+Q9LzxpgNkuIDD1pr/8HxUQEAAAAuyiYE7+v/FRL9gQEAAFDARhyCrbV/K0nGmNL+r7vdGhQAAADgphHvCTbGzDLG/FrSq5JeNcZsN8Zc7t7QAAAAAHdkczDuQUlftNZeaK29UNL/kvSQO8MCAAAA3JNNCC6x1m4e+MJa+7ykEsdHBAAAALgsq+4QxpgVkh7t//pP1NcxAgAAACgo2awEf0pSpaQnJT0haXL/YwAAAEBByaY7xDFJf+HiWAAAAICcyKY7xHPGmImDvp5kjHnGnWEBAAAA7slmO8Rka+07A1/0rwxXOT8kAAAAwF3ZhOCMMWbawBfGmAslWeeHBAAAALgrm+4QX5H0n8aYFyQZSe+XtNyVUQEAAAAuyuZg3P81xsyVdFX/Q39prX174HljzOXW2ledHiAAAADgtGxWgtUfetcP8/SjkuaOeUQAAACAy7LZE3w2xsFaAAAAgGucDMEckgMAAEBBcDIEAwAAAAXByRCccLAWAAAA4JqsDsYZYxokTR/8Pmvtk/3/vWqYtwEAAAB5ZcQh2BjzQ0kNkl6VlOl/2Ep60oVxAQAAAK7JZiX4KmttvWsjAQAAAHIkmz3BLxpjCMEAAAAoeNmsBD+iviD8lqS4+voCW2ttgysjAwAAAFySzUrwDyR9XNKHJX1E0qL+/56RMebDxpg9xpjfGGPuPsPrbjHGWGNMYxZjAgAAALKWzUpwh7V2XTbFjTF+Sd+TdL2kA5K2GmPWWWtbT3ldmaQvSPqvbOoDAAAAo5FNCP61MWa1pJ+pbzuEpN+1SBvGPEm/sda+IUnGmMckNUtqPeV1KyXdJ+nOLMYDAAAAjEo22yEi6gu/H1LfNoiBLRFnUiNp/6CvD/Q/dpIxZq6kWmvthjMVMsYsN8ZsM8Zs6+joyGLYAAAAwLuNeCXYWvunTv/hxhifpH+Q9MkR/PkPSnpQkhobG63TYwEAAIB3ZHNZRljSpyVdLik88Li19lNneNtBSbWDvp7a/9iAMkmzJD1vjJGk8yWtM8YsttZuG+nYAAAAgGxksx3iUfWF1BskvaC+QNt1lvdslXSpMeYiY0xI0m2STh6us9Yet9ZOttZOt9ZOl/SSJAIwAAAAXJVNCP49a+0KST3W2oclLZT0+2d6g7U2JenPJT0jqU3Sv1trXzXG3GuMWTzaQQMAAABjkU13iGT/f98xxsyS9JakqrO9yVr7tKSnT3nsnmFeOz+L8QAAAACjkk0IftAYM0nSCvVtaSiVNGSYBQAAAPJZNt0h/rn/ty9Iutid4QAAAADuG/GeYGNMtTHmB8aY/9P/db0x5tPuDQ0AAABwRzYH436kvgNuU/q/fk3SXzo9IAAAAMBt2YTgydbaf5eUkU52fki7MioAAADARdmE4B5jzHmSrCQZY66SdNyVUQEAAAAuyqY7xBfV1xXiYmPMLyVVSrrVlVEBAAAALsomBLdKekpSr/puivup+vYFAwAAAAUlm+0Qj0iaKenrkr4r6TL1XaUMAAAAFJRsVoJnWWvrB3292RjT6vSAAAAAALdlsxL8cv9hOEmSMeb3JW1zfkgAAACAu866EmyMeUV9HSGCkn5ljNnX//WFkna7OzwAAADAeSPZDrHI9VEAAAAAOXTWEGytfTMXAwEAAAByJZs9wQAAAMA5gRAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8JzDeAwAAZC+eSKmjJyFJ6oqmFE2mFQn6VRbpm9YrS0IqCjHFAxgfyWRaHT1xZazUFRs0R4UD8hmpsqRIwaB/XMfIDAkABaQrmtSJWEprdxzUmq37tL8zetpraisiWnrlNDXPqVF5OKCySHAcRgrAi3rjKR2LJvvmqC1nmKPm9c1RkyJBFReNTxw11tpx+YPHorGx0W7btm28hwEAOdV+PKaNbe1auaFVsWTmrK8PB31asbBeTXXVqp4QzsEIAXjZkRN9c9S960c+R92zqG+Oqip3Z44yxmy31jYO+RwhGADyX/uJmO5+skWbd3dk/d4FMyu1akmDql36JgMAR07EdNcY5qj7ljS4EoTPFII5GAcAea79+OgDsCRt3t2hu59sUfuJmMMjA4CxBWCpb46668kWHcnxHEUIBoA81hVNamNb+6i/uQzYvLtDG1vb1R1LOjQyAOjbA+zYHNXWrt5EyqGRnR0hGADy2IlYSis3tDpSa+WGVh2P5u4bDIBz37FoUveud2aOund9q4715u4HdUIwAOSpeKKvC8RIDpiMRCyZ0bqdBxXP4UoLgHNXMpl2fo7acVDJZNqRemdDCAaAPNXRk9Carfscrbl6y76T/YUBYCw6euJas8WNOSruaM3hEIIBIE9ZqyF7bI7F/s6oCrApEIA8lHFpjsrkaI4iBANAnuqOubNtoTvOdggAY9fl0hzlVt1TEYIBIE9FXdoXF8vRfjsA57ZCn6MIwQCQpyJBvyt1wwF36gLwFtfmKJfqnooQDAB5qjQcKKi6ALylzKW5xK26pyIEA0CeMkaqrYg4WrO2IiJjHC0JwKN8Ls1RvhzNUYRgAMhTlSUhLb1ymqM1l82bpqqyIkdrAvCmypIiLZ3n/BxVWRZ2tOZwCMEAkKeKQgE1z6lROOjMVB0O+rR4do1C7AkG4IBg0O/8HDWnRkF/buIpIRgA8lh5OKAVC+sdqbViYb0mRNgPDMA5kyJB3bPImTnqnkX1mlQcdKTWSBCCASCPlUWCaqqr1oKZlWOqs2BmpZrqq1Uazt03GADnvuKigHNzVF21ikO5+0GdEAwAea56QlirljSM+pvMgpmVWrWkQdXludlnB8BbqsrDum+Mc9R9SxpUleM5ytgCvD+zsbHRbtu2bbyHAQA51X48po1t7Vq5oVWxZOasrw8HfVqxsF5N9dUEYACuO3Kib466d/3I56h7FtWrqa7atQBsjNlurW0c8jlC8PDS6Yw6exNKZay6YinFk2kVBf0qCwcU8BlVFIfkz9HmbQCQpO5YUsejKa3beVCrt+zT/s7oaa+prYho2bxpWjynRhPCAbZAAMiZ3kRKx3qTWrfj7HNU85waTSwOuroF4kwhmBMSQ0ikMursSWh9yyE9/OLeYf8Bb796uhY1TFFFSUihAGEYgPtKw0GVhoP61DXT9ZHZU2St1B1PKZZMKxz0q7QoIGOkqrIiukAAyLmAzye/MZo3vUILZlYpHPSrJ55SLJlROOhTSVFAsWRaPbGUfMYo4Bu//MRK8Ck6exLa1NauFWt3jXgpf2XzLF1XV62KkpArYwIAAMh3w2WocMCn0nBA3bGUYqlBj+cgQ7EdYoSOdsd19xOv6Lm29qzfe31dtVbdcoXOK6UJPQAA8JZ8zVBnCsF8ht+vsycx6n88SXqurV13P/GKjvUkHB4ZAABA/irUDEUIVt8e4E1t7aP+xxvwXFu7Nra1K5E6+zYKAACAQlfIGYoQrL6fYFas3eVIrRVrd6mT1WAAAOABhZyhPB+C0+mM1rccGtEhuJGIJfvqpdOsBgMAgHNXoWcoz4fgzt6EHn5xr6M1H35xrzp7WQ0GAADnrkLPUJ4PwamMHbIP8Fjs74wqlSm8rhsAAAAjVegZyvMhuCuWcqVut0t1AQAA8kGhZyjPh+B4Mu1OXTpEAACAc1ihZyjPh+CioDvXinKNMgAAOJcVeoZy/U8xxnzYGLPHGPMbY8zdQzz/RWNMqzGmxRizyRhzodtjGqwsHCiougAAAPmg0DOUqyHYGOOX9D1JfyipXtJSY0z9KS/7taRGa22DpMcl3e/mmE4V8BnVVkQcrVlbEVHAZxytCQAAkE8KPUO5vRI8T9JvrLVvWGsTkh6T1Dz4Bdbazdba3v4vX5I01eUxvUtFcUi3Xz3d0Zq3Xz1dFSXO338NAACQLwo9Q7kdgmsk7R/09YH+x4bzaUn/Z6gnjDHLjTHbjDHbOjo6HBug3+/TooYpCged+asIB/vq+VkJBgAA57BCz1B5c3rLGPMnkholPTDU89baB621jdbaxsrKSkf/7IqSkFY2z3Kk1srmWaooCTlSCwAAIJ8VcoZyOwQflFQ76Oup/Y+9izGmSdJXJC221sZdHtNpQgGfrqur1vV11WOqc31dtZrqqukMAQAAPKGQM5Tbf9JWSZcaYy4yxoQk3SZp3eAXGGPeI+n76gvAR1wez7AqSkJadcsVo/5HvL6uWqtuuUKTWAUGAAAeUqgZyljr7tV0xpgbJX1bkl/SD621XzPG3Ctpm7V2nTFmo6QrJB3uf8s+a+3iM9VsbGy027Ztc2W8nT0JbWpr14q1uxRLnr1Zczjo08rmWWqqqyYAAwAAz8rHDGWM2W6tbRzyObdDsBvcDMGSlEhl1NmT0PqWQ3r4xb3a3xnV5OKgpkyK6NCxqN7uTaq2IqJPXjNdC6+YooqSEFsgAACA5+VbhiIEj1I0ntTR3qQkqSuaUjSZViToV1mkr4nzecVBRYqCro8DAE6VTmfU2ZtQKmPVFUspnkyrKOhXWTiggM+oojgkv58fzgGMj3zJUGcKwVxrNoR3ehPqiae1dsdBrdm6T/s7o6e9prYioqVXTlPznBqVFPk1sZitEADcN9Qqy6lqKyK6/erpWtTAJ1UAcquQMhQrwad463hMm9ratXJD64j3s6xYWK/r6qp1/oSwK2MCAGn0++2uq6umdSMA1+VjhmI7xAi1n4jp7idbtHl39pdxLJhZqVVLGlRdThAG4Lyj3XHd/cQreq6tPev3Dpy8Pq+UmywBuCNfM9SZQjCfkfV76/jo//EkafPuDt39ZIvaT8QcHhkAr+vsSYw6AEvSc23tuvuJV3SsJ+HwyACgcDMUIVh9+1c2tbWP+h9vwObdHdrY2q7jvXyjAeCMRCqjTW3tow7AA55ra9fGtnYlUmf/iBIARqqQMxQhWFJPPK2VG1odqbVyQ6u642lHagFAZ09CK9bucqTWirW71MlqMAAHFXKG8nwIjsaTWrvj4Ig2cI9ELJnRup0HFY0nHakHwLvS6YzWtxxydH5a33JI6TSrwQDGrtAzlOdD8NHepNZs3edozdVb9p3sjQcAo9XZm9DDL+51tObDL+5VJ1u2ADig0DOU50OwtRqyh91Y7O+MqgCbbgDIM6mMdWV+SmWYoACMXaFnKM+H4O5Yyp26cXfqAvCOLrfmJ5fqAvCWQs9Qng/B0aQ7G7BjLtUF4B1xl+aROB0iADig0DOU50NwJOh3pW444E5dAN5R5NL8xDXKAJxQ6BnK8zNhaThQUHUBeEeZS/OIW3UBeEuhZyjPh2BjpNqKiKM1aysiMsbRkgA8KOAzrsxPAR8TFICxK/QM5fkQfF5xUEuvnOZozWXzpqmytMjRmgC8p6I4pNuvnu5ozduvnq6KEuYnAGNX6BnK8yE4UhRU85wahYPO/FWEgz4tnl3j2l4+AN7h9/u0qGGKo/PTooYp8rMSDMABhZ6hPB+CJamkyK8VC+sdqbViYb1KiwjAAJxRURLSyuZZjtRa2TxLFSUhR2oBgFTYGYoQLGlicUjX1VVrwczKMdVZMLNSTfXVmlDMNxkAzggFfLqurlrX11WPqc71ddVqqqumMwQARxVyhmI27Hf+hLBWLWkY9T/igpmVWrWkQdXlYYdHBsDrKkpCWnXLFaMOwtfXVWvVLVdoEqvAAFxQqBnK2AK837exsdFu27bNldpvHY9pU1u7Vm5oVSz5u4byAZ9RKOBTIpV515Wj4aBPKxbWq6m+mgAMwFWdPQltamvXirW73jU/lYb8mlQS0rGehLoTv2syHw76tLJ5lprqqgnAAFyXjxnKGLPdWts45HOE4NMd702oO57WKwfekYw0ubRI8VRGsWRa4aBfRQGf3u6Oy1qpoXaiSkN+tkAAyIlEKqPOnoS6okmFgj75jdGJWFKxZEbhoE/l4aDS1iqeTKs8ElJFSYgtEAByZiBD7dx/TD6fGTZDZTJWs6dNcj1DnSkE0zF9CAM/u+w92qt/2/Km9ndGT3tNbUVEfzzvQjVMnSguIAWQK72JlNIZq+fa2rVm675h56elV05T8//f3v3HRn3fdxx/vbHPd2cMJhDXTI5dqjadcVJgm6HdFmmloK0pErQolQZrO3WVOmnp1K37Y2gTnTYUjU77pWlru6ppadVCN2WssJGtHRlbt+YHOB2Q1JAJJSqENa4DwQZ8Z5/t9/64S+YZY87293v3+fr7fEiI892Hj9/wkV/35nufFp+xxwAAD6hJREFU7/e7oUMjY+NqauQ/6QBq69JrBX3tmdv3UB9655u1vvOuOlT2fzgSPM3tDuXfzuuH8resbdfqVrZDAIgP+QQgZCFmFNshqjQwXNSew2d14vzgnP8sJ8YBiBP5BCBkoWbUbE0wG8UqXhma/+JJ0onzg9pz+KwGhosRVwYg7cgnACFLakbRBEt6baR8xvV8F+91J84P6nj/gK6NjEVUGYC0uxZxPg2RTwAiNBRxRg0XapdRNMGSRkYntO9YfyRz7TvWr5ujE3ceCABVuBlxPt0gnwBE6EbEGXW9WLuMSn0TXBgt6cjpy1Vt4K5GsTSpo2cuqzBaimQ+AOlFPgEIWTGmjCrWKKNS3wRfGSnp0KmLkc558ORFXRnhTQbAwpBPAEL2akwZ9WqNMir1TbC7ZryG3UJculpQAi+6ASAw5BOAkCU9o1LfBN8ojscz72g88wJID/IJQMiSnlGpb4ILpXg2YBdjmhdAepBPAEKW9IxKfROczzTEMm+uMZ55AaQH+QQgZEnPqNQ3wS25xkTNCyA9yCcAIUt6RqW+CTaTOlfmI52zc2VeZpFOCSCFyCcAIUt6RqW+CV7VnNGujV2Rzrl7U5faWrKRzgkgfcgnACG7O+EZlfomOJ/NaMeGDuUy0fxT5DJLtH19h7Ix7ZMBkB7kE4CQ5RKeUalvgiWpOdugvdt6Iplr77YeLc3yBgMgGksjzqcW8glAhFoizqhludplFE2wpLuam7Rlbbs2d7ctaJ7N3W3a2tOuFc1NEVUGIO1WRJxPreQTgAi1RpxRy/O1yyia4IrVrTnt37lu3ou4ubtN+3euU/vyXMSVAUg78glAyJKaUeYJvH9mb2+v9/X1xTL3K0NFPXFuQPuO9atYmrzj+FxmifZu69HWnnbeYADEinwCELIQM8rMnnX33hlfowm+1bWRMd0cndDRM5d18OTFGe+L3bkyr92burR9Q4eWNjWwBQJATQyNjOnGHPKppamBLRAAama4MKbrxeozalm2IdYtEDTB81QYLenKSEnu5ftYF0sTymUa1JJtlJnU1pLlLGsAdXGnfLq7OaNcNlPvMgGkVHG0pFcD6KFma4K5bdAs8tmM7uFNBEBArhdKGi6O68jpyzp0qnyUpXGJqalxicbGJzU+6epcmdeujV3asaFDy3ONWpYnxwDUVi4BPRRHggEgIQaGijo+n/12a9vV3sqeYADpw5FgAEi4geGi9vz9WZ04P1j1nymWJvW733xex88PcHUIAJiGS6QBQOAGhorac3huDfBUJ84Pas/hsxoYLkZcGQAkF00wAATseqGk4+cG5t0Av+7E+UEd7x/QjWIposoAINloggEgYMPFce071h/JXPuO9WuoMB7JXACQdDTBABCo0bHyVSCqOQmuGsXSpI6euazRMRphAKAJBoBADd4c06FTFyOd8+DJixq8ORbpnACQRDTBABAod814t6WFuHS1oAReGRMAIkcTDACBulGMZ9vCjVG2QwAATTAABKpQmohl3mJM8wJAktAEA0Cg8pmGWObNNcYzLwAkCU0wAASqJRfPTT3jmhcAkoQmGAACZSZ1rsxHOmfnyrzMIp0SABKJJhgAAtW2tEm7NnZFOufuTV1607JspHMCQBLRBANAoLJNjdqxoUO5TDRRncss0fb1HWpiTzAA0AQDQMiW5xq1d1tPJHPt3daj1jz7gQFAogkGgKAty2e0dW27Nne3LWiezd1t2trTrpZcJqLKACDZaIIBIHDtrTnt37lu3o3w5u427d+5Tu3LcxFXBgDJRRMMAAnQvjyn/R9Yp0fef/8te4R33Ldan9/1Du24b/X/ez6XWaJH3n8/DTAAzMA8gTeR7+3t9b6+vti/T2G0pCsjJUnS9cK4CqUJ5TMNWlbZU7eqOaN8lo8WAdTOjWJJQ4Vxrcgv0dWRCZlJw4WSiqVJ5TJLtDyfkbu0srlB14qTas01sgUCQM2F0kOZ2bPu3jvTa5whMYPXRsY0MjqhI6cv69Cpi7p0tXDLmM6Vee3a2KUdGzrUnG3QXc1NdagUQNqUJssHLr7y1KWq8un18QBQC0nqoTgSPM0rQ0U9cW5A+471q1iavOP4XGaJ9m7r0Za17VrdyseNAOJDPgEIWYgZNduRYJrgKQaGi9pz+KxOnB+c85/lxBMAcSKfAIQs1IyarQnmxLiKV4bmv3iSdOL8oPYcPquB4WLElQFIO/IJQMiSmlE0wSrvX3ni3MC8F+91J84P6nj/gK6NjEVUGYC0I58AhCzJGUUTLGlkdEL7jvVHMte+Y/26OToRyVwAQD4BCFmSMyr1TXBhtKQjpy9XtYG7GsXSpI6euazCaCmS+QCkF/kEIGRJz6jYm2Aze6+ZvWBmF8xszwyvZ83sbyqvP2Nma+KuaaorIyUdOnUx0jkPnrz4xrXxAGC+yCcAIUt6RsXaBJtZg6S/kvSgpB5Ju8ysZ9qwj0l6zd3fJunPJH0mzpqmc9eM17BbiEtXC0rgRTcABIZ8AhCypGdU3EeCN0m64O4vuvuYpG9I2jFtzA5JX6k8fkzSFjOzmOt6w43ieDzzjsYzL4D0IJ8AhCzpGRV3E9wh6dKUr1+uPDfjGHcflzQkadX0iczs42bWZ2Z9g4MLOwNxqkIpng3YxZjmBZAe5BOAkCU9oxJzYpy7f8Hde929t62tLbJ585mGyOaaKtcYz7wA0oN8AhCypGdU3E3wZUmdU76+p/LcjGPMrFFSq6QrMdf1hpZcY6LmBZAe5BOAkCU9o+Jugk9JutfM3mJmTZJ+UdLRaWOOSvrlyuOHJP2r1/BezmZS58p8pHN2rsyrdruaASxW5BOAkCU9o2Jtgit7fD8h6VuSzkn6W3f/vpn9gZltrwx7VNIqM7sg6VOSbrmMWpxWNWe0a2NXpHPu3tSltpZspHMCSB/yCUDIkp5Rse8JdvfH3f3t7v5Wd3+k8tyn3f1o5XHR3T/o7m9z903u/mLcNU2Vz2a0Y0OHcplo/ilymSXavr5D2Zj2yQBID/IJQMiSnlGJOTEuTs3ZBu3dNv3yxfOzd1uPlmZ5gwEQDfIJQMiSnFE0wZLuam7SlrXt2ty9sKtObO5u09aedq1oboqoMgBpRz4BCFmSM4omuGJ1a077d66b9yJu7m7T/p3r1L48F3FlANKOfAIQsqRmlNXwQgyR6e3t9b6+vljmfmWoqCfODWjfsX4VS5N3HJ/LLNHebT3a2tPOGwyAWJFPAEIWYkaZ2bPu3jvjazTBt7o2MqaboxM6euayDp68OON9sTtX5rV7U5e2b+jQ0qYGPmIEUBPkE4CQhZZRNMHzVBgt6cpISe7l+1gXSxPKZRrUkm2UmdTWkuUsawB1QT4BCFkoGTVbE8xtg2aRz2Z0TzZT7zIA4BbkE4CQJSGjODEOAAAAqUMTDAAAgNShCQYAAEDq0AQDAAAgdWiCAQAAkDo0wQAAAEgdmmAAAACkDk0wAAAAUieRd4wzs0FJP6jDt75b0qt1+L6IF+u6eLG2ixdruzixrotXvdb2ze7eNtMLiWyC68XM+m536z0kF+u6eLG2ixdruzixrotXiGvLdggAAACkDk0wAAAAUocmeG6+UO8CEAvWdfFibRcv1nZxYl0Xr+DWlj3BAAAASB2OBAMAACB1aIIBAACQOjTB05jZl8zsR2b2/G1eNzP7CzO7YGZnzewna10j5q6Kdf2lyno+Z2ZPmtn6WteI+bnT2k4Zt9HMxs3soVrVhoWpZm3N7N1mdtrMvm9m/17L+jB/VWRyq5n9g5mdqaztR2tdI+bOzDrN7ISZ9VfW7ZMzjAmmj6IJvtUBSe+d5fUHJd1b+fVxSZ+rQU1YuAOafV1fkvRz7v4OSfsU4AZ+3NYBzb62MrMGSZ+R9O1aFITIHNAsa2tmKyR9VtJ2d79P0gdrVBcW7oBm/7l9WFK/u6+X9G5Jf2JmTTWoCwszLum33L1H0rskPWxmPdPGBNNH0QRP4+7fkXR1liE7JH3Vy56WtMLMfqw21WG+7rSu7v6ku79W+fJpSffUpDAsWBU/s5L065L+TtKP4q8IUalibXdLOuzuFyvjWd+EqGJtXdIyMzNJLZWx47WoDfPn7j909+9VHl+XdE5Sx7RhwfRRNMFz1yHp0pSvX9atC4xk+5ikf6p3EYiGmXVI+oD41GYxeruku8zs38zsWTP7SL0LQmT+UtJaSf8j6TlJn3T3yfqWhLkwszWSfkLSM9NeCqaPaqzHNwVCZWabVW6CH6h3LYjMn0v6bXefLB9UwiLSKOmnJG2RlJf0lJk97e7/Xd+yEIFfkHRa0nskvVXSv5jZf7j7cH3LQjXMrEXlT99+I+Q1owmeu8uSOqd8fU/lOSScma2T9EVJD7r7lXrXg8j0SvpGpQG+W9L7zGzc3b9Z37IQgZclXXH3m5Jumtl3JK2XRBOcfB+VtN/LNzO4YGYvSeqWdLK+ZeFOzCyjcgP8dXc/PMOQYPootkPM3VFJH6mc3fguSUPu/sN6F4WFMbMuSYclfZijSIuLu7/F3de4+xpJj0n6NRrgReOIpAfMrNHMmiW9U+U9iEi+iyof4ZeZtUv6cUkv1rUi3FFlD/ejks65+5/eZlgwfRRHgqcxs0Mqn4l6t5m9LOn3JGUkyd0/L+lxSe+TdEHSiMr/W0XgqljXT0taJemzlSOG4+7eW59qMRdVrC0S6k5r6+7nzOyfJZ2VNCnpi+4+66XyEIYqfm73STpgZs9JMpW3NL1ap3JRvZ+V9GFJz5nZ6cpzvyOpSwqvj+K2yQAAAEgdtkMAAAAgdWiCAQAAkDo0wQAAAEgdmmAAAACkDk0wAAAAUocmGAAAAKlDEwwACVK5wDzZDQALRJACQODMbI2ZvWBmX5X0vKS9ZnbKzM6a2e9PGXPezL5uZufM7LHKXdRkZvvNrL8y/o/r+XcBgFBwswwACJyZrVH5lrE/I2m5pIck/arKd9I6KumPVL7N7EuSHnD375rZlyT1S/qypCcldbu7m9kKd79W878EAASGI8EAkAw/cPenJf185dd/SfqepG5J91bGXHL371Yef03SA5KGJBUlPWpmO1W+TSkApF5jvQsAAFTlZuV3k/SH7v7XU1+sHC2e/tGeu/u4mW2StEXlI8ifkPSeeEsFgPBxJBgAkuVbkn7FzFokycw6zOxNlde6zOynK493S/rPyrhWd39c0m9KWl/zigEgQBwJBoAEcfdvm9laSU+ZmSTdkPQhSROSXpD08JT9wJ+T1CrpiJnlVD6K/Km6FA4AgeHEOABYBCrbIf7R3e+vcykAkAhshwAAAEDqcCQYAAAAqcORYAAAAKQOTTAAAABShyYYAAAAqUMTDAAAgNShCQYAAEDq/C9K0SWb973ssgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Tc1X3v/c+e+1g3WyANWEg4SYktYWRBhQtJ2+AimjQmFjFpi33akJKG1dW0Ty+nafyUmDa4yTKkp8mhJ+ek0OY0yVM7Vyd2bHoIAkNyUogtE+wYScaEEBsZxgoyus599vOHJKIY2Z7R/H5jjX/v11pe9ty+3ktaa89nfrP3dxtrrQAAAAAv8Z3vAQAAAADlRggGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeEzjfA5iPiy++2C5btux8DwMAAAAL2IEDB35mrW2Y67GKDMHLli1Tb2/v+R4GAAAAFjBjzE/P9BjLIQAAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOdU5GEZ5ZJKZzU0kZYkjSWySmRyigb9qolO/dgaqkIKh/gRAig/5icAKA0z5BzGEhmNJrPa+cygtu8/puPDiTc8p7k+qg3Xtqi7o0m1kYBqosHzMFIAXsP8BADOMNba8z2GonV2dlq3jk2OjyTV0x/Xlj19Smby53x+JOjT5rVt6mqNKVYXcWVMACAxPwFAsYwxB6y1nXM+Rgj+ufhoUpt2HNLegaGiX7tmRYO2rm9XrJY3GgDOY34CgOKdLQSzMW5afGT+bzCStHdgSJt2HFJ8NOnwyAB4HfMTADiPEKypNXY9/fF5v8HM2DswpJ6+uMaTGYdGBsDrmJ8AwB2EYEmjyay27OlzpNaWPX0aSWQdqQUAzE8A4A7Ph+BUemqXdSGbTAqRzOS16+CgUmneaACUhvkJANzjagg2xnzeGHPSGHP4DI8bY8z9xpjnjTGHjDHXuDmeuQxNpLV9/zFHa27bd+z1/p0AMF/MTwDgHrevBP+bpHed5fHfknTF9J87Jf0vl8fzBtZqzj6bpTg+nFAFNt0AsMAwPwGAe1wNwdba70oaPstTuiV90U55StJiY8ylbo7pdONJd74WHE/xdSOA0jA/AYB7zvea4CZJx2fdfmn6vjcwxtxpjOk1xvQODZW2S3q2RCbnWK3Zki7VBeAdzE8A4J7zHYILZq19wFrbaa3tbGhocKxuNOh3rNZskYA7dQF4B/MTALjnfIfgQUnNs25fNn1f2VRHAhVVF4B3MD8BgHvOdwjeJen9010irpM0Yq19uZwDMEZqro86WrO5PipjHC0JwIOYnwDAPW63SNsu6UlJy40xLxljPmiM+SNjzB9NP+UhSS9Iel7Sg5L+2M3xzKWhKqQN17Y4WnPj6hY11oQdrQnAe5ifAMA9rn4nZq3dcI7HraQPuzmGcwmHAuruaNL9jx11pCF9JOjTulVNCrHmDkCJmJ8AwD3neznEglAbCWjz2jZHam1e26a6KOvtADiD+QkA3EEIllQTDaqrNaY1K0rrOrFmRYO62mKqjgQdGhkAr2N+AgB3EIKnxeoi2rq+fd5vNGtWNGjr+nbFaiMOjwyA1zE/AYDzjK3A8zM7Ozttb2+vK7XjI0n19Me1ZU9fQWvwIkGfNq9tU1dbjDcYAK5ifgKA4hhjDlhrO+d8jBD8RuPJjEYSWe06OKht+47p+HDiDc9pro9q4+oWretoUl0kwFeMAMqC+QlAJUilsxqaSEuSxhJZJTI5RYN+1UzvS2ioCikccn+PAiF4nhKpjF6dzMhaaTyVVTKTUyToV3U4IGPK9wsEgNPNvMGcaX5qrAnTBQJA2Y0lMhpNZrXzmUFt33/mD+obrm1Rd0eTaiMB1UTd+6BOCC7SZCqrU4nM1C9w+kpLwGcUCviUzuaVzdupX+DqqV/gkmhQi8KEYQAA4F3zXrLVGlOszp0lW4TgIpwcTeqR/ri27C7iF3hzm25qjamRNXcAAMCD4qNJbdpxSHsHhop+rZubdwnBBTo5mtRHS/gF3ru+nSAMoCxyubyGJ9PK5q3GklllsjkFA37VRAIK+IzqF4Xk99MACID74iNJbfrm/PLTDLeC8NlCMDPktFICsCTtHRjSR3cc0snRpMMjA4CfS2fzemUkqUf7T+rAT09p8FRCQ2MpvTKa0tBYSoOnEjrw01Pq6Y/rlZGk0tnST5oDgDMZS2TU0x8vKQBLUzmqpy+u8WTGoZGdGwtZNbUG+BGnfoH9cd1ydZMWsWEOgMOGJ9LqOzGi6khQfa+M6htPv3TGTSe3XnOZYnVRPX9yTG1L61RfFToPIwZwoRtNZrVlT58jtbbs6dMNyxvL1tGGK8GSTiUy2rLbmV/gPbv7dGqyfJ9iAHjDq+MpHXllVEfiY7rtgSf1mZ6jcwZgSTo+nNBneo7qtgee1JH4mI68MqpXx1NlHjGAC10qPdUFopA9VIVIZvLadXBQqXTWkXrn4vkQnMnknP8FPjOoTCbnSD0AGJ5Ia/BUQv/83Re0ZXd/wfNVMpPXlt39+ufvvqDBUwmdmu7ZCQBOGJpIa/v+Y47W3Lbv2Ov9hd3m+RB8cjyl7fuc/wWe5KoLAAeks3mdHEvqH3ue0+NH5rdk6/EjQ/rHnucUH2ONMADnWKszfiM1X8eHEypXzwbPh+C8S7/AfOU13QCwAI1MpvX953827wA84/EjQ/r+8z/TyCRXgwE4YzzpzrKF8RTLIcqi0n+BAC5cuVxeo6msPvXwEUfqferhIxpNZZXLcTUYQOmSWXeWfqZcqns6z4fghEtrd5OsCQZQopFkRrsPnnB0z8KeQyc0UsYWRAAuXJGgO0ezh8t05LvnQ3Ak6M6PIBzw/I8WQIkm0zl9/emXHK35tQMvaTLNh3QApasOu9MO1q26p/N8UqspsBddwGe0KORXwGccrQsAZ5K31qU9C2xaAFC6nLVqro86WrO5Plq2OcrzJzoYM/UDP/2Nxu8z6mpt1LuvulRNi6NKZfNKZnKKBP0KB3wafC2hPYde1qMDJ5U7bRdcc31UprCsDABnVOiehYDPKBTwKZ3NK1vArtzxFFeCAZQum8vr1msu02d6jjpW833XXKZMmfYteD4EV0f82nBti+6btfFk3aqluuPty/T4c0P6h+8cOeuJTH98w1v0+e+/qF0HT7z+2MbVLaqNeP5HC6BEqTO0MyvlQ7okpdmzAMABmazVDW9t0Oee+LEjexciQZ/e8dYGZbJcCS6LmlBQ3R1Ldf9jR+U3Rve9b5VeGU3otgefOusvdOZEps898WN95J3L9c4rL9Fff/2gctZq3aqlqgqzHAJAaaJzbDop9UO65N5mFgDeUh0J6H89PJWDtuzuL7neR965XP/6f3+iv37XCgdGd26eD8F+v0+RoE8ff8+Var5okR747gtF9eOcOZHphuUNevD2Th1/dVLhoE/+AtcOA8CZVM3aHFIV8pf8IX1iekNcVZk2nQC4sPmM9MPjp/TOKy/RDcsbSupnfsPyBl1SG9UzL70oX5l2rHl+Y1wul9driax++fIlevB7xQXg2R4/MqQHv/eCfnnZEo0k6MMJoHR+n1FzfVRVIb8evL1TXztwfF7HJn/twHE9eHunqkJ+NddHC97gCwBn01gd1obVLfrrrx/UH73jLbpxReO86ty4olF/9I636K+/flAbV7eosSbi8Ejn5vnLASPJjPpPjCg+ltLegdJOZNo7MKRf/aWLFasNa8mioOqrwg6NEoAXNVSF9PvXLVPT4mjR31LNNvO6+963SidGErq4hrkJQOmCQb+6O5r0r997QZL0wV99k972SxfpUw8fKejDeiTo00feuVytl9S+fntdR5OC/vJco/X8leDJdE6XX1Tl6IlMl9dX0YcTQMmCQb+6Vy3VK6MJR45NfmU0oXXtS8v2BgPgwhfxG/37H16nzz3xY238lx/omWOv6csfuk5/0XXFGdunNddH9RddV+jLH7pOzxx7TRv/5Qf63BM/1r9/6DqF/eX7psrzV4IDfqNHB046eiLTYwMn9burmx2pB8C7MpmcEpmcox/Sb1wRUyaTU5DNcQBKlMvl9dNTCT33ytjrH9S/fehlPXT4Fd24olF/9ZvLtXRxVJlcXslMXpGgT0G/TydeS2j3oZd1/2PPv97B5vEjQ/qtlZfoisZqLVkUkr8MH9Y9H4KT6by+4fCJTF9/+iV1X93kaE0A3vNaMq2dzww6+iF918FBbVjdrIagsw3uAXjP8GRaDdVhbfz2U79wfy5v9Z2+uL7TF5dUeC/zv931rB75i3dM1S3DumDPfydmjFw5kYltJwBKlcpaV45NTpWpByeAC1vAb/TtgyfO+UE9m7eaTOfOeZhPMpPX7kMnFCjTkgjPh+BJl05OYk0wgFJxbDKAhWw8mdP2/cccrblt3zGNJ8uToTwfgs90IlOp0i7VBeAdYwUem1yscr3BALjwufFBvVw8H4IjQXd+BGGX6gLwDrc+TKezhGAApRt364N6yp26p/N8UquLunO8cV2EY5MBlGauY5OdwLHJAJyQKPADdcBntCjkL/ignmSmPB/UPd8dIuCfOpHJycvvzfXRsi3qBnDhqo64M0W7VReAt5zpg7rfZ9TV2qh3X3WpmhZHlcrmlczkFAn6FQ74NPhaQnsOvaxHB06+3iJttnJ9UPf8TFi/KKT3X79Mn9jT71jN269fxmlxAEoW8vtc+ZAe4rAMAA6omeMD9bpVS3XH25fp8eeG9A/fOTLn/NVcH9Wt11ymP77hLfr891/UroMnzlnXDZ6fCf1+n97TvtSxtcGRoE83ty+Vv8BL/gBwJhdNH5vspPdfv0wXVfMhHUDpfEavnwpXFfLrsxuv0armOt324FP6TM/RM36APz6c0Gd6juq2B5/SquY6fXbjNaoKTV39ba6PqlwRyvMhWJLqq0La0r3SkVpbuleqvirkSC0A3ub3+/SeVZc6/CH9Uj6kA3BEQ1VYG1a3qCrk14O3d+prB45ry+7+gg/4SWby2rK7X187cFwP3t6pqpBfG1e3lOWgDInlEJKkUMCnG1tjuqk1pkf64/Ouc1NrTF2tMYUCfLYA4IyLqsK6Z92V+utv/KjkWvd0X6mLWKoFwCHBoF+3dDTpTRdV6YHvvvD60cnFmnndP/z2Kq1qXqxgmZZskdam1VeFtPXWq9TV2jiv13e1NmrrrVdpCVeBATgoFPDphuWN856bZnS1NuqGtzbyIR2Ao4J+o+GJ9LwD8IzHjwxpeCKtUBkbCzAbzpLPW93x9jfpnnVXFvz1YyTo0z3rrtQdb3+T8uc4DhAAipXO5jWSTOue7pVnDMLnaj/U1dqoe7pXaiSZ5iAfAI7JZHIaSWS1ZU+fI/W27OnTSCKrDC3SyuvkaFIf3/Ws3t2+VJcujugrd16v7x0d0ld6j+v4cEIBn1Eo4FM6m1c2b9VcH9Xvdjbr165o0MmxpE5NZvR3u57V3667Uo215VnLAuDCNzKZVjpr9T8e7ddH37VCN66I6e8f6tOv/tLF52w/9P0f/0wfW9umzsuX6N7/6Ned73iLRibTamCOAuCAU8m09hw6UfAa4HNJZvLa86MTuu3aZjUGo47UPBtjK/AM+c7OTtvb2+tYvclUVg8dfllLF0f1wHdfUG0kqDvevkzJTE6Lq0KKBv0aT2aVyOQUDfpVHQkokcnp1ERa0aBfn//+ixpNZnTnr79ZL7+W0G9ddakWhfh8AaA0uVxeJ0aT2jsQ1y811uiB776g3/uVy9V6aa12PjOo7fuPnbH90IZrW9Td0aT+l0f1//3gp7rz19+s50+O6TeWx3RpXUR+2qQBKNHx4Ult/JenHG/juO0Pr1Nz/SJH6hljDlhrO+d6jKQm6bVERlWhgL74ny/qt3+5WeGAkYzRUz8Z1jeefumsPe5uWN6odasuVSpr9cX/fFHdHU16bTJDCAZQspFkRqlMXg3VEX1l3zHd9e5W7fvJsP5k+9NnvfJyfDih+x4+ovsfO6rNa9t017tb9T8eO6p3rbxUyWxeI8kMvcwBlMxa62gAlqbmL6vyXKD1fFLLZHI6PPiahsaT+sD0ut7+V0b1J9t/eM43mc/0HNXnnvixPvLO5Wq9pFYfePub9Fx8VD8afE0NVSEFOZoUQAmy+bwGXh7RaDKjv3rnCt2967D2DhS++SSZyeuubx3WmhUNumfdSn3v6EkNvJLX6mX1Lo4agFeMpbKu1B1Psia4LIYm0rq0LirJKBr069M9zxW1w3Gmx90Nyxv0F11v1SW1UV1aF9HQRFpLF7u/ngXAhSuVsbr8oipFg/6iA/BseweGdLcO6653tyqRzimVrbxlcAAWHrc22qaz5QnBnl8U5vdJL746oaYl0aID8GyPHxnSp3ueU9OSqH766oRYbgegVEG/0WQ6px/8ZHjeAXjG3oEh/eCFYSXSWQUDHJYBoHRRl77xjpTpm3TPR7VkJq+2S2v11AuvOtLj7qkXXlXr0lrHdkoC8K5kNq+li6OOth+6dPEipZifADigKuzOggK36p7O8yE4HPDJyuhTDx9xpN6nHj4iaw0N6QGUrDrs17cPOtt+aPehE6oKs18BQOn8vqlGAU5qro+W7Wh3zyc1a+V4j7uHfnTCkVoAvC2Rzmv7/mOO1ty275gSaa4EAyhdKOjT71+3zNGa779uWcEHlpXK8yE4m7f6+tMvOVrzawdeUjbHxhMApXOj/RAAOCGft7q5/VLHQmsk6NPa9kuVzZXng7rnQ3Cl97gDcOEaT7rUfsiltkYAvMVnjA4ef00fX3elI/U+vu5KHTz+mnwshygPt94MxlPlae8B4MKVyLgzjyRdqgvAW5KZvD75H/3qvLxeXa2NJdXqam1U5+X1+uR/9JetuYDnQ3CqwnvcAbhwudZ+KMDGOACly1urq5uX6Ps/HtKdv/7meQfhrtZG3fnrb9b3fzykjssWK285Ma4seJMBsFBVR9yZot2qC8BbxpNZ3fH2ZbrtwafkN0b3vW+V1ixv1JY9fQVdzY0Efdq8tk2LF4X0B/97v3LW6ssfuq5s36Z7/kowbzIAFipj3Gk/ZDgrA4ADwgGfHn9uSMlMXhPpnD687Wk99cKr+vKd1+uj71p+xvmruT6qj75rub585/V66oVX9eFtT2sinVMyk9cTzw0pVKYTxzyf1EJ+n5rro45ujmuuj9InGEDJqiN+bbi2Rfc51MdckjaublEtH9IBOCDg9+kbp3XY+vahl/XQ4Vd044pG/dVvLtfSxVFlcnmls3mFAj4F/T6deC2h3Yde1j985znl8r+49OHrT7+kW65uKs/4y/K/LGAXVYX0+9ct0ycf6nes5vuvX6aLqsKO1QPgTTWhoNZ1LNX9jx11ZKNIJOjTe1YtVVU46MDoAHidz5g5LyLm8lbf6YvrO31xSVLAN3WIWDqbVzZ/9vW+x4cT8pXp6yrPX670+31at8rZHnfvab+0bKedALhw+f0+RQNTa+acsHltmyIBH/MTAEcU2mErm7eaTOfOGYBnTJSpjaPnQ7Ak1VeFdU+3Mz3u7uleqXquAgNwSE00pHcsb9CaFQ0l1VmzokHvWN6g2mjIoZEB8Dq32i0my9RhixAsKRTwqav1Ekd63N3UGmM9MADHhAI+LQoF9PfdV807CK9Z0aC/775KVaEA8xMAx7jVCSvsL0+HLWbDafVVId17a3tJPe7uvbVdS6q4ygLAWfVVIUWCPv3tzVfqE7esLHj5ViTo0yduWam/vflKRYI+5icAjqr0Dlue3xg320XVYX3yvVfppraT+ttdzxbc4+7j667UmuWNuqiaZRAA3HFRdVjGGHU01+mRv3iHdh86oW37js25KaW5PqqNq1t0c/tSjSbSqosGCcAAHDfTxtHpDlvlauNICJ7l1fGUJtM5XVIb0VfuvF7fOzqkr/QeP+ObzO92NuvXrmjQa5NpTaZzenU8RRAG4Jr6qpCqwwENT6S1elm91qxoVCTo10Qqq2Qmr0jQp6pwQMlMTpPJrIJ+n66I1bIEAoArGqpCrrRxbKwpT5YiBE8bnkgrmcnr47uf1d6BIfl95g097lKZvMLBX+xx9+meo8rl7etr7k5NpLniAsA1oYBPl9RF1FAd0vBkWtm8VSbrk89IAZ9P4YBPVSG/rmisoQsEAFeFQwF1dzQ52sZx3aomhcp06i4hWFI6m9dkOqvNOw9r78CQpOJ73O0dGNLH9CNt6V6pqjCbTwC4y+/3qaEmMnWj7vyOBYB31UYC2ry2TXd963DJtTavbVNdtHzRlKQmaSyR1hNHhl4PwHMppMfd3oEhPXFkSKOJtBvDBAAAWFBqokF1tcYcaePY1RZTdaR8h/l4PgTncnklsnlt2dPnSL0te/qUzOaVy5X+tQAAAMBCF6uLaOv69pLaOG5d365YbcThkZ2d50PwWDqjXc+ccGQtiyQlM3l9++AJjaUzjtQDAABY6GK1EW19b/u82jiejwAssSZY48mctu8/5mjNbfuO6T2rlmpx1NGyAAAAC1asLqLujqW6YXmjdh0cPGcbx3UdTaqLBMq6BGI2z4dga+Vofztpqp4t7HhsAJiXVDqroYmp/QdjiawSmZyiQb9qpjeVNFSFFA55fooHUGbVkaCqI0Hd8bZles+qpbJWGk9llczkFAn6VR0OyBipsSZcti4QZ+L5GXIs6c6yhfFU1pW6ALxtLJHRaDKrnc8Mavv+M19l2XBti7o7mlQbCagmen6usgDwrnAooMsW+AfxhT26MnBqLfAb6+ZcqQvAu+IjSfX0x6c24J5l7jo+nNB9Dx/R/Y8d1ea1bepqjSlWV/71dgCwkLm+Mc4Y8y5jzBFjzPPGmE1zPN5ijNlrjPmhMeaQMebdbo9ptmjQnUvxkfN8iR/AhSU+mtSmbx7SXd86XPCH92Qmr7u+dVibvnlI8dGkyyMEgMriagg2xvglfVbSb0lqk7TBGNN22tM+Jumr1tqrJd0m6X+6OabTVUfcuRjuVl0A3hMfSWrTjkNn7WV+NnsHhrRpB0EYAGZz+0rwaknPW2tfsNamJX1ZUvdpz7GSaqf/XSfphMtj+gU+M7V+zknN9VH5PN98DoATxhIZ9fTH5x2AZ+wdGFJPX1zjLu2DAIBK43ZUa5J0fNbtl6bvm+3vJP2eMeYlSQ9J+tO5Chlj7jTG9BpjeoeGSnszmK2xOqwNq1scqydJG1e3qLGG9XcASjeazDp6mM9Igk27ACAtjMMyNkj6N2vtZZLeLelLxpg3jMta+4C1ttNa29nQUNrRfLMFg351dzQV3Nj5XCJBn9Z1NCnoXwg/WgCVLJWe6gLh5GE+uw4OKpUmCAOA20ltUFLzrNuXTd832wclfVWSrLVPSopIutjlcf2CJdGgNt98+lLl+bn75jYtWUQ7IgClG5pIu3KYz0x/YQDwMrdD8H5JVxhj3mSMCWlq49uu055zTNKNkmSMadVUCHZuvUMBFoUDuqk1Nu8zr2esWdGgrtaYFi3wvngAKgOH+QCAe1wNwdbarKQ/kfSwpH5NdYF41hhzjzFm3fTT/qukDxljDkraLukD1pZ/im6sjeje9e3zDsJrVjTo3vXtajwPZ18DuDCNJ91ZtsBhPgBQhsMyrLUPaWrD2+z77p717z5Jb3d7HIWYCcKP9Me1ZffZm9HPiAR9uvvmqWb0BGAATkq4dOgOh/kAACfGvUFjbUTvvbpJNyxv1K5nBrVt35mPJd24eupY0sWLgiyBAOA4DvMBAPeQ3OawKBTQolBAf/j2N6m7Y6nyVhpLZpXM5BQJ+lUTCchnpIaaCF0gALiGw3wAwD3MhGcRDPq1dPGi8z0MAB5lpg/zcXJzXHN9VMY4Vg4AKhaXMQFggWqoCmnDtW4c5hN2tCYAVCJCMAAsUOFQwPnDfFY1KcSaYAAgBAPAQlYbCWjzWmcO89m8tk11UVbBAYBECAaABa0mGlSXU4f5tMVUHeFESwCQ2Bh3VrlcXsOTaWXzVmPJrFKZnMLT3SECPqP6RSH56Q4BwGWxuoi2rm/Xph2HtHeg+AM116xo0Nb17YrRyxwAXkcInkM6m9fwRFq7D53QF5588Yx9gm+/fplubl+q+qqQQgHCMAD3xGoj2vredvX0x7VlT+GH+Wxe26authgBGABOY87DCcUl6+zstL29va7UHp5I69H+uDbvPFzwm8yW7pW6sTWm+qqQK2MCgBnjyYxGElntOnjuw3zWdTSpLhJgCQQAzzLGHLDWds75GCH4514dT2nTN36kR/rjRb/2ptaYtt56lS6qpvUQAPel0lkNTaRlrTSe+vlhPtXhgIyRGmvCdIEA4HlnC8Esh5g2PJGedwCWNPW6b0j3va9dS7giDMBl4VBAl3FcOwDMGwtZNbUG+NH++LwD8IxH+uPq6Y8rnT33MgoAAACcP4RgTV0F3rzzsCO1Nu88rOGJtCO1AAAA4A7Ph+BcLq/dh04UtAmuEMnMVL1cjqvBAAAAC5XnQ/DwZFpfePJFR2t+4ckXNTzJ1WAAAICFyvMhOJu3c7YYKsXx4YSy+crrugEAAOAVng/BY8msK3XHXaoLAACA0nk+BKcyOXfq0iECAABgwfJ8CA4H3WkmzzHKAAAAC5fnk1pNxJ1m827VBQAAQOk8H4IDPqPm+qijNZvrowr4jKM1AQAA4BzPh+D6RSHdfv0yR2vefv0y1VeFHa0JAAAA53g+BPv9Pt3cvlSRoDM/ikhwqp6fK8EAAAALludDsCTVV4W0pXulI7W2dK9UfVXIkVoAAABwByFYU50cbmyN6abWWEl1bmqNqas1RmcIAACABY60Nq2+KqStt1417yB8U2tMW2+9Sku4CgwAALDgEYJnuag6rHvf165Pva+94DXCkaBPn3pfu+57X7suqmYzHAAAQCWgme1p6qtC6u5o0q9d0aDdh07oC0++qOPDiTc8r7k+qg+8bZnWXrVU9VUhlkAAAABUEELwHEIBny6pi+gP3rZM3R1Llc1bjSezSmXzCgd8qo4EFPAZ1VeF6QIBAABQgQjBZ+H3+9RQE5m6UXd+xwIAAADnEILPIpPJaWgipbyVxpJZJTI5RYN+1UQC8hmpoSqsYNB/vmEawkcAACAASURBVIcJAACAIhGC5zCZyupUIqOdzwxq+75jZ1wTvGF1i7o7mrQkGtSiMD9KAACASmGsted7DEXr7Oy0vb29rtQ+OZpUT39c9+zuUzKTP+fzI0Gf7r65TV2tMTXWRlwZEwAAAIpnjDlgre2c6zEuX85ycjSpj+44pL0DQwW/JpnJ62++eViP9Md17/p2gjAAAEAFoK/XtPkE4Nn2DgzpozsO6eRo0uGRAQAAwGmEYE2tAe7pj887AM/YOzCknv64JtNZh0YGAAAANxCCJZ1KZHTP7j5Hat2zu0+nJjOO1AIAAIA7PB+CM5mcdj4zWNAmuEIkM3ntemZQmUzOkXoAAABwnudD8NBEStv3HXO05rZ9xzQ0kXK0JgAAAJzj+RCct5qzD3Apjg8nlK+8znMAAACe4fkQPJZ0ZxObW3UBAABQOs+H4IRLa3eTrAkGAABYsDwfgqNBvyt1Iy7VBQAAQOk8H4JrIu4cmudWXQAAAJTO8yHYZ6Tm+qijNZvro/IZR0sCAADAQZ4PwQ1VYW1Y3eJozY2rW9RQE3G0JgAAAJzj+RAcDPrV3dGkSNCZH0Uk6NO6jiYF/Z7/0QIAACxYJDVJS6JB3X1zmyO17r65TUsWBR2pBQAAAHcQgiUtCgfU1RrTmhUNJdVZs6JBXa0xLQqxKQ4AAGAhIwRPa6yN6N717fMOwmtWNOje9e1qrGUtMAAAwEJHCJ5lJgh/8r0r37BGOBLw6eLqkCKB0+4P+vTJ964kAAMAAFQQvrc/TWNtRLdc3aR3LG/Uy6cSqo4GFA36NZ7MKpHJKRr0qzoSUCKT01giq6YlUS1eFGQJBAAAwLRUOquhibQkaSzx8wxVE53KSw1VIYXPc3Yiuc0hl7OSlfa9OKzt+4/p+HDiDc9pro9qw7UtWrq4aer5AAAAHjeWyGg0mdXOZwbPmaG6O5pUGwmoJnp+GgoYaysvwHV2dtre3l5XasdHkurpj2vLnj4lM/lzPj8S9Gnz2jZ1tcYUq2M5BAAA8KaFmKGMMQestZ1zPkYI/rn4aFKbdhzS3oGhol+7ZkWDtq5vV4x1wQAAwGMWaoY6WwhmY9y0+Mj8f3mStHdgSJt2HFJ8NOnwyAAAABauSs1QhGBNrV/p6Y/P+5c3Y+/AkHr64hpPZhwaGQAAwMJVyRmKECxpNJnVlj19jtTasqdPI4msI7UAAAAWskrOUJ4Pwan01A7GQhZwFyKZyWvXwUGl0gRhAABw4ar0DOX5EDw0kdb2/cccrblt37HXe+MBAABciCo9Q3k+BFurOXvYleL4cEIV2HQDAACgYJWeoc4Zgo0xi8sxkPNlPOnOJffxFMshAADAhavSM1QhV4J/ZozpMcZ88EIMxIlMzpW6SZfqAgAALASVnqEKCcH9kj4j6Tck/dgYs9MYc5sxJuru0MojGvS7UjcScKcuAADAQlDpGaqQEJyx1u621v4XSZdJ+ndJvyPpJWPMNldHVwbVkUBF1QUAAFgIKj1DFRKCzcw/rLUJa+1XrbXrJb1Z0sOujaxMjJGa6529qN1cH5Ux534eAABApar0DFVICP73ue601o5Ya7/g8HjKrqEqpA3Xtjhac+PqFjXWhB2tCQAAsJBUeoY6Zwi21v5DIYWMMf9U+nDKLxwKqLujSZGgM93iIkGf1q1qUog1wQAA4AJW6RnKyT7Bb3ewVlnVRgLavLbNkVqb17apLsp6YAAAcOGr5Azl+cMyJKkmGlRXa0xrVjSUVGfNigZ1tcVUHQk6NDIAAICFq5IzFCF4Wqwuoq3r2+f9S1yzokFb17crVhtxeGQAAAALV6VmKCdDcMX3Q4jVRrT1ve36xC0rC17fEgn69IlbVhKAAQCAZ1VihjK2wAOajTFXWWt/dJbHP2Ct/bc57n+XpP8uyS/pX6y1W+d4zu9I+jtJVtJBa+3Gs42ls7PT9vb2FjTu+RhPZjSSyGrXwUFt23dsznOxm+uj2ri6Res6mlQXCbAEAgAAeN5Cy1DGmAPW2s45HysiBH9PUljSv0n6d2vtSAGv8Ut6TtJNkl6StF/SBmtt36znXCHpq5J+w1p7yhjTaK09eba6bofgGal0VkMTaVk7dY51MpNTJOhXdTggY6TGmjBdIACcFzPzkySNJbJKZHKKBv2qmd5U0lAVUjjEJl0A58dCyVBnC8EFz5DW2l+bDqx3SDpgjNkn6X9bax85y8tWS3reWvvC9EC+LKlbUt+s53xI0mettaem/5+zBuByCocCuow3EQALyFgio9FkVjufGdT2/We+yrLh2hZ1dzSpNhJQTZRvqgCUVyVkqKJGZ609aoz5mKReSfdLutoYYyT9jbV2xxwvaZJ0fNbtlyT9ymnPeaskGWO+r6klE39nrf0/pxcyxtwp6U5JamlxtjEzAFSC+EhSPf1xbdnTp2Qmf8bnHR9O6L6Hj+j+x45q89o2dbXGFKtjzwIAzFbwxjhjTLsx5tOS+iX9hqT3WGtbp//96RLGEJB0haQbJG2Q9KAxZvHpT7LWPmCt7bTWdjY0lNaGAwAqTXw0qU3fPKS7vnX4rAF4tmQmr7u+dVibvnlI8dGkyyMEgMpSTHeIf5L0tKRV1toPW2ufliRr7QlJHzvDawYlNc+6fdn0fbO9JGmXtTZjrf2JptYQX1HEuADgghYfSWrTjkPaOzA0r9fvHRjSph0EYQCYrZgQvFbSNmttQpKMMT5jzCJJstZ+6Qyv2S/pCmPMm4wxIUm3Sdp12nO+pamrwDLGXKyp5REvFDEuALhgjSUy6umPzzsAz9g7MKSevrjGkxmHRgYAla2YENwjKTrr9qLp+87IWpuV9CeSHtbUMoqvWmufNcbcY4xZN/20hyW9aozpk7RX0kesta8WMS4AuGCNJrPasqfv3E8swJY9fRpJZB2pBQCVrpiNcRFr7fjMDWvt+MyV4LOx1j4k6aHT7rt71r+tpL+c/gMAmJZKT3WBKHQN8LkkM3ntOjioO962jPZpADyvmCvBE8aYa2ZuGGN+WdIbe/MAABwxNJHW9v3HHK25bd+x1/sLA4CXFXMp4M8lfc0Yc0JTRyRfIul3XRkVAEDWas4+wKU4PpxQgWckAcAFrZjDMvYbY1ZIWj591xFrLTssAMAl40l31u+Op1gXDADFLgq7VtKy6dddY4yRtfaLjo8KAKBEJudK3aRLdQGgkhQcgo0xX5L0FknPSJqZQa0kQjAAuCAa9LtSNxJwpy4AVJJirgR3Smqb7uYAAHBZdcSdDg5u1QWASlJMd4jDmtoMBwAoA2Ok5vrouZ9YhOb6qIxxtCQAVKRiQvDFkvqMMQ8bY3bN/HFrYADgdQ1VIW24tsXRmhtXt6ixJuxoTQCoRMV8J/Z3bg0CAPBG4VBA3R1Nuv+xo44cmBEJ+rRuVZNCrAkGgMKvBFtrn5D0oqTg9L/3S3rapXEBACTVRgLavLbNkVqb17apLsp6YACQigjBxpgPSfq6pH+evqtJ0rfcGBQAYEpNNKiu1pjWrGgoqc6aFQ3qaoupOhJ0aGQAUNmKWRP8YUlvlzQqSdbao5Ia3RgUAODnYnURbV3fPu8gvGZFg7aub1esNuLwyACgchUTglPW2tcPnDfGBDTVJxgA4LJYbURb39uuT9yyUpFgYVN3JOjTJ25ZSQAGgDkUszjsCWPM30iKGmNukvTHkr7tzrAAAKeL1UXU3bFUNyxv1K6Dg9q275iODyfe8Lzm+qg2rm7Ruo4m1UUCLIEAgDmYQs++MMb4JH1Q0m9KMpIettY+6OLYzqizs9P29vaej/8aABaEVDqroYm0rJXGU1klMzlFgn5VhwMyRmqsCdMFAoDnGWMOWGs753qsmCvBf2qt/e+SXg++xpg/m74PAFBG4VBAl4Xo9AAA81XMmuDb57jvAw6NAwAAACibc15GMMZskLRR0ptOOyGuRtKwWwMDAAAA3FLId2n/KellTR2b/N9m3T8m6ZAbgwIAAADcdM4QbK39qaSfSrre/eEAAAAA7ivmxLj1xpijxpgRY8yoMWbMGDPq5uAAAAAANxSztfg+Se+x1va7NRgAAACgHIrpDhEnAAMAAOBCUMyV4F5jzFckfUtSauZOa+0Ox0cFAAAAuKiYEFwraVJTJ8bNsJIIwQAAAKgoBYdga+0fuDkQAAAAoFyK6Q7xVmPMo8aYw9O3240xH3NvaAAAAIA7itkY96Ck/1dSRpKstYck3ebGoAAAAAA3FROCF1lr9512X9bJwQAAAADlUEwI/pkx5i2a2gwnY8z7NHWcMgAAAFBRiukO8WFJD0haYYwZlPQTSb/nyqgAAAAAFxXTHeIFSV3GmCpJPmvtmHvDAgAAANxTTHeIPzPGzPQK/rQx5mljzG+e63UAAADAQlPMmuA7rLWjmjos4yJJvy9pqyujAgAAAFxUTAg203+/W9IXrbXPzroPAAAAqBjFhOADxpjvaCoEP2yMqZGUd2dYAAAAgHuK6Q7xQUkdkl6w1k4aYy6SxFHKAAAAqDjnDMHGmBXW2gFNBWBJerMxrIIAAABA5SrkSvBfSrpT0n+b4zEr6TccHREAAADgsnOGYGvtndN/r3F/OAAAAID7iukT/NvTm+FkjPmYMWaHMeZq94YGAAAAuKOY7hCbrbVjxphfldQl6V8lfc6dYQEAAADuKSYE56b/XivpAWvtHkkh54cEAAAAuKuYEDxojPlnSb8r6SFjTLjI1wMAAAALQjEh9nckPSzpndba1yTVS/qIK6MCAAAAXFRwCLbWTkraKWnCGNMiKShpwK2BAQAAAG4p+MQ4Y8yfSvpbSXH9/LhkK6ndhXEBAAAArinm2OQ/k7TcWvuqW4MBAAAAyqGYNcHHJY24NRAAAACgXIq5EvyCpMeNMXskpWbutNb+o+OjAgAAAFxUTAg+Nv0nJPoDAwAAoIIVHIKttR+XJGNM9fTtcbcGBQAAALip4DXBxpiVxpgfSnpW0rPGmAPGmCvdGxoAAADgjmI2xj0g6S+ttZdbay+X9F8lPejOsAAAAAD3FBOCq6y1e2duWGsfl1Tl+IgAAAAAlxXVHcIYs1nSl6Zv/56mOkYAAAAAFaWYK8F3SGqQtEPSNyRdPH0fAAAAUFGK6Q5xStL/4+JYAAAAgLIopjvEI8aYxbNuLzHGPOzOsAAAAAD3FLMc4mJr7WszN6avDDc6PyQAAADAXcWE4LwxpmXmhjHmcknW+SEBAAAA7iqmO8Rdkv6vMeYJSUbSr0m605VRAQAAAC4qZmPc/zHGXCPpuum7/txa+7OZx40xV1prn3V6gAAAAIDTirkSrOnQu/sMD39J0jUljwgAAABwWTFrgs/FOFgLAAAAcI2TIZhNcgAAAKgIToZgAAAAoCI4GYLTDtYCAAAAXFPUxjhjTLukZbNfZ63dMf33dWd4GQAAALCgFByCjTGfl9Qu6VlJ+em7raQdLowLAAAAcE0xV4Kvs9a2uTYSAAAAoEyKWRP8pDGGEAwAAICKV8yV4C9qKgi/Iimlqb7A1lrb7srIAAAAAJcUcyX4XyX9vqR3SXqPpJun/z4rY8y7jDFHjDHPG2M2neV5txpjrDGms4gxAQAAAEUr5krwkLV2VzHFjTF+SZ+VdJOklyTtN8bsstb2nfa8Gkl/JukHxdQHAAAA5qOYEPxDY8w2Sd/W1HIIST9vkXYGqyU9b619QZKMMV+W1C2p77TnbZF0r6SPFDEeAAAAYF6KWQ4R1VT4/U1NLYOYWRJxNk2Sjs+6/dL0fa8zxlwjqdlau+dshYwxdxpjeo0xvUNDQ0UMGwAAAPhFBV8Jttb+gdP/uTHGJ+kfJX2ggP//AUkPSFJnZ6d1eiwAAADwjmIOy4hI+qCkKyVFZu631t5xlpcNSmqedfuy6ftm1EhaKelxY4wkXSJplzFmnbW2t9CxAQAAYOFIpbMamkhLksYSWSUyOUWDftVEp6JnQ1VI4VBRBxc7rpj//UuSBiS9U9I9kv6LpP5zvGa/pCuMMW/SVPi9TdLGmQettSOSLp65bYx5XNJfEYABAAAqz1gio9FkVjufGdT2/cd0fDjxhuc010e14doWdXc0qTYSUE00eB5GWlwI/iVr7W8bY7qttV+Y3iT3vbO9wFqbNcb8iaSHJfklfd5a+6wx5h5JvcV2mwAAAMDCFB9Jqqc/ri17+pTM5M/4vOPDCd338BHd/9hRbV7bpq7WmGJ1kTM+3y3FhODM9N+vGWNWSnpFUuO5XmStfUjSQ6fdd/cZnntDEeMBAADAAhAfTWrTNw9p70DhzQuSmbzu+tZh9QzEtXV9u2K15Q3CxXSHeMAYs0TSZkm7NNXm7D5XRgUAAICKEB9JatOO4gLwbHsHhrRpxyHFR5MOj+zsiukO8S/T/3xC0pvdGQ4AAAAqxVgio57++LwD8Iy9A0Pq6Yuru2OpqiPlWSNc8JVgY0zMGPOvxpj/mL7dZoz5oHtDAwAAwEI2msxqy57Tz0Cbny17+jSSyDpSqxDFLIf4N01tcFs6ffs5SX/u9IAAAACw8KXSU10gzrYJrhjJTF67Dg4qlS5PEC4mBF9srf2qpLw01flBUs6VUQEAAGBBG5pIa/v+Y47W3Lbv2Ov9hd1WTAieMMZcJMlKkjHmOkkjrowKAAAAC5q1mrMPcCmODydky3QucDEt0v5SU10h3myM+b6kBknvc2VUAAAAWNDGk+4sWxhPlWc5RDEhuE/SNyVNShqT9C1NrQsGAACAxyQy7qyKTbpU93TFLIf4oqQVkj4p6Z8kvVVTRykDAADAY6JBvyt1IwF36p6umCvBK621bbNu7zXGONMTAwAAABWlOlJMjDz/dU9XzJXgp6c3w0mSjDG/IqnX+SEBAABgoTNGaq6POlqzuT4qYxwteUbnDMHGmB8ZYw5J+mVJ/2mMedEY8xNJT0rqdHuAAAAAWHgaqkLacG2LozU3rm5RY03Y0ZpnUsj15ptdHwUAAAAqSjgUUHdHk+5/7KgjB2ZEgj6tW9WkUJnWBJ/zSrC19qdn+1OOQQIAAGDhqY0EtHlt27mfWIDNa9tUFy3PemCpuDXBAAAAwOtqokF1tca0ZkVDSXXWrGhQV1tM1ZGgQyM7N0IwAAAA5i1WF9HW9e3zDsJrVjRo6/p2xWojDo/s7AjBAAAAKEmsNqKt723XJ25ZqUiwsHgZCfr0iVtWnpcALBXXJxgAAACYU6wuou6OpbpheaN2HRzUtn3HdHw48YbnNddHtXF1i9Z1NKkuEijrEojZCMEAAABwRHUkqOpIUHe8bZnes2qprJXGU1klMzlFgn5VhwMyRmqsCZetC8SZEIIBAADgqHAooMtCCztmsiYYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5gfM9gIUsk8lpaCKlvJXGklklMjlFg37VRALyGamhKqxg0H++hwkAAIAiEYLnMJnK6lQio53PDGr7vmM6Ppx4w3Oa66PasLpF3R1NWhINalGYHyUAAEClMNba8z2GonV2dtre3l5Xap8cTaqnP657dvcpmcmf8/mRoE9339ymrtaYGmsjrowJAAAAxTPGHLDWds71GJcvZzk5mtRHdxzS3oGhgl+TzOT1N988rEf647p3fTtBGAAAoAKwMW7afALwbHsHhvTRHYd0cjTp8MgAAADgNEKwptYA9/TH5x2AZ+wdGFJPf1yT6axDIwMAAIAbCMGSTiUyumd3nyO17tndp1OTGUdqAQAAwB2eD8GZTE47nxksaBNcIZKZvHY9M6hMJudIPQAAADjP8yF4aCKl7fuOOVpz275jGppIOVoTAAAAzvF8CM5bzdkHuBTHhxPKV17nOQAAAM/wfAgeS7qzic2tugAAACid50NwwqW1u0nWBAMAACxYng/B0aDflboRl+oCAACgdJ4PwTURdw7Nc6suAAAASuf5EOwzUnN91NGazfVR+YyjJQEAAOAgz4fghqqwNqxucbTmxtUtaqiJOFoTAAAAzvF8CA4G/eruaFIk6MyPIhL0aV1Hk4J+z/9oAQAAFiySmqQl0aDuvrnNkVp339ymJYuCjtQCAACAOwjBkhaFA+pqjWnNioaS6qxZ0aCu1pgWhdgUBwAAsJARgqc11kZ07/r2eQfhNSsadO/6djXWshYYAABgoSMEzzIThD/53pVvWCMc8BktCvkVOK3tQyTo0yffu5IADAAAUEH43v40jbUR3XJ1k96xvFEHj52Sz2d0cXVYqWxeyUxOkaBf4YBPPxtPyeatVrUs0eJFQZZAACirVDqroYm0JGkskVUik1M06FdNdGouaqgKKcy8BOA8qYQ5ihlyDgGfT35jNDiS1BeffFHHhxNveE5zfVTvv36ZrjZGAR8X1AGUx1gio9FkVjufGdT2/cfOOD9tuLZF3R1Nqo0EVBNlsy6A8qikOcpYa8/Lf1yKzs5O29vb60rt4Ym0Hu2Pa/POw0pm8ud8fiTo05bulbqxNab6qpArYwIASYqPJNXTH9eWPX0Fz0+b17apqzWmWB3LtQC4ayHOUcaYA9bazjkfIwT/3KvjKW36xo/0SH+86Nfe1BrT1luv0kXVYcfHBQDx0aQ27TikvQNDRb92zYoGbV3frhj7FgC4ZKHOUWcLwXyPP214Ij3vACxJj/THtekbP9Kp6fUvAOCU+Mj831wkae/AkDbtOKT4aNLhkQFA5c5RhGBJ6Wxej/bH5x2AZzzSH1dPf1zp7Lm/AgCAQowlMurpj8/7zWXG3oEh9fTFNZ7MODQyAKjsOYoQrKmrwJt3Hnak1uadhzXM1WAADhlNZrVlT58jtbbs6dNIIutILQCQKnuO8nwIzuXy2n3oREELuAuRzEzVy+W4GgygNKn01A5rJ+enXQcHlUoThAGUrtLnKM+H4OHJtL7w5IuO1vzCky9qeJKrwQBKMzSR1vb9xxytuW3fsdd7dwJAKSp9jvJ8CM7m7Zw97EpxfDihbL7yum4AWFislSvzUwU2BQKwAFX6HOX5EDyWdOeS+7hLdQF4h1vzyHiK+QlA6Sp9jvJ8CE5lcu7UpUMEgBIlXJqfki7VBeAtlT5HeT4Eh4N+V+qGAp7/0QIoUdSl+SkScKcuAG+p9DnK9aRmjHmXMeaIMeZ5Y8ymOR7/S2NMnzHmkDHmUWPM5W6PabaaSKCi6gLwjmqX5hG36gLwlkqfo1wNwcYYv6TPSvotSW2SNhhj2k572g8ldVpr2yV9XdJ9bo7pdAGfUXN91NGazfVRBXzG0ZoAvMcYuTI/GaYnAA6o9DnK7SvBqyU9b619wVqblvRlSd2zn2Ct3WutnZy++ZSky1we0y+oXxTS7dcvc7Tm7dcvU31V2NGaALynoSqkDde2OFpz4+oWNdYwPwEoXaXPUW6H4CZJx2fdfmn6vjP5oKT/mOsBY8ydxpheY0zv0FBpR/PN5vf7dHP7UkWCzvwoIsGpen6uBAMoUTgUUHdHk6Pz07pVTQqxJhiAAyp9jlowu7eMMb8nqVPSp+Z63Fr7gLW201rb2dDQ4Oj/XV8V0pbulY7U2tK9UvVVIUdqAUBtJKDNa09fRTY/m9e2qS7KemAAzqnkOcrtEDwoqXnW7cum7/sFxpguSXdJWmetTbk8pjcIBXy6sTWmm1pjJdW5qTWmrtYYnSEAOKYmGlRXa0xrVpT24X/NigZ1tcVUHQk6NDIAqOw5yu20tl/SFcaYNxljQpJuk7Rr9hOMMVdL+mdNBeCTLo/njOqrQtp661XzDsI3tca09dartISrwAAcFquLaOv69nm/yaxZ0aCt69sVq404PDIAqNw5yliXz6Yzxrxb0mck+SV93lr7CWPMPZJ6rbW7jDE9kq6S9PL0S45Za9edrWZnZ6ft7e11ZbzDE2k92h/X5p2Hlcyc+8CLSNCnLd0r1dUaIwADcFV8JKme/ri27OkreH7avLZNXW0xAjAA1y3EOcoYc8Ba2znnY26HYDe4GYIlKZ3Na3gird2HTugLT76o48MJBXxGoYBP6Wxe2bxVc31UH3jbMq29aqnqq0IsgQBQFuPJjEYSWe06OKht+46dcX7auLpF6zqaVBcJsAQCQNkstDmKEDxPyVRGP5vMSJLGElklMjlFg37VTC/abqgKKRxikwmA8kukMnr1LPPTxYuCioQJvwDOj3PNURctCipahjnqbCGYBDeHsURGo8msdj4zqO37pz7FnK65PqoN17aou6NJtZGAaqK82QBwH/MTgIXs1GRak6lcwXPUorBfSxadn+WkXAk+zbzXs7TGFKtjzR0A9zA/AVjIXhlJ6tF5zFE3tsZ0iUtzFMshChQfTWrTjkPaO1D8YRzsvgbgJuYnAAvZQp2jzhaC2c01LT4y/1+eJO0dGNKmHYcUH006PDIAXsf8BGAhe6VC5yhCsKbW2PX0x+f9y5uxd2BIPX1xjSczDo0MgNcxPwFYyE5NTrWWdWqOem0y7dDIzo0QLGk0mdWWPX2O1Nqyp08jiawjtQCA+QnAQjaZyjk6R02kco7UKoTnQ3AqPbXLupAF3IVIZvLadXBQqTRvNABKw/wEYCFLpDKuzFGJVHm+sfJ8CB6aSGv7/mOO1ty275iGJsp3OR/AhYn5CcBC9upkxpU5aqa/sNs8H4Kt1Zw97EpxfDihCmy6AWCBYX4CsJBV+hzl+RA8nnTna8HxFF83AigN8xOAhazS5yjPh+BExp0F2EmX6gLwDuYnAAtZpc9Rng/B0aDflbqRgDt1AXgH8xOAhazS5yjPh+DqSKCi6gLwDuYnAAtZpc9Rng/Bxkj/f3t3H1vXfddx/PO17/W913HjPNRzNtdupq3DMZAEcEIHlZiXiK21SETUSSTQwZg0JDo0GH9QgTwEESJDPAnBNqZ1hI0lHj/RZAAAD49JREFUA5WIBFLYaAgM1mWJO/Kw2SmKWjVp1nhZ0rhL7Otc21/+uLed5Th+POfec/x7v6Qo1z6//PyNf/L3fHzueWhfU4h0zvY1BZlFOiWAANGfACRZ2ntU8CG4ZUWDdm/piHTOPVs79KZ7cpHOCSA89CcASba2MRtLj2ppqk6PCj4E5xoy2rm5TflsNN+KfLZOOza1qYFz7gAsEf0JQJIVctlYelQupnONpws+BEvSynxGfb1dkczV19ul5gLn2wGIBv0JQJI15uoj7VErctX7JZ0QLOmeQlbbN7Sqp7NlSfP0dLZoe1ermvLZiCoDEDr6E4AkW93YoG0R9qhVjQ0RVTY3QnBFa3Ne+3ZtXPQi9nS2aN+ujWpdmY+4MgChoz8BSLJ1Ke1R5il8fmZ3d7f39/fHMvfQcFHPDA5p79EBFUuTc47PZ+vU19ul7V2t7GAAxOpu/SmfqVNTPqObxXEVx6d8nv4EoIquDBd1LGEZysyec/fuGbcRgu90s1jS8Oi4jp77tj5/4qUZn4vdvqagxx68X70b36LmfIa3GAFUxev96ZXhUTXlMypk63WzOK7R0oQK2Xo15TMaLU3oZnFcb15VoD8BqKobI7d1a2xCR85c1oGTF++aofZs7dCOzW1a0VAf6ykQs4VgrpCYQWmy/ItBW3NBv/PIBq1tyqk0MaliaVL5bJ2y9XW6dnNME5Mu+ffHA0DcXu83J1+8roOn7r6D2b2lQzs3t9GfAFTVqsYGrWqUfumd9+tnNr1F7tLNsXEVSxPKZ+vVlMvITGppylXtLhB3w5Hgae52KD9TZ2rI1On2+KTGp+xUXj+Uv21Dq9Y183YjgPgs9q1G+hOAUHE6xDwNvVbUE4fO6vj5qwv+t1x4AiBO9CcAWLjZQjB3h6i4Mrz4HYwkHT9/VU8cOquh14oRVwYgdPQnAIgeIVjSqyO3dWxwaNE7mNcdP39VzwwM6cbI7YgqAxA6+hMAxIMQLGlkbEJ7jw5EMtfeowO6NTYRyVwAQH8CgHgEH4JHx0o6fPryvC4ymY9iaVJHzlzW6FgpkvkAhIv+BADxCT4EXxsp6eCpi5HOeeDkRV0bYScDYGnoTwAQn+BDsLtmvM/mUly6PqoU3nQDQMLQnwAgPsGH4JvF8XjmHYtnXgDhoD8BQHyCD8GjpXguEinGNC+AcNCfACA+wYfgQkyP7MtnavsoQADpR38CgPgEH4Kb8plUzQsgHPQnAIhP8CHYTGpfU4h0zvY1BZlFOiWAANGfACA+wYfgtY1Z7d7SEemce7Z2qKUpF+mcAMJDfwKA+AQfggu5rHZublM+G823Ip+t045NbcrFdC4fgHDQnwAgPsGHYElqzNWrr7crkrn6eru0IscOBkA06E8AEA9CsKTVjQ3atqFVPZ0tS5qnp7NF27tataqxIaLKAISO/gQA8SAEV6xrzmvfro2L3tH0dLZo366Nal2Zj7gyAKGjPwFA9MxT+PzM7u5u7+/vj2XuK8NFHRsc0t6jAyqWJuccn8/Wqa+3S9u7WtnBAIgV/QkAFsbMnnP37hm3EYLvdGPktm6NTejImcs6cPKiLl0fvWNM+5qC9mzt0I7NbVrRUM9bjACqgv4EAPNHCF6k0bGSro2U5C7dHBtXsTShfLZeTbmMzKSWphxXWQOoCfoTAMxtthDMY4NmUchldV8uW+syAOAO9CcAWBoujAMAAEBwCMEAAAAIDiEYAAAAwSEEAwAAIDiEYAAAAASHEAwAAIDgEIIBAAAQHEIwAAAAgkMIBgAAQHAIwQAAAAgOIRgAAADBIQQDAAAgOIRgAAAABIcQDAAAgOAQggEAABAcQjAAAACCQwgGAABAcAjBAAAACA4hGAAAAMHJ1LqAJBsdK+naSEmS9L3RcY2WJlTI1uueQvnbtrYxq0IuW8sSAQSK/gQgydLQowjBM3h15LZGxiZ0+PRlHTx1UZeuj94xpn1NQbu3dGjn5jY15uq1urGhBpUCCA39CUCSpalHmbvX5AsvRXd3t/f398cy95Xhoo4NDmnv0QEVS5Nzjs9n69TX26VtG1q1rjkfS00AINGfACRbEnuUmT3n7t0zbiMEf9/Qa0U9ceisjp+/uuB/29PZon27Nqp1JTsaANGjPwFIsqT2qNlCMBfGVVwZXvziSdLx81f1xKGzGnqtGHFlAEJHfwKQZGntUYRglc9fOTY4tOjFe93x81f1zMCQbozcjqgyAKGjPwFIsjT3KEKwpJGxCe09OhDJXHuPDujW2EQkcwEA/QlAkqW5RwUfgkfHSjp8+vK8TuCej2JpUkfOXNboWCmS+QCEi/4EIMnS3qNiD8Fm9l4ze97MLpjZEzNsz5nZ31e2f93M1sdd01TXRko6eOpipHMeOHnxjXvjAcBi0Z8AJFnae1SsIdjM6iX9laSHJXVJ2m1mXdOGfVDSq+7+dkl/JunjcdY0nbtmvIfdUly6PqoU3nQDQMLQnwAkWdp7VNxHgrdKuuDuL7j7bUlflLRz2pidkv628vopSdvMzGKu6w03i+PxzDsWz7wAwkF/ApBkae9RcYfgNkmXpnz8cuVzM45x93FJw5LWTp/IzD5kZv1m1n/16tKuQJxqtBTPCdjFmOYFEA76E4AkS3uPSs2Fce7+aXfvdvfulpaWyOYtZOsjm2uqfCaeeQGEg/4EIMnS3qPiDsGXJbVP+fi+yudmHGNmGUnNkq7FXNcbmvKZVM0LIBz0JwBJlvYeFXcIPiXpATN7q5k1SPo5SUemjTki6Rcrrx+V9B9exWc5m0ntawqRztm+pqDqndUMYLmiPwFIsrT3qFhDcOUc3w9L+pKkQUn/4O7fMrPfN7MdlWFPSlprZhckfVTSHbdRi9Paxqx2b+mIdM49WzvU0pSLdE4A4aE/AUiytPeo2M8Jdven3f0d7v42d/+Dyuc+5u5HKq+L7v4+d3+7u2919xfirmmqQi6rnZvblM9G863IZ+u0Y1ObcjGdJwMgHPQnAEmW9h6Vmgvj4tSYq1df7/TbFy9OX2+XVuTYwQCIBv0JQJKluUcRgiWtbmzQtg2t6ulc2l0nejpbtL2rVasaGyKqDEDo6E8AkizNPYoQXLGuOa99uzYuehF7Olu0b9dGta7MR1wZgNDRnwAkWVp7lFXxRgyR6e7u9v7+/ljmvjJc1LHBIe09OqBiaXLO8flsnfp6u7S9q5UdDIBY0Z8AJFkSe5SZPefu3TNuIwTf6cbIbd0am9CRM5d14OTFGZ+L3b6moD1bO7Rjc5tWNNTzFiOAqqA/AUiypPUoQvAijY6VdG2kJPfyc6yLpQnls/VqymVkJrU05bjKGkBN0J8AJFlSetRsIZjHBs2ikMvqvly21mUAwB3oTwCSLA09igvjAAAAEBxCMAAAAIJDCAYAAEBwCMEAAAAIDiEYAAAAwSEEAwAAIDiEYAAAAASHEAwAAIDgpPKJcWZ2VdJLNfjS90r6bg2+LuLFui5frO3yxdouT6zr8lWrtb3f3Vtm2pDKEFwrZtZ/t0fvIb1Y1+WLtV2+WNvliXVdvpK4tpwOAQAAgOAQggEAABAcQvDCfLrWBSAWrOvyxdouX6zt8sS6Ll+JW1vOCQYAAEBwOBIMAACA4BCCAQAAEBxC8DRm9lkz+46ZffMu283M/sLMLpjZWTP70WrXiIWbx7r+fGU9z5nZs2a2qdo1YnHmWtsp47aY2biZPVqt2rA081lbM3uXmZ02s2+Z2X9Vsz4s3jx6crOZ/bOZnams7QeqXSMWzszazey4mQ1U1u0jM4xJTI4iBN9pv6T3zrL9YUkPVP58SNInq1ATlm6/Zl/XFyX9lLv/sKS9SuAJ/Lir/Zp9bWVm9ZI+LunL1SgIkdmvWdbWzFZJ+oSkHe7+g5LeV6W6sHT7NfvP7eOSBtx9k6R3SfoTM2uoQl1YmnFJv+nuXZIelPS4mXVNG5OYHEUInsbdvyLp+ixDdkr6nJedkLTKzN5cneqwWHOtq7s/6+6vVj48Iem+qhSGJZvHz6wk/Zqkf5T0nfgrQlTmsbZ7JB1y94uV8axvSsxjbV3SPWZmkpoqY8erURsWz91fcfdvVF5/T9KgpLZpwxKTowjBC9cm6dKUj1/WnQuMdPugpH+tdRGIhpm1SfpZ8a7NcvQOSavN7D/N7Dkze3+tC0Jk/lLSBknflnRO0kfcfbK2JWEhzGy9pB+R9PVpmxKTozK1+KJAUplZj8oh+KFa14LI/Lmk33L3yfJBJSwjGUk/JmmbpIKkr5nZCXf/v9qWhQi8R9JpSe+W9DZJ/25m/+3ur9W2LMyHmTWp/O7bryd5zQjBC3dZUvuUj++rfA4pZ2YbJX1G0sPufq3W9SAy3ZK+WAnA90p6xMzG3f2falsWIvCypGvufkvSLTP7iqRNkgjB6fcBSfu8/DCDC2b2oqROSSdrWxbmYmZZlQPwF9z90AxDEpOjOB1i4Y5Ien/l6sYHJQ27+yu1LgpLY2Ydkg5JeoyjSMuLu7/V3de7+3pJT0n6VQLwsnFY0kNmljGzRkk/rvI5iEi/iyof4ZeZtUr6AUkv1LQizKlyDveTkgbd/U/vMiwxOYojwdOY2UGVr0S918xelvS7krKS5O6fkvS0pEckXZA0ovJvq0i4eazrxyStlfSJyhHDcXfvrk21WIh5rC1Saq61dfdBM/s3SWclTUr6jLvPeqs8JMM8fm73StpvZuckmcqnNH23RuVi/n5S0mOSzpnZ6crnfltSh5S8HMVjkwEAABAcTocAAABAcAjBAAAACA4hGAAAAMEhBAMAACA4hGAAAAAEhxAMAACA4BCCASBFKjeYp3cDwBLRSAEg4cxsvZk9b2afk/RNSX1mdsrMzprZ700Zc97MvmBmg2b2VOUpajKzfWY2UBn/x7X8vwBAUvCwDABIODNbr/IjY39C0kpJj0r6FZWfpHVE0h+p/JjZFyU95O5fNbPPShqQ9DeSnpXU6e5uZqvc/UbV/xMAkDAcCQaAdHjJ3U9I+unKn/+V9A1JnZIeqIy55O5frbz+O0kPSRqWVJT0pJntUvkxpQAQvEytCwAAzMutyt8m6Q/d/a+nbqwcLZ7+1p67+7iZbZW0TeUjyB+W9O54SwWA5ONIMACky5ck/bKZNUmSmbWZ2Zsq2zrM7J2V13sk/U9lXLO7Py3pNyRtqnrFAJBAHAkGgBRx9y+b2QZJXzMzSbop6RckTUh6XtLjU84H/qSkZkmHzSyv8lHkj9akcABIGC6MA4BloHI6xL+4+w/VuBQASAVOhwAAAEBwOBIMAACA4HAkGAAAAMEhBAMAACA4hGAAAAAEhxAMAACA4BCCAQAAEJz/B8CqU6UF3ioUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3iUd53v/9dnfk9+QAlNphKSom5LkkKKNWB/6AoL9VcQLK2r8LVbV7/tnmt3/e6uqyu7GvWYo9J6Vs/ufj3fYz16tnpd1NW2CkI9tbDQ3bX1QNCS0gSq1hYK7TQlkJBkfs/n+0eSmkIgmeS+hxnu5+O6epW5Z+bNh+S6PvOa+/7c74+x1goAAADwEt/FHgAAAABQbIRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYGLPYCZuPzyy+2iRYsu9jAAAABQwg4cOPCKtbZ2sufKMgQvWrRIXV1dF3sYAAAAKGHGmOfP9xzLIQAAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOeU5WYZxZJIZXRyJCNJOpPIKpHJKRr0qzo6+mObXxFUNBy8mEME4FHMTwBKWSqdVd9wWtLkc1RtZUjh0MWNoYTgSZwaSWskldO2J4/r/v1Hdaw/cc5rGmqi2ri8UeuX1asi7Ne8itBFGCkAr2F+AlDKziQyGkxmpz1HzYkEVB29OF/YjbX2ovzFs9HW1mbd2jb5pYGkdvfG1bmzR8lMfsrXR4I+dbS3aHVzTFfMjbgyJgCQmJ8AlLb4QFK7ZjBHrWmOKebSHGWMOWCtbZv0OULw78QHk9r8ULf2HO4r+L2rmmq1ZUOrYnP4oAHgPOYnAKWsVOeoC4Vgbowb89LAzH95krTncJ82P9St+GDS4ZEB8DrmJwClLF6mcxQhWKNr7Hb3xmf8yxu353CfdvXEdXok7dDIAHgd8xOAUnYmkdEuB+eooWTGoZFNjRAsaSSVU+fOHkdqde7s0XAq50gtAGB+AlDKBpNZR+eogUTWkVrT4fkQnEhltO3J49NawD0dyUxe2w8eVyJVvG8yAC5NzE8ASlkqnXVljkqlixOEPR+CT45kdP/+o47W3Lrv6Kv9OwFgppifAJSyvuG0K3PUeH9ht3k+BFurSXvYzcax/oTKsOkGgBLD/ASglJX7HOX5EDyUdOeU+1CqeGtaAFyamJ8AlLJyn6M8H4ITGXduEkm6VBeAdySz7swjKZfqAvCWcs9Qng/B0aDflbqRgDt1AXhHxKX5Kcz8BMAB0ZBLGcqlue9sng/BVZFAWdUF4B1VYZfmJ5fqAvCWcp+jPB+CjZEaaqKO1myoicoYR0sC8KCcta7MT3nujAPgEDfmqGLxfAieXxHUxuWNjtbctKJRtVVhR2sC8J5cLq9br1voaM3brluobI4QDGD28tbqA20Njtb84PIG2SJ9Ufd8CI6Gg1q/rF6RoDM/ikjQp3XX1itcpPUsAC5d6ZzVyqtrHZ2f3n51rTI5ZxrbA/C2/uG0Kxmqnz7BxVMR9qujvcWRWh3tLaoME4ABzF5VOKBv/+w5ffKdix2p98l3Lta3/uO3qmRNMAAHzK8M6cljpxydow4eO6WaypAj9aZCCJY0ryKk1c0xrWqqnVWdVU21WtMS02UVxfnlAbi0+X3SL4+d0hVzolq5eHbz08rFtbpiTlRPvnBafh83LQCYPWOM7nnkiKNz1N2PHJEp0o1VhGBJ6Wxeh46f1pYNrTMOwquaarVlQ6ueeuG00lkuNQKYvUjQrw+95Ur9zQMH9Z/e/katbqqbUZ3VTXX6T29/o/7mgYO6/forFXXo0iUAHOtP6G8eOKi7fv8NMw7CKxfX6q7ff4P+5oGDju9AdyHMhBpd0/KpB7sVHxjWl29Zqi++b8m017dEgj598X1L9OVbWhUfGNanHuwu2loWAJe2uZGg3rnkilfno4++9fXqWNtc0PzUsbZZH33r6199/I5rrtCcKFerAMze+M5uw+mc7ryvS+9/c8OM5qj3v7lBd97XpeH06CYZw0XaMc4U6w48J7W1tdmuri5HauVyef2vx5/TwnkVet3ciL626xlVhwP66Ftfr8ee6dMDv3hh0m8lDTVR3XbdQr396lp96z9+qzOprP5qzdV6cSCpF06N6I9vXCS/n+8YAGanbzCpk8Npbfnfh7X3SJ/e2/q6guenH3e/qJWLa7X53U2aXxFS7ZzIRfiXALjU/OL5U9rw/z3+mmMznaMm+uGf3qg3Nc5zZIzGmAPW2rbJnvP83RH9I2kdOzWiG944X1955Ij2HumTJD186CWtbqrTJ96xWAsuiyqTyyuZySsS9Cno9+nE6YR2dL+of/zXXyuX/90XiU++c7Eef/YV9Y+kVVvNBw2A2QkFfHry2OlX56Yfd784o/lp75E+vXvJFXr3kisu5j8HwCVksl13ZzpHTVSsXXc9H4Kzeavb39Kox371yqsfMpKUy1v9tCeun/bEJUkBn1Eo4FM6m1d2kl+YNPoh87arLtftb2k872sAoBBDqZw+/+OnX3NsJvOTJH1u+9N66+/Vak7xetEDuISdb3fcmc5RU9V1muev1+dyVjI+feWRIxd8XTZvNZLOTfnL+8ojR2SMb7QuAMxCKp3VtiePK5m58M22052fkpm8th88rlS6OOvtAFzafNPcdXe6c5Q0Ws9XpHTq+RDs9xnt7D4x5YfMdCUzeT381AlaEAGYtb7htO7ff9TRmlv3HVUfN+8CcEBdVVgbVzi/625dkZaTej4EZ/NWD/ziBUdr/uDACyyHADBr1srxdkHH+hMqw/uhAZSgYNDv/I5xy+oVLFJjAc+HYCvrzoeM+JQBMDtDSXeWLQwVqf0QgEvfvGhQHWud2XX3s2tbNK8i6Eit6fB8CHbrQ2Y4lXOlLgDvSGTcmUeSLtUF4D0V4YBudmrX3eaYKkLF69ng+RCccml3t1SWDxkAszNZ+yEnFKv9EABvqJsT0d2z3HX37g2tqityD3PPt0jjQwZAqXKrTVCx2g8B8A6/z+hza6/RmqZX1Lmz5zUNB87XIi0S9KmjvUU3/d7lF6WhgOdnQj5kAJQqM9Z+yMn7FhpqojI0rwHgoP7htDY/+JQe7Y3rm3/0Zu3++EodPHZKPp/R5VVhpbJ5JTM5RYJ+hQM+vTKUUj5vdW3DPPW8OKCV/3Wvbm6O6Z7bWjWvsnjbuns+qYX8Plc+ZEIBz680ATBL8yuC2ri8UfdM0ce8EJtWNKq2KuxYPQDels7mtbs3rsd/84q+vuk6GUmvDKX0m1eG9f2uY+fdNvkP2xpUP69CRtLXN12nv3ngoHb1xrV+WX3RMpTnk9r8ypBuv36RozX/6PpFml/JhwyA2RlKZ51vP3RtvQaT9AkG4Iz+4bS2/KRX3/rwcs2rCOr5/hF94N4n9Pc/fea8JxiP9Sf09z99Rh+49wk93z+ieRVBfevDy7XlJ73qL2Ifc8+H4Hze6h0tMUc/ZG5uiSmfc+eGOwDekcpaPds3pI52Z9oPdbS36Nm+M0plaeEIYPZyubx+3H1CX7ylVdGgX/f++7Pq3NE77Q3Ikpm8Onf06t5/f1bRoF9fvKVVO7pPKFekDOX5ENw3nNL/evy3+uzaay74uoDPqCLkV2CKhdufW3uNvv34b9U3nHJymAA8KG+tbv/2Pq1cXOtI+6GVi2t1+7f3K89uGQAc0D+S1gunRtRQE9XXdj2jvUf6ZlRn75E+fW3XM2qoieroqRH1jxTnbLDn1wTnrXTf48/rW3e0aU1znXb1vixp9C7HNc11es/S16n+sug5i7qPn05oZ/eL2n34ZeXG7nRc01ynujlh/e0Pn9ddb3vDxfxnAbgEnBnrY77pmz/Xv/zJjfrbH3Zrz+FzP2TOd+f1uFVNtfryLa36wDcelyQNJWnhCGD2Mjmr29/SqMd+9cqMA/C4vUf69LarLtftb2lUJlecL+qeD8HjHzJXzq/Qx/7gKmXzVnMiQX3kpkXa+0yf/utPj5x3Ufet1y3Un658o779s+c0mMzoY39wlSrD/tfUBYCZSo/1MX++P6EPfONxbb3zeu1t6tOXftKrt/7e5VN+Sf/Zb17R3727WSsX1+oD33hcz4/NZWn6mANwQDaXl4xPX3Ho5t2vPHJEb7+6Ttl8cZZDeD4EJzI5fXZts/7Ps/36b7ue0dY7r9e+3/brg9/8+QXXtBzrT+i/7fqV/sdjv1FHe4tWvL5Gm775c/3lmqvV0d7MjkwAZm1iH/Pn+xO66e49+rdPvl0/Xfx2bXvy+AW/pG9c3qjPvfca5fI53XT3ntc8H3GpPzoAbwn6ffrhL49New3wVJKZvB5+6oTe/+YGR+pNxfNrgqMBv25uuUJfffSI/mHjm/TFh3v16R8dKmhR96d/dEhffLhX/7DxTfrqo0f0jmuuYLMMALM2sd/4lTVR/exTq/Tvvzqp1V/dq3semTwAS6Nf0u955IhWf3Wv/v1XJ/WzT63SlTXRSesCwExl81YP/OIFR2v+4MALky7rcoPnZ8K6uSH9y74X9IX1S3Xvvz07q0XdkvSF9Uu1o/uE/nD5QieHCcCDxvuY+6QLrgk+n/Ev6auaavUvf3KjPvCNx5UfqwsAs2VlHd1nQRr9Em9FCC6KkVRe8TNJhYM+xxZ1vziY1Egqr/mVDg0SgCeN9zFvX3pFwQF4oj2H+/S3P+zW1juv18OHXtJ8NssA4IAhl+5/GkoVZ0mp508HGEm3LKt3dFH3hmX1YldSALPl9/t063ULtPdI34wD8Lg9h/u090ifNrxpgfxTtHoEgOlIZd25gS1dpPuqPB+Cc9Zq7zN9ji7qfuyZPuXowwnAAcmMVefOHkdqde7sUTLD3ATAGVGXbrIt1s27hOC81YMOL+p+4BcvvNo7GABmKpXOatuTxx39kr794HGl0rRwBDB7lWF3VtW6Vfdsng/BAb9xZVF3wM/lRgCz0zec1v37jzpac+u+o+obLs5uTAAubX6fUcOEzjNOaKiJTrk7r1M8H4JHXFp8PZKmTzCA2bFW7tx5zYUqAA6orQzp9uuvdLTm7ddfqcuri3PzrudDcNKlRd0phy5fAvAu9+68ZjkEgNkLBv1a27pAkaAzcTIS9Glt6wIFi9TG0fMhuMKlxdfREJtlAJidhEt3SLOjJQCnXBYN6vPrrnGk1n9ed40uqwg6Ums6PB+Cq6PuLL6uZkcmALPk2p3X7GgJwCEV4YD+YHGdVjfVzarO6qY6rVpcp4pQ8fKT50NwoMwXdQO4dLm1vTHbJgNwUsDv05c2LJ1xEF7dVKcvbVhatGUQ4zwfgmsqQrrjhkWO1rzjhkWqqWRHJgCzY4xc+ZJu+I4OwCHpbF4j6aw+v/2QNly3UF9Yd8201whHgj59Yd012nDdQn1++yENp7NKu3Sv1mQ8H4L9fp8ri7rZkQnAbM2vCGrj8kZHa25a0ajaypCjNQF415lEWo8d6dNPDsX1Z1t/of3P9et7d12vT7zj6vN+iW+oieoT77ha37vreu1/rl9/tvUX+smhuB470qfBRPFaOBpbhr1y2trabFdXl2P1RlJZ/fCXx/XpHx2ada0v3bJE73tTfVHXtAC4NL1wakRGRqu/uteRDTMiQZ92f3ylrKwWzqtwYIQAvCyXy+vFwaTWfPWx18xRfp/R6qY6tbe+TgsuiyqTyyuVySsc9Cno9+nE6YR2dL+ofz388ms2F4sEfdr18bfrdXMi8ju0NMIYc8Ba2zbZcyQ1SQPJjGoqQ1q5uFZ7j/TNuM7KxbWaVxHSQCJDCAYwa9ZKh18aUEd7iyNf0jvaW9Tz4oCarpjjwOgAeN2ZdEbbnzxxzpf0XN7qpz1x/bQnLmn0/qtQwKd0Nq/sBXbUTWby+vHBE9r4lgZdFnV/Wannl0Pkcnn9+OCL+sQPDuqu33+DVi6unVGdlYtrddfvv0Gf+MFB7eh+UbkcfYIBzM5QMqv/+zsHtHJxrVY1zWxuGreqqVYrF9fqzu8coE8wAEcMJXPT2tUym7caSecuGIDHbd13VEPJ4rRx9HwIPjmc1nd//pyG0zndeV+X3v/mBnWsbS5oUXfH2ma9/80NuvO+Lg2nc/rOE8/pJNuSApil8T7Bm775c335ltYZB+FVTbX68i2t2vTNn0uiTzAAZ5T7rpaev2afzuVf/QUOp3P6s62/0HtbX6fv3Xm9HnumTw/84oVJf8ENNVHddt1Cvf3qWn3rP36rH3f3vvrcsf6E0pwJBjBL432Cn+9P6APfeFxb77xee5v61LmzZ1prhCNBnzraW7Ryca0+8I3H9fzYXEafYABOOJPMuFK3WFerPB+CJ9uW9MfdL+rhQy9pdVOdPvGOxa8u6k5m8oqctaj7H//1169Z1P1qXS43Apilif18n+9P6Ka79+ibf/Rm7f74Sm0/eFxb9x0975f0TSsate7aevW8OKCb7t5z3roAMFNO3LA7ed3iXK3y/Ex4vm1JZ7qoe1wyzeVGALMz3id4YtC98zsHFA359ZVbl+q7H32L/MZoKJVVMpNTJOhXVTignLU69MJprfnaY0qcNRfRJxiAU8p9V0vPh+BQYHprf7N5q2wBwXa6dQHgfGorQ9q4vFH3PHLkNccT6Zz+/P4nX31cFfJrXmVIp4bTGppintq0olF11WzmA2D2yn1XS88nteoy/wUCuHSFQwGtX1Y/5Y26Q+mcjp1KTBmAI0Gf1l1brxBrggE4wOfSrpa+IqVTz4dgnzHu/AK53gjAAXMiAXW0tzhSq6O9RXOjfEEH4Iy6qrA2rnB+V8u66oijNc/H8yE4HDC67bqFjtZ8/5sXKsJyCAAOqI4GtaY55kif4DUtMVVFgg6NDIDXBYP+aV2tmq5I0Kd1y+oVdGi3uKl4PqldFgmpvXWBo7/A9qULNLci5Eg9AIjNjWjLhtn1Cd6yoVWxOcU5uwLAO+ZFg+pY68zVqs+ubdG8iuJ9Ufd8CA4G/aqOBPTJdy52pN4n37lYVZFA0b7FAPCG2JyIttzSqi++b0lBm/l88X1LCMAAXFMRDuhmp65WNcdUESreki2SmqTqcEA3vvHyGW+ZPG7l4lrd+MbLXbvZDoC3xeZGtH7ZAu3++Ep96l2Lz3s/Q0NNVJ9612Lt/uuVWr9sAQEYgKvq5kR09yyvVt29oVV1RZ6rjC3W3nQOamtrs11dXY7W7BtM6sRAUl/b9Yz2Hukr+P0rF9fqr9ZcrQVzI6rlAweAy1LprPqG07JW5/QJNkaqqw7TBQJAUb08mNSjvXF17njtrpaRgE9VkYCGklklsxOOB3367NoWrWmOuRaAjTEHrLVtkz5HCP6dvsGkfvXykHpfGtRXHjky7W1JP/nOxWq+Yo6uqqsiAAMAAM8aSWd1aiSjF08nVBUJKBr0ayiZVSKTUzToV1UkoEQmp6FkVgsui+qyiqCrSyAuFIK5bj9B7ZyIrEZ7Bz/6V2/Xju4TU25LurZ1gU6PpBWbwxlgAADgbalsXrLSvt/26/79589QG5c3av2yeqWyeV2sXgKcCT7Ly4NJ7T78sv7Lzh7d9MbL1d76Oi24LKpMLq9kJq9I0Keg36cTpxPa0f2iHv/NK/pMe4tWN9UVfS0LAABAqXhpIKndvXF17uyZ9tX0jvYWrW6O6Yq5LIeYFrdC8MuDSX3qoW7tOXzumuCAzygU8CmdzSubP/dndrEWdQMAAFxs8cGkNp8nQ03FzTaOFwrBrneHMMa8yxhzxBjza2PM5kmebzTG7DHG/NIY022MeY/bY5rMhQKwJGXzViPp3KQBWJL2HO7Tpx7q1suDSTeHCQAAUFJeGph5AJZGM9Tmh7oVL3KGcjUEG2P8kr4u6d2SWiRtNMac3VH5M5K+b619k6QPSvrvbo5pMiOprHb1xmf8yxu353CfdvXGNZLOOjQyAACA0nVqJK3dTmWonrhOj6QdGtnU3D4TvELSr621z1pr05K+J2n9Wa+xkuaM/XmupBMuj+kcpxIZfWFHjyO1vrCjR6dGMo7UAgAAKGUjqZw6dzqToTp39mg4lXOk1nS4HYLrJR2b8PiFsWMTfV7Sh4wxL0h6WNLHJitkjLnLGNNljOnq65vdt42JMpmctj15fFoLuKcjmclr+5PHlckU75cIAABQbIlUxvkMdfC4EqninEwshR3jNkr6Z2vtQknvkfRdY8w547LW3mutbbPWttXWzm5nt4n6hlO6f99Rx+pJ0tZ9R9U3nHK0JgAAQCk5OZLR/fudz1Ani3RF3e0QfFxSw4THC8eOTfRRSd+XJGvtE5Iiki53eVyvyltN2sNuNo71J3Se++cAAAAuCdalDFWsxmVuh+D9kq4yxrzeGBPS6I1v2896zVFJqyXJGNOs0RDs3HqHKZxJunMTm1t1AQAASsGQS1lnKFWcDOVqCLbWZiX9uaRHJPVqtAvE08aYLxhj1o297K8l3WmMOSjpfkkftkVsXpxwae1ukjXBAADgElbuGcr1bZOttQ9r9Ia3icc+O+HPPZJucnsc5xMN+l2pG3GpLgAAQClwLUMFipOhSuHGuIuqOuLO9wC36gIAAJSCKpeyjlt1z+b5EOwzUkNN1NGaDTVR+YyjJQEAAEqKcSlDmSJlKM+H4NrKsDauaHS05qYVjaqtdn7/awAAgFIxvyKojctdyFBVYUdrno/nQ3Aw6Nf6ZfWKBJ35UUSCPq1bVq+g3/M/WgAAcAmLhoPOZ6hr6xUu0n1VJDVJ86JBfXZtiyO1Pru2RfMqgo7UAgAAKGUVYb862p3JUB3tLaoMF6+xACFYUkU4oDXNMa1qmt1OdKuaarWmOaaKEDfFAQCAS9+8ipBWO5WhWmK6rCLk0MimRggeUzcnors3tJ73lxjwGVWE/Aqc5463VU21untDq+rmsBYYAAB4xxVzI9pygQw1lVVNtdqyoVWxImcoU8R9KRzT1tZmu7q6XKn98mBSu3rj+uLDvXrr712u9yx9neoviyqVzSuZySkS9Csc8On46YR2dr+on/3mFX36Pc1a0xwjAAMAAM96aSCp3b1xde7sUTKTn/L1kaBPHe0tWtMScy0AG2MOWGvbJn2OEHyuM8mMBhNZbXvyuO7ff3TSfbEbaqLauLxR65fVa040oOoI64ABAIC3nR5JaziV0/aDx7V13/kz1KYVjVq3rF6VIb+rSyAIwQXoH05rd29cHdsOTftbTOf6JVrdHFNNZfHWsQAAAJSqRCqjkyMZWSsNpbKvXk2vCgdkjFRbFS5KF4gLhWDu4Jrg5FBKmx98So/2xqf9nmQmr08+0K2bm2PacutSzS9SbzsA3pZKZ9U3nJYknUlklcjkFA36VR0dndZrK0MKc5MugIskGg5qYbi0r5IzQ47pH04XHIAnerQ3Lj0o3XNbq+ZxRhiAS84kMhpMFrBcKxJQdbS0P4gA4GKgO4SkdDav3b3xGQfgcY/2xrWrN650duplFABQqPhAUtsPntDqr+7VPY8cmTQAS9Kx/oTueeSIVn91r7YfPKH4QLLIIwWA0kcI1uhZ4I5thxyp1bHtkPrHLlECgFPig0lt/mG3Pv2j6d2vII0u1/r0jw5p8w+7FR8kCAPARJ4PwblcXju6T0z7Q2UqycxovVyOs8EAnBEfSGrzQ93ac7hvRu/fc7hPmx8iCAPARJ4Pwf0jad33xHOO1rzviefUP8LZYACzdyaR0a7e+IwD8Lg9h/u0qyeuoWTGoZEBQHnzfAjO5u1519XN1LH+hLL58ms9B6D0DCaz6tzZ40itzp09GkhkHakFAOXO8yH4TNKdD4Qhl+oC8I5UerQLhJPLtbYfPK5UmvkJADwfglOZnDt16RABYJb6htO6f/9RR2tu3Xf01f7CAOBlng/Bbu1WEgp4/kcLYJaslSvLtcpwo1AAcJznk1p1xJ39QtyqC8A73FpWNZRiOQQAeD4EB3xGDTVRR2s21EQV8BlHawLwnoRLy7WSLtUFgHLi+RBcUxHSHTcscrTmHTcsUk1l2NGaALwn6tJyrUjAnboAUE48H4L9fp/Wti5QJOjMjyISHK3n50wwgFmqcmlZlVt1AaCceD4ES1JNZUid65c4Uqtz/RLVVIYcqQXA24yRK8u1DN/RAYAQLI12cljdHNPNzbFZ1bm5OaY1zTE6QwBwRG1lSBuXNzpac9OKRtVVs1wLAEhrY2oqQ9py69IZB+Gbm2PacutSzeMsMACHhEMBrV9W7+hyrXXX1ivEmmAAIARPNL8qrLtva9VXbmud9odOJOjTV25r1T23tWp+FWdXADhrTiSgjvYWR2p1tLdobpT1wAAgScyGZ6mpDGn9snq97apa7eg+ofueeG7SZvUNNVF9+MZFal+6QDWVIZZAAHBFdTSoNc0x7Toc157DfTOus6qpVmtaYqqKBB0cHQCUL2PLcOugtrY229XV5frfk8vl1T+SVjZvNZTMKpXNKxzwqSoSUMBnVFMZpgsEgKKIDya1+aHuGQXhVU212rKhVbE5ERdGBgClyxhzwFrbNtlznAm+AL/fp9rqsQ+NuRd3LAC8LTYnoi23tGpXb1ydO3uUzOSnfE8k6FNHe4vWtMQIwABwFkIwAJSJ2NyI1i9boJWL67T94HFt3Xf0vMu1Nq1o1Lpl9ZobCbAEAgAmQQgGgDJSFQmqKhLUR25cpPdeu0DWSkOprJKZnCJBv6rCARkj1VWH6QIBABdACL6AVDqrvuG0JOlMIqtEJqdo0K/qsburaytDCof4EQIovnAooIXMPwAwY8ygkziTyGgwmdW2J4/r/v3nv9y4cXmj1i+r15xIQNVRLjcCAACUC7pDnCU+kJzZjSfNMcXmcuMJAABAqaA7xDTFB5Pa/MPCWhAlM3l9+keHtOtwnBZEAAAAZYIdHsbEB2beg1OS9hzu0+aHuhUfTDo8MgAAADiNEKzRNcC7eme3G5M0GoR39cQ1lMw4NDIAAAC4gRAsaTCZVefOHkdqde7s0UAi60gtAAAAuMPzITiVHu0CMZ2b4KYjmclr+8HjSqUJwgAAAKXK8yG4bzit+/cfdbTm1n1HX+0vDAAAgNLj+RBsrSbtAzwbx/oTKsPOcwAAAJ7h+RA8lHRn2cJQiuUQAAAApcrzITiRyblSN+lSXQAAAMye54xFVKAAACAASURBVENwNOh3pW4k4E5dAAAAzJ7nQ3BVxJ1N89yqCwAAgNnzfAg2RmqoiTpas6EmKmMcLQkAAAAHeT4E11aGtHF5o6M1N61oVF112NGaAAAAcI7nQ3A4FND6ZfWKBJ35UUSCPq27tl4h1gQDAACULM+HYEmaEwmoo73FkVod7S2aG2U9MAAAQCkjBEuqjga1pjmmVU21s6qzqqlWa1piqooEHRoZAAAA3EAIHhObG9GWDa0zDsKrmmq1ZUOrYnMiDo8MAAAATiMETxCbE9GWW1r1xfctmfYa4UjQpy++bwkBGAAAoIywePUssbkRrV+2QCsX12n7wePauu+ojvUnznldQ01Um1Y0at2yes2NBFgCAQAAUEYIwZOoigRVFQnqIzcu0nuvXSBrpaFUVslMTpGgX1XhgIyR6qrDdIEAAAAoQ4TgCwiHAloY4kcEAABwqWFNMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BzXQ7Ax5l3GmCPGmF8bYzaf5zV/aIzpMcY8bYzZ6vaYAAAA4G0BN4sbY/ySvi7pZkkvSNpvjNlure2Z8JqrJP2tpJustaeMMXVujgkAAACY1plgY0xgwp+rjDFtxpiaabx1haRfW2uftdamJX1P0vqzXnOnpK9ba09JkrX25ekNHQAAAJiZKUOwMebDkuLGmGeMMe+W1C3pbkkHjTEbp3h7vaRjEx6/MHZsoqslXW2M+Zkx5ufGmHedZxx3GWO6jDFdfX19Uw0bAAAAOK/pLIf4a0mLJVVLOijpTdba3xhjYpIelXS/A2O4StJKSQsl/ZsxZqm19vTEF1lr75V0ryS1tbXZWf6dAAAA8LDpLIfIWWtfsdb+VtKQtfY3kmStjU/jvcclNUx4vHDs2EQvSNpurc2M/R3PaDQUAwAAAK6YTgg+aoz5sjHm/5V02Bjz98aYm4wxn5P04hTv3S/pKmPM640xIUkflLT9rNf8SKNngWWMuVyjyyOeLeQfAQAAABRiOiH4Q5IGNXrGdp2kxzXazaFO0ocv9EZrbVbSn0t6RFKvpO9ba582xnzBGLNu7GWPSDppjOmRtEfSJ621J2fwbwEAAACmxVjrzPJaY8w/WWs/5kixKbS1tdmurq5i/FUAAAAoU8aYA9batsmec3KzjJscrAUAAAC4hm2TAQAA4DmEYAAAAHiOkyHYOFgLAAAAcM20Q7AxZukUL/mHWY4FAAAAKIpCzgT/d2PMPmPMnxpj5p79pLX2n50bFgAAAOCeaYdga+3bJP1fGt0B7oAxZqsx5mbXRgYAAAC4pKA1wdbaX0n6jKRPSXq7pH80xhw2xmxwY3AAAACAGwpZE9xqjPmaRnd++wNJ77XWNo/9+WsujQ8AAABwXKCA1/6TpP8p6e+stYnxg9baE8aYzzg+MgAAAMAlhYTgdkkJa21OkowxPkkRa+2Itfa7rowOAAAAcEEha4J3SYpOeFwxdgwAAAAoK4WE4Ii1dmj8wdifK5wfEgAAAOCuQkLwsDHmuvEHxpg3S0pc4PUAAABASSpkTfBfSvqBMeaERrdIvkLSB1wZFQAAAOCiaYdga+1+Y0yTpMVjh45YazPuDAsAAABwTyFngiVpuaRFY++7zhgja+13HB8VAAAA4KJph2BjzHclvVHSk5JyY4etJEIwAAAAykohZ4LbJLVYa61bgwEAAACKoZDuEIc0ejMcAAAAUNYKORN8uaQeY8w+Sanxg9badY6PCgAAAHBRISH4824NAgAAACimQlqkPWaMuVLSVdbaXcaYCkl+94YGAAAAuGPaa4KNMXdKekDSN8YO1Uv6kRuDAgAAANxUyI1xfybpJkmDkmSt/ZWkOjcGBQAAALipkBCcstamxx8YYwIa7RMMAAAAlJVCQvBjxpi/kxQ1xtws6QeSfuzOsAAAAAD3FBKCN0vqk/SUpD+R9LC19tOujAoAAABwUSEt0j5mrf0HSd8cP2CM+YuxYwAAAEDZKORM8B2THPuwQ+MAAAAAimbKM8HGmI2SNkl6vTFm+4SnqiX1uzUwAAAAwC3TWQ7xuKQXNbpt8t9POH5GUrcbgwIAAADcNGUIttY+L+l5STe4PxwAAADAfYXsGLfBGPMrY8yAMWbQGHPGGDPo5uAAAAAANxTSHeIeSe+11va6NRgAAACgGArpDhEnAAMAAOBSUMiZ4C5jzL9I+pGk1PhBa+1Djo8KAAAAcFEhIXiOpBFJ75hwzEoiBAMAAKCsTDsEW2v/2M2BAAAAAMVSSHeIq40xu40xh8YetxpjPuPe0AAAAAB3FHJj3Dcl/a2kjCRZa7slfdCNQQEAAABuKiQEV1hr9511LOvkYAAAAIBiKCQEv2KMeaNGb4aTMeY2jW6nDAAAAJSVQrpD/JmkeyU1GWOOS/qtpA+5MioAAADARYV0h3hW0hpjTKUkn7X2jHvDAgAAANxTSHeIvzDGjPcK/pox5hfGmHdM9T4AAACg1BSyJvgj1tpBjW6WMV/S7ZK2uDIqAAAAwEWFhGAz9v/3SPqOtfbpCccAAACAslFICD5gjPmpRkPwI8aYakl5d4YFAAAAuKeQ7hAflbRM0rPW2hFjzHxJbKUMAACAsjNlCDbGNFlrD2s0AEvSG4xhFQQAAADK13TOBH9c0l2S/n6S56ykP3B0RAAAAIDLpgzB1tq7xv6/yv3hAAAAAO4rpE/w+8duhpMx5jPGmIeMMW9yb2gAAACAOwrpDtFhrT1jjHmrpDWSviXpf7gzLAAAAMA9hYTg3Nj/2yXda63dKSnk/JAAAAAAdxUSgo8bY74h6QOSHjbGhAt8PwAAAFASCgmxfyjpEUnvtNaellQj6ZOujAoAAABw0bRDsLV2RNI2ScPGmEZJQUmH3RoYAAAA4JZp7xhnjPmYpM9Jiut32yVbSa0ujAsAAABwTSHbJv+FpMXW2pNuDQYAAAAohkLWBB+TNODWQAAAAIBiKeRM8LOS9hpjdkpKjR+01n7V8VEBAAAALiokBB8d+y8k+gMDAACgjE07BFtr/7MkGWOqxh4PuTUoAAAAwE3TXhNsjFlijPmlpKclPW2MOWCMuca9oQEAAADuKOTGuHslfdxae6W19kpJfy3pm+4MCwAAAHBPISG40lq7Z/yBtXavpErHRwQAAAC4rKDuEMaYDknfHXv8IY12jAAAAADKSiFngj8iqVbSQ5IelHT52DEAAACgrBTSHeKUpP/HxbEAAAAARVFId4hHjTGXTXg8zxjziDvDAgAAANxTyHKIy621p8cfjJ0ZrnN+SAAAAIC7CgnBeWNM4/gDY8yVkqzzQwIAAADcVUh3iE9L+g9jzGOSjKS3SbrLlVEBAAAALirkxrj/bYy5TtL1Y4f+0lr7yvjzxphrrLVPOz1AAAAAwGmFnAnWWOjdcZ6nvyvpulmPCAAAAHBZIWuCp2ImPWjMu4wxR4wxvzbGbD7vm4251RhjjTFtDo4JAAAAOIeTIficm+SMMX5JX5f0bkktkjYaY1omeV21pL+Q9H8cHA8AAAAwKSdD8GRWSPq1tfZZa21a0vckrZ/kdZ2S7paUdHk8AAAAgKMhOD3JsXpJxyY8fmHs2KvGbrZrsNbuvFBxY8xdxpguY0xXX1/frAcLAAAA7yroxjhjTKukRRPfZ619aOz/15/nbReq55P0VUkfnuq11tp7Jd0rSW1tbfQnBgAAwIxNOwQbY74tqVXS05LyY4etpIcu8LbjkhomPF44dmxctaQlkvYaYyTpCknbjTHrrLVd0x0bAAAAUIhCzgRfb60956a2KeyXdJUx5vUaDb8flLRp/Elr7YCky8cfG2P2SvoEARgAAABuKmRN8BOTdXa4EGttVtKfS3pEUq+k71trnzbGfMEYs66QWgAAAIBTCjkT/B2NBuGXJKU02hfYWmtbL/Qma+3Dkh4+69hnz/PalQWMBwAAAJiRQkLwtyTdLukp/W5NMAAAAFB2CgnBfdba7a6NBAAAACiSQkLwL40xWyX9WKPLIST9rkUaAAAAUC4KCcFRjYbfd0w4NlWLNAAAAKDkTDsEW2v/2M2BAAAAAMVSyGYZEUkflXSNpMj4cWvtR1wYFwAAAOCaQvoEf1ejO7q9U9JjGt397YwbgwIAAADcVEgI/j1rbYekYWvtfZLaJb3FnWEBAAAA7ikkBGfG/n/aGLNE0lxJdc4PCQAAAHBXId0h7jXGzJPUIWm7pCpJk+78BgAAAJSyQrpD/M+xPz4m6Q3uDAcAAABw37SXQxhjYsaYbxljfjL2uMUY81H3hgYAAAC4o5A1wf8s6RFJC8YePyPpL50eEAAAAOC2QkLw5dba70vKS5K1Nisp58qoAAAAABcVEoKHjTHzNbpVsowx10sacGVUAAAAgIsK6Q7xcY12hXiDMeZnkmol3ebKqAAAAAAXFRKCeyT9UNKIRneK+5FG1wUDAAAAZaWQ5RDfkdQk6UuS/knS1RrdShkAAAAoK4WcCV5irW2Z8HiPMabH6QEBAAAAbiskBP/CGHO9tfbnkmSMeYukLneGVRpS6az6htOSpDOJrBKZnKJBv6qjoz+22sqQwqFCfoQA4IxEKqOTI6O72U82P82vCCoaDl7MIQJASZsywRljntJoR4igpMeNMUfHHl8p6bC7w7s4ziQyGkxmte3J47p//1Ed60+c85qGmqg2Lm/U+mX1mhMJqDrKhw0A950aSWsklZv2/FQR9mteRegijBQASpux1l74BcZceaHnrbXPOzqiaWhra7NdXe6chI4PJLWrN67OnT1KZvJTvj4S9KmjvUVrmmOKzY24MiYAkKSXBpLaPYP5aXVzTFcwPwHwIGPMAWtt26TPTRWCS5FbITg+mNTmh7q153Bfwe9d1VSrLRtaFZvDBw0A5zE/AUDhLhSCC+kOcUmLD8z8A0aS9hzu0+aHuhUfTDo8MgBe9xLzEwA4jhCs0TXAu3rjM/6AGbfncJ929cQ1lMw4NDIAXndqJK3dDs5Pp0fSDo0MAMobIVjSYDKrzp3OdHvr3NmjgUTWkVoAMJLKOTo/DadyjtQCgHLn+RCcSo92gZjOTSbTkczktf3gcaXSBGEAs5NIZVyZnxIprlYBgOdDcN9wWvfvP+poza37jr7aXxgAZurkSMaV+Wm8vzAAeJnnQ7C1mrTP5mwc60+oDJtuACgxzE8A4B7Ph+ChpDvLFoZSLIcAMDvMTwDgHs+H4ETGnZtEki7VBeAdzE8A4B7Ph+Bo0O9K3UjAnboAvIP5CQDc4/kQXBUJlFVdAN7B/AQA7vF8CDZGaqiJOlqzoSYqYxwtCcCDmJ8AwD2eD8G1lSFtXN7oaM1NKxpVVx12tCYA75lfEXRlfqqtYn4CAM+H4HAooPXL6hUJOvOjiAR9WndtvUKsuQMwS9Fw0JX5KezSWmMAKCeeD8GSNCcSUEd7iyO1OtpbNDfKejsAzqgI+x2dnyrDBGAAkAjBkqTqaFBrmmNa1VQ7qzqrmmq1piWmqkjQoZEB8Lp5FSGtdnB+uqwi5NDIAKC8EYLHxOZGtGVD64w/aFY11WrLhlbF5kQcHhkAr7uC+QkAHGdsGe6f2dbWZru6ulypHR9IaldvXJ07e5TM5Kd8fSToU0d7i9a0xPiAAeCqlwaS2s38BADTZow5YK1tm/Q5QvC5hpIZDSSy2n7wuLbuO6pj/YlzXtNQE9WmFY1at6xecyMBlkAAKIrTI2kNp3LTnp8qQ36WQADwLELwDKXSWfUNp2WtNJTKKpnJKRL0qyockDFSXXWYLhAALopEKqOTI5nzzk+1VWG6QADwvAuFYNoYXEA4FNDCED8iAKUnFPArHMgpm7fy+4wqQkbGGAX8RgHf6H8AcLGMn0iUpDOJrBKZnKJBv6rHOmjVVoYUvsgZi4QHAGUknc2rfzitHd0ndN8Tz513OcQdNyzS2tYFqqkMKRTgHmgAxXEmkdFgMqttTx7X/fvPv2Rr4/JGrV9WrzmRgKqjF2dJKcshAKBM9A+ntbs3ro5th6Z9Y1zn+iVa3RxTTSXrggG4a8bNBZpjis115+Zd1gQDQJk7OZTS5gef0qO98YLfe3NzTFtuXar5bJcMwCXxwaQ2P9StPYf7Cn6vm20cLxSCuUYGACWufzg94wAsSY/2xrX5wad0amx9HgA4KT4w8wAsSXsO92nzQ92KDyYdHtmFEYIBoISls3nt7o3POACPe7Q3rl29caWzU1+iBIDpOpPIaFdvfMYBeNyew33a1RPXUDLj0MimRggGgBLWP5xWx7ZDjtTq2HZI/ZwNBuCgwWRWnTt7HKnVubNHA4msI7WmgxAMACUql8trR/eJad1gMh3JzGi9XI6zwQBmL5Ue7QLh5By1/eBxpdLFCcKEYAAoUf0jad33xHOO1rzviefUP8LZYACz1zec1v37jzpac+u+o6/2F3YbIRgASlQ2byftsTkbx/oTyubLrysQgNJjrVyZo4rVuIwQDAAl6kzSnUuCQy7VBeAtbs0lQymWQwCAp6UyOXfq0iECgAMSLs1RSZfqno0QDAAlKhz0u1KXbZQBOCHq0hwVCbhT92zMhABQoqojgbKqC8BbqlyaS9yqezZCMACUqIDPqKEm6mjNhpqoAj7jaE0A3mSMXJmjTJGmKEIwAJSomoqQ7rhhkaM177hhkWoqw47WBOBNtZUhbVze6GjNTSsaVVddnDmKEAwAJcrv92lt6wJFgs5M1ZHgaD0/Z4IBOCAcCmj9snpH56h119YrxJpgAEBNZUid65c4Uqtz/RLVVIYcqQUAkjQnElBHe4sjtTraWzQ3Wrx7FgjBAFDCQgGfVjfHdHNzbFZ1bm6OaU1zjM4QABxVHQ1qTXNMq5pqZ1VnVVOt1rTEVBUJOjSyqTEbAkCJq6kMacutS2cchG9ujmnLrUs1j7PAAFwQmxvRlg2tMw7Cq5pqtWVDq2JzIg6P7MKMLdbedA5qa2uzXV1dF3sYAFBU/cNp7e6Nq2PbISUzU294EQn61Ll+idY0xwjAAFwXH0hqV29cnTt7pj1HdbS3aE1LzLUAbIw5YK1tm/Q5QjAAlI90Nq/+4bR2dJ/QfU88p2P9iXNe01AT1YdvXKT2pQtUUxliCQSAohlKZjSQyGr7wePauu/oeeeoTSsatW5ZveZGAq4ugSAEA8AlJpfLq38krWzeaiiZVSqbVzjgU1UkoIDPqKYyTBcIABdNKp1V33Ba1kpDqaySmZwiQb+qwgEZI9VVh4vSBeJCIZhtgy5g4ofMmWRWqUxO4aBf1eMfMhUh+f2cYQFQfH6/T7XVY5cP517csQDA2QJ+n8IBn7J5K7/PKBo08vmMAn6jgM/IX6wdMS40xos9gFI03cuNd9ywSGtbudwIAAAglVeGYjnEWWZ648nq5hj9NwEAgGeVYoZiTfA0nRxKafODT+nR3njB7x1vQTS/iu1IAQCAt5RqhrpQCOYa/pj+4fSMf3mS9GhvXJsffEqnhtMOjwwAAKB0lWuGIgRrdP3K7t74jH954x7tjWtXb1zp7NSXAAAAAMpdOWcoQrBGv8F0bDvkSK2ObYfUz9lgAADgAeWcoTwfgnO5vHZ0n5jWAu7pSGZG6+VynA0GAACXrnLPUJ4Pwf0jad33xHOO1rzviefUP8LZYAAAcOkq9wzl+RCczdtJe9jNxrH+hLL58uu6AQAAMF3lnqE8H4LPJLOu1B1yqS4AAEApKPcM5fkQnMrk3KlLhwgAAHAJK/cM5XoINsa8yxhzxBjza2PM5kme/7gxpscY022M2W2MudLtMU0UDvpdqcs2ygAA4FJW7hnK1b/FGOOX9HVJ75bUImmjMablrJf9UlKbtbZV0gOS7nFzTGerjgTKqi4AAEApKPcM5XbUXiHp19baZ621aUnfk7R+4gustXustSNjD38uaaHLY3qNgM+ooSbqaM2GmqgCPuNoTQAAgFJS7hnK7RBcL+nYhMcvjB07n49K+slkTxhj7jLGdBljuvr6+hwbYE1FSHfcsMixepJ0xw2LVFPp/P7XAAAApaLcM1TJLFw1xnxIUpukr0z2vLX2Xmttm7W2rba21rG/1+/3aW3rAkWCzvwoIsHRen7OBAMAgEtYuWcot0PwcUkNEx4vHDv2GsaYNZI+LWmdtTbl8pjOUVMZUuf6JY7U6ly/RDWVIUdqAQAAlLJyzlBuh+D9kq4yxrzeGBOS9EFJ2ye+wBjzJknf0GgAftnl8UwqFPBpdXNMNzfHZlXn5uaY1jTH6AwBAAA8oZwzlKt/k7U2K+nPJT0iqVfS9621TxtjvmCMWTf2sq9IqpL0A2PMk8aY7ecp56qaypC23Lp0xr/Em5tj2nLrUs3jLDAAAPCQcs1Qxtry2963ra3NdnV1uVK7fzit3b1xdWw7pGRm6mbNkaBPneuXaE1zjAAMAAA8qxQzlDHmgLW2bdLnCMHnSmfz6h9Oa0f3Cd33xHM61p/QgjlhvbGuUr95eVgnBlNqqInqwzcuUvvSBaqpDLEEAgAAeN5kGSrgMwoFfEpn88rmbVEzFCF4hhKpjE6OZCRJZxJZJTI5RYN+VUdHmzjPrwgqGg66Pg4AAIByksnk1DecUt5KZ5ITMlQkIJ+RaqvCCgbc2XFuoguFYLY1m8SpkbRGUjlte/K47t9/VMf6E+e8pqEmqo3LG7V+Wb0qwn7Nq2ApBAAA8LbJzgSfraEmqjtuWKS1rRf3ajpngs/y0kBSu3vj6tzZM+31LB3tLVrdHNMVcyOujAkAAKDUzXRN8OrmmGut0VgOMU3xwaQ2P9StPYcL35FuVVOttmxoVWwOQRgAAHjLyaGUNj/4lB7tjRf83vHuEPOrnN8p7kIhmLu5xrw0MPMALEl7Dvdp80Pdig8mHR4ZAABA6eofTs84AEvSo71xbX7wKZ0aTjs8sgsjBGt0DfDu3viMA/C4PYf7tKsnrtMjxf0lAgAAXAzpbF67e+MzDsDjHu2Na1dvXOns1MsonEIIljSSyqlzZ48jtTp39mg4lXOkFgAAQCnrH06rY9shR2p1bDuk/iKeDfZ8CE6kMtr25PFpLeCejmQmr+0HjyuRyjhSDwAAoBTlcnnt6D7haIba0X1CuVxxzgZ7PgSfHMno/v1HHa25dd/RV/sLAwAAXIr6R9K674nnHK153xPPqb9Iy0o9H4Kt1aQ97GbjWH9CZdh0AwAAYNqyeetKhsrmixOiPB+Ch5JZd+qm3KkLAABQCs64laFcqns2z4fgRMadm9iSLtUFAAAoBSmXsk6qSB0iPB+Co0F39q2OFGE/bAAAgIsl7FKGKtY2yp4PwVWRQFnVBQAAKAXVLmUdt+qezfMh2BipoSbqaM2GmqiMcbQkAABASQn4jCsZKuArTojyfAieXxHUxuWNjtbctKJRtS7sfw0AAFAqaipCuuOGRY7WvOOGRaqpLE6G8nwIjoaDWr+sXpGgMz+KSNCnddfWu7ZOBgAAoBT4/T6tbV3gaIZa27pAfs4EF09F2K+O9hZHanW0t6gyTAAGAACXvprKkDrXL3GkVuf6JaqpDDlSazoIwZLmVYS0ujmmVU21s6qzqqlWa1piuqyieL9AAACAiyUU8Gl1c0w3N8dmVefm5pjWNMeK1hlCIgS/6oq5EW3Z0DrjILyqqVZbNrQqNifi8MgAAABKV01lSFtuXTrjIHxzc0xbbl2qeUU8CyxJxpbh/r5tbW22q6vLldovDSS1uzeuzp09SmambtYcCfrU0d6iNS0xAjAAAPCs/uG0dvfG1bHt0LQzVOf6JVrTHHMtABtjDlhr2yZ9jhB8rtMjaQ2nctp+8Li27js66b7YDTVRbVrRqHXL6lUZ8rMEAgAAeF46m1f/cFo7uk/ovieeO2+G+vCNi9S+dIFqKkOuLoEgBM9QIpXRyZGMrJWGUlklMzlFgn5VhQMyRqqtCtMFAgAA4Cy5XF79I2ll81ZDyaxyNi+/8akqElDAZ1RTGS5KF4gLhWC2NbuAaDioheHgxR4GAJwjlc6qbzgtSTqTyCqRySka9Ks6Ojqt11aGFA4xxQO4ODLZnFLZ0SUR2ZxVIpNXNGiUy1vl8laZTFb+i5yxmCEBoIycSWQ0mMxq25PHdf/+8y/X2ri8UeuX1WtOJKDqKF/mARTHwEhaQ6nctOeoqrBfcy/SklKWQwBAmYgPJLVrJjfuNscUm8uNuwDcNdPmAqubY7rCpTmKNcEAUObig0ltfqhbew73FfxeWjgCcFupzlEXCsH0CQaAEhcfmPmHiyTtOdynzQ91Kz6YdHhkADB6Brgc5yhCMACUsDOJjHb1xmf84TJuz+E+7eqJayiZcWhkADC6Bni3g3PUYCLt0MimRggGgBI2mMyqc2ePI7U6d/ZoIJF1pBYASNJQKufoHHUmmXOk1nQQggGgRKXSo10gpnODyXQkM3ltP3hcqTRBGMDsJVMZV+aoZKo4V6wIwQBQovqG07p//1FHa27dd/TV/sIAMBuvjGRcmaNeGSEEA4CnWatJe2zOxrH+hMqwKRCAElTucxQhGABK1FDSnWULQymWQwCYvXKfowjBAFCiEhl3bhBJulQXgLeU+xxFCAaAEhUN+l2pGwm4UxeAt5T7HEUIBoASVRUJlFVdAN5S7nMUIRgASpQxUkNN1NGaDTVRGeNoSQAeVe5zFCEYAEpUbWVIG5c3Olpz04pG1VWHHa0JwJsurwi6MkfVVhVnjiIEA0CJCocCWr+sXpGgM1N1JOjTumvrFWJNMAAHRMJBV+aosEtrjc9GCAaAEjYnElBHe4sjtTraWzQ3ynpgAM6pCvsdnaOqI8X7kk4IBoASVh0Nak1zTKuaamdVZ1VTrda0xFQVCTo0MgCQ5laEtNrBOWpOq3kM4QAADdJJREFUNOTQyKZGCAaA/7+9u4+t8zzrOP69Ejs+TpO4Teu64CZk2rqlpiQB3DCgEstawdpIyRp1Eg1saEwaEh0ajD+oQBmCqCJDvAnBBtM6wsTagUq2BlLYaAkM1nVpOpK0c1IUtVrSsLrpW9IkPo6dXPzhs8pyHccv5+U5Pt+PFOUcP3duX8ktX/7l8f08T8H1dJXYsWXNrL/JbFjdzY4ta+hZVqpyZZIE1zVpj4pswudn9vf35/79+xtdhiTV1eCpMo8eHmT7ngHKIxcvO77UvoBtG/u4ra/HACyp5l48VeaxgvWoiHgqM/snPWYIlqTmcaY8wqmhUXYfPMED+45x/NWht4xZsbyTretXsmldL12lNrdASKqb00PneaN8Ydo9amnHwppugTAES9I8M3x+lJNnz5MJZ4ZHKY9coNS+kCUdbUTAtUs7vAuEpIYpD4/w8rmRS/ao7iUddbkLxFQh2MuEJakJdSxq4/pFtnBJxRSVJ15EAAkLF4z9/uaDMApwEtYOKkmSpKp4Y2iE0+VRHj5wggefvPR2iLtvXsnmdb0sK7WxtLMxW7bcDiFJkqQ5m/XFuzf20NNV/wvjPBMsSZKkORk8XebeLx9i75GT0/4z5ZGL/M5XnuHRI4MNuUWa9wmWJEnSrA2eKnPvrpkF4PH2HjnJvbsOMXi6XOXKpmYIliRJ0qy8MTTCo4cHZx2Av2/vkZM8OjDImfJIlSq7PEOwJEmSZuV0eZTtewaqMtf2PQOcGhqtylzTYQiWJEnSjA2fH7sLxHQugpuO8shFdh88wfD5+gRhQ7AkSZJm7OTZ8zz45LGqzvnAvmOcPHu+qnNeiiFYkiRJM5bJpPcBnovjrw7V7TkahmBJkiTN2JlybbYtnBl2O4QkSZIKamjkQk3mLddo3okMwZIkSZqxzvaFNZm31FabeScyBEuSJGnGlpRq8+DhWs07kSFYkiRJMxYBK5Z3VnXOFcs7iajqlJdkCJYkSdKMdV+xiLtvXlnVObeuX8m1SzuqOuelGIIlSZI0Yx2L2ti8rpdSe3XiZKl9AZvW9rLIPcGSJEkqsmWlNrZt7KvKXNs29tHVWZ/9wGAIliRJ0iwt7Wzntht72LC6e07zbFjdzW19PSwptVepssszBEuSJGnWerpK7NiyZtZBeMPqbnZsWUPPslKVK5uaIViSJElz0rOsxI4713Df+2+a9h7hUvsC7nv/TQ0JwAD123ghSZKkeaunq8TmdT/Ie951LbsPnuCBfcc4/uoQd950HXesvZZHDr7El595kRXLO9m6fiWb1vXSVWqr6xaI8SIzG/KJ56K/vz/3799f888zNDzCK+dGAHhjaJShkQt0ti9kaWXT9tWL2+nsaMzCSWpt9idJRVaUHhURT2Vm/2THPBM8idfOnefc8AUePnCCB58c+1/MRCuWd3L3zSvZvK6XxR0LuWrxogZUKqnV2J8kFVkz9SjPBE/w4qkyjx0eZPueAcojFy87vtS+gG0b+7j1xh6u66r/fhZJrcP+JKnIitijpjoTbAgeZ/B0mXt3HWLvkZMz/rONurJRUmuwP0kqsqL2qKlCsHeHqHjx1OwXD2DvkZPcu+sQg6fLVa5MUquzP0kqsmbtUYZgxvavPHZ4cNaL9317j5zk0YFBXj93vkqVSWp19idJRdbMPcoQDJwbvsD2PQNVmWv7ngHODl+oylySZH+SVGTN3KNaPgQPDY/w8IET09rAPR3lkYvsPniCoeGRqswnqXXZnyQVWbP3qJqH4Ih4X0Q8GxFHI+LeSY53RMTfV45/KyJW1bqm8V45N8KDTx6r6pwP7Dv25r3xJGm27E+SiqzZe1RNQ3BELAT+Ergd6APujoi+CcM+AryWme8A/hT4VC1rmiiTSe9hNxfHXx2iCW+6Ialg7E+SiqzZe1StzwSvB45m5nOZeR74ErB5wpjNwN9WXj8E3BoRUeO63nSmPFqbeYdrM6+k1mF/klRkzd6jah2Ce4Hj496/UPnYpGMycxQ4BVw9caKI+GhE7I+I/SdPzu0KxPGGRmqzAbtco3kltQ77k6Qia/Ye1TQXxmXmZzOzPzP7u7u7qzZvZ/vCqs01XqmtNvNKah32J0lF1uw9qtYh+ASwYtz76ysfm3RMRLQBXcArNa7rTUtKbU01r6TWYX+SVGTN3qNqHYKfBG6IiLdFxCLg54HdE8bsBn6p8vou4N+zjs9yjoAVyzurOueK5Z3Ub1ezpPnK/iSpyJq9R9U0BFf2+H4M+CpwGPiHzPxORPx+RGyqDLsfuDoijgKfAN5yG7VaunpxO3ffvLKqc25dv5LuJR1VnVNS67E/SSqyZu9RNd8TnJmPZOY7M/PtmXlf5WOfzMzdldflzPxAZr4jM9dn5nO1rmm8zo52Nq/rpdRenX+KUvsCNq3tpaNG+2QktQ77k6Qia/Ye1TQXxtXS4o6FbNs48fbFs7NtYx9XdPgNRlJ12J8kFVkz9yhDMHDV4kXcemMPG1bP7a4TG1Z3c1tfD1cuXlSlyiS1OvuTpCJr5h5lCK64rqvEji1rZr2IG1Z3s2PLGnqWlapcmaRWZ3+SVGTN2qOijjdiqJr+/v7cv39/TeZ+8VSZxw4Psn3PAOWRi5cdX2pfwLaNfdzW1+M3GEk1ZX+SVGRF7FER8VRm9k96zBD8Vq+fO8/Z4QvsPniCB/Ydm/S52CuWd7J1/Uo2revlikUL/RGjpLqwP0kqsqL1KEPwLA0Nj/DKuREyx55jXR65QKl9IUs62oiA7iUdXmUtqSHsT5KKrCg9aqoQ7GODptDZ0c71He2NLkOS3sL+JKnImqFHeWGcJEmSWo4hWJIkSS3HECxJkqSWYwiWJElSyzEES5IkqeUYgiVJktRyDMGSJElqOYZgSZIktZymfGJcRJwEvtuAT30N8HIDPq9qy3Wdv1zb+cu1nZ9c1/mrUWv7Q5nZPdmBpgzBjRIR+y/16D01L9d1/nJt5y/Xdn5yXeevIq6t2yEkSZLUcgzBkiRJajmG4Jn5bKMLUE24rvOXazt/ubbzk+s6fxVubd0TLEmSpJbjmWBJkiS1HEOwJEmSWo4heIKI+HxEvBQRz1zieETEn0fE0Yg4FBE/Vu8aNXPTWNdfqKzn0xHxeESsrXeNmp3Lre24cTdHxGhE3FWv2jQ301nbiHhPRByIiO9ExH/Wsz7N3jR6cldE/FNEHKys7YfrXaNmLiJWRMTeiBiorNvHJxlTmBxlCH6rncD7pjh+O3BD5ddHgc/UoSbN3U6mXtfngZ/JzB8BtlPADfy6pJ1MvbZExELgU8DX6lGQqmYnU6xtRFwJfBrYlJk/DHygTnVp7nYy9dftPcBAZq4F3gP8cUQsqkNdmptR4Dczsw94N3BPRPRNGFOYHGUIniAzvw68OsWQzcAXcswTwJUR8QP1qU6zdbl1zczHM/O1ytsngOvrUpjmbBpfswC/Bvwj8FLtK1K1TGNttwK7MvNYZbzr2ySmsbYJLI2IAJZUxo7WozbNXmZ+LzO/XXn9BnAY6J0wrDA5yhA8c73A8XHvX+CtC6zm9hHgXxpdhKojInqBO/GnNvPRO4GrIuI/IuKpiPhQowtS1fwFcCPwf8DTwMcz82JjS9JMRMQq4EeBb004VJgc1daITyoVVURsYCwE39LoWlQ1fwb8VmZeHDuppHmkDfhx4FagE/hmRDyRmf/b2LJUBT8HHADeC7wd+LeI+K/MPN3YsjQdEbGEsZ++/XqR18wQPHMngBXj3l9f+ZiaXESsAT4H3J6ZrzS6HlVNP/ClSgC+BrgjIkYz8yuNLUtV8ALwSmaeBc5GxNeBtYAhuPl9GNiRYw8zOBoRzwOrgX2NLUuXExHtjAXgL2bmrkmGFCZHuR1i5nYDH6pc3fhu4FRmfq/RRWluImIlsAv4oGeR5pfMfFtmrsrMVcBDwK8agOeNh4FbIqItIhYDP8HYHkQ1v2OMneEnInqAdwHPNbQiXVZlD/f9wOHM/JNLDCtMjvJM8AQR8SBjV6JeExEvAL8LtANk5l8BjwB3AEeBc4z9b1UFN411/SRwNfDpyhnD0czsb0y1molprK2a1OXWNjMPR8S/AoeAi8DnMnPKW+WpGKbxdbsd2BkRTwPB2JamlxtUrqbvp4EPAk9HxIHKx34bWAnFy1E+NlmSJEktx+0QkiRJajmGYEmSJLUcQ7AkSZJajiFYkiRJLccQLEmSpJZjCJYkSVLLMQRLUhOp3GDe3i1Jc2QjlaSCi4hVEfFsRHwBeAbYFhFPRsShiPi9cWOORMQXI+JwRDxUeYoaEbEjIgYq4/+okX8XSSoKH5YhSQUXEasYe2TsTwHLgLuAX2HsSVq7gT9k7DGzzwO3ZOY3IuLzwADwN8DjwOrMzIi4MjNfr/tfQpIKxjPBktQcvpuZTwA/W/n1P8C3gdXADZUxxzPzG5XXfwfcApwCysD9EbGFsceUSlLLa2t0AZKkaTlb+T2AP8jMvx5/sHK2eOKP9jIzRyNiPXArY2eQPwa8t7alSlLxeSZYkprLV4FfjoglABHRGxHXVo6tjIifrLzeCvx3ZVxXZj4C/Aawtu4VS1IBeSZYkppIZn4tIm4EvhkRAGeAXwQuAM8C94zbD/wZoAt4OCJKjJ1F/kRDCpekgvHCOEmaByrbIf45M29qcCmS1BTcDiFJkqSW45lgSZIktRzPBEuSJKnlGIIlSZLUcgzBkiRJajmGYEmSJLUcQ7AkSZJazv8DLf7wrKpRPFUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXjV1Z33+8/azzuPGkiChES0IiRqoDYwWqcWxlg7BUGpnSlMH+3I3GecntbObWWmg9PKbQ/VznSmPZ17qm3PWM+gp7W0UnBGRdHpdLQQHIiagFqrYNAQBRKS7Oe9zh8JNEKA7Ozfbyeb3/t1XV6wn74ss6/rm89ee/3WMtZaAQAAAF7im+gBAAAAAIVGCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ4TmOgBjMfUqVPtzJkzJ3oYAAAAmMR27NjxtrW2erTHijIEz5w5U21tbRM9DAAAAExixpjXT/YYyyEAAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnFOVhGYWSSKbVM5CUJB2JpRVLZRQN+lUeHfqxVZeGFA7xIwQAACg2JLhRHIml1BdP6+GdXXpg+17tOxg74Tn1VVGtmN+gZfPqVBEJqDwanICRAgAAYDyMtXaix5CzlpYW69axyd29cW3p7NbazR2Kp7KnfX4k6NOaxU1qbaxVbWXElTEBAAAgd8aYHdbaltEeYyZ4hO6+uFb/rF1bd/eM+TXxVFZf+fkL2rK7W+uWN6u2giAMAAAw2XFh3LDu3rhWb8gtAI+0dXePVm9oV3df3OGRAQAAwGmEYA2tAd7S2T3uAHzU1t092tLRrf54yqGRAQAAwA2EYEl98bTWbu5wpNbazR3qjaUdqQUAAAB3eD4EJ5JDu0CM5SK4sYinstq4q0uJJEEYAABgsnI1BBtjfmiMOWCMeeEkjxtjzLeNMa8YY9qNMZe6OZ7R9Awk9cD2vY7WXL9t77H9hQEAADD5uD0T/C+SPnyKx/9Q0qzh/1ZJ+t8uj+cE1mrUfYDzse9gTEW48xwAAIBnuBqCrbX/IengKZ6yTNKP7JBnJZ1ljDnHzTEdrz/uzrKF/gTLIQAAACariV4TXCdp34jbbwzfdwJjzCpjTJsxpq2nJ79dHEaKpTKO1Rop7lJdAAAA5G+iQ/CYWWvvsda2WGtbqqurHasbDfodqzVSJOBOXQAAAORvokNwl6T6EbdnDN9XMGURdw7Nc6suAAAA8jfRIXijpE8N7xJxmaRea+2bhRyAMVJ9VdTRmvVVURnjaEkAAAA4yO0t0h6Q9Iyk2caYN4wxnzPG/A9jzP8Yfsojkl6V9IqkeyX9uZvjGU11aUgr5jc4WnPlggbVlIcdrQkAAADnuPqdvbV2xWket5JudnMMpxMOBbRsXp2+/eTLjhyYEQn6tHRunUKsCQYAAJi0Jno5xKRQEQlozeImR2qtWdykyijrgQEAACYzQrCk8mhQrY21WjQnv10nFs2pVmtTrcoiQYdGBgAAADcQgofVVka0bnnzuIPwojnVWre8WbUVEYdHBgAAAKcRgkeorYho3fXNuvO6ixUJju1HEwn6dOd1FxOAAQAAigiLV49TWxnRsnnTtXB2jTbu6tL6bXu172DshOfVV0W1ckGDls6rU2UkwBIIAAUVT6T09mBKknQkllYslVE06Ff58DUJU0uCioTpSwAmRiKZVs9AUtLoPaq6NKRwaGJjKCF4FGWRoMoiQX3m8nN17dzpslbqT6QVT2UUCfpVFg7ImMnxBgLwlt7BpPoTGf1i137967bXT/oh/U8WDPWvsrBflSWhCRgpAC86EkupL57Wwzu79MD2k08krpjfoGXz6lQRCag8OjEf2M3QLmXFpaWlxba1tblWfzCR1qFYaugNHJ4JDviMQgGfkums0lk79AYuGHoDz44GVRImDANw11u9cW3dfUBf2/TimLZ0jAR9+tslF2nRnBpNq2S5FgB3dffGtaWzW2s3d4y5R61Z3KTWxlrVutSjjDE7rLUtoz5GCH63A31xPd7ZrbWbcngDlzTp6sZa1bAmGIBLuvvi+usNz+uJ3Qdyfu1Vc2r09eWXcN0CANd098W1ekO7tu7uyfm1bm4ucKoQzIVxIxzoi+u2De36ys9eGPPBGfFUVl/52Qu6bUO7DvTFXR4hAC/q7h1/AJakJ3Yf0F9veF7d9CgALujuHX8AlqStu3u0ekN7wXsUIXjY0QCczxtIEAbgtN7BpLbuOTDuAHzUE7sP6Kk9B9QXSzo0MgAYWgO8pbN73PnpqK27e7Slo1v98ZRDIzs9QrCG1gA/7tQb2NmtwWTaoZEB8LqBZEZf/cWLjtT6240vqj+RcaQWAEhSXzyttZs7HKm1dnOHemOFy1CEYEmHYimt3eTMG3jHpg4dGizcpxgAZ654IqVN7fvHvDzrtPVS2aF6CXoUgPwlkkO7QDjZozbu6lKiQJOJng/BqVTG+TdwZ5dSKWZbAOTnnVhK9z/7uqM173/2db3DB3UADugZSOqB7Xsdrbl+295j+wu7zfMh+EB/Qg9sc/4NPNCfcLQmAO/JZjXqHpv52HcwpmzxbQoEYBKy1p0eVaiNyzwfgrMuvYH8kgGQr4GEO18JDnDdAgAH9Mfd6SX9LvW+43k+BBf7GwjgzBVzaVlVPMlyLQD5i6fd6SUJl+oez/Mh2LVfMqwJBpCncMCdFh1yqS4Ab4kE/a7UDQfcqXs8z3fCSNCdH4Fbv7wAeEdZxJ3j2N2qC8BbysIu9SiX6h7P80mtPBIsqroAvMPIqL4q6mjN+qqojIyjNQF4U9ZaV3pUtkBXxnk+BBujMb2BAZ9RScivgO/0vzzqq6Iy/I4BkKdoyKcbLp3haM2PvW+GSkKF+aoRwJktncnqow73qBsunaF0pjAh2PPfiZVF/Foxv0F3PbrnXff7fUatjTX6yCXnqO6sqBLprOKpjCJBv8IBn7oOx7S5/U09sfuAMsdtBbFyQYMq+LoRQJ4qw0EtmTtd//vp3ziyl3kk6NPi5umqiPJNFYD8JdJZLbywWv/sYI/64IXVBbswzvNJrTwU1NJ50/XtJ18+9gYunTtdN14xU0+91KNvPrZn1C3U6qui+uilM/TnC9+jH/7qNW3ctV/S0Bt47dzpKg3zSwZAfoJBv8rCAd2+5CL99c+ez7ve3y65SOXhgIJ+z38JCMABZZGAvvnoS7r1mtlau6kz73q3XjNbP/jP3+rWD892YHSn5/lO6Pf7FA34tGZxk0pDfn135aWaW1+pj9/7rP5hy8sn3UN438GY/mHLy/r4vc9qbn2lvrvyUpWG/FqzuEmRgE/+MSybAIDT8RnpvQ1naeHs6rzqLJxdrXkNZ7FUC4BjfMbov/cd0rSKqCM9alpFVDvfOCxfgRqV50OwJJVHQ1o4u1rrb7pMP9mxT2s3dY55Wj+eymrtpk79ZMc+rb/pMi2aXa2KaMjlEQPwglQqo95YWp/4/rNadeX54/4ls3B2tVZdeb4+8f1n1RdLc6w7AEeUhPy64dIZ+urGF7R22cVaNGd8PWrRnGqtXXaxvrrxhYJet+D55RDS0J6ZAZ9P33nyZT21p2dcNZ7a06OAz+jr11/CHpwAHHE4ntTm9v16ZyClm+5r0103zNUHZk3V3Y/uGdMH9UjQp1uvma1pFVHddF+bBpIZbX5+v1YsqFd10NkrugF4T2UkqGXz6nRhbbnu3NyhGy6t1+9fML4edefmDt2x7GI1Tq9QZYEmE0lrkgYTaW196YC2dB7Iq86WzgPauueABjmSFIADEmmrh557Q5I0kMzo5vXPaefew3rwpst0S+usk+5sU18V1S2ts/TgTZdp597Dunn9cxoYPiXuJzveUCLNue4A8uf3+1Qa8uvgQFL//mJ3Xj3q31/s1sGBpEqD/oItKTW2QHuxOamlpcW2tbU5Vm//4Zj+4O+ecuzKxif/cqGmn8UsC4D87D04oCvveuqE+/0+o6vm1Ghx8zmaflZUqUxW8VRWkaBPQb9P+w/HtKn9TT05yu41kvQfX16ohqrSAvwfADiTpVIZ7T0U0+Lv/PJdGWq8PSoS9Gnz5z+ghrOjCjp0Gp0xZoe1tmW0xzy/HCKVymhT+35HArA0tEZ4U/t+ffbymY69gQC86Uh89G+VMlmrxzq69VhHt6ShfcxDAZ+S6azSo4Te4/XHWRMMIH+H48lRM9R4e1Q8lS3oki3PL4foGUjq/mdfd7Tm/c++rp6BpKM1AXhPMj22D+fprNVgMjOmADxUlxAMIH8jl2ydSi49qpBLtjwfgjNZe9Jt0MZr38HYqF9BAkAuoi59mxThWyoADshadzIUxyYXyEDCnYvYBrg4DkCeylw6edKtugC85WRLtvJVqCVbng/BMZf2y4wn+boRQH5Cft9Jr64er/qqqEKcGAfAAWNdspV7XUJwQYRd2tOXvYIB5GtKaUifvGymozU/dflMTSkLO1oTgDcV+5Itzyc1vm4EMFn5/T5dO/ccRYLOtOpI0KclzedwrDsARxR7hvJ8CPYZ48rXjYU69xrAmW1KaVh3LL3IkVp3LLtIU0qZBQbgjGJfsuX5EHz03GsnFfLcawBntlDAp9amaWptrMmrTmtjja5unMZSLQCOKfYlW57vhpWRoJbMne7o142Lm6cX7NxrAGe+TCarL7ZeOO4g3NpYoy+2Xqh0xp2LWAB4U7Ev2fJ8CPb7faoIB3TrNbMdqXfrNbNVEQ6w5g6AIwYTaT3W2a0//t4zuv69M3TndReP+RdOJOjTndddrOvfO0N//L1n9HhntwbZvhGAgyojQX3NoSVbX1t6kSqjQUdqjYXnQ7AkVZaEdMUFU7VwdnVedRbOrtYVF0xVZQmzwACccSiW0tpNHRpIZnTz+uf07Kvv6MFVl+u2D88+6Vq8+qqobvvwbD246nI9++o7unn9cxpIZnTHpg4dGkwV+P8AwJmsL57S1LKwI0u2ppaF1RcrXI9iCwMNrbmrKY/oS60XSpKe2tOTc42Fs6v1pdYLVVseYc0dAEekUhk9vLNL8dTvljH8ov1NPfLCW7pqTo3+54dma/pZUaUyWSXTWYUCPgX9Pu0/HNOm9jf1zcdeetfplfFUVht3dulPrzhPQU6NA5CnTCarjbve1D9ueUn/cuMCSdKWzgM512ltrNGfffA9+swPt+mLV1+oG98/U/4CXBxHCB5WVRpSJpPVn115vv5gdo2+/m+d7/rFczKRoE9//YeNmlVbpnMqIzq7lFlgAM440J/QA9v2nnB/Jmv1WEe3HuvoliQFfEahgE/JdFbp0xzZvn7bXi2dO111Z5e4MmYA3vHOQFL3P/uapKG+dOMV5+nKWdU5Z6gLasqOfWD/0TOvadnc6aqpiLg48iFMWQ47OJBUz5G4plVGde6UEj246nLd0jrr2NeNAZ9RScivwPBa3/qqqG5pnaUHV12uc6eUaFplVD1H4jo0kJzI/w0AZ5CslfYdjJ32eems1WAyc9oALA3VG8PTAOC0kpms9h2M6a4b5uqfn/6NVn7/10pnrR6/5YPvWrI1Woa67cOz9fgtH1Q6a7Xy+7/WPz/9G911w1ztOxhTskAX8TITrKFj/97ujyuVle76xYt6ak+PQgGfvnDVBfreJ9+n0lBA/fG0YqmMokG/yiIBDSTTerLzgP7oe88omc5q4exq3dJ6oXr64yoNB1gSASBv/fGxXcQWCfhUFhnqU/ExHGPan+DiOAD564+ntXTudL3VF9P23x7Ud1deqrf6Ylr8nV/qz648/7QZavF3fqkvXDVL3115qb780C59YNZUXdt8TsF6FCFYUu9gUqmM1be2vKSn9vRo6dzpuvGKmXrqpR792f07Rp2Jqa+K6qOXztCPV12mH/7qNW3ctV/S0O4QvYNJVRdgGh/AmS2Wyox6fyjg0xevukAL59Qc+wWTSGcUDrz7F8y3n3xFyVFCcfwkdQEgF7FURjdeMVOfu2+77v10i+75j1dVEQnqR59dMKYM9aPPLtAPf/Wafhl/W/d+ukWfX/+cfvDp+QXrUcba4vterKWlxba1tTlSK5PJan9fXI+9+Jb+/rGXdNcNc/VWX0x3P7pnzOtZbr1mtqZVRPXlh3bpSx+6UNc0TdM5lZGCLOoGcObq2N+rj3z7P9913+1LGnV10zQ9/8Zh+XxGU8vCSqSziqcyigT9Cgd8ers/oUzGqrn+LD3e8Zbu2NT5rhqP/J+/r6bplYX8XwFwBnr97QH9bGeXZtWU6xe7unTt3LpxZ6ijr3/lwBFdN69O504tdWSMxpgd1tqW0R7z/ExwbzylRCqrf9r6yrFPMbnsDhFPZbV2U6cWzq4+9inmgxfWqDeeUhXHkwLIQ3nkd/tlVpeFtP6my9R1KKZ3BpJ66UC/fvrcG6ecZamrKtH5U8v0+C1XauW9z6qnP3lCXQAYL5/P6NBgUu8MxPWp98/MK0OtuvJ8vXLgiN4ZTMpXoLMWPB+C09msNrfv1x3LLsn5zRvp6OvuWHaJHnl+vz4+v97JYQLwIGOGAm08mdHP/vwK7T04qN+83a+7//XUsyz7Dsb0D1te1j8//Rvdes1shQI+/ezPr9D1//QrRUJ+Gc7yAeCQ6+fV6c3euCMZ6o9b6tVcd5aTwzslz4fgRMrq4GBSb/XFxv3mHfXUnh59YNZUvT2QVCJdfMtMAEwuZRG/Vsxv0IcuqtU7A0nd88vxz7Lc0nqhHlh1mR7v6FZFxPOtH4ADrKz2HRrUgSMJxzJUJpvVlLLCbDfr+UWr1lpdP69Odz+6x5F6dz+6R8vn1cmKEAwgP+WhoD72vhnvunB3PJ7a06NvbXlJqYzVDZfOUGmY5RAA8pfJWs2cUupohjp3SumYtnt0AiHYSk+91DOmBdxjEU9l9fRLPbKF2eIOwBnM7/cpa6X/+s3bjsyy/Ndv3lbWSv4CrbcDcGaLhvx6YvcBRzPUk7sPKBoqzImWng/BGWv10+fecLTmQ8+9oWwR7roBYHJJpTI6kkg7OsvSn0grxRZpAByQSGVdyVAJh0L16Xg+BAf8ZkwnMuVi38GY/H5mWgDk53A8qc3t+x2dZdn8/H4djnOyJQBnuJGhCsXzIXgw4c6MyGCSmRYA+UmkrR5yeJblJzve4MJdAI5wK+sUKkN5PgSP5YjR8SjUVD6AM1fWWldmWViuBcAJCZcy1GgnXbrB8yG4JOjO4utCLeoGcOY6Ek+7Urc/zjdVAPIXCbgTI8Mu1T2e50NwedSd/TLL2YcTQJ7cmg1JpgnBAPLnVtYpVIbyfAgO+Izqq6KO1qyviirAFkQA8hR16ZuqiEt1AXjM8KmWTnK63ql4PgRXlYT0qctnOlrz05fPVFVp2NGaALynNOzObIhbdQF4S8Bn9PH5DY7WXDG/QUE/yyEKwu/36SMXn6NI0JkfRSTo0x9efA6b0QPIm8+lWRbaEwAnJFJZXfGeKY5mqPe/Z4riBVqy5fkQnEpl1N51WLdeM9uRerdeM1vtXYfZjB5A3vw+o09eNtPRmp+6bCbLtQA4oj+R1g9/9ZqjGeoH//lb9bu0fe3xPB+CD/Qn9PVHOjWtIqqFs6vzqrVwdrWmVUT19Uc6daA/4dAIAXhVKmN1dWONo7MsVzXWKJlhizQA+Uuks9q4a7+jGeoX7W8qWaCJRM+H4Kwd2jfzyw/t0qorzx/3m7hwdrVWXXm+vvzQruF9OB0eKADPCQeNXtzfq68uvciRel9bepE63uwt2PZDAM5sRy/edTJDSYW7eNfznbB/eB/OgWRGN93Xpo+9r15rljSOeeYlEvRpzZJGfex99brpvjYNDJ9y0p9wZ39PAN4R8Pk055xKVZeF1dpYk1et1sYaTS0La860SgU51h2AA8qGtzJzOkOVsUVaYcRGTLkPJDO6ef1z2rn3sB686TLd0jrrpBel1FdFdUvrLD1402Xaufewbl7/3LE3T5LirAkGkKfKSFDhoE9dhwe16srzxx2EWxtrtOrK89V1eFCRgE8V0ZDDIwXgRSG/71hOcipD1VdFFSrQt1We3ydntE8rv2h/U4+88JaumlOj//mh2Zp+VlSpTFbxVFaRoE9Bv0/7D8e0qf1NffvJV5QZZe0DXzcCyJff71PE79P7zq3Sd554Wde/d4YWza7R2s0dio/haPZI0Kc1i5t0VklIP/zP3+rzV81SOOBj9xoAjphSGtInL5uprz/Seey+fDPUpy6fqSkF2mbW8yG4PBIc9f5M1uqxjm491tEtaWgvvFDAp2Q6q/QYFvyerC4A5KKyJKRDsaT+j4UX6FtbXlJ5OKAHV12uZ37zttZv26t9B2MnvKa+KqqVCxp0+Xum6ge/fFVHEmnd0nqhgn6jyhJmgQE4w+/3aencc/T3j+951wfz8WaoSNCna5sLt82s50OwGd6Hc7RfJCOls1bp5NiWONRXRWWYaAHggFDAp6llEe0/NKhVHzhfnW/16U++/6yueM/Ud82yJNNZhQLvnmX5v7e+oi9dfaEap1XIb6TqskjBvmYE4A1VpWHdsewiffmh50/6nLFmqDuWXVzQw8Y8H4LLIn6tmN+gux7d41jNlQsaVFGgRd0AznxVpSFZa3Wk+4gaqkr0r396mZ7ec0DffGyP9h2MnTDLUl8V1Q2XztDNiy5Qz5G4jJHOOSuqs0uZBQbgrFDAp9bGaWpt7NaWzgPjrtPaWKOrG2sL+kHd80mtPBTU0nnT9e0nXx7TGrvTiQR9unbudJWGWQ4BwDlTysKabYw69/dKks6bUqqvfKRRU8rCJ6y3e6c/oUR6qJ+VBP2aM62CAAzANVWlIX3jo8267aft4wrCrY01+sZHmwvepzz/vZjf71M0MHTxiBPWLG5ShAtPALigqjSk+edN0bSKiMIjLuo1kvzGaGTXiQZ9mlYR0fzzphCAAbhuSllYd90wV3fd0JzTFml339Csu2+YqyllhVsGcZTnZ4IlqTwa0gdnV2vRnGpt3d0z7jqL5lTrg7Or2X4IgGtCAZ+mVUZUXVarg4NJpbNW/fG0Upmsgn6fyiIBzZxSoqrSMB/GARRUVWlI182r05WzqrWpfb/ue+a1k168++n3z9SSS6arqjQ0YdcqGGuL72izlpYW29bW5mjNgwNJxVMZrfn5C3pid+5T+VfNqdHa6y5WNOhn1gUAAHhaJpN91wf1RDqrcGDog3rAZwr2Qd0Ys8Na2zLaY67PBBtjPizpHyX5JX3fWrvuuMcbJN0n6azh56y21j7i9riOV1Ua0oG+uD73++fp/RdM0d2P7hnzPpy3XjNbjdMqFPAZAjAAAPA8v9+n6vLI0I3KiR3Lybg6/2yM8Uv6rqQ/lNQkaYUx5vjFt38j6cfW2vdK+rikf3JzTCdzoC+u2za0a+X3fz2u005Wfv/Xum1Duw70xQs8cgAAAOTK7ZngBZJesda+KknGmAclLZPUMeI5VlLF8N8rJe13eUwnGEyktaWz+9h64PGedrJ1d4+2dHbruvfWqSTEcmsAAIDJyu2kVidp34jbb0j6veOe81VJjxljPi+pVFLraIWMMaskrZKkhoYGRwd5KJbSHZs63nXfeE87uWNThz44u4YQDAAAMIlNhi3SVkj6F2vtDEkfkXS/MeaEcVlr77HWtlhrW6qrqx37x1OpjB7e2XXa9b/prNVgMnPaI5Pjqaw27uxSKjW20+UAAABQeG6H4C5J9SNuzxi+b6TPSfqxJFlrn5EUkTTV5XEd0zOQ0APb9jpac/22veoZSDhaEwAAAM5xOwRvlzTLGHOeMSakoQvfNh73nL2SrpIkY0yjhkLw+DfrzVHWatQ97PKx72BMp5kwBgAAwARyNQRba9OS/kLSo5I6NbQLxIvGmDuMMUuHn/aXkm4yxuyS9ICkz9gCbl58JJ4uqroAAADIn+tXbw3v+fvIcffdPuLvHZKucHscJxNzae1unDXBAAAAk9ZkuDBuQkWDflfqRlyqCwAAgPx5PgSXR9yZDHerLgAAAPLn+RDsMzrpqXDjVV8VVQGOwwYAAMA4eT4EV5eGtWKBs4dvrFzQ8LvzsgEAADDpeD4EB4N+LZtXp0jQmR9FJOjT0nl1Cvo9/6MFAACYtEhqks6OBnX7kiZHat2+pElnlwQdqQUAAAB3EIIllYQDam2s1aI5+R3HvGhOtVoba1US4qI4AACAyYwQPKymIqJvLG8edxBeNKda31jerJoK1gIDAABMdoTgEY4G4a9ff/GY1whHgj59/fqLCcAAAABFhO/tj1NTEdF1763TB2fXaOPOLq3ftlf7DsZOeF59VVR/sqBBS+fV6aySIEsgABRULJHSO4MpSdKRWFqxVEbRoF/l0aFeNKUkqGiY6xMATIxEMq2egaSk0XtUdWlI4QnOTiS3UZSEAioJBfSnV5ynZfOmK2ulI/G04qmMIkG/yiMB+YxUXR5hFwgABXVoMKnBREYP7+zSA9tP/iF9xfwGLZtXp5KwX2eXhCZgpAC86Egspb54esw9qiISUHl0Yj6wG2vthPzD+WhpabFtbW0TPQwAKKi3euN6orNbazd3KJ7Knvb5kaBPaxY36arGWk2rZLkWAHd198a1ZRw9qrWxVrUu9ShjzA5rbcuojxGCAWDy6+6La/WGdm3d3ZPzaxfNqda65c2q5boFAC6ZrD3qVCGY7/JPIZPJqudIXG/2xvRS9xE9/8ZhvdR9RG/2xtRzJK5M5vSfcgAgX2/1jv+XiyRt3d2j1Rva1d0Xd3hkADA0A1yMPYo1waNIprM6OJDUpvb9uu+Z1066nuXTl8/UkubpqioNKRTg8wQA5x0aTOqJzu5x/3I5auvuHm3p6Nbi5nN0FmuEATjkSCylLQ72qGXzpqssUpg1wiS34xwcSOrhnV1a+M2t+l+bO0cNwJK072BM/2tzpxZ+c6se3tmlg8NXQAKAkwYTGa3d3OFIrbWbOzSQyDhSCwAkqS+edrRH9cbSjtQaC0LwCO/0J3TbQ+269aH2MS3olqR4KqtbH2rXbQ+1653+hMsjBOAlsURKD+/sGnM/Op14KquNu7oUS6QcqQfA2xLJtCs9KpEsTBAmBA87OJDU6p8+r8c7u8f1+sc7u7X6p8/rEDPCABzyzmBKD2zf63L4kFcAACAASURBVGjN9dv2HttfGADy0TOQdKVH9RQoSxGCNbQG+InO7nEH4KMe7+zWls5uJdNcMAcgf9bqpEuyxmvfwZiKcFMgAJNQsfcoQrCGZoHXPPyCI7XWPPwC64MBOKI/7s5Xgv2Jwq25A3DmKvYe5fkQnMlktal9v6PrWTa172f7NAB5i6XcuYgt7lJdAN5S7D3K8yH44GBS9z3zmqM173vmNR0cZDYYQH6iQb8rdSMBd+oC8JZi71GeD8HprHVlPUs6y6I7APkpi7izlbtbdQF4S7H3KM+H4CNurWdxqS4A7zBm6GAeJ9VXRWWMoyUBeFSx9yjPh+CES+tOEuwQASBPU0qCWjG/wdGaKxc0qLos7GhNAN5UXRpypUfVlBemR3k+BIddWs/CMcoA8hUNB7VsXp0iQWf6SSTo09K5da71PQDeEg4FXOlRIdYEF0a5S+tO3KoLwFtKwn6tWdzkSK01i5tUGiYAA3BORSTgaI+qjBYuP3k+BAd8xpX1LAEfi+4A5O/skpCuaqzVojnVedVZNKdarU21Oqsk5NDIAEAqjwbV6mCPKosEHRrZ6Xk+BFeVhPTpy2c6WvPTl89UVSlr7gA4Y1plROuWN4/7l8yiOdVat7xZtRURh0cGAFJtkfYoz4dgv9+nJc3THV3PsqR5uvzMBANwUG1FRP/X9c2687qLx9yvIkGf7rzuYgIwANfVVkS0rsh6lLFFeIh8S0uLbWtrc6xeMp3Vwzu7dOtD7XnXuvuGZi2bV8eFcQBccXgwqYFERht3dWn9tr2j7nNeXxXVygUNWjqvTqUhP0sgABRMfzyl3lh6zD2qMhJwdQmEMWaHtbZl1McIwUMODiR120Pteryze9w1rm6s1V03NOvsUn7hAHBXLJHSO4MpWSv1J9KKpzKKBP0qCwdkjFRdFmYXCAATJpFMq2cgedIeVVMeLsguEKcKwWxhMKyqNKR1H71E+qnGFYSvbqzVuo9eQgAGUBDRcFAzwoW7gAQAchEOBTQjNLljJt/ZjzClLKxv3NCsu29ozmk9y903NOuuG5o1hQ3oAQAAisLkjugToKo0pGXz6vSBWdXa1L5f9z3z2knXs3zm/TO1+JLpqioNsQYYAACgiBCCRxEK+DStMqLPvn+mls2brnTWqj+eViKdVTjgU1kkoIDPqKo0zC4QAAAARYgQfAp+v0/V5cNbdlRO7FgAAADgHL7DBwAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4TmCiBzCZJZJp9QwkJUlHYmnFUhlFg36VR4d+bNWlIYVD/AgBAACKDQluFEdiKfXF03p4Z5ce2L5X+w7GTnhOfVVUK+Y3aNm8OlVEAiqPBidgpAAAABgPY62d6DHkrKWlxba1tblSu7s3ri2d3Vq7uUPxVPa0z48EfVqzuEmtjbWqrYy4MiYAAADkzhizw1rbMtpjzASP0N0X1+qftWvr7p4xvyaeyuorP39BW3Z3a93yZtVWEIQBAAAmOy6MG9bdG9fqDbkF4JG27u7R6g3t6u6LOzwyAAAAOI0QrKE1wFs6u8cdgI/aurtHWzq61R9POTQyAAAAuIEQLKkvntbazR2O1Fq7uUO9sbQjtQAAAOAOz4fgRHJoF4ixXAQ3FvFUVht3dSmRJAgDAABMVp4PwT0DST2wfa+jNddv23tsf2EAAABMPp4PwdZq1H2A87HvYExFuPMcAACAZ4x5izRjTLWkGZIykl611va7NqoC6o+7s2yhP8FyCAAAgMnqtCHYGNMk6duSZkpqkPTfkmqMMU9L+oK1ttfVEboslsq4UjfuUl0AAADkbyzLIX4o6WZr7QWSfl/SbmvteZJ+JekHbg6uEKJBvyt1IwF36gIAACB/YwnBUWvtHkmy1m6TdMnw3++VdJGLYyuIsog7h+a5VRcAAAD5G0sI/o0xZo0x5gpjzN9J2ilJxpjgGF8/qRkj1VdFHa1ZXxWVMY6WBAAAgIPGEmJvlFQu6a8kxSV9Yfj+EkmfdmlcBVNdGtKK+Q2O1ly5oEE15WFHawIAAMA5pw3B1trD1tovW2uXWGu/Yq09Mnx/r7X22aPPM8Z8x82BuiUcCmjZvDpFgs5MakeCPi2dW6cQa4IBAAAmLSeXM1zhYK2CqogEtGZxkyO11ixuUmWU9cAAAACTWdGv6XVCeTSo1sZaLZpTnVedRXOq1dpUq7JI0KGRAQAAwA2E4GG1lRGtW9487iC8aE611i1vVm1FxOGRAQAAwGlOhuCi3w+htiKiddc3687rLh7zGuFI0Kc7r7uYAAwAAFBEcjk2+RJr7fOneMo/nuR1Hx5+zC/p+9badaM8548kfVWSlbTLWrtyrONyWm1lRMvmTdfC2TXauKtL67ft1b6DsROeV18V1coFDVo6r06VkQBLIAAAAIqIsdaO7YnG/FJSWNK/SPrXsRyXbIzxS3pJ0tWS3pC0XdIKa23HiOfMkvRjSX9grT1kjKmx1h44Vd2Wlhbb1tY2pnHnI5FMq2cgKWul/kRa8VRGkaBfZeGAjJFqysPsAgEAADBJGWN2WGtbRntszDPB1toPDAfWGyXtMMZsk/T/WGsfP8XLFkh6xVr76vBAHpS0TFLHiOfcJOm71tpDw//OKQNwIYVDAc0IsdMDAADAmSanNcHW2pcl/Y2k2yR9UNK3jTG7jTHLT/KSOkn7Rtx+Y/i+kS6UdKEx5lfGmGeHl0+cwBizyhjTZoxp6+npyWXYAAAAwLuMOQQbY5qNMd+S1CnpDyRda61tHP77t/IYQ0DSLEkLJa2QdK8x5qzjn2Stvcda22Ktbamuzm8rMwAAAHhbLjPB35H0nKS51tqbrbXPSZK1dr+GZodH0yWpfsTtGcP3jfSGpI3W2pS19rcaWkM8K4dxAQAAADnJJQQvlrTeWhuTJGOMzxhTIknW2vtP8prtkmYZY84zxoQkfVzSxuOe83MNzQLLGDNVQ8sjXs1hXAAAAEBOcgnBWyRFR9wuGb7vpKy1aUl/IelRDS2j+LG19kVjzB3GmKXDT3tU0jvGmA5JWyXdaq19J4dxAQAAADnJZeuDiLW2/+gNa23/0ZngU7HWPiLpkePuu33E362kLw3/BwAAALgul5ngAWPMpUdvGGPeJ+nEUyQAAACASS6XmeAvSvqJMWa/ho5Inibpj10ZFQAAAOCiXA7L2G6MmSNp9vBde6y1KXeGBQAAALgn1+PQ5kuaOfy6S40xstb+yPFRAQAAAC4acwg2xtwv6T2SdkrKDN9tJRGCAQAAUFRymQlukdQ0vJsDAAAAULRy2R3iBQ1dDAcAAAAUtVxmgqdK6jDGbJOUOHqntXbpyV8CAAAATD65hOCvujUIAAAAoJBy2SLtaWPMuZJmWWu3DJ8W53dvaAAAAIA7xrwm2Bhzk6SHJH1v+K46ST93Y1AAAACAm3K5MO5mSVdI6pMka+3LkmrcGBQAAADgplxCcMJamzx6wxgT0NA+wQAAAEBRySUEP22M+WtJUWPM1ZJ+IukX7gwLAAAAcE8uIXi1pB5Jz0v6M0mPWGu/4sqoAAAAABflskXa5621/yjp3qN3GGO+MHwfAAAAUDRymQn+9Cj3fcahcQAAAAAFc9qZYGPMCkkrJZ1njNk44qFySQfdGhgAAADglrEsh/gvSW9q6Njkvxtx/xFJ7W4MCgAAAHDTaUOwtfZ1Sa9Lutz94QAAAADuy+XEuOXGmJeNMb3GmD5jzBFjTJ+bgwMAAADckMvuEHdJutZa2+nWYAAAAIBCyGV3iG4CMAAAAM4EucwEtxlj/j9JP5eUOHqntXaD46MCAAAAXJRLCK6QNCjpQyPus5IIwQAAACgqYw7B1trPujkQAAAAoFBy2R3iQmPME8aYF4ZvNxtj/sa9oQEAAADuyOXCuHsl/ZWklCRZa9slfdyNQQEAAABuyiUEl1hrtx13X9rJwQAAAACFkEsIftsY8x4NXQwnY8wNGjpOGQAAACgquewOcbOkeyTNMcZ0SfqtpE+4MioAAADARbnsDvGqpFZjTKkkn7X2iHvDAgAAANyTy+4QXzDGHN0r+FvGmOeMMR863esAAACAySaXNcE3Wmv7NHRYxhRJn5S0zpVRAQAAAC7KJQSb4T8/IulH1toXR9wHAAAAFI1cLozbYYx5TNJ5kv7KGFMuKevOsAAAAFCsEsm0egaSkqQjsbRiqYyiQb/Ko0PRs7o0pHAolxjqvFz+9c9JmifpVWvtoDFmiiSOUgYAAIAk6Ugspb54Wg/v7NID2/dq38HYCc+pr4pqxfwGLZtXp4pIQOXR4ASMVDLW2lM/wZg51trdxphLR3vcWvucKyM7hZaWFtvW1lbofxYAAAAn0d0b15bObq3d3KF46vSLBSJBn9YsblJrY61qKyOujMkYs8Na2zLaY2OZCf6SpFWS/m6Ux6ykP8hjbAAAAChy3X1xrf5Zu7bu7hnza+KprL7y8xe0ZXe31i1vVm2FO0H4ZE4bgq21q4b/XOT+cAAAAFBMuntzD8Ajbd3do9Ub2gsehHPZJ/hjwxfDyRjzN8aYDcaY97o3NAAAAExmR2IpbensHncAPmrr7h5t6ehWfzzl0MhOL5ct0tZYa48YY35fUqukH0j6Z3eGBQAAgMmuL57W2s0djtRau7lDvbG0I7XGIpcQnBn+c7Gke6y1myWFnB8SAAAAJrtEcmgXiLFcBDcW8VRWG3d1KZEsTBDOJQR3GWO+J+mPJT1ijAnn+HoAAACcIXoGknpg+15Ha67ftvfY/sJuyyXE/pGkRyVdY609LKlK0q2ujAoAAACTmrUadR/gfOw7GNNpdu91zJhDsLV2UNLDkgaMMQ2SgpJ2uzUwAAAATF79cXeWLfQnCrMcYswnxhljPi/pbyV163fHJVtJzS6MCwAAAJNYLJU5/ZPGIe5S3ePlcmzyFyTNtta+49ZgAAAAUByiQb8rdSMBd+oeL5c1wfsk9bo1EAAAABSPskguc6kTX/d4ufwrr0p6yhizWVLi6J3W2r93fFQAAACY1IyR6quijl4cV18VlTGOlTulXGaC90p6XEN7A5eP+A8AAAAeU10a0or5DY7WXLmgQTXlYUdrnsyYZ4KttV+TJGNM2fDtfrcGBQAAgMktHApo2bw6ffvJlx05MCMS9Gnp3DqFJtuaYGPMxcaY/5b0oqQXjTE7jDEXuTc0AAAATGYVkYDWLG5ypNaaxU2qjBZmPbCU23KIeyR9yVp7rrX2XEl/Keled4YFAACAya48GlRrY60WzanOq86iOdVqbapVWSTo0MhOL5cQXGqt3Xr0hrX2KUmljo8IAAAARaO2MqJ1y5vHHYQXzanWuuXNqq2IODyyU8tpdwhjzBpJ9w/f/oSGdowAAACAh9VWRLTu+mZt6ezW2s0dY1ojHAn6tGZxk1qbagsegKXcQvCNkr4maYOGTor75fB9AAAA8LjayoiWzZuuhbNrtHFXl9Zv2zvq9mn1VVGtXNCgpfPqVBkJFHQJxEjGWjsh/3A+WlpabFtb20QPAwAAAKNIJNPqGUjKWqk/kVY8lVEk6FdZOCBjpJrycEF2gTDG7LDWtoz22Jhngo0xj0v6mLX28PDtsyU9aK29xplhAgAA4EwQDgU0I1S4nR7GI5cL46YeDcCSZK09JKnG+SEBAAAA7solBGeNMceOBTHGnKuhtcEAAABAUcllnvorkv7TGPO0JCPpA5JWuTIqAAAAwEW5HJv878aYSyVdNnzXF621bx993BhzkbX2RacHCAAAADgtpxXLw6F300kevl/SpXmPCAAAAHBZLmuCT8c4WAsAAABwjZMhmIvkAAAAUBScDMEAAABAUXAyBCcdrAUAAAC4JqcL44wxzZJmjnydtXbD8J+XneRlAAAAwKSSy7HJP5TULOlFSdnhu62kDS6MCwAAAHBNLjPBl1lrm1wbCQAAAFAguawJfsYYQwgGAABA0ctlJvhHGgrCb0lKaGhfYGutbXZlZAAAAIBLcpkJ/oGkT0r6sKRrJS0Z/vOUjDEfNsbsMca8YoxZfYrnfdQYY40xLTmMCQAAAMhZLjPBPdbajbkUN8b4JX1X0tWS3pC03Riz0VrbcdzzyiV9QdKvc6kPAAAAjEcuIfi/jTHrJf1CQ8shJP1ui7STWCDpFWvtq5JkjHlQ0jJJHcc9b62kb0i6NYfxAAAAAOOSy3KIqIbC74c0tAzi6JKIU6mTtG/E7TeG7zvGGHOppHpr7eZTFTLGrDLGtBlj2np6enIYNgAAAPBuY54JttZ+1ul/3Bjjk/T3kj4zhn//Hkn3SFJLS4t1eiwAAADwjlwOy4hI+pykiyRFjt5vrb3xFC/rklQ/4vaM4fuOKpd0saSnjDGSNE3SRmPMUmtt21jHBgAAAOQil+UQ92sopF4j6WkNBdojp3nNdkmzjDHnGWNCkj4u6djFddbaXmvtVGvtTGvtTEnPSiIAAwAAwFW5hOALrLVrJA1Ya++TtFjS753qBdbatKS/kPSopE5JP7bWvmiMucMYs3S8gwYAAADykcvuEKnhPw8bYy6W9JakmtO9yFr7iKRHjrvv9pM8d2EO4wEAAADGJZcQfI8x5mxJazS0pKFM0qhhFgAAAJjMctkd4vvDf31a0vnuDAcAAABw35jXBBtjao0xPzDG/Nvw7SZjzOfcGxoAAADgjlwujPsXDV3gNn349kuSvuj0gAAAAAC35RKCp1prfywpKx3b+SHjyqgAAAAAF+USggeMMVMkWUkyxlwmqdeVUQEAAAAuymV3iC9paFeI840xv5JULekGV0YFAAAAuCiXENwh6WeSBjV0UtzPNbQuGAAAACgquSyH+JGkOZK+Luk7ki7U0FHKAAAAQFHJZSb4Ymtt04jbW40xHU4PCAAAAHBbLjPBzw1fDCdJMsb8nqQ254cEAAAAuOu0M8HGmOc1tCNEUNJ/GWP2Dt8+V9Jud4cHAAAAOG8syyGWuD4KAAAAoIBOG4Ktta8XYiAAAABAoeSyJhgAAAA4IxCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmBiR7AZJZIptUzkJQkHYmlFUtlFA36VR4d+rFVl4YUDvEjBFB49CcAk1k8kdLbgylJo/eoqSVBRcLBiRwiIXg0R2Ip9cXTenhnlx7Yvlf7DsZOeE59VVQr5jdo2bw6VUQCKo9O7BsJwBvoTwAms97BpPoTmTH3qLKwX5UloQkYqWSstRPyD+ejpaXFtrW1uVK7uzeuLZ3dWru5Q/FU9rTPjwR9WrO4Sa2NtaqtjLgyJgCQ6E8AJre3euN6Yhw96qrGWk1zqUcZY3ZYa1tGfYwQ/DvdfXGt3tCurbt7cn7tojnVWre8WbUV/KIB4Dz6E4DJbLL2qFOFYC6MG9bdO/43T5K27u7R6g3t6u6LOzwyAF5HfwIwmb1VpD2KEKyhNXZbOrvH/eYdtXV3j7Z0dKs/nnJoZAC8jv4EYDLrHUzqCQd7VF8s6dDITo8QLKkvntbazR2O1Fq7uUO9sbQjtQCA/gRgMutPZBztUUfiGUdqjYXnQ3AiOXSV9VgWcI9FPJXVxl1dSiT5RQMgP/QnAJNZPJFypUfFE4X5xsrzIbhnIKkHtu91tOb6bXuP7d8JAONFfwIwmb09mHKlRx3dX9htng/B1mrUPezyse9gTEW46QaASYb+BGAyK/Ye5fkQ3B9352vB/gRfNwLID/0JwGRW7D3K8yE4lnJnAXbcpboAvIP+BGAyK/Ye5fkQHA36XakbCbhTF4B30J8ATGbF3qNcD8HGmA8bY/YYY14xxqwe5fEvGWM6jDHtxpgnjDHnuj2mkcoigaKqC8A76E8AJrNi71GuhmBjjF/SdyX9oaQmSSuMMU3HPe2/JbVYa5slPSTpLjfHdOIYpfqqqKM166uiMsbRkgA8iP4EYDIr9h7l9kzwAkmvWGtftdYmJT0oadnIJ1hrt1prB4dvPitphstjepfq0pBWzG9wtObKBQ2qKQ87WhOA99CfAExmU0uCrvSo6rLC9Ci3Q3CdpH0jbr8xfN/JfE7Sv432gDFmlTGmzRjT1tOT39F8I4VDAS2bV6dI0JkfRSTo09K5dQqx5g5AnuhPACazSDjoSo8Ku7TW+HiT5sI4Y8wnJLVIunu0x62191hrW6y1LdXV1Y7+2xWRgNYsPn6VxvisWdykyijr7QA4g/4EYDIrC/sd7VHlkcJ9SHc7BHdJqh9xe8bwfe9ijGmV9BVJS621CZfHdILyaFCtjbVaNCe/cL1oTrVam2pVFgk6NDIAXkd/AjCZVZaEdJWDPaoiGnJoZKfndgjeLmmWMeY8Y0xI0sclbRz5BGPMeyV9T0MB+IDL4zmp2sqI1i1vHvebuGhOtdYtb1ZtRcThkQHwOvoTgMlsWpH2KGNdPpvOGPMRSf8gyS/ph9baO40xd0hqs9ZuNMZskXSJpDeHX7LXWrv0VDVbWlpsW1ubK+Pt7o1rS2e31m7uUDyVPe3zI0Gf1ixuUmtTLb9gALiK/gRgMnurN64nJlmPMsbssNa2jPqY2yHYDW6GYEnqj6fUG0tr464urd+2d9Rzseurolq5oEFL59WpMhLgK0YABTFafwr4jEIBn5LprNJZS38CMGH6YkkdiWfe1aPKQn6dXRrSoYGk+pOZd/Wo8rDf1SUQhOBxiiVSemcwJWuHzrGOpzKKBP0qCwdkjFRdFlI4yEUmAArvaH+SpCOxtGKpjKJBv8qHL3ybUhJUNEz4BTAxJkuPOlUIJsGNYjCR1qFYSg/v7NIDw59iIgGfyiIB9cfTiqezqq+KasWCBi2bV6ezo0GVhPlRAnDfocGkBhOZof60/eTfVK2YP9SfSsJ+nV1SuAtNAHhbMfUoZoKPc6BvaM3dHZvGvp7l9iVNam2sVQ1r7gC4aLzr7a5qrNW0SvoTAHdNxh7FcogxOtAX120b2rV1d+6HcSyaU61vLG8mCANwRXdfXKvz6E/sDgHATZO1R50qBE+awzImWj4BWJK27u7RbRvadaAv7vDIAHjdW73j/+UiDfWn1Rva1U1/AuCCYu1RhGANrQHe0tk97jfvqK27e7Sls1uDybRDIwPgdYcGk3rCqf7U0a3Dg0mHRgYAxd2jCMGSDsVSumNThyO17tjUoUPDV0MCQL4GExmt3exMf1q7uUMDiYwjtQBAKu4e5fkQnEoNXcE4lgXcYxFPZbVxZ5dSKX7RAMhPLJFyvj/t6lIswQd1APkr9h7l+RDcM5DQA9v2Olpz/ba96hlIOFoTgPe8M5jSA9ud70/v8G0VAAcUe4/yfAjOWo26h10+9h2MKVt8m24AmGSsS/2pCDcFAjAJFXuP8nwIPhJ35yI2t+oC8I5+l/pIf4L+BCB/xd6jPB+CYy6t3Y2zJhhAnuhPACazYu9Rng/B0aDflboRl+oC8A7X+lOA/gQgf8XeozwfgssjgaKqC8A7ylzqI27VBeAtxd6jPB+CfUaqr4o6WrO+KiqfcbQkAA8yLvUnQ38C4IBi71GeD8HVpWGtWNDgaM2VCxpUXe78+dcAvGVKSVAr5rvQn8rCjtYE4E3F3qM8H4KDQb+WzatTJOjMjyIS9GnpvDoF/Z7/0QLIUzQcdL4/za1TmGsWADig2HsUSU3S2dGgbl/S5Eit25c06eySoCO1AKAk7Neaxc70pzWLm1QaJgADcE4x9yhCsKSScECtjbVaNKc6rzqL5lSrtbFWJSEuOgHgjLNLQrrKqf7UVKuzSkIOjQwAirtHEYKH1VRE9I3lzeN+ExfNqdY3ljerpoK1wACcNa0yonV59qd1y5tVS38C4IJi7VHGFuH5mS0tLbatrc2V2gf64trS2a07NnUonsoeu39qSVDTz45q/6GY3h5xpnUk6NPtS5rU2lhLAAbgqrd643qis1trN7+7PwV8RqGAT8l0VukRZ7ZHgj6tWdyk1qZaAjAA152sR51MIXqUMWaHtbZl1McIwScaTKZ1aDCloE9KpK2MkfpiKcVTWUWCPlVEg7JWCgWMMlnprJIgSyAAFMThwaQGEhnt2ndIPp/R1LKwEums4qmMIkG/wgGf3u5PKJu1mttwtkpDfpZAACiYoz1q464urd+2V/sOxk54Tn1VVCsXNGjpvDrXe9SpQjDJbRSJdFay0kM7uvTA9pO/gSvmN2jZvDol0lnxOwZAIfiHN9Dcdyim//fXr5+0P33i987V3Pqzjz0fAArhrJKQziqRPnP5ubp27nRZK/Un0sc+qJeFAzJGqi4LT/hONcwEH2e8U/lXNdZqWiVfNwJwT3fv0HKtnL9qbKxVLf0JgAexHGKMuvviWr2hXVt39+T8Wi48AeAm+hMA5O5UIZjdIYa91Tv+XzCStHV3z//f3v3H1nXedRz/fGNf33sdJ06Tui5ybDJtHY6BJIAbBlRiWSJYFykRUSfRwIbGpCHRocH4gwopQ2AhMsQvIdhgWkeYWDtQiYghhY2GwGBdl7gjSTc7RVGrOTWr5zmN09i+19fOlz/uWbEcx/GPc+49x8/7JUW91/fJB+6wsQAADVFJREFU42/8yN/76bnPOUePn7yk0RulmCsDELpR+hMAxI4QLOn1qRmdGRpd9RvMd529PKZnB0d1fWompsoAhO6N6YqejbE/3SxV7j4YAAJACJY0VZ5T3+nBWObqOz2oyfJcLHMBwI3SbKz9aWJ6Npa5ACDrgg/B0+WKTl0YWdZJJstRqtxS/8URTZc52gJgbcozs4n0p/IMQRgAgg/B41MVPXV+ONY5nzw3rPEpQjCAtRmbnEmkP41NsmULAIIPwe5a9Dqba3H12rQyeNENAClDfwKA5AQfgm+WkvlY8GaZjxsBrA39CQCSE3wInq4kcxJbKaF5AYSD/gQAyQk+BBcTumVfobG+twIEkH30JwBITvAhuKXQmKl5AYSD/gQAyQk+BJtJnVuLsc7ZubUos1inBBAg+hMAJCf4ELytOadHH+yKdc6je7vU1pKPdU4A4Wnb2JRIf7pvE/0JAIIPwcV8Tof3dKiQi+dHUcht0KHdHcontJcPQDjyTY2J9Kcm9gQDACFYkprzDTp2sCeWuY4d7NHGPG8wAOKxudAYa39qLbIfGAAkQrAk6Z7mJu3f2a593W1rmmdfd5sO9LRrS3NTTJUBCN2mYk4HYuxPLYVcTJUBQLYRgiP3txZ0/MiuVb/R7Otu0/Eju9S+uRBzZQBC105/AoDYmWfw/pm9vb0+MDCQyNyvTZR0ZmhUfacHVarcuuv4Qm6Djh3s0YGedt5gACRqdKKkZ+lPALBsZvaCu/cu+hoh+HbXp2Y0WZ5T/8URPXluWFevTd82pnNrUUf3dunQng5tbGpgCwSAmrhZqmhienbZ/am10MgWCADBIgSv0nS5ovGpitylm+VZlSpzKuQa1JJvlJnU1pLnKhAA6qI8M6uxyZk79qf7NuW5CgSA4C0VgjlNeAnFfE7b8xxBAZA++aZGbW+ihQPAanFiHAAAAIJDCAYAAEBwCMEAAAAIDiEYAAAAwSEEAwAAIDiEYAAAAASHEAwAAIDgEIIBAAAQHEIwAAAAgkMIBgAAQHAIwQAAAAgOIRgAAADBIQQDAAAgOIRgAAAABIcQDAAAgOAQggEAABAcQjAAAACCQwgGAABAcAjBAAAACE5jvQtIs+lyReNTFUnSG9Ozmq7MqZhr0KZi9ce2rTmnYj5XzxIBBIr+BCDNstCjCMGLeH1qRlPlOZ26MKKnzg/r6rXp28Z0bi3q0Qe7dHhPh5rzDbqnuakOlQIIDf0JQJplqUeZu9flG69Fb2+vDwwMJDL3axMlnRkaVd/pQZUqt+46vpDboGMHe7R/Z7vuby0kUhMASPQnAOmWxh5lZi+4e++irxGC/9/ojZIeP3lJZy+Prfjv7utu0/Eju9S+mTcaAPGjPwFIs7T2qKVCMCfGRV6bWP3iSdLZy2N6/OQljd4oxVwZgNDRnwCkWVZ7FCFY1f0rZ4ZGV71433X28pieHRzV9amZmCoDEDr6E4A0y3KPIgRLmirPqe/0YCxz9Z0e1GR5Lpa5AID+BCDNstyjgg/B0+WKTl0YWdYG7uUoVW6p/+KIpsuVWOYDEC76E4A0y3qPSjwEm9m7zewlM7tiZo8v8nrezP42ev2rZrYj6ZrmG5+q6Knzw7HO+eS54TevjQcAq0V/ApBmWe9RiYZgM2uQ9OeSHpbUI+lRM+tZMOyDkl5397dJ+mNJH0+ypoXcteg17Nbi6rVpZfCiGwBShv4EIM2y3qOSPhK8V9IVd3/Z3WckfV7S4QVjDkv66+jx05L2m5klXNebbpZmk5m3nMy8AMJBfwKQZlnvUUmH4A5JV+c9fzX62qJj3H1W0oSkbQsnMrMPmdmAmQ2Mja3tDMT5pivJbMAuJTQvgHDQnwCkWdZ7VGZOjHP3T7l7r7v3trW1xTZvMdcQ21zzFRqTmRdAOOhPANIs6z0q6RA8Iqlz3vPt0dcWHWNmjZJaJY0nXNebWgqNmZoXQDjoTwDSLOs9KukQfF7SA2b2FjNrkvSzkvoXjOmX9AvR40ck/ZvX8F7OZlLn1mKsc3ZuLap2u5oBrFf0JwBplvUelWgIjvb4fljSFyQNSfo7d/+Gmf2OmR2Khj0haZuZXZH0UUm3XUYtSduac3r0wa5Y5zy6t0ttLflY5wQQHvoTgDTLeo9KfE+wuz/j7m9397e6++9GX/uYu/dHj0vu/l53f5u773X3l5Ouab5iPqfDezpUyMXzoyjkNujQ7g7lE9onAyAc9CcAaZb1HpWZE+OS1Jxv0LGDCy9fvDrHDvZoY543GADxoD8BSLMs9yhCsKR7mpu0f2e79nWv7aoT+7rbdKCnXVuam2KqDEDo6E8A0izLPYoQHLm/taDjR3atehH3dbfp+JFdat9ciLkyAKGjPwFIs6z2KKvhhRhi09vb6wMDA4nM/dpESWeGRtV3elClyq27ji/kNujYwR4d6GnnDQZAouhPANIsjT3KzF5w995FXyME3+761Iwmy3PqvziiJ88NL3pf7M6tRR3d26VDezq0samBjxgB1AT9CUCapa1HEYJXabpc0fhURe7V+1iXKnMq5BrUkm+UmdTWkucsawB1QX8CkGZp6VFLhWBuG7SEYj6n7flcvcsAgNvQnwCkWRZ6FCfGAQAAIDiEYAAAAASHEAwAAIDgEIIBAAAQHEIwAAAAgkMIBgAAQHAIwQAAAAgOIRgAAADByeQd48xsTNI36/Ct75X0nTp8XySLdV2/WNv1i7Vdn1jX9atea/u97t622AuZDMH1YmYDd7r1HrKLdV2/WNv1i7Vdn1jX9SuNa8t2CAAAAASHEAwAAIDgEIJX5lP1LgCJYF3XL9Z2/WJt1yfWdf1K3dqyJxgAAADB4UgwAAAAgkMIBgAAQHAIwQuY2WfM7Ntm9vU7vG5m9qdmdsXMLpnZD9e6RqzcMtb156L1fNHMnjOz3bWuEatzt7WdN+5BM5s1s0dqVRvWZjlra2bvNLMLZvYNM/uPWtaH1VtGT241s380s4vR2n6g1jVi5cys08zOmtlgtG4fWWRManIUIfh2JyS9e4nXH5b0QPTnQ5I+WYOasHYntPS6viLpJ939ByX1KYUb+HFHJ7T02srMGiR9XNIXa1EQYnNCS6ytmW2R9AlJh9z9+yW9t0Z1Ye1OaOnf28ckDbr7bknvlPSHZtZUg7qwNrOSft3deyS9Q9JjZtazYExqchQheAF3/5Kka0sMOSzps171vKQtZvY9takOq3W3dXX359z99ejp85K216QwrNkyfmcl6Vck/b2kbydfEeKyjLU9Kumkuw9H41nfjFjG2rqkTWZmklqisbO1qA2r5+7fcvevRY/fkDQkqWPBsNTkKELwynVIujrv+au6fYGRbR+U9M/1LgLxMLMOST8jPrVZj94u6R4z+3cze8HM3l/vghCbP5O0U9L/SnpR0kfc/VZ9S8JKmNkOST8k6asLXkpNjmqsxzcF0srM9qkagh+qdy2IzZ9I+g13v1U9qIR1pFHSj0jaL6ko6Stm9ry7/099y0IMflrSBUnvkvRWSf9qZv/p7jfqWxaWw8xaVP307VfTvGaE4JUbkdQ57/n26GvIODPbJenTkh529/F614PY9Er6fBSA75X0HjObdfd/qG9ZiMGrksbdfVLSpJl9SdJuSYTg7PuApONevZnBFTN7RVK3pHP1LQt3Y2Y5VQPw59z95CJDUpOj2A6xcv2S3h+d3fgOSRPu/q16F4W1MbMuSSclvY+jSOuLu7/F3Xe4+w5JT0v6ZQLwunFK0kNm1mhmzZJ+VNU9iMi+YVWP8MvM2iV9n6SX61oR7iraw/2EpCF3/6M7DEtNjuJI8AJm9pSqZ6Lea2avSvotSTlJcve/kPSMpPdIuiJpStX/W0XKLWNdPyZpm6RPREcMZ929tz7VYiWWsbbIqLutrbsPmdm/SLok6ZakT7v7kpfKQzos4/e2T9IJM3tRkqm6pek7dSoXy/cTkt4n6UUzuxB97TcldUnpy1HcNhkAAADBYTsEAAAAgkMIBgAAQHAIwQAAAAgOIRgAAADBIQQDAAAgOIRgAAAABIcQDAAZEl1gnt4NAGtEIwWAlDOzHWb2kpl9VtLXJR0zs/NmdsnMfnvemMtm9jkzGzKzp6O7qMnMjpvZYDT+D+r5bwGAtOBmGQCQcma2Q9Vbxv64pM2SHpH0S6reSatf0u+repvZVyQ95O5fNrPPSBqU9FeSnpPU7e5uZlvc/XrN/xEAkDIcCQaAbPimuz8v6aeiP/8t6WuSuiU9EI256u5fjh7/jaSHJE1IKkl6wsyOqHqbUgAIXmO9CwAALMtk9F+T9Hvu/pfzX4yOFi/8aM/dfdbM9krar+oR5A9LeleypQJA+nEkGACy5QuSftHMWiTJzDrM7L7otS4z+7Ho8VFJ/xWNa3X3ZyT9mqTdNa8YAFKII8EAkCHu/kUz2ynpK2YmSTcl/bykOUkvSXps3n7gT0pqlXTKzAqqHkX+aF0KB4CU4cQ4AFgHou0Q/+TuP1DnUgAgE9gOAQAAgOBwJBgAAADB4UgwAAAAgkMIBgAAQHAIwQAAAAgOIRgAAADBIQQDAAAgOP8HxLSUVCR80ZUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ lengths\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3xU5Z0/8M9z5pKZXLgMJCHAaEAhhEuwIbUoiqGAWLm1grXaVba6oV3d1tUV7Q3blbpr1d5/7bawWNEtakG3CLhFUPGCeAkIEQkBBCQhEAIDJJnM9Zzn90cuBshlJuecYYbzeb9eeUkmkydPMr4+833OeS5CSgkiIiIiIitRLnQHiIiIiIgSjUUwEREREVkOi2AiIiIishwWwURERERkOSyCiYiIiMhy7Be6A70xcOBAmZ+ff6G7QURERERJbNu2bSeklNmdfS0li+D8/HyUl5df6G4QERERURITQnzW1dc4HYKIiIiILIdFMBERERFZDotgIiIiIrIcFsFEREREZDksgomIiIjIclgEExEREZHlsAgmIiIiIsthEUxERERElpOSh2Ukiqpq8DWHEdUkGoNRhCIq0hw2ZLnssCsCnnQnbDaOI4go8ZhPRJTMUiGjWAR3IhzV4POHsa6iFiu2HkK1L3Dec7weNxZclY9ZRYPhyXDCaeebDRGZj/lERMkslTJKSCkvyA/Wo6SkRJp1bLLPH8ZrlXVYvGYXghGtx+e7HAqWzB2LqYW58GQ4TekTERHAfCKi5JaMGSWE2CalLOn0ayyCP3eyKYTvv/gxNlbWxf290wtz8di8cRiQmWZ4v4iImE9ElMySNaO6K4J5j6yVzx/u9YsHABsr6/D9Fz/GKX/Y4J4RkdUxn4gomaVqRrEIRsv8ldcq63r94rXZWFmHTZV1CEd7vgVARBQL5hMRJbNUzigWwWgZwSxes8uQthav2QUfr7YQkUGYT0SUzFI5oyxfBKuqhnUVtTFN4I5FMNLSnqryagsR6cN8IqJkluoZZWoRLIR4SghxXAjR6RBBtPitEGK/EKJCCFFsZn8642sOY8XWQ4a2uWLrIfiaebWFiPRhPhFRMkv1jDL7SvDTAG7o5utfATCi9WMhgP8yuT/niWqy0z3s9Kj2BRDVUm/XDSJKLswnIkpmqZ5RphbBUsq3APi6ecpcAM/IFu8B6CeEyDOzT+dqDEZNabfJpHaJyDqYT0SUzFI9oy70nOAhAKo7fF7T+th5hBALhRDlQojy+vp6wzoQiqiGtXVWu1yBTUQ6MZ+IKJmlekZd6CI4ZlLKpVLKEillSXZ2tmHtpjlshrXVEY8pJSK9mE9ElMxSPaMudBIeAeDt8PnQ1scSJstlT6l2icg6mE9ElMxSPaMudBH8MoA7WneJmAjgjJTyaCI7YFcEvB63oW16PW7YFWFom0RkPcwnIkpmqZ5RZm+R9hyArQAKhBA1Qoi7hBDfEUJ8p/UprwA4AGA/gGUA7jazP53xpDux4Kp8Q9tccFU+PBnGn39NRNbCfCKiZJbqGWX27hC3SinzpJQOKeVQKeVyKeUfpZR/bP26lFLeI6W8TEo5TkpZbmZ/OmOzKZhVNBguhzF/CpejpT0br7QQkU7MJyJKZqmeURd6OkRS8GQ4sWTuWEPaWjJ3LDwZTkPaIiJiPhFRMkvljGIRjJZViFMLczG9MFdXO9MLczGtMJcrr4nIMMwnIkpmqZxRTMNWngwnHps3rtcv4vTCXDw2bxz68yoLERmM+UREySxVM0pImXrHZ5aUlMjycnOmD/v8YbxWWYfFa3YhGOl5s2aXQ8GSuWMxrTCXbzBEZCrmExEls2TMKCHENillSadfYxF8vnBUg88fxrqKWqzYegjVvgDsioDTriAc1RDVJLweN/7x6nzMHDcYngwnbzESUUIwn4gomSVbRrEI7qVQOIp6fxgA0BiIIhBR4XbYkOVu2cQ5O9OJNAc3nSeixGM+EVEyS5aM6q4IZkJ2ojkUxalABGt2HMFzHxxGtS9w3nO8HjduvfISzL1iCPq7HUhP45+SiMzHfCKiZJZKGcUrwec43hDEpso6PLJud8zzWR6eNRrTCnOR08dlSp+IiADmExElt2TMKE6HiNHxhiAeeqkCb+ypj/t7p4zKxs9vKuIbDRGZgvlERMksWTOquyKYqyVa6XnxAOCNPfV46KUKHG8IGtwzIrI65hMRJbNUzSgWwWiZv7Kpsq7XL16bN/bUY1NlHZrDUYN6RkRWx3wiomSWyhnFIhjAqUAEj6zbbUhbj6zbjVPNEUPaIiJiPhFRMkvljLJ8ERyJqFiz40hME7hjEYxoeHnHEUQiqiHtEZF1MZ+IKJmlekZZvgiu94fw3AeHDW1z5QeHUe8PGdomEVkP84mIklmqZ5Tli2BNotM97PSo9gWgpd6mG0SUZJhPRJTMUj2jLF8ENwbNmYBtVrtEZB3MJyJKZqmeUZYvggMmzTsJcs4dEelkVo6EoswnItIv1TPK8kVwusNmSrtuk9olIuswK0dcduYTEemX6hll+SI402XOedVmtUtE1pGRZk6OmNUuEVlLqmeU5YtgKQGvx21om16PGyl4GjURJRlNSlPySWNAEZEBUj2jWARLiXnFQw1tc37xUEjwTYaI9Imomin5FFGN2dOTiKwt1TPK8kXwSX8YpSOz4XIY86dwORRcNzIbvqawIe0RkXWFopop+RSOsggmIv1SPaMsXwQ77Qq2Hz6FxTNHG9Le4pmjse2zU3DaLf+nJSKdstLseGrLITw8a4wh7f1k1hgsf+cgMjknmIgMkOoZZflKLSvNjuJL+sOT4URpQbautkoLsuHJcGLCpf35JkNEugkh0D/DgfHevobkU5G3L/pnOiGEMKiHRGRlqZ5Rli+C0xwK3txbjwdW7cTCycN7/SKWFmRj4eTheGDVTry1rx5pBt0aICLrctoFbp+YjzuWv29IPt2x/H3cMTEfabxTRUQGSPWMsnwSRjWJ1dtr4A+rKFtRjpsneLF4VmHM81tcDgWLZxXi5glelK0ohz+sYtW2GkRVLowjIn1sisDre+pw0h8xJJ9O+iN4fU8dbNwmmIgMoAhzMipRLF8Eyw7nXvvDKu5ZuR07Dp/G82UTcd+0EV1u/eH1uHHftBF4vmwidhw+jXtWboc/3HLCSbUvwL0hiEi35pCKZ9/7DIBx+fTse5/BH+SJcUSkXzCimZJRoQQtjLP8xNWm0PnnU6+tOIpXdh3D1FE5eOD6Agzu50ZE1RCMaHA5FDhsCmpPB7Cu4ih++/p+qNr5Ja+/k3aJiOKhKKJ9kN5Gbz5V+wJQFM4JJiJjmJFRiWL5IjgY7vyKiKpJvLq7Dq/ubrksb1cEnHYF4aiGaCdF77kCEW5BRET6NAU7H0zrzScO0onICP6wORnV3EW7RrN8EeyK8dzrqCYR7aJg7rRdLjwhIp2CMQ6m482nWNslIupOqmeU5Su19DRzVoiY1S4RWYdRG9Cfi7tDEJERzLrgx90hEkRVzTn3urN5wkRE8Uh3mjRIN6ldIrKWDJPORDCr3XNZvghWhIjp3Gu7IpDutMEew4KS+cVDoYALT4hIn6gW2yA9nnziIJ2IjKLGmFHx8HrcUGViMsryc4IhgNKR2fjjm5+eNQfFpghMK8zBjePyMKSfG6GohmBEhcthQ5pdwZHTAayvOIrX9hw/6w2l7dxr1sBEpJddaRmk/3rTvrMe720+AS2DdBt3hyAiA0Q1rdOMOlc8C+PmFw9FVOUWaQnzvzuOYNGMAixZVwkAmDN+MO6clI/Ne+vx5KtVnW7X4fW4Ma94KO4uvQxPbTmEl3fWAgAWzSjASzuO4K5JwxL6OxDRxUdRxHmDdD351DZIV3hsMhEZIKpKUy4kJurAMSETdMnZSCUlJbK8vNyQto43BPDX8hoMG5iJtTuPYPb4ITjWEMATG6rOekG7GsW4HAoWzSjAoD7u9u8/dLIJN0/wIqePy5A+EpE1HTndjKVvHcAlnnT88tW9eHz++E7zqSsd8+nB1Ttx//Uj8ZmvGd+5djgG909PwG9ARBezal8znthQhfHevp1eSHxxe023A/XSkdlnDdQXzyrEjsOn8eANo+D1GJNRQohtUsqSzr5m+SvBgYiGuVcMwW3LtmJl2VV4+OVdeGNPPWyKwIwxuTGNYpasq8SUUdl4ZM7Y9nYCEZ7IRET6qKrEkH7pGNIvHSvLJuJXm/Zic1V9zN8fjGhYsq4SpQXZWFk2EUfPBKFpQDQFL34QUXL6qPoUZowZhBvG5LZfSPzGsve6HahX+wL49aZ9+OObn2LRjALMGDMIa3cewaA+buyoOZSwvlv+SvCRU82oqDmDSwak44kNVdhcVd/rUUxpQTYWzSjAYV8ziob0xRBeaSEiHfYfbwQgcKC+CS98WI3X9hzv9HmxzLebOioHt3zRi+HZmQAkLs/JMq/jRGQJtaea8bcdtfjzloN46e5J7RcS49V2IfGmP2zBndcMw5zxgw2roXgluBsRVeK9gydxqjmCDw/68Pvbins9inlw9U5UVJ9BZV0DCgf1SeBvQUQXI7ui4P2DJxFV5VkFcG/m27225zi+PCoHPn8IE4cPvFC/EhFdRMKaxLUjBmLYwAwsXrMrrjtVHb2xpx6L5S48MncshvZ3I5KgHWwsXwTbFIGvXTEEd634EMsWlGDpWwd6fbtx2YISfHfldixf8EWuviYi3WyKQEFuFr6x7L32x/QsjFuyfjeeL5vIfCIiQ9iEwIeHfEiz27qtnWK5W7W5qh7TC3NRezqA68cMMqvLZ7H8dIjDJ/146aMjGJGThVXbqrt8EWN5AUsLsnHzBC/2H2/E14qH4BJPhiF9JCJrasunX2/ahwynTffCOH9YxX3TRjCfiMgQe442IBhRz7t7rmd3iOfLJsLltGGUQXfUOR2iG6qUONUcxrGGwFkFcG9ewM1V9bh2xECcbA5zM3oi0k2VEi9ur0GG09btnaquBunn3qkqW1GO1dtrMOeKwYn8NYjoIuWwKfj7J8fOKoA7u1t1bkZ1dbcqGNHw5t56zCpKTEZZvghumw5h1O3GJzZU8XYjERnCpghU+wL4/W3FZxXA8Q7S277v8fnjcc/K7cwnIjKE3Sbw4vYaADjrbtU3l7+Pay4fiAeuL+g2o5a9fQD3Tx/Zvq7KH1axensNvvqFIYnpf0J+SjKTwOa99QhGtLNewN4ujPOHVby5tx5fK07MC0hEF6/mkIo54wefdaeqt4P0tjtVs4vy0BzmFo5EpJ8iWgbqHe9W9XE58Je7vhRXRr0dPNF+t6raF0jYgT6WnxN8sL4Jd/z5A/iawr1aGNemtCAbCycPR9mKcngynXjmzisxbGCmIX0kImvacfgUAOAby96DTQjdc4JVKfF82URAAFd4+5vdfSK6yFUebcBXfvM2fn9bcbcHjnWlswPH7lm5HX+/91qMyjN/TrBiyE9IYTZbyyjm8fnje10AAy3zgZe+dQCPzx+Pal+AtxuJSLf+GU5s3lsPmxBYtqAEq7ZVY8m6ypjeXIDP5wSv2laNZQtKYBMCb+6tR/90p8k9JyIrCEVa7lad9Adxx9X5ujLqjqvzcdIfxOyiPASjsX2/XpYvgju73dhbm6vqcawhwNuNRGQIRbTMtzNykL56e03CbjUS0cXN5bDhzkn5yM50GZJR2Zku3HXNMLjsiSlPLV8EByMa7pyUjyc2VBnS3hMbqnDXNcMQinEURETUnS94+xs6SL9iaD+DekZEVufJdKD6VDNqzxiTUbVnAqg51QxPhsOgHnbP8kWwJ9PRvjDOCG3be/RP0AtIRBev5nDUlEF6IMI7VUSkXzgqkT8gw9CMunRABsJqYtarWb4IbrvdaCTebiQiI9gVxZRBup1rFojIAE67wGt7jhuaUa/vOQ6nLTEZZfkiWEp0un2HHtW+AFJw0w0iSjId9+A0yurtNVy4S0SGCIQ1UzIqkKAppZYvgv2hqCntNofNaZeIrKNtD04jJXIPTiK6+JmRUYli+SLYrLlxAe4OQUQ6NZk0SDdr8E9E1mLehcTE1FCWL4JdDpsp7aaZ1C4RWUfQpEF6MMpBOhHpFzZpP1+z2j2X5YvgzDRzTo42q10isg7TBuk2DtKJSD/TMor7BCeO1+NO6vaIyJpMG6S7OEgnIv3MypJEZZTli2BNSswrHmpom/OLh0Jyewgi0klRzBmkc3MIIjKCEOZkVKIiyvJFsM8fRunIbLgcxvwpXA4F143Mhq85bEh7RGRddkVgvsGD9JsnDIXDZvnoJyIDuB0KvvmlSw1t8x++dCnczsRM2bJ8ErrsNjy15RAWzSgwpL1FMwqw/J2DnHNHRLoFIxquM3iQPnlENk+MIyJDNAZVTLpsgKEZdfVlA9AYTMwONpYvgjNddry8sxaD+rhRWpCtq63SgmwM6uPG2oqjnHNHRLo1h1RTBumJ2n6IiC5+y94+aGhGLX3rgCFtxcLyRTDQMv/kwdU7sXDy8F4XwqUF2Vg4eTgeXL2TC+OIyBChqGrKID2UoO2HiOji5g9FTcko7hOcIG6nglu/eAn8YRVlK8px8wQvFs8qjPnSvsuhYPGsQtw8wYuyFeXwh1XcduUlSE/QfBYiuni17Tdu5CAdSNz2Q0R0cWvbz9fojOI+wQniD6mYPX4wXA4F/rCKe1Zux47Dp/F82UTcN21El1d1vR437ps2As+XTcSOw6dxz8rt8IdVuBwKZhUNNu2kJyKyjqzWaVVGDtI7tktEpEfbPsFGZ1SiBuqWT0K3U8HB+mYsnjkaP/rbLgDA2oqjeGXXMUwdlYMHri/A4H5uRFQNwYgGl0OBw6ag9nQA6yqO4rev74eqfb4d2uKZo3H0dDPyB2ZeqF+JiC4SUrYMuKt9gfZB+uyiPDxfNhFv7q3H6u01qPYFzvs+r8eN+cVDcd3IbCx/5yDWVlSe9TXu4EhERui4/smojDq3XTNZvggOhDWkO2340jAPpozKxht76gEAqibx6u46vLq7DkDLVkVOu4JwVENU6/wdZMqobHxpuAeBsMrV10SkW0aagm9eeSke+/ue9sf0DNKBlu2HMtI4XYuI9Os4UG+jN6MSOVC3fBGsaRKHTvrRGIzgkTlj8TB2tRfCHUU1iWg3E7WnjMrGI3PG4u19x9HH5cCYIf3M7DYRWUBjUMXMojz8+rW9CEY+nyPXm0E60HLr8cZxeWgMRuHJSDO9/0R0cXPYBW6feCn+45U9Zz3e24wCgNsnXgonj01OjIgm4e2fjv7paXhywx788CuFePSrY+Oaz/LoV8fih18pxJMb9qB/ehqG9k9HROXqayLSR9Mkak8HsHjm6G6fF9UkmsNqj28ubdO1engaEVFMAmEVpQU5PdZMsWaUy6GgtCAHAe4OkRhZLjue2nII9U1B3HLlJXj0lUoEIyo23ncdHrqhoNuFcQ/dUICN912HYETFo69U4pYrL0F9UxDL3znIhSdEpFtEk0izK+3TtfRom67ltNs4SCciQzgUBVXHGvDwrDGGtPeTWWOw91gDbAk6293ylZpdEfio+hRmjBmEZ949hJsneHGsIYCZv3sbC68djj/dPgHpTjv8oWj7fJaMNDuaw1G8XnkcM3/3Nu6dOgI3T/DimXcPYfb4IdhRcxr2BL2ARHTxynLZ8f9e34+Jw/t3O12rJx2na2391Icfziw0obdEZDU2m4C3fzqON4YwdVQOXttzvNdtTR2VgwGZTuRkpcFuYxGcEJ50JxZclY8HV+/EsgUlWPrWAWSl2fHMt67Em3vr8e1nt6HaF4DLriDTZUdTMIpgVGtf2fjMt67E8ncOojF0AgsnD0fZinLcN30k59sRkW4dB+lt07WmjcrFkvW7z5oj3BWXQ8HimaNx5TAPntywB9ePyeMgnYgMY1cE/nfHEVyWnYGyycMBoFeF8NRROSibPBx76xrwzqcn8N0plxvd1U5Zvgi22Vr29X3y1SqUrSjH4/PH41hDAN9c/j4mXTawx5WNS98+gPunj8SgPm6UrSiHKiVmFQ1O2KV8Irp4nTtIf/SVSlx7+UBsvO86rKuoxcoPDne5/dBtV16CWUWD8eonx/DoK5UcpBOR4TzpTnj7p2NAhgtPbzmIm1q3PfuP/6uMeaD+w68UYkBmGp7echCzxw9BOCoTllFCpuCGkSUlJbK8vNyw9sJRDWt2HMGi1RUAgNlFebjrmmFn7XF37srG8/e4OwoAeGJ+EeZeMSRhKxuJ6OJ27EwQpU++AZsQ7YP037y2DwuvHY4vF+Z0O11r6dsHcO/UERjUp+VoeFVKbH5gCgb1dV3oX4uILhLHzgQx87dv4Xe3FbffTb/r2mF4Z98JvFBe3eVA/ZYSL64ZMRDL3z6IxlAUCycPx3dXbsf67002NKOEENuklCWdfo1FcAufP4yHVldgY2XLdh42RWDqqBzMLMrD4H5uRFUN4aiE0y5g73Al+PU9x9v3uJtemIvH5xehf4bT0L4RkXXFMkjPdNrQP8OJU/4wmsIqB+lElDBtGfXTlz9pH6j/cuNeTLpsYHsNFVE1hKManPaz76a/++mJ9rvpD67eiZ/OGWN4RnVXBFt+OkQbT4YTj80bB7yI9kJYtM5oEEDrxs0SUgq0TXToOOFhemEuHps3jgUwERnKaVcwtTAX0wtzsbGyDmsrjmLD7jrcO/Vy/On2CchwtqxVCEVVpNltyHTZ4W+9Evz1pe8hHG25JTm9MBfTCnNZABORodoy6tVP6tpPjPvLXV/CYV8znHYFAoCQgA0CQrbUTml2BbPH5eGe0svaT4y7EBnFIriDAZlp+Pn8IiyoPYNMlwOHT/rbXwyJln3u7K0HLaXZFcwcl4e7p1yOpmAEYwb3ZQFMRKboOEh3O224c1I+DvuacfhkMwZmpiEU1RCMqHA5NAQiKk40heDtn46/LpyIp7YcQiCscpBORKbpmFFCCEAAivj8UqEGIKxpUGyfn1YpFACi5fkX6kIii+BuHDjhx4vdnHs9r3goLh2YAaClSCYiMsuAzDQ8+rWxqDzaAAgRcz7NKx6Cwrw+GJDJxXBEZJ6zMgoC++ubeswor+fCZhTnBHdwsimEvXWN2H20AU9sqIp5ZeOiGQUYndcHI3Oz+EZDRKZgPhFRMkvWjLqgC+OEEDcA+A0AG4D/llI+ds7XLwGwAkC/1ud8X0r5SndtmrUwrsbXjF9u2ovNVfFvRl9akI37p42E15POW45EZCjmExEls2TOqO6KYFNnHwshbAB+D+ArAEYDuFUIMfqcp/0YwF+llF8A8A0AfzCzT50JRzUcbwz2+sUDgM1V9fjlpr043hhsX4hCRKQX84mIklkqZ5TZS/CuBLBfSnlAShkG8DyAuec8RwLo0/rvvgBqTe7Tec40h7Fl/4lev3htNlfV4539J3CmOWxQz4jI6phPRJTMUjmjzC6ChwCo7vB5TetjHf0UwD8IIWoAvALgu501JIRYKIQoF0KU19fr+0N3pKoaGkJRPLGhypD2nthQhYZQFKrKqy1EpA/ziYiSWapnVDJsGHkrgKellEMB3AjgWSHEef2SUi6VUpZIKUuys7MN++FnghGs21kb0wTuWAQjGtZX1OJMMGJIe0RkXcwnIkpmqZ5RZhfBRwB4O3w+tPWxju4C8FcAkFJuBeACMNDkfrVrDqtYvb3G0DZXbatBc1g1tE0ish7mExEls1TPKLOL4A8BjBBCDBNCONGy8O3lc55zGMBUABBCFKKlCDZuvkMPNCk73cNOj2pfAFoKbj1HRMlFkzApnwxtkogsKtUzytQiWEoZBfAvADYAqETLLhCfCCEeEULMaX3avwEoE0LsBPAcgH+UCdy8uCkYNafdEK+0EJE+TSbdEvSHzMk9IrKWVM8o00+Ma93z95VzHnu4w793A5hkdj+6EjJpK45whEUwEeljVj6FmE9EZIBUz6hkWBh3Qbkctp6flETtEpF1uJlPRJTEUj2jLF8EZ6aZczE8w6R2icg6zMoR5hMRGSHVM8ryRbBNAbwet6Ftej1u2BRhaJtEZD0C5uQTEZERUj2jLF8Euxw2/MOXLjW0zdsnXgq3w/J/WiLSyeVUzMknJ6dDEJF+qZ5Rlq/U+rocmDF2EFwGFa0uh4LrxwxCH7fTkPaIyLqkBKaMyjE0n0oLcpDADXiI6CKW6hll+SLYZlOQ4bDh4VljDGnvJ7PGIMNh43QIItLNk+7EZyf9hubTZyf98GSkGdIeEVlbqmeU5YtgAOib7sSES/tj6qgcXe1MHZWDCZf2R990XgUmIv1sNgXjhvTDwEynIfk0INOJcUP6cZBORIZI9YxiEQzAaVeQnZWGf502stcv4tRROfjXaSORnZUGp51/ViIyhifDCX8oirLJw3XlU9nk4fCHovBkcJBORMZJ5YxitdbKk+HE4H4u/NO1w/DInDExz29xORQ8MmcM/unaYRjcz4X+fIMhIgM57QquK8jB/2z9DDcVD+1VPt1UPBT/s/UzlBbkcJBORIZK5YwSqbhAoqSkRJaXl5vSts8fxu7aM8hyOfD2vnq8UF7d6bnYXo8bt5R4ce2IbDQFIxg9uC8LYCIyzcmmEL7/4sdwORTcde0wvLPvRI/5dM2IgVj+9kEEIxoemzcOAzI5F5iIzJGsGSWE2CalLOn0ayyCz+bzh1FZewaZLgeqfX7YbQoGZKYhomoIRTSkORQ4bApONoUQVTV4PRloCkZQOLgvbzMSkal8/jA2Vdbh39d+gkmXDcTMojwM7uc+L59qTwewruIo3v30BH46ewymFeZykE5EpkvGjOquCOaxQR20jWLcThvunJQPVQPsrVvVCQCKEOg4VVuVgJQSL5TXIBD+jFdaiMh0o/Oy8Pd7J2NdRS2efLUK1b4A7IqA064gHNUQ1SS8Hjduu/ISPDxrNM4Ewki9Sx1ElKqG9HXhL/80EW9WHe82o+YXD8U9Uy6HPxi5YBnFK8GtfP4wHv7bLnxlXB6ONQTwxIYqBCNa+9fPfQHbuBwKFs0owKA+bvzfx0ex5KtjecWFiAx3simEvXWN2H20Ab/cuPe8qyzBiAZXJ1dZ7p8+EqPz+mBkbhYH6URkmrYLiRsr62BTBKaOyukxo17fcxyqJjG9MJfTIWJldBEcjjp76I0AACAASURBVGpYX1GL3L4uLH3rADZX1cfdRmlBNhZOHo66M0HMLBrMxSdEZBifP4waXzN+uWlvp/nU1SC9TWlBNu6fNhJeTzoH6URkOJ8/jIdWV2BjZV2nX+8powBgemEuHp9fZHhGdVcEs1JDy4vncti6LYDtikC60wZ7F3vXba6qx9K3DsDlsMHnD5vZXSKykHBUw/HGYJcFcCw2V9Xjl5v24nhjEOGo1vM3EBHFKBzV8FplXZcFcKw2VtZhU2VdQjPK8nOCVVXDx0dOo/ZM4Kw3GJsiMK0wBzeOy8OQfm6EohqCERUuhw1pdgVHTgewvuIoXmu9lA+0vNFcO2Ig7EcEsjNzYLNxjEFE+pxpDmPL/hOG5ZMn3YnsPq4L9esQ0UXG5w9j8ZpdZz3Wm4wCgMVrduHaEdkY1DcxGWX5ItjXHMagPi5897mP2h+bM34w7pyUj81769sndZ/L63FjXvFQ3F16GZ7acggv76wFADyxoQqrvn0VfM1hZGfxjYaIek9VNTSEonhiQ1X7Y3rzqbQgBx5V4yCdiHRTVQ3rKmrPWkOlJ6OCkZb2vnV1fkIyyvJzgk80BfE/7x3GrzftQ4bThsfnj+90YVxXOi6Me3D1TvjDKu6bNgLfnHgJBmayCCai3vP5Q3h262f4lYH5dP/0EfiHiZfCk8FFckSkT31jEDf917uo9gUMyyivx42X/vlqwy4kck5wN/whFS9ur0GG04ZlC0qwals1lqyrjOnFA1pGLUvWVWLVtmosW1CCDKcNq7fXwB9STe45EV3smsMqVhucT6u21aA5zHwiIv2immwvgI3KqGpfoMvFc0azfBEMANW+AB6fP77XO0MAny+Me3z+eFT7Auh8+RwRUew0aU4+Jej9hYguco3BKAAYmlEA0NTartksXwQ3h1XMGT8YxxoCvX7x2myuqsexhgBmF+XBzystRKRTUzBiTj6FEvMGQ0QXt1DEnBoqlKAdIiw/J3hH9WlASnxj2XsxX77vjsuh4PmyiRBCYLy3nwE9JCKr+ujwKQjA8HyCAK7w9tffQSKytL11jWgORQ3PqPQ0O0bmZhnQQ84J7pYnw4HNe+sNefGAlvktb+6tR/8MhyHtEZF1DchwmpJPnnQemEFE+plVQ3kSVENZvghWhMCL22sMbXP19hoogrOCiUgfRTEpn7o49IeIKB7hqGZKRiXqwAzLF8EAOt3DLpnaIyLrYj4RUbISEKZklEjQ9gKWL4Jj3Sqop2OTe9suEVFXmE9ElMwaY1xkG29GxdquXpY/MS4Y6fzNoLdH/rVJ1MpGIrp4MZ+IKJkFuhhQ682orrLPaJYvgp328y+G6znyr43Dxjl3RKQP84mIklmaSRnlTNCx7pYvgjPTPv8TdDzyr6ftPqp9Afx60z788c1PsWhGAWaMGdR+5N+57RIR9QbziYiSWYZJGZWRoIyy/JxgVZPwetyGHvnn9bg7vbxPRBQP5hMRJTPTMipBZ1hY/nKApknMKx6KETlZuo/8A1qODtx/vJHHkhKRbswnIkpmUU0zJaOiKrdIS4iIJjFr3CBDj/y7cdwgRBL0AhLRxYv5RETJLKqak1FRNTEjdcsXwVkuO6ISeGJDlSHtPbGhCqrW0i4RkR7MJyJKZpkmZVRmgjLK8kVwml3Bhl3HDD3y79XdxzpdMUlEFA/mExEls3SnzZSMSnfaDGmvJ5ZPwqgqsdrgI/9WbatBlJPuiEgn5hMRJbNUzyjLF8GqlKYc+cfV10SkF/OJiJJZqmeU5YvgxqA5R/M1mdQuEVkH84mIklmqZ5Tli+CQSUfz8VhSItKL+UREySzVM8ryRXCaw5zJ150dd0pEFA/mExEls1TPKMsnoVlbBXELIiLSi/lERMks1TPK8kWwTQh4PW5D2/R63LAJYWibRGQ9zCciSmapnlGWL4LtNoH5xUMNbfPmCUPhsPFNhoj0YT4RUTJL9YyyfBEcimq4bmQ2XA5j/hQuh4LJI7IR5MITItKJ+UREySzVM8ryRXBjMIqnthzCohkFhrS3aEYBlr9zkFsQEZFuzCciSmapnlGWL4JDERUv76zFoD5ulBZk62qrtCAbg/q4sbbiKLcgIiLdmE9ElMxSPaMsXwS3be/x4OqdWDh5eK9fxNKCbCycPBwPrt4JgFsQEZF+zCciSmapnlGWT8K2bTj8YRVlK8px8wQvFs8qjHl+i8uhYPGsQtw8wYuyFeXwh9Wz2iUi6i3mExEls1TPKMsnoV1p2d6j2heAP6zinpXbMbsoD8+XTcSbe+uxentNp+diez1uzC8eiutGZmP5OwextqLyrK/ZFa6+JiJ9mE9ElMxSPaOElDIhP8hIJSUlsry83JC2VFXDn989hJ+trzzrcZsiMHVUDmYW5WFwPzciqoZgRIPLocBhU1B7OoB1FUfx+p7jULWz/4Y/nlmIb00aBhvfaIhIB+YTESWzVMgoIcQ2KWVJp1+zehEMAMfOBFH65BsIRrqeiG1XBJx2BeGohqjW9d/M5VCw+YEpGNTXZVj/iMi6mE9ElMySPaO6K4ItPycYADwZTiyZO7bb50Q1ieaw2u2LBwBL5o6FJ8NpZPeIyMKYT0SUzFI5o1gEo2UV4tTCXEwvzNXVzvTCXEwrzOXKayIyDPOJiJJZKmcU07CVJ8OJx+aN6/WLOL0wF4/NG4f+vMpCRAZjPhFRMkvVjOKc4HP4/GG8VlmHxWt2dTu/pY3LoWDJ3LGYVpjLNxgiMhXziYiSWTJmFBfGxSkc1eDzh7GuohYrth7qcnuPf7w6HzPHDYYnw8lbjESUEMwnIkpmyZZRLIJ7SVU1+JrDiGoSTcEoIqoGh01BpssOuyLgyUjjNkNEdEEwn4gomSVLRnF3CANIAKomcdaQIQUHEER08WE+EVEyS9aMivnEOCFELoAhrZ8ekVLWmdOlCy/WS/kLrsrHrCLebiSixGE+EVEyS6WM6nE6hBDiCgB/BNAXwJHWh4cCOA3gbinldlN72IlkXBg3tTCX+28SkamYT0SUzJIxo3TNCRZC7ADwbSnl++c8PhHAn6SU4w3raYzMKoJPNoXw/Rc/xsbK+C9yt23vMSAzzfB+ERExn4gomSVrRumdE5xxbgEMAFLK9wBk6O1csvD5w71+8QBgY2Udvv/ixzjlDxvcMyKyOuYTESWzVM2oWIrg/xNCrBdC3CKEuLr14xYhxHoAfze7g4kQjmp4rbKu1y9em42VddhUWYdwtOdbAEREsWA+EVEyS+WM6rEIllJ+D8D/AzAFwA9aP6YA+L2U8l/M7V5i+PxhLF6zy5C2Fq/ZBR+vthCRQZhPRJTMUjmjYlqOJ6X8Pynld6SUs1s/viOlfKXjc4QQvzOni+ZSVQ3rKmpjmsAdi2CkpT1V5dUWItKH+UREySzVM8rIPSkmGdhWwviaw1ix9ZChba7Yegi+Zl5tISJ9mE9ElMxSPaMsv3lkVJOd7mGnR7UvgKh24TeBJqLUxnwiomSW6hll+SK4MRg1pd0mk9olIutgPhFRMkv1jDKyCE7JQ+pDEdWcdrkCm4h0Yj4RUTJL9YyKuQgWQozr4Sm/0dmXCyLNYTOlXR5TSkR6MZ+IKJmlekbF81P+IIT4QAhxtxCi77lflFI+bVy3EifLZU+pdonIOphPRJTMUj2jYi6CpZTXAvgmAC+AbUKIlUKI6ab1LEHsioDX4za0Ta/HDbuSkrNDiCiJMJ+IKJmlekbFdb1ZSrkPwI8BPATgOgC/FULsEULcZEbnEqGfy4Fbr7zE0DZvu/IS9HM7DG2TiKzHk+7E7RPzDW3zjqvy4clIM7RNIrImT7oTC67KN7TNBQnMqHjmBBcJIX4FoBLAlwHMllIWtv77Vyb1z3SngxFce/lAuBzGzD9xORRcc/lAnA5EDGmPiKxtamGOofn05VE5gOQWaUSkn82mYFZRnqEZNasoD7YkvBL8OwDbAYyXUt4jpdwOAFLKWrRcHU5JUU1i2dsHsWhGgSHtLZpRgKVvHeA+nESkm685jGe2HjI0n3hYBhEZySaEoRllE4mbrhVPETwTwEopZQAAhBCKECIdAKSUz5rRuURoDEbx8s5aDOrjRmlBtq62SguyMaiPG2srjnIfTiLSLapJrHj3M0Pz6Zl3P+MgnYgMoaoa/mZwDbVmZ3Iem7wJQMfZz+mtj6W0tj3uHly9EwsnD+/1i1hakI2Fk4fjwdU7W9rlPpxEpFPbRvRG5xMH6URkhLa7VUZmVLIem+ySUja1fdL673Tju5RYbXvc+cMqylaU4+YJXiyeVRjz/BaXQ8HiWYW4eYIXZSvK4Q+3FNXch5OI9Aq2DtKNzqcgB+lEZICo2nJsspEZVe0LIKom37HJfiFEcdsnQogJAHo8MFoIcYMQokoIsV8I8f0unvN1IcRuIcQnQoiVcfRJt6y0z/ei84dV3LNyO3YcPo3nyybivmkjutz6w+tx475pI/B82UTsOHwa96zc3v4Gc267RES90XEwbWQ+OWzcIo2I9DsT/HwTACMzqiGYmM0F4qnU/hXAKiFELVqOSB4E4JbuvkEIYQPwewDTAdQA+FAI8bKUcneH54wA8AMAk6SUp4QQOXH+DrpISHg9blT7Pq/n11YcxSu7jmHqqBw8cH0BBvdzI6JqCEY0uBwKHDYFtacDWFdxFL99fT/Uc+bXeT1uSHDOHRHpk9nJYFpvPnXVLhFRvIKR8+8qGZFRnbVrhpiTUEr5oRBiFIC2JYBVUsqeSvUrAeyXUh4AACHE8wDmAtjd4TllAH4vpTzV+nOOx9onIzjtCuYVD8WvN+0763FVk3h1dx1e3V0HoGVDaKddQTiq9bioZH7xUDjt5hwlSETWoWrnD9LbHu9tPnk97k7fdIiI4pXWxdRPPRkFJOexyQDwRQBFAIoB3CqEuKOH5w8BUN3h85rWxzoaCWCkEGKLEOI9IcQNnTUkhFgohCgXQpTX19fH2e2u+fwRlI7M7nH+SlSTaA6rPb54LoeC60Zm45SfWxARkT6aJjGveGiPz4s1n4CWQTprYCIyQroztgt+8WQUAGTE2K5e8RyW8SyAJwFcg5Zi+IsASgzogx3ACAClAG4FsEwI0e/cJ0kpl0opS6SUJdnZ+rbh6CgUUfHUFmP34Vz+zkHuDkFEukU0GdMgPVZtg/RIgrYfIqKLnxnHJidqnB5PspagZd7u3VLK77Z+fK+H7zkCwNvh86Gtj3VUA+BlKWVESnkQwF60FMUJkeawmbJPMHeHICK9slx2UwbpWS7OCSYi/TLSbDHdrYrH/OKhyEjQuoV4KrVdaFkMF48PAYwQQgwTQjgBfAPAy+c8529ouQoMIcRAtEyPOBDnz+m1tjcDo/fh5JsMEellVwQ+qj5l6CB9R81p2BN0JCkRXdykBKaOMv5od5mgo93j6fVAALuFEBuEEC+3fXT3DVLKKIB/AbABQCWAv0opPxFCPCKEmNP6tA0ATgohdgN4A8AiKeXJ+H+V3rErAl6P29A97rweN99kiEg3T7oTC67KN3SQvuCqfHgy0gzuKRFZkSfdiWMNQUPvVh1rCCYso0Ss1bYQ4rrOHpdSvmloj2JQUlIiy8vLDWlLVTX8+d1D+Nn6yvbHZhfl4a5rhuHNvfVYvb3mvJXZQMuclfnFQ3HdyGwsf+cg1lYcbf/aj2cW4luThsHGQpiIdDp2JoDSJzfDJgQenz8exxoCeGJDVUxbCLkcChbNKMCgPm48uHonVCmx+YFSDOpr7Bw+IrKuY2cC+OjwabxQXo3NVb3fuKC0IBu3lHjxhUv6GZpRQohtUspO17DFs0Xam0KISwGMkFJuEkKkA0j5fcBsNgWzivLw5Kufv6msrTiKDbvrcO/Uy/Gn2ycg3WmHPxRt3+MuI82O5nAUr1cex9eXvodwh0VwLkdLeyyAicgINiGwaEYBlqyrxD0rt2N2UR6eXzgR7+w7gRfKq7scpN9S4sU1IwZi+dsHsbaiZZC/eFYhbILZRETGsQmB+qYgFk4eDgC9KoTb7lbtP96Y0IyKuQgWQpQBWAjAA+AytGx19kcAU83pWuJ0fJMBgDnjB+POSfnYvLce3352G6p9AbjsCjJddjQFowhGNXg9bswrHoq/LpyIp7Ycwss7awG0XMrnmwwRGUFVNazZWYu8vi1zgjdX1UMIAUjA2z8dP7qxEAMy0xBVNYSjEk67gN2m4GRTqGWHGomW5+PzOcFrdtbiW1fnw2bj4l0i0qdjRj3z7iHcPMGLa0cMPO9uVVf7BHe8W/XMu4cwe/yQhGZUPKu37kHL4RfvA4CUcl+iT3czQ8cX8IYxuZg9fgiONQTwzeXv45rLB+KB6wswpJ8boaiGYESFy2FDml3BkdMBrK84imVvH8D900dixphBWLvzCN9kiMgwvuYwVmw9BF9TGMv/8YtYeO1wVB5raM+nG8flQQDQJKBKDZq0QQAIRTWsrziKLZ+ewP3TR+IbX/RCUQTuevpDeDKdmHvFYGRnuS7wb0dEqa5jRi1bUIKlbx3A5BHZ2Hjfdfi45jQURWBgZtp5NdSJphA0TWLc0H7YuLsOq7ZVY+Hk4ShbUZ7QjIqnCA5JKcNtVxWEEHYg9c8GbnsBg2EVL909CQ+/vAtZaQ785a4vYfPeejz5alWXtxvnFQ/F3aWX4akth/BO6AQemTMWN/1hC1xOG99kiEi3qCZR7Qu0bxy//J2DyEizx51P7+4/ibLWW5XVvkDMG9YTEXWnLaMA4N7nPsLKsok4cioAnz+MT0/48ddupmx9vcSLIf3TMXxgBq4dMRC3LXsP/rAKfwIzKp4i+E0hxA8BuIUQ0wHcDWCtOd1KnLYX8Pe3FePR9bsxv9iLYw0BfGPZe90uPKn2BfDrTfvwxzc/bb+U/+j63fjpnLG4Z+V2vskQkW6NwSgA4PH54/H0loO4qXhor/Pp6S0H8fj88bhn5XY0BaNA30T9FkR0sWrLqAynDb+7rRj1jSF8eqIJT/yl+8W71b4AfvHqXvz+jf1YNKMATruC391WjLue/hD+sJqwjIrnfv33AdQD+BjAtwG8IqX8kSm9SqDGYBRzxg/GSX8Qd1ydj1XbqrFkXWVMK68BIBjRsGRdJVZtq8YdV+fjpD+I2UV5LS8gEZEOoYhqSj7xREsiMkIoogIAfvH1K+B22LD07QO9yqilbx+A22HDL75+RUu7CcqoeK4Ef1dK+RsAy9oeEELc2/pYygpFVNw5KR9HzwSx9K0Dvd7eo+37binx4q5rhvFNhoh0S3PYTMknnmhJREZIc9gwZ/xgeD1uPLGhSndGLZpRgNlFeQnLqHh+yoJOHvtHg/pxwfRPd6L6VDNqzwR07W8HtLyItWcCqDnVjL5uh0E9JCKr8mQ4TMknTwbziYj0y3LZ8b0vX4b3Dpw0JKPeO3AS35t6ecJO3e2xCBZC3CqEWAtgWMeT4oQQbwDwmd9Fkwkgf0AGnthQZUhzT2yowqUDMsBd0ohIr3BUMyWfwrxTRUQGSLMrgFAMzSghlJZ2EyCWn/IugF8A2NP637aPfwMww7yuJYbTLvDanuMxz1/pSTCi4fU9x+G0sQomIn2cNsWkfOJ0CCIyxvqKWkMz6pWPaw1pKxY9JqGU8jMp5WYp5VVSyjc7fGyXUqb86q9AWMOL22sMbXP19hoEDPofgoisyx9WTcknf1g1tE0isqbmsIrVBmfUqm01aE5QRsV8OUAIcZMQYp8Q4owQokEI0SiEaDCzc4nS2R52etvjdWAiMgLziYiSlSbNyahE7TIbz8zjxwHMllJWmtWZC8Gs0QavtBCRXswnIkpmTcGIKe36Q4mZaBDPxLC6i60ABszbi44LT4hIL+YTESUzszIqFE3MQD2eK8HlQogXAPwNQKjtQSnlS4b3KoFcDnMWiKSZ1C4RWQfziYiSmdthM6Vdl92cds8VTxHcB0AzgOs7PCYBpHQR3Ndlzn6ZZrVLRNbBfCKiZJZp0n6+ZrV7rph/ipTyW2Z25EKx2wS8HrehE7u9Hjfs3CKNiHRiPhFRMnPaFFMyKulOjBNCjBRCvCaE2NX6eZEQ4sfmdS0xPOlO3HFVvqFtLrgqH56MNEPbJCLrYT4RUTIbkOHE7RPzDW3zjqvyMSBBGRVPqb0MwA8ARABASlkB4BtmdCqRbDYFs4vyDJt753IomFWUB5vCKy1EpE9LPg02OJ8GM5+IyBA2m4I5442toWYnsIaKp9fpUsoPznks5Q/LAACbEHhwRoEhbT04owA2nplMRAbp47Lj4VmjDWnr4Vmj0cedmLl2RGQNfVwO/HTOGEPa+vc5Y9DHnbg1C/EUwSeEEJehZTEchBDzARw1pVcJpKoa1uysRW4fN0oLsnW1VVqQjdw+bqzZWQtV5RZERKRfQzCK/ulOQ/Kpf7oTDYGL4toFESWJhmAUnnQnpo7K0dXO1FE5Cc+oeIrgewD8CcAoIcQRAP8K4J9N6VUC+ZrDWLH1EB5cvRMLJw/v9RtNaUE2Fk4ejgdX78SKrYfgaw4b2k8ish5V1bCuohYPrDImnx5YtRPrKjhIJyJjtGXUfS/sQNnk4b0uhKeOykHZ5OG474UdCc2omItgKeUBKeU0ANkARkkpr5FSHjKtZwkS1SSqfQH4wyrKVpTj5gleLJ5VGPP8FpdDweJZhbh5ghdlK8rhD6uo9gUQTdSZf0R00WobpBuZTxykE5FROmbUXU9/iJuKh+KROWPiyqhH5ozBTcVDcdfTHyY8o2KeHCaEuBfAnwE0AlgmhCgG8H0p5atmdS4RGoOfX3b3h1Xcs3I7Zhfl4fmyiXhzbz1Wb6/pdOsPr8eN+cVDcd3IbCx/5yDWVpx9mF5TMAr0Nb37RHQRaxukA8blEwfpRGSULjNq4US8s+8EXiiv7jKjbinx4poRA7H87YNYW/H57NpEZlQ8KyTulFL+RggxA8AAALcDeBZAShfBocj5R/OtrTiKV3Ydw9RROXjg+gIM7udGRNUQjGhwORQ4bApqTwewruIofvv6fqidvFhmHSVIRNbRcZDexoh84iCdiIwQT0aFIhrSzsmoX23ad0EzKp4iuG3LgxsBPCOl/ESI1N8GIa2LI/9UTeLV3XV4dXcdAMCuCDjtCsJRLaYRSqI2eiaii1dng3RAfz5xkE5ERkj1jIqnCN4mhHgVwDAAPxBCZAFI+STNivFovqgmEQ13/mLraZeIqCtdDdLPFW8+cZBOREZI9YyKp1K7C8AVAA5IKZuFEAMApPxRynbFpGNJuRk9Eelk1mCag3QiMkKqZ1SPpbYQYlTrP69o/e/w1kVxlyK+IjopedKdWMBjSYkoCbUN0o3EQToRGSXVMyqW6833t/73F518PGlSvxLGZms5RpTHkhJRsuEgnYiSWapnVI+Vn5RyYet/p3Ty8WXzu2g+T4YTS+aONaStJXPHwpPhNKQtIrI2DtKJKJmlekbF3GshxM2ti+EghPixEOIlIcQXzOta4jjtCqYW5mJ6Ya6udqYX5mJaYS4XnRCRYThIJ6JklsoZFU+1tlhK2SiEuAbANADLAfzRnG4lnifDicfmjet1ITy9MBePzRuH/nyDISIDxTJItysC6U5bt/PoOEgnIjOkckbFs7CtbW+LmQCWSinXCyF+ZkKfLpgBmWn4+fwiXF9Zh8VrdiEY+XwHuK72uHM5FCyZOxbTCnNZABORKdoG6XgR2FhZB5siMK0wBzeOy8OQfm6EohqCERUuhw1pdgVHTgewvuIoXttzHKomOUgnIlOlakYJKWM7mk4IsQ7AEQDTARQDCAD4QEo53rzuda6kpESWl5eb1n44qsHnD6Oi+jQ0SAzMTDvvBTzRFIIigKKh/eHJcPLqChGZzucPY3ftGWS6HNhcdRwvdnNs8rzioSgtyEFTMIIxg/uyACYi0yVjRgkhtkkpSzr9WhxFcDqAGwB8LKXcJ4TIAzBOSpnwY5MTVQSvq6jFiq2HUO0LnHcl2OtxY8FV+ZhVNJhFMBElhM8fxqbKOjx8zp2qrrgcCh5pvVPFucBEZLZkzChDiuDWhmwActFhGoWU8rDuHsbJzCLY5w/jtco6/HTtJ7jm8oE9Xsrf8ukJ/HT2GEzlmwwRmehkUwjff/FjbKysi/t72241Dsjk1mhEZI5kzSijrgR/F8BPANTh8+OSpZSyyJBexsGsIrjtBXQ7bbhzUj42761vv5TvsivIdNnRFIwiGNU+v5Q/MhtPbTmEQFjlmwwRmcLnD+Oh1RVdvrlkOm3on+HEKX8YTV0cTTq9MBePzy/itAgiMlxPGXVuDdUZszKquyI4noVx9wIokFKeNKZbycXnD+Mnaz7BV78wBMcaArjjzx/gO5OH40+3T0CGs+WFC0RUuB02ZLrs8IejeL3yOO748we4d+oIDOrjxk/WfIIlXx3LNxkiMkw4quG1yrqz3lzcTht+Mb8Io4f0hV0INAQjCEY0uBwK+rgciEqJXTWnsejFjxFoLYo3VtZhU2Ud5l4xhNO3iMgwnWWU067gX6dejtJROd3WUL99fT/CrUXxhcioeK4EvwFgupQyam6Xemb0leBwVMP6ilrk9nVh6VsHMHnEQEwfPQhrd9biuQ8Pdzmp+9YvXoLZ4wdj4+5jeGvfCSycPBx1Z4KYWTSYbzJEZIhjZ4IoffKN9vl1/33HBBTm9cWaHUd6zKe5VwxB5dEz+KdntgFomX+3+YEpGNTXldDfgYguXudm1MOzCuOuoR5ZVwnAnIzq7kpwPJXaAQCbhRA/EELc3/ZhTBcvLJ8/DJfDhhc+OIwf3ViINLsN03/1Jh7fUNXpiwcA1b4AHt9Qhem/ehNpdht+dGMhXvjgMFwOG3z+cIJ/AyK6GKmqhnUVtQhGNFzqcWPLQ1NQ1xDC1F9ujimfpv5yM+oaQtjy0BRc6nEjGGlpT1V7XrBCRNSTjhmVnenExvsm96qG2njfZGRnOhOeUfFcCf5JZ49LKf/d0B7FwMgrwaqq4fWq46hvDOLaITkVdQAAIABJREFUETl4+OVdeGNPfdztTBmVjUfmjMXb+44jO8uFLxfkwGbj1WAi6r36xiBu+q93oQB44dtX4wf/W9HrfPrPrxXhlj+9Cw3AS/98NbKzeDWYiPRpy6hgWMVLd0/SXUPd9IctcDlthmaUIXOC24pdIURm6+dNhvTuAvM1hzGojwvDBmT0+sUDgDf21ONh7MKPbixEIKzC1xzmmwwR6RLVJKp9AWx5aEqvC2CgJZ9+8L8VWFk2EZN+/sZZB/4QEfVWW0Ztun+yITXUcwsnYtov30pYRsV8qVIIMVYI8RGATwB8IoTYJoQYY17XEkMIoDms4v2Dvl6/eG3e2FOP9w/4EAhHIbo+GZCIKCaNwSj++44J2FxVb0g+ba6qx7I7JqApeMGXdhDRRaAxGMXDswrx/gHjaqjFMwsTllHx3K9fCuB+KeWlUspLAfwbgGXmdCtx/CEVg/u5sWT9bkPaW7J+N/L6pcMf6nybIiKiWIUiKgrz+hqaT6Pz+iLUxRZFRETxCEVUXD9mkKEZNWPsoIRlVDxFcIaU8o22T6SUmwFkGN6jBMtIs2HtztqYTjaJRduk7ow0myHtEZF1DenvwpodRwzNp5d3HkFeP+5nTkT65fZJw8s7jK2h1u6sRXZWYraajWt3CCHEYiFEfuvHj9GyY0RKC4Q1PPehsYferfzgMAJhXmkhIn2amU9ElMTCqjQloyJqks0JBnAngGwALwF4EcDA1sdSXldbeCRLe0RkTVKak08xbgpERNStVM+oeHaHOAXgeyb25YIwa/J1U4gLT4hIH+YTESWzVM+oeHaH2CiE6Nfh8/5CiA3mdCtxAlFzFrAFI1wYR0T6BEzKEeYTERkh1TMqnukQA6WUp9s+ab0ynGN8lxLL7TBnAZvLpHaJyDpMyyc784mI9HM5zDkULM2emMPG4vkpmhDikrZPhBCXAkj5mWVZrphnhCRFu0RkHZkm5YhZ7RKRtWS5HCnV7rniKYJ/BOAdIcSzQoj/AfAWgB+Y063EUQTg9bgNbdPrcUPhYRlEpJMwKZ94mA8RGSHVMyrmIlhK+XcAxQBeAPA8gAlSyvY5wal6elx2RhpuvfKSnp8Yh9uuvIRHJhORbtkZTtz6RePzKSeL+wQTkX6ZLpspGdUnQXer4pp0IaU8IaVc1/px4pwvP2tgvxLG4bBh7hVDDJvX4nIomHPFEDhsiZnPQkQXrzSn3fh8Gj8ETs4JJiIDZDkdmHPFYEMzavb4wchIS77pED1J2Rts/d0OLJ412pC2Hp41Gv3TE/PiEdHFr4/LjsUzjcmnxTNHo6+b84GJyBg2mwK3XTE0o1x2BbYEzSk1sghO2UVydpuC60ZmY8qobF3tTBmVjckjs2FXeBWYiIyR5XZgamGuIfk0bXQuMhO04ISIrMHttOO6AmNqqOsKspGelriBOqs1AD5/GLcu3YpH5ozt9Ys4ZVQ2HpkzFrcu3QqfP2xwD4nIqsJRDds/8+E/v1akK5/+82tF2HbIh3CURyYTkXEaglFUHWvEz+aO05VRP5s7DlXHGtEQSNxhPkYWwSlZ+amqhnUVtag+FcRNf9iCH36lEI9+dWzM81tcDgWPfnUsfviVQtz0hy2oPhXEuopaqCrfaIhIP58/jPtX7cQtf3oXP5s7tlf59LO5Y3HLn97F/at2cpBORIZpq6G+99xHOHK6GQ/PGtOrjPrJrDE4croZ33vuo4TWUHEVwUKIIiHEHCHETW0fbV+TUk40vnvm8zWHsWLrIQBAfVMY03/1FoIRFRvvuw4P3VDQ5dYfXo8bD91QgI33XYdgRMX0X72F+qaWN5cVWw/B18w3GiLSp+0NJhjR8JkvgEk/fwM5fdLw2v2lMeXTa/eXIqdPGib9/A185gsgGNE4SCciw7TVUP6wim/9+UPsrm1AYV5WXDVUYV4WPqltwLf+/CH8YTWhNZSQMrapvEKIpwAUAfgEQFuCSinlnSb1rUslJSWyvLzckLaOngngqv98/bzHnXYF3/vy5fhyYQ7SnXb4Q1EEI9r/b+/eg+M67/OOP7+9YZcASHElcCVSoOm0drgICTEOzJhu2pohGF/IEFOxnURKHDl1J53c6kzSjJlmqLRim1BVmsmkzaVO7IhuKyVtpJYM5cQSGTo306EgmwIZgtJobIYUKYGQQJPEZe9v/9ilQ5EgsMCeA5yD8/3MaGxgd1+8whk9++Dse86rdDKm9raEJksV/dnwZf3Gn7027ceLx3/he3XfCm/vnQcgWkavF/Tgb39ZF8am3vH9TCquJ3Zv1Ib771LcTOPFigrlqtLJuDraEqo6p9Ovf1M//8wpTZXeuf1odzajZ3/8g9zGEUDLputQ3997nz75Pe9WoVTVXR0ppZPx2zpUoVzVNydKSifj+uxffUN/PPTGO8bwskOZ2UvOub7pHpvL6uMPOOe8ufwvQK4Xpl97UqrU9KvPv6pfff5VSVI6EVNHOqHxQkWFJtbUjRcq0gpPpwogYio1d1sBlqSpUlU/9fTJb33dkYprZXtKVyZKGr+l9N7qwtiUKrXQXscMIECm61B/PPSGvnD6TW1bv0o7eu/T6rsyqlZrKledyhXTZKmqS9+c0uGhN/RnZy+rOk0eLVSHmksJPm5mPc65M77NZhEUyzO/YdxQqNRUGG/+9HyRi08AtOhOf6TfarxU1Xjp9rJ8x+fzRzoAD9ypQ1VrTs+fGdHzZ0YkSYmYKZWIqVSpNfVH+EJ1qLmU4M+rXoTflFRU/b7AzjnX68vMFkhb0p+bxqcS3HgDQGua/SN9zuPyRzoADzTboSo1p8osn1LdbKE61FxK8GclfVzSKf39muDQ6/Rpaz6/xgUQHfyRDiDIwt6h5vJTRp1zh3ybySJJxEzd2cy06+7mqzubUWKBdjsBsHSF/Q0GwNIW9g41l9MBXzOzp8zsoelukRZW2WUpPbJlnadjPrJlnbLtbZ6OCSB6brzBeIk/0gF4Jewdai4lOKP6WuDvk/T9jX92+jGphRSPx7Szd3XTN3aeTTpZH2+h9r0GsHSF/Q0GwNIW9g7V9Kydcz86zT8Lfo9gP2TbU9o3sMGTsfYNbFC2PeXJWACiLexvMACWvjB3qKaT1czSZvaTZvZbZva5G//4ObmFkkrEtC2f0/Z8rqVxtudz6s/nuOgEgGfC/AYDYOkLc4eay0/6H5LulfRhSX8u6X5J1/2Y1GLItqe0f/fGeR/E7fmc9u/eqJW8wQDwUJjfYABEQ1g71Fy2Tf6ac+47zWzIOddrZklJf+mc+4C/U7ydl9sm32psoqSjwyPae/C0CuXZ7wSXTsa0b2CD+vM5CjAA37w9XtSeZ07pheGROb/2xhvM3R2sBQbgnyB2qJm2TZ5LCT7hnNtsZn8h6SckvSnphHPu27ybanP8LMFSfcvksYmSDg9d0oHj56a99Ud3NqNPfHCddmxcrWx7irMrAHwXxDcYALhZ0DqUVyX4X0l6RlKvpN+X1CHpUefc73g10Wb5XYJvqFZrGpssqVJzGi9UVKzU1JaIqSOdUCJmyra3cYEJgAUVtDcYAJhOUDqUJyU4SBaqBANAUAXlDQYAgmymEtz0tkFmlpP0y5JWO+c+amY9krY45z7r0TwBAE2Kx2Pq6kzXv1ixuHMBgDCay2dkT0r6oqTVja9flfQzXk8IAAAA8NtcSvA9zrn/LakmSc65iqTqbC8ys4+Y2Stm9pqZ7ZnhebvNzJnZtKesAQAAAK/MpQRPmNndkpwkmdkHJF2d6QVmFpf0m5I+KqlH0kONZRS3Pq9T0qck/c0c5gMAAADMy1xK8M9KOiTp28zsryV9XtJPz/KazZJec8593TlXkvQHkgamed4+SY9LKsxhPgAAAMC8zKUEn5H0fyW9KGlE0u+qvi54JmskXbjp69cb3/sWM3ufpG7n3HNzmAsAAAAwb3MpwZ+XtF71O0T8V0nvVX0r5Xkzs5ikX5P0c00898fMbNDMBkdHR1v5sQAAAIi4pm+RJmmDc+7m9bzHzOzMLK+5KKn7pq/vb3zvhk5JGyR9ycwk6V5Jh8xsl3PuHTcCds59RtJnpPp9gucwbwAAAOAd5nIm+KuNi+EkSWb23ZJm27HiRUnvMbN3m1lK0g+qvq5YkuScu+qcu8c5t845t07SVyTdVoABAAAAL816JtjMTql+R4ikpC+b2fnG1++SdHam1zrnKmb2U6rfXzgu6XPOub81s8ckDTrnDs30egAAAMAPzSyH2NnKD3DOfUHSF2753qN3eO6HWvlZXrt5W9LrhYrKlaqSibg6b2xLuiyleHwuJ9MBwBvkE4AgC0NGzVqCnXN/txATCZJSpaaxiZKGLnxTNTnd09GmYqWmQrmqdDKua1NlvTVelEl6oHulsu0ppRK82QDwH/kEIMjClFFzuTAuEsYmSjpz6ao60kmdefOanvnq67owNnXb87qzGe1+3/3KrcjotcvX1bN6hbLtqUWYMYCoIJ8ABFnYMsqcC9+NFvr6+tzgoPfXzr09XtSrI9d15o1reuKLr6hQrs36mnQypp//8Ler577lem+uU3d3tHk+LwAgnwAEWVAzysxecs71TfsYJbhubKKk18cm9WtHXtWXXpn7fYg/9O1d+tn+96o7u0wrOeMCwEPkE4AgC3JGzVSCWQ6h+vqVy9cL8z54kr71ul/46Hq1tyVYgwfAE+QTgCALc0aRhJKuTpb016+9Ne+Dd8OXXhnVX732lq5OljyaGYCoI58ABFmYMyryJbharelasaInvviKJ+M98cVXdK1YUbU6+1oYAJgJ+QQgyMKeUZEvwVcLZR1++VJTC7ibUSjX9NzQJV0tlD0ZD0B0kU8AgizsGRX5EjxZquqPvvq6p2P+n5de12Sp6umYAKKHfAIQZGHPqMiX4JrTtPewa8WFsSnVwnfTDQABQz4BCLKwZ1TkS/C4T6fcJ4oVX8YFEB3kE4AgC3tGRb4EFyv+LL4uVvi4EUBryCcAQRb2jIp8Cc4k476Mm074My6A6CCfAARZ2DMq8iW4I+3PfiF+jQsgOsgnAEEW9oyKfAlOxWPqzmY8HbM7m2FHJgAtI58ABFnYMyrySXh3e0of/8A6T8f8kS3rdHd7m6djAoge8glAkIU9oyJfguPxmHY9cJ/SSW9+FelkTN/fe5/iMfNkPADRRT4BCLKwZ1TkS7AkZdvb9NjAd3gy1mMDG5TlLAsAj5BPAIIszBlFCZaUSsTUn79X/flVLY3Tn1+l7fkc6+0AeIZ8AhBkYc4o0rAh257S47t7530Q+/Or9PjuXq1sT3k8MwBRRz4BCLKwZpQ5F779M/v6+tzg4KAvY49NlHRkeESPHjytQnn2m0CnkzHtG9ig/nyONxgAviKfAARZEDPKzF5yzvVN+xgl+HalSk1jEyUdHrqkA8fPTbsvdnc2o0e2rNPO3tXKtqf4iBHAgiCfAARZ0DJqphLMHdNn0L0yo1/8WF53d7SpXK2pUK4pnYwpGY/p7fGijAusASwS8glAkIUhoyjBtxibKOno8Ij23nIqPxEzpRIxlSo1VWp/f/b8xqn8bfmcsnzcCMBH5BOAIAtbRrEc4iZvjxe155lTemF4ZM6v3Z7Paf/ujbq7g9sPAfAe+QQgyIKaUTMth2ChWMPYRGneB0+SXhge0Z5nTunKRMnjmQGIOvIJQJCFNaMowaov4j46PDLvg3fDC8MjOjI8olJl9isiAaAZ5BOAIAtzRlGCVf8LZu/B056MtffgaY1xtgWAR8gnAEEW5oyKfAmuVms6PHSpqfvZNaNQro9XrXK2BUBryCcAQRb2jIp8CR6bLOnA8XOejnng+DmNTXK2BUBryCcAQRb2jIp8Ca7U3LQ3cm7FhbGpd9wCBADmg3wCEGRhz6jIl+DrhYov4477NC6A6CCfAARZ2DMq8iW4WK76My5XYANoEfkEIMjCnlGRL8Ftybgv4/q5DzaAaCCfAARZ2DMq8knYmfZn52i/xgUQHeQTgCALe0ZFvgQnYqbubMbTMbuzGSVi5umYAKKHfAIQZGHPqMiX4OyylB7Zss7TMR/Zsk7Zdu/3vwYQLeQTgCALe0ZFvgTH4zHt7F2tdNKbX0U6WR8vzpkWAC0inwAEWdgzKvIlWJKy7SntG9jgyVj7BjYo257yZCwAIJ8ABFmYM4oSrPpViNvyOW3P51oaZ3s+p/58jiuvAXiGfAIQZGHOKNKwIdue0v7dG+d9ELfnc9q/e6NWcpYFgMfIJwBBFtaMMufCt31mX1+fGxwc9GXssYmSjg6PaO/B0yqUZ79ZczoZ076BDerP53iDAeAr8glAkAUxo8zsJedc37SPUYJvV6rUNDZR0uGhSzpw/JwujE0pETOlEjGVKjVVak7d2Yw+8cF12rFxtbLtKT5iBLAgyCcAQRa0jKIEz1OxVNHoREmSdH2qoqlyVZlkXJ2Z+k2cuzpSakty03kAC498AhBkQcmomUowCTmNyWJFV6bKOnjyop4+cV4XxqZue053NqOHNq/VwKY1WplJalkbv0oA/iOfAARZmDKKM8G3uHytoCPDI3rs8Jmm17M8urNH/fmcVi1P+zInAJDIJwDBFsSMYjlEky5fK+jTzw7p2NnROb926/ouPf5gL280AHxBPgEIsqBm1EwlmKslGlo5eJJ07OyoPv3skC5fK3g8MwBRRz4BCLKwZhQlWPX1K0eGR+Z98G44dnZUR4ZHNFmqeDQzAFFHPgEIsjBnFCVY0pWpsh47fMaTsR47fEZXJsuejAUA5BOAIAtzRkW+BJfLVR08ebGpBdzNKJRrOnTyosrlqifjAYgu8glAkIU9oyJfgkcninr6xHlPx3zqxHmNThQ9HRNA9JBPAIIs7BkV+RJcc5r2HnatuDA2pVr4broBIGDIJwBBFvaMinwJvl7wZwG2X+MCiA7yCUCQhT2jIl+Cp3xad1JgzR2AFpFPAIIs7BkV+RKcScZ9GTft07gAooN8AhBkYc+oyJfgzrQ/+1X7NS6A6CCfAARZ2DMq8iU4ZlJ3NuPpmN3ZjGLm6ZAAIoh8AhBkYc+oyJfgrvY2PbR5radjPrx5rbo6vd//GkC0kE8AgizsGRX5EpxMxjWwaY3SSW9+FelkTLs2rVEyHvlfLYAWkU8AgizsGUUSSlqZSerRnT2ejPXozh6tXJb0ZCwAIJ8ABFmYM4oSLGlZW0L9+Zy2ru9qaZyt67vUn89pWYqLTgB4g3wCEGRhzihKcMOq5Wk9/mDvvA/i1vVdevzBXq1azlo7AN4inwAEWVgzypwL3/6ZfX19bnBw0JexL18r6MjwiB47fEaFcm3W56eTMT26s0f9+RxvMAB8RT4BCLIgZpSZveSc65v2MUrw7SZLFV2ZLOvQyYt66sT5affF7s5m9EOb12rXpjW6a1mSjxgBLAjyCUCQBS2jKMHzVCiW9dZkWc5J48WKCuWq0sm4OtoSMpO6OlJqS/LmAmDhFUsVjU6U7phPqzralGJnOACLJCgdaqYSTIObxmSxoitTZR08eVFPN/6KScRMqURMpUpNlZpTdzajhzav1cCmNVqZSWpZG79KAP4rVWoamyjp8NAlHTh+ThfGppROxNSRTmi8UFGhUlN3NqNHtqzTzt7VyranlEpw+QeAhRGmDsWZ4FsEcT0LAEjS2ERJR4dHtPfg6abzad/ABm3L55RtTy3ADAFEWRA7FMshmnT5WkGffnZIx86Ozvm1XH0NwE9vjxe155lTemF4ZM6v3Z7Paf/ujbq7o82HmQFAcDvUTCWYz8gaWjl4knTs7Kg+/eyQLl8reDwzAFE3NlGadwGWpBeGR7TnmVO6MlHyeGYAEN4ORQlWff3KkeGReR+8G46dHdWR4RFNlioezQxA1JUqNR0dHpl3Ab7hheERHRkeUaky+0eUANCsMHcoSrCkK1NlPXb4jCdjPXb4jK5Mlj0ZCwDGJkrae/C0J2PtPXhaY5wNBuChMHeoyJfgcrmqgycvNrWAuxmFck2HTl5UuVz1ZDwA0VWt1nR46JKn+XR46JKqVc4GA2hd2DtU5Evw6ERRT5847+mYT504r9GJoqdjAoiescmSDhw/5+mYB46f09gkZ4MBtC7sHSryJbjmNO1uJq24MDalWvhuugEgYCo150s+VQgoAB4Ie4eKfAm+XvBnAbZf4wKIDr9yZJx8AuCBsHeoyJfgKZ/WnRRYEwygRUWfcqTIHSIAeCDsHSryJTiTjPsybtqncQFER5tPOcI2ygC8EPYO5XsSmtlHzOwVM3vNzPZM8/jPmtkZMxsys6Nm9i6/53SzzrQ/+1X7NS6A6CCfAARZ2DPK1xJsZnFJvynpo5J6JD1kZj23PO1rkvqcc72S/kjSf/ZzTreKmdSdzXg6Znc2o5h5OiSACErEzJd8ShBQADwQ9g7l95ngzZJec8593TlXkvQHkgZufoJz7phzbrLx5Vck3e/znN6hq71ND21e6+mYD29eq65O7/e/BhAt2WUpPbJlnadjPrJlnbLtbZ6OCSCawt6h/C7BayRduOnr1xvfu5NPSvqT6R4wsx8zs0EzGxwdbW1rvpslk3ENbFqjdNKbX0U6GdOuTWuUjLPmDkBr4vGYdvau9jSfdvauVpwzwQA8EPYOFZimZmY/LKlP0hPTPe6c+4xzrs8519fV1eXpz16ZSerRnbeu0pifR3f2aOWypCdjAUC2PaV9Axs8GWvfwAZl21OejAUAUrg7lN8l+KKk7pu+vr/xvXcws35Jvyhpl3NuwbdaW9aWUH8+p63rWyvXW9d3qT+f07IUF50A8EYqEdO2fE7b87mWxtmez6k/n+POEAA8FeYO5XcavijpPWb2bjNLSfpBSYdufoKZfaek/656Ab7s83zuaNXytB5/sHfeB3Hr+i49/mCvVi1nLTAAb2XbU9q/e+O8i/D2fE77d2/USs4CA/BBWDuUOefv3nRm9jFJvy4pLulzzrn/ZGaPSRp0zh0ysyOSNkp6o/GS8865XTON2dfX5wYHB32Z7+VrBR0ZHtFjh8+oUJ79hvLpZEyP7uxRfz5HAQbgq7GJko4Oj2jvwdNN59O+gQ3qz+cowAB8F8QOZWYvOef6pn3M7xLsBz9LsCRNliq6MlnWoZMX9dSJ89Pui92dzeiHNq/Vrk1rdNeyJEsgACyIUqWmsYmSDg9d0oHj5+6YT5/44Drt2Lha2fYUSyAALJigdShK8DyVy1WNThRVc/V9rMvVqpLxuDrTCcVM6upMcxcIAIuiWq1pbLKkSs1pvFBRTTXFFFNHOqFEzJRtb+MuEAAWzW0dqlJVMrHwHWqmEkyDm0G1VlPtxt8ITqpU6/8rSTUnVSsLs7c1ANyqXKmqWKmpWnOqVJ0mCjVVqk7VmlOxUlO5XFnsKQKIsJpz7+xQTu/oULXq7Msl/MZn+NO4OlnSeLGqgycv6ukX73wq/6H3r9XApjXqaItrxTLW2wHwH/kEIMiuT5V1rVBpOqOWpxPqzCzOrWVZDnGLN68WdHR4RPuea35R994dPdqWz+neFVwYB8A/5BOAIBu5Wr8wbq4Z1Z/PKedTRrEmuEkj1wra8+yQjp2d+450W9d3af+DvcpxhwgAPiCfAARZUDOKNcFNePPq/A+eJB07O6o9zw5p5FrB45kBiDryCUCQjYQ0oyjBqq+xOzo8Mu+Dd8Oxs6M6cmZE16ZKHs0MQNSRTwCC7PpUWUc8zKjxQtmjmc2OEixpvFjVvufOeDLWvufO6HqBu0YA8Ab5BCDIrhUqnmbU1amFu7NN5EtwoVjWwZMXm1rA3dR45ZoOvXxRheLC/SUDYGkinwAEWbFU8SWjiqWFKcKRL8FvTZb19IvnPR3zqRPn9dYkbzIAWkM+AQiy0YmSLxk1OrEwy7YiX4Kd07T3sGvFhbEphfCmGwAChnwCEGRhz6jIl+Dxgj+n3MeL7NYEoDXkE4AgC3tGRb4ET5X9uUik4NO4AKKDfAIQZGHPqMiX4Ewy7su46YQ/4wKIDvIJQJCFPaMiX4I70olQjQsgOsgnAEEW9oyKfAk2k7qzGU/H7M5mZObpkAAiiHwCEGRhz6jIl+B7liX10PvXejrmw5vXqqujzdMxAUQP+QQgyLraU75k1KrOhcmoyJfgdFtSA5vWKJ305leRTsa064E1avNpnQyA6CCfAARZWyrhS0alWBO8cDra4tq7o8eTsfbu6FFnmjcYAN4gnwAE2fJ0wtOMWpFZuGsWKMGSVixLaVs+p63ru1oaZ+v6LvX35LQ8k/JoZgCijnwCEGSdmaT6PcyojnTSo5nNjhLccO+KtPY/2Dvvg7h1fZf2P9ir3PK0xzMDEHXkE4Agy4U0o8yFcP/Mvr4+Nzg46MvYb14t6OjwiPY9d0aFcm3W56eTMe3d0aP+nhxvMAB8RT4BCLKRqwUdCVhGmdlLzrm+aR+jBN/u2lRJ1wtVHXr5op46cX7afbG7sxk9vHmtdm1ao862OB8xAlgQ5BOAIBsvlHV1qtJ0Rq1IJ3xdAkEJnqdCsay3Jstyrr6Pda1WVSwWV0dbQmZSV0cbV1kDWBS35pNcVTLyCUAwFEsVjU6U7phRqzrbFuQuEDOVYNYEz8Aad2s2k+SkYqX+v9+6iXMI/4AAsLTcyKepst6RT642+0eRAOCXGydZ75RRteriZxR7Z07j+lRZ1woVHTx5UU+/eOdT+Q+9f60GNq3R8nRCnZmFu5oRQHRdnSxpvFhtOp862uJasYzlEAAWRpgyiuUQt5j3ou58TrkVXHgCwD/zvTBuWz6ne8knAD4LYkaxJrhJI9cK2vPskI6dHZ3za7kFEQA/kU8AgiyoGcWa4CaMXJ3/wZOkY2dHtefZIY1cK3g8MwBR9yb5BCDAwppRlGDV1wAfGR6Z98G74djZUR05M6LxQtmjmQGIuquTJR31MJ+uTZU8mhkAhDujKMGSrhUq2vfcGU/G2vfcGV2dqngyFgCMF6ue5tP1QtWTsQBACndGRb4EF0v1u0BAXZaAAAALy0lEQVQ0s4C7GYVyTYdevqhiiSIMoDWFYtmXfCoU+bQKQOvCnlGRL8GjEyU9/eJ5T8d86sR5jU7wkSOA1rw1WfYln96apAQDaF3YMyryJdg5TXsPu1ZcGJtiHw0ALSOfAARZ2DMq8iV4vODPsoXxIsshALSGfAIQZGHPqMiX4KmyPwuwCz6NCyA6yCcAQRb2jIp8Cc4k476Mm074My6A6CCfAARZ2DMq8iW4I50I1bgAooN8AhBkYc+oyJdgM6k7m/F0zO5sRmaeDgkggsgnAEEW9oyKfAnuak/pofev9XTMhzev1arONk/HBBA99yxL+pJPXR3kE4DWhT2jIl+C21IJDWxao3TSm19FOhnTrgfWKMWaOwAtSrclfcmnNp/W8QGIlrBnVORLsCQtTye0d0ePJ2Pt3dGjFRnW2wHwRkdb3NN86kxTgAF4J8wZRQmW1JlJqj+f09b1XS2Ns3V9l/p7cupIJz2aGYCoW7EspW0e5tPyTMqjmQFAuDOKEtyQW5HW/gd7530Qt67v0v4He5VbnvZ4ZgCi7l7yCUCAhTWjzIVw/8y+vj43ODjoy9gjVws6Mjyifc+dUaFcm/X56WRMe3f0qL8nxxsMAF+9ebWgo+QTgIAKYkaZ2UvOub5pH6ME3268UNbVqYoOvXxRT504P+2+2N3ZjB7evFa7Nq3RinSCJRAAFsS1qZKuF6pN51NnW5wlEAAWTNAyihI8T4ViWW9NluVcfR/rQrmqdDKujraEzKSujjausgawKKaKZb1NPgEIqKBk1EwlmNsYTKNUqWlsoqTDQ5d04Pg5XRibUkcqrpXtKV2ZKGm8VFV3NqNHtqzTzt7VyranlEqwvBqA/8gnAEEWpoziTPAtxiZKOjo8or0HTze9nmXfwAZty+eUbecjRwD+IZ8ABFkQM4rlEE16e7yoPc+c0gvDI3N+7fZ8Tvt3b9Td7MQEwAfkE4AgC2pGzVSC+YysYWyiNO+DJ0kvDI9ozzOndGWi5PHMAEQd+QQgyMKaUZRg1devHB0emffBu+GF4REdGR5RqTL7RwAA0AzyCUCQhTmjKMGq/wWz9+BpT8bae/C0xjjbAsAj5BOAIAtzRkW+BFerNR0eutTUAu5mFMr18apVzrYAaA35BCDIwp5RkS/BY5MlHTh+ztMxDxw/p7FJzrYAaA35BCDIwp5RkS/BlZqbdjeTVlwYm1KlFr67bgAIFvIJQJCFPaMiX4KvFyq+jDvu07gAooN8AhBkYc+oyJfgYrnqz7hcgQ2gReQTgCALe0ZFvgT7tW8125QCaBX5BCDIwp5RkU/CznQiVOMCiA7yCUCQhT2jIl+CEzFTdzbj6Zjd2YwSMfN0TADRQz4BCLKwZ1TkS3B2WUqPbFnn6ZiPbFmnbLv3+18DiBbyCUCQhT2jIl+C4/GYdvauVjrpza8inayPF+dMC4AWkU8AgizsGRX5EixJ2faU9g1s8GSsfQMblG1PeTIWAJBPAIIszBlFCVb9KsRt+Zy253MtjbM9n1N/PseV1wA8Qz4BCLIwZxRp2JBtT2n/7o3zPojb8znt371RKznLAsBj5BOAIAtrRplz4ds+s6+vzw0ODvoy9thESUeHR7T34GkVyrPfrDmdjGnfwAb153O8wQDwFfkEIMiCmFFm9pJzrm/axyjBtytVahqbKOnw0CUdOH5u2n2xu7MZfeKD67Rj42pl21N8xAhgQZBPAIIsaBlFCZ6narWmscmSKjWn8UJFxUpNbYmYOtIJJWKmbHsbV1kDWBTkE4AgC0pGzVSC2TZoBvF4TF2d6foXKxZ3LgBwM/IJQJCFIaP4jAwAAACRQwkGAABA5FCCAQAAEDmUYAAAAEQOJRgAAACRQwkGAABA5FCCAQAAEDmUYAAAAEROKHeMM7NRSX+3CD/6HklvLcLPhb84rksXx3bp4tguTRzXpWuxju27nHNd0z0QyhK8WMxs8E5b7yG8OK5LF8d26eLYLk0c16UriMeW5RAAAACIHEowAAAAIocSPDefWewJwBcc16WLY7t0cWyXJo7r0hW4Y8uaYAAAAEQOZ4IBAAAQOZRgAAAARA4l+BZm9jkzu2xmp+/wuJnZb5jZa2Y2ZGbvW+g5Yu6aOK4/1Diep8zsy2b2wELPEfMz27G96XnvN7OKmf3zhZobWtPMsTWzD5nZSTP7WzP784WcH+aviUxeYWZ/bGYvN47tjy70HDF3ZtZtZsfM7EzjuH1qmucEpkdRgm/3pKSPzPD4RyW9p/HPj0n67QWYE1r3pGY+rt+Q9E+dcxsl7VMAF/Djjp7UzMdWZhaX9Lik5xdiQvDMk5rh2JrZXZJ+S9Iu59x3SPoXCzQvtO5Jzfzf7U9KOuOce0DShyT9FzNLLcC80JqKpJ9zzvVI+oCknzSznlueE5geRQm+hXPuLySNzfCUAUmfd3VfkXSXmd23MLPDfM12XJ1zX3bOXWl8+RVJ9y/IxNCyJv6blaSflvSMpMv+zwheaeLYPizpWefc+cbzOb4h0cSxdZI6zcwkdTSeW1mIuWH+nHNvOOe+2vj/1yUNS1pzy9MC06MowXO3RtKFm75+XbcfYITbJyX9yWJPAt4wszWS/pn41GYpeq+klWb2JTN7ycx+ZLEnBM/8N0l5SZcknZL0KedcbXGnhLkws3WSvlPS39zyUGB6VGIxfigQVGa2VfUS/D2LPRd45tclfdo5V6ufVMISkpD0XZK2ScpIOm5mX3HOvbq404IHPizppKTvlfQPJL1gZn/pnLu2uNNCM8ysQ/VP334myMeMEjx3FyV13/T1/Y3vIeTMrFfS70n6qHPu7cWeDzzTJ+kPGgX4HkkfM7OKc+7/Le604IHXJb3tnJuQNGFmfyHpAUmU4PD7UUn7XX0zg9fM7BuS1ks6sbjTwmzMLKl6Af5fzrlnp3lKYHoUyyHm7pCkH2lc3fgBSVedc28s9qTQGjNbK+lZSR/nLNLS4px7t3NunXNunaQ/kvQTFOAl46Ck7zGzhJktk/Tdqq9BRPidV/0Mv8wsJ+nbJX19UWeEWTXWcH9W0rBz7tfu8LTA9CjOBN/CzJ5W/UrUe8zsdUm/JCkpSc6535H0BUkfk/SapEnV/1pFwDVxXB+VdLek32qcMaw45/oWZ7aYiyaOLUJqtmPrnBs2sz+VNCSpJun3nHMz3ioPwdDEf7f7JD1pZqckmepLmt5apOmief9I0sclnTKzk43v/TtJa6Xg9Si2TQYAAEDksBwCAAAAkUMJBgAAQORQggEAABA5lGAAAABEDiUYAAAAkUMJBoBFZmbjPoy5ycw+dtPX/97M/q3XPwcAwooSDABL0ybV78UJAJgGJRgAAsTMft7MXjSzITP7D43vrTOzYTP7XTP7WzN73swyjcfe33juSTN7wsxOm1lK0mOSfqDx/R9oDN9jZl8ys6+b2b9pvL7dzJ4zs5cbr/2BaScGAEsMJRgAAsLMvk/SeyRtVv1M7neZ2T9pPPweSb/pnPsOSd+UtLvx/d+X9K+dc5skVSXJOVdSfRfEP3TObXLO/WHjueslfbgx/i+ZWVLSRyRdcs494JzbIOlP/f73BIAgoAQDQHB8X+Ofr0n6quql9T2Nx77hnLuxDelLktaZ2V2SOp1zxxvff2qW8Z9zzhUb289elpSTdErSdjN73Mz+sXPuqof/PgAQWJRgAAgOk/QrjbO3m5xz/9A599nGY8WbnleVlJjH+LeN4Zx7VdL7VC/D/9HMHp3PxAEgbCjBABAcX5T0L82sQ5LMbI2ZrbrTk51z35R03cy+u/GtH7zp4euSOmf7gWa2WtKkc+5/SnpC9UIMAEvefM4kAAB84Jx73szyko6bmSSNS/phNdb63sEnJf2umdUk/bmkG8sZjknaY2YnJf3KDK/fKOmJxuvLkn68tX8LAAgHc84t9hwAAPNkZh3OufHG/98j6T7n3KcWeVoAEHicCQaAcNthZr+gep7/naRPLO50ACAcOBMMAACAyOHCOAAAAEQOJRgAAACRQwkGAABA5FCCAQAAEDmUYAAAAETO/wfuIe8q2wmFDwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXSUVZ4//vd9aklVEraCEAgJBlRCsSQ0RhtEMTaJuLB0C06r82vploaZ0e8s+m3UXnD6K2d6EP22PT2nZxwYnUZ70G8LtixqAyKLCzQGGgISgohIIBACBYRUqlLb/f2RVCaELFWp+zxU5Xm/zslpUsv1wtPnXZ+6z12ElBJERERERGaiXesOEBEREREZjUUwEREREZkOi2AiIiIiMh0WwURERERkOiyCiYiIiMh0rNe6Az0xaNAgmZ+ff627QURERERJbM+ePeeklFkdPZeSRXB+fj7Ky8uvdTeIiIiIKIkJIb7u7DlOhyAiIiIi02ERTERERESmwyKYiIiIiEyHRTARERERmQ6LYCIiIiIyHRbBRERERGQ6LIKJiIiIyHRYBBMRERGR6aTkYRlGCYcj8DQGEIpIXPaH0BQMI81mQR+HFVZNwJVuh8XC7xFEZDzmExEls1TIKBbBHQiEIvB4A9hQUYOVO4+j2uO76jV5LifmTc7HjMIcuDLssFv5YUNE+mM+EVEyS6WMElLKa/IfTkRxcbHU69hkjzeALZW1WLz2IPzBSLevd9g0LJk9DtPc2XBl2HXpExERwHwiouSWjBklhNgjpSzu8DkWwf/jfEMTnllzAJsra+N+b5k7G0vnjMfAzDTl/SIiYj4RUTJL1ozqqgjmPbIWHm+gxxcPADZX1uKZNQdwwRtQ3DMiMjvmExEls1TNKBbBaJ6/sqWytscXL2pzZS0+qKxFINT9LQAiolgwn4gomaVyRrEIRvM3mMVrDyppa/Hag/BwtIWIFGE+EVEyS+WMMn0RHA5HsKGiJqYJ3LHwB5vbC4c52kJEiWE+EVEyS/WM0rUIFkK8KoQ4K4To8CuCaPZrIcRRIUSFEGKinv3piKcxgJU7jyttc+XO4/A0crSFiBLDfCKiZJbqGaX3SPBvAdzdxfP3ALix5WchgH/XuT9XCUVkh3vYJaLa40Moknq7bhBRcmE+EVEyS/WM0rUIllLuAODp4iWzAbwmm+0C0F8IMVTPPrV32R/Spd0GndolIvNgPhFRMkv1jLrWc4KHAahu8/vJlseuIoRYKIQoF0KU19XVKetAUzCsrK0r2uUKbCJKEPOJiJJZqmfUtS6CYyalXC6lLJZSFmdlZSlrN81mUdZWWzymlIgSxXwiomSW6hl1rZPwFIC8Nr/ntjxmmD4Oa0q1S0TmwXwiomSW6hl1rYvgdQAeadklYhKAS1LK00Z2wKoJ5LmcStvMczlh1YTSNonIfJhPRJTMUj2j9N4i7Q0AOwEUCCFOCiHmCyH+Wgjx1y0veQ/AMQBHAawA8Jie/emIK92OeZPzlbY5b3I+XBnqz78mInNhPhFRMkv1jNJ7d4iHpJRDpZQ2KWWulPIVKeXLUsqXW56XUsrHpZTXSynHSynL9exPRywWDTMKc+CwqfmncNia27NwpIWIEsR8IqJkluoZda2nQyQFV4YdS2aPU9LWktnj4MqwK2mLiIj5RETJLJUzikUwmlchTnNno8ydnVA7Ze5slLqzufKaiJRhPhFRMkvljGIatnBl2LF0zvgeX8QydzaWzhmPARxlISLFmE9ElMxSNaOElKl3fGZxcbEsL9dn+rDHG8CWylosXnsQ/mD3mzU7bBqWzB6HUnc2P2CISFfMJyJKZsmYUUKIPVLK4g6fYxF8tUAoAo83gA0VNVi583iH52LnuZz4/q35uG98DlwZdt5iJCJDMJ+IKJklW0axCO6hcDgCT2MAoYhEgz+EplAEaVYNmQ4rrJqAKyONq6yJ6JpgPhFRMkuWjOqqCOaxQV2wWDRk9XE0/9Lv2vaFiKgt5hMRJbNUyCgWwV0IBsOo8zYhIoHL/hB8wTCcNgv6OKzQBJCVkQabTudmExF1hflERMksFTKKRXAHGptCuOALYu2+U3hj94lO57M8dMtwzJ4wDAOcNqSn8Z+SiPTHfCKiZJZKGcU5we2crfdjc2Utlmw4FPPKxsUzxqDMnY3BfR269ImICGA+EVFyS8aM4sK4GJ2t9+Pptyuw9XBd3O+9c3QWnr+/kB80RKQL5hMRJbNkzaiuimDum9MikYsHAFsP1+Hptytwtt6vuGdEZHbMJyJKZqmaUSyC0Tx/ZXNlbY8vXtTWw3X4oLIWjYGQop4Rkdk1NoWw+RDziYiSUypnFItgABd8QSzZcEhJW89tOIQLjUElbRERXfAFseRd5hMRJadUzijTF8HBYBhr952KaQJ3LPzBCNbtO4VgMKykPSIyL+YTESWzVM8o0xfBZxua8MbuE0rbXLX7BM42NCltk4jMh/lERMks1TPK9EVwRKLDPewSUe3xIZJ6m24QUZJhPhFRMkv1jDJ9Edzg12cCdkMTF58QUWKYT0SUzFI9o0xfBPt0mnfi55w7IkoQ84mIkpk/pE+WNOnUbnumL4Kddn3OrXZc4/OwiSj1MZ+IKJnplSVpVmMyyvRFcKZO51Xr1S4RmQfziYiSWapnlOmLYADIczmTuj0iMi/mExElq4iUumRURBqzMs70RbDNIvDQzcOVtvnwLcNhtwqlbRKR+UhIfLc4T2mbD96cB4DbQxBR4kJhiTkTc5W2OXdiLkJhFsGG8AXCuP3GQXDY1PxTOGwabrthEBoDXHhCRIm56A1i9oRhSvNpVtEwnhpHREqEIhGUjMpSmlF3jMpCKKLm8I3umL4ItlgEVnz0FRZNL1DS3qLpBVi+4xgsGkeCiSgx/dNt2Fd9QWk+7a++gP5Om5L2iMjc0u1WvPrJcaUZ9crHXyHdzjnBhmhsCmPd/hoM6etESUFWQm2VFGRhSF8n1lec5kgwESVMCIFlG6uU5tPzG6sgBL+kE5Eaf66+gKk3ZuHO0Yll1J2jszD1xizsO3lRUc+6Z/oiOLpf5lOr92Ph1JE9/qApKcjCwqkj8dTq/Ve0S0SUiGqPT2k+qT7diYjMKxKReGp6AXYeO4cFtyeWUQtuH4mdx87h6ekFhi2MM/0+OWkte9x5A2EsWFmOZXOLcPuNg/DCxir4g93PSXHYNCyaXoAhfZ1YsLIc3pYRYKP2uCOi3it6apLqfOKJcUSkwnlvABPyBqDspe2wCJFwRoWlxOYn7sC5hiZcNzBD9/6bvghuuxedNxDG46v2YmbhULy5YBK2H6nD6r0nOxw5yXM5MXdiLu4YlYVXPv4K6ysqO22XiKgn2t5RUplPTbxTRUQKDMq0Y31FTWvBqyKjNlTU4L7xQw3pv+krNU00X4y2F2l9xWm8d/AMpo0ejB/dVYCc/k4EwxH4gxE4bBpsFg01F33YUHEav/7wKMKRK4ft81xOcModESXK2cFpTInmE8AT44hIDSEE3th94orHEs2oVbtPYEZhjiH9N30RbLMKzJ2Yi5c++OKKx8MRiU2HarHpUC0AwKoJ2K0aAqEIQh18qLT1wE25SLOYfro1ESUo09FxRCeST121S0QUDyHQ4UhvIhlV7fEZNpBo+kqtKShxRwx73IUiEo2BcLcXz2HTMPXGLPhDxuxxR0S9l5SxnfAWaz4Bze0ZtOaEiHq5Bn9s6wviySjAuHULpi+CGwMhXfa4awxw4QkRJSbNJnQ5jSnNavroJyIFYln81hNNOrXbnumT0BeI6LJPsF7/xyAi8/A0BHU5jcnTGFDSHhGZm15fqO0GfVE3fREc/XBRvU8wR1qIKFH+YESXO1VGjbIQUe+WnqbPItt0uzGLd01fqUUvYHQfzgduysPiGe6YR14cNg2LZ7jxwE15V+zDqdf/MYjIPNKsmi53quxcuEtECsS6biEeRq5bMH0ShsKy9QJG9+Hcd+Ii3lwwCU+U3tjpxc1zOfFE6Y14c8Ek7DtxEY+v2ttaAOe5nAiHufKEiBIT/TKt+k4Vv6QTkQoOu6bLugWn3Zjy1PT75FhE88KTX7XZIq2jPe5C4QgCIQm7VcDazR53cyfmQuNGwUSUoOgoS7XH1+WJcZ1tP9TRiXHcHYKIVAmGJKaNHoyXt3+pZC2Uw6bhW6MHIxDiscmGEBpQMiqrwwsYrWMFgIgEwjKCiLQgWt52VOZGF54I04+xE1GinC2jLL/64IurTow74WmE3aphUGYamkIR+INhOGwWpFk1nGtoQiAYwfCB6VedxjR3Yq5h8+2IqHdLswp8fd6LRdMLsGRDZfdv6Mai6QX42uNFdl+Hgt51j0UwBP6w7xSenTEWP/nDAQDArKIcPDolH9uO1OHFTVWdHvk3Z2IuHiu5Hq9+chzr9tcAAP5xxli8ve8UFtw20tC/BxH1PsGwxL3jh17xJV0IAQjga08jfl9e3Wk+/UVxHoYPSm9+fQuHTcM944ciEObCOCJSQADjhvWH5XQ9SgqysK2qrsdNlRRkIaefE+6hfRV2sGumL4IdNoGbrxuAEVmZuHtsNmYWDcOZeh8eXLGry6H9ao8Pv/rgC7y8/Ussml6A6WOHYP3+UyjM64c+TkuHx50SEcXDadcgZfPoyC83HcGyuUXN+bS8+3z6v5uO4Ddbj7bm01Or9+PJu0Yh3WbhSDARKaFpAg6bhroGPxZObR7866gQdlg1ZDqsaPCHOjxMLLpu4ejZy5ho6w+rxZgppUKm4OSw4uJiWV5erqSt2nofgmGJh5bvxKoFk/HsuoPYejj+bzJ3js7Cc7PG4eEVO/HGwsmwWzQMNmg4n4h6p/NeP9bsqcFwVzqG9nPgpQ+O9GikpaQgC0+UjsLpS35Uexox56ZhcGWk6dBjIjKTr895sfFQLYb1d2L9/lOtA4n/suUL/PXUkSgZPRgZ9ubi1xcMw2mzINNhhTcQwoeVZ7H8o2P4+2k3Nu9c0/L+mks+3DUmG9cNzFDSRyHEHillcUfPmX4kGADeO3Aaz9wzBovXHuzxUP7Ww3VYLA/imXvG4P0DpzFrQo7iXhKR2Vz2hfH6ruP46b1u/HrLFz3Op21VdbAIgQeKc/HaruMoG5vNIpiIEhaREq/vOg5PQwAr5hVj+Y5j+P++ORzv/91UrN13Cn/1+p5Op2w9dHPz6ypPX8Lv/nQCC6eOxIKV5XBl2lHqHmxI/02/fMsXjODURR/O1PsSmssCNH/QnKn3ofqijyfGEVHChAC+kTcApy76sOXw2YTa2nL4LE5d9GFCbv8OF/USEcXLYhGo9vjgDYTx4zUV+Kdvj0NtfROm/XIblm3seE0V0Dxla9nGKkz75TbU1jfhn749Dj9eUwFvIIxqjw8WzZiUMn0RLAB8Z8IwvLCxSkl7L2yswv0Thilpi4jMrbEpjEen5CvNp/m3jUBjy57mRESJaGxqzpKsTDt+98NJ+Nnag/jpOwdjHgj0ByP46TsH8bO1B/G7H05CVqa9uV2DMsr0RTAksO1InbKRW38wgu1HEhtRJiICALtV0yWfeGIcEakQzaZVCyb1eE0V0Dyl9Nl1B7FqwSQAMOxod9MnYURKrNl7Ummbq/eeRCQFFxwSUXKxWIQu+WQxaOU1EfVuaTYNz85wY/dXnh4XwFFbD9dh91ceLL7PDbvVmPLU9EVwdD6LSkbOZyGi3ssidMonnmhJRAqk2y0oGzMES949pKS9Je8ewl1jhxi2jaPpi+DofBbl7XLOHRElyBsI6dJuo07tEpG59HFYsH5/jdIpWxsqatDHwSLYEE0dbNqsQkCndonIPPTaZYa71xCRCo2BCN747ITSNlftPoHGAOcEGyJNp3knXHhCRIly6JRPeuUeEZmLlNBlypZRy6pMn4QZafqcF6JXu0RkHulp+twS1KtdIjKXBr8+U6samoyZsmX6IjgsJfJcTqVt5rmcCHN3CCJKUDisUz5FmE9ElDhfUJ/1T36d2m3P9EVwMBTBnIm5StucOzEXoTDn3BFRYjQhdMknjbtDEJECTps+d5UcVi6MM0QoLFEyKgsOm5p/CodNwx2jshAMcaSFiBIkoEs+ERGpkOnQZ+qnXu22Z/oiONNhxaufHMei6QVK2ls0vQCvfPyVYReQiHovKYE/7DulNJ/e3ncK/IpORCpI6DNlSxqUUqYvgiUk/lx9AUP6OlFSkNgISUlBFob0dWLfyYuGXUAi6r0cNg0D0u1K82lgul23XSeIyFzsmoaHbh6utM2HbxkOu8YT4wwRvYBPrd6PhVNH9viDpqQgCwunjsRTq/cbegGJqPfyhyKYNnownl17QEk+Pbv2AL41ejD83MeciBQIhCOYWZSjdMrWjMIcBAxaV2X6Si0YkZhZlIOwlFiwshwP3JSHxTPcMV9Qh03D4hluPHBTHhasLEdYSswozEGQq6+JKEEOq4bj57147M4blOTTY3fegK/Pe+FU9IFFROYmhMCnX57D4vvGKGlv8X1j8MnROgiDFu+aPgmFQOsF9AbCeHzVXuw7cRFvLpiEJ0pv7HSuS57LiSdKb8SbCyZh34mLeHzVXngD4TYX0OC/CBH1Or5AGPkDM5DTz4mbR7gSyqebR7iQ08+J6wZm8Fh3IlLCbhU4c8mPW0a4cOfoxKZs3Tk6C7eMcOHs5SbDDvQx/eoth03DeW8AZe5s3Dk6C1sP12F9xWm8d/AMpo0ejB/dVYCc/k4EwxH4gxE4bBpsFg01F33YUHEav/7waOuem9EL+EFlrW7bhhCReWiawPHzXlxoDGDh1JEA0KN8ik6HOHr2MsKRCApz+1/jvxkR9QZSAvcV5uAH//UnrFowGc/iILYerou7nTtHZ+G5WePw8Iqd+K8ffBMRg85aEDIFD3UoLi6W5eXlStr6+rwXVk3Dg8s/bb6A6zq+gFZNwG7VEAhFEOpgqkPbC/jmwlsRjkQwfGCGkj4SkTlVexpxvqEJpy/5sXbfKcwsGoYz9T68sLEK/uD/zJnrLJ8cNg2LphdgSF8n1u8/hdkThmFoPwcGZqYhz5V+Lf5KRNSLfHm2AXarhk2HzuDlbV9i1YJJ2P2VB0vePXRFRnXGYdOw+L4xuGWECw+v2IW/Lrked40ZgmA4gpFZmUr6KITYI6Us7ug500+HAICaS4346ztuwP3/9gl+co8b//TtcVfNuQtFJBoD4asKYIdNwz99exx+co8b9//bJ/ibkhtQc7GRe0MQUcI0rXmLtLoGPx65NR9v7anucDpE+3xqPx3irT3VeOTWfNQ1+PH2vlPQOF2LiBQIRSJoCoYwaeRAjB3WD2Uv7YA/GMbmJ+7A03cXdDll6+m7C7D5iTvgD4ZR9tIOjB3WD5NGDoQ/GELQoIVxpp8OEYlIPPn7/fjt92/BuNzmC7j4Pjc2P3EHNlTUYNXuE6j2+K56X57LiYdvGY4ZhTnY9PkZlL20A3eOzsI3RwzE93+7G689ess1+NsQUW9iswgM7uPAwAwHXvv0OB64KQ9n6n34y1f+hCnXD+p2OsTyj47hybJRGNLXidc+PY6ZRcPQ4A/DZuH4BxElLiPNimV/rMLflIzEE6WjAABL3q3E8xur8HffugH/8b2bkG63wtsUas2ojDQrGgMhfFh5FtN+uR2BUAQlBVl4onQUNAH8estRPH3PaEP6b/oi2GrRUO3x4cHlO/GHx6dgMQ726ALeOToLS2aPw3d+8wnqGgKwcos0IkpQMCQx5fqBmL/yM/zrwxOxfMcx9Emz4r/nfxPbj9ThxU1VqPb4rpoOkedyYu7EXDxecj1e+fgrXG46h4VTR+JvV+3FK/NuNmyUhYh6vz9XX8DX530Y1t+BhbePxO03DsILG6vw4qYjeHHTEQDNO91kOqxo8Ieu2KIxuoONe0hfaAL4+rwP+05eNKzvpp8TfPh0Pe7+l48AAFmZ9k7ns3R5AdvMZ6lrCAAA/vgPt2P0kL5K+khE5lR5uh7/vu1LFOX1wy83HcGyuUU4U+/DLzcfwZTrB+G+wqFdjgR/+uW51pHgp1bvx5N3jWreLeLOGzB6KPOJiBJz0tOI1XtPYsWOY3jl+zcjEpHwBkLI6uPA9qqzWL33ZKd30+dOzMUdBYNRd9mPDLsVmiYw/7efYeHUkbh/Yq6ydQtdzQk2/Uhw20K3riHQ6XQIfygCf0uBC3Q8HaKtphgmhBMRdaUpGMa6/TWYPnZI6xZpMwuHxj0SvL6isvXEuPUVlZh/+8hr/Vcjol7gvDeAklFZeHn7l5j/28+wbG4R7NbmRQcjBmbgp/e6MTAz7aov6ucbmtDUZkDxQmMQT63ej7CUuGNUFi40BgxZvGv6Irijveh6Mh2iPTvn3BFRgtKszVstPrV6P1bMax7ISGSLtAUrm++gpTGfiEiBNKuGf9v2JRZNL8CSDZWtX9Tn3zbiitcJABYhcNWaXCmxbl8N1lecBgAsnuHGKx9/hcfvvMGQ/pu+CE5P63g/30AoEtN8lnjbJSKKVTRHvIEwFqwsx7K5Ra3z7TYdqsWmQ7UAut4i7Sf3jsaQvk4sWFkOb8shGcwnIlIhI83aereqpCAL26quPGvhvsKhHb6vKRTBhorT+PDw2dazFtrerXrqbi6MM4RE89SGjuastNV+OkRX8lxObpFGRAlrm0/REy1nFg7FmwsmYfuRutb5dqGIRKjNKXCt8+1GZbVOh2j7HPOJiFQIt0y/anu3altVHcIRGdMX9ai2d6vyXE6EDVqvZvoiON2uYc7EXPzqgy+UtTl3Yi7SeWIcESWoo3zq6YmWUcwnIlIlFIm0ZlT7u1Vt11y1/6Ie1fZAn+jdqoUTcxHiPsHGCIUlpo0ejJe3fxnT6Sbdcdg0fGv0YIQiXBhHRInpLJ/iHWWJYj4RkUqhsGxdGNfV3ar2Ortb5bBpuGNUFkJhHpvcKZVbpAWDYWw5chanLviwZENl92/oxuIZbuT2d+Jb7mxuSE9ECWE+EVEyO3mhEcv+WIWivH5XZJRFE61zgru6W9V2TjDQnFH7TlzE0/eMRu4AbpGmO5vNgvHD+kNG0Dqpu6dKCrKQ08+Jcbn9+QFDRAljPhFRMrNbNPy5+sIVC+OAnt2tii6M23fyOOwd7NylByYhgAFOGy77g1g4dSRKCrJ61EZ0UvdlfxAD0m2Ke0hEZsV8IqJkNTDDju9NysdTq/d3mVGhiERjINxlAbxw6kg8tXo/Hpmcj4EZaXp2uxWLYADpaVaUFAzG73YexwM35WHxDDccttj+aaJH/j1wUx5+t/M4SgoGI91u+gF2IlKE+UREycpi0TCraCjCUmLByvKEMmrBynKEpcTMwqGwaFftKKwL088Jbqu23o9n3q5Apt2K+beNiGtSd0MghKX3FyK7r0N5v4iImE9ElIwCoQje2XcST60+AACth2XEtzCu+bCMZXML8e0Jw5ROh+hqTjCL4BYebwDPvnMQ94wfijP1Pvxy8xFMuX5Qt5O6P/3yHJ4sG4UhfZ14/8BpLPn2OAzIsCvtGxGZG/OJiJLZ2Xo/nn67AlsPN88J7snCuDtHZ+H5+wsxWPGXdRbB3QiEIli77xQWra4A0PG3mPaTujv7FvPC3ELMVvwthojMi/lERMksEIrg3YoaZPdzYPmOYx0u4I31sIzaS37cV5jDkeCuqC6Cz1zyo+TFrVfsw+m0W/DinPEYm9sfFiHQ0BSCPxiGw2ZBZpoVYSlx8ORFLFpzAL42G0A7bBq2/ehODOnH245ElLhY88kXDMPJfCIig0UzyiIEls0twpl631WHZXSm7WEZT63ej7CUyjOKW6R1IRyOYENFzRUX69kZbpSNGYINFaexdOOfOh1pefiW67DpH6Zi86EzeK5lfzx/sLm9H9yaDwu3ISKiBHSVT+v312DpxqpO8+mhm4czn4hIV+0z6vFVe/Gfj9yELU+WYN3+U1i1+0Snc4IfvmU4ZhUNQ+XpS/jha3tanzMyo0w/Elx32Y/7//1TVHt8yMq0Y9WCSSg/fgH/Z8PnMX+L+ccZY1GcPwAPr9iFuoYA8lxOvP03tyKrD0dbiKjnOsqn3V95sOTdQzHn0+L7xuCWES7mExEp11lG/eL9yivWLYTCEQRCEnargLXduoWf3OPWNaO6GgnWvcwWQtwthKgSQhwVQjzTwfPDhRBbhRB/FkJUCCHu1btPbYUisvXivf3YFCx9/zB+/IcDV33AWDWBdLsF1nbbdviDEfz4Dwew9P3DePuxKcjKtKPa4+vy6FIioli0z6dfvF+Jn75zMK58+uk7B/GL9yuZT0SkXFcZJVriSACISCAsI4jI5t+jj1/rjNJ1OoQQwgLgNwDKAJwE8JkQYp2U8lCbl/0MwO+llP8uhBgD4D0A+Xr2q63L/hAA4I2Fk/HzdZ9jy+GzAJpXNpa6B+Pe8UMxrL8TTaFI65zgNKuGUxd9eLfiNLa0rGyMvu+NhZNR+svtaPCHgH5G/S2IqDeK5tOqBZPw7LqDV6y8jiefth6uw7M4iFULJqHspR3MJyJSoqOMmlWUg0en5GPbkTq8uKmq0+kQcybm4rGS6/HqJ8exbn/NNckovecE3wLgqJTyGAAIId4EMBtA2yJYAujb8ud+AGp07tMVmoJhPDvDjfLjntZCtqcXcMvhsygbm43F97nRFOr+ViURUVei+bT7K09rAdzTfNp6uA6lo5lPRKRO24zafcyD3zw8EWfqfXhwxa4up2xVe3z41Qdf4OXtX2LR9AJMHzsET63ej91feQzNKF3nBAsh5gK4W0r5w5bfvwfgm1LK/9XmNUMBbAIwAEAGgFIp5Z4O2loIYCEADB8+/Kavv/5aSR+P1F5Gut2C0l9uV7ay8YMn70BjIIxR2X2U9JGIzOlI7WU4bRaUvaQunzY/cQd8QeYTESUumlHf/s3H+NeHJ3a6RVp3oluk/e2qvXjn8duUZtQ1nRMcg4cA/FZKmQvgXgCvCyGu6peUcrmUslhKWZyV1fHZ1D2R1ceO9w6chkUIrJhXjLf2VGPJhsqYPmCA5vksSzZU4q091VgxrxgWIfDegdPI6sMN6YkoMVl97Hi3gvlERMkpmlHPzR7f4wIYALZV1WH5jmN4bvZ4QzNK7yL4FIC8Nr/ntjzW1nwAvwcAKeVOAA4Agxhbd5oAACAASURBVHTuVytfIIzXd32NZXOLlFzAZXOL8Pqur6/Ym5OIqCe8TWH89261+fS7P30NbxPziYgS520K43S9D2fqfT3Op6htVXU4U+/DqUs+wzJK7yL4MwA3CiFGCCHsAB4EsK7da04AmAYAQgg3movgxP4l4xCOAN/IG6D0Ak7I7Y8wp9wRkQJ65BMRkSrfmTAML2ysUtLWCxurcP+EYUraioWuRbCUMgTgfwHYCKASzbtAfC6EeE4IMavlZf8bwAIhxH4AbwD4vjRw82JvUwiPTslXegHn3zYC3kBISXtEZF6X/frkU4Of+UREiQtHJLYdqYt5ilZ3/MEIth+pQ8SgLdJ0nxMspXxPSjlKSnm9lPKfWh57Vkq5ruXPh6SUU6SURVLKCVLKTXr3qS2rRehyAdvv10lEFC+7Tvlk42lxRKRAJCKxZu9JpW2u3nsSYYPGQk2fhFZN0+UCWjXT/9MSUYIsOuWThV/SiUgBiyY63KYxEdUeHyzCmIwyfaWm2wXkhwwRJYj5RETJzKvTJgCNBm0uYPoi2Nukz9w4zgkmokQ16JVPOrVLRObSFNSnWPUbdFiG6YtgvU4lCfBEJiJKkF45wnwiIhUcdos+7dqMKU9NXwQ7dbuA+rRLROaRptMHgd2gDxgi6t0y06wp1W57pk/CPg59/qH1apeIzKOfw5ZS7RKRudgtGvJcTqVt5rmcsFs5EmwIqyZ0uYDcIo2IEmW16JRPFuYTESVuYIYd35uUr7TNRybnY2BGmtI2O2P6ItiVbse8yflK25w3OR8ugy4gEfVernQ7HmE+EVGSslg0zCoaqmwOr8OmYWbhUMN2sDF9EWyxaJhRmKP0As4ozOEWRESUMItFw0zmExElMVdGGp6bPVZJW8/NHmfol3TTF8EA4MqwY8nscUraWjJ7HFwZdiVtERExn4gomdmtGkrdQ1DqHpxQO6XuwShzZxs2HxhgEQyg+QJOc2ejzJ2dUDtl7myUGnwBiah3Yz4RUbJzZdjx/JzCHhfCpe7BeH5OIQYY/CWdadjClWHH0jnjO/2gsWoC6XZLpwveytzZWDpnvOEXkIh6P+YTEaWC+beNwHOzxl41hauzjHLYNDw3ayzm3zbCyG62ElLKa/IfTkRxcbEsLy/XpW2PN4AtlbX4+frPcdsNg3Dv+KEY1t+JplAE/mAYDpsFaVYNpy768G7FaXzy5Tn8fOZYlLqz+QFDRLpiPhFRMvJ4A3h6dQU2V9ZiZuFQzL99BE56fLBaBAZlpl2VUecamhAKR5DrSscrH32F9RWnUebOxrK56keDhRB7pJTFHT3HzWzbcWXYcd/4obj1hkFYu+8UXtxUhWqP76rX5bmceOiW4fjHWWMxwGlDukEbOxOReTGfiCjZBEIRbKmsxebKWgCAEM2jvV+d9+L35dWdZtRfFOch15Xe+vrNlbX4oLIWsycMM2zaFkeC24mOtCxeexD+YPdHizpsGpbMHodp7mwuOCEiXTGfiCjZnLnkR8mLW2ERAsvmFuFMvQ8vbKyKOaMWTS/AkL5OPLV6P8JSYtuP7sSQfg5l/etqJJhzgts439CEp1dXYNHqipguHgD4gxEsWl2Bp1dX4HxDk849JCKzYj4RUbIJhyPYUFEDixBYMa8Yb+2pxpINlXFl1JINlXhrTzVWzCuGRQhsqKhBOBzb+xPFIriFxxvAM2sOtA7nx2tzZS2eWXMAF7wBxT0jIrNjPhFRMvI0BrBy53Esm1uE5TuOYVtVXY/a2VZVh+U7jmHZ3CKs3HkcnkZjsopFMK6ez9JT0fksgZAx32CIqPdjPhFRsgpFJL6RNwBn6n09LoCjtlXV4Uy9DxNy+yMUMWaqLotgNI+yLF57UElbi9cehIejLUSkCPOJiJLVZX8Ij07Jxwsbq5S098LGKsy/bQQa/CEl7XXH9EVwdD5LrPNXuuMPRgydz0JEvRfziYiSmU0T2HakTmlGbT9SB6vFmPLU9EVwdD6LSkbOZyGi3ov5RETJTNME1uw9qbTN1XtPopNzf5QzfREcisgO97BLRLXHZ9h8FiLqvZhPRJTMLJrQJaMsBlXBpi+CL+s078So+SxE1Hsxn4gomTU06ZMlXp3abc/0RbA/GNanXa7AJqIEMZ+IKJnptduMUbvYmL4ITtPpaD67xaAJLUTUazGfiCiZ6XW8sc2gY5NNXwSn260p1S4RmQfziYiSWWaaPlmiV7vtmb4IBoA8lzOp2yMi82I+EVGyklKfjJIGrd01fREciUjMmZirtM25E3MRMeoKElGvxXwiomRmswhdMsqoKVumL4I9jQGUjMqCw6bmn8Jh03DHqCxc4D6cRJQg5hMRJbMLjUFdMsrTGFTSXndMXwQ7bRa8+slxPDtjrJL2/nHGWLzy8VdwWC1K2iMi82I+EVEyawpFdMko7g5hkExH8+Trorx+KCnISqitkoIsFOb1u6JdIqKeYj4RUTKLjgCrzqg0RSPL3TF9EWy3aFhw+wg88sqfsHDqyB5fxJKCLCycOrK1Hb22DSEi82A+EVEy6+ew4dEp+Uozav5tI9DPYVPc046ZPgkHOG346Og5nPcGsWBlOR64KQ+LZ7hjnt/isGlYPMONB27Kw4KV5TjvDeLjo+cwwGnMBSSi3ov5RETJLM2mYfuROqUZteOLOo4EG+WiP4g3dp8AAHgDYTy+ai/2nbiINxdMwhOlN3a69Ueey4knSm/EmwsmYd+Ji3h81V54A82nO63afQIXfcZM6iai3ov5RETJLBSWWL33JAB1GfXWnpMIRYzZwcb0E8NCEYlqj++Kx9ZXnMZ7B89g2ujB+NFdBcjp70QwHIE/GIHDpsFm0VBz0YcNFafx6w+PItzuYlV7fIZdQCLqvZhPRJTMwlKfjGr/mF5MXwRf9oc6fDwckdh0qBabDtUCAKyagN2qIRCKxPQB0uAPAf2UdpWITIb5RETJLNUzyvRFcFMwHNPrQhGJUCC21wLN24YQESWC+UREySzVM8r0c4LTbPrsl8nV10SUKOYTESWzVM8o0ydhH532y9SrXSIyD+YTESWzVM8o0xfBVk10unqxp/JcTlg1Y869JqLei/lERMks1TPK9EWwK92OeZPzlbY5b3I+XBlpStskIvNhPhFRMkv1jDJ9EWyxaJhRmBPzxs7dcdia27NwpIWIEsR8IqJkluoZZfoiGABcGXYsmT1OSVtLZo+DK8OupC0iIuYTESWzVM4oFsFoXoU4zZ2NMnd2Qu2UubNR6s7mymsiUob5RETJLJUzimnYwpVhx9I543t8Ecvc2Vg6ZzwGcJSFiBRjPhFRMkvVjBJSpt7xmcXFxbK8vFyXtj3eALZU1mLx2oPwB7vfrNlh07Bk9jiUurP5AUNEumI+EVEyS8aMEkLskVIWd/gci+CrBUIReLwBbKiowcqdx686Fxto3sLj+7fm477xOXBl2HmLkYgMwXwiomSWbBnFIriHwuEIPI0BhCISDf4QmkIRpFk1ZDqssGoCrow0rrImomuC+UREySxZMqqrIpjHBnXBYtGQ1cfR/Eu/a9sXIqK2mE9ElMxSIaN4j4yIiIiITIdFMBERERGZDotgIiIiIjKdhIpgIUSmqo4QERERERkl0ZHgQ0p6QURERERkoG53hxBCPNnZUwA4EkxEREREKSeWkeBfABgAoE+7n8wY309ERERElFRi2Sd4L4B3pJR72j8hhPih+i4REREREekrliL4BwDOd/JchydwEBEREREls26nM0gpq6SU5zp5rjb6ZyHEv6rsGBERERGRXlTO6Z2isC0iIiIiIt1wYRsRERERmQ6LYCIiIiIyHZVFsFDYFhERERGRbmIugoUQ47t5yb8k2BciIiIiIkPEMxL8b0KI3UKIx4QQ/do/KaX8rbpuERERERHpJ+YiWEp5O4C/BJAHYI8QYpUQoky3nhERERER6SSuOcFSyi8A/AzA0wDuAPBrIcRhIcT9enSOiIiIiEgP8cwJLhRCvASgEsC3AMyUUrpb/vySTv0jIiIiIlIulmOTo/4VwH8C+ImU0hd9UEpZI4T4mfKeERERERHpJJ4i+D4APillGACEEBoAh5SyUUr5ui69IyIiIiLSQTxzgj8A4Gzze3rLY0REREREKSWeItghpWyI/tLy53T1XSIiIiIi0lc8RbBXCDEx+osQ4iYAvi5eT0RERESUlOKZE/wPAN4SQtSg+YjkIQC+q0uviIiIiIh0FHMRLKX8TAgxGkBBy0NVUsqgPt1KDuFwBJ7GAEIRicv+EJqCYaTZLOjjsMKqCbjS7bBY4tpqmYhICeYTEVFi4hkJBoCbAeS3vG+iEAJSyteU9+oaC4Qi8HgD2FBRg5U7j6Pa44NVE7BbNQRCEYQiEnkuJ+ZNzseMwhy4MuywW/lhQ0T6Yz4REakRcxEshHgdwPUA9gEItzwsAfSqItjjDWBLZS1+vv5z3HbDIPzorgIM6+9EUygCfzAMh82CNKuGUxd9eLfiNF764Ah+PnMsprmz4cqwX+vuE1EvxnwiolSRCnerhJQythcKUQlgjIz1DToqLi6W5eXlyts939CEZ9YcgNNuwaNT8rHtSB3W7D2Jas/V6//yXE7MmZiLklFZePWT4/AFwlg6ZzwGZqYp7xcREfOJiFJBR3er2jPybpUQYo+UsrjD5+Iogt8C8HdSytMqO9cTehTBHm8Az75zEPeMH4oz9T68sLEK/mCk2/c5bBoWTS/AkL5OvH/gNJZ8exwGcMSFiBRiPhFRKojerVq89uAVGdV+ylaUw6Zhyexxut6tUlUEbwUwAcBuAE3Rx6WUs1R0Mh6qi+BAKIJ3K2qQ3c+B5TuOYVtVXdxtlBRkYeHUkai95Md9hTmcg0dESjCfiCgVRO9Wba6shUUTKHUPxr3jh3Y5ZWvL4bMIRyTK3Nm63a3qqgiOZ2Hcz9V0J/l4vAE4bJYef8AAaH3fd4vz4PEGMKSfQ2UXicikmE9ElOw83kBrATyrKKd1ytaLm6q6nLL1WMn1ePWT41i3vwZYAyybW2jo3aqYhwOklNsBHAdga/nzZwD26tQvw4TDERw4dRE1l3w9/oCJ2lZVh5pLPhw4dRHhcPe3KomIusJ8IqJkFwhFsKWyFp9+eQ6/eXgiivL64cEVu/CrD77osAAGgGqPD7/64As8uGIXivL64TcPT8SnX57DB5W1CISMy6eYi2AhxAIAqwH8R8tDwwC8E8P77hZCVAkhjgohnunkNX8hhDgkhPhcCLEq1j6p4GkMYEhfB17YWKWkvRc2VmFIXwc8jQEl7RGReTGfiCjZebwBLH2/EivmFeOtPdVYsqEypjULAOAPRrBkQyXe2lONFfOKsfT9Sni8xuVTPBPDHgcwBUA9AEgpvwAwuKs3CCEsAH4D4B4AYwA8JIQY0+41NwL4MYApUsqxaD6ZzjBCAFsOn+32glk1gXS7BVZNdPk6fzCCDw+fhej6ZURE3WI+EVEyC4cj2FBRg+dmj+9yylZ3GbWtqg7LdxzDc7PHY0NFjWF3q+KZE9wkpQyIlvQUQljRvE9wV24BcFRKeazlPW8CmA3gUJvXLADwGynlBQCQUp6No08J8zaFsWbvyasej3dSd1ur957Et78xDIMyjfpbEFFvxHwiomTmaQyg+kIjhMAVBXBPMmpbVR1uv3EQTlxohKcxgKw++q9diKcI3i6E+AkApxCiDMBjANZ3855hAKrb/H4SwDfbvWYUAAghPgFgAfBzKeUf2zckhFgIYCEADB8+PI5ud6/9nJUeT+pu0x4HWohIBeYTESWrUETiOxOG4cEVu1ofSySjXthYhTcXTLpiGzU9xTMd4hkAdQAOAPgrAO9JKX+qoA9WADcCKAHwEIAVQoj+7V8kpVwupSyWUhZnZWUp+M82awyEW/+cYbckNKk7w25pfd7bpl0iop5gPhFRMguHJbYdqYM/GFGSUf5gBNuP1CEcTr4i+G+llCuklA9IKedKKVcIIf6+m/ecApDX5vfclsfaOglgnZQyKKX8CsARNBfFhmhqmWuXYbcomdQd/aAxcnUjEfVOTSHmExElr2AkgjV7TyrNqNV7TyblSPC8Dh77fjfv+QzAjUKIEUIIO4AHAaxr95p30DwKDCHEIDRPjzgWR78S4rA1/xMsm1uU8D6cy3ccw7K5RQCANG5GT0QJ0i2fbMwnIkqcRdNQ7fEpzahqjw9aN4t8Vek2CYUQDwkh1gMYIYRY1+ZnKwBPV++VUoYA/C8AGwFUAvi9lPJzIcRzQojoSXMbAZwXQhwCsBXAIinl+UT+UvHISLNiVlEOztSr2YfzTL0PMwuHIiMtnunWRERX6+uw6ZJPfR02RT0kIjNrbArpklGNgZCiHnat22OThRDXARgB4J/RPC846jKAipZC11Aqj03+6lwDGvwhPPAfO2Mevu+Kw6bhrb+ajD4OG/IHZSjoIRGZVc3FRpxvCCjPp4GZduT0T1fQQyIys/3VFyGlxIMrdinLqDcXTIImBArzrloe1iNdHZvc7UiwlPJrKeU2KeVkKeX2Nj97r0UBrFqG3YKPvjin5OIBzfNbPj56Dk47bzcSUWKcuuWTpfsXExF1Y2CGvXVhnArRhXFGHZ0cz4lx9wshvhBCXBJC1AshLgsh6vXsnBECYYk3PjuhtM1Vu08gaNDKRiLqvep9IV3yqd6X8uMXRJQMBDrcyzwRq/eeNOxAn3gmri4DMFNKWalXZ66VzrbwSJb2iMi89Mgn7hNMRKqkcg0Vzz372t5YADfqtF+mXu0SkXnolSPcJ5iIVGho0ueuklendtuLZyS4XAjx/9C8pVlT9EEp5dvKe2WgpqA+Hwbch5OIEtWkU44wn4hIBZ9OX6h9OtVm7cVTBPcF0AjgrjaPSQApXQSn2fRZIGLnPsFElCCHTvv5cp9gIlJBrzMR7BZjMirmIlhK+QM9O3Kt9NFpP1+92iUi89BrP1/uE0xEKmTqlCV6tdtePLtDjBJCbBFCHGz5vVAI8TP9umYMCYk8l1Npm3kuJyS4OwQRJUqffALziYgU0AR0ySiDDoyLa2HcCgA/BhAEACllBZqPQU5pdquG7xbnKW3zwZvzYLdyH04iSgzziYiSWabDgu9Nuk5pm9+bdB36OIy5mx5PEZwupdzd7rGU32zS4w1i9oRhyubeOWwaZhUNwwVvQEl7RGRezCciSmaRCPCt0dlKM+pbo7MRjhhztyqeXp8TQlyPlvtoQoi5AE7r0isD2TSBfdUXsGh6gZL2Fk0vwP7qC7AaNKmbiHov5hMRJbPGQBiv7zquNKNe23XcsG1m40nCxwH8B4DRQohTAP4BwN/o0isDaZrAso1VGNLXiZKCrITaKinIwpC+Tjy/scqw+SxE1Hsxn4gomUUksPLTr5Vm1Guffg2DBoLj2h3iGIBSIUQGAE1KeVm/bhnHoglUe3x4avV+rJhXDADYVlUXdzslBVlYOHUkFqwshzcQhoWfMkSUIOYTESWzBn8QAJRmFGDcYRnx7A7x90KI6F7BLwkh9goh7urufckuetqJNxDGgpXleOCmPCye4Y55fovDpmHxDDceuCmv9QMGMO4CElHvxXwiomQWPdBHdUY1hZLvsIxHpZT/IoSYDmAggO8BeB3AJl16ZpC2Jyd5A2E8vmovZhYOxZsLJmH7kTqs3nuyw3Os81xOzJ2YiztGZeGVj7/C+oorT5QOhLkFERElhvlERMnM2ebAMZUZ5TBoB5t4iuDo/bN7AbwmpfxcCJHy99QcHZwYt77iNN47eAbTRg/Gj+4qQE5/J4LhCPzBCBw2DTaLhpqLPmyoOI1ff3i0w1WMep2iQkTmwXwiomSW2cFWZioyqqN29RDPf2WPEGITgBEAfiyE6AMg5Q+g72wvunBEYtOhWmw6VAsAsGoCdquGQCiCUAwzto3a446Iei/mExElM7tFQ57LedVobyIZledywm7QF/V4/ivzATwD4GYpZSMAO4CUP0rZqomYTjsJRSQaA+GYPmDyXE5YufCEiBLEfCKiZDYww47vTcrv9nXxZNQjk/MxMCNNQe+6120RLIQY3fLHCS3/O1IIMRHAdYhvJDkpudLtmDc5X2mb8ybnw2XQBSSi3ov5RETJzGLRMKtoqNLDMmYWDjVsB5tYev1ky//+3w5+XtSpX4axWDTMKMxRegFnFOZwCyIiShjziYiSnSsjDc/NHqukredmjzP0S3q3ySqlXNjyv3d28PMt/buoP1eGHUtmj1PS1pLZ4+DKsCtpi4iI+UREycxu1VDqHoJS9+CE2il1D0aZO9uw+cBAfPsEP9CyGA5CiJ8JId4WQnxDv64Zx27VMM2djTJ3dkLtlLmzUWrwBSSi3o35RETJzpVhx/NzCntcCJe6B+P5OYUYYPCX9HjScLGU8rIQ4jYApQBeAfCyPt0ynivDjqVzxvf4g6bMnY2lc8YbfgGJqPdjPhFRshuYmYZffGc8/vn+8XEdlvHP94/HL74zHgMzjV+rIKSMbdN0IcSfpZTfEEL8M4ADUspV0cf07eLViouLZXl5uS5tn63344PKWjy34RD8we53gHPYNDw7YwxK3dkY3NehS5+IiADmExElr/MNTXhmzQE4bBrm3z4CH39xDv+vvLrTwzK+W5yH224chFc++gr+YARL5+hTCAsh9kgpizt8Lo4ieAOAUwDKAEwE4AOwW0pZpKqjsdKrCL7iAt42Iq7TTvS8gEREzCciSlYebwBPr67A5srmfYEtmsC00YNxX+HQ1sMymoIRpLU7LOPDw2dbD8soc2dj2Vz1UyJUFcHpAO5G8yjwF0KIoQDGSykNPzZZjyI4lgvY0WknRlxAIjI35hMRJatAKIK1+05h0eqKTl8T62EZL8wtxOwJw5SuXVBSBLc0ZAGQjTb7A0spTyTcwzipLoKT/QISkXkxn4gomZ255EfJi1tjmqLVHYdNw7Yf3Ykh/dRN3+qqCI5nd4i/BVALYDOAd1t+Nijp4TXm8QaweO1BJW0tXnsQHm9ASVtERLHkU6ynMTGfiEilcDiCDRU1SgpgAPAHm9sLh9W01514Tnz7ewAFUsrzenXmWujsAlo0gVL3YNw7fiiG9XeiKRSBPxiGw2ZBmlXDqYs+vFtxGlva3G4E/ucC/uDWfFgsHG0hop6L9QMm1pFg5hMRqeRpDGDlzuPdvi7WjAKAlTuPY/aEHGT10X8xbzxFcDWAS3p15Frp6ALOKsrBo1Pyse1IHV7cVNXpwpM5E3PxWMn1ePWT41i3v6b1OSMvIBH1Xp19wPT0SzrAfCIidUIR2WGNlEhGVXt83RbKqsRTBB8DsE0I8S6ApuiDUspfKu+VgdpewAy7BcvmFuFMvQ8PrtjV5ehLtceHX33wBV7e/iUWTS/A9LFD8NTq/fAGwoZeQCLqvTr6gEn0SzrziYhUuewPXfVYohkFAA3+ENBPt263iqcIPtHyY2/56RWiFzDDbsGKecVYvuMYtlXVxfx+fzCCJRsqUVKQhRXzirFgZTm8gbBhF5CIeq+2HzCqvqQDxn3AEFHv1hQMt/5ZZUY1hZJsTrCU8v8AgBAis+X3Br06ZaToBVw2tyjuArit6PuWzS3C46v2GnYBiaj3iuaT6i/pzCciUiHNZgGgPqOM2sEmnt0hxgkh/gzgcwCfCyH2CCHG6tc1Y6TZLJhVlIMz9b4eF8BR26rqcKbeh5mFQ7kFERElLPoBo+JL+vIdx7BsbvPZRswnIlKhj6N5LFV1RkXb1Vs8SbgcwJNSyuuklNcB+N8AVujTLeP0cVjx6JR8vLCxSkl7L2yswvzbRhh2AYmo9+rjsOryJZ35REQqWDWBebdepzSjHrn1Olg1oaiHXYunCM6QUm6N/iKl3AYgQ3mPDJZm1bD9SJ3SPe52fFGHNI60EFGCrJrAgttHKP2SvnDqSMM+YIiod3Ol2/HIZLUDifMm58OVYcwR7/FUaseEEIuFEPktPz9D844RKS0Ulli996TSNt/ac5Krr4koYf0dNnx09JzSL+kfHz2H/k6bkvaIiLZUnlWaUR8ePgvEcZpxIuIpgh8FkAXgbQBrAAxqeSylhWXHe9wlotrju2rfOyKieF30B/HGbrUn06/afQIXfUGlbRKROXkaA3h913Glbb628zg8jcacbBnP7hAXAPydjn25Jjra404FbkFERInqbCP69uI5jYn7BBORKrFmVDyS8rAMIcRmAA9IKS+2/D4AwJtSyul6dc4Ibfe460o8HzKAcXvcEVHv1dmX9EROYwL4JZ2I1Ih1IDHeGioZD8sYFC2AgeaRYSHEYB36ZKjoFkTttf+QCYQiCIQisFs12GP4kOEWRESUqI6+pHd0GlP7D5juTmPil3QiUqGzgcREa6ikOywDQEQIMVxKeQIAhBDXAUj5e2odbRUU/ZA54WlsLWYlmucPR//CaVYN940f2umHDLcgIqJEtf2S3vY0pr985U+47YZB+NFdBV2OBK/46BieLBt11WlM/JJORCp0NJCoooYyKqPiqdR+CuBjIcR2AALA7QAW6tIrA1k1gTyXE9UeX+uHTJpVAELg2Dkv1uw92eW519cNysCsoqFXfMjkuZzcgoiIEhb9Mt32NKa+Dhv+e/43rxgJbq/9SPBH/nNXnMbEL+lEpELbLFFVQ7VvV09CxrENhRBiEIBJLb/uklKea/PcWCnl54r716Hi4mJZXl6upK1wOIL/+vQ4Xtp8BK98/2ZEIhKVZ+rxwsaqmLb8cNg0LJpeAPeQvtA0gfm//QxPlI3CD6aMgIWFMBEloO6yH/f/+6d45m431u8/hZlFw3Cm3hd3Pg3p62x9/9I/VuLtv7kVWX0cBvwNiKg3i2aUpyGgrIZyZdqVZpQQYo+UsrjD5+Ipgrv5j+yVUk5U0lg3VBbBAHDmkh8VJy8iu68DL31wpEennpQUZOGJ0lGorfejMLc/hvTjBwwRJSYcjuDDqrM4fcmHGwb36fGxpCUFWVg4dSSOPfwi1gAAIABJREFUnr2Mof2c+NbobH5JJ6KERQcScwekY2i/xGuo05f8OHmhUelAYldFsMrx5pRN1L4OK/Jc6Xj+j4cTOvcaAJ6+ezT6OnmrkYgSZ7FoGJPTD6Gw7HEBDPxPPn23OA9jcvqxACYiJSwWDbOLcnC2oQkvbKxKOKMWTS/ATcP7G5ZRKmcep+wiOW9TCJ9+eU7JudeffnkOXp32HiYicwmHI/i85hJqLvmU5FPNJR8O1VxCOMzdIYhInV3HzivJqF3HzivqUWxMv0Q4HI6gvimk9Nzr+qYQP2SIKGGexgCG9nUozachfR2GncZERL1bqtdQKovglEzVS/4gNuyvUXru9bsVNbjk57GkRJQYIYAth88qzacPD5+F4GwIIlIg1WuouIpgIUShEGKWEOL+6E/0OSnlpK7em6waA2Gs3ntSaZtv7TmJxkBsJ9EREXXG2xTGGsX5tHrvSXibmE9ElLhUr6HiOTb5VQCFAD4HEC35JYC3deiXYSISupx7bdCx10TUy+mRTxwIJiIVUr2Gimcbg0lSyjG69eQaadBpyN3bxMVxRJQYvUZDvLxTRUQKpHoNFc90iJ1CiF5XBOt1PnVTiB8yRJQYvfIpoFO7RGQuqV5DxTMS/BqaC+EzAJrQvC+wlFIW6tIzgzg7OPdaBYdVn3aJyDwcNn028EnTqV0iMpdUr6HiKYJfAfA9AAfwP3OCU16mTudT69UuEZlHP4ctpdolInNJ9RoqnuGAOinlOinlV1LKr6M/uvXMIHaLhjyXU2mbeS4n7FaOtBBRYqwWoUs+WS1cGkdEiUv1Giqe/8qfhRCrhBAPdbRFWqoamGHH9yblK23zkcn5GJiRprRNIjIfV7odj0zOV9rmvMn5cDGfiEiBVK+h4imCnWieC3wXgJktPzP06JSRLBYNs4qGKpt757BpmFk41LBzr4mo97JYNMwszFGaTzMKc5hPRKREqtdQMfdaSvmDDn4e1bNzRnFlpOG52WOVtPXc7HEcZSEiZVwZdiyZPU5JW0tmj4Mrw66kLSIiILVrqJiLYCGEQwjxuBDi34QQr0Z/9OycUexWDaXuISh1D06onVL3YJS5szkfmIiUsVs1THNno8ydnVA7Ze5slDKfiEixVK6h4vkvvQ5gCIDpALYDyAVwWY9OXQuuDDuen1PY44tY6h6M5+cUYgBHWYhIMVeGHUvnjO9xIVzmzsbSOeOZT0Ski1StoYSUsZ1NJ4T4s5TyG0KICilloRDCBuAjKeUkfbt4teLiYlleXq5L2x5vAB9U1uLZtQfhD3a/E5zDpmHJ7HEodWfzA4aIdOXxBrClshaLmU9ElISSsYYSQuyRUhZ3+FwcRfBuKeUtQogdAB4DcAbAbinlSHVdjY2eRTDQfJqSxxvAhooarNx5vMNzsfNcTsy7NR8zxufAlWHnLUYiMkSs+fT9W/NxH/OJiAyWbDWUqiL4hwDWACgE8F8AMgE8K6V8WVVHY6V3ERwVDkfgaQwgFJFo8IfQFIogzaoh02GFVRNwZaRxlTURXRPMJyJKZsmSUV0VwTEfySGl/M+WP24HYPjo77VgsWjI6uNo/qXfte0LEVFbzCciSmapkFHx7A6RLYR4RQjxfsvvY4QQ8/XrGhERERGRPuKZhPFbABsB5LT8fgTAP6juEBERERGR3uIpggdJKX8PIAIAUsoQgLAuvSIiIiIi0lE8RbBXCDEQgAQAIcQkAJd06RURERERkY5iXhgH4EkA6wCMFEJ8AiALwFxdekVEREREpKN4iuBDAP4AoBHNJ8W9g+Z5wUREREREKSWe6RCvARgN4BcA/hXAKDQfpUxERERElFLiGQkeJ6Uc0+b3rUKIQ6o7RERERESkt3hGgve2LIYDAAghvglA/2PbiIiIiIgU63YkWAhxAM07QtgAfCqEONHy+3UADuvbPSIiIiIi9WKZDjFD914QERER0f/f3v0HSX3f9x1/vW93b3fvB0gXHSfrOIInVcOdJSDOidhJ2prqHNuCwhS5YyMnUWJP3WnS1p2mqWg7kBbaCdhtxtOp01RKXCVtwaltphBwEgcNsjqNFHQ4gOQ75KiyDDqJ4+TD3K/9fZ/+sYuM4TiO2+/39vu9z/Mxoxnd7vc+9+E+w2tf7H6+3y+W0G1LsHPuu0sxEQAAAGCp3MmeYAAAAGBZoAQDAADAO5RgAAAAeIcSDAAAAO9QggEAAOAdSjAAAAC8E3oJNrMPm9krZvaqme2a57hHzcyZWX/YcwIAAIDfQi3BZpaQ9AVJH5HUJ2mnmfXNcVy7pM9I+osw5wMAAABI4b8TvEnSq86515xzRUlfkrR9juP2STogKR/yfAAAAIDQS3C3pIvXff1G7bF3mNl7JfU4547PN5CZfdrMBs1scGxsLPiZAgAAwBsNPTHOzJok/ZakX7vdsc65J51z/c65/s7OzvAnBwAAgGUr7BI8Iqnnuq9X1x67pl3SA5KeNbPXJb1P0lFOjgMAAECYwi7BL0q638zebWbNkj4u6ei1J51zV51z9zjn1jrn1kp6QdI259xgyPMCAACAx0Itwc65sqR/JOlPJQ1L+l/OuW+Z2V4z2xbmzwYAAABuJRn2D3DOfU3S1254bM8tjv1A2PO5E5XKrMZniirPOk3myyqUKkqnEmrPJJVsMnW0NCuR4H4jAJYe+QQgyuKQUaGX4Dgqlmc1Pl3UsXNv6veff10Xx3M3HdPTkdXj71+rrevvU0drs5qTvNgACB/5BCDK4pRR5pxryA+uR39/vxscDGfb8Ph0USeGR7XnyMvKl2Zve3wm1aS92x/QQG+XOlqbQ5kTAEjkE4Boi2JGmdlp59ycF1ygBF/ne1MFPfHVczoxfPmOv3egd5UOPLpeP9KWDnxeAEA+AYiyqGbUfCWYz8hqxqeLi148SToxfFlPfPWcrkwXA54ZAN+RTwCiLK4ZRQlWdf/KieFLi168a04MX9afDY+qWL79RwAAsBDkE4Aoi3NGUYIljU8XtOfIt+Y9JtlkamlOKNlk8x6358jLGp8uBDk9AB4jnwBEWZwzyvurQ1Qqszp69q2bNnAnmkwDvav0yIPvUvddWRXKs8qXKsqkEkonmzTy/ZyOn3tLz5y/rMrsD/ZV50uz+qNzb+mTP7224Zf+ABBv5BOAKIt7Rnlfgr83XdR/f+H1H3ps24b79MmfWatnvz2m//D1V255eY9H37tav/KBH9MX/+/rOnr2zXee+4PnX9f2Dfdp1YpMyLMHsJyRTwCiLO4Z5X0JLlZm31mg1uaEPvvRDbo0kdPHn3ph3st7XBzP6fMn/kq/843/p1//0I/rQ++5V//iK2c1Xazo4nhOxQr77gDUh3wCEGVxzyjvPw+bypclVRfvqcf79eXTF7Xv2PCCrm8nVd+633dsWF8+fVFPPd6v1uZEddxCObQ5A/AD+QQgyuKeUd6X4FypIkn67Ec36MnnXtOzr4wtapxnXxnTk8+9ps9+dIMkKV8bFwAWi3wCEGVxzyjvS3A62aRtG+7TpYncohfvmmdfGdOliZz+zvp3qZmTTgDUiXwCEGVxzyjv7xh3YXxG41OF2+5fWahMqklf+vvvU0dbWms6WgKYIQBfkU8AoiwOGcUd4+aRSZm+8e2xQBZPqu5vee6vxpRJzn8tPAC4HfIJQJTFPaO8L8HlivSVb74R6JhfPv2GOPkaQL3IJwBRFveM8r4EmzTnNezqEfR4APxEPgGIsrhnlPcleDKky3BwCSIA9SKfAERZ3DPK+xJcCOkyHIUynzcCqA/5BCDK4p5R3pfgdCoRyrjNSe9/tQDqRD4BiLK4Z5T3SdieCefO0WGNC8Af5BOAKIt7RnlfgpNNpp6ObKBj9nRklWziEkQA6kM+AYiyuGeU9yW4o6VZj79/baBjPv7+tepoTQc6JgD/kE8AoizuGeV9CU4kmrR1/X3KpIL5VWRS1fESvNMCoE7kE4Aoi3tGeV+CJamjtVn7tj8QyFj7tj+gjtbmQMYCAPIJQJTFOaMowaqehfhwb5c+2NtV1zgf7O3SQG8XZ14DCAz5BCDK4pxRpGFNR2uz9j/64KIX8YO9Xdr/6IO6m3dZAASMfAIQZXHNKHPOLekPDEJ/f78bHBwMZezx6aKeGR7V7iMvK1+6/cWaM6km7dv+gAZ6u3iBARAq8glAlEUxo8zstHOuf87nKME3K5ZnNT5d1LFzb+r3n399zvtY93Rk9Us/vVZbHrxPHa3NfMQIYEmQTwCiLGoZRQlepEplVuMzRZVnnabyZRXKs0onm9SWSSrZZOpoTXOWNYCGIJ8ARFlUMmq+Esxtg+aRSDSpsz1T/WJlY+cCANcjnwBEWRwyis/IAAAA4B1KMAAAALxDCQYAAIB3KMEAAADwDiUYAAAA3qEEAwAAwDuUYAAAAHiHEgwAAADvUIIBAADgHUowAAAAvEMJBgAAgHcowQAAAPAOJRgAAADeoQQDAADAO5RgAAAAeCfZ6AlEWb5Q0tszJUnSZK6sXKmibCqh9mz113ZPS0qZdKqRUwTgqUKxrLHpoqS586mztVnpZiIeQGPEIaNIyDlcnSlqqlDRkTMjOvTiBV0cz910TE9HVjsfWqPtG7vVlk5oZUtzA2YKwDeTuZIm8uUF59OKTFLtWf6xDmBpxCmjzDnXkB9cj/7+fjc4OBjK2Jeu5vXM8Kj2HR9SvjR72+MzqSbt3tKnh3u7dO/KTChzAgBJGr2a14lF5NNAb5e6yCcAIYtiRpnZaedc/5zPUYJ/YHQir12Hz+nk+bE7/t7N6zq1f8d6da3ghQZA8MgnAFEW1YyarwRzYlzNpauLXzxJOnl+TLsOn9PoRD7gmQHw3Sj5BCDC4ppRlGBV9wA/Mzy66MW75uT5MZ0YGtVErhjQzAD4bjJX0okA82kqXwpoZgAQ74yiBEuaKlS07/hQIGPtOz6kyXwlkLEAYCJfDjSfrubKgYwFAFK8M8r7EpwvlHTkzMiCNnAvaLzSrI6eHVG+wLstAOpTKJZDyadCkSIMoH5xzyjvS/DbMyUdevFCoGMePHXhnesLA8BijU0XQ8mna9fuBIB6xD2jvC/BzmnOa9jV4+J4TjG86AaAiCGfAERZ3DPK+xI8lQ/nLfepAh83AqgP+QQgyuKeUd6X4FwpnJPY8iGNC8Af5BOAKIt7RnlfgrOpRCjjZpLhjAvAH+QTgCiLe0Z5X4LbMslYjQvAH+QTgCiLe0Z5X4LNpJ6ObKBj9nRkZRbokAA8RD4BiLK4Z5T3JfielpR2PrQm0DEf27RGnW3pQMcE4J/O1uZQ8mlVO/kEoH5xzyjvS3AmndL2jd3KpIL5VWRSTdq2oVvpkPbJAPBHujkZSj41sycYQADinlHel2BJaksntHtLXyBj7d7Sp/YMLzAAgrEikww0n1Zm2Q8MIDhxzihKsKSVLc16uLdLm9d11jXO5nWdGujr0opsc0AzA+C79mxKAwHmU1smFdDMACDeGUUJrrl3ZUb7d6xf9CJuXtep/TvWq2tFJuCZAfBdF/kEIMLimlHmYnj/zP7+fjc4OBjK2Jeu5vXM8Kj2HR9SvjR72+MzqSbt3tKngb4uXmAAhGr0al4nyCcAERXFjDKz0865/jmfowTfbCJX1GS+oqNnR3Tw1IU574vd05HVY5vWaNvGbrWnE2yBALAkpvIlXc2VF5xPKzNJtkAAWDJRyyhK8CLlCyW9PVOSc9X7WOdLFWVSCbWlkzKTOtvSXAUCQEMUimWNTRdvmU+r2tNcBQJAw0Qlo+YrwZwmPI9MOqXVad5BARA96eakVjcT4QCiKQ4ZFe3ZNVipVNHYdEGzTprMl5UrVZRNJdSeSarJpM7WtFK8EwygAa69yyJJk7nr8ql2eaHO1malI/4CBGD5ikNGkZBzmCmUdSVX0pEzIzo0z36WnZvWaPvGbt2dTaklza8SQPgmcyVN5MvVfHpxnnx6qJpPKzJJtWf5RAvA0ohTRrEn+AaXJ6pnNu49tvAzG/ds7dNAb5dWcfY1gBAt+szr3i51rSSfAIQrihnFiXELdHkirycOn9PJ82N3/L2b13XqwI71FGEAoRidyGtXHfnEdYIBhCmqGTVfCeZmGTX1FGBJOnl+TE8cPqfLE/mAZwbAd6NXF//iIlXzadfhcxolnwCEIK4ZRQlWdQ/wieHRRS/eNSfPj+nE8KhmiuWAZgbAd5O5UnD5NDSqqXwpoJkBQLwzihIs6UqupL3HhgIZa++xIV2Z4UUGQDAm8mXtOx5MPu07PqSrOf6RDiA4cc4o70twqVTRkTMjC9rAvRD50qyOnhlRqVQJZDwA/ioUy8Hn09kRFfi0CkAA4p5R3pfgsemCDp26EOiYB09d0Nh0IdAxAfhnbLqoQy+GkU/FQMcE4Ke4Z5T3JXjWac5r2NXj4nhOs/G76AaAiHEh5VMMLwoEIILinlHel+DJfDhvuYc1LgB/TIWUI1MF8glA/eKeUd6X4FxIe3fz7AkGUCfyCUCUxT2jvC/B2VQilHEzIY0LwB+h5VOSfAJQv7hnVOgl2Mw+bGavmNmrZrZrjuf/mZkNmdk5M3vGzH407Dldrz2TjNW4APzRFlKOhDUuAL/EPaNCLcFmlpD0BUkfkdQnaaeZ9d1w2F9K6nfOrZf0FUmfDXNON2oyqacjG+iYPR1ZNVmgQwLwkIWUT0Y+AQhA3DMq7HeCN0l61Tn3mnOuKOlLkrZff4Bz7qRzbqb25QuSVoc8px/S2ZrWzk1rAh3zsU1r1Nke/P2vAfils7VZOx8KPp9WtacDHROAn+KeUWGX4G5JF6/7+o3aY7fyKUl/PNcTZvZpMxs0s8GxsfpuzXe9VCqh7Ru7lUkF86vIpJq0bWO3Ugnvt1sDqFO6ORl8Pm3oVjN7ggEEIO4ZFZmmZmY/L6lf0ufmet4596Rzrt8519/Z2Rnoz747m9KerTfu0licPVv7dHdLKpCxAGBFJqndW4LJp91b+rQyy35gAMGJc0aFXYJHJPVc9/Xq2mM/xMwGJP1rSducc0t+q7WWdFIDvV3avK6+cr15XacGervU0syLDIBgtGdTweVTX5faMvwjHUBw4pxRYZfgFyXdb2bvNrNmSR+XdPT6A8zsJyT9V1UL8OWQ53NLq1ZkdGDH+kUv4uZ1nTqwY71WrWAvMIBgda3MaH+d+bR/x3p1kU8AQhDXjDIX8r3pzOwRSZ+XlJD0RefcvzezvZIGnXNHzeyEpAclvVX7lgvOuW3zjdnf3+8GBwdDme/libxODI9q77Eh5Uuztz0+k2rSnq19GujtogADCNXo1Wo+7Tu+8HzavaVPA31dFGAAoYtiRpnZaedc/5zPhV2CwxBmCZakmWJZV2ZKOnpmRAdPXZjzvtg9HVl9YtMabdvYrbtaUmyBALAkpvIlXc2VdfTs/Pn0WC2fVmaSbIEAsGSillGU4EUqlSoamy5o1kmT+bLypYoyqYTaM0k1mdTZnuEqEAAaolAsa2y6KOekqcIP8qktnZSZtKo9zVUgADRMVDJqvhLM25fzSKUSuu+ulkZPAwBukm5OajWfQAGIqDhkVLRn12D5Qklvz5QkSZO5snKlirKphNprl++4pyWlTJqPGQEsPfIJQJTFIaMowXO4OlPUVKGiI2dGdOjFW+9n2fnQGm3f2K22dEIrW5obMFMAviGfAERZnDKKPcE3uHQ1r2cWcWbjw71dunclZ18DCA/5BCDKophRnBi3QKMTee06fE4nz9/5bZm5DieAMJFPAKIsqhk1Xwnm0gY1l64ufvEk6eT5Me06fE6jE/mAZwbAd+QTgCiLa0ZRglXdv/LM8OiiF++ak+fHdGJoVBO5YkAzA+A78glAlMU5oyjBkqYKFe07PhTIWPuOD2kyXwlkLAAgnwBEWZwzyvsSnC+UdOTMyII2cC9ovNKsjp4dUb5QCmQ8AP4inwBEWdwzyvsS/PZMSYdevBDomAdPXXjn2ngAsFjkE4Aoi3tGeV+CndOc17Crx8XxnGJ40Q0AEUM+AYiyuGeU9yV4Kl8OZ9xCOOMC8Af5BCDK4p5R3pfgXCmcDdj5kMYF4A/yCUCUxT2jvC/B2VQilHEzyXDGBeAP8glAlMU9o7wvwW2ZZKzGBeAP8glAlMU9o7wvwWZST0c20DF7OrIyC3RIAB4inwBEWdwzyvsSfE9LSjsfWhPomI9tWqPOtnSgYwLwD/kEIMrinlHel+BMOqXtG7uVSQXzq8ikmrRtQ7fSIe2TAeAP8glAlMU9o7wvwZLUlk5o95a+QMbavaVP7RleYAAEg3wCEGVxzihKsKSVLc16uLdLm9d11jXO5nWdGujr0opsc0AzA+A78glAlMU5oyjBNfeuzGj/jvWLXsTN6zq1f8d6da3IBDwzAL4jnwBEWVwzylwM75/Z39/vBgcHQxn70tW8nhke1b7jQ8qXZm97fCbVpN1b+jTQ18ULDIBQkU8AoiyKGWVmp51z/XM+Rwm+2USuqMl8RUfPjujgqQtz3he7pyOrxzat0baN3WpPJ/iIEcCSIJ8ARFnUMooSvEj5Qklvz5TkXPU+1vlSRZlUQm3ppMykzrY0Z1kDaAjyCUCURSWj5ivB3DZoHpl0SqvTqUZPAwBuQj4BiLI4ZBQleB6lUkVj0wXNOmkyX1auVFE2lVB7Jqkmkzpb00rxTguABiCfAERZHDKKEjyHmUJZV3IlHTkzokPz7GfZuWmNtm/s1t3ZlFrS/CoBhI98AhBlccoo9gTf4PJEXieGR7X32MLPbNyztU8DvV1axdnXAEJEPgGIsihmFCfGLdDlibyeOHxOJ8+P3fH3bl7XqQM71vNCAyAU5BOAKItqRs1XgrlZRk09iydJJ8+P6YnD53R5Ih/wzAD4jnwCEGVxzShKsKr7V04Mjy568a45eX5MJ4ZHNVMsBzQzAL4jnwBEWZwzihIs6UqupL3HhgIZa++xIV2ZKQUyFgCQTwCiLM4Z5X0JLpUqOnJmZEEbuBciX5rV0TMjKpUqgYwHwF/kE4Aoi3tGeV+Cx6YLOnTqQqBjHjx1QWPThUDHBOAf8glAlMU9o7wvwbNOc17Drh4Xx3Oajd9FNwBEDPkEIMrinlHel+DJfDgbsMMaF4A/yCcAURb3jPK+BOdC2neSZ88dgDqRTwCiLO4Z5X0JzoZ03+pMg++HDSD+yCcAURb3jPK+BLdnwrlfdVjjAvAH+QQgyuKeUd6X4CaTejqygY7Z05FVkwU6JAAPkU8AoizuGeV9Ce5sTWvnpjWBjvnYpjXqbA/+/tcA/EI+AYiyuGeU9yU4lUpo+8ZuZVLB/CoyqSZt29itVML7Xy2AOpFPAKIs7hlFEkq6O5vSnq19gYy1Z2uf7m5JBTIWAJBPAKIszhlFCZbUkk5qoLdLm9d11jXO5nWdGujtUkszJ50ACAb5BCDK4pxRlOCaVSsyOrBj/aIXcfO6Th3YsV6rVrDXDkCwyCcAURbXjDLn4nf/zP7+fjc4OBjK2Jcn8joxPKq9x4aUL83e9vhMqkl7tvZpoLeLFxgAoSKfAERZFDPKzE475/rnfI4SfLOZYllXZko6emZEB09dmPO+2D0dWX1i0xpt29itu1pSfMQIYEmQTwCiLGoZRQlepFKporHpgmZd9T7W+VJFmVRC7ZmkmkzqbM9wljWAhiCfAERZVDJqvhLM2wPzSKUSuu+ulkZPAwBuQj4BiLI4ZBRvEwAAAMA7lGAAAAB4hxIMAAAA71CCAQAA4B1KMAAAALxDCQYAAIB3KMEAAADwDiUYAAAA3onlHePMbEzSdxvwo++R9HYDfi7CxbouX6zt8sXaLk+s6/LVqLX9Uedc51xPxLIEN4qZDd7q1nuIL9Z1+WJtly/WdnliXZevKK4t2yEAAADgHUowAAAAvEMJvjNPNnoCCAXrunyxtssXa7s8sa7LV+TWlj3BAAAA8A7vBAMAAMA7lGAAAAB4hxJ8AzP7opldNrOXb/G8mdl/MrNXzeycmb13qeeIO7eAdf1EbT1fMrM/N7MNSz1HLM7t1va64x4ys7KZfXSp5ob6LGRtzewDZnbGzL5lZt9Yyvlh8RaQySvN7I/M7GxtbX95qeeIO2dmPWZ20syGauv2mTmOiUyPogTf7GlJH57n+Y9Iur/236cl/ZclmBPq97TmX9fvSPpbzrkHJe1TBDfw45ae1vxrKzNLSDog6etLMSEE5mnNs7Zmdpek35a0zTn3Hkl/b4nmhfo9rfn/3v6qpCHn3AZJH5D0H82seQnmhfqUJf2ac65P0vsk/aqZ9d1wTGR6FCX4Bs655ySNz3PIdkl/4KpekHSXmb1raWaHxbrdujrn/tw5d6X25QuSVi/JxFC3BfydlaR/LOmrki6HPyMEZQFr+5ikw865C7XjWd+YWMDaOkntZmaS2mrHlpdiblg859xbzrlv1v5/UtKwpO4bDotMj6IE37luSRev+/oN3bzAiLdPSfrjRk8CwTCzbkl/V3xqsxz9dUl3m9mzZnbazH6x0RNCYP6zpF5Jb0p6SdJnnHOzjZ0S7oSZrZX0E5L+4oanItOjko34oUBUmdlmVUvwzzZ6LgjM5yU94Zybrb6phGUkKeknJT0sKSvpeTN7wTn37cZOCwH4kKQzkv62pB+T9Gdm9n+ccxONnRYWwszaVP307Z9Gec0owXduRFLPdV+vrj2GmDOz9ZJ+V9JHnHPfa/R8EJh+SV+qFeB7JD1iZmXn3P9u7LQQgDckfc85Ny1p2syek7RBEiU4/n5Z0n5XvZnBq2b2HUnrJJ1q7LRwO2aWUrUA/0/n3OE5DolMj2I7xJ07KukXa2c3vk/SVefcW42eFOpjZmskHZb0C7yLtLw4597tnFvrnFsr6SuSfoUCvGwckfSzZpY0sxZJP6XqHkTE3wVV3+GXmXVJ+nFJrzV0Rrit2h7u35M07Jz7rVscFpkexTvBNzCzQ6qeiXqPmb0h6TckpSTJOfc7kr4m6RFJr0qaUfVfq4i4BayWksLqAAACtklEQVTrHkk/Ium3a+8Ylp1z/Y2ZLe7EAtYWMXW7tXXODZvZn0g6J2lW0u865+a9VB6iYQF/b/dJetrMXpJkqm5pertB08XC/YykX5D0kpmdqT32ryStkaLXo7htMgAAALzDdggAAAB4hxIMAAAA71CCAQAA4B1KMAAAALxDCQYAAIB3KMEA0GBmNhXCmBvN7JHrvv43ZvbPg/45ABBXlGAAWJ42qnotTgDAHCjBABAhZvbrZvaimZ0zs39be2ytmQ2b2VNm9i0z+7qZZWvPPVQ79oyZfc7MXjazZkl7JX2s9vjHasP3mdmzZvaamf2T2ve3mtlxMztb+96PzTkxAFhmKMEAEBFm9nOS7pe0SdV3cn/SzP5m7en7JX3BOfceSd+X9Gjt8f8m6R845zZKqkiSc66o6l0Q/9A5t9E594e1Y9dJ+lBt/N8ws5SkD0t60zm3wTn3gKQ/CfvPCQBRQAkGgOj4udp/fynpm6qW1vtrz33HOXftNqSnJa01s7sktTvnnq89fvA24x93zhVqt5+9LKlL0kuSPmhmB8zsbzjnrgb45wGAyKIEA0B0mKTfrL17u9E599ecc79Xe65w3XEVSclFjH/TGM65b0t6r6pl+N+Z2Z7FTBwA4oYSDADR8aeSPmlmbZJkZt1mtupWBzvnvi9p0sx+qvbQx697elJS++1+oJndJ2nGOfc/JH1O1UIMAMveYt5JAACEwDn3dTPrlfS8mUnSlKSfV22v7y18StJTZjYr6RuSrm1nOClpl5mdkfSb83z/g5I+V/v+kqR/WN+fAgDiwZxzjZ4DAGCRzKzNOTdV+/9dkt7lnPtMg6cFAJHHO8EAEG9bzOxfqprn35X0S42dDgDEA+8EAwAAwDucGAcAAADvUIIBAADgHUowAAAAvEMJBgAAgHcowQAAAPDO/wdhPlogmu+FzQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zU1Z0//teZW2Yy4TaQcA0GFJJwSShGCvVCkChVIvhT7CrdFlcXug/ddhdb1LYL60Lbb0Vb+3V/vcHqSu0irWgFghYEBCuVlUshICGoiAQCJDJAyGTuc75/JBNDmCQzmfP5MJPP6/l45FEyMzk55tPH+7w/55zPeQspJYiIiIiIjMR0tTtARERERKQ3JsFEREREZDhMgomIiIjIcJgEExEREZHhMAkmIiIiIsOxXO0OdMeAAQNkXl7e1e4GEREREaWwvXv3fi6lzI71XlomwXl5edizZ8/V7gYRERERpTAhxGcdvcftEERERERkOEyCiYiIiMhwmAQTERERkeEwCSYiIiIiw2ESTERERESGwySYiIiIiAyHSTARERERGQ6TYCIiIiIynLQslqGXYDCMeo8fEQlc8oXgDYbhsJrRy26BSQDZzgxYrear3U0iMiDGJyJKZekQo5gEx9DkD+G8N4h1+0/hlQ9OoMbtveIzuS4HHpg0HLMnDEU/hxWZGfxTEpH2GJ+IKJWlU4wSUsqr8ouTUVJSIrUqm1zX4MOWqrNYWnEYvmCky8/brSYsKR+DssKByOlt16RPREQA4xMRpbZUjFFCiL1SypKY7zEJ/kJdgw9PvF6Jd47UJ/yz0wqy8fQ9RRxoiEgTjE9ElMpSNUZ1lgTzwbgWyVw8AHjnSD2eeL0SdQ0+xT0jIqNjfCKiVJauMYpJMJr3r2ypOtvtixf1zpF6bKk6i6ZASFHPiMjoGJ+IKJWlc4xiEgzgvDeIpRWHlbS1tOIwzjcFlbRFRMT4RESpLJ1jlOGT4GAwjHX7T8W1gTsevmAE6/efQjAYVtIeERkX4xMRpbJ0j1GaJsFCiBeFEHVCiEMdvC+EEM8LIT4WQlQKISZq2Z9Y6j1+vPLBCaVtrv7gBOo9fqVtEpHxMD4RUSpL9xil9UzwSwC+2sn7dwAY1fK1AMCvNe7PFSISMc+wS0aN24tI+h26QUQphvGJiFJZuscoTZNgKeW7ANydfGQ2gN/JZrsA9BVCDNayT+1d8mmzAVurdonIOBifiCiVpXuMutp7gocCqGnz/cmW164ghFgghNgjhNhTX5/cE4hteTXad+LjnjsiShLjExGlsnSPUVc7CY6blHKFlLJESlmSnZ2trF2HRnWr7Ve5HjYRpT/GJyJKZekeo652EnwKQG6b74e1vKabXnZt6lVr1S4RGQfjExGlsnSPUVc7CV4P4Jstp0RMBnBRSnlazw6YBJDrcihtM9flgEkobZKIDIjxiYhSWbrHKK2PSHsFwPsA8oUQJ4UQDwsh/kkI8U8tH3kTwDEAHwNYCeARLfsTS7YzAw9MGq60zbmThiO7l/r610RkLIxPRJTK0j1GaX06xANSysFSSquUcpiU8gUp5W+klL9peV9KKR+VUl4rpRwvpdyjZX9isVrNmD1hKOxWNX8Ku9WEWROGwmq+2pPsRJTuGJ+IKJWle4xiJATQz2HFkvIxStpaUj4G/TKtStoiImJ8IqJUls4xikkwgMwMC8oKB2JaQXKnTkwryEZZ4UBk2vjQCRGpwfhERKksnWMUk+AWOb3tePqeom5fxGkF2Xj6niLk9OZeOyJSi/GJiFJZusYoIWX61c8sKSmRe/Zos324rsGHLVVnsbTiMHzBSJeft1tNWFI+BmWFAznAEJGmGJ+IKJWlYowSQuyVUpbEfI9J8JWaAiGcbwpi/f5TWP3BCdS4vbCYBGwWEwKhCEIRiVyXA1+fNByzJgxF30wrlxiJSBeMT0SUylItRjEJ7iZ/IIR6TwAAcMkbgjcYhsNqRi9H88XKzspABisvEdFV0D4++cNhZJgZn4goNaRKjOosCeb0QAyBUARuTwAVlbVY9f7xDu9i5k3JQ3nRELicNtgs3F5NRNqLxqfKmguIQGJAVgb8oQh8wTDsVjM8gRA+b/RDACjO7cf4RES6SqcYxSS4HbcngK1VZ/HUhg9x03UD8L3b8zG0r+OyC5hhMeHUBS82Vp7Gc1uO4qm7xmJ64UC4nLar3X0i6sHcngAO115Elt2Kw2ca8Nq+k6hxe6/4XK7LgXsnDsPAPg58XHcJY4b0YXwiIs2lW4zidog2zjX68eRrB+GwmfHQjXnYfrS+ywtYOjobL+48Dm8gjJ/eOx79szKU94uI6FyjH0fPXsLh0w14ZlN13A+dLJqRjzGDe2P0wF6MT0SkmVSNUdwTHAe3J4AlbxzCHeMH40yDN+ELOKi3A28dPI1ld49DP864EJFCbk8AJ91N+PmWo9heXZ/wz5fmZ+OxstHIdWUyPhGRcqkcozpLgrlRDM37V3ZU12Hu5OF4dW8NllVUxZUAA4AvGMGyiiq8urcGcycPx/bqOgRC8f0sEVFXAqEI6i75uj24AMD26nr8fMtRnL3kY3wiIqXSOUYxCUbzHYzdasaKd48ldQFXvHsMdqsZ7panIYmIknWxKYCdH3/e7dgUtb26Hjs//hwXmxifiEiddI5Rhk+Cw+EIDp66gNqLXiUXsPaiFwdPXUA4zNkWIkpOOBxBgz+EZzZVK2nvmU3VaPCHGJ+ISIl0j1GGT4LdTQEM6m1XegEH9bbDzdkWIkrSRV8QFQdq496e1RVfMIKNlbW46AsqaY+IjC3dY5Thk2AhgK1H6rq8gBaTQKbNDItJdPo5XzCCbUfqIDr/GBFRl5oCYazdd1Jpm6/uPYmmQFhpm0RkTOkeowx/TrDHH8ZrMS6g2SRQVpiDO8cP7vSc4K1H6hCOXH7Cxtp9J3H3l4ZiQJZe/xVE1BNFpIx5RGMyatxeRNLwVCAiSj3pHqMMnwQDuOICzioe0npO8LObqzs9J/iR0mvx4s7jWH+gtsP2iIi6o9EXiutz7StadtmunzPBRJS8eGNUwu3qFKMMnwQ3tflDO21mLJ9TjDMNXty/clenWyRq3F78YstH+M2OT7BoRj5mjB2Ex9cegKdlCp/LjUSULH8HRwUls1IFAIEg4xMRJa+jGNVeojfqesUowyfB/lDzH9ppM2PlvJKEj0mLnhNcmp+NlfNKMH/VHngCYZ7FSURJc1jNV7yW7EoVANhjtEtElKhYMQpI/kZdrxhl+CQ4o+UPvXxOcdLnBEfbeXT1Ptgshn/mkIiS5Mz4IkSrXKlq2y4RUXfFiiUqbtT1ilGGz9R62S2YVTwEZxrUnBN8psGLu4oGo5edgwwRJcckmgeL6EpVMhUtV84rgdNmRq7LgS4OuSEiiks0RgHNN+q/nDsRxbl9cP/KXfjFlo86fEYqeqN+/8pdKM7tg1/OnQinrXlSUs8YZfhMTUpg/s0jcN9v31fS3jObqvHqt6aAD18TUbIy7WY8MGk4rnE5la1UnXB74ORNOhEpkJnRHKN+ue1jZVtK504aDmcGt0PoIjPDhI2V55Qe9PzXT87hvpJhStojIuNqaAphxpiB2HG0XslK1S2jBuD2sQNxsSmIvg6bol4SkVFd9IZw83UDMKK/mhv1Z+8rxrB+DlzwhtA3M0NlV2My/HaIS74w/ueDz5S2+fv//QyXNDo2hIiMJRiRWK6oouXyTdUIhrhMRURqCAC7j7vh9gSU3Ki7PQF88Kkbeu3YMnwSbBZCk4OeTSwZR0QKbDl8VulK1dYjZ5W0RUTU5A9j4vB+WLbxsJL2lm08jOuv6afbMbOGT4Ib/drM2Ho0apeIjCMSkfjDnhqlba7ZXcOKcUSkhM1iwnsff670Rn3nJ5/DZtYnPTV8EuxXdOGuaJfnBBNRkixmkyYrVRaT4UM/ESlgMQtNbtQtZn1W0w0fCTPiPM/XbjFhQJYN9jg/z3OCiShZ8a4oWUwCmTYzLHGeK+QJcKWKiJJnNsW3pTSRGFXj9sKs0xlpPB2ig2M4bBYT/nX6dSgtyIHTZkGjLwRvMAyH1YwsuwWeQAjbqurw/LaPY1aHy7SxIhMRJaejJcZY1Zj8oTAyLPFVY9JqBYyIjKWxg0MAko1RWm1Vbc/wSbCUzQczt72TWVJeiNvGDMKGA7X41st7O6x28sANw7H1sal4+/AZLK2ouuw9brkjomTFWqmaVTwED92Uh7989Hmn1Zi+VpKLR6Zdixffu7Iak1777YioZ4t1o64iRul1o274SGi3mnDvxOYzfbOzbHh74S3IsJhx23M7sHxT7IsHNE/XL99Ujdue24EMixlvL7wF2VnN527OmTgMdqvh/7RElKS2K1XRakwl1/TD/St24Webj3Yan362+SjuX7ELJdf0u6waU/t2iYi6y2b5YtuCyhhl5YNx+vAFI5hekIPcfna8/siN+MlbVfjhG4cSKkv6wzcO4SdvVeH1R25Ebj87bi3IgY8PxhFRkqIrVU6bGS88eANe33cSS9Z/mFB8WrL+Q7y+7yReePCG1rLJXKkiIhWcGc0bClTGqOZ2WTFOF3arCQdPebB6/hQsWX8I7xzp3mHP7xypxxIcwuoFU3DgxHmU5LkU95SIjMZha16pKhjUCyvfPYatR+q61U705372tWJUn7nEZxaISAmJ5hv1H95ZqCxG/fjNKuh1n274mWB/KIIJuX3x7tH6bifAUe8cqce71fWYkNuXR6QRUdL8oQjuKhoMtyfY7cElauuROpz3BFFePBi+kD4H0RNRz+awmvD4jHylMeqJGfnItOpzo274JNhuNcEkhNJqJ0IIOHS6gETUc9nMJlgtZiyt+FBJe/9R8SGsZjMy+GAcESkQikh8aXg/pTFqwvB+CIb5YJwurGaBdftrlVY7WX+gFmbmwESUJJMJ+POhM0rj06ZDZ8Cq7kSkgsNqwpsHTyuNUW8ePA2HTlu2DJ8ENwUieGX3CaVtrv7gBLwBbocgouQEQxIv7zqutM3f7TqOYJhPxhFR8nzBCF7e9ZnSNl/e9ZmypLorhk+CpYQmZUn59DURJSuiUXyKcTY9EVHCwhFtYlSsAhpaMHwSfMkX1KRdvaqdEFHPpVUcibccMxFRZ9I9Rhk+CdZqyt0X5NPXRJQcreII4xMRqZDuMcrwSbBWpzjYLXwyjoiSE6tssgo2jdolImNJ9xhl+EiYZdemXohW7RKRcTA+EVEqS/cYZfgkWIjmaicq5bocPIKIiJJmEkKT+GRigCIiBdI9Rhk+CXbYTHjghuFK25w7aTjLkhJR0uxWE+ZMHKa0zfuuHwY7i/kQkQIZFqFNjNJpS6nhk+D6hgDuKh4Cu1XNn8JuNaG8aAjqLvmVtEdExhUMScwsUhuf7hw/RLdqTETUs4UjQLniHGpm0RCEIzwnWBe+YARvHz6DxTPHKGlv8cwx2PzhGfh1OuiZiHquUEQCMoJFM/KVtLdoRj6kjCDEYhlEpICUzeXdVcaoDLNJt7PMDZ8E260mLK2owqQRLkwryE6qrWkF2Zg0woVlG6s0e2KSiIzD4w/h+W2fYPLI/ijNTy4+leZnY/LI/nh+68doCvCcYCJKXkRK/Nd7x5TGqBXvHUNEp4pjhs/UMjOa953MXbkLS2eN63YiPK0gG0tnjcPclbsua5eIqLt8wQjWH6hFjduLhWWjuz3IlOZnY2HZaNS4vdhQeVq3kqRE1LNFJLDqr58pjVG/++tnnAnWSzgsketyoL4xgHt+tRM/uKMQP757XNz7W+xWE3589zj84I5C3POrnahvDCDX5dCt5B8R9VzROPTdP+6HNxjGgptHYnF5YULxaXF5IRbcPBLeYBjf/eN+ANqd7UlExhKtGKc6RrFinE5MQuDelicb6xsDuO25d+ELhvH2wql44qv5HR79kety4Imv5uPthVPhC4Zx23Pvor4xAACYM3EYTOARRESUnOgpM55AGA+/tBvnm4IY7srEmgVTsLBsVKfxaWHZKKxZMAXDXZk43xTEwy/thifQXIWJK1VEpEK0spvqGKVXxTjDn5huMgmUjs7Gb3Z80rpEuGxjFZ7eVI3v3HodfvuN65Fps8DjD8EXjMBuNcGZYUFTIIRtVXWY/vMdCIS+WFq0W02YOjobJhOTYCJKTijSvFJV4/bCEwjj0dX7cFfRYDx80wiM6O/ED+8sRP+sDATDkdb4ZDWbcK7RD38oAkiJ9ftrsaHydGubuS4HwnwwjogUaLuqpCpGAfpVjDN8Emw2AX/afwqLZuRjWUVV6+uBUATPbj6KZzcfBQDYLSZk2S1o9IXgC3W8n27RjHy8vv8U/umWkZr3nYh6NoupeaXqF1s+an1tQ+VpvHnoDKYX5GBm0WAAgABgFqJ1/ckfiqCi8jS2Ham7YmvWnInDYOZNOhEpEKuyW7IxqqN2tWD4JNhiFhjSx4FBvR0ozc/G9ur6mJ/zhSLwtWx36EhpfjYG9W7eD2wxGX6nCRElKdZKFQCEIxKbD5/F5sNnATQnyzaLCYFQpPlYtQ5wpYqIVIpWjKtxey97vbsxCmDFOF1JCUwvHIgl6w5iwS0jk3qyccEtI7Fk3UHcWjAQElxuJKIkyS9WqjoTikg0BcJdDi7RlSqGJyJSwW6Jr6plvDEKYMU4XXkDEby86zgemXYd5q/ag/uuz+3Wk433XZ+L+av24JFp1+F3u47DyyOIiChJFotAv0xb60pVMqIrVf0zbbBaOBNMRMmLQJuqljwnWCdCNJ9xN6i3AzeMcOHR1fuw/8QFrJk/Ob4nG+dPxv4TF/Do6n24YYQLg3o78Lu/fsazIYgoae7GAEpHZytdqZo6OhvnPEHFPSUiI/IHtalq6e/k2SuVDL8nuMnffAzH42sPYOW8EgCXb+r+3u35GNLXccWTjbUXvKioPI3nt32McES2DjLzV+1pbjegz/EeRNRz+UMR/PfOL1aqls8pxs2jBuCZTdVxFbywW5vLmQ7q7cD8VXvw2O2j8cJ7n+Lhm0bo0Hsi6ukafSH8escn+NbUkZ0+VxWPtlUtH5l2ncJedszwSXD0bsMTCF8xyMSzqdtuNeEHdxa0DjLRM+4COt3FEFHP5bCasf5ALWaMHdS6UnVX0WCsmT8ZO47WY+2+k1c8kAI0r1TNmTgMU0dn44X3PsWGyqrW7RAbKqvwqE4DDBH1bN5gGOsP1OLO8YOxsGw0AHQrEW5f1fIhnW7UDZ8Et93H0vaMu/aDTCgiEWozuxtrkGmLFZmIKFnOjOYQrXqlKtouEVEy2la1fOHBG7Dg5pHdWq0qHNT7qlS1NHwk7OqMu3gHmfZ66XTGHRH1bNHjh1StVHX0nAMRUaJ62a0AvqgYt3xOcWvFuB3VdV2vVuXnoP6SD+ebgnh87YHW1fRou1ozfKYmAE3OuCMiSpbVLPD3X74G/+etI8pWqr4x+RpYzXx0l4jU0KKqpV4MnwSHIxLfmJyHn7xZ1enn2g8ynfnm5DyEdTreg4h6Ln8ogmkFOXhuy9HWpcVkVqrsVhNK83N0e/KaiHo2h9WEB24YjuWbqltfS7Zi3NxJw+Gw6nNOsJBpmKyVlJTIPXv2KGnrQM0F9M+yoeznO+Lav9IVu9WELY9NhbsxgKLcvgp6SERGdabBi92funHJF8YP/nSww8/Fu1L1f/6/8ehlN+OGES4M7M0VKyJKzmfnPDCbRJc5VCJVLbc8NhXhiMQ1/Z1K+iiE2CulLIn1nuGf3urvtOFvJ87j38vHKmnv38vHYv+J8+jntClpj4iMKxCKIK+/EwOybJhekNPh5+KpxjS9IAf9s2y4pr8T/lD6TX4QUeoxCQEZiWDxzDGdfi7einGLZ46BlBGWTdaNAJZvqkY/p7XTQSYe0wty0M9pxdObqqHT9SOiHsxmNuGzcx6cafBi/i0jux2jphfkYP4tI3GmwYvP3B7YuCeYiBT5r53HccvobEwrSK6q5bSCbNySn42V7x1X07E4MAkGUOP24rt/PKBkkPnuHw/EfBKSiChRoYjEsH6ZyM6y46Wdn+KeicOwdNbYhMq6L501FvdMHIaXdn6K7Cw7hvXN7HI2hogoHhnW5tLuR85cwo9mj+92IjytIBs/mj0eR05fQv9Mm25HpBk+CY5Wdose75HMIPPwS7tbj/dgxTgiSlajP4QXdx5HfaMP3/xKHl7dW4Pdx91Ys2Ayvnf76E7Lun/v9tFYs2Aydh9349W9NfjmV/JQ3+jDC+99Co8/pPN/CRH1RG5PEKWjs/Hkawdw6kITlpSPxY/vHpdQDvXju8fh38vH4tSFJjz52gFMHZ2N800BjXvezPCnQ/iDXySrlx1BtGAy3vvoc/xhT02HZ9z9XUkubho1AC/85dPLjvcAWDGOiJIXCEVaK8b97q/Hcd/1uTjT4MXX/+t/ceO1Ay47HcIfjCCj3ekQv97xCR67bTQG9Xbgd389jruKh2JD5WksmHrt1f5PI6IeIBCK4MWW0u7/8N/N5wQXDu6FtxdORUVlLVZ/cKLDHGrupOEoLxqC+ks+fFjbgMfXHmgt7a5XjDJ8EpwR4xiOjo4gijXIPLflo5jFMmysGEdESbK3xKdoxbgV7x5DrwwL/ufhL2PH0Xo8u7kaNW7vFU9eR88JfrT0Wrzw3qe45P/8sopxrGhJRCrYOyjt/vBNI/ClYX0xrSAHdqsZHn+o9RhHZ4YFvmAYFzwBnGv04793HseGytOXlXb/9vRRuvTf8ElwR5XdkimW0Vm7RETxisYRTyDcWjHuTIMXX3/hypngWOcEr/jLsdaZ4GjFuLbtEhElIxpLOirtPrNoMIb0dSAcjiAYlgiGBJoC4dYYFT0nuH1pd71ilOEjocUkYlaMay+RYhm5LgcsJj59TUTJaRuf2m7XSnQmuG3FOMYnIlKlbYxSWdpdrxhl+CTYlWnDvCl5+NHGzivGJWLelDy4nBnK2iMiY4oVn5KpGAcwPhGROm1jlKrS7nrGKMNXjAOAMxd9KH32HWUV47Z/bxoG9bEr6BkRGV088SmRakyMT0SkUqwYZTaJy7ZDdHSj3r5sshYxqrOKcYafCQaA3nYLlpSPwQ/+dCjptpaUj0FvB/+sRKSGy2nDstnjsGhtZYefiXe71rLZ4+BiNUsiUsjltGHp7LF4fO0Xpd27+1zVUp1jFB8RBtDgC6Ffpg2l+clVOynNz0a/TBsavDyDk4jUsFlMmKqoGtPU0dk8uYaIlCsa1rfTHCqessml+dkoHtZHi+51yPDRMByOoKKyFt979QAW3DKy24lw9MnG7716ABWVtQiHeU4wESUvEIpg58efY/7NycWn+TePxM6PP+cZ5kSklNsTwNdX7lKSQ81duQtujz6FMgAmwXA3BbDq/eOtRxDdd30uFpcXJlTtZHF5Ie67Prf1ycZV7x+HW6dqJ0TUs7k9AXz/TweVxKfv/+mgrgMMEfVs0YnEc56gkhh1zhPUdSJR8yRYCPFVIUS1EOJjIcSTMd4fLoR4RwjxNyFEpRDiTq371FYoIluPR4s+2bj/xAWsmT8ZC8tGdVqWdGHZKKyZPxn7T1zAo6v3tZ7BGX0SkogoGdEBxheMKIlPvmCEK1VEpEx0IhFQl0PpOZGo6RNcQggzgF8CuA3ASQC7hRDrpZSH23zs3wD8UUr5ayHEGABvAsjTsl9tXfJduX832SOIAKDRFwL03dpCRD1M2wEmKtn4tOr945g9YQiye/GECCJKTtuJxKhkY5SeE4laH2MwCcDHUspjACCEWANgNoC2SbAE0Lvl330A1Grcp8v4g7GfqG7/ZKPdYkKW3YJGXwi+OPbU+bnvjoiSFGuAAZKLT1ypIiJVYk0kAsnnUHpNJGqdBA8FUNPm+5MAvtzuM08B2CyE+DYAJ4CyWA0JIRYAWAAAw4cPV9bBDKs55utmk0BZYQ7uHD8YQ/s64A9F4AuGYbeakWEx4dQFLzZWnsbWdmfcRfEJbCJKVkcDTLLxiStVRKRCRxOJycYovSYSU+FA2wcAvCSl/JkQYgqAl4UQ46SUl/0FpJQrAKwAmotlqPrlvTKu/BPMKh6Ch27Mw/Y2ZUnby3U5cO/EYXik9Fq8uPM41h+4fAI7VrtERInwxRhgVMSneGZiiIi6EmsiUUWM0msiUetM7RSA3DbfD2t5ra2HAXwVAKSU7wsh7AAGAKjTuG8AAAnZWvfaaTNj+ZxinGnw4v6Vuzqt0FTj9uIXWz7Cb3Z8gkUz8jFj7CA8vvZAa91rCS43ElFy2g4EquITAFjNQvO+E1HP13bCT2WM0msiUetUezeAUUKIEUIIG4D7Aaxv95kTAKYDgBCiEIAdQL3G/Wpls5hw78RhcNrMWDmvBK/urcGyiqq4Syj7ghEsq6jCq3trsHJeCZw2M+ZMHAabJfY2CyKieGW1DAQq41PbdomIkhGdSFQZo/ScSNQ0EkopQ0KIfwawCYAZwItSyg+FEEsB7JFSrgfwXQArhRAL0fyQ3INSSt2mUd2eIEpHZyN/YC+sePcYtld3L/+O/tyz9xVjcB87znsCGJCVobKrRGQw4UjzAPPkVwuVxKflc4rx0z9XxdyDR0SUqOhE4qgcNTnU8jnF+Ljukm4TiZpPB0gp30TzsWdtX1vS5t+HAdyodT864g+Gse/EeWRYzN2+eFHbq+txW+FA1F7w4ssj+yvqIREZVSQi8fiMfJxp8CqJTzePGoAnZuSDOTARqeD2BFE+fhB2fPS5shh15/hBuk0kGv4IgwyrGROH98OyjYe7/nAclm08jOuv6cfTIYgoacGIxITcfnhmU7WS9p7ZVI3i3H4IslgGESngD4YRklAao8IR/U6HMHym5nJasf1ofdz7V7riC0aw42g9XE6rkvaIyLhcTivW7T+lND6tP3CK8YmIlOiXacOfD51RGqM2fXgGfRz6xCjDJ8GBUASv7TuptM21+04iwCOIiChJgVAEf9hT0/UHE7Bmdw3jExGpIaBJDiV0OsDG8EmwgIh5hl0yatxeCPAIIiJKDuMTEaU6LWKUXgyfBF/yx67IlKxGjdolIuNgfCKiVNYUiF0xLlXbbc/wSXBHJf+SbpfLjUSUJMYnIkplWsUovbZsGT4JjlXyTwWeDkFEyWJ8IqJUlu4xyvCRsE54/TYAACAASURBVJddm6OStWqXiIyD8YmIUlm6xyjDJ8EWk0Cuy6G0zVyXAxYTHzwhouQwPhFRKkv3GGX4JNiVacO8KXldfs5iEsi0meO6MPOm5MHlZMlkIkoO4xMRpbJ0j1GGXxMzm00oLxqCZzdXX3bYs9kkUFaYgzvHD8bQvg74QxH4gmHYrWZkWEw4dcGLjZWnsfVIHcJtapDarc3tmTnTQkRJYnwiolSW7jHK8EkwALicNiybPQ6L1lYCAGYVD8FDN+Zh+9F6PLu5OuaZdbkuB+6dOAyPlF6LF3cex/oDtQCAZbPHweW06dp/Iuq5GJ+IKJWlc4wSUsquP5ViSkpK5J49e5S26fYEsOSNQ7hj/GCcafDimU3VcZUBtFtNWDQjH4N6O/DWwdNYdvc49OMgQ0QKMT4RUSpL5RglhNgrpSyJ+R6T4C+cbfDhydcr8c6R+oR/dlpBNn56TxEG9rYr7xcREeMTEaWyVI1RnSXBhn8wLursxe5fPAB450g9nny9EmcbfIp7RkRGx/hERKmsrsGH7ycZo77/eiXqdI5RTIIBXPIGsaXqbLcvXtQ7R+qx5fBZNPqCinpGREbH+EREqazJH8KWqrPYlmSM2nakHluqzqIpoF9ZdybBABp8ISzbeFhJW8s2HsZFr34XkIh6NsYnIkpl571BLK1QE6OWVhzG+Sb9btQNnwT7AyGs238qrg3c8fAFI1h/4BT8Ot7JEFHPxPhERKksGAyrj1H7TyEYDCtpryuGT4LrPQG8svuE0jZXf3AC9Z6A0jaJyHgYn4goldV7/HjlAy1ilF9pmx0xfBIsJWKeYZeMGrcXaXjoBhGlGMYnIkplEY1iVESnGGX4JLjRp82yYKOfy41ElBzGJyJKZZc0ilFatdue4ZNgr0b7Tnw67Wchop6L8YmIUlm6xyjDJ8EOq1mTdu0WbdolIuNgfCKiVKZZjNKo3fYMnwRn2S1p1S4RGQfjExGlsl4axRKt2m3P8EmwEECuy6G0zVyXA0IobZKIDIjxiYhSmUmjGGXSKUYZPgnOdtrwwA3DlbY5d9Jw5PTKUNomERkP4xMRpbJsZwYemKQ+RmX3sittsyOGT4IzbBbMnjAUdquaP4XdasKs4qGwcc8dESWJ8YmIUpnValYfoyYMhdWsT3pq+CQ4HI7gzCUfFs8co6S9xTPH4GyDF+GwmuopRGRcjE9ElOrsZqE0RmWY9duvZfgk2N0UwL+u+RsmjXBhWkF2Um1NK8jGpBEu/Msf9sPdxIpMRJQcxiciSmXhcAR/2l+rNEa9sb9Wtxt1wyfBoYhEjduLuSt3Yemscd2+iNMKsrF01jjMXbkLNW4vQnqVOyGiHovxiYhSmbspgFXvH1cao1a9f1y3G3XDn5MTrUpS3xjAPb/aidXzJ6OsYCCWbTwMX7DrOxG71YTFM8dg0ggX7vnVTtQ3Nl+4Rl8I6KNp14moh2N8IqJUFr1RB6A0Rul1o274mWB/m6ok9Y0B3Pbcu/AFw3h74VQ88dX8Do/+yHU58MRX8/H2wqnwBcO47bl3Wy8eAPhD3HNHRMlhfCKiVNa2vLHKGKVVyfj2DD8TnBGjKsmyjVV4elM1vnPrdfjtN65Hps2CJn8IvmAEdqsJmRkWNAVC2FZVh+k/34FAjAHFZjH8/QURJYnxiYhSmT9GeeNYMcrTJkY544hRet2oGz4J7qgqSTgicfDUReS6MjG0rwOBUATBcAS+oAlNgTBOXfCi8uRFhDuYster2gkR9VyMT0SUymLdqANAIBTBs5uP4tnNRwEAWTYz+jltOO8JoDFwZeLcnl436oaPhBaTQK7L0bqnBQBmFQ/BQzfmYfvRejy7ufqy96JyXQ7cO3EYHim9Fi/uPI71B2ove8+iV7kTIuqxGJ+IKJV1dENtNgmUFebgzvGDMbSvA/5QBL5gGHarGRkWE05d8GJj5WlsPVIX82Zdrxt1wyfBrkwb5k3Jw482VsFpM2P5nGKcafDi/pW7Ot3UXeP24hdbPsJvdnyCRTPyMWPsIDy+9gA8gTDmTcmDy8mKTESUHMYnIkpl6X6jbviNYWazCeVFg9HfacXKeSV4dW8NllVUxfVUIwD4ghEsq6jCq3trsHJeCfo7rSgvGgwzZ1qIKEmMT0SUylyZNnxzch4AwGkz45dzJ6I4tw/uX7kLv9jyUcwEGPjiRv3+lbtQnNsHv5w7EU5b89aKb+p4o274mWAAMAuB3//jZDz95yPYXl3frTaiP/c//zgZZsEBhojUYHwiolR2x/hB+M2Oj/GfcydixbvHEopT0Rv10vxsrJxXgm+v3oc7xg0CpASgfawy/ExwOBxBzQUvDtRc6PYAE7W9uh77T15AzfkmliUloqQxPhFRKrvoC6L2vBe//8fJCSfAbW2vrseKd4/h9/84GbUXmnDRF1Tc09gMnwS7mwLIzsrAUxs+VNLeU+s/RHYvO8uSElHSGJ+IKJU1BcLon2XD304oulE/cQH9szLQFMcJEioYPgm2mAU2HKiNe49dV3zBCCoqa2Exc8mRiJLD+EREqcxiFpAQWFqh5kb9Pyo+hJRCtxhl+CS40RfGK7tPKG1z9Qcn0OjT5y6GiHouxiciSmUyAmysVHuj/ubB2uYtwTowfBIMoMOnF1OlPSIyLsYnIkpVoYjE2n0nlbb56t6TCIX1yYINnwRrVZ+60a9P3Wsi6rkYn4golUkpNblRl2ASrAtvSJtlQV+MetpERIlgfCKiVKbVDXWjnw/G6cLRQd3rZNk1apeIjIPxiYhSmT+kzXGLAY0mANozfBKsVX1qvepeE1HPxfhERKlMsxt1iz436oZPgk2iuU61SrkuB1iVlIiSxfhERKksS6Mbaq3abc/wSXC2MwMPTBqutM25k4Yju5ddaZtEZDyMT0SUymxmkyY36jaLPump4ZNgq9WM2ROGwm5V86ewW02YNWEorGbD/2mJKEmMT0SUyvo7bfjG5DylbX5zSh76OzOUttkRRkIA/RxWLCkfo6StJeVj0C/TqqQtIiLGJyJKVWazCbOKByu9Ub+raDDMOu3ZYhIMIDPDgrLCgZhWkJ1UO9MKslFWOBCZNj50QkRqMD4RUSpzOTOwdPZYJW0tnT0OLp1mgQEmwa1yetvx9D1F3R5ophVk4+l7ipDTm3vtiEgtxiciSlU2iwllhYNQVpiTVDtlhTm4rXCgbvuBAUBIvQo0K1RSUiL37NmjSdt1DT5sqTqLpRWH46qFbbeasKR8DMoKB3KAISJNMT4RUao61+jHE69VYktVXcI/W1aYg6fvLUL/LPWzwEKIvVLKkpjvMQm+UlMghPNNQazffwqrPzgRsyRgrsuBr08ajlkThqJvppVLjESkC8YnIkpVbk8AW6rOYsm6Q3HfqC+bPQ5lhQPRz2nTpE9MgrspGAyj3uNHRAKXfCH4gmHYrWb0sltgEkB2Lzufsiaiq4LxiYhSUSAUgdsTQEVlLVa9f7zDG/V5X8lD+fghcDltmm6BYBJMRERERLoJhyNwNwUQikg0+kLwhyLIsJiQZbfAYhJwOTN0OQWisySYa2REREREpJTZbPqiME+fq9uXjnQ5/yyEGC+E2CWEqBFCrBBC9Gvz3gfado+IiIiISL14NmH8GsBTAMYDOArgPSHEtS3v8dR1IiIiIko78WyH6CWl/HPLv58VQuwF8GchxDcApN+GYiIiIiIyvLj2BAsh+kgpLwKAlPIdIcS9AF4D4NKyc0REREREWohnO8TTAArbviClrAQwHcDrWnSKiIiIiEhLXSbBUsrVUspdMV4/IaWcH/1eCPGfqjtHRERERKQFlacT36iwLSIiIiIizbCcEBEREREZDpNgIiIiIjIclUmw9rXviIiIiIgUiDsJFkKM7+Ij/zfJvhARERER6SKRmeBfCSE+EEI8IoS4ogq0lPIldd0iIiIiItJO3EmwlPJmAF8HkAtgrxBitRDiNs16RkRERESkkYT2BEspPwLwbwCeADAVwPNCiCNCiHu06BwRERERkRYS2RNcJIR4DkAVgFsB3CWlLGz593Ma9Y+IiIiISDlLAp/9TwD/BeAHUkpv9EUpZa0Q4t+U94yIiDoUDkfgbgogFJG45AvBHwwjw2pGL7sFFpOAK9MGs5mnYBLR1ZEOMSqRJHgmAK+UMgwAQggTALuUsklK+bImvbvK0uECEpGxBEIRuD0BVFTWYtX7x1Hj9sJiErBZTAiEIghFJHJdDsybkofyoiFwOW2wWRiniEgf6RSjEkmCtwAoA9DY8n0mgM0AvqK6U1dbOl1AIjIOtyeArVVn8dSGD3HTdQPwvdvzMbSvA/5QBL5gGHarGRkWE05d8GJj5Wk8t+UonrprLKYXDoTLabva3SeiHi7dYpSQUsb3QSH2SykndPWaHkpKSuSePXs0abv9Bbxz/OBOL+DOTz7nIENEmjvX6MeTrx2Ew2bGQzfmYfvRery27yRq3N4rPpvrcuDeicNQOjobL+48Dm8gjJ/eOx79szKuQs+JyAhSNUYJIfZKKUtivpdAErwTwLellPtavr8ewP8vpZzSxc99Fc2FNMwA/ktK+dMYn/kagKcASAAHpJRzO2tTqyQ4VS8gERmb2xPAkjcO4Y7xg3GmwYtnNlXDF4x0+XN2qwmLZuRjUG8H3jp4GsvuHod+vFknIsVSOUapSoJvALAGQC2aSyQPAvB3Usq9nfyMGcBRALcBOAlgN4AHpJSH23xmFIA/ArhVSnleCJEjpazrrC9aJMGpfAGJyLgCoQg2VtZiYB87Vrx7DNur6xNuozQ/GwtuGYmzF32YWTSE27eISJl4YlT7LaXtaRmjOkuC494TLKXcLYQoAJDf8lK1lDLYxY9NAvCxlPJYS0fWAJgN4HCbz8wH8Esp5fmW39NpAqyFQCiCHdV1mDt5eIcX0G4xIctuQaMvBF/oi+TYF4xgWUVV6wXcXl3HQYaIlHF7ArBbzZ0mwF0NMNGf+7uSXLg9AQzqY9e0z0RkHLFilNkkUFaYc9mWUn8ojAzL5VtKtx6pQzgir1qMSuTBOAC4AUBey89NFEJASvm7Tj4/FEBNm+9PAvhyu8+MBlq3W5gBPCWl/HP7hoQQCwAsAIDhw4cn2O3OxbqANosJ/zr9OpQW5MBpa05+vcEwHFYzsuwWeAIhbKuqw/PbPkYgFOEgQ0TKhcMRHDx1AbUXvZclwO0HmEAogkAoApvFBFuMAQZoToRvHjUAllMC2Vk5PNmGiJIWK0bNKh6Ch27Kw18++hzPbq7ucEvp10py8ci0a/Hie8ex/kDtVYlRiWyHeBnAtQD2Awi3vCyllN/p5GfmAPiqlPIfW77/BoAvSyn/uc1nKgAEAXwNwDAA7wIYL6W80FG7KrdDhMMRbKuuwwl3E5ZVVAEAlpQX4rYxg7DhQC1e2X2iwwv4wA3DcVfxELx9+AyWtvzs4vJCDHdl4tZ8DjJElJz6Sz6cuejDfb99v3V71qziIXjoxjyccDfBZjFhQFbGFQ/uft7ohz8YwTX9M/HizuYBBmjevvXqt6ZgUB87snvxRp2IktM2RpmFwPI5xTjX6MdP3qqKe0vpD+4oRP+sDDy+9gDCUiqPUUq2QwAoATBGxps1NzsFILfN98NaXmvrJID/bdla8akQ4iiAUWjeP6w5d1MAg3rb8e1X/obsLBtWz5+MDz5147bndnR6AWvcXizfVI3nt32ExTPH4O2Ft2Duyl14ZlM1Xv3WFLibAhxkiCgpQgBbj9TBF4zAaTNj+ZxiZFgEIASOfe7p8sHdawY4Mat4MGaMHYTH1x6AJxDGtiN1+PpktatpRGRM0RhlFgIvPHgDVr57DFuPxL+r1ReMYMn6DzG9IAcvPHgDHn5pt64xKpGpykNofhguEbsBjBJCjBBC2ADcD2B9u8+8AaAUAIQQA9C8PeJYgr+n26IXsFeGBa8/ciN+8lYVfvjGobjuYIDmC/jDNw7hJ29V4fVHbkSvDAu2HamDEBp3nIh6PI8/jNf2nYTTZsYLD96AfplWfOZuwv0r3scvtnwUMwEGmm/Sf7HlI9y/4n185m5Cv0wrXnjwBjhtZqzddxIefzjmzxERJSIao372teKEE+C2th6pw8p3j+FnXyvWNUYlkgQPAHBYCLFJCLE++tXZD0gpQwD+GcAmAFUA/iil/FAIsVQIMavlY5sAnBNCHAbwDoBFUspzif+ndE/0Aq6ePxlL1h/CO0cSf/IaAN45Uo8l6w9h9fzJHGSISJkatxc/+9oEOKxmrPjLMSyriG+ZEfjiwd0VfzkGh9WMn31tAmrcXvAenYhU+VJuP7g9wW4nwFFbj9ThvCeICcP66hajEtkO8VR3foGU8k0Ab7Z7bUmbf0sAj7V8XRX/8JU8fPCpu9sJcNQ7R+pRVjAQD07J4yBDRElrCoQxq3gIcl0OPLOpulvHowFfnA6xaEY+7ioaDE+AN+lElLymQBiPTLsWd/9yp5L2/qPiQ7zxyI26xai4Z4KllDsAHAdgbfn3bgD7NOqXbpoCYdw2ZhCWbTzc9YfjsGzjYdw+dhAHGSJKmj8UwXduvRa7jp3rdgIctb26HruOncN3pl+HQCi+mWQios7YzCbsqK6Pe3WqK75gBO9+VA+bTgcLxP1bhBDzAawF8NuWl4aieT9vWutjt2LDgVqlF7Cisha97VYl7RGRcbmcVkCY8MymaiXtPbOpGkKY0M/J+EREybNZTPj9/36mtM2Xd32mW62FRH7LowBuBNAAAFLKjwDkaNEpPYWlxCu7Tyhtc/UHJxBJ6BANIqIr2a0mbKxUe5P+5sFa2FnMh4gU6egB3VRprzOJREK/lDIQ/UYIYQHQIzK9dL6ARNRzBUISa/edVNrmq3tPIhDuEaGbiK4yjz+kTbsBbdptL5EkeIcQ4gcAHEKI2wC8CmCDNt3ST6NPmz90o0b/xyAi44hIbW7SY1RWJiJKmDeozfNPPo3abS+RJPhJAPUADgL4FoA3pZQ/1KRXOvKG0vsCElHP1egLatKuVrM3RGQsGRptrdLrwbhEjkj7tpTy/wJYGX1BCPEvLa+lLYfVrEm7do3aJSLj8Gt0ioOfN+lEpECWPZE08uq3214iqfa8GK89qKgfV01WhkYXUKN2icg4eJNORKlMQCDX5VDaZq7LAaFTtYUuk2AhxANCiA0ARrStFCeEeAeAW/suak+LC0hElCynRjfTWrVLRMZiswjMmThMaZv3XT9Ms20W7cXzW/4K4GcAjrT8b/TruwBmaNc1fVjNAg/cMFxpm3MnDYfVzJpxRJQcKaUmN+mSRzgSkQK+QAQzi4bAblWTtNqtJtw5fohmD9y112WvpZSfSSm3SymnSCl3tPnaJ6VM+6crzjT4cVex2gtYXjQEZxv8StojIuOSEvj7L1+jtM1vTL4GzIGJSAV3UwCQESyaka+kvUUz8iFlBOebAl1/WIFEKsbdI4T4SAhxUQjRIIS4JIRo0LJzerBbTXj78BksnjlGSXuLZ47B5g/PIENRUk1ExiVMAlPzs5XepN8yKhvCxJUqIkqew2rG89s+weSR/VGan51UW6X52Zg8sj+e3/ox7BZ9nltIJLIuBzBLStlHStlbStlLStlbq47ppY/diqUVVZg0woVpBcldwGkF2Zg0woVlG6vQh2WTiShJJgG88sEJLCkfq6S9fy8fi9W7T4A5MBGpkGW3YP2BWtS4vVhYNrrbiXBpfjYWlo1GjduLDZWnU/J0iLNSyirNenKVWMzNTzbOXbkLS2eN63YiPK0gG0tnjcPclbuQ63LAwj3BRJSkTJsZrkwbXE4rphckV6V+ekEO+jmtGOC0wWnj6RBElDyb2YRclwPf/eN+eINhLLh5JBaXF8a9emW3mrC4vBALbh4JbzCM7/5xP3JdDthS6MG4qD1CiD+0nBZxT/RLs57pxJVpwzen5KG+MYB7frUTP7ijED++e1xCF/DHd4/DD+4oxD2/2on6xgDmTcmDy5mhcc+JqKfrY7eivHgIfving5h/y8huJ8LTC3Iw/5aR+OGfDmJm0RD0dtgU95SIjKi/04ZvTM6DJxDGwy/txvmmIIa7MrFmwRQsLBvV4YO9uS4HFpaNwpoFUzDclYnzTUE8/NJueAJhfHNKHvrrlEOJeJ8SFkL8d4yXpZTyIbVd6lpJSYncs2ePsvbOXPSh9Nl34As2H0y/eGYhbh87CBWVtVj9wYmYZUtzXQ7MnTQc5UVDsPnDM1i2sXmS3G41Yfv3pmFQH7uy/hGRcdU3+LC+shY/33wUy+cU41yjHz95q6o1XnXGbjXhB3cUon9WBh5fewCP3T4as4qGILs34xMRqXHmohelz25vjUl3FQ3GwzeNwIlzTbBZTeiflYFgOAJfMAK71QSr2YRzjX74QxFc48rEC+99ig2VpwFEc6hSDOqj7lQcIcReKWVJzPfS8agc1UlwIBTBuv2nsGhtZetrNosJ37n1OtxamINMmwUef6j1AjozLGgKhLCtqg7Pb/sYgTZVnZ6ZU4TZE4bqNpVPRD1bIBTBsc8b8dO3jmB7dX3zAHPzCLz30ef4w56aDm/S/64kFzeNGoAX/tI8wJTmZ+P7dxRgxIAsxiciUiYQiuCN/Sfx+NqDra+ZTQLTC3Iws2gwhvR1IBSOIBCSsFkELGYTai94UVF5GtuO1CEc+SIPXT6nCHcrzqGUJMFCiNEAfg1goJRynBCiCM0Pyv1IWU/jpDoJBgC3J4An1lbi7aqzMd/PspnRz2nDeU8AjYHY59fdVjgQy+cUoZ+TS41EpI7bE8BJdxN+vuUotlfXXzHABMMR+IMRZLTMsrQfYErzs/FY2WjkujIZn4hIObcngMfXHsCWqrqY71tMAjaLCYFQBKFI7LyzrDAHz8wpVh6jVCXBOwAsAvBbKeWXWl47JKUcp6yncdIiCQaAc41+PPnaQbxddRZmk0BZYQ7uHD8YQ/s64A9F4AuGYbeakWEx4dQFLzZWnsbWlkHmtsKB+Om949E/i3uBiUi9c41+HD17CYdPN+CZTdWXbYfoaICxW01YNCMfYwb3xuiBvRifiEgz5xr9eOK1yg4T4c6UFebg6XuLNIlRqpLg3VLKG4QQf2uTBO+XUk5Q2Ne4aJUEA813M4drLyLLbsX26jq8tu9kh8uN904chtL8HDT6ghg7pA9nWIhIU25PAFW1F+G0W7Gjug5rO4lPcyYOw9T8HHh8QYxhfCIiHbg9AWypOosl6w7FfaO+bPY4lBUO1CxGqUqC3wLwzwBelVJOFELMAfCwlPIOdV2Nj9ZJcKwL2BG71YSlLRfQxUGGiDQWCEXg9gRwoOY8JID+WRlX7Lc71+iHSQBFw/rB5bRxDzAR6SYaoyprLiACiQFZGVespn/e6IcQQLEOMaqzJDiR04gfBbACQIEQ4hSATwH8vYL+pYy22yHi5QtG8PjaSm6HICJd2CwmDOpjR//MHNR7/IhI4JIv1DrA9LJbMLSvHdlZGbDqVHWJiKi9E+ebsOr94x2uVs2bkofiYf3071gbCZ8OIYRwAjBJKS9p06WuXY0H4+LBB+OISGvRWZaKytouB5jyoiGcCSYi3bg9AWytOovFCaymL5s9DtM1XE3vbCY47sgohPgXIURvAE0AnhNC7BNC3K6qk1dTIBTB1qqzSSXAAPB21VlsqTp72ZFpRESquD0BrNt/CqXPvoMfbayKmQADQI3bix9trELps+9g3f5TcHsCOveUiIzmXKMfT6ytxKK1lXElwEDzavqitZV4Ym0lzjX6Ne7hlRKZHnhIStkA4HYA/QF8A8BPNemVztyeABavO6SkrcXrDnHAISLl0nGAISJjcHsCCW8nbevtqrN48rWDOK9z/pRIEixa/vdOAL+TUn7Y5rW0FQ5HUFFZG/eg0hVfsLm9cJizwUSkRroOMETU86XzanoiSfBeIcRmNCfBm4QQvQCkfabnbgpg1fvHlba56v3jcDdxsCGi5KXzAENEPV86r6YnkgQ/DOBJADdIKZsA2AD8gya90lEoIjvcV9ddNW5vhxVRiIgSkc4DDBH1bOm+mt5lEiyEKGj5Z7QoxkghxEQA1yCxI9ZS0iVfSJN2GzVql4iMI90HGCLq2dJ9NT2eJPYxAAsA/CzGexLArUp7pDN/MKxNu1xyJKIkaTXAzJ4wBNm97ErbJSLjSffV9C6TYCnlgpb/naZ9d/SXYdXmMHmey0lEyUr3AYaIejZNV9P7aNL0ZRI5J/i+lofhIIT4NyHE60KIL2nXNX30smuzo0OrdonIOLhdi4hSWbqvpicyXblYSnlJCHETgDIALwD4jTbd0o/FJJDrcihtM9flgMWU9qfHEdFVlu4DDBH1bOm+mp7Ib4lG45kAVkgpN6L5hIi05sq0Yd6UPKVtzpuSB5czQ2mbRGQ86T7AEFHPlu6r6YlEwlNCiN8C+DsAbwohMhL8+ZRkNptQXjQEdqua/xS7tbk9M2eCiShJ6T7AEFHPlu6r6Ylkfl8DsAnADCnlBQAuAIs06ZXOXE4bls0ep6StZbPHweVM+wlyIkoB6T7AEFHPlu6r6XEnwS0FMtYB8AghhgOwAjiiVcf0ZLOYML1wIMoKc5Jqp6wwB2WFA7nUSERKpPsAQ0Q9W7qvpidyOsS3AZwF8DaAjS1fFRr166r4zq2jUJqf3a2fLc3PxnduHaW4R0RkZM0DzGDFA8xgbtciImXSeTU9kcj6LwDypZRjpZTjW76KtOqYngKhCLZWncUDK3fhvutzsbi8MO5Bx241YXF5Ie67PhcPrNyFLVVnEeCT10SkiFkILJqRr6StRTPyYRZMgIlInXReTU/kN9UAuKhVR64mtyeAxesOwRMI49HV+7D/xAWsmT8ZC8tGdbgfL9flwMKyUVgzfzL2n7iAR1fvgycQxuJ1h+D26FPuj4h6tnA4gnUHajGot6Pbq1RRpfnZGNTbgXUHWDaZiNRLx9X0RB4RPgZguxBiIwB/9EUp5c+V90pHMOsQeAAAIABJREFU4XAEFZW18AW/GBQ2VJ7Gm4fOYHpBDr53ez6G9HUgGI7AF4zAbjXBajah9oIXFZWn8fy2jxFuU33JF2xu7x++kgezmXuDiaj7omWT3Y0BrJxXAgDYXl2fcDul+dlYcMtIzF+1B64sG8smE5Ey0dX0p9Z/iOVzinHzqAF4ZlP1ZXlVR+xWExbNyMeg3g48sHIXnpo1FrMnDNVtNjiRJPhEy5cNPeB84KjoINNeOCKx+fBZbD58FkDzU9o2iwmBUKTLkqOr3j/OQYaIkta2bPL8VXuSGmDmr9oDTyAMD8smE5FC0dV0XzCCR1fvw11Fg7Fm/mTsOFqPtftOxiz9nutyYM7EYZg6OhsvvPcpNlRWAQAWrzuEm0dlY1AfffKnuJNgKeV/AIAQIqvl+0atOqWntoNMV58LBeKr3lTDQYaIFGhbNjm6XSuZASaq0RcC+mjefSLq4cLhCDak8Wp63EmwEGIcgJfRfD4whBCfA/imlPJDjfqmi7aDjEocZIgoWbHKJiczwLS2y4d3iUgBd1MAv3v/+BWvp8tqeiLbIVYAeExK+Q4ACCFKAawE8BUN+qUbX4xBRkm7HGSIKEkdlU1OZoABWDaZiNQIhTVaTQ/rs5qeSCR0RhNgAJBSbgfgVN4jnWk1GFjNPIaIiJKTaYudBLcXikg0BcJxb8OKt10ios5c9AU1abdBo3bbSyQDPCaEWCyEyGv5+jc0nxiR1rIyEpkMv/rtEpGxaFE2mYhIhXge0E2ldttLJAl+CEA2gNcBvAZgQMtraS0ckZoMMrH24RERJUQC904cprTJOROHAQxPRKRAhkar6Xpt2Yr7t0gpz0spvyOlnCilvF5K+a9SyvNadk4PkYjUZJBhDkxEyTrfFEDp6GylZZOnjs7GBa8+S41E1LNptbXKqdOWrbgjqxDibSFE3zbf9xNCbNKmW/oJRqQmg0yQFZmIKEkZVjNe3HlcadnkF977lA/GEZEyWqym6zWPmEgkHCClvBD9pmUWOLlC0Smgl92iySDTy849wUSUnF52C9YrLpu8ofI04xMRKeHMMGuymu7U6bmqRJLgiBBiePQbIcQ16AE7yywmgb/VnFc6yOw/eQEWE0+HIKLkWEwCuS4HHl97AAtuGdntGBUtm/z42gPIdTkYn4hICSmB6QU5SlfTby3IgZSpd0TaDwG8J4R4WQjxewDvAvi+Nt3SjyvThnlT8pQOMvOm5MHlzFDcUyIymmh88gTCmL9qD+67PheLywvjHnDsVhMWlxfivutzW8smMz4RkSquTBvONPiUrqafafDpFqMSeTDuzwAmAvgDgDUArpdStu4JFkKMVd897ZnNJpQXDUFYSiWDTFhKlBcNgZkzLUSUpGh8sltNrWWT95+4gDXzJ2Nh2agO9+LluhxYWDYKa+ZPxv4TF/Do6n3wBMKwW02MT0SkjNlswvihfTGkj5rV9CF9HBg/tK9uMUqomnIWQuyTUk5U0lgXSkpK5J49e5S1FwhFsG7/KSxaWwkAuKtoMB6+aQR2HK3H2n0nY1ZDyXU5MGfiMEwdnY0X3vsUGypPAwCemVOE2ROG8sETIlKifXwCALNJYHpBDmYWDe60bPK2I3WXHdfI+EREqgVCEWysrMXAPnasePcYtlfXJ9xGdDX97EUfZhYNURqjhBB7pZQlMd9TmAT/TUr5JSWNdUF1EgwAbk8AT6ytxNtVzWVIuzPI3FY4EMvnFKGf06a0b0RkbO3jU3vxlE1mfCIirbg9ASx54xDuGD8YZxq8eGZTdVwFL+xWExbNyMeg3g68dfA0lt09TnmM0isJTtuZ4KhzjX48+drBmANNV4PMbYUD8dN7x6N/FvfaEZF6ncWnrjA+EZHWojHKbjUlvJruC0Y0i1FMghPg9gSwteosFq87FPddzLLZ41BWOJAzLESkKcYnIkpl0Rj11IYPceO1A7pcTf/rJ5/jqbvGahqj9EqCd0kpJytprAtaJsFA8/4WtyeAisparHr/eId3MQ9+JQ8zxw+By2njHjsi0gXjE/2/9u4+Sqr7vu/45ztPO/sEYqRlbNAS4loWu4YVkdfYchJbVBA/wBGnknwSyUlkx7VzWjd141QRbc6SFtoGRac5OW2Ttk7sGLeVnB5JLQTlwUCx0yY4aGWjBbM4R8cmYLCHDYOAfZjnX/+YwcGw7M7u3Lt7L/f9OkdH7O7Md3/ae/TZD3d+cy8QZNNl1I2vpi9kRnlWgs1sQNJqST+4irFz7qVWFzhXfpfga6rVmvKTJVVqTuOFioqVmtoSMXWlE0rETJnONt5lDWBRkE8AgiwoGTVTCW76lhxm9nlJA5K+Kena63BO0oKX4IUSj8fU052uf7B0cdcCANcjnwAEWRgyai73pXu3c67ft5UAAAAAC2QumzCOmBklGAAAAKE3lzPBX1S9CH9fUlGSSXLOuQFfVgYAAAD4ZC4l+HOSfk7Scf3dnmAAAAAgdOZSgsecc/t8WwkAAACwQOZSgr9hZs9J+iPVt0NIWpxLpAEAAACtmEsJble9/P7UdZ+7rS+RBgAAgNtT0yXYOfcxPxcCAAAALJS53CwjLenjkt4uKX3t8865X/BhXQAAAIBv5nKd4P8m6U2S3i/pq5LulnTVj0UBAAAAfppLCX6rc25I0oRzbo+kLZLe5c+yAAAAAP/MpQSXG/9+w8zWqn4n6OXeLwkAAADw11yuDvFZM1smaUjSPkldknb4sioAAADAR3O5OsTvN/74VUlv8Wc5wVKt1pSfLKlSc7paqKhYrqotGVd3OqFEzJTpSCken8vJdADwBvkEIMjCkFFzuTpEVtK/k7TCOfdBM+uX9IBz7nO+rW6RlCo15SdK2j9yXnuOnNbZ/NRNj+nNtOvJB1Zr68AKZTpTSiX4ZQPAf+QTgCALU0aZc665B5r9iaQ/kPRrzrn7zCwh6RvOuXV+LnA6g4ODbnh42JfZ+YmSDo3mNLT3hArl2qyPTydj2rVtrR7qyyrTmfJlTQAgkU8Agi2IGWVmrzrnBqf72lyq913Ouf8pqSZJzrmKpGoT3/wDZvYtM3vdzLbP8LhHzcyZ2bQLXQgXx4t6+oURPfXCSFMHT5IK5ZqeemFET78woovjxdmfAADzQD4BCLIwZtRcSvCEmd2p+q2SZWbvlnR5pieYWVzS70j6oKR+SY83tlHc+LhuSZ+W9FdzWI+n8hMlbX/xuA6M5ub1/AOjOW1/8bguTZQ8XhmAqCOfAARZWDNqLiX4M6pfFeItZvYXkr4o6Zdmec4GSa87577tnCtJ+pKkbdM8bpekZyQV5rAez5QqNR0azc374F1zYDSng6M5lSrN/Q0IAGZDPgEIsjBn1FxK8ElJ/0vSK5Jykn5P0l/P8pyVks5e9/F3G5/7ATO7X1Kvc+7lOazFU/mJkob2nvBk1tDeE8pztgWAR8gnAEEW5oyaSwn+oqQ1ql8h4j9Kepvqt1KeNzOLSfotSb/SxGM/aWbDZjY8NjbWyrf9IdVqTftHzje9f2U2hXJ9XrXK2RYArSGfAARZ2DNqLiV4rXPuHzrnDjf++YSkt8/ynHOSeq/7+O7G567plrRW0lfM7LSkd0vaN92b45xzn3XODTrnBnt6euaw7JnlJ0vac+S0Z/Mkac+R08pPcrYFQGvIJwBBFvaMmksJ/nrjzXCSJDN7l6TZrlP2iqR7zOxHzSwl6WdU31csSXLOXXbO3eWcW+2cWy3pa5Ieds75c/2zaVRqbtpr2LXibH5KlVpzl54DgFshnwAEWdgzatabZZjZcdWvCJGU9Jdmdqbx8Y9IOjXTc51zFTP7J5L+TFJc0uedc980s52Shp1z+2Z6/kK4Wqj4Mne8UJGW+jIaQESQTwCCLOwZ1cwd47a28g2cc38s6Y9v+NyOWzz2wVa+13wUy7Ne6nh+c3kHNoAWkU8AgizsGTVrCXbO/c1CLGSxtCXjvszlNqUAWkU+AQiysGdU5JOwI+XPAfRrLoDoIJ8ABFnYMyryJViSejPtgZ4HILrIJwBBFuaMinwJrtWcHr3/bk9nPnb/3ao53n0NoDXkE4AgC3tGRb4EX5wo6cG39Sid9OZHkU7G9L639XBXJgAtI58ABFnYMyryJbgtEdPn/+K0nnr/vZ7Me+r99+pz/+87SsUj/6MF0CLyCUCQhT2jIp+EXemk9r12Xm9a0q4H723tTnQP3tujNy1p1x+NfE9d6aRHKwQQVeQTgCALe0ZFvgTHrL4J+1dfeE2ffO9b5n0QH7y3R59871v0qy+8pt5Mu2Lm8UIBRA75BCDIwp5RkS/BHam4Hrv/bk2UqvrEnmF9+B29Gtra1/T+lnQypqGtffrwO3r1iT3DmihV9eF33K1OLkEEoEXkE4AgC3tGRb4EL00ntfW+FUonY5ooVfWp576uY2fe0Jc+8W798qZ7bnmpjt5Mu3550z360iferWNn3tCnnvu6JkpVpZMxbRlYoSXtqQX+LwFwuyGfAARZ2DPKXAgvlTM4OOiGh4c9mzd2paB9I+e1a//oDz4Xj5keWrNcWwberBV3tKtcralQrimdjCkZj+n8G1PaP/I9/Z9TF1St/d3PcGhrnx4eWKGeJWnP1gcgusgnAEEW9Iwys1edc4PTfW3W2yZHwdKOlH78rXfpwXt79JVvjUmSqjWnL5/M6csnc5KkRMyUSsRUqtRUqU3/F4cH7+3RT7z1Li3t4CwLAG+QTwCCLMwZRQlW/R7Vy7vT+symt0nSDw7i9So1p0qpessZD97bo89sepuWd6cX7J7XAG5/5BOAIAtzRlGCGzKdKTnn9IvvfYt+8p679OyffUuFcm3W56WTMT31/nvV/+YlWrmsXcs6OcsCwFvkE4AgC2tGsSf4BvmJkkbPX1ZnOqmvfuuCXvj6d3U2P3XT43oz7Xrs/rv1vnuXa6JQVv+KpfyCAeAr8glAkAUxo2baE0wJnkapUlN+oqTXzl6Sk3RnV9tNm7ovjhcVM2ng7mXKdKZ4iRHAgiCfAARZ0DKKEjxP1WpN+cmSKjWn8UJF5WpNyXhMXemEEjFTprNNca46D2ARkE8AgiwoGcXVIeYpHo+pp7txmY6li7sWALge+QQgyMKQUbxGBgAAgMihBAMAACBy2A4xg3K5qrGJompOulqoaKpcVXsyru50QjGTejrblEwuzP2tAeB61++3u1qoqFiuqq2RT4mYKdORUjzOeQ4AuBVK8DQmixVdmipr77Fzev7omVte3uPxDau0bf1KLWtPqqONHyUA/1175/X+kfPac+T0LfPpyQdWa+vACq4OAQC3wNUhbnDhSkEHR3Pauf9k0xd63rG1X5v6slru4b2uAeBG+YmSDo3mNLT3RNP5tGvbWj3Ul1WG6wQDiCAukdakC1cKevqlER0+dfMt/2azcU2PnnlkgCIMwBcXx4va/uJxHRjNzfm5m/uy2v3oOt3Z1ebDygAguGYqwbxG1tBKAZakw6fG9PRLI7pwpeDxygBEXX6iNO8CLEkHRnPa/uJxXZooebwyAAgvSrDqe4APjubmXYCvOXxqTAdHc5osVTxaGYCoK1VqOjSam3cBvubAaE4HR3MqVWbfRgEAUUAJlnRpqqyd+096Mmvn/pO6NFn2ZBYA5CdKGtp7wpNZQ3tPKM/ZYACQRAlWuVzV3mPnmnqTSTMK5Zr2HTuncrnqyTwA0VWt1rR/5Lyn+bR/5LyqVc4GA0DkS/DYRFHPHz3j6cznjp7R2ETR05kAoic/WdKeI6c9nbnnyGnlJzkbDACRL8E1p2mvs9mKs/kp1cJ30Q0AAVOpOV/yqUJAAQAl+GrBnzex+TUXQHT4lSPj5BMAUIKnfNq7W2BPMIAWFX3KkSJXiAAASnB7Mu7L3LRPcwFER5tPOcJtlAGAEqzudCJUcwFEB/kEAP6JfAmOmdSbafd0Zm+mXTHzdCSACErEzJd8ShBQAEAJ7uls0+MbVnk684kNq9TTnfZ0JoDoyXSk9OQDqz2d+eQDq5XpbPN0JgCEUeRLcDIZ17b1K5VOevOjSCdjenj9SiXjkf/RAmhRPB7T1oEVnubT1oEVinMmGAAowZK0rD2pHVv7PZm1Y2u/lnUkPZkFAJnOlHZtW+vJrF3b1irTmfJkFgCEHSVYUkdbQpv6stq4pqelORvX9GhTX1YdKd50AsAbqURMD/Vltbkv29KczX1ZberLcmUIAGggDRuWL0nrmUcG5l2EN67p0TOPDGj5EvYCA/BWpjOl3Y+um3cR3tyX1e5H12kZZ4EB4AfMufDdPnNwcNANDw/7MvvClYIOjua0c/9JFcqzX1A+nYxpx9Z+berLUoAB+Co/UdKh0ZyG9p5oOp92bVurTX1ZCjCASDKzV51zg9N+jRJ8s8lSRZcmy9p37JyeO3pGZ/NTNz2mN9Ouj2xYpYfXr9QdHUm2QABYEKVKTfmJkvaPnNeeI6dvmU8ffc9qbVm3QpnOFFsgAEQWJXieyuWqxiaKqjnpaqGiSrWqRDyu7nRCMZN6utNcBQLAoqhWa8pPllSpOY0XKqq6muIWU1c6oUTMlOls4yoQACJvphLM6csZVGo11a79HcFJ5ap07YRKzUmVSpUSDGBRlCpVFSv1LRGVqtNUuab2pKlac6rWnErlitrbuFINgMUxVSzr4mRZknR1qqKpclXtybi62+vV886O5KJnFCV4Gm9MljRRrGrvsXN6/pVbb4d4/J2rtG39SnW2xXVHB/vtAPjv0mRJk3PIp462uJaRTwAWSJgyiu0QN/j+5YIOjea06+Xm3xg3tKVfD/Vl9aalvDEOgH/IJwBBFsSMYk9wk3JXCtr+0ogOnxqb83M3runR7kcGlOUKEQB8QD4BCLKgZtRMJZgNrQ3fvzz/gydJh0+NaftLI8pdKXi8MgBRRz4BCLKwZhQlWPU9wIdGc/M+eNccPjWmgydzujxZ8mhlAKLuksf59Ab5BMBDYc4oSrCkiWJVu14+6cmsXS+f1Hix6sksAJj0OJ8myCcAHgpzRkW+BE8Vy9p77FxTG7ibUSjXtO+1c5oqlj2ZByC6yCcAQRb2jIp8Cb44Wdbzr5zxdOZzR8/84Np4ADBf5BOAIAt7RkW+BDunaa9h14qz+SmF8KIbAAKGfAIQZGHPqMiX4PFCxZ+5RX/mAogO8glAkIU9oyJfgqfK/mzALvg0F0B0kE8AgizsGRX5EtyejPsyN53wZy6A6CCfAARZ2DMq8iW4K50I1VwA0UE+AQiysGdU5EuwmdSbafd0Zm+mXWaejgQQQeQTgCALe0ZFvgTf2ZHU4+9c5enMJzasUk9Xm6czAUQP+QQgyMKeUZEvwe1tSW1bv1LppDc/inQypofvW6k2n/bJAIgO8glAkIU9oyJfgiWpsy2uoS39nswa2tKvrjZ+wQDwRofH+dRJPgHwUJgzihIs6Y6OlB7qy2rjmp6W5mxc06NN/Vkt7Uh5tDIAUbfM43y6g3wC4KEwZxQluOFNS9Pa/cjAvA/ixjU92v3IgLJL0h6vDEDUkU8AgiysGWUuhPfPHBwcdMPDw77M/v7lgg6N5rTr5ZMqlGuzPj6djGloS7829Wf5BQPAV+QTgCALYkaZ2avOucFpv0YJvtnlyZLGi1Xte+2cnjt6Ztr7Yvdm2vXEhlV6eP1KdaXibIEAsCDemCxpYg751JmKswUCwIIJWkZRgudpqljWxcmynKvfx7pQriqdjKurLSEzqacrpbYkF50HsPDIJwBBNltG3dWZUjrlf0bNVIJJyGmUKjXlJ0raP3Jee46c1tn8lNKJmLrSCY0XKipUaurNtOvJB1Zr68AKZTpTSiXYXg3Af9PlU1cqrmWdKV2aKGm8VCWfACyaMGUUZ4JvkJ8o6dBoTkN7TzS9n2XXtrV6qC+rTCcvOQLwD/kEIMiCmFFsh2jSxfGitr94XAdGc3N+7ua+rHY/uk53cicmAD4gnwAEWVAzaqYSzGtkDfmJ0rwPniQdGM1p+4vHdWmi5PHKAEQd+QQgyMKaUZRg1fevHBrNzfvgXXNgNKeDozmVKrO/BAAAzSCfAARZmDOKEqz632CG9p7wZNbQ3hPKc7YFgEfIJwBBFuaMinwJrlZr2j9yvqkN3M0olOvzqlXOtgBoDfkEIMjCnlGRL8H5yZL2HDnt6cw9R04rP8nZFgCtIZ8ABFnYMyryJbhSc9PezaQVZ/NTqtTCd9UNAMFCPgEIsrBnVORL8NVCxZe54z7NBRAd5BOAIAt7RkW+BBfLVX/m8g5sAC0inwAEWdgzKvIluC0Z92UutykF0CryCUCQhT2jfP8uZvYBM/uWmb1uZtun+fpnzOykmY2Y2SEz+xG/13S97nQiVHMBRAf5BCDIwp5RvpZgM4tL+h1JH5TUL+lxM+u/4WHfkDTonBuQ9IKk3/RzTTdKxEy9mXZPZ/Zm2pWImaczAUQP+QQgyMKeUX6fCd4g6XXn3LedcyVJX5K07foHOOcOO+cmGx9+TdLdPq/ph2Q6UnrygdWeznzygdXKdHp//2sA0UI+AQiysGeU3yV4paSz13383cbnbuXjkv5kui+Y2SfNbNjMhsfGxjxbYDwe09aBFUonvflRpJP1eXHOtABoEfkEIMjCnlGBeXeEmf2spEFJz073defcZ51zg865wZ6eHk+/d6YzpV3b1noya9e2tcp0pjyZBQDkE4AgC3NG+V2Cz0nqve7juxuf+yFmtknSr0l62DlX9HlNN0klYnqoL6vNfdmW5mzuy2pTX5Z3XgPwDPkEIMjCnFF+f6dXJN1jZj9qZilJPyNp3/UPMLMfk/RfVS/AF3xezy1lOlPa/ei6eR/EzX1Z7X50nZZxlgWAx8gnAEEW1owy5/y9NZ2ZfUjSb0uKS/q8c+7fmtlOScPOuX1mdlDSOknfazzljHPu4ZlmDg4OuuHhYV/Wm58o6dBoTkN7T6hQnv1izelkTLu2rdWmviy/YAD4inwCEGRBzCgze9U5Nzjt1/wuwX7wswRLUqlSU36ipP0j57XnyOlp74vdm2nXR9+zWlvWrVCmM8VLjAAWBPkEIMiCllGU4HmqVmvKT5ZUqTmNFyoqVmpqS8TUlU4oETNlOtt4lzWARUE+AQiyGzOqXK0pGV/4jJqpBHPboCY5SSanH/org6t/FgAWE/kEIGhqNadytaaakyo1p2KlJjNTtebknFOtWlM85s9tl5tFCZ5Gs6fyn3xgtbYO8HIjgIVDPgEIssliRZemytp77JyeP3rmlhn1+IZV2rZ+pZa1J9XRtjh1lO0QN5jvpu6H+rJcfxOAr8gnAEF24UpBB0dz2rn/ZNMZtWNrvzb1ZbV8SdqXNbEnuEkXx4va/uJxHRjNzfm51y7vcWcXtyMF4D3yCUCQXbhS0NMvjejwqbnf1Xfjmh4988iAL0V4phLMa2QN+YnSvH/BSNKB0Zy2v3hclyZKHq8MQNSRTwCCrJUCLEmHT43p6ZdGdOFKweOVzYwSrPoeu0OjuXn/grnmwGhOB0dzKlVmfwkAAJpBPgEIssliRQdHc/MuwNccPjWmg6M5TZYqHq1sdpRg1c+yDO094cmsob0nlOdsCwCPkE8AguzSVFk795/0ZNbO/Sd1abLsyaxmRL4EV6s17R8539QG7mYUyvV51SpnWwC0hnwCEGTlclV7j53zNKP2HTuncrnqybzZRL4E5ydL2nPktKcz9xw5rfwkZ1sAtIZ8AhBkYxNFPX/0jKcznzt6RmMTRU9n3krkS3Cl5qa9hl0rzuanVKmF76obAIKFfAIQZDUnXzJqoSIq8iX4asGfDdjjPs0FEB3kE4Ag8yuj/Jp7o8iX4KJP+06KvAMbQIvIJwBBNuVTRhXYE7ww2pL+3Lea25QCaBX5BCDI2n3KqLRPc28U+STsTvtzv2q/5gKIDvIJQJCFPaMiX4ITMVNvpt3Tmb2ZdiVi5ulMANFDPgEIspjJl4xaqIiKfAnOdKT05AOrPZ355AOrlels83QmgOghnwAEWU9nmx7fsMrTmU9sWKWe7rSnM28l8iU4Ho9p68AKpZPe/CjSyfq8OGdaALSIfAIQZMlkXNvWr/Q0ox5ev1LJ+MLU08iXYEnKdKa0a9taT2bt2rZWmc6UJ7MAgHwCEGTL2pPasbXfk1k7tvZrWUfSk1nNoASr/k7ph/qy2tyXbWnO5r6sNvVleec1AM+QTwCCrKMtoU19WW1c09PSnI1rerSpL6uO1MK9cZc0bMh0prT70XXz/kWzuS+r3Y+u0zLOsgDwGPkEIMiWL0nrmUcG5l2EN67p0TOPDGj5koXZC3yNORe+22cODg664eFhX2bnJ0o6NJrT0N4TKpRnv6B8OhnTrm1rtakvyy8YAL4inwAE2YUrBR0czWnn/pNNZ9SOrf3a1Jf1rQCb2avOucFpv0YJvlmpUlN+oqT9I+e158jpae+L3Ztp10ffs1pb1q1QpjPFS4wAFgT5BCDIJksVXZosa9+xc3ru6JlbZtRHNqzSw+tX6o6OpK9bICjB81St1pSfLKlScxovVFSu1pSMx9SVTigRM2U623iXNYBFQT4BCLJyuaqxiaJqTrpaqKhQriqdjKs7nVDMpJ7u9IJcBWKmEsxtg2ZQqzmVqzXVnFSpORUrNZmZqjUn55xq1ZrisYW5tR8AXK9SralYqTX+7FSo1GSq51O15lSpVBVfwDeYAMBMbuq7NSctcoUiIacxWazo0lRZe4+d0/MznMp/fMMqbVu/Usvak+po40cJwH9Xp8q6UqjU8+mVGfLpnfV8WpJOqLt94S45BCDawtSh2A5xgyBu6gYAScpdrufTrpebz6ehLfV8yi4lnwD4K4gdij3BTbpwpaCnXxrR4VNjc37uYl3eA0A05K4UtL2FfNr9yICy5BMAnwS1Q81UgnnLcEMrB0+SDp8a09MvjejClYLHKwMQdbnL8y/AUj2ftr80ohz5BMAHYe1QlGDV968cHM3N++Bdc/jUmA6O5jRZqni0MgBRd3Wq7F0p8h7FAAAMHklEQVQ+ncxpvFD2aGUAEO4ORQmWdGmqrJ37T3oya+f+k7o0yS8ZAN64Uqho18ve5NOul0/q8hR/SQfgnTB3qMiX4HK5qr3HzjW1gbsZhXJN+46dU7lc9WQegOgqlire59Nr51Tk1SoAHgh7h4p8CR6bKOr5o2c8nfnc0TMamyh6OhNA9IxNlPT8K37kU8nTmQCiKewdKvIluOY07TXsWnE2P6Va+C66ASBgnE/5FMKLAgEIoLB3qMiX4KsFf14W9GsugOgY9ylHxovkE4DWhb1DRb4ET/m076TAnmAALSKfAARZ2DMq8iW4PenPjavTPs0FEB2+5VOCfALQurB3qMiX4O60P/er9msugOjo8ilH/JoLIFrC3qEiX4JjJvVm2j2d2ZtpV8w8HQkggsynfDLyCYAHwt6hIl+Cezrb9PiGVZ7OfGLDKvV0e3//awDR0tOZ0uPv9D6flne3eToTQDSFvUNFvgQnk3FtW79S6aQ3P4p0MqaH169UMh75Hy2AFrWlEt7n030rlWJPMAAPhL1D0dQkLWtPasfWfk9m7djar2UdSU9mAcCSdEJDW7zJp6Et/Vrazn5gAN4Jc4eiBEvqaEtoU19WG9f0tDRn45oeberLqiPFLxkA3uhuT3qXT/1ZdaX5SzoA74S5Q1GCG5YvSeuZRwbmfRA3runRM48MaPkS9gID8FZ2aVq7W8yn3Y8MKEs+AfBBWDuUuRDeP3NwcNANDw/7MvvClYIOjua0c/9JFcq1WR+fTsa0Y2u/NvVlKcAAfJW7XM+nXS83n09DW/q1qT9LAQbguyB2KDN71Tk3OO3XKME3myxVdGmyrH3Hzum5o2emvS92b6ZdH9mwSg+vX6k7OpJsgQCwIMYLZV2eqmjfazPn0xONfFqaTrAFAsCCCVqHogTPU7FU0dhESc5J48WKCuWq0sm4utoSMpOWd7UpxZ3hACyCWfOpu42rQABYNOVyVWMTRdWcdLXwdxnVnU4oZlJPd3pBrgIxUwnm9OU0SpWa8hMl7R85rz1HTutsfkrpRExd6YTGCxUVKjX1Ztr15AOrtXVghTKdKaUSbK8GsHDaUgndzStQAAIqmYxrxR0di72MGXEm+Ab5iZIOjeY0tPdE0/tZdm1bq4f6ssp0pnxZEwAAAOZupjPBnL68zsXxop5+YURPvTDSVAGWpEK5pqdeGNHTL4zo4njR5xUCAADAC5TghvxESdtfPK4Do7l5Pf/AaE7bXzyuSxMlj1cGAAAAr1GCVd8DfGg0N+8CfM2B0ZwOjuZUqjR3FhkAAACLgxKs+lngob0nPJk1tPeE8pwNBgAACLTIl+Bqtab9I+eb3gM8m0K5Pq9a5WwwAABAUEW+BOcnS9pz5LSnM/ccOa38JGeDAQAAgiryJbhSc9PezaQVZ/NTqtTCd+k5AACAqIh8Cb5aqPgyd9ynuQAAAGhd5EtwsVz1Zy5XiAAAAAisyJfgtmTcl7ncRhkAACC4It/UutOJUM0FAABA6yJfghMxU2+m3dOZvZl2JWLm6UwAAAB4J/IlONOR0pMPrPZ05pMPrFams83TmQAAAPBO5EtwPB7T1oEVSie9+VGkk/V5cc4EAwAABFbkS7AkZTpT2rVtrSezdm1bq0xnypNZAAAA8AclWPUrOTzUl9XmvmxLczb3ZbWpL8uVIQAAAAKOttaQ6Uxp96Pr5l2EN/dltfvRdVrGWWAAAIDAowRf586uNj3z2ICefWyg6T3C6WRMzz42oN98bEB3dvFmOAAAgDDgYrY3yHSmtG39Sv3kPT3aP3Jee46c1tn81E2P682066PvWa0t61Yo05liCwQAAECIUIKnkUrE9KalaX3sPau1bf0KVWpO44WKipWa2hIxdaUTSsRMmc42rgIBAAAQQpTgGcTjMfV0p+sfLF3ctQAAAMA7vIYPAACAyKEEAwAAIHIowQAAAIgcSjAAAAAihxIMAACAyKEEAwAAIHIowQAAAIgcSjAAAAAix5xzi72GOTOzMUl/swjf+i5Jf7sI3xf+4rjevji2ty+O7e2J43r7Wqxj+yPOuZ7pvhDKErxYzGzYOTe42OuAtziuty+O7e2LY3t74rjevoJ4bNkOAQAAgMihBAMAACByKMFz89nFXgB8wXG9fXFsb18c29sTx/X2Fbhjy55gAAAARA5nggEAABA5lGAAAABEDiX4Bmb2eTO7YGYnbvF1M7P/YGavm9mImd2/0GvE3DVxXD/SOJ7Hzewvzey+hV4j5me2Y3vd495pZhUze2yh1obWNHNszexBMztmZt80s68u5Powf01k8lIz+yMze61xbD+20GvE3JlZr5kdNrOTjeP26WkeE5geRQm+2RckfWCGr39Q0j2Nfz4p6T8vwJrQui9o5uP6HUnvc86tk7RLAdzAj1v6gmY+tjKzuKRnJH15IRYEz3xBMxxbM7tD0u9Ketg593ZJH16gdaF1X9DM/99+StJJ59x9kh6U9O/NLLUA60JrKpJ+xTnXL+ndkj5lZv03PCYwPYoSfAPn3J9Lys/wkG2SvujqvibpDjN788KsDvM123F1zv2lc+5S48OvSbp7QRaGljXx/6wk/ZKkFyVd8H9F8EoTx/YJSS855840Hs/xDYkmjq2T1G1mJqmr8djKQqwN8+ec+55z7uuNP1+VNCpp5Q0PC0yPogTP3UpJZ6/7+Lu6+QAj3D4u6U8WexHwhpmtlPQPxKs2t6O3SVpmZl8xs1fN7OcXe0HwzH+S1CfpvKTjkj7tnKst7pIwF2a2WtKPSfqrG74UmB6VWIxvCgSVmW1UvQT/xGKvBZ75bUlPO+dq9ZNKuI0kJL1D0kOS2iUdMbOvOef+enGXBQ+8X9IxSX9f0t+TdMDM/q9z7sriLgvNMLMu1V99+2dBPmaU4Lk7J6n3uo/vbnwOIWdmA5J+X9IHnXMXF3s98MygpC81CvBdkj5kZhXn3P9e3GXBA9+VdNE5NyFpwsz+XNJ9kijB4fcxSbtd/WYGr5vZdyStkXR0cZeF2ZhZUvUC/D+ccy9N85DA9Ci2Q8zdPkk/33h347slXXbOfW+xF4XWmNkqSS9J+jnOIt1enHM/6pxb7ZxbLekFSf+YAnzb2CvpJ8wsYWYdkt6l+h5EhN8Z1c/wy8yyku6V9O1FXRFm1djD/TlJo86537rFwwLTozgTfAMze171d6LeZWbflfTrkpKS5Jz7L5L+WNKHJL0uaVL1v60i4Jo4rjsk3SnpdxtnDCvOucHFWS3moolji5Ca7dg650bN7E8ljUiqSfp959yMl8pDMDTx/+0uSV8ws+OSTPUtTX+7SMtF835c0s9JOm5mxxqf+5eSVknB61HcNhkAAACRw3YIAAAARA4lGAAAAJFDCQYAAEDkUIIBAAAQOZRgAAAARA4lGAAWmZmN+zBzvZl96LqP/5WZ/XOvvw8AhBUlGABuT+tVvxYnAGAalGAACBAze8rMXjGzETP7143PrTazUTP7PTP7ppl92czaG197Z+Oxx8zsWTM7YWYpSTsl/XTj8z/dGN9vZl8xs2+b2T9tPL/TzF42s9caz/3paRcGALcZSjAABISZ/ZSkeyRtUP1M7jvM7L2NL98j6Xecc2+X9IakRxuf/wNJv+icWy+pKknOuZLqd0H8Q+fceufcHzYeu0bS+xvzf93MkpI+IOm8c+4+59xaSX/q938nAAQBJRgAguOnGv98Q9LXVS+t9zS+9h3n3LXbkL4qabWZ3SGp2zl3pPH552aZ/7Jzrti4/ewFSVlJxyVtNrNnzOwnnXOXPfzvAYDAogQDQHCYpN9onL1d75x7q3Puc42vFa97XFVSYh7zb5rhnPtrSferXob/jZntmM/CASBsKMEAEBx/JukXzKxLksxspZktv9WDnXNvSLpqZu9qfOpnrvvyVUnds31DM1shadI5998lPat6IQaA2958ziQAAHzgnPuymfVJOmJmkjQu6WfV2Ot7Cx+X9HtmVpP0VUnXtjMclrTdzI5J+o0Znr9O0rON55cl/aPW/isAIBzMObfYawAAzJOZdTnnxht/3i7pzc65Ty/ysgAg8DgTDADhtsXM/oXqef43kj66uMsBgHDgTDAAAAAihzfGAQAAIHIowQAAAIgcSjAAAAAihxIMAACAyKEEAwAAIHL+PwYq3CbiJMkIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hU1b0//vfac8lMbsDAkBASGlEIUS4WoqKohAKlFYQexZ7qtx6tfqHnq6fftp5i7QVOKz39WbT1tH08p5WDp+j5om2RCgQtAgIWxQMBIVyS4IVIuIXIACGTmdmz916/P5Igl1xmMntPZrLfr+fhqZmZrKxk93nvz+xZ+7OElBJERERERHai9PYEiIiIiIiSjUUwEREREdkOi2AiIiIish0WwURERERkOyyCiYiIiMh2nL09gZ4YNGiQLC4u7u1pEBEREVEK27Vr16dSSn9Hz6VlEVxcXIzKysrengYRERERpTAhxCedPcflEERERERkOyyCiYiIiMh2WAQTERERke2wCCYiIiIi22ERTERERES2wyKYiIiIiGyHRTARERER2Q6LYCIiIiKynbTcLCNZolEdjcEIDAmcD2sIRXV4XQ7keJxQBODPyoDL5ejtaRKRDTGfiCiVpUNGsQjuQEtEw5lQFKv3HMPLO46gPhC64jVFPi/uvXEY5lw/FAO8LmRm8E9JRNZjPhFRKkunjBJSyl75wYkoKyuTVm2bfKopjI3VDXiy4iDCUaPb13tcChbNuhbTSvMwONdjyZyIiADmExGltlTMKCHELillWYfPsQj+zKmmML6/qgqbaxrj/t4po/z4xV1jeaIhIkswn4golaVqRnVVBPPGuDaJHDwA2FzTiO+vqsKpprDJMyMiu2M+EVEqS9eMYhGM1vUrG6sbenzw2m2uacTG6ga0qJpJMyMiu2M+EVEqS+eMYhEM4EwoiicrDpoy1pMVB3GmJWrKWEREzCciSmXpnFG2L4KjUR2r9xyLaQF3LMJRA2v2HEM0qpsyHhHZF/OJiFJZumeUpUWwEOIFIcQpIcT+Tp4XQojfCCE+FEJUCSHGWzmfjjQGI3h5xxFTx1yx4wgagxFTxyQi+2E+EVEqS/eMsvpK8B8AfKmL578MYETbv/kA/sPi+VzBkOiwh10i6gMhGOnXdIOIUgzziYhSWbpnlKVFsJTybQCBLl4yB8CLstV7APoLIYZYOafLnQ9bswDbqnGJyD6YT0SUytI9o3p7TfBQAPUXfX207bErCCHmCyEqhRCVjY2J3YF4sZBF607CXHNHRAliPhFRKkv3jOrtIjhmUsrnpZRlUsoyv99v2rhei/at9vTyfthElP6YT0SUytI9o3q7CD4GoOiirwvbHkuaHI81+1VbNS4R2QfziYhSWbpnVG8XwWsA/ENbl4iJAM5JKU8kcwKKAIp8XlPHLPJ5oQhThyQiG2I+EVEqS/eMsrpF2ssAtgMoEUIcFUI8LIT4RyHEP7a95HUAHwP4EMBSAI9YOZ+O+LMycO+Nw0wd874bh8GfY/7+10RkL8wnIkpl6Z5RVneHuFdKOURK6ZJSFkopl0kpfyel/F3b81JK+aiU8mop5RgpZaWV8+mIy+XAnOuHwuMy50/hcSmYff1QuBy9fZGdiNId84mIUlm6ZxSTEMAArwuLZl1ryliLZl2LAZkuU8YiImI+EVEqS+eMYhEMIDPDiWmleZgyKrGuE1NG+TGtNA+Zbt50QkTmYD4RUSpL54xiEdxmcK4Hv7hrbI8P4pRRfvzirrEYnMu1dkRkLuYTEaWydM0oIWX67Z9ZVlYmKyutWT58qimMjdUNeLLiIMJRo9vXe1wKFs26FtNK83iCISJLMZ+IKJWlYkYJIXZJKcs6fI5F8JVaVA1nWqJYs+cYVuw40uG+2EU+L/7XjcMw+/qh6J/p4keMRJQUzCciSmWpllEsgnsoGtXRGIzAkK37WIejOjwuB3I8TigC8Od4eJc1EfUK5hMRpbJUyaiuimBeHuiCy+VAQf/M3p4GEdEVmE9ElMrSIaN4mYCIiIiIbIdXgrug6wYCLSo0Q+J8WEMkqiOj7VK+UxHwZbrh4MeNRNQLmE9ElMrSIaNYBHdA1QwEgioqqo5j+fa6Thd1P3BzMWaNLYAvyw23kycbIrIe84mIUlk6ZRRvjLtMIKhiU3UDFq7eH3N7j8VzRmNqaR58WW5L5kREBDCfiCi1pWJGsTtEjE43R/DEq/uwoboh7u+dXpqHp+4eg4HZGabPi4iI+UREqSxVM6qrIpifkbUJBNUeHzwA2FDdgCde3YczQdXkmRGR3TGfiCiVpWtGsQhG6/qVTdUNPT547TZUN2BjdQNUrfuPAIiIYsF8IqJUls4ZxSIYre9gFq7eb8pYC1fvR4BXW4jIJMwnIkpl6ZxRti+Cdd1ARdXxmBZwxyIcbR1P13m1hYgSw3wiolSm6wbWpnFG2b4IDrSoWL69ztQxl2+vQ6CFV1uIKDHMJyJKZYEWFS9urzN1zGRmlO2LYM2QHfawS0R9IATNSL+uG0SUWphPRJTKNN2ijNKTk1G2L4LPh7W0GpeI7ON8iPlERKnrXDhqybhNFo17OdsXwSFVT6txicg+WqLMJyJKXWatBU7WuJezfRGcYdFWfVaNS0T24WE+EVEKsypLkrWNsu2TMDPDkVbjEpF9MJ+IKJVlui3KKIvGvZzti2BNlyjyeU0ds8jnhZ6kRd1E1HfpVuUTb4wjIhNIwJKMSlZC2b4IdgiBu8cXmjrm3PGFUIQwdUwish9FYT4RUeryuhRLMirTxSvBSaEoAuUj/fC4zPlTeFwKJo/0Q1F4kiGixCjConxiEUxEJgipBqaOGmxqRn1h1GDLbgq+nO2LYAD4y55jWDCjxJSxFswowao9x0wZi4jsTZfSknwyJJdDEFHidMNA3emgqRn1yekg+wQni9spMCDTjfxcL8pL/AmNVV7iR36uFwMz3bz7mogSpuuGJfkU5T0LRGQCVZcoGpCJgn7mZFRBPy8KB2Qiym2TkyMQjKJ8pB9PvXEQi+eMxpRRPTuIU0b5sXjOaDz1xkFMHulHIMhtSYkoMVFDonykH4tW78P824f3+CRTXuLH/NuHY9HqfZg80g/NSM4Jhoj6thyPEy+8U4fG5rApGdXYHMaybYeR43GaPNOO2b4IDkd1vPBOHX53fxn+dd1BzB1fhIWzSmNe3+JxKVg4qxRzxxfhX9cdxO/uL8OybYcR1tiMnogSk53ReoJ5ZMo1mLe8EvdMKMKTs6+LK5+enH0d7plQhHnLK/HIlGuwbNthZGck5wRDRH3f+/VnMDDLgxffrUsoo158tw4DszzYc/SsxTP+jO2T0Nt2B+Le+nP464EG/PVAA+4cOwSvzJuIrYcasXL30Q73xS7yeTF3fCEmj/Rj2bbDWFtVDQCYPHIwAMDjZB9OIkqM26Hg/fozmHFdPm4bMQgAMKS/B6/Mvxlba091n08lg9F4PgxVk7htxCDk53qx52hd0hrRE1HfNijThfsnFuPxlXux7MEbYBgSbqeIO6Oy3E48OOkqPPyHnfjOtJHwZ2ckZf62L4JzPE48NKkYX1v63oXH1ladwOv7T2LqqMH43hdLUNDfi6huIBw14HEpcDkUHD8bQkXVCfzmrQ8v6bn504oDeGXexKRdyieivmuA14X7J34OP1mzH6semYRFa/Zjc00jHIqIK5+mjPLjydmjcde/v4N5tw/HAK+rt381IuoDXE4H7hiTj99v/RAAsGzbYWyqORV3Rk0dNRjzbh8Oj0vBl8fkw5mkDltCpuFdwmVlZbKystKUsRrPh7Dif+rx7MYPunydUxFwOxWomgGtm0bzj00fgXtvLII/x9wG0kRkL4FgBIFgFB80nMcfK+uxpbaxw9fFkk/lJX78fVkRRuTlwJflgi8rOVdaiKjvCgQjePfDT3GVPxtPr69NOKMWzCjB4U+bccvVg0zLKCHELillWUfP2f4zMVWTWLn7aLev0wyJFlXvtgAGgD/vOgpVS783F0SUWlpUHbs+CSAQVDs9uQCx5dOW2kYEgioq606jReU9C0SUuBZVx85PzmBv/TlTMqqq/hx21J1JWkbZvgg2JDpcr5KI+kAI3JWUiBJlSImSvBwsXnfQlPEWrzuIUfm57BNMRKYwpMTfXT8UT1YcMGW8n1YcwF3XD01aRtm+CD4fjloybnNEs2RcIrIPaQDbPvwU4ag5Lc3CUQPvfPQpWAMTkRksy6gkdXG0fREc0az5S0fYIo2IEqRLiT9W1ps65is762HwoyoiMoFlGcUrwcnhcVnTyiyDLdKIKEEuh2LJci2nw/bRT0QmSPeMsn0SWtU0ns3oiShRQYuWVQVVLtciosSle0bZvgg2pESRz9xWZkU+L288IaKEmbXO7nIRi8YlIntJ94yyfRGs6RJ3jy80dcy54wuh6SyCiSgxGTFuPRov7hhHRGZI94yyfRKquoHykf6Y97nujselYPJIP1SdV1qIKDGZbmvuLbBqXCKyl3TPKNsXwTkeJ154pw4LZpSYMt6CGSVYtu0wt00mIlNYsVyLiMgs6ZxRti+CAeD9+jPIz/WivMSf0DjlJX7k53qx5+hZk2ZGRHbmdSuWLNfKtKgrDhHZi1UZ5U1SRtm+CM7xOHDvDcPw+Mq9mH/78B4XwuUlfsy/fTgeX7kX9904DLm8EkxECVI1iamjBpu6XOsLowYjwuVaRGQCqzIqWUtKbV8En23RcNuIQdClxLzllbhnQhEWziqN+YB6XAoWzirFPROKMG95JXQpces1g3CmxZqd6IjIPpwOgbrTQVOXa31yOggX+wQTkQl0Q1qSUXqSNvRhEgJY+rfD+Mns6xBUdTy6Yjf2HDmLV+ZNxHenjbiwNsWpCGS6HXAqAkDrmpXvThuBV+ZNxJ4jZ/Hoit0Iqjp+Ovs6PP/2xxC9+QsRUZ8QaFZRNCATBf3MWa5V0M+LwgGZCARVk2ZIRHZ2OhhbRl1eQ3WkNzLK9p/Zt6g6ri/qh3GF/VFe4seW2kasrTqB9Qcb8O2p1+D3909AltuJ5rCGcFSHx+VAtseJoKrhrepT+Orz70Ft23q5vMSPsYX90RzWEFS5bTIRJSaiGTjdHEFTKIr5tw8HAGypbbzidU5FwO1UoGoGtA6uoLQv16o/3QKnQ8Cfk2H53Imo78t0OXD0TMsVGeVQBKaVDsYdY4ZgaH8vIppxoYbKcCo4djaEdVUnsKnmFHRDXpFRRQMykzJ/2xfBEc3A9Gvz8ZXntuG3940HAOR6XHjo1mL87YNP8c2XdnW4JWCRz4uvlhXhT9+ciBe21aEp3Pp/gK//53t47dFbeaWFiBLmdTtQkp+L/cfO4cV363DPhCLcNmIQfrXhEG69ZlC3J5h3PvoUj00fifxcL158tw5zrh+KUfm53DGOiEyRleG8IqO+ftMwDMrxYEvtKTzzZm2nNdTd4wvxyJRr8On5MCKavCSjkkXINNzZrKysTFZWVpoyVkNTCK/uOoYl62vhz3ZjxbyJqKw7g59WHIhpJxSPS8G/zLoOZcUDcN/S99DYrOL7XyrBXeOHIi+XrYiIqOcCwTBe2XEUz23+EEsfKMPzb3+M20YMwhevzcfavcfx8s4jnZ5g7r1hGO4cV4A3D57E3z74FPNvH455yyvxT1+4Bn9/QyF8WZ5e+I2IqC+5OKOWPXgDDEPiw1PN+Pkb1THXUD/8cimuGZwNRRF4+A87Tc8oIcQuKWVZR8/Zfk1wVJd4eecRZLkd+O194/HUGzX4wV/2xbwVYDhq4Ad/2Yen3qjBb+8bjyy3Ayt2HEGUO8YRUYJaVAMv7zyCoKrj2y+/jx/dUQqP04Hpz27FkvUdX2EBgPpACEvW12L6s1vhcTrwoztK8e2X30dQ1bFixxG0qOwOQUSJa8+odsu2HcaiNbFdRARaa6hFaw5g2bbDFx5LZkbZfjmElK0njN99fTyWvv0xNtWc6tE47d/3y6+Owz/+926k4QV2Ikox7fmU5Xbg1/d+Hv/6enWHa4I7E44a+NFr+1Fe4sev7/085i2vRH0gxHwiIlO0Z9Rz943H77Z+FFc+XWxTzSnoUmLJ3HF4dEXyaijbXwluDmuYPa4AgWC0xwVwu001p3AmGMWdY4egOcI1d0SUmPPh1laLS+aOw/Nvf9zjE8yW2kY8//bHWDJ3HAAwn4jIFO011MmmUI/zqd2W2kacbAoltYayfREciup4ZMrVeLLigCnj/bTiAB6dcg3CUXaHIKLEhKOGJScY5hMRmSEU1fHQpGI8vb7WlPGeXl+Lh2+9KmkZZfsieGCWG1trG2Nev9KdcNTA2x80wpfpNmU8IrIvr8thyQnG4+S2yUSUuIFZbmw5ZG4NtfVQ8moo2xfBTofAf//PJ6aO+dJ7n8Dp4HYZRJQYX7YL2z781NQTzDsffQpftsuU8YjI3hRF4NXdR00dc+Xuo1C62FTDTLYvgo22Rd1mqg+EkKQd/4ioD1M1iT9W1ps65is766FqDCgiMocVNVSy2L4IDlq0+JrN6IkoUYqw5gSTpIssRNTHtVhU61g17uVsXwSHLFp8zRtPiChR58PWnAjOszsEEZkgZFE/X7OWgHXH9kVwhtOaP4HbYfs/LRElyKoTQSRJJxgi6ts8LmtqHatqs8vZvlLL9lizX4hV4xKRffBNOhGlsswMazrNWDXu5WyfhAICRT6vqWMW+bwQ4KI7IkpMup9giKhv03VpSQ2lJ6m7gO2LYLdTYO74QlPHvGdCYdIu5RNR3yUBS04w7A1BRGZwKAJ3m1xDzR1fCIdgi7SkiEQNzBxbYNq6Fo9LwR1jChDWeGMcESXG61IsOcFkunglmIjMUT7Sb2oNNXmkH8n6MN32RXAgqALSwIIZJaaMt2BGCaQ0cCYYNWU8IrKvcNTA1FGDTT3BfGHUYMu64hCRvWiGxF/2HDO1hlq15xg0ncshksLtVPCbtz7CxOEDUV7iT2is8hI/Jg4fiN9s+hAu7hhHRAnSdAN1p4OmnmA+OR1M2gmGiPo2hxAYkOlGfq7XlBoqP9eLgZluLodIlmyPE2v2Hkd9IITvThvZ44NYXuLHd6eNRH0ghLVVJ9gdgogSFtEMFA3IREE/c04wBf28KByQiQiXaxGRCRRFoHykH4tW78P824cnVEPNv304Fq3eh8kj/dw2OVnau0P885/2IBTVMf+24Vg4qzTmjx89LgULZ5Vi/m3DEYrq+Oc/7WF3CCIyRXaGEy+8U4fG5rApJ5jG5jCWbTuM7Ay+SScic/xlzzE8MuUazFteiXsmFPWohrpnQhHmLa/EI1Ouwao9xyye8WdsXwRnuFq7QwRVHQ//YSfOtEQxzJeJV+bfjO9OG9HpndlFPi++O20EXpl/M4b5MnGmJYqH/7ATQVVndwgiMoUQAu/Xn8HALA9efLcuoRPMi+/WYWCWB3uOnoVI0keNRNS3ZWUoyMvxID/Xixuu8uHRFbux58hZvDJvYmw11LyJ2HPkLB5dsRs3XOVDfq4XQ3I9yEpSG0fbXw5wKgpmji3Af2z9CEFVx6MrduPOsUPw8K1X4aqBWfjRHaUYmJ2BqG4gHDXgcSlwORScbo4gohmAlFiz5zjWVp0A8Fl3CK4JJqJEtb9Jf3zlXix9oAzPv/0xcjKceGXeRGw91IiVu4+iPhC64vuKfF7MHV+IySP9WLbtMM5HPsX824dj3vJKfHPycL5JJyJThKMSd44rwFee24bf3jceALC26gRe338SU0cNxve+WIKC/t4raqjjZ0OoqDqB37z1IXRDXvi06lsrduO1R29N2q6WQsr0u0GirKxMVlZWmjKWrhs43hTGmwdOYnFF9YXHHYrA1FGDMXPsEBT090LTDaiahNsp4LzoAL5Vc+qSps4LZ5VixrX5GNLfC0eS1rQQUd8UCEYQCEYx67d/g0MILJk7DiebQvjVhkOYdPWgC/nU2Qnm3Y8+xWPTRyI/14vHV+6FLiUqvnUbfFku+LIyevvXI6I0F43qqDrehJoTTfj569UXMurp9bWXbPvuVATcTgWqZkC7qGbyuBQsmFFyIaN+eEcpSofkYExhf7hM2tlSCLFLSlnW0XO2vxLscCjwOJQL3SG21DYCAHRD4s2DDXjzYAOAzg/gxdq7Q2Q4FRbARJSwfh4XgqqOBTNKsLii+sInVf/v4Zuw9VAjnnmzFvWB0BX51H4l+NHyq7Fs22GsrWp9g79wVik8TgX9vO5e/s2IqC9wuRwY0s+Dfh4nbhzuu5BRl39apRkSmvrZDbmXf1q1tqoaU0b5cdNwHzLdTtMK4O7Y/kowAKiagbrTzQipBp7deOhCIRyP9u4QXreC4oHZcPPjRiIyQWNTGKeaI3h6fe2FbLr8k6rOrgRf/ElVeYkfC2aUYHB2Bvy5nt78lYioD2mJaHjz4ElM+JwPi9bsx+aaxrgzasooP56cPRq7Pwlg+nX5yHSbd422qyvBLILbBIIqjp9pQVNYQ/XJpisu5Xem/VJ+aX4ucj1ODB2QiQFZvMpCROaI5U16d59U8U06EVnpVFMYT71ejf8z5RrsOBzA4nUHY14OsXDmtbjxKh/+Y/OHeOKOUgw2+U06i+AYnW6O4FDDeTRHNPhzPNhae6r7G09KBqPxfBjZGU6MzMvBwGyusyMic/FNOhGluoamMH64ah9uuXogvnhdPiqqjmPFjiOd1lD33TgMs8YW4M0DJ/HuR6fx87vGIM+CT6m4JjhOzrb1vDF1h7jo9UREVvBluaHrBprCzRdaOMbzJh0A8nI9LICJyBKBoIolb9TgiS+PQmXdGcz87d8w/7bh+P39E5DpdiIY0S7UUFkZTrSoGt6qPoWZv/0bfvClUjzx5VFY8kYNfjzr2qTmFIvgNoGgin9ZfQBfHjMEbueVRa1A6/aAHZW7miERCEbxL6sPYPFXRvNEQ0SmCgRV/GTtAdwxpgCZ7talDPG8ST/TEsVP1h7Az74yhvlERKZSNQObqhvw6vvH8Or7x7BwZinWfes2rNt3At98aRfqAyF4nAqyPU40hzWENQNFPi++ftPnsO5bt+HNAycx/dm3AQATrx6IOdcPTdqSLRbBaD2AW2tP4b6Jw/D82x9jS+2li7o7EtGMSxZ1t/e421J7CjPHFnDNHRGZQtUMbKw+iXX7Wv/dOXYIHr7tKigXRUxHb9JbW5VLrNp97EIf88klg/GVJJ5giKjvCwRVLFy9/8LXi9dV4xfra/F/v3DNhSvBLRddCc686Erw1F9thap9trRr4er9uG2EH/n9knPzLtcEAzh5Loz3j5zBHyvrO+0MEWuLtL8vK8Lnhw1I2gEkor7t5LkQyp/Zcska4I76mEc1CVc3fcw9LgVbvleO/H4d7+JERBQPXTfwX+/W4Wfrqrt83eVXgrvy45ml+MYtxXCwT7D1dN3AvmNncfxcqMvWaJf3uOvIltpG3DZiEJzHBPzZg007gERkT7puYM3eE1fcBNeTPuYAEI4aWFt1Ag+ZeIIhIvsKtKhYvr2u29eFNQPhZjWmMZdvr8Oc6wvgz7H+YqLtUzDQoiI/14On19eaMt7T62uRn+tBoCW2g01E1JnTQRUvvVfX7es0Q6JF1bssgNu9uL0Op4PMJyJKnGbIDm/OTUT75hrJYPsiWAhgU82pmNoNxSIcNfBWzSkINowgogSpumHJCUbVzck7IrK382Etrca9nO2L4GBEx6u7j5o65srdRxGMdL10goioO80WnQiaI8k5wRBR3xbqZploT4UtGvdyti+CAVhypYUXgokoUaGoRScYi8YlInvJsKjTTLI62Ni+CG6x6N1GMEnvYoio77LsBMOb4ojIBJkZ1vRXsGrcy9k+CSPdtOpo53EqGJTthifGk5Ia47hERJ3J9rhiel28+RTruEREXdGN1o0vuhNPRhX5vDCSdGOc7VukeVwdHxC3U8F3pl6D8lGDkeVu7W0XiurwuhzI9jgRbGv0/Ju3Puyw4M3oZFwiolgpovWEcPmSrUTyqcjnBXd6JyIzuBQFd48vxL9t/OCSxxPJqLnjC+FIUkjZvgju18EVkUWzSjH92nys3Xv8wpZ/lyvyeXHvDcOw6bHJ2HDwJJ6suLRRdEfjEhHFI9PtwNzxhXj2ohNMovl0z4RCZLkdSZk/EfVtDodA+Ug/frf1owtdthLJKI9LweSRfjgdySmCbX+50ukQFy7l+7Pd2PDd25HhdGD6s1uxZH1tpzfN1QdCWLK+FtOf3YoMpwMbvns7/NluAK0HN1kHkIj6rn4eF2aNK4DHpZiSTx6XgpljC5DrdSf5NyGivsipCPxlzzEsmFFiSkYtmFGCVXuOwZmkK8GWb5sshPgSgF8DcAD4TynlU5c9PwzAcgD9217zhJTy9a7GNHPbZF038MK7dXh+60dY9cgkLFqzH5trOt85rjNTRvnx5OzRuOvf38E3J1+Nb0y6KmmX84mo72psCmNjdQNuHeHvNJ+62zGuPZ+2fdCIaaV58OdyW3ciSlz7tsnD/VkoycvFj1fv63FG/WzOGNQ2NOHjxqCpNVRX2yZbWgQLIRwADgGYDuAogJ0A7pVSHrzoNc8DeF9K+R9CiGsBvC6lLO5qXDOLYAA4eS6M5nAU//pGdacFcCzbkk4Z5ceP7ihFdoYL+f14kiGixKmagUAwgh/85bOTi0MRmFY6GHeMGYKh/b2IaAbCUR0elwMZTgXHzoawruoENtWcgt6WV1NG+fH//d1Y+LLcSWs/RER938lzYeiGvKQA7mlG/etXxkARwtQaqqsi2Oo1wTcC+FBK+XHbRF4BMAfAwYteIwHktv13PwDHLZ7TFTwuBZuqA5cUwD05gJtrGjFtVB5mjR2S7F+BiPqokKphU/WpC/k0e1wBHppUjC2HGvHMmx1/3Fjk8+Lu8YV4pPxqvPBOHdbsPY7NNY3YVN2AO8cNgdvJ5RBEZA6vS0FF1QlTMmpzzSncOS55NZTVV4LnAviSlPJ/t319P4CbpJT/dNFrhgB4E8AAAFkApkkpd3Uw1nwA8wFg2LBhEz755BPT5nnsTAhTf7XlwqLuiw/gq7uPdnkAy0f6LxxAoK2gfqwcQwd03zKEiKg77fnkEAJL5o7DyaYQnl5fG9NW7x6XggUzSpCf68YwTH0AACAASURBVMXjK/dCl5L5RESmSvWM6upKcCp8JnYvgD9IKQsB3AHgJSHEFfOSUj4vpSyTUpb5/X7Tfng4EsXqPccQjhrIcjvw3H3jMa6oH7629D3828YPulzU/W8bP8DXlr6HcUX98Nx945HldiAcNbBm7zGEI1HT5khE9tSeTw4hsPSBMvx5Vz0WV1THdHIBgHDUwOKKavx5Vz2WPlAGhxDMJyIyTUTVLMmoiJqcrd2tLoKPASi66OvCtscu9jCAPwGAlHI7AA+AQRbP64JPW6J4eecRZLkdphzALLcDK3YcwactPMkQUWLa82nJ3HF4/u2PsaU2/pt2AWBLbSOef/tjLJk7jvlERKZpDKqWZFRjUDV5ph2zugjeCWCEEOIqIYQbwNcArLnsNUcATAUAIUQpWovgnv0Ve0DKtlYdJh7A+kAIFjfdICIbkBL4fNEAnGwK9Tib2m2pbcTJphCuL+zPfCIiU6R7RllaBEspNQD/BGA9gGoAf5JSHhBCPCmEmN32sn8GME8IsRfAywAelFb3bbtIc1jD7HEFph7AO8cOQXMkOZfyiajvag5reGhSMZ5eX2vKeE+vr8XDt17FfCIiU6R7Rlm+Y1xbz9/XL3ts0UX/fRDAJKvn0ZlQVMdDk4rxtaXvmTLe0+tr8cq8iQhHdVPGIyL7cjoE1h9sjHl5VnfCUQNbDzViJjvYEJEJ0j2jUuHGuF41MMuNLYfMP4C+TLYgIqLEuBwKXt191NQxV+4+Cqdi++gnIhOke0bZPgkVRVhyABXuFkdECXIootMONT1VHwhxN0siMkW6Z5Tti2AAlhxAIqJEBS1aFxdMUvshIurb0j2jbF8Ehyz6Q4e4JpiIEqTq5izTulxUs2ZcIrKXdM8o2xfBEYv+0CpPMkSUII/LYcm4GRaNS0T2ku4ZZfsi2Ko/tNtp+z8tESUox2NNAx+rxiUie0n3jLJ9pZbuB5CI+i6nIlDk85o6ZpHPCydvjCMiE6R7Rtm+CE73A0hEfZcv040Hbi42dcwHbi6GLyvD1DGJyJ7SPaNsXwSn+wEkor7L4VAwa2wBPC5zotrjah2PLdKIyAzpnlG2L4LT/QASUd/my3Jj8ZzRpoy1eM5o+LK4kQ8RmSedM8r2RTCQ3geQiPo2t1PB1NI8TC/NS2ic6aV5mFaax5t2ichU6ZxRTEOk9wEkor7Pl+XGU3eP6XFGTS/Nw1N3j8EAvkEnIguka0YJKWVSf6AZysrKZGVlpenjnm6O4IlX92FDdUPc39t+AAdmcy0wEVkjEFSxqboBC1fvRzjafS9yj0vB4jmjMa00jwUwEVkuFTNKCLFLSlnW4XMsgi+VigeQiKidqhkIBFVUVB3H8u11HW7TXuTz4sFbijFzTAF8WW5+OkVESRNrRj1wSzFmJSGjWATHiScZIkp1um4g0KJCMySawxoimoEMp4JsjxNORcCXlcEbdIko6dprqL31ZyABDMzOQFQ3EI4a8LgUuBwKTjdHIAQwrnBArxbB3NGhA26ngvx+HnzjlmLMub6AJxkiSjkOhwJ/jqf1i369OxciIqDzT9OdioDbqUDVDGjGZxdf2z9Nn1qa1ytNBVgEd4EnGSIiIqLudXVflWZIaKp+xePhqIEFK6t67b4qfoZPRERERD0WCKo9biwAABuqG/DEq/twJqiaPLOusQgmIiIioh5RNQObqht6XAC321DdgI3VDVC17psSmIVFMBERERH1SCCoYuHq/aaMtXD1fgSSeDWYRTARERERxU3XDVRUHY+ppWwswtHW8XQ9OVeDWQQTERERUdwCLSqWb68zdczl2+sQaEnO1WAWwUREREQUN82QHe6lkIj6QOiSNmpWYhFMRERERHE7H9YsGbfZonEvxyKYiIiIiOIWiV7Z+9eUcZPUIYJFMBERERHFLcPlsGRcK7dRvhiLYCIiIiKKW47Hmo2HrRr3ciyCiYiIiChuTkWgyOeN6XWZbgeciuj2tUU+b0yvM0NySu00pesGAi0qNEPifFhDJKojw+VAjscJpyLgy3TD4eD7CCJKPuYTEfU2X6YbD9xcjJ+tq77kcYciMK10MO4YMwRD+3sR0QyEozo8LgcynAqOnQ1hXdUJbKo5Bf2yThAP3FwMX1ZGUubPIrgDqmYgEFRRUXUcy7fXddj+o8jnxQM3F2PW2AL4stxJW79CRPbGfCKiVOFwKJg1tgDPvFl7YcOM2eMK8NCkYmw51Ihn3qztNKPuHl+IR8qvxgvv1GHN3uMAAI+rdTxHkq4ECymT04vNTGVlZbKystKSsQNBFZuqG7Bw9f6YdkDxuBQsnjMaU0vz4MtyWzInIiKA+UREqUfVDKzecww/WXMAS+aOw8mmEJ5eXxtzRi2YUYL8XC8eX7kXP5l9HeZcP9TUN+5CiF1SyrIOn2MR/JnTzRE88eo+bKhuuOI5pyLgdipQNaPDJs7TS/Pw1N1jMDA7OZfwicheusonj1NBtseJ5rCGcAethZhPRGSlQFDF0UALfrXxELbUNl7xfHcZVV7ix2PTRqLIl4kBJr9h76oI5nKINoGgeskJpqP1LBFNR4az4/UsG6obgFeBJXPHmn4AicjeLs8nt1PBd6Zeg/JRg5Hlbj2xhKI6vC4Hsj1OBFUNb1Wfwm/e+hCqZjCfiMhyv3nrgwsFcLwZtaW2EU5F4Om545I6ZxbBaL2Uv6m64cIJZva4Ajx0azH+9sGnXa5n+WpZER6ZcjVe2Na6nmVDdQM2VjeYfimfiOzr8nxaNKsU06/Nx9q9x/HNl3Z1mk/33jAMmx6bjA0HT+LJimrmExFZoj2jNlafAtDzjNpYfSrpGcXlEABOnguj/JnNcAiBJXPH4XRzBD9/ozrm9Sw//HIpBmZn4PGVe6FLiS3fm4L8fh7T5kdE9tWeTzkZTqyYNxE7DgeweN3BmPNp4cxrceNVPty39D2cj2jMJyIyVapnVFfLIWx/OUDXDVRUHYdDCCx78Aas2n0Ui9YciOngAUA4amDRmgNYtfsolj14AxxCoKLqOHQ9OVv+EVHf1Z5PORlOrHpkEn7+RjV+9FpsN8UBrfn0o9f24+dvVGPVI5OQk+FkPhGRadI9o2xfBAdaVCzfXodffnUclr79MTbVnOrROJtqTmHp2x/jl18dh+Xb6xBoUU2dJxHZT3s+rZg3EYvW7MfmmitvOInF5ppGLFqzHyvmTWQ+EZFp0j2jbF8Ea4bE54sGIBCM9rgAbrep5hTOBKO4vrB/hx0kiIjioRkS37ilGDsOB3p8cmm3uaYROw4H8ODNxcwnIjJFumeU7dcEH2o4D0NKfOW5d2K+fN8Vj0vBa49MgkMRGJGXY8IMiciuDjWch9flwPRnt5qWTxu+OxnhqM58IqKEpUNGcU1wF1yKwNbaRlMOHtC6vuXtDxrh5HalRJSgnAwn1u49bmo+VVQdR3YGGwMRUeLSPaNsX6m5HAr++38+MXXMl977BM4kbflHRH2XZki8vPOIqWOu2HGEyyGIyBTpnlG2L4Il0GEPu0SYPR4R2RfziYhSWTpnlO2L4GBEs2Zc1Zpxicg+mi3KJ6vGJSJ7SfeMsn0RHIrqlowbtmhcIrIP5hMRpbJ0zyjbF8EZFm3N5+aNcUSUIK/LYcm4HovGJSJ7SfeMsn2llu1xpdW4RGQfOR5r7pC2alwispd0z6geFcFCCJ/ZE+ktTgUo8nlNHbPI54VFF5iJyEYUISzJJ0Wwew0RJS7dM6rbUk0IMUkIUS2EOCCEuEkIsQHATiFEvRDi5iTM0VIuh8Dc8YWmjnnPhEIuhyCihHlciiX55HExn4gocemeUbH8lGcBfBXA/wawDsBPpZRXA5gD4BkL55YUmg5MHuk37Q/ucSm4fYQfUZ19OIkoMRHNsCSfIpo5je2JyN7SPaNimbVLSrlPSrkdQKOUchsASCl3AzD3GngvOB/R8MI7dVgwo8SU8RbMKMGybYfZgoiIEnY+bFE+hZlPRJS4dM+oWIrgi1/zg8uec5s4l14RiepYs/c48nO9KC/xJzRWeYkf+blerK06wSstRJQw5hMRpbJ0z6hYiuCFQohMAJBSvtb+oBDiagAvWjWxZMloa8Px+Mq9mH/78B4fxPISP+bfPhyPr9wLAHDzzjgiShDziYhSWbpnVLc/RUq5RkrZ0sHjH0kpl7R/LYT4rdmTS4b2NhxBVce85ZW4Z0IRFs4qjXl9i8elYOGsUtwzoQjzllciqOqXjEtE1FPMJyJKZemeUWb+lEkmjpU0TqW1vUd9IISgquPRFbtx59gheGXeRGw91IiVu492uI91kc+LueMLMXmkH8u2HcbaqupLnnMqbEFERIlhPhFRKkv3jBJSmtPFQAixW0o53pTBulFWViYrKytNGUvXDfzXu3X42brqSx53KAJTRw3GzLFDUNDfi6huIBw14HEpcDkUHD8bQkXVCbxVcwq6cenf8MczS/GNSVfBwRMNESWA+UREqSwdMkoIsUtKWdbhc3YvggHg5Lkwyp/ZjHC084XYTkXA7VSgagY0o/O/mcelYMv3piC/n8e0+RGRfTGfiCiVpXpGdVUEm7nyOG0vK/iy3Fg8Z3SXr9EMiRZV7/LgAcDiOaPhy0r7phlElCKYT0SUytI5o2IugoUQY7p5ya8TnEuvcTsVTC3Nw/TSvITGmV6ah2mlebzzmohMw3wiolSWzhkVz0/6dyHEDiHEI0KIfpc/KaX8g3nTSj5flhtP3T2mxwdxemkenrp7DAbwKgsRmYz5RESpLF0zKq41wUKIEQAeAnAPgB0A/ktKucGiuXXK7DXBFwsEVWyqbsDC1fu7XN/SzuNSsHjOaEwrzeMJhogsxXwiolSWihll6o1xQggHgK8A+A2AJrSuBf6hlHJVohONlZVFMAComoFAUEVF1XEs317XaXuPB28pxswxBfBlufkRIxElBfOJiFJZqmWUKUWwEGIsgG8AmAlgA4BlUsrdQogCANullJ8za8LdsboIbqfrBgItKjRDojmsIaIZyHAqyPY44VQEfFkZbDNERL2C+UREqSxVMqqrIjiezTJ+C+A/0XrV90JZL6U8LoT4cYJzTEkOhwJ/TlubjitWQRMR9R7mExGlsnTIqHiK4JkAQlJKHQCEEAoAj5SyRUr5kiWzIyIiIiKyQDyLMDYC8F70dWbbY0REREREaSWeItgjpWxu/6LtvzPNnxIRERERkbXiKYKDQogL2yILISYAuPKWPyIiIiKiFBfPmuDvAPizEOI4Wtui5QP4e0tmRURERERkoZiLYCnlTiHEKAAlbQ/VSimj1kyLiIiIiMg68VwJBoAbABS3fd94IQSklC+aPisiIiIiIgvFXAQLIV4CcDWAPQD0toclABbBRERERJRW4rkSXAbgWhnvPstERERERCkmnu4Q+9F6MxwRERERUVqL50rwIAAHhRA7AETaH5RSzjZ9VkREREREFoqnCP6JVZMgIiIiIkqmeFqkbRVCfA7ACCnlRiFEJgCHdVMjIiIiIrJGzGuChRDzAKwE8Pu2h4YCeM2KSRERERERWSme5RCPArgRwP8AgJTyAyHEYEtmlSJ03UCgRYVmSJwPa4hEdWS4HMjxOOFUBHyZbjgc8dxbSERERESpIJ4iOCKlVIUQAAAhhBOtfYL7HFUzEAiqqKg6juXb61AfCF3xmiKfFw/cXIxZYwvgy3LD7WQxTETJwzfpRESJiacI3iqE+CEArxBiOoBHAKy1Zlq9JxBUsam6AQtX70c4anT6uvpACD9bV41n3qzF4jmjMbU0D74sdxJnSkR2xDfpRETmELHufSGEUAA8DOCLAASA9VLKpRbOrVNlZWWysrLS9HFPN0fwxKv7sKG6Ie7vnV6ah6fuHoOB2Rmmz4uICIj9TXo7j0vhm3Qi6hXRqI7GYASGBM6HNYSiOrxtn1YpAvBnZcDlsr6/ghBil5SyrMPn4iiCvy2l/HV3jyWDFUVwIKji+yurelQAt5temoclc8diAE82RGQyvkknonTQEtFwJhTF6j3H8PKOI51+WnXvjcMw5/qhGOB1ITMjnoUJ8emqCI7nM7IHOnjswR7NKMWomoFN1Q0JFcAAsKG6ARurG6Bq3V+hISKKVSCo9rgABlqz6YlX9+FMUDV5ZkREnznVFMZre45h6i+3YMlfazssgIHWJaVL/lqLqb/cgtf2HMOppnCSZ9qq2yJYCHGvEGItgKuEEGsu+rcZQMD6KVovEFSxcPV+U8ZauHo/AjzREJFJ+CadiNLBqaYwvr+qCj/8S2zLtQAgHDXww7/sx/dXVfVKIRzLleB3AfwSQE3b/7b/+2cAM6ybWnLouoGKquMxH7DuhKOt4+k6TzRElDi+SSeiVNdeAG+uaezR92+uaeyVQrjbIlhK+YmUcouU8mYp5daL/u2WUmrJmKSVAi0qlm+vM3XM5dvrEGjhiYaIEqPrBtbyTToRpbCWiIaN1Q09LoDbba5pxMbqBrSoySst49kx7i4hxAdCiHNCiCYhxHkhRJOVk0sGzZCdrlnpqfpACJrRJ1soE1ESBVpUvLi9ztQx+SadiMx0JhTFkxUHTRnryYqDONMSNWWsWMRzY9wSALOllP2klLlSyhwpZa5VE0uW82Fr3nE0WzQuEdmHplv0Jl3nm3QiSlw0qmP1nmOmflq1Zs8xRKO6KeN1J54iuEFKWR3vDxBCfEkIUSuE+FAI8UQnr/mqEOKgEOKAEGJFvD8jEWGL/tBh3nxCRAk6F7bmikiTReMSkb00BiN4eccRU8dcseMIGoMRU8fsTDyN2SqFEH8E8BqAC7OTUq7q7BuEEA4AzwGYDuAogJ1CiDVSyoMXvWYEgB8AmCSlPCOEGBzn75CQWHdScioCbqcCVTNiWurgcohEp0ZENhfr1ZV488msqzZEZG+GREyfVsWTUfWBEJK1ojSeIjgXQAtad4xrJwF0WgQDuBHAh1LKjwFACPEKgDkALl48Mg/Ac1LKMwAgpTwVx5wSlt1Jg2aHIjCtdDDuGDMEQ/t7EdEMhKM6PC4HMpwKjp0NYV3VCWyqOQW9g6PV2bhERLHK6ORNeqL5xG2UicgMnS0pTTSjrFqqermYKzUp5Td6MP5QAPUXfX0UwE2XvWYkAAgh3gHgAPATKeVfLx9ICDEfwHwAGDZsWA+m0jHdkCjyeS95JzN7XAEemlSMLYca8cybHTd7LvJ5cff4QjxSfjVeeKcOa/Yev+S5jg4qEVE8Mt1XbimaaD4BQFYH4xIRxSvUwZJSMzLKqqWql4unO8RIIcQmIcT+tq/HCiF+bMIcnABGACgHcC+ApUKI/pe/SEr5vJSyTEpZ5vf7TfixrTRd4u7xhQBaTwzP3Tce44r64WtL38O/bfygy91O/m3jB/ja0vcwrqgfnrtv/IUTy9zxhbzxhIhMUeTzAjAvn4p8XjCdiMgMXtdnb6jNyigA8LiS80Y9ns/ElqJ17W4UAKSUVQC+1s33HANQdNHXhW2PXewogDVSyqiU8jCAQ2gtipMiqhsoH+nHwCwXlj5Qhj/vqsfiiuq4djtZXFGNP++qx9IHyjAwy4XJI/2Isg8nESUoy+3A3eMLkeV2mJJPWW4H5o4vRJaby7WIKHE5ntYsMTOjLh7XavH8lEwp5Q4hLrnhq7tFGzsBjBBCXIXW4vdrAO677DWvofUK8H8JIQahdXnEx3HMKyFZGU78+5aP8OLDN+Hp9bXYUtuzZs/t3/fiwzfhd1s+wuNfGmXmNInIhlTdwNRRg1GSl4Pn3/444Xx65p5xKBzghaon56NGIurbBFo/XXriS6WmZNSSuePw1F+rkazWAvFcCf5UCHE1Wm+GgxBiLoATXX1D245y/wRgPYBqAH+SUh4QQjwphJjd9rL1AE4LIQ4C2AxggZTydJy/R0IGZLmwt/5cjw9euy21jaiqP4cB2W6TZkZEduZ1OxDRDASCqin5FAiqiGhGh2uNiYjileN14IdfLsXJppApGXWyKYQf3lGKXK/LpBl2TUgZ2+owIcRwAM8DuAXAGQCHAXxdSlln2ew6UVZWJisrK00Z68jpIFRdYtZv/2ZK2yCPS0HFt26D2ykwzJdlwgyJyK4+OR2EIgSmP7vVtHza8N3JMKTE5wYyn4goMUfPtEBAYOqvtpiWUZseK4eEROGATBNmCAghdkkpyzp6LuYrwVLKj6WU0wD4AYySUt7aGwWw2aK6xKbqBlN3O3mrpgGaxltPiCgxGU7F/N2Y9h7rtPUaEVE8nA6B1XvNzyhnkvZaiKc7xLeFEO29gp8VQuwWQnyxu+9LdU6HwH//zyemjvnSe5/Awc0yiChBYc3AHyvru39hHF7ZWc8dLYnIFGHVsGTHuGRt6BPP5YCHpJRNaN0sYyCA+wE8ZcmsksihiJh2O4lHfSAEh8IimIgSIxDbbkzxqA+EknbTCRH1bUKkd0bFUwS3z+kOAC9KKQ9c9Fjaao5YsytJ0KJxicg+WlRrujhYNS4R2UtLJL0zKp4ieJcQ4k20FsHrhRA5ANL+MzXVoo8FrRqXiOwjwnwiohSW7hkVT5/ghwFcD+BjKWWLEGIggJ5spZxS3BbdIOLijSdElCCPy5ocybBoXCKyl3TPqG6LYCHEKCllDVoLYAAYftmGGWktO8OaXUmsGpeI7CPXY02vTKvGJSJ76WdRP99+ScqoWCq1xwDMB/DLDp6TAL5g6oySTDckinxeUxd2F/m80A22SCOixFmRT0REZnA6hCUZlTIt0qSU89v+d0oH/9K6AAYAw5D4+k2fM3XM+yd+DqyBiShRTgcwd3yhqWPeM6EQTnavISIT+DLduH9isalj/sPNxfBlZZg6Zmfi6RN8T9vNcBBC/FgIsUoI8XnrppYcLoeCqaV5pq1r8bgUfGFUHk8yRJSwcFRi8ki/qfl0+wg/+wQTkSkMQ+ILowabW0OVDIahp16f4IVSyvNCiFsBTAOwDMDvrJlWEgngpffqsGBGiSnDLZhRghffq0MfWjZNRL2kORzFC++Ym0/Lth1mC0ciMkVjMGJ6DbX8vTo0BiOmjNedeIrg9qZtMwE8L6VcB8Bt/pSSb/m7nyA/14vyEn9C45SX+JGf68WL75q7Ax0R2VNEM7Bm73FT82lt1QlENPYJJqLEGdKaGipZS0rjKYKPCSF+D+DvAbwuhMiI8/tTUntD5sdX7sX824f3+CCWl/gx//bheHzl3kvGJSLqKa/LAcD8fPI4HabNkYjs63y49VMlszOqfVyrxVPEfhXAegAzpJRnAfgALLBkVkkUibYWq0FVx7zllbhnQhEWziqNeX2Lx6Vg4axS3DOhCPOWVyLYVvyyGT0RJSrb09rAx+x8ah+XiCgRIYtqqHA0ORcSY07Ctg0yVgPIE0IMa3u4xpppJU+G67MrIkFVx6MrduPOsUPwyryJ2HqoESt3H+2w9UeRz4u54wsxeaQfy7Ydxtqq6kuet2oTDiKyD7dDudB+yKx8KvJ5mU9EZAqvRTWUx5WcT6tiLoKFEN8C8C8AGvDZdskSwFgL5pU0OR1cEVlbdQKv7z+JqaMG43tfLEFBfy+iuoFw1IDHpcDlUHD8bAgVVSfwm7c+7LAncEfjEhHFY2BWa/uhn7/+2Qki0Xz6h5uLMTBJ7YeIqG9L9xoqnp/ybQAlUsrTVk2mNziVjhs964bEmwcb8ObBhguvczsVqJoBrZsV20U+L1ukEVHCHA4Fs8cNwa821CIc/WyJVU/zyeNScOfYIXAwn4jIBIroeEOfRGuoZEVUPJ+J1QM4Z9VEeosv040Hbi7u9nWaIdGi6t0ePAB4IImNnomob/NlZeDJOdd1+ZpY8+nJOaOZTURkGn9WBu69cVi3r4unhrrvxmHw53jMmF634imCPwawRQjxAyHEY+3/rJpYsjgcCmaNLTC10fOssQW80kJEpnA7FUwrzce00sEJjTOtdDCml+ZxPTARmcblcmDO9UNNraFmXz8ULkdyciqen3IEwAa09gbOuehf2vNlubF4zmhTxlo8ZzR8WX2ifTIRpQhflhu/uHtsjwvhaaWD8Yu7x2IAs4mITDbA68KiWdeaMtaiWddiQKbLlLFiEU93iJ8CgBAiu+3rZqsmlWxuZ+vWydNL87ChuqHH40wvzcM0XmkhIgsMzM7AkrnjsLG6AYtW779kjXBnPC4Fi+eMxrTSPBbARGSJzAwnprXVT5trGns8zpRRfkwrzUOmO3mNBYSUsW3LIYQYDeAltPYHBoBPAfyDlPKARXPrVFlZmaysrDR93NPNETzx6r4eFcLTS/Pw1N1jMDCb6+2IyDqqZiAQVFFRdRzLt9d12n7ogVuKMWtMAXxZbr4xJyLLnWoK4/urqnpUCE8Z5ccv7hqLwbnmrwUWQuySUpZ1+FwcRfC7AH4kpdzc9nU5gJ9LKW8xa6KxsqoIBoBAUMWm6gYs5JUWIkphum4g0KJCMySawxoimoEMp4JsjxNORcCXlcF7E4goqU41hbGxugFPVhyMuYZaNOtaTCvNs6QABswrgvdKKcd191gyWFkEA7FfaXnwlmLM5JUWIiIiIgBAi6rhTEsUa/Ycw4odRzqtof7XjcMw+/qh6J/psnQJhFlF8F8A7EbrkggA+DqACVLKvzNllnGwughuxystRERERPGLRnU0BiMwJHA+rCEc1eFxOZDjcUIRgD/Hk5QuEF0VwfGU3g8B+CmAVWjdKe5vbY/1WQ6H8lmvun69OxciIiKidOFyOVDQP7O3p9GleLpDnAHwfy2cCxERERFRUsR8HVoIsUEI0f+irwcIIdZbMy0iIiIiIuvEsxhjkJTybPsXbVeGE9vCiIiIiIioF8RTBBtCiAsbRAshPofWtcFERERERGklnhvjfgRgmxBiKwAB4DYA8y2ZFRERERGRheK5Me6vQojxACa2PfQdKeWn7c8LIa7rjd3jiIiIiIjiFVd34rait6KTp18CMD7hGRERERERWczMLsXcNYKIiIiI0oKZRTBvAXWAtwAAIABJREFUkiMiIiKitGD9fnVERERERCnGzCJYNXEsIiIiIiLLxHVjnBBiLIDii79PSrmq7X8ndvJtREREREQpJeYiWAjxAoCxAA4AMNoelgBWWTAvIiIiIiLLxHMleKKU8lrLZkJERERElCTxrAneLoRgEUxEREREaS+eK8EvorUQPgkggta+wFJKOdaSmRERERERWSSeIngZgPsB7MNna4KJiIiIiNJOPEVwo5RyjWUzSUG6biDQokIzJM6HNei6DofDgRyPE05FwJfphsPBVstERERE6SaeIvh9IcQKAGvRuhwCwGct0voSVTMQCKo4fqYFmR4nvC4HopqBUNSA1yWgagbORXUcOd2CoQMy4ctyw+1kMUxEyRNRNTQGW9uznw9pCEV1eF0O5HhbY92f5UaGO64umEREpkmHjIrnp3vRWvx+8aLH+lyLtEBQxfGzLejndeO9wwG8vPMI6gOhK15X5PPi3huG4c5cDw41NKGgf2sxTERkpfOhKJrCGlbvOdZtPs25fihyPU7keF29MFMisqN0yighpeyVH5yIsrIyWVlZafq4p5sjOB/W8M6Hn2LxuoMIR7tf+uxxKVg481pMumYQcjxODMzOMH1eREQA0HAujI3VDXHn07TSPOT18yRhhkRkZ6mYUUKIXVLKsg6fi7UIFkJ4ADwM4DoAF2YqpXzIjEnGw4oiOBBUEVJ1/Hj1PmyuaYz7+6eM8uNnc8Yg0+3AAF4RJiKTNTSF8cSqqh7n01N3jUVeLgthIrJGqmZUV0VwPAtZXwKQD2AGgK0ACgGcT3x6vU/VDLSoWo8LYADYXNOIH6/eh6CqQdXYPIOIzNNwrucnF6A1n55YVYWGprDJMyMiSt+MiqcIvkZKuRBAUEq5HMBMADdZM63kOh9SsbW2sccHr93mmkZsrW1EU0g1aWZEZHfnQ1FsrG4wJZ82HmxAczhq0syIiNI7o+IpgttndVYIMRpAPwCDzZ9Scum6gZBmYPG6g6aMt3jdQYQ1A7rOq8FElLimsGZqPp0LaaaMRUQEpHdGxVMEPy+EGABgIYA1AA4CWGLJrJLovBrFmj3HY1rAHYtw1MDavcdxXuXVFiJKTERtvcPazHxas/cYIioLYSJKXLpnVMxFsJTyP6WUZ6SUW6WUw6WUg6WUv7NycsnQHNbx8s4jpo65YscRNId1U8ckIvtpDKqW5FN7704iokSke0bFXAQLIfKEEMuEEG+0fX2tEOJh66aWHFKiwx52iagPhJCGneeIKMUwn4golaV7RsWzHOIPANYDKGj7+hCA75g9oWRrDltzyb05wo8biSgxzCciSmXpnlHxFMGDpJR/AmAAgJRSA5D2n/mHotb8CmGLxiUi+2A+EVEqS/eMiqcIDgohBqJ1q2QIISYCOGfJrJLI63JYMq7Hac24RGQfzCciSmXpnlHOOF77GFq7QgwXQrwDwA/g/2/v7qPjqu87j3++8zyWZMGAENjINWkBy7GNS4QJSSm4thuIqd0FehLoAyRZsqfNbrPZbQrtrukWN1sI2TZnu0m3oaGQ3YX0lNC1Y7cFTE1oeCjI1BbEMikbXBtjZGHhBz2M5um3f2hMjNHDWHPv6F7d9+sczkEzV1/9mN/hM9+587u/e6Mvo2qg5szpvAQzXxdAdJBPAIIs7Bl1OmeCd0v6a0kvSuqTdJ/G1gWHXkcuG+h6AKLJyfmST05cGQfAG2HuoU6nCf6WpEWS/qukP5F0kcZupRxqzem4brpsgac1b16xQC1pzrQAqE8mEfMln1gOAcALYe+hTqcJXuKc+9fOue3Vf26T9EG/BtYoI8WyfuGSecokT+elmFgmGdN1y+ZpuMjV1wDqUyg7X/KpwB0tAXigGPKMOp1Rv1S9GE6SZGaXS+r2fkiNlUrE9OaREW1Yu9iTehvWLtbBI8NKcaYFgAee/X9ve5pPz7zW70ktAEjETX3H8p5mVN/RvJJx86TeVKZsgs3sZTPrkfQhSc+a2V4ze13Sc5K6/B6g3waGikonYrr8gpxWLmqrq9bKRW26/AM5pRJxvcMdmQDUy0kHj+a1wqN8WnFBTn3HRsWSYABeGC1VlIiZpz1UIm7Kl4JzJvg6Sb8g6RpJF0i6StLV1X+/1reRNchosaz7n9mrF/Ye1l3rlkx7ElcuatNd65bohdcP65vff12jDZpAALPXO8MFXX1Rmz79wAue5NOnH3hBV13UpiMjRY9HCiCKjudLvvRQft2E41RTNsHOuX+Z7J9GDNJP6WRcm3e9qdZsWl95bI9+99pOfekXl9S8viWTjOlLv7hEv3ttp77y2B61ZtP6bs9BpRLerI8BEF3pZFz3P7NXt370Al3/9Wfqyqfrv/6Mbv3oBfrm918nnwB4YrRY9qWHatSJxMgnYUt1L7rffmSXPrFigb70N73KF8t64gtX6fZrLp5wq46OXFa3X3OxnvjCVcoXy/rS3/TqEysW6Lcf2fWeugAwXS2ZhDbvelPnzs3qg/NbteaPn55WPq3546f1wfmtOnduVt/tOUg+AfBEunqzDK97qEZ9UI98EiZipo5cVvsHRnTbg9368o2X6K1jI1r7J/+gz175Af3Zr35Ic1IJDY2WlC9WlEnG1JROaLhQ0t/3HtLaP/kHfX7VhfqlD3Xotge7NVQoqyOXVSLWmEXdAGavE/n024/s0n23jF2CsXFrr+557FX95s/91JT5tOqPvqdCqaKrL27TZ3/2A7rtwW7yCYBnTnygHiqUPeuhTq7rN3MufFdIdHV1ue5ubzamKJcr+otn9+oPtva++9gvLDtPn/mZC/S9H/brkZfe0P6BEWUSMTVnEhrMl5QvVdSRy+rGS8/XVRe16Zvff13f7Tn47u//57Wd+tRHL1CcNxoAdTg5n5pS8XffYO597FXliz/+uvDUfHr38WRMX/zYxTp37lgjPVQok08APNN/PK/r//RZ7R8YefexenuojlxWj/76R9TWkvFkjGa2wzk37kYOkW+CJemto3ld/ZXt73lTicdMqxado7XLztO8M7IqlivvfopJxse2VdvSc1B/v+eQypUfv4aZZExP/dZKndvqzeQBiLZT82m8N5hTTfQGQz4B8NJ4JxKl6fdQkvcnEmmCp1AoVbRp5wF98ZGeCY9JxEypREyFUkWlysSv2b03LtP65fO58ASAJ8bLp+m+wZBPALw23onEU9XaQ/nxQX2yJjjya4KlsQXYqzrbtaazXU/09o17TKniVKquVZnIms52re5s5w0GgGfGy6dyxenx3X16fPfYz7W8wZBPAPyQa0pp4/olk55IrKWHkqSN65co15TycniTIg2rck0p3X3DUq3pbJ/W76/pbNfdNyzVmQ2cPADRMFU+lSpOw4XypA0w+QTADyd/UK/HTHxQZznEKQ4dy2tbb5/u2rJ70lP7J2SSMd153WKt7mzXOXNZZwfAP+QTgKA6PDiqO77z8oTfqE/mxAf1s5rTno+LNcE1OjGBmWTstC88yRcrvk0gAJBPAIJuYKigJ3v7tGHTKzV/UN+4folWd7b79k0VTXANBoYKuv2Rnnc/wUznwpM1ne368o3L+MoRgKfIJwBhUShVNDBU0JaeN/Xgc3sn/KB+60cWau3Seco1pXxdAkETPAV2hwAQVOQTgDAqlysaGC6oVHEazJc0WqooXd0vOBEz5ZrSDdmvnN0hpjAwVNCGTa9MekytVzZu2PSKrrywjX04AXiCfAIQRvF47Mc3vGid2bFMJPKnA8rlirb0vFnT2pVa5Itj9cplb+oBiC7yCQD8E/kmeGC4oAef2+tpzQef26uB4YKnNQFED/kEAP6JfBNcqrhxF23XY//AyKTr8gCgFuQTAPgn8k3w8XzJl7qDPtUFEB3kEwD4J/JN8Ghx6otJplW3xJo7APUhnwDAP5FvgtPJuC912YIIQL3IJwDwT+STsCXjzy5xftUFEB3kEwD4J/JNcCJm6shlPa3Zkcsq0YANoAHMbuQTAPgn8k1wbk5Kt1yx0NOat1yxULmmtKc1AUQP+QQA/ol8ExyPx3TdsnnKJL15KTLJsXqNuBUggNmNfAIA/0S+CZakXFNKG9cv8aTWxvVLlGtKeVILAMgnAPCH702wmV1jZq+a2Wtmdsckx91gZs7Muvwe06lSiZhWdbZrTWd7XXXWdLZrdWc7V14D8Az5BAD+8DUNzSwu6WuSrpW0WNJNZrZ4nONaJH1e0j/6OZ7J5JpSuvuGpdN+o1nT2a67b1iqMznLAsBj5BMAeM/vUwIrJL3mnPuRc64g6duS1o9z3EZJ90jK+zyeSZ3VnNY9Ny7TvTcuq3kNXiYZ0703LtOXb1yms5q52ASAP8gnAPCW35tFzpe0/6Sf35B0+ckHmNmlkjqcc1vN7IsTFTKzz0r6rCQtWLDAh6GOyTWltH75fF15YZu29LypB5/bq/0DI+87riOX1a0fWai1S+cp15TiK0YAviOfAMA7M7pjupnFJP2RpFunOtY59w1J35Ckrq4u5+e4UomYzm3N6FMfWaj1y+epVHEazJc0WqoonYipOZNQImbKNaW5yhpAQ5FPAOANv5vgA5I6Tvr5/OpjJ7RIWiLpKTOTpHMlbTazdc65bp/HNqV4PKa2lszYD60zOxYAOBn5BAD18bsJflHShWZ2gcaa309KuvnEk865o5LOPvGzmT0l6beC0ABLUrlc0cBwQaWK0/F8SaPFstLJuFpOnGmZk1I8zteMABqPfAIQZGHIKF+bYOdcycz+raTHJMUl3e+c+4GZ3SWp2zm32c+/P12FUkUDQ4Up19zdcsVCXbeMNXcAGod8AhBkYcooc87X5bW+6Orqct3d/pwsHhgq6MnePm3Y9IryxcqUx2eSMW1cv0SrOtvZhB6Ar8gnAEE2MFTQtt4+3XkaGXXX+iVa7WNGmdkO59y496CgCT7J4cFR3fGdl/VEb99p/+6JfTjZhgiAH8gnAEF2eHBUt3+nR9t6D532767uPEf33ODPVo6TNcF8R1Y1MFSY9huMJD3R26c7vvOy3hkqeDwyAFFHPgEIsoGhwrQbYEna1ntIt3+np+EZRROssfUrT/b2TfsN5oQnevu0rbdPhdLUXwEAQC3IJwBBVihVtK33rWk3wCds6z2kJxqcUTTBGvsEs2HTK57U2rDpFQ1wtgWAR8gnAEE2MDSqOzf9wJNad256RQNDo57UqkXkm+ByuaItPW/WtIC7FvniWL1ymbMtAOpDPgEIsnK5os27DnqaUd/tOdiwjIp8EzwwXNCDz+31tOaDz+3VwDBnWwDUh3wCEGSHhwr6X8/v9bTmt57bq8MN+sYq8k1wqeLG3cOuHvsHRlSqhG/XDQDBQj4BCLJCueJLRhU4E9wYx/MlX+oO+lQXQHSQTwCCzK8sGRxtTEZFvgkeLZb9qcsV2ADqRD4BCLIRnzIq71PdU0W+CU4n4zUdl4iZ5qTiSsSspuO5TSmAepFPAIIsXWOWnHZGxRuTUYmG/JUAa0mP/xLEY6bVnefo40vP0/wzshotVZQvlpVJxpVOxHTgyIi29hzUk3sOqTzO+rqJ6gJArcgnAEHWkkmO+3jdGTVBXa9FPgmdnDpy2fcs7F53yTx9+qML9dQP+/WVx18dd9F3Ry6rGy49X79x9U/q/mf2avOuN9/znBMXngCoD/kEIMjM5EtGWW0njOsW+e/EUomYbrj0fElSUyqur918qS7paNUn73teX932zxNe9bh/YERf3fbP+uR9z+uSjlZ97eZL1ZQa++ryxkvPVypR29eYADAR8glAkKUS5k9GNWg5ROSb4IGhoq6+qE1nNSV13y1d+qsd+7VxS2/NGz/nixVt3NKrv9qxX/fd0qWzmpK66qK2ht//GsDsQz4BCLIjwyVfMurISNHnkY+JfBM8Wizr/mf26lufuVzfePpHeurV/mnVeerVfn3j6R/pW5+5XN/8/utcfQ2gbuQTgCDzK6MKDcqoyDfBJ66+3rX/6LQn74SnXu1Xz/6jkrj6GkD9yCcAQRb2jDLnwneBRFdXl+vu7vak1sGjI+o7mtcn73vek3tfZ5Ixffu2D6u9NaPzWrMejBBAVJFPAIIsDBllZjucc13jPRf50wHpREzf+2G/J5Mnja1vefqf+2veOw8AJkI+AQiysGdU5JOwVHZ65KU3PK35VzveUGmcfe8A4HSQTwCCLOwZFfkmuOzchFt4TNf+gZFxN38GgNNBPgEIsrBnVOSb4OP5ki91B32qCyA6yCcAQRb2jIp8EzxaLPtTly2IANSJfAIQZGHPqMg3wSe29/AaWxABqBf5BCDIwp5RkU/ClkwiVHUBRAf5BCDIwp5RkW+CEzFTR87b/TI7clklYuZpTQDRQz4BCLKwZ1Tkm+DcnJRuuWKhpzVvuWKhck1pT2sCiB7yCUCQhT2jIt8Ex+MxXbdsnjJJb16KTHKsXpwzLQDqRD4BCLKwZ1Tkm2BJyjWltHH9Ek9qbVy/RLmmlCe1AIB8AhBkYc4ommCNXYV41UVtWrmora46Kxe16aqL2rjyGoBnyCcAQRbmjCINJRVKFT3z2tu67coP6OqLpzeJV1/cptuu/ICeee1tFdiDE4BHyCcAQRbmjGKfHEkDQwX9zl+/rLiZvnzjJbrywrN172OvKl+ceiIyyZi++LGLde7crG57sFtl53TFT56tc1szDRg5gNmOfAIQZGHOqMifCS6XK9rS86byxYqGCmV97qGXtHPfEX37tg/rC6svnHDrj45cVl9YfaG+fduHtXPfEX3uoZc0VCgrXxyrVy5ztgVAfcgnAEEW9owy51xD/pCXurq6XHd3tye1+o/ndf2fPqv9AyPveTweM61adI7WLjtP887IqliuKF+sKJOMKRmP6c0jI9rSc1B/v+eQypX3voYduawe/fWPqK2Fsy0Apo98AhBkYcgoM9vhnOsa77nIL4coVdz7Jk+SyhWnx3f36fHdfZLGNoROJWIqlCoqVSb/4LB/YGTKYwBgKuQTgCALe0ZFfjnE8XyppuNKFafhQrnmiRmssS4ATIR8AhBkYc+oyDfBo8WyP3W5AhtAncgnAEEW9oyKfBOcTsZ9qctenADqRT4BCLKwZ1Tkk7Al48+yaL/qAogO8glAkIU9oyLfBCdiNuEWHtPVkcsq0aD7XgOYvcgnAEEW9oyKfBOcm5PSLVcs9LTmLVcsVK4p7WlNANFDPgEIsrBnVOSb4Hg8puuWzVMm6c1LkUmO1YtzpgVAncgnAEEW9oyKfBMsSbmmlDauX+JJrY3rlyjXlPKkFgCQTwCCLMwZRROssasQV3W2a01ne1111nS2a3VnO1deA/AM+QQgyMKcUaRhVa4ppbtvWDrtSVzT2a67b1iqMznLAsBj5BOAIAtrRplz4bt9ZldXl+vu7val9sBQQU/29mnDpleUL069WXMmGdPG9Uu0urOdNxgAviKfAARZEDPKzHY457rGfY4m+P0KpYoGhgra0vOmHnxu77j3xe7IZXXrRxZq7dJ5yjWl+IoRQEOQTwCCLGgZRRM8TeVyRQPDBZUqToP5kkZLFaUTMTVnEkrETLmmNFdZA5gR5BOAIAtKRk3WBHPboEnE4zG1tWTGfmid2bEAwMnIJwBBFoaM4jsyAAAARA5ngieRHy3q7eGiJOn4SEkjxbKyybhasmMv29lzksqkkzM5RAARNVooqX+oIGn8fGprSimdIuIBzIwwZBQJOY6jwwUNjpa1aecBPfzivgkXdd902QKtXz5fzem4Wudw5TUA/x0fKepYvlRzPs3NJNSS5cM6gMYIU0ZxYdwp3jqa15O9fdq4dXfN23tsWLtYqzrbdW5rxpcxAYAk9R3Na9s08ml1Z7vayScAPgtiRrE7RI36juV1x6M92r6n/7R/d+WiNt19/TK1z+WNBoD3yCcAQRbUjJqsCebCuKq3jk5/8iRp+55+3fFoj/qO5T0eGYCo6yOfAARYWDOKJlhja4Cf7O2b9uSdsH1Pv7bt7tOxkYJHIwMQdcdHitrmYT4N5osejQwAwp1RNMGSBkfL2rh1tye1Nm7dreP5sie1AOBYvuRpPh0dKXlSCwCkcGdU5Jvg/GhRm3YeqGkBd031ihVt3nVA+VHOtgCoz2ih5Es+jRZohAHUL+wZFfkm+O3hoh5+cZ+nNR96Yd+7+wsDwHT1DxV8yacTe3cCQD3CnlGRb4Kd07h72NVj/8CIQrjpBoCAIZ8ABFnYMyryTfBg3p9T7oOjfN0IoD7kE4AgC3tGRb4JHin6cxFb3qe6AKKDfAIQZGHPqMg3wdlk3Je6mYQ/dQFEB/kEIMjCnlGRb4KbM4lQ1QUQHeQTgCALe0ZFvgk2kzpyWU9rduSyMvO0JIAIIp8ABFnYMyryTfDZc5K66bIFnta8ecUCtTWnPa0JIHramlK+5NM5LeQTgPqFPaMi3wRn0kmtXz5fmaQ3L0UmGdO6S+Yr7dM6GQDRkU4lfMmnFGuCAXgg7BkV+SZYkprTcW1Yu9iTWhvWLlZLhjcYAN6Ym0l4mk+tWdYDA/BOmDOKJlhS65yUVnW2a+WitrrqrFzUptWL2zU3m/JoZACiriWb1GoP86k5k/RoZAAQ7oyiCa46tzWju69fNu1JXLmoTXdfv0ztczMejwxA1LWTTwACLKwZZS6E98/s6upy3d3dvtR+62heT/b2aePW3coXK1Men0nGtGHtYq1e3M4bDABf9R3Naxv5BCCggphRZrbDOdc17nM0we93bKSg4/myNu86oIde2DfufbE7clndvGKB1i2fr5Z0nCUQABpiMF/U0ZFSzfnUmkmwBAJAwwQto2iCpyk/WtTbw0U5N3Yf63yxrEwyruZ0QmZSW3OaXSAAzIjRQkn9Q4UJ8+mcljS7QACYMUHJqMmaYC4TnkQmndT5ac6gAAiedCqh81NEOIBgCkNGcWEcAAAAIocmGAAAAJET7PPUM+zEmmBJOj5S0kixrGwyrpbqRs5nz0kqw3IJADNgZLSow5Pk01lzksqSTwBmSBgyiiZ4HEeHCxocLWvTzgN6+MWJr2y86bIFWr98vprTcbXOYXcIAP47MlzQ0GnkU1M6rjPIJwANEqaMYneIU0x3n+BVne06t5V9OAH4h3wCEGRBzCi2SKtR37G87ni0R9v39J/273JHJgB+Ip8ABFlQM2qyJpgL46reOjr9yZOk7Xv6dcejPeo7lvd4ZACijnwCEGRhzSiaYI2tAX6yt2/ak3fC9j392ra7T8dGCh6NDEDUHfE4n44Ok08AvBPmjKIJljQ4WtbGrbs9qbVx624dz5c9qQUAQx7n0+Ao+QTAO2HOqMg3wfnRojbtPFDTAu6a6hUr2rzrgPKjRU/qAYiuEZ/yaYR8AuCBsGdU5Jvgt4eLevjFfZ7WfOiFfe/uLwwA03XYp3w6TD4B8EDYMyryTbBzGncPu3rsHxhRCDfdABAw5BOAIAt7RkW+CR7Ml/ypO+pPXQDRQT4BCLKwZ1Tkm+CRoj8LsPM+1QUQHeQTgCALe0ZFvgnOJuO+1M0k/KkLIDrIJwBBFvaM8r0JNrNrzOxVM3vNzO4Y5/n/YGa7zazHzJ40s5/we0wna84kQlUXQHSQTwCCLOwZ5WsTbGZxSV+TdK2kxZJuMrPFpxz2T5K6nHPLJD0i6ct+jun9Y5Q6cllPa3bksjLztCSACCKfAARZ2DPK7zPBKyS95pz7kXOuIOnbktaffIBzbrtzbrj64/OSzvd5TO9x9pykbrpsgac1b16xQG3NaU9rAoies8gnAAEW9ozyuwmeL2n/ST+/UX1sIp+R9LfjPWFmnzWzbjPr7u+v79Z8J8ukk1q/fL4ySW9eikwypnWXzFfap3UyAKIjSz4BCLCwZ1RgLowzs1+R1CXp3vGed859wznX5Zzramtr8/RvN6fj2rD21FUa07Nh7WK1ZHiDAeCNJo/zqTlNPgHwTpgzyu8m+ICkjpN+Pr/62HuY2WpJ/0nSOufcqM9jep/WOSmt6mzXykX1NdcrF7Vp9eJ2zc2mPBoZgKg7w+N8ap1DPgHwTpgzyu8m+EVJF5rZBWaWkvRJSZtPPsDMflrSn2msAT7k83gmdG5rRndfv2zak7hyUZvuvn6Z2udmPB4ZgKgjnwAEWVgzypzP96Yzs49L+qqkuKT7nXNfMrO7JHU75zab2TZJSyUdrP7KPufcuslqdnV1ue7ubl/G+9bRvJ7s7dPGrbuVL1amPD6TjGnD2sVavbidNxgAviKfAARZEDPKzHY457rGfc7vJtgPfjbBknRspKDj+bI27zqgh17YN+59sTtyWd28YoHWLZ+vlnScJRAAGuLocEGDo7XnU3MqzhIIAA0TtIyiCZ6m/GhRbw8X5dzYfazzxbIyybia0wmZSW3Naa6yBjAjRkaLOkw+AQiooGTUZE0wtw2aRCad1Pnp5EwPAwDeJ0s+AQiwMGRUYLZIAwAAABqFM8GTKBbL6h8aVcVJx/MljRTLyibjaskkFDOprSmtJF83ApgB5BOAIAtDRtEEj2N4tKR3RoratPOAHp5kUfdNKxZo/fL5OjOb1Jw0LyUA/5FPAIIsTBnFhXGnOHQsr229fbprS+3be9x53WKt7mzXOWxBBMBH5BOAIAtiRrE7RI0OHcvr9kd7tH1P/2n/7spFbbrn+mW80QDwBfkEIMiCmlGTNcFcGFdVz+RJ0vY9/br90R4dOpb3eGQAoo58AhBkYc0ommCNrV/Z1ts37ck7Yfuefm3r7dNwoeTRyABEHfkEIMjCnFE0wZLeGSnqri27Pal115bdeme46EktACCfAARZmDMq8k1wsVjWpp0HalrAXYt8saLNOw+oWCx7Ug9AdJFPAIIs7BkV+Sa4f2hUD7+wz9OaD72wT/1Do57WBBA95BOAIAt7RkW+Ca44jbuHXT32D4yoEr5NNwAEDPkEIMjCnlGRb4KP5/1ZgO1XXQDRQT4BCLKwZ1Tkm+ARn9ad5FlzB6BO5BOAIAuK0te4AAAIGklEQVR7RkW+Cc76dN/qzAzfDxtA+JFPAIIs7BkV+Sa4JePP/ar9qgsgOsgnAEEW9oyKfBMcM6kjl/W0Zkcuq5h5WhJABJFPAIIs7BkV+Sa4rSmtm1Ys8LTmzSsWqK3F+/tfA4gW8glAkIU9oyLfBCeTca1fPl+ZpDcvRSYZ07rl85WMR/6lBVAn8glAkIU9o0hCSWdmk7rzusWe1LrzusU6c07Sk1oAQD4BCLIwZxRNsKQ56YRWd7Zr5aK2uuqsXNSm1Z3tmpPiohMA3iCfAARZmDOKJrjqnLkZ3XP9smlP4spFbbrn+mU6Zy5r7QB4i3wCEGRhzShzLnz3z+zq6nLd3d2+1D50LK9tvX26a8tu5YuVKY/PJGO687rFWt3ZzhsMAF+RTwCCLIgZZWY7nHNd4z5HE/x+w4WS3hkuavPOA3rohX3j3he7I5fVL69YoHXL5+uMOUm+YgTQEOQTgCALWkbRBE9TsVhW/9CoKm7sPtb5YlmZZFwtmYRiJrW1ZLjKGsCMIJ8ABFlQMmqyJpjTA5NIJuOad8acmR4GALwP+QQgyMKQUZwmAAAAQOTQBAMAACByaIIBAAAQOTTBAAAAiByaYAAAAEQOTTAAAAAihyYYAAAAkUMTDAAAgMgJ5R3jzKxf0r/MwJ8+W9LbM/B34S/mdfZibmcv5nZ2Yl5nr5ma259wzrWN90Qom+CZYmbdE916D+HFvM5ezO3sxdzOTszr7BXEuWU5BAAAACKHJhgAAACRQxN8er4x0wOAL5jX2Yu5nb2Y29mJeZ29Aje3rAkGAABA5HAmGAAAAJFDEwwAAIDIoQk+hZndb2aHzOyVCZ43M/vvZvaamfWY2aWNHiNOXw3z+svV+XzZzJ41s0saPUZMz1Rze9Jxl5lZycxubNTYUJ9a5tbMrjaznWb2AzP7XiPHh+mrIZNbzey7ZrarOrefavQYcfrMrMPMtpvZ7uq8fX6cYwLTR9EEv98Dkq6Z5PlrJV1Y/eezkv60AWNC/R7Q5PP6uqSrnHNLJW1UABfwY0IPaPK5lZnFJd0j6fFGDAieeUCTzK2ZnSHp65LWOec+KOmXGjQu1O8BTf7/7eck7XbOXSLpakn/zcxSDRgX6lOS9B+dc4slfVjS58xs8SnHBKaPogk+hXPuaUkDkxyyXtK33JjnJZ1hZuc1ZnSYrqnm1Tn3rHPuneqPz0s6vyEDQ91q+H9Wkv6dpO9IOuT/iOCVGub2ZkmPOuf2VY9nfkOihrl1klrMzCQ1V48tNWJsmD7n3EHn3EvVfz8uqVfS/FMOC0wfRRN8+uZL2n/Sz2/o/ROMcPuMpL+d6UHAG2Y2X9K/Et/azEYXSTrTzJ4ysx1m9mszPSB45n9I6pT0pqSXJX3eOVeZ2SHhdJjZQkk/LekfT3kqMH1UYib+KBBUZrZSY03wz8z0WOCZr0q63TlXGTuphFkkIelDklZJykp6zsyed879cGaHBQ98TNJOST8n6SclPWFm/+CcOzazw0ItzKxZY9++/fsgzxlN8Ok7IKnjpJ/Prz6GkDOzZZL+XNK1zrnDMz0eeKZL0rerDfDZkj5uZiXn3P+d2WHBA29IOuycG5I0ZGZPS7pEEk1w+H1K0t1u7GYGr5nZ65IWSXphZoeFqZhZUmMN8P9xzj06ziGB6aNYDnH6Nkv6terVjR+WdNQ5d3CmB4X6mNkCSY9K+lXOIs0uzrkLnHMLnXMLJT0i6TdogGeNTZJ+xswSZjZH0uUaW4OI8NunsTP8MrN2SRdL+tGMjghTqq7h/qakXufcH01wWGD6KM4En8LMHtbYlahnm9kbkn5PUlKSnHP/U9LfSPq4pNckDWvs0yoCroZ5vVPSWZK+Xj1jWHLOdc3MaHE6aphbhNRUc+uc6zWzv5PUI6ki6c+dc5NulYdgqOH/242SHjCzlyWZxpY0vT1Dw0XtPirpVyW9bGY7q4/9rqQFUvD6KG6bDAAAgMhhOQQAAAAihyYYAAAAkUMTDAAAgMihCQYAAEDk0AQDAAAgcmiCAWCGmdmgDzWXm9nHT/r5v5jZb3n9dwAgrGiCAWB2Wq6xvTgBAOOgCQaAADGzL5rZi2bWY2a/X31soZn1mtl9ZvYDM3vczLLV5y6rHrvTzO41s1fMLCXpLkmfqD7+iWr5xWb2lJn9yMx+s/r7TWa21cx2VX/3E+MODABmGZpgAAgIM/t5SRdKWqGxM7kfMrOfrT59oaSvOec+KOmIpBuqj/+FpH/jnFsuqSxJzrmCxu6C+JfOueXOub+sHrtI0seq9X/PzJKSrpH0pnPuEufcEkl/5/d/JwAEAU0wAATHz1f/+SdJL2msab2w+tzrzrkTtyHdIWmhmZ0hqcU591z18YemqL/VOTdavf3sIUntkl6WtMbM7jGzK51zRz387wGAwKIJBoDgMEl/WD17u9w591POuW9Wnxs96biypMQ06r+vhnPuh5Iu1Vgz/Admdud0Bg4AYUMTDADB8ZikT5tZsySZ2XwzO2eig51zRyQdN7PLqw998qSnj0tqmeoPmtk8ScPOuf8t6V6NNcQAMOtN50wCAMAHzrnHzaxT0nNmJkmDkn5F1bW+E/iMpPvMrCLpe5JOLGfYLukOM9sp6Q8n+f2lku6t/n5R0q/X918BAOFgzrmZHgMAYJrMrNk5N1j99zskneec+/wMDwsAAo8zwQAQbmvN7Hc0luf/IunWmR0OAIQDZ4IBAAAQOVwYBwAAgMihCQYAAEDk0AQDAAAgcmiCAQAAEDk0wQAAAIic/w9lqnrsqxFc+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zU1Z0//teZ+2QCgZEhITAYVEjCJeGH0aJYCAVKKwj9CrZK9yteFtvVbbd2i7W1cV3ZCwu2+nW/tl346opu0a7oCgQtItdWoRIoCZcQRIwEAklggJDJ3Of8/phMDJDLTObzmczk83o+HjxK5nJycPp4zftzzvmcI6SUICIiIiLSEl1fd4CIiIiIKNlYBBMRERGR5rAIJiIiIiLNYRFMRERERJrDIpiIiIiINMfQ1x3ojSFDhsi8vLy+7gYRERERpbB9+/adk1I6OnsuLYvgvLw8VFRU9HU3iIiIiCiFCSG+6Oo5LocgIiIiIs1hEUxEREREmsMimIiIiIg0h0UwEREREWkOi2AiIiIi0hwWwURERESkOSyCiYiIiEhzWAQTERERkeak5WEZyeL1BXCuNQAAuOwJwhMIwWrUY4A18p9tSIYRFrOxL7tIRBrFfCKiVObzB9Hk9gPoPKMcNhPMpr4tQ1kEd+JSqx8tvhDWHziNN/aeRJ3Lc81rnHYr7rtlJOZPHI5Msx5ZGaY+6CkRaQ3ziYhS2WVPAM3eYMwZNdBiwABr31ywCylln/ziRJSUlEi1jk0+e8mLrdUNWLbpCLyBcI+vtxh1KJszFjMKs5GTZVGlT0REAPOJiFJbwyUvPuxFRs0szEa2ShklhNgnpSzp9DkWwV9qaPbiyXeqsP1oU9zvnV7gwPK7i5A9kF80RKQ85hMRpbJUzajuimDeGNfm7KXef3gAsP1oE558pwoNzV6Fe0ZEWsd8IqJU1pCmGcUiGJE1dlurG3r94UVtP9qED480oNnjV6hnRKR1zCciSmWXPQF8qGBGtXgDCvWsZyyCAbT4Qli26YgibS3bdASXvSFF2iIiYj4RUSpr9gYVzahLnqAibcVC80Ww1xfA+gOnY1rAHVN7gTA2VJ6G15e8Kxki6p+YT0SUynz+oCoZ5fMnpxBWtQgWQrwihGgUQhzq4nkhhHhRCHFcCFElhJikZn86c641gDf2nlS0zbWfnGzfv5OIqLeYT0SUyprcflUyKrq/sNrUHgl+FcA3unn+mwBGt/15BMBvVO7PNaREp3vYJaLO5UEabrpBRCmG+UREqSzdM0rVIlhKuQuAq5uXzAfwmozYA2CQEGKYmn26WotXnSH3Fl/y1rQQUf/EfCKiVJbuGdXXa4KHA6jr8POptseuIYR4RAhRIYSoaGpK7A7EjjwBdW4S8arULhFpB/OJiFJZumdUXxfBMZNSrpJSlkgpSxwOh2LtWo16xdrqyGJQp10i0g7mExGlsnTPqL4ugk8DcHb4eUTbY0mTaTGkVbtEpB3MJyJKZemeUX1dBG8AcH/bLhGTAVySUp5JZgeEAJx2q6JtOu1WCKFok0SkQcwnIkpl6Z5Ram+R9gaA3QDyhRCnhBAPCyG+L4T4fttL3gNwAsBxAKsBPKpmfzozJMOI+24ZqWibi24dCUemWdE2iUh7mE9ElMocNpMqGTV0QHIySu3dIe6TUg6TUhqllCOklC9LKX8rpfxt2/NSSvmYlPJGKeUEKWWFmv3pjMVsxPyJw2ExKvOfwmLUYV7xcJhVWidDRNrBfCKiVGY2GVTJKJNG1gSnhEyzHmVzxirSVtmcsRhg4RcMESmD+UREqWygxaBoRmVZk3fPAotgAFkZJswozMb0gsR2nZhe4MDMsdkYaDUp1DMi0jrmExGlsgFWI2YqmFGZFqNCPesZi+A2OVkWLL+7qNcf4vQCB5bfXYTsgRaFe0ZEWsd8IqJUlp2mGSVkGp6fWVJSIisq1Fk+fPaSF1urG7Bs0xF4A+EeX28x6lA2Zyxmjs3mFwwRqYr5RESprOGSFx+mWEYJIfZJKUs6fY5F8LWaPX5c9oawofI01n5ystNzsZ12KxbdOhLzJg7HALOeU4xElBTMJyJKZS3eAC55gjFnVJbFoOoSCBbBveT1BXCuNQApI+dYewMhWIx6ZJoNEAJwZJp5lzUR9QnmExGlslTJqO6KYB4b1A2L2YgR5uQt0CYiihXziYhSkT8YhsvtR3lVPdbsrkWdy4NMkx6DbSZccPvR4g/Babdi8W15mFuUC7vNBJOhb25R40gwEVEaCgRCaHL7EJbAZe+XoywDLAboBOCwmWHkSDARJZHL7cfW6gaUrT90xZpgg07AZNDBHwwjGP6y7rQYdVg2fzxmFGbDblNn2RZHgnuJXzJElGpafUFc8ASwsbIev/vzF12ut/vuV67HXcW5GGw1IsPMqCcidZ1v8eHJtw9iS3UD9DqB2eOyceeEYRg+yIpAMIxgSMKgFzAadDh90YNNVWew9Wgjlq6rwqzCbCxfMAHXJfk0S44Ed4JfMkSUihqbvdh6tBH/uPFwzHde/8Nd4zCjYCiGcncIIlKJy+3HT9dVYUt1A+YV5+KhKXnwBkIYZDPBatSjxRuEJxCC1ahHpsUATyCECy1+WE16vPJRLTZU1mNWYTZWLCzCYIVHhHljXBz4JUNEqaix2YufvXMQW482xv3eGQVD8a93T2BGEZHi/MEw1h84jWc2HMaKhcXIHWTBkEwzNlbW4429Xe8Ocd8tI3FXcS7OtfhQf9GLJ9ZV4pl54zB/4nBF1wizCI4Rv2SIKBUlkk1RzCgiUsPZS17MeXEXfvNXN8MxwIKPj5+Le5/g228agqbLXvzNf+3Dph9ORU6WcjnVXRHME+PaJPols/VoI372zkE0NnsV7hkRaVmrL4htNY0JFcBAJKO21zSi1R9UqGdEpHWhUBjlVfVYvqAYwwdl4Nnyw3jq3UMxFcAA4A2E8dS7h/Bs+WEMH5SB5QuKUV5Vj1AotvcnikUw+CVDRKnroieAZzYcVqStf9hwGBdbA4q0RUTkavWj7kIrCnIG4BfrD2L70aZetbP9aBN+sf4gCoYNwMkLrXC1+hXuaedYBINfMkSUmgKBEMqr6mMeVemJNxAZtQkEQoq0R0TaFgxL/PWUPOw61tTrAjhq+9Em7KppwpI78q7YRk1Nmi+CI18yZxT9ktlUdYZfMkSUsCa3H6/v+ULRNl/f8wWa3MkZZSGi/i0UkhA6HZZtOqJIe8s2HYEQOoRCLIKTIvIlU6tom6/tqeWXDBElLBSWnd5ZnYg6lwehJI2yEFH/ZjHqsOGAsrNVGyvrYTEmpzzVfBEclrF9yRh0AhkmPQw60eNr61wehNNw1w0iSi1unzr3F7h53wIRKcATCOONvScVbXPtJyfhUaio7onmT3ho8Xb+ZaDXCcwsHNp+2ok/GIY/GIbJoIPpqtNOOhtVaVHpy4uItMOj0rIqr5/LtYhIGWrMViWL5keCvZ18ycwrzsXb378NcyYMg7ltw2YJICQlouWu2aDDnAnD8Pb3b8O84txr2vAl6SqGiPovS4zHslsMOgzJNMES4wbzZh73TkQKiHXAL57ZdEC9WbCraX4kuOOpJDaTHisWFsNsEIAQOHHOjbf3n+rytJMFk0bg+iE2zCsehtnjcvDEukq420ZYjHrNX18QUYIyuziO3WTQ4UczbkJpwVDYTIZrjiR1+4PYVt2IF7cdhz947QV5V+0SEcXD18Vs1dWz6b5gGN5ACBajHuYYZtO9weTMVmk+CW1tXwY2kx4vP3ALwmGJ6rPN+Ns3/tLtQu86lwcvfPgpfrvzMyydnY/CnIF4+YFb8PCre+H2h2Azc6SFiBLntFuvuBB/em4hZo3NwcbKenzv9X3dHkm69cfTsOXIWTxbXn3Fc0RESuhstmpecS4empKHHcea8NwHNahzeWDQCZgMOviDYQTDsn0g8dHSG/HKR7XYUFl/ZbuG5NRQmi+CgciXwlN3joXVqMfzHx7DjprY97rzBsJYVl6N0nwHHp85Br/89kT883vKbBVCRNompcSCSSPwwoefwpFpwtolk/HJ5y7Men5njxfpKzbX4MVtn6JszlhseXwqFq3eg6YWPxZOGoEvF3YREfVeRocBv+hs+tlmD7778p9xx01D8JOv53c7Erz6jyfw41ljrplNz0jSQKLmi2CLUYcnZufDabdi5eaauArgjqLvWzo7Hz+dnQ8r19wRUYJcbj9Kxzjw9r46rF1yG57ecCiuDemjR5JOL3DgnUenYNHq3Zg2xgGXO4CRdhU7TkSaEApFRnVdLX6sXlyCVbtOYKDFiN89/JUrRoKvdvVI8B+957B6cQmWrKmAPdOUtG0cNV8EB0ISJXl2vHfwTK8L4KgdNU346ughmDN+GPxJOveaiPovi1GPX+/4rFcFcEfbjzbhaRzC2kduw4r3j+Kx6Tcp3FMi0iK9XmDBpBEYPXQAXvu4Fvfc7MTZZg/uXb0nriWlOQOteO3jWqxYWIzjjZehj/EGukRp/u4ti1GHVl8IKzfXKNLeys01cPtDsJo0/5+WiBKUaTFgojNL0SNJJzoHIdOi+fEPIlKATgjMnZCD824v7r89D2/tq8Oy8uqYD8+ILil9a18d7r89D+fdXtw5IQc6wSI4KYJhifIqZU872XSwHoEkHflHRP2XlMCssTmKHkn69XE54Fk+RKQEKYEwBByZFqzadSKhJaWrdp2AI9MCCZG0jNJ8ERwISqzbf0rRNt/adwqBIL9liCgxmVY9NlYqe5FeXlWPAVbes0BEibOadPissQX1lzyKLCmtv+TBZ00tyDDz2OSkkDEemxyPOpeHd18TUcJaPCFVjiS97OGJcUSUuBZvCCMGWxVdUjpikDVpGaX5IviySqeStHj5JUNEiUvnI0mJqH+zGHXYerRR0dmqbUcbYTZyJDgpOjtNSZl2WQQTUWJavCpdpCfpSFIi6t+8gTDeVnhJ6br9p+BTqTa7muaLYLX28+3sFBUionh4ujiSNFFeldolIm0RQp3ZquTsDcEiuP3Y5HRpl4i0Q7WL9CQdSUpE/VurT50L6lY/1wQnhV4XOblESU67FYYkbfRMRP3XAJX281WrXSLSFrWWLai1VPVqmi+CLUYd/vfkPEXbvH9yHixJWtRNRP2YUOciPWlzjUTUr6lV65gNvDEuKVq8IcyZkKPYB2kx6nDnhBzVdp0gIu2wmnS475aRira56NaRyDBxOQQRJU6t0yeTdaoli2BfEJsPn8U/zhunSHvPzhuHPxw6ixaV1skQkXY0NftxV3Guohfpc4ty0XjZp0h7RKRtwZBUZbYqGE7OWQuaL4J9wTAO1F3CROcgzCgYmlBbMwqGotg5CAfqLsLPu6+JKEGeQAg1Z5tRNmesIu2VzRmLo2ebuTsEESkiEArjvluVn60KhrgmOCmsRj0enX4jFq3egyVTb+iyELYYdBiSaYKli3UqMwqGYsnUG7Bo9R48Nv0mbpFGRAkzG3QYkmnGV0bZMb3A0eXresonAJhe4MBXbrDDkWmGSa/56CciBQTDEncV9TxbFUtGAV/OVgVCyRkJ1vwtwoNtRrz7l3qcdwfw8Kt7sWJhMaaNceC5LTX4/tQbUFowFDaTAS3eIDyBEKxGPTItBrj9QWyrbsSqP57AT2bl47pMMx5+dS/c/hB2fdqE+RNz+/qfRkRpzp5pwpuf1OF3e77AO49OwdM4hO1Hm2Ay6PCjGTf1mE8vbjsOfzCM6QUOPDtvPO7+9Uf4q8nX4zu3Ovv6n0ZE/YDdZsQnn7uwdHY+lpVXtz8eb0ZFLZ2dj8q6C7hllD0p/RdSJqfaVlJJSYmsqKhQpK3TF1tx76o9V2z2/P/uvxmFw7Kw/sBpvLH3ZKcbQTvtVtx3y0jMnzgc1Wcu4a9f23fFc28umYzhgzMU6SMRadOpC624b3UknxyZJqxdMhmt/iDsNjM2Vtb3mE93FefC5fYhw2TAotV70NTih9NuxRtLJmME84mIEhTNqCe/UYi39tVhR00Tnp5biFljc2LOqC1HzuLZ8mqU5jtwz81OLP9DtaIZJYTYJ6Us6ew5zc+JSfnlaSeOTBO2PD4VDc0+zPjVDqzYXNPlSSh1Lg9WbK7BjF/tQEOzD1senwpHpqn9uTS8tiCiFHR1Bh063YxZz++MKZ9mPb8Th043d9seEVEi6lwePLGuEo+W3ojtPymF2aCPK6PMBj22/6QUj5beiCfWVSY1ozS/HKLFG9nKzJFpikw3bohMN8bKGwjjqXcPYXqBA+88OgV3//ojNLX40eLnFmlElBjV8olbOBKRAi63ZVSGSY9hWdaEMurZeeORYdLD7Q+1Z5/aND8S7Gm7S3rtkslxf3gdbT/ahKc3HMLaJZMBAN4kHflHRP0X84mIUln0xDilM0qtk+iupvki2GzQ4em5hfjkc1evP7yo7Ueb8MnnLpTNKYQpSaedEFH/ZTXqVckn7l5DREqwqFRDJevEOM3fGHfS5YaAwKznd8IbSPzKw2LUYcvj0yAhMdJuU6CHRKRVda5WAFA8nwDAaeeNcUSUmHTIKN4Y1w2bWY+NlfWKfHhAZH1LeVU9bGaOtBBRYmxmnUr5pPnoJyIFWI3qZJTVlJyM0nwSevxhvLH3pKJtrv3kJDz+5KxnIaL+y+1TJ5/cPuYTESXOE0jvGkrzRXDHLdKUwi3SiEgpauQTEZFS0jmjNF8Eq7UNB7cgIqJEMZ+IKJWle0Zpvgj2BNXZKsgb4BZERJQYj0o5wnwiIiWke0Zpvgi2GtS5gc2iUrtEpB1WlbYyYz4RkRLSPaM0XwRnWtQ5NE+tdolIO5hPRJTK0j2jNF8EA4DTbk3p9ohImySkKvkkwTt3iUgZ6VxDab4I1guB+24ZqWibi24dCZ0QirZJRNpjNuhUyScLT7QkIgUY9erUUCZDcmoozSfhJU8AdxXnwmJU5j+FxajD3KJcNHsDirRHRNrlD0pV8skX5EgwESXu7CWvKhl15pJXkfZ6ovkiOMOsx5YjZ1E2Z6wi7ZXNGYsPDp9Fhok3nhBR4j7+7Jyi+fTR8SZF2iIishjVqaF4Y1ySSAn858e1uHWUHdMLHAm1Nb3AgVtH2fHq7lquuCOihIWlxJlLXkXzqaHZhzBP8yEiBdjMBjxbXq1oRi3bVA2bmTfGJYXFqMOCSSOwaPUePDtvfK8/xOkFDjw7bzwWrd6DhZNGcM0dESXsgjuA0jEOPPTqJ4rk00OvfoJpYxy42MrlWkSkDKfdqmgNxRvjksgbCGNGwVBc9gVx968/ws+/WYh//tb4mNe3WIw6/PO3xuPn3yzE3b/+CJd9QXytYCi8geSce01E/ZfFqMMrH9XigSmjFMmnB6aMwst/+hxmXqQTkQIkJBZMGoGmFr8iGdXU4sfCSSOAJM2naz4JLSYdas+7sXR2Pppa/Jj1/C54AyFseXwafvqN/C6vSJx2K376jXxseXwavIEQZj2/C00tfiydnY8vzrth5ZpgIkqQzWzAhsp65Ay0YtzwrITyadzwLOQMtGJj1ZmkTTUSUf8Wna2yGHWK1FAWow7TxjhwIUmzVUKm4dqwkpISWVFRoUhbpy604oLbj1MXPPh9RR121ERuGjEZdPjh127C1wqHIsNkgNsXhDcQhsWog81sQKs/iG3VjXhx23H4g5FR39J8B75T4sSIwVYMtpkwYnCGIn0kIm36/FwL7n/lE7ha/Fi9uASrdp3AjpqmuPOpNN+BR6begCVrKmDPNOH1h76CvCG2vv7nEVGaqz7TjN/s+AzFziwsK69uf7w3NRQAlM0txIGTF/Ho9JtQOGygIn0UQuyTUpZ0+pzWi2CX24ePj5+Dq9WPm4YOaP+SuZrFoEOmxYAWbxDe4LVLHaJfMscbL8NuM2HKjUMw2GZWpI9EpE2nXK1498BpPPfBMdhMeqxYWIyzzR6s3FxzxZKrrvLJYtRh6ex85Ay04ol1lXD7Q1g6ewzmFQ+H086LdCJKzBfn3Zi2cgdeWjQJb+2r67R+AnquoYBIHXXPzU48tnY/di0txcjrlLlQ764I1vxyiCyLEYW5WXBkWvDax7W452YnyuYWXrOexRsM41yL/5oPz2LUoWxuIe652YnXPq6FI9OCwmFZGGg1JfOfQUT9kF4vcMdNQ2Ax6uD2h/DY2v04cPIi3lwyGY/PHN0+1Xh1PjntVjw+czTeXDIZB05exGNr98PtD8Fi1GHKjUNg0PMwHyJShtMeuch+ZOoNKM3v/Ma4rmqoqOhA4hPrKttOtUwOzY8EA0BTsxfvHz7TPhI8wGzAw3eMws5jTVi3/xTqXJ5r3uO0W7Fw0ghMG+PAy3/6HJd9wfaR4G+OGwbHQIti/SMibWq67MX/3X4cI+0ZV0w16nUCMwqGYk7RMOQOsiIQCrdPNRr1OtRf9KC86gy2HW1EKPxlxpfNLcQXrlb8YPpNcAxgRhFRYs61ePFfe07ihQ8/7Xa2qiudzVY9PnM0vjv5egzJVGY2vbuRYN4dASArw4RbR12HF7Ycwz03O3G22YPvvvxnTLlxCH7y9fxuv2RW/fEEfjxrDHIGWvHax7V4fNYYZGVwFJiIEmfPMME5OAM5A60ozXe0TzWGwhIfHGnAB0caAAAGnYDJoIM/GEYw3PnARmm+AzkDrZASsHOpFhEpQEpgRsFQ/HbnZ+2zVXcVDcObSybHNZC4sSpykW8x6vC1gqFI1gAtR4LbuNx+nHK14lcfHut0JPjqL5nORoJ/PHMMnPYMDLaxCCYiZZy95MWcF3fh3xdN6vKehZ5Epxp/sHY/Nv1wKnKyOApMRIkLhcLYVtOIk65WxWarRtoz8LWCbOh1yizb4khwDOw2E6SU+N7UG3DkTHPcI8Fjhw3E8LZdIYiIlGK3mfDkNwuxZE0FViwsxldHD+nVVOOSNRV4Zt442JlRRKQQvV6HCcMHIRiSisxW5WZZMWH4IMUK4J6wCO7gukwz8oVAOCzxu7+ejJ01jXjug5puR4Ifm34T3N4ACnIGsgAmIsWZDDrMKMzGB4cbEppqnFWYjZmF2TDxoAwiUpDdZoI3EMIjU28AgE5nq4JhiaA/1GUb0dmqhkvepF6oczlEJ1r9QVxoDaDy5AXodALXZZqvGQk+3+JDWEpMdA7GoAwjMky8niAi9TQ2e/HTd6qw/WhT3FON0wsc+Le7izCUN+wSkQpcbj/K3j2IOyfk9vrGuPcO1uOfvjVB8QFF7hMcB5fbj63VDXhm42FMuXFI+5dMMBSGPyhhMggYOnzJfPzZOTxz1zjMKMzmNCMRqcLl9uPpdw/hmxOGdfoF09VUY8cvmPcPnsGyb43njBURKa6n+6qulsz7qlgEx+h8iw9Pvn0QW6obrnmup/UsswqzsXzBBFyn0JYeREQA4A+Gsf7AaSxdVwUAuKtoWNxfMBurzgAAVi4swvyJw7kkgogUE82oZzYcbt8i7Vdbjl0xkNjVbNXHn51r32HriXWVeGbeOMUzikVwDFxuP366rqrTAjhWswqzsWJhEUdaiEgxZy95Ufrc9itGfnt757XFqMOOn0zn7hBEpJirM6qzC/WedtiKXqirkVHcHaIH/mAYW6sbEiqAAWBLdQM+rG7gSAsRKSIUCqO8qv6atXW9ufMaALyBSHsP3p4HvZ4ZRUSJ6SyjNladwXuHzmJGwdAed9h6cdvxKy7Uk51RLILRtqB7/SFF2ipbfwhfHe3gSAsRJczV6sea3bU9vq6nO687WrO7FvMn5vLEOCJKWFcZ1dsLdSC5GaX5oYCuRlp6K3oVEwop0x4RaVcwLDtd85uIOpenxy8hIqJYxJpRwbBEqz8UU/YkM6M0XwTHOtISjzW7a+Fq9SvaJhFpz2VvUJV2W1Rql4i0Jd0zSvUiWAjxDSFEjRDiuBDiyU6eHymE2C6E+IsQokoIcafafeoo1qsYg04gw6SHIYZTTDjSQkRK8AViW+IQd7tBzlQRUeLSPaNUXRMshNADeAnALACnAOwVQmyQUh7p8LJfAPhvKeVvhBBjAbwHIE/NfnXU1VWMXicws3Ao7pwwDMMHWeELhuELhmA26GE26HD6ogebqs5g61V3X0e1eINAltq9J6L+zGzUx/Q6i0GHTIsBLd4gvDF8efDGXSJSQqwZFa9kZZTaN8bdCuC4lPIEAAgh3gQwH0DHIlgCGNj29ywA9Sr36QqdXcXMK87FQ3fk4Y+fnms/NvlqTrsV3y5x4tHpN+KVP9ViQ+WV3eZICxElaoCl84g2GXT40YybUFowFDZTpPj1BEKwGvXItBjg9gexrboRL247Dn8nWdRVu0RE8Yg1S+K5MS6edhOl9m8ZDqCuw8+nAHzlqtc8A+ADIcQPANgAzOysISHEIwAeAYCRI0cq1sGOVzE2kx4rFhbjfIsP967a0+3NcnUuD375wTG8tP04fv7NQswel4Mn1lXC3XaHNkdaiChRBp2A02694kL86bmFmDU2Bxsr6/G91/d1eZF+3y0jsfXH07DlyFk8W159xXOxLOsiIupJZxkFJDabnsyMSoXhgPsAvCql/KUQ4jYArwshxkspr6hApZSrAKwCIodlKPXLo1cbNpMeLz9wC1bvOoGtRxtjfr83EMbTGw5jRsFQvPzALXj41b1w+0McaSGihNkzTFh8Wx7+aVM1HJkmrF0yGZ987sKs53f2eJG+YnMNXtz2KcrmjMWWx6di0eo9aGrxY/FtebDbeLIlESWuY0ZFJTqbnsyMUnu48jQAZ4efR7Q91tHDAP4bAKSUuwFYAAxRuV/tolcxv/x2cdwFcEdbjzZi9a4T+OW3iznSQkSK0Ot1mFuUC+dgC955dAr+5f1qPPXuoZi3dPQGwnjq3UP4l/er8c6jU+AcbMHcolzomU9EpIBoRlmMOthMery0aBJKrh+Me1ftwS8/ONblxgPR2fR7V+1ByfWD8dKiSbCZ9LAYdUnNKFWPTRZCGAAcAzADkeJ3L4BFUsrDHV7zPoDfSylfFUIUAtgKYLjspmNKHpscCoWxraYRTZf9+Pn/HEy4vX/9XxMwZIAJXyvI5hcNESXMHwyj8bIXZesPYfvRpl63M73AgWXzx2PoAAuXaxGRYvzBMDZV1WPYIGuvBxNnFAzFkqk34MxFD+YU5SqaUSywyfYAACAASURBVN0dm6xqEkopgwD+FsBmANWI7AJxWAjxrBBiXtvL/h7AEiFEJYA3ADzQXQGsNL1eh3G5WXi2/HDPL47BP5YfxrjcLBbARKSIYCiMnceaEiqAAWD70SbsOtaEYJg37RKRckwGHabcNESR2fQpNw1J6kW66r9JSvmelHKMlPJGKeU/tz32tJRyQ9vfj0gpp0gpi6WUE6WUH6jdp44iJ8adUfTEuE0Hz/DEOCJSxAVPAMvKj/T8whg8W34EF1oDirRFRARERoJ3HGvsdQEctfVoI3Yca+p0Rxu1aH5O7Lzbj9f31Cra5mu7a3HezRPjiCgxgUAI6w+cVvQifcOB0wiotME9EWmPy+3D0+uVmU1/ev0huNw+RdqKheaLYH8oHNOJcfGoc3ng50gwESWoye3DG5+cVLTNtZ+cRFMSv2SIqP8KhcLYUKnsbPrGquTNpmu+CFbrfOoWX3LOvSai/issocpFOk91JyIlpPtsuuaLYI9K04JeTjcSUYJ4kU5EqSzdZ9M1XwRbVDr32mxQp10i0g61LqaVmrokIm1T64LanaQLdc0XwZlmdU52U6tdItIOtS7SLdwnmIgU4PWrc6HuSdKFuuaTUIjI8X1KctqtENwmmIgSlGFWpwhWq10i0hZzml+oa74IDkuJBZNGKNrmwkkjkMTzPoionwqFpSoX6SHeGUdECrCl+YW65ovgi60BlI5xwGJU5j+FxajDtDEOXPTwxhMiSoxRp1PlIt2g03z0E5EC0v1CXfNJaDHq8cpHtVg6O7/b1xl0AhkmPQw9HIe8dHY+Xv7T5zBzzR0RJUivFzFdpMeaT9GLdIOe67WIKHF6nYjpQj3WjAIiF+r6GF6nBM3fvTXAYsCGynrMHpeD0nwHdtQ0AYh8sDMLh+LOCcMwfJAVvmAY3kAIFqMeZoMOpy96sKnqDLYebWy/YinNdyBnoBUbq6rx8zmFffnPIqJ+wKAT+J8Dp7F0dj6WlVe3P96bfAIiF+nvHDiNH0y/qS/+OUTUzxh1OpSOceC3Oz+7YteZ3mZU9ELdmKTZKs0XwQadgNNuxRPrKrF6cQkAYKDFiIem5GHHsSY890FNp3vgOe1WLJg0Ao+W3ohXPqpFszeAR6begCVrKuC0W2O62iEi6o49wwTn4AzkDLS2X6TPK86NO582VNa3X6RLCdht5j741xBRf2PQX3uh3tuMApJ/oS7S8QaukpISWVFRoUhboVAY//lxLf5pUzWut1uxdslk7KhpwrJNR2LaS9Ni1KFszliU5juwaPUefOHy4BdzCvHglFFJG84nov7r7CUv5ry4C7/5q5sRDElUn23Gys01MefT0tn5KMwZCINe4G/+ax82/XAqcrIsSeg5EfV3oVAYr3xci9wsKzZWnsZdxcNxttkTd0blDPzy/WcueRStoYQQ+6SUJZ0+p/UiGIh8ydzz24+wdslteHrDIWw/2hR3G9MLHHh23ngsWr0bb31/Cr9kiEgR/mAYmw+dwcSRg/HMhsPYerQx7jZmFAzFM/PG4cDJC5g9fhhMvGeBiBRy9pIX97+yB689NBk/+5+qXtdQ//q/itrbUbKGYhHcA38wjMbLXpSt710BHDW9wIFl88dj6AALv2SISDENl7x4spdfLlHTCxxYfncRsgfyAp2IlJPqNVR3RTArNQDBUBg7jzUl9OEBwPajTdh1rAnBMI8kJSJltPqC2Hq0QZF82lrdgFY/t28kIuWkcw3FIhjABU8Ay8qPKNLWs+VHcKE1oEhbREQXPAE8y3wiohSVzjWU5ovgQCCE9QdOx7SAOxbeQBgbDpxGIKDOedpEpB3MJyJKZemeUZovgpvcPrzxyUlF21z7yUk0uX2KtklE2sN8IqJUlu4ZpfkiOCzR6R52iahzeZCkE/+IqB9jPhFRKkv3jNJ8EXzZq85NImq1S0TawXwiolSW7hml+SLYo9K6Ey/X3BFRgphPRJTK0j2jNF8EW416Vdq1qNQuEWkH84mIUlm6Z5Tmi+ABFkNatUtE2sF8IqJUlu4ZpfkiWCcAp92qaJtOuxUKHXlNRBrGfCKiVKdGRiWL5otgo15g4aQRirZ5z80jYNJzupGIEsN8IqJUZjIILFA4oxZOGgGTPjnlqeaLYE9AYtoYByxGZf5TWIw6TB3tQCtvPCGiBDGfiCiVnW8JoFThjJo2xoHzbr8i7fVE80Ww2xfEKx/VYunsfEXaWzo7Hy//6XO0+rgFERElhvlERKnMFwipklG+oDIn0PVE80WwLxDChsp65Ay0ojTfkVBbpfkO5Ay0YmPVGXiT9AESUf/FfCKiVGY26lXJKLOByyGSIroNxxPrKvHI1Bt6/SGW5jvwyNQb8MS6yki7SfoAiaj/Yj4RUSrLNEd2cVA6o6Ltqk3zSZhhjnzJuP0hLFlTgXtudqJsbmHM61ssRh3K5hbinpudWLKmAm5/6Ip2iYh6i/lERKksLCWcdquiGeW0WxGWyTk3WfNFcCgs27fjcPtDeGztfhw4eRFvLpmMx2eO7nKrDqfdisdnjsabSybjwMmLeGzt/vYvGKfdihBnG4koQcwnIkplobBs3x1CqYxaOGkEwsmpgSFkkqptJZWUlMiKigpF2jrlasW6/afwwoefXvG4Xicwo2Ao5hQNQ+4gKwKhMLyBMCxGHYx6HeovelBedQbbjjYidNWn9fjM0bh70gg47RmK9JGItIn5RESp7FjDZbT6grh39R54A19eXfc2oyxGHd5cMhkZZgPGZA9QpI9CiH1SypJOn9N6EXzmkgcNl7zXfIBXM+gETAYd/MEwgt1cokQ/wOwsC4ZlJW/DZyLqf5hPRJTKzlzy4F/fO4piZxaWlVd3+bpYM6psbiEOnLyIn88pVCyjuiuCNb8cwqAT+J8Dp3vc3iMYlmj1h7r98IDI9h7vHDgNA49kIqIEMZ+IKJXphcBf6i70uDtELBkV3R3iwKmL0IvkZJTmi2B7hgnOwRmKbu8xcnAG7DazQj0kIq1iPhFRKjO0nWr5xLpKfH/ajZhRMLRX7cwoGIrvT7sRT6yrxD03j4BRzyI4KfR6HeYW5WL5+0ewbP54TC/o3RfN9AIHls0fj+XvH8HcolzoOdJCRAliPhFRKvMFw1ecavnwHaN6tTvEw3eMav956mhH0vYy1/yaYADwB8M4ca4FL2w5hruKh+NsswcrN9d0uwYvymLUYens/MgGz5Wn8fisMRg1JBMm7sNJRApgPhFRqjrWcBn/d9txfG/aDVi5uQY7appwV9EwPHzHKOw81oR1+0+hzuW55n1OuxULJ43AtDEOvPynz7Gx6gxK8x1YOjsfv93xGX44YzRGJ+HGuOTsRpwGqk5dxB8ON+APhxtwV9EwvLlkcpwfYGRB+NcKszFqSGayu09E/RjziYhSkS8Q2dassu4SdtQ0AQA2Vp3Be4fOYkbBUPzk6/nd7g7x4rbj7btD7KhpwuyxOZF2ORLcNaVHgs9e8qL0ue2Kbe+x4yfTkZNlUax/RKRdzCciSlVdbZF2tXh3sEnWFmmaHwkOhcIor6q/5sMLhSU+ONKAD440AIj9A/QGIu09eHse9HpOORJR7zGfiCiV2W1GvHfwTI/Ls4JhiWDbYRjd8QbC2HmsCd+dPFKpLnZL8ynoavVjze7aHl8X6xZEALBmdy1crf6E+0ZE2sZ8IqJU5g+G8fb+U4q2uW7/KfiTtBxC80VwMCw7XVOXiDqXJ6YvIyKi7jCfiCiVCQhVMkqAW6QlxWVvUJV2W1Rql4i0g/lERKnssk+ljFKp3atpvgiO3tmoeLtJGsonov6L+UREqSzdM0rzRbDZqFelXe7DSUSJYj4RUSpL94zSfBIOsKizQYZa7RKRdjCfiCiVpXtGab4INugEnHarom067VYYeCwpESWI+UREqSzdM0rzRbA9w4TFt+Up2ubi2/Jgt5kVbZOItIf5RESpLN0zSvNFsF6vw9yiXFiMyvynsBgj7ek50kJECWI+EVEqS/eM0nwRDAB2mwnL5o9XpK1l88fDbjMp0hYREfOJiFJZOmcUi2BE7kKcUZiNWYXZCbUzqzAbMwuzeec1ESmG+UREqSydM4pp2MZuM2H5ggm9/hBnFWZj+YIJGMxRFiJSGPOJiFJZumaUkDL9js8sKSmRFRUVqrTtcvuxtboBZesPwRvoebNmi1GHZfPHY2ZhNr9giEhVzCciSmWpmFFCiH1SypJOn2MRfC1/MAyX24/yqnqs2V3b6bnYTrsVD9yehzkTcmG3mTjFSERJwXwiolSWahnFIriXQqEwXK1+BMMSLd4gfMEwzAYdMi0GGHQCdpuZd1kTUZ9gPhFRKkuVjOquCOaxQd3Q63VwDLBEfsjq274QEXXEfCKiVJYOGdWr8WchxDylO0JERERElCw9jgQLIe6++iEALwkhDAAgpXxHjY4REREREaklluUQvwewGUAjIgUwANgA3AVAAmARTERERERpJZYi+HYAywHslVL+BgCEEKVSygdV7RkRERERkUp6XBMspdwLYBYAkxBiuxDiVkRGgImIiIiI0lJMu0NIKcMA/o8Q4i0AL6jbJSIiIiIidcW1O4SUsl5K+W0p5Q1XPyeE+HflukVEREREpB4lj+iYomBbRERERESq4VmaRERERKQ5LIKJiIiISHOULIJ5SD0RERERpYWYdocAACHEBCnlwW5e8n8U6E9KCYXCcLX6EQxLXPYG4QuEYDbqMcBigEEnYM8wQa/nYDoRJR/ziYhSWTpkVMxFMIBfCyHMAF4F8Dsp5aWOT0opX1WwX33KHwzD5fajvKoea3bXos7lueY1TrsVi2/Lw9yiXNhtJpgM/LIhIvUxn4golaVTRgkpYz/3QggxGsBDAO4B8AmA/5RSblGpb10qKSmRFRUVqrTtcvuxtboBZesPwRsI9/h6i1GHZfPHY0ZhNuw2kyp9IiICmE9ElNpSMaOEEPuklCWdPhdPEdzWmB7AtwC8CKAZkbXAP5dSvpNoR2OlVhF8vsWHJ98+iC3VDXG/d1ZhNpYvmIDrMs2K94uIiPlERKksVTOquyI45vFnIUSREOJ5ANUAvgbgLillYdvfn1ekp33I5fb3+sMDgC3VDXjy7YO44PYr3DMi0jrmExGlsnTNqHgWYfw7gP0AiqWUj0kp9wORU+QA/EKNziWLPxjG1uqGXn94UVuqG/BhdQP8wZ6nAIiIYsF8IqJUls4ZFU8RPAfAWimlBwCEEDohRAYASClfV6NzyeJy+1G2/pAibZWtPwQXR1uISCHMJyJKZemcUfEUwR8CsHb4OaPtsbQWCoVRXlUf0wLuWHgDkfZCIY62EFFimE9ElMrSPaPiKYItUsqW6A9tf89QvkvJ5Wr1Y83uWkXbXLO7Fq5WjrYQUWKYT0SUytI9o+Ipgt1CiEnRH4QQNwO4dvO3qwghviGEqBFCHBdCPNnFa74thDgihDgshFgbR58SFgzLTvewu5pBJ5Bh0sOg6/lgvDqXB8FwfLtuEBFdjflERKks3TMqnsMyfgTgLSFEPSLbouUA+E53b2jbTu0lALMAnAKwVwixQUp5pMNrRgP4GYApUsoLQoihcf4bEnLZG+z0cb1OYGbhUNw5YRiGD7LCFwzDGwjBYtTDbNDh9EUPNlWdwdajjQh18mG1eINAltq9J6L+jPlERKks3TMq5iJYSrlXCFEAIL/toRopZaCHt90K4LiU8gQACCHeBDAfwJEOr1kC4CUp5YW239MYa5+U4AuErnlsXnEuHpqShx3HmvDcBzVdnnayYNIIPFp6I175qBYbKuuvbJd3YBNRgphPRJTK0j2j4hkJBoBbAOS1vW+SEAJSyte6ef1wAHUdfj4F4CtXvWYMAAghPgKgB/CMlPIPVzckhHgEwCMAMHLkyDi73TWzUd/+d5tJjxULi3G22YN7V+/pdqF3ncuDFz78FL/d+RmWzs7H7HE5eGJdJdz+yP8heEwpESWK+UREqSzdMyqewzJeB/AcgDsQKYZvAdDpCRxxMgAYDaAUwH0AVgshBl39IinlKilliZSyxOFwKPBrIwZYItcBNpMeqxeX4K19dVhWXh3znY7eQBjLyqvx1r46rF5cAptJf0W7RES9xXwiolSW7hkVz28pATBWxnfO8mkAzg4/j2h7rKNTAP7ctrTicyHEMUSK4r1x/J5eM+gEnHYrnvxGIVbtOoEdNU29aif6vhULi7H8D9UxLf4mIuoO84mIUlm6Z1Q8482HELkZLh57AYwWQowSQpgA3Atgw1WveReRUWAIIYYgsjziRJy/p9fsGSaUzRmLs82eXn94UTtqmnC22YOyuWNhtyl//jURaQvziYhSWbpnVDxF8BAAR4QQm4UQG6J/unuDlDII4G8BbAZQDeC/pZSHhRDPCiHmtb1sM4DzQogjALYDWCqlPB//P6X3xuYOxMrNNYq0tXJzDcYOGwjENWBORNQ55hMRpbJ0zqh4lkM805tfIKV8D8B7Vz32dIe/SwA/bvuTdJe8Aaw/oOxpJxsO1OPeW50cbSGihDCfiCiVpXtGxTwSLKXcCaAWgLHt73sB7FepX0nT6g/hzb0nFW3zjb0n0eq/dtsQIqJ4MJ+IKJWle0bFszvEEgDrAPxH20PDEVnPm9bCEjGddhKPOpcHPJCJiBLFfCKiVJbuGRXPmuDHAEwB0AwAUspPAST1dDc1tHh7Ou+jd9y+zk9RISKKFfOJiFJZumdUPEWwT0rpj/4ghDAASPvxBLVOJensFBUioniolk9B5hMRJS7dMyqeIninEOLnAKxCiFkA3gKwUZ1uJY+1w2knSrKo1C4RaYdq+WRgPhFR4tI9o+Ipgp8E0ATgIIDvAXhPSvmUKr1KokyVTiVRq10i0g7mExGlskyzShmlUrtXi6cI/oGUcrWU8h4p5UIp5WohxN+p1rMkkRJw2q2Ktum0W7kNJxEljPlERKlM6NTJKJGkQy3jKYIXd/LYAwr1o8+YDAILJo1QtM2Fk0bAbIjnPy0R0bWMKuWTycBjk4kocXohcN8tIxVtc9GtI2HQp8ixyUKI+4QQGwGM6nhSnBBiOwCX+l1Ul8sdQOkYByxGZYpWi1GHaWMccLn9Pb+YiKgbF1XKpwut6tzRTUTa0uoP4aujhyiaUXfcNCSl9gn+GMAvARxt+9/on78HMFu9riWHLxDGKx/VYunsfEXaWzo7Hy//6XPV7pgkIu3wBkKq5JNSpzsRkbYZdAKr//g5np47TpH2/mHuOKzadQL6JK2H6LEIllJ+IaXcIaW8TUq5s8Of/VLKtN9s0mLUYUNlPYYPsmJGQWLbHs8oGIrhg6zYWHWGyyGIKGEWo16VfLIwn4hIAdER22JnFkrzHQm1VZrvQJEzK9JukraZjefEuLuFEJ8KIS4JIZqFEJeFEM1qdi4ZvrxLWuCHM0b3+kMszXfghzNGAxBXtUtE1DvMJyJKZd5AGA9NycP9L/8Zj0y9IaGMemTqDbj/5T/j4TtGwZek2ap4hgNWAJgnpcySUg6UUg6QUg5Uq2PJYtLrsPj263H6YisWrd6De252omxuYczrWyxGHcrmFuKem51YtHoPTl9sxf23Xw8TR1qIKEE6AVXyScf74ohIAddlGrHjWBPOuwNYsqYioYxasqYC590B7DzWBLvNqHLPI4SMca8cIcRHUsopKvcnJiUlJbKiokKRtkKhMGpdrZjz4h/b18ndVTQMD98xCjuPNWHd/lOdnovttFuxcNIITBvjwMt/+hwbq84AiHygm374VeRdZ4Oe3zRElIBAIIQvLngw998VzKcffBUjr8uAUc8LdSJKzKkLrbhv9Z4rciiRjIo+98aSyRgxOEORPgoh9kkpSzp7Lp45sQohxO8BvAvAF31QSvlOgv3rc1urG6+4UWRj1Rm8d+gsZhQMxU++no/cQVYEQmF4A2FYjDoY9TrUX/SgvOoMXtx2HKHwlxcS3kAY24424qHb8xCdeiQi6g2dTmDbUYXzqSaaT0REibu6yE0kozprT03xFMEDAbQC+HqHxySAtC6CXa1+vL6n9prHQ2GJD4404IMjDQAid0CaDDr4g2EEw92Pnr+2uxbfmpgLxwCLCj0mIq1gPhFRKutqK7NEMqq7dpUWcxEspXxQzY70lWBYxnTVEQxLBGP8UOpcnpg+ZCKi7jCfiCiV+WLcxSGejAIAf5K2mY1nd4gxQoitQohDbT8XCSF+oV7XkuOyV51d3lpUapeItIP5RESpzGzUq9JusjYXiOe3rAbwMwABAJBSVgG4V41OJVOsVzFxt8vDMogoQcwnIkplA1TablGtdq8WTxGcIaX85KrH0n44Id2vYoio/2I+EVEqM+gEnHarom067VYYkrS7VjxJeE4IcSMiN8NBCLEQwJnu35L60v0qhoj6L+YTEaUye4YJi2/LU7TNxbflwW4zK9pmV+Ipgh8D8B8ACoQQpwH8CMDfqNKrJEr3qxgi6r+YT0SUyvR6HeYW5cZ8OEZPLMZIe8k6ZyHmXkspT0gpZwJwACiQUt4hpaxVrWdJku5XMUTUfzGfiCjV2W0mLJs/XpG2ls0fD7vNpEhbsYhnd4i/E0JE9wp+XgixXwjx9Z7el+rS/SqGiPov5hMRpTqTQYcZhdmYVZidUDuzCrMxszA7qfcsxPObHpJSNiNyWMZ1AP43gOWq9CrJ0vkqhoj6N+YTEaU6u82E5Qsm9LoQnlWYjeULJmBwkvMpniI4OnRwJ4DXpJSH0U/OBU7nqxgi6t+YT0SUDq7LNOPfFhZh5cKimGevLEYdVi4swoqFRbguM/nLtOK5RXifEOIDAKMA/EwIMQBAv9lsMnoVg7eBLdUNcb+/r65iiKj/Yz4RUTqw20yYP3E4vjragfKqeqzZXdvpqZdOuxUP3J6HORNyYbeZ+uziXEgZ2/GZQggdgIkATkgpLwohrgMwvO3QjKQqKSmRFRUVqrTtcvuxtboBZesPwRvouca3GHVYNn88ZhZm8wuGiFTFfCKidBEKheFq9SMYlmjxBuELhmE26JBpMcCgE7DbzEm5P0EIsU9KWdLZcz2OBAshCqSURxEpgAHgBiH6xSqITqXbVQwRaUc8+bT49jzMZT4RUQqQAAQkrhh2lZFH+1IsyyF+DOARAL/s5DkJ4GuK9igFmAw65GRZ8ODteZg/MbfPr2KIiK7mHGzFU3cW4rpMMwKhMLyBMCxGHYx6Hc63+NCPxyqIKIX5g2G43P6eL9Rvy8PcojRZDpFK1FwO0VHHofzL3iACwRCMBj0GRIvgDBP0eo6wEFFydLUcwqATMBl08AfDCIa/zPTocogZhdncFYKIVNfbJVtqZlR3yyHiWRN8D4A/SCkvCyF+AWASgGVSyr8o19XYqF0Ep9NVDBFpw/kWH558+2BCN8b1xd3XRKQNqZpRShXBVVLKIiHEHQD+CcBKAE9LKb+iXFdjk4o3xnGkhYjU4nL78dN1Vb36comaVZiNFQuLeIMcESkulTOquyI4nuHLUNv/zgGwSkq5CUC/StPzLT78dF0Vlq6riqkABgBvIIyl66rw03VVON/iU7mHRKQ1/mAYW6sbEvpyASJbq31Y3QB/sN/sbElEKSCdMyqeIvi0EOI/AHwHwHtCCHOc709pLre/18P4QOTDe/Ltg7jg9ivcMyLSMpfbj7L1hxRpq2z9IbiYUUSkoHTOqHiK2G8D2AxgtpTyIgA7gKWq9CrJYrmKMegEMkx6GLrZDYIjLUSkpFAojPKq+phnpnriDUTaC4WYUUSUuHTPqJhPjJNStgoh1gPIFkKMbHv4qDrdSq7OrmL0OoGZhUNx54RhGD7ICl8wDG8gBItRD7NBh9MXPdhUdQZbjzYi1OFu7LL1h/DV0Q7kZFmS/c8gon7G1erHmt21ira5Znct5k/MhWMAM4qIEpPuGRVzESyE+AGAfwDQgC+PS5YAilToV9J0dhUzrzgXD03Jw45jTXjug5oud4dYMGkEHi29Ea98VIsNlfUAvryKefD2PG6fRkQJCYZlp/lzta62SOtMncvT42uIiGKR7hkVcxEM4O8A5Espz6vVmb7Q8SrGZtJjxcJinG324N7Ve7od3q9zefDCh5/itzs/w9LZ+Zg9LgdPrKuE2x/iSAsRKeKyN9jp472dqYpq8QaBLLV7T0T9XbpnVDxFcB2AS2p1pK9Er2JsJj1WLy7Bql0nsKOmKeb3ewNhLCuvRmm+A6sXl2DJmgqOtBCRInyB0DWPJTJT1d4u71sgIgWke0bFUwSfALBDCLEJQPteYFLKXyneqySKXsWsWFgcdwHcUfR9KxYW47G1+znSQkQJMxv17X9XaqYKAA/3ISJFpHtGxfNbTgLYgsjewAM6/ElrvkAI84pzcbbZ020BHMvuEDtqmnC22YO7ioZxpIWIEjbAEhmniM5UvbWvDsvKq6/5cukqn6IzVW/tq8PqxSWwmfRXtEtElIhYM6orfZ1R8ewO8Y8AIITIbPu5Ra1OJZPZqMdDU/Jw7+o9Vzze2/UsKzfX4M0lkznSQkQJM+gEnHYrnvxG4RUzVfHmU8eZquV/qO72Yp6IKFZdZVS8+iqj4tkdYjyA1xHZHxhCiHMA7pdSHlapb0lhtxnx3sEziu4OsfNYE747eeQ17yEiioc9w4Sn547FSVdr+5dEb/NpR00Tvjp6CJ6eOxZ2mznZ/xQi6oc6y6jOxLI7RF9klJAythu4hBAfA3hKSrm97edSAP8ipbxdve51rqSkRFZUVCjSVv3FVnxn1Z72m+Oi61lWbq6JaTjfYtRh6ex85Ay0tq9ncdqt+P0jk5E7KEORPhKRdp2+6MGMX+6AXoiE8ykkJbb+fSmGD7ImoedEpAXRjOqYSb2dTbcYdYpnlBBin5SypLPn4ll0YYsWwAAgpdwhhLAl3Ls+JiBU2R1CgNONRJSYUCiM9w6egV4IxfLp/YNnuI85ESkimlFKzqYnM6Pi+Q0nhBBlQoi8tj+/QGTHiLR2tk7O+QAAIABJREFU2afc7hCrdp3AioXFAIAWX+d75xERxcrV6sdru2sVzac1u2vhavUr2k8i0qZoRgGRm+NeWjQJxc4s3Lt6D1748NMuD9KI7g5x7+o9KHZm4aVFk9pviktmRsVTBD8EwAHgHQBvAxjS9lhai3V3iFhwdwgiUlIwLPH/OQcrmk8TRwziPuZEpIirz1pQYneIlDwxTkp5AcAPVexLn+hqd4je4u4QRKSUy96gKvnEfcyJSAnpftZCzJWaEGKLEGJQh58HCyE2q9Ot5LHbjNhxrCnmq5aeRHeHsNuMirRHRNpl1AlV8snA9cBEpIB0n02PJwmHSCkvRn9oGxkeqnyXkssfDOPt/acUbXPd/lPwczkEESVIpxOq5BO3CSYiJURn01durlGkvZWba/DwHaNS8sS4sBCiffNbIcT1ANJ+YVl0dwglcXcIIlKCXqdOPulZBRORAtJ9Nj2eIvgpAH8SQrwuhPgvALsA/EydbiXPZZV2ceDuEESUKLVyxM18IiIFpPtsejw3xv1BCDEJwOS2h34kpTwXfV4IMS4dT4/zBULqtMvlEESUILW+CPyhtJ/EI6IUkO6z6fEcloG2ore8i6dfBzAp4R4lmdmoV6Vd7g5BRImyqJRPZuYTESkg3WfTlUzCtFxkNsAS13VAn7dLRNrBfCKiVJbus+lKFsFpOb9m0Ak47cqdUQ1EjgM08MYTIkoQ84mIUlm6z6Zrfk7MnmHC4tvyFG1z8W15sNvMirZJRNrDfCKiVJbus1VKFsFpeRi9Xq/D3KJcWIzK/KewGCPtcQsiIkoU84mIUlm6z1bFlaxCiCIhxDwhxN3RP9HnpJSTu3tvKrPbTFg2f7wibS2bPx52m0mRtoiImE9ElKrSfbYqnmOTXwHwCoAFAO5q+zNXpX4llcmgw4zCbMwqzE6onVmF2ZhZmM2dIYhIMcwnIkpV6T5bFU+vJ0spS6SUi6WUD7b9eUi1niWZ3WbC8gUTev1FM6swG8sXTMBgjrIQkcKYT0SUqtJ5tiqeIni3EGKsaj1JAddlmvFvC4uwcmFRzFc1FqMOKxcWYcXCIlyXyZtNiEgdzCciSkXpPFslpIxtZzMhxDQAGwCcBeBDZF9gKaUsUq97nSspKZEVFRWqte8PhuFy+1FeVY81u2s7PQ3FabfigdvzMGdCLuw2E6cYiSgpmE9ElIrOt/jw5NsHsaW6Ie73Rmer1LhYF0Lsk1KWdPpcHEXwcQA/BnAQQPsuxlLKL5ToZDzULoKjQqEwXK1+BMMSLd4gfMEwzAYdMi0GGHQCdpuZd1kTUZ9gPhFRqnG5/dha3YCy9YfgDfR84IXFqMOy+eMxszBbteVa3RXB8WzE1iSl3KBQn9KCXq+DY4Al8kNW3/aFiKgj5hMRpRq7zYT5E4fjq6MdaTFbFU8R/BchxFoAGxFZDgEAkFK+o3iviIiIiCjtmAw65GRZ8ODteZg/MTelZ6viKYKtiBS/X+/wmATAIpiIiIiI2qXDbFXMRbCU8kE1O0JERERElCwxF8FCCAuAhwGMA2CJPt6f9gomIiIiIm2IZyXy6wByAMwGsBPACACX1egUEREREZGa4imCb5JSlgFwSynXAJgD4CvqdIuIiIiISD3xFMGBtv+9KIQYj8gy56HKd4mIiIiISF3x7A6xSggxGEAZIifHZQJ4WpVeERERERGpKJ7dIf5f2193ArhBne4QEREREakv5uUQQohsIcTLQoj3234eK4R4WL2uERERERGpI541wa8C2Awgt+3nYwB+pHSHiIiIiIjUFk8RPERK+d8AwgAgpQwCCPX0JiHEN4QQNUKI40KIJ7t53QIhhBRClMTRJyIiIiKiuMVTBLuFENchclQyhBCTAVzq7g1CCD2AlwB8E8BYAPcJIcZ28roBAP4OwJ/j6A8RERERUa/EUwT/GJFdIW74/9u7+yip7vu+45/vPM8+gBhpGVmrxaSxbHYNK+yssZUniwglsqHClZRjS04iJz51TpMmaeq4ou2BpKJtkOXm5KRN2tiJa+W0knMiqYFAk1hgiHtsXGmloEVmkY/qEBBYy0ors+zDPP/6xwwKhmWf5t7Ze/e+X+foiNm5890f+zt85rt3fvd3zezrkv5E0q/M8ZpNkl5xzn3HOVeS9GVJ22c4brekRyQVFjAeAAAAYFEW0gSfkPS/JD0naUTSF1RfFzybbklnLnv8auNrbzGz90rqcc4dWMBYAAAAgEVbSBP8J5LWSfqPkv6zpHeqfivlRTOzmKTfkfTpeRz7KTMbNLPB0dHRZr4tAAAAIm4hN8tY75y7fD3vYTM7McdrzkrquezxzY2vXdIpab2kI2YmSTdK2mdmdzvnBi8v5Jz7vKTPS9LAwIBbwLgBAACA77OQJvgFM/uAc+6bkmRm75c0OMdrnpN0i5n9gOrN78ckPXDpSefcBUk3XHpsZkck/caVDfBSqVZrGpsqqVJzulioqFiuKp2MqzOTUCJmyrWlFI8v5GQ6AHiDfAIQZGHIqDmbYDM7rvqOEElJ3zCz043Hb5d0crbXOucqZvbPVd9fOC7pi865b5nZw5IGnXP7mv0L+KFUqWlssqT9Q+f02NFTOjM2rUTMlErEVKrUVKk59eSyevC2tdrWf5Ny7SmlErzZAPAf+QQgyMKUUebc7CsLzOztsz3vnPt7T0c0DwMDA25w0J+TxWOTJR0aHtFv/cW39KPvuEEf3vA2dV+XVbFSU6FcVSYZVzoR09nvTevA0Hf19f/3un7rH79bd/TmlWtP+TImAJDIJwDBFsSMMrPnnXMz3oNiziY4iPxqgt+YKGrHU8eVTcX1Cz+yVke+PaqnXnhVZ8amrzq2J5fVve+9Wbe/s0tf/PopTZeq2nPvBl3fkfZ8XABAPgEIsqBmFE3wPIxNlrTrz1/Shza8Ta+NT+vRv35ZhXJtztdlkjF95qfepRtXZPWXx7+r3R9Zr1WccQHgIfIJQJAFOaNogudQqtR0YOic8isz+vzXvqMjL1+9BduV61mudPu7uvSpH/9HGrlQ0Nb+m1iDB8AT5BOAIAt6Rs3WBC9kd4hla2yypEwy/n2TF4+ZtvSunnM9y6GT51Wtubde99GBHo1NlnTjysxS/pUALBPkE4AgC3NGRb4JrlZrOn72ezp3YfqtSbj71pveWs/yua+8POt6ll+6/Qf1xa+f0r4Xz+nIy6P6sVtuUOKsqatj9ZJv/QEg3MgnAEEW9oyK/HKI0YsFvXahoJ/+w6OKm+mz99266PUs/+rJF1V1Tn/2i7fpxpUZdXVytgXA4pFPAIIsDBk123KIyJ8KMJMOnTyvuJm+8OCA/uz5M9q9f3hekydJhXJNu/cP68+eP6MvPDiguJm+evK86jfAA4DFI58ABFnYMyryTfBksaqnXnhVn73v1msu6J6PIy+P6vNf+44+e9+tevKFVzVZrHo8UgBRQz4BCLKwZ1Tkm2BJek/PKr02Pr3oybvkyMujem18Whtvvk6caAHgBfIJQJCFOaMivyZ4+LvjKpar+tgXvjnv0/ezySRj+vI//YDSybh637bCgxECiCryCUCQhSGjWBM8i1Q8piPfHvVk8qT6+pa/+faoUlx5DaBJ5BOAIAt7RkU+CRNx01MvvOppzSdfeFWJOB84AmgO+QQgyMKeUZFvgmNmM+5h14wzY9OKcfk1gCaRTwCCLOwZFfkmeKJY8aXupE91AUQH+QQgyMKeUZFvgotlf7bhKFS8WR8DILrIJwBBFvaMinwTnE7G/ambiPyPFkCTyCcAQRb2jIp8EnZmEqGqCyA6yCcAQRb2jIp8ExwzqSeX9bRmTy6rGNedAGgS+QQgyMKeUZFvgrva07p/0xpPaz6waY26OjOe1gQQPeQTgCALe0ZFvglOJuPavrFbmaQ3P4pMMqa7N3YryWb0AJpEPgEIsrBnFEkoaVU2qV3b+jyptWtbn1a1JT2pBQDkE4AgC3NG0QRLaksntKU3r83rupqqs3ldl7b05tWW4qITAN4gnwAEWZgziia4YfWKjB65p3/Rk7h5XZceuadfq1ew1g6At8gnAEEW1owy51xLv6EXBgYG3ODgoOd135go6mKhoq+/8rp2HzihQnnuzZozyZh2bu3Tj7zjBnVmErq+I+35uACAfAIQdOfHCzo4PKKH988/o3Zt69OW3rxvDbCZPe+cG5jpOc4EN4xNlrTjqeO6/XNHVChX9cyvf1AP3fWua2790ZPL6qG73qVnfv2DKpSruv1zR7TjqeN6c7LU4pEDWO7IJwBhsHpFRh95T7cOffr2OTNqx13v0lc/fbs+8p7uJfuUijPBkkqVmvYeO6vPPDn01tdSiZh+9SfeoZ/oXa22VEKTxYoK5ZoyyZja0wlNlSr66vB5/d5XX1Hpstv7PXpfv7Zv7FaKOzIB8AD5BCCMyuWqRieLqjnpYqGiQrmqTDKuzkxCMZO6OjMt2QVitjPBNMGSXrtQ0O2fOzzrqftMIqaOTEIThcqs97TOJGM68hubdeNK1t4BaB75BACLx3KIWVSrNe0fOjfn2pVCpabXJ0qzvsFIUqFcr1etzr0WBgBmQz4BgH8i3wSPTZX02NFTntZ87OgpjU2x9g5Ac8gnAPBP5JvgSs3pzNi0pzXPjE2rUgvfMhMAwUI+AYB/It8EXyxUfKk74VNdANFBPgGAfyLfBBfLVX/qzrE2DwDmQj4BgH8i3wSnk3Ff6rIFEYBmkU8A4J/IJ2Fnxp97VPtVF0B0kE8A4J/IN8GJmF3zjiaL1ZPLKhEzT2sCiB7yCQD8E/kmONeW0oO3rfW05oO3rVWuPe1pTQDRQz4BgH8i3wTH4zFt679JmaQ3P4pMsl4vzpkWAE0inwDAP5FvgiUp157S7u3rPam1e/t65dpTntQCAPIJAPxBE6z6ldJ39OZ1Z2++qTp39ua1pTfPldcAPEM+AYA/SMOGXHtKe+7dsOg3mjt789pz7wat4iwLAI+RTwDgPXMufLfPHBgYcIODg77UHpss6dDwiHbufUmF8twbymeSMe3evl5bevO8wQDwFfkEAAtjZs875wZmfI4m+GqlSk1jkyXtHzqnx46e0pmx6auO6cll9YkfXqutG25Srj3FR4wAWoJ8AoD5owlepGq1prGpkio1p4lCRcVKTelETB2ZhBIxU649zVXWAJYE+QQAc5utCea2QbOIx2Pq6szUH6xc2rEAwOXIJwBBdvkv6hcLFRXLVaWTcXVe+kW9LaV4fGk/paIJBgAAgCfmu2TrwdvWalv/0i7ZYjkEAAAAmrbYi3fv6M37tof5bMshuFoCAAAATXljoqiHnhzSZ54cmlcDLEmFck2feXJIDz05pDcmij6P8Go0wQAAAFi0scmSdjx1XM8Mjyzq9c8Mj2jHU8f15mTJ45HNjiYYAAAAi1Kq1HRoeGTRDfAlzwyP6ODwiEqV+Z1F9gJNMAAAABZlbLKknXtf8qTWzr0vaayFZ4NpggEAALBg1WpN+4fOzXsN8FwK5Xq9arU1Z4NpggEAALBgY1MlPXb0lKc1Hzt6SmNTrTkbTBMMAACABavU3Iz7ADfjzNi0KrXWbN9LEwwAAIAFu1io+FJ3wqe6V6IJBgAAwIIVy1V/6rZohwiaYAAAACxYOhn3pW6rbqNMEwwAAIAF68wkQlX3SjTBAAAAWLBEzNSTy3pasyeXVSJmnta8FppgAAAALFiuLaUHb1vrac0Hb1urXHva05rXQhMMAACABYvHY9rWf5MySW/ayUyyXi/OmWAAAAAEWa49pd3b13tSa/f29cq1pzypNR80wQAAAFiUVCKmO3rzurM331SdO3vz2tKbb9nOEBJNMAAAAJqQa09pz70bFt0I39mb1557N2hVC88CSzTBAAAAaNL1HWk9cl+/Hr2vf95rhDPJmB69r1+fva9f13e05mK4y7VmIzYAAAAsa7n2lLZv7NaP3dKl/UPn9NjRUzozNq1MIqaOTEIThYoKlZp6cll94ofXauuGm5RrT7V0CcTlaIJnUSiW9fpUWZJ0cbqi6XJV2WRcndn6j+2GtqQy6eRSDhFARBVLFY1OliTNnE9d7SmlU0Q8gNZKJWK6cWVGP/v+Nbpr/Y2SrpFRHSmlk0ubUSTkDC5MlTRRrGrvsbN64rnTOjM2fdUxPbms7n/fGm3f2K2OdFwr21q7jgVANF2cLmu8UJl3Pq3IJNSZ5Zd1AK0xVazozelyPaOenSWjNtUzalU2qbb00rSj5pxbkm/cjIGBATc4OOhL7dcuFHRoeES7D5xQoVyb8/hMMqadW/t0R29eN67M+DImAJCkkQsFHVxEPm3pzStPPgHw2fnxekY9vH/+GbVrWz2jVq/wJ6PM7Hnn3MCMz9EE/4OR8YJ2PD2kwydHF/zazeu6tOeefuV9mkQA0UY+AQiy8+MFPdRERj1yT78vjfBsTTC7QzS8dmHxbzCSdPjkqHY8PaSR8YLHIwMQdSPkE4AAa6YBluoZ9dDTQzrf4oyiCVZ9DfCh4ZFFT94lh0+O6uCJEY1PlzwaGYCouzhd1kEP82miUPZoZABQXwPsWUYNj2iqVPFoZHOjCZY0Uaxq94ETntTafeCELhaqntQCgPFCxdN8ujDdujcYAMvfm9NlPbzfm4x6eP8JvTnVul/UI98EF4r1Kxjns4B7XvXKNe178awKRc62AGhOsVTxJZ+KLTzTAmD5Kper3mfUsbMql1tzMjHyTfDrU2U98dxpT2s+/uzpt/YXBoDFGp0s+ZJPl/YXBoBmjE4W9cSzfmRU0dOa1xL5Jtg5zbiHXTPOjE0rhJtuAAgY8glAkNV8yqhaizIq8k3wRMGfjwUninzcCKA55BOAILvoU0b5VfdKkW+Cp31ad1Jo0XoWAMsX+QQgyMKeUZFvgrPJuC91Mwl/6gKIDvIJQJD5llE+1b2S702wmd1lZi+b2StmtmOG5/+lmZ0wsyEzO2Rmb/d7TJfryPhzv2q/6gKIDvIJQJB1+pQlftW9kq9NsJnFJf2+pA9J6pN0v5n1XXHY30oacM71S3pS0mf9HNPVY5R6cllPa/bksjLztCSACCKfAARZzKeMirUoo/w+E7xJ0ivOue8450qSvixp++UHOOcOO+emGg+/Kelmn8f0fW5oS+r+963xtOYDm9aoqyPtaU0A0dPVnvIln1Z3kk8AmtfVntb9m3zooToznta8Fr+b4G5JZy57/Grja9fySUl/OdMTZvYpMxs0s8HR0eZuzXe5TDqp7Ru7lUl686PIJGO6+9ZupVu0ngXA8pVOJXzJpxRrggF4IJmMe59RG7uVjLfmkrXAXBhnZj8jaUDSozM975z7vHNuwDk30NXV5en37kjHtXPrlas0Fmfn1j51ZniDAeCNFZmEp/m0Mst6YADeWZVNatc2bzJq17Y+rWpLelJrPvxugs9K6rns8c2Nr30fM9si6d9Kuts515rbhFxmZVtKd/TmtXldc8315nVd2tKX14psyqORAYi6zmxSWzzMp45M695gACx/bemEdxnVm1dbqnW/qPvdBD8n6RYz+wEzS0n6mKR9lx9gZu+R9IeqN8DnfR7PNd24MqM99/QvehI3r+vSnnv6lV/RmnUsAKIjTz4BCLDVKzJ6pMmMeuSefq1ucUaZ8/n+mWb2YUm/Kyku6YvOuf9gZg9LGnTO7TOzg5I2SPpu4yWnnXN3z1ZzYGDADQ4O+jLe1y4UdGh4RLsPnFChXJvz+Ewypp1b+7SlL88bDABfjVwo6CD5BCCgzo/XM+rh/fPPqF3b+rSlN+9bA2xmzzvnBmZ8zu8m2A9+NsGSND5d0sVCVftePKvHnz09432xe3JZPbBpje7e2K3OdJwlEABaYqJQ1oXpyrzzaWUmwRIIAC0zVarozamy9h2bPaM+3sio69qSvi6BoAlepEKxrNenynJOmihWVKpUlUrE1ZFOyEzq6kizCwSAJVEsVTQ6WXornyrVqhLxf8in1Z1pdoEAsGTK5apGJ4uqOelioSJXq8picXVmEoqZ1NWZackuELM1wYHZHSKIrLGjvJkkJ9Vc/f9vbTQfwl8gACwPl05gXMqnclXfl0+16twfRQKAXyq1Wr1vkiQnFSr1/0v1fqpSqS7V0N7CXjkzuDhd1nihor3HzuqJ5659Kv/+963R9o3dWpFJqDPLx40A/HdhqqSJYnXe+dSRjmtlG8u1ALTG96ZKmlxARrWn47puiTKK5RBXWPSFJ7155Vdy4QkA/yz2wt07evO6kXwC4LMgZhRrgudpZLygHU8P6fDJhd+Rji2IAPiJfAIQZEHNKNYEz8PIhcVPniQdPjmqHU8PaWS84PHIAETda+QTgAALa0bRBKu+Bvjg8MiiJ++SwydHdfDEiCYKZY9GBiDqLkyVdMjDfBqfLnk0MgCorwH2MqMuTLUuo2iCJY0XKtp94IQntXYfOKEL0xVPagHARLHqaT5dLCz9FdkAlo9JjzNqoti6jIp8E1ws1XeBmM8C7vkolGva9+JZFUs0wgCaUyiWfcmnQpFPqwA0b9qnjJpuUUZFvgkenSzpiedOe1rz8WdPa3SSjxwBNOf1qbIv+fT6FE0wgOa94VNGvdGijIp8E+ycZtzDrhlnxqa5jwaAppFPAIIs7BkV+SZ4ouDPsoWJIsshADSHfAIQZGHPqMg3wdNlfxZgF3yqCyA6yCcAQRb2jIp8E5xNxn2pm0n4UxdAdJBPAIIs7BkV+Sa4I5MIVV0A0UE+AQiysGdU5JtgM6knl/W0Zk8uKzNPSwKIIPIJQJCFPaMi3wR3tad0//vWeFrzgU1rtLoz7WlNANFzQ1vSl3zq6iCfADTv+pBnVOSb4HQqoe0bu5VJevOjyCRjuvvWbqVYcwegSZl00pd8Svu0jg9AtGRDnlGRb4IlaUUmoZ1b+zyptXNrn1ZmWW8HwBsd6bin+dSZoQEG4J12jzOqI926jKIJltSZTWpLb16b13U1VWfzui5t6curI5P0aGQAom5lW0p3eJhPK7Ipj0YGANJ1HmfUyrbWZRRNcEN+ZUZ77ulf9CRuXtelPff0K78i4/HIAETdjeQTgAALa0aZC+H9MwcGBtzg4KAvtUcuFHRweES7D5xQoVyb8/hMMqadW/u0pS/PGwwAX712oaBD5BOAgApiRpnZ8865gRmfowm+2kShrAvTFe178awef/b0jPfF7sll9cCmNbp7Y7dWZhIsgQDQEuPTJV0sVOedT53pOEsgALTMhamSJorzz6iOVNzXJRA0wYtULFU0OlmSc/X7WBfKVWWScXWkEzKTVnem2QUCwJIoFMt6fap8zXzq6kizCwSAJTNdLOuNAGTUbE0w2xjMIhGPKZ2IqVJzisdMqbgpHjMl4qZEzBRnx3kASySZiCudqL6VT5nE9+dTIkY+AVg6qSsyKps0xQKWUTTBMyhVahqbLGn/0Dk9dvTUNU/lP3jbWm3rv0m59pRSCa4xBOA/8glAkIUpo1gOcYWxyZIODY9o596X5r2oe/f29bqjN69cO+vuAPiHfAIQZEHMKNYEz9MbE0XteOq4nhkeWfBr7+zNa8+9G3Q9tyMF4APyCUCQBTWjZmuC+YysYWyytOjJk6Rnhke046njenOy5PHIAEQd+QQgyMKaUTTBqq9fOTQ8sujJu+SZ4REdHB5RqTL3RwAAMB/kE4AgC3NG0QSr/hvMzr0veVJr596XNMbZFgAeIZ8ABFmYMyryTXC1WtP+oXPzWsA9H4VyvV61ytkWAM0hnwAEWdgzKvJN8NhUSY8dPeVpzceOntLYFGdbADSHfAIQZGHPqMg3wZWam3EPu2acGZtWpRa+XTcABAv5BCDIwp5RkW+CLxYqvtSd8KkugOggnwAEWdgzKvJNcLFc9acuV2ADaBL5BCDIwp5RkW+C08m4L3W5TSmAZpFPAIIs7BkV+STszCRCVRdAdJBPAIIs7BkV+SY4ETP15LKe1uzJZZWImac1AUQP+QQgyMKeUZFvgnNtKT1421pPaz5421rl2r2//zWAaCGfAARZ2DMq8k1wPB7Ttv6blEl686PIJOv14pxpAdAk8glAkIU9oyLfBEtSrj2l3dvXe1Jr9/b1yrWnPKkFAOQTgCALc0bRBKt+FeIdvXnd2Ztvqs6dvXlt6c1z5TUAz5BPAIIszBlFGjbk2lPac++GRU/inb157bl3g1ZxlgWAx8gnAEEW1owy58J3+8yBgQE3ODjoS+2xyZIODY9o596XVCjPvVlzJhnT7u3rtaU3zxsMAF+RTwCCLIgZZWbPO+cGZnyOJvhqpUpNY5Ml7R86p8eOntKZsWklYqZUIqZSpaZKzaknl9Unfnittm64Sbn2FB8xAmgJ8glAkAUto2iCF6lYqmh0siRJujhd0XS5qmwyrs5sfRPnro6U0kk2nQfQeuQTgCALSkbN1gSTkDOYKlb05nRZe4+d1RPPntaZsemrjunJZXX/pjXavrFbq7JJtaX5UQLwH/kEIMjClFGcCb7C+fGCDg6P6OH9J+a9nmXXtj5t6c1r9YqML2MCAIl8AhBsQcwolkPM0/nxgh56ekiHT44u+LWb13XpkXv6eaMB4AvyCUCQBTWjZmuCuVqioZnJk6TDJ0f10NNDOj9e8HhkAKKOfAIQZGHNKJpg1devHBweWfTkXXL45KgODo9oqlTxaGQAoo58AhBkYc4ommBJb06X9fD+E57Uenj/Cb05VfakFgCQTwCCLMwZFfkmuFyuau+xs/NawD0fhXJN+46dVblc9aQegOginwAEWdgzKvJN8OhkUU88e9rTmo8/e1qjk0VPawKIHvIJQJCFPaMi3wTXnGbcw64ZZ8amVQvfphsAAoZ8AhBkYc+oyDfBFwv+LMD2qy6A6CCfAARZ2DMq8k3wtE/rTgqsuQPQJPIJQJCFPaMi3wRnk3Ff6mZ8qgsgOsgnAEEW9oyKfBPcmfHnftV+1QUQHeQTgCALe0ZFvgmOmdSTy3pasyeXVcw8LQnNKBy5AAAH3ElEQVQggsgnAEEW9oyKfBPc1Z7W/ZvWeFrzgU1r1NXp/f2vAUQL+QQgyMKeUZFvgpPJuLZv7FYm6c2PIpOM6e6N3UrGI/+jBdAk8glAkIU9o0hCSauySe3a1udJrV3b+rSqLelJLQAgnwAEWZgziiZYUls6oS29eW1e19VUnc3rurSlN6+2FBedAPAG+QQgyMKcUTTBDatXZPTIPf2LnsTN67r0yD39Wr2CtXYAvEU+AQiysGaUORe++2cODAy4wcFBX2qfHy/o4PCIHt5/QoVybc7jM8mYdm3r05bePG8wAHxFPgEIsiBmlJk975wbmPE5muCrTZUqenOqrH3HzurxZ0/PeF/snlxWH9+0Rndv7NZ1bUk+YgTQEuQTgCALWkbRBC9SuVzV6GRRNVe/j3WhXFUmGVdnJqGYSV2dGa6yBrAkyCcAQRaUjJqtCeb0wCySybhuuq5tqYcBAFchnwAEWRgyitMEAAAAiByaYAAAAEQOTTAAAAAihyYYAAAAkUMTDAAAgMihCQYAAEDk0AQDAAAgcmiCAQAAEDmhvGOcmY1K+vsl+NY3SHp9Cb4v/MW8Ll/M7fLF3C5PzOvytVRz+3bnXNdMT4SyCV4qZjZ4rVvvIbyY1+WLuV2+mNvliXldvoI4tyyHAAAAQOTQBAMAACByaIIX5vNLPQD4gnldvpjb5Yu5XZ6Y1+UrcHPLmmAAAABEDmeCAQAAEDk0wQAAAIgcmuArmNkXzey8mb10jefNzH7PzF4xsyEze2+rx4iFm8e8frwxn8fN7Btmdmurx4jFmWtuLzvufWZWMbP7WjU2NGc+c2tmt5vZMTP7lpn9TSvHh8WbRyavNLO/MLMXG3P7860eIxbOzHrM7LCZnWjM26/NcExg+iia4Kt9SdJdszz/IUm3NP77lKT/2oIxoXlf0uzz+neSPuic2yBptwK4gB/X9CXNPrcys7ikRyR9pRUDgme+pFnm1syuk/QHku52zr1b0k+3aFxo3pc0+7/bX5Z0wjl3q6TbJf0nM0u1YFxoTkXSp51zfZI+IOmXzazvimMC00fRBF/BOfc1SWOzHLJd0p+4um9Kus7M3taa0WGx5ppX59w3nHNvNh5+U9LNLRkYmjaPf7OS9CuSnpJ03v8RwSvzmNsHJD3tnDvdOJ75DYl5zK2T1GlmJqmjcWylFWPD4jnnvuuce6Hx54uShiV1X3FYYPoomuCF65Z05rLHr+rqCUa4fVLSXy71IOANM+uW9E/EpzbL0TslrTKzI2b2vJn93FIPCJ75L5J6JZ2TdFzSrznnaks7JCyEma2V9B5J//eKpwLTRyWW4psCQWVmm1Vvgn90qccCz/yupIecc7X6SSUsIwlJPyTpDklZSUfN7JvOuW8v7bDggZ+SdEzST0j6QUnPmNn/cc6NL+2wMB9m1qH6p2//IshzRhO8cGcl9Vz2+ObG1xByZtYv6Y8kfcg598ZSjweeGZD05UYDfIOkD5tZxTn350s7LHjgVUlvOOcmJU2a2dck3SqJJjj8fl7SHle/mcErZvZ3ktZJenZph4W5mFlS9Qb4fzrnnp7hkMD0USyHWLh9kn6ucXXjByRdcM59d6kHheaY2RpJT0v6Wc4iLS/OuR9wzq11zq2V9KSkX6IBXjb2SvpRM0uYWZuk96u+BhHhd1r1M/wys7ykd0n6zpKOCHNqrOH+Y0nDzrnfucZhgemjOBN8BTN7QvUrUW8ws1cl/aakpCQ55/6bpP8t6cOSXpE0pfpvqwi4eczrLknXS/qDxhnDinNuYGlGi4WYx9wipOaaW+fcsJn9laQhSTVJf+Scm3WrPATDPP7d7pb0JTM7LslUX9L0+hINF/P3I5J+VtJxMzvW+Nq/kbRGCl4fxW2TAQAAEDkshwAAAEDk0AQDAAAgcmiCAQAAEDk0wQAAAIgcmmAAAABEDk0wACwxM5vwoeZGM/vwZY9/y8x+w+vvAwBhRRMMAMvTRtX34gQAzIAmGAACxMw+Y2bPmdmQmf27xtfWmtmwmX3BzL5lZl8xs2zjufc1jj1mZo+a2UtmlpL0sKSPNr7+0Ub5PjM7YmbfMbNfbby+3cwOmNmLjdd+dMaBAcAyQxMMAAFhZj8p6RZJm1Q/k/tDZvbjjadvkfT7zrl3S/qepHsbX//vkn7RObdRUlWSnHMl1e+C+KfOuY3OuT9tHLtO0k816v+mmSUl3SXpnHPuVufcekl/5fffEwCCgCYYAILjJxv//a2kF1RvWm9pPPd3zrlLtyF9XtJaM7tOUqdz7mjj64/PUf+Ac67YuP3seUl5Sccl3Wlmj5jZjznnLnj49wGAwKIJBoDgMEm/3Th7u9E59w7n3B83nitedlxVUmIR9a+q4Zz7tqT3qt4M/3sz27WYgQNA2NAEA0Bw/LWkXzCzDkkys24zW32tg51z35N00cze3/jSxy57+qKkzrm+oZndJGnKOfc/JD2qekMMAMveYs4kAAB84Jz7ipn1SjpqZpI0Ieln1Fjrew2flPQFM6tJ+htJl5YzHJa0w8yOSfrtWV6/QdKjjdeXJf2z5v4WABAO5pxb6jEAABbJzDqccxONP++Q9Dbn3K8t8bAAIPA4EwwA4bbVzP616nn+95I+sbTDAYBw4EwwAAAAIocL4wAAABA5NMEAAACIHJpgAAAARA5NMAAAACKHJhgAAACR8/8BlHqEHe77basAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf5SUZ33//9c1v3Z2B0gYWDYCi5tohCGwiXFNQ9QYZDEqmLUQrUnbD1ZP0u9Hq1atStVNLXz1oLb1Wz36aWP1SP02+olJWghJvwmQRD+1pMkSyUJYiGkk/EqWDcOv/TE7v67vH7OLBBaY2bnv4b65n49zcsLM7L65spPz2vd9zXVfl7HWCgAAAAiS0IUeAAAAAFBrNMEAAAAIHJpgAAAABA5NMAAAAAKHJhgAAACBE7nQAxiPqVOn2paWlgs9DAAAAHjY1q1bX7XWNo71mi+b4JaWFnV1dV3oYQAAAMDDjDEvne01lkMAAAAgcGiCAQAAEDg0wQAAAAgcmmAAAAAEDk0wAAAAAocmGAAAAIFDEwwAAIDAoQkGAABA4PjysIxaGc7m1TeQlSSdGMprKFdQfTSsifWlH1tjIqa6GD9CALV3Rj7lC6qPkE8AvMEPPRQJOYYTQzkdz+S1btsB/fTpvdqXHjrja5qT9brtrbPUcc0MTYpHNLE+egFGCiBoRvPpwWcP6l+eeums+fSH171e7796OvkEoKb81EMZa+0F+Yur0dbWZt06Nrn3WEabenq1+qGdyuSK5/36eDSkziVz1Z5qUtMlcVfGBABSKZ8e231If/3gc2Xn01+9/yq9a/Y08gmA67zYQxljtlpr28Z8jSb4d3qPZ7TygW49vquv4u9dOKdRa5a1qmkSv2gAOK/3eEZfemC7Nu86VPH3LpozTV9fNp98AuAar/ZQ52qCuTFuRO+xjP5ynG+eJD2+q09/+UC3eo9nHB4ZgKDrPTb+BliSNu86pC89sJ18AuAKv/ZQNMEqrV/ZvKtXj43zzRv12K4+be7pVX8m59DIAATdiaGcHt99aNwN8KjNuw7pid2HyCcAjjoxlNOmHn/2UDTBko5n8lq1YacjtVZt2KljQ3lHagHAieG8vvrgc47U+qv1z+l4hnwC4JzjmbxWP+TPHirwTfBwNq8Huw+WtYC7HJlcURu6D2o4yy8aANUZzua1gXwC4FF+76EC3wT3DWT1L//1kqM1/9//eunk3ngAMF6HB7P6yZPO5tNPnnxJhwfJJwDV83sPFfgmWNKYe9h5qR6AYCoU3cmngjOTNgDg6x4q8E3wCZfWx/Wz7g5AlQaG3cmRAZZDAHCA33uowDfBw7mCK3UzeaZaAFRnyK18yrpTF0Cw+L2HCnwTHIu48yOoCwf+RwugSnUu5ZNbuQcgWOoiYXfq1qiHCnwSJuoirtRtqHPnfwwAwTEh7k4+uVUXQLC41evUqocKfBMsSc3Jek/XAxBMRsaVfDIyjtYEEExW7vRQ1tGKZxf4Jrg+FtLya2c6WvPWa2eqPspMMIDqxKNGtzqcTx98C/kEwBkNLvVQDTXKqMA3wfmCtGjONMWjzvwo4tGQ3jVnmgrFWl3HALhYRSMhLb16uqP5tKR1umIRZoIBVC+bt670UNka7eMY+Ca4MRFTtmDVuWSuI/U6l8xVrlDU1Il1jtQDEFwTY1FNiEX0hZtnO1LvCzfP1oRYRIm6qCP1AARbYyKmA8eG9HmHMurzN8/WwaNDmlajHirwTXA0GtZlk+JKJmK6aXZjVbVumt2oZCKmpkn1irI7BIAqhcMhRcLSu6+6TAvnVJdPC+c06t1XXaZoWAqHmAkGUL26WEStMy5V8+QGLZozrapai+ZMU/PkBs2fealiLu06cbrAd2qFQlEPb39Zf/HzZ3XnjVeMuxG+aXaj7rzxCv3Fz5/VwzteVoEjmQA4IF+UtrxwWHe8o7p8uuMdV2jLC4eVI5oAOCgSKt3A+6lFV1aVUZ9adKWak/WK1PAiPfBN8OGBrP75yT0ayBZ0x9ouffAtzepcmip7fUs8GlLn0pQ++JZm3bG2SwPZgv55yx4drtG51wAuXrlcQScyeXWu3+FIPnWu36H+TF45lza4BxAshUJR2/Yd1a/3HtPtP3iyqoy6/QdPatveY9q2/2jNJhID3wTnCsWT51QPZAv6xD3PaNveo/rZHdfrM+1XnnXrj+ZkvT7TfqV+dsf12rb3qD5xzzMaGDmFaV96SDlmggFU6Wgmq4e6DyqTKzqST5lcUQ9tP6ijGS7SAVTv8EBWr7skrlUbnnMko/56w3N63aR4zSYSA79j+ljnXj/Y/bIe3vGKFs2Zpr9492xNv7ReuUJRmVxR8WhI0XBIB48OaUP3y/rOYy+MuRPEieHanHsN4OI1nLe675n9r3mu2nz6+db9WubwlkYAAspYbd51SJlT1llVk1GZXFGP7Tqk265rrsnwA98EZ86yQK5QtHp0Z68e3dkrqbTmJRYJKZsvKl/G9mfDLLwDUKWitSc/qTpVNfm0Lz2komULRwDVG8oWdf9pF+pSdRl13zP79YE3z3BlvKcLfBNc7n6Z+aJVPlv+OroYu0MAqNJYn1SNpdJ86s+wJhiAM8a6UD9dJRlVTj2nBL5TS9S5cx1Qq3OvAVy8snl3PlHK5mmCAVRvwKWln4MVXNRXI/BNsOTOudcAUC23jjeOc2wyAAdk8+4srXJrAuB0gW+C610699qtX14AgmNC3J1PqtyqCyBYnDou+XR1kdq0p4FvgmWNK+deiwOZAFQpFg658kkV9ywAcMJEly6o3ap7usAn4ZRETC8fyzh67vXLxzOakqjNudcALl5TEjH98fUtjtb8HwtaNGUC+QSgelGXLtSjzATXRjgcUuvMSzT9kvpxH/c36qbZjZp+Sb1aZ1yicA2P/QNwcQqHQ3r/1a9z9JOqpa2vI58AOGJKIqb/4caFeo0mEgPfBEtSMlGnoVxed954RVXnXt954xUayhWUZBYYgEOmJOq06parHKm1quMqPqUC4Bg3LtTfX8MLdZpgSbFISDfNbtJ9Xfv05fel9LUPzDvjDY2EjBpiYUVOe2Pi0ZC+9oF5+vL7Urqva58Wzp6mWI2m8QFc/GKRkNrnXqb21LSq6rSnpmlx6jLyCYCjkok6repw6kJ9Xk0nEo314clBbW1ttqury/G6h45n9MUHujUhFtHH3n659qYHFYuENHVCnYbzRWVyBcWjYdVFQnq1f1jZXFGzpjToh//xW/Vn8/rGslZNmxR3fFwAcLh/WF+8v1ubeg6d8dr5TmNqT03TN5a3shYYgCvSA1l94b5nx8wnqbwT49pT0/StW6/W5ETM0bEZY7Zaa9vGHJejf5OPpQey+vK/7tDju/p0y9XTJSO9lB7UvV37xjy9pDlZrw+1NWvW1AYZY/T4rj59+V936Ju3tjr+BgJAsWj10bddrgVvmKK/2/i83v7GqXrf/NdpxqX1Z1ykHzg6pIe6X9av/vtVfXbxm5S6bJKKZRz3DgDjkUzE9PXfny9rt2vzrkMKh4zaU9POm1Gbdx1SoWi1aM40ff3359e8f2ImWKVNmddtO6Cvrn9O37z1ar1yfEjfemS3Mrnzb9Ycj4b0+Ztn67JJ9frCfc/qq7dcpY5rZvCRIwDHjH5K9fiuPnUuTendcy/Tg88e1E+f3nvWi/Tb3jpL7796uh7d+YpWb+jRwjmNfFoFwBXpgay+tmGn/q+b3qADR4Z0aSKmJ3Yf0v3P7D9rRi2/dqZumj1NRweymjG5Xv/wxH/rK0vn1nQmmCZY0ivHMlrynV/qu7dfq7t/+aKe2N1XcY3RG+M+ec8zeuhTN+qyS/hFA6B6g8N5/du2A/raQz1VX6R/eUlKH3jzDDXE+BAQgDOy+aIe6j6o111ar2LR6oVD/fr6v/eUnVFfem9Kb5w2QaGQ0ctHh7SkdbqjE4k0wedQKBT1o//co+mX1OvnW/eNqwEeddPsRn3wLc16+diQ/uSGFoXZkB5AlQ4cHdIt3/0/jl2kr//kOzTjUo52B+CMV45l1L3/qJomxfXtTc+PO6M+0/4m9R7PqHXmpY5OJJ6rCQ58l5YezGr/kUG9cnyoqgZYkp7Y3adXjg9p75FBpQezDo0QQFDlcgWt23ZAqzrmj7sBlkrZdPcvX9Sqjvlav+2AcrmCwyMFEESFQlHbDxzVjMn1426ApVJGfXvT85oxuV7bDxxVoXD+WWQnBL4Jzhesfv+aGfrWI7sdqfetR3Zr2TUzlC/4b4YdgLf0DQyr93jG0Yv0l49n1Dcw7NAIAQRZejCrK6Ym9OSLhx3JqCdfPKwrGhM1m0gMfBOcKxT1xPN9Za1dKUcmV9Qvnu9TvlibqxgAF6+ilSsX6WwUAcAJxkhWxtGMstbI1OhQy8A3wYWi1f3P7He05n3P7D/rPngAUK5C0bpykV4gnwA4IF+weqj7oKMZ9fD2g8rV6NP0wDfB4ZAZc/uOauxLD9XsyD8AFy+3LtJpggE4IVewus/hjPr51v01W1Ia+CZ4IOvODSKDw9x4AqA6EZcu0k8//h0AxsNa60pGWdEE18SwS3dJZ/KsCQZQnUG3LtLZHQKAA/qH8y7VrU1GBb4JjkfD7tTlxDgAVcq41KwOO7R+D0CwDbs04Zet0YV64Du1CXF3Tk5yqy6A4IjHXLpIjwY++gE4oN6tiUSX6p6OJFTpDGsv1wMQTAmXjjfm2GQATkjUuZMlbtU9XeCb4LpISMuvnelozVuvnal4pDZXMQAuXsa4c5Feqz04AVz8/DyRGPgm+MhgTje9qdGxjwfj0ZDe+aZGHeHYZADVsnLlIt2yQxoAB2TzRf3R773e0Zp/fP3rla3R5gKBb4IzuYJ+9Ks9+vzNsx2p9/mbZ+uH//FbdocAULX0YNaVi/SjQzlH6gEItkLR6p2znc2oG69srNle5oFvgmORkNY/e1CXTarXTbMbq6p10+xGXTapXg92v6xomM8bAVQnFg65cpEeZZ9gAA5oqAvr+4//t+5aepUj9f5q6VX63uMvqKGOG+NqYsLI4usv3Pes7rzxinE3wjfNbtSdN16hL9z37GvqAsB4Jeoirlyk1+qmEwAXv1/vO6JkIqpFc6ZVVWfRnGmanIhq2/6jDo3s/ALfBBeKVs3Jeg1kC7pjbZc++JZmdS5NlT21H4+G1Lk0pQ++pVl3rO3SQLag5mQ9x5ICqFrRlvLJyYv05mS9iiwKBuCEkfsWPnfvs7rjxivG3QgvmjNNd9x4hT5377M1vW8h8E1wvmBP3ngykC3oE/c8o217j+pnd1yvz7Rfeda7FJuT9fpM+5X62R3Xa9veo/rEPc+cPIL51mtn0gQDqFquUNTya2c6epF+67UzlStwzwKA6h0eKN23ULBWH/vx01p27UytuuWqijJq1S1Xadm1M/WxHz+tgrWlzQUGarO5gLE+nBFoa2uzXV1djtTqefm4hnMFffgHTypzyilK4ZDRojnTtKT1dZp+ab1yhaIyuaLi0ZCi4ZAOHh3Shu6X9diuQ69peOPRkH52x/Wqi4aVet0kR8YIIJh2HjymbL74mnx6f+vr9LG3X65fPN+n+57Zr33poTO+rzlZr1uvnal3vqlRP/yP3+rB7pcl/S6fYpGQ5k6/pKb/LQAuPrtePq7vP/Hfurr5Eq3e0CNpJKPecbn+4zev6n937TtrRv1BW7PefuVU/fD//C6jOpemShOLC9+oOQ71UMaYrdbatjFfC3oTvC89qG89svs1b+BYIiGjWCSkbL6o/DlmeUffwC+8Z46akw2OjBFAMO09PKC/efT5M/JpvBfpo/n0+Ztna9aUxIX4TwJwEdmbHtSN33xc37v9Wv186z49sbtP0tgZNZwrqu4cGXXT7EZ98C3N+sQ9z+iXX1ioWQ71UOdqggN/d0TBWv163xHdfNVluml248k38HT5olU+e+6zrEdvPNm2f48KPry4AOAtxpgx86lQtHp0Z68e3dkrqbyL9FPzyXBaBgAHFIrFk/ct/GBFqc98YndfxRk1et/CHWu7Ru6rYp/gmiiMrAl28saTW6+dqUKBJhhAdeqiRreWkU/5otVgtnDOBng0nz74lpmqiwQ++gE4IGxMWfctnC2jznbfQrhGF+qBT8JcoXhyUbcTN56MLurmxhMATljSOt3RfHrf/OkujxhAYBhz8kAfJzYXGD3Qp1Znu7MmeIw1wdXceMKaYABO2Z8elJX06M5XHMund8+9TEbSTPIJQJV++2q/fvyfezQr2eDYfQsvpQf10RsuV8tUZ+5bYE3wOeSLxTPW3D3Y/bIe3vGKFs2Zpr949+xzvoHfeeyF1yzqPrkmmC3SAFTpyGBW9dGQrr9iiiP5dP0VU5TJ5TWct5p5gf/bAPhfNBTS5IbYyQN9nLhvoT+TV7hGp1oGvgmOhkL6g7ZmRxd1f3zhG2r2BgK4eNVFw/rOYy/of950hT7T/iZJ48+nz7S/SSEjfWfzC/rkoitr+t8B4OIUDpeWQ3xs7dP67u3XStKYGwycb3OB0R7qk/c8ox+ueKsiYdYE10Q4bPT2N04975q7chd1F6zV294wtWZvIICL18R46djklw4PKWSkO99xxbjy6c53XKGQkV46PKQHu1/WxHjg5z8AOCASMvrXbQf08YVvdOS+hY8vfKMe2HZAkRpNJAa+CR59Az9/82xHFnV//ubZNX0DAVy8IiGj5mS9PnfvtpMnUs5KNuhndy4oL5/uXHByr82BbEGfu3ebmpP15BMARyQbYmqe3KDLJtXrrZcnq+qh3np5UpdNqtesyQ1KJupqMv7ATwec+gY6tSbYWtXsDQRw8Uo2xLRiQYv+74d69LEfP61v3nq1YpFSA3v5lIS+/L6UpkyoOyOfDvcPazj/ux1qjgzm9IX7ntVAtqDPLGghnwA4IhwOaWnrdC35zi9PLocYTw916nKIhz51I2uCa2WsN7CaNcG1fgMBXLxG8+lvHt198pOq0d0hTmVU2q/zjNSxVuu3HXzNsclLW6eTTwAck0zEtPK9Kd2xtkvfvPVqvePKqfrWI7vL6qHi0ZC+9L45umxSve5Y26Wv3nKVkolYzcYe+OUQ0mvfwGrXs6x8b6qmbyCAi1syEdPqjnknHz/Y/bKW/8MWbdj+8snZXiMpZHSyCR7OF7Vh5OtGG2BJWt0xj3wC4KhYJKRFqSbd8IapVS2HuOENU9WealKshof5BH4mWPrdG/joc70nZ1p+dsf12pseVCwS0tQJdRrOF5XJFRSPhlUXCenV/mFlc0XNmtIwsg9njxanmmr+BgK4uI3m0+JUkzb29J58fnQveSOpYKVcsahQKHwy1E+f6yWfALglmYhpzfL50v2lC/VHdvbq04veqH/847coEYuoP5PXUK6g+mhYE+IRDWTzeqznkD5095PK5otanGrSmuXzNbnGF+k0wSNOfQONKU2pvJQe1L1d+866Gf2H2po1a2qDjDEX7A0EcPE7NZ/qY2F99G0teuL5Pv3No7vPmk/Lr52pj9/0Bv3oV3s0lC2QTwBcNWVCnb5xa6tWHDymCfGonth9SH/6k63nzKh7/3SB+jM5XTX9kguST4E/Me50h45ntKmnV6s27FQmd/6jj+PRkO5aOlftqSZNmxR3ZUwAIJFPALwtPZDVpp5e3bVuR9kZtapjntpTTa4t1TrXiXGuN8HGmPdI+ntJYUn/ZK1dc9rrsyStlXTpyNestNY+fK6abjXBh/uHtfL+7a/5yLFcozPBUyZw1zUA55FPALzMqxl1ribY1cVhxpiwpO9Jeq+kuZJuM8bMPe3LviLpXmvtmyV9WNL33RzT2aQHsuN+8yRpY0+vVt6/XUcGsg6PDEDQkU8AvMyvGeX2HRLXSXrBWvuitTYr6WeSOk77Gitp0sifL5F00OUxnSGbL2pzT++437xRG3t6tamnV9n8+T8CAIBykE8AvMzPGeV2EzxD0r5THu8fee5UX5X0R8aY/ZIelvTJsQoZY+40xnQZY7r6+s48l7oa6YGsOtftcKRW57odSjPbAsAh5BMAL/NzRnlhr5zbJP3YWjtT0vsk/cQYc8a4rLV3W2vbrLVtjY2Njv3lhUJRG7oPlrWAuxyZXKleocBsC4DqkE8AvMzvGeV2E3xAUvMpj2eOPHeqj0m6V5KstVskxSVNdXlcJ6UHs1q7ZY+jNddu2aP0ILMtAKpDPgHwMr9nlNtN8NOSrjTGXG6Mial049v6075mr6RFkmSMSanUBDu73uEc8kU75h521diXHhrzaGUAqAT5BMDL/J5RrjbB1tq8pD+T9IikHpV2gXjOGLPKGHPLyJd9TtIdxphnJf1U0kdsDTcvPpHJu1K336W6AIKDfALgZX7PKNdPjBvZ8/fh056765Q/75T0NrfHcTbDuYI7dbkDG0CVyCcAXub3jPLCjXEXVF007ErdWCTwP1oAVSKfAHiZ3zMq8Ek4Me7OZLhbdQEEB/kEwMv8nlGBb4IjIaPmZL2jNZuT9YqEjKM1AQQP+QTAy/yeUYFvgpMNMa1Y0OJozRULWpRMOH/+NYBgIZ8AeJnfMyrwTXA4HNLS1umKR535UcSjpXphZloAVIl8AuBlfs+owDfBkpRMxLS6Y54jtVZ3zFMyEXOkFgCQTwC8zM8ZRROs0l2Ii1JNWpxqqqrO4lST2lNN3HkNwDHkEwAv83NGkYYjkomY1iyfP+43cXGqSWuWz9dkZlkAOIx8AuBlfs0oU8PD2RzT1tZmu7q6XKmdHshqc0+vOtftUCZ3/s2a49GQVnfMU3uqiV8wAFxFPgHwMi9mlDFmq7W2bczXaILPlM0XlR7IakP3Qa3dsmfMc7Gbk/X6yA0tWjJ/upKJGB8xAqgJ8gmAl3kto2iCx2k4m1ffQFbWSv3DeWVyBcWjYU2oi8gYadqEOsVcOi0FAM6FfALgZV7JqHM1wRwbNIbB4byODOW0btsB/fSpvdqXHlIkZBSLhJTNF5UvWjUn63XbdbPUcc0MTa6PqqGOHyUA95FPALzMTxnFTPBpDh3PaFNPr1Zt2Fn2epa7ls5Ve6pJ0ybFXRkTAEjkEwBv82JGsRyiTIeOZ/TFB7r1+K6+ir934ZxGfWNZK79oALiCfALgZV7NqHM1wdwtMaKaN0+SHt/Vpy8+0K1DxzMOjwxA0JFPALzMrxlFE6zS+pVNPb3jfvNGPb6rT5t6ejWYzTs0MgBBRz4B8DI/ZxRNsKQjQzmt2rDTkVqrNuzUkcGcI7UAgHwC4GV+zqjAN8G5XEHrth0oawF3OTK5otZvO6BcruBIPQDBRT4B8DK/Z1Tgm+C+gWH99Km9jta856m96hsYdrQmgOAhnwB4md8zKvBNcNFqzNNMqrEvPaSi/zbdAOAx5BMAL/N7RgW+CT6RcWcBtlt1AQQH+QTAy/yeUYFvgodcWneSYc0dgCqRTwC8zO8ZFfgmuN6lc6vjNTgPG8DFjXwC4GV+z6jAN8ET4+6cV+1WXQDBQT4B8DK/Z1Tgm+CQkZqT9Y7WbE7WK2QcLQkggMgnAF7m94wKfBPcmKjTbdfNcrTm7dfNUuNE58+/BhAs5BMAL5vSENNtb3U+o6Ym6hyteTaBb4Kj0bA6rpmheNSZH0U8GtIt18xQNBz4Hy2AKpFPALzs+HBe7796uqMZtbR1uo5lanNqHEkoaXJ9VHctnetIrbuWztXkhqgjtQCAfALgVfmi1cadr6hziTMZ1blkrh597hXla7RRME2wpIa6iNpTTVo4p7GqOgvnNKo91aSGGDedAHAG+QTAq05k8lq1oUfXXZ50JKOuuzyp1Q/1qJ99gmtr2qS4vrGsddxv4sI5jfrGslZNm8RaOwDOIp8AeNHwyH6+t//gSa26ZV5VGbXqlnm6/QdPlurmi46N8Vxogk8x+ovm678/r+z1LfFoSF///Xn8ggHgKvIJgNfUjezn29ef1bLv/0pfem9KX/tAZRn1tQ/M05fem9Ky7/9Kff1ZSVIsUpv2lM/FTjNtUlwfePMMvXP2NK3fdkD3PLV3zHOxm5P1+sPrZumWa2bo0oYoHzECcB35BMBLTt3Pt68/q8Xf/qU6l6S08TPv1Ibug+fMqNuvm6WlrdP16HOvaPG3f3nWum4y1tZm8bGT2trabFdXl+t/Ty5XUN/AsIq2tO4lmy8oFglrYjyikJEaJ8a5yxrABUE+AbjQ+k5ktOx//ecZjW4sEtKn3vVGvSs1TQ2xiAaG88rmi4pFQkrURTSYzeuxnkP6zmMvKHva0ofmZL0e+J83OLaVozFmq7W2bazXSMhzCIWMouGQwiGjcMgoZMzJP0fDIX54AC4Y8gnAhZZsiGnFgpYzni8UrbYfOKbf9Pbr1RPDOjaY09HBnI4N5vTqiWH9prdf3fuPqTDGLhArFrQoWaN9gvmMbAzZfFHpgaw2dB/U2i17zjqVv2JBi5a2TlcyEavZ+hUAwUY+AfCKcLi0r+/fPLpbmVxpRveWq6fro29r0RPP9+lvHt191oxafu1MffymN+hHv9qj9c8elPS7fYLDNToyjuUQp0kPZLW5p1ed63acfEPPJR4NaXXHPC1KNSmZiLkyJgCQyCcA3pPNF7Vu2wF9df1z+uatV+uV40P61iO7y86oz988W5dNqtcX7ntWX73lKnVcM8PRC/dzLYegCT7F4f5hrbx/uzb29Fb8vYtTTVqzfL6mTKjNFD6AYCGfAHhVeiCr/elB/d2m5/XE7r6Kv/+m2Y36bPub1Jxs0GSHL9hZE1yG9EB23L9gJGljT69W3r9dRwayDo8MQNCRTwC87juP/WZcDbAkPbG7T9957DcOj+j8aIJVmsrf3NM77l8wozb29GpTT+8ZdzoCwHiRTwC8bDSjNvUcqqrOpp5DNc8ommCVZlk61+1wpFbnuh1KM9sCwCHkEwAv83NGBb4JLhSK2tB9sKwF3OXI5Er1CgVmWwBUh3wC4GV+z6jAN8HpwazWbtnjaM21W/YoPchsC4DqkE8AvMzvGRX4JjhftGPuYVeNfekh5cfYABoAKkE+AfAyv2dU4JvgE5m8K3X7XaoLIDjIJwBe5veMCnwTPJwruFOXO7ABVIl8AuBlfs+owDfBddGwK3U5phRAtcgnAF7m94wKfBJOjEd8VRdAcJBPALzM79gIIEgAACAASURBVBkV+CY4EjJqTtY7WrM5Wa9IyDhaE0DwkE8AvMzvGRX4JjjZENOKBS2O1lyxoEXJRJ2jNQEED/kEwMv8nlGBb4LD4ZCWtk5XPOrMjyIeLdULM9MCoErkEwAv83tGBb4JlqRkIqbVHfMcqbW6Y56SiZgjtQCAfALgZX7OKJpgle5CXJRq0uJUU1V1Fqea1J5q4s5rAI4hnwB4mZ8zijQckUzEtGb5/HG/iYtTTVqzfL4mM8sCwGHkEwAv82tGGWv9d3xmW1ub7erqcqV2eiCrzT296ly3Q5nc+TdrjkdDWt0xT+2pJn7BAHAV+QTAy7yYUcaYrdbatjFfowk+UzZfVHogqw3dB7V2y54xz8VuTtbrIze0aMn86UomYnzECKAmyCcAXua1jKIJHqdCoaj0YFb5olV/Jq/hfFF1kZAmxCOKhIySiTrusgZwQZBPALzMKxl1riaY6YEyWUlGVq+5ZPDhBQSAiw/5BMDLvJpRnJ05hnKn8lcsaNHSVj5uBFA75BMAL/NTRrEc4jTjXdS9KNXE/psAXEU+AfAyL2YUa4LLdLh/WCvv366NPb0Vf+/o9h5TJnAcKQDnkU8AvMyrGcWa4DKkB7LjfvMkaWNPr1bev11HBrIOjwxA0JFPALzMrxlFE6zS+pXNPb3jfvNGbezp1aaeXmXz5/8IAADKQT4B8DI/ZxRNsEpXMJ3rdjhSq3PdDqWZbQHgEPIJgJf5OaMC3wQXCkVt6D5Y1gLucmRypXqFArMtAKpDPgHwMr9nVOCb4PRgVmu37HG05tote5QeZLYFQHXIJwBe5veMCnwTnC/aMfewq8a+9JDyRf/tugHAW8gnAF7m94wKfBN8IpN3pW6/S3UBBAf5BMDL/J5RgW+Ch3MFd+pyBzaAKpFPALzM7xkV+Ca4Lhp2pS7HlAKoFvkEwMv8nlGBT8KJ8Yiv6gIIDvIJgJf5PaMC3wRHQkbNyXpHazYn6xUJGUdrAgge8gmAl/k9owLfBCcbYlqxoMXRmisWtCiZcP78awDBQj4B8DK/Z1Tgm+BwOKSlrdMVjzrzo4hHS/XCzLQAqBL5BMDL/J5RgW+CJSmZiGl1xzxHaq3umKdkIuZILQAgnwB4mZ8ziiZYpbsQF6WatDjVVFWdxakmtaeauPMagGPIJwBe5ueMIg1HJBMxrVk+f9xv4uJUk9Ysn6/JzLIAcBj5BMDL/JpRxlr/HZ/Z1tZmu7q6XKmdHshqc0+vOtftUCZ3/s2a49GQVnfMU3uqiV8wAFxFPgHwMi9mlDFmq7W2bczX3G6CjTHvkfT3ksKS/slau2aMr/mQpK9KspKetdbefq6abjbBkpTNF5UeyGpD90Gt3bJnzHOxm5P1+sgNLVoyf7qSiRgfMQKoCfIJgJd5LaMuWBNsjAlLel7SYkn7JT0t6TZr7c5TvuZKSfdKepe19ogxZpq19tC56rrdBI8qFIpKD2aVL1r1Z/IazhdVFwlpQjyiSMgomajjLmsAFwT5BMDLvJJR52qC3T6S4zpJL1hrXxwZyM8kdUjaecrX3CHpe9baI5J0vga4lsLhkBonxksPLrmwYwGAU5FPALzMDxk1rvlnY0yyzC+dIWnfKY/3jzx3qjdJepMx5lfGmCdHlk8AAAAArjlvE2yM+copf55rjHle0lZjzB5jzO85MIaIpCsl3STpNkk/MMZcOsY47jTGdBljuvr6+hz4awEAABBU5cwELzvlz9+S9Glr7eWSPiTp2+f53gOSmk95PHPkuVPtl7TeWpuz1v5WpTXEV55eyFp7t7W2zVrb1tjYWMawAQAAgLFVuhxiurX23yXJWvuUpPrzfP3Tkq40xlxujIlJ+rCk9ad9zb+pNAssY8xUlZZHvFjhuAAAAICylXNj3BXGmPWSjKSZxpgGa+3gyGvRc32jtTZvjPkzSY+otEXaj6y1zxljVknqstauH3nt3caYnZIKkj5vrT083v8gAAAA4HzKaYI7TnsckiRjTJOk/3W+b7bWPizp4dOeu+uUP1tJnx35BwAAAHDdeZtga+0vzvJ8r6TvjT42xnzXWvtJB8cGAAAAuMLJIzre5mAtAAAAwDWcpQkAAIDAoQkGAABA4DjZBHNIPQAAAHyh7CbYGDP/PF/y91WOBQAAAKiJSmaCv2+MecoY83FjzCWnv2it/bFzwwIAAADcU3YTbK19h6Q/VOkY5K3GmHuMMYtdGxkAAADgkorWBFtrfyPpK5K+KOmdkr5jjNlljFnmxuAAAAAAN1SyJrjVGPNtST2S3iXp/dba1Mifv+3S+AAAAADHlXNs8qjvSvonSV+y1g6NPmmtPWiM+YrjIwMAAABcUkkTvETSkLW2IEnGmJCkuLV20Fr7E1dGBwAAALigkjXBmyTVn/K4YeQ5AAAAwFcqaYLj1tr+0Qcjf25wfkgAAACAuyppggeMMdeOPjDGvEXS0Dm+HgAAAPCkStYE/7mknxtjDqp0RPJlkv7AlVEBAAAALiq7CbbWPm2MmSNp9shTu621OXeGBQAAALinkplgSXqrpJaR77vWGCNr7T87PioAAADARWU3wcaYn0h6g6RtkgojT1tJNMEAAADwlUpmgtskzbXWWrcGAwAAANRCJbtD7FDpZjgAAADA1yqZCZ4qaacx5ilJw6NPWmtvcXxUAAAAgIsqaYK/6tYgAAAAgFqqZIu0XxhjXi/pSmvtJmNMg6Swe0MDAAAA3FH2mmBjzB2S7pP0jyNPzZD0b24MCgAAAHBTJTfGfULS2yQdlyRr7W8kTXNjUAAAAICbKmmCh6212dEHxpiISvsEAwAAAL5SSRP8C2PMlyTVG2MWS/q5pAfdGRYAAADgnkqa4JWS+iRtl/Snkh621n7ZlVEBAAAALqpki7RPWmv/XtIPRp8wxnx65DkAAADANyqZCV4xxnMfcWgcAAAAQM2cdybYGHObpNslXW6MWX/KSxMlpd0aGAAAAOCWcpZD/Kekl1U6NvlvT3n+hKRuNwYFAAAAuOm8TbC19iVJL0la4P5wAAAAAPdVcmLcMmPMb4wxx4wxx40xJ4wxx90cHAAAAOCGSnaH+Kak91tre9waDAAAAFALlewO0UsDDAAAgItBJTPBXcaY/y3p3yQNjz5prX3A8VEBAAAALqqkCZ4kaVDSu095zkqiCQYAAICvlN0EW2v/xM2BAAAAALVSye4QbzLGbDbG7Bh53GqM+Yp7QwMAAADcUcmNcT+Q9JeScpJkre2W9GE3BgUAAAC4qZImuMFa+9Rpz+WdHAwAAABQC5U0wa8aY96g0s1wMsbcqtJxygAAAICvVLI7xCck3S1pjjHmgKTfSvojV0YFAAAAuKiS3SFelNRujElICllrT7g3LAAAAMA9lewO8WljzOhewd82xjxjjHn3+b4PAAAA8JpK1gR/1Fp7XKXDMqZI+mNJa1wZFQAAAOCiSppgM/Lv90n6Z2vtc6c8BwAAAPhGJU3wVmPMoyo1wY8YYyZKKrozLAAAAMA9lewO8TFJ10h60Vo7aIyZIomjlAEAAOA7522CjTFzrLW7VGqAJekKY1gFAQAAAP8qZyb4s5LulPS3Y7xmJb3L0REBAAAALjtvE2ytvXPk3wvdHw4AAADgvkr2Cf7gyM1wMsZ8xRjzgDHmze4NDQAAAHBHJbtDdFprTxhj3i6pXdIPJf2DO8MCAAAA3FNJE1wY+fcSSXdbax+SFHN+SAAAAIC7KmmCDxhj/lHSH0h62BhTV+H3AwAAAJ5QSRP7IUmPSLrZWntUUlLS510ZFQAAAOCisptga+2gpHWSBowxsyRFJe1ya2AAAACAW8o+Mc4Y80lJfyWpV787LtlKanVhXAAAAIBrKjk2+dOSZltrD7s1GAAAAKAWKlkTvE/SMbcGAgAAANRKJTPBL0p6whjzkKTh0SettX/n+KgAAAAAF1XSBO8d+Scm9gcGAACAj5XdBFtr/1qSjDETRh73uzUoAAAAwE1lrwk2xswzxvxa0nOSnjPGbDXGXOXe0AAAAAB3VHJj3N2SPmutfb219vWSPifpB+4MCwAAAHBPJU1wwlr7+OgDa+0TkhKOjwgAAABwWUW7QxhjOiX9ZOTxH6m0YwQAAADgK5XMBH9UUqOkByTdL2nqyHMAAACAr1SyO8QRSZ9ycSwAAABATVSyO8RGY8ylpzyebIx5xJ1hAQAAAO6pZDnEVGvt0dEHIzPD05wfEgAAAOCuSprgojFm1ugDY8zrJVnnhwQAAAC4q5LdIb4s6T+MMb+QZCS9Q9KdrowKAAAAcFElN8b9f8aYayVdP/LUn1trXx193RhzlbX2OacHCAAAADitkplgjTS9G87y8k8kXVv1iAAAAACXVbIm+HzMmE8a8x5jzG5jzAvGmJVn/WZjlhtjrDGmzcExAQAAAGdwsgk+4yY5Y0xY0vckvVfSXEm3GWPmjvF1EyV9WtJ/OTgeAAAAYExONsFjuU7SC9baF621WUk/k9QxxtetlvQNSRmXxwMAAAA42gRnx3huhqR9pzzeP/LcSSM32zVbax86V3FjzJ3GmC5jTFdfX1/VgwUAAEBwVXRjnDGmVVLLqd9nrX1g5N/Xn+XbzlUvJOnvJH3kfF9rrb1b0t2S1NbWxv7EAAAAGLeym2BjzI8ktUp6TlJx5Gkr6YFzfNsBSc2nPJ458tyoiZLmSXrCGCNJl0lab4y5xVrbVe7Y3JLLFdQ3MKyilU5k8hrKFVQfDWtiPKKQkRoTdYpGwxd6mAACqFAoKj2YVb5odSKT13CuoLqRfIqEjJINMYXDbq94A4Cx+SGjKpkJvt5ae8ZNbefxtKQrjTGXq9T8fljS7aMvWmuPSZo6+tgY84Skv7jQDfDgcF5HhnJat+2AfvrUXu1LD53xNc3Jet123Sx1XDNDk+ujaqiraFIdAMYlmy8qPZDVhu6DWrtlz1nzacWCFi1tna5kIqZYhGYYQG34KaOMteWtLDDG/FDS31prd1b0FxjzPkn/j6SwpB9Za79mjFklqctau/60r31CZTTBbW1ttqvLnT750PGMNvX0atWGncrkiuf9+ng0pLuWzlV7qknTJsVdGRMASFJ6IKvNPb3qXLej7Hxa3TFPi1JNSiZiNRghgCDzYkYZY7Zaa8fcfreSJvidktZLekXSsEr7AltrbatTAy2XW03woeMZffGBbj2+q/Ib7xbOadQ3lrXSCANwxeH+Ya28f7s29vRW/L2LU01as3y+pkyoc2FkAODdjDpXE1zJ/PMPJf2xpPdIer+kpSP/vihU0wBL0uO7+vTFB7p16Di7vAFwVnogO+5fLpK0sadXK+/friMDY23iAwDV8WtGVdIE91lr11trf2utfWn0H9dGVkODw3lt6ukddwM86vFdfdrU06vBbN6hkQEIumy+qM09veP+5TJqY0+vNvX0Kps//0eUAFAuP2dUJU3wr40x9xhjbjPGLBv9x7WR1dCRoZxWbahoqfNZrdqwU0cGc47UAoD0QFad63Y4Uqtz3Q6lmQ0G4CA/Z1QlTXC9SmuB363SMojRJRG+lssVtG7bgbIWcJcjkytq/bYDyuUKjtQDEFyFQlEbug86mk8bug+qUGA2GED1/J5RZe/rZa39EzcHcqH0DQzrp0/tdbTmPU/tVcc10zX90gZH6wIIlvRgVmu37HG05tote9RxzXQ1TuQmXgDV8XtGVXJYRlzSxyRdJenkyKy1H3VhXDVTtBpzD7tq7EsPqciZdgCqlC9aV/IpT0ABcIDfM6qS5RA/UelEt5sl/UKl099OuDGoWjqRcecmNrfqAggOt3Kkn3wC4AC/Z1QlTfAbrbWdkgastWslLZH0e+4Mq3aGXFq7m2FNMIAqDbuUI8PsEAHAAX7PqEqa4NEtD44aY+ZJukTSNOeHVFv10bArdeMu1QUQHHUu5QjHKANwgt8zquw1wZLuNsZMltSp0slxEyTd5cqoamhivJIfwYWvCyA4yCcAXub3jCq71bbW/pO19oi19hfW2iustdOstf/g5uBqIWSk5mS9ozWbk/UKGUdLAgigSMi4kk8RAgqAA/yeUWU3wcaYJmPMD40x/z7yeK4x5mPuDa02GhN1uu26WY7WvP26WWw/BKBqyYaYVixocbTmigUtSibqHK0JIJj8nlGVLLr4saRHJE0fefy8pD93ekC1Fo2G1XHNDMWjzqw/iUdDuuWaGYqGWXMHoDrhcEhLW6c7mk9LW6crzEwwAAf4PaMqGfVUa+29koqSZK3NS7ootkCYXB/VXUvnOlLrrqVzNbkh6kgtAEgmYlrdMc+RWqs75imZiDlSCwAkf2dUJU3wgDFmiiQrScaY6yUdc2VUNdZQF1F7qkkL5zRWVWfhnEa1p5rUEOOmEwDOiEVCWpRq0uJUU1V1Fqea1J5qYmcIAI7yc0ZV8jd9VqVdIa4wxvxK0j9L+qQro7oApk2K6xvLWsfdCC+c06hvLGvVtEmsBQbgrGQipjXL54/7l8ziVJPWLJ+vycwCA3CBXzPKWFve0XQjxyb/mUonxp2QtEXSd621GfeGN7a2tjbb1dXlSu1DxzPa1NOrVRt2KpM7/2bN8WhIdy2dq/ZUEw0wAFelB7La3NOrznU7ys6n1R3z1J5qogEG4DovZpQxZqu1tm3M1ypogu+VdFzSv4w8dbukS621H3RklBVwswmWpMFsXkcGc1q/7YDueWrvmOdiNyfr9YfXzdIt18zQpQ1RlkAAqIlsvqj0QFYbug9q7ZY9Z82nj9zQoiXzpyuZiLEEAkDNeC2jnGqCd1pr557vuVpwuwkelcsV1DcwrKItnY+dyRUUj4Y1MR5RyEiNE+PsAgHggigUikoPZpUvWvVn8soVioqGQ5oQjygSMkom6tgFAsAF45WMOlcTXEkH98zIzXCjRX9Pkvud6AUUChlFwyGFQ0bhkFE8Yk7+ORoOVfTDAwC3WEmFotVrpjTKnOAAALd5NaPO+xm+MWa7SuOPSvpPY8zekcevl7TL3eFdGOVO5a9Y0KKlrXzcCKB2yCcAXuanjDrvcghjzOvP9bq19iVHR1QGN5dDjHdR96JUE/tvAnAV+QTAy7yYUY6sCfYSt5rgw/3DWnn/dm3s6a34e0e395gygeNIATiPfALgZV7NKKfWBF/U0gPZcb95krSxp1cr79+uIwNZh0cGIOjIJwBe5teMoglWaf3K5p7ecb95ozb29GpTT6+y+fN/BAAA5SCfAHiZnzOKJlilK5jOdTscqdW5bofSzLYAcAj5BMDL/JxRgW+CC4WiNnQfLGsBdzkyuVK9QoHZFgDVIZ8AeJnfMyrwTXB6MKu1W/Y4WnPtlj1KDzLbAqA65BMAL/N7RgW+Cc4X7Zh72FVjX3pI+aL/dt0A4C3kEwAv83tGBb4JPpHJu1K336W6AIKDfALgZX7PqMA3wcO5gjt1uQMbQJXIJwBe5veMCnwTXBcNu1KXY0oBVIt8AuBlfs+owCfhxHjEV3UBBAf5BMDL/J5RgW+CIyGj5mS9ozWbk/WKhIyjNQEED/kEwMv8nlGBb4KTDTGtWNDiaM0VC1qUTDh//jWAYCGfAHiZ3zMq8E1wOBzS0tbpiked+VHEo6V6YWZaAFSJfALgZX7PqMA3wZKUTMS0umOeI7VWd8xTMhFzpBYAkE8AvMzPGUUTrNJdiItSTVqcaqqqzuJUk9pTTdx5DcAx5BMAL/NzRpGGI5KJmNYsnz/uN3Fxqklrls/XZGZZADiMfALgZX7NKGOt/47PbGtrs11dXa7UTg9ktbmnV53rdiiTO/9mzfFoSKs75qk91cQvGACuIp8AeJkXM8oYs9Va2zbmazTBZ8rmi0oPZLWh+6DWbtkz5rnYzcl6feSGFi2ZP13JRIyPGAHUBPkEwMu8llE0weNUKBSVHswqX7Tqz+RVsEWFTUgT4hFFQkbJRB13WQO4IE7Pp3yxqEiIfALgDV7JqHM1wUwPnEMuX9BwvqhC0SpfsBocLipfsCoUrYbzReVy+Qs9RAABlT0tn4ayr82nLPkE4ALyQ0ZxduYYjg1m1T9c0LptB/TTp/eedSr/trfOUsc1MzShLqxLGlhvB8B9RwezGqggnxJ1YV1KPgGoET9lFMshTvPKsYw29/Rq9UM7y17U3blkrhalmnTZJXFXxgQAEvkEwNu8mFGsCS5T7/GMVj7Qrcd39VX8vQvnNGrNslY1TeIXDQDnkU8AvMyrGcWa4DK8cmz8b54kPb6rTysf6Fbv8YzDIwMQdOQTAC/za0bRBKu0BnhzT++437xRj+/q06advTo+lHVoZACC7qjD+XRskHwC4Bw/ZxRNsKT+4YJWP7TTkVqrH9qpE5mCI7UAYMDhfOofJp8AOMfPGRX4JjgznNO6bQfKWsBdVr1cUeufPaDMcM6RegCCa8ilfBoinwA4wO8ZFfgm+NXBnH769F5Ha97z1F69OsgvGQDVOexSPh0mnwA4wO8ZFfgm2FqNuYddNfalh+TDTTcAeAz5BMDL/J5RgW+C+zPunFjSP3zhT0IB4G/kEwAv83tGBb4JHsq5swA741JdAMFBPgHwMr9nVOCb4Ppo2JW68Yg7dQEEB/kEwMv8nlGBb4InxCO+qgsgOMgnAF7m94wKfBNsjNScrHe0ZnOyXsY4WhJAAJFPALzM7xkV+CZ4akNUt711lqM1b79ulhon1DlaE0DwTCGfAHiY3zMq8E1wvC6qjmtmKB515kcRj4Z0y9UzVOfSOhkAwVFPPgHwML9nVOCbYEmaUBdW55K5jtTqXDJXE+P8ggHgjITD+TShjnwC4Bw/ZxRNsKRLGmJalGrSwjmNVdVZOKdR7XObNKk+5tDIAATdpQ7n0yUN5BMA5/g5o2iCR1x2SVxrlrWO+01cOKdRa5a1qmlS3OGRAQg68gmAl/k1o4z14fmZbW1ttqury5XarxzLaHNPr1Y/tFOZXPG8Xx+PhtS5ZK7a5zbxCwaAq8gnAF7mxYwyxmy11raN+RpN8JmOD2V1IlPQ+mcP6J6n9o55LnZzsl63XzdLt1wzQxPrwiyBAFATxwaz6h8uP58mxMIsgQBQM17LKJrgccoM5/TqYE7Wls6xzuYLikXCmlAXkTFS44Q67rIGcEEMDed0mHwC4FFeyahzNcEcG3QO0UhYdZGC8kWrcMgoZIzCIaNI2CgSKv0DABdCjHwC4GF+yCia4DFk80WlB7La0H1Qa7fsOetU/ooFLVraOl3JREyxCPcYAnAf+QTAy/yUUSyHOE16IKvNPb3qXLej7EXdqzvmaVGqSckE6+4AuId8AuBlXswo1gSX6XD/sFbev10be3or/t7FqSatWT5fUziOFIALyCcAXubVjDpXE8xnZCPSA9lxv3mStLGnVyvv364jA1mHRwYg6MgnAF7m14yiCVZp/crmnt5xv3mjNvb0alNPr7L5838EAADlIJ8AeJmfM4omWKUrmM51Oxyp1bluh9LMtgBwCPkEwMv8nFGBb4ILhaI2dB8sawF3OTK5Ur1CgdkWANUhnwB4md8zKvBNcHowq7Vb9jhac+2WPUoPMtsCoDrkEwAv83tGBb4JzhftmHvYVWNfekj5ov923QDgLeQTAC/ze0YFvgk+kcm7UrffpboAgoN8AuBlfs+owDfBw7mCO3W5AxtAlcgnAF7m94xyvQk2xrzHGLPbGPOCMWblGK9/1hiz0xjTbYzZbIx5vdtjOlVdNOxKXY4pBVAt8gmAl/k9o1z9W4wxYUnfk/ReSXMl3WaMmXval/1aUpu1tlXSfZK+6eaYTjcxHvFVXQDBQT4B8DK/Z5TbrfZ1kl6w1r5orc1K+pmkjlO/wFr7uLV2cOThk5Jmujym14iEjJqT9Y7WbE7WKxIyjtYEEDzkEwAv83tGud0Ez5C075TH+0eeO5uPSfr3sV4wxtxpjOkyxnT19fU5NsBkQ0wrFrQ4Vk+SVixoUTLh/PnXAIKFfALgZX7PKM8sDDPG/JGkNknfGut1a+3d1to2a21bY2OjY39vOBzS0tbpiked+VHEo6V6YWZaAFSJfALgZX7PKLeb4AOSmk95PHPkudcwxrRL+rKkW6y1wy6P6QzJREyrO+Y5Umt1xzwlEzFHagEA+QTAy/ycUW43wU9LutIYc7kxJibpw5LWn/oFxpg3S/pHlRrgQy6PZ0yxSEiLUk1anGqqqs7iVJPaU03ceQ3AMeQTAC/zc0a5+jdZa/OS/kzSI5J6JN1rrX3OGLPKGHPLyJd9S9IEST83xmwzxqw/SzlXJRMxrVk+f9xv4uJUk9Ysn6/JzLIAcBj5BMDL/JpRxlr/HZ/Z1tZmu7q6XKmdHshqc0+vOtftUCZ3/s2a49GQVnfMU3uqiV8wAFxFPgHwMi9mlDFmq7W2bczXaILPlM0XlR7IakP3Qa3dsmfMc7Gbk/X6yA0tWjJ/upKJGB8xAqgJ8gmAl3kto2iCxymXK6hvYFhFWzofO5MrKB4Na2I8opCRGifUKRpx57QUADgX8gmAl3klo87VBHNs0BjGuoqJhIxikZCy+aLyRavmZL1WLGjR0lZmWgDUDvkEwMv8lFHMBJ9mvOtZFqWa2HoIgKvIJwBe5sWMYjlEmQ73D2vl/du1sae34u8dvbNxygROYgLgPPIJgJd5NaPO1QTzGdmI9EB23G+eJG3s6dXK+7fryEDW4ZEBCDryCYCX+TWjaIJVWr+yuad33G/eqI09vdrU06ts/vwfAQBAOcgnAF7m54yiCVbpCqZz3Q5HanWu26E0sy0AHEI+AfAyP2dU4JvgQqGoDd0Hy1rAXY5MrlSvUGC2BUB1yCcAXub3jAp8E5wezGrtlj2O1ly7ZY/Sg8y2AKgO+QTAy/yeUYFvgvNFO+ZpJtXYlx5Svui/XTcAeAv5BMDL/J5RgW+CT2TyrtTtd6kugOAgnwB4md8zKvBN8HCu4E5d7sAGUCXyCYCX+T2jAt8E10XdObeaY0oBVIt8AuBlfs+owCfhxHjEV3UBBAf5BMDLH14aLgAAEi5JREFU/J5RgW+CIyGj5mS9ozWbk/WKhIyjNQEED/kEwMv8nlGBb4KTDTGtWNDiaM0VC1qUTDh//jWAYCGfAHiZ3zMq8E1wOBzS0tbpiked+VHEo6V6YWZaAFSJfALgZX7PqMA3wZKUTMS0umOeI7VWd8xTMhFzpBYAkE8AvMzPGUUTrNJdiItSTVqcaqqqzuJUk9pTTdx5DcAx5BMAL/NzRpGGI5KJmNYsnz/uN3Fxqklrls/XZGZZADiMfALgZX7NKGOt/47PbGtrs11dXa7UTg9ktbmnV53rdiiTO/9mzfFoSKs75qk91cQvGACuIp8AeJkXM8oYs9Va2zbmazTBZ8rmi0oPZLWh+6DWbtkz5rnYzcl6feSGFi2ZP13JRIyPGAHUBPkEwMu8llE0weNUKBSVHswqX7Tqz+Q1nC+qLhLShHhEkZBRMlHHXdYALgjyCYCXeSWjztUEMz1QJivJyOo1lww+vIAAcPEhnwB4mVczirMzx1DuVP6KBS1a2srHjQBqh3wC4GV+yiiWQ5xmvIu6F6Wa2H8TgKvIJwBe5sWMYk1wmQ73D2vl/du1sae34u8d3d5jygSOIwXgPPIJgJd5NaNYE1yG9EB23G+eJG3s6dXK+7fryEDW4ZEBCDryCYCX+TWjaIJVWr+yuad33G/eqI09vdrU06ts/vwfAQBAOcgnAF7m54yiCVbpCqZz3Q5HanWu26E0sy0AHEI+AfAyP2dU4JvgQqGoDd0Hy1rAXY5MrlSvUGC2BUB1yCcAXub3jAp8E5wezGrtlj2O1ly7ZY/Sg8y2AKgO+QTAy/yeUYFvgvNFO+YedtXYlx5Svui/XTcAeAv5BMDL/J5RgW+CT2TyrtTtd6kugOAgnwB4md8zKvBN8HCu4E5d7sAGUCXyCYCX+T2jAt8E10XDrtTlmFIA1SKfAHiZ3zMq8Ek4MR7xVV0AwUE+AfAyv2dU4JvgSMioOVnvaM3mZL0iIeNoTQDBQz4B8DK/Z1Tgm+BkQ0wrFrQ4WnPFghYlE86ffw0gWMgnAF7m94wKfBMcDoe0tHW64lFnfhTxaKlemJkWAFUinwB4md8zKvBNsCQlEzGt7pjnSK3VHfOUTMQcqQUA5BMAL/NzRtEEq3QX4qJUkxanmqqqszjVpPZUE3deA3AM+QTAy/ycUaThiGQipjXL54/7TVycatKa5fM1mVkWAA4jnwB4mV8zyljrv+Mz29rabFdXlyu10wNZbe7pVee6Hcrkzr9Zczwa0uqOeWpPNfELBoCryCcAXubFjDLGbLXWto35Gk3wmbL5otID/397dx9bV33fcfzziX3jhyRAEoxpjbNUhS5xR/Bak1ZbtzUja4GgREtbUejatUPqtHUb0x4Em0S6JZtKhPagae2mtmzptEGZ2mhkpGsZLG0nFRpCZ5ISZ1UEayAUx01CAvFDrn2/++MekOU4jmPf43uOz/slRfI959yfv/ZP/vib498556we2f+SvvTE/036XOzOZS36+M+s1IZr36xlixbyJ0YAc4J8ApBlWcsomuAZGhur6MTgWY1WQq8Nj2q0UlHjggVa3NyoxgXWskVNXGUNoC7IJwBZlpWMmqoJ5vTAFCqVUHmsorFKaLQSGipXNFoJjSXbK2Nz82xrAJiIfAKQZXnIKJ6dOYnBkVGdHCrr4d6jenDvkfOeyr9t7Qpt6u7Q0paSWpv4VgJIH/kEIMvylFEsh5jg2OlhPdbXr62PHJz2ou4tt3Rp/ep2XXFJcyo1AYBEPgHItixmFGuCp+nY6WHdtXO/9hwauOj3rlvVpu2b1/CLBkAqyCcAWZbVjGJN8DTMZvIkac+hAd21c7+OnR6ucWUAio58ApBlec0ommBV16881tc/48l73Z5DA3qsr1+DZ0drVBmAoiOfAGRZnjOKJljSyaGytj5ysCZjbX3koE4OlmsyFgCQTwCyLM8ZVfgmuFwe08O9R6e1gHs6hssV7eo9qnJ5rCbjASgu8glAluU9owrfBA+cGdGDe4/UdMwH9h7RwJmRmo4JoHjIJwBZlveMKnwTXAlNeg+72XjhxJAq+bvpBoCMIZ8AZFneM6rwTfCrw+kswE5rXADFQT4ByLK8Z1Thm+ChlNadDLPmDsAskU8AsizvGVX4Jril1JDKuM0pjQugOMgnAFmW94wqfBO8pDmd51WnNS6A4iCfAGRZ3jOq8E3wAkudy1pqOmbnshYtcE2HBFBA5BOALMt7RhW+CW5b1KTb1q6o6Zi3r12htiW1f/41gGIhnwBkWd4zqvBNcKnUoE3dHWou1eZb0VxaoI3dHSo1FP5bC2CWyCcAWZb3jCIJJS1tKWnLLV01GWvLLV1a2lqqyVgAQD4ByLI8ZxRNsKTWpkatX92udavaZjXOulVtWr+6Xa0LuegEQG2QTwCyLM8ZRROcuOKSZm3fvGbGk7huVZu2b16jKy5hrR2A2iKfAGRZXjPKEfl7fmZPT0/s27cvlbGPnR7WY3392vrIQQ2XKxc8vrm0QFtu6dL61e38ggGQKvIJQJZlMaNsPx0RPZPuowk+1+DZUZ0cLGtX71E9sPeIXjgxpA9ce6U2dLdrd2+/vnrgZXUua9FH1q7Qxu4OXdZa4k+MAOYE+QQgy7KWUTTBMzQ0UtbxwbIk6dWhUQ2Vx9RSatCSlupkLW8tqaWJi0wAzD3yCUCWZSWjpmqCOT0wiZODZzU4MqaHe4/qwaeq/4uZqHNZi267foU2dXeotalBS1sX1qFSAEVDPgHIsjxlFGeCJ3j51LAe7+vXtt3TX89yz4Yu3bC6XVdeypo7AOkhnwBkWRYziuUQ09R/elh379yvPYcGLvq961a16d7Na9TOxScAUkA+AciyrGbUVE0wt0hLvHxq5pMnSXsODejunfvVf3q4xpUBKDryCUCW5TWjaIJVXb/yeF//jCfvdXsODeixg/16ZfBsjSoDUHTkE4Asy3NG0QRLGhwZ07bdB2sy1rbdB3VmZKwmYwEA+QQgy/KcUYVvgodGynq49+i0FnBPx3C5ol3PHNXQSLkm4wEoLvIJQJblPaNSb4Jt32j7f20ftn33JPubbD+U7P+u7ZVp1zTe8cGyHnzqSE3HfGDvkTfujQcAM0U+AciyvGdUqk2w7QZJn5V0k6QuSbfZ7ppw2B2STkbE1ZL+StL2NGuaKEKT3sNuNl44MaQc3nQDQMaQTwCyLO8ZlfaZ4LWSDkfEcxFxVtKXJW2acMwmSV9KPv6KpBtsO+W63vDa8Gg6446kMy6A4iCfAGRZ3jMq7Sa4Q9IL416/mGyb9JiIGJV0StLyiQPZ/qTtfbb3DQzM7grE8YbK6SzAHk5pXADFQT4ByLK8Z1RuLoyLiM9HRE9E9LS1tdVs3JZSQ83GGq+5MZ1xARQH+QQgy/KeUWk3wUcldY57fVWybdJjbDdKulTS8ZTresPi5sZcjQugOMgnAFmW94xKuwl+StI1tt9ie6GkD0vaNeGYXZJ+Nfn4g5L+K+bwWc621LmspaZjdi5r0dytagYwX5FPALIs7xmVahOcrPH9LUnfkNQn6V8j4lnbW21vTA67X9Jy24cl/Z6kc26jlqblrSXddv2Kmo55+9oValvcVNMxARQP+QQgy/KeUamvCY6Ir0XE2yLirRHx58m2LRGxK/l4OCI+FBFXR8TaiHgu7ZrGa2kqaVN3h5pLtflWNJcWaON1HWpKaZ0MgOIgnwBkWd4zKjcXxqWptalB92yYePvimblnQ5cWNfELBkBtkE8AsizPGUUTLGlp60LdsLpd61bN7q4T61a1aX1Xuy5rXVijygAUHfkEIMvynFE0wYkrL23WvZvXzHgS161q072b16j9kuYaVwag6MgnAFmW14zyHN6IoWZ6enpi3759qYz98qlhPd7Xr227D2q4XLng8c2lBbpnQ5fWd7XzCwZAqsgnAFmWxYyy/XRE9Ey6jyb4XK8MntWZkTHteuaoHth7ZNLnYncua9Hta1doY3eHFi1s4E+MAOYE+QQgy7KWUTTBMzQ0UtbxwbIiqs+xHi6PqbnUoMVNjbKltsVNXGUNoC7IJwBZlpWMmqoJ5rFBU2hpKumqplK9ywCAc5BPALIsDxnFhXEAAAAoHJpgAAAAFA5NMAAAAAqHJhgAAACFQxMMAACAwqEJBgAAQOHQBAMAAKBwaIIBAABQOLl8YpztAUk/rMOnvlzSj+vweZEu5nX+Ym7nL+Z2fmJe5696ze1PRETbZDty2QTXi+1953v0HvKLeZ2/mNv5i7mdn5jX+SuLc8tyCAAAABQOTTAAAAAKhyb44ny+3gUgFczr/MXczl/M7fzEvM5fmZtb1gQDAACgcDgTDAAAgMKhCQYAAEDh0ARPYPsfbB+z/f3z7Lftv7F92PZ+2++Y6xpx8aYxrx9J5vOA7e/Yvm6ua8TMXGhuxx13ve1R2x+cq9owO9OZW9vvtd1r+1nb35rL+jBz08jkS23/u+1nkrn9xFzXiItnu9P2HtsHk3m7c5JjMtNH0QSfa4ekG6fYf5Oka5J/n5T0d3NQE2Zvh6ae1+cl/UJEXCtpmzK4gB/ntUNTz61sN0jaLunRuSgINbNDU8yt7cskfU7Sxoh4u6QPzVFdmL0dmvrn9lOSDkbEdZLeK+kvbC+cg7owO6OSfj8iuiS9W9KnbHdNOCYzfRRN8AQR8W1JJ6Y4ZJOkf4qqJyVdZvtNc1MdZupC8xoR34mIk8nLJyVdNSeFYdam8TMrSb8t6auSjqVfEWplGnN7u6SdEXEkOZ75zYlpzG1IWmLbkhYnx47ORW2YuYj4UUR8L/n4VUl9kjomHJaZPoom+OJ1SHph3OsXde4EI9/ukPQf9S4CtWG7Q9Ivi7/azEdvk7TU9jdtP237Y/UuCDXzt5JWS3pJ0gFJd0ZEpb4l4WLYXinppyV9d8KuzPRRjfX4pEBW2V6nahP8nnrXgpr5a0l3RUSlelIJ80ijpHdKukFSi6QnbD8ZET+ob1mogfdL6pX0i5LeKuk/bf93RJyub1mYDtuLVf3r2+9mec5ogi/eUUmd415flWxDztleI+mLkm6KiOP1rgc10yPpy0kDfLmkm22PRsS/1bcs1MCLko5HxBlJZ2x/W9J1kmiC8+8Tku6N6sMMDtt+XtIqSXvrWxYuxHZJ1Qb4XyJi5ySHZKaPYjnExdsl6WPJ1Y3vlnQqIn5U76IwO7ZXSNop6aOcRZpfIuItEbEyIlZK+oqk36QBnjcelvQe2422WyW9S9U1iMi/I6qe4Zftdkk/Kem5ulaEC0rWcN8vqS8i/vI8h2Wmj+JM8AS2H1T1StTLbb8o6dOSSpIUEX8v6WuSbpZ0WNKgqv9bRcZNY163SFou6XPJGcPRiOipT7W4GNOYW+TUheY2Ivpsf13SfkkVSV+MiClvlYdsmMbP7TZJO2wfkGRVlzT9uE7lYvp+VtJHJR2w3Zts+2NJK6Ts9VE8NhkAAACFw3IIAAAAFA5NMAAAAAqHJhgAAACFQxMMAACAwqEJBgAAQOHQBANAndl+LYUxu23fPO71n9j+g1p/HgDIK5pgAJifulW9FycAYBI0wQCQIbb/0PZTtvfb/tNk20rbfba/YPtZ24/abkn2XZ8c22v7Ptvft71Q0lZJtybbb02G77L9TdvP2f6d5P2LbO+2/Uzy3lsnLQwA5hmaYADICNvvk3SNpLWqnsl9p+2fT3ZfI+mzEfF2Sa9I+kCy/R8l/XpEdEsak6SIOKvqUxAfiojuiHgoOXaVpPcn43/adknSjZJeiojrIuKnJH097a8TALKAJhgAsuN9yb//kfQ9VZvWa5J9z0fE648hfVrSStuXSVoSEU8k2x+4wPi7I2IkefzsMUntkg5I+iXb223/XEScquHXAwCZRRMMANlhSZ9Jzt52R8TVEXF/sm9k3HFjkhpnMP45Y0TEDyS9Q9Vm+M9sb5lJ4QCQNzTBAJAd35D0a7YXS5LtDttXnO/giHhF0qu235Vs+vC43a9KWnKhT2j7zZIGI+KfJd2nakMMAPPeTM4kAABSEBGP2l4t6QnbkvSapF9Rstb3PO6Q9AXbFUnfkvT6coY9ku623SvpM1O8/1pJ9yXvL0v6jdl9FQCQD46IetcAAJgh24sj4rXk47slvSki7qxzWQCQeZwJBoB822D7j1TN8x9K+nh9ywGAfOBMMAAAAAqHC+MAAABQODTBAAAAKByaYAAAABQOTTAAAAAKhyYYAAAAhfP/Us7ZvzWq3AAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfZzU5X3v//c1dzuzu9yNLIvAIjEiLIHFkI1K0hgIUNOI0CPknGibksYfnp6kaZqcGm1aPD3waIra26Q9TTWmxbRqG7WFIK0BRNskGF0MrsiCGkUW0GVluNubub9+f+wsWWBZZna+39kZvq/n4+FD5u7Dxc7j8d7PXHN9r8tYawUAAAB4iW+kBwAAAACUGk0wAAAAPIcmGAAAAJ5DEwwAAADPoQkGAACA5wRGegDDMX78eDtt2rSRHgYAAADK2K5du96z1tYN9lhFNsHTpk1TS0vLSA8DAAAAZcwY8/aFHmM5BAAAADyHJhgAAACeQxMMAAAAz6EJBgAAgOfQBAMAAMBzaIIBAADgOTTBAAAA8ByaYAAAAHhORR6WUSqpVEad3QllrXQ6nlZvKqNI0K9R4YB8RqqrqVIw6B/pYQLwIPIJQDmrhIyiCR5ETyKt470pbdx9WI++cFDtsd7zntMQjejWa6dq+TWTNS4SVHUVP0oA7iOfAJSzSsooY60dkb+4GM3NzdatY5OPnoprW1uH1m7eq3gqe9Hnh4M+3bN0lhY31mvC6LArYwIAiXwCUN7KMaOMMbustc2DPkYT/AtHT8V115Ot2rGvs+DXLpxZp3tvaeIXDQBXkE8Aylm5ZtRQTTAXxuUU8+ZJ0o59nbrryVYdPRV3eGQAvI58AlDOKjWjaILVt35lW1vHsN+8fjv2dWpbW4d6kmmHRgbA68gnAOWskjOKJljS8d6U1m7e60ittZv36nhPypFaAEA+AShnlZxRnm+CU6mMNu4+nNcC7nzEU1lt2n1YqVTGkXoAvIt8AlDOKj2jXG2CjTHfNcYcNcbsucDjxhjzTWPMG8aYVmPMPDfHM5jO7oQefeGgozUfeeGgOrsTjtYE4D3kE4ByVukZ5fZM8D9I+uQQj/+KpOm5/+6Q9Lcuj+c8WatB97ArRnusV9nK23QDQJkhnwCUs0rPKFebYGvtf0qKDfGU5ZIetn2elzTWGHO5m2M61+m4Owuw3aoLwDvIJwDlrNIzaqTXBE+W1D7g9qHcfecxxtxhjGkxxrR0dhZ3BeJAvS6tO4mz5g5AkcgnAOWs0jNqpJvgvFlrH7DWNltrm+vq6hyrG3Hp3OrwCJ+HDaDykU8AylmlZ9RIN8GHJTUMuD0ld1/JjAq7c161W3UBeAf5BKCcVXpGjXQTvEnSb+R2ibhe0klr7TulHIDPSA3RiKM1G6IR+YyjJQF4EPkEoJxVeka5vUXao5J2SpphjDlkjLndGPNbxpjfyj1li6Q3Jb0h6UFJX3BzPIOpq6nSrddOdbTmbddOVd0o58+/BuAt5BOAclbpGeX27hC3Wmsvt9YGrbVTrLUPWWu/ba39du5xa639orX2/dbaOdbaFjfHM5hg0K/l10xWOOjMjyIc9GnZNZMV9I/0JDuASkc+AShnlZ5RJKGkcZGg7lk6y5Fa9yydpXHVQUdqAQD5BKCcVXJG0QRLqq4KaHFjvRbOLG7XiYUz67S4sV7VIS46AeAM8glAOavkjKIJzpkwOqx7b2ka9pu4cGad7r2lSRNGs9YOgLPIJwDlrFIzylhbeednNjc325YWd5YPHz0V17a2Dq3dvFfxVPbM/QGfUSjgUzKdVXrAeX7hoE/3LJ2lxY31/IIB4CryCUA5K8eMMsbsstY2D/oYTfD5epJpHe9J6eWDx+XzGY2vrVIinVU8lVE46FdVwKf3uhKyWau5U8dpbHWQrxgBlAT5BKCclVtGDdUEk4yDCPh88hujwyfjenjnAbXHes97TkM0ot+YP00fNEYBH6tKAJQG+QSgnFVSRjETfI5Yd1Lb2zq0ZuOes6byLyQc9Gnd8tla1FivaE3IlTEBgEQ+AShv5ZhRLIfI07GuhO5+4hVtbeso+LVLGuu1fsUcXVZb5fi4AIB8AlDOyjWjhmqC+Z4sJ9adHPabJ0lb2zp09xOv6Hh30uGRAfA68glAOavUjKIJlpRMZ7W9rWPYb16/rW0d2tbWoWT64l8BAEA+yCcA5aySM4omWH2fYNZs3ONIrTUb9yjGbAsAh5BPAMpZJWeU55vgTCarza1H8lrAnY94qq9eJsNsC4DikE8Aylkmk9UPKjijPN8Ex3qS2rDzgKM1N+w8oFgPsy0AikM+AShnsZ6kHt55wNGapcwozzfB6awddA+7YrTHes86EQUAhoN8AlDO0hmXMipTmozyfBN8Op6uqLoAvIN8AlDOTsVTFVX3XJ5vgnuTGVfqxl2qC8A7XMunFPkEoHi9SXfW7jq1xvhiPN8EVwXc+RGEXKoLwDtcyyc/+QSgeOGgO1niVvady/NJWF3lr6i6ALyjpipQUXUBeEt1qLJ7KM83wZmsVUM04mjNhmhEGS48AVAk1/LJkk8Aipeu8B7K802wzxitmDfF0Zor502RzxhHawLwnnQ260o+pdknGIADAj53eih/iXoozzfBkrTg6jrH1rWEgz59/Oo6R2oB8LZ0xrqST6XafgjApc0Y40pGGZrg0vAZo3/dfVh33jjDkXp33jhDT+4+zEwwgKLVhgP67o8POJpPD/3oLdWGWRMMoHjGyJUeqlQtlOeb4FDAKFod0g3T67RwZnEzuAtn1umG6XUaXxMq2ZWNAC5hVvpZ+3FNHhvRopkTiiq1aOYETR4b0e5DJyQmggE4IODr66Emjo5owYzieqgFM+o0cXRE42tCCviYCS6JZNrqpjkTtfPN97T6Y1cO+01cMKNOqz92pXa++Z5+ZfZEJdKsuQNQnIC/f72d0e8sml5UPv3OoumSjFbOm6Kgn2+qABQvnbX6+NV1umfjK7rjhuJ6qDtuuFL3bHxFN0yvK9mplp5vgrsTaaWt9I0t+7R6Q4s+/aEGrVnamPf6lnDQpzVLG/XpDzVo9YYWfWPLPmWyUk+SE5kAFOd4T0pL50zU4RM9uu3B54vKp9sefF6HT/ToU3MmKtZTmtOYAFzauhJpfffHB/SFhVfpy4/+TH/wqUb98a/OLiij/vhXZ+sPPtWoLz/6M31h4VV66EdvqTtRmh7K801w0O/Tf+x5V/FUVt3JjL74yEvaffCEHlt9vb6yePoFt/5oiEb0lcXT9djq67X74Al98ZGX1J3MKJ7K6ulX31XA5/kfLYAiJdJZpa10/9P7Hcmn+5/er0xWSvJNFQAHJNNZbXr5iCaPrdZ3Vn1Yf7ylTc+/eaygjHr+zWP64y1t+s6qD2vy2Gr9oPUdJUt08a7nr44I+I2eeOnQWff9oPUdbdnzrhbNnKDf++UZmjQ2olQmq3gqq3DQp6DfpyMnerW59R1985k3ztvP7vGXDulXPzi5lP8MAJegy2qCeuKlw2cdIVpMPvV/SL9lHvkEoHjhYP+hFlbf3P66nt3fKUnDyii/Mfp0c992a6W6rsrzTbDPGLXHes+7P5O1+uHeDv1wb4ekvsXfoYBPyXT2omtV2mO97A4BoGjGnP8hXSounx5/6ZBWfMjZfT0BeFN1yK9lcyfp8Ilebd939Mz9w8mo7fuO6iNXXaabmy537SS6c3n+O/uuPNedpLNWPclM3ou1S7WeBcCly1oN+iH9XIXkU3usVxwYB8Apqz/2Pt3/9P4hn5NvRt3/9H7dccOVTg5vSJ5vghMpd9bGsTsEgGK59WG6mwt3ATgg5Df6r9ffO2vJVjHiqax+9MZ7CpVoBxvPN8FOnXJyLvYJBlCsnlTGlbq9SXfqAvCW7mRGj7540NGaj7xwUD3J0kwker5Ty/fkpIDPqDrkz3sDZ05kAlCsSNCddXFhl+oC8Ba/z5fXkq1CtMd65SvRYRme79RCfp8aopHz3kS/z2hx4wR9as7lmjw2okQ6q3gqo3DQr6qAT4dP9Oqp1ne0fd/R83aHaIhGFGImGECRRrn0YdqtugC8pcelJVulOmvB80k4usqvz15/hb6xZd+Z+5bNnaTPf3Sann2tU3/6w/2DfsppiEa0Yt4UfWHB+/XdHx/QppePnHnss9dfoTFVnv/RAiiSkQb9kH6uQnaHaIhGxN41AJwQd+n6J7eu1zqX5zu193pSWjBjgv5862vyG6P7Vs7Vu6d69ZkHnx9yoXd7rFd/ue11ffu5n+vOG2foxg9M1Ncef1kZa7VgxgR1dic1JeT5Hy+AIkRCPt364am675wrr4v5puq2a6cqUqLthwBc2vK9rqqQD+oS+wSXjLXSXz/zhtYum60p0Yge+M83z2z2nI94Kqt1m9u0YEadHlzVrMOxXn1r++v62idnujhqAF7Qncjq5rmT9M1nXj/zobyYb6rCQZ+WNk1SdyKjaE1J/ykALkE1F5jsK+aDuiTVlOjbdM83wV3xtDa9fES/s+gq/fGWtoIa4IGe3d8pY6Q/+FSj7nyiVV9YeJXDIwXgNV3xtHa++Z7W3DRL39jSVvQ3VV//VKN++Oq7+shV40v4rwBwqcpk7XlLtopdUtoQjShTos3MPX/1Vm8qo2VzJ+m51zq1Y9/wGuB+O/Z16rnXOnVz0+WKu7S1EQDv6E1ltHZzm667MqpHVl+v7+9q17rNbXnvydn/TdX3d7XrkdXX67oro1r3VBv5BMARqUxWK+b1nUBZE/Lrb26bp7kNY/SZB5/XX257/YLXM/R/UP/Mg89rbsMY/c1t81STW6a1ct4UpTNskVYSkaBfn//otIuedpKv+5/er9t/6X0KB1hzB6A4/VukvdXZrW8983pR31R965nX9VZntySRTwAckc5YLbi6TpfVBPXgquaiPqg/uKpZl9UE9fGr65RKMxNcEtHaoJ59rdPR006ee61T0dqgI/UAeFdtOKBlcyfp4PEebWs7WlStbW1HdfB4j25uupx9zAE4ojYc0Hd/fEAP335dwddUDfTs/k498J9v6uHbr9NDP3qrZBnl+SY4lbF64qVDjtZ8/KVDSmVK8ykGwKXLGGn1x97n6DdVd9xwpQx7pAFwgDHSuJqgXm4/OewGuN+z+zvV2n5S42pDJcsozzfBRnLltBN+xwAo1tiIXz9+45ij31T95OfHNC7CN1UAijcq7NdvzJ+mtZtfdaTe/938qlbNn6bR4dJklOeb4NNxd04lOe3SKSoAvON4T0b/9MLbjtb8x5++rVhPytGaALwpkcpqe9tRRz+oP9N2VPFUaXoozzfBbl0lXarTTgBcuoxx6ZsqvqoC4IB4OqvvPX/A0ZoPP39ACS6MK42qoDtXSYdKdNoJgEuXW99UdblUF4C3+Iyp6A/qnu/Ual06lcStugC8I+HSN1XxNN9UAShepX9Q93wTnLV9p504qSEaUbZEp50AuHRVubSfb5Xf89EPwAGV/kHd80mYztgzp504pe+0E5pgAMWprnKnCXarLgBvqfQP6p5vglOZrBZcXadw0JkfRTjo6zvtpERH/gG4dFnJlW+q+IgOwAmV/kHd801wTVXfaSd33jjDkXp33jhDD/3oLdWwJhhAkSJBnyvfVFW7dEEwAO9x44N6qXi+Cc5aq5+1H9fE0REtmFFXVK0FM+o0cXREuw+dYE0wgKJlslaLZk5w9JuqT8ycoHSWb6oAFC8ScueDeqREH9Q93wRnsn1rgr/2+Mu644Yrh90IL5hRpztuuFJfe/xlrZw3RVl6YABFCvqN3j7W7eg3VW/HuhXiwjgADkim3fmgnizRklLPJ2E6a7Xg6jplrNXqDS369IcatGZpY95vaDjo05qljfr0hxq0ekOLMtayJhiAI9IZacq4ak0a48w3VZPGRDRlbLVSXLgLwAlWOuD0B/Vj3SrVl+meb4JHDVgT3J3M6IuPvKTdB0/osdXX6yuLp19wbUpDNKKvLJ6ux1Zfr90HT+iLj7yk7mTmzJrgUawJBlCk04m0vvvjA+rsijvyTVVnV1wP/egtdXGsOwAHHO9JqsHpD+rjqnWytzRHu3u+U7PqWxN84wcmasGMOj27v1M/aH1HW/a8q0UzJ+j3fnmGJo2NKJXJKp7KKhz0Kej36ciJXm1ufUfffOYNZXJrH36xJviALNdfAyhSPJXRppeP6MYPTNTDPzmgT3+oQR+bPl73P71f8TyOZg8HfbrzxhmaODqih39yQDfPnawftL6jOz7+/hKMHsClriro118/84aap43VHTdcKUl6dn9nwXX6P6i/cfS0trzyjr60aLrTQx2U55vgUMB3Zk3wg6uaJfW9gZms1Q/3duiHezskSQGfUSjgUzKdVXqQBb/9b+DqDS2644YrFXJp7zwA3tF//Hp/Pj3wn29qVFVAj62+Xs+91qnHXzo06JGlDdGIVs6boo9fXaeHfvSWTifeO5NPUt9aYwAoVnXI78oH9bt+ZWYJRk8TrFh3SguurtO3n/u5Vm9o0X0r5w76BqazVunk+SejDHwDB64JPt6d1PjaqlL+UwBcYvqPX+9OZs7k07unevVrD/1UH33/+It+U/XAf72pry65+kw+decyjGPdATilIRpx9IN6KbdIM7YCt/Jqbm62LS0tjtRqPXRC3/mvtzS3YYzWbW6TJN3cdLlu/6X3FfQG/qD1HUnSmqWN2n3whO74+Ps1Z/IYR8YIwJvePtatX3/op2dl0GD5dO43VRfKJ6kvu/7x9ut0xWU1I/FPAnAJORTr0eMvHdJfbntdNSH/mQ/qf771NX30/eN1U9PlQ35Q/8nP3zvzQf1rj7+s7mRGX1k8XSvmTdGUaLUjYzTG7LLWNg/2mOenA0IB35mpfKfWBP+gtU1f/MRVI/wvA1Dp+o91/8ttr5+5b7j51G/lvCnKsDsEAAfEepJnvk3v31zg5qbL9U+3X6fnXuvUn/5w/5Af1L+44P25D+p9k5D9p+4e703J2d2HB+f5Jrj/a0En1wQPrAsAw9V/rPu3n/v5WcuzCs2nfv2/YEq1ByeAS1so4NP/2/Fz3XnjjDPfphfzQb1/h61STSR6vlPL5D6RtMd6HVkT3J3MqCEaOW/2BQAKVV0V0P979uxfMIO5UD6dq/8XzJ2fLM1FJwAubbVVgfO+TZeG90F94LfppbowzvP7BGdzJ8ZJcmSfYEmcGAfAEZls1p1j3QkoAA7on0i82Km76axVTzIzZAPcf+puKScSPT8TnMqdGDfw68ZipvL7v27kxDgAxQr6Bt/CsVDnbuHo97FFGoDiZbK/uG5hqG/TL2Swb9PvKOFEoud3h3jnRK/+5N/3nbU7xGDyXXPXvzvE1z/VqMvHlm6bDwCXnndO9KrjVFyfefB5+Y05c+X1cH7BfO3xl5WxVo+tvl71o8PkE4Ci7Xv3lOLJjD7z4PNnMqmYHbbCQZ8eW329wiG/Zk4c7cgY2R1iCIOdGDeYfNbccWIcACdZWf3r7sNn1gT3X3ld6B6c/Vder1naqCd3H9Zv5U52AoBi1FYFXLkwjsMySuRCJ8YVihPjADgtFPBpXHXozJpgJ7Zw7IqnyScAjshkB59ILObCuN2HDrAmuFTyPTHuQjgxDoBb+vPp9g0v6lu3zZNU3BaOX3rkJT206sPkEwBH9G8ucLGJxIt9m37uRGKp1gR7fneIRCqj7/74gO68cYYju0P0T+Un0lwYB6A4/fn0hYVXafWGFn36Qw1as7RR4eDZ0X2hK6/DQZ/WLG3Upz/UoNUbWvSFhVeRTwAc07+5QMbaITPqQs7NqP6JxFJtLuD5meCqoN+VE+O+tGj6CP/LAFS6gfn04fdFi1oTTD4BcNqocEB//cwbjl638NCP3tLXb2osyfg93wSPCrtzYlx/XQAYrsHyaTgf0sknAG4I+Mx5a4KLnUjcfeiAAiXaxtHzSRjwGVdOjCvVGwjg0jVUPuXzIT0c9Onrn5pJPgFwRbQ6pFXzpzk6kfiVJVcrWlOaaxY8vya4/w2UnDsxbtX8aSV7AwFcuvLNp3PXBJNPAErB7/dpadOki64Jzve6hYy1Wto0qWQH+rh+WIYx5pOS/kqSX9J3rLXrz3l8qqQNksbmnnO3tXbLUDWdPCxDkt49GdeCP91x1syv32e0aOYE3dR0+ZBT+c/sO3reiXHP/t5CTRwTdmx8ALyLfAJQzpLprDbuPqw7H2+VVNxhGfevbNLyayYrFHBujnaowzJcbYKNMX5Jr0laIumQpBcl3Wqt3TvgOQ9I+pm19m+NMbMkbbHWThuqrtNN8Llv4GDyPTHOjTcQgHeRTwDKXaw7qbseb9XWtr7lD8P5oL6ksV73rWzSuJqQo2MbyRPjrpX0hrX2zdxAHpO0XNLeAc+xkvrPxhsj6YjLYzpPKODTosZ6LWmsP/MGniufE+OWNNZrcWM9v2AAOIZ8AlDuojUhrV8xR3pC2trWUfCa4CWN9Vq/Yo7jDfDFuJ2GkyW1D7h9KHffQH8k6deNMYckbZH0pcEKGWPuMMa0GGNaOjsLP9HtYvrfwCWN9cN6/Ui9gQAufeQTgHJ3WW2V7l3ZpPtXNhW0Jvj+lU26b2WTLhuBA3zcXg6xUtInrbX/X+72ZyVdZ6397QHP+WpuHH9mjJkv6SFJs621F9wp2enlEAPFupPa3tahNRv35H1i3Lrls7W4sZ5fMABcRT4BKHfJdFax7qQ2tx7Rhp0HLrgm+HMfmaab5kxStCbk6jdUI7kmeL6kP7LW3pi7/fuSZK39kwHPeVV9jXJ77vabkq631h69UF03m2Cp/N5AAOhHPgGoBJlMVrGepNJZq654Wol0VlUBn2rDAQV8RtGaqpLsAjGSTXBAfRfGLZJ0WH0Xxt1mrX11wHP+XdI/W2v/wRjTKGm7pMl2iIG53QT3K5c3EADORT4BwMWN2IVx1tq0Mea3JT2tvu3PvmutfdUYs1ZSi7V2k6T/LelBY8xX1HeR3OeGaoBLye/3qW5UbiuhMSM7FgAYiHwCgOK4fmJcbs/fLefcd8+AP++V9FG3xwEAAAD0Y6EYAAAAPIcmGAAAAJ5DEwwAAADPoQkGAACA59AEAwAAwHNoggEAAOA5NMEAAADwHJpgAAAAeA5NMAAAADyHJhgAAACeQxMMAAAAz6EJBgAAgOfQBAMAAMBzaIIBAADgOTTBAAAA8ByaYAAAAHgOTTAAAAA8hyYYAAAAnkMTDAAAAM+hCQYAAIDnBEZ6AAAAALi0ZDJZxXqSSmetTsfTSqQyqgr6NSocUMBnFK0Oye8f2blYmmAAAAA4IpnOKtad1ObWI9qw84DaY73nPachGtGq+dO0tGmSojUhhQIj0wwba+2I/MXFaG5uti0tLSM9DAAAAOTEupPa3tahNRv3KJ7KXvT54aBP65bP1qLGekVrQq6MyRizy1rbPNhjrAkGAABAUY51JXTX46268/HWvBpgSYqnsrrz8Vbd9XirjnUlXB7h+WiCAQAAMGyx7qTufuIVbW3rGNbrt7Z16O4nXtHx7qTDIxsaTTAAAACGJZnOantbx7Ab4H5b2zq0ra1DyXR+s8hOoAkGAADAsMS6k1qzcY8jtdZs3KNYCWeDaYIBAABQsEwmq82tR/JeA3wx8VRfvUymNLPBNMEAAAAoWKwnqQ07Dzhac8POA4r1lGY2mCYYAAAABUtn7aD7ABejPdardLY02/fSBAMAAKBgp+PpvJ4X8BlVh/wK+Exez+/Ks26xODFuCJVw5B8AbyKfAIy0RCoz6P1+n9Hixgn61JzLNXlsRIl0VvFURuGgX1UBnw6f6NVTre9o+76jygwy65so0Q4RNMGDqKQj/wB4C/kEoFxUBf3n3bds7iR9/qPT9OxrnfrTH+6/YEatmDdFX1jwfn33xwe06eUjZz1eqszi2ORzlOORfwAgkU8Ayss7J3s1/0+ekSTVhPy6b+VcvXuqV/c/vT/vjLrzxhmaODqirz3+srqTfTPLO3//E7p8TMSRMXJscp4q8cg/AN5APgEoNwGfUUM0opqQXw+uatb3d7Vr3ea2gjJq3eY2fX9Xux5c1ayakF8N0Ujea4eLxXKIHCeO/NMT0n0rmzSOGRcADiKfAJSjaHVIq+ZP0+VjInrgP9/Us/s7h1Wn/3X3rZyrd072KlpT5eQwL4iZYFX2kX8ALm3kE4By5ff7tHzuJL17qnfYDXC/Z/d36t1TvVo+d5L8JZoJpglWZR/5B+DSRj4BKGcZa3X/0/sdqXX/0/uVKeG1ap5vgiv9yD8Aly7yCUA568uodxzOqHc4NrlUKv3IPwCXLvIJQDmr9IzyfBNc6Uf+Abh0kU8AylmlZ5Tnm+B8j/wrVKmO/ANw6SKfAJSzSs8ozzfBFzryr+i6XIENoEjkE4ByVukZ5fkmeLAj/5zAMaUAikU+AShnlZ5Rnk/CUWF3zgtxqy4A7yCfAJSzSs8ozzfB/Uf+OamUR/4BuHSRTwDKWaVnlOeb4P4j/5y0av60kh35B+DSRT4BKGeVnlGeb4L9fp+WNk1SOOjMjyIc7KtXqiP/AFy6yCcA5azSM8rzTbAkRWtCWrd8tiO11i2frWhNyJFaAEA+AShnlZxRNMHquwpxUWO9ljTWF1VnSWO9FjfWc+U1AMeQTwDKWSVnFGmYE60Jaf2KOcN+E5c01mv9ijkaxywLAIeRTwDKWaVmlLG28o7PbG5uti0tLa7UjnUntb2tQ2s27lE89YvNmgM+o1DAp2Q6e9ZxfuGgT+uWz9bixnp+wQBwFfkEoJyVY0YZY3ZZa5sHfYwm+HzJdFax7qRa208oK6vxtVVKpLOKpzIKB/2qCvj0XldCPiM1TRmnaE2IrxgBlAT5BKCclVtGDdUEs2P6EA4e79GGnQfUHus977GGaESr5k9T05RxpR8YAM8jnwCUs0rIKGaCz3GhqfwL6Z/KX9RYz1XXAFxFPgEoZ+WYUSyHyNOxroTufuIVbW3rKPi1/Yu6L6tlE3oAziOfAJSzcs2ooZpgForlxLqTw37zJGlrW4fufuIVHe9OOjwyAF5HPgEoZ5WaUTTB6lvEvb2tY9hvXr+tbR3a1tahZPriXwEAQD7IJwDlrJIziiZYfZ9g1mzc40itNRv3KMZsCwCHkE8AylklZ9e3hUAAACAASURBVJTnm+BMJqvNrUfyWsCdj3iqr14mw2wLgOKQTwDKWaVnlOeb4FhPUht2HnC05oadBxTrYbYFQHHIJwDlrNIzyvNNcDprB93Drhjtsd6zTkQBgOEgnwCUs0rPqIKbYGPMVcaYFcaYWW4MqNROx9Ou1O1yqS4A7yCfAJSzSs+oizbBxpgdxpjxuT9/VtIWSb8i6Z+NMV9yeXyuS6Qy7tTlCmwARSKfAJSzSs+ofI5NrrPWvpf78+9Imm+tPWaMqZb0vKRvuTa6EqgK+l2p6+Y52AC8gXwCUM4qPaPy+VtSxpjJuT93SerO/TkhyZ1/fQmNCufzOaB86gLwDvIJQDmr9IzKpwn+iqQfGmPWSnpV0jPGmP8j6T8k/b2bgyuFgM+oIRpxtGZDNKKAzzhaE4D3kE8AylmlZ9RFm2Br7bOSPiLpHUkpSbskxSV9yVr7p66OrgSi1SGtmj/N0Zqr5k9TtMb5868BeAv5BKCcVXpG5bXowlp70lr7t9bar1hrv2Stvddau2/gc4wxFbk22O/3aWnTJIWDzqw/CQf76vmZaQFQJPIJQDmr9IxycuXxRx2sVVLRmpDWLZ/tSK11y2crWhNypBYAkE8AylklZxSXCKvvKsRFjfVa0lhfVJ0ljfVa3FjPldcAHEM+AShnlZxRpGFOtCak9SvmDPtNXNJYr/Ur5mgcsywAHEY+AShnlZpRxlpnjqYzxvzMWvtBR4pdRHNzs21paXGldqw7qe1tHVqzcY/iqYtv1hwO+rRu+WwtbqznFwwAV5FPAMpZOWaUMWaXtbZ50MfybYKNMXOsta8M8fjnrLX/MMj9n5T0V+rbU/g71tr1gzznv0v6I0lW0svW2tuGGoubTbAkJdNZxbqT2tx6RBt2Hhj0XOyGaESf+8g03TRnkqI1Ib5iBFAS5BOAclZuGeVUE/xfkqok/YOkf7LWnszjNX5Jr0laIumQpBcl3Wqt3TvgOdMl/YukT1hrjxtjJlhrjw5V1+0muF8mk1WsJ6l01qornlYinVVVwKfacEABn1G0poqrrAGMCPIJQDkrl4waqgnO+0gOa+3Hcg3r5yXtMsa8IOnvrbVbh3jZtZLesNa+mRvIY5KWS9o74DmrJf2NtfZ47u8ZsgEuJb/fp7pR4b4bY0Z2LAAwEPkEoJxVQkYVNP9srX1d0h9KukvSxyV90xizzxhzywVeMllS+4Dbh3L3DXS1pKuNMT82xjyfWz5xHmPMHcaYFmNMS2dnZyHDBgAAAM6SdxNsjGkyxvyFpDZJn5B0s7W2MffnvyhiDAFJ0yUtkHSrpAeNMWPPfZK19gFrbbO1trmurq6Ivw4AAABeV8hM8LckvSRprrX2i9balyTJWntEfbPDgzksqWHA7Sm5+wY6JGmTtTZlrX1LfWuIpxcwLgAAAKAghTTBN0l6xFrbK0nGGJ8xplqSrLXfu8BrXpQ03RjzPmNMSNJnJG065zn/pr5ZYBljxqtvecSbBYwLAAAAKEghTfA2SZEBt6tz912QtTYt6bclPa2+ZRT/Yq191Riz1hizLPe0pyUdM8bslbRD0p3W2mMFjAsAAAAoSN67Q0gKW2u7+m9Ya7v6Z4KHYq3dImnLOffdM+DPVtJXc/8BAAAAritkJrjbGDOv/4Yx5kOSzt8BGQAAAChzhcwE/66k7xtjjkgykiZK+h+ujAoAAABwUSGHZbxojJkpaUburv3W2pQ7wwIAAADcU8hMsCR9WNK03OvmGWNkrX3Y8VEBAAAALsq7CTbGfE/S+yXtlpTJ3W0l0QQDAACgohQyE9wsaVZuNwcAAACgYhWyO8Qe9V0MBwAAAFS0QmaCx0vaa4x5QVKi/05r7bILvwQAAAAoP4U0wX/k1iAAAACAUipki7TnjDFXSJpurd2WOy3O797QAAAAAHfkvSbYGLNa0uOS/i5312RJ/+bGoAAAAAA3FXJh3BclfVTSKUmy1r4uaYIbgwIAAADcVEgTnLDWJvtvGGMC6tsnGAAAAKgohVwY95wx5uuSIsaYJZK+IOkH7gyrPGQyWcV6kkpnrU7H00qkMqoK+jUqHFDAZxStDsnvL+RzBAA4g3wCgOIU0gTfLel2Sa9I+p+StlhrH3RlVCMsmc4q1p3U5tYj2rDzgNpjvec9pyEa0ar507S0aZKiNSGFAvyyAeA+8gkAnGHyPQDOGPNla+1fXey+UmhubrYtLS2u1I51J7W9rUNrNu5RPJW96PPDQZ/WLZ+tRY31itaEXBkTAEjkEwAUyhizy1rbPOhjBTTBL1lr551z38+stR90YIwFcasJPtaV0N1PvKKtbR0Fv3ZJY73Wr5ijy2qrHB8XAJBPAFC4oZrgiy6HMMbcKuk2Se8zxmwa8NAoSTFnhjjyYt3JYf+CkdT3uiek+1Y2aRwzLgAcRD4BgPPyWRP8E0nvqO/Y5D8bcP9pSa1uDKrUkumstrd1DPsXTL+tbR3a1tah5ddMZg0eAEeQTwDgjos2wdbatyW9LWm++8MZGbHupNZs3ONIrTUb9+hj0+s0cUzYkXoAvI18AgB3FHJi3C3GmNeNMSeNMaeMMaeNMafcHFwpZDJZbW49ktdFJvmIp/rqZTLO1APgXeQTALinkO/E7pO0zFo7xlo72lo7ylo72q2BlUqsJ6kNOw84WnPDzgOK9SQv+jwAGAr5BADuKaQJ7rDWtrk2khGSztpB99ksRnusV+ksh+kBKA75BADuKeSwjBZjzD9L+jdJif47rbVPOj6qEjodT7tStyuelsa4UhqAR5BPAOCeQprg0ZJ6JP3ygPuspIpughOpjDt106y5A1Ac8gkA3JN3E2yt/U03BzJSqoJ+V+qyBRGAYpFPAOCeQnaHuNoYs90Ysyd3u8kY84fuDa00RoULmQwf+boAvIN8AgD3FDId8KCk35eUkiRrbaukz7gxqFIK+IwaohFHazZEIwr4jKM1AXgP+QQA7imkCa621r5wzn3uXLVRQtHqkFbNn+ZozVXzpylaU+VoTQDeQz4BgHsKaYLfM8a8X30Xw8kYs1J9xylXNL/fp6VNkxQOOrNGLhzsq+dnpgVAkcgnAHBPIcn6RUl/J2mmMeawpN+V9L9cGVWJRWtCWrd8tiO11i2frWhNyJFaAEA+AYA78m6CrbVvWmsXS6qTNNNa+0vW2gOujayEQgGfFjXWa0ljfVF1ljTWa3FjPVdeA3AM+QQA7ihkd4gvG2P69wr+C2PMS8aYX77Y6ypFtCak9SvmDPsXzZLGeq1fMUfjmGUB4DDyCQCcV8iUwOettafUd1jGZZI+K2m9K6MaIZfVVunelU26f2VT3mvwwkGf7l/ZpPtWNumyWi42AeAO8gkAnFXIZpH9V1J8StLD1tpXjTGX3NUV0ZqQll8zWR+bXqfNrUe0YecBtcd6z3teQzSiz31kmm6aM0nRmhBfMQJwHfkEAM4x1tr8nmjM30uaLOl9kuZK8kt61lr7IfeGN7jm5mbb0tLi+t+TyWQV60kqnbXqiqeVSGdVFfCpNhxQwGcUraniKmsAI4J8AoCLM8bsstY2D/ZYITPBt0u6RtKb1toeY8xlki7Jo5T7+f0+1Y0K990YM7JjAYCByCcAKM5Fm2BjzExr7T71NcCSdOUluAoCAAAAHpLPTPBXJd0h6c8GecxK+oSjIwIAAABcdtEm2Fp7R+7/C90fDgAAAOC+QvYJ/rQxZlTuz39ojHnSGPNB94YGAAAAuKOQfXPWWGtPG2N+SdJiSQ9J+rY7wwIAAADcU0gTnMn9/yZJD1hrn5LE8UMAAACoOIU0wYeNMX8n6X9I2mKMqSrw9QAAAEBZKKSJ/e+SnpZ0o7X2hKSopDtdGRUAAADgorybYGttj6SNkrqNMVMlBSXtc2tgAAAAgFvyPjHOGPMlSf9HUoekbO5uK6nJhXEBAAAArink2OQvS5phrT3m1mAAAACAUihkTXC7pJNuDQQAAAAolUJmgt+U9Kwx5ilJif47rbV/7vioAAAAABcV0gQfzP0XEvsDAwAAoILl3QRba/+vJBljanO3u9waFAAAAOCmvNcEG2NmG2N+JulVSa8aY3YZYz7g3tAAAAAAdxRyYdwDkr5qrb3CWnuFpP8t6UF3hgUAAAC4p5AmuMZau6P/hrX2WUk1jo8IAAAAcFlBu0MYY9ZI+l7u9q+rb8cIAAAAoKIUMhP8eUl1kp6U9ISk8bn7AAAAgIpSyO4QxyX9jotjAQAAAEqikN0hthpjxg64Pc4Y87Q7wwIAAADcU8hyiPHW2hP9N3IzwxOcHxIAAADgrkKa4KwxZmr/DWPMFZKs80MCAAAA3FXI7hB/IOlHxpjnJBlJH5N0hyujAgAAAFxUyIVx/2GMmSfp+txdv2utfa//cWPMB6y1rzo9QAAAAMBphcwEK9f0br7Aw9+TNK/oEQEAAAAuK2RN8MUYB2sBAAAArnGyCeYiOQAAAFQEJ5tgAAAAoCI42QQnHawFAAAAuKagC+OMMU2Spg18nbX2ydz/r7/AywAAAICykncTbIz5rqQmSa9KyubutpKedGFcAAAAgGsKmQm+3lo7y7WRAAAAACVSyJrgncYYmmAAAABUvEJmgh9WXyP8rqSE+vYFttbaJldGBgAAALikkJnghyR9VtInJd0saWnu/0MyxnzSGLPfGPOGMebuIZ63whhjjTHNBYwJAAAAKFghM8Gd1tpNhRQ3xvgl/Y2kJZIOSXrRGLPJWrv3nOeNkvRlST8tpD4AAAAwHIU0wT8zxjwi6QfqWw4h6RdbpF3AtZLesNa+KUnGmMckLZe095znrZN0r6Q7CxgPAAAAMCyFLIeIqK/5/WX1LYPoXxIxlMmS2gfcPpS77wxjzDxJDdbap4YqZIy5wxjTYoxp6ezsLGDYAAAAwNnyngm21v6m03+5McYn6c8lfS6Pv/8BSQ9IUnNzs3V6LAAAAPCOQg7LCEu6XdIHJIX777fWfn6Ilx2W1DDg9pTcff1GSZot6VljjCRNlLTJGLPMWtuS79gAAACAQhSyHOJ76mtSb5T0nPoa2tMXec2LkqYbY95njAlJ+oykMxfXWWtPWmvHW2unWWunSXpeEg0wAAAAXFVIE3yVtXaNpG5r7QZJN0m6bqgXWGvTkn5b0tOS2iT9i7X2VWPMWmPMsuEOGgAAAChGIbtDpHL/P2GMmS3pXUkTLvYia+0WSVvOue+eCzx3QQHjAQAAAIalkCb4AWPMOElr1LekoVbSoM0sAAAAUM4K2R3iO7k/PifpSneGAwAAALgv7zXBxph6Y8xDxph/z92eZYy53b2hAQAAAO4o5MK4f1DfBW6Tcrdfk/S7Tg8IAAAAcFshTfB4a+2/SMpKZ3Z+yLgyKgAAAMBFhTTB3caYyyRZSTLGXC/ppCujAgAAAFxUyO4QX1XfrhBXGmN+LKlO0kpXRgUAAAC4qJAmeK+kf5XUo76T4v5NfeuCAQAAgIpSyHKIhyXNlPQNSd+SdLX6jlIGAAAAKkohM8GzrbWzBtzeYYzZ6/SAAAAAALcVMhP8Uu5iOEmSMeY6SS3ODwkAAABw10Vngo0xr6hvR4igpJ8YYw7mbl8haZ+7wwMAAACcl89yiKWujwIAAAAooYs2wdbat0sxEAAAAKBUClkTDAAAAFwSaIIBAADgOTTBAAAA8ByaYAAAAHgOTTAAAAA8hyYYAAAAnkMTDAAAAM+hCQYAAIDn0AQDAADAc2iCAQAA4Dk0wQAAAPAcmmAAAAB4Dk0wAAAAPIcmGAAAAJ5DEwwAAADPoQkGAACA59AEAwAAwHNoggEAAOA5NMEAAADwHJpgAAAAeA5NMAAAADyHJhgAAACeQxMMAAAAz6EJBgAAgOfQBAMAAMBzAiM9gHKWyWQV60kqnbU6HU8rkcqoKujXqHBAAZ9RtDokv5/PEQBKL5XKqLM7oayVTsfT6k1lFMnlk89IdTVVCgb9Iz1MAB5VCRlFEzyIZDqrWHdSm1uPaMPOA2qP9Z73nIZoRKvmT9PSpkmK1oQUCtAMA3BfTyKt470pbdx9WI++cPCC+XTrtVO1/JrJGhcJqrqKqAdQGpWUUcZaOyJ/cTGam5ttS0uLK7Vj3Ultb+vQmo17FE9lL/r8cNCndctna1FjvaI1IVfGBACSdPRUXNvaOrR289688+mepbO0uLFeE0aHSzBCAF5WjhlljNllrW0e9DGa4F841pXQ3U+8oq1tHQW/dkljvdavmKPLaqscHxcAHD0V111PtmrHvs6CX7twZp3uvaWJRhiAa8o1o4ZqgvkOPyfWnRx2AyxJW9s6dPcTr+h4d9LhkQHwumJ+uUjSjn2duuvJVh09FXd4ZABQuRlFE6y+NcDb2zqG3QD329rWoW1tHUqmL/4VAADkoyeR1ra2jmH/cum3Y1+ntrV1qCeZdmhkAFDZGUUTrL5Z4DUb9zhSa83GPYoxGwzAIcd7U1q7ea8jtdZu3qvjPSlHagGAVNkZ5fkmOJPJanPrkbwWcOcjnuqrl8kwGwygOKlURht3H3Y0nzbtPqxUKuNIPQDeVukZ5fkmONaT1IadBxytuWHnAcV6mA0GUJzO7oQefeGgozUfeeGgOrsTjtYE4E2VnlGeb4LTWTvoHnbFaI/1Kp2tvF03AJSXrJUr+UQ8AXBCpWeU55vg03F3FmB3uVQXgHe4lU9u1QXgLZWeUZ5vghMurTtJsEMEgCL1upRPcdYEA3BApWeU55vgKpfOreYYZQDFiriUT2GX6gLwlkrPKM93aqPC7pxX7VZdAN5BPgEoZ5WeUZ5vggM+o4ZoxNGaDdGIAj7jaE0A3uMzciWfiCcATqj0jPJ8ExytDmnV/GmO1lw1f5qiNVWO1gTgPXU1Vbr12qmO1rzt2qmqGxV2tCYAb6r0jPJ8E+z3+7S0aZLCQWd+FOFgXz0/Uy0AihQM+rX8msmO5tOyayYr6Pd89ANwQKVnFEkoKVoT0rrlsx2ptW75bEVrQo7UAoBxkaDuWTrLkVr3LJ2lcdVBR2oBgFTZGUUTrL6dHBY11mtJY31RdZY01mtxYz07QwBwTHVVQIsb67VwZl1RdRbOrNPixnpVh7goDoBzKjmj6NZyojUhrV8xZ9iN8JLGeq1fMUfjmAUG4LAJo8O695amYf+SWTizTvfe0qQJo1kLDMB5lZpRxtrKOz+zubnZtrS0uFI71p3U9rYOrdm4R/HULw68CPiMQgGfkunsWUcih4M+rVs+W4sb62mAAbjq6Km4trV1aO3mvWfl04WEgz7ds3SWFjfW0wADcF05ZpQxZpe1tnnQx2iCz5dMZxXrTqq1/YSyshpfW6VEOqt4KqNw0K+qgE/vdSVkjDR3yjhFa0IsgQBQEj3JtI73pLRp92E98sJBtcd6z3tOQzSiX7t2qpZdM1ljq4MsgQBQMuWWUTTBBepJpHW8N6UfvHxE//TTty/8Bl53hW6eO0njIkFVV/FLBkDppFIZdXYnlLXS6Xj6zIf0UeGAfEaqGxVmFwgAI6ZcMoomuADlOJUPAACAwg3VBDN9OcDRU3Hd9WSrduzrzPs18VRWX//XPdra1sGFJwAAABWC78pyhtMAD7RjX6fuerJVR0/FHR4ZAAAAnEYTrL41wNvaOobdAPfbsa9T29o61JNMOzQyAAAAuIEmWNLx3pTWbt7rSK21m/fqeE/KkVoAAABwh+eb4FQqo427D+d1EVw+4qmsNu0+rFQq40g9AAAAOM/zTXBnd0KPvnDQ0ZqPvHBQnd0JR2sCAADAOZ5vgrNWg+4DXIz2WK+ylbfzHAAAgGd4vgk+HXfnIja36gIAAKB4nm+Ce11auxtnTTAAAEDZ8nwTHAn6XakbdqkuAAAAiud6E2yM+aQxZr8x5g1jzN2DPP5VY8xeY0yrMWa7MeYKt8c00KiwO4fmuVUXAAAAxXO1CTbG+CX9jaRfkTRL0q3GmFnnPO1nkpqttU2SHpd0n5tjOpfPSA3RiKM1G6IR+YyjJQEAAOAgt2eCr5X0hrX2TWttUtJjkpYPfIK1doe1tid383lJU1we01nqaqp067VTHa1527VTVTcq7GhNAAAAOMftJniypPYBtw/l7ruQ2yX9+2APGGPuMMa0GGNaOjuLO954oGDQr+XXTFY46MyPIhz0adk1kxX0e365NQAAQNkqm07NGPPrkpol3T/Y49baB6y1zdba5rq6Okf/7nGRoO5Zeu4qjeG5Z+ksjasOOlILAAAA7nC7CT4sqWHA7Sm5+85ijFks6Q8kLbPWlvyoteqqgBY31mvhzOKa64Uz67S4sV7VIS6KAwAAKGduN8EvSppujHmfMSYk6TOSNg18gjHmg5L+Tn0N8FGXx3NBE0aHde8tTcNuhBfOrNO9tzRpwmjWAgMAAJQ7V5tga21a0m9LelpSm6R/sda+aoxZa4xZlnva/ZJqJX3fGLPbGLPpAuVc198If+O/zc57jXA46NM3/ttsGmAAAIAKYqy1Iz2GgjU3N9uWlhbX6vck0zrek9Km3Yf1yAsH1R7rVcBnFAr4lExnlc5aNUQj+rVrp2rZNZM1tjrIEggAAIAyY4zZZa1tHuwxOrdBVIcCqg4F9Jvzr9DNcydJkk73ptWbyigS9GtUpO/HVlcTUhXNL4AR0JtI6VhPStLg+XRZdVCRKi7SBTAy4omU3hsio8ZXBxUe4YyigxtETyKt470pbdx9WI/mZoLP1RCN6NZrp2r5NZM1LhJUdRU/SgDuO9GTVHci05dPLw6RTx/uy6eaKr/GVodGYKQAvOhkT1JdBWRUbZVfY0Yoo1gOcY6jp+La1tahtZv3Kp7KXvT54aBP9yydpcWN9awJBuCqd0/Gtb2tQ+ueyj+f1tw0S4sa6zVxDPkEwF3lmFFDLYegCR7g6Km47nqyVTv2FX4YB7tDAHBTx6m47i4in9bf0qR68gmAS8o1o4ZqgsvmsIyRVkwDLEk79nXqridbdfRU3OGRAfC6d08O/5eL1JdPdz/Zqg7yCYALKjWjaILVtwZ4W1vHsN+8fjv2dWpbW4d6kmmHRgbA6070JLXdqXza26GTPUmHRgYAfWuAncyoU72lyyiaYEnHe1Nau3mvI7XWbt6r47mrIQGgWN2JjNY95Uw+rXtqr7oSGUdqAYAkdTmcUafjpcsozzfBqVTfFYz5LODORzyV1abdh5VK8YsGQHF6Eynn8+nlw+pN8EEdQPHiLmVUvEQZ5fkmuLM7oUdfOOhozUdeOKjO7oSjNQF4z7GelB590fl8Osa3VQAc8J5LGfVeiTLK801w1mrQPeyK0R7rVbbyNt0AUGasS/lUgZsCAShDlZ5Rnm+CT8fduYjNrboAvKPLpRzpSpBPAIpX6Rnl+Sa416W1u3HWBAMoEvkEoJxVekZ5vgmOBP2u1A27VBeAd7iWTwHyCUDxKj2jPN8EjwoHKqouAO+odSlH3KoLwFsqPaM83wT7jNQQjThasyEakc84WhKABxmX8smQTwAcUOkZ5fkmuK6mSrdeO9XRmrddO1V1o5w//xqAt1xWHdStH3Yhn2qrHK0JwJvGV3hGeb4JDgb9Wn7NZIWDzvwowkGfll0zWUG/53+0AIoUqQo6n09zJ6uKaxYAOCBc4RlFpyZpXCSoe5bOcqTWPUtnaVx10JFaAFBT5deam5zJpzU3zVJtFQ0wAOfUOpxRo8KlyyiaYEnVVQEtbqzXwpl1RdVZOLNOixvrVR3iohMAzhhbHdIip/JpVr3GVIccGhkASGMczqjRkdJlFE1wzoTRYd17S9Ow38SFM+t07y1NmjCatcAAnDVxTFjri8yn9bc0qZ58AuCCSs0oYyvw/Mzm5mbb0tLiSu2jp+La1tahtZv3Kp7Knrk/HPCpNhxQVzyteHrA/UGf7lk6S4sb62mAAbjq3ZNxbW/r0Lqnzs6ngM8oFPApmc4qPeDM9nDQpzU3zdLiWfU0wABcV44ZZYzZZa1tHvQxmuDz9STTOt6T0jsnelUbDigS9KsrnlZvKqNI0K/acEC9qYy64mlNGhvR2OogSyAAlMTJnqS6Ehm93H5cPp/R+NoqJdJZxVMZhYN+VQV8eq8roWzWau7UcaoN+VkCAaBkTvUmdTqef0aNqvK7ugRiqCaYzm0QiXRWstILb8X06IsH1R7rPe85DdGIbv3wVC2/ZrIS6az4HQOglNqP9+off/r2BfPp16+7QnMbxo3AyAB4Wf9Eb74ZlR3BuVhmgs9xoan8C+mfyl/UWK+JY/i6EYB7yCcA5awcM4rlEHnqOBXX3U+2ase+zoJfy4UnANxEPgEoZ+WaUUM1wewOkfPuyeG/eZK0Y1+n7n6yVR2n4g6PDIDXkU8AylmlZhRNsKTjPUltb+sY9pvXb8e+Tm3b26ETPUmHRgbA6046nE+nesknAM454XBGnSxhD0UTLKknkdG6p/Y6UmvdU3vVncg4UgsAuhzOp9Nx8gmAc7odzqiuEvZQnm+CexMpbdx9OK8F3PmIp7La9PJh9SZSjtQD4F1xl/IpTj4BcECl91Ceb4KP9aT06IsHHa35yAsHdayHXzIAivOeS/n0HvkEwAGV3kN5vgm2VoPuYVeM9livKnDTDQBlhnwCUM4qPaM83wR3xdPu1E24UxeAd5BPAMpZpWeU55vg3pQ7C7DjLtUF4B3kE4ByVukZ5fkmOBL0u1I3HHCnLgDvIJ8AlLNKzyjPN8G14UBF1QXgHeQTgHJW6Rnl+SbYGKkhGnG0ZkM0ImMcLQnAg8gnAOWs0jPK803wZdVB3frhqY7WvO3aqaqrrXK0JgDvGU8+AShjld5Deb4JjlQFtfyayQoHnflRhIM+LZs7WVUurZMB4B1h8glAGav0HsrzTbAkVVf5teamWY7UWnPTLNVU8QsGgDNqHc6nUWHyCYBzahzOqNoS9lA0wZLGVYe0qLFeC2fWFVVn4cw6LZ5Vr7HVIYdGBsDrxjicT6Mj5BMA54x1OKPGlLCHognOmTgmrPW3NA37TVw4s07r3OVtNwAADp5JREFUb2lS/eiwwyMD4HXkE4ByVqkZZWwFnp/Z3NxsW1paXKn97sm4trd1aN1TexVPZS/6/HDQpzU3zdLiWfX8ggHgKvIJQDkrx4wyxuyy1jYP+hhN8PlO9CTVncho08uH9cgLBwc9F7shGtFt107VsmsmqybkZwkEgJI41ZvU6Xj++TSqys8SCAAlc7Inqa4CeqjakN/VJRA0wcPUm0jpWE9K1vadYx1PZRQO+lVbFZAxUl1tSFVBNp0HUHoXz6cqdoEAMGLKpYcaqgmmgxtEMp1VrDupza1HtGHnAbXHelUb8mtcTUjHu5PqSmbUEI1o1fxpWto0SdGakEIBllcDcN9g+RQO+FQbDqgrnlY8nSWfAIyYSsooZoLPEetOantbh9Zs3JP3epZ1y2drUWO9ojV85QjAPeQTgHJWjhnFcog8HetK6O4nXtHWto6CX7uksV7rV8zRZZzEBMAF5BOAclauGTVUE8x3ZDmx7uSw3zxJ2trWobufeEXHu5MOjwyA15FPAMpZpWYUTbD61q9sb+sY9pvXb2tbh7a1dSiZvvhXAACQD/IJQDmr5IyiCVbfJ5g1G/c4UmvNxj2KMdsCwCHkE4ByVskZ5fkmOJPJanPrkbwWcOcjnuqrl8kw2wKgOOQTgHJW6Rnl+SY41pPUhp0HHK25YecBxXqYbQFQHPIJQDmr9IzyfBOcztpBTzMpRnusV+ls5e26AaC8kE8AylmlZ5Tnm+DT8bQrdbtcqgvAO8gnAOWs0jPK801wIpVxpy5XYAMoEvkEoJxVekZ5vgmuCvpdqcsxpQCKRT4BKGeVnlGeT8JR4UBF1QXgHeQTgHJW6Rnl+SY48P+3d+8xdpTnHcd/P++evdjmtrBdyLKuo+DUuwHbSRYnUdM2riEBHGEVEhFoE5oipWrTlqoX1a1k0mZbxQj1oqpJqyS0TtVCqFKruHWa0FInqRQILIkvYNPIAsXYAePYYMDrvXmf/nEGul2v13uZOWfmzPcjrXTOzHve86wf7XMez3lnZpHV09Ge6pw9He1qXuRU5wRQPtQnAHlW9BpV+ia4Y3GLbn/P8lTnvP09y9WxJP37XwMoF+oTgDwreo0qfRPc1LRIH1z1JrVV0vmnaKtU52viSAuABaI+Acizoteo0jfBktSxpEUDG69MZa6BjVeqY0lLKnMBAPUJQJ4VuUbRBKt6FuL63i5d29u1oHmu7e3SNb1dnHkNIDXUJwB5VuQaRTVMdCxp0Zabr5p3Eq/t7dKWm6/SRRxlAZAy6hOAPCtqjXJE8W6f2d/fH4ODg5nMffzkqB7ef0SbH3xSw2P/d7HmW1Zfqg++/TL92/ee1wO7X3hje1tlkQY2Xqlrerv4gAGQKeoTgDzLY42y/URE9E+7jyb4TKPjEzp+clTntVrHh07Lll45NabhsQm1VRbp/PaKIqSOxU16dSTUsaSFrxgB1AT1CUCe5a1GzdQEc8X0aZwcHdfpidCXHjmk+x8/qOeOnzpjTE9Hu269epk2runWydFxtTRzlAVA9qhPAPKsSDWKI8FTvHBiWA/vP6KBHfv+36H8s2mrLNLmDX1a39ulSy9oyyQmAJCoTwDyLY81iuUQs3TklWFt2rZHO58+OufXrlvZqS03rVLX+XzQAEgf9QlAnuW1Rs3UBLNQLPHCifknT5J2Pn1Um7bt0ZFXhlOODEDZUZ8A5FlRaxRNsKSXhqpnM843ea/b+fRR/ee+I3p5aDSlyACUHfUJQJ4VuUbRBEsaGjmtgR37UplrYMc+nRw5ncpcAEB9ApBnRa5RpW+CT42M6cFdh2e1gHs2hscmtH33YZ0aGUtlPgDlRX0CkGdFr1GZN8G2r7P9P7YP2N40zf5W2w8k+79je3nWMU12bGhM9z9+MNU573vsoI4N8SEDYGGoTwDyrOg1KtMm2HaTpM9Kul5Sn6RbbfdNGXaHpJci4gpJfy7p7ixjmipC017DbiGeO35KBbzoBoCcoT4ByLOi16isjwSvlXQgIp6JiFFJX5a0ccqYjZK+lDz+iqT1tp1xXG94bXg8m3lHspkXQHlQnwDkWdFrVNZNcLek5yY9P5Rsm3ZMRIxLOiHp4qkT2f6E7UHbg0ePLuwMxMlOjWWzAHs4o3kBlAf1CUCeFb1GFebEuIj4fET0R0R/Z2dnavO2V5pSm2uytuZs5gVQHtQnAHlW9BqVdRN8WFLPpOeXJ9umHWO7WdIFko5lHNcblrY1F2peAOVBfQKQZ0WvUVk3wY9LWmH7zbZbJH1E0vYpY7ZLuj15/CFJ/xU1vJezLfV0tKc6Z09Hu2q3qhlAo6I+AcizoteoTJvgZI3vr0n6uqT9kv4pIp6y/WnbNybD7pV0se0Dkn5L0hmXUcvSxYsruvXqZanOedvaZepc2prqnADKh/oEIM+KXqMyXxMcEV+NiLdGxFsi4k+SbXdFxPbk8XBEfDgiroiItRHxTNYxTdbeWtHGNd1qq6TzT9FWWaQbV3erNaN1MgDKg/oEIM+KXqMKc2Jclha3NmnzhqmXL56fzRv6tKSVDxgA6aA+AcizItcommBJFy1u0freLq1bubCrTqxb2alr+rp04eKWlCIDUHbUJwB5VuQaRROcuPSCNm25adW8k7huZae23LRKXee3pRwZgLKjPgHIs6LWKNfwQgyp6e/vj8HBwUzmfuHEsB7ef0QDO/ZpeGzinOPbKou0eUOfrunr4gMGQKaoTwDyLI81yvYTEdE/7T6a4DO9PDSqkyOntX33Yd332MFp74vd09Gu29Yu041rurWkpYmvGAHUBPUJQJ7lrUbRBM/TqZExHRsaU0T1PtbDY6fVVmnS0tZm2VLn0lbOsgZQF9QnAHmWlxo1UxPMbYNm0N5a0eWtlXqHAQBnoD4ByLMi1ChOjAMAAEDp0AQDAACgdGiCAQAAUDo0wQAAACgdmmAAAACUDk0wAAAASocmGAAAAKVDEwwAAIDSKeQd42wflfSDOrz1JZJ+VIf3RbbIa+Mit42L3DYm8tq46pXbH4+Izul2FLIJrhfbg2e79R6Ki7w2LnLbuMhtYyKvjSuPuWU5BAAAAEqHJhgAAAClQxM8N5+vdwDIBHltXOS2cZHbxkReG1fucsuaYAAAAJQOR4IBAABQOjTBAAAAKB2a4Cls/63tF20/eZb9tv2Xtg/Y3mP7HbWOEXM3i7z+fJLPvba/bXt1rWPE/Jwrt5PGXW173PaHahUbFmY2ubX9Ptu7bD9l+5u1jA/zN4uafIHtf7W9O8ntx2sdI+bOdo/tnbb3JXm7c5oxuemjaILPtFXSdTPsv17SiuTnE5L+ugYxYeG2aua8PivpZyLiKkkDyuECfpzVVs2cW9luknS3pIdqERBSs1Uz5Nb2hZI+J+nGiHibpA/XKC4s3FbN/Hf7SUn7ImK1pPdJ+lPbLTWICwszLum3I6JP0rslfdJ235QxuemjaIKniIhvSTo+w5CNkv4+qh6VdKHty2oTHebrXHmNiG9HxEvJ00clXV6TwLBgs/iblaRfl/TPkl7MPiKkZRa5vU3Stog4mIwnvwUxi9yGpPNsW9LSZOx4LWLD/EXE8xHx3eTxq5L2S+qeMiw3fRRN8Nx1S3pu0vNDOjPBKLY7JP17vYNAOmx3S/o58a1NI3qrpItsf8P2E7Y/Vu+AkJq/ktQr6YeS9kq6MyIm6hsS5sL2cklvl/SdKbty00c11+NNgbyyvU7VJvi99Y4FqfkLSb8XERPVg0poIM2S3ilpvaR2SY/YfjQivl/fsJCCD0jaJelnJb1F0n/Y/u+IeKW+YWE2bC9V9du338xzzmiC5+6wpJ5Jzy9PtqHgbK+S9EVJ10fEsXrHg9T0S/py0gBfIukG2+MR8S/1DQspOCTpWESclHTS9rckrZZEE1x8H5e0Jao3Mzhg+1lJKyU9Vt+wcC62K6o2wP8YEdumGZKbPorlEHO3XdLHkrMb3y3pREQ8X++gsDC2l0naJumjHEVqLBHx5ohYHhHLJX1F0q/SADeMByW913az7cWS3qXqGkQU30FVj/DLdpekn5D0TF0jwjkla7jvlbQ/Iv7sLMNy00dxJHgK2/ereibqJbYPSfqUpIokRcTfSPqqpBskHZA0pOr/VpFzs8jrXZIulvS55IjheET01ydazMUscouCOlduI2K/7a9J2iNpQtIXI2LGS+UhH2bxdzsgaavtvZKs6pKmH9UpXMzeT0r6qKS9tncl2/5A0jIpf30Ut00GAABA6bAcAgAAAKVDEwwAAIDSoQkGAABA6dAEAwAAoHRoggEAAFA6NMEAUGe2X8tgzjW2b5j0/A9t/07a7wMARUUTDACNaY2q1+IEAEyDJhgAcsT279p+3PYe23+UbFtue7/tL9h+yvZDttuTfVcnY3fZvsf2k7ZbJH1a0i3J9luS6ftsf8P2M7Z/I3n9Ets7bO9OXnvLtIEBQIOhCQaAnLD9fkkrJK1V9UjuO23/dLJ7haTPRsTbJL0s6eZk+99J+uWIWCPptCRFxKiqd0F8ICLWRMQDydiVkj6QzP8p2xVJ10n6YUSsjogrJX0t698TAPKAJhgA8uP9yc/3JH1X1aZ1RbLv2Yh4/TakT0habvtCSedFxCPJ9vvOMf+OiBhJbj/7oqQuSXslXWv7bts/FREnUvx9ACC3aIIBID8s6TPJ0ds1EXFFRNyb7BuZNO60pOZ5zH/GHBHxfUnvULUZ/mPbd80ncAAoGppgAMiPr0v6JdtLJcl2t+0fO9vgiHhZ0qu235Vs+sik3a9KOu9cb2j7TZKGIuIfJN2jakMMAA1vPkcSAAAZiIiHbPdKesS2JL0m6ReUrPU9izskfcH2hKRvSnp9OcNOSZts75L0mRlef5Wke5LXj0n6lYX9FgBQDI6IescAAJgn20sj4rXk8SZJl0XEnXUOCwByjyPBAFBsG2z/vqr1/AeSfrG+4QBAMXAkGAAAAKXDiXEAAAAoHZpgAAAAlA5NMAAAAEqHJhgAAAClQxMMAACA0vlfQv6MAqbtrBsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf5xV9X3v+/d3/5q9Z/ghG4dRYAiaKgyBgeiEI/mlBKgmECdXsFXThiRWTx9N0zZpjd62w+2Fm3NRc5o0faQn0SYnmFP1JmoDwbQGCGqT4sHB4IgMJMYQEHQY2QjMjz371/f+MTM4wjCz9+y1NmuxXs/Hg4fsXx++zjwe7/1Za33X92ustQIAAACCJHS+BwAAAABUGk0wAAAAAocmGAAAAIFDEwwAAIDAoQkGAABA4ETO9wDG4uKLL7YzZ84838MAAACAh+3atetNa23tcK/5sgmeOXOmWltbz/cwAAAA4GHGmN+e6zWmQwAAACBwaIIBAAAQODTBAAAACByaYAAAAAQOTTAAAAAChyYYAAAAgUMTDAAAgMChCQYAAEDg+HKzjErJZvPq7O5TwUqn0jn1ZvNKRMMaH48oZKTamipFo+HzPUwAAUQ+AfAyP2QUTfAwevpyOt6b1cbdh/XIzoM6lOo96z31yYRuXThDzQumaVIiquoqfpQA3Ec+AfAyP2WUsdael3+4HE1NTdatbZOPnkxra3uH1m7eq3S2MOr749GQ1qyYo6UNdZoyIe7KmABAIp8AeJsXM8oYs8ta2zTsazTBbzt6Mq27n2jT9n2dJX928exa3XtTI180AFxBPgHwMq9m1EhNMDfGDSjnlydJ2/d16u4n2nT0ZNrhkQEIOvIJgJf5NaNogtU/f2Vre8eYf3mDtu/r1Nb2DvVkcg6NDEDQkU8AvMzPGUUTLOl4b1ZrN+91pNbazXt1vCfrSC0AIJ8AeJmfMyrwTXA2m9fG3YeLmsBdjHS2oE27DyubzTtSD0BwkU8AvMzvGeVqE2yM+Y4x5qgxZs85XjfGmK8bY14xxrQZY65yczzD6ezu0yM7Dzpa8+GdB9XZ3edoTQDBQz4B8DK/Z5TbZ4K/K+mGEV7/qKQrBv7cKel/uDyesxSshl3DrhyHUr0q+G/RDQAeQz4B8DK/Z5SrTbC19llJqRHe0izpIdvvOUkXGWMudXNMZzqVdmcCtlt1AQQH+QTAy/yeUed7TvA0SYeGPH5t4LmzGGPuNMa0GmNaOzvLuwNxqF6X5p2kmXMHoEzkEwAv83tGne8muGjW2gestU3W2qba2lrH6iZc2rc6fp73wwbgf+QTAC/ze0ad7yb4sKT6IY+nDzxXMePj7uxX7VZdAMFBPgHwMr9n1PlugjdJ+tTAKhHXSDphrX29kgMIGak+mXC0Zn0yoZBxtCSAACKfAHiZ3zPK7SXSHpG0Q9IsY8xrxpjbjTF/bIz544G3/FjSq5JekfSgpD9xczzDqa2p0q0LZzha87aFM1Q73vn9rwEEC/kEwMv8nlFurw5xq7X2Umtt1Fo73Vr7bWvtN6213xx43VprP2etfbe1dp61ttXN8QwnGg2recE0xaPO/Cji0ZBuXDBN0fD5PskOwO/IJwBe5veMIgklTUpEtWbFHEdqrVkxR5Oqo47UAgDyCYCX+TmjaIIlVVdFtLShTotnl7fqxOLZtVraUKfqGDedAHAG+QTAy/ycUTTBA6ZMiOvemxrH/EtcPLtW997UqCkTmGsHwFnkEwAv82tGGWv9t39mU1OTbW11Z/rw0ZNpbW3v0NrNe5XOFk4/HwkZxSIhZXIF5Ybs5xePhrRmxRwtbajjCwaAq8gnAF7mxYwyxuyy1jYN+xpN8Nl6Mjkd78nqxYPHFQoZXTyuSn25gtLZvOLRsKoiIb3Z1SdbsJo/Y5Iuqo5yiRFARZBPALzMaxk1UhNMMg4jEgopbIwOn0jroR0HdCjVe9Z76pMJfWrRTL3XGEVCzCoBUBnkEwAv81NGcSb4DKnujLa1d6hl4553nMo/l3g0pHXNc7WkoU7JmpgrYwIAqT+ftrZ3aE0J+bS2ea6Wkk8AKsCLGcV0iCId6+rTPY+/pC3tHSV/dllDndavnKfJ46ocHxcAHOvq092Pt2lr+9GSP7u0YYruXdlIPgFwjVczaqQmmOtkA1LdmTE3wJK0pb1D9zz+ko53ZxweGYCgS3VnxvzlIklb24/q7sfbyCcArvBrRtEES8rkCtrW3jHmBnjQlvYObW3vUCY3+iUAAChGJlfQ1vY3xvzlMmhr+1FtIZ8AOMzPGUUTrP4jmJaNexyp1bJxj1KcbQHgkFR3n9ZsfNmRWms27lGqu8+RWgAg+TujAt8E5/MF/ajtSFETuIuRzha0ue2I8nnOtgAoTz5f0KYXX3c0n37U9jr5BMARfs+owDfBqZ6MHtpxwNGaG3YcUKqHs8EAynOsO6PvPXfA0ZoP7TigY1ytAuAAv2dU4JvgXN4Ou4ZdOQ6lepXL+2/VDQDekskXXMmnDGeCATjA7xkV+Cb4ZDrrq7oAgqMrnXOnbp87dQEEi98zKvBNcG/GnaMNp+bHAAiuPpfuku4jnwA4wK1ep1IZFfgmOB5150dQFQn8jxZAmdzKEfIJgBP83kMFPgmrq8K+qgsgOGqqIr6qCyBY/J5RgW+C83mr+mTC0Zr1yYTyBW6MA1CefMGlfLLkE4DyFaw7GVWoUEYFvgkOGaOVV013tOaqq6YrZIyjNQEET7ZQcCWfcqwOAcAB2bw7GZVldYgKMdJ1V9Y6Nq8lHg3p2itrHakFINhyeetKPmVZwhGAAzK5gisZVamtk2mCJf3r7sO66/pZjtS66/pZemL3YUdqAQi28fGIvvPzA47m07d/9huNjzMnGED5xsWjrmTUuHjUkXqjCXwTXFMV1qTqmKZdlNCS2VPKqrVk9hRNuyihydUxbjwBULaQkX5x6LgumZDQdbPKu8J03axaXTIhod2vvaUQs7UAOMDvGRX4JrhQ6G9eQ8boz5ZcMeZf4nWzavVnS65QyBh9ZPYUFbgxDkCZamuqdOvCGfrSYy/qj69995gP1JfMnqI/vvbd+tJjL+q2hTNUOz7u8EgBBFF1LKxVV013NKNuvnq6amKVWWEr8E1wJGwUDRt1nurTbQ8+p5uvrlfLioai57fEoyG1rGjQzVfX67YHn1PnqT5FB2oCQDlCIaPm+dNO59HtH7xsTPl0+wcvO/34xvnTCH4AjpgYj2rF/KmOZtTyxqmakIi5NuahjPXhUjlNTU22tbXVkVqvn+jtPxv890+f3vnk442X6vYPXqZnftmpx154bdh9seuTCa26arquvbJW3/7Zb/Sjttcl9f8Ct33xOoVC0qUTnV02BECwdJ5KqzeT16m+nO5/ar+e3t855ny6blat7rp+lsbHI0pEw5wNBuCIzlNpvdmV0b3/vq/sjLr7htm6eFzM0Xwyxuyy1jYN+1rQm+CjJ3v12K7Duu+p/e94PhwyWjJ7ipY3XqqpFyWUzReUzhYUj4YUDYd05K1ebW57XT/dd/SsNYHvvmGWVl41TVMm0AQDGLs3u9La8etjOpXO66//9aXTz481n/7f/2OexsfDuubdk3XxOJpgAOXJ5wt641Raz+x/07GMunbWxaobH1c47Mw1K5rgERxMdeuT//y/hz1SGSoSMopFQsrkCsqNMt+3PpnQw390jeqT1Y6MEUAw/fZYt072ZnXzt3acvlI1nGLzKR4N6Qf/dZEmJKJ61+QaN4YMIEBS3X1KdWe14h//w7GM2vz5DylZE1WypsqRMY7UBAd+apiRGbUBlqRcwaonkx+1AZZUVD0AGE1VJKRt+46O+OUiFZ9P6WxBP913VFWRwEc/AAfkCgU92XbE0Yz68UtHKrahT+CTsCudc6dunzt1AQRHOlfQ4y+85mjNx154TekKLUQP4MLWl7V6zOGM+sGu19SXY9vkiujN5V2pm866UxdAcBg5f2XpUKpXrF0DwAnWWlcyyoomuCIS0eLWoouEjKpjYUWKXME5XmRdADiXnkxxB9Ol5lOxdQFgJG5d9e7qq0xGBX5bs3NtHxoOGS1tmKKPzbtU0y5KqC9XUDqbVzwaVlUkpMNv9erJtte1bZjVIUaqCwDF6jvHtIVy8ynDdAgADjhXRp2plMUFJClToavpge/UQqZ/NYehp/NvnD9Vn/3ATD39y0595Sf7z7nG3cqrputPrnu3vvPzA9r04pF3vMa2pADKNdyC8+XmkyRVFbmQPQCM5FxX08s9UK/U1fTAN8GD25Le9+/7VRML675V8/XGyV7d8uBzI97teCjVq69t/ZW++cyvddf1s3T9ey7Rlx57Ud2ZPNuSAnDExHj09N+dyqcz6wLAWI0b5qq3Ewfqw9V1Q+BPB0SjYTUvmKbJNVE9uLpJP9h1SOs2t4+63MegdLagdZvb9YNdh/Tg6iZNronqxgXTFHVokWcAwRUJG9UnE6qJhR3Jp5pYWPXJhCJs6w7AAbFwSPXJ/o3BamJhfeO2qzS/fqJuefA5fW3rr85509zggfotDz6n+fUT9Y3brlJNrP/sb30yoViFlnEM/JlgSZqUiOp//dE1p7f8G4vBz/2vP7pGk6o5ywKgfMnqmD61aKamTkzogWdfLTuf7ls1X6+f6HVsEXoAwTa5JqY/vGam/mHrL/Xg6qaSc2rwQP26WbV6cHWT7tjQqk8tmqnJFcoommBJkXBIL7321pi/YAY9vb9TH5t3id5dO86hkQEIsnA4pE/Mn6pNbUccyacPXXGxmudPVZibFgA4IBwO6cb5l6p+kjMH6l+5eb7eO+OiimUU1+wlpbozWrPpZUdqrdn4slLdGUdqAUDeWt3/1H5Hat3/1H7lbWXW3wQQDDWxiFLdGUcO1I/3ZDSuqnLnZwPfBOfzBf2oiC3/ipXOFrS57YjyFdryD8CFK58vaHPb6w7n0+vkEwDHnOzLad2Tex2ptXbzXp1waSff4QS+CU71ZPTQjgOO1tyw44BSPZwNBlCeVE9GG3YccLQm+QTAKdlsXht3H3b0QH3T7sPKVmid4MA3wbm8O1v+5fJccgRQnlzBpXwqYrF6ABhNZ3efHtl50NGaD+88qM7uPkdrnkvgm+AT6awrdU+6VBdAcJzqdeey4KkKXm4EcOEqWLlyoF6p4/TAN8F9Dp3Cr1RdAMHR49Ilwd5MZS41AriwuXVAXakD9cA3wW4tyByt0ELPAC5ccZdypIp8AuCAXpcO1NPMCa6M8S5tzedWXQDBUV0V9lVdAMGSiLiTJXGX6p4p8E2wtTq95Z9T6pMJsRQngHLl8taVfMpzYxwAB4xz6YSfW3XPFPgmOBYxWnnVdEdrrrpqOpcbAZRtQiKiW983w9Gaty2cofFxtnYHUD5j3DmRaCq0qWXgO7VUV1bXXVmreNSZH0U8GtK1V9bqGLvGAShTb6agD11xsaP59MHfuZgb4wA4oipitMrhE4k3Xz3dtfshzhT4Jrg3m9d3fn5Ad10/y5F6d10/S9/+2W8qNqkbwIXtwf/4jaP59MCzrzpSCwDSWatrHT6R+OEratVboRW2At8EJ6JhbXrxiC6ZkNB1s2rLqnXdrFpdMiGhH7W9XrFJ3QAuXF3pnCv51NXHOsEAytfdl3PlRGJ3hiXSKmJw8vWXHntRd3748jF/0Vw3q1Z3fvhyfemxF99RFwDGanD5IafziStVAJzQm827cqCertCUrcA3wYOTurszed2xoVU3X12vlhUNRZ/aj0dDalnRoJuvrtcdG1rVnclXdFI3gAtXItp/RcnJfJIqt/wQgAvb4CIATh+ou7WHw5kC3wRHwub03dfdmbw+9/AL2n3wLT16xzX6wtIrznnXY30yoS8svUKP3nGNdh98S597+IXTXzC3LZyhWJguGEB5hl5RciqfzqwLAGM1rqo/S5w+UB+s67bAJ2FPX143Lpiqr//0V0oPTMT+Udvr+vGeN7Rk9hT91e/O0tSLEsrmC0pnC4pHQ4qGQzryVq82t72ur//0lXesuRmPhvTx+VPVnWHbZADlMepvaA+lek8/V04+Sc4vZwQguIwxpzNq8ED9442X6tE7rtEzv+zUYy+89o78GlSfTGjVVdN17ZW1+vbPfqMftbW/4zVTocvpxvpwV4empibb2trqSK3fHuvWc68eUy5v9Tc/3HPO90VCRrFISJlcQbkRFpr/8ifmKhySFr37Yr1rco0jYwQQTKnutB7d+Zrue2r/iO8rNp8k6e4bZun331evZE2Vk0MFEEAdJ3v16M5D+urWX73j+XDIaMnsKVreeOmIB+o/3Xf0rAP1Ly67Qre8b4amTIg7MkZjzC5rbdNwrwX+THA4ZHT34y9pyxc+rMWza7V9X+ew78sVrHKjTNRePLtWCy9LatlXn9XP7l7sxnABBEhPpqCPz3/nlarhFJNPUv+VqhWNU9WTySvJMTqAMhkjLW+cqv/xzK/fkVH5gtVP9nboJ3s7JBV/oB6PhvSxeVNdH/egwM8JHlwq6LYHn9PaG+dq8eyxTepePLtWa2+cq9sefE5S/7IhAFCOnkxeW/a+oZblcxyp17J8jn7y8hvqYbMMAA5IdWclWxh1ibRcwaonkx/1StVd18+StQUd76nMhmOBb4Izuf4jl86ujG76p5/rrz/aoC9/Ym5Jk7q//Im5+uuPNuimf/q5Orv6f3GZvP+mmQDwlr5sXms3t2vhZckxH6APGrxSte7J9tO5BwDlyOQK+vpPf61rLp/syBJp11w+WV/f9krFeqjAN8Hx6NtLBXV2ZbTsq88qnc1ryxeu1d03zBrx7uu7b5ilLV+4VulsXsu++uzpBlh6e9kQABirqoF8cvpKVaWWHwJwYYsPbDh2KNWrLyy9sqwl0r6w9EodSvXqR22vV6yHCvyc4PHDLBW07sl23fvUfv3ZR35H3/rDq1Udi6i7L3d6UndNVUQ9mZx+2n5US/7+mWHPqgxXFwBKMZgjg1eqHr7jGi2dXad1T+4dcY7woHg0pJblc7TwsuQ7rlSRTwCcMJglf/n93fr2p9+nOz90uT50xcW6/6n9RWfUXdfPUsMlE9Sbzesvv7/7HXXdFvgkjITMWUsQSf2n+L/yk1/qKz/5pSQpHglpXDyirnRO6VEuJdYnE4qEWCcYQHmG5tPglaqW5Q3a8oVrtbntiB7eefCcyw/dtnCGVjRO1U9efkPLvvrsO14jnwA4YWhG3f7d53XfqvmakazWo3cu0jP7j46+RNqsKeo8ldbxnqy+9NiLpzccq1RGBX6JtHy+oP/5nwf0/zzZPvqbi/S3yxv0mQ9cpjBfNADKcK58ikVC+rOP/I4+0jBlxCtVX//pK2ddqSKfADhluIz6eOOluv2Dl+ngsR7FoiFNHld11hJpx7r61Jcr6F3J6oF1gl8//XmnM2qkJdIC3wRL0hsn0rruK9uLOnU/mng0pKf/arEumejM+nYAgq2YfCr2ShX5BMBpw2XUmesE5/IFZXJWsYhRZIR1gt3IKNYJHsWEeERrVszRX//ruTfLKNaaFXM0IcGPFYAzkjUxrW1+j7702EvnfE86V1C6a/QlhdY2z1WyJubk8AAE3HAZNdZ1giudUdwiLOlkOqdJ1TFHlveYVB3TyV7WCAbgnMbpFzmST/OnT3RoRADwttEyqph1gs9HRgW+Cc7nC9rcdkR/9YMXdeeHLy9reY87P3y5/uoHL2pz2xHl86zDCaB8qe6MPvngc47k020PPqdUd2UWoQcQDH7OqMA3wamejDbsOKDuTF53bGjVzVfXq2VFQ0mbZbSsaNDNV9frjg2t6s7ktWHHAaUqtNsJgAvX4EH6se6sI/l0rDvLQToAx/g9owLfBOcK9vTyHd2ZvD738AvaffAtPXrHNfrC0itG3CzjC0uv0KN3XKPdB9/S5x5+Qd0DW5EeSvWOujUgAIxm8CBdci6fOEgH4BS/Z1Tg7+A6lT57/u6P2l7XU3s79OdLRt8s4/ceeG7YzTK60jmJ6XcAyjD0IH1QufnEQToAp/g9owLfBPdl82c9d+P8qfrsB2bq6V926r9+b5cOpXrPurOxPpnQyqum6/t3XqPv/PyANr145J11R9lQAwBGM9xBuhP5xEE6ACf4PaMC3wRXRcOn/14TC+u+VfP1xsle3fLgc+9Y8y5XsMpl3m6YD6V69bWtv9I3n/m17rp+lq5/zyWndzuR+hezB4ByDD1IdzKfOEgH4AS/Z5TrnZox5gZjzH5jzCvGmHuGeX2GMWa7MeYXxpg2Y8zH3B7TUIP7U9fEwnpwdZN+sOuQ1m1uL3rjjHS2oHWb2/WDXYf04Oom1cTC76gLAGM1eJDudD5xkA7ACX7PKFf/FWNMWNI3JH1U0hxJtxpj5pzxtr+V9H1r7Xsl3SLpn9wc05kG972+b9V8PfDsq3p6f+eY6jy9v1MPPPuq7ls1v6L7XgO4cA0eTDuZT0PrAkA5/J5RbrfaCyW9Yq191VqbkfSopOYz3mMlTRj4+0RJR1RByeqY1qyYozdO9o75lzfo6f2deuNkr9asmKNkTZVDIwQQVJGQ0er3v8vRfPrU+9/FQToAR/g9o9xugqdJOjTk8WsDzw31d5L+wBjzmqQfS/r8cIWMMXcaY1qNMa2dneX9oIcKh0OaM3Wi7n9qvyP17n9qv+ZMnagwXzIAypSsjulTi2Y6mk+rF83kIB2AI/yeUV6YGHarpO9aa6dL+pik7xljzhqXtfYBa22Ttbaptra87UOHyucL+vFLrxc9f2U06WxB//bS6yxGD8AR29qPOppPP913VLIskQbAGX7OKLeb4MOS6oc8nj7w3FC3S/q+JFlrd0iKS7rY5XGdlurJ6KEdBxytyWL0AJyQ6snoe88dcLTmQzvIJwDO8HtGud0EPy/pCmPMZcaYmPpvfNt0xnsOSloiScaYBvU3wc7NdxjFcAs9l4vF6AE4gXwC4GV+zyhXm2BrbU7Sn0p6SlK7+leBeNkYs9YYc+PA2/5S0h3GmBclPSLp09ZW7lrdcAs9O6HLpboAgoN8AuBlfs8o19egsNb+WP03vA19bs2Qv++V9AG3x3Euw+0Y50hdFqMHUCbyCYCX+T2jvHBj3Hk1dMc4J7EYPYBykU8AvMzvGRX4JHRrQWYWowdQLvIJgJf5PaMC3wQP7hjnJHaMA+AE8gmAl/k9owLfBCerY1q9aKajNVmMHoATyCcAXub3jAp8ExwOh7SicariUWd+FPFofz12jANQLvIJgJf5PaMC3wRLUrImpnXNcx2pta55rpI1MUdqAQD5BMDL/JxRNMHqvwtxSUOdljXUlVVnWUOdljbUcec1AMeQTwC8zM8ZRRoOSNbEtH7lvDH/Epc11Gn9ynmaxFkWAA4jnwB4mV8zylRwczbHNDU12dbWVldqp7oz2tbeoZaNe5TOjr5Yczwa0rrmuVraUMcXDABXkU8AvCzVndHW9g6t8VBGGWN2WWubhn2NJvhsmVxBqe6MNrcd0YYdB4bdF7s+mdCn3z9Ty+dNVbImxiVGABVBPgHwqlR3Ru1HTqgmHtUz+4/qsRdeO2dGrbpquq6dNUXd6awapk50bS4wTfAY5fMFpXoyyhWsutI59eUKqoqENC4eUSRklKyp4i5rAOcF+QTAS4519emex1/SlvYOhUNGS2ZP0fLGSzX1ooSy+YLS2YLi0ZCi4ZCOvNWrzW2v66f7jipfsKenQ0we5/zSaDTBAAAAcEWqO6O7H2vTlvaOYV+PhIxikZAyuYJyheH7zmUNdbpvVaPj0yJGaoK5RgYAAIAxyeQK2tbecc4GWJJyBaueTP6cDbAkbWnv0Nb2DmVyo88ldgpNMAAAAMYk1Z1Ry8Y9jtRq2bhHqe6MI7WKQRMMAACAkuXzBW1uO1LUShDFSGf76+XzlTkbTBMMAACAkqV6Mtqw44CjNTfsOKBUT2XOBtMEAwAAoGS5gh12CbRyHEr1jjh32Ek0wQAAACjZqXTOlbpdLtU9E00wAAAAStaXzbtTt0IrRNAEAwAAoGRV0bArdSu1yyVNMAAAAEo2Ph7xVd0z0QQDAACgZJGQUX0y4WjN+mRCkQpt+U4TDAAAgJIlq2NavWimozVXL5qpZE2VozXPhSYYAAAAJQuHQ1rROFXxqDPtZDzaXy/MmWAAAAB4WbImpnXNcx2pta55rpI1MUdqFYMmGAAAAGMSi4S0pKFOyxrqyqqzrKFOSxvqKrYyhEQTDAAAgDIka2Jav3LemBvhZQ11Wr9yniZV8CywRBMMAACAMk0eV6V7VzXq/lWNRc8RjkdDun9Vo+5b1ajJ4ypzM9xQlVmIDQAAABe0ZE1MzQum6UNX1Gpz2xFt2HFAh1K9Z72vPpnQp98/U8vnTVWyJlbRKRBD0QQDAADAEbFISJdMjOsz75+p5gVTlStYdaVz6ssVVBUJaVw8okjIKFlTVbFVIM6FJhgAAACOCodDqh0f738w8fyO5VxogkeQzxeU6skoV7A6lc6pL5tXVTSs8YNHMdUxhcNMqwZQeeQTAJSHJngYmVxBqe7MqPNZVi+aqRWN53c+C4BgIZ8AwBnGWnu+x1CypqYm29ra6krtVHdG29o71LJxj9LZwqjvj0dDWtc8V0sa6iq6wDOA4CGfAKA0xphd1tqmYV+jCX7bsa4+3fP4S9rS3lHyZwfXuDsfS3wAuPCRTwBQupGaYK6RDUh1Z8b8BSNJW9o7dM/jL+l4d8bhkQEIOvIJAJxHE6z+OXbb2jvG/AUzaEt7h7a2dyiTG/0yJQAUg3wCAHfQBKv/LEvLxj2O1GrZuEcpzrYAcAj5BADuCHwTnM8XtLntSFE3mRQjne2vl89ztgVAecgnAHBP4JvgVE9GG3YccLTmhh0HlOrhbAuA8pBPAOCewDfBuYIddp3NchxK9SpX8N+qGwC8hXwCAPcEvgk+lc65UrfLpboAgoN8AgD3BL4J7svm3anLHdgAykQ+AYB7At8EV0XDrtRlm1IA5SKfAMA9gU/C8fGIr+oCCA7yCQDcE/gmOBIyqk8mHK1Zn0woEjKO1gQQPOQTALgn8E1wsjqm1YtmOlpz9aKZStZUOVoTQPCQTwDgnsA3weFwSCsapyoedeZHEY/21wtzpgVAmcgnAHBP4JtgSUrWxB5rQUYAACAASURBVLSuea4jtdY1z1WyJuZILQAgnwDAHTTB6r9TeklDnZY11JVVZ1lDnZY21HHnNQDHkE8A4A7ScECyJqb1K+eN+YtmWUOd1q+cp0mcZQHgMPIJAJxnrPXf9plNTU22tbXVldqp7oy2tXeoZeMepbNvLygfj4Q0Lh5RVzqn9JCF5uPRkNY1z9XShjq+YAC4inwCgNIYY3ZZa5uGfY0m+GyZXEGp7oyOHO9RdTyiRDSsrnROvdm8EtGwxsUj6s3m1d2X07SLqpWsiXGJEUBFkE8A/CCbzauzu08F278F/GBGjY9HFDJSbU2Voi5tCDTUSE0wK6YPI5cvKG+tnjuQ0iM7D+pQqves99QnE7p14Qw1L0goly/wJQOgIsgnAF7W05fT8d6sNu4+XERGTdOkRFTVVeenHeVM8BmOnkxra3uH1m7e+47LjecSj4a0ZsUcLW2o05QJcVfGBAAS+QTA27yYUUyHKNLRk2nd/USbtu/rLPmzi2fX6t6bGvmiAeAK8gmAl3k1o0ZqgrlGNqCcX54kbd/XqbufaNPRk2mHRwYg6MgnAF7m14yiCVb//JWt7R1j/uUN2r6vU1vbO9STyTk0MgBBRz4B8DI/ZxRNsKTjvVmt3bzXkVprN+/V8Z6sI7UAgHwC4GV+zqjAN8HZbF4bdx8uagJ3MdLZgjbtPqxsNu9IPQDBRT4B8DK/Z1Tgm+DO7j49svOgozUf3nlQnd19jtYEEDzkEwAv83tGBb4JLlgNu4ZdOQ6lelXw36IbADyGfALgZX7PqFGbYGPMRZUYyPlyKu3OBGy36gIIDvIJgJf5PaOKORP8pjFmqzHm9guxIe51ad5Jmjl3AMpEPgHwMr9nVDFNcLukr0n6iKRfG2M2GmNuMcYk3B1aZSRc2rc6XoH9sAFc2MgnAF7m94wqpgnOWms3W2s/KWm6pH+R9HuSXjPGPOzq6CpgfNyd/ardqgsgOMgnAF7m94wqpgk2g3+x1vZaa79vrb1J0uWSnnJtZBUSMlJ90tmT2vXJhEJm9PcBwEjIJwBe5veMKqYJ/pfhnrTWnrDWbnB4PBVXW1OlWxfOcLTmbQtnqHa88/tfAwgW8gmAl/k9o0Ztgq21XymmkDHmH8sfTuVFo2E1L5imeNSZ1eLi0ZBuXDBN0XDgV58DUCbyCYCX+T2jnPxXPuBgrYqalIhqzYo5jtRas2KOJlVHHakFAOQTAC/zc0ZxOkBSdVVESxvqtHh2bVl1Fs+u1dKGOlXHuOkEgDPIJwBe5ueMogkeMGVCXPfe1DjmX+Li2bW696ZGTZnAXDsAziKfAHiZXzPKWOvM3nTGmF9Ya9/rSLFRNDU12dbWVldqHz2Z1tb2Dq3dvFfpbGHU98ejIa1ZMUdLG+r4ggHgKvIJgJd5MaOMMbustU3DvlZsE2yMmWetfWmE1z9trf3uMM/fIOkfJIUl/bO1dv0w7/k9SX8nyUp60Vp720hjcbMJlqSeTE7He7LatPuwHt55cNh9seuTCX1y4QzduGCaLqqOcokRQEWQTwC8zGsZ5VQT/B+SqiR9V9K/WGtPFPGZsKRfSlom6TVJz0u61Vq7d8h7rpD0fUkfsdYeN8ZMsdYeHamu203woL5MTp3dGVkrdfXllM7mFY+GNa4qImOkKeOqFGPnJQDnAfkEwMu8klEjNcFFt97W2g8NNKyflbTLGLNT0v+01m4Z4WMLJb1irX11YCCPSmqWtHfIe+6Q9A1r7fGBf2fEBrgSMrmCUt0ZbW47og07DuhQqleRkFEsElImV1CuYFWfTGj1opla0ThVyZqYYhGmVwNwH/kEwMv8lFElzwkeOLv7CUlfl3RS/TvK/bW19olh3rtK0g3W2j8aePyHkv6LtfZPh7znh+o/W/wB9U+Z+Dtr7b8PU+tOSXdK0owZM67+7W9/W9K4i5Xqzmhbe4daNu4pej7Luua5WtJQp2RNzJUxAYBEPgHwNi9mlFPTIRolfUbScklbJH3bWvuCMWaqpB3W2ncN85limuDNkrKSfk/SdEnPSppnrX3rXGNxazrEsa4+3fP4S9rS3lHyZ5c11Gn9ynmaPK7K8XEBAPkEwMu8mlEjNcGlnH/+R0kvSJpvrf2ctfYFSbLWHpH0t+f4zGFJ9UMeTx94bqjXJG2y1mattb9R/1nhK0oYlyNS3Zkx//IkaUt7h+55/CUd7844PDIAQUc+AfAyv2ZUKU3wckkPW2t7JckYEzLGVEuStfZ75/jM85KuMMZcZoyJSbpF0qYz3vNDSdcN1LxY0pWSXi1hXGXL5Ara1t4x5l/eoC3tHdra3qFMbvRLAABQDPIJgJf5OaNKaYK3SkoMeVw98Nw5WWtzkv5U0lOS2iV931r7sjFmrTHmxoG3PSXpmDFmr6Ttku6y1h4rYVxlS3Vn1LJxjyO1WjbuUYqzLQAcQj4B8DI/Z1QpTXDcWts1+GDg79Wjfcha+2Nr7ZXW2ndba7888Nwaa+2mgb9ba+0XrbVzrLXzrLWPlvo/UY58vqDNbUeKmsBdjHS2v14+z9kWAOUhnwB4md8zqpQmuNsYc9XgA2PM1ZLOXgHZZ1I9GW3YccDRmht2HFCqh7MtAMpDPgHwMr9nVClbdPyFpB8YY46of1m0SyT9viujqqBcwQ67m0k5DqV6lSs4sx01gOAinwB4md8zqpTNMp43xsyWNGvgqf3W2qw7w6qcU+mcK3W70jlpoiulAQQE+QTAy/yeUaVu1vw+STMHPneVMUbW2occH1UF9WXz7tTlDmwAZSKfAHiZ3zOq6CbYGPM9Se+WtFvS4P+1leTrJrjKpX2r2aYUQLnIJwBe5veMKuVMcJOkObbUfZY9bny81JPh57cugOAgnwB4md8zqpRWe4/6b4a7oERCRvXJxOhvLEF9MqFIyDhaE0DwkE8AvMzvGVVKE3yxpL3GmKeMMZsG/7g1sEpJVse0etFMR2uuXjRTyRrn978GECzkEwAv83tGldIE/52kT0j6b5L++5A/vhYOh7SicariUWfmn8Sj/fXCnGkBUCbyCYCX+T2jih61tfYZSQckRQf+/rykF1waV0Ula2Ja1zzXkVrrmucqWRNzpBYAkE8AvMzPGVV0E2yMuUPSY5K+NfDUNEk/dGNQlRaLhLSkoU7LGurKqrOsoU5LG+q48xqAY8gnAF7m54wq5V/6nKQPSDopSdbaX0ma4sagzodkTUzrV84b8y9xWUOd1q+cp0mcZQHgMPIJgJf5NaNKaYL7rLWnN3M2xkTUv07wBWPyuCrdu6pR969qLHp+Szwa0v2rGnXfqkZNHsfNJgDcQT4B8DI/ZpQpdtlfY8x9kt6S9ClJn5f0J5L2Wmv/xr3hDa+pqcm2tra6Vj+TKyjVndHmtiPasOPAsPti1ycT+vT7Z2r5vKlK1sS4xAigIsgnAF7mtYwyxuyy1jYN+1oJTXBI0u2SfleSkfSUtfZBx0ZZAreb4EH5fEGpnoxyBauudE59uYKqIiGNi0cUCRkla6q4yxrAeUE+AfAyr2TUSE1wKVtyfN5a+w+STje+xpg/H3jughQOh1Q7Pt7/YOL5HQsADEU+AfAyP2RUKeefVw/z3KcdGgcAAABQMaOeCTbG3CrpNkmXnbFD3HhJKbcGBgAAALilmOkQ/ynpdfVvmzx0h7hTktrcGBQAAADgplGbYGvtbyX9VtIi94cDAAAAuK+UHeNuMsb8yhhzwhhz0hhzyhhz0s3BAQAAAG4oZXWI+yR93Frb7tZgAAAAgEooZXWIDhpgAAAAXAhKORPcaoz5/yT9UFLf4JPW2iccHxUAAADgolKa4AmSetS/Y9wgK4kmGAAAAL5SdBNsrf2MmwMBAAAAKqWU1SGuNMZsM8bsGXjcaIz5W/eGBgAAALijlBvjHpT0f0rKSpK1tk3SLW4MCgAAAHBTKU1wtbV25xnP5ZwcDAAAAFAJpTTBbxpj3q3+m+FkjFml/u2UAQAAAF8pZXWIz0l6QNJsY8xhSb+R9AeujAoAAABwUSmrQ7wqaakxpkZSyFp7yr1hAQAAAO4pZXWIPzfGDK4V/FVjzAvGmN8d7XMAAACA15QyJ/iz1tqT6t8sY7KkP5S03pVRAQAAAC4qpQk2A//9mKSHrLUvD3kOAAAA8I1SmuBdxpifqL8JfsoYM15SwZ1hAQAAAO4pZXWI2yUtkPSqtbbHGDNZElspAwAAwHdGbYKNMbOttfvU3wBL0uXGMAsCAAAA/lXMmeAvSrpT0n8f5jUr6SOOjggAAABw2ahNsLX2zoH/LnZ/OAAAAID7Slkn+OaBm+FkjPlbY8wTxpj3ujc0AAAAwB2lrA7RYq09ZYz5oKSlkr4t6ZvuDAsAAABwTylNcH7gv8slPWCtfVJSzPkhAQAAAO4qpQk+bIz5lqTfl/RjY0xViZ8HAAAAPKGUJvb3JD0l6Xpr7VuSkpLucmVUAAAAgIuKboKttT2SNkrqNsbMkBSVtM+tgQEAAABuKXrHOGPM5yX9X5I69PZ2yVZSowvjAgAAAFxTyrbJfy5plrX2mFuDAQAAACqhlDnBhySdcGsgAAAAQKWUcib4VUlPG2OelNQ3+KS19u8dHxUAAADgolKa4IMDf2JifWAAAAD4WNFNsLX2/5YkY8y4gcddbg0KAAAAcFPRc4KNMXONMb+Q9LKkl40xu4wx73FvaAAAAIA7Srkx7gFJX7TWvsta+y5JfynpQXeGBQAAALinlCa4xlq7ffCBtfZpSTWOjwgAAABwWUmrQxhjWiR9b+DxH6h/xQgAAADAV0o5E/xZSbWSnpD0uKSLB54DAAAAfKWU1SGOS/ozF8cCAAAAVEQpq0NsMcZcNOTxJGPMU+4MCwAAAHBPKdMhLrbWvjX4YODM8BTnhwQAAAC4q5QmuGCMmTH4wBjzLknW+SEBAAAA7ipldYi/kfQzY8wzkoykD0m605VRAQAAAC4q5ca4fzfGXCXpmoGn/sJa++bg68aY91hrX3Z6gAAAAIDTSjkTrIGmd/M5Xv6epKvKHhEAAADgslLmBI/GOFgLAAAAcI2TTTA3yQEAAMAXnGyCAQAAAF9wsgnOOFgLAAAAcE1JN8YZYxolzRz6OWvtEwP/veYcHwMAAAA8pegm2BjzHUmNkl6WVBh42kp6woVxAQAAAK4p5UzwNdbaOa6NBAAAAKiQUuYE7zDG0AQDAADA90o5E/yQ+hvhNyT1qX9dYGutbXRlZAAAAIBLSjkT/G1JfyjpBkkfl7Ri4L8jMsbcYIzZb4x5xRhzzwjvW2mMscaYphLGBAAAAJSslDPBndbaTaUUN8aEJX1D0jJJr0l63hizyVq794z3jZf055L+dyn1AQAAgLEopQn+hTHmYUk/Uv90CElvL5F2DgslvWKtfVWSjDGPSmqWtPeM962TdK+ku0oYDwAAADAmpUyHSKi/+f1d9U+DGJwSMZJpkg4NefzawHOnGWOuklRvrX1ypELGmDuNMa3GmNbOzs4Shg0AAAC8U9Fngq21n3H6HzfGhCT9vaRPF/HvPyDpAUlqamqyTo8FAAAAwVHKZhlxSbdLeo+k+ODz1trPjvCxw5LqhzyePvDcoPGS5kp62hgjSZdI2mSMudFa21rs2NySzxeU6skoV7A6lc6pL5tXVTSs8fGIIiGjZHVM4bCTO08DQHHIJwBe5oeMKmVO8Pck7ZN0vaS1kj4pqX2Uzzwv6QpjzGXqb35vkXTb4IvW2hOSLh58bIx5WtJfne8GOJMrKNWd0ea2I9qw44AOpXrPek99MqHVi2ZqReNUJWtiikX4sgHgPvIJgJf5KaOMtcXNLDDG/MJa+15jTJu1ttEYE5X0H9baa0b53MckfU1SWNJ3rLVfNsasldR65moTxTbBTU1NtrXVnT451Z3RtvYOtWzco3S2MOr749GQ1jXP1ZKGOiVrYq6MCQAk8gmAt3kxo4wxu6y1wy6/W0oTvNNau9AY86ykP5H0hqSd1trLnRtqcdxqgo919emex1/SlvaOkj+7rKFO61fO0+RxVY6PCwDIJwBe5tWMGqkJLuX88wPGmEmSWiRtUv8yZ/c5MD5PSHVnxvzLk6Qt7R265/GXdLw74/DIAAQd+QTAy/yaUUU3wdbaf7bWHrfWPmOtvdxaO8Va+003B1cpmVxB29o7xvzLG7SlvUNb2zuUyY1+CQAAikE+AfAyP2dU0U2wMabOGPNtY8y/DTyeY4y53b2hVU6qO6OWjXscqdWycY9SnG0B4BDyCYCX+TmjSpkO8V1JT0maOvD4l5L+wukBVVo+X9DmtiNFTeAuRjrbXy+f52wLgPKQTwC8zO8ZVUoTfLG19vuSCpJkrc1JyrsyqgpK9WS0YccBR2tu2HFAqR7OtgAoD/kEwMv8nlGlNMHdxpjJkqwkGWOukXTClVFVUK5gh13DrhyHUr3KFdjUDkB5yCcAXub3jCpls4wvqn9ViMuNMT+XVCtplSujqqBT6ZwrdbvSOWmiK6UBBAT5BMDL/J5RpTTBeyX9q6QeSack/VD984J9rS/rzoyOPu7ABlAm8gmAl/k9o0qZDvGQpNmS/pukf5R0pfq3Uva1qmjYlbpsUwqgXOQTAC/ze0aVciZ4rrV2zpDH240xe50eUKWNj5fyIzj/dQEEB/kEwMv8nlGltNovDNwMJ0kyxvwXSc7vXVxhkZBRfTLhaM36ZEKRkHG0JoDgIZ8AeJnfM2rUJtgY85Ixpk3S1ZL+0xhzwBjzG0k7JA27F7OfJKtjWr1opqM1Vy+aqWSN8/tfAwgW8gmAl/k9o4o5E7xC0scl3SDpMknXSrpu4O8fdW1kFRIOh7SicariUWfmn8Sj/fXCnGkBUCbyCYCX+T2jRh21tfa3I/2pxCDdlqyJaV3zXEdqrWueq2RNzJFaAEA+AfAyP2cUtwir/y7EJQ11WtZQV1adZQ11WtpQx53XABxDPgHwMj9nFGk4IFkT0/qV88b8S1zWUKf1K+dpEmdZADiMfALgZX7NKGOt/7bPbGpqsq2t7ixMkerOaFt7h1o27lE6O/pizfFoSOua52ppQx1fMABcRT4B8DIvZpQxZpe1dtiFHGiCh5HJFZTqzmhz2xFt2HFg2H2x65MJffr9M7V83lQla2JcYgRQEeQTAC/zWkbRBI9RPl9QqiejXMGqK51TX66gqkhI4+IRRUJGyZoq7rIGcF6QTwC8zCsZNVITzLZBIwiHQ6odH+9/MPH8jgUAhiKfAHiZHzKKa2QAAAAIHJpgAAAABA5NMAAAAAKHJhgAAACBQxMMAACAwKEJBgAAQODQBAMAACBwaIIBAAAQODTBAAAACByaYAAAAAQOTTAAAAAChyYYAAAAgUMTDAAAgMChCQYAAEDg0AQDAAAgcGiCAQAAEDg0wQAAAAgcmmAAAAAEDk0wAAAAAidyvgfgZfl8QamejHIFq1PpnPqyeVVFwxofjygSMkpWxxQOcxwBoPLIJwAoD03wMDK5glLdGW1uO6INOw7oUKr3rPfUJxNavWimVjROVbImpliELxsA7iOfAMAZxlp7vsdQsqamJtva2upK7VR3RtvaO9SycY/S2cKo749HQ1rXPFdLGuqUrIm5MiYAkMgnACiVMWaXtbZp2Ndogt92rKtP9zz+kra0d5T82WUNdVq/cp4mj6tyfFwAQD4BQOlGaoK5RjYg1Z0Z8xeMJG1p79A9j7+k490Zh0cGIOjIJwBwHk2w+ufYbWvvGPMXzKAt7R3a2t6hTG70y5QAUAzyCQDcQROs/rMsLRv3OFKrZeMepTjbAsAh5BMAuCPwTXA+X9DmtiNF3WRSjHS2v14+z9kWAOUhnwDAPYFvglM9GW3YccDRmht2HFCqh7MtAMpDPgGAewLfBOcKdth1NstxKNWrXMF/q24A8BbyCQDcE/gm+FQ650rdLpfqAggO8gkA3BP4Jrgvm3enLndgAygT+QQA7gl8E1wVDbtSl21KAZSLfAIA9wQ+CcfHI76qCyA4yCcAcE/gm+BIyKg+mXC0Zn0yoUjIOFoTQPCQTwDgnsA3wcnqmFYvmulozdWLZipZU+VoTQDBQz4BgHsC3wSHwyGtaJyqeNSZH0U82l8vzJkWAGUinwDAPYFvgiUpWRPTuua5jtRa1zxXyZqYI7UAgHwCAHfQBKv/TuklDXVa1lBXVp1lDXVa2lDHndcAHEM+AYA7SMMByZqY1q+cN+YvmmUNdVq/cp4mcZYFgMPIJwBwnrHWf9tnNjU12dbWVldqp7oz2tbeoZaNe5TOvr2gfDwS0rh4RF3pnNJDFpqPR0Na1zxXSxvq+IIB4CryCQBKY4zZZa1tGvY1muCzZXIFpbozOnK8R9XxiBLRsLrSOfVm80pEwxoXj6g3m1d3X07TLqpWsibGJUYAFUE+AfCDvkxOnd0ZSdKp3rczanyif53y2pqYqmLur1k+UhPMiunDyOULylur5w6k9MjOgzqU6j3rPfXJhG5dOEPNCxLK5Qt8yQCoCPIJgJed6s3qZDqnjbsP65HnR8io981Q84JpmhCPaHwieh5Gypngsxw9mdbW9g6t3bz3HZcbzyUeDWnNijla2lCnKRPirowJACTyCYC3dZzoz6h1TxafUS3L+zOqbqI7GcV0iCIdPZnW3U+0afu+zpI/u3h2re69qZEvGgCuIJ8AeFnHybTuKSOj1t/UqDoXMmqkJphrZAPK+YKRpO37OnX3E206ejLt8MgABB35BMDLOk6MvQGW+jPqnifa1FHhjKIJltTTl9PW9o4x//IGbd/Xqa3tHerJ5BwaGYCgI58AeNmp3qxzGbW3Q13prEMjGx1NsKTjvVmt3bzXkVprN+/V8Z7K/QIBXNjIJwBedjKd07onncmodU/u1Yneyh2oB74Jzmbz2rj7cFETuIuRzha0afdhZbN5R+oBCC7yCYCX9WVyzmfUi4fVV6ErVoFvgju7+/TIzoOO1nx450F1dvc5WhNA8JBPALysszujR553I6MyjtY8l8A3wQWrYdewK8ehVK8K/lt0A4DHkE8AvMy6lFGVWrgs8E3wqbQ7p9zdqgsgOMgnAF7W5VKWdPUxHaIiel2aG5dmzh2AMpFPALzM7xkV+CY4EQ27UjfuUl0AwUE+AfAy1zIqUpmMcr0JNsbcYIzZb4x5xRhzzzCvf9EYs9cY02aM2WaMeZfbYxpqfDziq7oAgoN8AuBl41zKErfqnsnVJtgYE5b0DUkflTRH0q3GmDlnvO0XkpqstY2SHpN0n5tjOlPISPXJhKM165MJhYyjJQEEEPkEwMuMSxllKpRRbp8JXijpFWvtq9bajKRHJTUPfYO1dru1tmfg4XOSprs8pneoranSrQtnOFrztoUzVDve+f2vAQQL+QTAy2prYrr1fc5n1JTxVY7WPBe3m+Bpkg4NefzawHPncrukfxvuBWPMncaYVmNMa2dneVvzDRWNhtW8YJriUWd+FPFoSDcumKZoOPDTrQGUiXwC4GVVsYjzGTV/mmIXypzgYhlj/kBSk6T7h3vdWvuAtbbJWttUW1vr6L89KRHVmhVnztIYmzUr5mhSddSRWgBAPgHwsgnxiFqWO5NRLcvnaGKicvcsuN0EH5ZUP+Tx9IHn3sEYs1TS30i60Vpb8a2MqqsiWtpQp8Wzy2uuF8+u1dKGOlXHuOkEgDPIJwBeNj4RdS6j5tRpXLxyB+puN8HPS7rCGHOZMSYm6RZJm4a+wRjzXknfUn8DfNTl8ZzTlAlx3XtT45h/iYtn1+remxo1ZQJz7QA4i3wC4GV1E+NaX2ZGrb+pUXUVzihjXd6bzhjzMUlfkxSW9B1r7ZeNMWsltVprNxljtkqaJ+n1gY8ctNbeOFLNpqYm29ra6sp4j55Ma2t7h9Zu3qt0tjDq++PRkNasmKOlDXV8wQBwFfkEwMs6TvRn1Loni8+oluVztHROnWsNsDFml7W2adjX3G6C3eBmEyxJPZmcjvdktWn3YT2886AOpXoVCRnFIiFlcgXlClb1yYQ+uXCGblwwTRdVR7nECKAiyCcAXtaVzupEb06bXhw5o24byKiJ8YirUyBogseoty+rYz1ZSdKp3px6s3klomGNH5i0Pbk6qkQVN5kAqDzyCYCXeSWjRmqCOT0wjBM9GXX15bVx92E98nz/UcyZ6pMJ3fq+GWpeME3jqsKaWB07DyMFEDTkEwAv81NGcSb4DG+cSGvbGOazLGmo0yUTmXMHwD3kEwAv82JGMR2iSB0n07rniTZt31f6Zhzn685GAMFAPgHwMq9m1EhNsGc2yzjf3jgx9l+eJG3f16l7nmhTx8m0wyMDEHTkEwAv82tG0QSrf/7KtvaOMf/yBm3f16mtezt0sjfj0MgABB35BMDL/JxRNMGSuvryWvfkXkdqrXtyr06l847UAgDyCYCX+TmjAt8Ep/uy2rj7cFETuIuqly1o04uHle7LOlIPQHCRTwC8zO8ZFfgm+M2erB55/qCjNR/eeVBv9vAlA6A85BMAL/N7RgW+CbZWw65hV45DqV75cNENAB5DPgHwMr9nVOCb4K50zp26fe7UBRAc5BMAL/N7RgW+Ce7NujMBO+1SXQDBQT4B8DK/Z1Tgm+BENOxK3XjEnboAgoN8AuBlfs+owDfB4+IRX9UFEBzkEwAv83tGBb4JNkaqTyYcrVmfTMgYR0sCCCDyCYCX+T2jAt8EX1wd1a3vm+FozdsWzlDtuCpHawIIHvIJgJf5PaMC3wTHq6JqXjBN8agzP4p4NKQb509TlUvzZAAEB/kEwMv8nlGBb4IlaVxVWC3L5zhSq2X5HI2P8wUDwBnkEwAv83NG0QRLmlgd05KGOi2eXVtWncWza7V0Tp0mJGIOjQxA0JFPALzMzxlFEzzgkolxrb+pccy/xMWza7X+pkbVTYg7PDIAQUc+AfAyv2aUsT7cP7Opqcm2tra6UvuNE2lta+/Quif3Kp0tjPr+eDSkluVztHROHV8wAFxFPgHwMi9mlDFml7W2jVwmIgAADs9JREFUadjXaILPdrI3o1PpvDa9eFgP7zw47L7Y9cmEbls4QzcumKbxVWEuMQKoCPIJgJd5LaNGaoJZMX0Yg8cFV8+YpMWzpygeDau7L6d0tqB4NKSaqojS2bxO9mQl+/b7AcBt5BMAL/NTRtEEn+Fcp/LjkZDGxSPqSueUzg15fuBU/pKGOl0ykcuNANxDPgHwMr9lFNMhhug4mdY9T7Rp+77Okj/LjScA3EQ+AfAyr2bUSNMhWB1iwBsnxv7Lk6Tt+zp1zxNt6jiZdnhkAIKOfALgZX7NKJpgSSd6MtrW3jHmX96g7fs6tXVvh072ZhwaGYCgI58AeJmfM4omWFJXX17rntzrSK11T+7VqXTekVoAQD4B8DI/Z1Tgm+B0X1Ybdx8uaj27ouplC9r04mGl+7KO1AMQXOQTAC/ze0YFvgl+syerR54/6GjNh3ce1Js9fMkAKA/5BMDL/J5RgW+CrdWwCzmX41Cql7U5AZSNfALgZX7PqMA3wV3pnDt1+9ypCyA4yCcAXub3jAp8E9ybdWcCdtqlugCCg3wC4GV+z6jAN8GJaNiVuvGIO3UBBAf5BMDL/J5RgW+Cx8Xd2TnarboAgoN8AuBlfs+owDfBxkj1yYSjNeuTCRnjaEkAAUQ+AfAyv2dU4Jvgi6ujuvV9MxytedvCGaodV+VoTQDBQz4B8DK/Z1Tgm+B4VVTNC6YpHnXmRxGPhnTj/GmqcmmeDIDgIJ8AeJnfMyrwTbAkjasKq2X5HEdqtSyfo/FxvmAAOIN8AuBlfs4ommBJE6tjWtJQp8Wza8uqs3h2rZbOqdOERMyhkQEIOvIJgJf5OaNoggdcMjGu9Tc1jvmXuHh2rdbf1Ki6CXGHRwYg6MgnAF7m14wy1of7ZzY1NdnW1lZXar9xIq1t7R1a9+RepbOFUd8fj4bUsnyOls6p4wsGgKvIJwBe5sWMMsbsstY2Dfva/9/evcfIVZdhHH8edqezW7YCLWvVbWuNVMsidIWlmnitRQSatBE1QL1LolFUjJdYTcBLNUKIlxhBo6DVKIjRRmqqgmIBE8GyaC/QomkgFKqUUqAU9tLp9vWPOeBmd7vXuZwz5/tJNpk55ze/ebe/7LtPz54zhxA80tN9h3Swf1Abtu7R9Zt3j3pf7PmzW7V66QKt7OrQrGITf2IEUBP0JwBplrYeRQieov6Bkh7vLSmifB/r/tKgWgpNais2y5ba24pcZQ2gLuhPANIsLT1qrBDMbYPG0FIsaF6xUO8yAGAE+hOANMtCj+LCOAAAAOQOIRgAAAC5QwgGAABA7hCCAQAAkDuEYAAAAOQOIRgAAAC5QwgGAABA7hCCAQAAkDuEYAAAAOQOIRgAAAC5QwgGAABA7hCCAQAAkDuEYAAAAOQOIRgAAAC5QwgGAABA7hCCAQAAkDuEYAAAAOQOIRgAAAC5QwgGAABA7jTXu4A06xsoaX9vSZJ0sO+w+kqDai00aVZr+Z9tzsyCWouFepYIIKfoTwDSLAs9ihA8iid7D6l3YFA3bdmjG+7erYef6BsxZv7sVl105gKt6urQzGKTTpg5ow6VAsgb+hOANMtSj3JE1OWNp6O7uzt6enqqMvejB/p16869Wrtxh/pLR8Yd31I4Rpet6NTyk+fqRce1VKUmAJDoTwDSLY09yvY9EdE96j5C8P/tfbpfa9Zv06b79036tcsWt+uK80/T3BfwiwZA5dGfAKRZWnvUWCGYC+MSjx6Y+uJJ0qb792nN+m3a+3R/hSsDkHf0JwBpltUeRQhW+fyVW3funfLiPWfT/fv05x179VTvoQpVBiDv6E8A0izLPYoQLKl3YFBrN+6oyFxrN+7QswODFZkLAOhPANIsyz0q9yG4b6Ckm7bsmdAJ3BPRXzqiDVv3qG+gVJH5AOQX/QlAmmW9R1U9BNs+x/a/bO+yvWaU/UXbNyb7/257YbVrGmp/b0k33L27onNev3n385+NBwBTRX8CkGZZ71FVDcG2myRdLelcSZ2SLrLdOWzYxZKejIiTJH1b0pXVrGm4CI36GXbT8fATfcrgh24ASBn6E4A0y3qPqvaR4KWSdkXEAxFxSNIvJa0aNmaVpJ8mj38tabltV7mu5z3Tf7g68w5UZ14A+UF/ApBmWe9R1Q7BHZIeHvL8kWTbqGMi4rCkA5LmDJ/I9odt99ju2bdvelcgDtVXqs4J2P1VmhdAftCfAKRZ1ntUZi6Mi4gfRkR3RHS3t7dXbN7WQlPF5hqqpbk68wLID/oTgDTLeo+qdgjeI2n+kOfzkm2jjrHdLOk4SfurXNfz2lqaMzUvgPygPwFIs6z3qGqH4LslLbL9MtszJF0oacOwMRskvT95/E5Jf4ka3svZlubPbq3onPNnt6p2ZzUDaFT0JwBplvUeVdUQnJzj+3FJN0vaKelXEXGf7a/aXpkMu07SHNu7JH1a0oiPUaumOTMLuujMBRWdc/XSBWpvK1Z0TgD5Q38CkGZZ71FVPyc4In4fEa+IiJdHxNeTbZdHxIbkcX9EvCsiToqIpRHxQLVrGqq1WNCqrg61FCrzT9FSOEYrl3SoWKXzZADkB/0JQJplvUdl5sK4appZbNJlK4Z/fPHUXLaiU8cW+QUDoDLoTwDSLMs9ihAs6YSZM7T85Llatnh6nzqxbHG7zuqcq+NnzqhQZQDyjv4EIM2y3KMIwYkXHdeiK84/bcqLuGxxu644/zTNfUFLhSsDkHf0JwBpltUe5Rp+EEPFdHd3R09PT1XmfvRAv27duVdrN+5Qf+nIuONbCsfoshWdOqtzLr9gAFQV/QlAmqWxR9m+JyK6R91HCB7pqd5DenZgUBu27tH1m3ePel/s+bNbtXrpAq3s6tCxM5r4EyOAmqA/AUiztPUoQvAU9Q2UtL+3pIjyfaz7S4NqKTSprdgsW2pvK3KVNYC6oD8BSLO09KixQjC3DRpDa7GgecVCvcsAgBHoTwDSLAs9igvjAAAAkDuEYAAAAOQOIRgAAAC5QwgGAABA7hCCAQAAkDuEYAAAAOQOIRgAAAC5QwgGAABA7mTyjnG290l6qA5vfaKkx+vwvqgu1rVxsbaNi7VtTKxr46rX2r40ItpH25HJEFwvtnuOdus9ZBfr2rhY28bF2jYm1rVxpXFtOR0CAAAAuUMIBgAAQO4Qgifnh/UuAFXBujYu1rZxsbaNiXVtXKlbW84JBgAAQO5wJBgAAAC5QwgGAABA7hCCh7H9Y9uP2b73KPtt+7u2d9neZvv0WteIyZvAur47Wc/ttv9me0mta8TUjLe2Q8adafuw7XfWqjZMz0TW1vabbW+xfZ/t22tZH6ZuAj35ONu/s701WdsP1rpGTJ7t+bY32d6RrNulo4xJTY4iBI+0TtI5Y+w/V9Ki5OvDkr5fg5owfes09ro+KOlNEXGqpLVK4Qn8OKp1GnttZbtJ0pWSbqlFQaiYdRpjbW0fL+kaSSsj4hRJ76pRXZi+dRr75/YSSTsiYomkN0v6pu0ZNagL03NY0mciolPSayVdYrtz2JjU5ChC8DARcYekJ8YYskrSz6LsLknH235xbarDVI23rhHxt4h4Mnl6l6R5NSkM0zaBn1lJ+oSk30h6rPoVoVImsLarJa2PiN3JeNY3IyawtiFplm1LakvGHq5FbZi6iPhvRPwjeXxQ0k5JHcOGpSZHEYInr0PSw0OeP6KRC4xsu1jSH+pdBCrDdoekt4u/2jSiV0g6wfZttu+x/b56F4SK+Z6kkyX9R9J2SZdGxJH6loTJsL1Q0qsl/X3YrtTkqOZ6vCmQVraXqRyCX1/vWlAx35H0+Yg4Uj6ohAbSLOkMScsltUq60/ZdEfHv+paFCnibpC2S3iLp5ZL+ZPuvEfF0fcvCRNhuU/mvb59K85oRgidvj6T5Q57PS7Yh42yfJulaSedGxP5614OK6Zb0yyQAnyjpPNuHI+K39S0LFfCIpP0R8aykZ23fIWmJJEJw9n1Q0hVRvpnBLtsPSlosaXN9y8J4bBdUDsC/iIj1owxJTY7idIjJ2yDpfcnVja+VdCAi/lvvojA9thdIWi/pvRxFaiwR8bKIWBgRCyX9WtLHCMAN4yZJr7fdbHumpNeofA4ism+3ykf4ZXuupFdKeqCuFWFcyTnc10naGRHfOsqw1OQojgQPY/sGla9EPdH2I5K+JKkgSRHxA0m/l3SepF2SelX+3ypSbgLrermkOZKuSY4YHo6I7vpUi8mYwNoio8Zb24jYafuPkrZJOiLp2ogY86PykA4T+LldK2md7e2SrPIpTY/XqVxM3OskvVfSdttbkm1flLRASl+O4rbJAAAAyB1OhwAAAEDuEIIBAACQO4RgAAAA5A4hGAAAALlDCAYAAEDuEIIBoM5sP1OFObtsnzfk+Zdtf7bS7wMAWUUIBoDG1KXyZ3ECAEZBCAaAFLH9Odt3295m+yvJtoW2d9r+ke37bN9iuzXZd2Yydovtq2zfa3uGpK9KuiDZfkEyfaft22w/YPuTyeuPtb3R9tbktReMWhgANBhCMACkhO2zJS2StFTlI7ln2H5jsnuRpKsj4hRJT0l6R7L9J5I+EhFdkgYlKSIOqXwXxBsjoisibkzGLpb0tmT+L9kuSDpH0n8iYklEvErSH6v9fQJAGhCCASA9zk6+/inpHyqH1kXJvgcj4rnbkN4jaaHt4yXNiog7k+3XjzP/xogYSG4/+5ikuZK2S3qr7SttvyEiDlTw+wGA1CIEA0B6WNI3kqO3XRFxUkRcl+wbGDJuUFLzFOYfMUdE/FvS6SqH4a/ZvnwqhQNA1hCCASA9bpb0IdttkmS7w/YLjzY4Ip6SdND2a5JNFw7ZfVDSrPHe0PZLJPVGxM8lXaVyIAaAhjeVIwkAgCqIiFtsnyzpTtuS9Iyk9yg51/coLpb0I9tHJN0u6bnTGTZJWmN7i6RvjPH6UyVdlby+JOmj0/suACAbHBH1rgEAMEW22yLimeTxGkkvjohL61wWAKQeR4IBINtW2P6Cyv38IUkfqG85AJANHAkGAABA7nBhHAAAAHKHEAwAAIDcIQQDAAAgdwjBAAAAyB1CMAAAAHLnf1NR6nPrCJKGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfZSU5Z3n/8+3nrqqmwZpadqIjcREoTuKxLREk/GBiDEJBHbRTIJJjplkdc6ZTDY7mTFhk8GZH5zdRbMz2Zn8smdHNzljsgezGXUCQmaMOJhH88PWgVZpSBxjQIhNm0aafqjn6/dHdWsLDV3Vdd/FXdzv1zkeqKcvl1XnfOp733Xd12XOOQEAAABhEjnTAwAAAABqjSYYAAAAoUMTDAAAgNChCQYAAEDo0AQDAAAgdGJnegDTMWfOHLdgwYIzPQwAAAAE2NNPP/2qc651ssfqsglesGCBuru7z/QwAAAAEGBm9ptTPcZ0CAAAAIQOTTAAAABChyYYAAAAoUMTDAAAgNChCQYAAEDo0AQDAAAgdGiCAQAAEDo0wQAAAAidutwso1ZGMzn9biQnSTo+mtdorqBUPKrmVOltO7cxrlRD/EwOEUBIkU8AgqweMoomeBKvjWQ1nCloy+5DeuCpAzo4MHrSc9pbUlp75XytXjJPTQ1RndOYOAMjBRA25BOAIKunjDLn3Bn5h6vR1dXl/No2+ZVjaT3e26eN2/cqnStO+fxkPKL1Kzp1Q0ebzpuV9GVMACCRTwCCLYgZZWZPO+e6Jn2MJvgNfYNprXu4Rzv39Vf82mWLWrVpzWK1zeSLBoD3yCcAQRbUjDpdE8yFcWNeOTb9D0+Sdu7r17qHe9Q3mPZ4ZADCjnwCEGT1mlE0wSrNX3m8t2/aH964nfv6tWNvn46NZD0aGYCwI58ABFk9ZxRNsKThTEEbt+/1pNbG7Xs1lCl4UgsAyCcAQVbPGRX6Jng0k9OW3YfKmsBdjnSuqK17Dmk0k/OkHoDwIp8ABFm9Z1Tom+DfjeT0wFMHPK25edeB19fGA4DpIp8ABFm9Z1Tom2DnNOkadtU4ODCqOlx0A0DAkE8AgqzeMyr0TfBQOu9P3Yw/dQGEB/kEIMjqPaNC3wSP5vyZgJ32qS6A8Ejn/cmRjE91AYRLvfdQoW+CU4moL3WTcX/qAggPv3KkIUY+AahevfdQoW+CZzTE6qougPAgnwAEWb1nVOibYElqb0kFuh6AcCo450s+FbkyDoBH6rmHCn0T7JzTJ959oac1P3nVhXLiSwZAdQoFp492tXta82NXtitfIJ8AVK/o/MkoV6MD9dA3wZlCUTd0tCkZ9+atSMYjet+iNmXz3iwcDSC8coWiVi+Z52k+rbp8nnIF8glA9QaGs75k1ECNtk4OfRMcj0b0nV+8pDtvWuhJvTtvWqhv/+IlxaKhf2sBVKllRly7Dx71NJ/2HDyqlqa4J/UAhNu5TQl/Mqox4Um9qYS+U4ua6f6f/0bnzUzp+oWtVdW6fmGrzpuZ0rd//htFzTwaIYCwyuWd7nl0v6f5dPej+5UrMh0CQPUiEfMloyKR2vRQoW+Ch8cWZP7ig3t0x7UXTftDvH5hq+649iJ98cE9pbpZFqMHUJ2ImQ4OjHqaTwcHRhURB+kAvOFHRtVK6Jvg7NjcuOFsQbff362PvKtd61d2lD2/JRmPaP3KDn3kXe26/f5uDWdLCzznuPAEQJWOjx2ke51P7BgHwAsjY5nidUaN1/Vb6BeLnLgg83C2oM9ufkYfXvwWfff2q/SjX/brwWdenvSopL0lpVuuuEDXXdKqb/7013qkp/dNjzfEQn98AaBKmQm7JnmZTxku3AXgAb8yqlaLC4S+CW6cZLeTR3p+qx8894puWDRXf/b+hTr/nJRyhaLSuaKS8Yji0YgOvzaqbT2/1d/+ywsqTDK/brK6AFCJhkl2TfIinxIcpAPwQL1nVOibYKl0RHLikUqh6PTDvX364d4+SVIsYkrEIsrmi8pPcVEJm2UA8EJzcvKIriafTlcXACpR7xkV+tMBiahp7ZXzp3xevug0ki2U9eHdunS+EiyRBqBKUbOyDqoryaf2lhSr1wDwRL1nVOg7teFsQddcPMfThZ5/7+1zajapG8DZy8zplisu8LTmR951gWq0+hCAs1wsar5kVCxKE1wT0UhE9/3k11Mu9ByLmBoTUcWm+Pa486aFuvfHL9ZsjTsAZ69M3um6S1o9PUi/9uJWpbkwDoAHRrIFXzKK1SFqZCST19Y9h3XTO87T9Qtb9cT+fklSNGJa3jFXH7rsLZp3TkqZfFHpXEHJeFQNsYgOvTaq7T2/1eP7jrw+qXt8oedHenr12fe9/Uz+bwE4CxxP5/Wtn5V2tNy4rXfqF0zhzpsW6ps//bX+aBn5BKB6Qz5lVK16qNA3weNLBX3xwT2677YuSdLMZFyffu8CPfHLfv33H+4/5fIeN19xgf7o+rfpWz97SYPpnO649iLdfn+3JCmb40wLgOqM5gqTHqRPx8SD9E//3ls9HCWAsPIroz5zTW0yKvRNcGpsKbPhbEGff+Bftfn2q7Tr1wP62H2/UPo0jezBgVH9jx2/0v/60b9p/YpOLX1ri2697xevL/ScZIk0AFVKjS0/NPEgfbIvmamuvB7fjWn8ID05ybJGAFCp8T0RpsqoqZyYUbVaXCD0TfD4MhxNiaj+Zu079V9+0FvRB5jOFfWV7z+n6xe26m/WvvP1HU9YgghAtcZzZHw3pntuuVzXXDxHf/3YL/V7b58z5XStn/3bq/rCjZfovJmpN+3GRD4B8MKMZFzSyRn11Uf3v+lE4qkO1JPxiO68aeFJGTVe12+hT8JYpLS8x7oPdOjeH7847VP546+755bLtemfe6e8gA4AphKxN9YxH9+Naf3KDv3z56/VI3sOn3a61tor52v9yk79cO8r+uzmZ970GPEEwAuTZdT4jnEHBkaUiEU0Z0bDSQfqrw5llM0VNf/cxpN2jKtlRoW+CT4nGdeXP9Shw6+NVjWXRSo1wtdcPEdf/lCHzknV5igGwNnr3MaE1l45X/c8ul9NiajuueVyvTI4qhu/9qMpp2vd8+h+/e2//Ep33rRQ37j1Cn3xwT0azhZ069L5mtPUUMP/CwBnq8ZEVLdccYG+tuNXr99nZpJJvxkY0fe6D57yQP33u9o1f05j6fkTfORdF6ipRlNKzbmpFy4Omq6uLtfd3e1Jrf7jaaVzxSm/VMqVjEf02J9cp2Q8otbmpAcjBBBW4/n0777xU3391ium/WvV+Hy7z21+Rt//7O+RTwA8kcsV9Jujo1r59Z8oavb6gfqJ0yFOZeJ0iC8+uEcF57T9c9dofktK8Zg3jbCZPe2c65rssdCfCTaTHuk57EkDLJXmCG/rOayPdHm7eDSA8MkXnPa/Mqj/8x+u0t3/vK/q6Vr/5z9cpX2vDOrS82d5OUwAIXV0NCeT05c/tEhvn9tc8YF6OlfUxm29un5hq+67rUsvHDkumdPRkZzmzvT/bHDoN8sYzhT0wK4DntbcvOuAhjPsGAegOsfSOS04t1E9L7/myXStnpdf04JzGzWYznk0QgBhli0U9TePv6D3LWrTfT+p7rqq+37yot63qE3/47FfKVuozTKzoW+CI2aTzlepxsGBUUVqtO81gLNXPBKRLKK/2Pq8J/X+YuvzMosoFgl99APwwFA6ryXts/TTX72qnfuqO1Dfua9fP3vhVS1pP0dDmbxHIzy90CehX2/0cI0+QABnr8aGqLZ7PF3rB88eVmMD6wQDqN5orqAbO8/TXz7i3YH6+99xntK52vyaHvomOOPTzm7jO9EBwHTlC04PPvOypzX/4emXlS/U3wXRAILnLTOTemSP99dVtdXowt3QN8Hju514rVa7nQA4ezk5X6ZrOdEEA6heruj0wFPeX1c12c6Xfgh9pzbDp52T/KoLIDz8usB2hAt3AXjEjwP1Wgl9EyyVFm0Ocj0A4ZTxaV5cmulaADzg13VVXBhXI4mY6aNd7Z7W/NiV7b5NswAQHsm4PxewJcknAB4Y9etAnQvjauPocE6rl8xTMu7NW5GMR7Tq8nkaGMl6Ug9AePm1igOrQwDwQqNPB+opn+qeKPRNcCIW0e6DR3XnTQs9qXfnTQu15+BRNXi03R+AcPNnuhbrmAOoXr1fVxX6JjgaMd3z6H6dNzOl6xe2VlXr+oWtOm9mSnc/ul8RvmMAVCkRjeiWK7zdgv0j77pAiSgBBcAb9XxdFU1wpLRj3Bcf3KM7rr1o2o3w9Qtbdce1F+mLD+7RwYFRRemCAVQpX3S67pJWT6drXXtxa82WHwJwdotFTTd7fKB+yxUXKF6jZWZD3wSPX4E4nC3o9vu79ZF3tWv9yo6yv3SS8YjWr+zQR97Vrtvv79ZwtjSZmx3jAFRrKJPXt372kqfTtb7501+TTwA8MTCU1fUeH6hfd0mrBoZrc11V6Jvg7ISlgoazBX128zPafeA1fff2q/Qnyy8+5Wn59paU/mT5xfru7Vdp94HX9NnNz7zeAEtSlh2ZAFQpmy9q657Dnk7XeqTnt+QTAE9k8kVfDtQz+dqsDhH6HR0mW4LokZ7f6gfPvaIbFs3Vn71/oc4/J6Vcoah0rqhkPKJ4NKLDr41qW89v9bf/8oIKk/y0yBJpAKo1nk9ffHCP7rutS5L0xP7+iuuMT9e6/f5uSeQTAG+k4lFt3XNYN73jPF2/sHVa+TTujQP1Xn122ds9HOWphb4Jbj7FFYiFotMP9/bph3v7JEmxiCkRiyibL5Y1n+5UdQGgXOM5Mj5d655bLtc1F8/RVx/dr3Ru6g0vkvGI7rxpoc6bmXrTdC3yCYAXxldx8PpAndUhaiQWsbKuRMwXnUayhbIa4PaWlGJcGAegShPzyavpWuQTAK8kohG1t6Q8va6qvSWlRI1+rQr96YBzknF98qoL9V9/sM+zmp+86kKdk4p7Vg9AOJ2TjOvj775Qm/7pjXyqdrrWJ95NPgHwxuzUGz3U+IH6hxe/Rd+9/Sr96Jf9evCZl3VwYPSk17W3pHTLFRfoukta9c2f/lqP9PS+/tgnr7pQs2uUUeZc/V0g0dXV5bq7uz2pNTCc0cBwTiu//pOyfl6cSjIe0bbPXaOWprhamho8GCGAsOo/nlY6V9SNX/vRafOp3OlayXhEj/3JdUrGI2ptTvoxZAAh0n88rUy+qOV//eaMikZMNyyaqxWL33LaA/V/2XfkTQfqyXhEO75wnRpi3mWUmT3tnOua9LGwN8EvHx3RfT95UfNbGrVxW+/UL5jC+pUd+s3AiO645iJdMLvRgxECCKtXh9J68t9+pyPHM57lU1tzg65627maM4MmGEB1xjPqeLqgL//js6d8XrkH6v/t31+m5mTU04w6XRMc+jnBRSfd//PfeLoE0bd//huxFj2Aag1nCr7saDmcqc3yQwDObuMZ1dIU1w2L5p7yeeVcV3XDorma3RSvaUaFvgkeSuckydMd4yQ2ywDgDT92tAQArxwcGNWffm+Pbr/2otM2wqdzw6K5uv3ai/Sn36ttRoW+Cc6MbZbh9Y5xtVroGcDZa2R8B0qP82kkSz4BqN5I5o2M+szfP6U1V1ygDaveUVFGbVj1Dq254gJ95u+fqnlGhX51iNSEzTK8urJRkpKxkzfhAIBKZHIn72jpRT5N3CkTAKYrM8muux9e/BZ9946r9NNfvar/233wlBn10a52/d7Fc/TNn/xaj/T89k2P1yqjQt8ENzWc/BZ4sWPcZHUBoBINk5xN8SKfarUGJ4CzWyUZlckV1XBCRn1tx6/OaEaFvlNzcmpvSZ10pFLNjnHtLSlxXRyAas04xcF0tTtanqouAFSi3jMq9KcDIjJ94t0XTvm8SnaM++RVF4r9mABUq+icLztaFutwaUwAwWMmXzLKatREhb4JjkZN1y1sLXsS91SS8YiuvbhVsShtMIDqNDVE9dGudk9rfuzKdqZrAfBEYyKqj10539Oaa6+cr6ZEba6rCn0THIuYHth1QHetfIcn9f5i5Tu0+akDikVoggFUxznpuku8P0ivx02SAATPrGRcH7j0PE8z6qZLz9PMVMKTelMJfRPc0phQ++zGKRd6Lsf4Qs/zZzeyZTKAqrU0JvTKYFp33rTQk3p33rRQrwymyScAnohGI5rZENMXPcqoL960UDMbYorW6ERi6JvgaDSilYvP11f+8VlPFnr+yj8+q5WLz6/ZBwjg7BWNRnTZvHN0/ixvdow7f1ZKl807h3wC4JlZjQm95+1zPMmo9759jmY11uYssEQTLElqaUpo3Qc7PFnoed0HO9TSVLsPEMDZraUpoXSu4MmOcelcgXwC4KlELKK5zUl9YfklVWXUF5ZfornNyZou4UgTrNIHeENHm97ztjn67OZn9NRLA/ruHVfpz95/yetXPSZjEc2ZkVBy7MNpb0npz95/ib57x1V66qUBfXbzM3rP2+ZoeUcba3AC8EwiFtF1C+dq8y8OnHLHuBPz6fX7J+wYt/kXB3T9wrnkEwDPtTQlNG92Sn947UXTyqg/vPYizZud0uwaH6RbPV4g0dXV5bq7uz2v+7uhjNY99Kwe6+3TjGRM37qtS2+ZVVqqY3A09/pi9DNTcTknHX5tRJ/59tMaSud1Y0ebNt18mc6dwVw7AN4bz6dkPKLPXPNWZXNFzWyMKxWPaiid12iuoFQ8qhnJmEZzBR0byaohHtU3f/JrpXNF8gmA7waGs+o9fExNybjS2bzOaUqcMqNeG8oq2RDTcDqnzvNn+dYAm9nTzrmuSR+jCX6zgeGsXhvJqCEW05bdh/TAUwdOueXf2ivna/WSecrk85rd2FDzIxgA4UI+AQi646M5DabzZWfUzGRMzam4b+OhCa5A37G0dvT2aeP2vUrnpt67OhmPaP2KTi3vaFPbrKQvYwIAiXwCEGxHBksZtWFb+Rl118pSRs2d6U9G0QSXqW8wrXUP92jnvv6KX7tsUas2rVmsNp8+RADhRj4BCLIjg2l9qYqMunvNYl8a4dM1wb5fIWFmHzCz/Wb2gpmtm+Tx+Wa208z+1cx6zOxDfo9pMn3Hpv8FI0k79/Vr3cM96htMezwyAGFHPgEIsmoaYKmUUV96uEdHapxRvjbBZhaV9A1JH5TUKWmtmXWe8LQ/l/Q959w7JX1M0v/0c0yTOT6a047evml/eON27uvXjr19GkrnPBoZgLAjnwAE2Ugm711G9fZpJJv3aGRT8/tM8FJJLzjnXnTOZSV9V9LqE57jJM0c+/ssSYd9HtNJBtN5bdy+15NaG7fv1bHR2n2AAM5u5BOAIDs6mtOGbd5k1IZte3V0pHYH6n43wfMkHZxw++Wx+yb6S0mfMLOXJf1A0ucmK2Rmd5hZt5l19/dXd7QxUSZbuoKxnAnc5Ujnitq655AyNTySAXB2Ip8ABFkuV/A+o3YfUi5X8KTeVIKwavpaSX/vnLtA0ockfcfMThqXc+5e51yXc66rtbW6rfkm6h/O6oGnDnhWT5I27zqg/uGspzUBhA/5BCDI+oczemCXHxmV8bTmqfjdBB+S1D7h9gVj9030GUnfkyTn3JOSkpLm+Dyu1zmnSdewq8bBgVHV4aIbAAKGfAIQZEWfMqpYo4zyuwl+StLFZvZWM0uodOHb1hOec0DSDZJkZh0qNcHezXeYwlDan58FhzL83AigOuQTgCA77lNG+VX3RL42wc65vKQ/lvSopF6VVoF43sw2mNmqsaf9qaTbzWyPpAckfcrVcPHiUZ/mnaRrNJ8FwNmLfAIQZPWeUTG//wHn3A9UuuBt4n13Tfj7Xknv9Xscp5KKR32pm4z5UxdAeJBPAILMt4zyqe6JgnBh3Bk1I+nPcYBfdQGEB/kEIMiafcoSv+qeKPRNsJnU3pLytGZ7S0pmnpYEEELkE4Agi/iUUZEaZVTom+DWpoTWXjnf05q3Lp2vuc0NntYEED7kE4Aga21q0Nql3mdUa3PS05qnEvomuCER0+ol85SMe/NWJOMRrbp8nhLMuQNQJfIJQJDF41HvM2rJPMWjtWlPQ98ES9LMZEzrV3R6Umv9ik7NSjHfDoA3yCcAQTY7FdddK73JqLtWdmp2Y9yTWuWgCZbUnIpreUebli2qbie6ZYtatbyzTTOStfsAAZzdyCcAQdbYEPMuozra1Jio3YE6TfCYtllJbVqzeNof4rJFrdq0ZrHaZtZmHguA8CCfAATZ3JlJ3V1lRt29ZrHm1jijrIb7Unimq6vLdXd3+1K771haO3r7tHH7XqVzxSmfn4xHtH5Fp5Z3tvEFA8BX5BOAIDsyWMqoDdvKz6i7VnZqeUebbw2wmT3tnOua9DGa4JMNpXM6NprX1j2HtHnXgUn3xW5vSenWpfO1ask8zUrG+IkRQE2QTwCCLGgZRRM8TZlsXv3DWTknDWXySucKSsajmtEQk5k0t7mBq6wBnBHkE4CgGRjO6vGxX6vuuOYiva9jrhoTMQ1n8krnikrGI2pqiGkkm9e/9B7RvT95UetXdOqGjja1NCV8GdPpmmAuEz6NWDSihlhE+aJTNGJKxkzRiCkWNcUipigrzgM4Q8gnAEHyu6GM1j30rB7r7VM0Ynr20DG1tzRq3jkp5fJF5QtO2ZxpNFvQoddG1fPyMQ1nCrrzwR7d2NGmTTdfpnNn1HYNc5rgSWTzRQ0MZ7Wt57Duf/KlU57Kv+3qBVq5+Hy1NCWUiHGNIQD/kU8AgmZgOPt6A7zq8vP16fcu0BO/7Nd//+H+U2bUzVdcoD+6/m361s9e0tY9h6WHpHtuWazZPp0RngzTIU4wfip//Zbnyp7UvXH1pb6eygcAiXwCEDzZfFFbdh/SX259XvfccrleGRzVVx/dX3ZG3XnTQp03M6UvPrhHf7nqHVq9ZJ6nB+7MCS7TxFP5lTpTp/IBhAP5BCCIXjmW1oq//bG+fusVuvfHL+qJ/f0V17h+YavuuPYifW7zM9r+H6/VebO8WynidE0wv5GNmXgqfzoe6+3Tuoee1dHhrMcjAxB25BOAICoUitrWc1gbVl827QZYkp7Y3697f/yiNqy+TNt6DqtQmPosshdoglU6lf94b9+0v2DGPdbbpx29fcrma/PhATj7kU8AgmpgJKuDR0f0yuDotBvgcU/s79crg6M6cHREAyO1OWCnCVbpLMv6Lc95Umv9luc0wNkWAB4hnwAEVb7o9O+XzNNXH93vSb2vPrpfa5bMU75Ym6m6oW+Cx0/llzOBuxzpXLGmp/IBnL3IJwBBVig4PfHLfk8z6ke/7FehQBNcEwMjWd3/5Eue1rz/yZdqdiofwNmLfAIQZLliUQ8987KnNR985mXOBNdKvugmXcOuGgcHRmv2AQI4e5FPAIIsGon4klGRSG02+wl9E3w8nfel7pBPdQGEB/kEIMhGMv5kyUi2NhkV+iY4kyv4U5crsAFUiXwCEGR+ZUnWoznGUwl9E9wQj/pSl21KAVSLfAIQZKmEPxmV9KnuiUKfhM3JWF3VBRAe5BOAIKv3jAp9ExyLmNpbUp7WbG9JKVajSd0Azl7kE4Agq/eMCn0T3NKY0G1XL/C05m1XL1BLU4OnNQGED/kEIMjqPaNC3wRHoxGtXHy+knFv3opkvFQvypkWAFUinwAEWb1nVOibYElqaUpo4+pLPam1cfWlamlKeFILAMgnAEFWzxlFE6zSldI3dLTpxo62qurc2NGm5R1tXHkNwDPkE4Agq+eMIg3HtDQltOnmy6b9Id7Y0aZNN1+m2ZxlAeAx8glAkNVrRplz9bd9ZldXl+vu7val9sBwVo/39mn9lueULmOx5mQ8oo2rL9Xyjja+YAD4inwCEGRBzCgze9o51zXpYzTBJ8vmixoYzmpbz2Hd/+RLk+6L3d6S0qfes0ArLjtfLU0JfmIEUBPkE4AgC1pG0QRPU6FQ1MBIVvmi01A6r0y+qIZYRDOSMcUippamBq6yBnBGkE8AgiwoGXW6JpjTA2VykkxObzpkqMMDCABnH/IJQJAFNaPYO3MS5Z7Kv+3qBVq5mJ8bAdQO+QQgyOopo5gOcYLpTuq+oaON9TcB+Ip8AhBkQcwo5gSX6XdDGa176Fk91ttX8WvHl/c4dwbbkQLwHvkEIMiCmlHMCS7DwHB22h+eJD3W26d1Dz2ro8NZj0cGIOzIJwBBVq8ZRROs0vyVx3v7pv3hjXust087evuUzU/9EwAAlIN8AhBk9ZxRNMEqHcGs3/KcJ7XWb3lOA5xtAeAR8glAkNVzRoW+CS4UitrWc7isCdzlSOdK9QoFzrYAqA75BCDI6j2jQt8ED4xkdf+TL3la8/4nX9LACGdbAFSHfAIQZPWeUaFvgvNFN+kadtU4ODCqfLH+Vt0AECzkE4Agq/eMCn0TfDyd96XukE91AYQH+QQgyOo9o0LfBGdyBX/qcgU2gCqRTwCCrN4zKvRNcEM86ktdtikFUC3yCUCQ1XtGhT4Jm5OxuqoLIDzIJwBBVu8ZFfomOBYxtbekPK3Z3pJSLGKe1gQQPuQTgCCr94wKfRPc0pjQbVcv8LTmbVcvUEuT9/tfAwgX8glAkNV7RoW+CY5GI1q5+Hwl4968Fcl4qV6UMy0AqkQ+AQiyes+o0DfBktTSlNDG1Zd6Umvj6kvV0pTwpBYAkE8AgqyeM4omWKWrEG/oaNONHW1V1bmxo03LO9q48hqAZ8gnAEFWzxlFGo5paUpo082XTftDvLGjTZtuvkyzOcsCwGPkE4Agq9eMMufqb/vMrq4u193d7UvtgeGsHu/t0/otzymdm3qx5mQ8oo2rL9Xyjja+YAD4inwCEGRBzCgze9o51zXpYzTBJ8vmixoYzmpbz2Hd/+RLk+6L3d6S0qfes0ArLjtfLU0JfmIEUBPkE4AgC1pG0QRPU6FQ1MBIVvmi01A6r0y+qIZYRDOSMcUippamBq6yBnBGkE8AgiwoGXW6Jphtg04jGo2otTlZujHrzI4FACYinwAEWT1kFL+RAQAAIHRoggEAABA6NMEAAAAIHZpgAAAAhA5NMAAAAEKHJhgAAAChQxMMAACA0KEJBgAAQOjQBAMAACB0aIIBAAAQOjTBAAAACB2aYAAAAIQOTTAAAABChyYYAAAAoUMTDI9M88IAACAASURBVAAAgNChCQYAAEDo0AQDAAAgdGiCAQAAEDo0wQAAAAgdmmAAAACEju9NsJl9wMz2m9kLZrbuFM/5fTPba2bPm9lmv8cEAACAcIv5WdzMopK+IelGSS9LesrMtjrn9k54zsWS/rOk9zrnjprZXD/HBAAAAJR1JtjMYhP+PsPMusyspYyXLpX0gnPuRedcVtJ3Ja0+4Tm3S/qGc+6oJDnnjpQ3dAAAAGB6pmyCzexTkvrM7Jdm9kFJPZLulrTHzNZO8fJ5kg5OuP3y2H0TXSLpEjP7mZn9wsw+cIpx3GFm3WbW3d/fP9WwAQAAgFMqZzrEn0paKKlZ0h5J73TO/ZuZtUl6TNIDHozhYknXS7pA0o/N7DLn3GsTn+Scu1fSvZLU1dXlqvw3AQAAEGLlTIcoOOdedc79WtKQc+7fJMk511fGaw9Jap9w+4Kx+yZ6WdJW51xu7N/4pUpNMQAAAOCLcprgA2b238zs/5W0z8z+yszea2Z/Iem3U7z2KUkXm9lbzSwh6WOStp7wnO+rdBZYZjZHpekRL1byPwEAAABUopwm+BOSBlU6Y7tK0s9VWs1hrqRPne6Fzrm8pD+W9KikXknfc849b2YbzGzV2NMelfQ7M9sraaekO51zv5vG/wsAAABQFnPOm+m1ZvZ159znPCk2ha6uLtfd3V2LfwoAAAB1ysyeds51TfaYl5tlvNfDWgAAAIBv2DYZAAAAoUMTDAAAgNDxsgk2D2sBAAAAvim7CTazy6Z4yt9UORYAAACgJio5E/w/zWyXmf2Rmc068UHn3N97NywAAADAP2U3wc65ayR9XKUd4J42s81mdqNvIwMAAAB8UtGcYOfcryT9uaQvSbpO0t+a2T4zW+PH4AAAAAA/VDIneLGZfU2lnd/eJ+nDzrmOsb9/zafxAQAAAJ6LVfDcr0v635K+7JwbHb/TOXfYzP7c85EBAAAAPqmkCV4hadQ5V5AkM4tISjrnRpxz3/FldAAAAIAPKpkTvENSasLtxrH7AAAAgLpSSROcdM4Njd8Y+3uj90MCAAAA/FVJEzxsZleM3zCzd0kaPc3zAQAAgECqZE7wf5L0D2Z2WKUtks+T9FFfRgUAAAD4qOwm2Dn3lJktkrRw7K79zrmcP8MCAAAA/FPJmWBJulLSgrHXXWFmcs592/NRAQAAAD4quwk2s+9Iepuk3ZIKY3c7STTBAAAAqCuVnAnuktTpnHN+DQYAAACohUpWh3hOpYvhAAAAgLpWyZngOZL2mtkuSZnxO51zqzwfFQAAAOCjSprgv/RrEAAAAEAtVbJE2o/M7EJJFzvndphZo6Sof0MDAAAA/FH2nGAzu13Sg5L+buyueZK+78egAAAAAD9VcmHcZyW9V9KgJDnnfiVprh+DAgAAAPxUSROccc5lx2+YWUyldYIBAACAulJJE/wjM/uypJSZ3SjpHyQ94s+wAAAAAP9U0gSvk9Qv6VlJfyjpB865r/gyKgAAAMBHlSyR9jnn3N9Ium/8DjP7/Nh9AAAAQN2o5EzwbZPc9ymPxgEAAADUzJRngs1sraRbJb3VzLZOeKhZ0oBfAwMAAAD8Us50iJ9L+q1K2yb/1YT7j0vq8WNQAAAAgJ+mbIKdc7+R9BtJV/s/HAAAAMB/lewYt8bMfmVmx8xs0MyOm9mgn4MDAAAA/FDJ6hD3SPqwc67Xr8EAAAAAtVDJ6hB9NMAAAAA4G1RyJrjbzP6vpO9Lyozf6Zx72PNRAQAAAD6qpAmeKWlE0vsn3Ock0QQDAACgrpTdBDvn/sDPgQAAAAC1UsnqEJeY2eNm9tzY7cVm9uf+DQ0AAADwRyUXxt0n6T9LykmSc65H0sf8GBQAAADgp0qa4Ebn3K4T7st7ORgAAACgFippgl81s7epdDGczOwWlbZTBgAAAOpKJatDfFbSvZIWmdkhSb+W9AlfRgUAAAD4qJLVIV6UtNzMmiRFnHPH/RsWAAAA4J9KVof4vJmNrxX8NTN7xszeP9XrAAAAgKCpZE7wp51zgyptlnGupE9K2uTLqAAAAAAfVdIE29ifH5L0befc8xPuAwAAAOpGJU3w02b2Q5Wa4EfNrFlS0Z9hAQAAAP6pZHWIz0haIulF59yImZ0ria2UAQAAUHembILNbJFzbp9KDbAkXWTGLAgAAADUr3LOBH9B0h2S/mqSx5yk93k6IgAAAMBnUzbBzrk7xv5c5v9wAAAAAP9Vsk7wR8YuhpOZ/bmZPWxm7/RvaAAAAIA/KlkdYr1z7riZ/Z6k5ZK+Kel/+TMsAAAAwD+VNMGFsT9XSLrXObddUsL7IQEAAAD+qqQJPmRmfyfpo5J+YGYNFb4eAAAACIRKmtjfl/SopJucc69JapF0py+jAgAAAHxUdhPsnBuRtEXSsJnNlxSXtM+vgQEAAAB+KXvHODP7nKS/kNSnN7ZLdpIW+zAuAAAAwDeVbJv8eUkLnXO/82swAAAAQC1UMif4oKRjfg0EAAAAqJVKzgS/KOkJM9suKTN+p3Purz0fFQAAAOCjSprgA2P/JcT6wAAAAKhjZTfBzrn/R5LMbMbY7SG/BgUAAAD4qew5wWZ2qZn9q6TnJT1vZk+b2Tv8GxoAAADgj0oujLtX0heccxc65y6U9KeS7vNnWAAAAIB/KmmCm5xzO8dvOOeekNTk+YgAAAAAn1W0OoSZrZf0nbHbn1BpxQgAAACgrlRyJvjTklolPSzpIUlzxu4DAAAA6kolq0MclfQffRwLAAAAUBOVrA7xmJmdM+H2bDN71J9hAQAAAP6pZDrEHOfca+M3xs4Mz/V+SAAAAIC/KmmCi2Y2f/yGmV0oyXk/JAAAAMBflawO8RVJPzWzH0kySddIusOXUQEAAAA+quTCuH82syskXTV2139yzr06/riZvcM597zXAwQAAAC8VsmZYI01vdtO8fB3JF1R9YgAAAAAn1UyJ3gqNumdZh8ws/1m9oKZrTvli81uNjNnZl0ejgkAAAA4iZdN8EkXyZlZVNI3JH1QUqektWbWOcnzmiV9XtL/5+F4AAAAgEl52QRPZqmkF5xzLzrnspK+K2n1JM/bKOluSWmfxwMAAAB42gRnJ7lvnqSDE26/PHbf68Yutmt3zm0/XXEzu8PMus2su7+/v+rBAgAAILwqujDOzBZLWjDxdc65h8f+vOoULztdvYikv5b0qame65y7V9K9ktTV1cX6xAAAAJi2sptgM/uWpMWSnpdUHLvbSXr4NC87JKl9wu0Lxu4b1yzpUklPmJkknSdpq5mtcs51lzs2AAAAoBKVnAm+yjl30kVtU3hK0sVm9laVmt+PSbp1/EHn3DFJc8Zvm9kTkv6MBhgAAAB+qmRO8JOTrexwOs65vKQ/lvSopF5J33POPW9mG8xsVSW1AAAAAK9Ucib42yo1wq9Iyqi0LrBzzi0+3Yuccz+Q9IMT7rvrFM+9voLxAAAAANNSSRP8TUmflPSs3pgTDAAAANSdSprgfufcVt9GAgAAANRIJU3wv5rZZkmPqDQdQtIbS6QBAAAA9aKSJjilUvP7/gn3TbVEGgAAABA4ZTfBzrk/8HMgAAAAQK1UsllGUtJnJL1DUnL8fufcp30YFwAAAOCbStYJ/o5KO7rdJOlHKu3+dtyPQQEAAAB+qqQJfrtzbr2kYefc/ZJWSHq3P8MCAAAA/FNJE5wb+/M1M7tU0ixJc70fEgAAAOCvSlaHuNfMZktaL2mrpBmSJt35DQAAAAiySlaH+N9jf/2RpIv8GQ4AAADgv7KnQ5hZm5l908z+aex2p5l9xr+hAQAAAP6oZE7w30t6VNL5Y7d/Kek/eT0gAAAAwG+VNMFznHPfk1SUJOdcXlLBl1EBAAAAPqqkCR42s3NV2ipZZnaVpGO+jAoAAADwUSWrQ3xBpVUhLjKzn0lqlXSLL6MCAAAAfFRJE7xX0j9KGlFpp7jvqzQvGAAAAKgrlUyH+LakRZL+q6SvS7pEpa2UAQAAgLpSyZngS51znRNu7zSzvV4PCAAAAPBbJU3wM2Z2lXPuF5JkZu+W1O3PsIIhncnp1ZHSbtHHR/MazRWUikfVnCq9bXMa40o2xM/kEAGEVCabV/9wVtLk+dTalFBDopKIBwDv1EMPNWVCmtmzKq0IEZf0czM7MHb7Qkn7/B3emXFsJKuhTEFbdh/SA08d0MGB0ZOe096S0tor52v1knma0RDVrMbEGRgpgLA5PprTYDpfdj7NTMbUnOJgHUBt1FMPZc650z/B7MLTPe6c+42nIypDV1eX6+725yT0K8fSery3Txu371U6V5zy+cl4ROtXdOqGjjadNyvpy5gAQJL6jqW1Yxr5tLyjTW3kEwCfBbGHMrOnnXNdkz42VRMcRH41wX2Daa17uEc79/VX/Npli1q1ac1itc3kiwaA98gnAEEW1Iw6XRNcyeoQZ7VXjk3/w5Oknfv6te7hHvUNpj0eGYCw6yOfAARYvfZQNMEqzV95vLdv2h/euJ37+rVjb58GR7MejQxA2B0fzWmHh/k0lM55NDIAqO8eiiZY0lCmoI3bvVntbeP2vTqeLnhSCwAG03lP8+nYaN6TWgAg1XcPFfomOJ3JacvuQ2VN4C6rXq6orXsOKZ3hbAuA6mSyeV/yKZOlEQZQvXrvoULfBL86ktMDTx3wtObmXQdeXxsPAKarfzjrSz6Nry8MANWo9x4q9E2wc5p0DbtqHBwYVR0uugEgYMgnAEFW7xkV+iZ4KO3Pz4JDGX5uBFAd8glAkNV7RoW+CR7N+TMBO+1TXQDhQT4BCLJ6z6jQN8GpeNSXusmYP3UBhAf5BCDI6j2jQt8Ez0jG6qougPAgnwAEWb1nVOibYDOpvSXlac32lpTMPC0JIITIJwBBVu8ZFfomeE5jXGuvnO9pzVuXzlfrjAZPawIIn9amhC/5NLeZfAJQvXrvoULfBCcb4lq9ZJ6ScW/eimQ8olWXz1ODT/NkAIRHQyLmSz4lmBMMwAP13kOFvgmWpBkNUa1f0elJrfUrOtWc5AsGgDdmJmOe5tOsFPOBAXinnnsommBJsxoTuqGjTcsWtVZVZ9miVi3vbNPMVMKjkQEIu+ZUXMs9zKcZybhHIwOA+u6haILHnDcrqU1rFk/7Q1y2qFWb1ixW28ykxyMDEHZt5BOAAKvXHspcHe6f2dXV5bq7u32p/cqxtB7v7dPG7XuVzhWnfH4yHtH6FZ1a3tnGFwwAX/UdS2sH+QQgoILYQ5nZ0865rkkfowk+2eBoVsfTBW3dc0ibdx2YdF/s9paUbl06X6uWzFNzQ5QpEABqYiid07HRfNn5NCsZYwoEgJoJWg9FEzxN6UxOr47k5FxpH+tsvqBELKoZDTGZSa0zGlgFAsAZkcnm1T+cPWU+zW1uYBUIAGdMUHqo0zXBXCZ8GvFYVA2xgvJFp2jEFDFTNGKKRU2xSOk/ADgTImaKmDT+g2Nx7HyGmRQxyerv/AaAs0g99FA0wZPI5osaGM5qW89h3f/kS6c8lX/b1Qu0cvH5amlKKBHjGkMA/hvJ5HV0NKctuw/pgdP81Lh26XytXjJPs1NxNTYQ9QBqo556KKZDnGBgOKvHe/u0fstzZU/q3rj6Ut3Q0aaWJuYFA/DPkcHShXEbtpV/0cldKzu1vKNNc7kwDoDPgthDMSe4TL8bymjdQ8/qsd6+il97Y0ebNt18mc5lu2QAPjgymNaXHu7Rzn39Fb922aJW3b1mMY0wAN8EtYc6XRPMb/hjBoaz0/7wJOmx3j6te+hZHR3OejwyAGFXTQMsSTv39etLD/foyGDa45EBQP32UDTBKs1feby3b9of3rjHevu0o7dP2fzUPwEAQDlGMnnt6O2bdgM8bue+fu3o7dNINu/RyACgvnsommCVjmDWb3nOk1rrtzynAc4GA/DI0dGcNmzb60mtDdv26uhIzpNaACDVdw8V+ia4UChqW8/hsiZwlyOdK9UrFDgbDKA6uVxBW3Yf8jSftu4+pFyu4Ek9AOFW7z1U6JvggZGs7n/yJU9r3v/kSxoY4WwwgOr0D2f0wK4DntbcvOuA+oczntYEEE713kOFvgnOF92ka9hV4+DAqPLF+lt1A0CwFJ18ySfiCYAX6r2HCn0TfDztz0UiQz7VBRAefuWTX3UBhEu991Chb4IzPs2Ny7BCBIAqjfqUT2nmBAPwQL33UKFvghviUV/qso0ygGqlfMqnpE91AYRLvfdQoe/UmpOxuqoLIDzIJwBBVu8ZFfomOBYxtbekPK3Z3pJSLGKe1gQQPhGTL/lEPAHwQr33UKFvglsaE7rt6gWe1rzt6gVqafJ+/2sA4dLa1KC1S+d7WvPWpfPV2pz0tCaAcKr3Hir0TXA0GtHKxecrGffmrUjGS/WinGoBUKV4PKrVS+Z5mk+rlsxTPBr66AfggXrvoUhCSS1NCW1cfakntTauvlQtTQlPagHA7FRcd63s9KTWXSs7Nbsx7kktAJDqu4eiCVbpKsQbOtp0Y0dbVXVu7GjT8o42VoYA4JnGhpiWd7Rp2aLWquosW9Sq5R1takxwURwA79RzD0W3NqalKaFNN1827Q/xxo42bbr5Ms3mLDAAj82dmdTdaxZPuxFetqhVd69ZrLkzmQsMwHv12kOZc/W3f2ZXV5fr7u72pfbAcFaP9/Zp/ZbnlM5NvVhzMh7RxtWXanlHGw0wAF8dGUxrR2+fNmzbW3Y+3bWyU8s72miAAfguiD2UmT3tnOua9DGa4JNl80UNDGe1reew7n/ypUn3xW5vSelT71mgFZedr5amBFMgANTESDavoyM5bd19SJt3HThlPn186XytWjJP5zTGmQIBoGaC1kPRBE9ToVDUwEhW+aLTUDqvTL6ohlhEM5IxxSKmlqYGVoEAcEbkcgX1D2dUdNLxdF7pXEHJeFTNyZgiJrU2J1kFAsAZE5Qe6nRNMKcHTqNYdMoViio6KV90yheLihZNhaKTc07FQlHRCNuPAqi9eDyq889pPNPDAIBJRaORN9Ykn3Vmx3IqNMGTGMnkdXQ0py27D+mB0/zcuHbpfK1eMk+zU3E1NvBWAgAA1AumQ5yAC08AAADODkyHKNORwbS+9HCPdu7rL/s16VxRX/7H5/RYbx9LEAEAANQJrpoYM50GeKKd+/r1pYd7dGQw7fHIAAAA4DWaYJXmAO/o7Zt2Azxu575+7ejt00g279HIAAAA4AeaYElHR3PasG2vJ7U2bNuroyM5T2oBAADAH6FvgnO5grbsPlTWRXDlSOeK2rr7kHK5gif1AAAA4L3QN8H9wxk9sOuApzU37zqg/uGMpzUBAADgndA3wUWnSdcBrsbBgVEV62/lOQAAgNAIfRN8PO3PRWx+1QUAAED1Qt8Ej/o0dzfNnGAAAIDA8r0JNrMPmNl+M3vBzNZN8vgXzGyvmfWY2eNmdqHfY5ooFY/6UjfpU10AAABUz9cm2Myikr4h6YOSOiWtNbPOE572r5K6nHOLJT0o6R4/x3Si5qQ/m+b5VRcAAADV8/tM8FJJLzjnXnTOZSV9V9LqiU9wzu10zo2M3fyFpAt8HtObRExqb0l5WrO9JaWIeVoSAAAAHvK7CZ4n6eCE2y+P3Xcqn5H0T5M9YGZ3mFm3mXX391e3s9tErU0NWrt0vmf1JOnWpfPV2pz0tCYAAAC8E5gL48zsE5K6JH11ssedc/c657qcc12tra2e/bvxeFSrl8xTMu7NW5GMR7RqyTzFo4F5awEAAHACvzu1Q5LaJ9y+YOy+NzGz5ZK+ImmVc67mu0zMTsV118oTpypPz10rOzW7Me5JLQAAAPjD7yb4KUkXm9lbzSwh6WOStk58gpm9U9LfqdQAH/F5PJNqbIhpeUebli2q7gzzskWtWt7RpsYEF8UBAAAEma9NsHMuL+mPJT0qqVfS95xzz5vZBjNbNfa0r0qaIekfzGy3mW09RTlfzZ2Z1N1rFk+7EV62qFV3r1msuTOZCwwAABB05lz97e/b1dXluru7fal9ZDCtHb192rBtr9K54pTPT8Yjumtlp5Z3tNEAAwAABIiZPe2c65rsMX63P8HcmUn9u3fO03UL52rr7kPavOuADg6MnvS89paUPr50vlYtmadzGuNMgQAAAKgjdG6TaEzE1JiI6Q+uvlAfvvx8OScNZfJK5wpKxqOa0RCTmdQ6I6GGOG8hgNpLZ3J6dSQnSTo+mtdorqBUPKrmVCmT5jTGlWzgIl0AZ0Ymm1f/cFbS5BnV2pRQwxk+gUgHN4mRTF5HR3PasvuQHhg7ExyLmBKxiLL5ovJFp/aWlNYuna/VS+ZpdiquxgbeSgD+OzaS1VCmUMqnp079S9XaK0v5NKMhqlmNiTMwUgBhdHw0p8F0vuyMmpmMqTl1Zg7YmRN8AuYEAwiqV46l9XhvnzZuLz+f1q/o1A0dbTpvFvkEwF99x0o9VKUZtbyjTW0+ZdTp5gTTBE9wZDCtLz3co537Kt+RjtUhAPipbzCtdVXk06Y1i9VGPgHwSVAz6nRNMNuajammAZaknfv69aWHe3RkMO3xyACE3SvHpv/lIpXyad3DPeojnwD4oK9OM4omWKU5wDt6+6b94Y3bua9fO3r7NJLNezQyAGF3bCSrx73Kp719GhzNejQyACjNAfash9rbp6F0zqORTY0mWNLR0Zw2bNvrSa0N2/bq6EjtPkAAZ7ehTEEbt3uTTxu379XxdMGTWgAgSYPpvKcZdWy0dicSQ98E53Klq6zLmcBdjnSuqK27DymX44sGQHXSmZz3+bTnkNIZDtQBVC+TzfuSUZka/aIe+ia4fzijB3Yd8LTm5l0H1D+c8bQmgPB5dSSnB57yPp9e5dcqAB7oH876klHj6wv7LfRNcNFp0jXsqnFwYFTF+lt0A0DAOJ/yqQ4XBQIQQPWeUaFvgo+n/Tnl7lddAOEx5FOODGXIJwDVq/eMCn0TPOrT3N00c4IBVIl8AhBk9Z5RoW+CU/GoL3WTPtUFEB6+5VOMfAJQvXrPqNA3wc3JWF3VBRAeM3zKEb/qAgiXes+o0DfBEZPaW1Ke1mxvSSlinpYEEELmUz4Z+QTAA/WeUaFvglubGrR26XxPa966dL5am73f/xpAuMxpjGvtlT7k04wGT2sCCKfWpoQvGTW3uTYZFfomOB6PavWSeUrGvXkrkvGIVi2Zp3g09G8tgColG+Le59Pl89TANQsAPNCQiPmSUQnmBNfO7FRcd63s9KTWXSs7Nbsx7kktAJjRENX6Fd7k0/oVnWpO0gAD8M7MZMzTjJqVqt01CzTBkhobYlre0aZli1qrqrNsUauWd7SpMcFFJwC8MasxoRu8yqfONs1MJTwaGQBIzam4dz1UZ5tmJGt3IpEmeMzcmUndvWbxtD/EZYtadfeaxZo7k7nAALx13qykNlWZT5vWLFYb+QTAB211mlHm6nD/zK6uLtfd3e1L7SODae3o7dOGbXuVzhWnfH4yHtFdKzu1vKONBhiAr145ltbjvX3auL38fFq/olPLO9togAH4ru9YqYcKUkaZ2dPOua5JH6MJPtlINq+jIzlt3X1Im3cdmHRf7PaWlD6+dL5WLZmncxrjTIEAUBODo1kdTxe0dc/p8+nWsXxqbogyBQJAzQylczo2mi87o2YlY75OgaAJnqZcrqD+4YyKTjqezitfKCgWjao5GVPEpNbmJKtAADgj0pmcXh3JyTlpKJNXNl9QIhbVjIaYzKTWGQ2sAgHgjMlk8+ofzr6eUcViQZHIGxk1t7mhJqtAnK4JpoOrwEln9ov1dwAB4OwQjUQUMb2+qPx4HJmVNgEi3AEEgZkkJ2XypT/HM8sFoIfiN/xJjGTyOjqa05bdh/TAaU7lr106X6uXzNPsVFyNDbyVAPxHPgEIsuOjOQ2m86WMeuo0GXVlKaNmJmNqTp2ZpWWZDnECLowDEFTkE4Agm/aFcR1tapvFhXFl8asJPjKY1pce7tHOff0Vv5Yl0gD4iXwCEGR9g2mtqyKj/FoijTnBZajmC0aSdu7r15ce7tGRwbTHIwMQduQTgCDrOzb9BlgqZdS6h3vUV+OMoglWaY7djt6+aX9443bu69eO3j6NZPMejQxA2JFPAILs+GjOu4za26ehdM6jkU2NJljS0dGcNmzb60mtDdv26uhI7T5AAGc38glAkA2m89q43ZuM2rh9r46N1u5APfRNcC5X0Jbdh8qawF2OdK6orbsPKZcreFIPQHiRTwCCLJPNe59Rew4pU6NfrELfBPcPZ/TArgOe1ty864D6hzOe1gQQPuQTgCDrH87qgaf8yKispzVPJfRNcNFp0jXsqnFwYJR9NABUjXwCEGTOp4yq1cJloW+Cj6f9OeXuV10A4UE+AQiyIZ+yZCjDdIiaGPVpblyaOXcAqkQ+AQiyes+o0DfBqXjUl7pJn+oCCA/yCUCQ+ZZRsdpkVOib4OZkrK7qAggP8glAkM3wKUv8qnui0DfBEZPaW1Ke1mxvSSlinpYEEELkE4AgM58yymqUUaFvglubGrR26XxPa966dL5am73f/xpAuJBPAIKstSmhtVd6n1Fzmxs8rXkqoW+C4/GoVi+Zp2Tcm7ciGY9o1ZJ5ikdD/9YCqBL5BCDIGhIx7zPq8nlKMCe4dman4rprZacnte5a2anZjXFPagEA+QQgyGYmY1q/wpuMWr+iU7NStbtmgSZYUmNDTMs72rRsUWtVdZYtatXyjjY1JrjoBIA3yCcAQdacinuXUZ1tmpGs3YE6TfCYuTOTunvN4ml/iMsWteruNYs1dyZz7QB4i3wCEGRts5LaVGVGbVqzWG01zihztdqbzkNdXV2uu7vbl9pHBtPa0dunDdv2Kp0rTvn8ZDyiu1Z2anlHG18wAHxFPgEIsr5jpYzauL38jFq/olPLO9t8a4DN7GnnXNekj9EEn2wkm9fRkZy27j6kzbsOTLovdntLSh9fOl+rlszTOY1xfmIEUBPkE4AgG0rndGw0r617zS+ZjwAADmZJREFUTp9Rt45l1KxkzNcpEDTB05TLFdQ/nFHRScfTeWVyBTXEo2pOxhQxqbU5yVXWAM4I8glAkGWyefUPZ+WcNJTJK50rKBmPakZDTGbS3OaGmqwCcbommNMDpxGJmOLRiPJFp2jEFI+aopHSf7GIMaEawBlDPgEIslg0oobYGxmVjI3lU7SUUdFa7YhxujGe6QEEUTZf1MBwVtt6Duv+J1865an8265eoJWLz1dLU0KJGF85APxHPgEIsnrKKKZDnGBgOKvHe/u0fstzZU/q3rj6Ut3Q0aaWpoQvYwIAiXwCEGxBzCjmBJfpd0MZrXvoWT3W21fxa2/saNOmmy/TuTNqs9UfgHAhnwAEWVAz6nRNML+RjRkYzk77w5Okx3r7tO6hZ3V0OOvxyACEHfkEIMjqNaNoglWav/J4b9+0P7xxj/X2aUdvn7L5qX8CAIBykE8AgqyeM4omWKUjmPVbnvOk1votz2mAsy0APEI+AQiyes6o0DfBhUJR23oOlzWBuxzpXKleocDZFgDVIZ8ABFm9Z1Tom+CBkazuf/IlT2ve/+RLGhjhbAuA6pBPAIKs3jMq9E1wvugmXcOuGgcHRpUv1t+qGwCChXwCEGT1nlGhb4KPp/O+1B3yqS6A8CCfAARZvWdU6JvgTK7gT12uwAZQJfIJQJDVe0aFvgluiEd9qcs2pQCqRT4BCLJ6z6jQJ2FzMlZXdQGEB/kEIMjqPaNC3wTHIqb2lpSnNdtbUopFzNOaAMKHfAIQZPWeUaFvglsaE7rt6gWe1rzt6gVqafJ+/2sA4UI+AQiyes+o0DfB0WhEKxefr2Tcm7ciGS/Vi3KmBUCVyCcAQVbvGRX6JliSWpoS2rj6Uk9qbfz/27v/IKvK84Dj30dYdhcwKkjWBKFkIim7EaHJSjJt2oaiicqMTDQZo23SpM6k06atnf6Y0s5g2tBOcJw2nU6TZpKYkk6rsZPSSotNbC1JOhONYoqgYDOMNiBGJKCosLss8PSPe3R2lmVZdu/de87e72dmZ+49573vfZZn9rkP577nnDWXM2fWjLrMJUnWJ0llVuUaZRNM7SzEVd1dXN3dNaF5ru7u4qruLs+8llQ31idJZVblGmU1LMyZNYMNNy4ddxKv7u5iw41LucijLJLqzPokqcyqWqMis3q3z+zt7c1t27Y1ZO7DR4/z4O4DrLvvCfoHz36x5o6281i/5nKu6u7yA0ZSQ1mfJJVZGWtURDyWmb0j7rMJPt3xE6c4fPQ4/7bjOb760P+x73AfH7j8Eq5b9kbuf/wF/vmJ51kwp5OP/fQiVi99M3NmzfArRkmTwvokqczKVqNsgsepb2CQQ8cGAXil7wR9gyfpbJvG+Z21izjPndlGZ3tbw+OQpOGsT5LKrCw1arQm2NsGjeDFY8c5NnCS+7bv555H97LvcN9pYxbM6eTmKxeyZvl8ZrZP46KZftUoqfGsT5LKrEo1yiPBwzx/pJ8Hdx9g/ZZdY17Psm51D6u6u7jkgo6GxCRJYH2SVG5lrFEuhxijAy/3s3bTDrY+dfCcX7tyyTw23HAFXW/wg0ZS/VmfJJVZWWvUaE2wZ0sUnj8y/uQBbH3qIGs37eDAy/11jkxSq7M+SSqzqtYom2Bq61ce3H1g3Ml7zdanDvKfuw7w0rHjdYpMUquzPkkqsyrXKJtg4NjASdZv2VWXudZv2cXRgZN1mUuSrE+SyqzKNarlm+C+gUHu275/TAu4x6J/8BSbH99P38BgXeaT1LqsT5LKrOo1quFNcERcExH/GxF7ImLtCPvbI+LeYv/3ImJRo2Ma6tCxQe55dG9d57z7kb2vXxtPksbL+iSpzKpeoxraBEfENOBzwLVAD3BzRPQMG3Yr8GJmXgZ8FrijkTENl8mI17CbiH2H+6jgRTcklYz1SVKZVb1GNfpI8ApgT2Y+nZnHga8Ba4aNWQN8tXj8dWBVRESD43rdq/0nGjPvQGPmldQ6rE+SyqzqNarRTfB8YN+Q588W20Yck5kngCPA3OETRcQnImJbRGw7eHBiZyAO1TfYmAXY/Q2aV1LrsD5JKrOq16jKnBiXmV/MzN7M7J03b17d5u1sm1a3uYbqmN6YeSW1DuuTpDKreo1qdBO8H1gw5PmlxbYRx0TEdOAC4FCD43rd7I7plZpXUuuwPkkqs6rXqEY3wY8CiyPiLRExA/gwsHnYmM3ALxePPwj8V07ivZwjYMGczrrOuWBOJ5O3qlnSVGV9klRmVa9RDW2CizW+vwF8E9gN/GNmPhkRn46I64thdwFzI2IP8DvAaZdRa6S5M9u4+cqFdZ3zlhULmTe7va5zSmo91idJZVb1GtXwNcGZeX9mvi0z35qZf1Zsuz0zNxeP+zPzQ5l5WWauyMynGx3TUJ3tbaxZPp+Otvr8U3S0ncf1y+bT3qB1MpJah/VJUplVvUZV5sS4RprZPo11q4dfvnh81q3uYVa7HzCS6sP6JKnMqlyjbIKBi2bOYFV3FyuXTOyqEyuXzOOqni4unDmjTpFJanXWJ0llVuUaZRNcuOSCDjbccMW4k7hyyTw23HAFXW/oqHNkklqd9UlSmVW1RsUkXoihbnp7e3Pbtm0Nmfv5I/08uPsA67fson/w1FnHd7Sdx7rVPVzV0+UHjKSGsj5JKrMy1qiIeCwze0fcZxN8upeOHefowEk2P76fux/ZO+J9sRfM6eSWFQu5fvl8Zs2Y5leMkiaF9UlSmZWtRtkEj1PfwCCHjg2SWbuPdf/gSTrapjG7fToRMG92u2dZS2oK65OkMitLjRqtCfa2QaPobG/j0va2ZochSaexPkkqsyrUKE+MkyRJUsuxCZYkSVLLsQmWJElSy7EJliRJUsuxCZYkSVLLsQmWJElSy7EJliRJUsuxCZYkSVLLqeQd4yLiIPDDJrz1xcCPm/C+aizzOnWZ26nL3E5N5nXqalZufyIz5420o5JNcLNExLYz3XpP1WVepy5zO3WZ26nJvE5dZcytyyEkSZLUcmyCJUmS1HJsgs/NF5sdgBrCvE5d5nbqMrdTk3mdukqXW9cES5IkqeV4JFiSJEktxyZYkiRJLccmeJiI+EpEvBART5xhf0TEX0XEnojYERHvmOwYde7GkNdfLPK5MyK+GxHLJjtGjc/Zcjtk3JURcSIiPjhZsWlixpLbiHhvRGyPiCcj4tuTGZ/Gbww1+YKI+NeIeLzI7ccnO0adu4hYEBFbI2JXkbfbRhhTmj7KJvh0G4FrRtl/LbC4+PkE8DeTEJMmbiOj5/UZ4OczcymwnhIu4NcZbWT03BIR04A7gAcmIyDVzUZGyW1EXAh8Hrg+M98OfGiS4tLEbWT0v9tPArsycxnwXuDPI2LGJMSliTkB/G5m9gDvBj4ZET3DxpSmj7IJHiYzvwMcHmXIGuDvsuZh4MKIeNPkRKfxOlteM/O7mfli8fRh4NJJCUwTNoa/WYDfBP4JeKHxEalexpDbW4BNmbm3GG9+K2IMuU3g/IgIYHYx9sRkxKbxy8wfZeb3i8evALuB+cOGlaaPsgk+d/OBfUOeP8vpCVa13Qr8e7ODUH1ExHzgA/itzVT0NuCiiPhWRDwWER9tdkCqm78GuoHngJ3AbZl5qrkh6VxExCLgp4DvDdtVmj5qejPeVCqriFhJrQl+T7NjUd38JfAHmXmqdlBJU8h04J3AKqATeCgiHs7MHzQ3LNXB+4HtwC8AbwX+IyL+OzNfbm5YGouImE3t27ffLnPObILP3X5gwZDnlxbbVHERcQXwZeDazDzU7HhUN73A14oG+GLguog4kZn/0tywVAfPAocy8yhwNCK+AywDbIKr7+PAhqzdzGBPRDwDLAEeaW5YOpuIaKPWAP9DZm4aYUhp+iiXQ5y7zcBHi7Mb3w0cycwfNTsoTUxELAQ2AR/xKNLUkplvycxFmbkI+Drw6zbAU8Z9wHsiYnpEzATeRW0NoqpvL7Uj/EREF/CTwNNNjUhnVazhvgvYnZl/cYZhpemjPBI8TETcQ+1M1Isj4lngU0AbQGZ+AbgfuA7YAxyj9r9VldwY8no7MBf4fHHE8ERm9jYnWp2LMeRWFXW23Gbm7oj4BrADOAV8OTNHvVSeymEMf7frgY0RsRMIakuaftykcDV2PwN8BNgZEduLbX8ELITy9VHeNlmSJEktx+UQkiRJajk2wZIkSWo5NsGSJElqOTbBkiRJajk2wZIkSWo5NsGS1GQR8WoD5lweEdcNef7HEfF79X4fSaoqm2BJmpqWU7sWpyRpBDbBklQiEfH7EfFoROyIiD8pti2KiN0R8aWIeDIiHoiIzmLflcXY7RFxZ0Q8EREzgE8DNxXbbyqm74mIb0XE0xHxW8XrZ0XEloh4vHjtTSMGJklTjE2wJJVERLwPWAysoHYk950R8XPF7sXA5zLz7cBLwI3F9r8FfjUzlwMnATLzOLW7IN6bmcsz895i7BLg/cX8n4qINuAa4LnMXJaZlwPfaPTvKUllYBMsSeXxvuLnf4DvU2taFxf7nsnM125D+hiwKCIuBM7PzIeK7XefZf4tmTlQ3H72BaAL2AlcHRF3RMTPZuaROv4+klRaNsGSVB4BfKY4ers8My/LzLuKfQNDxp0Epo9j/tPmyMwfAO+g1gz/aUTcPp7AJalqbIIlqTy+CfxKRMwGiIj5EfHGMw3OzJeAVyLiXcWmDw/Z/Qpw/tneMCLeDBzLzL8H7qTWEEvSlDeeIwmSpAbIzAcioht4KCIAXgV+iWKt7xncCnwpIk4B3wZeW86wFVgbEduBz4zy+qXAncXrB4Ffm9hvIUnVEJnZ7BgkSeMUEbMz89Xi8VrgTZl5W5PDkqTS80iwJFXb6oj4Q2r1/IfAx5objiRVg0eCJUmS1HI8MU6SJEktxyZYkiRJLccmWJIkSS3HJliSJEktxyZYkiRJLef/AXj7EPOPdFToAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Rc1X3//c+em2Z0sfCALGNbxpD4IscWrhEEQhPs2A5pbKwGSH6BlZa0LGhX0jQlLQlt6jRBq62bNKVtnvQCJQ9OWsMvBYqNTR6wXUMaAsUyMcJI5hLi+IoQyJaty9z384ckI9uypNGcMz7j836txYKZOfP1xrPWZ76zzz77GGutAAAAAD8JnO0BAAAAAMVGEwwAAADfoQkGAACA79AEAwAAwHdoggEAAOA7obM9gIm44IIL7KxZs872MAAAAOBhO3fufMdaWzPSayXZBM+aNUstLS1nexgAAADwMGPMr870GsshAAAA4Ds0wQAAAPAdmmAAAAD4Dk0wAAAAfIcmGAAAAL5DEwwAAADfoQkGAACA79AEAwAAwHdK8mYZxZLN5tTVl1ImZ3U8kVEynVVZOKiqaEihgFG8PKJgkN8RAIqPfALgZaWQUTTBI0hlcurqTWlT6yGte26v9nf1n3ZMXTymW66apVUN0xSviCgS4ssGgPvIJwBeVkoZZay1Z+UPLkRjY6N167bJXb0pbWvv0JoNu5VI58Y8PhoOqLlpgZbV1ypeEXFlTAAgkU8AvM2LGWWM2WmtbRzxNZrg97zbk9Rdj7ysLe0deb93RX2t1t6wUOdXljk+LgAgnwB4mVczarQmmHNkg7p6UxP+8CRpS3uH7nrkZR3pTTk8MgB+Rz4B8LJSzSiaYA2sX9nW3jHhD2/IlvYObW3vUCoz9ikAABgP8gmAl5VyRtEEa+AXzJoNux2ptWbDbnUx2wLAIeQTAC8r5YzyfROczea0qfXQuBZwj0ciPVAvm2W2BUBhyCcAXlbqGeVqE2yM+b4x5m1jzIg/EcyAfzTGvGGMaTXGLHZzPCPp6ktp3XN7Ha257rm96upjtgVAYcgnAF5W6hnl9kzwA5I+PsrrvyFp9uA/t0v6Z5fHc5pMzo64h10h9nf1K5MrvV03AHgL+QTAy0o9o1xtgq21P5HUNcohTZJ+YAc8L+k8Y8yFbo7pVMcTGVfq9rhUF4B/kE8AvKzUM+psrwmeLmn/sMcHBp87jTHmdmNMizGmpbOz07EBJNNZx2qdVJcrsAEUiHwC4GWlnlFnuwkeN2vtvdbaRmttY01NjWN1y8JBx2oNx21KARSKfALgZaWeUWc7CQ9Kqhv2eMbgc0VTFQ2VVF0A/kE+AfCyUs+os90Eb5T024O7RFwpqdtae7iYAwgFjOriMUdr1sVjCgWMozUB+A/5BMDLSj2j3N4i7UFJz0maa4w5YIy51Rjz+8aY3x885AlJb0p6Q9J9kj7v5nhGEi+P6JarZjla85arZile4fz9rwH4C/kEwMtKPaPc3h3iJmvthdbasLV2hrX2fmvtv1hr/2XwdWut/YK19n3W2oXW2hY3xzOSYDCgVQ3TFA0781cRDQ/UCzLTAqBA5BMALyv1jDrbyyE8IV4RUXPTAkdqNTctULwi4kgtACCfAHhZKWcUTbAGrkJcVl+rFfW1BdVZUV+r5fW1XHkNwDHkEwAvK+WMIg0HxSsiWnvDwgl/iCvqa7X2hoWazCwLAIeRTwC8rFQzylhberfPbGxstC0t7iwf7upNaVt7h9Zs2K1E+r3NmqOhgCqjIfUkMkoM28Q5Gg6ouWmBltfX8gUDwFVnyqfKSFCTKyI60ptST+q9zevJJwDF5MUeyhiz01rbOOJrNMGnS2Vy6upN6dCRPpVHQ4qFg+pJZNSfzioWDqoyGlJ/OqveZEbTzytXvCLCKUYARTGUT8f704qEAwoao2OJtBLpnKLhgCZFw8paq2Qmq0nRCPkEoKi81kON1gSzY/oIMtmcstbq+b1devCFfdrf1X/aMXXxmG66YqaaFsWUyeb4kgFQFMl0Vtmc1Zb2Dj24Y5R8unymmhZNVzKdJZ8AFE0p9VDMBJ/i7WMJbWnvUPOmtpOm8s8kGg5ozar5WlFfqymToq6MCQAkqaM7oa3tHWrenEc+rZyv5fW1qq0mnwC4y4s9FMshxuntYwl99dFWbd/Tmfd7l86r0d9c30AjDMAVHccSuquAfFp7fYNqyScALvFqDzVaE8w5skGFfHiStH1Pp776aKvePpZweGQA/K6je+INsDSQT3c92qoO8gmAC0q1h6IJltSXzGhLe8eEP7wh2/d0amt7h/pSGYdGBsDvjventdWpfGrrUE8i7dDIAGCwh2orzR6KJljSkf60mje1OVLr7k1tOtLHlwwAZxxLZNS82Zl8at7cpu5+fqQDcM6R/rRjGVXsHsr3TXA6ndWGXQfHtYB7PBLpnDbuOqh0Ojv2wQAwimQq43w+vXRQSc5WAXBAqfdQvm+C3+5J6sEX9jlac/0L+/R2T9LRmgD8p7M3pQd3OJ9Pnb0pR2sC8KdS76F83wTnrEbcw64Q+7v6lSu9TTcAeIx1KZ9KcFMgAB5U6j2U75vgnoQ7pwV7kpxuBFAY8gmAl5V6Rvm+CU5k3Fl3knSpLgD/6HdpXVyCaxYAOKDUeyjfN8HRcNCVumUhd+oC8I9YxJ0ccSv3APhLqfdQvm+CK8tCJVUXgH+QTwC8rNQzyvdNcM5a1cVjjtasi8eU48oTAA5wI58AwAml3kP5vgnOZK1uWDzD0Zo3Lp6hTJYmGECh3MknAHCCWz1Utkg9FE1wLqclc2oUDTvzVxENB3TNnBplcs5sHA3Av470pV3Jp6P93NUSQOGyOetOD8VMcHFMiob1/Wf36s5r5zpS785r5+r+n/5Sk6JhR+oB8K9oOOhKPpWFfB/9ABxQFQu5klFVUdYEF0UoaPTz/Uc0/byYls2bUlCtZfOmaPp5Me06cFShoHFohAD8qioa0saXDjmaT4+3Hi7aFwyAc1soMNBDTZ0U05K5NQXVWjK3RlMnDfZQgeL0UL5vgs+LhnXTFTMlGf3hstkT/hCXzK3RHy6bLcno5itm6rwYM8EAChM0ZvCiE+fyqS4eU9DwIx1A4eLlEf3WlbP0jY271dy0QEvnTSyjls6rUXPTAn1j42799lWzFK8oc3ikIzO2BHcxaGxstC0tLY7U6jye0LH+tJ5+rVN/99Rr+taNl+qtY/369pOvKpEee11vNBzQndfO1dRJMX3l4Zf05Y/N0ZK5NZoUDaumKurIGAH4U1dvUj974x11HE86lk+1k8p09fsu0OQifckAOHdlsznt7erTa28d14ZdB3XdpdMnnFGPv3RQTYuma87UKs2KlysYdGae1hiz01rbOOJrfm+CD3f3q7s/rd/83rMnPrDrGi7Urb9+sZ55rVMPv3hgxPti18VjunHxDF0zp0b3//SXerz1sKSBD/Sxz1+t6vKwLqxmKyIAE3e4u1+ZrNWKe55xLJ+23HGNQkFDPgEoWOfxhP57z9vKZK2+9thuSYVl1F/+5gIFA9Ky+lrHJhJpgkdxoKtPD794QH+/9fWTng8GjJbNm6KVDRdq2nkxpbM5JdI5RcMBhYMBHTrar02th/Xfe95WNnfy3+Edy2frhsUzNCNe7sgYAfjTga4+PbbroP72qddOer6QfLrz2jlqunQ6+QSgYIe7+9XRndBn7nv+pJnfiWZUNBzQQ7ddqdrqqGM/1Edrgn1/dUQ6l9MjLx447flszuqptg491dYhaWDxdyQUUCqTUyY3+g+Hh188oNWLprsyXgD+kc7l9H9b9p/2fCH59NCO/Vq5cJor4wXgL9ms1dOvdZ629GGiGZVI5/TMa526vkj7mfv+wrhgwIw4VX+qTM6qL5Ud8wtGkvZ39cuhpSwAfCwYCLiST4EiXXkN4Nx2ponEU+WTUQ+/eKBo91rwfavWl8y6UzflTl0A/tGXzLhTN+VOXQD+Mt6JxHwMTCSyRVpRJNLuNKvjuSoSAEbjVo4kyScADij1iUTfN8Fl4aA7dbkjE4ACOXUr0lORTwCcUOoTib5Pwooyd64NdKsuAP+IRdz5kV7uUl0A/hJ1aSIxWqQf6r5vggNGg3dkck5dPCauOwHgBDfyqfQ2xgTgRZUu3YLdrbqn8n0TXB4J6kaHt+L41GUzVMFMC4ACVZQFdYPD+XTj4hmcqQLgiFKfSPR9E1wdDWvVpdMcW3sXDQe0smGaJsUijtQD4F/WSsvmTXE0nz46b4pK8SZJALynpqJMN10x09GaN18x07G7xY3F901wMBjQpLKQ7rx27qjHhQJG5ZGgQmP8PLnz2rmaVBYq2vYeAM5d8fKI3jqWGDOfxuvOa+fqrWMJxSvKHKkHwN/C4aCaFk139If66kXTFS7SzRY4Jyapujyiq99/gZbMrdHTr3ZKGtj7bnn9FH1i4YWafl5MyUxOiXRW0XBQZaGADh7t1+bWw9o27JZ/S+bW6Or3X6DqcmaBARQuGAxo4fRqZbL2pHyaiCVzazStOqaF06v5kQ7AMZWRoNasnK+vPba74FprVs5XVVnxlpPSBA+qKgvpjuVzJEmTomH97tWz9PRrnfrbp14dcSPounhMNyyeoc8veZ++/+xeHUukdcfyOapirR0AB4UDRsf607r9I5dI0oQa4SVza3T7Ry7R/nf7xjybBQD56Ell9cGL41o6r0bb90z8h/rSeTX64CVxHU9mNcnZZcZn5PvlEJLU3ZfStj0dSmay+ovrPqAPXhzXZ+57Xn+/9fUz3gllf1e//n7r6/rMfc/rgxfH9RfXfUDJTFbb9nSouy9V5P8DAOeibDano4mMJsXC+sHP9upTl9Vpzar60049nmm5VjQc0JpV9frUZXX6wc/2alIsrO5ERtksN8sAULh0OqsNuw7qpvue192rF2jpvJoJ1Vk6r0Z3r16gm+59Xht3HVTapf2HT+X7actsNqdjyYz+Yevr+ufPXqa/3Nymre1vj/v9iXROX3tst5bXT9HtH7lE/7D1dV39/hrFszkFi7SmBcC5qTuR1qaXDunen7yp+25p1L0/eVMfmV2jLXdco5cPHFUgYHRBZdlpy7Xe6Ukql7NaOOM8bWnr0H/u3K/bP3KJblvXot+75hJ99sqLWBcMoGCdvUk9+MI+dfakdP0/Pav1t12p5fNq1by5bVw3vIiGA1qzcr6uuDiu6//pWXX2pLT+hX1qWjRN084rd338vm+Ch75k/vKTC/Wvz7ypbXvG3wAPt7X9bVkr/eUnF2pz6yG+ZAAUrC+V1cMvHlBvKqsvPfhzrb/tSh080q+u3pR+8U6vftSy/4zLtT7dWKfpk8t1yQUV+vDsC3Tzfc+rN5XVf+48oOsXz1C84iz8DwE4p+SsTmRQZ09KK+75idasrNeWO67RptZDWv/CPu3v6lcoYBQJBZTK5JTJWdXFY7r5ipla1TBNT73yllbc85MTNfd39StXpA1sfN8E96Wy6upLqas3PeEGeMi2PW9reX2t3ulNqS+V5UsGQEGGvmAqIkF99+bF6jye1C/e6dG3/+PVUWdZ9nf16ztPvabvbX9Dd147V5FQQN+9ebFufWBHUb9gAJzbjicypz3XvLld92x7Xd//7cu0qmGajJGO92fUn84qFg6qKhaStdKho336jX/8H/WMUGOkum7wfROcs9JNV8zUb37vWUfqfXPTK3rs81fzJQOgYD2JtCTpO59epFg4qHu2vpbXhXGJdE7Nm9q1ZG6N7lg+R9/59CL9/r/vVG+yOF8wAM5t/SOs3f36qnqtmD9Vj790SA8+3HrGs1U3XT5TP/7DD2tL21u6e1P7Sa8nirQm2PeLVm3O6plXO8e1dmU8EumcfvJ6J5vRAyhYMpPT6kunqS4ey7sBHu7pVzt1z9bXVBeP6bqGC5XMFOcLBsC5LRZ+bzuzmsqIttzxEZWFglpxzzP61pMj764lDZyt+taTr2rFPc+oLBTUljs+oprK97aXjYaLs02a75tgY6R//99fOVrzh8//SmxCBKBQsXBQf/jR9+n5N98taI9gaaARfv7Nd/WHy96vaIjbugMoXOXgtrA1lRE9+vmr9Vc/btfXHts97onFoc0F/urH7Xr081efaIQri7TdLE2wMWf8pTJR+7v6ZQxtMIDCxCvDkgno20++6ki9bz/5qowJKF4RdqQeAH8zZmBpw/rbrtTXN+6e8D7B2/d06usbd2v9bVeqLh5TsVoo3zfBbq2N602x5g5A4Ta3HnJ0udYTLx9ypBYARIJG93x6kV74ZVdBN8qQBhrhF37ZpXs+vUiRIm0x6/smeKRF3U4o1qJuAOeuVMbq4RcPOFrzP3ceUCrLNQsACtdxLKkLq2Nq3tzmSL3mzW26sDqmt48nHak3Ft83wWUhd/4KivUrBsC5K2etK8u1cly4C8ABtZPK9LjDZ6s2tR5STVVk7IMd4PtOrSrqzto4t+oC8I/epDtnlNyqC8BfUlmr/3B4c4F//99fKV2ks1W+b4KHFnU7qZiLugGcu5IuLatKZpyZtQEAN85WFYvvm+BIyOiGxTMcrXnj4hkshwBQMLf2yoy6tAwMgL+4dWe3ke4i5wbfJ+HR3oyWzKlRNOzMX0U0HNA1c2p0tD/tSD0A/lVe5k4T7FZdAP7i1tmqRJHOVvm+CU5ksvr+s3t157VzHal357Vzdf9Pf8npRgAFy+asK8u1stzXHYADyly68U4ZW6QVRyQY0MaXDmnqpJiWzK0pqNaSuTWaOimmx1sPKxxgUTCAwoQC7izXCpFPABxQ6merfN8EVwzemu8rD7+k2z9yyYQb4SVza3T7Ry7RVx5+6aS6ADBxxpXlWuLG7gAc4sbZqmLxfROcswOnG3tTWd22rkWfuqxOa1bVj/tLJxoOaM2qen3qsjrdtq5Fvams6uIx9uEE4Ij/2nXQ0eVaj+466EgtAIhFAq6crYq5dFHwqXzfBKezuRMfYG8qqy+sf1G79h3VQ7ddqTuWzz7jL5K6eEx3LJ+th267Urv2HdUX1r+o3tTAAvEbF89QOsuaYACFyeWsJpdHHF2udX55hB/pAByRTFstmzfF0bNVH503pWjXVfn+nH0qk9OSOTX6l2d+ceKOJ4+3HtYTu9/SsnlT9Ccfm6tp58WUzuaUSOcUDQcUDgZ06Gi/NrUe1j/+9xsnXWQydLoxxYVxAArU1ZfSkjk1unXdDn335sWSpKdf7cy7ztByrS+uf1H333K5jvSldNH5FU4PF4DPWGu1/0if7rx2rpo3tRdc785r52r/kT5VlxfnhmO+b4Iro2H97ZOvnvYBZnNWT7V16Km2DkkDF6hEQgGlMjllRrmyemh3iDs/Ps/1sQM4t8XCQf3T07/Q55e+X7eta9G3brxUH559gb795Kvjuk1pNBzQndfO1dRJMd22rkVf/tgc3f/TX+oLS99fhNEDONd19aU1rTomI6Mlc2sm9CN9yJK5NZpWHdOF1VEd6U1rZtzBgZ6B75dDBIz08/1HxjzdmMlZ9aWyozbAQ6cbdx04Ki6+BlCoirLQid1rLr84XtByrcsvjp/YvYYLdwE4IRoO6PvP7lVnT8KRzQU6exK6/6e/VJlDyyvG4vskjISMblw8Q195+CXdd0ujpMJON962rkW/d80l3DEOQMGMBhra4fk0keVaw/OpLh5jbwgAjiiPDPxQv/YDU/WDn+3Vpy6rm/DZqh/8bK+uu3S6Hm89XLSz6b5vglNpq5UN0/TPz/zCkdONWWv1iYXTWBMMoGDpbE6f/eBF+usf7zktn8azXCsaDujPPjHvRD71prL60pUXKc3NMgA4IJvLnfRD/d6fvKmqspAeuu1KPfNapx5+8YD2d/Wf9r66eEw3Lp6ha+bU6P6f/lLHk++c9EM9V6SMMrYErxJubGy0LS0tjtR6+cBRxcIBPfP6OyfWBF/XcKFu/fWL8/oAH289LElas6peH5l9gZIZqwXTqx0ZIwB/eq3juHLW6je/9+yJH+WF5FM0HNBjn79agYDRnNqqov6/ADj3HOjq08MvHtDfb31dFZGgvnXjpXrrWL/+bstruvp9F2hlw4Wjnq362S/e0ZdXzNHUSQONdG8qqzuWz9b1i2eoLl7uyBiNMTuttY0jvub3Jvi1juP6f/77Df3eNZfo20++emIpRDBgtGzelDE/wP/e8/aJ3SGWzK3RndfO1b88/Qt9cdlsvmQAFORwd7/++ok9uvKS8/Vn//Xyiecnkk+S9NefXKif/eId/dnKel1YXbwN6QGcmw5396ujO6HP3Pf8qD/UTz1bNdoP9Yduu1K11VHHMmq0Jtj3yyGqogPrWT6x8ELdsXyOpIE1wfnuDrFkbo3uWD5H+7v69XjrYf3Zyvqi/n8AOPeEAkY/339En1g4VcvmTdG2PW9LmtjuNcvmTdHkirB2HTjKbZMBOCIUMCdu6DN0Nr2QbWaHbujzxSLtYOP7JjgUMKqLx/THP9ql+z93uW7/8CUjrgnO5KwygzfDGG5oTXD91EnqT2f1xz/apbp4jC8ZAAWLl0d0y1Wz9Mc/ekn3f+5ySTrRCA93pnwasmzeFN32kUt06wM7dMeKOYpXlLk2ZgD+ES+PqG5y+YkdtobOpk/kh/rQDlvWqmgZ5fstDIa+ZHpTWd36wA4d6UtrZrxcD91+1fi2ILr9Ks2Ml+tIX1q3PrBDvamsbrlqFl8yAAoWDAa0qmGastbq1gd26PrFM3T36g/kdVv3u1d/QNcvnqFbH9ihrLVa1TBNQX6kA3DAUEZ9fcPLo26RNtY2s0M72Hx9w8tFzSjfrwmWpLe6E1ryt9tPXs/y4Yt1oKtPoWBA51eWnTaV/25PUplsTjPi5br/f05ez/L0nyzV1OqoY+MD4F+pTE4bdh3UnQ+3ShrKp0v03C/e0foX9p3xwribr5ipq953ge7/nzdP5NO3b2xQ06LpioR8P/8BwCFDGfWNja+cuDBuIjtsfeXhl/SN1R9wPKNYEzyGeEVEzU0LTnzJGGMkK2VzUig4cIyRFDTmpP01s1aSHTx+UHPTAsUrIkUbO4BzWyQU0LL6Wq2or9WW9o7BfLKaVh3T1z5Rf+JHejKdU9mwH+nJTE6y9kQ+raiv1fL6WhpgAI4ayqinXunQF9a/qOsaLsx7i7THW9vPSkYxEzyoqzelrz+2W7+x8MIRf8WMtg/n0K+YH798WM2/uUCTaYIBOOzdnqRe6ziutsPH8s6n+RdO0pzaKp1fyTItAO54tyepux55WVvaO/LewWZFfa3W3rDQlYw6q1ukGWM+LukfJAUl/Zu1du0pr8+UtE7SeYPH3GWtfWK0mm40wZL09rGEvvpoq7bvyf+OcUvn1ehvrm/QlEksgwDgvHd7kvrqI63a2n76hXFjWV4/RX9zQwNNMABXdfWmtK29Q2s27B73D/XmpgVaXl/r2gTiWWuCjTFBSa9JWiHpgKQdkm6y1rYNO+ZeST+31v6zMWa+pCestbNGq+vWTPBXH27VlvaOCddYUV+rb93YwEwwAEeRTwBKRSqTU1dvSptaD2ndc3vPuBzicx+apZULpyleEXF1CcTZXBN8haQ3rLVvDg7kIUlNktqGHWMlTRr872pJh1we02lSmZy2tXcU9AUjSVvaO7S1vYMLTwA4hnwCUEoioYCmVkf1Ox+apaZF05TJWfUkMkpmcioLBVQZDSkUMIpXlJ31nWrcboKnS9o/7PEBSR885ZhvSHrKGPNFSRWSlo9UyBhzu6TbJWnmzJmODrKrN6U1G3Y7UmvNht368OwadocA4AjyCUApCgYDqqkazJrqszuWM/HCdMBNkh6w1s6Q9AlJPzTGnDYua+291tpGa21jTc3I+9BNRDab06bWQ+PaymM8EumBetmsM/UA+Bf5BADucbsJPiipbtjjGYPPDXerpB9JkrX2OUlRSRe4PK4TuvpSWvfcXkdrrntur7r6Uo7WBOA/5BMAuMftJniHpNnGmIuNMRFJn5G08ZRj9klaJknGmHoNNMH5b88wQZmcHXHRdiH2d/Wf8a4oADBe5BMAuMfVJtham5H0B5KelNQu6UfW2leMMXcbY1YPHvbHkm4zxrwk6UFJn7NF3Lz4eCLjSt0el+oC8A/yCQDc4/od4wb3/H3ilOe+Puy/2yRd7fY4ziSZzrpTN8OaOwCFIZ8AwD1euDDurCoLB12pyxZEAApFPgGAe3yfhFVRdybD3aoLwD/IJwBwj++b4FDAqC4ec7RmXTym0FneABpA6SOfAMA9vm+C4+UR3XLVLEdr3nLVLMUryhytCcB/yCcAcI/vm+BgMKBVDdMUDTvzVxEND9Q727cCBFD6yCcAcI/vm2BJildE1Ny0wJFazU0LFK+IOFILAMgnAHAHTbAGrpReVl+rFfW1BdVZUV+r5fW1XHkNwDHkEwC4gzQcFK+IaO0NCyf8RbOivlZrb1ioycyyAHAY+QQAzjNFvDmbYxobG21LS4srtbt6U9rW3qE1G3YrkX5vQ/nKSFCTKyI60ptST+q9Deyj4YCamxZoeX0tXzAAXEU+AUB+jDE7rbWNI75GE3y6VCanrt6UjvenFQkHFDRGxxJpJdI5RcMBTYqGlbVWyUxWk6IRxSsinGIEUBTkE4BSkExl1NmbkiQd78+oP51VLBxUVWxgn/KaiojKIu7vWT5aE8yO6SNIprPK5qy2tHfowR37tL+r/7Rj6uIx3XT5TDUtmq5kOsuXDICiIJ8AeNnx/rSOJTLasOvguDJqUjSkqlj4LIyUmeDTdHQntLW9Q82b20463Xgm0XBAa1bO1/L6WtVWR10ZEwBI5BMAb/NiRrEcYpw6jiV016Ot2r6nM+/3Lp1Xo7XXN6h2El80AJxHPgHwMq9m1GhNMOfIBnV0T/zDk6Ttezp116Ot6jiWcHhkAPyOfALgZaWaUTTBGli/srW9Y8If3pDtezq1ta1DPYm0QyMD4HfkEwAvK+WMogmWdCyRUfPmNkdqNW9uU3d/xpFaAEA+AfCyUs4o3zfBydTAFYzjWcA9Hol0ThtfOqhkii8aAIUhnwB4WalnlO+b4M7elB7csc/Rmutf2HdibzwAmCjyCYCXlXpG+b4JtlYj7mFXiP1d/SrBTTcAeFqEfDkAACAASURBVAz5BMDLSj2jfN8E9yTcmXLvSXK6EUBhyCcAXlbqGeX7Jrg/nXWlbsKlugD8g3wC4GWlnlG+b4Jj4aArdaMhd+oC8A/yCYCXlXpG+b4JroyGSqouAP8gnwB4WalnlO+bYGOkunjM0Zp18ZiMcbQkAB8inwB4nRsZVSy+b4JrKiK66fKZjta8+YqZmlJV5mhNAP5DPgHwslg44EpGubXM4lS+b4LLIiE1LZquaNiZv4poOKDVl05XhDV3AApEPgHwsq6+tCsZ1dXHPsFFMyka0pqV8x2ptWblfFXHWG8HwBnkEwCvqoqG1H6429GMajvcrSrWBBdPVSys5fW1WjqvpqA6S+fVaPn8WlVGww6NDIDfkU8AvCoUMPrmpjYtmVvjSEYtmVujuze1KRQozoULNMGDaqujWnt9w4Q/xKXzarT2+gbVToo6PDIAfkc+AfCieHlEt1w1Szff97z++pOFZdRff7JBN9/3vG65apbiFcW5bsHYErx/ZmNjo21paXGldkd3QlvbO9S8uU2JdG7M46PhgNasnK/l82v5ggHgKvIJgNe81Z3Qkr/drtqqMq2/7Uo9/Wpn3hm1ZG6Nbr7veXUcT+rpP1mqqdXO5ZUxZqe1tnHE12iCT9eTSKu7P6ONLx3U+hf2jXhf7Lp4TDdfMVOrF01XdTTEKUYARUE+AfCSVCanDbsO6s6HWyVJ9/32ZZp/YfX4MurS6Wo73K3bfrBTkvTtGxvUtGi6IiHnFirQBE9QMpVRZ29K1g7cxzqRzioaDqqyLCRjpClVZVxlDeCsIJ8AeEVXb0pffbhVW9o7JEmxSFDfvmGhFsw4T0FjTsuorLXafeCo7nzkZfWnBm6RvKK+Vt+6sUGTKyKOjo0mGAAAAK55tyepux55+UQjPFxlJKjJFREd6U2pZ7DpHW5Ffa3W3rBQ51c6vxZ4tCaYvXIAAABQkPMry/Q3NzboY+0dWrNh90lrgntSWfWkTl8WEQ0H1Ny0QMvrax2fAR4PmmAAAAAULF4RUdOi6frw7Bptaj2kdc/tPeOa4M99aJZWLpymeEXE0TXA+aAJBgAAgCMioYCmVkf1Ox+apaZF05TJWfUkMkpmcioLBVQZDSkUMIpXlClYpP2Az4QmGAAAAI4KBgOqqRrc6qz67I7lTLhZBgAAAHyHJhgAAAC+QxMMAAAA36EJBgAAgO/QBAMAAMB3aIIBAADgOzTBAAAA8B2aYAAAAPgOTTAAAAB8hyYYAAAAvkMTDAAAAN+hCQYAAIDv0AQDAADAd2iCAQAA4Ds0wQAAAPCd0NkegJdlszl19aWUyVkdT2SUTGdVFg6qKhpSKGAUL48oGOR3BIDiI58AeFkpZBRN8AhSmZy6elPa1HpI657bq/1d/acdUxeP6ZarZmlVwzTFKyKKhPiyAeA+8gmAl5VSRhlr7Vn5gwvR2NhoW1paXKnd1ZvStvYOrdmwW4l0bszjo+GAmpsWaFl9reIVEVfGBAAS+QTA27yYUcaYndbaxhFfowl+z7s9Sd31yMva0t6R93tX1Ndq7Q0LdX5lmePjAgDyCYCXeTWjRmuCOUc2qKs3NeEPT5K2tHforkde1pHelMMjA+B35BMALyvVjKIJ1sD6lW3tHRP+8IZsae/Q1vYOpTJjnwIAgPEgnwB4WSlnFE2wBn7BrNmw25FaazbsVhezLQAcQj4B8LJSzijfN8HZbE6bWg+NawH3eCTSA/WyWWZbABSGfALgZaWeUb5vgrv6Ulr33F5Ha657bq+6+phtAVAY8gmAl5V6Rvm+Cc7k7Ih72BVif1e/MrnS23UDgLeQTwC8rNQzatxNsDGmxhjza8aYBmNMpZuDKqbjiYwrdXtcqgvAP8gnAF5W6hk15h3jjDHzJf2jpFmSZkr6uaQpxphnJH3JWtvt6ghdlkxn3anLFdgACkQ+AfCyUs+o8cwEf1/SF6y175f065L2WGsvlvSspPvdHFwxlIWDrtTlNqUACkU+AfCyUs+o8fwpMWvtq5JkrX1B0sLB/75P0gdcHFtRVEXHnAz3VF0A/kE+AfCyUs+o8TTBvzDGrDHGXG2M+Y6kXZJkjAmP8/2eFgoY1cVjjtasi8cUChhHawLwH/IJgJeVekaNp4n9XUlVkv5UUkLSlwafL5d0i0vjKpp4eUS3XDXL0Zq3XDVL8Qrn738NwF/IJwBeVuoZNWYTbK09aq39irV2lbX2a9ba44PPd1trnx86zhjzXTcH6pZgMKBVDdMUDTszqR0ND9QLMtMCoEDkEwAvK/WMcnI5w9UO1iqqeEVEzU0LHKnV3LRA8YqII7UAgHwC4GWlnFElv6bXCZFQQMvqa7WivragOivqa7W8vpYrrwE4hnwC4GWlnFGk4aB4RURrb1g44Q9xRX2t1t6wUJOZZQHgMPIJgJeVakYZa525NZ0x5ufW2l9zpNgYGhsbbUtLiyu1u3pT2tbeoTUbdiuRHnuz5mg4oOamBVpeX8sXDABXkU8AvMyLGWWM2WmtbRzxtfE2wcaYhdbal0d5/XPW2gdGeP7jkv5BUlDSv1lr145wzKclfUOSlfSStfbm0cbiZhMsSalMTl29KW1qPaR1z+0d8b7YdfGYPvehWVq5cJriFRFOMQIoCvIJgJd5LaOcaoL/R1KZpAck/cd4bpdsjAlKek3SCkkHJO2QdJO1tm3YMbMl/UjSR621R4wxU6y1b49W1+0meEg2m1NXX0qZnFVPIqNkJqeyUECV0ZBCAaN4RRlXWQM4K8gnAF7mlYwarQke9y05rLUfHmxYf1fSTmPMC5L+X2vtllHedoWkN6y1bw4O5CFJTZLahh1zm6TvWWuPDP45ozbAxRQMBlRTFR14UH12xwIAw5FPALysFDIqr/lna+3rkv5c0lclXSPpH40xe4wx15/hLdMl7R/2+MDgc8PNkTTHGPOsMeb5weUTpzHG3G6MaTHGtHR2duYzbAAAAOAk426CjTENxph7JLVL+qik66y19YP/fU8BYwhJmi1piaSbJN1njDnv1IOstfdaaxuttY01NTUF/HEAAADwu3xmgr8r6UVJl1prv2CtfVGSrLWHNDA7PJKDkuqGPZ4x+NxwByRttNamrbW/1MAa4tl5jAsAAADISz5N8EpJ6621/ZJkjAkYY8olyVr7wzO8Z4ek2caYi40xEUmfkbTxlGMe08AssIwxF2hgecSbeYwLAAAAyEs+TfBWSbFhj8sHnzsja21G0h9IelIDyyh+ZK19xRhztzFm9eBhT0p61xjTJmm7pDutte/mMS4AAAAgL+PeHUJS1FrbM/TAWtszNBM8GmvtE5KeOOW5rw/7byvpy4P/AAAAAK7LZya41xizeOiBMeYySafvgAwAAAB4XD4zwX8k6T+NMYckGUlTJf0fV0YFAAAAuCifm2XsMMbMkzR38KlXrbVpd4YFAAAAuCefmWBJulzSrMH3LTbGyFr7A8dHBQAAALho3E2wMeaHkt4naZek7ODTVhJNMAAAAEpKPjPBjZLmD+7mAAAAAJSsfHaH2K2Bi+EAAACAkpbPTPAFktqMMS9ISg49aa1dfea3AAAAAN6TTxP8DbcGAQAAABRTPlukPWOMuUjSbGvt1sG7xQXdGxoAAADgjnGvCTbG3CbpYUn/OvjUdEmPuTEoAAAAwE35XBj3BUlXSzomSdba1yVNcWNQAAAAgJvyaYKT1trU0ANjTEgD+wQDAAAAJSWfJvgZY8yfSYoZY1ZI+k9Jj7szLAAAAMA9+TTBd0nqlPSypN+T9IS19muujAoAAABwUT5bpH3RWvsPku4besIY86XB5wAAAICSkc9M8C0jPPc5h8YBAAAAFM2YM8HGmJsk3SzpYmPMxmEvVUnqcmtgAAAAgFvGsxziZ5IOa+C2yd8Z9vxxSa1uDAoAAABw05hNsLX2V5J+Jekq94cDAAAAuC+fO8Zdb4x53RjTbYw5Zow5bow55ubgAAAAADfkszvEtyRdZ61td2swAAAAQDHksztEBw0wAAAAzgX5zAS3GGP+r6THJCWHnrTWPur4qAAAAAAX5dMET5LUJ+ljw56zkmiCAQAAUFLG3QRba3/HzYEAAAAAxZLP7hBzjDHbjDG7Bx83GGP+3L2hAQAAAO7I58K4+yT9qaS0JFlrWyV9xo1BAQAAAG7Kpwkut9a+cMpzGScHAwAAABRDPk3wO8aY92ngYjgZY27UwO2UAQAAgJKSz+4QX5B0r6R5xpiDkn4p6bOujAoAAABwUT67Q7wpabkxpkJSwFp73L1hAQAAAO7JZ3eILxljhvYKvscY86Ix5mNjvQ8AAADwmnzWBP+utfaYBm6Wcb6k35K01pVRAQAAAC7Kpwk2g//+hKQfWGtfGfYcAAAAUDLyuTBupzHmKUkXS/pTY0yVpJw7w/KGbDanrr6UMjmr44mMkumsysJBVUVDCgWM4uURBYP5/I4AAGeQTwC8rBQyKp8m+FZJiyS9aa3tM8acL+mcvJVyKpNTV29Km1oPad1ze7W/q/+0Y+riMd1y1SytapimeEVEkRBfNgDcRz4B8LJSyihjrR39AGPmWWv3GGMWj/S6tfZFV0Y2isbGRtvS0uJK7a7elLa1d2jNht1KpMee6I6GA2puWqBl9bWKV0RcGRMASOQTAG/zYkYZY3ZaaxtHfG0cTfC91trbjTHbR3jZWms/6sQg8+FWE/xuT1J3PfKytrR35P3eFfW1WnvDQp1fWeb4uACAfALgZV7NqNGa4DGXQ1hrbx/891KnB+YlXb2pCX94kgbe94j0rRsbNJkZFwAOIp8AeFmpZlQ++wR/avBiOBlj/twY86gx5tfcG1rxpDI5bWvvmPCHN2RLe4e2tncolTmnrxcEUETkEwAvK+WMymcl8hpr7XFjzK9LWi7pfkn/4s6wiqurN6U1G3Y7UmvNht3q6k05UgsAyCcAXlbKGZVPE5wd/PdKSfdaazdLKvnzatlsTptaD41rAfd4JNID9bJZZlsAFIZ8AuBlpZ5R+TTBB40x/yrp/0h6whhTluf7PamrL6V1z+11tOa65/aqq4/ZFgCFIZ8AeFmpZ1Q+TeynJT0p6Vpr7VFJcUl3ujKqIsrk7Ih72BVif1e/MrnRd90AgLGQTwC8rNQzatxNsLW2T9IGSb3GmJmSwpL2uDWwYjmeyLhSt8elugD8g3wC4GWlnlHjvmOcMeaLkv5CUofeu12yldTgwriKJpnOjn3QROpyBTaAApFPALys1DMqn9smf0nSXGvtu24N5mwoCwddqcttSgEUinwC4GWlnlH5/Cn7JXW7NZCzpSqaz++As18XgH+QTwC8rNQzKp8/5U1JTxtjNktKDj1prf07x0dVRKGAUV085ujC7rp4TKGAcaweAH8inwB4WalnVD4zwfskbdHA3sBVw/4pafHyiG65apajNW+5apbiFc7f/xqAv5BPALys1DMqn90hvmmt/aak70j6zrDHJS0YDGhVwzRFw86sP4mGB+oFmWkBUCDyCYCXlXpGjXvUxpgFxpifS3pF0ivGmJ3GmA+4N7TiiVdE1Ny0wJFazU0LFK8o+RvpAfAI8gmAl5VyRuXTut8r6cvW2oustRdJ+mNJ97kzrOKKhAJaVl+rFfW1BdVZUV+r5fW1XHkNwDHkEwAvK+WMyudPqrDWbh96YK19WlKF4yM6S+IVEa29YeGEP8QV9bVae8NCTWaWBYDDyCcAXlaqGWWsHd+t6Ywx/yXpRUk/HHzqs5Ius9Z+0qWxnVFjY6NtaWlxpXZXb0rb2ju0ZsNuJdJjb9YcDQfU3LRAy+tr+YIB4CryCYCXeTGjjDE7rbWNI76WRxM8WdI3Jf26Bu4U9z+SvmmtPeLUQMfLzSZYklKZnLp6U9rUekjrnts74tYfdfGYPvehWVq5cJriFRFOMQIoCvIJgJd5LaMcaYK9xO0meEg2m1NXX0qZnFVPIqNkJqeyUECV0ZBCAaN4RRlXWQM4K8gnAF7mlYwarQke980yjDFbJH3KWnt08PFkSQ9Za691ZpjeEwwGVFMVHXhQfXbHAgDDkU8AvKwUMiqf+ecLhhpgSRpcBjHF+SEBAAAA7sqnCc4ZY2YOPTDGXKSBtcEAAABASRn3cghJX5P0U2PMM5KMpA9Lut2VUQEAAAAuGncTbK39/4wxiyVdOfjUH1lr3xl63RjzAWvtK04PEAAAAHBaPjPBGmx6N53h5R9KWlzwiAAAAACXObkxG3vxAAAAoCQ42QRzkRwAAABKArcRAgAAgO842QSnHKwFAAAAuCavC+OMMQ2SZg1/n7X20cF/X3mGtwEAAACeks9tk78vqUHSK5Jyg09bSY+6MC4AAADANfnMBF9prZ3v2kgAAACAIslnTfBzxhiaYAAAAJS8fGaCf6CBRvgtSUkN7AtsrbUNrowMAAAAcEk+M8H3S/otSR+XdJ2kVYP/HpUx5uPGmFeNMW8YY+4a5bgbjDHWGNOYx5gAAACAvOUzE9xprd2YT3FjTFDS9yStkHRA0g5jzEZrbdspx1VJ+pKk/82nPgAAADAR+TTBPzfGrJf0uAaWQ0h6b4u0M7hC0hvW2jclyRjzkKQmSW2nHNcs6W8k3ZnHeAAAAIAJyWc5REwDze/HNLAMYmhJxGimS9o/7PGBwedOMMYsllRnrd08WiFjzO3GmBZjTEtnZ2cewwYAAABONu6ZYGvt7zj9hxtjApL+TtLnxvHn3yvpXklqbGy0To8FAAAA/pHPzTKikm6V9AFJ0aHnrbW/O8rbDkqqG/Z4xuBzQ6okLZD0tDFGkqZK2miMWW2tbRnv2AAAAIB85LMc4ocaaFKvlfSMBhra42O8Z4ek2caYi40xEUmfkXTi4jprbbe19gJr7Sxr7SxJz0uiAQYAAICr8mmC32+tXSOp11q7TtJKSR8c7Q3W2oykP5D0pKR2ST+y1r5ijLnbGLN6ooMGAAAACpHP7hDpwX8fNcYskPSWpCljvcla+4SkJ0557utnOHZJHuMBAAAAJiSfJvheY8xkSWs0sKShUtKIzSwAAADgZfnsDvFvg//5jKRL3BkOAAAA4L5xrwk2xtQaY+43xvx48PF8Y8yt7g0NAAAAcEc+F8Y9oIEL3KYNPn5N0h85PSAAAADAbfk0wRdYa38kKSed2Pkh68qoAAAAABfl0wT3GmPOl2QlyRhzpaRuV0YFAAAAuCif3SG+rIFdIS4xxjwrqUbSja6MCgAAAHBRPk1wm6T/ktSngTvFPaaBdcEAAABASclnOcQPJM2T9FeSvitpjgZupQwAAACUlHxmghdYa+cPe7zdGNPm9IAAAAAAt+UzE/zi4MVwkiRjzAcltTg/JAAAAMBdY84EG2Ne1sCOEGFJPzPG7Bt8fJGkPe4ODwAAAHDeeJZDrHJ9FAAAAEARjdkEW2t/VYyBAAAAAMWSz5pgAAAA4JxAEwwAAADfoQkGAACA79AEAwAAwHdoggEAAOA7NMEAAADwHZpgAAAA+A5NMAAAAHyHJhgAAAC+QxMMAAAA36EJBgAAgO/QBAMAAMB3aIIBAADgOzTBAAAA8B2aYAAAAPgOTTAAAAB8hyYYAAAAvkMTDAAAAN+hCQYAAIDv0AQDAADAd2iCAQAA4Ds0wQAAAPAdmmAAAAD4Dk0wAAAAfIcmGAAAAL5DEwwAAADfoQkGAACA79AEAwAAwHdoggEAAOA7NMEAAADwHZpgAAAA+A5NMAAAAHyHJhgAAAC+QxMMAAAA36EJBgAAgO/QBAMAAMB3aIIBAADgOzTBAAAA8B2aYAAAAPgOTTAAAAB8hyYYAAAAvkMTDAAAAN+hCQYAAIDv0AQDAADAd2iCAQAA4Ds0wQAAAPCd0NkegJclkmm905eWJB3vz6g/nVUsHFRVbOCv7YLysKJl4bM5RAA+lUxl1NmbkjRyPtVURFQWIeIBnB2lkFEk5Ai6+1LqSWa1YddBPbhjn/Z39Z92TF08ppsun6mmRdNVWRZUdXnkLIwUgN8c70/rWCIz7nyaFA2pKsaPdQDFUUoZZay1Z+UPLkRjY6NtaWlxpfZb3Qlta+9Q8+Y2JdK5MY+PhgNas3K+ltXXamp11JUxAYAkdXQntHUC+bS8vla15BMAl3kxo4wxO621jSO+RhP8no5jCd31aKu27+nM+71L59Vo7fUNqp3EFw0A55FPALzMqxk1WhPMhXGD3uqe+IcnSdv3dOquR1vVcSzh8MgA+F0H+QTAw0o1o2iCNbAGeFt7x4Q/vCHb93Rqa1uHjvWnHBoZAL873p/WVgfzqSeRdmhkAFDaGUUTLKknmVXz5jZHajVvbtPxRNaRWgBwLJFxNJ+6+zOO1AIAqbQzyvdNcCKZ1oZdB8e1gHtc9dI5bXzpoBJJZlsAFCaZyriST8kUjTCAwpV6Rvm+CX6nL60Hd+xztOb6F/ad2F8YACaqszflSj4N7d0JAIUo9YzyfRNsrUbcw64Q+7v6VYKbbgDwGPIJgJeVekb5vgnuSbgz5d6T5HQjgMKQTwC8rNQzyvdNcH/anYvYEi7VBeAf5BMALyv1jPJ9ExwLB12pGw25UxeAf5BPALys1DPK9SbYGPNxY8yrxpg3jDF3jfD6l40xbcaYVmPMNmPMRW6PabjKaKik6gLwD/IJgJeVeka52gQbY4KSvifpNyTNl3STMWb+KYf9XFKjtbZB0sOSvuXmmE4fo1QXjzlasy4ekzGOlgTgQ+QTAC8r9Yxyeyb4CklvWGvftNamJD0kqWn4Adba7dbavsGHz0ua4fKYTnJBeVg3XT7T0Zo3XzFTNZVljtYE4D81FRFX8mlKFfkEoHClnlFuN8HTJe0f9vjA4HNncqukH4/0gjHmdmNMizGmpbOzsFvzDRctC6tp0XRFw878VUTDAa2+dLrKXFonA8A/yiIhV/IpwppgAA4o9YzyzIVxxpjPSmqU9O2RXrfW3mutbbTWNtbU1Dj6Z1eWBbVm5amrNCZmzcr5qoryBQPAGZOiIUfzqTrGemAAzinljHK7CT4oqW7Y4xmDz53EGLNc0tckrbbWJl0e02mqyyNaVl+rpfMKa66XzqvR8vm1mhSLODQyAH5XFQtruYP5VBkNOzQyACjtjHK7Cd4habYx5mJjTETSZyRtHH6AMebXJP2rBhrgt10ezxlNrY5q7fUNE/4Ql86r0drrG1Q7KerwyAD4XS35BMDDSjWjjHX53nTGmE9I+ntJQUnft9b+pTHmbkkt1tqNxpitkhZKOjz4ln3W2tWj1WxsbLQtLS2ujPet7oS2tXeoeXObEuncmMdHwwGtWTlfy+fX8gUDwFUd3QltJZ8AeJQXM8oYs9Na2zjia243wW5wswmWpGP9KR1PZLXxpYNa/8I+7e/qVzQUUGU0pJ5ERolMTnXxmG6+YqZWL5quqrIgSyAAFEVPIq3u/sxJ+VQZCWpyRURHelPqSWVPyqfqaIglEACKxmsZRRM8Qf3JtN7tS0uSjvdn1J/OKhYOqmpw0fb55WHFyvhyAVB85BMAL/NKRo3WBHOZ8AiO9qXUm8xqw66DenDHwK+YU9XFY7rp8plqWjRdFWVBnVfOTDAA9x3pS6kvj3wqLwtqMvkEoEhKqYdiJvgUE10TvKy+VlOrWXMHwD3kEwAv82JGsRxinDqOJXTXo63avif/m3Fw9TUAN5FPALzMqxk1WhPsmZtlnG1vdU/8w5Ok7Xs6ddejreo4lnB4ZAD8jnwC4GWlmlE0wRpYv7KtvWPCH96Q7Xs6tbWtQ919KYdGBsDvjjicT0fJJwAOKuUeiiZYUm8yq+bNbY7Uat7cpp5k1pFaANDncD71kk8AHFTKPZTvm+D+ZFobdh0c1wLu8Uikc9r40kH1J9OO1APgX+QTAC8r9YzyfRP8bl9aD+7Y52jN9S/sO7E3HgBMFPkEwMtKPaN83wRbqxH3sCvE/q5+leCmGwA8hnwC4GWlnlG+b4J7Ehl36ibdqQvAP8gnAF5W6hnl+ya4P+3OAuyES3UB+Af5BMDLSj2jfN8Ex8JBV+pGQ+7UBeAf5BMALyv1jPJ9E1wZDZVUXQD+QT4B8LJSzyjfN8HGSHXxmKM16+IxGeNoSQA+RD4B8LJSzyjfN8Hnl4d10+UzHa158xUzVVNZ5mhNAP5DPgHwslLPKN83wbGysJoWTVc07MxfRTQc0OpLp6vMpXUyAPyDfALgZaWeUb5vgiWpoiyoNSvnO1Jrzcr5qizjCwaAM8odzqcK8gmAg0q5h6IJlnReeUTL6mu1dF5NQXWWzqvR8vm1qi6PODQyAH432eF8Oo98AuCgUu6haIIHTa2Oau31DRP+EJfOq9Ha6xtUOynq8MgA+B35BMDLSjWjjC3B+2c2NjbalpYWV2q/1Z3QtvYONW9uUyKdG/P4aDigNSvna/n8Wr5gALiKfALgZV7MKGPMTmtt44iv0QSfrrsvpZ5kVhtfOqj1L+wb8b7YdfGYbr5iplYvmq7KSJAlEACK4mhfSr155FNFJMgSCABF47UearQmmB3TRxAY3KCu8aK4ls6bomg4qN5kRol0TtFwQBVlISXSWfX0ZyT73vEA4LbgYN58dO4UfWLhhQoYo55kRol0VtFwUJVlIeWsVTKVlex7xwNAMY03o84mmuBTdHQntHWEqfxoKKDKaEg9iYwSmWHPD03l19eqtprTjQDcc6Z8qowENbkioiO9KfWksieeJ58AFNOZlkOMlVHL6ms19SxkFMshhuk4ltBdj7Zq+57OvN/LhScA3EQ+AfAyr2bUaMsh2B1iUEf3xD88Sdq+p1N3PdqqjmMJh0cGwO/IJwBe9laJZhRNsKTj/Wltbe+Y8Ic3ZPueTm1t61BPIu3QyAD4HfkEwMu6+1La5mBGHetPOTSysdEESzqWyKh5c5sjtZo3t6m7P+NILQAgnwB4WU8y62hGHU9kxz7QIb5vgpOpjDbsOjiu/ezGI5HOaeNLB5VM8UUDoDDkEwAvSyTTrmRUIlmcM1a+b4I7dVYOpAAADe9JREFUe1N6cMc+R2uuf2GfOnuLN50P4NxEPgHwsnf60q5k1Dt9NMFFYa1G3Mi5EPu7+lWCm24A8BjyCYCXlXpG+b4J7km4c1qwJ8npRgCFIZ8AeFmpZ5Tvm+D+tDsLsBMu1QXgH+QTAC8r9YzyfRMcCwddqRsNuVMXgH+QTwC8rNQzyvdNcGXUnTtHu1UXgH+QTwC8rNQzyvdNsDFSXTzmaM26eEzGOFoSgA+RTwC8rNQzyvdNcE1FRDddPtPRmjdfMVNTqsocrQnAf8gnAF52QXnYlYyqqSxORvm+CS6LhNS0aLqiYWf+KqLhgFZfOl0R1twBKBD5BMDLomVhVzKqzKW1xqfyfRMsSZOiIa1ZOd+RWmtWzld1jPV2AJxBPgHwssqyoKMZVRUt3o90mmBJVbGwltfXaum8moLqLJ1Xo+Xza1UZDTs0MgB+Rz4B8LLq8oiWOZhRk2IRh0Y2Nprg/7+9u4+t667vOP751L6+duo0bVLjMidZEA1LzUg8cAPS2EbWDtpGSkQAlXaDjVViArZ12oOWTUoZZBOpqgFCg01AISBoKYKIBoVBoQSYREvrsDzQuENRK9IGmqZp6yaxr3PtfPfHPS2W4/jxPpxzz/slRfI953d/92v/5K8/OfecexLdS9q1Y8vaeS/ihjVd2rFlrbovaa9yZQDyjv4EIM2uyGiPcmTw/pn9/f0xMDBQk7mPD5X0vcHj2r7nsErlczOOby9cpG0be3Vtbzd/YADUFP0JQJo9NVTS/SnrUbb3RUT/lPsIwec7XSpraGRMuw8c010PHZ3yvtgrlnbo5vUrtamvR0vaW3mLEUBd0J8ApNkLI2d1qjQ+6x61uNhS01MgCMHzNHp2TCfOnFVE5T7WpfK42gst6iy2ypZetrjIVdYAGoL+BCDNSqNlPTNcvmCP6uos1uVTIKYLwVwmPI1iW6uWt/EjApA+9CcAadZeLGh5Md3vQnFhHAAAAHKHEAwAAIDcIQQDAAAgdwjBAAAAyB1CMAAAAHKHEAwAAIDcIQQDAAAgdwjBAAAAyB1CMAAAAHKHEAwAAIDcIQQDAAAgdwjBAAAAyB1CMAAAAHKHEAwAAIDcIQQDAAAgdwjBAAAAyB1CMAAAAHKHEAwAAIDcIQQDAAAgd1obXUCajYyWdXK4LEk6NTKmkfK4OgotWtxR+bEtW1RQR7HQyBIB5BT9CUCaZaFHEYKn8NzwWQ2Pjuve/cd098NH9cSzI+eNWbG0QzddvVKb+3q0qNiiyxa1NaBSAHlDfwKQZlnqUY6IhrzwQvT398fAwEBN5n5qqKT7B49r+57DKpXPzTi+vXCRtm3s1TVXdeuKJe01qQkAJPoTgHRLY4+yvS8i+qfcRwj+teMvlLR110HtffTEnJ+7YU2XdmxZq+5L+EMDoProTwDSLK09aroQzIVxiaeG5r94krT30RPauuugjr9QqnJlAPKO/gQgzbLaowjBqpy/cv/g8Xkv3ov2PnpC3zt8XM8Pn61SZQDyjv4EIM2y3KMIwZKGR8e1fc/hqsy1fc9hnRkdr8pcAEB/ApBmWe5RuQ/BI6Nl3bv/2KxO4J6NUvmcdh84ppHRclXmA5Bf9CcAaZb1HlXzEGz7Otv/Z/uI7a1T7C/avifZ/xPbq2pd00Qnh8u6++GjVZ3zroeOvvTZeAAwX/QnAGmW9R5V0xBsu0XSJyVdL6lX0k22eycNu0XScxFxpaSPSbq9ljVNFqEpP8NuIZ54dkQZ/NANAClDfwKQZlnvUbU+Erxe0pGIeCwizkr6iqTNk8ZslvSF5OuvSbrGtmtc10tOl8ZqM+9obeYFkB/0JwBplvUeVesQ3CPpiQmPn0y2TTkmIsYkDUlaNnki2++1PWB74MSJhV2BONFIuTYnYJdqNC+A/KA/AUizrPeozFwYFxGfjoj+iOjv6uqq2rwdhZaqzTVRe2tt5gWQH/QnAGmW9R5V6xB8TNKKCY+XJ9umHGO7VdISSSdrXNdLOttbMzUvgPygPwFIs6z3qFqH4Iclrbb9Ctttkt4pafekMbsl/Wny9dslfT/qeC9nW1qxtKOqc65Y2qH6ndUMoFnRnwCkWdZ7VE1DcHKO719K+o6kQUlfjYhHbH/Y9qZk2J2Sltk+IulvJZ33MWq1tGxRQTddvbKqc968fqW6OotVnRNA/tCfAKRZ1ntUzc8JjohvRcSrIuKVEfFvybbbImJ38nUpIt4REVdGxPqIeKzWNU3UUSxoc1+P2gvV+VG0Fy7SpnU9KtboPBkA+UF/ApBmWe9RmbkwrpYWFVu0bePkjy+en20be3VxkT8wAKqD/gQgzbLcowjBki5b1KZrrurWhjUL+9SJDWu6dG1vty5d1FalygDkHf0JQJpluUcRghNXLGnXji1r572IG9Z0aceWteq+pL3KlQHIO/oTgDTLao9yHT+IoWr6+/tjYGCgJnM/NVTS/YPHtX3PYZXK52Yc3164SNs29ura3m7+wACoKfoTgDRLY4+yvS8i+qfcRwg+3/PDZ3VmdFy7DxzTXQ8dnfK+2CuWdujm9Su1qa9HF7e18BYjgLqgPwFIs7T1KELwPI2MlnVyuKyIyn2sS+VxtRda1FlslS11dRa5yhpAQ9CfAKRZWnrUdCGY2wZNo6NY0PJiodFlAMB56E8A0iwLPYoL4wAAAJA7hGAAAADkDiEYAAAAuUMIBgAAQO4QggEAAJA7hGAAAADkDiEYAAAAuUMIBgAAQO5k8o5xtk9I+kUDXvpySc804HVRW6xr82Jtmxdr25xY1+bVqLX9zYjommpHJkNwo9geuNCt95BdrGvzYm2bF2vbnFjX5pXGteV0CAAAAOQOIRgAAAC5Qwiem083ugDUBOvavFjb5sXaNifWtXmlbm05JxgAAAC5w5FgAAAA5A4hGAAAALlDCJ7E9udsP237ZxfYb9ufsH3E9kHbr613jZi7WazrHyfrecj2j22vq3eNmJ+Z1nbCuKttj9l+e71qw8LMZm1tv8n2ftuP2P5hPevD/M2iJy+x/U3bB5K1fU+9a8Tc2V5he6/tw8m63TrFmNTkKELw+XZKum6a/ddLWp38e6+k/6xDTVi4nZp+XR+X9AcR8RpJ25XCE/hxQTs1/drKdouk2yXdV4+CUDU7Nc3a2r5U0qckbYqIV0t6R53qwsLt1PS/tx+QdDgi1kl6k6R/t91Wh7qwMGOS/i4ieiW9QdIHbPdOGpOaHEUIniQifiTp2WmGbJb0xah4UNKltl9en+owXzOta0T8OCKeSx4+KGl5XQrDgs3id1aS/krS1yU9XfuKUC2zWNubJe2KiKPJeNY3I2axtiFpsW1L6kzGjtWjNsxfRPwqIn6afH1K0qCknknDUpOjCMFz1yPpiQmPn9T5C4xsu0XSfze6CFSH7R5JbxXv2jSjV0m6zPYPbO+z/e5GF4Sq+Q9JV0n6paRDkm6NiHONLQlzYXuVpN+R9JNJu1KTo1ob8aJAWtneoEoIfmOja0HVfFzSP0bEucpBJTSRVkmvk3SNpA5JD9h+MCJ+3tiyUAVvkbRf0h9KeqWk79r+n4h4obFlYTZsd6ry7tvfpHnNCMFzd0zSigmPlyfbkHG210r6rKTrI+Jko+tB1fRL+koSgC+XdIPtsYj4RmPLQhU8KelkRJyRdMb2jyStk0QIzr73SNoRlZsZHLH9uKQ1kh5qbFmYie2CKgH4yxGxa4ohqclRnA4xd7slvTu5uvENkoYi4leNLgoLY3ulpF2S3sVRpOYSEa+IiFURsUrS1yS9nwDcNO6V9EbbrbYXSXq9KucgIvuOqnKEX7a7Jf2WpMcaWhFmlJzDfaekwYj46AWGpSZHcSR4Ett3q3Il6uW2n5T0QUkFSYqI/5L0LUk3SDoiaViV/60i5WaxrrdJWibpU8kRw7GI6G9MtZiLWawtMmqmtY2IQdvflnRQ0jlJn42IaT8qD+kwi9/b7ZJ22j4kyaqc0vRMg8rF7P2upHdJOmR7f7LtnyWtlNKXo7htMgAAAHKH0yEAAACQO4RgAAAA5A4hGAAAALlDCAYAAEDuEIIBAACQO4RgAGgw26drMGef7RsmPP4X239f7dcBgKwiBANAc+pT5bM4AQBTIAQDQIrY/gfbD9s+aPtDybZVtgdtf8b2I7bvs92R7Ls6Gbvf9h22f2a7TdKHJd2YbL8xmb7X9g9sP2b7r5PnX2x7j+0DyXNvnLIwAGgyhGAASAnbb5a0WtJ6VY7kvs727ye7V0v6ZES8WtLzkt6WbP+8pL+IiD5J45IUEWdVuQviPRHRFxH3JGPXSHpLMv8HbRckXSfplxGxLiJ+W9K3a/19AkAaEIIBID3enPz7X0k/VSW0rk72PR4RL96GdJ+kVbYvlbQ4Ih5Itt81w/x7ImI0uf3s05K6JR2S9Ee2b7f9exExVMXvBwBSixAMAOlhSR9Jjt72RcSVEXFnsm90wrhxSa3zmP+8OSLi55Jeq0oY/lfbt82ncADIGkIwAKTHdyT9ue1OSbLdY/tlFxocEc9LOmX79cmmd07YfUrS4ple0PZvSBqOiC9JukOVQAwATW8+RxIAADUQEffZvkrSA7Yl6bSkP1Fyru8F3CLpM7bPSfqhpBdPZ9graavt/ZI+Ms3zXyPpjuT5ZUnvW9h3AQDZ4IhodA0AgHmy3RkRp5Ovt0p6eUTc2uCyACD1OBIMANm20fY/qdLPfyHpzxpbDgBkA0eCAQAAkDtcGAcAAIDcIQQDAAAgdwjBAAAAyB1CMAAAAHKHEAwAAIDc+X/T5hB6JdYz5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ min_lengths\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3xU5bkv8N871zWTK4FJSEIiXiAXIaEYKJVWQwnqLpco4lHoqba12HO03bv11Kq1WGvqLmJbW8+xu8q2tvop2F2vSNxiQcBWS7kVIuQCFDUhgSQQcplk1lzWvOePXAwhITPJWpMJ8/t+Pn4kM5Mnb6Sdeda7nvd5hJQSRERERESxxDTWCyAiIiIiijQmwUREREQUc5gEExEREVHMYRJMRERERDGHSTARERERxRzLWC9gJCZNmiSnTp061ssgIiIioii2b9++01JK12DPjcskeOrUqdi7d+9YL4OIiIiIopgQ4pOhnmM5BBERERHFHCbBRERERBRzmAQTERERUcxhEkxEREREMYdJMBERERHFHCbBRERERBRzmAQTERERUcxhEkxEREREMWdcDssgIiIioujl9QXQ3OkDAHR4AvD4NTisZiQ4ulNPV5wNdtvYpqFMgomIiIhIFx0eP9rVAN44UI+Ne2pR1+I57zVZKQ6snJON0lmZSFQsSHBYx2ClgJBSjskPHo2ioiLJsclERERE0aOxTcXWqkaUlVdC9QeHfb1iNWHN4nyU5KUhLUkxZE1CiH1SyqLBnuNOMBERERGNSmO7igdeq8D26uaQv0f1B/HQ64ewtboRa5cXIC3RmER4KDwYR0REREQj1tim4oFXw0uA+9te3YwHXq1AY7uq88oujEkwEREREY1Ih8ePrVWNI06Ae22vbsbWyka4Vb9OKxsek2AiIiIiGpF2NYCy8kpdYpWVV6LNE9AlViiYBBMRERFR2Ly+7i4QoRyCC4XqD2LTwXp4fZFJhA1NgoUQvxVCNAkhDg3xvBBCPCWEOCaEqBBCzDZyPURERESkj+ZOHzbuqdU15obdtX39hY1m9E7w7wDccIHn/wXAtJ5/7gLwHwavh4iIiIh0ICUG7QM8GnUtHkSqe6+hSbCU8j0ALRd4SSmAF2S3XQCShRDpRq6JiIiIiEbPrRpTtuD2XgTlECHIBFDX7+sTPY+dRwhxlxBirxBib3Pz6E4gEhEREdHoePyaIXFVg+IONNZJcMiklM9KKYuklEUul2usl0NEREQU0xxWsyFxFYsxcQca6yS4HkBWv6+n9DxGRERERFEsXjFm8LBRcQca6yR4E4Dbe7pEzAPQJqU8OcZrIiIiIqJhCAFkpTh0jZmV4oAQuoYcktEt0jYC+BuAHCHECSHEnUKI/yWE+F89L3kLwHEAxwCsB3C3keshIiIiIn244mxYOSdb15ir5mYjNcGua8yhGLrfLKVcOczzEsA9Rq6BiIiIiPRnt1lQOisTT717VJeBGYrVhGWFmbDFSE0wEREREY1TiYoFaxbn6xJrzeJ8JDkiUw8MMAkmIiIiohFKcFhRkpeGBbmj69y1INeFkvw0xCtWnVY2PCbBRERERDRiaUkK1i4vGHEivCDXhbXLC5CWqOi8sgtjEkxEREREo5KWqGDtTQV47MYZUKyhpZeK1YTHbpwxJgkwYPDBOCIiIiKKDWlJCkpnZaA4JxWbDtZjw+5a1LV4EG8zY0KcDWc7fXD7NGSlOLBqbjaWzcpEkmKJaAlEf0yCiYiIiEgX8YoV8YoVX/3cJVhamAEA6PAE4PFrcFjNSOg5+DbRaYXDPjbJby8mwURERESki7NdPnR5NbxxoB4b93TvBA+UleLAyjnZKJ2VCafdjAlO2xisFBDdrXrHl6KiIrl3717Df46mBdHS5UMgKNGhBuAPaLBazEhQLLCYBFKcNpjNLKsmIiIiOtWmYltVI8rKK0PqG6xYTVizOB8L89IwOcmYmmAhxD4pZdFgz3EneBC+QBAtnT5U1LUiCIlJ8Xb4A0EENAmLOYB2jx+n3V4IAIVZE5ASZ4PNwmSYiIiIYlNju4oHX6vA9urmkL9H9Qfx0OuHsLW6kd0hokFLpw+7PzqDU+0qEh0WTJ0UB1eCHYkOK5yKGYkOK1wJdkydFIdExYpT7Sp2f3QGLZ2+sV46ERERUcSdalPxwKvhJcD9ba9uxgOvVqCxXdV5ZRfGneB+zri9ONLYgTi7BRPjbCj/5xn8YfcnQ9azfHnuJVhckA4pJWpOtWN6WgImxkdm3jURERHRWDvb5cO2qsYRJ8C9tlc3Y2tlIxYXpCM5QjXC3Anu0dLpQ2ObB5OTHKg+1YFFT+7E2rerB02AAaCuxYO1b1dj0ZM7UX2qA5OTHGhs8+Asd4SJiIgoRnR5NZSVV+oSq6y8Ep1eTZdYoWASjO4a4DOdKpLj7PjJ5ko8+OqHIRV0A931LA+++iF+srkSyXF2nO5U4QuE9r1ERERE45XH68cbB+pDzpmGo/qD2HSwHh6vX5d4w2ESDKCtywen1YI1rx/CtuqmEcXYVt2ENa8fgtNqQVsXd4OJiIjo4namy4+Ne2p1jblhdy3OdDEJjghNCyIgJf5y9PSIE+Be26qb8NdjpxEMSmgad4OJiIjo4iUlhiwbHam6Fg8i1b035pPgNtUPKYFH3jysS7wfbToMrScuERER0cXKrQaMies1Ju5AMZ8EAxKbKxp0rWfZXNEAYPwNISEiIiIKlcdvzCE21aC4A8V8izTVH8SLuz7RNeaLuz7BkoJ0XWMShWrgpENN02A2c9IhERHpy2E1GxJXsRgTd6CYT4K1oDH1LCwJpkjrnXTYcLYLTsUCh9UMfyAIjz8Ih1XAFwiiza+h9kwXMic4OemQiIhGJV4xJo00Ku5AMZ8EdxpUd9Lpi0w9CxHQ3ee6obULSQ4bdn3Ugo17aocc8rJyTjaWJio40tiOjOTuZJiIiChcQnR/rui5mZiV4oAQuoW7oJjfBjKsnsUXuWbPFNvOuL1o9/hxsK4Ni57ciXVbai445GXdlhosenInDta1od3jxxm3N8IrJiKii8FEpxUr52TrGnPV3Gy4IjR9N+aTYLtBt4N5m5kioaXTB9UfxI83H8ZDrx8Ka8jLQ68fwo83H4bqD3LSIRERhc1ht6J0ViYUqz45j2I1YVlhJuwG1RoPFPOZ2nivZ6HY5QsE0eUL4IdvfDjime3bq5vxwzc+RKcvwEmHREQUNqfdjDWL83WJtWZxPuLskUmAASbBEBDISnHoGjMrxQGBCBW0UMzq8Piws6Z5xAlwr+3VzdhZ04x2D3eDiYgoPBOcNizMS8OCXNeo4izIdaEkPw3JzsidU4n5JNhuFVgxe4quMW+5agoUlkOQgTQtCE8giLLySl3ilZVXQg0EOemQiIjCNjlJwdrlBSNOhBfkurB2eQHSEhWdV3ZhMZ+pWc0mLCnM0LWeZXFBBmuCyVAdPj82HdB3yMubBxvQ4eOkQyIiCl9aooKf3lSAx26cEXJOpVhNeOzGGWOSAANMgtHeFUC83YL7rs/RJd591+cgwW5BaxeTCTKOW9WwcU+trjE37K6FW2VXEyIiGpnJSQoWF6Rj273FuP+GnCHLTbNSHLj/hhxs+z/FWFyQPiYJMMA+wegu3ZWYf/kkFOe4sKNm5PWVxTkuzL9iEiAlWBJMRpLSmCEvktO+iYhoFMw9TX6XzEzHkoIMAIDbG4Dq16BYzYi3d6eeUkpAfvr6scAkGMCvd/wT//vay/HdkukAMKJEuDjHhe+WTMcEhxX/b+c/cef8S/VeJlEft2rMMBa3QcNjiIjo4tfYpmJrVWP3OZN+5XrJigWpiQqa2lW09vv8UqwmrFmcj5K8NKQlRX43OOaT4DibGROcNtQ0diAvLRF3feEyfGHaJDyxpSakekvFasJ91+cgb3Ii0hMVVDW2Y6LThjhbzP+nJQOpAWPKFrwGxSUiootbY7uKB16rGLRjUSAo4fFrCATPvd3Y27N+a3XjmNQFx3ymJgEszE3FV5/fjfW3X4Wpk+IQ0CReuutz2FnThJf3nxhy/OyK2VNwbU4q2j1+TJ0UhxOtnbj3jwfwu6/NhQTvK5NxFIMaidstkevPSEREF4fGtnMTYIfNjJ+vKEB+ZhIsQqBd9UP1B6FYTUhUrAhIiUMnWnHfKx/C49OwvboZD7xaEfFEOOaT4BSnDf+obcXdC67AV57bg3UrCpEzOQ4OqxXT0xLw0JfyMDHeDr8W7PsLtJpNOOP2QkrAFW9HvN2Ef9S24vsvH8S9103HqXYV+RlJY/2r0UWst6ZqvMQlIqKLU4fHj61VjX0J8H/efhXy0pPwxoF6/PTt6iE3ElfOycbW716LqpNt+MYL+7C9uhlbKxtROisD8Yo1ImuP+e4QZrMJV2YkISPJgTmXpuCeDfvxq63H0OxWcekkJ/LSEzE5UcEEpw0T46yY4LRhcqKCvPREXDbJiWa3il9tPYZ7NuzHnEtTkJHkQH56Eswmnowj42hSGjLkJciTcUREFIZ2NYCy8kpckuLA+/cvQGO7Fwt/sQPrttQMeYC7rsWDdVtqsPAXO9DY7sX79y/AJSkOlJVXos0TubMpMb/t4/drONzQhma3iruuuQwA8GbFSbx16BQW5qZicUE6MpIdCGpBaEEJ1aTB7Q2godWDzRUn8W51E7SgRHGOC3ddcxmONXXgcEMbUuNtsEZo9jXFHk0L4ubZU/DLrUd1i7li9hQENCbBREQUGq8vgDcO1CMtwY4/fvNqPDhETfBQemuCF+S68MdvXo1bn/kAmw7W4+tXT4U9AmerYj4JPt3lQ1l5JR64IQ8vfPAxbrkqq+9g3DuVjXinshEAYDEJ2Cwm+ALBcwq7FasJP/hSLiYnOvDCBx9jaWEmysorMXPK55CepO9OHVEvvyZRPN2F3+z8py4DMxSrCddOd8HPiXFRze/X0NzpRVACHWoA3oAGu8WMBMUCkwBccXZefBNRxDR3+rBxTy1eWj0v7AS4v+3VzXjwtQpsWD0Pt63fhaWFGZjCJNh4AU2irsWDRzYdwqt3z8fDmw4h3mbBS6vnYeeR5r6DcYGgRMD36cn5voNx01147q8fwe07jUeXzcDyX7+PZrePO2pkqHjFgl/v+Cfuuz4HZZurRh3vvutz8NxfP8L9N+TqsDrSW5c3gLMePw7WnoXJJDAp3g5vINjXd7PTG8BptxdaUGJW9gRMcFjhZH03ERlMSuBHS/Kxo6Z5xAlwr+3VzdiR24yHl+RHrGd9zL9Ldvb0RX1k2Qw8Vl6JFbOzcKrdgy8/93fMv3wSvnddDjKSHecdjOsth3j2L8dx76LpmJzowGPllXhk2Qzcs2E/On3st0rGMQngH3Vncf2Vk3UZ8jI50YEDJz6GibXsUaepXUXVyXYkOW040uTGKxfoWHPz7CnInODEscYO5KUnInWMpjARUWxwqwHkpSfhWxt36BKvrLwS2+4tRrsamam7MZ8Ee/walhVm4FS7B28fbsTbhxuxtCAdf7jzs9h5pBk/e6e7sHtgOUTvTvA9xZfjub9+hDcrunfj5lyagqUF6VB97LdKxnHazfjKvKn4/ssHsf6OIgAjH/Jy1zWXYfXv9+I7JdMRb+et9GjS3K7iWJMbx5rdw/Yur2vx4Jdbj+I3O7vvEFjNJggALibCRGSQifFWvLyvXpeyPKC7RnjTwXrcPDtTl3jDEXIcngYvKiqSe/fu1SXW4YY2+ANB3LZ+1zl/iWaTOOdg3FA7wb0H43opVhNeWj0PNouJbdLIMJoWxKkOLxb+fAfMQmDdikKcaveEPeRlcqID33/5IDQp8e69xUhLUtjZJEo0t6toaFPx5NYjo5pimZGkMBEmIkPUtXRh1X/uGrILxEhkpTiw4RvzkJXi1CWeEGKflLJosOdifid4YpwNL+2pOy9x0IIypINxA6n+IHYeacatc7IMXTfFNrPZBLtZ4MfLrsT9r3yIezbsx9KC9PNq2QcaWMveewfj8ZtnwmYRTICjRJc3gNOdvgsmwMO9J/V+3/035CJOscDJKZZEZAA9E2Aj4l1IzL8r+jWJV/afGPZ1Aw/GXcjL+09g+ewpo10a0QVpQWD+FZNQkpeKrVVN57T2G66W/al3j/XdwSjJS8X8KyaBjSGiR4c3gA/+efqcBNhsEijJS8WXZqYjM9lxzsE4u8WE+lYPyitOYlu/u1M7aprxhWmTkBKXwSSYiHTnVkM7/xTqRmJfXG9kzlXF/LuiSRhzFcMNNTKS1xfAK/tPYFpaAh4tnQHgELZWNYV9B6MkLxWPls7A4YZ2HGvqiFhvRhqa36/BrQbwxJaavseWFWbg6/OnYke/cwoD9R6Mu7v4cvz2/Y+x6WADAOCJLTUonp6KFIfG9mlEpCuPf/DNwYEX7f5AEAFNwmIWsA5x0d6fOkRcvcX8p11HiFcxYceN0FUMxabe3owtbh+e/9ocPLQ4HyV5aXjkzcPnlPYMdQdDsZrwyNIrMe+yiThxtgvfeekfSIm3Raw3Iw2tVfVhc0UDVH8QcTZzX733wHMLAw08GHf9lZPx/ZcPotOnofzDBqycmwWXlb3LiUg/jkEurHsv2lW/huQ4GxxWM9xqAB6/BofVjHjFgnjFgtR4+3kX7b0US2Qu2GP+006vE40DeQ2KSwR092bs3Q382vN7sG5FIaanxePP370W//3hSbz490+G3C38yrxL8C8z0tHcoeJwQ3tfotTZ4olYb0Yamjcg8fL+E4izmbH+jiI8+97xsA7Gqf4gyjZXoTjHhfV3FGH17/fiT/tYokVE+otXPk0jey/aM5IVTIy3482DDdi4p3bIz6KVc7KxtDADX5s/9ZyL9oFxjRTzSbDdYjIkrs2guETAuXVYnT6t72DcnZ+/FAWZSVh/exEUqxld3kBfTbDTboHq19Da6cMZtxfPv/8x3qw4eW5c3sEYc0HZPcDn6VWzw06A++v9vnUrCnHPhv0I8gqHiHQmRHdC23tX0pWg4INjp1FWXjnsnat1W2rw1LtHsWZxPq6+YhKe/9ocfO35PUiJt0FEqKQ05pNgp0F9UZ021t6RcQarw+p/MK63tZ+mBeHXJHwBgU6fNmRrv16RqsOioXV6P+1dPpohKMCnB+OWFqSjy8u/WyLSlyvOhpVzsjEtLQGZyU788I0Pw5ocp/qDeOj1Q1iQ68JPSmfil7d9BseaOpCaYDdw1Z+K+SRYyu6rGL173HHThYykWAe/0zDS1n69jLozQqHz+jV8ff5U3LZ+ly7xnthSg5dWz4MaYIkWEenLbrPg5tlT4NOCYSfA/W2vbsYP8SEeLZ2Bgswk2CJUExzzn3iKzYSbda6VWzF7Chy2mP9PSwZKUKwhvS4QlOjyaSElwOHEJeOkxNmw40izrhOYdh5pRoqTf7dEpD+zCXjvSPOIE+Be26ub8V5NM8wRTJ9iPlMLaBILc1OH3FkLl2I14Yu5qfBr3AomY2WlDH/S32IScNrMsITQsy+UeGQ8IURIvcvD8fL+ExCRKrIjopihaUGogSDKyit1iVdWXgk1EIQWocb1MV8O4bSZcaC2E/ddn4OyzVWjjnff9Tn4pKUTmROYUJBxEhxmrJyTjXX9eskCIxuo0GvV3GwkOmL+LSEqjOcJTEQUOzp8fmw60KDrnas3DzZg5WezkOwwvi445j/xEmwW5GUkwXyqA8U5rlEdRCnOcSEjyYHpkxOQYI/5/7RkIIfZjNJZmXjq3aN9bz6jGaigWE1YVpg5aM9HiqxOgzp0GBWXiGKXW9WwcU+trjE37K7F0sIMJEdgLzHmyyFaVT/ibWY0u1Xcdc1lKM5xjShOcY4Ld11zGZrdKuJtZrR6/DqvlOhTdpsFikVgzeJ8xNnMeHrVbBRmJeG29bvwy61Hh9z56x2ocNv6XSjMSsLTq2YjzmbGmsX5sFtExA4j0NAM613Og3FEpLP+Pev1UhfBnvUxv10pBPDxmS7MnToRv9x6BLdclYUvTJuEJ7bUhPRhpFhNuO/6HExOdOCFDz7GdxZNxydnOnFZanwEVk+xzGYxoyQvFTMyk/Dk1iMjHqiwYfU8TE5UoHAXOCrYdTqfMBB7lxOR3jpUYzb8ItWzPuaT4E6vBqfNjFPtKu4uvgK/2HoECXYLXlo9DzuPNOPl/SeGvK28YvYUXDvdhef++hE6vKdxb8l0nGpTMTHOhk6vhknMg8lAZpNAICjx1LajoxqoYBYCj5ZeCZMp5t8OokK8QaVURsUlothl1J2rSPWsj/l3RbvFhG3VTVj/3nH8/utz8M1rLkPlyXZ8+bm/Y/7lk/C963KQkeyAXwv2Td6ymk19Qwee/ctx3LtoOvLTE+HTNNzzh/2465rLcOucrLH+1egi1+kLYEdNM7ZVN40qzrbqJnwxNxXXX5kGpy3m3xKighG9y4mI9GbUORIlQqV5Mf+JpwaCeGX/CXT6NNzx2z1Yt6IQV7ji8YdvzMPOmqa+A0YDhw707gTfs+AKtHX50NLp75t7/fL+Eyj9TOZY/2p0EfP7NXh1bktzbY4Lfr8GK8sixpTNIrBqbjYef7tm+BeH6MtzszkIhYh0F68YdOfKoLgDxXwSLPBpUXenT8M9G/ZjaUE67vzCZZiWGo+HvpSHifH283aCz7i9CPZUbr+87wTerDjZF7OuxQN25CQjuf0BQ9rS3DY3CxOYBI8ps0lgaWEGfrXtqC5/v4rVhCWFGTCF0CuaiCgcJmHMnStThK7ZY35roMt3ft3JmxUncfN/fIDXDzT0nagWAKwm0ZfcegNBvPaPBtz8Hx+ckwBfKC6RXjq9xrSl6fTyf7djLaBJHG5ow33X5+gS777rc3C4oQ2BCDWfJ6LYkRpvx8q52brGXDU3G6kJiq4xhxLzO8FDtQ3SghLvVDbincpGADivHGI4PrYjIgON97Y0NDS/JvGT8io8cEOeLr3LJyc68JPyKmz4xjwdV0lEBFitPT3rdbxztWxWJqwRmp0c8zvBoY5LDgQlunxaSAkwYFybIyJg/LeloaFJSNS1ePD9lw/q0rv8+y8f7L7AAa9wiEh/ExxWrFmSr0ush5fkY4LTqkusUMR8ppakGPMf26i4RMD4b0tDQ3Or3RcinT4Nq3+/F7dclYU1S/JCvmBXrCasWZKHW67Kwurf70VnT2mWm6UuRGQAp92CRXlpWJA7sgv2XgtyXSjJi2yXophPgi1moXv7oKwUByxmHkIh44z3tjQ0tP4lWr2HdQ/UtuKl1fPw3ZJpQ75fZaU48N2SaXhp9TwcqG3FPRv29yXAAODjBQ4RGSQ1UcHjywtGnAgvyHXh8eUFSE2MTC1wr5ivCU5x2nD756bisfIq3WLe8bmpSImz6xaPaKDx3paGhjbYBc6bFSfx1qFTWJibOmzv8qfePQZtkLItTgQkIiP1JsJ/rmpE2ebKkKfuPrwkHyV5aRFPgAEmwTCbTVhakIGfvxPamOThKFYTlhRkwMx2RGQwDlS4OA11ITLaw7q8wCEio6UmKrjpM5kozknFpgP12LC7dsipu6vmZqN0ViaSndYxG9TEd0UAKXE2lJXOwH0vV4w6VlnpDKTE2XRYFdHQzEJg5ZxsrNui30CFVXOzYRK8eBtrNrMppAucQFAiEGIrxqwUB2wclkFEEeC0WeC0WfCN+ZeidFYGghLoUANQ/RoUqxkJigUmAbgSlIh1gRgK3xUB2CwmLMxLw6K8tFHFWZSXhpK8NH7YkOHaVT+WzcoI+bDUcBSrCUsLMwzrOkGhmxhnw1fmTdU15u2fm4qJLNEiogiyWs3ISHZiygQn8tIT8ZnsCchLT8SUCU5kJDvHPAEGmAT3SYmzYe3NM0ecCC/KS8Pam2diAneBKQKcdgveOXwKaxbr05ZmzeJ8bDl0CnF23hwaa2azCcsK0/W9wClIZ4kWEdEATIL7mRhvx+MrCvDEioKw2hE9saIA61YUYGI8d1ooMoJBiec/+BifvSxFl7Y0n70sBb/728eDHqiiyEuJs+PR0it1ifVo6Qwe1CUiGgS3fQZIibOhdFYmvjDNhc0VDfj93z4esqj7q1dPxeKZGUiJs7EEgiLKYTPh1qIsrHx2F169ez4exiFsrw5/stiCXBceXTYDy3/9Pr46fyqcNnYQiAY2iwkleZNRkteIrVVNI45TkpeKRSzRIiIalJDjcE5qUVGR3Lt3r+E/R9OCaOnyIRCUcKsBeANB2C0mxCsWWEwCKXF23mKkMVF/tgstnT7c8szfkGC3YMPqedj9UQvKykNvS7NmcT7mXpqCVet3ocMbwJ+++TmkxNuQmeyMwG9AoTjj9uL+VypGlAiX5KXi8Zt5h4qIYpsQYp+UsmjQ55gEE40/fr+GrTVNaGj1oGxzd4/rNYvzcN2Vk7G5omHYtjRLCjLwzuFTKOvpj71mSR4ykh0oyUuLisMK9KmWTh+2VjXi4TcOhXyBU1Y6AyV5aTyjQEQxj0kw0UWovtWDirpW/HFvHXbUdJdC2Cwm/OsXr8AX81LhtFnQ6Q30DVSIs1vQ5Qvg3aomPPXuMfh6JpMV57hwa1EWCrKSkZnMXsHRyBcIoqXTN2yJ1h1XT8USlmgREfVhEkx0EeryBvBmRQOyUpx49r3jfYlwf0pP+Y5bDUANnL+LWJzjwl3XXIYTLV1YUpgxZg3LKTQs0SIiCs+FkmB+4hGNU067BQtyUvGjTYdwy1VZ+MK0SXhiy7mTD9VAEKrbd973KlYT7rs+B5MTHXjxbx/jx8tmMAEeB8xmE1wJPaNFk8Z2LURE4x0/9YjGsdREBT9eNgP3v1qBeJsFL62eh51HmvHy/hND3jJfMXsKrp3uwnN//Qhu32k8vrxgTGa2U/g8Xj/OdHUPNOnwBODxa3BYzUhwdL+VT3Ra4bBbx3KJRETjBpNgonEuNVHB48sL8OeqRnz5ub9j/uWT8L3rcpCR7IBfC/bVBFvNJjS0erC54iSe/ctxPPSlPJTkpTEBHgfOdvnQ5dXwxoF6bNwz9KHHlXOyUTorE067GROcPBRHRHQhrAkmukh0+QI42+XHpgP1fd0hLCYBm8UEXyCIQFD2dYconZWJZKeVJRDjwKk2FduqGsNuf7cwLw2Tk3iBQ0SxbUwPxgkhbgDwKwBmAP8ppVw74PlsAM7/2mwAACAASURBVL8HkNzzmgeklG9dKCaTYKKh+f0amju9CEqgQw1A9WtQrGYkKBaYBOBKUNgGbZxobFfxwKsVIx6EsnZ5AdK4009EMWzMkmAhhBnAEQCLAJwAsAfASillZb/XPAvgH1LK/xBC5AN4S0o59UJxmQQT0cXuVJuKB18bWQLci4kwEcW6CyXBRm8HzQVwTEp5XErpA/ASgNIBr5EAEnv+nASgweA1ERFFtbNdPmyrahxVAgwA26ubsbWyEa1d53cIISKKdUYnwZkA6vp9faLnsf4eAfA/hRAnALwF4NuDBRJC3CWE2CuE2NvcPLoPBiKiaNbl1VBWXjn8C0NQVl6JTq+mSywiootJNBQGrgTwOynlFABfAvCiEOK8dUkpn5VSFkkpi1wuV8QXSUQUCR6vH28cqA/pEFwoVH8Qmw7Ww+P16xKPiOhiYXQSXA8gq9/XU3oe6+9OAP8FAFLKvwFQAEwyeF1ERFHpTJcfG/fU6hpzw+7avv7CRETUzegkeA+AaUKIS4UQNgC3Adg04DW1ABYCgBAiD91JMOsdiCgmSYlB+wCPRl2LB+OwGyYRkaEMTYKllAEA3wKwBUAVgP+SUh4WQjwqhFjW87L/A2C1EOIggI0AvirHY/NiIiIduNWAMXG9xsQlIhqvDO+U39Pz960Bjz3c78+VAOYbvQ4iovHA4zfmEJtqUFwiovEqGg7GERFRD8VqzNuyYjEbEpeIaLxiEkxEFEUSFKshceMVjsgmIuqPSTARUZTJSnFEdTwioosBk2AioiiS5DRj5ZxsXWOumpuNZKcxO8xEROMVk2AioijS4dFQOitTt9pgxWrCssJMtKvsE0xE1B+TYCKiKJIab4cW1LBmcb4u8dYszkcgqCE1QdElHhHRxYJJMBFRFLFazTCbzfhiXioW5I5uRPyCXBcW5qXCYjbDaubbPRFRf3xXJCKKMhMcVuz/uAVrlxeMOBFekOvC2uUF2PdxCyawHpiI6DxMgomIoozTbsGcSyfi6XeP4N9vmonHbpwRco2wYjXhsRtn4Kc3zcTT7x7BnEsnwmljezQiooGYBBMRRaHURAXf+uJ0/OC1D5GXnoBt9xbj/htyhmx3lpXiwP035GDbvcXIS0/Ag699iG99cTpSE1kLTEQ0GCGlHOs1hK2oqEju3bt3rJdBRGS4xjYVW6sa8eSfj+DpL38GGclOAIDbG4Dq16BYzYi3d+/0nmztwt1/+AfuvW46FualIY0JMBHFOCHEPill0aDPMQkmIopOZ9xedKgBdHj8SI6zYXNFAzbsrkVdiwfJigWpiQqa2lW0qgFkpTiwam42lhRkoLXThwSHFQmKBRPj7WP9axARjZkLJcEsFCMiikItnT6o/iDKNldiW3UTbBYT/vWLV+CZr1wFp82CTm8Aqj8IxWpCnN2CLl8A71Y1YeEvdsIXCGJhbirKbpyBs50+TIizjfWvQ0QUdbgTTEQUZXyBIJo7VDz8xmFsq24a9DWKxYR4xQK3GoAaCA76moW5qXi09Eq4EhTYLDwCQkSx50I7wXxXJCKKMh0eH/5y9PSQCTAAqIEgTrt9QybAALCtugl/PXYa7R6fEcskIhrXWA5BRBRFNC0INSDxyJuHdYn3o02H8fkrXNC0IMwcmEFEEeL1BdDc2X0B3uEJwOPX4LCakeDoTj1dcTbYx7h9I5NgIqIo0uHzo/zDBqj+oXd4w6H6gyj/sAH/Y84UJDt4SI6IjNXh8aNdDeCNA/XYuKf7IO9AWSkOrJyTjdJZmUhULEhwjM1AH24LEBFFkS6vhhd3fTLs6ywmAafNDItJDPvaF3d9gi6vpsfyiIiG1NimYtPBBiz8xQ6s21IzaAIMAHUtHqzbUoOFv9iBTQcb0NimRnil3bgTTEQURbQgBv3gMJsESvJS8aWZ6chMdsAbCPb1CbZbTKhv9aC84iS2VTdBC5574LmuxQNNn41lIqJBNbareOC1Cmyvbg75e1R/EA+9fghbqxuxdnlBxHubMwkmIooind7AeY8tK8zA1+dPxY4jzfjZO4PvrmSlOHDz7Cm4u/hy/Pb9j7HpYMO5cX3nxyUi0kNjW/gJcH/bq5vxwKsVEU+EWQ5BRBRFPP5PyxbibGY8vWo2CrOScNv6Xfjl1qMXvL34y61Hcdv6XSjMSsLTq2Yjzmbue171sRyCiPTX4fFja1XjiBPgXturm7G1shFu1a/TyobHJJiIKIrYe/r5xtnMWH9HEf60rw5lm6tCPijXPWCjCn/aV4f1dxT1JcLsE0xERmhXAygrr9QlVll5Jdo8kbtrxXdFIqIoEq90V6mtW1GIZ987jh01I9td2VHTjGffO451KwrPiUtEpBevr7sLhJ7dbDYdrIc3QuVbTIKJiKKIgMAdV1+CU+2eESfAvXbUNONUuwe3X30JBIbvIkFEFI7mTh827qnVNeaG3bV9/YWNxiSYiCiKKFYTvjJvKp7YUqNLvCe21OD2eVPhsJqHfzERURikHLybzWjUtXgg5fCv0wOTYCKiKJJot+Dd6kZdby++W92IBJZDEJHO3GpoZQvxNjOyJjgQbwvtYtw9SJccI/BdkYgoirR7AyENywjHi7s+wU2fyYSLu8FEpKP+3Wz6c9jM+PmKAuRnJsEiBNpVP1R/EIrVhETFioCUOHSiFfe98iE8g3SuUYeIqzcmwUREUSQQlIbcXgwEI3R/kYhixmBlVv95+1XIS0/CGwfq8dO3qy84Nnnrd69F1ck2fOOFfec8r1gic8HOcggioijSEeLtxXCFetuSiChU/bvOXJLiwPv3L0BjuzesscmN7V68f/8CXJLiGDSukbgTTEQURbwG3Qb0Bjg3mYj0l5XigAnAH795NR4c4djkBbku/PGbV+PWZz5AJN+pmAQTEUURu0F1uxyWQUR6s1sEVs7JRumsjLAT4P62VzfjwdcqsGH1PGw62AAlQu9XfFckIooiRnVxYHcIItLbGbcftxZNwY6aZl3GJu+oacYtV03BaTf7BBMRxRyLSSCrX22cHrJSHLCYOCyDiPQVr1igBqSuY5O9ARmxmmAmwUREUSTFacMdn5uqa8w7PjcVKXF2XWMSESU4zIaMTU5wsDsEEVHMMZtNWFKQAcWqz9uzYu2OZ+ZOMBHpzK1qhoxNdquR6RPMJJiIKMqkxNlQVjpDl1hlpTOQEmfTJRYRUX8cm0xERLqyWUxYmJeGRXlpo4qzKC8NJXlp7AxBRIYwqv94pMYm852RiCgKpcTZsPbmmSNOhBflpWHtzTMxgbvARGSQocYmj1akxiYzCSYiilIT4+14fEUBnlhREHKNsGI14YkVBVi3ogAT43kYjoiMM9jYZD1EamwyG0cSEUWxlDgbSmdl4gvTXNhc0YDf/+3jQWvwslIc+OrVU7F4ZgZS4mwsgSAiwxnVyoxjk4mICEB3jfDkJAVfu3oqSmdlIBCUcKsBeANB2C0mxCsWWEwCKXF2doEgoogRovsCXM/DcVkpDogIvY0xCSYiGifMZhNcCUr3F0ljuxYionjFjJVzsrFuS41uMVfNzY7YhEveLyMiIiKisHV4NJTOytS1r/mywky0e9gdgoiIiIiilFsNoOpkG9Ysztcl3prF+ag82cYWaUREREQUvTx+Dd94YR+Kc1xYkOsaVawFuS4U57iw+oV9bJFGRERERNGrt0XaqvW78NObCkacCC/IdeGnNxVg1fpdANgijYiIiIiiWG8rs09aPLj1mQ+wYfU87MhtRll5JVR/cNjvV6wmrFmcj+IcF2595gN80tNlIlIt0rgTTERERERh622RBnQnwvMf347URDu23VuM+2/I6XtuoKwUB+6/IQfb7i1GaqId8x/f3pcAs0UaEREREUU1V5ztvBZpq1/YB4fNjCdunokX7/wszELA7Q1A9WtQrGbE2y3QpMShE60oeXInPL5z639Xzc1GakJkpl0yCSYiIiKisNltFpTOysRT7x49p/zB49PwrY0H+r6Ot5kxIc6Gs50+uH1DH3rrbZFmi1BNMMshiIiIiGhEEhXLsC3S3D4NdWc9F0yAge4WaUmOyO3PMgkmIiIiohFJcFhRkpemS4u0kvw0xCtWnVY2PCbBRERERDRiaUkK1i4fXYu0tcsLkJao6LyyC2MSTERERESjkpaoYO1NBXjsxhkhj1FWrCY8duOMMUmAAR6MIyIiIiIdpCUpKJ2VgeKcVGw6WI8Nu2tR19P6rL+sFAdWzc3GslmZSFIsES2B6I9JMBERERHpIl6xIl6x4utXT8XSwgxIifNapAkBpCbYI9YFYihMgomIxgmvL4DmTh8AoMMTgMevwWE1I6HnNLUrzga7jW/rRDT27DYLpkT5+1HIqxNCpAHI7PmyXkrZaMySiIiovw6PH+1qAG8cqMfGPUPfXlw5JxulszKRqFiQ4Bib24tEROOFkFJe+AVCzALwGwBJAOp7Hp4CoBXA3VLK/YaucBBFRUVy7969kf6xREQR19imYmtVI8rKK89pRj8UxWrCmsX5KMlLQ1pS5A+aEBFFEyHEPill0WDPhbIT/DsA35RS/n1A0HkAngdQOOoVEhHReRrbVTzwWgW2VzeH/D2qP4iHXj+ErdWNY3bimohoPAilh0XcwAQYAKSUuwDE6b8kIiJqbFPxwKvhJcD9ba9uxgOvVqCxXdV5ZUREF4dQkuD/FkKUCyFuFUJc3fPPrUKIcgBvG71AIqJY0+HxY2tV44gT4F7bq5uxtbIRbtWv08qIiC4ew5ZDSCn/VQjxLwBK0e9gHICnpZRvGbk4IqJY1K4GUFZeqUussvJKFOekjlkfTiKiaBVSdwgp5X8D+O8LvUYI8X+llN/WZVVERDHK6+vuAhHKIbhQqP4gNh2sx9evnsr2aURE/ej5jjhfx1hRQdOCaOnyIRCU6FAD8Ac0WC1mJCgWWEwCKU4bzGZOniYi/TR3+rBxT62uMTfsrsXSwoyo79lJRBRJfEcchC8QREunDxV1rQhCYlK8Hd5AsG/aSbvHj9NuLwSAwqwJSImzwWZhMkxEoyclBu0DPBp1LR4M0w2TiCjmMAkeoKXTh8qGNsQrVlSeascr+0+grsUDi0nAZjHBFwgiEJTISnHg5tlTkJbkwLGmDuRnJCElzjbWyyeicc6tBoyJ6zUmLhHReKVnEix0jDUmzri9ONLYgZrGDvziz0fw+Ssm4XvX5SAz2XHOTrDdYkJ9qwflFSex/i/Hce+i6TCbBKanJWBivH2sfw0iGsc8fs2QuKpBcYmIxqtwxibPlFJ+eIGX/EqH9YyZlk4f6s968Mx7x5GoWPGHOz+LHUea8bN3aoYcUXrz7Cm4u/hy/Pb9j/GXo6dxb8l0mITABO4IE9EIOaxmQ+IqFmPiEhGNV+HsBP9aCGFH9wS5P0gp2/o/KaX8nY7riihfIIimDhW/3nEMt1yVhVPtHty2ftcFT2fXtXjwy61H8Zud/8R91+dgcqIDv95xDN9dNB1xdgtrhIloROIVY6rUjIpLRDRehZypSSm/AODLALIA7BNCbBBCLDJsZRHU1uXD7o/O4Parp+JP++pQtrkq5PZEqj+Iss1V+NO+Otx+9VT8/aMzaOvyGbxiIrpYCdF9p0lPWSkOiHFfsEZEpK+wtiullEcB/BDA/QCuBfCUEKJaCLHciMVFgqYF0e4NwBWv4Nn3jmNHzcgmNO2oacaz7x2HK15BuzcATdOnxycRxRZXnA0r52TrGnPV3GykJvC8AhFRfyEnwUKIAiHEkwCqAHwRwFIpZV7Pn580aH2Ga1P9qGpoQ0ObZ8QJcK8dNc1oaPOg6mQb2jimlIhGwG6zoHRWJhSrPiVVitWEZYWZsLEmmIjoHOG8y/5fAPsBFEop75FS7gcAKWUDuneHx6Uun4ZLJsbhiS01usR7YksNLkmJQ5ePJ7GJaGQSFQvWLM7XJdaaxflIcrAemIhooHCS4MUANkgpPQAghDAJIZwAIKV80YjFRYLFLLCtuknXEaXvVjfBYmYBHhGNTILDipK8NCzIdY0qzoJcF0ry0xCvWHVaGRHRxSOcJHgrgP6nNZw9j41rqi+IV/af0DXmy/tP6JZUE1FsSktSsHZ5wYgT4QW5LqxdXoC0REXnlRERXRzCSYIVKaW794uePzv1X1JkCWHMiFLuAxPRaKUlKlh7UwEeu3FGyDXCitWEx26cwQSYiGgY4RSKdQohZvfWAgshrgIwbPYohLgB3YM0zAD+U0q5dpDX/A8AjwCQAA5KKVeFsa5R6fIaU7vLmmAi0kNakoLSWRkozknFpoP12LC7dsgBPqvmZmPZrEwkKRaWQBARDSOcJPg7AP4khGhA94jkyQBuvdA3CCHMAJ4GsAjACQB7hBCbpJSV/V4zDcCDAOZLKc8KIVLD/B1GxRswpmzBZ1BcIoo98YoV8YoVX796KpYWZkBKwO0N9I1yj7dbIASQmmBnFwgiohCFnARLKfcIIXIB5PQ8VCOlHK4P2FwAx6SUxwFACPESgFIAlf1esxrA01LKsz0/pynUNelBrzZEA9k5MY6IdGa3WTDFxk4PRER6CPfddA6AqT3fN1sIASnlCxd4fSaAun5fnwDw2QGvmQ4AQoj30V0y8YiU8u2BgYQQdwG4CwCys/VrJO+0G/OBEmdQXCIiIiIavZAzNSHEiwAuB3AAQG/BqwRwoSQ41DVMA1AMYAqA94QQM6WUrf1fJKV8FsCzAFBUVCRH+TP7BIMSWSkOXQ/HZaU4oAV1WyIRERER6Syc7coiAPlSynCyu3oAWf2+ntLzWH8nAPy9p7TiIyHEEXQnxXvC+Dkj5rCZcGtRFn72zhHdYt42JwtOG+vyiIiIiKJVOIWrh9B9GC4cewBME0JcKoSwAbgNwKYBr3kd3bvAEEJMQnd5xPEwf86I+TWJa6e7dB1Res00F3waD8YRERERRatwMr9JACqFEFuEEJt6/7nQN0gpAwC+BWALgCoA/yWlPCyEeFQIsaznZVsAnBFCVALYDuA+KeWZ8H+VkYlXzDhx1oP7rs8Z/sUhuO/6HJxo9SBRYU0wERERUbQKJ1N7ZCQ/QEr5FoC3Bjz2cL8/SwD39vwTcQk2K2ZOSQIAFOe4sKOmecSxinNcyEhyYGZmEuLs7NFJREREFK3CaZG2UwhxCYBpUsqtQggnurs5jGtmswl2swntHj/uuuYyABhRIlyc48Jd11yGujNdsJtNMJs4M47Ght+vobnTi6AEOtQAvAENdosZCYoFJgG44uywWsf9/3WJiIhGJZzuEKvR3aIsBd1dIjIB/AbAQmOWFhl+v4a9tWdx9RWT8O9vVeKWq7LwhWmT8MSWGqj+4et6FasJ912fg8mJDrz4t4/xg8X52Ft7FiU5qUw0KKK6vAGc9fhxsPYsTCaBSfF2BAJBaEEJ1aSh0xvAabcXWlBiVvYETHBYDWsRSEREFO3C+QS8B93DL/4OAFLKo5Ge7maEJrcX//5WFR5eciV+uPhK/PCNDxFvs+Cl1fOw80gzXt5/YsgRpStmT8G101147q8fwe07jZ+UzkTlyXb8+1tVKMhMQuYE5xj8RhSLmtpVVJ1sR5LThksnxcFpt8AsBNpVP1R/EIrVhETFCleCHZ1qAM0dXhxr7EBeeiJSE5WxXj4REVHEhZMEe6WUPiG6b/MLISzo7hM8rgUlUNfiwXde+gee/9ocPLzkSnxw7DS+/NzfMf/ySfjedTnISHbArwX7kgmr2YSGVg82V5zEs385jh/8Sx7mXzEJ9a1d+M5L/0CnTwPbBFOkNLerONbkRkayAqfNijcO1GPjntohL95WzslG6axMxNlMONbkhgDgYiJMREQxJpwkeKcQ4gcAHEKIRQDuBvCmMcuKHLcaAAB0+jR87fk9WLeiEHnpCXj7367B5ooG/OydGtS1eGAxCdgsJvgCQQR6BmysmpuNh5fko7lDxeGGdnz/5YPo9HXPEXF7A2P5a1GMaG5XcdqtYuqkOGyvbkJZeeUFy3jqWjxYt6UGT717FGsW52NBbipOu1UATISJiCi2hJMEPwDgTgAfAvgmgLeklOsNWVUEefxa3587fRru2bAfSwvScefnL8VnpiRjQW4qFKsZnd5A305wnN0C1a+htdOHM24vnn//Y7xZcfKcuGq/uERG6PIG0Kr6MCFOwYOvVWB7degHOlV/EA+9fggLcl346U0FaFV9iFMscNpYI0xERLEhnE+8b0spfwWgL/EVQvxbz2Pj1mBDMt6sOIm3Dp3CwtxULC5IR0ayA5oWhF+T8AcEunxaXznEu9VNg45Itlv0Gb5BNJQObwDxNmvYCXB/26ub8eBrFfj3m2aiQw0wCSYiopgRzifeHQAGJrxfHeSxcSVBGbyfrxaUeKeyEe9UNgLAeeUQI41LpAe/X4MA8G5104gT4F7bq5vxblUTrstPg9+vsasJERHFhGGTYCHESgCrAFw6YEJcAoAWoxYWKUJ0HxYa7BBRf4GgRMAXWolDVooDgm2CyUCtqg9+DSgrr9QlXll5JYpzUtGq+uCyOnSJSUREFM1C2Qn+AMBJdI9N/nm/xzsAVBixqEiKV8xYOScb67bU6BZz1dxsjk0mQ1ktJvxpb11IvaxDofqD2HSwHis/m6VLPCIiomg3bOGqlPITKeUOKeXnpJQ7+/2zX0o57lsgJNisWDYrY9Da4JFQrCYsLczg2GQyVIdHw8Y9tbrG3LC7Fh0eHugkIqLYEHLmJ4RYLoQ4KoRoE0K0CyE6hBDtRi4uEsxmExwWE9Ysztcl3prF+VAsHJtMxhuuhGes4xEREUWzcLY/1wFYJqVMklImSikTpJSJRi0skhIcNlyb48KCXNeo4izIdeHaHBcSHTadVkY0uA7Vb0hc9rcmIqJYEU4S3CilrDJsJWPIZjHBabPgJ6UzR5wIL8h14SelMxFns8DG9mhkML1qgc+Py3IIIiKKDeGc3torhPgjgNcBeHsflFK+qvuqxkBKnA1npBc/WnIlSnJPDzt5q5di7S6lmH/FJChWEybEcReYjOcwqI2ZYmF7NCIiig3hJMGJALoAXNfvMQngokiCAWBivB1CCMzKSsKfv3stNlc0YMPu2kFrJXvHJi8pyEC7x4ckh5UJMEVMvEHdR4yKS0REFG1C/sSTUn7NyIVEi5Q4G+LtFrR0+jB3asoFxyZ3qQFYzSZMS0tkCQRFVKj9rcPB/tZERBRLwukOMV0IsU0Icajn6wIhxA+NW9rYsVlMmJykYFZWMibG2WC3mGAzm+C0df/bbjFhYpwNhdkTMDlJYQJMEeeKs2HlnGxdY66am43UBLuuMYmIiKJVONnbegAPAvADgJSyAsBtRiwqWpjNJrgSFKQnOTAtLQF56UmYlpaA9CQHXAkK26DRmLHbLCidlalrf+tlhZmwsSaYiIhiRDifoE4p5e4Bj7GfEtEYUaxC1/7WDisv6oiIKHaEkwSfFkJcju7DcBBCrED3OGUiijBNC8LjD6I4J1WX/tYLclPR5Q9C04xpvUZERBRtwkmC7wHwDIBcIUQ9gO8A+N+GrIqILqjD58emAw1Ytf5v+OlNBaPqb/3Tmwqw8tm/4c2DDejwGTOEg4iIKNqEnARLKY9LKUsAuADkSik/L6X82LCVEdGQ3KqGjXtq8UmLB7c+8wF+UjoDj904I+QaYcVqwmM3zsBPSmfg1mc+wCctHmzYXQu3ymEZREQUG8LpDvFvQojeXsFPCiH2CyGuG+77iEh/UqKvPdonLR7Mf3w7UhPt2HZvMe6/IQdZKY5Bvy8rxYH7b8jBtnuLkZpox/zHt+OTnjh1LR5IGbFfgYiIaEyF0xn/61LKXwkhrgcwEcBXALwI4B1DVkZEQ+pQzy9bWP3CPjhsZjxx80y8eOdnYRYCbm8Aql+DYjUj3m6BJiUOnWhFyZM74fGdv+vr9vKsKxERxYZwkuDeo+NfAvCClPKwEGytTzQWhhrp7fFp+NbGA31fx9vMmBBnw9lOH9yDJL3nx2U5BBERxYZwkuB9Qoh3AFwK4EEhRAIAHiUnGgMOa2j9fN0+DW5f6FPlFPYJJiKiGBFOEnwngFkAjkspu4QQEwHExChlomgTr4Tzf92xj0tERBRthj0YJ4TI7fnjrJ5/XyaEmA3gEoSXRBORTkwCQx5+G6msFAdMnABOREQxIpQk9l4AdwH4+SDPSQBf1HVFRDSs1Hg7Vs7Nxrq3a3SLuWpuNlITFN3iERERRbNhk2Ap5V09/15g/HKIKBRWqxmlszLx1LajQx6SC4diNWHZrExYzdwKJiKi2BBOn+Bbeg7DQQjxQyHEq0KIzxi3NCK6kAkOK9Ysydcl1sNL8jHBadUlFhER0XgQzrbPGillhxDi8wBKADwH4DfGLIuIhuO0W7AoL23EI5N7Lch1oSQvDU4bS/yJiCh2hJME9zYQXQzgWSllOQCb/ksiolClJip4fHnBiBPhBbkuPL68AKmJrAUeD/x+DQ2tXThxtgtVJ9uxv/Ysqk6248TZLjS0dsHPPs9ERCELZ+unXgjxDIBFAB4XQtgRXhJNRAboTYT/XNWIss2VIdUIK1YTHl6Sj5K8NCbA40CXN4CzHj/eOFCPjbtr+0Zm95eV4sDKudkonZWJCQ4rnHbu7BMRXYiQUob2QiGcAG4A8KGU8qgQIh3ATCllxMcmFxUVyb1790b6xxJFtS5fAGe7/Nh0oB4bLpAorepJlJKdVpZAjANN7eqgFzgWk4DNYoIvEEQg+On7uGI1Yc2SfCziBQ4REYQQ+6SURYM+F2oS3BPIDCAN/XaQpZS1o15hmJgEEw3N79fQ3OlFUAIdagCqX4NiNSNBscAkAFeCwi4Q40RTu4r7X63A9upmmE0CJXmp+NLMdGQmO+ANBPv+bu0WE+pbPSivOIlt1U3QgpKlLkREuHASHPI2kBDi2wB+BKARn45LlgAKRr1CItKN1WpGRrJzrJdBo9Q/AV5WmIGvz5+KHUea8bN3alDX4jlvwH6LOwAAIABJREFUJzgrxYGbZ0/B3cWX47fvf4xNBxtw/6sVTISJiIYQzr3QfwOQI6U8Y9RiiIiouwb4z1WN2H28BU+vmo1T7R58+bm/4/NXTML3rstBZrIDvkAQvkAQNosJtn47wev/chz3LpqO66+cjO+/fBBbqxpx42cyWfpCRBHl8fpxpssPAOjwBODxa3BYzUhwdL8XTXRa4bCPbWvOcN4V6wC0GbUQIiLqdtbjxy/eqcH6O4rw7HvHkahY8Yc7P4vali7YLN2lLBKAJiV6C9rsFhMWz0zv2wn+i3oa6+8owrc37Me1OalMgokoIs52+dDl1boP8u65wEHeOd3nU5x2MyY4x6bZWDgH454DkAOgHIC393Ep5S+MWdrQWBNMRBcrv1/D+vc/wiUpcXjzYD2WFmbCbhGYlKBgR00TXtl/YsgPlZtnT0FxTipOd6jwBmTf99e2dOIb8y+F1Woeg9+IiGLFqTYV26oaUVYeeqeiNYvzsTAvDZOTjCnb0uVgnBDiR4M9LqX88SjWNiJMgonoYlV/9v+3d/fRcd31ncc/33m8o8dYiTyJFTkmS7CsGtlQ2SVQ2Lgx5cHBDoYutftACwvd3W4foKU1zZrd4pOuKbul2y2n2xRYoKc2dINJ3Jg2xamhtAVsB2InyA5wArXjkIkSJ5IlzfP89g+NEsXW04zu1Whm3q9zfOyZufrO7/j3m3s/uvO7vzuhu772mP5Nd6teluxQqeR05slRffT+Rxd8UPnAG9Zq3bUdCoVM302N6vvD4/qV196onhXMFQcQjNRoRnvK1zFUaktft/bvHFAygOsXfFsdolysTZKcc2M+tK0qhGAAjer8xQk9M5bVU5eySnZ4+tjR7+orj1Z+ULllbbfet/VlSo1mtLI9rqvb4urtIgQD8N+TIxl98IvVBeApQQXhuULwgtdJMrP1ZvZtSd+R9B0ze9DMfsyvRgIApFLJ6fyzE+pZkag6AEvSVx4d1seOflc9KxJ6/NkJlSo84QEAC/HsRE4PnEktKgBL0rGzwzo6lNJzEzmfWja/ShYLvUvS+51zNzjnbpD0W5L+IphmAUBzKjqn/us69I3Hnqk6AE/5yqPD+sZjz2jdqg4VS4RgAP6byBa178iQL7X2HRnSeHbpbv9eSQhudc4dm3rgnPuKpFbfWwQATawlFpaT6aP3P+pLvY/e/6icM7XEuCgOgL/S2cnbuS/keoWFyORLOnzqgtLZvC/15lNJCH7MzPaa2Zryn/8i6bGgGgYAzerI6Sd8Pah86eEnxHlgAH57ZiKvgyf8vXHwgePnnl9fOGiVhOB3SeqWdEjSFyRdU34OAOCTfNHp7m897mvN//fg4yoUicEA/OWcZlyycTHOX0xrqS5hWPDq6c65ZyX9eoBtAYCm5+SCOahwLhiAz8YyhWDqZoOpe7lKVof4spldNe3xCjO7P5hmAUBzCu6gsnQXmwBoDul8MPuVTEB1L1fJdIhrnHPPTT0onxle6X+TAKB5ZQv+zAW+XK5ACAbgr0RAd6H0IktzIW8lIbhkZqunHpjZDRLfrwGAn+r9oAKgebR5C55VuyzqXq6Sd7lD0j+Z2VclmaTXSnpvIK0CgCZV7wcVAM3DTOrtSvh6HUNvV0JmvpWb04LPBDvn/k7SKyV9XtLnJP24c+75OcHcPQ4AFi8WDqm3K+Frzd6uhGKRSr74A4D5Xd0S1a5Nq+ffsAK7N69Wd1vc15qzqWiv6Jx72jl3X/nP05e9/Jc+tgsAmtLVrTH9wqvW+FrzF29eo6tbl+agAqB5JOJR7djYIy/qzy/ZXjSk7Rt6FA9oWtjl/Dw1sEQnrwGgcYXDIW3fcJ2vB5W3DFyncIhdNAD/tcTD2rut35dae7f1qzW+dNcv+BmCuUgOAHzQGovov73Fnxlmv7/9x9QWZz4wgGCsaInp1nVJbenrXlSdLX3d2tqf1FUtMZ9aNj8miQHAMnMpW1BXa0y39i1uFcpb+1ZqRUtMowGtPQwAknRtp6f9OweqDsJb+rq1f+eAkh2ezy2bm58hOOdjLQBoSvl8UfedfkLv+/xDes/rbqw6CN/at1Lved2Net/nH9J9p59QfokWnwfQnJIdnv77Wwd05+3rFzydy4uGdOft62sSgCXJXAU3aDazAUlrNG1pNefcIf+bNbfBwUF38uTJpX5bAAjcE8+l9Y67vq7zF9NqjYX1h2/foGfGsvqDvz2jTH7+G2l40ZB+703rdHVbXL9z9ymN54rq7Uro8++9Wauu8nfVCQC43HMTOY1nizp86oIOHD834/JpvV0J7d68Wts39qg1Fg50CoSZPeicG5zptQVPFDOzT0kakPQdSVN7YidpyUMwADSqYsk9f9AYzxX1qwe+pbcMXKfPvfdV+qfvPa3Pnzw/60HlHYO9+smbrtEnv/YD/c3pHz3/2vmLaRVLXLYBIHhXtcR0VYv0SzffoLdsWCXnpLFsQZl8UV40rLZ4RGZSd1t8yVaBmE0lV0u8yjnnz+V/AIAZjWevnL/7N6d/pC898qRu7Vup3/7ptVp1VUL5YknZfEnxaEjRcEhPPJfWfad/pI8d/d6MgXc8x7xgAEsnEY/q+ni01s2YUyUh+Otm1u+cGwqsNQDQ5NKzzN0tlpz+fiilvx9KSZIiIVMsElKuUFJhAWd5MznmBAPAdJWE4M9qMgg/KSmryXWBnXNuIJCWAUATii/wzm6FklOhgmDLHeMA4MUqCcGflPQLkh7WC3OCAQA+avOCWdM3qLoAUK8q2SsOO+cOB9YSAIBCZurtSsx48Vu1ersSChl3jAOA6Sr5fuzbZnbAzHaZ2c6pP4G1DACaUEssrLe/8npfa/7Mj1+vllhtr8IGgOWmkhCc0ORc4J+W9Jbyn9uCaBQANKtOL6rbNqxa8GLz8/GiIW0bWKXOxNLdihQA6sGCp0M45345yIYAAKRwOKSOeEQfeMNa7bvvzKLrfeANa9URjygcYjoEAExXyc0yPEnvlvRjkp6/t51z7l0BtAsAmlZnS0yveek1umVtt77y6HDVdW5Z263XvPQadQZ4NyYAqFeVfN/2l5KulfQGSV+VdL2kS0E0CgCaWSwS0sp2T+/f+jLdsra7qhq3rO3W+7e+TMl2j+XRAGAGlawO8VLn3M+Y2Q7n3GfM7ICkrwXVMABoZl2tMTnn9Cuvu1GvvekaffT+R5XJz786pRcN6QNvWKv+6zrUsyKhFa2cBQaAmVQSgvPlv58zs/WSnpS00v8mAQAk6eq2uNaaqVhy+tx7b9ZXH31Kd3/r8RmXT+vtSujtr7xe/3btSo1n8uq7toMADABzqCQE32VmKyTtlXRYUpukDwXSKgCApMkzwptfcrUujufUd2277njzOl3dFle+WFImX5IXDSkaDumZsazMpGs7PHVd18EUCACYRyWrQ3yi/M+vSroxmOYAAC4Xi4R0baen7rakLk7kVCg5jWUKyhdLioZDavMiWnN1i7pa46wCAQALVMnqEElJfyBplXPuTWbWL+lm59wnA2sdAOB54XBI3e3lxXk6a9sWAKh3lXxf9mlJ90taVX78XUm/6XeDAAAAgKBVEoKvcc79taSSJDnnCpKK8/2Qmb3RzB41s++b2Z45tnubmTkzG6ygTQAAAEDFKgnB42Z2tSQnSWb2Kkkjc/2AmYUlfVzSmyT1S9pVnkZx+Xbtkn5D0jcraA8AAABQlUpC8Ps1uSrEjWb2z5I+K+nX5vmZzZK+75x7zDmXk/Q5STtm2G6fpI9IylTQHgAAAKAqlYTgIUlflHRCUkrSX2hyXvBceiSdn/b48fJzzzOzV0rqdc4dqaAtAAAAQNUqCcGfldSnyRUi/rekl2nyVspVM7OQpD+S9FsL2Pa9ZnbSzE4ODw8v5m0BAADQ5Cq5WcZ659z0+bzHzGxonp+5IKl32uPry89NaZe0XtJXzEySrpV02My2O+dOTi/knLtL0l2SNDg46CpoNwAAAPAilZwJ/lb5YjhJkpn9hKSTc2wvTU6duMnMXmJmMUk/q8l5xZIk59yIc+4a59wa59waSd+QdEUABgAAAPw075lgM3tYkytCRCX9i5mdKz++QdLZuX7WOVcws/+syfWFw5I+5Zz7jpl9WNJJ59zhuX4eAAAACMJCpkPctpg3cM59SdKXLnvuQ7Nse8ti3gsAAAC1l80VNDyekyRdShdULBUVDoXVnpiMnt2tMcVjlczK9d+87+6c+9elaAgAAADq26V0XqOZgsayeXnRsMJmcnLKFSUv5CQnFZ3TD56ZULsXVYcXUXsiWpO21jaCAwAAoCGkRjK6lMkpEYvqgTNP6eCJczp/MX3Fdr1dCe3atFo7NvYoNZrWRK6oZKe35O015+pvoYXBwUF38iTXzgEAACwHT49mlCs5HTv7lPYdGVImX5r3Z7xoSHu39WtL30rFQqZrOvwPwmb2oHNucKbXKlkdAgAAAHiRp0cyKjjpjnse1h33PLKgACxJmXxJd9zziO6452EV3GSQXkqEYAAAAFTlUjqvvJw++MXTOna2upuZHTs7rA9+8bTyzmksk/e5hbMjBAMAAKAquUJR/3DmqaoD8JRjZ4f1D2eeUiZf9Kll8yMEAwAAoGLZXEGZgtO+I/PdQHhh9h0ZUrbglM0VfKk3H0IwAAAAKpYuFnXvQxcWPAd4Ppl8SYdPXVC6uDRngwnBAAAAqNildFEHT5zzteaB4+d0KU0IBgAAwDI20zrAy6neXAjBAAAAqNilgFZyGMsyJxgAAADLlF9zga+sy3QIAAAALFOJaDiQul4kmLqXIwQDAACgYm1epK7qXo4QDAAAgIqZSb1dCV9r9nYlZOZryVkRggEAAFCx7taYdm1a7WvN3ZtXa2V73NeasyEEAwAAoGLxWEQ7NvbIi/oTJ71oSNs39CjGnGAAAAAsZx1eRHu39ftSa++2fnUmlmY+sEQIBgAAQJXaE1FtXZfUlr7uRdXZ0tetrf1JtXlRn1o2P0IwAAAAqpbs9LR/50DVQXhLX7f27xxQssPzuWVzIwQDAABgUZIdnva/dUB33r5+wXOEvWhId96+viYBWJKWbuIFAAAAGlay09OOjat0y9qVOnzqgg4cP6fzF9NXbNfbldDuzau1fWOPOr3Ikk6BmI4QDAAAAF84N/n3lrUr9eaXX6eQmcayBWXyRXnRsNriEZWcUyZXlNwL29cCIRgAAACLlhrJ6OiZlPYdGVImX3r++bZYWCtaY3p2PKexXPH5571oSHu39WvruqSSnUyHAAAAQJ1JjWa054undezs8BWvjeWKGstdOS0iky/pjnse0dGzKS6MAwAAQH1JjWS059DMAXghjp0d1p5Dp5UazfjcsrkRggEAAFCVS+m8jp5JVR2Apxw7O6yjQymNZfI+tWx+hGAAAABUZTRT0L4jQ77U2ndkSCPpgi+1FoIQDAAAgIplcwXd+9CFF10EtxiZfEmHT11QNrc0QZgQDAAAgIoNj+d08MQ5X2seOH5Ow+M5X2vOhhAMAACAijmnGW+GsRjnL6aXbO1gQjAAAAAqNpYJZtrCWJbpEAAAAFim0vni/BtVIRNQ3csRggEAAFCxRDQcSF0vEkzdyxGCAQAAULE2L5gbDwdV93KEYAAAAFTMTOrtSvhas7crITNfS86KEAwAAICKdbfGtGvTal9r7t68Wivb477WnA0hGAAAABWLxyLasbFHXtSfOOlFQ9q+oUcx5gQDAABgOevwItq7rd+XWnu39aszsTTzgSVCMAAAAKrUnohq67qktvR1L6rOlr5ube1Pqs2L+tSy+RGCAQAAULVkp6f9OweqDsJb+rq1f+eAkh2ezy2bGyEYAAAAi5Ls8LT/rQO68/b1C54j7EVDuvP29TUJwJK0dBMvAAAA0LCSnZ52bFylW9au1OFTF3Tg+Dmdv5i+YrveroR2b16t7Rt71OlFlnQKxHSE4DlkcwUNj+ckSZfSBaXzRSWiYbWXJ213t8YUj/FfiOWFcQsAqJU2L6o2L6p3vXqN3rJhlZyTxrIFZfJFedGw2uIRmUkr2+NLtgrEbDgSzuBSOq/RTEH3PnRBB0/M/lvMrk2rtWNjjzq8iNoTtfktBpjCuAUALBfxWETXL/MTLuacq3UbKjY4OOhOnjwZSO3USEZHz6S078iQMvnSvNt70ZD2buvX1nVJJTuXfj4LIDFuAQCYiZk96JwbnPE1QvALUqMZ7Tl0WsfODlf8s7W6shFg3AIAMLO5QjCrQ5SlRqoPEpJ07Oyw9hw6rdRoxueWAbNj3AIAUB1CsCbnUh49k6o6SEw5dnZYR4dSGsvkfWoZMDvGLQAA1SMESxrNFLTvyJAvtfYdGdJIuuBLLWAujFsAAKrX9CE4m5u8mn4hFxMtRCZf0uFTF5TNESgQHMYtAACL0/QheHg8p4Mnzvla88Dxc8+v0woEgXELAMDiNH0Idk4zrqe6GOcvplWHi26gjjBuAQBYnKYPwWOZYL7+HcvytTKCw7gFAGBxmj4Ep/PFQOpmAqoLSIxbAAAWq+lDcCIazH2rvRrfDxuNjXELAMDiNH0IbvOCua91UHUBiXELAMBiNX0INpN6uxK+1uztSsjM15LAizBuAQBYnKYPwd2tMe3atNrXmrs3r9bK9rivNYHpGLcAACxO04fgeCyiHRt75EX9+a/woiFt39CjGHMrESDGLQAAi9P0IViSOryI9m7r96XW3m396kwwrxLBY9wCAFA9QrCk9kRUW9cltaWve1F1tvR1a2t/Um1e1KeWAbNj3AIAUD1CcFmy09P+nQNVB4otfd3av3NAyQ7P55YBs2PcAgBQHXN1eJ/UwcFBd/LkyUBqp0YyOnompX1HhpTJl+bd3ouGtHdbv7b2JwkSqBnGLQAAVzKzB51zgzO+Rgi+0lgmr5F0QYdPXdCB4+d0/mL6im16uxLavXm1tm/sUacX4atk1NxM4zYSMsUiIeUKJRVKjnELAGgqhOAqpbN5PTORl3PSWLagTL4oLxpWWzwiM+malqi8OCECy0smm9fTE3lJ0qV0Qel8UYloWO3lC9+622KKR7kIDgDQ+OYKwRwJZzAykdNYtqh7H7qggycmz6i1xcJa0RrTs+M5jeWK6u1KaNem1dqxsUdt8bA6W2K1bjaaXK5Q0sXxnO47/YQ+8/UfzvoNxjtvXqPbBlapqzWmWITLAgAAzYkzwZd5ciSjB6qYW3nruqSu7WRuJWrj4nhOD5xJae+9jyx43O7bsV63rkuqq5Vf4AAAjYnpEAuUGs1oz6HTOnZ2uOKf5Sp71MozY1nt+cLD+vKZVMU/+/p1Se1/28t1dRt3igMANJ65QjDfhZY9OVJ9AJakY2eHtefQaaVGMz63DJjdxfFc1QFYkr58JqU9X3hYz47nfG4ZAADLGyFYk3OAHziTqjoATzl2dlhHh1IaTRMoELxcoaQHzqSqDsBTvnwmpaNnUsoV5p9GAQBAoyAESxrLFrXvyJAvtfYdGdKlTNGXWsBcLo7ntPfeR3yptffeR3SRs8EAgCbS9CE4k83r3ocuLOhiogXVy5d0+NQFZbJ5X+oBMykWS7rv9BO+jtv7Tj+hYpGzwQCA5tD0IfjpibwOnjjna80Dx889v04rEISLEzl95us/9LXmZ77+Q12c4GwwAKA5NH0Idk4zrqe6GOcvplWHi26gjhRKLpBxWygxcAEAzaHpQ/BYphBM3WwwdQFJuhTUuA2oLgAAy03Th+B0PpiL2DIB1QUkKRvQ+MqyQgQAoEk0fQhORMOB1PUiwdQFJCke0LjlNsoAgGYR+BHPzN5oZo+a2ffNbM8Mr7/fzIbM7LSZPWBmNwTdpunavEhd1QUkqT2g8RVUXQAAlptAQ7CZhSV9XNKbJPVL2mVm/Zdt9m1Jg865AUl3S/rDINt0ZRul3q6ErzV7uxIy87Uk8CKRkAUybiMhBi4AoDkEfSZ4s6TvO+cec87lJH1O0o7pGzjnjjnnJsoPvyHp+oDb9CLXtES1a9NqX2vu3rxa3W1xX2sC03W1xPTOm9f4WvOdN69RVyvjFgDQHIIOwT2Szk97/Hj5udm8W9LfzvSCmb3XzE6a2cnh4cXd3ng6Lx7Vjo098qL+/Fd40ZC2b+gJbM4mIEnhcEi3DazyddzeNrBKYc4EAwCaxLK5CsbMfl7SoKSPzvS6c+4u59ygc26wu7vb1/dui4e1d9vlszSqs3dbv9o9AjCC19Ua074d632ptW/HenW1xnypBQBAPQg6BF+Q1Dvt8fXl517EzLZKukPSdudcNuA2XaGzJaZb1yW1pW9x4XpLX7e29ifVkSBMIHixSEi3rkvq9euSi6rz+nVJbV2XZGUIAEBTCfqod0LSTWb2EjOLSfpZSYenb2Bmr5D055oMwE8F3J5ZXdvpaf/OgaqD8Ja+bu3fOaBkh+dzy4DZdbXGtP9tL686CL9+XVL73/ZyreAsMACgyZgL+P6+ZvZmSX8sKSzpU865O83sw5JOOucOm9lRSS+X9KPyj5xzzm2fq+bg4KA7efJkIO19ciSjB86ktO/IkDL5+W8c4EVD2rutX1v7kwRg1MzF8ZweOJPS3nsfWfC43bdjvbauSxKAAQANy8wedM4Nzvha0CE4CEGGYEkaTed0KVPU4VMXdOD4OZ2/mL5im96uhHZvXq3tG3vUHg8zBQI1lyuUdHE8p/tOP6HPfP2Hs47bX3r1Gm17+Sp1tcaYAgEAaGiE4Cplsnk9PZGXc9JYtqBMvigvGlZbPCIzqbstzioQWHaKxZIuTuRUKDmNZQoqlEqKhEJq8yKKhExdrXFWgQAANIW5QjC3h5pDOBRSyKSpL5enboBhJoVsGS2tAUxTKjnliyWVnFQoOaXzJSWipmLJyTmnUrGkcIhf3urR1C/mknQpXVA6X1QiGlZ7YnJXfk1LVF48WssmAoAkKZsraHg8J2nm/VV3a0zxWG1jKCF4BhPZgp5N53XvQxd0cI7pELs2r9aOjT1akYiqJc5/JWqLcdu4RiZyGssWJ/v2xBx9u2myb9viYXW2MEULwNK7lM5rNFNY8P6qw4uoPVGbX96ZDnGZp0YzOnompQ/ft/AL4z50W7+2rktqJRfGoUYYt42r2ot1b12X1LWd9C2ApZMamTwWVby4wLqkkgHtr5gTvEBPjWb0u4dO69jZyu9It6WvWx/ZOUCgwJJj3Dau1GhGexbRtyzbCGCpLNf91VwhmGmtZYsJEpJ07OywfvfQaT01mvG5ZcDsGLeN68mR6g8o0mTf7jl0Win6FkDAUnW6vyIEa3Iu5dEzqao7b8qxs8M6eialiVzBp5YBs2PcNq6Ricl1n33p26GURtM5n1oGAC92KZ3371g0lNJYJu9Ty+ZHCJb0bDqvD9835EutD983pGcnlq4D0bwYt41rLFvUviP+9O2+I0O6lCn6UgsALjeaKfi6vxpJL90JmaYPwfn85BXXC5nAvRCZfEmHH7qgfJ6DDoLDuG1cmWze/749dUGZLL/kAPBXNlcIZH+VXaJvJps+BA+PZ3Xw+Dlfax44fk7D41lfawLTMW4b19MTeR084X/fPs2ZfgA+Gx7PBbK/mlpfOGhNH4JLTjOuYbcY5y+mVaq/RTdQRxi3jcsF1Ld1uBAQgGWu3vdXTR+CL2WCOeUeVF1AYtw2srGA+mAsS98C8Fe976+aPgSnA5oDmWFuJQLEuG1c9C2AelHv+6umD8GJaDiQul5AdQGJcdvIAuvbCH0LwF/1vr9q+hDc7kXqqi4gMW4bWVtAfRBUXQDNq973V00fgkMm9XYlfK3Z25VQyHwtCbwI47ZxWUB9a/QtAJ/V+/6q6UNwd2tcuzav9rXm7s2r1d3u//2vgSmM28Z1TUtUuzYF0LdtcV9rAkB3ayyQ/dXK9qXZXzV9CI5Gw9qxsUde1J//Ci8a0vaNPYqGm/6/FgFi3DYuLx71v2839CjOfG8APovHIoHsr2LMCV46KxJRfei2fl9qfei2fq1oifpSC5gL47ZxtcXD2rvNn77du61f7R4BGEAwOryIr/urzsTSXb9ACJbUEo9o67qktvR1L6rOlr5ubV2XVEuMC1AQPMZt4+psielWv/q2P6mORMynlgHAi7Unov4di/qTavOW7oQMIbhsZYenj+wcqLoTt/R16yM7B7SygzmVWDqM28Z1baen/Yvs2/07B5SkbwEELFmn+ytzdXgvzcHBQXfy5MlAaj81mtHRMyl9+L4hZfKlebf3oiF96LZ+bV2XJEigZhi3jevJkYweOJPSviML79u92/q1tT9JAAawpFIjk8ei5bS/MrMHnXODM75GCL7SRK6gZyfyOvzQBR04fm7G+2L3diX0c5tXa/vGHl3VEuWrZNQc47ZxjaZzupQp6vCpuft2d7lv2+NhpkAAqImxTF4j6cKC91edXiTQKRCE4Crl80UNj2dVctKlTEGZfFFeNKx2L6KQSd3tHlfTY9m5fNyWSkWFQozbRpDJ5vX0RF7OSWPZgkxFOYXVFo/ITOpui7MKBIBlIZsraHg89/z+aupYNLW/WtkeX5JVIOYKwZwGmkM0Gtaqq1pq3QygIiXnVJr63dZJ2YKUiE69JpWKJYkQXJemutVs8sFEfrJvpxaWL5VKkgjBAJaPqf3V1LFoan/lSrU/CUsIBhrEpXReo5mC7n3ogg6emP0rqF2bVmvHxh51eBG1J1gWrR48N5HTeLa44L5tjYd1VQvTIQAsvXo6FjEdAmgAVV+MsC6pZCcXTy1n1V4Yd+u6pK6lbwEsoeV4LGJOMNDAUqMZ7Tl0WsfODlf8syyjtbzRtwDqxXLdX80VgpkYCNSx1Ej1Ox1JOnZ2WHsOnVZqNONzy7BYT9K3AOpEvR6LCMFAnbqUzuvomVTVO50px84O6+hQSmOZvE8tw2I9N5HTAz727chEzqeWAcCL1fOxiBAM1KnRTEH7jgz5UmvfkSGNpAu+1MLijWeLvvbtWLboSy0AuFw9H4sIwUByI9nvAAAMWklEQVQdyuYmr7xdyIUHC5HJl3T41AVlcwThWktn84H0bTrLmX4A/qr3YxEhGKhDw+M5HTxxzteaB46f0/A4X5vX2jMT+UD69pkJQjAAf9X7sYgQDNQh5zTj2ouLcf5iWnW4WEzDoW8B1It6318RgoE6NJYJ5quisSzTIWqNvgVQL+p9f0UIBupQOh/MhU6ZgOpi4ehbAPWi3vdXhGCgDiWi4UDqepFg6mLh6FsA9aLe91eEYKAOtXmRuqqLhaNvAdSLet9fEYKBOmQm9XYlfK3Z25WQma8lUQX6FkC9qPf9FSEYqEPdrTHt2rTa15q7N6/Wyva4rzVRuatbooH0bXcbfQvAX/V+LCIEA3UoHotox8YeeVF/PsJeNKTtG3oUY95ozSXi0UD6Nh7Q3D0Azavej0WEYKBOdXgR7d3W70utvdv61Zlgzuhy0RoP+9q3bXECMIBg1POxiBAM1Kn2RFRb1yW1pa97UXW29HVra39SbV7Up5Zhsa5qielWH/u2syXmU8sA4MXq+VhECAbqWLLT0/6dA1XvfLb0dWv/zgElOzyfW4bFupa+BVAn6vVYZK4O76U5ODjoTp48WetmAMtGaiSjo2dS2ndkSJl8ad7tvWhIe7f1a2t/kpC0zD05ktED9C2AOrAcj0Vm9qBzbnDG1wjBQGMYy+Q1ki7o8KkLOnD83Iz3c+/tSmj35tXavrFHnV6EKRB1YmQip7FsccF92xYLMwUCQE0st2MRIRhoItlcQcPjOTk3ef/1TL4oLxpWWzwiM2lle5xVIOpUOpvXMxP5Wfu2uy3OKhAAloV591etMcVjwV8EN1cI5nJwoMHEYxFdvwQ7Fiy9RDyq6+OcvQewfF1K5zWaKejehy7o4InJM8FtsbBWtMb07HhOY7miersS2rVptXZs7FGHF1F7ojb7Nc4EAwAAYNGqnhO8Lqlk59LPCeZ0EQAAABYlNZrRni+e1rGzwwv+mUy+pDvueURHz6ZqsjoES6QBAACgaqmRjPYcqiwAT3fs7LD2HDqt1GjG55bNjRAMAACAqlxK53X0TKrqADzl2NlhHR1KaSyT96ll8yMEAwAAoCqjmYL2HRnypda+I0MaSRd8qbUQhGAAAABULJubXAViIRfBLUQmX9LhUxeUzS1NECYEAwAAoGLD4zkdPHHO15oHjp/T8HjO15qzIQQDAACgYs5pxjvCLcb5i2kt1eq9hGAAAABUbCwTzLSFsSzTIQAAALBMpfPFQOpmAqp7OUIwAAAAKpaIhgOp60WCqXs5QjAAAAAq1uYFc+PhoOpejhAMAACAiplJvV0JX2v2diVk5mvJWRGCAQAAULHu1ph2bVrta83dm1drZXvc15qzIQQDAACgYvFYRDs29siL+hMnvWhI2zf0KMacYAAAACxnHV5Ee7f1+1Jr77Z+dSaWZj6wRAgGAABAldoTUW1dl9SWvu5F1dnS162t/Um1eVGfWjY/QjAAAACqluz0tH/nQNVBeEtft/bvHFCyw/O5ZXMjBAMAAGBRkh2e9r91QHfevn7Bc4S9aEh33r6+JgFYkpZu4gUAAAAaVrLT046Nq3TL2pU6fOqCDhw/p/MX01ds19uV0O7Nq7V9Y486vciSToGYjhAMAAAAX7R5UbV5Ub3r1Wv0lg2r5Jw0li0oky/Ki4bVFo/ITFrZHl+yVSBmQwgGAACAr+KxiK6PLe+YyZxgAAAANB1CMAAAAJoOIRgAAABNhxAMAACApkMIBgAAQNMhBAMAAKDpEIIBAADQdAjBAAAAaDrmnKt1GypmZsOS/jXAt7hG0tMB1kdt0b+Ni75tbPRvY6N/G1ut+vcG51z3TC/UZQgOmpmddM4N1rodCAb927jo28ZG/zY2+rexLcf+ZToEAAAAmg4hGAAAAE2HEDyzu2rdAASK/m1c9G1jo38bG/3b2JZd/zInGAAAAE2HM8EAAABoOoRgAAAANB1C8DRm9kYze9TMvm9me2rdHiyOmfWa2TEzGzKz75jZb5Sf7zKzL5vZ98p/r6h1W1E9Mwub2bfN7L7y45eY2TfLn+PPm1ms1m1EdczsKjO728zOmtkZM7uZz2/jMLP3lffNj5jZQTPz+PzWLzP7lJk9ZWaPTHtuxs+rTfqTcj+fNrNX1qLNhOAyMwtL+rikN0nql7TLzPpr2yosUkHSbznn+iW9StKvlvt0j6QHnHM3SXqg/Bj16zcknZn2+COSPuace6mkZyW9uyatgh/+l6S/c871SdqgyX7m89sAzKxH0q9LGnTOrZcUlvSz4vNbzz4t6Y2XPTfb5/VNkm4q/3mvpD9boja+CCH4BZslfd8595hzLifpc5J21LhNWATn3I+cc98q//uSJg+gPZrs18+UN/uMpNtr00IslpldL2mbpE+UH5ukn5J0d3kT+rdOmVmnpNdJ+qQkOedyzrnnxOe3kUQkJcwsIqlF0o/E57duOef+UdLFy56e7fO6Q9Jn3aRvSLrKzK5bmpa+gBD8gh5J56c9frz8HBqAma2R9ApJ35SUdM79qPzSk5KSNWoWFu+PJf2OpFL58dWSnnPOFcqP+RzXr5dIGpb0f8vTXT5hZq3i89sQnHMXJP0PSec0GX5HJD0oPr+NZrbP67LIXIRgNDwza5P0BUm/6Zwbnf6am1wjkHUC65CZ3SbpKefcg7VuCwIRkfRKSX/mnHuFpHFdNvWBz2/9Ks8N3aHJX3ZWSWrVlV+lo4Esx88rIfgFFyT1Tnt8ffk51DEzi2oyAP+Vc+5Q+enU1Ncu5b+fqlX7sCivkbTdzH6oyelLP6XJOaRXlb9elfgc17PHJT3unPtm+fHdmgzFfH4bw1ZJP3DODTvn8pIOafIzzee3scz2eV0WmYsQ/IITkm4qX5ka0+QE/cM1bhMWoTw/9JOSzjjn/mjaS4clvbP873dKunep24bFc8590Dl3vXNujSY/r//gnPs5Scckvb28Gf1bp5xzT0o6b2Zry0/dKmlIfH4bxTlJrzKzlvK+eqp/+fw2ltk+r4cl/WJ5lYhXSRqZNm1iyXDHuGnM7M2anGMYlvQp59ydNW4SFsHMflLS1yQ9rBfmjP6eJucF/7Wk1ZL+VdK/c85dPpkfdcTMbpH0286528zsRk2eGe6S9G1JP++cy9ayfaiOmW3U5EWPMUmPSfplTZ684fPbAMzs9yW9Q5Mr+Xxb0r/X5LxQPr91yMwOSrpF0jWSUpL+q6R7NMPntfyLz59qcgrMhKRfds6dXPI2E4IBAADQbJgOAQAAgKZDCAYAAEDTIQQDAACg6RCCAQAA0HQIwQAAAGg6hGAAAAA0HUIwANSAmW03sz3zb3nFz60xs0cCaM8tZvbqaY8/bWZvn+tnAKCeRebfBADgN+fcYS2vu1LeImlM0r/UuB0AsCQ4EwwAPiufrT1bPpv6XTP7KzPbamb/bGbfM7PNZvZLZvan5e0/bWZ/Ymb/YmaPLfQMrJmFzeyjZnbCzE6b2a+Un7/FzL5iZneX2/FX5Ts0yczeXH7uwfJ73mdmayT9B0nvM7OHzOy15bd43eVtMrPrzOwfy9s9Mm1bAKgrhGAACMZLJf1PSX3lP7sl/aSk39bk7bsvd1359dsk7V/ge7xb0ohzbpOkTZLeY2YvKb/2Ckm/Kalf0o2SXmNmnqQ/l/Qm59yPS+qWJOfcDyX9H0kfc85tdM59bY427ZZ0v3Nuo6QNkh5aYFsBYFlhOgQABOMHzrmHJcnMviPpAeecM7OHJa2ZYft7nHMlSUNmllzge/y0pIFpZ447Jd0kKSfpuHPu8fL7P1R+zzFJjznnflDe/qCk985Rf6Y2nZD0KTOLll8nBAOoS5wJBoBgZKf9uzTtcUkzn4CYvr0t8D1M0q+Vz95udM69xDn39zPUK87ynvO5ok3OuX+U9DpJFyR92sx+sYq6AFBzhGAAqF/3S/qP5bOyMrOXmVnrHNs/KunG8hxgSXrHtNcuSWqf7w3N7AZJKefcX0j6hKRXVtFuAKg5pkMAQP36hCanOXyrfOHbsKTbZ9vYOZc2s/8k6e/MbFyTUxum/I2ku81sh6Rfm+M9b5H0ATPLa3J6BWeCAdQlc87Vug0AgCViZm3OubFyaP64pO855z5W63YBwFJjOgQANJf3lC+U+44mL6T78xq3BwBqgjPBALAMmdnLJf3lZU9nnXM/UYv2AECjIQQDAACg6TAdAgAAAE2HEAwAAICmQwgGAABA0yEEAwAAoOn8f6WUIZd87QH+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3hU5bk3/u8zxzU5MzAJ5CSokIRDkkJEBNFQAlgDRAHfCt1vbbXQvbXde+sWRZHWSq2IrXXb132QrW/VX8G+VZQItGAQsKIUgZKIOahFTAghCYQkJJnzPL8/JklDzGEmWWuSMN/PdeWSzOHmCRNn7rXW/dy3kFKCiIiIiCic6IZ6AUREREREocYkmIiIiIjCDpNgIiIiIgo7TIKJiIiIKOwwCSYiIiKisGMY6gUMxJgxY+T48eOHehlERERENIwdO3bsvJTS1tN9IzIJHj9+PI4ePTrUyyAiIiKiYUwI8VVv97EcgoiIiIjCDpNgIiIiIgo7TIKJiIiIKOwwCSYiIiKisMMkmIiIiIjCDpNgIiIiIgo7TIKJiIiIKOwwCSYiIiKisDMih2UQERER0fDldHlQ3+oCAFyye2B3e2Ex6hFt8aeetkgTzKahTUOZBBMRERGRKi7Z3Wh2eLDjRDW2fVyJqgb71x6TYrVg5XWpKMhOQoxiQLTFOAQrBYSUckj+4sHIycmRHJtMRERENHzUNjlQVFaLjbtK4XD7+n28YtRhQ/5k5GUkICFW0WRNQohjUsqcnu7jmWAiIiIiGpTaZgfWvVWC/eX1AT/H4fZh/dsnUVRei03LMpEQo00i3BtujCMiIiKiAattcmDd9uAS4K72l9dj3fYS1DY7VF5Z35gEExEREdGAXLK7UVRWO+AEuMP+8noUldaixeFWaWX9YxJMRERERAPS7PBg465SVWJt3FWKJrtHlViBYBJMREREREFzuvxdIALZBBcIh9uHwuJqOF2hSYQ1TYKFEC8LIeqEECd7uV8IIZ4XQnwhhCgRQkzXcj1EREREpI76Vhe2fVypasytRyo7+wtrTeszwb8FcEsf938LwMT2rzUA/lPj9RARERGRCqREj32AB6OqwY5Qde/VNAmWUr4PoKGPhxQAeFX6HQYQJ4QYp+WaiIiIiGjwWhzalC20OK+AcogAJAGo6vL9mfbbvkYIsUYIcVQIcbS+fnA7EImIiIhocOxuryZxHRrF7W6ok+CASSlflFLmSClzbDbbUC+HiIiIKKxZjHpN4ioGbeJ2N9RJcDWAlC7fJ7ffRkRERETDWJSizeBhreJ2N9RJcCGA77Z3iZgFoElKWTPEayIiIiKifggBpFgtqsZMsVoghKohe6V1i7RtAD4CkCaEOCOEuEcI8Y9CiH9sf8huAKcAfAFgC4B7tVwPEREREanDFmnCyutSVY25amYq4qPNqsbsjabnm6WUK/u5XwK4T8s1EBEREZH6zCYDCrKT8Px7n6syMEMx6rA0KwmmMKkJJiIiIqIRKkYxYEP+ZFVibcifjFhLaOqBASbBRERERDRA0RYj8jISMC99cJ275qXbkDc5AVGKUaWV9Y9JMBERERENWEKsgk3LMgecCM9Lt2HTskwkxCgqr6xvTIKJiIiIaFASYhRsuj0TT942FYoxsPRSMerw5G1ThyQBBjTeGEdERERE4SEhVkFBdiJy0+JRWFyNrUcqUdVg/9rjUqwWrJqZiqXZSYhVDCEtgeiKSTARERERqSJKMSJKMeLu2eOxJCsRUgItTg8cbi8Uox5RZgOEAOKjzSHrAtEbJsFEREREpCqzyYBk0/BOM4f36oiIiIhoxLE73bjQ5gYAXLJ7YHd7YTHqEd3eAm10hBEW89CUQXRgEkxEREREqrjY5kKb04sdJ6qx7ePea4JXXpeKguwkRJj1GBVhGoKVAsI/tG1kycnJkUePHtX87xkJRzFEREREw8G5Jgf2ldVi467SgCbIKUYdNuRPxvyMBIyN1aY7hBDimJQyp6f7eCa4B41tLrR2O4ox6ARMBh1cHh88PnnZUUykWY+4ITqKISIiIhpqtc0OPPJWCfaX1wf8HIfbh/Vvn0RRee2QtEljEtxNx1HML/5YhhuvHYMHF6YhKc4Cl8cHp8cHs0EHk0GH6kY7dpXU4IUDX+DRb2VoehRDRERENFydawo+Ae5qf3k91m0vCXkizCS4i46jmGizEb/7wSx8+MV5/HJvRZ/1LPfOuxYvf/DlkB3FEBEREQ2Vi20u7CurHXAC3GF/eT2KSmuRnzkuZFfXWRPc7lyTAz975yQWZyahsc0VdD1LXIQJO0uq8fjSqUyEiYiIKCxUX7Rj/rMHAsqZ+qMYddj3QC6SRllUWJlfXzXBHJsMfw3wwYo6fH/OBLz11zNY//bJgF/MjnqWt/56Bt+fMwEHyuvQ1ObSeMVEREREQ8vudGPHiWpVEmDAn1MVFlfD7nSrEq8/LIcA0Or0Yky0GS++fwpFZXUDitHxvJUzU9Hi9CI2Qs0VEgXO6/Whoc0Fj0/iksMDp9sLs1GPaMUAg07AGmGCXs/jXyIiGpwLbW5s+7hS1Zhbj1RiSVYikkPQfSvsk2C7042SM41ocrgHnAB3KCqrw4LJCSipboQ1wsD2aRRSLo8PDa0u7Cw5i1c+Ot1rV5O7bhiPxZmJsEaaYDIwGSYiooGREj3umxqMqgY7QlWpG/ZJ8IU2N9LHRuNbz/9ZlXg/LfwUu/95Li60uUNyFEMEAA2t/o0Jj7/z6WVdTZweX+e8dnOXria/LvoMjy+ZgvkZCbBGsr0fEREFr8Xh0SauU5u43YV9EmzUC+z+pE7VepZ9ZXVYmj1OlXhE/bnQ4sS6Nz+BxaTH7+65Hgc+q++zq8ny6cm4N/cavHzoNPZ+WotNy6dhdJR5CFZOREQjmd3t1SSuQ6O43YX9tVCPV+K1w6dVjfnq4dNwe0de1w0aeRpaXfjpjk9x2zeSkJUSizu3HMZzRZ/3enmqqsGO54o+x51bDiMrJRa3fSMJP93xKS62cjMnEREFx2LUaxJXMWgTt7uwT4J9I7yehcKXy+PDwYo6rJqVij8cq8LGnWVfu6Jh0AlEmPQw6MRltzvcPmzcWYY/HKvCqlmpOFBRB5dHnashREQUHqIUbQoKtIrbXdiXQ7RqVHfS6gpNPQuFr4ZWFxSjHi++fwoHKvxNyvU6gbyMeNw6bVyfNcH7yuvg9cnO5307JwUNrS5OPSQiooAJ4S+zU/NkYorVAiH6f5wawj4J1qyexRWaehYKT16vDyXVjTjbZO9MZJdmJeLuOeODqgkuLD6LAxX1mDtxDAzVAraoeLZPIyKigIyOMGLldanYvKdCtZirZqbCFqJ9KmH/aadoVM9i1iguEQA0tLkwLkbBM3sqEGnS44VV0wdUE/zCqumINOnxzJ4KjI1R0MBBL0REFCCL2YiC7CQoRnXSScWow9KspJDlUGGfBEeZNapn0SguEQAIAPvK66AXAlvuyum1Jrg3XWuCt9yVA70QeK+8DiG6AkVERFeICLMeG/InqxJrQ/5kRJpDdxIx7JNgwH+JeDjHI+qu1eXFm8fPYPOKrMtqgoN1oKIeL75/CptXZOGN42fQyjIeIiIKwqgIE+ZnJGBeum1Qceal25A3OQFxEaHrXR/2SbBPSiyfnqxqzBXTkyHZHoI09o2UUTjXbB9wAtzhQEU9zjXbkZ0cp9LKiIgonIyNVbBpWeaAE+F56TZsWpaJhJjQbs4O+yS4odWF3Ek2VetZbp5kY20laarN6cXdc8bjGZU2IzyzpwL33DgBbTwTTEREA5AQo+Cp2zPx5G1TA86pFKMOT942dUgSYIBJMBSDHi8fOo21i9JUibd2URpe+uBLmPXcGEfaMRl0+OCL86pOOjz0t/MwsTMEERENQF2zA4+8VYK5k0Zj3wO5ePiWtF7LQ1OsFjx8Sxr2PZCLuZNGY932EtQ1O0K8YrZIQ5RiQGHxWSyaMha5abZBXVrOTbNhbIwF75SU4aFb0lVcJdHlDHqB3x+tUjXm6x9XYXFmoqoxiYjoylfX7MDD20uwv7we+8sPwhppwtv3zu78TGlxejp71nc0DpDShyX/5wM0tE8sfXh7CZ5elon4EJ4RDvskuKPR80NvFGPLXTkAMKBEODfNhjU3XY3VrxwNaaNnCk96ndBk0qFex19cIiIKXJvTg3fLarG//O+5U0OrCzc9c6Dz+4QoE64aE4GvzrehtqXnctH95fUoKqvFbd9IQoQpNOlp2F/7jLXosXJmKlpdXqx+5SjumJGCDYszgqpn2bA4A3fMSMHqV46i1eXFqpmpGBVh1HjlFM5aHNpMJGzRaIIiERFdmS7a3di4s7TPx9S2uHDkdGOvCXCHJ3aW4mKbW83l9Snsk+DGNi8KsvyNnltdXty39ThOVDbi9dWzcH/exD7rWe7Pm4jXV8/CicpG3Lf1OFpd3s5Gzw2toXsRKfyoVQvcnVOjuEREdOVxu73YcaJa1f0phSeq4dZomm93YV8O0eLwwKD3N2he//ZJAMA7JTXYffIc5qfH48GFaUiMs8Dt9cHh9kEx6mDU63C20Y6dJTV4/r0v4PX9vR3aTxZPRqvLDS9zCdKQyaBN2QI3xhERUaDqWpzYdqSy38cpBh2iFANaHB44PH0nSFuPVGJpViKSRkWotcxehX0SbHd7sez5D3H4kW+iqNzWWdPi9UnsLa3F3tJaAIBBJ2Ay6ODy+ODx9dwDeF66Dd9MT8Csp/bhrXtnh+xnoPATqdFEwogQTuohIqKRzSfR4/4Uk0GHf51/LXLT4xFp8ie/drcXFqMeUYoBrS4P3iurw/PvfQFXt6S4qsGOXtIs1YV9Emxpn0/9T//fMfzX/87Buvbdjd15fBKePnqodjR6/sfXjgLwt14j0oqU/pIcNTfHpVgt4IwXIiIKVE/7U36yOAMLJo/FO8Vn8cPXjvX4OZVitWDldanY98DNeLf0HJ7YWXZ53BDtTwn7a59Riv844K9VTfjH147iqdunBd/o+fapeOp2fwL816qmy+ISacFi0mky6TDCxIM3IiIKjL1L7a4tyoR3778JZoMeC359EJv3VPR6oqaqwY7Neyqw4NcHYTbo8e79N8EW9fdxyY4Q1QSHfRLc0SIN8CfCs556D9dNGBVUo+frxo/CrKf2dSbAbJFGWnN7Jeanx6s66fCb6fFwsZidiIgC1PEZZIsyYfu9c/CLP5Zh/dsnv7ZRTjHoMCbKBMVw+WeWw+3D+rdP4hd/LMP2e+d0JsJmQ2jS07A/XRlj0WPldanY3GX87MJf/xmxEUb8fvX1fTZ6bnO6cetv/oymbu08Vs1MRayFLdJIOxaTDp+csWPtojRs7HYZaSDWLkrDmUY7kkb1fNBHRETUXbTiz3W2rZmFnxSe7CwnDbYmeH95PX6Ck9i2Zhbynn2/M67Wwj4JvuTwoiA7Cc+/9/llRy5NbW7c8u8fdH4/JsKIxFEWnL1ox/k+eth1tEhrtrtD9iJS+PH6JDKTYwFAlUmHibEWZCbFwuNlUTAREQVGCODp5dPwl1MNnQnwQGuC95fXIy89AZuWTQ3Z1fSwL4fw+YCymiZsyJ/c5+POt7lRUt3cZwIM+FutldY0hWxnI4UnxaiDTifQbHdjzU1XIzfNNqA4HZMOm+1uGISAhTXBREQUoChFjxuvHYONu0r7rAk26AQiTHoY2qeS9lYTvHFXKeZOtCEmRPuqwv5McKvTgx+8egyHHp6Heem2HjtDBGpeug25aTbMeXo//vSvc1VcJdHlIo1G2J0uzL52DH6xuxR3zEjB3Ilj8MyeioCalitGHdYuSsPYGAte++g01udPBoQI2ahKGhi324v6Vid8ErjU5fJitGKATgC2SDOMRh7IEFFoWPR6bC2uQrTZgO33zuksidDrBBZNScCt08YhKc4Cp8fXWVJqNuhQ3WjHrpIa7Cuvw/q3T2Jeug3b752DZf9xCIXFZ3H3nPEhWX/Yf+J17GxcteUwfv/D2XjkrZ5bpPVnXroNT92eiW//94cAQrezkcKTXq+DQQ80OTx4LH8KHtvxCaJMBry+ehYOflaPN46f6fUS1Irpybh5kg0vffAlWlzn8fOCaWh1uTE60gS9jjs6h6M2pwcX7W7sOFGNbUcqe7+8ODMVBdlJGGUxIkKjXtJERB3Ot7qw7Ugltq7+e03w0qxE3D1nPA58Vo9f7u25Q0SK1YLl05Nxb+41ePnQaRQWn8VPcBJbV8/C3a983D4sQ/v3MCFHYGPQnJwcefToUVVilZ5twq3P+2t/r7JasHX1LByoqMfGXaUBn1HbkD8ZuWk2rNpyGF+1v9i7//lGTE6MVWWNRD1xeXxoaHXiQosTEWYjPvziPH7xxzLMuWYM8jPH9Tnp8MO/ncej38rAnGvHoNXpxugoM6yRZphCtCOXAlfX7MC7ZbXYuDOI96TFk7EgIwHxMUoIVkhE4aqqoQ3vlp6D2aDHL3aXYfOKLJxrtg/oquRDbxTj0Vsz4HB7sXDKWKRY1ZkYJ4Q4JqXM6fG+cE+CqxraMHfz/stu2/LdGZg8LhaFxdXY2sdZl1UzU7E0KwmlNU1Y/eqxy+7/80PzVHsBiXpzodkBjwT+Vt8CxaiDLVrBzpKznb+33ScddvzeLs5MRP0lBxxuH66xRcEggNFMmIadumYHHu5lgE9/5qXb8PSyTCbCRKSZsrPNiFIMuO2FD/CbVdPx4vunBrRRu2N/yo+3Hsfb992IFqcHGeNiVFkjk+A+VDW0YdX/HP5aomsx6fHM8mmYmhwHvRBfa5HmlRInzzRi7ZufwN5tklyK1YKtP5jFJJg05fL4cLHVicY2J6ItZnxeewmxESY4nB7ERZmgGPVodXo6zwRHmg1wuL1obHVBMRnQ1ObCxIRoXLI7ERehYFSkiWeCh5HBJMAdmAgTkZbONLShsPgsrhodiT8cqxp0p6I7ZqSgsqG1vRxC+zPBYV80ZjIILJ+ejOeKPr/sdrvLix9tO9H5fZxiQHyMgrpmBxp7GBPY1YrpySFr9Ezh65LDhaKyus5LUGljI2ExGlF8sQ2NDn+Jg9frg9sr4fYItLm8uNDihE9KZFkjEWXW4a+VjXjojWKsz8/ALVMSYI1isjQctDk9eLe0dlAJMADsL69HUVktbvtGEjc9EpHqJIDaSw6YjbpBJcAAcKCiHnMnjkFNsyNkHbbC/kxwWU0znG4v7txy+LL6Fb1OIC8jPqCdjd4ur5Zi1OH11bOgGPVIV+lUPlF3Xq8P55qdmP/sgc7f2yWZ43DP3AlQDDpYTAbo2q9guDxemAz+Kxg+KeFweWD3+PDSn7/EOyU1APy/t/seyMXYGDP0eh7ADbXqRjvm/+pAQDV1/VGMOuz7t1wkxXEQChGpq6qhDRdanF/LoQaqI4caHWUOSU1w2J8asLu9+O2h05dN3hrozkbAP3nrpQ++xN03Tgjpz0Hhpc3txo7i6svedN4pqcHuk+cwPz2+c2Ocz+uD1yfh0HnR4vR0box7r9vBm8PtQ2FxNf5hVgqi9eah+JGondvtxY4T1ap8oADtr+2JavxgzgS2TyMiVfl8Egc+q1f1/ergZ/W47RtJqsTrT9gnwRaDHoXFZ7FoyljcMiUBS7KScK7Z3u9RTVWDHc8VfY7/Ovg3rF2UhkVTxuKd4mqMjbHgnZIy3Jt7bQh/Cgo3TXYvth2p/NrtXp/E3tJa7C2tBYCvbYzry9YjlViSlYhoVkQMqboWZ4+v7WBsPVKpao0dEREAeKXEm8fPqBrzjeNnsCQrUdWYvQn7JDja4v8neLzw5GWNngPlcPuwcWcZ5qXb8MTSqVj2H4cui0ukBSnR4xWK7jw+CY8rsJ7VVQ12jMDqqCuOL8DXNhhVDXZOsSQi1Rn0QpP3K4M+ND3rw774Tyf8pQ2PL52KDTuCS4C72l9ejw07TuLxpVORYrWAMwdISy39bM4ccFynNnEpcK0avQatLr62RKSuNqc2g8HaAjx5M1hhnwTbIs149NYMnGu2q7Kz8VyzHY/emgEbrymThuwaTSTkpMOhp9VrwNeWiNTm8KhTC9ydU6Ua4/6EfRJsNOqRmRSHZ/ZUqBLvmT0VyEyKg5E77ElDilGb3y+29ht6ikab1xQDN8URkboiNHq/sphC834V9p94Xq8Puz+pUXVn4x9P1sDrDc1RDIWnaMU4ouJS4CLM2rz5axWXiMKXVvufopXQ7KsK+yS4oc2FVw+fVjXmKx+dRkObS9WYRF2J9lp2NaVYLRCsZR9yXq/U5LX1cmccEanMoBOavF8ZQrSxKuyTYI9XarKz0ePlBw5pJ8Kkw8rrUlWNuWpmKiJCdAmKeqfX+adYqmnF9GToeYRDRCqzRphw1w3jVY151w3jYY0MTb/6sE+CmxxuTeI2axSXCADcXoml2Ymq1QYrRh2WZCXy4G0Y0AmB3Ek2VV/bmyfZoGMSTEQq0+t1WJyp7mfR4sxE6HkmODTUqgUOVVwiALjY6ob0+bAhf3KfjzPoBCJM+n4vLW3InwwpfSzjGQaEAN46UY21i9JUibd2URq2n6hmqQsRacIaacLGgqmqxNpYMBXWSJMqsQIR9hMdtNoNb+Iue9KQ3e3FfxzwTyucl27r7G+t1wnkZcTj1mnjkBRngdPjg8PthWLUw2zQobrRjl0lNdjXZWzyvHQbbkqzYfMfy3HPXI77Hmo6nUBSnAVjYyzITbMNqnVjbpoNY2P89cA6Ni8nIg2YDDrMz0jAgowEvFtWO+A4CzISkJeRENL8KeyTYK1qIFlbSVoyG3QoLD6L5TOSsWlZJtZtL0G02Yi754zHgc/q8cu9FT3WuqdYLVg+PRn35l6Dlw+dxiWnG5uWZaL83CW8U1KDf8q9Zgh+GupKJ4CFk8di+X8ewm9WTQeAASXCuWk2rLnpavx463G8+U9zWBNMRJqxRpqwafk04E0MKBFekJGATcunYVQIzwIDLIcAoM0ueyItRZn9x69JcQo27S7Fo9/KwPUTrLhzy2E8V/R5r5s9qxrseK7oc9y55TCun2DFo9/KwKbdpUiKUy6LS0PH5ZHw+nx4cGE6Vr9yFHfMSMGGxRkB19wpRh02LM7AHTNSsPqVo3hwUTq80genRk3tiYgAYHSUGU+vyMQzKzKDer96ZkUmNq/IxOio0GyG60pIOfI2wuTk5MijR4+qEutcsx2vH6nCc0WfqxIPAO7Pm4g7Z6YiIYZT40gbVQ1t+PBv5wEJpIyOwIvvnxrU2cKqC22QkJhzrQ0p1ggNVkyBOtdkx18rG3HV6Aj8au9n2FdehyWZ43DPjRNw8LN6vHH8TK9n+VdMT8bNk2x46YMv8U5JDeanx+PfFk3CV+fb8I3UOIyN5QE6EWnL5fGhodWFnSVn8cpHp3t9v/re7PHIn5YIa6RJ0xIIIcQxKWVOj/eFexL85fkWtDg8uOO/P1JlM5ti1OEPP7wB0YoR48dEqrBCoq+ru2SHyyPxyZkm/P5o1aDrRr+dk4JpybEw6XWI58HbkKpttuOSw4tT9S0YF6vguaLPsa+8DnqdwPz0eORnjkNinAVurw8Otw+KUQejXoezjXbsLKnBe+313vPT4/GveRNR0+TA1bYoxCgGvrZEFDJer3+ztccn0eLwwOnxwWzQIUoxwKATsEaaQ9IFoq8kOOyvfRp1Opy+0Iq1i9KwcWfZoOOtXZSGry60IitllAqrI+qZYtTh2FcNONtkH1QCDPjrTedOHAMIYM61VpVWSAPl8kgISJxrtiPGYsQ9N07AzZNs+MUfy7C3tBZ7S/31dgadgMmgg8vjg6fLIAzFqMNPF0/GtfFRaHV5ca7ZjmviI1kOQUQhpdfrYItuP/COHdq19Cbsa4L1eoGUURFIjPXvxB6M3DQbEmMtSB4VAYOem1BIO812L5LjLHhmT4Uq8Z7ZU4HkOAua7V5V4tHA+XwSpTXNmHGVFb899CUutrkxLk7B79fcgAcXTurcc+DxSbS5vJ0JcIrVggcXTsLv19yAcXEKLra58dtDX2LGVVaUnW2GbwRe9SMi0lLYnwk26ATeOlGNa2yRWHPT1QAGtxP7i7pL+OjLC/jxvGvVXipRJ6NeYF95nWr9qB1uH94rr8OdM1NUiUcDd6HVhZRREai+aMc/5V6LXxd9hmizAffcOAGpoyKw/tYMjI4yw+31wen2wdxeDnGhxQmnxwcpJQpPnMUlpwf3501C9UU7kkdFoKHVhatGs0SLiKhD2J8JtkaYkDIqAqMjFbz64elB7cR+9cPTGB2pIHVURMhG/lF4srt8ePP4GVVjvnH8DOwc8jLkLEY9Xj50Guea7bC7vVgz92pkp8bhOy/9BTs/qeksaxDwT5fruObk9Piws6QG33npL8hOjcOauVfD7vaXQ7z0wZdQDGzbSETUVdifCe4Y+Zf//Pv4zarpePH9U4g2G/D66llB7cS+5Dzf2ZNz1z/fFLKRfxSehECvbdAGqqrBDv7WDr0oxYDC4rNYNGUsfnvoSyzJSkKqNQK/+8EsHKyo6+wB3b0muOM96b5516L+kgMX29x4p7gaS7KS8E5JDR66JX2ofzQiomEl7JNgwN/ked23MrD6laPYvCIL55rt+M5Lf8Gca8bgwYVpfe7EfvHPp/DAgkkYG2PB6leO4vGlU0I68o/CU6vTo0ncNhdrgoeaEP6D7IfeKMaWu3I6D8zvuXECJoyOvKwcout7Ukc5BLqUQ6y56WqsfuUoUqwWjk0mIuqGSTD+PvJv76e1uG/rcSzJHIff3XM9DnaZvNXrWZfca9p7cpYNycg/Ck8ujzabnFzsIDDkRkcYsfK6VGzeU9HjgXl+5jgA/nIIfQ/lEB/+7fxlB+atLi9+NDMVtiFoRE9ENJwxCW7XdeTfOyU12H3yHOanx/d7Jvj5976A1yeHbOQfhadAa9aDZeYB3JCzmI0oyE7C8+99jlaXd1AH5oD/d2VpVhLMRtYEExF1xSS4i46RfwvLarFhx8mAe3JuWjYNeRkJTIApZKIVbf7X1SouBSfSrMeG/MlY//ZJAAM7MO+wIX8yosxMgImIuuMnXjfWSBMKspMwd6LtspF/Hp+Ep0u9ZChH/hF1Z9TrkGK1qLo5LsVqgZG/x8NCXIQJ8zMSUFRei/3l/uTl358AACAASURBVJaNXp8M6MC8q3npNuRNTkBsBA/QiYi6C/uxyX0ZLiP/iLrzen14+dBpPLl78FMOO6zPz8Ddcybwd3oYqW12YN32ks5EOBjz0m3YtCwTCRyVTERhjGOTB2gkjPyj8KTX67Akaxx+9W6FKgMzFKMOSzLHMQEeZhJiFDx1eyb2ldVi467SgF5rxajDhvzJmJ+RwASYiKgPvPZJNEJZI814omCKKrGeKJjKAS/DUG2zA4+8VYL4GDP2PZCLh29J6xyb3F2K1YKHb0nDvgdyER9jxiNvlaC22RHiFRMRjRw8E0w0QpkMOuRljEVeRi2KyuoGHCcvIx4L2Npv2KltcmDdW/5SiP3l9bCY9Hhm+TS8ds/10AuBFqcHDrcXilGPKLMBXilx8kwj8n59EPb2/QvrtpewJIKIqBdMgolGMGukCU8vz8TDb5YMKBHOy4jH08sz2dlkmLlkd6OorPayWmC7y4sfbTvR+X1ClAlXjYnAV+fbUNvi6jHO/vJ6FJXWoiA7EVGKUfN1ExGNJEyCiUa40VFmbF6RhaKyWvxkx8mA60Y3Fkxla79hqtnhwcZdpZfdZjHp8asVmZicFAuDEGh2uDtbpMUoRnjazwSvffOTzjPBALBxVyly0+KZBBNRSDldHtS3+g/QL9k9sLu9sBj1iLb4U09bpAlm09CmoUyCia4A1kgTbstOwk3dWvt1l2K14K7Z47GYrf2GLafLgx0nqi87mPmf785AxrhY7DhRjaf+VN7ra7vyulQU3X8zymqa8INXjwEAHG4fCourcffs8UP+gUNEV75LdjeaHf73sW0fV/b5flWQnYQYxYBoy9AcpLNFGtEVhq39RrYzF9uwcsthVDXYcZXVgq2rZ+FARf3XukP0NcBnQ/5k5KbZsGrLYXzVYEeK1YJtq2cheVTEUPxIRBQmapscKBpAN5u8jAQkxGqzd2FIW6QJIW4B8O8A9AD+R0q5qdv9qQBeARDX/ph1UsrdWq+L6ErF1n4jm5ToTIB//8PZeKR9c5xeJ7BoSgJunTYOSXEWOD2+zo1xZoMO1Y127Cqpwb7yOqx/+yTmpdvw+x/Oxrf/+0N81WDHCDzfQUQjSG3z3zfzBsrh9mH92ydRVF47JJt4NU2ChRB6AC8AWADgDICPhRCFUsquxW6PAfh/Usr/FEJMBrAbwHgt10VENFy1ODwAgK2rZ+HR9g+UpVmJuHvOeBz4rB6/3FvR6+XF5dOTcW/uNXj50GkUFp/Fo2+VYOuaWZizaT9anJ5Q/yhEFCa6drMZiP3l9UPSzUbrgsCZAL6QUp6SUroAvA6goNtjJICY9j/HAjir8ZqIiIYtu9uL//nuDByoqMdfTjXghVXTkZUSizu3HMZzRZ/3Oiq7qsGO54o+x51bDiMrJRYvrJqOv5xqwMGKemz57gw43N4en0dENBg9dbMZiI5uNi0Ot0or65/WSXASgKou359pv62rxwH8gxDiDPxngX/cUyAhxBohxFEhxNH6+sH9QxMRDVcWox4Z42Lx7LsV2HJXDv5wrAobd5YFPBnQ4fZh484y/OFYFbbclYNf7a3A5HGxUAx6jVdOROGop242A7VxVyma7KG7ajUctoavBPBbKWUygFsBvCaE+Nq6pJQvSilzpJQ5Npst5IskIgqFcaPMeKfkLJ4omIYX3z+FAxUDO+g/UFGPF98/hScKpmFnyVmMG8WJgESkrp662QxGRzcbpys0ibDWSXA1gJQu3ye339bVPQD+HwBIKT8CoAAYo/G6iIiGpRaHFzVNdtQ22wecAHc4UFGP2mY7qpvsaHGwHIKI1FXf6sK2jytVjbn1SGVnf2GtaZ0EfwxgohBighDCBOBOAIXdHlMJYD4ACCEy4E+CWe9ARGHr9uwkbN5ToUqszXsqsCy7exUaEdHgdXSzUVNVCLvZaJoESyk9AH4EYA+AMvi7QHwqhHhCCLG0/WH/BmC1EKIYwDYA35MjsXkxEZEKvD6JD09dUPXy4kenLsDn49sqEamro5uN6nFD1M1G8z7B7T1/d3e77Sdd/lwKYI7W6yAiGgl8PoltR9S/vHjL1LGqxiQismvUdSZU3WyGw8Y4IiJqZzToNLm8aNTz7Z6I1GUxatN1JlTdbPiuSEQ0jIz0y4tEFD6iFG0KCrSK2x2TYCKiYUStWuDunBrFJaLwJYR/WqWaUqwWCKFqyF4xCSYiGkbMBm3elk0shyAildkiTVh5XaqqMVfNTEV8dGj6mvNdkYhoGIkwa1MLp1VcIgpfZpMBBdlJUIzqpJOKUYelWUkwsSaYiCj8SGhzeZEN0ohICzGKARvyJ6sSa0P+ZMRaQlMPDDAJJiIaViJMOiyfnqxqzBXTkxGh0S5uIgpv0RYj8jISMC/dNqg489JtyJucgCjFqNLK+sckmIhoGPF4Jeanx6t6efGb6fHw+Lgxjoi0kRCrYNOyzAEnwvPSbdi0LBMJMYrKK+sbk2AiomHEFmnGmUY71i5KUyXe2kVpONNohy06tB8uRBReEmIUbLo9E0/eNjXgg3jFqMOTt00dkgQYCMHEOCIiCpzRqEdmchwggdw0Gw5U1A84Vm6aDYmxFmQmx3FYBhFpLiFWQUF2InLT4lFYXI2tRyp7HP6TYrVg1cxULM1OQqxiCGkJRFdMgomIhplRFiMuOdxYc9PVADCgRDg3zYY1N12NMw1tGBUxNB8wRBR+ohQjohQj7p49HkuyEiGlf1iPw+2FYtQjymyAEEB8tDlkXSB6wySYiGiYiTAbkJsWj58WnsQdM1Iwd+IYPLOnIqBBGopRh7WL0jA2xoLXPjqNny2diggT3+qJKLTMJgOSh/l7z/BeHRFRmDLodXgsfwoe2/EJokwGvL56Fg5+Vo83jp/p9fLiiunJuHmSDS998CVaXOfx84JpLIMgoiHhdHlQ3+oCAFyye2B3e2Ex6hHd3gLNFmmCeYiTZCbBRETDjMvjw76yWmz+Uzm2rp6FI1824Dsv/QVzrhmDBxemITHOArfXB4fbB8Wog1Gvw9lGO3aW1ODFP5/Co9/KwMwJVtz2wgd46JZ0FGQnwaTRJDoioq4u2d1odniw40Q1tn3ce03wyutSUZCdhBjFgGjL0JRsCSlHXgv1nJwcefTo0aFeBhGRJs41OZD7y/2d5Q8b8jOwcMpY7Cw527nRxKATMBl0cHl88Phk50aTxZmJ2PvpOWzcVQbAXx5x4MF5GBvL7hBEpK3aJgeKymqxcVdpwOVbG/InIy8jAQkavUcJIY5JKXN6vI9JMBHR8OH1+vB/PzyNn7cnsR1MBh3++ZvX4psZ8YgwGdDq9HSeCY40G9Dm8uC9sjo8/94XcHku//B5LD8D3589HnqWRhCRRmqbHVi3vQT7y4PfyKtln2AmwUREI0T9JQeW/eeHPV5C7Eox6BClGNDi8MDh6fuMS4rVgu3/NJu9golIE7VNDqx7a2AJcAetEuG+kmCeFiAiGkY8PtlvAgwADo8P51tc/SbAAFDVYIfHN/JOeBDR8HfJ7kZRWe2gEmAA2F9ej6LSWrQ43CqtrH9MgomIhpFLDo8mcVs0iktE4a3Z4cHGXaWqxNq4qxRN9tC9VzEJJiIaRpxurzZxAzhjTEQUDKfL3wUikE1wgXC4fSgsrobTFZpEmEkwEdEwYjZqM0GJLdKISG31rS5s+7hS1Zhbj1R29hfWGt8ViYiGkWhFm/btWsUlovAlJQLawxCMqgY7QtWzgUkwEdEwYtAJpFgtqsZMsVpg0AlVYxIRabXXoMXJcggiorBjjTDhrhvGqxrzrhvGwxppVjUmEZFdoz0MDo3idsckmIhoGNHrdVicmQjFqM7bs2L0x9PzTDARqcyi0R4GxaBN3O6YBBMRDTPWSBM2FkxVJdbGgqmwRppUiUVE1FWURnsNtIrbHZNgIqJhxmTQYX5GAhZkJAwqzoKMBORlJLAzBBFpRos9DKHCd0YiomHIGmnCpuXTBpwIL8hIwKbl0zCKZ4GJSCNRih4rr0tVNeaqmamIsfBMMBFRWBsdZcbTKzLxzIrMgGuEFaMOz6zIxOYVmRgdxc1wRKSds40OFGQnqbqHYWlWEqovOlSJ1x82jiQiGsaskSYUZCdh7kQbdpacxSsfne6xL2eK1YLvzR6P/GmJsEaaWAJBRJpzeXwoq2nC40umYN32TwYd72dLp6C0pgm2EB3AMwkmIhrmTAYdxsYq+P7s8SjIToTHJ9Hi8MDp8cFs0CFKMcCgE7BGmtkFgohCpqM7RHZKHHLTbDhQUT/gWLlpNmSlxKGqoQ2KRl0numMSTEQ0Quj1OtiiFf83sUO7FiKiKLMBGeNisfT//Bm/WTUdAAaUCOem2bDmpqvxnS2HUfijuZAhGhnH62VEREREFLSYCD12nKjGhVY3Vr9yFHfMSMGGxRlB7WHYsDgDd8xIwepXjuJCqxuFxdWIiWCfYCIiIiIapprtXmz7uBIA0Ory4r6tx3GishGvr56F+/Mm9truLMVqwf15E/H66lk4UdmI+7YeR6vLPyVu65FKNNtDMzGO5RBEREREFDQp8bWNuu+U1GD3yXOYnx6PBxemITHOArfXB4fbB8Wog1Gvw9lGO3aW1OD5976A13d56UNVgx0hqoZgEkxEREREwWtxeHq83euT2Ftai72ltQAAg07AZNDB5fHB4+s/w21x9hxXbUyCiYiIiChodndgZQsen4THFXiJgyPAuIPFmmAiIiIiCppFo1ZmioEb44iIiIhomIpStCko0Cpud0yCiYiIiChoQqDXDhADlWK1QIRo5g+TYCIiIiIKmi3ShJXXpaoac9XMVMRHh2ZsMpNgIiIiIgqa2WRAQXZSwMMx+qMYdVialQQTa4KJiIiIaDiLUQzYkD9ZlVgb8icj1hK6xmVMgomIiIhoQKItRuRlJGBeum1Qceal25A3OQFRilGllfWPSTARERERDVhCrIJNyzIHnAjPS7dh07JMJMQoKq+sb0yCiYiIiGhQEmIUbLo9E0/eNjXgGmHFqMOTt00dkgQY4MQ4IiIiIlJBQqyCguxE5KbFo7C4GluPVKKqwf61x6VYLVg1MxVLs5MQqxhCWgLRFZNgIiIiIlJFlGJElGLE3bPHY0lWIqQEWpweONxeKEY9oswGCAHER5tD1gWiN0yCiYiIiEhVZpMByabhnWayJpiIiIiIwg6TYCIiIiIKO0yCiYiIiCjsDCoJFkJEqbUQIiIiIqJQGeyZ4FJVVkFEREREFEL9btsTQjzQ210AeCaYiIiIiEacQM4E/wLAKADR3b6iAnw+EREREdGwEkgDt+MA3pZSHut+hxDiB+oviYiIiIhIW4Ekwd8HcKGX+3JUXAsRERERUUj0W84gpayQUp7v5b7ajj8LIX6j5sKIiIiIiLSiZk3vHBVjERERERFphhvbiIiIiCjsMAkmIiIiorCjZhIsVIxFRERERKSZgJNgIcS0fh7y74NcCxERERFRSARzJvg/hBBHhBD3CiFiu98ppfytessiIiIiItJOwEmwlHIugO8ASAFwTAixVQixQLOVERERERFpJKiaYCnl5wAeA/AwgJsBPC+EKBdCLNNicUREREREWgimJjhTCPFrAGUAvglgiZQyo/3Pv9ZofUREREREqgtkbHKH3wD4HwCPSintHTdKKc8KIR5TfWVERERERBoJJgnOB2CXUnoBQAihA6BIKduklK9psjoiIiIiIg0EUxNcBMDS5fuI9tuIiIiIiEaUYJJgRUrZ0vFN+58j1F8SEREREZG2gkmCW4UQ0zu+EULMAGDv4/FERERERMNSMDXB/wrgD0KIs/CPSB4L4NuarIqIiIiISEMBJ8FSyo+FEOkA0tpvqpBSurVZ1vDgdntR3+qETwKXHB7Y3V5YjHpEKwboBGCLNMNo1A/1MomIiIgoSMGcCQaA6wCMb3/edCEEpJSvqr6qIdbm9OCi3Y0dJ6qx7UglqhrsiDLpMSrShIutLrS4vEixWrByZioKspMwymJEhDnYf0oiIiIiGioBZ25CiNcAXAPgBABv+80SwBWVBNc1O1BUVotn9lTgydum4rV7rodBCDQ73HC4fVCMOsQoRnikxMkzjVj8/J+xdlEa8jISEB+jDPXyiYiIiCgAwZy+zAEwWUoptVrMUKtrduDh7SX4zsxU7PzxXOw4UY2n/lSOqoav7/9LsVqw8jr/48pqmvDw9hI8vSyTiTARERHRCBBMd4iT8G+GuyLVNTvwq73l+HnBVNQ2OzH/2QPYvKeiMwE26AQiTHoYdAIAUNVgx+Y9FZj/7AHUNjvx84Kp+NXectQ1O4byxyAiIiKiAARzJngMgFIhxBEAzo4bpZRLVV9ViLU5PTj8t/O4f0E6HnmrBPvL66HXCSyakoBbp41DUpwFTo8PDrcXilEPs0GH6kY7dpXUYF95Hda/fRLz0m146vZMHP7beeRNGYsIE2uEiYiIiIarYDK1x7VaxFC7aHdjxnhrZwK8NCsRd88ZjwOf1eOXeyt6LYdYPj0Z9+Zeg5cPnUZh8Vk88lYJfn7bVFxsczMJJiIiIhrGgmmRdlAIcRWAiVLKIiFEBIAR3x/M7faixe7G0a8u4sipBrywajrONdtx55bDcLh9vT6vqsGO54o+x38d/BvWLkrDoilj8dAbxThQXo+c8aPgdpvYPo2IiIhomAq4JlgIsRrAGwD+u/2mJABvB/C8W4QQFUKIL4QQ63p5zP8SQpQKIT4VQmwNdE1qqG91Ikox4tl3K7Dlrhz84VgVNu4s6zMB7srh9mHjzjL84VgVttyVg2ffrUCU2Yj6Vmf/TyYiIiKiIRHMNfv7AMwE8BcAkFJ+LoSI7+sJQgg9gBcALABwBsDHQohCKWVpl8dMBPAIgDlSyov9xVRbhFmPrYer8ETBNLz4/ikcqKgfUJyO5z1RMA2FxdVYeX2KmsskIiIiIhUFkwQ7pZQuIfzdEYQQBvj7BPdlJoAvpJSn2p/zOoACAKVdHrMawAtSyosAIKWsC2JNg3bJ7kXtJQfMRt2AE+AOByrqMXfiGNQ0O3DJ7kWcRaVFEhEREY0gTpcH9a0uAMAle5epuxZ/6mmLNME8xPungvnbDwohHgVgEUIsAHAvgHf6eU4SgKou358BcH23x0wCACHEIfhrjB+XUv6peyAhxBoAawAgNTU1iGX37/bsJNy55bAqsZ7ZU4HXV89SJRYRERHRSHLJ7kazw+OfuvtxZZ+zFgqykxCjGBBtMQ7BSoPrE7wOQD2ATwD8EMBuKeV6FdZgADARQC6AlQC2CCHiuj9ISvmilDJHSpljs9lU+Gv9fD6JA5/VB1wD3B+H24eDn9XDd+XOFCEiIiL6mtomBwqLz35t1kJ3XWctFBafRW3T0MxYCCYJ/rGUcouU8g4p5Qop5RYhxL/085xqAF2LY5Pbb+vqDIBCKaVbSvklgM/gT4pDwisl3jx+RtWYbxw/A6+PSTARERGFh9pmB9a9VYL1b58MqrnA+rdPYt1bJagdgmFjwSTBd/Vw2/f6ec7HACYKISYIIUwA7gRQ2O0xb8N/FhhCiDHwl0ecCmJdg2LQiV6PVAaqqsHeOVmOiIiI6EpW2+TAuu3+WQsDsb+8Huu2hz4R7rcmWAixEsAqABOEEF0T2GgADX09V0rpEUL8CMAe+Ot9X5ZSfiqEeALAUSllYft9C4UQpQC8ANZKKS8M7McJXpvLq01ctzZxiYiIiIaLS3Y3ispqB5wAd9hfXo+i0loUZCciSglNjXAgG+M+BFAD/9jkX3W5/RKAkv6eLKXcDWB3t9t+0uXPEsAD7V8hp1YtcHdOjeIS9cft9qK+1QmfBC45uuzIVQzQCcAWaeYgFyIiUkWzw4ONu0r7f2AANu4qRW5a/PBJgqWUXwH4CsAN2i8n9CymYCpCAqcYtYlL1Js2pwcX7W7/jtwjlZ1lOSaDDi6PDx6f9O/InenfkTvKYkSEmeO9iYhoYJwufxcINZsLFBZX4+7Z40PSPi3gv0EIsQzA0wDiAYj2LymljNFobSERodE/slZxiXpS1+xAUVktntxdhhuvHYMHF6YhKc4Cl8cHl8cHk0EHk0GH6kY7dpXU4IX9X2D9rRnIy0hAfIwy1MsnIqIRqL7VhW0fV6oac+uRSizJSkRyCPKoYE5XbgawVEoZK6WMkVJGj/QEGAAk/GfH1JRitUD2O0eESB11zQ48vL0Eh0814Hf3XI/8aeNgNvz9f+2uv4lmgw7508bhd/dcj8OnGvDw9hLUDcGOXCIiGvmkhCbNBULVZTaYNLtWSlmm2UqGiMmgw/LpyXiu6HPVYq6YngyzgTWXpL26Zgd+WngSK6anwGwQEELgzEV7vw3Kx4+JxNKscXB6JH5aeBI/WzqVZ4SJiCgoLQ6PNnGd2sTtLpgzwUeFEL8XQqwUQizr+NJsZSHS2OpG7iSbajW8ilGHmyfZcLHNpUo8ot60OT04UFGHu2ZPwKgII2qbnfj2ix8F1KD82y9+hNpmJ0ZFGHHX7Ak4UFGHNldo3nSIiOjKYNeoE5YjRB22gsn8YgC0AVgIYEn712ItFhVKTo8PLx86jbWL0lSJt3ZRGl764Eu42B2CNHbR7kZchAlRZj1ePvTlgBqUv3zoS0SZDYiLMOFim1vjFRMR0ZXEolGnISVEV9MDLoeQUn5fy4UMFYtJj8Lis1g0ZSxy02w4UDHwPne5aTaMjbHgnZIy/Hh+yIbeURhyu70oOdOI8aMj8au9FSgqqxtQnI7n/dvCNJScaUR8pInt04iIKCBRijab17SK213AZ4KFEJOEEPuEECfbv88UQjym3dJCI7r9H/qhN4qx5qarkZtmG1Cc3DQb1tx0NR56o/iyuERaqG91YlJ8FErONA44Ae5QVFaHkjONmJQQhfpWp0orJCKiK50Q0KS5gAjR0N1gyiG2AHgEgBsApJQl8I9BHtEMOoEUqwWtLi9Wv3IUd8xIwYbFGQHXCCtGHTYszsAdM1Kw+pWjaHV5kWK1cGwyacqgFzAadPhp4aeqxPtp4acw6nX8vSUiooDZIk1YeV2qqjFXzUxFfLRZ1Zi9CSYJjpBSHul224jfSWONMOGuG8YDAFpdXty39ThOVDbi9dWzcH/exF6PcFKsFtyfNxGvr56FE5WNuG/rcbS2j2C+64bxsEaG5gWk8OT1AX86Watqg/I9J2vhZWc/IiIKkNlkQEF2kqrNBZZmJcE03GqCAZwXQlyD9rajQogV8I9THtH0eh0WZybil3srOhOKd0pqsPvkOcxPj8eDC9OQGGeB2+uDw+2DYtTBqNfhbKMdO0tq8Px7X8Dr+3vmoBj98fQ8o0YaklLitcOnVY356uHTyM8cq2pMIiK6ssUoBmzIn4z1b58cdKwN+ZMRawldOWkwf9N9AF4EkC6EqAbwJYB/0GRVIWaNNGFjwVSsfaOk8zavT2JvaS32ltYCwNfGz/ZmY8FUWCNNmq+ZwpvXp02Dci+bmhARURCiLUbkZSSgqLwW+8sH3lxgXroNeZMTEKUYVVxd3wI+fy2lPCWlzANgA5AupbxRSnlas5WFkMmgw/yMBCzISOj1MR6fRJvL22cCvCAjAXkZCTAZ1LksQNSbVo0aibeyVzAREQUpIVbBpmWZmJc+sOYC89Jt2LQsEwkhHtoUTHeIfxFCdPQK/rUQ4rgQYqF2Swsta6QJm5ZP6zMR7suCjARsWj4No3gWmEJAswblrtA0KCcioitLQoyCTbdn4snbpgbVXODJ26YOSQIMBFcOcbeU8t+FEIsAjAbwvwG8BmCvJisbAqOjzHh6RSYWltViw47ABg8oRh02FkxFXkYCE2AKGa2uNvAqBhERDVRCrIKC7ETkpsWjsLgaW49U9li6l2K1YNXMVCzNTkKsYghpCURXwSTBHTu9bgXwqpTyUyFC1cktdKyRJhRkJ2HuRBt2lpzFKx+d7vUF/N7s8ciflghrpInJA4WUVn2oQ9WgnIiIrkxRihFRihF3zx6PJVmJkBJocXrgcHuhGPWIMhsgBBAfbQ5ZF4jeBPOJd0wIsRfABACPCCGiAVyR22hMBh3Gxir4/uzxKMhOhMcn0eLwwOnxwWzQIUoxwKATsEaa2QWChoRO+Ptbq7k5LsVqge7KO64lIqIhYDYZkGwa3idWglndPQCyAZySUrYJIUYDuCJHKXfQ63WwRbfXqMQO7VqIujIbBFZMT8aviz5XLeYdM5Kh8IoGERGFiX4/8YQQ6e1/zG7/79VCiOkArkJwSTQRqSROMSE/M1HVBuX50xIRG8G6diIiCg+BJLEPAFgD4Fc93CcBfFPVFRFRv4xGPaIVA9YuSsPGnWWDjrd2URqiFAOMep4JJiKi8NBvEiylXNP+33naL4eIAhVtNmD2NWOQm2bDgYqBNyjPTbNh9jVjNNtsR0RENBwF0yf4jvbNcBBCPCaE2C6E+IZ2SyOivkSYDRgTacL9eZOQmzawBuW5aTbcnzcJYyJNiBjmGxiIiIjUFMy1zw1SyktCiBsB5AF4CcB/abMsIgqELUZBYqyCNXOvxobFGUE1KN+wOANr5l6NxFgFtiFoUk5ERDSUgjn10zFKKh/Ai1LKXUKIn2uwJiIKgk4nkBhngdvrw+trbsDBijq8cfxMr/2tV0xPxs1p8WhqcyExzgId2/wREVEYCiYJrhZC/DeABQCeFkKYEdyZZCJSWUOrCw+/WYKisjpsyM/AwiljMTE+CutvzcDoKDPcXh8cbh8Uow5GvQ4XWpzwSYnRkSYcO92Au/7vx8jLiMczK7I48ZCIiMJKMEns/wKwB8AiKWUjACuAtZqsioj65fL4UFR6DkVldQCAjbvKMP/Zgzh1vhWpoyNgizYj1mLEqAgjYi1G2KLNSB0dgVP1rZj/7EFs3OXvKlFUVod3y87B5bkiZ98QERH1SEgpA3+wEHoACehyBllKWanBuvqUk5Mjjx49Guq/lmhYqWmyY94vD8Dh7j15VdonHLY441uC+gAAIABJREFUPHD0keQqRh32P5iLcbEWLZZKREQ0JIQQx6SUOT3dF0x3iB8DqAXwLoBd7V87VVkhEQXF6/XhneKaPhNgAHB4fDjf4uozAQYAh9uHnSU18Hp5NpiIiMJDMDXB/wIgTUp5QavFEFFgLrS68Nrh06rGfPWj0yjISkQ8O0UMW16vDw1tLnh8EpccHni9Xuj1/sEpBp2ANcIEPQeeEBEFJJgkuApAk1YLIaLAuby+Hrs/DEZVgx0ungkellweHxpaXTh7sQ0RigEWox5ujw92tw8Wo4DL40OT24vKC21IGhUBa6QJJgOTYSKivgSTBJ8CcEAIsQuAs+NGKeWzqq+KiPrU4vBoE9epTVwauIZWF842tiHWYsLhLxuw7ePKXtvfrbwuFUtiFHxW24zEOH8yTEREPQsmCa5s/zK1fxHRELG7vf0/aAAcLm3i0sBcaHHiksOD4qombNxV2mcNeFWDHZv3VOD59z7HhvzJiDIbIaXE6ChzCFdMRDRyBJwESyl/BgBCiKj271u0WhQR9U2rS928hD58NLS64HD78LOdn2J/eX3Az3O4fVj/9knMS7fh5wXTcLHVxR7QREQ9CKY7xFQhxF8BfArgUyHEMSHEFO2WRkS9iVaCuYgTuCiN4lJwXB4f2lwePLbjk6AS4K72l///7d19dFx3fefxz1eahzvWUyIyHmJZinkIsdREFkF2Q1rauBHlwcFOTbrF3i4UKOlud9tCW1qz1O3Z+rB16ZZ2u+V0oeEh9NQGTjDYjVuyODjQ8mQrEDtBlgsnDXIUoqiYSJY8o5mRfvvHjBLFlmSNdK9m7sz7dY6PNTN3fvM9+t2Hj+787u+O6g8OP6rJbJ45oAFgHqWc9vmopN92zl3nnLtO0u9I+ttgygKwmDoztbf6O6dve2tCdcYtlCvBhXRWXzk7uuwAPOv44Ki+cnZU4+msT5UBQPUoJQQ3OOeOzz5wzj0kqcH3igBcUTxiuuvm9b62+YuvWi+P4RBlNz09o3R+RvuODvjS3r6jA8rkZ5gDGgAuUcoR73Ez22tmG4r//kCFGSMArLKrvJi2da+TF/UntHrROm27aZ1a1jB2tNwuZHM68shTV7wRylJlcjP6h1NP6UI250t7AFAtSjmCvkNSUtIhSZ+TdE3xOQCrLBot3CDhva+7wZf23vu6G9ToRRTlRgtlN5GZ1sGT/t6N/sCJIU1kmPkDAOYqZXaIH0v6zQBrAVCCpnhEt77sGt12Q1IPnV3+2NHbbkjq1pddE9jFdiiNc1rSjVAidaZYpE7Z/IzyM27RZc+dT8stvggA1JwlH/XM7EuSftE592zx8dWSPu2ce11QxQFY2Jp4RNc0xPSevldI0rKC8G03JPWevlfomoaY1sQIwZXgQmb+YQv1daa+zrV6403Xqu2qhLL5GeWmZxStr1MsUqfhZ9M6evqHenDwGU3PE4q5EQoAvFApR71rZgOwVDgzbGZrA6gJwBIlmz1J0t2vealec/01+rMHzi5pLKkXrdN7X3eDOl/crHUt3nPtoPzm67/tm9bpHT+9QU+eTytSX5jBo05SxOy5MW3xSJ3etOla/frWl+nj//KEjpx66pJ2GQ4BAHOVEoJnzKzDOTckSWZ2nSS+YAPKLNnsyUnKTc/o03e/Wl85+4zu+/aTC95a966b1+tnb1irsYtZvXxtIwG4wiSi9c/93BCr1wfv2qREtE6S6WXJBq2JR1RvpvFMTpncjLxonZq9qJJNcU1m8srOON3Zs06v+4kX6/fuO6XJ4l0AvUj9Ap8IALWplBD8fkn/YmZfkWSSXiPp7kCqAlCStc2eGr2Ifnwxp+vXNur9b+zUixrjyk3PPBeUovV1+tHElGac09qmuF6RamQIRAWavWFJQ6xen3j7ZuWnnZJNMa2JRXX4kWEdPDm04B84uzZ3aEdPmxpidRq9kNUn3r5Zb//ESU1mp7kRCgBcopQL475oZjdLuqX41Ludc/8++7qZ/YRz7rt+FwhgadbEIloTi2htQ0yjk1OacdKFTF7Z/LRikcJsEm1XeUo2ecwCUcHqrBBo//COLjXF69WyJq7jg88U5vtdZKjLufNpffCBs/qrL39Pe7d1aevGtRq7OKW/fEuP/vj+AdXR5QDwAuZ8umTYzL7tnLvZl8auoLe31/X396/GRwHAqsrlpnXs7DN6+doGNcVjet/nTy/rznFbNyb1J7/QrYmprL73zKT6OlP88QOg5pjZw8653vle83OPyP1WAWCFotF63dxxtRpj0WUHYKlwy+T3ff60GuJRvarjagIwAFzCz70iF8kBwApNT8/IJH158JllB+BZxwdH9eUzz8iK7QIAnsepAQCoIGOZnHLTTvuODvjS3r6jA8pOO40tMP8wANQqP0Nw1se2AKAm1dVJhx8ZXtJ8z0uRyc3oyKlhLowDgEuUNGeOmXVL2jD3fc65Q8X/b1ngbQCAJbqQntbBk0O+tnngxJDu6F6nqxK+NgsAoVbKbZM/Lqlb0nclzZ6icJIOBVAXANSs+eYBrqT2AKAalHIm+BbnXFdglQAAdCGgsbsTU/lA2gWAsCpllNg3zIwQDAAB8mss8OXtTgfSLgCEVSlngj+lQhB+WtKUCvMCO+dcdyCVAUANSkTrA2nXiwTTLgCEVSkh+GOS/pOkR/X8mGAAgI8avZKuVy57uwAQVqXsFUedc0cCqwQAIDOpvTXh68Vs7a0JGff0BIAXKGVM8HfM7ICZ7TKznbP/AqsMAGpQsiGmXZs7fG1z95YOrW2K+9omAIRdKSE4ocJY4J+X9KbivzuCKAoAalU8FtGOnjZ5UX/ubuFF67R9U5tijAkGgBdY8nAI59zbgywEAFDQ7EW0d1uX3v+Fx1bc1t5tXWpJMB4YAC5Vys0yPEnvlPQTkrzZ551z7wigLgCoWU2JqPo6Uzo2OKLjg6PLbmfrxqT6ulJq9KI+VgcA1aGU79v+TtKLJb1O0lckrZd0IYiiAKDWpVo87d/Zra0bk8t6/9aNSe3f2a1Us3flhQGgBpUSgl/unNsradI5d6+kbZJ+MpiyAACpZk/7f6FbH7jzxiWPEfaidfrAnTcSgAHgCkoZKDZ7L89nzexGSU9LWut/SQCAWakWTzt61um2G9bqyKlhHTgxNO/0ae2tCe3e0qHtPW1q8SIMgQCAKyglBH/UzK6WtFfSEUmNkv4wkKoAAM9p9KJq9KJ6x60b9KZN6+ScNDGVVyY3LS9ar8Z4RGbS2qY4s0AAwBKVMjvEPcUfvyLppcGUAwBYSDwW0foYMz0AgB+WPCbYzFJm9jEz+6fi4y4ze2dwpQEAAADBKOXCuE9KekDSuuLjf5X0br8LAgAAAIJWSgi+xjn3WUkzkuScy0uaDqQqAAAAIEClhOBJM3uRJCdJZnaLpLFAqgIAAAACVMoVFr+twqwQLzWzr0lKSrorkKoAAACAAJUSggckfV7SRRXuFPcFFcYFAwAAAKFSynCIT0naKOl/Svo/kl6hwq2UAQAAgFAp5Uzwjc65rjmPj5vZgN8FAQAAAEEr5Uzwt4sXw0mSzOwnJfX7XxIAAAAQrCueCTazR1WYESIq6etmNlR8fJ2kwWDLAwAAAPy3lOEQdwReBQAAALCKrhiCnXM/WI1CAAAAgNVSyphgAAAAoCoQggEAAFBzCMEAAACoOYRgAAAA1BxCMAAAAGoOIRgAAAA1J/AQbGavN7OzZvZ9M9uzyHJvNjNnZr1B1wQAAIDaFmgINrN6SR+W9AZJXZJ2mVnXPMs1SfotSd8Ksh4AAABACv5M8BZJ33fOPe6cy0r6tKQd8yy3T9KfSsoEXA8AAAAQeAhuk3RuzuMni889x8xultTunDu6WENmdreZ9ZtZ/+joqP+VAgAAoGaU9cI4M6uT9CFJv3OlZZ1zH3XO9TrnepPJZPDFAQAAoGoFHYKHJbXPeby++NysJkk3SnrIzJ6QdIukI1wcBwAAgCAFHYJPSrrezF5iZjFJb5F0ZPZF59yYc+4a59wG59wGSd+UtN051x9wXQAAAKhhgYZg51xe0n+T9ICkM5I+65z7rpn9sZltD/KzAQAAgIVEgv4A59w/SvrHS577wwWWvS3oegAAABCsqWxeo5NZSdKFdF7p3LQS0Xo1JQrRM9kQUzwWeAxdVHk/HQAAAFXjQjqn8Uxehx8Z1sGTQzp3Pn3ZMu2tCe3a3KEdPW1q9iJqSkTLUKlkzrmyfPBK9Pb2uv5+hg0DAABUipGxjI6dGdG+owPK5GauuLwXrdPebV3q60wp1eIFUpOZPeycm3fCBc4EAwAAYEVGxjPa8/nTOj649Hs5ZHIzev8XHtOxwRHt39mtVHMwQXghZZ0nGAAAAOE2MpbRnkOlBeC5jg+Oas+h0xoZX90bBxOCAQAAsCwX0jkdOzOy7AA86/jgqI4NjGgik/OpsisjBAMAAGBZxjN57Ts64Etb+44OaCyd96WtpSAEAwAAoGRT2cIsEFe6CK4xVq/2qxNqjNUvulwmN6Mjp4Y1lV2dIMyFcQAAACjZ6GRWB08OXfZ8IlavP7+rW11tLYqYaTyTUyY3Iy9ap2YvqrxzeuzJZ/Xezz2qdHb6Be89cGJIb9q0TutXYQ5hQjAAAABK5pwumwf4nre+Sp3XtujwI8P6ky8OLjpP8LH3/KzO/HBMv/qph5977dz5tFZr9l6GQwAAAKBkE5nnhy1c15rQ135/q0bGp3T7hx7SBx84O28AlgpB94MPnNXtH3pII+NT+trvb9V1rYnn251iOAQAAAAqVDpXGMpwXWtCn/m1W/W+Zc4TvHVjUp/5tVv1Sx/5un5wPq1MbvrKb/YBZ4IBAABQMi9aiJEH3nVLyQF4ruODo3rf50/rwLtukSTFI6sTTwnBAAAAKFmTF9U9b32VHjo76ss8wQ+dHdXfvvVVavKiPlW4OEIwAAAAlqXz2hZf5wnuurbFl7aWghAMAACAkl29pn5J8wQv1ew8wVevWZ1L1gjBAAAAKNmz6el55wleiQMnhvTsKt01jhAMAACAks03T/BKMU8wAAAAKtrceYJ9bXeV5gkmBAMAAKBk6YDm82WeYAAAAFSsRLQ+kHa9SDDtXooQDAAAgJI1esHM4hBUu5ciBAMAAKBkZlJ7a8LXNttbEzLztckFEYIBAABQsmRDTLs2d/ja5u4tHVrbFPe1zYUQggEAAFCyeCyiHT1t8qL+xEkvWqftm9oUY0wwAAAAKlmzF9HebV2+tLV3W5daEqszHlgiBAMAAGCZmhJR9XWmtHVjckXtbN2YVF9XSo1e1KfKrowQDAAAgGVLtXjav7N72UF468ak9u/sVqrZ87myxRGCAQAAsCKpZk/7f6FbH7jzxiWPEfaidfrAnTeWJQBL0uoNvAAAAEDVSrV42tGzTrfdsFZHTg3rwIkhnTufvmy59taEdm/p0PaeNrV4kVUdAjEXIRgAAAC+aPSiavSiesetG/SmTevknDQxlVcmNy0vWq/GeERm0tqm+KrNArEQQjAAAAB8FY9FtD5W2TGTMcEAAACoOYRgAAAA1BxCMAAAAGoOIRgAAAA1hxAMAACAmkMIBgAAQM0hBAMAAKDmEIIBAABQcwjBAAAAqDmEYAAAANQcQjAAAABqDiEYAAAANYcQDAAAgJpDCAYAAEDNiZS7gEo2lc1rdDIrSbqQziudm1YiWq+mROHXlmyIKR7jV4jKwnpbvaanZ3T+Ylb5GacLmbymctOKR+vV5EUUqTO1rompvp5zGwDKLwzHIo6E87iQzmk8k9fhR4Z18OSQzp1PX7ZMe2tCuzZ3aEdPm5q9iJoS0TJUCjyP9bZ6ZfMzOj+Z1f2nn9K933hiwb5926s36I7udWptiCkWIQwDWH1hOhaZc64sH7wSvb29rr+/P5C2R8YyOnZmRPuODiiTm7ni8l60Tnu3damvM6VUixdITcCVsN5Wr/OTWT14ZkR7Dz+25L7dt+NG3d6ZUmtDbBUqBICCSjwWmdnDzrneeV8jBD9vZDyjPYdO6/jgaMnv3boxqf07u5VqJlBgdbHeVq8fTUxpz+ce1ZfOjJT83td2prT/zTfpRY3xACoDgBeq1GPRYiGY78uKRsaW33mSdHxwVHsOndbIeMbnyoCFsd5Wr/OT2WUHYEn60pkR7fnco/pxcUweAAQlrMciQrAK41eOnRlZdufNOj44qmMDI5rI5HyqDFgY6231yuZn9OCZkWUH4FlfOjOiY2dGlM1f+WtJAFiOMB+LCMGSxjN57Ts64Etb+44OaCyd96UtYDGst9Xr/GRWew8/5ktbew8/pvOcDQYQkDAfi2o+BE9lC1cwLmUA91JkcjM6cmpYU1kCBYLDelu9pqdndP/pp3zt2/tPP6Xpac4GA/BX2I9FNR+CRyezOnhyyNc2D5wYem5uPCAIrLfV6/zFrO79xhO+tnnvN57Q+Yv0LQB/hf1YVPMh2DnNO4fdSpw7n1YIJ91AiLDeVq/8jAukb/MzdC4Af4X9WFTzIXgiE8wp94kpvlZGcFhvq9eFoPo2oHYB1K6wH4tqPgSnc9OBtJsJqF1AYr2tZlMB9cEUM0QA8FnYj0U1H4IT0fpA2vUiwbQLSKy31SweUN9yG2UAfgv7sajm94qNXiRU7QIS6201awqoD4JqF0DtCvuxqOZDsJnU3prwtc321oTMfG0SeAHW2+oVqbNA+jZSR+cC8FfYj0U1H4KTDTHt2tzha5u7t3RobVPc1zaBuVhvq1frmpje9uoNvrb5tldvUGsDfQvAX2E/FtV8CI7HItrR0yYv6s+vwovWafumNsUYW4kAsd5Wr/r6Ot3Rvc7Xvr2je53qORMMwGdhPxbVfAiWpGYvor3bunxpa++2LrUkGHuH4LHeVq/Whpj27bjRl7b27bhRrQ0xX9oCgEuF+VhECJbUlIiqrzOlrRuTK2pn68ak+rpSavSiPlUGLIz1tnrFInW6vTOl13amVtTOaztT6utMMTMEgMCE+VjEnrEo1eJp/87uZXfi1o1J7d/ZrVSz53NlwMJYb6tXa0NM+99807KD8Gs7U9r/5pt0NWeBAQQsrMcicyG8T2pvb6/r7+8PpO2RsYyOnRnRvqMDyuSuPLm8F63T3m1d6utKESRQNqy31ev8ZFYPnhnR3sOPLblv9+24UX2dKQIwgFVVicciM3vYOdc772uE4MtNZHIaS+d15NSwDpwYmve+2O2tCe3e0qHtPW1q8SJ8lYyyY72tXtn8jM5PZnX/6ad07zeeWLBvf+XWDdp20zq1NsQYAgGgLCrtWEQIXqapbF6jk1k5V7iPdSY3LS9ar8Z4RGbS2qY4V9Oj4rDeVq/p6Rmdv5hVfsZpIpPXVH5G8UidGr2IInWm1oY4s0AAqAiVcixaLARzOfgi4rGI1sf4FSFcWG+rV319nZJNxa8MW8pbCwAsJgzHosquDkDJZv/6lqQL6bzSuWklovVqKk47k2yIKV7hOybMLz2V048u5iTN37cvWhNVIs4QFwBYCo6EQJW4kM5pPJPX4UeGdfDkwuOwdm3u0I6eNjV7ETUlCExh8OzFrCanppfctw3xel21hoviAGAxjAkGqsCyr8jtTCnVwuwQlezpsYweXEbf3t6Z0ovpWwA1jgvjgCo2Mp7RnkOndXxwtOT3Mk9wZaNvAWBlFgvBzKEDhNjI2PJDkiQdHxzVnkOnNTKe8bkyrNTT9C0ABIoQDITUhXROx86MLDskzTo+OKpjAyOayOR8qgwr9ezFwg0y/OrbsYtZnyoDgOpBCAZCajyT176jA760te/ogMbSeV/awspNTk372rcTU9O+tAUA1YQQDITQVLYwC8RSLpRaikxuRkdODWsqSxAut/RULpC+TU9xph8A5iIEAyE0OpnVwZNDvrZ54MTQc/MLo3x+dDEXSN/Ozi8MACggBAMh5JzmnSt2Jc6dTyuEk8VUHfoWAFYHIRgIoYlMMMMWJqYYDlFu9C0ArA5CMBBC6VwwFzplAmoXS0ffAsDqIAQDIZSI1gfSrhcJpl0sHX0LAKsj8BBsZq83s7Nm9n0z2zPP679tZgNmdtrMHjSz64KuCQi7Ri8SqnaxdPQtAKyOQEOwmdVL+rCkN0jqkrTLzLouWew7knqdc92S7pP0wSBrAqqBmdTemvC1zfbWhMx8bRLLQN8CwOoI+kzwFknfd8497pzLSvq0pB1zF3DOHXfOXSw+/Kak9QHXBIResiGmXZs7fG1z95YOrW2K+9omSveiNdFA+jbZSN8CwFxBh+A2SefmPH6y+NxC3inpn+Z7wczuNrN+M+sfHV3ZrUSBsIvHItrR0yYv6s8m7EXrtH1Tm2KMGy27RDwaSN/GAxprDABhVTEXxpnZL0vqlfRn873unPuoc67XOdebTCZXtzigAjV7Ee3ddunoouXZu61LLQnGjFaKhni9r33bGCcAA8Clgg7Bw5La5zxeX3zuBcysT9L7JW13zk0FXBNQFZoSUfV1prR148r+KNy6Mam+rpQavahPlWGlrloT0+0+9m3LmphPlQFA9Qg6BJ+UdL2ZvcTMYpLeIunI3AXM7JWSPqJCAH4m4HqAqpJq8bR/Z/eyw9LWjUnt39mtVLPnc2VYqRfTtwAQKHMB30vTzN4o6S8l1Uv6uHPuA2b2x5L6nXNHzOyYpJsk/bD4liHn3PbF2uzt7XX9/f2B1g2EychYRsfOjGjf0QFlcjNXXN6L1mnvti71daUISRXu6bGMHqRvAWBZzOxh51zvvK8FHYKDQAgGLjeRyWksndeRU8M6cGJI586nL1umvTWh3Vs6tL2nTS1ehCEQITF2MauJqekl921jrJ4hEAAgQjBQU6ayeY1OZuWcNDGVVyY3LS9ar8Z4RGbS2qY4s0CEVHoqpx9dzC3Yt8nGOLNAAMAci4VgLgcHqkw8FtH6GJt2NUrEo1of5+w9APiBI+UiZs+oSdKFdF7p3LQS0Xo1FaeSSjbEFCdsoMKw3lYv+hZAWIRhf8Xech4X0jmNZ/I6/MiwDp5cePzdrs0d2tHTpmYvoqYEZ2dQXqy31Yu+BRAWYdpfMSb4Esu+yr4zpVQLV2KjPFhvqxd9CyAsKnF/xYVxSzQyntGeQ6d1fLD02zIzJyfKhfW2etG3AMKiUvdXi4XgirltcrmNjC2/8yTp+OCo9hw6rZHxjM+VAQtjva1e9C2AsAjr/ooQrML4lWNnRpbdebOOD47q2MCIJjI5nyoDFsZ6W73oWwBhEeb9FSFY0ngmr31HB3xpa9/RAY2l8760BSyG9bZ60bcAwiLM+6uaD8FT2cIVjEsZwL0UmdyMjpwa1lSWgw6Cw3pbvehbAGER9v1VzYfg0cmsDp4c8rXNAyeGnpsbDwgC6231om8BhEXY91c1H4Kd07xz2K3EufNphXDSDYQI6231om8BhEXY91c1H4InMsGccp+Y4qtHBIf1tnrRtwDCIuz7q5oPwencdCDtZgJqF5BYb6sZfQsgLMK+v6r5EJyI1gfSrhcJpl1AYr2tZvQtgLAI+/6q5kNwoxcJVbuAxHpbzehbAGER9v1VzYdgM6m9NeFrm+2tCZn52iTwAqy31Yu+BRAWYd9f1XwITjbEtGtzh69t7t7SobVNcV/bBOZiva1e9C2AsAj7/qrmQ3A8FtGOnjZ5UX9+FV60Tts3tSnG+DsEiPW2etG3AMIi7Purmg/BktTsRbR3W5cvbe3d1qWWBGPvEDzW2+pF3wIIizDvrwjBkpoSUfV1prR1Y3JF7WzdmFRfV0qNXtSnyoCFsd5WL/oWQFiEeX9FCC5KtXjav7N72Z24dWNS+3d2K9Xs+VwZsDDW2+pF3wIIi7Dur8yF8F6avb29rr+/P5C2R8YyOnZmRPuODiiTm7ni8l60Tnu3damvK8XBBmXDelu96FsAYVGJ+ysze9g51zvva4Tgy01kchpL53Xk1LAOnBia977Y7a0J7d7Soe09bWrxInzdiLJjva1e9C2AsKi0/RUheJmmsnmNTmblXOE+1pnctLxovRrjEZlJa5viXHGNisN6W73oWwBhUSn7q8VCMJcMLyIei2h9jF8RwoX1tnrRtwDCIgz7q8qursxm/4qRpAvpvNK5aSWi9WoqTt+RbIgpXuEdDAAAsNrCkKFIcPO4kM5pPJPX4UeGdfDkwuNZdm3u0I6eNjV7ETUlGH8HAABqW5gyFGOCL7HsKxs7U0q1cCU2AACoTZWYobgwbolGxjPac+i0jg+Olvxe5uQEAAC1qlIz1GIhmJtlFI2MLb/zJOn44Kj2HDqtkfGMz5UBAABUrrBmKEKwCuNXjp0ZWXbnzTo+OKpjAyOayOR8qgwAAKByhTlDEYIljWfy2nd0wJe29h0d0Fg670tbAAAAlSzMGarmQ/BUtnAF41IGcC9FJjejI6eGNZUlCAMAgOoV9gxV8yF4dDKrgyeHfG3zwImh5+bGAwAAqEZhz1A1H4Kd07xz2K3EufNphXDSDQAAgCULe4aq+RA8kQnmlPvEFMMhAABA9Qp7hqr5EJzOTQfSbiagdgEAACpB2DNUzYfgRLQ+kHa9SDDtAgAAVIKwZ6iaD8GNXiRU7QIAAFSCsGeomg/BZlJ7a8LXNttbEzLztUkAAICKEvYMVfMhONkQ067NHb62uXtLh9Y2xX1tEwAAoJKEPUPVfAiOxyLa0dMmL+rPr8KL1mn7pjbFGBMMAACqWNgzVM2HYElq9iLau63Ll7b2butSS4LxwAAAoPqFOUMRgiU1JaLq60xp68bkitrZujGpvq6UGr2oT5UBAABUrjBnKEJwUarF0/6d3cvuxK0bk9q/s1upZs/nygAAACpXWDOUuRDe37e3t9f19/cH0vbIWEbHzoxo39EBZXIzV1zei9Zp77Yu9XWlCMAAAKBmVWKGMrOHnXO9875GCL7cRCansXReR04N68CJoXnvi93emtDuLR3a3tOmFi/CEAgAAFDzKi1DEYKXaSqb1+hkVs4V7mOdyU3dV5ZjAAAHe0lEQVTLi9arMR6RmbS2Kc4sEAAAAJeolAy1WAhmGoNFxGMRrY/xKwIAAChFGDIUF8YBAACg5hCCAQAAUHMIwQAAAKg5hGAAAADUHEIwAAAAag4hGAAAADWHEAwAAICaQwgGAABAzQnlHePMbFTSDwL8iGsk/XuA7aO86N/qRd9WN/q3utG/1a1c/Xudcy453wuhDMFBM7P+hW6xh/Cjf6sXfVvd6N/qRv9Wt0rsX4ZDAAAAoOYQggEAAFBzCMHz+2i5C0Cg6N/qRd9WN/q3utG/1a3i+pcxwQAAAKg5nAkGAABAzSEEAwAAoOYQgucws9eb2Vkz+76Z7Sl3PVgZM2s3s+NmNmBm3zWz3yo+32pmXzKz7xX/v7rctWL5zKzezL5jZvcXH7/EzL5V3I4/Y2axcteI5TGzq8zsPjMbNLMzZvZqtt/qYWbvKe6bHzOzg2bmsf2Gl5l93MyeMbPH5jw37/ZqBX9V7OfTZnZzOWomBBeZWb2kD0t6g6QuSbvMrKu8VWGF8pJ+xznXJekWSf+12Kd7JD3onLte0oPFxwiv35J0Zs7jP5X0F865l0v6saR3lqUq+OF/S/qic26jpE0q9DPbbxUwszZJvymp1zl3o6R6SW8R22+YfVLS6y95bqHt9Q2Sri/+u1vS36xSjS9ACH7eFknfd8497pzLSvq0pB1lrgkr4Jz7oXPu28WfL6hwAG1ToV/vLS52r6Q7y1MhVsrM1kvaJume4mOT9HOS7isuQv+GlJm1SPoZSR+TJOdc1jn3rNh+q0lEUsLMIpLWSPqh2H5Dyzn3VUnnL3l6oe11h6RPuYJvSrrKzK5dnUqfRwh+Xpukc3MeP1l8DlXAzDZIeqWkb0lKOed+WHzpaUmpMpWFlftLSb8naab4+EWSnnXO5YuP2Y7D6yWSRiV9ojjc5R4zaxDbb1Vwzg1L+l+ShlQIv2OSHhbbb7VZaHutiMxFCEbVM7NGSZ+T9G7n3Pjc11xhjkDmCQwhM7tD0jPOuYfLXQsCEZF0s6S/cc69UtKkLhn6wPYbXsWxoTtU+GNnnaQGXf5VOqpIJW6vhODnDUtqn/N4ffE5hJiZRVUIwH/vnDtUfHpk9muX4v/PlKs+rMhPSdpuZk+oMHzp51QYQ3pV8etVie04zJ6U9KRz7lvFx/epEIrZfqtDn6R/c86NOudykg6psE2z/VaXhbbXishchODnnZR0ffHK1JgKA/SPlLkmrEBxfOjHJJ1xzn1ozktHJL2t+PPbJB1e7dqwcs659znn1jvnNqiwvX7ZOfcfJR2XdFdxMfo3pJxzT0s6Z2Y3FJ+6XdKA2H6rxZCkW8xsTXFfPdu/bL/VZaHt9YiktxZnibhF0ticYROrhjvGzWFmb1RhjGG9pI875z5Q5pKwAmb205L+WdKjen7M6H9XYVzwZyV1SPqBpP/gnLt0MD9CxMxuk/S7zrk7zOylKpwZbpX0HUm/7JybKmd9WB4z61HhoseYpMclvV2Fkzdsv1XAzP6HpF9SYSaf70j6VRXGhbL9hpCZHZR0m6RrJI1I+iNJX9A822vxD5+/VmEIzEVJb3fO9a96zYRgAAAA1BqGQwAAAKDmEIIBAABQcwjBAAAAqDmEYAAAANQcQjAAAABqDiEYAAAANYcQDABlYGbbzWzPlZe87H0bzOyxAOq5zcxunfP4k2Z212LvAYAwi1x5EQCA35xzR1RZd6W8TdKEpK+XuQ4AWBWcCQYAnxXP1g4Wz6b+q5n9vZn1mdnXzOx7ZrbFzH7FzP66uPwnzeyvzOzrZvb4Us/Amlm9mf2ZmZ00s9Nm9mvF528zs4fM7L5iHX9fvEOTzOyNxeceLn7m/Wa2QdJ/lvQeM3vEzF5T/IifubQmM7vWzL5aXO6xOcsCQKgQggEgGC+X9OeSNhb/7Zb005J+V4Xbd1/q2uLrd0jav8TPeKekMefcZkmbJb3LzF5SfO2Vkt4tqUvSSyX9lJl5kj4i6Q3OuVdJSkqSc+4JSf9X0l8453qcc/+8SE27JT3gnOuRtEnSI0usFQAqCsMhACAY/+ace1SSzOy7kh50zjkze1TShnmW/4JzbkbSgJmllvgZPy+pe86Z4xZJ10vKSjrhnHuy+PmPFD9zQtLjzrl/Ky5/UNLdi7Q/X00nJX3czKLF1wnBAEKJM8EAEIypOT/PzHk8o/lPQMxd3pb4GSbpN4pnb3uccy9xzv2/edqbXuAzr+SympxzX5X0M5KGJX3SzN66jHYBoOwIwQAQXg9I+i/Fs7Iys1eYWcMiy5+V9NLiGGBJ+qU5r12Q1HSlDzSz6ySNOOf+VtI9km5eRt0AUHYMhwCA8LpHhWEO3y5e+DYq6c6FFnbOpc3s1yV90cwmVRjaMOsfJN1nZjsk/cYin3mbpPeaWU6F4RWcCQYQSuacK3cNAIBVYmaNzrmJYmj+sKTvOef+otx1AcBqYzgEANSWdxUvlPuuChfSfaTM9QBAWXAmGAAqkJndJOnvLnl6yjn3k+WoBwCqDSEYAAAANYfhEAAAAKg5hGAAAADUHEIwAAAAag4hGAAAADXn/wMiR2T9Hjh02wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zV1Z3v/9fa950bGEgiCcE7SSgERpGiVgXB2haFqrRVZ9rai/Scdto5tsOotfS0ZTpVrNrT+c30VMd2WmdQZ7witIWCRK2XAnokIiSotHI1BAIJSfZ9r98fSWiAAEn4fnd23O/n48FD9u3DihvW/uz1/azPMtZaRERERERyiWeoByAiIiIikmlKgkVEREQk5ygJFhEREZGcoyRYRERERHKOkmARERERyTm+oR7AYIwePdqeeeaZQz0MEREREclir7322j5rbUlfjw3LJPjMM89kw4YNQz0MEREREclixpj3jveYyiFEREREJOcoCRYRERGRnKMkWERERERyjpJgEREREck5SoJFREREJOcoCRYRERGRnKMkWERERERyjpJgEREREck5w/KwDBGRXBSLJ2nuiANwKJIkkkgR9nspDHdN5SX5AYIBTesiMvSGw3yl2VJEJMsdiiRoiyZ55o1dPLJ+OztaIsc8p7I4zI0XjmPelAqKQj4Kw/4hGKmI5LrhNF8Za+2Q/MGnYurUqVbHJotILmhqjbJ6SxOLV2wmmkif9Pkhv4dFcyYwu6aMshGhDIxQRKRLNs5XxpjXrLVT+3xMSbCISHZqaoty+5P1rG1oHvBrZ1aXcNd1tZQVKREWEfdl63x1oiRYG+NERLJQU+vgP1AA1jY0c/uT9TS1RR0emYjIkYbrfKUkWEQkyxyKJFi9pWnQHyg91jY0s3pzE+3RhEMjExE50nCer5QEi4hkmbZoksUrNjsSa/GKzbRGko7EEhE52nCer5QEi4hkkVi8a1d1fzaV9Ec0kWbZxl3E4kqERcRZw32+cjUJNsb8whiz1xiz6TiPG2PMT40x7xhj6o0x57s5HhGRbNfcEeeR9dsdjbl03fbD/TpFRJwy3Ocrt1eC/x342Ake/zhwXvevBcDPXB6PiEhWs5Y++2qeih0tEYZhIyARyXLDfb5yNQm21r4AtJzgKfOAX9surwIjjTFj3ByTiEg2a4+6cxmwPaZyCBFx1nCfr4a6JrgC2NHr9s7u+45hjFlgjNlgjNnQ3HxqOxBFRLJVJJFyJW7UpbgikruG+3w11Elwv1lrH7DWTrXWTi0pKRnq4YiIuCLs97oSN+RzJ66I5K7hPl8NdRK8C6jsdXts930iIjmpIOQbVnFFJHcN9/lqqJPgZcDnurtETAdarbV7hnhMIiJDxhioLA47GrOyOIwxjoYUERn285XbLdIeAV4BqowxO40xXzLG/A9jzP/ofspvgG3AO8CDwFfdHI+ISLYryQ9w44XjHI1507RxlBYGHY0pIjLc5ytX15uttTee5HELfM3NMYiIDCfBgI95Uyr46XNvO9KAPuT3MHdyBQHVBIuIw4b7fDXU5RAiInKUopCPRXMmOBJr0ZwJjAirHlhE3DGc5yslwSIiWaYw7Gd2TRkzq0+tE87M6hJmTyijIOR3aGQiIkcazvOVkmARkSxUNiLEXdfVDvqDZWZ1CXddV0tZUcjhkYmIHGm4zlfGDsOzNKdOnWo3bNgw1MMQEXFdU2uU1VuaWLxic79q7kJ+D4vmTGD2hDIlwCKSUdk4XxljXrPWTu3zMSXBIiLZrT2aoDWSZNnGXSxdt50dLZFjnlNZHOamaeOYO6WCESGfSiBEZEj0NV8VBLyclh/gQEec9ngqo/OVkmARkQ+AWDxJc0cca6E9liSaSBHyeykI+jAGSguD6gIhIlkhEkuwvzMBwKFIkkgiRdjvpbB749uoPD/hoPtf1k+UBGvL8AlEYwn2neANHJ3nJ5SBN1BEBLraEY0NaNoWkex1KJKgLZrkmTd28cj641+5uvHCccybUkFRyEdheGhyKa0E96G1M057LNXvN7Ag6GVEXsC18YiIiIhku0HXBNeUUTZCNcH94mYS/H5rlDWDeANn1ZRxuktvoIiIiEg2a2qLcvuT9axtaB7wa93sDnGiJFgt0nppaotyx1P13Pn0pn6ffBJNpLnz6U3c8VQ9TW1Rl0coIiIikl2aWgefAAOsbWjm9iczn0cpCe72/jB9A0VERESGyqFIgtVbmgadP/VY29DM6s1NtEcTDo3s5JQE01UDvMahN3DNlibaInGHRiYiIiKSvdqiSRav2OxIrMUrNtMaSToSqz+UBAPtsZRjb+APlm/mUDTlSCwRERGRbBWLd3WB6G8J6clEE2mWbdxFLJ6ZRDjnk+BoLMEzG51/A6OxzC3ni4iIiGRac0ecR9ZvdzTm0nXbae7IzBX1nE+C93UmeGSd829gT39hERERkQ8ia+mzjeyp2NESIVONy3I+CR7ub6CIiIjIUGiPulO20B7LTDlEzh89NNzfQJGjpVJpWjrjJNOWQ9EkiWQKv89LYciHz2Mozgvg9eb8918RETlFkYQ7e6CiLsU9Ws4nwcP9DRTpEU+maemIU7/jIGksowuCxJNp4sk0AZ+HtkiCfe0xDDC58jSK8wMEfEqGRURkcMJ+rytxQz534h4t5z8BQ353/hcElVxIBrV0xFn3p/283xYlmvzLFzALpKyld3VONJHm/bYo6/60n5YMbT4QEZEPnoKQO2upbsU9Ws6vBBeG/MMqrsjR9rfH2Np0iGgiRUHIz7Z9HTzx+s4+a90ri8Ncf/5YzhidTzSRovH9NsaXFTKqIDgEIxcRkeHMmK7PFSf3VlUWhzHGsXAnlPPLlT1voJMy+QZKbmvpiLPnYNdGzPdaOrnhgVf4yeq3jzsh7WiJ8JPVb3PDA6/wXksn1sKegxEOaEVYREQGqCQ/wI0XjnM05k3TxlFamJmFmZxPgovCXlfewKJwzi+yi8viyTT72qOkLDzw4jYWL9/S737X0USaxcu38MCL20hZaG6PEk860ytbRERyQzDgY96UCsdKS0N+D3MnVxBQTXBmtEVSXHreaEffwI+cO5q2DB77J7mptTNOImW5f/VW6hoHd+R3XWMz96/eSiJlae3UarCIiAxMUcjHojkTHIm1aM4ERmRwETHnk2Br4cEX/8TCq6ocibfwqioeeGGb+gSLq1KpNNFUmj9u2z/oBLhHXWMzf9y2n1gyTSql1WAREem/wrCf2TVlzKwuOaU4M6tLmD2hjIIM7qnK+ST4UDTBso27Ob0ozIyqU3sDZ1SVcHpRmGfr96hPsLiqNZoglkizZGWjI/GWrGwkmkzTGtVJhyIiMjBlI0LcdV3toBPhmdUl3HVdLWVFIYdHdmI5nwT31FD+w+MbWXDZ2YNOhGdUlbDgsrP5h8c3dsdVn2BxTzKdZuVb7/e7Bvhkook0q956n6RWgkVEZBDKikLcdW0tP/zkxH6XmIb8Hn74yYlDkgCDWqQdbvTcEU9xy682sGT+ZC49bzT3rGzsV4IR8ntYeFUVpxeFueVXG+iIdyW/mWr0LLkplrA8un67ozEfWb+dayaXOxpTRERyR9mIEPOmlDOjqpRlG3exdN3247brvGnaOOZOqWBEyJfREojecj4J7t2QuSOe4mtLX+ea2jE8est0nt/azOMn6Lc6//yxXD6+hIf+8Ceerd9y3LgibnCyL6Mb8UREJPcUhPwUhPzcfNEZXDO5HGvpKhG1KTBeCoI+jOlqrxYMDG2upEyNYxs9P1u/h99sep9Z1aX8/UerKB8ZJpFKE02kCfk9+L0edh+MsLx+Dz997h1SaXtMPBE3uVVz3qFa9qwWiydp7u7pfCiSJJJIEfZ7KezeTZ0NHyoiktsORRK0RZOkbRowGAPWWqIJCPlt921oOhTD60lQFPJRGNZK8JDIC3q4cdo4lvzuyA1GqbRl1eYmVm1uAsDnMQR8HuLJNMn0iVs/3DRtHPlBlUOIe2Iu1ZzH1Cs4K/V8qDzzxi4eWX/8y4s3XjiOeVMqhvRDRURyV1NrlHgyicfjZUX9+/znuveOO1/99bSuleKDnTE64ynKRmS+JjjnN8ZF4mnmTi4/aRF3Mm3pjKdOmgCH/B6umVxOZ1wb48Q9QZdqzgPenJ8Ssk5Ta5RlG3cz6746lqxsPOFpgEtWNjLrvjqWbdxNU2s0wyMVkVy2vy2KxfKHd1qYdV8dd/2u4YTz1V2/a2DWfXX84Z0WLJb9bZmfs3L+E68o7OX91qhzjZ6vnsD7rVFGaBVGXJTn0pUGt+LK4DS1Rbn9qXrufHrTgE4DvPPpTdz+VD1NQ/ChIiK5Z39rlCRw51ObuOOpNwc0X93x1Jvc+dQmkpDxRDjnk+ADHUnGjAjz4bNHOdLoefpZoxgzIkxLh07fEnc5XXuuWvbs0tQa5fYn61nbMLjDUNY2NHP7k0qERcRdhyIJEli+/eSbrGnYO6gYaxr28u0n3yRpoT2D/epzPgkG6Iwn2Lj9AD+YO/GUGj3/YO5E3th+gI64DhwQd4X8Hq4/f6yjMeefP/Zwy0AZWociCVZvaRp0AtxjbUMzqzc3ZfRDRURySzyVoq6xedAJcI81DXup27qXWDJz5aQ5nwR3xJKEAz6mnzOKe1c18O2P1wyq0fO3P17DvasamH7uKPICPtUEi6tSacus6tJ+/z09mZDfwxXVpSeteZfMaIsmWbxi8wmf4/MY8gJefB5zwuctXrGZ1oi6foiI82LxJLGk5XvPvuVIvP+97C1iSUssnpk5K+e7Q4wM+3n6jd08tn47j33lYu54qp6PnDOa3996Ocvrd5+00fPVteWseut9/um3W/jRtbV85ucvc8O0ccydXDEEP43kCp/XsKc1ysKrqli8fMvJX3ASC6+qYk9rdEhO7JEjxeJdXSCOrqnzegyza0r5xKQxVIwME0+miSfTBHweAj4Puw5GWFG/hzUNe49o2xhNpFm2cRdfvPhMtU8TEUfF0imW1+929PTS5fW7uWHaWIIZSFFzfkZMWQ63HPrMz19m6S3TqWtsZs4/v8iCS8/m55+9gLyAj45Y8nCf4Pygj854kue27GXOP7/IbVdV84/zJvKZn7/Mey0Rlq7bztW1OnlL3OPzeKgeU0QqbZlRVUJd4+Avm8+oKqF8RJjqMUX4vCdeVRT3NXfEeeSo0wDnTi7ni5ecyfaWTgK+rtV/C6SspSfdDfo8zJk0hq/OOIdfvPRnlm3cffj1S9d1nQY4VkmwiDjoUDTFw6++52jMh199jzmTxpCJNRnNiPzlpKz3WiJccvdaHvzcBfz2G5exbOMuvvLwa+xoiRDyeSgI+WiPJokm04dXgn/7jcvYvKeVS+5ee0w8EbeMCPnpiKfojCdZcNnZAINKhGdUlbDgsrPZczCCBxgRDjg8Uhkoa/8yh+QHvCyZP5mgz4AxbNvXwRPdp1ge3bu8sjjM9eeP5YzR+cydPIarPnQ6//D4RjriKXa0RLCqdBERh6XT7pxemqnKvJxPgtujx9ad3PLr1wgHvNxz/SQe/tKH8RpDeyxJNJEi5O868i9lLZt2HmT2/c8T6aP+160TvUQAvF4PIa+HCeUj+P+ee5tPXVDJpeeN5p6Vjf26LBXye1h4VRWnF4X5z1ff42+vOI+gz4P3JPWl4r6eOSk/4OWhmy8knbZseb+Nv3vsDT5y7mj+/qNVVIwME0umiSVTBH1egr3KIR58cRvfvHI8NacX8dDNF/Klf19PRzylOUlEHOfWKaMdqgnOjMhxTt6KJ9M8W7+HlIWKkWGSyTSptCUWT9ERSx7+wIkf54StqEsneon0yA/6ONAZ53/OOJefrN5K2O/l0Vum8/zWZh7vXi08WmVxmPnnj+Xy8SU89Ic/EUns53/NHo/XA/mhnJ8OskLPnHTvp6cQ9nu5f/VWikJ+/vPLH+bFt/fx41V9H5hRWRzm01Mr+erMc/jFH/7Mi2/v49bZ47n301P4H//xmuYkEXHc8XKoUxXNUHOBnP/U62t3fU/9Xd3W5hN+4Fx//tg+6++gqz5PxE2ReBIMYC1fvOQs/rSvg79+6I9cck7XamH5yDCJVPpwLbvf62H3wQjL6/fwwIvb+PbHazhrdH7X9XcMnbEkeaoZHXJhv5e5k8upLA7zz2u6Vvn3t8e44YFXT7jKv6Mlwr2rtvIva9/h2x+vYVRBkJ/VvcPXZ53HNbVjCLl0yqCI5C63cp1AhnKonP/EKwz95WS3nvq799si3PDgyT9wfrL6bf7v8++y8KqqI+rvjo4r4rRUKk0kmWZHS4TTi4IAlBYFWfrl6bz87l9WC/uqG71p2jj+dua57D3UdYiCMV1/n/MCPlKpNF4dnTykCkI+vnHFOby8bT83X3IWD76wbUD9N6OJNN9d9hazqku55bKzee29Fr4x61xC/pyf7kXEYQUuXUF0K+7RNCvStarb0h7nwc9P5YEXtg1og1E0kWbx8i3MqCrhwc9P5ZZfbaC4QJuLxF2H4gne3NnKgc4E33jk/7Fk/mTyAh4sUDEizJ2f6FoJTKT+0kbL7/Wwvz1GLJnG0tVn9kBnglt+vYHvzJlAPJWmIORlZDg41D9eTgv6DbGkh9OLwgNOgHvred1nLqzEGE/X5joREQcZDJXFYUc3x1UWhzFkZr7K+SWfcMDDjReOY8n8yQNOgHura2zmgRe2sWT+ZG6aNo5wQJcexT3t0RTnlBbwg+Vv0RFP8bWlr/Pk67sAi6fXv2pD1yTVezrp6oJmefL1XXxt6et0xFN8f/lbnFNSQHtUdaNDzWsMDXta2dced+QEpv3tcRreb9UKv4g4LuT3MN/h00s/dUHmTi/N+VkxmbJcf8FY3m+LnFKvVehKhN9vi3D9+WNJpZ1pHC3SF7/XUNe494iSnWfr93D9z15h2cY9xHpt2OydAMeSaZ7Z2PW8Z+v3HL4/mkhT17gXv/oED7lIIs3404v4wXJnTmD6/vK3GF9W1GcXGxGRUzEy5OfqyeWOnl46p7acEXmZKSnN+XIIa7uOoL1nZaMj8e5Z2cjHPjQGdZoSN8WTts8G5am0ZdXmJlZtbgI4pib4RB5+9T0+PnGMK+OV/vN5DWsb9jp6AlNd417mTtEBPiLiLH9321gnTy8tDPrwZ+jKVc6vBAf8ps8jSger54jSgF9ZsLirPzVYybSlM546aQLc33jivkTS8h9/dP4EpkRSp2WIiPMKgz4uOWc0M6pKTinOjKoSLjl3dMY2xYGSYDpj6WOOKD1VS9dtpzOmcghxz3BvUC4n5sYJTCIibsgL+hiVH+DW2eMHnQjPqCrh1tnjGZUXyGirzpwvhwB94Mjw41qDch2oMOT0BUdEhpuSohAWWHDp2YM6vbTm9CLGjAhRUhRyf7C95HwSfCiacCWujigVN7nWoFwdBIacvuCIyHDT0hFn36EoY0aGSaYsjy64iOcb95789NKqUtoiCcpHhtl3KIrf6+G0/My1mc35JNipWuBj4+oDR9xTEHSpQblLcaX/9AVHRIaTeDLN3kNRlqzaSl1jM4vm1PDRD53O+LLCI3rW9z69dH97DGthVH6A1/7cwud+sY4ZVSXc/vFq8oO+jJ0Yl/Ozolu96HREqbjJmK4G5U6qLA5jjDZ0DrXhfgKTiOSW1s44L72z73Cb2cUrtjDrvud5t7mdcaPyKCkMMjLspzjPz8iwn5LCIONG5fFuczuz7nuexSu6ukrUNTbz0jv7aO2MZ2zsOT8r6gNHhqOAzzD//LHcv/ptx2J+6oKxrq1CSv8N9xOYRCR3pFJp2mLJY9rMxpNpfrxqKz9etRWAkM9DQchHezRJNHn8K/D3rGxkRlUpxal0Rg74yflPPI/BlRU1T87/nxU3pdMwp9bZBuWfmFROqh+t1MRdQb9x5QQmfcEREae1RhMs37j7pKWl0WSafe3xEybA0FWiuqJ+N60u7dc6Ws7PiqUFQW6cNs7RmDdNG0dpYWZ3OEpu8Xi6akcXXlXlSLyFV1UR8nnw6pSXIef1GMe/4MyZVI5PpwGKiMM64ykef32nozH/+7WddGbohMucT4L9fi/zplQ4+oEzd0pFxk47kdzUk6tOP3vUCfsy+jyGvIAX3wmS2xlVJUw/exQWMEYrwUOtM5YmP+h19AtOfsBLR0ybdUXEWWlrXWkzm7aZ+SxS4SpwWtjPoqsncOdTm0451nevnsBpGTrzWnJXImV5+d19TKkcya2zxwNdmwq8HsPsmlI+MWkMFSPDxJJpookUIb+XoM/DroMRVtTvYU3DXlJpe7hBuc9jeOmdZi4bXzrEP5l0xJK8/O4+Lu4+galns8lgzKgq4eJzRrPizT1cct5oB0cpIgLtUXfawbZn6Eu7kmC6Tju5sqaM1VuaWNsw+A+cmdUlzK4py+hpJ5KbUmmoKiukMOgjnoyz4NKz+dz0MyguCFLXuJcfr2o8bm/G688fy1dnnktLe4yQ34vHQGHIR/XpRaoJzgKRRIofLN/C6m9edsQXnIHq+YLj9xoWr9jC01+72OmhikiOi52kxnew4hlqM6tr9t1Ki0LcfV0tM6sHd+TfzOoS7r6ultIMn3YiuSmdtsSSaV58ex+JVIqzS/JpaotxwwOv8JPVbx/38tSOlgg/Wf02NzzwCk1tMc4uySeRSvHi1n3Ek6mMXYKS4+vZwHbjA68yKj/AgkvPZtHVNf0u2Qr5PSy6uoYFl57NqPwANz7wKqA+wSLiPNfazLoU92iaFXvpSYR/eO3EAX3g/NO1E5UAS0alrKV8ZJiHXtpG+ch87njqTe546s1+H/4STaQPv6Z8ZD4PvbSNMSPztBKcBXraKza3x7n2X1+ipDDIuSUFPLrgIm6dfd5xu9lUFoe5dfZ5PLrgIs4tKaCkMMi1//oSze3xI+KKiDgl36UDltyKezTNikcpLQpx7V9VMKOqlGVv7GLpuu3Hvax807RxzJtSwcg8v0ogJKOKwj7+a/1OfnnzNO54qn7QZTxrG5q546l6fnnzNJZt3M2npjrbmksGrnef4Ob2OFfe/8LhE5jOKy044QlMaWsPn8D0+V+uPxxTfYJFxA1ejzt9zU+0mdtJytz6kBfwkRfw8eVLzmLelHLSFg5Fk4c3GBWGfHgMlBSG1AVChkQknmZSxQjqGptPqY4duhLhuupmJpYXEYm7U98l/efv4yCUxSu2cPfKRr5xxblcUVNKXsBHRyxJ2J8m4POQH/SRH/Ty3Ja9/K/HNhI/qk7vUxeMJeBTEiwizirJD/DZ6WfwT79pcCzmZ6efwejCoGPxTsTYYVgDOHXqVLthw4ahHobIkNnR0onHGGbdV9fvEogTCfk9rPnmDNLWUlmc58AIZbDeb43QHktx9T+/eML3tr8nMIX8HlZ8/VIKgl7KRjh7MJCIyO6DEa6417nPoue+NYPykc7NVcaY16y1U/t6TMuYIsNQ2O/hmTd2OTLpQFeN8LKNuwgHNCUMtWTa9qtPcH9PYOrpE5xQvbeIuGBk2M/35n7IkVjfn/shRmawzaw+8USGoUgizSPrtzsac+m67SqHyAIBr4cXtjYf7hN8Knr6BNdt3UtAxyaLiAvygj6uqCplVvWp9ZmfVV3KzKrSjO6x0qwoMky5cUqPDL1R+QFaI0n8XsOts8cPOhHu3Sf4UCzFqPzM1NiJSO4pLQrxo+smDToRnlVdyo+um5TxLltKgkWGIfdO6XEnrvSf1+th7uQxfOGX6xzpE/yFX67jmtoxeDO021pEclNPIvyj6yYNaL7qec1QtJlVdwiRYSji0mk60Qyd0iMnVpwf5OuzzuPaf32JpbdMJ5Hq6hP8fONeHn9953HbNs4/fyyXV5XS2hk/3Cd44ceqKdYqsIhkQGlRiHlTyrlsfAnLN+7mP/743nHnq7/58BlcM7l8SNvMKgkWGYZcO6XHl5lTeuTEAj4Ps2tOZ9VbTafUJ3h2TSlX1pSpHlhEMqanzewXLz6TayaPOdxmNpZIEcyyNrNKgkWGIbdO/9KpYtmjOD/A3dfXctsT9YPqEzy7ppS7r6/ltPzAUP8oIpKD/H4v5SOzu+WmPvFEhiFjcOWUHqOy0awyqiDIP107idk1e/nes2/x41Vb+fGqrcDx+wSH/B7uun4SV1SVMqpAZRAiIseja2Qiw1BJfoAbLxznaMybpo2jNEOn9Ej/7G+P8W5zO6MKAjy24CL+/qPjqSzuaiJ/dJ/gyuIwf//R8Ty24CJG5Qd4t7md/e2xoRy+iEhW00qwyDAUDPiYN6WCnz73tmOn9MydXEFANcFZo6Ujzq4DEX7+wjbqGpvxegyzqkv5+49WUT4yTCKVJpZIE+yuCd59MMLy+j3cv/ptUmnLjKoSvjl7PB5jVBIhItIHJcEiw1RRyMeiORO48+lNpxxr0ZwJjAhrOsgW8WSavYei3Ld6K3WNzQCk0pZVm5tYtbkJAJ/HEPB5iCfTJPs4Da7ndXd8vJr8oE+b40REjqJZUWSYKgz7mV1TxszqUztVbGZ1CbMnlFEQytxRlXJirZ1xXn5n3+FEti/JtKUznuozAe5R19jMS+/so7Uz7sYwRUSGNSXBIsNY2YgQd11XO+hEeGZ1CXddV0vZEDQpl76lUmnaYkmWrGx0JN6SlY20xZKkUjoSW0SkNyXBIsNcWVGIu66t5YefnDigU3p++MmJSoCzUGs0we82ve9IrTdANJFm5ab3aY0mHIknIvJB4XoSbIz5mDGm0RjzjjHm9j4eH2eMWWuM+X/GmHpjzCfcHpPIB03ZiK5TetZ8cwa3fazqcAeBo1UWh7ntY1Ws+dYM5k0pVwKchTrjKR5dv93RmI+s305nXKcBioj05upOGGOMF/gX4EpgJ7DeGLPMWru519O+A/yXtfZnxpgJwG+AM90cl8gHUUHIT0HI331KTznWQnssSTSRIuT3UhD0YQyUFgbVBSKLWYuj/Z+hK549fumwiEhOcns7+DTgHWvtNgBjzKPAPKB3EmyBou7fjwB2uzwmkQ+0YMDH2CE6h11OXXss2a/nFQS8nJYf4EBHnPZ+rPJ29DOuiEiucPuTsgLY0ev2TuDDRz3ne8AqY8zXgXxgdl+BjDELgAUA48Y5e0iAiEi2iB2nFjgc8HLv/FomVALauxYAACAASURBVIzAZwxt0QTRRJqQ30NRyE/SWjbtPMjCJ94k0kdSHEtqY5yISG/ZsFx0I/Dv1tp7jTEXAQ8bYyZaa4+Ysa21DwAPAEydOlUX9kTkAynYRz/ff/vcBdSMGcEzb+ziR79r6LNcorI4zI0XjmP1rZezZU8rX/71a0c8rj7BIiJHcntW3AVU9ro9tvu+3r4E/BeAtfYVIASMdnlcIiJZKS/4l3rtM4rDvHTbTJraYsy6r44lKxuPWy+8oyXCkpWNzLqvjqa2GC/dNpMzem2QzAuoDlxEpDe3V4LXA+cZY86iK/m9AbjpqOdsB2YB/26MqaErCT5+h3gRkQ+4yuIwHuCxr1zMHU/Vs7ah/1NiNJHmzqc3MbO6hMe+cjGf+fnLqBBCRORYribB1tqkMeZvgZWAF/iFtfYtY8wPgA3W2mXAt4AHjTG30rVJ7mZrtY9ZRHJTyO/h+vPH8qkLxg44Ae5tbUMzdzxVz9JbpvP4azsJ+7USLCLSm+s1wdba39DV9qz3fd/t9fvNwCVuj0NEZDiIxNN85sKxPLeledAJcI+1Dc3UVTdzw9Sx6hMsInIU7ZQQEckiyXSadNqweMXmkz+5Hxav2EzSGpJpFUWIiPSmJFhEJIuMzPPzzBu7HD02ednGXYzM8zsST0Tkg0JJsIhIFokm0jzi8LHJS9dtdyypFhH5oFASLCKSRXRssohIZigJFhHJIu1Rd4437u9xzCIiuUJJsIhIFokk3OniEHUprojIcKUkWEQki7jVzzfkU59gEZHelASLiGSRgpA77dvdiisiMlwpCRYRySLGdB2b7KTK4jDGOBpSRGTYUxIsIpJFSvID3HjhOEdj3jRtHKWFQUdjiogMd7o+JiKSRYIBH/OmVPDT5952pLdvyO9h7uQKAqoJFpEMisQS7O9MAHAokiSSSBH2eykMd6Weo/L8hINDe4iPkmARkSxTFPKxaM4E7nx60ynHWjRnAiPCmupFJDMOdMbpjKV45o1dPLJ+e599zyuLw9x44TjmTakgL+jltLzAEIxU5RAiIlmnMOxndk0ZM6tLTinOzOoSZk8ooyCkI5NFxH3vt0b5Tf0eZt1Xx5KVjcc9+GdHS4QlKxuZdV8dv6nfw/ut0QyPtIuSYBGRLFQ2IsRd19UOOhGeWV3CXdfVUlYUcnhkIiLHamqLcsdT9dz59KZ+l3JFE2nufHoTdzxVT1Nb5hNhJcEiIllob1uU+1Y18I/zJvLDT04k5O/fdB3ye/jhJyfyj/Mmct+qBvYOwQeLiOSW91uj3P5kPWsbmgf1+rUNzdz+ZOYTYSXBIiJZpjOWZPWWJh7bsItL7l5LaVGQNd+cwW0fqzpu+7TK4jC3fayKNd+cQWlRkEvuXstjG3axeksTnXEdmSwi7jjQGWfNlqZBJ8A91jY0s3pzEwc74w6N7OSMtTZjf5hTpk6dajds2DDUwxARccWugxFm3Vt3xCXFcMDLPddPYuLYkXiNoT2WJJpIEfJ7KQj6SFnLpp0HWfjEm0TifzkiOeT3sOZbM6gY6WzvYRERgF0HIsy6r86xbjZrvjmDitOcm6+MMa9Za6f29Zi2DIuIZJFEomtX9dEfKJF4ir995I3DtwsCXk7LD3CgI057r6T3aNFEmmVv7OLLl5yF36UjmUUkN0ViiT7nq8GKJtIs27iLmy86IyPt01QOISKSRZo7YjyybvtJn9ceT7HjQOSECXCPpeu209wRc2J4IiKH7e9M8Mj6k89XA7F03fbD/YXdpiRYRCSLpC3HbSs0WDtaIqSHX+WbiGQ569J8lalKXSXBIiJZ5FDUnU1sbsUVkdzV7tK80h7LzHylJFhEJItEEicvbxiMqEtxRSR3Dff5SkmwiEgWCbu0eS2kTXEi4jDX5itfZuYrJcEiIlmkMORO0x634opI7ipwaV5xK+7RlASLiGQRj+G4B2IMVmVxGI9xNKSICMal+cpkaL5SEiwikkVK8oPcOG2cozFvmjaOksKQozFFREbl+bnxQhfmq4KgozGPR0mwiEgW8fu9zJtSQcjvzPQc8nuYO6UCv1fTvYg4Kxz0Oz9fTa4gmKE9DJoVRUSyzGlhP9+9eoIjsb579QROy3P/5CURyT2JRAq/FxbNcWa+WjRnAn5vV9xMUBIsIpJl8oI+ZteUMbO65JTizKwuYXZNGXkBbYoTEec1d8RoaotxRU2pI/PVrJpSmtpiGTvhUkmwiEgWKi0Kcfd1tcf9YPF5DHkBL77j7HibWV3C3dfVUlqkWmARcYfPa1jTsJcv/HIdd51gvjqZmdUl3HVdLTf/ch3PNew97rzmNC0PiIhkqZ5EePWWJn74my185NzRfGLSGCpGhokl00QTKUJ+L0Gfh10HI6yo38NL7+7jzk/UMLumTAmwiLiqM57midd3sqMlwud/8Ud++YVpPLdlL4tXbCaaSJ/09SG/h0VzJjCrppTP/+KPNLzfTkd8J/P+qiIDowdjM3VAs4OmTp1qN2zYMNTDEBHJiEPRBG2RJM+8sYtH1m9nR0vkmOdUFoe58cJxzJtSQVHYR2FIdcAi4q739ndw+T11R9z35P+8iLKiMMs27mLpuuPPVzdNG8fcyRU0tUW47mevHPH48wtncMaofEfGaIx5zVo7ta/HtBIsIpLFWjrirNnSxKJnNp1wZWVHS4QlKxv56XNvs3jeRGbVlFGcH8jgSEUk13TGjt3Adt3PXqEg5OOhz13A1bXlALTHkoevXBUEu1LPPQc7uer/vEB7NHls3Lg2xomI5LT97TFue7yehY/X9+vSIkA0kWbh4/Xc9ng9+9szs7lERHJTLNn3vBRPpnntvQMciiVIW0s6bfGZrv+mreVQLMG6Px8gfoLXZ4KSYBGRLNTSEef2J97k91uaBvX6329p4vYn3uRAR9zhkYmIdOmrP/B3r65hzTcv58xR+Wzf30nzoRgHIwn2tic4GEnQfCjG9v2dnDUqnzXfvJzvXl1zTIygLzPpqcohRESyTDyZZs2WpkEnwD1+v6WJ1VuamDelgkCGPlREJHcUhf+y96CkIMDSW6az60CE/R1xtu5tP7xp7miVxWGuP38sFcV5nD26gN/fehk3Pfgqze3xY+K6SbOiiEiWaemIs+iZTY7EWvTMJlq0GiwiLvB7DZXFYUoKAjz11UtoPhTj3X3t3PDAK/xk9dt9JsDQtYfhJ6vf5oYHXuHdfe00H4rx1FcvoaQgQGVxGL9XLdJERHJOKpVmef3uftcAn0w00RXvCxefiVdHJ4uIg4rzAnxu+pnMrC5hf0ecB17cRl1jc79fH02kWbx8CzOqSrh19ngeWTCdtY3NFOcHXRz1X2hGFBHJIi2dcX71yp8djfmrV/5MS6dWg0XEWclUmrmTx5BIWe5fvXVACXBvdY3N3L96K4mUZV7tGJJJdYcQEck5ybQ97iXEwdrREiGZHn494UUkuzV3xAHDy+/uG3QC3KOusZmX392HxXTHdZ+SYBGRLHKoj56ZTuirF6eIyKkoCHk5FEtyz8pGR+Lds7KR9liSgpDXkXgnoyRYRCSLxBLuXAY8Xj9PEZHBiiXSrHB4D8OKN3cTcyjeySgJFhHJIkG/OysgapEmIk6LJy2Pv77T0Zj//dpO4snMlG9pVhQRySKFIXea9rgVV0Ryl7Xu7GGwKAkWEck5Pk9X300nVRaH8Xky03dTRHLHoZhbexjUHUJEJOcU5wX4/EVnOhrz8xedmbG+myKSO+Iu7TWIq0WaiEju8Xo9XF1bTsjvzPQc8nfF82olWEQcFnZpD0PIpbhHUxIsIpJlivMDLJ430ZFYi+dNpDg/4EgsEZHe8oPu7DVwK+7RlASLiGSZgM/DrJoyrqwpO6U4V9aUMbumTJ0hRMQVAa87exgyNWdpZhQRyULF+QHuun7SoBPhK2vKuOv6SZymVWARccnogiCfnX6mozE/N/1MRhdkZg+DkmARkSw1qiDI3fNruWd+bb9rhEN+D/fMr2XJ/FpGZeiDRERyU9cehjGO7mGYUzsmY3sY1DhSRCSLFecHmDelgkvPK2F5/W5+9cqf++zLWVkc5uaLz2TOpHKK8wMqgRCRjBhdEOT7cz/EbU+8ecqxfjDvQxlbBQYlwSIiWS/g83D6iBBfuPhM5k0pJ5m2tEeTxJJpgj4PBSEfPo+hOD+oLhAiklEBn4crJ5zO7zc3sXrL3kHHmV1TypU1p2f0C7ySYBGRYcLr9VBSGOq6MWJoxyIi0qM4P8Dd19dy2xP1g0qEZ9eUcvf1tRnfw6DrZSIiIiJySkYVBFkyfzJL5k8a0B6GJfNruWf+5CHZw6CVYBERERE5ZcX5AT45ZSyXnVd60j0Mn7/oTK6uHdo9DEqCRURERMQRw2kPg5JgEREREXHUcNjDcNL1Z2PMJGPMq8aYHcaYB4wxp/V6bJ27wxMRERERcV5/ijB+BnwPmARsBf5gjDmn+zG/S+MSEREREXFNf8ohCq21v+v+/Y+NMa8BvzPGfBaw7g1NRERERMQd/aoJNsaMsNa2Alhr1xpjrgeeAIrdHJyIiIiIiBv6Uw5xN1DT+w5rbT0wC3jSjUGJiIiIiLjppEmwtXaptfbVPu7fbq29pee2MeafnR6ciIiIiIgbnOxOfImDsUREREREXKNjk0VEREQk5ygJFhEREZGc42QSPLRn34mIiIiI9FO/k2BjzKSTPOX/nOJYREREREQyYiArwf9qjFlnjPmqMeaYU6Cttf/u3LBERERERNzT7yTYWnsp8NdAJfCaMWapMeZK10YmIiIiIuKSAdUEW2vfBr4D3AZcDvzUGNNgjLnOjcGJiIiIiLhhIDXBtcaY+4EtwBXANdbamu7f3+/S+EREREREHOcbwHP/Gfg34NvW2kjPndba3caY7zg+siyQSKRo7oiRtnAomiSSSBH2eykM+fAYKMkP4vd7h3qYIiIiIjJAA0mC5wARa20KwBjjAULW2k5r7cOujG6IdMaSHIgkeOaNXTyybjs7WiLHPKeyOMyN08Yxb0oFp4X95AUH8r9SRERERIaSsdb274nGvArMtta2d98uAFZZay92cXx9mjp1qt2wYYMrsfe2Rfn9liYWL99MNJE+6fNDfg+Lrp7AlTVllBaFXBmTyEDoCoaIiEgXY8xr1tqpfT02kOXLUE8CDGCtbTfG5J3y6LLI3rYotz1Zz9qG5n6/JppIc+dTm1i9pYm7r6tVIixDRlcwRERE+m8g3SE6jDHn99wwxlwAHPspexRjzMeMMY3GmHeMMbcf5zmfNsZsNsa8ZYxZOoAxOWYwCXBvaxuaue3Jeva2RR0emcjJ7W2L8vQbu5h1bx1LftfYZwIMsKMlwpLfNTLr3jqefmOX/r6KiEjOGsgy0P8C/tsYs5uuI5JPBz5zohcYY7zAvwBXAjuB9caYZdbazb2ecx5wB3CJtfaAMaZ0gD/DKeuMJfn9lqZBJ8A91jY0s3pLE5/8qwryAlphk8w40Rc4n8cQ8HmIJ9Mk038pfYom0nz7qU38XlcwREQkR/U7U7PWrjfGVANV3Xc1WmsTJ3nZNOAda+02AGPMo8A8YHOv59wC/Iu19kD3n7O3v2NyyoFIgsXLN5/wOQUBL6flBzjQEac9njru836wfDOXV5UqCZaMODoB9noMs2tK+cSkMVSMDBNLpoklUwR9XoI+D7sORlhRv4c1DXtJpe3hKxhKhEVEJNcMNFO7EDiz+3XnG2Ow1v76BM+vAHb0ur0T+PBRzxkPYIx5CfAC37PW/u7oQMaYBcACgHHjxg1w2MeXSKR45o1dx2yCCwe83Du/lgkVI/AZQ1s0QTSRJuT3UBTyk7SWTTsPsvCJN4n0SoqjiTTL3tjFly85S5uPxFWdsSSre13BmDu5nC9+5ExefHsfP17Vd0lEZXGYT0+t5Kszz+EXf/gzyzbu1hUMERHJSQPpDvEwcA7wBtCT9Vlr7TdO8Jr5wMestV/uvv1Z4MPW2r/t9ZzlQAL4NDAWeAGYZK09eLy4TnaH2HWgkxsefPWIhOHfPncBNWNGdG0wWn+CDUYXdm0w2rKnlS//+rUjHnv0lulUnPaB2jcoWWbXwQiz7q3DawxL5k9mf3uMf/rtln53Nfn2x2sYVRDkHx7fSMpa1nxrBhUjwxkYuYiISGacqDvEQDbGTaWrbver1tqvd/86bgLcbRdQ2ev22O77etsJLLPWJqy1fwK2AucNYFynJG05nOSeURzmpdtm0tQWY9Z9dSxZeZINRisbmXVfHU1tMV66bSZnFIcPP5bu33cLkUHpuYLhNYaHbr6QJ1/fyXeXvdWvBBi6rlh8d9lbPPn6Th66+UK8xrDsjV0kEscv9REREfkgGUgSvImuzXADsR44zxhzljEmANwALDvqOU8DMwCMMaPpKo/YNsA/Z9Dao0mgKwF+7CsX851nNnHn05sGlEzc+fQmvvPMJh77ysWHE+H2WNK1MYs0d8R4ZN127v30ZB58YRtrGgZXSr+mYS8PvrCNez89maXrttPcEXN4pCIiItlpIEnwaGCzMWalMWZZz68TvcBamwT+FlgJbAH+y1r7ljHmB8aYud1PWwnsN8ZsBtYCC621+wf+owxOpHvla+kt07njqVNrkXbHU/UsvWU6AFGtqImL0hb+qvI0WjoSg06Ae6xp2MuBjgRTxo7UFQwREckZA6kJvryv+621zzs6on5wsiZ48+5Wdh+M0NQW486nN51yvB9+ciKlRUEqRoaZUD7CgRGKHGvLnjaMgU/+y0v9vmpxIiG/h6e/egkWqBlTdOoDFBERyQKO1AR3J7t/Bvzdv18PvO7ICIdQYchPzZgRLF5x4hZp/bV4xWYmjBlBYcjvSDyRvvi8hhe2NjuSAENXWc8Lbzfj9xpH4omIiGS7fifBxphbgMeBn3ffVUFXPe+wVhj29tkibbCiiTTLNu6iMKz2aOKekM/Lw6++52jMh199j6BPf29FRCQ3DKQm+GvAJUAbgLX2bSDjp7s5rT2a4pH12x2NuXTddtqjqgkW9xjDcTuXDNaOlghGC8EiIpIjBpIEx6y18Z4bxhgfMOy30VjrTjLRz1JrkUHp6WrieFx1NRERkRwxkCT4eWPMt4GwMeZK4L+BZ90ZVuYomZDhyK3uIzGHyoJERESy3UCS4NuBZuBN4CvAb6y1d7oyqgyKuJRMqEWauCngG8g/3f7ze92JKyIikm18A3ju1621/wd4sOcOY8zfdd83bIX97mwECmmDkbgoPziQf7oDiau/tyIikhsGsuzz+T7uu9mhcQyZgpA7yYRbcUV6VHafTpit8URERLLZSZNgY8yNxphngbN6nxRnjFkLtLg/RPcpmZDhJuT3cP35Yx2NOf/8sa5dGREREck2/VmufBnYQ9exyff2uv8QUO/GoDIp6DfceOE4lqxsdCzmTdPGEXKpZlMEIJ60zKou5f8+/65jJ8ZdUV1KLKmNcSIikhtOmqlZa9+z1tZZay+y1j7f69fr1tph3wJh36E486ZUEPI7k7SG/B7mTq6guT3mSDyRvsSSKXa3Rlh4VZUj8RZeVcXu1gixpDZ0iohIbhjIiXHXGWPeNsa0GmPajDGHjDFtbg4uEwpCPrbsaWXRnAmOxFs0ZwKb97SqJlhclUxZzhiVT/mIMDOqSk4p1oyqEspHhDmjOJ9kSg2uRUQkNwxk+XMJMNdaO8JaW2StLbTWFrk1sEzxGMP3l29mRlUJM6tPLZmYWV3CjKoSfrB8Mx4dvSUuyg/6+Ne173IommTBZWcPOhGeUVXCgsvOpj2a5F/WvuNa1wkREZFsM5AkuMlau8W1kQyRvICX+eeP5aYHX+VH19YOOhGeWV3Cj66t5aYHX+VTF4wlP6ANRuIer8fw/3YcoCjs4z9feY9PXVDJoqtr+l3WE/J7WHR1DZ+6oJL/fOU9CsM+3th5EJ9HX95ERCQ3DGTZZ4Mx5jHgaeBwwau19knHR5VBI0J+rp5czs+ef5fP/Pxllt4ynbrqZhav2NyvDUchv4dFcyYwo6qEz/z8ZZoOxZhTW05ROJCB0UuuKskP8NnpZ/Ct/9rIQzdfyIMvbCMv4OXRW6bz/NZmHn99Z5/HgVcWh5l//lguH1/CQ3/4E53x/dxy2dl86d/X83ezz2N0YXAIfhoREZHMM9b2rwbQGPPLPu621tovOjukk5s6dardsGGDY/Ga26Isq9/N4uVdC90Pfu4CJowZwbKNu1i6bvtxk4mbpo1j7uQKNu9p5ZZfvwbAoqtrmFtbTklRyLHxifRl98EIV9xbh9cYlsyfzP72GHevbOCSc0Yzp3YM5SPDJFJpook0Ib8Hv9fD7oMRltfv4eV393HbVdWMKgjyD49vJGUtz31rBuUj1d5PREQ+OIwxr1lrp/b5WH+T4GzidBIcT6bZtq+du37bQF1jMwDhgJd7rp/ExLEj8RpDeyxJNJEi5PdSEPSRspZNOw+y8Ik3icS7dtTPqCrhjo9Xc9boAteOtRXp0RlLsqx+N7c/8SYA19SO4UuXnsUf3t7HYxt2sKMlgs9jCPg8xJNpkmlLZXGYz0yt5CPnjeahF//Es/V7ALj7+klcM7mcvIBqgkVE5IPDkSTYGDMe+BlQZq2daIyppWuj3D86N9T+cToJBmjpiLOzpZP7Vm89nAj3VhDwclp+gAMdcdrjx7aRmlFVwjdnj6eyOI/T8lUKIZmxty3KHU++yZqGvUBXrfCs6tIjVoJjiTTBo1aCn2vYSyrd9W9/VnUpP7puEqW6eiEiIh8wTiXBzwMLgZ9ba/+q+75N1tqJjo20n9xIggH2t8fY2nSIzXvauGdlY79rghdeVcWEMUWMLytkVIFqKiWzjk6Eezt6JfhoSoCHl1QqTUtnnGTaciiaJJZIEfR7KQz58HkMxXkBvF5dhRIR6XGiJHgg1z7zrLXrzJGtv4b9YRm9jSoIUmUM6bTl0QUX8Xzj3pNvMKoqpSOaoPr0Iq0Ay5AoLQrxo+smsaZhL99/9q0jvrwl05ZkH1cuQn4P//uaDzGrulQJ8DAQT6Zp6YizvH43v3rlz8ctdfn8RWdydW05xfkBlWSJiJzEQJLgfcaYcwALYIyZT9dxyh8oxfkBLjxrFC0dcapPL+TOT9QwqiB4zAaj/e0xPAZOLwpRPKZIHzgypEqLQsybUs5l40tYvnE3//HH94775e1vPnwG10wuZ2SeXzXAw0BLR5w1W5r43rNv8ZFzR/P3H62iYmSYWDJNLJki6PMS9HnYdTDCivo93L96K9+75kPMqimjWF/MRUSOayDlEGcDDwAXAweAPwF/Y639s2ujOw63yiGO1vvSY3s0SSKVxu/1UNBz6TE/iFd9VSXLJBIpmjtipC3HXDL3GCgpDOHXJfNhYX97jNufeJNwwMsXP3ImL769j//q3vR4tMriMJ+eWsml543mF3/4M5F4iruun6QSLRHJaY52hzDG5AMea+0hJwY3GJlKgkVEhkpLR5zvPr2Jj08aw/72GP/02y393qfw7Y93XcH67Zt7WPzJiSrVEpGcdaIkuN/LQcaYvzPGFAGdwP3GmNeNMR91apAiItIlnkzzfONe/uaiM3jy9Z18d9lb/UqAAaKJNN9d9hZPvr6Tv7noDOoa9xJP9u+1IiK5ZCDXRL9orW0DPgqMAj4L3OXKqEREclhLR5z8oI8HX9jWZ9eP/ljTsJcHX9hGftBHS0fc4RGKiAx/A0mCe4pfPwH82lr7Vq/7RETEAalUmjd3HWRfe3zQCXCPNQ172d8e581dB0mltBosItLbQJLg14wxq+hKglcaYwoBzaoiIg5q6Yxzxqh8frD8LUfifX/5W5wxKp+WTq0Gi4j0NpAk+EvA7cCF1tpOIAB8wZVRiYjkKGNgbcPeftcAn0w0kaaucS9G1+1ERI5w0iTYGFPd/dsp3f892xhzPnAGA+szLCIiJxGNp/mPP77naMyHX32PaFwX7kREeutPEvtNYAFwbx+PWeAKR0ckIpLDLPTZB/hU7GiJMLBmmCIiH3wnTYKttQu6/zvT/eGIiOS2jpg7p9F3xD9Qp9yLiJyygfQJ/lT3ZjiMMd8xxjxpjPkr94YmIpJ7IomUK3GjLsUVERmuBrIxbpG19pAx5iPAbOAh4P+6MywRkdwU9LlzpHVAR2WLiBxhILNizzLCHOABa+0KujpEiIiIQwpC/mEVV0RkuBpIErzLGPNz4DPAb4wxwQG+XkRETsJjoLI47GjMyuIwHrVIExE5wkCS2E8DK4GrrLUHgWJgoSujEhHJUXkBL/PPH+tozE9dMJb8gNfRmCIiw12/k+DuAzKeATqMMeMAP9Dg1sBERHLRiJCfqyeXE/I7c6Et5Pcwp7acorCq10REehtId4ivA03A74EV3b+WuzQuEZGc5PV6KAr6WHhVlSPxFl5VRVHQh1f1ECIiRxjIiW9/B1RZa/e7NRgREeky/exRzKgqoa6xedAxZlSVMP3sUQ6OSkTkg2Mg19t2AK1uDURERCCVSvPUG7sJ+jzcOns8M6pKBhVnRlUJt84eT9Dn4emNu0mldGyyiEhvA1kJ3gbUGWNWALGeO6219zk+KhGRHLW/I86ug528/O4+xpcVseDSs7n0vNHcs7KRaOLkiWzI72HhVVXUnF5EJJFi484D7DjQyf6OOKVFoQz8BCIiw8NAkuDt3b8CqD+wiIgr4qk0106p4IYHX8VrDEvmT2ZccR6PLriI5xv38vjrO9nREjnmdZXFYeafP5bLq0ppPhTlQGeCf3h8IylrefSW6cS1EiwicoR+J8HW2u8DGGMKum+3uzUoEZFclU5b6rY2H171/drS17mmdgxf+shZnDUqnzs/UcOogiCJVJpoIk3I78Hv9bC/PUYsmQZrWfbGbp6t33M45vNbm7n2/Iqh+pFERLJSv5NgY8xE4GG6+gNjjNkHfM5a+5ZLYxMRyTnJtOWJ13cecd+z9Xv4zab3mVVdypzaMQAYwGsMPT0fYsk0JIQtPQAAIABJREFUy+v38FzDXlJpe8TrH399J3OnlGdg9CIiw8dAyiEeAL5prV0LYIyZATwIXOzCuEREcpLPY/osd0ilLas2N7Fqc9Ph5wV8HuLJNMmjkt6j7WiJ4DVqkSYi0ttAkuD8ngQYwFpbZ4zJd2FMIiI5qzOe6tfzkmlLsp/PBehM9P+5IiK5YEDdIYwxi+gqiQD4G7o6RoiIiEP60wFiMGIuxRURGa4G0if4i0AJ8CTwBDC6+z4REXGIU8clHy3ocyeuiMhwNZDuEAeAb7g4FhGRnJcXHMgFuv7LdymuiMhw1e+lAWPM740xI3vdPs0Ys9KdYYmI5KZ02lJZHHY0ZmVx+JiOESIiuW4g18dGW2sP9tzoXhkudX5IIiK5Kxzw8JmplY7GvOHCSvICXkdjiogMdwNJgtPGmHE9N4wxZwBaWhARcVAiZbl8fIljtcEhv4fLzivRiXEiIkcZyCx7J/AHY8zDxpj/AF4A7nBnWCIiuakkP8DOAxEWXlXlSLyFV1Wx82CE0sKgI/FERD4o+p0EW2t/B5wPPAY8ClxgrT1cE2yM+ZDzwxMRyS3BgI/asSMpHxFmRlXJKcWaUVVC+YgwtRUjCfhUDiEi0tuAtgtba/cBy4/z8MN0JckiInIKikI+2iIJFlx2NgB1jc0DjjGjqoQFl/3/7d1/dFTnfefxz1fzG0nIyBaTIIuQbFMjFWSSytRO2i7EuJsUihycbgrp1knTZH+12zZt12xz5O2aZoubbrPbbU43PxuSU5PtOiRQaJsalqbdhgRwgmUikTYnIWCcjBULS0ia3/PsHzPYMui37p2f79c5HJiZO995Ds9zZz5z57nPfY0uPz+lthgrQwDAjbxcOJJrcgKAB1pjIW25Y7U+c+qifvZHuzSwo3vBc4SjoSYN7OjWz/5olz5z6qK2rF+tlmjI1/YCQC3y8vAAJ8kBgEfibVH9zs4N2ntoUC3hoD77nrv1pX8c0eNfe0aXR5M3bd/VHtPbXn+7/vkPd+gT/+87msj8QPt39Sq+MlqB1gNA9eM3MgCoUvGVUe1/a6+ODyf0jk98VW/8Z7fpN3/qDq25JaZsvqBUtqBoqEmhQJOefSGpo4Pf00f//tv67bd0a1tPnAAMAHPwMgRnPKwFAFDxiHD/pjXacsdqHXnqiv7gb76py6NJBZtM4WCTMrmCcqULbOzZvFa/s/NH1BYNMgUCAOaxqBBsZr2S1k1/nnPuUOnvuz1tGQBAktQSDaklGtIvvmGdfubONXJOmkjnlMrmFQ0F1BIJykxa3RphFQgAWKAFh2Az+6SkXknfkHR91XUn6ZAP7QIA3CASDur2MLPYAMALi3k3vds51+NbSwAAAIAyWcwSaafMjBAMAACAmreYI8GfVjEIf19SWsV1gZ1zrteXlgEAAAA+WUwI/oSkfyXpab00JxgAAACoOYsJwSPOuSO+tQQAAAAok8WE4K+b2WOS/kLF6RCSXloiDQAAAKgViwnBMRXD709Nu48l0gAAAFBzFhyCnXPv8rMhAAAAQLks5mIZUUnvlvQjkl68IL1z7hd9aBcAAADgm8WsE/wZSa+Q9C8kfUnS7ZKu+dEoAAAAwE+LCcE/5JwbkDTpnDsgabukH/OnWQAAAIB/FhOCs6W/XzCzDZLaJK32vkkAAACAvxazOsRHzWyVpAFJRyS1SHrYl1YBAAAAPlrM6hAfL/3zS5Je409zAAAAUOvSmZxGJjOSpGvJnJLZvGKhgFpjxejZ0RxWJLyYY7HeW8zqEHFJ/1XSGufcW8ysR9I9zrlP+NY6AAAA1IxryazGUzkdPndFB89c0uXR5E3bdLXHtPuuterf1KmV0aBaY6EKtFQy59zCNjT7K0l/Kun9zrk7zSwo6evOuY1+NnAmfX197uzZs+V+WQAAAMwiMZbS8eGE9h0bUipbmHf7aKhJA9t7tK07rnhbdN7tl8LMnnTO9c302GJOjLvNOffnkgqS5JzLScov4MXfbGbfNLNvmdneObZ7wMycmc3YUAAAAFSnxHhKez8/qPd/4fyCArAkpbIFvf8L57X384NKjKd8buHNFhOCJ83sVhUvlSwzu1vS2FxPMLOApA9LeoukHkm7S9MobtyuVdKvSvrqItoDAACACkuMpbT30KBOXhhZ0vNPXhjR3kPlD8KLCcHvU3FViNeY2T9I+rSkX5nnOZslfcs5923nXEbSZyX1z7DdPkmPSir/1wAAAAAsybVkVseHE0sOwNedvDCi40MJTaSy82/skcWE4CFJn5d0RlJC0sck/eM8z+mUdHna7WdK973IzF4vqcs5d2wRbQEAAECFjady2ndsyJNa+44NaSyZ86TWQiwmBH9a0noVV4j4n5J+WMVLKS+ZmTVJ+kNJv7GAbd9rZmfN7OzIyPK+bQAAAGB50pniKhALnQM8n1S2oCNPXVE6U54gvJgQvME590vOuZOlP++R9CPzPOeKpK5pt28v3Xddq6QNkv7WzC5KulvSkZlOjnPOfdQ51+ec6+vo6FhEswEAAOC1kcmMDp655GnNx05fenF9Yb8tJgR/rXQynCTJzH5M0nzrlJ2R9Foze7WZhSX9nIrziiVJzrkx59xtzrl1zrl1kr4iaadzjvXPAAAAqphzmnEd4OW4PJrUAlfvXbZ5L5ZhZk+ruCJESNKXzexS6farJF2Y67nOuZyZ/bKkL0oKSPqkc+4bZvaIpLPOuSNzPR8AAADVaSLlz7SFiXR5pkMs5IpxO5bzAs65v5T0lzfc9/As225ZzmsBAACgPJLZeS8XsSQpn+reaN4Q7Jz7bjkaAgAAgNoRCwV8qRsN+lP3RouZEwwAAABIklqiC5lQUD11b0QIBgAAwJJ0tcequt5cCMEAAABYtFioSbvvWutpzT2b12pFmOkQAAAAqFKXRpPq39SpaMibOBkNNWnnnZ26NDrlSb35EIIBAACwaNFQk4a/N6aB7T2e1BvY3qOh740pEixPPCUEAwAAYNFaoyH90qef1JY7OrR1/fKu5rt1fYe23NGh93z6SbVGQx61cG6EYAAAACxJV3tMez72Ff3eW3uXHIS3ru/Q7721V3s+9hVOjAMAAEB1a40FtPuutfruaFJv/8iX9bv9G/SB+zcseI5wNNSkD9y/Qb/bv0Fv/8iX9d3RpPZsXquVMZZIAwAAQJWKBQIvnhj33dGk3vjoSa1eGdGJ923RQ2++Y9ajul3tMT305jt04n1btHplRG989KS+O5p88cQ4vy7CcaPyRG0AAADUlUg4qGg6p4HtPXr/F85Lkt7z6ScVCwf0wQc26jPv/jEFzDSRzimVzSsaCqglElTeOZ1/5gVt+9CXlMy8dInkge09igRN4TJdMY4QDAAAgCUJBwN6U/dqbb3QoZMXRiRJyUxev3zw3IvbtIQDWtUc1tXJjCamhd7ptq7v0Ju6VytapqPAEtMhAAAAsEStsZBCsjlPjJvI5HX5anLOAPx7b+1VyEwtZVoZQiIEAwAAYBlua4sqaNIH7t+4pBPjPnD/RgVNum1l1OeWvhzTIQAAALAst62MKjGW0t2vadeJ923Rkaeu6LHTl3R5NHnTtl3tMe3ZvFY77+xUKptToMnKHoAlQjAAAAA8EG+LqjkV0FgypzfdsVo/vfGVaprhxLiCc0pl8pJJ8ZXRsk6BmI4QDAAAAE+0RENqiYaUzoQ0MpmRc8X7w9POdws0mV7d0Vy2VSBmQwgGAACApyLhoG4PV3fM5MQ4AAAANBxCMAAAABpOdR+nrrB8vqDRqYxyBadrqZzS2bwioYBao0EFm0ztK8IKBPgegeqSzeY1MplWwUnXUjkls3nFSuO2yaSO5ohCZVyMHACAakQInkEmV9DoZEZHB5/VgVMXZ13e48F71mlH7xq1N4cVDhKGUVlT6ZyuJrM6fO6KDs6xLM3uzWvVv6lTq2IhrYjwFgAAaEzmrp+2V0P6+vrc2bNnfak9OpnRieGEBg6fVypbmHf7aKhJ+/o36N7uuNqbw760CZjPc+MpHR9O6JGjQwsetw/v6NG27rhWV2BtRgAAysHMnnTO9c34GCH4Jc9PpLX3c0/rieHEop97X3dc+x/YqFtbIp63C5jLc+MpPXRo8MVrti/G1vUdenRXL0EYAFCX5grB/IZfMjqZWXIAlqQnhhPa+7mndXUy43HLgNktJwBL0skLI3ro0KCeG0953DIAAKobIVjFOcAnhhNLDsDXPTGc0PHhhDK5+X+OBpZrKp3T8eHEkgPwdScvjOj4cEJTmZxHLQMAoPoRglU8Cjxw+LwntQYOn9coR4NRBleTWT1ydMiTWo8cHdLVqawntQAAqAUNH4Lz+YKODj67oJOJFiKVLdbL5zkaDP9ks3kdPnfF03F75NwVZbN5T+oBAFDtGj4Ej05ldODURU9rHjh1UaNTHA2Gf0Ym0zp4+pKnNR87fUkjk2lPawIAUK0aPgTnCm7G9VSX4/JoUrlC7a26gdpRcPJl3DJsAQCNouFD8LWUPycDTfhUF5D8G7d+1QUAoNo0fAhO+zQHMs0KEfBR0qdxm2JOMACgQTR8CI6EAr7U5TLK8FPMp3Eb9akuAADVpuGTWms0WFN1AYlxCwDAcjV8CA42mbraY57W7GqPKdhkntYEpmsy+TJuGbYAgEbR8CG4fUVYD96zztOaD96zTu3NEU9rAtN1NEe0e/NaT2vu2bxWHa1RT2sCAFCtGj4EBwJN2tG7RtGQN/8V0VCxXoBDavBRKBRQ/6ZOT8ftzk2dCgUa/i0BANAg+MST1N4c1r7+DZ7U2te/Qe3NYU9qAXNZFQvp4R09ntR6eEePVq0IeVILAIBaQAhWcSWHe7vjuq87vqw693XHta07zsoQKIsVkaC2dce1dX3HsupsXd+hbd1xrQhzUhwAoHGQ1kram8Pa/8DGJQfh+7rj2v/ARq3iKDDKaPXKqB7d1bvkILx1fYce3dWr1SuZCwwAaCzmXO1dJ7Wvr8+dPXvWl9qjkxmdGE5o4PB5pbLzX/AiGmrSvv4N2tYdJwCjYp4bT+n4cEKPHB1a8Lh9eEePtnXHCcAAgLplZk865/pmfIwQfLNMrqDRyYyODj6rA6cu6vJo8qZtutpjeucb1mn7xjVqbw4zBQIVN5XJ6epUVkfOXdFjpy/NOm7fsXmtdm7q1C0rQkyBAADUNULwEuXzBY1OZZQrOE2kcsoVCgo2NaklGlSwydTeHGEVCFSdbDavkcm0Ck66lsopk8srHAyoNRpUk0kdrVFWgQAANIS5QjCHgeaQyeWVzhV/Ws7lnZLZgmIhU77glC84ZbI5xSKcUY/qki8UVLj+3dZJeVf8W5IKTsrn8oTgGpXO5DQymZEkXUvmlMzmFQsF1BorvpV3NIcV4eg+gCqQTGf1/FRW0szvV7euCFU8Q/FuOYMXpjKaTOd1+NwVHTwz+8/Ku+9aq/5NnWqOBHTLCuYDo7LGpjKaWMS4bYkE1Ma4rQnXklmNp3IL7tuV0aBaY3xBB1B+V6cymlrEZ9GKSECrKvRZxHSIG3x/LKUTwwntO7bwE4wGtvfo3u64XtHGCUaoDMZt/UqMFU96XGzfbuuOK07fAiijavwsYk7wAiXGU9p7aFAnL4ws+rlb13do/65exTnTHmXGuK1f9C2AWlGt71dzhWAmBpZ8f2zpnSdJJy+MaO+hQSXGUx63DJgd47Z+JehbADWiVj+LCMEqzgE+MZxYcuddd/LCiI4PJTQ2lfGoZcDsxjwet+NJxm21uJbM6riHfTuRynrUMgB4uasefxa9UMYMRQiWNJnOa9+xIU9q7Ts2pIl03pNawFwmPB6311KM22oxnsp52rdjyZwntQDgRlMefxZNljFDNXwITqazOnzuyoImcC9EKlvQkaeuKJnmyAv8k/Jp3KYYtxWXzuR86dt0hiAMwFu1nqEaPgQ/P5XVwTOXPK352OlLL66NB/jhBz6N2x8wbituZDLjS99eX18YALxS6xmq4UOwc5pxDbvluDyaVA0uuoEawritX/QtgFpR6+9XDR+CJ1L+/EQ4keanR/iHcVu/6FsAtaLW368aPgQns/5MwE75VBeQGLf1jL4FUCtq/f2q4UNwLBTwpW406E9dQGLc1jP6FkCtqPX3q4YPwS3RYE3VBSTGbT2jbwHUilp/v2r4EGwmdbXHPK3Z1R6TmaclgZdh3NYv+hZAraj196uGD8G3rghp911rPa25Z/NadbREPK0JTHcb47ZudTSHfenb1a30LQBv1XqGavgQHIuE1L+pU9GQN/8V0VCTdt7ZqYhP82QASYoybutWJBz0pW/DzAkG4LFaz1ANH4IlqTkS0MD2Hk9qDWzvUUuEDxv4r8XjcdsaZdxWi5XRoKd92xZjPjAAf6zw+LOouYwZihAs6ZYVYd3bHdfW9R3LqrN1fYe29cTVtiLsUcuA2bV5PG5Xxhi31aI1FtI2D/u2JRryqGUA8HKrPP4suqWMGYoQXPKKtqj27+pdciduXd+h/bt6FV8Z9bhlwOwYt/UrTt8CqBG1+llkrgavpdnX1+fOnj3rS+3vj6V0YjihfceGlMoW5t0+GmrSwPYebeuJ82GDimHc1q/EWErH6VsANaAaP4vM7EnnXN+MjxGCbzY2ldFEOq8jT13RY6cvzXhd7K72mPZsXqudmzrVEg4wBQIVN57M6Fpq4eO2NRJgCkSNmEhlNZbMLbhv26JBpkAAqIgXpjKaXESGag4HfJ0CQQheomQ6q+ensnKueB3rVDavaCiglkhQZlJHS4Sz6VF1UumsfsC4rUvpTE4jk5lZ+3Z1a4RVIABUhfky1K0rQopF/P+yPlcI5pThOcQiId1ehg4CvBRl3NatSDio28O8bQOoXteSWY2ncjp87ooOnikeCW4JB7SqOayrkxlNZPLqao9p911r1b+pUyujQbXGKvOZxZFgAAAALNuSz2HojiveVv45wRxSAAAAwLIkxlPa+/lBnbwwsuDnpLIFvf8L53X8QqIiq0OwRBoAAACWLDGW0t5DiwvA0528MKK9hwaVGE953LK5EYIBAACwJNeSWR0fTiw5AF938sKIjg8lNJHKetSy+RGCAQAAsCTjqZz2HRvypNa+Y0MaS+Y8qbUQhGAAAAAsWjpTXAViISfBLUQqW9CRp64onSlPECYEAwAAYNFGJjM6eOaSpzUfO31JI5MZT2vOhhAMAACARXNOM14RbjkujyZVrtV7CcEAAABYtImUP9MWJtJMhwAAAECVSmbzvtRN+VT3RoRgAAAALFosFPClbjToT90b+R6CzezNZvZNM/uWme2d4fH3mdmQmQ2a2Qkze5XfbQIAAMDytET9ufCwX3Vv5GsINrOApA9LeoukHkm7zaznhs2+LqnPOdcr6XFJv+9nmwAAALB8ZlJXe8zTml3tMZl5WnJWfh8J3izpW865bzvnMpI+K6l/+gbOuZPOuanSza9Iut3nNgEAAGCZOprD2n3XWk9r7tm8VqtbI57WnI3fIbhT0uVpt58p3Tebd0v6q5keMLP3mtlZMzs7MrK8S/MBAABgeSLhoPo3dSoa8iZORkNN2nlnp8L1Mid4oczs5yX1SfrgTI875z7qnOtzzvV1dHSUt3EAAAC4ycpoUAPbb5zpujQD23vUFivPfGDJ/xB8RVLXtNu3l+57GTPbJun9knY659I+twkAAAAeaI2FtK07rq3rl3eAcuv6Dm3riaslGvKoZfPzOwSfkfRaM3u1mYUl/ZykI9M3MLPXSfqIigH4OZ/bAwAAAA/F26Lav6t3yUF46/oO7d/Vq/jKqMctm5uvIdg5l5P0y5K+KGlY0p87575hZo+Y2c7SZh+U1CLp/5jZOTM7Mks5AAAAVKH4yqj2v7VXH7h/w4LnCEdDTfrA/RsqEoAlyVy5LtDsob6+Pnf27NlKNwMAAADTTKSyGkvmdOSpK3rs9CVdHk3etE1Xe0x7Nq/Vzk2daosGfZ0CYWZPOuf6ZnqsfLOPAQAAUNdaoiG1REP6xTes08/cuUbOSRPpnFLZvKKhgFoiQZlJq1sjZVsFYjaEYKDO5PMFjU5llCs4XUvllM7mFQkF1BoNKthkal8RViBQNQvDYBHSmZxGJjOSpGvJnJLZvGKhgFpLZ1N3NIcVCfO2DqDyIuGgbq/y96Pqbh2ABcvkChqdzOjo4LM6cOrirD9BPXjPOu3oXaP25rDCQcJwLbiWzGo8ldPhc1d08MzsPy/uvmut+jd1amU0qNZY+c6wBoBaxJxgoA6MTmZ0YjihgcPnlcoW5t0+GmrSvv4Nurc7rvbmcBlaiKVKjKV0fDihfceGFty3A9t7tK07rnhb+U80AYBqMtecYEIwUOOen0hr7+ee1hPDiUU/977uuPY/sFG3tpTnEpVYnMR4SnsPDerkhcVfJbNSSw4BQDWZKwTzWyhQw0YnM0sOwJL0xHBCez/3tK6W5pmieiTGlh6AJenkhRHtPTSoxHjK45YBQH0gBAM1KpMr6MRwYskB+LonhhM6PpxQJjf/T+0oj2vJrI4PJ5YcgK87eWFEx4cSmkhlPWoZANQPQjBQo0YnMxo4fN6TWgOHz2uUo8FVYzyV075jQ57U2ndsSGPJnCe1AKCeEIKBGpTPF3R08NkFnSi1EKlssV4+z9HgSktniqtAeNm3R566onSGIAwA0xGCgRo0OpXRgVMXPa154NRFjU5xNLjSRiYzOnjmkqc1Hzt96cX1hQEARYRgoAblCm7GtWKX4/JoUrlC7a0WU2+cky99W4MLAQGArwjBQA26lvLnp+0Jn+pi4fzqg4k0fQsA0xGCgRqUzub9qcsKERWX9KlvUz7VBYBaRQgGalAkFPClLpdRrryYT30bDfpTFwBqFZ94QA1qjQZrqi4WrsWnPvCrLgDUKkIwUIOCTaau9pinNbvaYwo2mac1sXhm8qVvja4FgJchBAM1qH1FWA/es87Tmg/es07tzRFPa2LxOprD2n3XWk9r7tm8Vqtb6VsAmI4QDNSgQKBJO3rXKBryZheOhor1AhwJrrhIOKj+TZ2e9u3OOzsVZk4wALwMIRioUe3NYe3r3+BJrX39G9TeHPakFpZvZTSoge09ntQa2N6jthjzgQHgRoRgoEaFg026tzuu+7rjy6pzX3dc27rjrAxRRVpjIW3rjmvr+o5l1dm6vkPbeuJqiYY8ahkA1A8+9YAa1t4c1v4HNi45CN/XHdf+BzZqFUeBq068Lar9u3qXHIS3ru/Q/l29iq+MetwyAKgP5mrwWpp9fX3u7NmzlW4GUDVGJzM6MZzQwOHzSmXnv+BFNNSkff0btK07TgCucomxlI4PJ7Tv2NCC+3Zge4+29cQJwAAanpk96Zzrm/ExQjBQHzK5gkYnMzo6+KwOnLqoy6PJm7bpao/pnW9Yp+0b16i9OcwUiBoxkcpqLJnTkaeu6LHTl2bt2z2b12rnpk61RYNMgQAAEYKBhpLPFzQ6lVGu4DSRyimdKygSbFJLNKhgk6m9OcIqEDUqnclpZDIj56SJdE6pbF7RUEAtkaDMpNWtEVaBAIBp5grBnDI8h+sfOJJ0LZlTMptXLBRQa+lM647msCJh/gtRXQoFp2y+oIKTcgWnXKGgQMGULzg551TIFxRoIijVoiYzNZl0fVLE9Sssm0lNJlntHdMAgIohwc3gWjKr8VROh89d0cEzs//0uPuuterf1KmV0aBaY/z0iMqaSud0NZktjts5fjLfvbk4blfFQloR4S2gFtC3AOA9pkPcYMknoXTHFW/jJBRUxnPjxXH7yNGFj9uHdxTH7WpOnqpq9C0ALB1zghcoMZ7S3kODOnlhZNHPZTkiVMpz4yk9tIxx++iuXsJSlaJvAWB55grBnBpekhhbegCWpJMXRrT30KAS4ymPWwbMbjkhSSqO24cODeo5xm3VoW8BwF+EYBXnAB8fTiz5w+a6kxdGdHwooYlU1qOWAbObSue8G7fDCU1lch61DMtF3wKA/wjBksZTOe07NuRJrX3HhjSW5AMH/ruazOqRo96M20eODunqFF/eqgV9CwD+a/gQnM4UV4FYyAknC5HKFnTkqStKc+QFPspm896P23NXlM3mPamHpaNvAaA8Gj4Ej0xmdPDMJU9rPnb60ovrCwN+GJlM6+BpP8Zt2tOaWDz6FgDKo+FDsHOacc3N5bg8mlQNLrqBGlLwadwWGLcVR98CQHk0fAieSPkzbWEizXQI+OeaT+PWr7pYOPoWAMqj4UNw0qd5cinm38FHjNv6Rd8CQHk0fAiOhQK+1I0G/akLSD6OW5/qYuHoWwAoj4YPwS3RYE3VBSSp1afx5VddLBx9CwDl0fAh2Ezqao95WrOrPSYzT0sCL9Pk07htYtxWHH0LAOXR8CG4ozms3Xet9bTmns1rtbo14mlNYLqO5oh2b/Z+3Ha0Rj2ticWjbwGgPBo+BEfCQfVv6lQ05M1/RTTUpJ13dirMnGD4KBQKeD9uN3UqFGj4t4SKo28BoDx4V5S0MhrUwPYeT2oNbO9RW4y5d/DfqlhID+/wZtw+vKNHq1aEPKmF5aNvAcB/hGBJrbGQtnXHtXV9x7LqbF3foW09cbVE+cCB/1ZEgt6N2+64VoT58lYt6FsA8B8huCTeFtX+Xb1L/tDZur5D+3f1Kr6SeXcon9Uro3p0meP20V29Ws24rTr0LQD4y1wNXt+3r6/PnT171pfaibGUjg8ntO/YkFLZwrzbR0NNGtjeo209cQIwKua58eK4feTowsftwzt6tK07TkiqcvQtACydmT3pnOub8TFC8M0mUlmNJXM68tQVPXb6ki6PJm/apqs9pj2b12rnpk61RYNMgUDFTWVyujqV1ZFzc4/bd5TG7S0rQvxMXiPoWwBYGkLwEqUzOY1MZuScNJHOKZXNKxoKqCUSlJm0ujXCKhCoOtlsXiOTaRWcdC310rhtjQbVZFJHa5SVAmrUvO9JLRGFuTIcALxorhDMoYI5RMJB3c7RFNS/ORo+AAAKB0lEQVSYUCigNbesqHQz4KFMrqDRyYyODj6rA6cu6vJoUtFgk1qiQU2kckrlCupqj+nBe9ZpR+8atTeHFQ7yRQcA5sKRYACoYqOTGZ0YTmjg8PkFzwne179B93bH1d4cLkMLAaB6zXUkmEMFAFClnp9I66HHB/Vbjw8uKABLUipb0G89PqiHHh/U8xNpn1sIALWLEAwAVWh0MqO9n3taTwwnlvT8J4YT2vu5p3V1MuNxywCgPhCCAaDKZHIFnRhOLDkAX/fEcELHhxPK5BZ2FBkAGgkhGACqzOhkRgOHz3tSa+DweY1yNBgAbkIIBoAqks8XdHTw2QXPAZ5PKlusl89zNBgApiMEA0AVGZ3K6MCpi57WPHDqokanOBoMANMRggGgiuQKbsYrwi3H5dGkcoXaWw4TAPxECAaAKnItlfOl7oRPdQGgVhGCAaCKpLN5f+qyQgQAvAwhGACqSCQU8KUul1EGgJfjXREAqkhrNFhTdQGgVhGCAaCKBJtMXe0xT2t2tccUbDJPawJArSMEA0AVaV8R1oP3rPO05oP3rFN7c8TTmgBQ6wjBAFBFAoEm7ehdo2jIm7fnaKhYL8CRYAB4GUIwAFSZ9uaw9vVv8KTWvv4Nam8Oe1ILAOoJIRgAqkw42KR7u+O6rzu+rDr3dce1rTvOyhAAMAPeGQGgCrU3h7X/gY1LDsL3dce1/4GNWsVRYACYESEYAKrUrS0RPfq2Xn3wbb0LniMcDTXpg2/r1e+/rVe3tnAyHADMhoUjAaCKtTeH1b+pUz/x2g4dHXxWB05d1OXR5E3bdbXH9M43rNP2jWvU3hxmCgQAzIMQDABVLhxs0ivaonrXG9apf9Ma5QpOE6mc0rmCIsEmtUSDCjaZ2psjrAIBAAtECAaAGhEINKmjNVq80VbZtgBAreP3MgAAADQcQjAAAAAaDiEYAAAADYcQDAAAgIZDCAYAAEDDIQQDAACg4RCCAQAA0HAIwQAAAGg45pyrdBsWzcxGJH3Xx5e4TdIPfKyPyqJ/6xd9W9/o3/pG/9a3SvXvq5xzHTM9UJMh2G9mdtY511fpdsAf9G/9om/rG/1b3+jf+laN/ct0CAAAADQcQjAAAAAaDiF4Zh+tdAPgK/q3ftG39Y3+rW/0b32ruv5lTjAAAAAaDkeCAQAA0HAIwQAAAGg4hOBpzOzNZvZNM/uWme2tdHuwPGbWZWYnzWzIzL5hZr9aur/dzJ4ws38q/b2q0m3F0plZwMy+bmZHS7dfbWZfLe3H/9vMwpVuI5bGzG4xs8fN7IKZDZvZPey/9cPMfr303nzezA6aWZT9t3aZ2SfN7DkzOz/tvhn3Vyv6o1I/D5rZ6yvRZkJwiZkFJH1Y0lsk9UjabWY9lW0Vlikn6Teccz2S7pb070t9ulfSCefcayWdKN1G7fpVScPTbj8q6UPOuR+SdFXSuyvSKnjhf0j6a+fcekl3qtjP7L91wMw6Jf0HSX3OuQ2SApJ+Tuy/texTkt58w32z7a9vkfTa0p/3SvqTMrXxZQjBL9ks6VvOuW875zKSPiupv8JtwjI4577nnPta6d/XVPwA7VSxXw+UNjsg6f7KtBDLZWa3S9ou6eOl2ybpTZIeL21C/9YoM2uT9JOSPiFJzrmMc+4Fsf/Wk6CkmJkFJa2Q9D2x/9Ys59zfSRq94e7Z9td+SZ92RV+RdIuZvbI8LX0JIfglnZIuT7v9TOk+1AEzWyfpdZK+KinunPte6aHvS4pXqFlYvv8u6T9KKpRu3yrpBedcrnSb/bh2vVrSiKQ/LU13+biZNYv9ty44565I+gNJl1QMv2OSnhT7b72ZbX+tisxFCEbdM7MWSZ+T9GvOufHpj7niGoGsE1iDzGyHpOecc09Wui3wRVDS6yX9iXPudZImdcPUB/bf2lWaG9qv4pedNZKadfNP6agj1bi/EoJfckVS17Tbt5fuQw0zs5CKAfjPnHOHSncnrv/sUvr7uUq1D8vyRkk7zeyiitOX3qTiHNJbSj+vSuzHtewZSc84575auv24iqGY/bc+bJP0HefciHMuK+mQivs0+299mW1/rYrMRQh+yRlJry2dmRpWcYL+kQq3CctQmh/6CUnDzrk/nPbQEUkPlv79oKTD5W4bls8595+cc7c759apuL/+X+fcOySdlPS20mb0b41yzn1f0mUzu6N0172ShsT+Wy8uSbrbzFaU3quv9y/7b32ZbX89IukXSqtE3C1pbNq0ibLhinHTmNlPqzjHMCDpk865D1S4SVgGM/txSX8v6Wm9NGf0t1WcF/znktZK+q6kf+mcu3EyP2qImW2R9JvOuR1m9hoVjwy3S/q6pJ93zqUr2T4sjZltUvGkx7Ckb0t6l4oHb9h/64CZ/RdJb1dxJZ+vS/olFeeFsv/WIDM7KGmLpNskJST9Z0lf0Az7a+mLzx+rOAVmStK7nHNny95mQjAAAAAaDdMhAAAA0HAIwQAAAGg4hGAAAAA0HEIwAAAAGg4hGAAAAA2HEAwAAICGQwgGgAows51mtnf+LW963jozO+9De7aY2Rum3f6Umb1trucAQC0Lzr8JAMBrzrkjqq6rUm6RNCHpyxVuBwCUBUeCAcBjpaO1F0pHU//RzP7MzLaZ2T+Y2T+Z2WYze6eZ/XFp+0+Z2R+Z2ZfN7NsLPQJrZgEz+6CZnTGzQTP716X7t5jZ35rZ46V2/FnpCk0ys58u3fdk6TWPmtk6Sf9G0q+b2Tkz+4nSS/zkjW0ys1ea2d+Vtjs/bVsAqCmEYADwxw9J+m+S1pf+7JH045J+U8XLd9/olaXHd0jav8DXeLekMefcXZLukvQeM3t16bHXSfo1ST2SXiPpjWYWlfQRSW9xzv2opA5Jcs5dlPS/JH3IObfJOff3c7Rpj6QvOuc2SbpT0rkFthUAqgrTIQDAH99xzj0tSWb2DUknnHPOzJ6WtG6G7b/gnCtIGjKz+AJf46ck9U47ctwm6bWSMpJOO+eeKb3+udJrTkj6tnPuO6XtD0p67xz1Z2rTGUmfNLNQ6XFCMICaxJFgAPBHetq/C9NuFzTzAYjp29sCX8Mk/Urp6O0m59yrnXN/M0O9/CyvOZ+b2uSc+ztJPynpiqRPmdkvLKEuAFQcIRgAatcXJf3b0lFZmdkPm1nzHNt/U9JrSnOAJent0x67Jql1vhc0s1dJSjjnPibp45Jev4R2A0DFMR0CAGrXx1Wc5vC10olvI5Lun21j51zSzP6dpL82s0kVpzZc9xeSHjezfkm/MsdrbpH0W2aWVXF6BUeCAdQkc85Vug0AgDIxsxbn3EQpNH9Y0j855z5U6XYBQLkxHQIAGst7SifKfUPFE+k+UuH2AEBFcCQYAKqQmW2U9Jkb7k47536sEu0BgHpDCAYAAEDDYToEAAAAGg4hGAAAAA2HEAwAAICGQwgGAABAw/n/7Fuons5ecC0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3iV1Z33//fa550jBJJAIIjHJAiB0mi1Vg0DVFsQKjozlZk+7bQjncdOnxl9RkvHYg+0Hasd22mvOenTzrTOSH8zFhXBKQKCbadaBEciJqBWkXOIBMhpn/f6/ZEEIySQHe57J2F/XtflJfv0ZcXEnc9e91rfZay1iIiIiIjkEs9wD0BEREREJNsUgkVEREQk5ygEi4iIiEjOUQgWERERkZyjECwiIiIiOcc33AMYivHjx9upU6cO9zBEREREZATbvn37u9ba0v4eG5UheOrUqWzbtm24hyEiIiIiI5gx5p2BHtNyCBERERHJOQrBIiIiIpJzFIJFREREJOcoBIuIiIhIzlEIFhEREZGcoxAsIiIiIjlHIVhEREREco5CsIiIiIjknFF5WIaIiIiIjFyRWIKjXQkA2iNJIokUYb+XwnB39ByX5ycc9A/nEBWCRURERMQZx7ridMVSPPXKAVa9tJd9rZHTnlNZEua2K6aweNYk8oJexuYFhmGkYKy1w/IXn4u6ujqrY5NFRERERo7DJ6Jsampm5bpGoon0WZ8f8ntYsWAac2vKmVAccmVMxpjt1tq6/h7TTLCIiIiInJPmtihffqKBzbtaBv2aaCLNvU/uZOOuZu5fUkt5kTtBeCDaGCciIiIiQ3b4RJTlqzMLwH1t3tXC8tUNNLdFHR7ZmSkEi4iIiMiQHOuKs6mpecgBuNfmXS1sbGzmeFfcoZGdnUKwiIiIiAxJVyzFynWNjtRaua6RzljKkVqDoRAsIiIiIhmLxBI89cqBQW2CG4xoIs2aHQeIxBKO1DsbV0OwMebHxpgjxpidAzxujDE/MMa8aYxpMMbMdnM8IiIiIuKMo10JVr2019Gaj23de7K/sNvcngn+V+DGMzz+MeDSnn+WAf/o8nhERERExAHW0m8f4HOxrzVCtrr3uhqCrbW/BFrP8JTFwE9ttxeBMcaYiW6OSURERETOXUc06U7dmDt1TzXca4InAfv63N7fc99pjDHLjDHbjDHbWlrObQeiiIiIiJybSMKdTWxRl+qearhD8KBZax+21tZZa+tKS0uHezgiIiIiOS3s97pSN+Rzp+6phjsEHwAq+9ye3HOfiIiIiIxgBSF3Dh52q+6phjsErwH+V0+XiKuAE9baQ8M8JhERERE5C2OgsiTsaM3KkjDGOFpyQG63SFsFvABUGWP2G2M+Z4z5M2PMn/U85RngLeBN4BHgDjfHIyIiIiLOGJfn57Yrpjhac+mVUygtCDpacyCuzjdba287y+MW+IKbYxARERER54WDfhbPmsQPnnvDkQMzQn4Pi2ZOIujSWuNTDfdyCBEREREZpfKCXlYsmOZIrRULppEfzE4ABoVgERERERmisXkB5taUM6f63Dp3zakuZd60csbkBRwa2dkpBIuIiIjIkE0oDnH/ktohB+E51aXcv6SW8qKQwyM7M4VgERERETkn5UUh/ubmWr71iemE/IOLlyG/h299YvqwBGBweWOciIiIiOSGCcUhFtROpL6qjDU7DvDY1r3sa42c9rzKkjBLr5zColmTyA94s7oEoi+FYBERERFxxJi8AGPy4DNXX8BNMyuwFjpiSaKJFCG/l4KgD2OgtCCYtS4QA1EIFhERERFHhYN+Jgf9wz2MM9KaYBERERHJOZoJFhERERFHxeJJWjrjALRHkkQSKcJ+L4Xh7uhZmh8gGBjeGKoQLCIiIiKOaI8kaIsmeeqVA6x6aeCNcbddMYXFsyZRFPJRGB6eZROm++Ti0aWurs5u27bN9b8nlUrT2hUnmba0R5PEEimCfi+FIR8+j6EkL4DXqxUlIiIiIs0nomxsamblusZBHaMc8ntYsWAa82rKKS92p0WaMWa7tbauv8c0E9yPeDJNa2ecpxsO8tMX9gz4KeZ/XT2Vm2orKMkPEPApDIuIiEhuam6LsvyJBjbvahn0a6KJNPc+uZONu5qHpVewZoJP0doZZ2NTM/c9tXPQn2K+sXg682rKKckfnj53IiIiIsOl+UTmAfhUbp0ad6aZYE1f9nG0I8Y9j+/gnscbBhWAoftTzD2PN3DP4zs42hFzeYQiIiIiI0d7JMHGpuZzCsAAm3e1sLGxmY5owqGRnZ1CcI/Wzjhf+nkDG5uODOn1G5uO8KWfN3CsZyekiIiIyPmuLZpk5bpGR2qtXNfIiUjSkVqDoRBM9xrgDY2HhxyAe21sOsKGpsPEk4ObRRYREREZrWLx7i4Qg716fjbRRJo1Ow4Qi2cnCCsE070M4qtrXnOk1n1PvaZlESIiInLea+mMs+qlvY7WfGzr3pP9hd2W8yE4lUrzdMMhRz/FrG04RCql2WARERE5f1lLvx20zsW+1gjZ6tmQ8yH43Y4Yj764x9GaP31xD+9qNlhERETOYx1Rd5YtdMS0HCIr4inryqeYeGr0tZ4TERERGaxIIuVK3ahLdU+V8yG406VPG51ZWtQtIiIiMhzCfq8rdUM+d+qeKudDsFufNpxaYywiIiIyEhWE3Dl42K26p8r5EBx06VNMUMcoi4iIyHnMGKgsCTtas7IkjDGOlhxQdqL2CFYQdOlTjEt1Rc4mGkvwblf3iTvtkSSJdAq/x0thuPtncnyen1DQP5xDFBGR80BpfoDbrpjCA+t3O1Zz6ZVTKCsMOlbvTHJ+ujJtrSufYtLZ6u8h0uNEV5wDxyLsPNhORyxJKm1JW0s82f3vVNrSEUvy6sF2DhyLcKJLpxuKiMjQBQM+Fs+aRMjvTJwM+T0smjmJQJbWBOf8dGUyleaW2ZP5/sY3HKt56+zJJNQdQrLo8IkoLe1RxuQF2LqnlVUv7e2360llSZjbrpjCTTMr2NvaRWkizYTi0DCMWEREzgdFIR8rFkzj3id3nnOtFQumURzOXjTN+ZngeMpSf1mpo59irr+slIQOy5AsaWmLEkmkaNh/gvnfe54H1u8+GYBDPg/jCwKEetao72uN8MD63cz/3vM07D9BJJGipS06nMMXEZFRrDDsZ15NOXOqS8+pzpzqUuZNK6cglL3lesaOwsv2dXV1dtu2bY7U2nu0k+8++zozK4tZubbpnOutWFjDK3uPc/eNVUwpyXdghCIDazkRJZ62fOWpV9m8q4WAz8Nfzr2E+uoy8gM+OqJJIokUYb+XgpCPzniS55qO8IPn3iSeTDOnupRvLp5BwGsoLdKMsIiIDE1zW5TlqxvYvKsl49fOqS7l/iW1lLvwe8gYs91aW9ffYzm/HMIYw//sO8YNl0+gvqqULbsz/+b1qq8qZUJRmFf278GQpa2NkrNOdMWJpdOseGonm3e1cN/CGuZPm8DTOw7y+Ue3n3E5xKa7rmdD42G+sbaJr/AqKxdPpy0SpygcGIavRERERrvyohD331zLxqZmVq5rHFSr2JDfw4oF05g3rdyVAHw2Ob8cwu813Dp7Mvc8voNl111EfdXQpvPrq0pZdt1F3PP4Dn7/g5PxexWCxV3xVJrnd7ewc/8JNtx5HUGf97TlEKfquxwi6POy4c7r2Ln/BM/vbiGe1BIeEREZuvLiEItnVbDprnq+dGPVgI0HKkvCfOnGKjb933oWz6oYlgAMWg7BkfYIbZEUC3/4K7zG8MCtMzncFuHB9bsH/Snm7huqmFAU5p7Hd5CylrVfvJaikI8yXV4Wl/S2Qbvt4Rd47ParuW/NziFfgvrGouksfeQFVi27Wu3TRETEEbF4kpbOONZCRyxJNJEi5PdSEPRhDJQVBrPSBeJMyyEUgtuitEcTbHm95eSa4JtqJ/K5j1zI86+38PjL+we8rHzr7Mlcf1kpP/r12zzdcAjoXhNcX1VKYchPWaFCsLijtTPKz7buZ/60cr79X01DCsC95lSX8tcfq2FjUzN/eMVkSvL1cysiIucHrQk+g3H5AV7Zd5yrLhp3ck3w0w2HeGbnYeZWl/FXH62iYkyYRCpNNJEm5Pfg93o4eDzC2oZD/OC5N0mluz9I1FeVctVF4/hdSydzq8uH+SuT81lnLM24ggBb3249pwAMsHlXC/Oqyxmb56czlkb7OUVEJBfk/EwwwMHjEXYeOEF5UYjvbXy9381xPo8h4PMQT6ZJpk//b1ZfVcqd8y6juS3K9EnFVIxx9gAOkb72tXYBMP97zw9q2c7ZhPweNtx5PQCVJXnnXE9ERGQkONNMcM5vjEskUuzYf5zjXQkiiRTLrr2IFQtrTusbnExbuuKp0wJwyO9hxcIall17EZFEihNdCXbsP04ikcrmlyE5xu8xrGs45EgABogm0jzz6iF82tApIiI5IudD8JGOGN9+pomisI9Hf7OHY10JppTk8bNlV3PnvEvPuLPxznmX8rNlVzOlJI9jXQke/c0eCsM+vv1ME0c6Yln+SiSXxNNp/n3rO47W/LffvqNDXkREJGfk/JrgtO1uG/V//2MH//InV/DwL98i7PfyuY9cyIXj8rn34zWMKwietib4aEeMWDIN1rLmlYPds8jXXcSf/MtLdMZT9LNiQsQxHmMGbIM2VPtaI3iMZoJFRCQ35HwI7ogm33f7s9dcyJtHOvijH/2Way4ez4LaiQAYwGveOwIjlkyztuEQv/ndu3zphmouKSt4f93Y++uKOKk96s7P16n/P4iIiJyvcj4ER3rW7v7tH8zkn59/i027jnBT7UT+/U8/xK/feJfvPtt98MCpG+MqS8L8YV0lX5hzMT/61dvct+Y15laX8bd/MJM/+7eXiWpNsLgo5tLPV1QHZoiISI7I+RAc8ntYNLOC1s4Em3YdARiwRVoskSZ4Sou0721842SLtE27jjCvppybaicS9OX8cmtxUdClBuNBr35uRUQkN+R8CC4M+bljzsV84u//+333p9KWZxubebaxGTh7i7ReX1/7Gk/ecQ35wZz/Tysuygu6E4LdqisiIjLS5HxSC/oN/7Wz5aytppJpSzJ+9kvQ0USaX77RwidmVTg1RJHTWLo7lDi5Oa6yJIz2c4qIiBMisQRHuxIAtEeSRBIpwn4vheHu6Dkuz0846B/OISoEp9Lw6IvOtpp69MV3uGmmQrC4Jy/g4ZbZk/n+xjccq3nr7Mnk+TUTLCIiQ3esK05XLMVTrxxg1Ut7+52sqSwJc9sVU1g8axJ5QS9j8wLDMFL1CSaVtq60mkqpR5q4KJG0zK0uO+1Ql6EK+T38XnUZibQ2xomIyNAcPhHlmYZDzH1oCw+s3z1gvtrXGuGB9buZ+9AWnmk4xOET0SyPtFvOh2C3WkKpRZq4qawgyIETEe6+ocqRenffUMXB4xHKCkOO1BMRkdzS3Bbly080cO+TOwd9mmk0kebeJ3fy5ScaaG7LfhDO+RAccavV1CDWD4sMld/vZcakMVQUh6mvKj2nWvVVpVQUh5k+eQx+dYcQEZEMHT4RZfnqBjbvaun38ZDPw/iCAKEBOmdt3tXC8tXZD8I5vyZ4sK3MBtsdoldALdLEZfkBL+3RBMuuuwiALbv7f/M5k/qqUpZddxH7W7soCGg9sIiIZOZYV5xNTc3vC8ABn4e/nHsJ9dVl5Ad8dESTRBMpQn4vBSEfnfEkzzUd4QfPvUm8pz/95l0tbGxsZkHtRMZkaY1wzofgggFamXk9hnk1ZXx8xkQmjQkTS6ZPfgODPg8HjkdY13CITbuO9Lv+d6C6Ik7pjKW45pJSvrXuNX7/g5Vce+l4Hly/e1CXoUJ+D3ffUMWEojD/9sIevrLwcjpiKYrz3B+3DF0qlaa1K04ybWmPJoklUgT9XgpDPnweQ0leAK9m80Uki7piKVauazx5+76FNcyfNoG1DYf4/KPbB9wYt/TKC9h01/VsaDzMN9Y2AbByXSP1VWWMydLvopxPasaY01pNLZpZwWevmcqW11tOnhh3qsqSMLfMnswd9Rfz4//ew5odB9/3mDHmtNeIOCUWT9Kw/zjHumJ8+ePTuG/NTgoCPn52+1U8/3oLj7+8f8Cf21tnT+b6y0r50a/fpiP+Lt9YNJ0tu5sZmx9kfL6fYCDn3xZGnHgyTWtnnLUNB/nJC3vY1xoh5PNQEOqZYUmmqSwJ8+mrp7KwtoKS/ICuRomI6yKxBE+9coBoIk1pQYDHbr+KbXuOMf97z59xQmZfa4Tv/GIXf7fpdb668HI23HkdSx95kZaOOGt2HOAzV1+QlfZpxtrR18Wgrq7Obtu2zZFazW0RfrZ1H9/b+Ab5AS8P3DqTw22RIc2o3fP4DjrjKe6afymfvGIKZUXaZCTu2H+si2OdcX7/n1+gMOjjsduvYuvbrXz7v5q45uLxLKidePKkw2giTeiUkw5/87t3+euP1XDlhSUsfeRF2mNJ/vPzVzM2P8DksZoOHklaO+NsbGrmm+sa+bPrLnrf5cXevpt9Ly8+/Ku3+MqCacyrKackf3jaDolIbth/rIvbHnmRaDzF6juu4WtrXjt5+m4m5laX8bVFl7PkH/6bUMDLqtuvcux3kTFmu7W2rr/Hcn7KJ5WGBbUV/PSFPfxw6Wwe/uVbGa2tjCbSrFzbRH1VKY98uo4vPvYyH59RoRZp4iq/1/CrN98lmkgTTcSZ/71fsmJBDb/4i+tY23Dw5BWMU9eyd1+CmsJ9C6fx7GuHmf+9X56s+es332XJ7EnD+FXJqY52xPjSzxv48MXjWPfFa3l6x8EzXl687YoprPvitWxoPMw9j+/gO7fUMq4gOAwjF5FcYG33rO7Gu64fcgAGTr5u1bKrmffQ82RrfjbnZ4LfebcTj8fQFk3w4PrdQ9pc1Ku+qpS7b6iiOOQnlbZcMD7fkTGKnGrPu5186se/PS0MBXwe/s/vXcLv1ZSRF/DRGUuenAnOD/ro6mczQq/KkjCPfu5DTB2nn9uRoLUzzjfXvsb/rr+ErW+3snJd46CvTq1YMI0rLyzhH7e8yYqFlzNWM8Ii4oKmg2288Na75AV8LF/96jnXu/+WGXRGk3z4kvHUTCxyYISaCT4j4zGEfB5+c+DEOQVg6N6d/7HpE/i9qjIiSR06IO7xeky/s4HxZJrvPvs63332dYDT1o2eyb7WCD6tZR8R4sk0v37jCHfOr+K+NTsHbDvUn96+m3OqS/nGoun86o0Wbpw+UWuERcRxkUSKj14+gXkPPe9Iva+teY2Nd11PS3vMkXpnk/PvigVBD9Fkmq+uec2Rel9d8xrRZJqCYM7/pxUXdQ7yMJZk2tIVTw2qrR9AR1yHvIwErZ0xpk0szjgA97V5Vwv3rdnJtIoiWjuz8wtFRHJLRXGIZ149NOjDMc4mmkjzzKuHmJClPVU5PxOcSlvHv4H/tfMQN3+gwpF6Iv0Z6Of1XFv7xRz6/0CGLpVKc+B4lF2H2oYcgHtt3tXCvOpyaiYWUloQVPs0EXFUyloeffEdR2s++uI7LJgx0dGaA8n5EBxPWv7tt6P3Gyi5qb9DXs61tR9AQCFp2B3tjFNWGOSP/l/j2Z88CCvXNbLhzuu766pjjYg4KN2zMc5J+1ojZKu3QM7/xhvt30DJTXnB9053yw94+fuls5lZWcwnH3mR7298Y8Cf6X2tEb6/8Q0++ciLzKws5u+Xzia/z0lxfevK8PB54ekdBx29OrW24SA+fWtFxGGDXZqXcd0sLc3L+RDc4dY30KW6IgCW7lnd/ICXRz5dx39u38fKtU2DDk69rf3+c/s+Hvl0HfkBL5UlYfTZbfh1xtKsemmvozUf27qXzpiWuoiIsyKJlCt1o3F36p4q55dDRN36BrpUVwQgL+DhltmTubSsMOPe1n31vu6BW2fy5pF28vyaLhwJ3Lg6JSLitP6W5jkhW91scn4meLR/AyU3JZKWJR+YxOG2iCOt/Q63Rbh59iQSKc0WDjddnRKR0aIg5M5cqlt1T5XzSW20fwMlN4UDHrweDw+u3+1IvQfX78ZrPIQDmgkebjG3rk4ldXVKRJzlMYbKkrCjNStLwniy1LM+50OwwZ1voEGHDoh7PB7DUzsOOLp5as2OA3hy/h1h+IVcWpIS0s44EXFYXsDLrbMnO1rz9z84mbwsTcjk/K88n8e48g30eRSCxT3tkRSrtjq/eao9otnC4eZWhw51/hARpxWH/CycWUHI70ycDPk9LKitoDicnaPecz4Ep9KWBbXOfgM/PqNi0Cd0iQyVNk+dn1Ip68rVqf4ORxERORder4eioI+7b6hypN7dN1RRFPThzdJEYs6HYK/XgE07+g20No3Pq5lgcU9H1J1NTm5typLB83gMtzh8derW2ZOztsZORHJLcV6Aay4ZT31V6TnVqa8q5ZpLxlOcl51ZYFAIxucxPPrbvVx10ThHvoFXXTSOR3+7V8shxFWu9WZUa79hZwzUX1bq6NWp6y8rRRlYRNwQ8HkoKwxx17zLhpyj6qtKuWveZZQXhrLaXSvnQ3BJXoDKsXnsa41w5zl+A++cdxn7WiNMGZtHSX7Q4ZGKvCeszVPnLYPhiVcOOHp1avUrB7RZV0RcU5IfYNLYMJ+/7iJWLKwZ9If4kN/DioU1fP66i5g0NszY/OzNAoNCMF6vh4W1Fdz7RAORRIpl1w7tG7js2ouIJFLc+0QDC2srsraeRXKTWvudv0J+Q0legAlFYUeuTk0oCjM+P+DaBycREYBxBUGqJhRRVV7Iz5ZdzZ3zLh1wf0NlSZg7513Kz5ZdTXV5IdUTihhXkP3JQ/3Go/sTzPKP1fC5f32JB26dyZSSPH627Gqe332Ex1/e3++GocqSMLfOnsz1VWW0tEc51pXgnsd38LVFl1OS5U8yknuM6f4ZdHIzW2VJWJfMRwALLJxZwR/802/44dLZAEM6EKW+qpRl113EFx97mf/4sw+TttoYJyLuKskPcOWF42jtjFM9oZB7P17DuIIgiVSaaCJNyO/B7/VwtCOGMTChKETJxKJhO2BMIZju9Sxza8p59rVmvvDYy9xUO5HPfeRCLhyXf8ZvYCyZBmtZ88pBnm44xPyacubVlOu0OHFdaX6A266YwgMOHZYBsPTKKZQVahnPcAv4POQF4I45l3D7T7bxwK0zufbS8Ty4fveg+kKH/B7uvqGKCUVhbv/JNu766GXk+b2OrTEWETmTgM/DhOIQpQXltHbFSaYtHdEkiVQav9dDQcjH1HHdy0aH+6q5QnCPkvwA998yA34OTzcc4pmdh5lbXcaC2okAGMBr3ltVF0umWdtwiOd2HSGVtsyvKef+W2ZkfT2L5KZgwMfiWZP4wXNvOHJgRsjvYdHMSQS0JnjYFQb8xOJxrrl4PL+68N2TH8x/dvtVPP96y9mvTl1Wyo9+/TZPNzSd3G3tMYb8oH8YvhoRyVVer4fSwlD3jeLhHctAjB2Fl8jq6urstm3bXKnd2hlnU1MzK57a+b5w4fMYAj4P8WT6fT2AQ34PKxdPZ15NuQKwZFV7JMGaHQe598md51zrW5+YzuJZFRSEFJRGgqPtUY52xYnG0zy08XW27G7B6zEnP5hXjAmfdnXq4PHI+z6Y9+62DgU8lOQFGN/7y0hEJIcYY7Zba+v6fUwh+HTxZJrWzjhrGw7ykxf2DDjr8pkPT2XBjApK8gNaAiHDovlElOVPNLB5V+ZrRnvNqS7l/iW1lBcpJI0U8WSad9ujHI8kOBFJ0Hio7bTlEGf6YH73DVVMm1hEcdjPmLCf8VluOyQiMlIoBA9RKpV+33qWWDJN0Ne9nsXnMSNiPYtIc1uU5auHFoQVgEeu1s440USKPe92kkilKc4LDHqz7omuOH6vh6nj8wn7vbpKJSI560whWGuCz2A0rGeR3NbaGef7G3bzzcXT2VLdwsp1jYPePLViwTTqq0r5/obd3HNjjYLSCFOSH+BoR4yKMWHeOdqJAS4tKzjjZt20tSf3LVSMCRP0efR9FREZgK6PiYxS8WSajY2HWfXSfq75zmbKioJsuqueL91YdcbejF+6sYpNd9VTVhTkmu9sZtVL+9nQdJh48tw32ImzxhUEKQr7GV8QOK31ogH8ntOPwCjJDzC+IEBx2D8sfTdFREYLLYcQGaUOnYgw57tb3jfzGw54efCWGUyfPAavMXTEkkQTKUJ+LwVBHylr2bn/OHf//FUi8feOSA75PWz+q3omFvcfnmV49e5TOHCsi/yQj5DfS2csSTyZJuDzkB/0EU2k6IomqRibp30KIiI9tBxC5DyTSqV5eseh05Y+ROIp/nzVKydvFwS614Me64zT0Sf0niqa6G7599kPT8XrVXgaad7ruxk4uU8hkfTgMeDzeAj6POQHvFxaVqh9CiIig6QQLDIKHe2M8+iLe876vI54io744E6V++kLe1g8s4IybZIbsbRPQUTEOZryERmF4qm0o0cmA+xrjRBPaV2wiIjkBoVgkVGoI5p0p27MnboiIiIjjUKwyCgUSQy8vvdcRF2qKyIiMtIoBIuMQkGXdv4HtClORERyhH7jiYxCBUF39rS6VVdERGSkUQgWGYWMMQMeiDFUlSVhjFF7LRERyQ2a9hEZhXwew62zJ/O9jW84VvP3PzgZn3rMjmiRWIKjXQkA2iNJIokUYb+XwnD3W/m4PD/hoH84hygiMmooBIuMQh4PLKit4B+f/91pB2YMRcjv4eMzKnTQwgh1rCtOVyzFU68cYNVLe/ttj1dZEua2K6aweNYk8oJexuYF+qkkIiK9tBxCZBRKpiwGy903VDlS7+4bqjDGkkirT/BIc/hElGcaDjH3oS08sH73gP2h97VGeGD9buY+tIVnGg5x+EQ0yyMVERldXA/BxpgbjTG7jTFvGmOW9/P4FGPMZmPM/xhjGowxH3d7TCKjXVlBkNePdHDVReOoryo9p1r1VaVcddE4Xm/uoKxQp8WNJM1tUb78RAP3PrnztBn/kM/D+IIAoVM6hUQTae59cidffqKB5jYFYRGRgbi6HMIY4wX+HpgP7AdeMsassdY29nnaV4D/sNb+ozFmGvAMMNXNcYmMdn6/l9rJY3jtwAnunHcZAFt2t2Rcp76qlBqlSiYAACAASURBVDvnXcaBYxFqJ4/BrxZpI8bhE90BePOu7u9rwOfhL+deQn11GfkBHx3R99YEF4R8dMaTPNd0hB889ybxZJrNu1pYvrqB+5fUUq6jsEVETuP2muArgTettW8BGGN+BiwG+oZgCxT1/LkYOOjymETOC2PDfo51xSkK+1l27UVce+l4Hly/e1BrhEN+D3ffUEXNhCIiiRTHu+KMzdOGqpHiWFecTU3NJwPwfQtrmD9tAk/vOMjnH91+xjXBm+66ng2Nh/nG2iY272phY2MzC2onMkZrhEVE3sdYa90rbsytwI3W2j/tuf0p4EPW2j/v85yJwLPAWCAfmGet3d5PrWXAMoApU6Z88J133nFt3CKjxZG2KF9ds5OFtZMI+AylhSGe332Ex1/eP2BQunX2ZK6vKqOlPUo8aVnbcICvL5pOmWYLR4wDxyLMfWgLhUEfj91+FVvfbmXlusZBf8BZsWAaV15YwtJHXqQ9lmTTXfVMGutsSz0RkdHAGLPdWlvX32MjoTvEbcC/Wmv/1hhzNfCoMWa6tfZ97/bW2oeBhwHq6urcS+4io0hZUYivL5rOl1Y3UBDw8bmPXMiF4/K59+M1jCsIkkiliSbShPwe/F4PRztixJJpsJY1rxykI57kO0tqFYBHkEgswVOvHKAw6GP1Hddw35qdJ2eEB6N3TfCc6lJW33ENS/7hv1mz4wCfufoCtU8TEenD7QWAB4DKPrcn99zX1+eA/wCw1r4AhIDxLo9L5LxRVhTiO0tquericfzRj37L2lcPdQddwABeY+htfBZLplnbcIg/+tFvufricQrAI9DRrgSrXtrLqmVXZRyA+9q8q4X71uxk1bKreGzr3pP9hUVEpJvbM8EvAZcaYy6kO/x+Elh6ynP2AnOBfzXG1NAdgof2ri+So8qKQtz8gUnUV5Wx5pUDfPfZ7lZaPo8h4PMQT6ZJpi2VJWGWXjmFry+6nDF5fvICI+FikPRlLfzJh6fy27dahxyAe23e1cK86nI+c/VUXFz5JiIyKrm6Jhigp+XZ9wEv8GNr7beMMd8Atllr1/R0hHgEKKB7k9w91tpnz1Szrq7Obtu2zdVxi4xWiUSKls4YaQvt0STRRIqQ30thyIfHQGlhSF0gRrCmg20Uhn3Me+h5xw5C2XjX9bRHk9RMLDr7C0REziPDuibYWvsM3W3P+t53X58/NwLXuD0OkVzh93upGJM33MOQISoM+VjzykFHAjB0rxF+esdBFs2scKSeiMj5QtNBIiIjiAVWvbTX0ZqPbd1LWsshRETeRyFYRGSEGeho5JFST0TkfKAQLCIygnREk+7UjblTV0RktFIIFhEZQSKJlCt1oy7VFREZrRSCRURGkJDfnbfloE9v9yIifeldUURkBCkMuXOqm1t1RURGK4VgEZERxBioLAk7WrOyJIwxZ3+eiEguUQgWERlBCkJebrtiiqM1l145haKQTgcUEelLIVhEZAQpDPhZNKvCsbXBIb+Hm2ZWkB/UcggRkb4UgkVERhCv10PY52HFgmmO1FuxYBohnwevR+shRET6UggWERlhCsMBrq8qZU516TnVmVNdyvVVpRSFAw6NTETk/KEQLCIywgR8HvICPr65eMaQg/Cc6lK+uXgG+QEfAbVHExE5jXZKiIiMQCX5AY7aGF9deDnzqt9l5bpGoon0WV8X8ncvpbjmkvGE/B7G5msWWESkPwrBIiIj1LiCIMYYZlUWs+HO61nbcJDHtu5lX2vktOdWloRZeuUUFtZW0BaJUxz2KwCLiJyBQrCIyAhWkh8g5PdwrCtB3QVjmVNdRsjvpTOWJJpIE/J7yA/6iCZStEcSeD2GC0sLyAvo7V1E5Ez0LikiMoK1dsbZ1NTM155+jWsuHs+C2olUjAmTSqVJpCyJpKErnuLg8QhrGw7xm9+9y9duupy5NeWUaCZYRGRAxlo73GPIWF1dnd22bdtwD0NExFVHO2Is//mrbGhqPu0xn8cQ8HmIJ9Mk06e/j8+vKef+W2YwriCYjaGKiIxIxpjt1tq6/h7TlmERkRGotTM+YAAGSKYtXfFUvwEYYENTM8t//irHOuNuDlNEZNRSCBYRGWHiyTSbmpoHDMCDtaGpmY1NzcSTZ+8qISKSaxSCRURGmNbOOCue2ulIrRVP7aRVs8EiIqdRCBYRGUFSqTRrGw4OqifwYEQT3fVSKc0Gi4j0pRAsIjKCtHbF+ckLexyt+ZMX9tDapdlgEZG+FIJFREaQZNr2exjGudjXGhlwA52ISK5SCBYRGUHao0lX6na4VFdEZLRSCBYRGUFiiZQ7ddUhQkTkfRSCRURGkKDf60rdgE9v9yIifeldUURkBCkMuXOavVt1RURGK4VgEZERxOcxVJaEHa1ZWRLG5zGO1hQRGe0UgkVERpCSvACfvnqqozU/ffVUSvKDjtYUERntdH1MRGQE8Xo9LKyt4LvP7nbkwIyQv7ueVzPBIpJFsXiSlp7TKtsjSSKJFGG/l8Jwd/QszQ8QDAxvDFUIFhEZYUryA6xcPJ27H28451orF0+nJD/gwKhERM6uPZKgLZrkqVcOsOqlvf32Pa8sCXPbFVNYPGsSRSEfhWH/MIxUyyFEREacgM/D3Jpy5teUn1Od+TXlzKspV2cIEcmK5hNR1uw4yNyHtvDA+t0nA/D4PD+1k4oYn9cddve1Rnhg/W7mPrSFNTsO0nwiOizj1UywiMgIVJIf4P5bZsDPYUNTc8avn19Tzv23zGCsZoFFJAua26Isf6KBzbtaKM7z89QXriEv4MMYaIskiCbShPweisJ+rIXOWII/fOS33PvkTjbuaub+JbWUF4WyOmZj7eg7SrOurs5u27ZtuIchIuK61s44m5qaWfHUzkGtEQ75PaxcPJ15NeUKwCKSFc0n3gvAG+68lryAf9DLIbriCeZ/71fMqS51JQgbY7Zba+v6fUwhWERkZIsn07R2xlnbcJCfvLBnwF8qn/nwVBbMqKAkP6AlECKSFe2RBGt2HOTx7fv4xz/+IJuajrByXeOgP7SvWDCNuTVl/O9/286tH6xk8awKCkLOrRE+UwjWcggRkREu4PMwoTjEn3x4KotnVZBMWzqiSWLJNEGfh4KQD5/HUJIfVBcIEcmqtmiSp3cc4J8+Vcfy1d2zwYMVTaR7lkOU8k+fquMvVr1MfVWZoyH4TBSCRURGCa/XQ2lhz6XC4uEdi4hILN7dBeL7n/xAxgG4r827Wli+uoHvf3I2T/zPfj774alZaZ+m62UiIiIikrGWzjg3XF7OpqYjQw7AvTbvamFTUzM3XF5+sr+w2xSCRURERCRj1kLI72PlukZH6q1c10jQ5yNb29W0HEJEZJQYDScwiUjuKAp7+fcX9zlyuiV0rxFes+MASz9U6Ui9s9G7pYjICDeaTmASkdzRFkmx6qW9jtZ8bOteFtZWUBx2tGy/FIJFREaw5hNRNjY1n7XlUO8JTD947g1WLJjGvJpyyouz23heRHJPfx/KR1K9M1EIFhEZofqewDRY77UcGp4TmEQkd3REk+7UjblT91TaGCciMgI1n4g60nKouS3q8MhERLpFEilX6kZdqnsqhWARkRGmPZJgY1OzIy2HNjY20xFNODQyEZH3hPzuxMhglk68VAgWERlh2qJJR1sOnYhk59KiiOSWQpdOdnOr7qmGFIKNMSVOD0RERN47gcnplkOxuIKwiDjLmO7ONE6qLAljsnT6+1lDsDHmGmNMkzHmNWPMh4wxG4CXjDH7jDFXZ2GMIiI5o6Uz7krLoWydwCQiuWNM2MttV0xxtObSK6dQkjdyZoK/B/wB8KfAOuDr1tqLgcXAd10cm4hIzrHWnZZD2TqBSURyR9jvZ/GsSY6tDQ75PSyaOYmgPzvNywYzar+19lVr7QtAi7X21wDW2peBLLQyFhHJHaO95ZCI5A6v10PIb1ixYJoj9VYsmEbYb/B6srMeYjAhuO9zvnzKYwEHxyIikvNGe8shEckthaEAc2vKmFNdek515lSXMremnIJQ9qLlYELwCmNMHoC19sneO40xFwM/dWtgIiK5KOz3ulI35HOnrojktoDPQ8Dn5f4ltUMOwnOqS7l/SS1Bn4dAltqjwSBCsLV2jbW2q5/7f2etfaD3tjHmh04PTkQk1xSE3FkL51ZdEZGS/AA+j+Fvbp7Btz4xfdBrhEN+D9/6xHT+5uZafB7D2PzsLjBw8l3xGgdriYjkpN6WQ05ujstmyyERyU3jCoK0dsaZV11KfVU9a3Yc4LGte/t9L6ssCbP0yiksmjkJn7EEfJ6sB2BwNgSLiMg5Ks0PcNsVU3hg/W7Hai69cgplhUHH6omI9KckP0A86aO1M86S2ZNYWFsBdG/MjSZShPxeCoLd0TPoM6StYWx+MKtLIPrSiXEiIiNIMOBzpeVQQGuCRSQLAj4PE4pDjM8PEvJ78HkNPo8hP+TB5zH4vIaQ38O4ghATikPDFoDB2ZlgXWwTEXFAUcjHigXTuPfJnedca8WCaRSHddFPRLLL6/VQWhjqvlE8vGMZyKDjtzFmxlme8nfnOBYREQEKw37m1ZQ70nJo3rRyCkLZOX1JRGQ0yWQO+h+MMVuNMXcYY07L9Nbaf3VuWCIiua28OORIy6HyopDDIxMROT8MOgRba68F/gioBLYbYx4zxsx3bWQiIjmuvCjE/TfXDqnlkAKwiMiZGZvhgfLGGC/wCeAHQBvda4H/2lq72vnh9a+urs5u27YtW3+diMiw6ogmOBFJDq7l0KxJFId8WgIhIgIYY7Zba+v6e2zQuyWMMbXAnwALgA3ATdbal40xFcALQNZCsIhILikI+SkI+fnsh6dy08wKrD295ZAxUFYYVBcIEZFBymTL8A+B/0f3rO/JaQhr7UFjzFccH5mIiLxPMOBjckCdHkREnJDJu+kCIGKtTQEYYzxAyFrbZa191JXRiYiIiIi4IJPuEBuBcJ/beT33iYiIiIiMKpmE4JC1tqP3Rs+f85wfkoiIiIiIuzIJwZ3GmNm9N4wxHwRO36IsIiIiIjLCZbIm+C+B/zTGHKS7LdoE4A9dGZWIiIiIiIsGHYKttS8ZY6qBqp67dltrE+4MS0RERETEPZn22rkCmNrzutnGGKy1P3V8VCIiIiIiLsrksIxHgYuBV4BUz90WUAgWERERkVElk5ngOmCazfScZRERERGRESaT7hA76d4MJyIiIiIyqmUyEzweaDTGbAVivXdaaxc5PioRERERERdlEoK/5tYgRERERESyKZMWac8bYy4ALrXWbjTG5AFe94YmIiIiIuKOQa8JNsbcDjwO/HPPXZOAJ90YlIiIiIiImzJZDvEF4ErgtwDW2jeMMWWujGqESKXStHbFSaYt7dEkiWQKv89LYciHz2MoyQvg9Wayt1BERERERoJMQnDMWhs3xgBgjPHR3Sf4vBNPpmntjNOw7zhpLOMLgsSSaaKJFCG/l7ZIgnc7YhhgZuVYSvIDBHwKwyIiIiKjRSYh+HljzF8DYWPMfOAO4Gl3hjV8WjvjNB48QUHIT+PhNn7+8n72tUbweQwBn4d4Mk0ybaksCXPL7MmUF4d580g70yqKKckPDPfwRURERGQQMgnBy4HPAa8CnweesdY+4sqohsnRjhivN7ezu7mdhza8zkcuGc9ffbSKSWPC75sJDvo8HDgeYV3DIR751VvcNf8yvB7DZeWFjCsIDveXITkukUjR0hkjbaE9miSSSBH2dy/j8RgozQ/i92tPq4iI5LZMQvAXrbV/B5wMvsaYv+i5b9Rr7Yxz4FiEf/7lWxSF/Pz75z7Eltdb+O6zu9nXGjnt+b0zwXfUX8yP/3sPv3rjXe6adxkeYxirGWEZBl2xJMciCZ565QCrtu4d8Of2tiunsHjWJMaG/eQFM3kLEBEROX+YwZ6CbIx52Vo7+5T7/sda+wFXRnYGdXV1dtu2bY7ViyfTvPVuB9/f8Do3zZzE4bYID67fTTSRPutrQ34Pd99QxYSiME/vOMCd8y/jwvEFWiMsWXWkLcqGpmZWrm0c9M/tioXTmF9TTllRKAsjFBERyT5jzHZrbV2/j50tBBtjbgOWAh8BftXnoUIgba2d69RAB8vpENzSFuW/XjvEJWWFPPzLt9iyuyXjGvVVpSy77iLePNLOxy6fSKmChWTJkbYoX1rdwOZdmf/czqku5TtLahWERUTkvHSmEDyYa6G/AQ7RfWzy3/a5vx1oOPfhDa9UKk1bLElpQWjIARg4+bo/rKukLZakJJVW+zRx3bkEYIDNu1r40uoGBWEREck5Zw3B1tp3gHeAq90fTvadiCZoOniC5vbYkANwry27W7j20vGkbJqxeX5K8rVJTtzTFUuyoal5yAG41+ZdLWxsauYTH5hEXkBrhEVEJDdkcmLcEmPMG8aYE8aYNmNMuzGmzc3BZUNXPMUF4/J5cP1uR+o9uH43F5Tk0xVPOVJPZCDHIglWrm10pNY31jZyrCvhSC0REZHRIJPr9Q8Ai6y1xdbaImttobW2yK2BZYvPa9i068igNhMNRjSR5rldR/B5jSP1RPqTSKR46pUDjv7crnnlAImEPryJiEhuyCQEN1trmzL9C4wxNxpjdhtj3jTGLB/gOX9gjGk0xrxmjHks07/jXETjaX7+8n5Haz7+8n7HwolIf450xFi1da+jNR/bupcjHTFHa4qIiIxUmSwA3GaM+f+AJ4GTvymttasHeoExxgv8PTAf2A+8ZIxZY61t7POcS4EvA9dYa48ZY8oy/BrOiTH020/1XOxrjaB5YHFT2rrzc5s+Lw9CFxEROV0mIbgI6AI+2uc+CwwYgoErgTettW8BGGN+BiwG+i5kvB34e2vtMQBr7ZEMxnTOumLuXP7VmmBxU0c06U7dmDt1RUQkt8TiSVo64wC0R/qcXhrujp6l+QGCw7wZe9B/u7X2T4ZQfxKwr8/t/cCHTnnOZQDGmP8GvMDXrLW/OLWQMWYZsAxgypQpQxhK/2JJd5YtxF2qKwIQcWntblRrgkVE5By0RxK0RZPdp5e+dIbTS6/oPr20KOSjMOwfhpFm1h3iMmPMJmPMzp7btcaYrzgwBh9wKVAP3AY8YowZc+qTrLUPW2vrrLV1paWlDvy13UJ+d3r5BnVinLhIP7ciIjLSNJ+IsmbHQeY+tIUH1u8ecNnevtYID6zfzdyHtrBmx0GaT0SzPNJumfzGe4TutbsJAGttA/DJs7zmAFDZ5/bknvv62g+ssdYmrLVvA6/THYqzojDkzlS8W3VFAApD7nxqdquuiIic35rboix/ooF7n9w56OYA0USae5/cyfInGmhuy34QziQE51lrt55y39kWEL4EXGqMudAYE6A7NK855TlP0j0LjDFmPN3LI97KYFznxNI9Le+kypIw2l8kbjLGnZ9box2dIiKSoeYTUZaf4+mly1dnPwhnEoLfNcZcTHduxBhzK93HKQ/IWpsE/hxYDzQB/2Gtfc0Y8w1jzKKep60HjhpjGoHNwN3W2qMZfh1DVhDy8kdXXuBozT/+0AUUhLyO1hTpqyDk5bYrnFsbD7D0yikU6QqGiIhkoD2SYKNTp5c2NtMRzd7BTZn8xvsC8DBQbYw5ALwN/PHZXmStfQZ45pT77uvzZwvc1fNP1rVHUlxzyThCfo8jvX1Dfg8fvngc7ZEUY5ydqBM5qTDgZ9GsCn7w3BuO/dzeNLOC/KCWQ4iIyOC1RZOsXOfM6aUr1zVSX1VGQZaW5g16Jtha+5a1dh5QClRbaz9ird3j2siy6JFfvc3dN1Q5UuvuG6p4+JdZW80hOcrr9RD2eVixYNoZn+fzGPICXnyeM69zWLFgGiGfB+9ZniciItIrFk86f3rpjgPE4tlp1znomWBjzF8A/wK0093BYTaw3Fr7rFuDy4b2aII1Ow5yw+UTqK8qZcvuoU/n11eVMqEozNMNTdwx5xIHRylyusJwgOurSplTXXryMpTXY5hXU8bHZ0xk0pgw8WSaRCqN3+sh4PNw4HiEdQ2H2LTrCKmekzHmVJdyfVUpReHAcH45IiIyyrR0xln1kvOnl940s4LJWeghnMnf8Flr7d8ZY24AxgGfAh4FRnUI7v30cs/jO3jk03UAQwrC9VWlLLvuIm7/ybaeuuq3Ku6LJFJ8c/EMvsKrFAb9fPYjU9nfGsHn7Z7RtUAybfH1LFEP+jzcNHMid8y5mB//eg/tsQTfXDyDSEKHZIiISGasS6eX2ix1F8gkBPdeJ/048NOeDW6j/tpp2N+dDjrjKW7/yTYeuHUm1146ngfX7x7U9H7I7+HuG6qYUBTm9p9so7PnpLiQTxvjxF2tnXHebumkcmyIb31iBm82dwCGN1s6+PnL+wdsUH7L7MlUluRz6+zJXFJewImuGPuORSkI+plQHMr+FyIiIqPSaD+9NJMQvN0Y8yxwIfBlY0whMOqPRevbz7cznuILj73MTbUT+dntV/H86y08foYwcevsyVx/WSk/+vXbPN3QNGBdEaelUmlePXCcw20RxhUEOH60kzda2s/64W1fa4Tvb3yDf3r+d9x9QxV+nyHg83C4LYI5AKUFZXi9OjBDRETObrSfXppJUvscMAt4y1rbZYwZBwzlKOURpbffat+g+3TDIZ7ZeZi51WX81UerqBgTJpFKE02kCfk9+L0eDh6PsLbhED947s2Tayt7VZaEMcoR4qLWrjgTikL4vR78Hg8//OWbGS3jiSbSrFzbRH1VKXfNu4wpJfmMyw/Q2hWntFCzwSIicna9V9Odlq2r6WcNwcaYamvtLroDMMBF58EqiJPKCoLcduUUHvjF7vfdn0pbnm1s5tnGZqB7l33A5yGeTJNMn3mxytIrp1CmICEuMgb2HO3k0rJC7v/FriFv6Ox93fKPVfNmczsTx+jnVkREBqfApavebtU91WD+lruAZcDf9vOYBX7P0RFlmd/vZfGsSfxg05n7rSbTlmT87NPzIb+HRbMm4dclZXFRZyzF7Clj+cVrh8+powl0B+FrLx3PjdMm0BlLMb7AoUGKiMh5rb+r6ecqm6eXnjWpWWuX9fx7Tj//jOoA3Gts2M+KhWfutzpY9y2cxtg8HTgg7gr6PESTaR5cv/vsTx6EB9fvJppKE/Tpw5uIiAxOaX7AldNLywqDjtYcyKB/4xljfr9nMxzGmK8YY1YbYz7g3tCyJy/oY35NOXOqS8+pzpzqUubVlJOXhd52kts8Hli746CjDcrXNRxEZ2WIiMhgBQM+Fs+aRMjvzARKyO9h0cxJBLK0JjiTUa+w1rYbYz4CzAN+BPyTO8PKvrKiEN9ZUjvkIDynupTvLKmlrEhrKsV9sYTl8Zf3O1rzP7fvJ5bMUnNGERE5LxSFfGc9vXSwViyYRnE4exOJmYTg3gWxC4CHrbXrgPPqiKneIPytm6cP+lNNyO/h2zdPVwCWrLJYdxqUoxAsIiKDVxj2M8+pq+nTyikIZW9JaSZx+4Ax5p+B+cB3jDFBMgvRo0JZUYibPzCJ+qoy1rxygMe27h2wT/DSK6eweNYkxuT5tQRCssq1BuVRnXQoIiKZKS8Ocf+SWpavbmDzrsw3a8+pLuX+JbWUZ3kyMZPk9gfAjcB3rbXHjTETgbvdGdbwygv4yAv4+NNrLmTxrArSFtqjSaKJFCG/l8KQD4+B0sKQukDIsIgl3TmnJp5UCBYRkcyVF4W4/+ZaNjY1s3Jd46BP3V2xYBrzppVnPQBDBiG454CMp4ByY0zvVsBd7gxrZPD7vVSMyRvuYYicxrUG5S7VFRGR8195cYjFsyq6r6bvOPvV9EWzJlEc8mV1CURfgw7BxpgvAl8FmnnvuGQL1LowLhE5g/ygO8tv3KorIiK5oSDkpyDk57MfnspNMyuwFjpi711NLwj6MAbKCoNZ6wIxkEx+4/0FUGWtPerWYERkcLwedxqUa3WPiIg4IRjwMXmE75fK5FfePuCEWwMRkcEblxfgU1dd4GjNT111AeMLstOgXEREZLhlEtHfArYYY9YBsd47rbUPOT4qETmjYMDHwtoKHtrwuiMHZoT8HhbWVgz7pSkREZFsyWQmeC+wge7ewIV9/hGRYVAY9PG1my53pNbXF11OUWhkX7YSERFxUibdIb4OYIwp6Lnd4dagROTsCsN+5lSVMbe6jE27jgy5ztzqMuqryoZtd66IiMhwGPRMsDFmujHmf4DXgNeMMduNMc5MQ4nIkJQXh/j2khnMrS4b0uvnVpfx7SUzhqU/o4iIyHDKZDnEw8Bd1toLrLUXAP8XeMSdYYnIYJUXhfj2zTP4m5tnZHTc998smaEALCIiOSuTRYD51trNvTestVuMMfkujElEMlReHOKmmRO57rJS1jYc5N9++86ADcr/+EMXsHBmxbA2KBcRERluGXWHMMasAB7tuf3HdHeMEJERoLdB+WeuvoAFtRNHdINyERGR4ZZJCP4s8HVgNd0nxf2q5z4RGUFGQ4NyERGR4ZZJd4hjwP9xcSwiIiIiIlmRSXeIDcaYMX1ujzXGrHdnWCIiIiIi7smkO8R4a+3x3hs9M8ND68skIiIiIjKMMgnBaWPMlN4bxpgL6F4bLCIiIiIyqmSye+Ze4NfGmOcBA1wLLHNlVCIiIiIiLspkY9wvjDGzgat67vpLa+27vY8bYy631r7m9ABFRERERJyWUR+lntC7doCHHwVmn/OIRERERERclsma4LMxDtYSEREREXGNkyFYm+REREREZFRwMgSLiIiIiIwKTobguIO1RERERERck9HGOGNMLTC17+ustat7/n3VAC8TERERERlRBh2CjTE/BmqB14B0z90WWO3CuEREREREXJPJTPBV1tppro1ERERERCRLMlkT/IIxRiFYREREREa9TGaCf0p3ED4MxOjuC2yttbWujExERERExCWZhOAfAZ8CXuW9NcEiIiIiIqNOJiG4xVq7xrWRiIjIGaVSaVq74iTTlvZoklgiYFG6zgAAIABJREFURdDvpTDkw+cxlOQF8HrV/l1EZDAyCcH/Y4x5DHia7uUQwHst0kRExB3xZJrWzjhrGw7ykxf2sK81QsjnoSDkoyOaJJpMU1kS5tNXT2VhbQUl+QECPoVhERk+kViCo10JANojSSKJFGG/l8Jwd/Qcl+cnHPQP5xAzCsFhusPvR/vcpxZpIiIuau2Ms6mpmZXrGvmz6y7inz/1QfID3eE3kUrh93opCPnojCd5rukIH/3+86xYMI25Nf9/e3cfH9dV33n8+9M868GK5chKLEtxgBBLOLIA2ZBQStw4y4MdK5jstna7PJSH7m63W2AbYpZ12o0b6oQ2dLvl1ZZSSuBVm/YVHGzsloBdh7YUsB2wFSMphUKwoySyiB3JkuZROvvHjBPFkWRZulczV/N5v15+xTNz9ZsTnbn3fn3m3HMbVFcVLXbzAZSZc6MZjabHtPd4n3YfPaXTZ5Mv26apLqEta5rV2d6oylhIiyuLc6wy51xR3nguOjo63LFjx4rdDADw1XPDaW37yuO68ZV1urX1Kj07mFRNIqJEJJQfAc6OKR7Jh+BkdkxDo1ldfUVC3+x+Vt/597Pa+a4btKQ6Vuz/DQBl4tnB1Av/aE9lL335WDxS8cI/2q+qjfvSJjN7zDnXMdlrl3OzjLik90t6jaQXWuqc+/U5txAA8BJnRzL65IEefext12s0k5MkHfvZ89p15GdTjqxsXXuNNl6R0OuvWaw3X1evTx7o0f/e2KrFjAgD8Fn/UEoff7hLh3sHZvwzqey4PvHVkzrY26+dm9vUsMifIDyVy5k09iVJV0l6q6RvSVou6bwfjQKAcpbJjevbPxrQR299tcKhCnU/fV63fvpbuu/rvZMGYEk6fTap+77eq1s//S11P31e4VCFPnrrq/UvPxpQJseCPgD88+xgStv2XF4Anuhw74C27elS/1DK45ZN73JC8Kucc9sljTjnHpS0QdIb/GkWAJSvsyMZvaZxkWSm39/frY8//PiMvlqU8iMrH3/4cf3+/m7JTK9ZvkhnRzI+txhAuTo3mr9uYbYB+ILDvQM62N2v50fn73h1OSE4W/jv82a2SlKtpKXeNwkAytfY2LieHkwqGg7p7r0ndaj3zKzqHOo9o7v3nlQ0FNLTz49qbIzRYADeG02PaceBbk9q7TjQrZH0mCe1ZuJyQvBnzWyxpO2S9knqlnS/L60CgDJ1djSj5Vck9C8/+vmsA/AFh3rP6F9+/HM1La7U2XkcXQFQHpLprPYe75vxN1WXksqOa9+JPiXT2Utv7IEZh2Dn3Oecc+ecc99yzr3CObfUOffnfjYOAMpNOGTKjjn93td+6Em939v3Q2XGnMIh86QeAFzw3GhWu4+e8rTmriOnXlhf2G8zDsFm1mBmf2Vm/1B43Gpm7/evaQBQfsad04HHn/Z0ZOXA409rPIDLYQIobc5pyot1Z+v02aTm63B1OdMhviDpEUnLCo//TdKHvW4QAJSzVGZcX/ruzzyt+aXv/kypDHOCAXhrOJXzp27an7oXu5wQfKVz7u8kjUuScy4naf5mLwNAGRj3aWRlnIFgAB5LZv2JgSmf6l7sckLwiJktUf5WyTKzN0oa9KVVAFCmRnwaAfGrLoDylYiEfKkbD/tT92IzvmOcpI8qvyrEK8zs25LqJd3hS6sAoEwFfWQFQPmojl9OjCx+3Ytdzrt0S3pY0qjyd4r7qvLzggEAHomFL+cLupmL+lQXQPkyy9+y3cspXE11Cdk8LWZzOUfFL0paKemTkv6fpFcrfytlAIBHgj6yAqB8LKmMaMuaZk9rbl3brPrqmKc1p3I5IXiVc+4DzrnDhT8flPQavxoGAOWowkxNdQlPazbVJVQxX0MrAMpGIhZRZ3uj4hFvvmmKRyq0aXWjYj7NNb7Y5bT6+4WL4SRJZvYGSce8bxIAlK9o2HTH65Z7WvM/vn65YiGmQwDwXmUspO0bWj2ptX1Dq6pi8xOApRmEYDN73My6JL1e0r+a2ZNm9lNJ35HU4XcDAaCcjDtp4+plno6sbGhbpnGxRhoA7y2ujOqWlgatW1k/pzrrVtZrfWuDrqiMetSyS5vJUXajpNskvU3StZLeIunmwt/f7lvLAKAMPTecUahCuvOt13tS7863Xq+wSc8Nz89tSAGUn6tq49q5uW3WQXjdynrt3NymhkVxj1s2vUuGYOfcz6b7Mx+NBIBykcmN64Fv/Eg3vfJK3Xz93EZWbr6+Xm965ZX6w2/8mzI5lkgD4J+GRXH9wTvbdO/tq2b8TVY8UqF7b19VlAAsXd4SaQAAnyUiIe078bRuW321PrL+1ZKkR58YuOw6N19fr4+sf7VOnxvV17qe0W+ue5XXTQWAl7iqNq4NbVfr5uuXat+JPu06cmrS5dOa6hLaurZZm9obVRUNzesUiIkIwQBQQi4sZfbhLx/XX79vjT705lfozdddqU898oRS2fFL/nw8UqE733q9Wq5apHRuTB/+8vGX1AUAP11RGdUVldJ7b7xGt61eJuek4XROqeyY4pGQqmNhmUn11bF5WwViKhwVAaCEREMVLyw+/76/Pqr771itV1xZpS9/6EZ964kzeuj7T005snLH65brLdcv1bmRtM6NZvWxh05oJDOmprqEoqwOAWAeJWIRLY9Fit2MaRGCAaCELKmK6j+/cYU++fc9GsmM6Td3fV+3tV2t97/5Wr2yvkqfeEeLllTHlB0bVyo7rnikQpFQhZ4bTis3Ni7Jac/3+/S1rmdeqPnuG1doyTwtPg8AQUEIBoASEgpV6LbVV+uBb744/eFrXc/o708+q1tWLtWGtqslSSYpbKYLt8BI58a1v+sZ/WPvGY2Nv7gcWjxSoY1tVytUwc0yAGAiQvA0stkxDYykNe6k86mcktkxJSIh1cTDqjCpviqmSJHnswBYeJZUxXTPptfoY195/IXnxsadvtHdr29090uSwhWmaLhCmdy4cuNTrwF8T+drtKSKUWAAuBgheBKj6ZzOJbPae7xPu6e5snHL2mZ1tjdqcSKiyhi/SgDeiIYrtL71Kq3v7tfBnjOTbpMbd8plpl/2bH3LUt3acpWiYeYDA8DFzLng3UWoo6PDHTvmzx2bzwyldLCnX/fs757xldh3b2zV+pYGLS3CGncAFq7nhtO66ytdUwbh6axvWar73tXGXGAAZc3MHnPOTXqHY0LwBGeGUrprT5cO917+mpzrVtbrvs1tBGEAnjo7ktHBnn7dvffkjP9hfk/nKt3a0qDFVcVZexMASgUheAbmEoAvIAgD8EMmN66zIxnt73paD37nySmnaL3nphXaeMMy1VVFmQIBAJo+BDORVfk5wAd7+ucUgCXpcO+ADvb06/bXNqoyyq8WgDei4QpdVRvX+25aoc72ZcqNOw2nckrnxhULV6g6Hla4wlRXFWMVCACYIZKapHPJrO7Z3+1JrXv2d+st1y8lBAPwXChUofqawjdNtcVtCwAEXdl/X5bNjmnv8b4ZzbWbiVR2XPuO9ymbnf6qbQAAABRP2YfggZG0dh855WnNXUdOaWAk7WlNAAAAeKfsQ/C406QXmczF6bNJTbN2PQAAAIqs7EPw+VQuUHUBAAAwd2UfgpM+zd1NMScYAACgZJV9CE5EQr7UjftUFwAAAHNX9iG4Ju7PUmZ+1QUAAMDclX0IrrD8nZa81FSXEOvVAwAAlK6yD8H1VTFtWdvsac2ta5tfXNAeAAAAJafsQ3AkElJne6PiEW9+FfFIhTa1NyoSKvtfLQAAQMkiqUlanIjo7o2tntS6e2OrFldGPKkFAAAAf/gegs3sbWb2hJn92My2TbPdu8zMmVmH3226WGUsrPUtDVq3sn5OddatrNf6lgZVRrkoDgAAoJT5GoLNLCTpM5LeLqlV0hYze9mQq5nVSPptSd/zsz3TWboorvs2t806CK9bWa/7Nrdp6SLmAgMAAJQ6v0eC10r6sXPuJ865jKQvS+qcZLsdku6TlPK5PdO6EIQ/+c5VM54jHI9U6JPvXEUABgAACBC/v7dvlHR6wuOnJL1h4gZm9jpJTc65A2Z251SFzOxDkj4kSc3N3q7mMNHSRXHd/tpGveX6pdp3vE+7jpzS6bPJl23XVJfQr65t1qb2Rl1RGWEKBAAAQIAUNbmZWYWkByS991LbOuc+K+mzktTR0eH8bFdlNKzKaFgfeNO16mxfpnEnnU/llMqOKR4JqSYeVoVJ9TVxVoEAAAAIIL9DcJ+kpgmPlxeeu6BG0ipJj5qZJF0laZ+ZbXLOHfO5bZcUiYS07IrKYjcDAAAAHvM7BB+VdJ2ZXat8+P0VSVsvvOicG5R05YXHZvaopN8phQAMAACA2UlnchoYyUiSzidzSmbHlIiEVJPIR8/6qqhiRZ5K6uu7O+dyZvbfJT0iKSTp8865H5rZPZKOOef2+fn+czU2Nq6zoxnlxp3Op3JKZ8cUK0yHCFeY6iqjCjEdAgAAQJJ0PpnVUCqnvcf7tPvo1NdVbVnTrM72Ri2Kh1WTKM79Fcw5X6fX+qKjo8MdO+bfYHEmN66zIxnt73paD37nySk78D03rtDGtmWqq4oqGiYMAwCA8tU/mNLBnn7tONCtVHb8ktvHIxXavqFV61sa1FDrzwpbZvaYc27Se1AQgi9ydiSjQz392r735Iw7cEfnKt3S0qC6qqgvbQIAAChl/UMpbdvTpcO9A5f9s+tW1mvn5jY1+LDU7HQhmOHLCZ4bTuuuh7p050NdMwrAkpTKjuvOh7p010Ndem447XMLAQAASkv/4OwDsCQd7h3Qtj1d6h+a39tFEIILzo5ktO0rj+ubPf2z+vlv9vRr21ce17nCJHAAAICF7nwyq4M9/bMOwBcc7h3Qwe5+DaeyHrXs0gjBys8BPtTTP+sAfME3e/p1sKdfmdzMRpEBAACCbCiV044D3Z7U2nGgW4PJnCe1ZoIQrPwo8Pa9Jz2ptX3vSZ1lNBgAACxw6Ux+FYiZTiG9lFR2XPtO9CmdmZ8gXPYheGxsXPu7nva0A/d3Pa2xMUaDAQDAwjUwktHuo6c8rbnryKkX1hf2W9mH4LOjGT34nSc9rfngd57U2VFGgwEAwMLlnCZdRnYuTp9Nar4WLiv7EJwbd750YG48eEvPAQAAzNRwyp9pC8NppkPMi/N+daBPdQEAAEpBMjvmS92UT3UvVvYhOO3TLzrNChEAAGABS0RCvtSNh/2pe7GyD8ExnzqQ2ygDAICFrDoentl20ZCaFidUHZ1Z5ppp3bman3cpYTU+/aL9qgsAAFAKzKSmusTLrq1KREP6ozva1NpYq7CZhlJZpbLjikcqtCgeUc45nXzqed35lceVzLz0G/mmuoTM5qf9ZZ/UwhU2aQfORVNdQuGKeepBAACAIqiOh7RlTbPuf+SJF5773Ltfr5ara7X3eJ/+4Ou9k+arprqEtqxp1sGPvEU9zwzqA1987IXXtq5tnreBxLL/zr6uMqr33LjC05rvuXGF6qpintYEAAAoJc+cS6uzvVHxSIWuqUvo23etU/9QWrc88Kjuf+SJKQcYT59N6v5HntAtDzyq/qG0vn3XOl1Tl1A8UqFNqxv19POpeWl/2Y8Eh0IV2ti2TH/4jSc8uWFGPJKvF2IkGAAALGDJ7Jj6nh/Vfe+8QW945ZX6+MNdOtw7MOOfT2XH9YmvntS6lfX629+4Sd/795+r+5lBXVk9PwOJZT8SLEl1VVHt6FzlSa0dnatUVxX1pBYAAECpSkRC+sAXH9MbXrnksgPwRId7B/Txh7v0hldeqQ9+8TFWh5hP0XCFbmlp0K0tDXOqc2tLg9a3NLAyBAAAWPCq42F97t2v16GeM7MOwBcc7h3QoZ5+/eW7Xz9vq0OQ1grqqqLa+a4bZh2Eb21p0M533aDFjAIDAIAyYCa1XF2rHQe6Pam340C3Wq+unbfVIQjBEyypjum+O9r0qTvaFI/M7FcTj1ToU3e06f472rRknuawAAAAFNuSyoj2Hu/z5JoqKT9HeN+JPi2pjHhS71LK/sK4i9VVRdXZ3qg3X1ev/V1P68HvPDnl8h7vvWmFNtywTHVVUaZAAACAsvLcaFa7j57ytOauI6d02+plWh7zPwgTgicRDVfoqtq43nfTCnW2L1Nu3Gk4lVM6N65YuELV8bDCFaa6qhirQAAAgLLknDy9z4KUr+ecpyWnRAieRihUofqaeP5BbXHbAgAAUEqGUzl/6qb9qXsxvsMHAADAZUtmxy690SykfKp7MUIwAAAALlsi4s96vvO1TjDTIaaRzuQ0MJKRJJ1P5pTMjikRCakmkf+11VdFFYvyKwQAAOXHr/V852udYBLcJM4nsxpK5bT3eJ92Hz015eoQW9Y0q7O9UYviYdUk5mc5DwAAgFJgls9DXl4c11SXYJ3gYukfTGnfiad1ywOP6v5HnpiyY0+fTer+R57QLQ88qn0nnlb/YGqeWwoAAFA89VVRbVnT7GnNrWubtbRmfu67QAieoH8opW0Pd+kTXz0544WfU9lxfeKrJ7Xt4S71DxGEAQBAeYhFw+psb5zxDcYuJR6p0KbVjYrO05xgQnBB/2BK2/Z0zfre14d7B7RtD0EYAACUj0XxsLZvaPWk1vYNrapNzN9MXUKw8nOAD/b0zzoAX3C4d0AHu/s1nMp61DIAAIDSVZOIaH1Lg9atrJ9TnXUr67W+tUHV8fm7xooQLGkoldOOA92e1NpxoFuDyflZ5BkAAKDYGmrj2rm5bdZBeN3Keu3c3KaGRXGPWza9sg/B6Ux+FYiZzgG+lFR2XPtO9CmdIQgDAIDy0LAorp3vbNO9t6+a8RzheKRC996+qigBWGKJNA2MZLT76ClPa+46ckq3rV6m5awhDAAAykRDbVyd7ct08/VLte9En3YdmXqZ2a1rm7WpvVG18fC8ToGYqOxTmnPydH07KV/POU9LAgAAlLzqeETV8Yh+/aYVum31MjknDadzSmXHFI+EVB0Ly0xaWhObt1UgplL2IXg45c+0heE00yEAAEB5ikXDJf+NeNnPCU5mx3ypm/KpLgAAAOau7ENwIuLPUHy8yEP8AAAAmFrZh+DquD9D9X7VBQAAwNyVfQg2y1+l6KWmuoTMPC0JAAAAD5V9CK6vimrLmmZPa25d26ylNTFPawIAAMA7ZR+CY9GwOtsbZ7yw86XEIxXatLqx6Mt+AAAAYGplH4IlaVE8rO0bWj2ptX1Dq2oTzAcGAAAoZYRgSTWJiNa3NMz6ntcXrFtZr/WtDUW78wkAAABmhhBc0FAb187NbbMOwutW1hft3tcAAAC4PITgCRoWxbXznW269/ZVM54jHI9U6N7bVxGAAQAAAoTJqxdpqI2rs32Zbr5+qfad6NOuI6d0+mzyZds11SW0dW2zNrU3qjYeZgoEAABAgBCCJ1Edj6g6HtGv37RCt61eJuek4XROqeyY4pGQqmNhmUlLa2KsAgEAABBAhOBpxKJhLY/yKwIAAFhomBMMAACAssMwJ7DApDM5DYxkJEnnkzkls2NKREKqKaxfXV8VVYxvOAIplc7q56NZSZP37ZWVEcVjXJ8AoPiCcC7iTAgsEOeTWQ2lctp7vE+7j059QeeWNc3qbG/UonhYNQkCUxAMjmY0nB6bcd9Wx0KqrYwWoaUAyl2QzkXmnCvKG89FR0eHO3bsWLGbAZSM/sGUDvb0a8eBbqWy45fcPh6p0PYNrVrf0qCGWpb2K2XPDqZ0aBZ9e0tLg66ibwHMo1I8F5nZY865jklfIwQDwdY/lNK2PV063Dtw2T/LTV5KG30LIChK9Xg1XQjmwjggwPoHZ3/QkaTDvQPatqdL/UMpj1uGuXqWvgUQEEE9FxGCgYA6n8zqYE//rA86FxzuHdDB7n4Np7IetQxzNTia0SEP+3YomfGoZQDwUkE+FxGCgYAaSuW040C3J7V2HOjWYDLnSS3M3XB6zNO+PZ8a86QWAFwsyOciQjAQQOlM/srbmVx4MBOp7Lj2nehTOkMQLrZUOutL36bSjPQD8FbQz0WEYCCABkYy2n30lKc1dx059cKajiien49mfenbC+sLA4BXgn4uIgQDAeScJl17cS5On00qgIvFLDj0LYCgCPrxihAMBNBwyp+viobTTIcoNvoWQFAE/XhFCAYCKJn150KnlE91MXP0LYCgCPrxihAMBFAiEvKlbjzsT13MHH0LICiCfrwiBAMBVB0PB6ouZo6+BRAUQT9eEYKBADKTmuoSntZsqkvIzNOSmAX6FkBQBP14RQgGAqi+Kqota5o9rbl1bbOW1sQ8rYnLd2VlxJe+ra+mbwF4K+jnIkIwEECxaFid7Y2KR7zZheORCm1a3ago80aLLh6L+NK3MZ/m7gEoX0E/FxGCgYBaFA9r+4ZWT2pt39Cq2gRzRktFdSzkad/WxAnAAPwR5HMRIRgIqJpEROtbGrRuZf2c6qxbWa/1rQ2qjkc8ahnmqrYyqls87NtFiahHLQOAlwryuYgQDARYQ21cOze3zfrgs25lvXZublPDorjHLcNcXUXfAgiIoJ6LzAXwXpodHR3u2LFjxW4GUDL6B1M62NOvHQe6lcqOX3L7eKRC2ze0an1rAyGpxD07mNIh+hZAAJTiucjMHnPOdUz6GiEYWBiGU1kNJnPad6JPu46cmvR+7k11CW1d26xN7Y2qjYeZAhEQQ8mMzqfGZty3NbEQUyAAFEWpnYsIwUAZSWdyGhjJyLn8/ddT2THFIyFVx8Iyk5bWxFgFIqBS6ax+Ppqdsm/rq2OsAgGgJJTKuWi6EMzl4MACE4uGtTzKrr0QxWMRLY8xeg+g9AXhXMSFcQAAACg7hGAAAACUndIepy6yC/NZJOl8MqdkdkyJSEg1hYWc66uiipX4UD/KTzKd1XOjWUmTf26XVEaU4Cv1QMpmxzQwkta4k86nJvRtPKwKk+qrYoowJxhACQhChiLBTeJ8MquhVE57j/dp99Gpr2zcsqZZne2NWhQPqyZBqEBxnRvNaDQ9NuPPbWUspMWVrCAQBKPpnM4ls/m+neZq6y1r8327OBFRZYzDO4D5F6QMxeoQF5n1GnctDWqoZU1OFMds15K9paVBV/G5LWlnhvLHpHv2z7xv796YPyYtZZ1gAPOoFDMUS6TNUP9QStv2dOlw78Bl/yx3Z0Kx8LlduM4MpXTXHPr2vs1tBGEA86JUz0XThWAujCvoH5x950nS4d4BbdvTpf6hlMctA6b2LJ/bBWsuAVjK9+1de7p0hr4F4LOgZihCsPLzVw729M+68y443Dugg939Gk5lPWoZMLVzoxkd8vBz+/xoxqOWYa5G0znvjkk9/RrN5DxqGQC8VJAzFCFY0lAqpx0Huj2pteNAtwaTnHDgv9H0mKef25H0mCe1MHfnklnds9+bvr1nf7fOjfIPcwD+CHKGKvsQnM7kr2CcyQTumUhlx7XvRJ/SjLzAR8l01pfPbTJNWCq2bHbM+7493qdsln/kAPBW0DNU2YfggZGMdh895WnNXUdOvbA2HuCH50azvnxun2PEsOgGRtLafcSPY1La05oAEPQMVfYh2DlNuobdXJw+m1QAF91AgPC5XbjGferbcfoWgMeCfi4q+xA8nPJnyH04zXQI+IfP7cJ13qe+9asugPIV9HNR2YfgpE/z5FLMv4OP+NwuXPQtgKAI+vGq7ENwIhLypW487E9dQOJzu5D51rc+1QVQvoJ+LvI9BJvZ28zsCTP7sZltm+T1j5pZt5l1mdkhM7vG7zZNVB0PB6ouIPG5XchqfOoDv+oCKF9BPxf5GoLNLCTpM5LeLqlV0hYza71osx9I6nDOtUl6SNL9frbp5W2UmuoSntZsqkvIzNOSwEvwuV24Knzq2wr6FoDHgn4u8nskeK2kHzvnfuKcy0j6sqTOiRs45w4750YLD78rabnPbXqJ+qqotqxp9rTm1rXNWloT87QmMNGSyogvn9v6aj63xVZfFdOWtT70bU3c05oAEPQM5XcIbpR0esLjpwrPTeX9kv5hshfM7ENmdszMjg0MzO3WfBPFomF1tjcqHvHmVxGPVGjT6kZFmVsJHyViEV8+tzHmjRZdJBLyvm/bGxUJlf0lIAA8FvQMVTJHRTP7NUkdkj412evOuc865zqccx319fWevveieFjbN1w8S2N2tm9oVW2CuXfwX2Us5OnntipGAC4VixMR3b3Rm769e2OrFldGPKkFABcLcobyOwT3SWqa8Hh54bmXMLP1kj4haZNzbt5va1STiGh9S4PWrZxbuF63sl7rWxtUHeeEA/8trozqFg8/t1dURj1qGeaqMhb27pjU0qDKKP8wB+CPIGcov0PwUUnXmdm1ZhaV9CuS9k3cwMxeK+kvlA/AZ3xuz5QaauPaublt1p24bmW9dm5uU8Mi5t1h/lzF53bBWroorvvm2Lf3bW7TUvoWgM+CmqHM+XxvOjN7h6Q/lhSS9Hnn3L1mdo+kY865fWZ2UNINkp4p/Mgp59ym6Wp2dHS4Y8eO+dLe/sGUDvb0a8eBbqWy45fcPh6p0PYNrVrf2kCQQNE8O5jSIT63C9KZofwx6Z79M+/buze2an1LAwEYwLwqxQxlZo855zomfc3vEOwHP0OwJA2nshpM5rTvRJ92HTk16X2xm+oS2rq2WZvaG1UbDzMFAkX3/GhGI+mxGX9uq6IhpkAExGgmp3OjWe07Pn3f/mqhb6+ojDAFAkBRlFqGIgTPUjqT08BIRs7l72Odyo4pHgmpOhaWmbS0JsYqECg5yXRWz41mp/zc1lfHWAUioLLZMQ2MpDXupPOpF/u2Jh5WhUn1NXFWgQBQEkolQ00XghkqmEYsGtZyRlMQMIlYRMtjfDOxEEUiIS27orLYzQCASwpChmLIAAAAAGWntCM6AOAFF75elKTzyZyS2TElIiHVFNbVrK+KKlbiIy8AykMQjlccLQGgxJ1PZjWUymnv8T7tPjr1hSZb1jSrs71Ri+LvX3bBAAAJ60lEQVRh1SSYEgNg/gXpeMWFcQBQwma95FBLgxpqWSINwPwpxeMVq0MAQAD1D6W0bU+XDvcOXPbPciMUAPOpVI9X04VgLowDgBLUPzj7E4okHe4d0LY9XeofSnncMgB4qaAerwjBAFBiziezOtjTP+sTygWHewd0sLtfw6msRy0DgJcK8vGKEAwAJWYoldOOA92e1NpxoFuDyZwntQDgYkE+XhGCAaCEpDP5q6pnclHJTKSy49p3ok/pDEEYgLeCfrwiBANACRkYyWj30VOe1tx15NQL63UCgFeCfrwiBANACXFOk66rORenzyYVwIWAAJS4oB+vCMEAUEKGU/58DTicZjoEAG8F/XhFCAaAEpLMjvlSN+VTXQDlK+jHK0IwAJSQRCTkS9142J+6AMpX0I9XhGAAKCHV8XCg6gIoX0E/XhGCAaCEmElNdQlPazbVJWTmaUkACPzxihAMACWkviqqLWuaPa25dW2zltbEPK0JAEE/XhGCAaCExKJhdbY3Kh7x5vAcj1Ro0+pGRZkTDMBjQT9eEYIBoMQsioe1fUOrJ7W2b2hVbYL5wAD8EeTjFSEYAEpMTSKi9S0NWreyfk511q2s1/rWBlXHIx61DABeKsjHK0IwAJSghtq4dm5um/WJZd3Keu3c3KaGRXGPWwYALxXU45W5AN5Ls6Ojwx07dqzYzQAA3/UPpnSwp187DnQrlR2/5PbxSIW2b2jV+tYGAjCAeVWKxysze8w51zHpa4RgAChtw6msBpM57TvRp11HTun02eTLtmmqS2jr2mZtam9UbTzMFAgARVFqxytCMAAsAOlMTgMjGTknDadzSmXHFI+EVB0Ly0xaWhNjFQgAJaFUjlfThWAuGQaAgIhFw1oe5bANoPQF4XjFhXEAAAAoO4RgAAAAlB1CMAAAAMoOIRgAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdgJ5xzgzG5D0Mx/f4kpJP/exPoqL/l246NuFjf5d2Ojfha1Y/XuNc65+shcCGYL9ZmbHprrFHoKP/l246NuFjf5d2Ojfha0U+5fpEAAAACg7hGAAAACUHULw5D5b7AbAV/TvwkXfLmz078JG/y5sJde/zAkGAABA2WEkGAAAAGWHEAwAAICyQwiewMzeZmZPmNmPzWxbsduDuTGzJjM7bGbdZvZDM/vtwvN1ZvZNM/tR4b+Li91WzJ6ZhczsB2a2v/D4WjP7XmE//lszixa7jZgdM7vCzB4ys14z6zGzG9l/Fw4z+0jh2HzSzHabWZz9N7jM7PNmdsbMTk54btL91fL+pNDPXWb2umK0mRBcYGYhSZ+R9HZJrZK2mFlrcVuFOcpJ+p/OuVZJb5T0m4U+3SbpkHPuOkmHCo8RXL8tqWfC4/skfdo59ypJ5yS9vyitghf+r6SvO+dWSlqtfD+z/y4AZtYo6X9I6nDOrZIUkvQrYv8Nsi9IettFz021v75d0nWFPx+S9Gfz1MaXIAS/aK2kHzvnfuKcy0j6sqTOIrcJc+Cce8Y59/3C388rfwJtVL5fHyxs9qCk24vTQsyVmS2XtEHS5wqPTdIvSXqosAn9G1BmVivpFyX9lSQ55zLOuefF/ruQhCUlzCwsqVLSM2L/DSzn3D9JOnvR01Ptr52SvujyvivpCjO7en5a+iJC8IsaJZ2e8PipwnNYAMxshaTXSvqepAbn3DOFl56V1FCkZmHu/ljSxySNFx4vkfS8cy5XeMx+HFzXShqQ9NeF6S6fM7Mqsf8uCM65Pkl/KOmU8uF3UNJjYv9daKbaX0sicxGCseCZWbWkr0j6sHNuaOJrLr9GIOsEBpCZbZR0xjn3WLHbAl+EJb1O0p85514raUQXTX1g/w2uwtzQTuX/sbNMUpVe/lU6FpBS3F8JwS/qk9Q04fHywnMIMDOLKB+A/8Y5t6fwdP+Fr10K/z1TrPZhTt4kaZOZPan89KVfUn4O6RWFr1cl9uMge0rSU8657xUeP6R8KGb/XRjWS/qpc27AOZeVtEf5fZr9d2GZan8ticxFCH7RUUnXFa5MjSo/QX9fkduEOSjMD/0rST3OuQcmvLRP0nsKf3+PpL3z3TbMnXPu48655c65Fcrvr//onPtVSYcl3VHYjP4NKOfcs5JOm9n1hadukdQt9t+F4pSkN5pZZeFYfaF/2X8Xlqn2132S3l1YJeKNkgYnTJuYN9wxbgIze4fycwxDkj7vnLu3yE3CHJjZL0j6Z0mP68U5o/9L+XnBfyepWdLPJP0n59zFk/kRIGZ2s6Tfcc5tNLNXKD8yXCfpB5J+zTmXLmb7MDtm1q78RY9RST+R9D7lB2/YfxcAM/s/kn5Z+ZV8fiDpA8rPC2X/DSAz2y3pZklXSuqX9LuSvqpJ9tfCP3z+VPkpMKOS3uecOzbvbSYEAwAAoNwwHQIAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdgjBAAAAKDuEYAAoAjPbZGbbLr3ly35uhZmd9KE9N5vZTRMef8HM7pjuZwAgyMKX3gQA4DXn3D6V1l0pb5Y0LOlfi9wOAJgXjAQDgMcKo7W9hdHUfzOzvzGz9Wb2bTP7kZmtNbP3mtmfFrb/gpn9iZn9q5n9ZKYjsGYWMrNPmdlRM+sys98oPH+zmT1qZg8V2vE3hTs0yczeUXjuscJ77jezFZL+i6SPmNlxM3tz4S1+8eI2mdnVZvZPhe1OTtgWAAKFEAwA/niVpD+StLLwZ6ukX5D0O8rfvvtiVxde3yhp5wzf4/2SBp1zayStkfRBM7u28NprJX1YUqukV0h6k5nFJf2FpLc7514vqV6SnHNPSvpzSZ92zrU75/55mjZtlfSIc65d0mpJx2fYVgAoKUyHAAB//NQ597gkmdkPJR1yzjkze1zSikm2/6pzblxSt5k1zPA9/oOktgkjx7WSrpOUkXTEOfdU4f2PF95zWNJPnHM/LWy/W9KHpqk/WZuOSvq8mUUKrxOCAQQSI8EA4I/0hL+PT3g8rskHICZubzN8D5P0W4XR23bn3LXOuW9MUm9sive8lJe1yTn3T5J+UVKfpC+Y2btnURcAio4QDADB9Yik/1oYlZWZvdrMqqbZ/glJryjMAZakX57w2nlJNZd6QzO7RlK/c+4vJX1O0utm0W4AKDqmQwBAcH1O+WkO3y9c+DYg6fapNnbOJc3sv0n6upmNKD+14YKvSXrIzDol/dY073mzpDvNLKv89ApGggEEkjnnit0GAMA8MbNq59xwITR/RtKPnHOfLna7AGC+MR0CAMrLBwsXyv1Q+Qvp/qLI7QGAomAkGABKkJndIOlLFz2dds69oRjtAYCFhhAMAACAssN0CAAAAJQdQjAAAADKDiEYAAAAZYcQDAAAgLLz/wEyGkqAbA8RowAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Zk//s8958nkQAYmgRwwYCEHIaEYEfAUBNQaIIpxK+xXbbXQ79budrVSqS5uF5YuglVrf+1u4aut+iraeubgykmiVmU5LUTMASwigUASCDnP6Znn/v0xCQbIYZI8z2TCfN6vFy/JzOTOHRLvuZ77ue7rElJKEBERERFFE8NgT4CIiIiIKNwYBBMRERFR1GEQTERERERRh0EwEREREUUdBsFEREREFHVMgz2B/hgxYoTMyMgY7GkQERERUQTbt2/fGSmlq6vnhmQQnJGRgb179w72NIiIiIgoggkhvu7uOaZDEBEREVHUYRBMRERERFGHQTARERERRR0GwUREREQUdRgEExEREVHUYRBMRERERFGHQTARERERRR0GwUREREQUdYZkswwiomjk9wdQ1+qFKoFmjwK3PwC72Yg4mwkGAbgcVpjNxsGeJhER3F4/zrb5AQDN7k7rlT0Yeg6PMcNuNQ/mFBkEExFFujavgnNuP949cBKv7j6Oqnr3Ja9Jd9qxYMpoFE1KRaLdjBgrl3ciCr9zbT60eQPB9WpPD+vVNcH1KsZqRGKMZRBmCggp5aB84YHIz8+XbJtMRNGgtsmD7eU1WL6pDB6/2uvrbWYDnpyTg1nZyUiKt4VhhkREQacbPdhRXoMVm0Nfr5YV5mBmdjJGJuizXgkh9kkp87t8jkEwEVFkqm3y4LG3SrGzoq7Pnzsjy4Wn5ucyECaisKhp8mDpANarVfNzkazDetVTEMyDcUREEWggATAA7Kyow2NvlaK2yaPxzIiILnS6sf8BMBBcr5a+VYqaMK9XDIKJiCJMm1fB9vKafr+hdNhZUYft5TVo8ykazYyI6ELn2nzYodV6VVaDhjafRjPrHYNgIqIIc87tx/JNZZqMtXxTGc61n9AmItJamzeAFZu1Wa9WbC5DqzegyVihYBBMRBRB/P7gqepQDpWEwuNXseHASfj94XtjIaLo4Pb6tV+vDp6E2xueC3ddg2AhxItCiFohxKFunhdCiOeFEF8KIUqFEJP1nA8RUaSra/Xi1d3HNR1z/e7jqGv1ajomEdHZNj9e3aP9enU2THev9N4J/iOA23p4/jsAxrX/WQzgP3WeDxFRRFMluqyrORBV9W6oQ68QEBFFOKnTehWuwmW6BsFSyo8A1PfwkiIAL8ugXQCGCSFG6TknIqJI1uzR5xCbXuMSUfRq0WldafGGZ70a7JzgVABVnT4+0f7YJYQQi4UQe4UQe+vqBnYCkYgoUrl1yt31MCeYiDQ21NerwQ6CQyalXCulzJdS5rtcrsGeDhGRLuxmoy7j2nQal4iil27rlSk869VgB8EnAaR3+jit/TEioqgUZzMNqXGJKHrF6rSu6DXuxQY7CN4A4L72KhFTATRKKU8N8pyIiAaNQQDpTrumY6Y77TAITYckIoLQab0SYVqv9C6R9iqAzwBkCiFOCCEeFEL8XyHE/21/yXsAjgL4EsA6AD/Scz5ERJHO5bBiwZTRmo65cMpouOJsmo5JRDQ8xowF1+iwXsVaNR2zO7ruN0spF/TyvATwkJ5zICIaSsxmI4ompeL5HUc0KUBvMxswb1IqzMbBvvFHRJcbu9UcXK8+0HC9ykuFNUxnGLgqEhFFmES7GU/OydFkrCfn5CAxxqzJWEREF4uxGrGsUJv1allhDhzW8B3iZRBMRBRhYqwmzMpOxoysgVXCmZHlwqzsZMRYeCiOiPSRGGPBTK3Wq5xkDIuxaDSz3jEIJiKKQEnxNjw1P7ffbywzslx4an4ukuKZC0xE+hqZYMOqAa5Xq+bnIjnM65WQ4epNp6H8/Hy5d+/ewZ4GEZHuaps82F5eg+WbykLKubOZDXhyTg5mZSczACaisDrd6MGO8hqs2Bz6erWsMAezcpJ1C4CFEPuklPldPscgmIgosrX5FJxr82PDgZNYv/s4qurdMBkELCYDfIoKRZVId9rx91NGY96kVAyLMTMFgogGRUObD63eADYc/Ga9uli6046F7euVw2LUNQWCQTAR0WXA61NQ1+oDADS7Fbj9AdjNRsTZgwGvK9YatlPVREQ9cXv9ONvmh5RAi1eBxx+AzWxErNUEIcK3XvUUBHOrgIgowvkUFfWtPmwqrcZLnx3rdmfl/mkZmJObAqfDAouJRz6IaPDYrWakWSO7Mg13gnvg9wdQ1+qFKoFmzzdXMXE2EwwiWNTezF0XItJRfasPO8prsOzdQyHn2K0omoCZ2clwOsJ3ypqIKBJxJ7iP2rwKzrn92FxajVd2fd1t/t29U69AYW4KEu1mxFj5T0lE2jrb4sXSNz/HtvKakD/H41ex5I1SzM5Oxqq7JmJ4mDovERENNYzcLlLb5MHOylos31SG6781Ao/ekonUYXZ4FfX8TrDVZMDJBjc2l57Cr3ccwZNzcjAjM4knsYlIM/Wtvj4HwJ1tK68B3gRWF+cikTvCRESXYBDcSW2TB4+//TliLCb86cFrUXK4Dk9vrew2/+6uyWn4UcGVePGTY9hWVoNf3jmRgTARDZhPUbGjvKbfAXCHbeU12F5eg6JJqcwRJiK6CHOC29U2efBvG7/A7RNTcLrJjTVbKkPOv1tyayZGxtvx3ufV+Ne5VzEQJqIBOd3oQcHTO0Nag3pjMxtQ8ugMjEzgukRE0aennGBuDSCYA/zxkTr8/dQr8Pq+KqzYVB7ym4/Hr2LFpnK8vq8Kfz/1Cvz1SB3afIrOMyaiy1UgoGJTabUmATAQXKM2lVYjENBmPCKiywWDYAANbj9iLCas/egoSirr+jVGSWUd1n50FHaLCQ1tfo1nSETRor7Nh5c+O6bpmC99dgz1bT5NxyQiGuqiPgj2+wM4dLIR1Y3ufgfAHUoq61Dd6Mah6kb4/QGNZkhE0URRZZfnEAaiqt4NRR16qW9ERHqK+iD4TJsPoxJsWLOlUpPx1mypxKh4G85w14WI+qHZo086VYtO4xIRDVVRXx3CaAB2VNRqmn/3QUUtFkxJ12Q8or4KBFTUt/mgqBLNHgWBQABGY7DJi8kg4IyxwGiM+uvfiOXV6S6SV2FOMBFRZ1H/Tuj2qXhz/wlNx3xj/wm4NQqqiULlU1ScbvTgYFUDzrb64FNU+BX1gv+ebfXhQFUDTjd64GNQFJGsOnWhZIk0IqILcVUEdMm/Iwqn+lYfDtc0wR9QcXHqZ+Cij1UJ+AMqDtc0ob6VaTuRJs6mzw06vcYlIhqqon5VbPPpc+vRrdO4RBc72+JFs0eBbN/YrW324EyrwIhYKxRFRUCV8PlVuP0BnGnxIhCQGJlgg1SBJrcfUkq21o0gJoNAutOu6cV0utMOk0FoNh4R0eUg6neCvTqlLTD/jsKhvtUHn1+FBHC21YezrT6MGeFA9qh4jIy3IT7GDLvVhPgYM0bG25A9Kh5jRjjOv1YC8CsqznFHOGI4Yyy4f1qGpmPePy0DTgcvdIiIOov6nWCbWZ/rACvz70hnPkWF16dAQuBUgxupiTbEWMx498BJvLrnOKrq3TAZBCwmA3yKCkWVSHfaseCa0SialAqHxYBTDW5kDHfA41Pgs5qYNxoBjEYD5uSm4OmtoXWt7I3NHBzPyJ1gIqILRH0QHGPV5xCKXuMSdWh2+6ACaHJ7kTHCgZ0Vtfjlf5fj+m+NwKO3ZCJ1mB1eRYXHH4DNbITVZMDJBjc2l57Cb0u+xOPfycaMrCQ0tnkRb7egye3DiDi21o0ETocFK4omYMkbpQMea0XRBDgdFg1mRUR0eYn6IFgJSF3y75SLTyMRaSjQfgCuza8g0WHDz98uRZzVjD89eC1KDtfh6a2VXf5OpzvtuGtyGn5UcCVe/OQYtlfU4D/uzEWz1weL0YJAQGX5tAhgMRkwMzsZs7OTsa28pt/jzM5OxqzsZO7wExF1IepXRqMQuGtymqZjFk9Og1Hw1iPpp9nnR0BKxFrM+LeNh1A8OR156Qm4Z90uPLf9SLcXdVX1bjy3/QjuWbcLeekJKJ6cjn/beAixVjNUKdHsY8vvSOF0WLDqromYnZ3cr8+fnZ2MVXdNRCJ3gYmIuhT1QbDBIFAw3qVZbrDNbMBN410wMP+OdKSqEgYh8NHhOtw7LQOv76vCik3lIeeQevwqVmwqx+v7qnDvtAx8VFkHgxBQ2Vo3ogyPteKp4lysKc4NeY2ymQ1YU5yL1cW5rPpBRNSDqE+HEAJ4+8BJLLk1Eys2lQ94vCW3ZuKtAyex+PqxGsyOqGv+gIQSAOLtZqz96ChKKuv6NU7H5303Px2+gOSCEIGcDguKJqXihnEubCqtxkufHes21eV70zNQODEFToeFKRBENKi8PgV17ZWHmt0K3P4A7GYj4uzBdxqXwwKrZXDfdaL+Pc9kEEiOs2FkvB0Fma5+BxMAUJDpwsh4O3yKCrOJO8GkH6vZgP1f16O60T2g31kgGAjfMG4EIIBpVzo1miFpyWIyYGSCDd+fnoGiSSlQVIkWjwKvosJqMiC2oyW2w8oqEEQ0qJrdfjR5lAsqFV2sc6WieJsJcXbzIMyU6RA41ejB3LwUPPnu51h841gUZLr6NU5BpguLbxyLJ9/9HHNyU3Cq0aPxTIm+0ewOIC3RjjVbKjUZb82WSqQNs6PZzSYvkUxVJfyBYAMURZVQ1GDpu0D742qA9cmJaPDUNHqw4WA1Zj5TgtVbuj6gDQTPp6zeUomZz5Rgw8Fq1AxSzBT1O8FWkwHbyk7jkdmZWPTSXqwuzsMN40ZgzZbQanTazAYsuTUTI+PtWPTSXjx+eza2fnEa064cHobZU7SymAR2VNRqUkcWCOYIf1BRi3umpGsyHmmrzavgnNsf3FnZ3cPOypTgzkqi3YwYa9Qv70QURjVNHix9uxQ7K0K/O+nxq3jinUPYXlGDVfNzkRwf3jKdUb8THGs1YfmmckwZ48SUsU48tH4/DhxvwGuLpuLhWeOQ7rR3+XnpTjsenjUOry2aigPHG/DQ+v2YMtaJKWOcWLG5HLF8AyIduX0q3tx/QtMx39h/Am6dOihS/9U2efDOgZOY+asSrH6/l52V9ysx81cleOfASdQ28W4UEYVHTaMHS9/qWwDc2c6KOix9qxQ1YV63oj5SE0Ig3WnHwnW78NaPrsOTOISNpafw3qHTmJmVhEdvyUTKMDv8ARUevwqb2QCz0YDqBjc2lZ7C8x98iYAqMSPLheXzJmD+7z5ButMOwRJppCMhoGltayA4Hn9rI0ttkweP9fGNxeNX8fjbh7CtvAZPzc9FUph3VogoujS7/dheXtPjOhVrMSLRYcG5Vh9afF2n3e2sqMP2shoUTUpBrC08OcJRHwRbTALFk9Pw7PYjmP+7T7B+0VTMykrGis1l2FpWg61lwUL1F7ef7WAzG7B83lWYMsaJ+b/7BHUtPjwyexzbJpOu2rz65O62dbM4Ufj1JwDubGdFHR57q5SBMBHpqsmjYMXmsgses1uM+FVxLnJSE2ASAk0e//mNxHibGYqUOHSiAUve/BzuTu87KzaXoSAziUFwuAgBFOam4D8//BvqWnyY/exHWFaYjW0P34RNpdVY355/p6gSSqcfVLrTjoVTRmNObgq2fnEas5/9CEAwKL59YspgfTsUJbyKPmkLPp3Gpb5p8yq97qx0d2He2c6KOmwvr8Ed305FzCCXIiKiy4/XF6wC0fl8yv+772pkj0rAuwdO4j/er+ixOsT2h29C+alG/ODlfQCCd7I2HDyJB6ZnhKV8GldFBA/Hda4TvGJzOZ7aUol/uvlb+P29VyPGYkKrVzl/FeOwmtDmU/BBeS1mPvPhBYHDklszYTUZeFuZdKVVc5eL8Q5GZDjn9mP5pgt3VowGgVnZSbh94iikDrPDq6jw+AOwmY2wmgw42eDG5tJT2FFRi0CnoHj5pjLclJnEIJiINFfX6sOre44DAK5w2rF+0VSUVNbhx6+W9Hhwu6M6xPMfHMGywhx88tgMLFy3C1/Xu7F+93HMzUtBGoNg/Xn9El6/gqljh19QJ9inqHh662E8vfUwAMDWXouzxaPA081uWUGmC1PHDofHr4D/tKSneJ1qKuo1LoXO7w9csrMyLy8FD1yXgZLDdXh6a/Bw3MU7welOO+6anIYfFVyJFz85hg0HqwG076wcOIkfXDcGZrNxsL4tIroMSRkMaK9w2vHnH07Hz/tZHWJGlgt//uF0fPf3n+LrejdkmJqXRn2k1uJV8J8lf8M/FIzFw7PGA0CXzQc8igpPi6/bcQoyXXh41ngYBPD8ji/x0Ixv6TZnIrMxeKBTy8Nx6U47zEbewxhsda1evLo7uLPisBixujgPp5vc+PsX/gfXf2sEHr0l8/xOsFcJwGq6cCd43cdH8cjs8bj1qpH42RsH0eoLYP3u4yialIKUYTGD/N0R0eWkxaMAANYvmtrnALiznRV1+PnbpVi/aCque2onWryKltPsVtQHwR5/ABsOVmNu3iiMjLdh8Q1j+1UnOHtkPAwCOHHOjY2lp/Dg9WPCMHuKVs4YC+6bmoGV7w281XeH+6ZlwOmwajYe9Y/avrPisBix7v58rP3oKOJtZvzpB9fi4yNnzu8EXyzdacff5afjRzOuxIt/PYaPPWew7v58LHppL6rq3egmbZiIqN/c/gD+331Xo6Syrt8BcIedFXUoyarDuvuuhscfnkPaUZ8A2JED2bnR0mhnDF5bPC20OsGLp2G085vdlY5xLMytJJ3dnJ2kWW6wzWzAzVlJCNs9KOpWc/vOyuriPLz86THcfXU68q9IxD1rd+FXWw+fD4BjLUakJ9oRawmmOFTVu/GrrYdxz9pdyL8iEXdfnY6XPz2G1cV5F4xLRKQVu9mI7FEJl1SHuNjF61V3VmwuQ86oBNhM4Undivqd4FibCfPyUnCyoQ0//csBrC7Og8UUvCU8ZrgDT9yejeGx1kvqBJ9t8V5wQv9cmx+LXt6LR24Zj7m5oxBri/p/WtLRmRYvXv7sGJbeloVfbOx58QnF0tuy8NJnx/DQTVciOaHrCz8KD7c/gHl5KTjb6sH3rhuDdR8dxY6KWtgtRvxu4bdDKjn05IYvMDMrCYtuHIvDNU2YmzsqbDsrRBQ9RiVasX5X1SV3zvtbIq2jOsSCa8PTvTTqIzWDEFh0wxjc/fvP4PGreGj9fszNHXVJOoMAYBTi0qoPUmLDgWpsLD0FAFizpRKv/3AaDGyWQTryBSRe+vRr7HjkJtyc5cIHA7gNdXOWCzeMc+EXG8uw6PqxGs6S+sNuNuKB6zJQ2+w9HwAPpOTQd69Jx4PXD4OVh+KISGMtnsD56hAdBrJeAThfHWJYGPZjov6efbzdiI+PnLngKmZj6Snc9V+fYdPnp7qtx+pVVGxqf11HAAwEr2L++uUZxNuj/vqCdNTqVTAvLwX/W3UOP7hhLAoyXf0apyDThR/cMBYHqs5hbu4otPp4y3ywDY81o+pcG860+PBlbTM+eWwGapq8mPlMCVZv6aVt8pZKzHymBDVNXnzy2Ax8WduMsy0+nDjXhuEOVv4gIm11VIcAgiXSBrJeXdGeflrF6hDh0+S+9CoGAAKqDKljXFc6rmLibRZd5kzk9gfwk1njUPj8xzAKgdXFef060Dky3o5FL+1FQEps/qcb0Oz2h2H21BOfIpE5Mh4/Xr9Pk5JD9724C//fwqvhCzDfm4i01VEdQusSaeGqDhH1O8Gdr2J6oqgSbb5ArwEwEN6rGIpOiTEW7CivhcevotUXwEPr9+PA8Qa8tmhqaAc6F03FgeMNeGj9frT6AvD4VXxQXovEGF64DTaryYCdFbX4w/emaFJy6A/fm4KSylo2QiEizbnbzxpoWSINQNjOMET9TnCLTiemw3UVQ9HJYhJ4ZdexCx7bWHoK7x06jZlZSXj0lkykDLPDH1Dh9auwth/orG5wY1PpKTz/wZcXdBUDgJd3HUNh7sgwfhfUFa9fRc6oeE1LDmWPjAvpDgERUV/YzUZdSqSFqzpE1G8NuHW62uBJbNJTQO3+DkbHmUwBAPKi/wLdtvSuqndfUCqQBocEMNYV22vJoVCt2FyGsa44TcYiIuos1mYKqURaqDpKpIWrwlbU7wRrVWf1knHDdBVD0am1izsNXbXWvVh3rXXPj8uDcYPObjHgL3tOaLZz21Fy6O5r0jQZj4ioQ5zd2GWJtP4Kd4m0qN8JjrPpc2KadYJJT53vYDgsRvx24WTkpSfgnnW78Nz2Iz2eyH1u+xHcs24X8tIT8NuFk+HoVLzc4+MdjMHm9qldHtYdiPW7j8Pt5TY/EWmrqxJpA7V+93G0eNgxLmy6O0QUKeMRXayjI2FHa93X91VhxabykK/GPX4VKzaV4/V9VVh3f/75QJidDiNDKId1B3M8IiIg9OICfRHO4gJR/47nsBqw4JrRmo65cMpoOKxMhyD9xFmDdxpWF+dh7UdHUVLZvwMJJZV1WPvR0fOtdXkHY/DxsC4RDRVDfb2K+iDY41cxNy9Fs9xgm9mAObkpPIlNujIYBO6ffgVON7n7HQB3KKmsw+kmN+6bfgU7HUYAHtYloqFiqK9XUR8E+xWJ2mYvlhXmaDLessIc1DV74Ocxe9KR1SRw39QMrNlSqcl4a7ZU4v5pGbAxHWLQxVj0uYtkZ9tkItKYXusKS6SFydlWH4bFmHHtGCdmZPWv9WyHGVkuXDvWiYQYC+pbfRrNkOhScRYTdlTUaHoid0d5DWKtTIcYbA6dfgZ6jUtE0UuvFLpwpeZFfRBsNxvx6+1H8EV1I5bPm9DvQHhGlgvL503AFycb8dy2wyyRRrqqd/vxyq6vNR3zlV1fo76NF2+RgId1iWgoEEKf9SpcmXlRHwTH2kzYcLAaMRYTnt1Wice/k42Vd0wIOUfYZjZg5R0T8Ph3svHstkrEWEzYWHqKB4xIV6pOJ3JD6ApOOlOlxF2Tta3pWzw5DZK93IlIYy6HRZfiAklxVk3H7E7UB8EdVzH//OcDuGfKaDz1fgU8/gC2PXwTHrsts9srnHSnHY/dloltD98Ejz+Ap96vwD1TRuOf/3wgrFcxFJ2a3fqcnG3W6aQvhe5cqw8F412aHta9abwL59r8moxHRNTBajGhaFKqpuvVvLxUWJgTHB4dVzGtvgC+/4c9uPPbabCZjSj8zccIqBK/v/dqlCwpwOZ/uh5v/sN0bP6n61GypAC/v/dqBFSJwt98DJvZiDu/nYbv/2EPWn2BsF7FUHQa6idyqXs2sxEvfnIMS27N1GS8Jbdm4oW/fgUrDz0SkQ7ibSZNiwsk2MN3Jz3q79l3XMU8/8ERtPoCeGj9fszNHYWXH7gWn/3tDH74yj5U1bthMxkQazOhxaPAo6hId9qxcMpovPzAtXjh46PYWHoKQPivYig6DfUTudS9jhStW68aiYJM14BK4BVkujAy3o6NpeV47DtZGs6SiCgozm7GrOxkbK+owc6K/q9XM7JcmJWTjFidOvl2JeqDYOCbq5gn3jkEANhYegrvHTqNmVlJePSWTKQMs8MfUOFTVFhMBpiNBlQ3uLGp9BSe3noYgU6JlOG+iqHoNNRP5FL3BILpVj974yDW3Z8PAP0KhAsyXVh841gsemlvMEVL43kSEXVITrBh1fxcLH2rtF+B8IwsF1bNz0VyvE2H2XWP73jo+iomoEpsLavB1rIaAIDJIGAxGeBTVCjdnB4ajKsYil7pTrumh+NYQSAyKAGJe6degV++V4FFL+3F6uI83DBuBNZsqQypJJ7NbMCSWzMxMt6ORS/tRasvgJ9MvaLbdYuISAvJ8TasujMX28trsGJzWcjr1bLCHMzKSQ57AAwwJ/i8jquY7kqkKapEmy/QYwA8GFcxFJ1i2O77snXO7ceN7QfjOlK0DhxvwGuLpuLhWeN6PKz78KxxeG3RVBw43oCH1u9Hqy8Am9mAG8e50MCDcUSks+QEG4ompWDHIwUhFRfY8dMCFE1KGbTYSQzFsjn5+fly7969uoxd0+gZUlcxFJ2OnWmF0SAw+9kPNWmYYTMbsO3hmxCQEhnDHRrMkPqr4nQTfrfzb5g6djgef/vz848bDQIzs5JQmDvqfIqWx6/CZr4wReuDitoLUrT+486J+PRvZ/DQzd9C1sj4wfiWiCgKeX0K6lp9kBJo8Srw+AOwmY2ItZogBJAUZw3L+SkhxD4pZX5XzzEd4iIdVzEFmUnYcPAk1u8+3uUt546DcfMmpSLBZmIKBIWVoqqoafJdkMs+EMsKc3CqoQ3OWFY1GWwJNjM2HKzG7RNHYmZWEnZU1ALoX4rWzKwkJDrM2Fh6Co/fnh2274GIyGoxIc0S2WFmZM9ukMTazIi1mfHA9AzMzUsZ9KsYoospAQmryXC+3fdAT+ReO9aJFo8CJTD07gxdbkxGgXSnHT/9y0G88L1rAOB8INyZokoovu5L2s3MSsKiG8fiwT/uQbrTDpORR+OIiDpjTnAPrBYT0hJjkO6MQfaoeHx7dCKyR8Uj3RmDtMQYBsA0aGJtJrz4yTHsPnZWk3bfu786ixf++hWrQ0QAZ4wF903LQKsvgAf/uAfzJ6dh+byr+tTFcvm8qzB/choe/GOwdvn90zLgdHCXn4ioMwbBREOQxWjA/1adQ4Ldiqe3VAyo3ffTWyqQYLfiwIkGWNhQYdAZjQbMzU254GDcnmP1eG3xVDx6y/geD5o8est4vLZ4KvYcq7/gYNyc3BQYDdwJJiLqjAfjiIagQEDFC58cw6+3H8a6+/Ox9qOjuOFbI3DLVSOxqbS611z2Obkp2PrFaXz85ZnztWT/efZ4PHDdGAZLEcCnqHj3wEkseaP0/GNdHYzz+lVYezkYt6Y4F0WTUnmBQ0RRqaeDcQyCiYao041uFDxdAqMQWF2ch9NNbvx6xxEsvmEsbs5OQozFhFavcr6CgMNqQptPwQfltVj78VH8ZOY4jIwPNmUISImSRwswMoG1giNFfasPj71Rim3lNV0+H8rBuNnZyVhdnNXm1hAAACAASURBVItEh0XPqRIRRSwGwUSXIZ+i4p0DJ/CzN4JltObmjsKD14/Bh4fr8Mb+E922+y6enIabxrvwwl+/Ot/ue3VxLu7gbmHEOdvixdI3P+82EO7J7OxkrLprIoaz4gcRRTEGwUSXqfpWH372xkFsLw9WD+hPLdlZ2UlYU5zH3cIIVd/qw47yGix791DItctXFE3ArOxk/kyJKOqxTjDRZSoQUPGTmeMgZbCMVl9ryc7MSsJPZo6DEhh4ww3Sh9NhQdGkVNwwzoVNpdV46bNj3eZ7f296BgonpsDpsHBXn4ioF9wJJhqi2rwK3jlwEis3l2N1cR7Otnjxy/8uD3m38PHvZGN4rBU/e+MgnijMxh3fTkVMhBc2j3aBgIr6Nh8UVaLFo8CrqLC2p7yYDAJOh5UHG4mIOuFOMNFl6Jzbj+Wbgu29H1q/H3NzR+G1xVPx1yNn8Oe9Vd3uFn43Px3XjxuBFz7+Jid4+aYy3JSZxCA4whmNBrji2tuzJwzuXIiIhjq+4xENQX5/AO8eOHnBru/G0lN479BpzMxKwqO3ZPZYRuvZ7UcuKKPl8avYcOAkfnDdGJjNbAJDRESXPwbBRENQXasXr+4+fsnjfc0J7mz97uMompSClGExusyZiIgokjAIJhqCVIku0x0upqgSii8Q0phV9W70EicTERFdNnh8mGgIavYoQ2pcIiKiSKN7ECyEuE0IUSmE+FIIsbSL50cLIXYKIf5XCFEqhLhd7zkRDXVuf2i7u33l0WlcIiKiSKNrOoQQwgjgtwBmAzgBYI8QYoOUsqzTy/4FwF+klP8phMgB8B6ADD3nRTTU2U36HF6z6TQuaaNzibRmjwK/EoDZZERcR4m0GAuMRt7gIyIKhd45wVMAfCmlPAoAQojXABQB6BwESwDx7X9PAFCt85yIhrxYmz7/6+o1Lg2MT1FR3+rDwaoGSEiMiLXCp6jwKSosJgOa3H6cafFCAMhLT2SzDCKiEOi9SqYCqOr08Yn2xzr7BYD/I4Q4geAu8D92NZAQYrEQYq8QYm9dXZ0ecyUaUtKd9ogej7RR3+rD7q/O4nSTB17lm3QVCSAgJTqfZfT4VZxu8mD3V2dR3+oL+1yJiIaSSNj2WQDgj1LKXwkhpgF4RQgxQUp5QdsrKeVaAGuBYMe4QZgnUcSItRmx4JrRWL2lUrMxF04ZjTjuBEeUsy1eHK5phscfQKzNjKNnWvHm/hPdNkK5a3IarhjhgMcfQOXpJoxPjsPwWOsgzJyIKPLpvRN8EkB6p4/T2h/r7EEAfwEAKeVnAGwARug8L6IhTQlIzM1Lgc2szf/CNrMBc3JT4A/03nKZwqO+1YdTDW5ICXxd34Z71n6G57Yf6bY0XlW9G89tP4J71n6Gr+vbICVwqsGNc9wRJiLqkt5B8B4A44QQY4QQFgD3ANhw0WuOA5gJAEKIbASDYOY7EPXAGWNBXYsXywpzNBlvWWEO6po9cDq4axgJfIqKM80eBCSw9uOjWLGp/ILugD3x+FWs2FSOtR8fRUACdS0e+BRe3BARXUzXIFhKqQD4MYAtAMoRrALxhRBiuRBiXvvLfgpgkRDiIIBXAXxPSsl0B6IeGI0GpCTYce0YJ2ZkuQY01owsF64d60TKsBgYDUKjGdJANLT54Fclnt1+GCWV/dsTKKmsw7PbD8MfkGho424wEdHFdD8+LKV8T0o5Xkp5pZRyZftjT0opN7T/vUxKeZ2UMk9KOUlKuVXvORFdDpwOC8pPNWH5vAn9DoRnZLmwfN4ElFc3wemwaDxD6o9AQIU3oGLX0bP9DoA7lFTWYdfRs/ApKgJMdSEiugBr6BANURaTAdeNc+G5bYfx+HeysfKOCSHnCNvMBqy8YwIe/042ntt2GNePc7GkVoRo9Pjh9atYo9GhxzVbKuFRVDR6/JqMR0R0ueC7HtEQ5nRY8HhhNla/XwmPP4BtD9+Ex27L7LbcWbrTjsduy8S2h2+Cxx/A6vcr8XhhNhK5CxwxFFXF5tLqkHOAe+Pxq3jv82oo3AkmIroA6yERDXHDY614qjgXO8prUPibj7H4hrH4/b1XI8ZiQqtXgcevwmY2wGE1oc2n4IPyWhT+5mMsK8zB6uJcBsARxuuXeGP/CU3HfH3fCdz57TRNxyQiGuoYBBNdBpwOC4ompeKGcS5sKq3GD1/Zh6p6N2wmA2JtJrR4FHgUFelOO743PQNb//kmdhWLUFLKbsug9VdVvRsXttUgIiIGwUSXCYvJgJEJNnx/egaKJqVAUSVaPAq8igprezBsMgg4HVZWgYhgLV5Fn3E9gd5fREQURRgEE11mjEYDXHG24AcJgzsX6juvTjV9fQqDYCKizngvlIgogtjNRl3Gtek0LhHRUMUgmIgogjis+tyg02tcIqKhikEwEVEEkVJ2W+Kuv9KddrARJxHRhRgEExFFmHunXhHR4xERXQ54f4yIKIIIIXDjeBee2XZYk4YZNrMBN45zQQhWBCGi8PH6FNS1+gAAzW4Fbn8AdrMRcfZg6OlyWGC1DG4YyiCYiCiCGA0Cr+4+jifnXIXH3/58wOP965yrsH7PcfzDjVdqMDsiop41u/1o8ih498BJvLrneJd1z9Oddiy4ZjSKJqUi3mZCnN08CDNlOgQRUURxOSxIHWaH02HGzKykAY01MysJiQ4z0obZMSLOqtEMiYi6VtPowYaD1Zj5TAlWb6nstvFPVb0bq7dUYuYzJdhwsBo1jZ4wzzSIQTARUQQxm42Yk5uClZvL8It5V/U7EJ6ZlYRfzLsKKzeXYU5uCsxGLvdEpJ+aJg+Wvl2KJ945FHIql8ev4ol3DmHp26WoaQp/IMxVkYgowgyzm7HuvmuwcnMZ5k9Ow/J5V8FmDm25tpkNWD7vKsyfnIaVm8uw7v5rMCxmcG41ElF0qGn0YOlbpdhZUdevz99ZUYelb4U/EGZOMBFRhAmoEgeqGvD+FzV4/4sazM0dhdcWT8Vfj5zBn/dWdZtj9938dFw/bgRe+PgrbCw9BQCYkZWEtGHallwjIurQ7PZje3lNvwPgDjsr6rC9rAZFk1IQawvPhbsYirUj8/Pz5d69ewd7GkREujh5zo2Zz5RccEvRaBCYmZWEwtxRSBlmhz+gwutXYTUbYDYaUN3gxqbSU/igohYB9Zt13WY2YMcjBUhNZCBMRNrrar3qLz3WKyHEPillflfPcSeYiCiCeH3BU9UXv6EEVImtZTXYWlYDADAZBCwmA3yKCkXtfjPD41ex4eBJPDA9Y9DLERHR5aW79aq/wr1eMSeYiCiC1LX68Oqe472+TlEl2nyBHgPgDut3Hz9fr5OISCuhrld9Ec71ikEwEVEEkRLdlhXqr6p6N4Zg5hsRRbihvl4xCCYiiiAtHkWfcb36jEtE0Wuor1cMgomIIojbH9BlXI9O4xJR9Brq6xWDYCKiCGI3G3UZ12bSZ1wiil5Dfb1iEExEFEFibfqciNZrXCKKXnF2fdYVvca9GINgIqIIIkSw8YWW0p12CKHpkEREAPRZr8KFQTARUQRxOSxYcM1oTcdcOGU0kuKsmo5JRGQxCdw1OU3TMYsnp8FiDE94yiCYiCiCWC0mFE1Khc2szfJsMxswLy8VFuYEE5HG6lv8KBjv0nS9umm8C/VtrBNMRBSV4m0mLCvM0WSsZYU5SAhTfh0RRRe3P4AXPzmGJbdmajLeklsz8cJfv4LHx+oQRERRKc5uxqzsZMzIcg1onBlZLszKSUaszazRzIiIvmExGbDhYDVGxttRkDmw9aog04WR8XZsLD0Fi4npEEREUSs5wYZV83P7HQjPyHJh1fxcJMfbNJ4ZEVFQnDV4l+lnbxzE4hvH9jsQLsh0YfGNY/GzNw4CAGKtrA5BRBTVTAaBlXdMxMo7JoScc2czG7DyjglYecdEmAwsCUFE+hFCIN1pR6svgEUv7cXdV6dj2ZzsPq1Xy+Zk4+6r07Hopb1o9QXaq9mEZ+1iEExEFIHqW31Y+ubnmL7qAyTFW7HjkQI8dltmt+WD0p12PHZbJnY8UoCkeCumr/oAS9/8HOdaw3PAhIiij9kkUNxeHaLVF8BD6/fjwPEGvLZoKh6eNa7H9erhWePw2qKpOHC8AQ+t34/W9jzgu69Og8UUniBYSCnD8oW0lJ+fL/fu3TvY0yAi0oVPUfHugZNY8kbp+cfsFiPW3DURE9KGwSgEWrwKPP4AbGYjYq0mBKTEoRMNWPLm53B3OlSypjgXRZNSw5ZjR0TR43SDGy2+AOb85mN4/Or5x40GgZlZSSjMHYWUYXb4Ayo8fhU2swFmowHVDW5sKj2FDypqEVC/iUNtZgM2/+MNcFiMGDlMm3rBQoh9Usr8Lp9jEExEFFlON3pQ8PTOC95ULhZrMSLRYcG5Vh9aejhJbTMbUPLoDIxMYG4wEWmrqr4NJqPAe5+fwopN5d2+zmQQsJgM8CkqFLX7uHPZnGwUThgFvyqR7ozRZI49BcHcGiAiiiCBgIpNpdU9BsAA0OILoOqcu8cAGAA8/uB4gUDP4xER9ZUQwEeH6zD9yhE9HopTVIk2X6DHALgg04XpV45AyeHasHW4ZBBMRBRB6tt8eOmzY5qO+dJnx8JWfJ6IoofLYcHZFh/MRoGHZ40fUHWIh2eNh9kocK7NH7YOlwyCiYgiiKJKVNW7NR2zqt7d4w4MEVF/dHS4/NGf9mFkvA2Lbxjbr+oQi28Yi5HxNvzoT/vC2uGSbYSIiCJIs0fRZdwWjwIk6DI0EUWxeJsJz98zGb98rww/vnkc/IFYvLZ4Gj6srMUb+090eVGf7rSjeHIabspMQmObD644K375XhmeXzA5rB0uGQQTEUUQr1+fdqFehTnBRKSPA1UNePfgKbx78BSWFWbjlqtGYlxSLJ64PRvDY62XVIc42+KFKiWGOyzYd6we9/9hDwBg+rdGIE2jqhChYDoEEVEEsZr1uQ3IEmlEpIcmj4JfbPzi/McrNpdj5jMf4uiZVoweHgNXnBUJdjMSY8xIsJvhirNi9PAYHK1rxcxnPsSKzd9UlfjXDV+g0a3P3bCucCeYiCiCxNn0WZb1GpeIopfXp+DdAycvqWbjU1Q8vfUwnt56GABgMxkQazOhxaPA08NdKY9fxYaDJ/HA9AxYLfqvWdwaICKKICaD6LbLUn+lO+1soUxEmqtr9eHVPcd7fZ1HUXGmxddjANxh/e7jqAtTp0sGwUREEcQZY8H90zI0HfP+aRlwOsJTcoiIooeU0KWaTbj6uDEIJiKKIEajAXNyU0IuMdQbmzk4npE7wUSksRa9qtl4w5MXzCCYiCjCOB0WrCiaoMlYK4omwOmwaDIWEVFnbp2q2Xh0GvdiDIKJiCKMxWTAzOxkzM5OHtA4s7OTMSs7mZUhiEgXdp2q2djC1CyDKyMRUQRyOixYddfEfgfCs7OTsequiUjkLjAR6SRWp6ozeo17MQbBREQRanisFU8V52JNcW6f2pCuKc7F6uJcDI/lYTgi0o8Q0KWajQjTEQYWjiQiimBOhwVFk1JxwzgXNpVW46XPjnXbhvR70zNQODEFToeFKRBEpDuXw4IF14zG6i2Vmo25cMpoJMWF5wKeQTARUYSzmAwYmWDD96dnoGhSChRVosWjwKuosLYXoTcZBJwOK6tAEFHYWC0mFE1KxfMfHLmkYUZ/2MwGzMtLhSVMOcEMgomIhgij0QBXnC34QcLgzoWICADibSYsK8zBE+8cGvBYywpzkGAPX2jK+2VERERE1C9xdjNmZSdjRpZrQOPMyHJhVk4yYm1mjWbWOwbBRERERNRvyQk2rJqf2+9AeEaWC6vm5yI53qbxzHrGIJiIiIiIBiQ53oZVd+Zi5R0T+lTNZuUdEwYlAAaYE0xEREREGkhOsKFoUgoKMpOw4eBJrN99vNtqNgunjMa8SalIsJnCmgLRGYNgIiIiItJErM2MWJsZD0zPwNy8FEgJtHgVePwB2MxGxFpNEAJIirOGrQpEdxgEExEREZGmrBYT0iyRHWb2KydYCDFP64kQEREREYVLryG6EGL+xQ8B+K0QwgQAUsq39JgYEREREZFeQtmn/jOALQBqEQyAAcABYC4ACYBBMBERERENKaEEwdMBrAKwR0r5nwAghCiQUn5f15kREREREemk15xgKeUeALMBWIQQO4UQUxDcASYiIiIiGpJCOrYnpVQB/FoI8TqA5/SdEhERERGRvvpUHUJKWS2l/Dsp5diLnxNC/Ea7aRERERER6UfLtsnXaTgWEREREZFutAyCiYiIiIiGBAbBRERERBR1tAyCRe8vISIiIiIafCE3dRZCTJRSft7DS36twXwiitenoK7VBwBoditw+wOwm42Iswf/2VwOC6wR3hebiIiIiC7Vlwjud0IIK4A/AviTlLKx85NSyj9qOK9B1ez2o8mj4N0DJ/HqnuOoqndf8pp0px0LrhmNokmpiLeZEGc3D8JMiYiIiKg/hJSh970QQowD8ACAuwHsBvAHKeU2nebWrfz8fLl3715dxq5p9GB7eQ1WbC6Dx6/2+nqb2YBlhTmYlZ2M5ASbLnMiIiIior4TQuyTUuZ3+VxfguD2wYwA7gDwPIAmBHOBH5dSvjXQiYZKryC4psmDpW+VYmdFXZ8/d0aWC6vm5yI5noEwERERUSToKQgO+WCcECJXCPEsgHIANwOYK6XMbv/7s5rMdBDVNPY/AAaAnRV1WPpWKWqaPBrPjIiIiIi01pfqEL8BsB9AnpTyISnlfiDYRQ7Av+gxuXBpdvuxvbym3wFwh50VddheVoMWj1+jmRERERGRHvoSBBcCWC+ldAOAEMIghIgBACnlK3pMLlyaPApWbC7TZKwVm8vQ6FY0GYuIiIiI9NGXIHg7AHunj2PaHxvSvL5gFYhQDsGFwuNXseHgSXh9DISJiIiIIlVfgmCblLKl44P2v8doP6Xwqmv14dU9xzUdc/3u4+frCxMRERFR5OlLENwqhJjc8YEQ4moAlxbQvYgQ4jYhRKUQ4kshxNJuXvN3QogyIcQXQoj1fZjTgEmJLusAD0RVvRt9LLpBRERERGHUl2YZ/wzgdSFENYJl0UYC+G5Pn9BeTu23AGYDOAFgjxBig5SyrNNrxgH4OYDrpJTnhBBJffweBqTFo0/aQouX6RBEREQUnYZC192Qv7qUco8QIgtAZvtDlVLK3sogTAHwpZTyKAAIIV4DUASg8ym0RQB+K6U81/51akOdkxbc/oAu43p0GpeIiIgoUg2lrrt9DcGvAZDR/nmThRCQUr7cw+tTAVR1+vgEgGsves14ABBCfALACOAXUsr3Lx5ICLEYwGIAGD16dB+n3T272ajZWJ3ZTPqMS9SbQEBFfZsPiirR7FHgVwIwm4yIs5lgMgg4YywwGvuSCUVERNS7ULvuVtW7sXpLJZ7/4Migdt0NOQgWQrwC4EoABwB0bHNKAD0FwaHOYRyAAgBpAD4SQkyUUjZ0fpGUci2AtUCwY9wAv+Z5sTZ9tuL1GpeoOz5FRX2rD6VVDVAhMSLWCq+iwuMPwGY2osntx5kWLwSAvPREOB0WWEwMhomIaOBqmjxY+nbfmo55/CqeeOcQtlfUDErX3b5EavkAcmTf+iyfBJDe6eO09sc6OwHgf9pTK74SQhxGMCje04ev029CBLfltTwcl+60QwjNhiPqVX2rD2XVjYi1mVF2uglv7j+Bqno3TAYBi8kAn6JCUSXSnXbcNTkNyQl2fFnbjJyUBDgdlsGePhERDWE1jX0PgDvr6Lob7kC4L0HwIQQPw53qw+fsATBOCDEGweD3HgALL3rNOwAWAPiDEGIEgukRR/vwNQbE5bBgwTWjsXpLpWZjLpwyGklxVs3GI+rJ2RYvDtc0o7KmGc9sO4zrvzUCj96SidRhdvgVFUpAwmQUMJsMONngxubSU1j38VE8Mns8jAaB8clxGB7L31ciIuo7rbvuFk1KQawtPDnCfQmCRwAoE0LsBuDteFBKOa+7T5BSKkKIHwPYgmC+74tSyi+EEMsB7JVSbmh/7hYhRBmCaRZLpJRn+/G99IvVYkLRpFQ8/8ERTRpm2MwGzMtLhYU5wRQG9a0+nDznxu8/Oop4mxl/evBaePwBDHNYYDcb0eL55kRurM2EWJsJSbFW/KjgSrz4yTF8fOQMHpk1HgYhkMgdYSIi6iOtu+4WZCZFZBD8i/58ASnlewDeu+ixJzv9XQJ4pP1P2Hl9Clo8fiwrzMET7xwa8HjLCnPQ4vXD6zMPeukPurz5FBW1zR78ruRL3H11OlKG2TA81oqNB6vPn8jtKh1iwTWjMTcvBd+/LgPVDcHPf3j2eDisJuYIExFRyPTquvvA9IywxFB9KZH2oRDiCgDjpJTbhRAxCO7uDml1rT784JW9eG3RVMzIcg1oO39GlgsFmS7cs24XXl00FWkMgklHjW0+7P7qLB64fgxccTZ8+uUZ/PK/yy9Ih+h8MM7aKR3ityVf4vHvZGP6t0bAFWfB/3x1Fs4YC1xhPpRARERDl15dd+fmpYQlhupLdYhFCJYocyJYJSIVwH8BmKnP1MKjo2PcwnW78OcfTsfP+5nYPSPLhf+4Mxff/f2n7BhHugsEVDR5FaQOi0HqsBj8y7ufI84aTIcoOVyHp7dWdlub8a7JaefTIbZX1ODfiyai2aOgyavAGVBZPo2IiEIy1Lvu9iXMfgjB5hf/AwBSyiPh7u6mh46OcV/Xu/Hd33+K9YumoiSrrtcadx1sZgOWFeagINOF7/7+U3zd/svAjnGkp0aPH+XVjchLT8S/b/4CxZPTcbrJjXvW7eq1NuNz24/gvz78G5bcmomR8Xb8++Yv8HhhDg5WnUNijBlOBw/JERFR74Z6192+bPl4pZS+jg+EECYE6wQPaZ07xn1d78Z1T+1EUrwVOx4pwGO3ZSLdae/y89Kddjx2WyZ2PFKApHgrrntq5/kAGGDHONJXmy+AvPRh+PTLM7h3WgZe31eFFZvKQ87L8vhVrNhUjtf3VeHeaRn49MgZTEobhjYff2+JiCg0Q73rbl92gj8UQjwOwC6EmA3gRwA26jOt8OmqY9yil/fBbjFizV0T8cqD18IoBFq8yvncylirCQEpcehEA2Y9+yHcXQQO7BhHejIZBZQAEG83Y+1HR1FS2XUKz8UH4y7W8XnfzU8HhIDJyALXREQUmqHedbcvQfBSAA8C+BzADwG8J6Vcp8uswqi7zm5uXwA/fvXAN6+zGJHosOBcqw8tIeyWsWMc6ckkBP73RAOqG90XBMBGg8Cs7CTcPnFUjwfjdlTUItAeFJdU1uGGcSMAAVyTkThY3xIREQ0xQ73rbl++yj9KKX8N4HzgK4T4SftjQ1aoHeNafAG0+EJL/mbHONKb268iLdGOh//yzYXavLwUPHBdRp8Oxm04WA0AWLOlEq//cBrcPm3K3BAR0eVvqHfd7UtO8P1dPPY9jeYxaGJtRiy4ZrSmYy6cMhpx3AkmHVlMAjsqauHxq3BYjPjtwsnIS0/APet24bntR7pdkDoOxt2zbhfy0hPw24WT4bAY4fGr+KCiFhYTr96IiCg0HV13tRTOrru9BsFCiAVCiI0AxgghNnT6sxNAvf5T1Ff1OQ+KJqXCZtamLFRHx7jqBo8m4xF1xe1T8eb+E3BYjFh3f/6ADsatuz8fDosRb+w/AbdGBc+JiOjy19F1V+sYKlxdd0OZ9acAfgWgov2/HX9+CuBW/aYWHh6/ivJTjVhWmKPJeMsKc1B2qpHVIUhXQgR3dVcX5/V4MK43JZV1WPvRUawuzkNVvRvcByYior6It5k0jaES7OG7k95rECyl/FpKWSKlnCal/LDTn/1SyiFfDNduNuIHL+9DQaYLM7JcAxqro2Pcopf3sToE6arNG8C8vBTUNLn7HQB3KKmsQ02TG3NzR7FEGhER9Umc3YxZ2cmaxFCzcpIRazNrNLPehbx/LYSYL4Q4IoRoFEI0CSGahRBNek4uHDpOIC5ctwv/cWduv3+IHR3jFq7bdcG4RHrwKioeuC4Dq7dUajLe6i2VePD6MfApTIcgIqK+SU6wYdX8gcVQq+bnIjnepvHMetaXJI7VAOZJKROklPFSyjgpZbxeEwsXQ/vJxo6Ocf9eNAEr75gQcn6LzWzAyjsm4N+LJpzvGJfutMPAzrOkI6fDjE+Png05B7g3Hr+Kz46eRWJM+K7AiYjo8pEcb8OqO3P7FUMNRgAM9C0IrpFSlus2k0GSFGvFginBk41adYwLnmwM/w+ToofBIPDq7uOajrl+93EYDMwKJiKi/klOsKFoUkroMdRPC1A0KWVQAmCgb3WC9woh/gzgHQDejgellG9pPqswMpuNKJqUiud3HDm/qzaQjnE2swHzJqXCbORWMOlHAJrWZUT7eAyBiYhoIGJtZsTazHhgegbm5qVASlwSQwkBJMVZw1YFojt9CYLjAbQBuKXTYxLAkA6CASDRbsayOTl44u1D5x/rb8e4J+fk8JYy6a7Zo8+Z1GbvkD/rSkREEcBqMSHNEtnno0KenZTy+3pOZDDFWE2YnZ2M7eU12FnR9Un7UDrGzchyYVZ2MmIi/IdOQ59WucAX87JOMBERRYm+VIcYL4TYIYQ41P5xrhDiX/SbWnglxdvw1ABPNj41PxdJg5TXQtHFatIn3cbCNB4iIooSfXnHWwfg5wD8ACClLAVwjx6TGiwdgfDKO/t2svGXd05gAExhFWPVJ49Kr3GJiIgiTV/u28dIKXcLccHRmcsugTAp3oY7v52KgswkbDhwEut3H+/yAFK6046FU0ajaFIqhsWYmQJBYSUR/B3U8nBcutMOqdloREREka0vkdsZIcSVCL7/QghRDOCULrMaZDEWE2IsJvzgujEompQCVQYPInWcbIyzmWAQgCvOxioQNChiLAbcNTkNz20/otmYxZPTEGPmTjAREUWHvgTBDwFYCyBLCHESwFcA/o8us4oQgCDuPgAAIABJREFUZrMRKcNiBnsaRJdQAhIzs5LwXx/+TZNDcjazATdnJUFReTCOiIiiQ8jbmFLKo1LKWQBcALKklNdLKY/pNjMi6pbLYcWJBjeW3JqpyXhLbs3EiQY3XGzyQkREUaIv1SF+IoToqBX8rBBivxDilt4+j4i0ZzYbkZs2DCkJdhRk9q+iSYeCTBdSEuzITRvG9B4iIooafXnHe0BK2YRgs4zhAO4FsEqXWRFRrxLtZjR7/Fh849h+B8IFmS4svnEsmj1+NnkhIqKo0pcguKMsxO0AXpZSftHpMSIKsxirCQWZSXjls2O4++p0LJuT3afSfsvmZOPuq9PxymfHUJCZxAonREQUVfryrrdPCLEVwBgAPxdCxAHgKRqiQZQUb8O/zZuAx94qRazFhNcWTcWHh+vwxv4T3Zb2K56chpvGu/DCX79Ci+8Ma1wTEVFUElKGVhlUCGEAMAnAUSllgxBiOIDU9qYZYZWfny/37t0b7i9LFLFqmzzYXl6Dle+V47orR6AwdxRShtnhD6jw+FXYzAaYjQZUN7ixqfQUPv3bGTxxezZmZSczACYiosuWEGKflDK/q+d63QkWQmRJKSsQDIABYOxFDTOIaJAlxdtwx7dTcVN7k5ent1aiqt4Nk0HAYjLAp6hQVIl0px1/P2U0/m3eVWzyQkREUS2Ud8BHACwG8KsunpMAbtZ0RkTUL2zycvnz+wOoa/We/9m6/QHYO/9sHVaY2fCEiCgkvQbBUsrF7f+dof90iGig2OTl8tPmVXDO7ce7B07i1R5auS9ob+WeaDcjxspdfiKinvQlJ/huAO9LKZuFEP8CYDKAFVLK/9Vzgl1hTjARRYvaJg+2lddgxaaykLoDBit/5GA2872JiHrMCe7LPdFl7QHw9QBmAXgBwH9pMUEiIrpUbZMHj71ViifePhRye2yPX8UTbx/CY2+VorbJo/MMiej/b+/+o+M66zuPf77zeyzJjpXIk1iR47CksVRHMVQxSSgQbxx+2bWoydmStCUUCu12l/KjsLibdXoaL6wTWuh2293lRymBU7vshoBdu20auw50acBWwHGMJBeapnYUMlFQIlvy/NQ8+8eMEtmWJY10rzRX836d42PPzJ3vPNa997kf3XnucxFc1YTgscrfmyR93jm3X1LM+yYBAMYD8KH+wVm9/1D/IEEYAKZQTQgeMLPPSfolSX9tZvEq3w8AmIGzuaIe6UvPOgCPO9Q/qAN9aZ3NFz1qGQAsHtWE2H8n6WFJb3HOvSSpWdLHfWkVANSxFzMF7djXO+UykZBpSSysSGjqKSvv3derF88WvGweACwKM7582Dl31sz2SEqZ2arK0/3+NAsA6lOhMKY9RwcuGAMcDpk2tq/Q26+7Qq2XJJUrll6e/i4eCWngpYz2H/uJDvY/r7HSKxc8Zwsl7T06oF9//dVMnwYAE8w4BJvZByX9nqS0XrldspPU6UO7AKAuPT+S0+7DJ895bsv1K/Xe16/Wo/80+PKNUBKRkBoTEY1ki8oWS2prTuqdr71Sv3XLv9GXvvO09j7x7Mvv33X4pLZcv1Kty5k6DwDGVTOR5IckXeuc+6lfjQGAeldyenke4IZYWPfffr2eO53Ru//8sH7zja/S537159QQK4ff8ZtlNCYiGs0X9fd9z+vdf35YH7r1Gr3lZy/Xf3rwCY3mx3RqKKPSzGbDBIC6UU0IPiVp2K+GAACkkWz5IraGWFhfuKtLn//2U3rjNZdp/wffoL964ln9xlcfv/jNMm5Ypf0ffIMe6X1O//fxU/rCXV16/wM9Gs2PaSTHxXEAMFE1F8Y9JelRM/tdM/vo+B+/GgYA9ShTKM9Gef/t1+trh0/q7re3Kx4J67bPfkv3P3xi0gAslc8e3//wCd322W8pHgnr7re362uHT+r+26+XJGULY5O+DwDqVTVngk9W/sTE/MAA4ItENKQt16/UcCanj71lje7Ze3zSqdLOHxM8Llso6e5vHteGNS26d8ta/cOPntcvdF6heIQZLQFgompmh/h9STKzxsrjEb8aBQD1qikR1Xtfv1qN8cg5ATgWCenDt75at6xZMeWY4D/++x8rXyzpUP+g7tFx3f32dnVcsUxNiegC/88AoLZUMzvEWklfVXl+YJnZC5Le7Zz7oU9tA4C6E4+a8sWSvvfs0MsB+J7N7bqt4/JzxgRHQqZYJKR8saRiyb08JvjgR9+kR3qf0737+nSof1Ab16R0TapB8cjU8wkDQL0x52Z2ybCZ/aOku51zhyqPb5H0Kefczf41b3JdXV2up6dnvj8WAHz3k+GMimNOt332W2qKR7Tr/Tfq8L8M6VN/06eff/Vl084T/J1/fkH/+W3tWn91s+78wnd1JlfUIx95kyJh0xXLkgv93wOAeWVmjzvnuiZ7rZoxwQ3jAViSnHOPmlnDnFsHAHhZIhLS7u+fUlM8ood+6/W6Z+9xNcWj+ov3ve6ceYLPd/48wQf603rot16vrf/zO9p37Fm964a2BfjfAEDtqiYEP2Vm21UeEiFJv6LyjBEAAI+M5Ma0+8hJ7Xr/jfrUX/fq9te26bnTGb3rC9+94C5yE50ayuiPDvxI//tb/6yPv+VaXb40qU/9da92vf9GvfeBI9rcuVLLOW0BAC+rZjjEckm/L+nnVb5T3D9I+n3n3Iv+NW9yDIcAsFidGjqrR3qfU0MsorZLl+jz335Kj564cHaI6dxybYs+8MZX6dRPz2okV9Sbf/ZytTVzxzgA9cWT4RCVsPvbnrUKAHCBkWxRt3VcruMDw7MOwJJeft8vdbXp5ldfxs0yAOA8M5440sweMbNLJjxebmYP+9MsAKhPTcmIjg8M69nhzKwD8LhHTwzq2eGMjj87rKWJaka/AcDiV83s6Zc5514af1A5M7zC+yYBQP1yTrpyeVKffviEJ/U+/fAJXXlJUqWZjXwDgLpRTQgumdmq8QdmdpXKY4MBAB6JRUwH+5+f8iK4amQLJf19//OKMU8wAJyjmu/H7pb0/8zsW5JM0hskfcCXVgFAncrkS/r695/xtOaD339G3a9p9bQmAARdNRfG/a2ZvVbSjZWnPuyce2H8dTP7We4eBwBzY6ZJ5wGei1NDGXEeGADOVdWVEpXQu+8iL39V0mvn3CIAqGNnc2P+1M37UxcAgqqaMcHT4UQDAMxRrujNWODz5X2qCwBB5WUI5iI5AJijRNTLbvkV8Yg/dQEgqOgVAaCGLE1GA1UXAILKyxCc97AWANSlaNjU1pz0tGZbc1LRMCPWAGCiqkKwmXWa2RYz2zr+Z/w159yNU70XADC95iUxvfum1Z7WvOum1WpuiHtaEwCCbsazQ5jZlyR1SvqhpPErLJykh3xoFwDUpXA4pF/oXKk//LsTntwwIxENaXPnSoVDnAkGgImqmSLtRudch28tAQBIkpobYtrRvVYff/DYnGvt6F6r5oaYB60CgMWlmuEQj5kZIRgAfBaLhHRre0q3tafmVOe29pQ2tqcUY2YIALhANWeCv6JyEH5OUk7leYGdc67Tl5YBQB1rbohp5zuvk74uPdKXrvr9t7WntPOd12k5Z4EBYFLVhOA/k/Srkp7UK2OCAQA+ubQxrvtu79Sb+9Lavuf4jMYIJ6Ih7eheq43tKQIwAEyhmhA86Jzb61tLAAAXaG6IqXtdq95wTYv2HXtWDzz2tE4NZS5Yrq05qffcvFqbrlup5oYYQyAAYBrVhOAfmNkuSX+l8nAISZJzjtkhAMBHsUhIly9L6NduXq3udStVLDmNZIvKFUuKR0JqTEQUCZmaG+LMAgEAM1RNCE6qHH7fPOE5pkgDgHkSDofU0pQoP1i2sG0BgKCbcQh2zv2anw0BAAAA5ks1N8tISHqfpJ+VlBh/3jn3Xh/aBQAAAPimmisnvirpcklvkfQtSVdKOuNHowAAAAA/VROCX+2c2y5p1Dn3gKRNkl7nT7MAAAAA/1QTgguVv18ys7UqX5axwvsmAQAAAP6qZnaIz5vZcknbJe2V1CjpHl9aBQAAAPiomtkhvlj557ckvcqf5gAAAAD+m/FwCDNLmdmfmdnfVB53mNn7/GsaAAAA4I9qxgR/WdLDklZWHv+TpA973SAAAADAb9WE4Mucc/9HUkmSnHNFSWPTvcnM3mpmJ8zsx2a2bYrl3mlmzsy6qmgTAAAAULVqQvComV2q8q2SZWY3Shqe6g1mFpb0p5LeJqlD0h1m1jHJck2SPiTpe1W0BwAAAJiVakLwR1WeFeJVZvYdSV+R9MFp3rNe0o+dc0855/KS/lJS9yTL7ZB0n6RsFe0BAAAAZqWaENwr6RuSjkhKS/qCyuOCp9Iq6dSEx89UnnuZmb1WUptzbn8VbQEAAABmrZoQ/BVJayR9StL/kPQzKt9KedbMLCTpM5J+ZwbLfsDMesysZ3BwcC4fCwAAgDpXzc0y1jrnJo7nPWRmvdO8Z0BS24THV1aeG9ckaa2kR81Mki6XtNfMtjjneiYWcs59XtLnJamrq8tV0W4AAADgHNWE4O+b2Y3Oue9Kkpm9TlLPNO85IukaM7ta5fD7Lkl3jr/onBuWdNn4YzN7VNLHzg/AAAAACI5cvqjB0bwk6UymqExhTMloWE3JcvRsaYgpHqsmhnpv2k83sydVnhEiKukfzexk5fFVkvqneq9zrmhm/1Hl+YXDkr7knPuhmd0rqcc5t3eu/wEAAADUhjOZgk5ni9pzdEC7j5zUqaGMGmNhLW+I6cXRvEbyY2prTuqOG1ape12rliYiakpGF6St5tzUIwvM7KqpXnfO/aunLZqBrq4u19PDyWIAAIBakR7O6kBfWn/wdyf0yXesVUfrMkXMdDpbULZQUiIa0tJEVEXndPyZl7R9zw/1sTdfq43tKaWWJXxpk5k97pyb9B4U054JXoiQCwAAgOBIn85q2zeO6ZfXr9K+D75Be44O6L/9bb9ODWUuWHb8TPC+D75BfT8Z1rZvHNPOrZ1KLfUnCF/MtGeCaxFnggEAAGpDejirzzzSr9++9Wf06IlB7djfq2yhNO37EtGQtm/q0C3XtuiPD/6TPvrmNZ4H4TmdCQYAAAAmcyZT0Hf/+QV95LY1+t1vHNOh/gunsT1/TPC4bKGku795XBvWtOi//WKnvvvjF3RrR0qNifkZI0wIBgAAwKyczhbVdXXzOQE4GQvrD2/vnHZM8Me//qQy+TEd6h/U737jmP7rO9ZqOFMkBAMAAKB25fJFjWQL6vnXF18OwF9898+p/YplMxoTfOAjb1LfT4b16195XIf6B/Vo/6C6Vi9XLh+dl+nTqrljHAAAACBJGhzNqzER1Y79vbqqOanvfGKD0qdzuvUzj+r+h09MGoAl6dRQRvc/fEK3fuZRpU/n9J1PbNBVzUnt2N+rxnj05fmF/UYIBgAAQNUaE2HtOTqgVFNcX/uNm/Vf9hzX3d88PqOL4qRXxgT/lz3H9bXfuFmpprj2PjGgxkTY55aXEYIBAABQtTOZMe0+clK73n/jRS+Km4nxMcG73n+jdh0+qTOZsenf5AFCMAAAAGbl9zZ36NETg7MOwOMO9Q/q0RODumdzh0ctmx4hGAAAAFUbyRbVfsUy7djf60m9Hft71XHFMo3kip7Umw4hGAAAAFW7tDGqPUcHZjwGeDrZQkl7nxjQpQ3zM0UaIRgAAABVyxWddh856WnNXYdPKlecn7sZE4IBAAAwKxebBq1W6k2FEAwAAICqjWT9GbvLmGAAAADUrEzBn6nMsj7VPR8hGAAAAFVLRv25qUUiws0yAAAAUKMaE5FA1T0fIRgAAABVM5PampOe1mxrTsrM05IXRQgGAABA1S5dEtUdN6zytOad61eppTHuac2LIQQDAACgasl4VN3rWpWIehMnE9GQtlzfqrhPY43PNz+DLgKqUBjT4GhOJSedyRaVKYwpGQ2rKRFRyKSWhrii87SiAAAAas2SeFjbN3Xo7m8en3Ot7Zs61BCfv1xFCJ7E2VxRL2YK2nN0QLsPn5x04ua25qTuWL9K3etatTwZ1ZI4P0oAAFBfli+J6db2lA70p3Wof3DWdTasadHGjpQuWRLzsHVTM+fm59Z0Xurq6nI9PT2+1H7+dFYH+tK6d1/vjO6FnYiGdM/mDm1sT2nF0oQvbQIAAKhl6dNZbXvo2KyC8IY1Ldq5tVMpH3KUmT3unOua9DVC8CueP53VJ+awAu/b2kkQBgAAdem54awO9qW1Y//MTyRu39ShjR0pXwKwRAiekbkE4HEEYQAAUM9eOpvXaG5Me58Y0K4phpTeuX6VtqxrVUMs7OsQiKlCMANZVR4DfKBvbmNZJOlQ/6AO9KX1jte0akmMHy0AAKgvlyyJ6ZIl0ntuukq/cP1KOSeN5IrKFsaUiIbVGI/ITGppjM/bLBAXQ1KT9GKmoHv39XpS6959vXrTtSsIwQAAoG4l41FdGY8udDOmVPfzBBcKY9pzdGBGY1dmIlsoae/RARUKY57UAwAAgPfqPgQPjua0+/BJT2vuOnxSg6M5T2sCAADAO3UfgktOkw7anotTQxmVgne9IQAAQN2o+xB8JlsMVF0AAADMXd2H4IxPY3ezjAkGAACoWXUfgpM+Tc+RWOBpPwAAAHBxdR+CmxL+TGXmV10AAADMXd2H4JCV71zipbbmpELmaUkAAAB4qO5DcEtDXHesX+VpzTvXr1JLE7dOBgAAqFV1H4Kj0bC617UqEfXmR5GIhrRlXaui4br/0QIAANQskpqk5cmo7tnc4UmtezZ3aPmS2r5NIAAAQL0jBEtaEo9oY3tKG9a0zKnOhjUt2tie0pIYF8UBAADUMkJwxYqlCd23tXPWQXjDmhbdt7VTK5YyFhgAAKDWEYInGA/Cn/rFtTMeI5yIhvSpX1xLAAYAAAgQvrc/z4qlCb3jNa1607UrtPfogHYdPqlTQ5kLlmtrTuqX16/SlnWtumRJlCEQAAAAAUJym8SSWERLYhH9+uuvVve6lSo56Uy2qHxxTLFIWE2JiEImtTQlmAUCAAAggAjBUwiFTNFwSMWSUzhkCpkpHCr/iYSMsSQAAAABRQieRL5Y0tBoXvuOPasHHnv6osMh7rpptTZ3rlRzQ0yxCJEYAAAgKMw5t9BtqFpXV5fr6enxpfbQaF4H+9Lavue4soXStMsnoiHt6F6rW9tTam6I+dImAAAAVM/MHnfOdU32GqcvJ/jpSE6fePCYPv7gsRkFYEnKFkr6+IPH9IkHj+mnIzmfWwgAAAAvEIIrhkbz2vb1J/VIX3pW73+kL61tX39SL47mPW4ZAAAAvEYIVnkM8MG+9KwD8LhH+tI60JdWvjizs8gAAABYGIRglc8Cb99z3JNa2/cc1xBngwEAAGpa3YfgsbGS9h17dsZjgKeTLZTrjY1xNhgAAKBW1X0IHjqb1wOPPe1pzQcee1pDZzkbDAAAUKvqPgQXS27SeYDn4tRQRsVS8KaeAwAAqBd1H4LPZIu+1B3xqS4AAADmru5DcK4w5k9dZogAAACoWXUfguPRsC91uY0yAABA7ar7pNaUiASqLgAAAOau7kNwJGRqa056WrOtOalIyDytCQAAAO/UfQhuXhLTXTet9rTmXTetVnND3NOaAAAA8E7dh+BwOKTNnSuViHrzo0hEy/XCnAkGAACoWXUfgiWpuSGmHd1rPam1o3utmhtintQCAACAPwjBKs/kcGt7Sre1p+ZU57b2lDa2p5gZAgAAoMaR1iqaG2La+c7rZh2Eb2tPaec7r9NyzgIDAADUPELwBJc2xnXf7Z369O2dMx4jnIiG9OnbO3X/7Z26tJGL4QAAAIKAyWzP09wQU/e6Vr3hmhbtO/asHnjsaZ0ayigRCakxEdFItqhssaS25qTec/NqbbpupZobYgyBAAAACBBC8CRikZAuX5bQr75uld669nJJ0plMUZnCmJLRsJqS5R9bS2NM8Sg/QtSWsbGShs7mVSw5nckWlSuMKR4NqykRUSRkal4SUzjML21BlMsXNTial3SRPqkhpniMPgnAwgtCf0VvOYmzuaJezBS05+iAdh8+qVNDmQuWaWtO6o71q9S9rlXLk1EtifOjxMLKF0saGs2f8w3G+dqak7rrptXa3Mk3GEFyJlPQ6Wyx3CcdmaJPuqHcJy1NRNSUjC5ASwHUuyD1V+acW5APnouuri7X09PjS+3nT2d1oC+te/f1KlsoTbt8IhrSPZs7tLE9pRVLE760CZjO0GheB/vS2r7n+Iy32x3da3Vre4op/WpcerjcJ+3YP/M+afumcp+UWkafBGD+1GJ/ZWaPO+e6Jn2NEPyK509n9YmHjulQ/2DV792wpkX3be0kCGPe/XQkp21ff1KP9KWrfu/4rCZc1Fmb0qez2jaHPmnn1k6l6JMAzINa7a+mCsF8F1oxlwAsSYf6B/WJh47p+dNZj1sGXNzQaH7WAViSHulLa9vXn9SLlXFbqB3p4dkfUKRyn7TtoWNK0ycB8FlQ+ytCsMpjgA/0pWe98sYd6h/Ugb60zuaLHrUMuLh8saSDfelZB+Bxj/SldaAvrXxx+q+uMD/OZAre9Um9aY1kCx61DADOFeT+ihAs6cVMQffu6/Wk1r37evXiWQ448N/QaF7b9xz3pNb2Pcc1xNngmnE6W9SO/d70STv292o4wy/mAPwR5P6q7kNwoTCmPUcHZjSAeyayhZL2Hh1QoTDmST1gMmNjJe079qyn2+2+Y89qbIyzwQstly963yc9MaAc31AB8FjQ+6u6D8GDozntPnzS05q7Dp/U4GjO05rARENn83rgsac9rfnAY09r6Cxngxfa4Gheu4/40SexbgF4K+j9Vd2H4JLTpHPYzcWpoYxKwZt0AwFSLDlfttsiG+6Ccz71SQGcCAhAjQt6f1X3IfhM1p9T7n7VBST/tq8RttsF59c6GMmxbgF4K+j9Vd2H4IxPY3ezjAmGj3I+bV85ZohYcPRJAIIi6P1V3YfgZDTsS92ET3UBSYr7tH1xG+WF51ufFKFPAuCtoPdXvh/xzOytZnbCzH5sZtsmef2jZtZrZsfM7KCZXeV3myZqSkQCVReQ2G4Xs0af1oFfdQHUr6D3V76GYDMLS/pTSW+T1CHpDjPrOG+xH0jqcs51SnpQ0v1+tul8IZPampOe1mxrTipknpYEzhEJmS/bbYQNd8GZT32SsWoBeCzo/ZXfZ4LXS/qxc+4p51xe0l9K6p64gHPukHPubOXhdyVd6XObztHSENcd61d5WvPO9avU0uT9/a+Bcc1LYrrrptWe1rzrptVqboh7WhPVa2mI6Y4bvO+TVjSxbgF4K+j9ld8huFXSqQmPn6k8dzHvk/Q3k71gZh8wsx4z6xkcnNut+SaKRsPqXteqRNSbH0UiGtKWda2KhhlbCf+EwyFt7lzp6Xa7uXOlwpwJXnDxWMT7Pun6VsUYEwzAY0Hvr2omqZnZr0jqkvTpyV53zn3eOdflnOtqaWnx9LOXJ6O6Z/P5ozRm557NHVq+JOpJLWAqzQ0x7ehe60mtHd1r1dwQ86QW5m5pIqLtm7zpk7Zv6tCyJOOBAfgjyP2V3yF4QFLbhMdXVp47h5ltlHS3pC3OuXm/1dqSeEQb21PasGZu4XrDmhZtbE9pSYwDDvwXi4R0a3tKt7Wn5lTntvaUNranmBmihjQlo971SR0pNSb4xRyAP4LcX/l91Dsi6Rozu9rMYpLeJWnvxAXM7DWSPqdyAH7e5/Zc1IqlCd23tXPWK3HDmhbdt7VTK5YyFhjzp7khpp3vvG7WQfi29pR2vvM6LecscM1JLUto5xz7pJ1bO5WiTwLgs6D2V+Z8vjedmb1d0h9JCkv6knPuk2Z2r6Qe59xeMzsg6TpJP6m85aRzbstUNbu6ulxPT48v7X3+dFYH+tK6d1+vsoXpbxyQiIZ0z+YObWxPEYCxYIZG8zrYl9b2PcdnvN3u6F6rje0pAnCNSw+X+6Qd+2feJ23f1KGNHSkCMIB5VYv9lZk97pzrmvQ1v0OwH/wMwZJ0Nl/Ui2cL2nt0QLsOn5z0vthtzUn98vpV2rKuVZcsiTIEAgsuXyxpaDSvfcee1QOPPX3R7fY9N6/WputWqrkhxhCIgBjJFjScKWrvE1P3SXdW+qRliQhDIAAsiFrrrwjBs1QojGlwNKeSk85ki8oXxxSLhNWUiChkUktTglkgUHPGxkoaOptXseQ0ki2qWCopEgqpMRFRJGRqbogzC0RA5fJFDY7m5Zw0kiuqVBpTKBRWYzwiM2lFU5xZIADUhPP7q2xhTIno/PdXU4VgTl9OYaxUUmn8dwQnjbny35JUctJYcYwQjJqTL44pVyx/DVUcc8oUSkpGTWMlp7GSU75QVDLOWcIgM5PkpFxRSkb18sTyrhS8kxoAFqd4LKIra/xb8tpu3QIZPpvXSG5Me44OaPeRi5/Kv+OGVepe16rGeFjLljCuEgvrpbN5jVax3TbEw7qE7TYQzmQKOp0tznjdLk1E1JTkFx0AmArDIc7z3HBWB2cxqPvW9pQuX8ZFKFgYbLeL16wvNGlPKcW6BVDnGBM8Q+nTWW176JgO9Vd/RzqmI8JCYbtdvFi3ADA3U4VgBrRWPDc8+4ONJB3qH9S2h44pfTrrccuAi2O7XbzSrFsA8BUhWOUxwAf70rM+2Iw71D+oA71pnc7kPWoZcHEvebzdDp9lu60VZzIFHfBw3Y5kCx61DAAWD0KwpJHcmHbs7/Wk1o79vTqTHfOkFjCVUY+325Ec222tOJ0terpuhzNFT2oBwGJS9yE4mytoz9GBGV1wMqN6hZL2PjGgbI4zL/BPxqftNsN2u+By+aIv6zaXJwgDwER1H4JfOFvQ7iMnPa256/BJvXCWMAH//NSn7fanbLcLbnA078u6HRxluAsATFT3Idg5TTrn5lycGsoogJNuIEDYbhcv1i0AzI+6D8EjWX++IhzJ8dUj/MN2u3ixbgFgftR9CM4U/Lm3y0CMAAAO30lEQVQYKOtTXUBiu13MWLcAMD/qPgQno2Ff6iYi/tQFJLbbxYx1CwDzo+5DcGMiEqi6gMR2u5ixbgFgftR9CDaT2pqTntZsa07KzNOSwDnYbhcv1i0AzI+6D8GXLYnqjhtWeVrzzvWr1NIY97QmMNGlbLeLVktDzJd1u6KJdQsAE9V9CE7Eo+pe16pE1JsfRSIa0pbrWxX3aVwfIElJtttFKx6L+LJuY4wJBoBz1H0IlqTGeFjbN3V4Umv7pg41JTjYwH8NHm+3jXG221qxNBHxdN0uSzIeGADORwiWtGxJTLe2p7RhTcuc6mxY06KNHSktTcY8ahlwcZd4vN0uW8J2WyuaklFt9HDdNiaiHrUMABYPQnDF5csS2rm1c9YHnQ1rWrRza6dSSxMetwy4OLbbxSvFugUAX5kL4L00u7q6XE9Pjy+1nxvO6mBfWjv29ypbKE27fCIa0vZNHdrYkeJggwXDdrt4pYezOsC6BYBZMbPHnXNdk75GCL7Q6UxeZ7Jj2vvEgHYdPqlTQ5kLlmlrTurO9au0ZV2rmuJhhkBgwQ2fzWskN/PttjEWZghEQIxkCxrOFGe8bpclIgyBAAARgmctmyvohbMFOSeN5IrKFsaUiIbVGI/ITGppjHM1PWpOJlfQT9luF6VcvqjB0fxF1+2KpjizQADABFOFYC4ZnkIiHtWVcc6mIFiSbLeLnpkkJ0VD5b/Hb4ThSsE7qQEAC4UQDAA17kymoNPZovYcHdDuIxcfDnHHDavUva5VSxMRNSX5RQgApsJwCACoYbO+MK49pdQyLowDUN8YDgEAAZQ+ndW2bxzTof7BGb8nWyjp7m8e14H+NFOkAcAUmCcYAGpQejirbQ9VF4AnOtQ/qG0PHVP6dNbjlgHA4kAIBoAacyZT0IG+9KwD8LhD/YM60JvWSLbgUcsAYPEgBANAjTmdLWrH/l5Pau3Y36vhTNGTWgCwmBCCAaCG5PLlWSBmchHcTGQLJe19YkC5PEEYACYiBANADRkczWv3kZOe1tx1+KQGR/Oe1gSAoCMEA0ANcU6TzgM8F6eGMgrgbJgA4CtCMADUkJGsP8MWRnIMhwCAiQjBAFBDMoUxX+pmfaoLAEFFCAaAGpKMhn2pm4j4UxcAgooQDAA1pDHhz408/aoLAEFFCAaAGmImtTUnPa3Z1pyUmaclASDwCMEAUENaGmK644ZVnta8c/0qrWiKe1oTAIKOEAwANSQei6h7XasSUW+650Q0pC3XtyrGmGAAOAchGABqzNJERNs3dXhSa/umDi1LMh4YAM5HCAaAGtOUjGpje0ob1rTMqc6GNS3a2JFSYyLqUcsAYPEgBANADUotS2jn1s5ZB+ENa1q0c2unUksTHrcMABYHQjAA1KjU0oR2/mKnPvmOtTMeI5yIhvTJd6wlAAPANBgoBgA1LLUsoe51K3XLtSu094kB7Tp8UqeGMhcs19ac1J3rV2nLulYtS0QYAgEA0yAEA4tMLl/U4GheknQmU1SmMKZkNKymysVRLQ0xxWPs+kHSmIiqMRHVe29erV+4fqWck0ZyRWULY0pEw2qMR2QmrWiKMwsEgJoQhGMRR0JgkTiTKeh0tqg9Rwe0+8jFzxbeccMqda9r1dJERE1JzhYGSTwW0ZX8AgOghgXpWGTOuQX54Lno6upyPT09C90MoGakh7M60JfWjv29yhZK0y6fiIa0fVOHNranlFrGuFEAwNzV4rHIzB53znVN+hohGAi29Omstj10TIf6B6t+LzMIAAC8UKvHoqlCMLNDAAGWHp59pyNJh/oHte2hY0qfznrcMgBAvQjqsYgQDATUmUxBB/rSs+50xh3qH9SB3rRGsgWPWgYAqBdBPhYRgoGAOp0tasf+Xk9q7djfq+FM0ZNaAID6EeRjESEYCKBcvnzl7UwuPJiJbKGkvU8MKJcnCAMAZiboxyJCMBBAg6N57T5y0tOauw6ffHlORwAAphP0YxEhGAgg5zTp3ItzcWooowBOFgMAWCBBPxYRgoEAGsn681XRSI7hEACAmQn6sYgQDARQpjDmS92sT3UBAItP0I9FhGAggJLRsC91ExF/6gIAFp+gH4sIwUAANSYigaoLAFh8gn4sIgQDAWQmtTUnPa3Z1pyUmaclAQCLWNCPRYRgIIBaGmK644ZVnta8c/0qrWiKe1oTALB4Bf1YRAgGAigei6h7XasSUW924UQ0pC3XtyrGmGAAwAwF/VhECAYCamkiou2bOjyptX1Th5YlGQ8MAKhOkI9FhGAgoJqSUW1sT2nDmpY51dmwpkUbO1JqTEQ9ahkAoF4E+VhECAYCLLUsoZ1bO2fd+WxY06KdWzuVWprwuGUAgHoR1GORuQDeJ7Wrq8v19PQsdDOAmpEezupAX1o79vcqWyhNu3wiGtL2TR3a2JEiAAMAPFGLxyIze9w51zXpa4RgYHEYyRY0nClq7xMD2nX45KT3c29rTurO9au0ZV2rliUiDIEAAHiq1o5FhGCgjuTyRQ2O5uVc+f7r2cKYEtGwGuMRmUkrmuLMAgEA8FWtHIumCsFcDg4sMvFYRFfG2LUBAAsnCMciLowDAABA3SEEAwAAoO4QggEAAFB3CMEAAACoO4RgAAAA1B1CMAAAAOoOIRgAAAB1hxAMAACAuhPIO8aZ2aCkf/XxIy6T9IKP9bGwWL+LF+t2cWP9Lm6s38VtodbvVc65lsleCGQI9puZ9VzsFnsIPtbv4sW6XdxYv4sb63dxq8X1y3AIAAAA1B1CMAAAAOoOIXhyn1/oBsBXrN/Fi3W7uLF+FzfW7+JWc+uXMcEAAACoO5wJBgAAQN0hBAMAAKDuEIInMLO3mtkJM/uxmW1b6PZgbsyszcwOmVmvmf3QzD5Ueb7ZzB4xsx9V/l6+0G3F7JlZ2Mx+YGb7Ko+vNrPvVfbjr5lZbKHbiNkxs0vM7EEz6zezPjO7if138TCzj1T65uNmttvMEuy/wWVmXzKz583s+ITnJt1freyPK+v5mJm9diHaTAiuMLOwpD+V9DZJHZLuMLOOhW0V5qgo6Xeccx2SbpT0HyrrdJukg865ayQdrDxGcH1IUt+Ex/dJ+qxz7tWSXpT0vgVpFbzw3yX9rXNujaTrVV7P7L+LgJm1SvptSV3OubWSwpLeJfbfIPuypLee99zF9te3Sbqm8ucDkv7XPLXxHITgV6yX9GPn3FPOubykv5TUvcBtwhw4537inPt+5d9nVD6Atqq8Xh+oLPaApHcsTAsxV2Z2paRNkr5YeWyS/q2kByuLsH4DysyWSXqjpD+TJOdc3jn3kth/F5OIpKSZRSQtkfQTsf8GlnPu25KGznv6Yvtrt6SvuLLvSrrEzK6Yn5a+ghD8ilZJpyY8fqbyHBYBM1st6TWSvicp5Zz7SeWl5ySlFqhZmLs/kvSfJJUqjy+V9JJzrlh5zH4cXFdLGpT055XhLl80swax/y4KzrkBSX8g6aTK4XdY0uNi/11sLra/1kTmIgRj0TOzRklfl/Rh59zpia+58hyBzBMYQGa2WdLzzrnHF7ot8EVE0msl/S/n3Gskjeq8oQ/sv8FVGRvarfIvOyslNejCr9KxiNTi/koIfsWApLYJj6+sPIcAM7OoygH4L5xzD1WeTo9/7VL5+/mFah/m5PWStpjZ0yoPX/q3Ko8hvaTy9arEfhxkz0h6xjn3vcrjB1UOxey/i8NGSf/inBt0zhUkPaTyPs3+u7hcbH+ticxFCH7FEUnXVK5Mjak8QH/vArcJc1AZH/pnkvqcc5+Z8NJeSXdV/n2XpD3z3TbMnXPud51zVzrnVqu8v/69c+6XJR2SdHtlMdZvQDnnnpN0ysyurTx1q6Resf8uFicl3WhmSyp99fj6Zf9dXC62v+6V9O7KLBE3ShqeMGxi3nDHuAnM7O0qjzEMS/qSc+6TC9wkzIGZ/bykf5D0pF4ZM/qfVR4X/H8krZL0r5L+nXPu/MH8CBAzu0XSx5xzm83sVSqfGW6W9ANJv+Kcyy1k+zA7ZrZO5YseY5KekvRrKp+8Yf9dBMzs9yX9ksoz+fxA0q+rPC6U/TeAzGy3pFskXSYpLen3JH1Tk+yvlV98/kTlITBnJf2ac65n3ttMCAYAAEC9YTgEAAAA6g4hGAAAAHWHEAwAAIC6QwgGAABA3SEEAwAAoO4QggEAAFB3CMEAsADMbIuZbZt+yQvet9rMjvvQnlvM7OYJj79sZrdP9R4ACLLI9IsAALzmnNur2ror5S2SRiT94wK3AwDmBWeCAcBjlbO1/ZWzqf9kZn9hZhvN7Dtm9iMzW29m7zGzP6ks/2Uz+2Mz+0cze2qmZ2DNLGxmnzazI2Z2zMx+o/L8LWb2qJk9WGnHX1Tu0CQze3vluccrn7nPzFZL+k1JHzGzo2b2hspHvPH8NpnZFWb27cpyxycsCwCBQggGAH+8WtIfSlpT+XOnpJ+X9DGVb999visqr2+WtHOGn/E+ScPOuRsk3SDp/WZ2deW110j6sKQOSa+S9HozS0j6nKS3Oed+TlKLJDnnnpb0vyV91jm3zjn3D1O06U5JDzvn1km6XtLRGbYVAGoKwyEAwB//4px7UpLM7IeSDjrnnJk9KWn1JMt/0zlXktRrZqkZfsabJXVOOHO8TNI1kvKSDjvnnql8/tHKZ45Ieso59y+V5XdL+sAU9Sdr0xFJXzKzaOV1QjCAQOJMMAD4Izfh36UJj0ua/ATExOVthp9hkj5YOXu7zjl3tXPu7yapN3aRz5zOBW1yzn1b0hslDUj6spm9exZ1AWDBEYIBILgelvTvK2dlZWY/Y2YNUyx/QtKrKmOAJemXJrx2RlLTdB9oZldJSjvnviDpi5JeO4t2A8CCYzgEAATXF1Ue5vD9yoVvg5LecbGFnXMZM/stSX9rZqMqD20Y91eSHjSzbkkfnOIzb5H0cTMrqDy8gjPBAALJnHML3QYAwDwxs0bn3EglNP+ppB855z670O0CgPnGcAgAqC/vr1wo90OVL6T73AK3BwAWBGeCAaAGmdl1kr563tM559zrFqI9ALDYEIIBAABQdxgOAQAAgLpDCAYAAEDdIQQDAACg7hCCAQAAUHf+P+mUUkX3oOSAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3zddX3//ef7/Pyc/CxpTw40TSgqNAltWl1aAedspShboIHipu10Kl56XdemXyf7Orsv1k0js8imc99Ld4HbnPpd67VpoZW6LxosuCGuLY6WkrTgGLSkcAgE8vP8Pu/rjySQlqTNST6f5KTncb/demvOOZ/z4mXP8ZPn+Zz3D2OtFQAAAFBKfPPdAAAAADDXCMEAAAAoOYRgAAAAlBxCMAAAAEoOIRgAAAAlJzDfDczEkiVL7PLly+e7DQAAABSxRx555EVrbXSyxxZkCF6+fLkOHTo0320AAACgiBljnpnqMYZDAAAAoOQQggEAAFByCMEAAAAoOYRgAAAAlBxCMAAAAEoOIRgAAAAlhxAMAACAkkMIBgAAQMlZkJtlAAAAoHglUhm9NJKRJA0mskpkcooE/aqMjEbPxWVBRcLB+WyREHw2qXRWvcNpSaMvYCqXU9j/2gsYLQ8pHOKfEAAAQJJeHklrJJXTnkd7tOvgCZ3sS7zumPqaiLasbVD7mjqVhf26oCw0D51Kxlo7L//h2WhtbbVebps8mMhoIJnVY8++IhlpSUVYqWxeyUxOTtCvcMCnF4dSslZqWbZIVU5AlZH5/TQDAAAwn57vT+r+7rg69nUpmcmf83gn6NP2tmZd3RTThdWOJz0ZYx6x1rZO9hiXMc8Q70/qeHxQVZGgjsUH9YNfPjvlp5ib3rJMFy2K6D97h7QiVqmYRy8gAABAMYsPJPUndx/R/mO9035OMpPXrfccVeexuHZsblGsam5zFFeCJ3hhIKn/7B1S13MDuuO+49P+FPPpd69Q80VVelO0QtE5fgEBAADm0/P9hQfgM21ojHoShM92JZjVIca80J/U8/1J3fmzp9Rxb/e0ArA0+imm495u3fmzp/Rcf1IvDCQ97hQAAKA4vDyS1v3d8VkFYEnaf6xXnV1xvTKSdqmzcyMEa3QMcN9IWl/pfEIPHJ/Zi/jA8V59pfMJ9Y2kNZTMuNwhAABA8RlJ5dSxr8uVWh37ujScyrlSazoIwZJGMjk99J8vzjgAj3vgeK8e+tWLGknP3QsIAAAwHxKpjPY82jPtb8/PJZnJa+/hHiVSc3MxseRDcCqd1VAqqzvuO+5KvTvuO67BVFapdNaVegAAAMXopZGMdh084WrNnQdOvLq+sNdKPgQPpDK69/ApVz/F7DtySgNz9CkGAABgPlirSVfQmo2TfQnN1ZoNJR+Ckxmr7//yWVdr/vMjzyqZWXirbgAAAEzXUNKbb72HUnPzbXrJh2Ar682nGBGCAQDA+SuR8WYOVNKjumcq+c0yPPsUk2RyHOZHLpdX30ha2bzVYDKrVCancNCvSieggM+opiwkv7/kP/8CAGYpEvR7UtcJeFP3TCUfglNZd8YCnymdJQRjbqWzefUNp/XDI6f0nYef1sm+hAI+o1DAp3Q2r2zeqr4mot+7crmub1mqmvKQQgHCMABgZiocb2KkV3XPVPIh2LNPMR7VBSbTN5xWZ/fz+vwPu/Trb1qi//6uFapbFFE6m1c6m1co4FMo4FPPKwntO/Kc/qrzCf3p9c3a2HShaspD890+AGABMkaqr4m4Oqy0viYiY1wrd1YlfxmoPOzN5wCv6gJnemkopT/+/mH925Mv6R8/8la1rbpI4bErvFZSzr42Qj0c8Klt1UX6x4+8Vf/25Ev64+8f1ktDqXnrHQCwcC0uC2rL2gZXa25d16BoRdjVmlMp+aTm83nzKcY3R59iUNr6htP63J6juvHNyxQOGMkYPfXisH7wy2cnfU/X10R001uW6eIl5dq0+iKlslaf23NUX7xhlS7gijAAoACRcFDta+r01z990pWlZp2gT5tW1yk8R9+ml/yV4JpIUB+44mJXa37giou1ZI4+xaB0pbN57T8W1weuXK4LyoJ6pm9E77vrYf1V55NTfqg72ZfQX3U+qffd9bCe6RvRBWVBfeDK5dp/PK60R+PjAQDnr7KwX9vbml2ptb2tWeXhuRtOWvIhOBIO6rqWpXKC7vxTOEGfrmtZOmefYlC6XhxKqdIJKhL0665/fUod93ZP+5N4MpNXx73duutfn1Ik6FdFOMiwCABAwS4oC+nqppg2NEZnVWdDY1Qbm2NaVDZ330qWfAiWpEjIrz+7/nJXan1+0+UqCxGA4a1cLq+jPf2quyCir3Y+oQeO986ozgPHe/XVzidUd0FEj/X0K5fjajAAoDAXVjvasbllxkF4Q2NUOza3KFbluNzZ2RGCNfopZv2KWl3dWDurOlc31mr9ito5/RSD0vTiUEpvjJbrF0+9NOMAPO6B4736xVMv6Y215XqRq8EAgBmIVTn60o0tuu2GldP+dt0J+nTbDSvnJQBLhOBXXVjt6M83r5pxEL66sVZ/vnnVvLyIKEFGsjK6477jrpS7477jstZITOgEAMzQhdWO2lou0v23rNdnrl2h+prIpMfV10T0mWtX6P4/Wq+2lovmLTuV/OoQE8WqHN124yptPPaCPn/v49MaX+kEffrT6y/XOxtrCcCYM9ZK+46ccmU2rjQ6RvhHj53Sb7fWu1IPAFCaFpWFtKhM+tCVF+v61UtlrTSUyiqZyckJ+lURDsgYKVoRnvf5U4TgM1xY7eg3V12o37gsqnuPnNL/+vdnplxq6v1vvVjXrV6q8pCfIRCYU5mc1fd/+ayrNf/5kWd145uXuVoTAFCaIuGgloWD893GWRGCJzH+Keb3rmhQW8tFRf0pBqXJWuvq2tbS6PJpr22rAQDA+Y0QfBYL4VMMStNQKutR3ZwndQEAKDZMjAMWoJRHG1ukM4RgAEBpIAQDC1DEo2E4DsN7AAAlghAMLEAVjjcjmbyqCwBAsSEEAwtQ0GemXH9xpuprIgr6OSUAAEoDl32ABWhJRVgfuGK5/vxH3a7V/L0rl2tJRdi1enBfLpdX30ha2bzVYDKrTDanYMCvSieggM+opiwkPx9kAGBaCMFnkcnk1DucUt5Kg8msEpmcIsHRXzg+I0XLwwoyhhLzwO/36fqWi/SVnxx3ZcMMJ+jTdasukt/HlnHFKJ3Nq284rSMnX1FeVksqwkpl868u2ziQyOjFoZSMpNX1F6imPKRQgDAMAGdDCJ7ESCqrlxMZ7Xm0R7sOnJhys4wt6xrUvqZOF0SCKgvzT4m5tbgirM9vulyf+cFjs671hfbLtZirwEWpbzitrlP9qnCC6np+QD/45bM62ZeQE/CpwgloKJlVMptXfU1EN71lmWLVEf3qhUE1L61WTTmb+ADAVIy1C29x/NbWVnvo0CFPar8wkNRPuuPquLdr2tsmb7+uWdc0xVTLtsmYY33Daf3x9w+rs/uFGdfY2FSrO96zWhcQmIrOS0MpPREfVNdzA/ra/U/q//qNN2h9Y63KQ6PhN5PLKej3q8IJaDid1U+7X9Bd//qUPnn1pWq+qEqXxSr5cAOgpBljHrHWtk72GN+XTfDCQFKf2X1Et959dNpfMSczed1691F9ZvcRvTCQ9LhD4HQ15SHdflOLNjbVzuj5G5tqdftNLQTgItQ3nFbPywnd+bOnZCTt+8TbtXZ5jXzmtSErE5eL9hmjdctrtO8Tb5eRdOfPnlLPywm9PJye894BYCHgSvCY8QC8/1jvjGtsaIzq9s0tXBHGnOsbTquzO67P7ZneBzgn6NMX2lfqmqYYAbgIpbN5PfXikP5m/6/08XdeqpF0VjXlYf3w8CntOniWIVprG3T96qXqG06pLBTQ//PTJ/X7G96kS5ZUMEYYQEk625VgQrBGxwDf/WiPbr376Kxr/fmNK3XDm+tUFmKMMObW+OSpe4+c0rcffnrKoPTBK5frupalTJ4qYr0DSf2k+3m949JapfNWP//Vi+rYV8AQrbZmXfWmJQr5jB588gVd03Shonw4B1CCCMHn0PNKQlf/5QOuzbK//4/Wq26Ru2u4AtM1cRmtoWRWqWxe4bFJVAGfUU15mFUgilgul9fTfSMysgoHAvrsnsdm9A3Vhsaovti+SqlcVtYaLa8pY/k0ACWHMcFnkcnktOfRHlcCsDQ6Rnjvoz3KZHKu1AMK5ff7FK10dFF1RJfGKrWyrlqXxip1UXVE0UqHAFzk+pMZvTSYUijgn3EAlqT9x3r12T2PKeT366WhpPqTGZc7BYCFreRD8AtDKe06cMLVmjsPnNALQylXawIoDSPpnJYvKdeDx3tnNUdBGg3CDx7v1SWLKzSS5oM5AExU8iE4bzXp2MnZONmXUH7hjTIBUASckE/pXF4d+7pcqdexr0upXF5OqORP9wBwmpI/Kw4ls97UTXlTF8D5zUja++gpV4do/fDwKTEIBgBOV/IhOOHR2N0kY4IBzMBIKq9dB90fojWScidUA8D5ouTX8XKC3nwOCLP0FOZJKp1V79gGCYOJrBKZnCJBvyojo/93j5aHFGYJv6LmxRAtAMDpSv43YaUTXFB1gakMJjIaSGa159Gec26o0L6mTlVOQJUR3qfFZtCjVRwYogUApyv5ECyNBgM3r5TU17BGMOZWvD+pzu74OTdUONmX0JfvO66//umT2t7WrI1NMcWq2UShmLg1Fvj1dRmiBQATlfx39k7Qpy1rG1ytuXVdgyJBv6s1ganEB5LadvcR3XrP9LZMlkaD1q33HNW2u48oPpD0uEMUwqtzhxPgnAQAE5V8CE6kc9q0ZqlrY4OdoE/Xr16qkTRfPcJ78f6ktu0+MqsNFbbtJggXkwrHmy/ovKoLAAtVyYdgn8/I5vPa3tbsSr3tbc2yNi8fu3LBY4OJjDq7465sqNDZFdcQO4oVBWPcH1JVXxOR4ZQEAKchBBujv33oaf3GZVFtaIzOqtaGxqh+Y0VU3/y3p+XnNw48NpDMurqhQn+Cby+KgZG0ZZ37Q7Q4IwHA6Uo+BEfLQ6pbFNGx5wf1xfZVMw7CGxqj+mL7Kh17blDLFkW0pDLscqfAa1Lp0VUg3NxQYe/hHqUYxjPvXklktGm1+0O0+hNc6QeAiUo+BAeDfl3XslTbfnBYPa+M6HPXXa7bblg57V9ATtCn225YqT+97nL1vDKibT84rOtaliroL/l/WniodzjtyYYK4+sLY/5UOgH9+PHnXRui9bnrmnXf0ecZEwwAZyCpSVoUCerT1zbqw986qK5TA2q6qFI/+dQ79JlrV0w5Nq++JqLPXLtCP/nUO9R0UaUePzWgD3/roP742kYtKmPtVXjLWm82VLDW1ZKYAZ8x+tbPn9YVb1jsyhCtt16yWP/w8NPyMUQLAE7DpQFJZeGA3rmiVj95PK4/2PlLXd9ykT7y65fozcsWaUNjrZygX8OprJKZvJygT+XhgJKZnF4ZTuuloZS+9dDT+uGR53R1Y602rKhVGbtxwWNDSW+GLbChwvwLBYze85Zlet9dD+vuP3ibtuvojCY/bmiMqqN9pW78+kP6wJUXK8S3UwBwGtLamNoqR1/avEp/svsx/fDIc/rR0ed1dWOt2lou0tJFEeVyeWVyVpms0Ug6p1OvJHTvkef002MvKJe3urqxVl/avEq1VWw8AO8lPNr4gA0V5l/AZ9TWslR/8+B/6savP6SdH71CGxtj59wIZZwT9Gl7W7PWXVKjG7/+kAZTWbWtWqqAnyvBADARIXiC8SB8/7EX9PkfPq4fd8X14664pNFfTKGAT+lsXtn8a98ZO0GfvnjDSl3dWEsAxpxhQ4XzV3wgrUVlQX363SvUcW+3rvnqz7S9rUk/+dQ7dO+RU9p5YOotsbeua9B1LUv148ef1zVf/Zkkaft1TSoP+RUfSKmmnAm7ADCOEHyG2ipH7WuW6jcui+rew6f0v/79GZ3sSyibt8qmX7tKVl8T0fvferGuX71Ui8qCDIHAnGJDhfNXIpPTw4+9qKveuETrV0T1wPFedezr1u33Hdd/e+ebdOcHfk1locDrhmiNpLP6afcLuvorDyqdHb1ivH5FVFe9cYn2Pfac3nLxBfP8vwwAigu/8SZRFgqoLBTQzVct1/WrL1LeSoPJrFKZnMJBvyqdgHxGilY6rAKBeVNfE3F1cpzbGzRgZiJBv75wb7c6b/kNfWrjZZKkB473Kp3N6y9+/IT+4sdPSJKcgE8VTkBDyayS2dcPk1i/IqpPbbxMQb9Rx75u/csn3z6n/zsAoNgRgs8iGPRr6aKy+W4DeJ1IyKctaxv05fuOu1Zz67oGlYUYDjHfKseuxm+56xe6+/ffpo+9/Q16+6VLdMd9x08bE5zM5pUcev2Sdk7Qp0+/e4WaLqzS4vKQbvzGQ6fVBQCM4jImsAAl0nm1r6lzdUOFTavrNJJmYtx8841tm9w7lNaN33hI0cqw3hSt0Pc+dqU+tfHSsy7b+KmNl+p7H7tSb4pWKFoZ1o3feEi9Q2nV10TETu4AcDouDQAL1FO9Q9re1qxb7zk661rb25r1VO+gli+pcKEzzEa0PKwt6xr05f99XL1D6Vcnxr3r8gt1aW2Fbv2tJi2uCCuTy786Jjjo9+mloZTy1mpxeUiPPN2nD37r4Ks1t65rULSSibsAMBFXgoEFKOAzOtLTr/Uroq5sqLB+RVSP9QwowOXCeRcM+l93lb9jX7eu/sqDeurFYTUsLlO0MqzqSFAXlAVVHQkqWhlWw+IyPdU7rKu/8qA69nW/+lwn6NOmNXXMXwCAM3AlGFiAjE969+UX6sP/cEDfufkK/cndR2a8ocKXbmzR7/39L/SN322Vj5xUFC6IBPW565r1P+5+7Sp/oRPjxn3uumZdwC6WAPA6/MoDFqBszsrI6n1rG/TeO3+uL7av1G03rJz2GGEn6NNtN6zUF9tX6r13/lzvW9sgY6wyOfZNLgZl4YA2NsXOepU/mc3rxaH0WQPwhsaoNjbFWMIRACZBCAYWoHDAqPu5Ab31DYt1SbRCb7t9v2qrwrr/lvX6zLUrzjp56jPXrtD9t6xXbVVYb7t9vy6JVuitb1is7ucG5AQ4JRSL2ipHt29umfFwlw2NUd2+uYVNfABgCsbahXflp7W11R46dGi+2wDmTSaT0zMvJ/RU75BiVY6+2vmEHjjeq0jIrztuWqWVyxbJb4yGUlklMzk5Qb8qwgHlrNXRZ1/Rp3/wmBLp3KtrycYHknpjtEINi8sYO1pkXhhIqrM7ri/cO/1tkz93XbM2NsUIwABKnjHmEWtt66SPEYKBhSk+kNR9jz+ny2JVyuetup8feN1ashUhvy4oD+nl4bSGJix/NnEtWZ/P6In4gN59+UWKEZqK0kg6q5dHMtr7aM9Zt03+3XUN2rSmjl0sAWAMIRg4D42ksnqmb0Rf63xC16+uUyhgFK109ODxF/T9Xz47ZVB6z1uW6R0ratU7mFQ6a/XDwz365MbLdPHiMoJTkctkcuodTr26i2U+n5PPxy6WADCVs4VgfuMBC1RZOKAl5SH93+vfpK92PqHKcEAf+fVLdMni8rOuJZvK5iVrtffRUxpMZfWpjZdpSXmIALwA5K1Vfvy6hZVSWSkSHH9MyufyEiEYAKaF33rAAhYdG77wsbe/Qd3PD+h3/+7f9bY3LlFby0WSJCPJb4zGV/9NZfO698hz+vl/vqhbrrlMTRdWaWm182odFKfBREYDyaz2PNqjXQenHg6xZW2D2tfUqcoJqDLCsmgAcDYMhwDOAy8MJNX93ICqy0KnDYcI+IxCAZ/S2byyeXvacIj+kbSaLqpi8lSRi/ePTozr2Df9iXHb20YnxsWqeW0BlLZ5HRNsjLlW0tck+SX9rbV2xxmPN0j6tqRFY8dss9b+6Gw1CcHA641Pnjp84mX5fOasW+uuqb+AyVMLQHwgqW27Z74Ryo7NLUx2BFDS5i0EG2P8kp6QdI2kZyUdlLTFWts14Zi7JP2HtfZvjDHNkn5krV1+trqEYGBqZ06eSmdzCgWYPLXQxPuT2jbDnQDHEYQBlLr5nBi3TtKvrLVPjTXyPUntkromHGMlVY39XC3plMc9Aee1YNCvpYvK5rsNzMJgIqPO7visArAk7T/Wq86uuNrXLFWFwxhhAJjI68tBdZJOTrj97Nh9E/2ZpPcbY56V9CNJn5iskDHmY8aYQ8aYQ729s/vFAADFbCCZVce+rnMfOA0d+7rUn8i6UgsAzifF8J3oFkn/YK1dJum3JH3XGPO6vqy1d1lrW621rdHozLYRBYBil0qPrgIxnUlw05HM5LX3cI9SaYIwAEzkdQjukVQ/4faysfsm+oikf5Ika+3DkhxJSzzuCwCKUu9wWrsOnnC15s4DJ9Q7nHa1JgAsdF6H4IOSLjXGXGKMCUl6n6S9ZxxzQtLVkmSMadJoCGa8A4CSZK0mXQd4Nk72JbQAV8MEAE95GoKttVlJH5d0n6RuSf9krX3cGPMFY8ymscP+SNJHjTGHJe2S9CG7EBcvBgAXDCW9GbYwlGI4BABM5PkioWNr/v7ojPs+N+HnLklv87oPAFgIEpmcJ3WTHtUFgIWqGCbGAQDGRIJ+T+o6AW/qAsBCRQgGgCJS4XjzBZ1XdQFgoSIEA0ARMUaqr4m4WrO+JiJjXC0JAAseIRgAiki0PKQtaxtcrbl1XYNqK8Ou1gSAhY4QDABFJBwKqH1NnZygO6dnJ+jTptV1CjEmGABOQwgGgCJT5QS0va3ZlVrb25pVHWE8MACciRAMAEWmMhLUxqaYNjTObov4DY1RbWyOqcIJutQZAJw/CMEAUIRi1Y52bG6ZcRDe0BjVjs0tilU5LncGAOcHQjAAFKlYlaMdN7bothtWTnuMsBP06bYbVhKAAeAcGCgGAEUsVu2ofc1SrV9Rq72He7TzwAmd7Eu87rj6moi2rmvQpjV1qnYCDIEAgHMgBANAkatwgqpwgrr5quW6fvVSWSsNpbJKZnJygn5VhAMyRqqtDLMKBABMEyEYABYYYyRZKegb/Xt8Iwybt/PZFgC8KpXOqnc4LUkaTGSVyOQUCfpVObZaTbQ8pHBofmMoIRgAitxgIqOBZFZ7Hu3RroNTD4fYsrZB7WvqVOUEVBlhOASAubeQzlfG2oV35aC1tdUeOnRovtsAAM/F+5Pq7I6rY1+Xkpn8OY93gj5tb2vWxqaYYtVMjAMwd4rxfGWMecRa2zrpY4RgAChO8YGktu0+ov3Hegt+LkukAZhLxXq+OlsIZok0AChC8f6Z/0KRpP3HerVt9xHFB5IudwYAp1uo5ytCMAAUmcFERp3d8Rn/Qhm3/1ivOrviGkpmXOoMAE63kM9XhGAAKDIDyaw69nW5UqtjX5f6E1lXagHAmRby+YoQDABFJJUenVU9nUkl05HM5LX3cI9SaYIwAHct9PMVIRgAikjvcFq7Dp5wtebOAydeXa8TANyy0M9XhGAAKCLWatJ1NWfjZF9CC3AhIABFbqGfrwjBAFBEhpLefA04lGI4BAB3LfTzFSEYAIpIIpPzpG7So7oAStdCP18RggGgiESCfk/qOgFv6gIoXQv9fEUIBoAiUuEEFlRdAKVroZ+vCMEAUESMkeprIq7WrK+JyBhXSwLAgj9fEYIBoIhURfzasrbB1Zpb1zVoUSToak0AiJaHPDlf1VaGXa05FUIwABSR4VRe7Wvq5ATdOT07QZ82ra7TIKtDAHBZOBTw5HwVYkwwAJSewWRW3c/1a3tbsyv1trc1q+u5fs+WMgJQ2qqcgKvnq+rI3M1fIAQDQBFJZXL6P77ziNaviGpDY3RWtTY0RrV+RVQf/c4jSmXd2dYUACaqjAS1sSnmyvlqY3NMFc7cDd0iBANAEQmPLTm09Zu/0JdubJnxL5YNjVF96cYWbf3mLyRJoQCnewDeiFU72rF5duerHZtbFKtyXO7s7FgzBwCKSOXY0kDP9CX03jt/rp0fvUIPNPaqY1+XkplzX811gj5tb2vW+hVRvffOn+uZsS1NK1kiDYCHYlWOdtzYos7ueMHnq43NsTkPwBIhGACKSsBnVF8T0cm+hJ7pS+htt+/XN3/v13T/Leu193CPdh44oZNjwXai+pqItq5r0KbVdep6rl9vu33/aY8FfKyRBsBbsWpH7WuWav2K2tPOVxUhvy4oD+nl4bSG0rnXzldr6lTtBOZ0CMRExlo7L//h2WhtbbWHDh2a7zYAwHW5XF7f+vnT+uK+7tPuj4T8uuOmVVq5bJH8xmgolVUyk5MT9KsiHFDOWh199hV9+gePKZE+fcvRz7Y16cNvu0R+gjCAOZJIZfTSSEaSNJjIKpHJKRL0q3Js4tvisqAiYe/DrzHmEWtt62SPcSUYAIqI3+/TdS1L9Rc/Pn7a14mJdE4f3/Xoq7fPvLIyFSc4Wo8ADGAuDCYyGkhmtefRHu06OPU3V1vWNqh9TZ2qnIAq52kdc2ZKAECRqSkPqaN95VmPGUrndPLlxFkDsCR1tK9UTXnIzfYAYFLx/qT2Hj6lq7/ygL583/FJA7AknexL6Mv3HdfVX3lAew+fUrw/OcedjiIEA0CRCQV8uroppmuaYrOqc01TTBubYqwMAcBz8YGktt19RLfec3Rak+IkKZnJ69Z7jmrb3UcUH5j7IMyZEQCKUE15SDtuWjXjIHxNU0w7blqlC7gKDMBj8f6ktu0+ov3Hemf0/P3HerVt99wHYUIwABSpxRVh3f6eFt3xnpZpb0vqBH264z0t+vJ7WrS4IuxxhwBK3WAio87u+IwD8Lj9x3rV2RXXUDLjUmfnxsQ4AChiNeUhta+p09svjereI6f07YefnnKiyYeuWq62VUtVUx5iCASAOTGQzKpjX5crtTr2dWn9ito5WzKNEAwARS4U8OnCakcfvmq52tcsVTZvNZTMKpXNKxzwqcIJKOAzqikPswoEgDmTSo+uAjHdMcDnkszktfdwj26+arnCIe8jKiEYABYIv9+naOXYrkrV89sLAPQOp7Xr4AlXa+48cELXr16qZXMQgvm+DAAAAAWzVlMugzZTJ/sSmqt93AjBAAAAKNhQMutN3ZQ3dc9ECAYAAEDBEpmzb1lCLpkAACAASURBVNYzU0mP6p6JEAwAAICCRYJ+T+o6AW/qnokQDAAAgIJVON5MXvOq7pkIwQAAACiYMaNrlLupviYiM0crPRKCAQAAULBoeUhb1ja4WnPrugbVVs7NbpeEYAAAABQsHAqofU3dtLd1Pxcn6NOm1XUKMSYYAAAAxazKCWh7W7Mrtba3Nas6Mnf7uBGCAQAAMCOVkaA2NsW0oTE6qzobGqPa2BxThRN0qbNzIwQDAABgxmLVjnZsbplxEN7QGNWOzS2KVTkud3Z2hGAAAADMSqzK0Y4bW3TbDSunPUbYCfp02w0r5yUAS9LcDbwAAADAeStW7ah9zVKtX1GrvYd7tPPACZ3sS7zuuPqaiLaua9CmNXWqdgJzOgRiIkIwAAAAXFHhBFXhBHXzVct1/eqlslYaSmWVzOTkBP2qCAdkjFRbGZ6zVSCmwnAIAAAAeMIYSVYK+kb/Ht8Iw+btfLYliSvBAAAAcMlgIqOBZFZ7Hu3RroNTD4fYsrZB7WvqVOUEVBmZn+EQxtr5T+KFam1ttYcOHZrvNgAAADAm3p9UZ3dcHfu6lMzkz3m8E/Rpe1uzNjbFFKv2ZmKcMeYRa23rZI9xJRgAAACzEh9IatvdR7T/WO+0n5PM5HXrPUfVeSzOEmkAAABYWOL9SW3bXVgAnmj/sV5t231E8YGky52dHSEYAAAAMzKYyKizOz7jADxu/7FedXbFNZTMuNTZuRGCAQAAMCMDyaw69nW5UqtjX5f6E1lXak0HIRgAAAAFS6VHV4GYziS46Uhm8tp7uEep9NwEYUIwAAAACtY7nNaugydcrbnzwAn1DqddrTkVQjAAAAAKZq0mXQd4Nk72JTRXq/cSggEAAFCwoaQ3wxaGUgyHAAAAQJFKZHKe1E16VPdMhGAAAAAULBL0e1LXCXhT90yEYAAAABSswvFm42Gv6p6JEAwAAICCGSPV10RcrVlfE5ExrpacEiEYAAAABYuWh7RlbYOrNbeua1BtZdjVmlMhBAMAAKBg4VBA7Wvq5ATdiZNO0KdNq+sUYkwwAAAAilmVE9D2tmZXam1va1Z1ZG7GA0uEYAAAAMxQZSSojU0xbWiMzqrOhsaoNjbHVOEEXers3AjBAAAAmLFYtaMdm1tmHIQ3NEa1Y3OLYlWOy52dHSEYAAAAsxKrcrTjxhbddsPKaY8RdoI+3XbDynkJwJLk+cALY8y1kr4myS/pb621OyY55nck/ZkkK+mwtXar130BAADAPbFqR+1rlmr9ilrtPdyjnQdO6GRf4nXH1ddEtHVdgzatqVO1E5jTIRATeRqCjTF+SV+XdI2kZyUdNMbstdZ2TTjmUkl/Iult1tqXjTG1XvYEAAAAb1Q4QVU4Qd181XJdv3qprJWGUlklMzk5Qb8qwgEZI9VWhudsFYipeH0leJ2kX1lrn5IkY8z3JLVL6ppwzEclfd1a+7IkWWtf8LgnAAAAeCgcCmhZaO5WepiJGY0JNsbUTPPQOkknJ9x+duy+iS6TdJkx5iFjzC/Ghk8AAAAAnjlnCDbGfHbCz83GmCckPWKMedoY81YXeghIulTSeklbJH3TGLNokj4+Zow5ZIw51Nvb68J/FgAAAKVqOleCN0/4+Q5Jn7TWXiLpdyR99RzP7ZFUP+H2srH7JnpW0l5rbcZa+1+SntBoKD6NtfYua22rtbY1Gp3dWnQAAAAobYUOh1hqrf0XSbLWHpAUOcfxByVdaoy5xBgTkvQ+SXvPOOYejV4FljFmiUaHRzxVYF8AAADAtE1nxPIbjDF7JRlJy4wxZdbakbHHzrqmhbU2a4z5uKT7NLpE2t9bax83xnxB0iFr7d6xx95ljOmSlJP0aWvtSzP9HwQAAACcy3RCcPsZt32SZIyJSfqbcz3ZWvsjST86477PTfjZSrpl7A8AAADguXOGYGvtg1PcH9foGsCSJGPM/7TWfsLF3gAAAABPuLlt8ttcrAUAAAB4xs0QDAAAACwIhGAAAACUHDdDsHGxFgAAAOCZaYdgY8yqcxzytVn2AgAAAMyJQq4Ef8MYc8AY8/vGmOozH7TW/oN7bQEAAADemXYItta+XdLvanQb5EeMMTuNMdd41hkAAADgkYLGBFtrn5T0WUmfkfQOSX9tjDlmjNnsRXMAAACAFwoZE9xijPmqpG5J75R0vbW2aeznr3rUHwAAAOC66WybPO5/SvpbSf/DWpsYv9Nae8oY81nXOwMAAAA8UkgIbpOUsNbmJMkY45PkWGtHrLXf9aQ7AAAAwAOFjAnulBSZcLts7D4AAABgQSkkBDvW2qHxG2M/l7nfEgAAAOCtQkLwsDHmLeM3jDG/JilxluMBAACAolTImOA/lPTPxphTGt0i+UJJ7/WkKwAAAMBD0w7B1tqDxphGSSvG7jpurc140xYAAADgnUKuBEvSWknLx573FmOMrLXfcb0rAAAAwEPTDsHGmO9KeqOkRyXlxu62kgjBAAAAWFAKuRLcKqnZWmu9agYAAACYC4WsDnFUo5PhAAAAgAWtkCvBSyR1GWMOSEqN32mt3eR6VwAAAICHCgnBf+ZVEwAAAMBcKmSJtAeNMRdLutRa22mMKZPk9641AAAAwBvTHhNsjPmopO9LunPsrjpJ93jRFAAAAOClQibG/YGkt0kakCRr7ZOSar1oCgAAAPBSISE4Za1Nj98wxgQ0uk4wAAAAsKAUEoIfNMb8D0kRY8w1kv5Z0g+9aQsAAADwTiEheJukXkmPSfo/Jf3IWnurJ10BAAAAHipkibRPWGu/Jumb43cYYz45dh8AAACwYBRyJfiDk9z3IZf6AAAAAObMOa8EG2O2SNoq6RJjzN4JD1VK6vOqMQAAAMAr0xkO8XNJz2l02+S/nHD/oKQjXjQFAAAAeOmcIdha+4ykZyRd6X07AAAAgPcK2TFuszHmSWNMvzFmwBgzaIwZ8LI5AAAAwAuFrA7xZUnXW2u7vWoGAAAAmAuFrA4RJwADAADgfFDIleBDxpj/T9I9klLjd1prd7veFQAAAOChQkJwlaQRSe+acJ+VRAgGAADAgjLtEGyt/bCXjQAAAABzpZDVIS4zxtxvjDk6drvFGPNZ71oDAAAAvFHIxLhvSvoTSRlJstYekfQ+L5oCAAAAvFRICC6z1h44476sm80AAAAAc6GQEPyiMeaNGp0MJ2PMezS6nTIAAACwoBSyOsQfSLpLUqMxpkfSf0l6vyddAQAAAB4qZHWIpyRtNMaUS/JZawe9awsAAADwTiGrQ3zSGDO+VvBXjTG/NMa861zPAwAAAIpNIWOCb7bWDmh0s4zFkj4gaYcnXQEAAAAeKiQEm7G/f0vSd6y1j0+4DwAAAFgwCgnBjxhjfqzREHyfMaZSUt6btgAAAADvFLI6xEckrZH0lLV2xBizWBJbKQMAAGDBOWcINsY0WmuPaTQAS9IbjGEUBAAAABau6VwJvkXSxyT95SSPWUnvdLUjAAAAwGPnDMHW2o+N/b3B+3YAAAAA7xWyTvBvj02GkzHms8aY3caYN3vXGgAAAOCNQlaH2G6tHTTG/LqkjZL+TtL/601bAAAAgHcKCcG5sb/bJN1lrd0nKeR+SwAAAIC3CgnBPcaYOyW9V9KPjDHhAp8PAAAAFIVCQuzvSLpP0rutta9IqpH0aU+6AgAAADw07RBsrR2RtEfSsDGmQVJQ0jGvGgMAAAC8Mu0d44wxn5D0p5Liem27ZCupxYO+AAAAAM8Usm3yJyWtsNa+5FUzAAAAwFwoZEzwSUn9XjUCAAAAzJVCrgQ/JekBY8w+SanxO621X3G9KwAAAMBDhYTgE2N/QmJ9YAAAACxg0w7B1trPS5IxpmLs9pBXTQEAAABemvaYYGPMSmPMf0h6XNLjxphHjDGXe9caAAAA4I1CJsbdJekWa+3F1tqLJf2RpG960xYAAADgnUJCcLm1dv/4DWvtA5LKXe8IAAAA8FhBq0MYY7ZL+u7Y7fdrdMUIAAAAYEEp5ErwzZKiknZL+oGkJWP3AQAAAAtKIatDvCzpv3nYCwAAADAnClkd4ifGmEUTbl9gjLnPm7YAAAAA7xQyHGKJtfaV8RtjV4Zr3W8JAAAA8FYhIThvjGkYv2GMuViSdb8lAAAAwFuFrA5xq6R/M8Y8KMlIerukj3nSFQAAAOChQibG/W9jzFskXTF21x9aa18cf9wYc7m19nG3GwQAAADcVsiVYI2F3nunePi7kt4y644AAAAAjxUyJvhczKR3GnOtMea4MeZXxphtUz7ZmJuMMdYY0+piTwAAAMDruBmCXzdJzhjjl/R1Sb8pqVnSFmNM8yTHVUr6pKR/d7EfAAAAYFJuhuDJrJP0K2vtU9batKTvSWqf5LgOSbdLSnrcDwAAAOBqCE5Pcl+dpJMTbj87dt+rxibb1Vtr952tuDHmY8aYQ8aYQ729vbNuFgAAAKWroIlxxpgWScsnPs9au3vs7yumeNrZ6vkkfUXSh851rLX2Lkl3SVJrayvrEwMAAGDGph2CjTF/L6lF0uOS8mN3W0m7z/K0Hkn1E24vG7tvXKWklZIeMMZI0oWS9hpjNllrD023NwAAAKAQhVwJvsJa+7pJbedwUNKlxphLNBp+3ydp6/iD1tp+SUvGbxtjHpD034slAOdyefWNpJXNWw0ms0plcgoH/ap0Agr4jGrKQvL7vR5WDQCjUumseodHR54NJrJKZHKKBP2qjIyeyqPlIYVDBX3BBwAlq5Cz5cPGmGZrbdd0n2CtzRpjPi7pPkl+SX9vrX3cGPMFSYestXsL7HdOpLN59Q2nde+RU/r2w0/rZF/idcfU10T0wSuX67qWpaopDykUIAwD8MZgIqOBZFZ7Hu3RroMnpjwnbVnboPY1dapyAqqMBOehUwBYOIy10xtea4x5h6S9kp6XlNLousDWWtviXXuTa21ttYcOeXOxuG84rfu749q+56iSmfw5j3eCPnW0r9TVTTHVlIc86QlA6Yr3J9XZHVfHvq5pn5O2tzVrY1NMsWpnDjoEgOJljHnEWjvpHhSFhOBfSbpF0mN6bUywrLXPuNFkIbwKwS8NpbTtB4/pJ93xgp97TVNMO25apcUVYdf7AlCa4gNJbdt9RPuPFb4izobGqHZsblGsiiAMoHSdLQQX8h1+r7V2r7X2v6y1z4z/canHedc3nJ5xAJakn3THte0Hj+nl4clWigOAwsT7Zx6AJWn/sV5t231E8QGWXweAyRQSgv/DGLPTGLPFGLN5/I9nnc2hdDav+7vjMw7A437SHVdnd1zp7Lm/sgSAqQwmMursjs84AI/bf6xXnV1xDSUzLnUGAOePQkJwRKNjgd8l6fqxP9d50dRc6xtOa/ueo67U2r7nqPq4GgxgFgaSWXXsm/Yc5LPq2Nel/kTWlVoAcD6Z9uoQ1toPe9nIfMnl8rr3yKlpTTiZjmRmtN6Hr1rO8mkACpZKj64C4eY5ae/hHt181XKWTwOACaad0owxjjHmD4wx3zDG/P34Hy+bmwt9I2l9++GnXa357YefVt8IV4MBFK53OK1dB0+4WnPngROvri8MABhVyKXK72p0R7d3S3pQo7u/DXrR1FzK5u2ka27Oxsm+hLJ5dnYGUDhr5ck5aZoLAQFAySgkBL/JWrtd0rC19tuS2iS91Zu25s5g0puxckMe1QVwfvPq3DGU4pwEABMVEoLHpxe/YoxZKalaUq37Lc2tVCbnTV1WiAAwAwmPzklJj+oCwEJVyCyJu4wxF0jartGd4yokfc6TruZQOOj3pC7bKAOYiYhH5yQn4E1dAFioClkd4m/HfnxQ0hu8aWfuVTrezJb2qi6A81uFR+cOr+oCwEJVyOoQMWPM3xlj/mXsdrMx5iPetTY3Aj6j+pqIqzXrayIK+IyrNQGUBmPkyTnJcEoCgNMU8p39P0i6T9LSsdtPSPpDtxuaazVlIX3wyuWu1vzglctVUx52tSaA0hAtD2nL2gZXa25d16DaSs5JADBRISF4ibX2nyTlJclam5W04Gda+P0+XdeyVE7QnTG8TnC0np8rwQBmIBwKqH1NnavnpE2r6xRiTDAAnKaQs+ywMWaxJCtJxpgrJPV70tUcqykPqaN9pSu1OtpXqqY85EotAKWpygloe1uzK7W2tzWrOsJ4YAA4UyEh+BaNrgrxBmPMQ5K+I+kTnnQ1x0IBn65uiumaptis6lzTFNPGphgrQwCYlcpIUBubYtrQGJ1VnQ2NUW1sjqnCCbrUGQCcPwpJa12S7pZ0UFJc0jc1Oi74vFBTHtKOm1bNOAhf0xTTjptW6QKuAgNwQaza0Y7NLTMOwhsao9qxuUWxKsflzgDg/GDsNPfSNMb8k6QBSf84dtdWSYustb/tUW9Tam1ttYcOHfKkdt9wWvd3x7V9z1ElM+fe8MIJ+tTRvlIbm2IEYACui/cn1dkdV8e+rmmfk7a3NWtjc4wADKDkGWMesda2TvpYASG4y1rbfK775oKXIViS0tm8+obTuvfIKX374ad1si8hJ+BThRPQUDKrZDav+pqIPnTVcrWtWqqa8hBDIAB4ZiiZUX8iq72He7TzwAmd7Eu87pj6moi2rmvQpjV1qnYCDIEAAJ09BBcyW+KXxpgrrLW/GCv6VkneJdF5FAr4dGG1o/evq9e1Ky+UJA0mskpkcooE/aocm2SypDwoJ8QvGgDeqnCCqnCCuvmq5bp+9VJZKw2lskpmcnKCflWEAzJGqq0MswoEAEzTOUOwMeYxja4IEZT0c2PMibHbF0s65m1782MwkdFAMqs9j/Zo18Gpr7psWdug9jV1qnICqowQhgF4KxwKaFmIlR4AwA3nHA5hjLn4bI9ba59xtaNp8HI4xIzH3zXFFKtm/B0AAECxmNVwiPkIufMlPpDUtruPaP+x3mk/J5nJ69Z7jqrzWJyZ2AAAAAsEs7nGxPuT2ra7sAA80f5jvdq2+4jiA0mXOwMAAIDbCMEaHQPc2R2fcQAet/9Yrzq74hpKZlzqDAAAAF4gBEsaSGbVsa/LlVod+7rUn8i6UgsAAADeKPkQnEqPrgIxnUlw05HM5LX3cI9SaYIwAABAsSr5ENw7nNaugydcrbnzwAn1DqddrQkAAAD3lHwItlaTrgM8Gyf7EprmRnwAAACYByUfgoeS3gxbGEoxHAIAAKBYlXwITmRyntRNelQXAAAAs1fyITgS9HtS1wl4UxcAAACzV/IhuMI556Z5RVUXAAAAs1fyIdgYqb4m4mrN+pqIjHG1JAAAAFxU8iE4Wh7SlrUNrtbcuq5BtZVhV2sCAADAPSUfgsOhgNrX1MkJuvNP4QR92rS6TiHGBAMAABStkg/BklTlBLS9rdmVWtvbmlUdYTwwAABAMSMES6qMBLWxKaYNjdFZ1dnQGNXG5pgqnKBLnQEAAMALhOAxsWpHOza3zDgIb2iMasfmFsWqHJc7AwAAgNsIwRPEqhztuLFFt92wctpjhJ2gT7fdsJIADAAAsIAwePUMsWpH7WuWav2KWu093KOdB07oZF/idcfV10S0dV2DNq2pU7UTYAgEAADAAkIInkSFE1SFE9TNVy3X9auXylppKJVVMpOTE/SrIhyQMVJtZZhVIAAAABYgQvBZ5K2VNLqhhqzkH/t7fCOMXC4vEYJRZBKpjF4ayUiSBhNZJTI5RYJ+VY6tWrK4LKhImG8uFqJUOqve4bSkyV/baHlI4RCndQCYDs6Wk3hlJK3hVE57Hu3RroNTD4fYsrZB7WvqVB72a1FZaB46BV7z8khaIwW8b8vCfl3A+3ZBGExkNJDMTvu1rXICqozwQQcAzsbYsaudC0lra6s9dOiQJ7Wf70/q/u64OvZ1KZnJn/N4J+jT9rZmXd0U04XVTIzD/OB9e/6K9yfVOYPXdmNTTDFeWwAlzhjziLW2ddLHCMGviQ8ktW33Ee0/1lvwc1kiDfOF9+35i9cWAGbnbCGYJdLGPN8/8182krT/WK+27T6i+EDS5c6AqfG+PX/FeW0BwFOEYI2OAb6/Oz7jXzbj9h/rVWdXXP0jaZc6A6b2ssvv21d43xaNwURGnS6+tkPJjEudAcD5gxAsaTiVU8e+Lldqdezr0lAq50ot4GxGXH7fDvO+LRoDyayrr21/IutKLQA4n5R8CE6kMtrzaM+0JpxMRzKT197DPUqkuPIC7/C+PX+l0llPXttUmiAMABOVfAh+aSSjXQdPuFpz54ETr67TCniB9+35q3c47clrO76+MABgVMmHYGs16Zqbs3GyL6EFuOgGFhDet+cvXlsAmBslH4KHkt58RTiU4qtHeIf37fmL1xYA5kbJh+BExpvJQEmP6gIS79vzGa8tAMyNkg/BkaDfk7pOwJu6gMT79nzGawsAc6PkQ3CFE1hQdQGJ9+35jNcWAOZGyYdgY6T6moirNetrIjLG1ZLAaXjfnr94bQFgbpR8CF5cFtSWtQ2u1ty6rkHRirCrNYGJeN+ev6LlIU9e29pKXlsAmKjkQ3AkHFT7mjo5QXf+KZygT5tW1yns0bg+QOJ9ez4LhwKevLYhxgQDwGlKPgRLUnnYr+1tza7U2t7WrIowv2zgvTKX37flvG+LRpUTcPW1rY4wHhgAzkQIlrSoLKSrm2La0BidVZ0NjVFtbI6puizkUmfA1C5w+X27iPdt0aiMBLXRxde2wgm61BkAnD8IwWMurHa0Y3PLjH/pbGiMasfmFsWqHJc7A6bG+/b8FeO1BQBPGbsA99JsbW21hw4d8qT28/1J3d8dV8e+LiUz+XMe7wR92t7WrI3NMX7ZYN7wvj1/xfuT6uS1BYAZMcY8Yq1tnfQxQvDr9Y+kNZTKae/hHu08cEIn+xKvO6a+JqKt6xq0aU2dKkJ+hkBg3r0yktZwAe/b8pCfIRALxFAyo/5EdtqvbbUTYAgEAIgQPGOJVEYvjWRkrTSUyiqZyckJ+lURDsgYKVoRZjY9ig7v2/NXKp1V73B6yte2tjLMKhAAMMHZQjBThs8iEg5qWZirKVhYeN+ev8KhgJaFOG0DKH7jH9olaTCRVSKTUyToV+XYajXR8pDC83w+42wKAAAAVwwmMhpIZrXn0R7tOjj18K0taxvUvqZOVU5AlZH5uXDDcAgAAADM2own8jbFFKv2ZiIvwyEAAADgmfhAUtvuPqL9x3qn/ZxkJq9b7zmqzmPxeVnSkXWCAQAAMGPx/qS27S4sAE+0/1ivtu0+ovhA0uXOzo4QDAAAgBkZTGTU2R2fcQAet/9Yrzq74hpKZlzq7NwIwQAAAJiRgWRWHfu6XKnVsa9L/YmsK7WmgxAMAACAgqXSo6tATGcS3HQkM3ntPdyjVHpugjAhGAAAAAXrHU5r18ETrtbceeDEq+sLe40QDAAAgIJZq0nXAZ6Nk30JzdXqvYRgAAAAFGwo6c2whaEUwyEAAABQpBKZnCd1kx7VPZPnIdgYc60x5rgx5lfGmG2TPH6LMabLGHPEGHO/MeZir3sCAADA7ESCfk/qOgFv6p7J0xBsjPFL+rqk35TULGmLMab5jMP+Q1KrtbZF0vclfdnLngAAADB7FY43Gw97VfdMXl8JXifpV9bap6y1aUnfk9Q+8QBr7X5r7cjYzV9IWuZxTwAAAJglY6T6moirNetrIjLG1ZJT8joE10k6OeH2s2P3TeUjkv5lsgeMMR8zxhwyxhzq7Z3driQAAACYnWh5SFvWNrhac+u6BtVWhl2tOZWimRhnjHm/pFZJd0z2uLX2Lmttq7W2NRqNzm1zAAAAOE04FFD7mjo5QXfipBP0adPqOoXOhzHBknok1U+4vWzsvtMYYzZKulXSJmttyuOeAAAA4IIqJ6DtbWdO95qZ7W3Nqo7MzXhgyfsQfFDSpcaYS4wxIUnvk7R34gHGmDdLulOjAfgFj/sBAACASyojQW1simlD4+y+pd/QGNXG5pgqnKBLnZ2bpyHYWpuV9HFJ90nqlvRP1trHjTFfMMZsGjvsDkkVkv7ZGPOoMWbvFOUAAABQZGLVjnZsbplxEN7QGNWOzS2KVTkud3Z2xs7V3nQuam1ttYcOHZrvNgAAADAm3p9UZ3dcHfu6lMzkz3m8E/Rpe1uzNjbHPAvAxphHrLWtkz02dwMvAAAAcN6KVTtqX7NU61fUau/hHu08cEIn+xKvO66+JqKt6xq0aU2dqp3AnA6BmIgQDAALRCqdVe9wWpI0mMgqkckpEvSrcmwiSbQ8pHCI0zqA+VPhBFXhBHXzVct1/eqlslYaSmWVzOTkBP2qCAdkjFRbGZ6zVSCmwtkSAIrcYCKjgWRWex7t0a6DU19Z2bK2Qe1r6lTlBFQZmZ8rKwAgjS6ftqzIP5QzJhgAitiMx9g1xRSrnttJJgBQbBgTDAALUHwgqW13H9H+Y9PfJTOZyevWe46q81h8XmZbA8BCUTQ7xgEAXhPvT2rb7sIC8ET7j/Vq2+4jig8kXe4MAM4PhGAAKDKDiYw6u+MzDsDj9h/rVWdXXP9/e/cfHMdZ33H887V0ujtZthIZWUlkCYcmRNa4tqCyS4EyNvF0CAbLeGjBbgcKFPqTAi3tmDJup/V4aoa2aRkYCg00tIMNTGoSFXegtXEHpkxjy2CbRDaQCWBHg4VqJ/6lO+kkffvHrZNDlmz92NXd7r1fM57o9lbffSbPPquPVs8+dzVfCKllAJAchGAAqDCX82PafbA/lFq7D/brUm4slFoAkCSEYACoICOjxVUgZvIQ3EzkCxPqPTmgkVGCMACUIgQDQAUZujaq/cfOhlpz39Gzz68vDAAoIgQDQAVx15TrAM/HuYs5xXA1TACIFCEYACrI1Xw00xaujjAdAgBKEYIBoILkCuOR1M1HVBcA4ooQDAAVJJuqiaRupjaaugAQV4RgAKggDZloPsgzqroAEFeEYACoIGZSW1M21JptTVmZhVoSAGKPEAwAFaR5cZ22r2sPteaO9e1aviQdak0AiDtCMABUkHRdrXq6WpVJhXN5zqQWacvag5oCAgAAEgNJREFUVtUxJxgAfgYhGAAqzNJMrXZt7gyl1q7NnWrMMh8YACYjBANAhVmSTWnTqhZt7GieV52NHc3a1NmihkwqpJYBQHIQggGgArU0ZrR325o5B+GNHc3au22NWpZmQm4ZACQDIRgAKlTL0oz2vmmN9mxdPeM5wpnUIu3ZupoADAC3wEQxAKhgLY0Z9XTdpQ33LVfvyQHtO3pW5y7mbtivrSmrHevbtaWrVY2ZWqZAAMAtEIIBoMI1ZFJqyKT0zleu1BvX3iV36erImPKFcWVSNWpI18pMWr4kzSoQADBDhGAgYUZGxzR0bVSSdCU3plxhXNlUjZYEKwQ0L65Tuo6hH0fpulqtoO8AIBRcTYGEuJIr6HJ+TI+dGND+Y9P/yXz7unb1dLVqaaZWS7L8yRwAUJ3M3cvdhlnr7u72vr6+cjcDqBiDl/I6dHpQuw/2K1+YuOX+mdQi7drcqU2rWtTSyMNTAIBkMrPj7t491XvcCQZibvByXju/fEpHzgzN+HvyhQl9+NEndOjMIKsIAACqEkukATE2eCmvnQdmF4BLHTkzpJ0HTmnwcj7klgEAUNkIwUBMXckVdOj04JwD8HVHzgzpUP+gruYLIbUMAIDKRwgGYupyfky7D/aHUmv3wX5dyo2FUgsAgDggBAMxNDJaXAViJg/BzUS+MKHekwMaGSUIAwCqAyEYiKGha6Paf+xsqDX3HT37/PrCAAAkHSEYiCF3TbkO8Hycu5hTDFdMBABgTgjBQAxdzUczbeHqCNMhAADVgRAMxFCuMB5J3XxEdQEAqDSEYCCGsqmaSOpmaqOpCwBApSEEAzHUkInmwx6jqgsAQKUhBAMxZCa1NWVDrdnWlJVZqCUBAKhYhGAghpoX12n7uvZQa+5Y367lS9Kh1gQAoFIRgoEYStfVqqerVZlUOEM4k1qkLWtbVcecYABAlSAEAzG1NFOrXZs7Q6m1a3OnGrPMBwYAVA9CMBBTS7IpbVrVoo0dzfOqs7GjWZs6W9SQSYXUMgAAKh8hGIixlsaM9m5bM+cgvLGjWXu3rVHL0kzILQMAoLIRgoGYa1ma0d43rdGeratnPEc4k1qkPVtXE4ABAFWLSYBAArQ0ZtTTdZc23LdcvScHtO/oWZ27mLthv7amrHasb9eWrlY1ZmqZAgEAqFqEYCAhGjIpNWRSeucrV+qNa++Su3R1ZEz5wrgyqRo1pGtlJi1fkmYVCABA1SMEAwmTrqvVijqGNgCgfHIjBV0YLkiSruTGlCuMK5uq0ZJgJaJl9Sll0+X9ayQ/KQEAABCKZ4dHNTwyrsdODGj/semn5m1f166erlbVp2t0e31dGVoqmbuX5cDz0d3d7X19feVuBgAAAALnL+V1+PSgdh/sV74wccv9M6lF2rW5U/evatEdjdE8pG1mx929e6r3uBMMAACAeRm8nNeHvnxKR84Mzfh78oUJffjRJ3TozGBZVitiiTQAAADM2flLee08MLsAXOrImSHtPHBKg5fzIbfs5gjBAAAAmJNnh0d1+PTgnAPwdUfODOlQ/6CeGx4NqWW3RggGAADAnAyPjGv3wf5Qau0+2K9rI+Oh1JoJQjAAAABmLTdS0GMnBmb0ENxM5AsT6j05oNxIIZR6t0IIBgAAwKxdGC5o/7Gzodbcd/Ts8+sLR40QDAAAgFlz15TrAM/HuYs5LdTqvYRgAAAAzNrV/Fg0dUeiqTsZIRgAAACzlitE8xBbPqK6kxGCAQAAMGvZVE0kdTO10dSdjBAMAACAWWvIRPPBw1HVnYwQDAAAgFkzk9qasqHWbGvKyizUktMiBAMAAGDWltWntH1de6g1d6xvV3NDOtSa0yEEAwAAYNay6ZR6ulqVSYUTJzOpRdqytlXpiOYaT0YIBgAAwJzUp2u0a3NnKLV2be7U4vTCBGCJEAwAAIA5ur2+TvevatHGjuZ51dnY0axNnS26rb4upJbdGiEYAAAAc3ZHY0Z7t62ZcxDe2NGsvdvWqGVpJuSW3RwhGAAAAPPSsjSjv37TGu3ZunrGc4QzqUXas3V1WQKwJC3MQmwAAABItDsaM9q85k5tuG+5ek8OaN/Rszp3MadNL23WplXLdOj0BR36/pDamrLasb5dW7patbiuZkGnQJQydy/Lgeeju7vb+/r6Ij9ObqSgC8MFSdKV3JhyhXFlUzVaki3+7rCsPqVsOhV5O4DZ4LxNLvoWQFxUyvXKzI67e/dU73EneArPDo9qeGRcj50Y0P5jxd9iJmtrymr7unb1dLWqPl2j28v0WwxwHedtctG3AOIiTtcr7gRPcv5SXodPD2r3wX7lCxO33D+TWqRdmzt1/6oW3dG48PNZAInzNsnoWwBxUYnXq5vdCSYElxi8nNfOA6d05MzQrL+3XE82Apy3yUXfAoiLSr1e3SwEszpE4PyluXeeJB05M6SdB05p8HI+5JYB0+O8TS76FkBcxPV6RQhWcf7K4dODc+68646cGdKh/kE9NzwaUsuA6XHeJhd9CyAu4ny9IgRLGh4Z1+6D/aHU2n2wX9dGxkOpBdwM521y0bcA4iLO16uqD8G5kYIeOzEwowncM5EvTKj35IByI4VQ6gFT4bxNLvoWQFzE/XoVeQg2s9eZ2ffM7Ckz2znF+2kz+2Lw/uNmtjLqNpW6MFzQ/mNnQ6257+jZ59fGA6LAeZtc9C2AuIj79SrSEGxmNZI+IekBSZ2StptZ56Td3iXpWXe/R9KDkj4SZZsmc9eUa9jNx7mLOcVw0Q3ECOdtctG3AOIi7terqO8Er5f0lLs/7e6jkr4gqWfSPj2SPhd8/Yik+83MIm7X867mx6KpOxJNXUDivE0y+hZAXMT9ehV1CG6VdK7k9TPBtin3cfcxSZckLZtcyMzeY2Z9ZtY3NDS/JxBL5QrRTMDOR1QXkDhvk4y+BRAXcb9exebBOHf/tLt3u3t3c3NzaHWzqZrQapXK1EZTF5A4b5OMvgUQF3G/XkUdggcktZW8XhFsm3IfM6uV1CjpQsTtel5DpjZWdQGJ8zbJ6FsAcRH361XUIfiYpHvN7G4zq5P0Vkm9k/bplfT24Os3S/q6L+BnOZtJbU3ZUGu2NWW1cLOaUY04b5OLvgUQF3G/XkUagoM5vn8g6WuSTkv6krs/aWZ/ZWZbgt0+I2mZmT0l6Y8k3bCMWpSW1ae0fV17qDV3rG9Xc0M61JpAKc7b5KJvAcRF3K9Xkc8Jdvf/cPeXuvvPufueYNufu3tv8HXe3X/V3e9x9/Xu/nTUbSqVTafU09WqTCqc/xWZ1CJtWduqdETzZACJ8zbJ6FsAcRH361VsHoyLUn26Rrs2T16+eG52be7U4jQ/bBA9ztvkom8BxEWcr1eEYEm319fp/lUt2tgxv1UnNnY0a1Nni26rrwupZcD0OG+Ti74FEBdxvl4RggN3NGa0d9uaOXfixo5m7d22Ri1LMyG3DJge521y0bcA4iKu1ytbwIUYQtPd3e19fX2R1D5/Ka/Dpwe1+2C/8oWJW+6fSS3Srs2d2tTZwg8blA3nbXLRtwDiohKvV2Z23N27p3yPEHyj54ZHdW1kXL0nB7Tv6NkpPxe7rSmrHevbtaWrVYvravhzI8qO8za56FsAcVFp1ytC8BzlRgq6MFyQe/FzrPOFcWVSNWpI18pMam5I88Q1Kg7nbXLRtwDiolKuVzcLwXyE0E1k0ymtSKfK3QxgVjhvk4u+BRAXcbhe8WAcAAAAqg4hGAAAAFWHEAwAAICqQwgGAABA1SEEAwAAoOoQggEAAFB1CMEAAACoOoRgAAAAVJ1YfmKcmQ1J+nGEh3iRpP+LsD7Ki/5NLvo22ejfZKN/k61c/ftid2+e6o1YhuComVnfdB+xh/ijf5OLvk02+jfZ6N9kq8T+ZToEAAAAqg4hGAAAAFWHEDy1T5e7AYgU/Ztc9G2y0b/JRv8mW8X1L3OCAQAAUHW4EwwAAICqQwgGAABA1SEElzCz15nZ98zsKTPbWe72YH7MrM3MjphZv5k9aWbvC7Y3mdl/mdkPgv/eXu62Yu7MrMbMvmNmXwle321mjwfj+ItmVlfuNmJuzOw2M3vEzM6Y2Wkz+yXGb3KY2QeCa/MTZrbfzDKM3/gys8+a2U/N7ImSbVOOVyv6WNDPp8zs5eVoMyE4YGY1kj4h6QFJnZK2m1lneVuFeRqT9Mfu3inpFZJ+P+jTnZIOu/u9kg4HrxFf75N0uuT1RyQ96O73SHpW0rvK0iqE4R8kfdXdOyStVbGfGb8JYGatkv5QUre7r5ZUI+mtYvzG2cOSXjdp23Tj9QFJ9wb/3iPpkwvUxp9BCH7BeklPufvT7j4q6QuSesrcJsyDu//E3b8dfH1FxR+grSr26+eC3T4naWt5Woj5MrMVkjZLeih4bZJeK+mRYBf6N6bMrFHSayR9RpLcfdTdnxPjN0lqJWXNrFZSvaSfiPEbW+7+DUkXJ22ebrz2SPoXL/pfSbeZ2Z0L09IXEIJf0CrpXMnrZ4JtSAAzWynpZZIel9Ti7j8J3jovqaVMzcL8/b2kP5U0EbxeJuk5dx8LXjOO4+tuSUOS/jmY7vKQmS0W4zcR3H1A0t9IOqti+L0k6bgYv0kz3XitiMxFCEbimVmDpH+T9H53v1z6nhfXCGSdwBgyszdI+qm7Hy93WxCJWkkvl/RJd3+ZpGuaNPWB8RtfwdzQHhV/2blL0mLd+Kd0JEgljldC8AsGJLWVvF4RbEOMmVlKxQD8eXc/EGwevP5nl+C/Py1X+zAvr5K0xcx+pOL0pdeqOIf0tuDPqxLjOM6ekfSMuz8evH5ExVDM+E2GTZJ+6O5D7l6QdEDFMc34TZbpxmtFZC5C8AuOSbo3eDK1TsUJ+r1lbhPmIZgf+hlJp93970re6pX09uDrt0t6bKHbhvlz9w+5+wp3X6nieP26u/+6pCOS3hzsRv/GlLufl3TOzO4LNt0vqV+M36Q4K+kVZlYfXKuv9y/jN1mmG6+9kt4WrBLxCkmXSqZNLBg+Ma6Emb1exTmGNZI+6+57ytwkzIOZvVrSNyV9Vy/MGf0zFecFf0lSu6QfS/o1d588mR8xYmYbJH3Q3d9gZi9R8c5wk6TvSPoNdx8pZ/swN2bWpeJDj3WSnpb0DhVv3jB+E8DM/lLSW1Rcyec7kn5LxXmhjN8YMrP9kjZIepGkQUl/IelRTTFeg198Pq7iFJhhSe9w974FbzMhGAAAANWG6RAAAACoOoRgAAAAVB1CMAAAAKoOIRgAAABVhxAMAACAqkMIBgAAQNUhBANAGZjZFjPbees9b/i+lWb2RATt2WBmryx5/bCZvflm3wMAcVZ7610AAGFz915V1qdSbpB0VdK3ytwOAFgQ3AkGgJAFd2vPBHdTv29mnzezTWb2P2b2AzNbb2a/aWYfD/Z/2Mw+ZmbfMrOnZ3oH1sxqzOyjZnbMzE6Z2W8H2zeY2X+b2SNBOz4ffEKTzOz1wbbjwTG/YmYrJf2OpA+Y2Qkz++XgEK+Z3CYzu9PMvhHs90TJvgAQK4RgAIjGPZL+VlJH8G+HpFdL+qCKH9892Z3B+2+QtHeGx3iXpEvuvk7SOknvNrO7g/deJun9kjolvUTSq8wsI+lTkh5w91+Q1CxJ7v4jSf8o6UF373L3b96kTTskfc3duyStlXRihm0FgIrCdAgAiMYP3f27kmRmT0o67O5uZt+VtHKK/R919wlJ/WbWMsNj/IqkNSV3jhsl3StpVNJRd38mOP6J4JhXJT3t7j8M9t8v6T03qT9Vm45J+qyZpYL3CcEAYok7wQAQjZGSrydKXk9o6hsQpfvbDI9hkt4b3L3tcve73f0/p6g3Ps0xb+WGNrn7NyS9RtKApIfN7G1zqAsAZUcIBoD4+pqk3w3uysrMXmpmi2+y//ckvSSYAyxJbyl574qkJbc6oJm9WNKgu/+TpIckvXwO7QaAsmM6BADE10MqTnP4dvDg25CkrdPt7O45M/s9SV81s2sqTm247t8lPWJmPZLee5NjbpD0J2ZWUHF6BXeCAcSSuXu52wAAWCBm1uDuV4PQ/AlJP3D3B8vdLgBYaEyHAIDq8u7gQbknVXyQ7lNlbg8AlAV3ggGgApnZz0v610mbR9z9F8vRHgBIGkIwAAAAqg7TIQAAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKrO/wNzbMHz4ssEyQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3jV5Z3v/c+9zitHiCQRQhC1CokY0Aaqta0wxtoWBKXOTLHTXW2ndp7pHNrucaS1uFu57EbtjJ3OM9NndDr2cA06HYtKwT1qLDrdrQ5EBxGToJYqJw2RIDmt87qfP1ZCQwgkK/n9VlZY79d1ecFa67e++Urgl0/u3AdjrRUAAABQSDyT3QAAAACQa4RgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAguOb7AbGY8aMGXbu3LmT3QYAAADy2IsvvviutbZypNemZAieO3euWlpaJrsNAAAA5DFjzFuneo3pEAAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwpuRhGQAAAMhfkVhCR/oTkqSeSFKRREphv1el4Uz0PKvIr3DQP5ktEoIBAADgjKP9cfXHUnp850E9tGOf9ndFTrqmtiKsNYvnaNWiGhUFvZpeFJiETiVjrZ2UDzwRjY2NlmOTAQAA8sc7x6J6pq1D67e2KppIj3p9yO/RuuX1uqquWmeXh1zpyRjzorW2caTXGAkGAADAhHR0R/W1R3dpW3vnmN8TTaR1+2O71dzeoQ2rG1Rd5k4QPhUWxgEAAGDc3jkW1dpN2QXgoba1d2rtpl3q6I463NnpEYIBAAAwLkf743qmrWPcAXjQtvZONbd26L3+uEOdjY4QDAAAgHHpj6W0fmurI7XWb21VXyzlSK2xIAQDAAAga5FYQo/vPDimRXBjEU2ktfnlg4rEEo7UG42rIdgY8y/GmMPGmN2neN0YY75njHnDGLPLGHOpm/0AAADAGUf6E3poxz5Ha27cvu/4/sJuc3sk+IeSPnaa1z8u6YKB/26R9H2X+wEAAIADrNWI+wBPxP6uiHK1e6+rIdha+5+Suk5zySpJP7YZL0iaZoyZ6WZPAAAAmLjeaNKdujF36g432XOCayTtH/L4wMBzJzHG3GKMaTHGtHR2TmwFIgAAACYmknBnEVvUpbrDTXYIHjNr7f3W2kZrbWNlZeVktwMAAFDQwn6vK3VDPnfqDjfZIfigpNohj2cPPAcAAIA8VhJy5+Bht+oON9kheLOk/zGwS8Rlko5Za9+e5J4AAAAwCmOk2oqwozVrK8IyxtGSp+T2FmkPSXpe0jxjzAFjzOeNMX9ijPmTgUuekLRX0huSHpD0p272AwAAAGecVeTXmsVzHK1545I5qiwJOlrzVFwdb7bWrhnldSvpS272AAAAAOeFg36tWlSj7/3idUcOzAj5PVq5sEZBl+YaDzfZ0yEAAAAwRRUFvVq3vN6RWuuW16s4mJsALBGCAQAAME7TiwK6qq5ay+ZPbOeuZfMr1VRfrWlFAYc6Gx0hGAAAAON2dnlIG1Y3jDsIL5tfqQ2rG1RdFnK4s9MjBAMAAGBCqstC+t/XN+iu6xYo5D8xXpYEvKqdHlZJ4MSpDiG/R3ddt2BSArDk8sI4AAAAFIazy0Na3jBTS+dVqTeWUMjvldcYdUcTiibSCvk9Kgv5lbJW0XhKJWG/igPenE6BGIoQDAAAAEd4Bzb5fabtsB7asU/7uyInXVNbEdaaxXO0alHN8esng8nsUja1NDY22paWFtc/TiqVVld/XMm0VU80qVQqJa/Xq9KQTz6PUUVRQF4vM0oAAAA6jkXV3Nah9Vtbx7RlWsjv0brl9Wqqq1Z1uTvTIYwxL1prG0d6jZHgEcSTaXX1xXXoaL+KQj6F/V4lkumBoXyjeDKtY4mU9h3pV830IlUUBxTwEYYBAEBh6uiOau2ju7StvXPM74km0rr9sd1qbu+YlHnBhOBhuvriOvRev8rDAf3Xm0e1cftbpxzKv3HJOVpRFtJrHd2aNS0ThgEAAApJx7HsA/BQ29o7tXbTrpwHYYYvhzjSG1N3JKFXDnTr6vue093/0T5iAJak/V0R3f0f7br6vuf0yoFudUcSOtIby3HHAAAAk6cnklBzW8e4A/Cgbe2dam7tUG804VBnoyMED+jqiyuaSGv9llZ97dFXxnz8XzSR1tcefUXrt2Tmvxzti7vcKQAAQH7ojia1fmurI7XWb23VsUjSkVpjQQhWZg5wJJ7UHY/v1jPth8dV45n2w7rj8d3qjycVT078/GwAAIB8Fosn9fjOg2MeOBxNNJHW5pcPKhbPTRAmBEvqicT1y9ffHXcAHvRM+2H98o131R1hNBgAAJzZOvviemjHPkdrbty+T505+ql6wYfgVCqtaNLqmz9/1ZF639z8qmJJq1SK0WAAAHDmslanXDs1Xvu7IsrV7r0FvztETzyhra8ccnQof+srh/QHi2drWjjoSE0gG7F48vh30T2RpCKJlMJ+r0rDmX/ulcUBBQMF/08fADBBvVF3pi30xnIzHaLgvxL2xVL6yQtvOVrzJy+8peUXz9S0sKNlgdPqiSTUHc3MzxrLKT1lIZ9Kw/5J6BQAcCaIJFKu1I26VHe4gg/B6bQ7Q/npqXcQH6awsZ7Ss78ronue3KPv/eJ110/pAQCc2cJ+ryt1Qz536g5X8HOC+1wacu/L0cpGYPCUntsf231SAPZ5jIoCXvk8J57NPnhKz9pHd6mjO5rLdgEAZ4iSkDtjqW7VHa7gR4JdG8qP52YoH4Vt+Ck9Xo9RU12VPnHxTNVMCyueTCueTCvg8yjg8+jgexFt3fW2nmk/rFTaTtopPQCAqc+YzDQ7J3+iXlsRljGjX+eEgh8JDvrc+SMIuFQXGDT8lJ6VC2fpZ39yuZZfPPP432srKWWtBmfnBH0eLb94pn72J5dr5cJZkibnlB4AwNRXWRzQmsVzHK1545I5qirNzcYCBT8SPNWH8lG4Bk/pKQ54dc8NCxX0GckY7X23Tz976cApF8Z98tLZOmdGsVYunKlrLjpbf/3Iy1q/tVVL51WpJMRCOQDA2AQDPq1aVKPv/eJ1R3bZCvk9WrmwRgHmBOeGkVFthbPbONRWhGWUo7F8FKTBU3q8xugHNy3W9CK/3urq16fuf17fbX79eAAePid4f1dE321+XZ+6/3m91dWv6UV+/eCmxfIak9NTegAAZ4aykE/rltc7Umvd8nqVh3M3iFjww5Uhv9ENl87Wfc2vO1bz998/27UVk4D0u1N6/uYPFins9+q+5tf07J5OeT1G11xUfXxOcCyZVjSRUsjvVXDYnOD1W9q0dF6lvtJ0of7mDxbpridade3CWZrNHsIAgDEqDfvVVFet5vbfTc8bj2XzK9VUX53Tn0gW/Fe7tJVWLJyl7z/3G8eG8pc3zFI6V8edoCBZK11SO121FWHd++QePbunUysXztLnrpirZ1/r1Hee2nPa6RB/uvR8/cuv3tTmlw9Jkm69Zp4WzZ6Ws1N6AABnjurykDasbtDaTbvGFYSXza+clAXaxk7Br3qNjY22paXFkVpvH4tIsnrilXe0fkvbhOutW1GnTyw4WzJGM8s5LQPuaDvULb9Xeu71d/W3T72me25YqHe6I7r3yT1j+mYu5Pfo1mvm6eyysP76kZf11Y9eqI9cMEPJtFQ3sywH/wcAgDPNWPesHxTyezJ71tdXuxaAjTEvWmsbR3qt4EeCvR4plpCuOH+Gls6r1LN7xj+Uv3Repa54XyZIBH3MCYZ7fN7MIrh/3PaGHvhso+7/z71Z/d2NJtLHp0M88NlG/fnGl3TlhVXye6feN8UAgPxQXR7SqkWztHRelTa/fFAbt5/69NIbl8zRykU1Kg/5Jm1RdsGPBB96r1+ReErJtFUskdbfDsytzNbSeZX6atOFCvo98nmNwn6vZk0rcqRHYLi334vopy379b6qUv37i/sn/M3b77+/Vr/p7NHvv79WMznvO29FYgkd6c9sZdcTSSqSSCns96p0YCHJWUV+hYPs8AFg8g3er6yVemPJ4+tTSoI+GZPZXi2YgzUojASfRmVxUM0HDmvuWUXyeY2++JHz9OELZmT9Y+X6mWXyeY3S1uq1jj411VXnoHsUqmTaqqs/rne6IxMKwJL07J5OffiCGXq3L64k533npaP9cfXHUnp850E9tOPUIytrFs/RqkU1Kgp6Nb0oMAmdAih0PZGEuqPJE+5XJQGvphcHdLQvrt546oT7VVnIp9IwI8Fj5uRIsCQdfC+iVw8e08zykHqiSSVSaZUXBfTcnsN65DT7rd5w6WxdOa9Kx/rj8ns9Kg359PaxqC6qKVcNo2lw0b6uPnX1xvWpB15wbEHnw1+4TBUlAc2pKHagQzjlnWNRPTOOOXZX1VXr7HJOAQSQO+OeE1xXrWqX7leMBI9ietiv9/rjKhv4TiSeSstIuqCqRLd/ok5nlQSVSKUVTaQV8nvk93p0pDemtLUyA9f7vR71xVN6rz+u6UX8OBLusmnp2dc6HQnAUmaO8HOvdeq6S2ocqQdndHRH9bVHs1ttHU2kdftju9Xc3sFx2ABypqM7qrVT7H5V8IdlSFJR0Kel86r0o1//VkcH5ttZScnU70bJjSS/58QjMBKp3x1He7Q/oR/9+rdaOq9KReyzCpelrNXPXjrgaM1HXjqgNNMh8sY7x6Lj3m5IyhyHvXbTLnV0Rx3uDABO1DFF71eE4AFVZSF9a+UCPfLSfm3eeUgjbZg6Yj6wVpt3HtIjL+3Xt1YuUBWjLsgBn9eMOE1nIvZ3ReT1sqtJPjjaH9czbaffeH74aYAj2dbeqebWDr3XH3ejTQBQTySh5lHuV2MxeL/qjSYc6mx0DFkOUVUW0t2rG9Tc1qFP/+C/dMX5M7S8YeaI18aSaW3Z9bZ+/Zt3dfsn6tRUV00ARs70x1Lu1I27UxfZ6Y+ltH5r6wnPeT1GTXVVYzoNMDXkO/b1W1u1dF6V2KwGgBu6o8mT7lfjNXi/ytWWaYTgYarKQlrRMFNXXpjZ427w5C2fxyjg8yieTCuZtsf3uPvmyotUGvSqLMxKbORONOnMXODhYg7NMcb4RWIJPb7z4AnzvUc6DXCke9JIpwFGE2ltfvmgbrr8HLZPA+CoWDx50v1qIgbvV5/74NycbJ9GCB7mcHdUbW93q7wooKUXVuoTF8+Ux5iT9rhLW6v+aFKdPTG90RFX3cwyRoKRM0V+ryt1wwF36mLsjvQn9NCOfZKk4oD3+GmAn/7Bf+lD75uhv/roPNVMCyueTCueTCvg8ygwZCT4gV/u1VevvlDXXHS2/vqRl9UXT2nj9n26duEszSYEA3BQZ1/8+P3KKcfvV4Tg3OrsjuqNw71KpDLf0bx+uFcBn0czSoJKJNNKpqyi8ZT6Ykm92xtTLJHWOTOKlUil9cbhXhlJlQRh5MDg4QiO1w1xS5hs1mbmZxcHvMdPAywL+fWvn/+A9nX1K+DLLOWwyiyQHJz4EPR5tPzimcdHgn8ZfVcPfLZRX/hRi/Z3RUZa5gAAEzJ4v3JSLu9XfMUb0Nkd1TvDViXufbdPPzvNPsGfvHS2zpnxuz1VB99PEIbbfB6j2oqwozef2orwaRdZITd6o0lJ0j03LNSPf/2mfv/9tZlj2I0Z8z1p5cKZiiWtfvzrN3XPDQv1pY0vqTeWzPX/CoAz3OD9yvG6ObpfsTuEpP5YUl1DVk+/1dWvT93/vL7b/PopQ8b+roi+2/y6PnX/83qrq//48139cfXH+WIDd1UUBfTZy+c6WvOzl89VRXHQ0ZrIXiSR0sqFs3SkL6qbrjhX04v847onTS/y66YrztWRvqiubZipaIJFjwCcFXHpvpKr+xUhWFJPLKm0tUpb6f5f7tX6LW1jnuQdTaS1fkub7v/lXqWtlLZWPS59ZwQM8no9WtEwSyG/M/+EQ/5MPS8jwZMu7Pfqc1fM1dllYYX93gndk8J+r84uC+vzHzpXIR/zvQE4K+zS+pRc3a8KPgQnEinFk2mlrXRf82t6ds/49rl7dk+n7mt+TWkrJZJpJRh1gcsqigNav2qBI7XWr1qgimJ2OMkHFSV+7T/ar5rpYUfuSTXTwzpwtF8VJSyKA+CsEpfWkbhVd7iCD8HvRTPTIF7Ye2TcX2wGPbunUy/sPSI7pC7gloDPo6vqqnV1XfWE6lxdV62muurjC64wuRIpq/qZZY7ek+pmlSmRYmUcAGcZk1mP4KTairBMjn4oWfBf9awyB1/c++QeR+rd++QexZJpVmIjJyqKA9rwyYvHHYSvrqvWhk9erOmMAueNoM8jK+PoPclaoyDf5ABwWGVxQGsWz3G05o1L5qiqNDfrUwr+rmittHXXIUc3en7ilUMiAyNXzioJ6u4bGnTvDQ1jniMc8nt07w0NuueGBp1VwmK4fJJKW1fuSckRz30HgPELBnxatajG0fUpKxfWKMCc4NyIJ60eeemAozX//cUDiif5goPcqSgOaNWiGj37V8v0jeV1p/zxVG1FWOtW1OnZv1qmVYtqGAHOQ4mUO/ekJNMhALigLOTTuuX1jtRat7xe5S7tgz+Sgt8n2Frr0kbPfMFBbgV8Hp1dHtLNH5yrVYtmKZm26o0mFUumFfR5VBLyyecxqigOsgtEHrNy6Z7Ez6cAuKA07FdTXbWa2zu0rX386xiWza9UU321SkK5W8Rb8CHYrQ2Ze2PsDoHJ4fV6VFk6cGBL+eT2guy5t/k89yQA7qguD2nD6gat3bRrXEF42fxKbVjdoOocHzZW8CE4lnRm3t1w8SRfcDA5Uqm0uvrjSqYze1anUil5vV6VDo4EFwXk9Rb8TKi85do9iW0bAbiouiykDdc3qLmtQ+u3to5pXUPI79G65fVqqq/OeQCWCMHubfTsUl3gVOLJtLr64jp0tF9FIZ/Cfq8SybQiibTCfqN4Mq1jiZT2HelXzfQiVRQH2BYtD3FPAjBVVZeHtGrRLC2dV6XNLx/Uxu37TnnM+41L5mjlohqVh3w5nQIxVMGH4OKgO38EbtUFRtLVF9eh9/pVHg7ohd926aEdp77xrFk8R9eWhfRaR7dmTSvikIw8wz0JwFRWEvKrJOTX5z44V9cunCVrM1NPo4mUQn6vSoI+GSNVlQZztgvEqRT8XdEzsNGzkwtRaivCYt0RcuVIb0w90aRe3n9s1B9B7e+K6J4n9+h7v3hd65bXqyTol7WWbdLyjBv3JADIpWDAp9mB/I6ZBf+zUJ/X6DOXzXW05v+4bK78zLlEDnT1xRVNpPWtLa/q9sd2j3lv2Wgirdsf261vbXlV0URaR/s44TBfBHxGf/SBcxyt+ZnLzuGwDAAYpuDvismU1dV1VY5u9HxVXZUSaXcWtwCD4sm0+uNJfePxV8a9Lc229k594/FX1BdPKu7SgixkJ5W2Wjbf2XvS0nlVHJYBAMMUfAiuKgmqvaNH31p5kSP1vrXyIu3p6FFVae5XOaKw9ETiem5P54T2ZZQyQfi5PZ3qjjAanA+SKas33+3THSucuSf9rxUX6c13+5TkG3MAOEHBh2C/36uG2dM0oySoprqqCdVqqqvSjJKgGmZPYzoEXJVKpRVJprV+a6sj9dZvbVU0mVYqRVCabEf64jq/qkQzSgK6av7E7klXza/SWSUBnV9Voi6mvADACUhqkqaH/Xq3N6ZbPnLeuINwU12VbvnIeTrSG9P0osnZ6gOFoyee0Oadh8Y8B3g00URaP3/5kHriCUfqYfyCPo/+rvl1dUcT+sJHzht3EL5qfpW+8JHz1BNN6LtPv6YA35gDwAm4K0oqCvq0bF6VHvzVb3X9JbN113ULxjwfL+T36K7rFuj6S2brwV/9VkvnVakoz1dDYurrjab00I59jtbcuH2feqMcqDDZSkJ+bX75kMpDfv3k+Te1+tLZunPlRVndk+5ceZFWXzpbP3n+TZWF/Pr5rrcnbR9OAMhXpLUBVWUhfWvlAt22aZdKAj49fMvlev4374660fPl58/QD365V73xpO5e3aCqSTjxBIXHWjm6hZaUqWdZOzXpBrdt/PK/7dSDNy/W/f+5V2G/Vw/fcpn+7+vv6t9a9p/ynvSHjbX60AUz9INf/laRREq3fOQ83fzgDrZtBIAREIKHqCoL6e7VDXq6rUOf/ucXdMX5M/RXH52nWdPCSqTSiifTCvg88ns9OvReRFt2va3/d9sbuv0TdWqqqyYAI2d6ou5MW+iNJV2pi7ErCnh1w6WzdV/z67r5wR2654aFeq8/rk//83+ddE+KJdIK+k+8J33/ud/o6x+v07SigG5+cIf64il98f2zVRzgxDgAGIoQPExVWUjXX1KTOfJv50F956k92t8Vkc9jFPB5FE+mlUzb4yPB31p5kaYV+ZkCgZxyai7wyXWZDjHZykN+rVg4S99/7jfqi6f0pY0v6dqGmfrXP75Mz//m3VHvSV9a9j794Jd79fNdb0vKTI9Y3jBLZWFOBgSAoUhuIygK+FQU8OmPrzhXqxbNUtpKPdHfHflXGvLJY6TK0hC7QGBShP3ujOqFJvkIS0her0dlQZ9uvWae1m9pkyT9fNfbemL3O7pqftWoP536zlOvKTVkT+Bbr5mnsqBPXuZDAMAJCMGn4fd7NWta0WS3AZykJOTOP1236iI75UUBXfG+GVo6r1LP7snsA51KWz3V2qGnWjsk6aSR4JEsnVepD71vhsqLGAUGgOEYxgSmqNqKcF7Xw/gFfB5VlYb01aYLtXRe5YjXJNNW/fHUaQPwV5suVFVpSAGOTAaAk3BnBKYgj5HWLJ7jaM0bl8xhB4E8UlEcUM30sL74kfO0bkVdVlukrVtRpy9+5DzVTA9rejGjwAAwEn72CUxBPdGkVi6ape/94nVHFsmF/B5du3CWeqLsDpFPzioJap4xSqetHr7lcj2357AeeenAKbdIu+HS2bpyXpX6ognNP7uMAAwAp2HsFNwYtLGx0ba0tEx2G8Ck2d/Vr6db31HQ59Xtj+2ecL27rlugaCKlj150tmormAefb+LJtLr64np5/1FZZcJxIpVWNJFWaGCLtCO9MXmM1DB7uiqKA0yBAABJxpgXrbWNI73GSDAwBXmM9OCv39SDNy3WsvmV2tbeOe5ay+ZX6gPnVejmH+7Qxxac7WCXcErA59HZ5SFVllSrqz+uZNqqN5pUIpWW3+tRScinuWcVqaI4yC4QADBGhGBgCookUvrMZXO15v4XtOlPr9Ad2j2uILxsfqXuXLlAq//xV7rlI+crwj7Bec3r9aiydOBQnvLJ7QUApjp+XgZMQbFkWlfVVaknltTqf/yVvv7xOt113YKsFk/ddd0Cff3jdVr9j79STyyp36urUjzpziEcAADkG0IwMAWVhnz6u+bX9c2VF6mzN66r7/tPRRMpPf2VK3Xbx+adcruz2oqwbvvYPD39lSsVTaR09X3/qc7euL618iJ99+nX2CcYAFAw+IoHTEEeY/Tf+4/q2oaZaqqrUnPbYa3f2qa7n9yjv/i99+mfPvN+FQV86osljy+eKg761B9P6hdth3XV3z53fNS3qa5KFUUB7TzwnjyG+aQAgMJACAamoKDP6IZLZ+vL/7ZTD968WJLU3HZY8WRa33nqNX3nqdckSSFfZtFUbzSp6AhTHZrqqnTLR87TzQ/u0BevPE8hdhQAABQIvuIBU9C0UEDLG2YpZa1ufnCHrr9k9ohzgqPJtN7tjZ8UgAfnBF9/yWzd/OAOpazV8otncbwuAKBguB6CjTEfM8bsMca8YYxZO8Lrc4wx24wx/22M2WWM+YTbPQFTnd/vVWnIp1uvmae+eEpf2viSXth7RA/fcvmY5gQ/fMvlemHvEX1p40vqi6d06zXzVBLyye/l+2IAQGFwdTqEMcYr6R8kXS3pgKQdxpjN1trWIZd9Q9JPrbXfN8bUS3pC0lw3+wLOBKVBnz54/gwtnVepZ/d06ue73tYTu9/RVfOr9FcfnadZ08JKpNKKJ9MK+DIHKhx6L6Itu97Wd556Tal05qCcpfMq9cHzZ6iURXEAgALi9le9JZLesNbulSRjzMOSVkkaGoKtpLKB35dLOuRyT8AZoSjo04zigL7SdKEk6dk9nUqlrZ5q7dBTrR2SJJ/HKODzKJ5MK5k++XTIpfMq9ZWmCzWjOKCiACEYAFA43P6qVyNp/5DHByR9YNg135T0lDHmzyUVS2pyuSfgjFFZljk44ZYPn6cPXzBD9z65R9HE7+b/JtNWyfjJB2CE/B7des081Z1dplnloeN1AAAoFPkw9LNG0g+ttX9jjLlc0k+MMQustSes5DHG3CLpFkmaM2fOJLQJ5KfKspCspEQqrYdvuVzP7TmsR146oP1dkZOura0I64ZLZ+vKeVU61h/X+6pKCMAAgILkdgg+KKl2yOPZA88N9XlJH5Mka+3zxpiQpBmSDg+9yFp7v6T7JamxsfHkn+sCBayqLKSSkE9H+xO6oKpEt3+iTmeVBJVIpY/vE+z3enSkN6a0taoqDerC6hKmQAAACpbbXwF3SLrAGHOuMuH3U5JuHHbNPklXSfqhMaZOUkhSp8t9AWecooBPRQGfqooD6uyLKW2lnmhS8WRKAV9mN4maaSFVlobYBQIAUPBcDcHW2qQx5s8kPSnJK+lfrLWvGmPulNRird0s6X9KesAY8xVlFsndZK1lpBcYJ7/fq1nTiia7DQAA8prrPwu11j6hzLZnQ5+7Y8jvWyVd4XYfAAAAwCB+JgoAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHB8k90AAGBsUqm0uvrjSqateqJJxRIpBf1elYZ88nmMKooC8noZ2wCAsSAEA0CeiyfT6uqLa8uuQ/rR829qf1fkpGtqK8L67OVztaJhliqKAwr4CMMAcDrGWjvZPWStsbHRtrS0THYbAOC6rr64nmnr0LrHdyuaSI96fcjv0fpVC3RVXX5UVZoAACAASURBVLUqigM56BAA8pcx5kVrbeNIrzFUAAB56khvTLc9sku3PrJrTAFYkqKJtG59ZJdue2SXjvTGXO4QAKYuQjAA5KGuvrjW/uwVPd3WMa73P93WobU/e0VH++IOdwYAZwZCMADkmXgyrWfaOsYdgAc93dah5rYOxZNjG0UGgEJCCAaAPNPVF9e6x3c7Umvd47vVxWgwAJyEEAwAeSSVSmvLrkNjngM8mmgiUy+VYjQYAIYiBANAHunqj+tHz7/paM0fPf+muvoZDQaAoQjBAJBHkmk74j7AE7G/K6JkeupthwkAbiIEA0Ae6YkmXanb61JdAJiqODEOAPJILJFypy47RADIoVg8qc6BRbk9kaQiiZTCfq9Kw5noWVkcUDAwuTGUEAwAeSTo97pSl2OUAeRCTySh7mhSj+88qId27DvlMe9rFs/RqkU1Kgv5VBr2T0KnhGAAyCulIXduy27VBYBBHceiam7r0Pqtrafd4WZ/V0T3PLlH3/vF61q3vF5NddWqLg/lsNMMhgYAII/4PEa1FWFHa9ZWhOXzGEdrAsBQHd1RrX10l25/bHdWx7zf/thurX10lzq6oy53eDJCMADkkYqigD57+VxHa3728rmqKA46WhMABnUci2rtpl3a1t45rvdva+/U2k25D8KEYADII16vRysaZinkd+b2HPJn6nkZCQbggp5IQs1tHeMOwIO2tXequbVDvdGEQ52NjhAMAHmmojig9asWOFJr/aoFqigOOFILAIbrjia1fmurI7XWb23VsUjutnMkBANAngn4PLqqrlpX11VPqM7VddVqqqtmZwgArojFM7tAOHnM++aXDyoWz00Q5s4IAHmoojigDZ+8eNxB+Oq6am345MWazigwAJd09sX10I59jtbcuH3f8f2F3UYIBoA8dVZJUHff0KB7b2gY8xzhkN+je29o0D03NOisEhbDAXCPtXLlmHebo1Pe2TgSAPJYRXFAqxbV6MMXVGrLrkP60fNvnnLz+Zs+OFfLL56liuIAUyAAuM6t49h7Y7mZDkEIBoA8F/B5dHZ5SDd/cK5WLZqlZNqqN5pULJlW0OdRScgnn8eoojjILhAAcibi0jHvUZfqDkcIBoApwuv1qLJ04FSl8sntBQDCLh3zHvK5U3c4fl4GAACArJW4dBy7W3WHIwQDAAAga8bIlWPeTY5mdRGCAQAAkLXK4oDWLJ7jaM0bl8xRVWludrYhBAMAACBrwYBPqxbVOHrM+8qFNQowJxgAAAD5rCzk07rl9Y7UWre8XuXh3O3ZQAgGAADAuJSG/Wqqq9ay+ZUTqrNsfqWa6qtVEvI71NnoCMEAAAAYt+rykDasbhh3EF42v1IbVjeouizkcGenRwgGAADAhFSXhbTh+gbddd2Ck+YIlwS8qp0eVkngxLm+Ib9Hd123YFICsMRhGQAAAHBAdXlIqxbN0tJ5VeqNJRTye+U1Rt3RhKKJtEJ+j8pCfqWsVTSeUknYr/KQL6dTIIYiBAMAAMAR1mZ+fabtsB7asU/7uyInXVNbEdaaxXO0alHN8esng7GT+dHHqbGx0ba0tEx2GwAAABjQcSyq5rYOrd/aqmgiPer1Ib9H65bXq6muWtXl7kyHMMa8aK1tHOk1RoIBAAAwIR3dUa19dJe2tXeO+T3RRFq3P7Zbze0dLIwDAADA1NJxLKq1m7ILwENta+/U2k271NEddbiz0yMEAwAAYFx6Igk1t3WMOwAP2tbeqebWDvVGEw51NjpCMAAAAMalO5rU+q2tjtRav7VVxyJJR2qNBSEYAAAAWYvFk3p858ExLYIbi2girc0vH1QsnpsgTAgGAABA1jr74npoxz5Ha27cvk+dfXFHa54KIRgAAABZs1Yj7gM8Efu7IjnbOzjrEGyMeZ8x5pPGmHo3GgIAAED+6426M22hN5Yn0yGMMduMMTMGfv8ZSU9I+rikfzPG/LnL/QEAACAPRRIpV+pGXao73FgOy6i01r478Pu/kHS5tfaIMaZI0guS/t617gAAAJCXwn6vK3VDPnfqDjeW6RAJY0zNwO97JfUN/D4mKTddAgAAIK+UhNw5eNitusON5aN8RdJTxpifSXpV0i+MMU9K+pCkB91sDgAAAPnJGKm2Iuzo4rjairCMcazcaY06EmytfVbSByW9LSkh6UVJUUl/bq39jqvdAQAAIC9VFge0ZvEcR2veuGSOqkqDjtY8lTGNN1trj0n6/umuMcb8vbWWhXIAAAAFIBjwadWiGn3vF687cmBGyO/RyoU1CuTRnOCxusLBWgAAAMhzZSGf1i13ZtfcdcvrVR7OzXxgicMyAAAAME6lYb+a6qq1bH7lhOosm1+ppvpqlYT8DnU2OkIwAAAAxq26PKQNqxvGHYSXza/UhtUNqi4LOdzZ6TkZgnO0lg8AAAD5pLospA3XN+iu6xYo5B9bvAz5PbrrugWTEoClMS6MkyRjzMXW2ldOc8nfneJ9Hxt4zSvpn621G0a45g8kfVOSlfSytfbGsfYFAACAyVddHtKqRbO0dF6VNr98UBu37xtx+7TairBuXDJHKxfVqDzky+kUiKGMtXZsFxrzS0lBST+U9K8DO0aM9h6vpNckXS3pgKQdktZYa1uHXHOBpJ9K+j1r7VFjTJW19vDp6jY2NtqWlpYx9Q0AAIDcisWT6uyLy1qpN5ZUNJFSyO9VSdAnY6Sq0mBOdoEwxrxorW0c6bUxjwRbaz88EFg/J+lFY8x2SQ9aa58+zduWSHrDWrt3oJGHJa2S1Drkmi9I+gdr7dGBj3PaAAwAAID8Fgz4NDuQu50exiOrOcHW2tclfUPSbZKulPQ9Y0y7MWb1Kd5SI2n/kMcHBp4b6kJJFxpjfmWMeWFg+sRJjDG3GGNajDEtnZ2d2bQNAAAAnGDMIdgY02CMuU9Sm6Tfk3SttbZu4Pf3TaAHn6QLJC2VtEbSA8aYacMvstbeb61ttNY2VlZObBsOAAAAFLZsRoL/XtJLkhZaa79krX1Jkqy1h5QZHR7JQUm1Qx7PHnhuqAOSNltrE9ba3yozh/iCLPoCAAAAspJNCF4uaaO1NiJJxhiPMaZIkqy1PznFe3ZIusAYc64xJiDpU5I2D7vmMWVGgWWMmaHM9Ii9WfQFAAAAZCWbENwsKTzkcdHAc6dkrU1K+jNJTyozjeKn1tpXjTF3GmNWDlz2pKQjxphWSdsk3WqtPZJFXwAAAEBWslm2F7LW9g4+sNb2Do4En4619glJTwx77o4hv7eSvjrwHwAAAOC6bEaC+4wxlw4+MMa8X9LJOyADAAAAeS6bkeAvS/p3Y8whZY5IPlvSH7rSFQAAAOCibA7L2GGMmS9p3sBTe6y1CXfaAgAAANyT7VEeiyXNHXjfpcYYWWt/7HhXAAAAgIvGHIKNMT+RdL6knZJSA09bSYRgAAAATCnZjAQ3Sqof2M0BAAAAmLKy2R1itzKL4QAAAIApLZuR4BmSWo0x2yXFBp+01q489VsAAACA/JNNCP6mW00AAAAAuZTNFmnPGWPOkXSBtbZ54LQ4r3utAQAAAO4Y85xgY8wXJD0i6Z8GnqqR9JgbTQEAAABuymZh3JckXSGpW5Ksta9LqnKjKQAAAMBN2YTgmLU2PvjAGONTZp9gAAAAYErJZmHcc8aYr0sKG2OulvSnkn7uTlsAgOESiZQ6+2JKW6knmlQkkVLY71VpyCePkSqLg/L7WaoBAGORTQheK+nzkl6R9EVJT1hrH3ClKwDAcf2xpI5GEnp850E9tH2f9ndFTrqmtiKsNUvmaNWiGk0P+1UUzOb2DgCFx4z1ADhjzF9aa/9utOdyobGx0ba0tOT6wwJAzh3ujqq5rUN3bmlVNJEe9fqQ36M7VtSrqa5aVWWhHHQIAPnLGPOitbZxpNeymRP82RGeu2lcHQEARnW4O6rbNu3S1x/dPaYALEnRRFpff3S3btu0S4e7oy53CABT16gh2Bizxhjzc0nnGmM2D/lvm6Qu91sEgMIzGIC3tXeO6/3b2jsJwgBwGmOZNPZrSW8rc2zy3wx5vkfSLjeaAoBC1h9LqrmtY9wBeNC29k41t3XouktqVBRgjjAADDXqXdFa+5aktyRd7n47AICjkYTu3NLqSK07t7TqynlVhGAAGCabE+NWG2NeN8YcM8Z0G2N6jDHdbjYHAIUmkUjp8Z0HxzwHeDTRRFqbdx5UIpFypB4AnCmyWRh3j6SV1tpya22ZtbbUWlvmVmMAUIg6+2J6aPs+R2tu3L5PnX0xR2sCwFSXTQjusNa2udYJAEBpqxH3AZ6I/V0RpTnfEwBOkM0ksRZjzL9JekzS8SEFa+0mx7sCgALVE01OqboAMFVlE4LLJPVL+uiQ56wkQjAAOCTi0tzdKHOCAeAEYw7B1tqb3WwEACCF/V5X6oZcqgsAU1U2u0NcaIx5xhize+BxgzHmG+61BgCFpzTkzlZmbtUFgKkqm4VxD0j6mqSEJFlrd0n6lBtNAUCh8hiptiLsaM3airA8xtGSADDlZROCi6y124c9x0oLAHBQZXFQa5bMcbTmjUvmqLI05GhNAJjqsgnB7xpjzldmMZyMMTcoc5wyAMAhfr9XqxbVKOTP5vZ8aiG/RysX1cjvdaYeAJwpsrkrfknSP0mab4w5KOnLkv4fV7oCgAI2PezXHSvqHal1x4p6TS/yO1ILAM4kYw7B1tq91tomSZWS5ltrP2StfdO1zgCgQBUFfWqqq9ay+ZUTqrNsfqWa6qpVFGBRHAAMl83uEH9pjBncK/g+Y8xLxpiPjvY+AED2qspCunt1w7iD8LL5lbp7dYOqypgLDAAjyWY6xOestd3KHJZxlqTPSNrgSlcAgONB+NvXLxjzHOGQ36NvX7+AAAwAo8jmZ2SDG+x8QtKPrbWvGmPYdAcAXFRVFtJ1l9ToynlV2rzzoDZu36f9XZGTrqutCOvTS+Zo5aIaTSvyMwUCAEaRzV3yRWPMU5LOlfQ1Y0yppLQ7bQEABhUFfCoK+PTHV5yrVYtmKW2lnmhS0URKIb9XpSGfPEaqLA2xCwQAjFE2IfjzkhZJ2mut7TfGnCWJo5QBIEf8fq9mTSua7DYA4Iwwagg2xsy31rYrE4Al6TxmQQAAAGAqG8tI8Fcl3SLpb0Z4zUr6PUc7AgAAAFw2agi21t4y8Osy99sBAAAA3JfNPsG/P7AYTsaYbxhjNhljLnGvNQAAAMAd2SwjXmet7THGfEhSk6QfSPr/3GkLAAAAcE82ITg18OtySfdba7dKCjjfEgAAAOCubELwQWPMP0n6Q0lPGGOCWb4fAAAAyAvZhNg/kPSkpGuste9JqpB0qytdAQAAAC4acwi21vZLelxSnzFmjiS/pHa3GgMAAADcMuYT44wxfy7pf0nq0O+OS7aSGlzoCwAAAHBNNscm/6WkedbaI241AwAAAORCNnOC90s65lYjAAAAQK5kMxK8V9KzxpitkmKDT1pr/9bxrgAAAAAXZROC9w38FxD7AwMAAGAKG3MIttZ+S5KMMSUDj3vdagoAAABw05jnBBtjFhhj/lvSq5JeNca8aIy5yL3WAAAAAHdkszDufklftdaeY609R9L/lPSAO20BAAAA7skmBBdba7cNPrDWPiup2PGOAAAAAJdltTuEMWadpJ8MPP4jZXaMAAAAAKaUbEaCPyepUtImST+TNGPgOQAAAGBKyWZ3iKOS/sLFXgAAAICcyGZ3iKeNMdOGPJ5ujHnSnbYAAAAA92QzHWKGtfa9wQcDI8NVzrcEAAAAuCubEJw2xswZfGCMOUeSdb4lAAAAwF3Z7A5xu6T/a4x5TpKR9GFJt7jSFQAAAOCibBbG/Ycx5lJJlw089WVr7buDrxtjLrLWvup0gwAAAIDTshkJ1kDo3XKKl38i6dIJdwQAAAC4LJs5waMxDtYCAAAAXONkCGaRHAAAAKYEJ0MwAAAAMCU4GYLjDtYCAAAAXJPVwjhjTIOkuUPfZ63dNPDrZad4GwAAAJBXxhyCjTH/IqlB0quS0gNPW0mbXOgLAAAAcE02I8GXWWvrXesEAAAAyJFs5gQ/b4whBAMAAGDKy2Yk+MfKBOF3JMWU2RfYWmsbXOkMAAAAcEk2I8E/kPQZSR+TdK2kFQO/npYx5mPGmD3GmDeMMWtPc90njTHWGNOYRU8AAABA1rIZCe601m7OprgxxivpHyRdLemApB3GmM3W2tZh15VK+ktJ/5VNfQAAAGA8sgnB/22M2Sjp58pMh5D0uy3STmGJpDestXslyRjzsKRVklqHXbde0t2Sbs2iHwAAAGBcspkOEVYm/H5UmWkQg1MiTqdG0v4hjw8MPHecMeZSSbXW2q2nK2SMucUY02KMaens7MyibQAAAOBEYx4Jttbe7PQHN8Z4JP2tpJvG8PHvl3S/JDU2NlqnewEAAEDhyOawjJCkz0u6SFJo8Hlr7edO87aDkmqHPJ498NygUkkLJD1rjJGksyVtNsastNa2jLU3AAAAIBvZTIf4iTIh9RpJzykTaHtGec8OSRcYY841xgQkfUrS8cV11tpj1toZ1tq51tq5kl6QRAAGAACAq7IJwe+z1q6T1Get/ZGk5ZI+cLo3WGuTkv5M0pOS2iT91Fr7qjHmTmPMyvE2DQAAAExENrtDJAZ+fc8Ys0DSO5KqRnuTtfYJSU8Me+6OU1y7NIt+AAAAgHHJJgTfb4yZLmmdMlMaSiSNGGYBAACAfJbN7hD/PPDb5ySd5047AAAAgPvGPCfYGFNtjPmBMeb/DDyuN8Z83r3WAAAAAHdkszDuh8oscJs18Pg1SV92uiEAAADAbdmE4BnW2p9KSkvHd35IudIVAAAA4KJsQnCfMeYsSVaSjDGXSTrmSlcAAACAi7LZHeKryuwKcZ4x5leSKiXd4EpXAAAAgIuyCcGtkh6V1K/MSXGPKTMvGAAAAJhSspkO8WNJ8yV9W9LfS7pQmaOUAQAAgCklm5HgBdba+iGPtxljWp1uCAAAAHBbNiPBLw0shpMkGWM+IKnF+ZYAAAAAd406EmyMeUWZHSH8kn5tjNk38PgcSe3utgcAAAA4byzTIVa43gUAAACQQ6OGYGvtW7loBAAAAMiVbOYEAwAAAGcEQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHAIwQAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcAjBAAAAKDiEYAAAABQc32Q3kM8SiZQ6+2JKW6knmlQkkVLY71VpyCePkSqLg/L7vZPdJgAAQF6JxZPq7ItLknoiQzJUOBM9K4sDCgYmN4YSgkfQH0vqaCShx3ce1EPb92l/V+Ska2orwlqzZI5WLarR9LBfRUH+KAEAQGHriSTUHU1mMtSO02SoxZkMVRbyqTTsn4ROJWOtnZQPPBGNjY22paXFldqHu6NqbuvQnVtaFU2kR70+5PfojhX1aqqrVlVZyJWeAAAA8l3HsUyGWr917Blq3fJMhqoudydDGWNetNY2jvgaIfh3DndHddumXdrW3pn1e5fNr9TdqxsIwgAAoOB0dEe1dgIZasPqBlW7kKFOF4JZGDdgIgFYkra1d+q2Tbt0uDvqcGcAAAD5q+PY+AOwlMlQazftUkeOMxQhWJk5wM1tHeP+5A3a1t6p5rYO9ceTDnUGAACQv3oiCecyVGuHeqMJhzobHSFY0tFIQnduaXWk1p1bWnW0P3efQAAAgMnSHU1q/VZnMtT6ra06FsndQGLBh+BEIqXHdx4c0wTusYgm0tq886ASiZQj9QAAAPJRLJ50PkO9fFCxHP1EveBDcGdfTA9t3+dozY3b96mzL+ZoTQAAgHzS2RfXQzvcyFBxR2ueSsGH4LTViHvYTcT+rojSU2/TDQAAgDGzLmWoXG1cVvAhuCfqzpC7W3UBAADyQa9LWac3xnSInIi4NHc3ypxgAABwBpvqGargQ3DY73WlbsilugAAAPnAtQzly02GKvgQXBryTam6AAAA+aDEpazjVt3hCj4Ee4xUWxF2tGZtRVge42hJAACAvGJcylAmRxmq4ENwZXFQa5bMcbTmjUvmqLLU+fOvAQAA8kVlcUBrFjufoapKg47WPJWCD8F+v1erFtUo5HfmjyLk92jlohr5vQX/RwsAAM5gwYDP+Qy1sEYB5gTnzvSwX3esqHek1h0r6jW9yO9ILQAAgHxWFvJp3XJnMtS65fUqD+duTRUhWFJR0Kemumotm185oTrL5leqqa5aRQEWxQEAgDNfadjvXIaqr1ZJKHcDiYTgAVVlId29umHcn8Rl8yt19+oGVZUxFxgAABSO6vKQNkwwQ21Y3aDqHGcoY3N1Np2DGhsbbUtLiyu1D3dH1dzWoTu3tCqaSI96fcjv0R0r6tVUV00ABgAABavjWCZDrd869gy1bnm9muqrXQvAxpgXrbWNI75GCD5Zfzypo/0Jbd55UBu37xvxXOzairBuXDJHqxbVaFqRnykQAACg4PVGEzoWSWrzy6NnqJWLalQe8rk6BeJ0IZjkNpKB7wvef850LZtfpZDfq75YUtFEWiG/R8VBn6KJlLojicylU+/7CAAAAMeVhPwqCfn1uQ/O1bULZ8laqTeWVDSRUsjvVUnQJ2OkqtJgznaBOBVC8DCnmg4R8nlUEvKpN5pUNDnkeaZDAAAAnCAY8Gl2nv+UPL+7y7HD3VHdtmmXtrV3nvRaNJlWtDd+8vOJtL7+6G493dbBwjgAAIApgt0hBpwuAI/FtvZO3bZplw53Rx3uDAAAAE4jBEvqjyXV3NYx7gA8aFt7p5rbOtQfTzrUGQAAANxACJZ0NJLQnVtaHal155ZWHe1POFILAAAA7ij4EJxIpPT4zoNj2s9uLKKJtDbvPKhEIuVIPQAAADiv4ENwZ19MD23f52jNjdv3qbMv5mhNAAAAOKfgQ3DaasSNnCdif1dEafYOBgAAyFsFH4J7ou4sYnOrLgAAACau4ENwxKW5u1HmBAMAAOStgg/BYb87R/aFXKoLAACAiXM9BBtjPmaM2WOMecMYs3aE179qjGk1xuwyxjxjjDnH7Z6GKg25c2ieW3UBAAAwca6GYGOMV9I/SPq4pHpJa4wx9cMu+29JjdbaBkmPSLrHzZ6G8xiptiLsaM3airA8xtGSAAAAcJDbI8FLJL1hrd1rrY1LeljSqqEXWGu3WWv7Bx6+IGm2yz2doLI4qDVL5jha88Ylc1RZGnK0JgAAAJzjdgiukbR/yOMDA8+dyucl/Z+RXjDG3GKMaTHGtHR2Tux446H8fq9WLapRyO/MH0XI79HKRTXyewt+ujUAAEDeypukZoz5I0mNku4d6XVr7f3W2kZrbWNlZaWjH3t62K87VgyfpTE+d6yo1/QivyO1AAAA4A63Q/BBSbVDHs8eeO4ExpgmSbdLWmmtzflRa0VBn5rqqrVs/sTC9bL5lWqqq1ZRgEVxAAAA+cztELxD0gXGmHONMQFJn5K0eegFxphLJP2TMgH4sMv9nFJVWUh3r24YdxBeNr9Sd69uUFUZc4EBAADynash2FqblPRnkp6U1Cbpp9baV40xdxpjVg5cdq+kEkn/bozZaYzZfIpyrhsMwt++fsGY5wiH/B59+/oFBGAAAIApxFhrJ7uHrDU2NtqWlhbX6vfHkzran9DmnQe1cfs+7e+KnHRNbUVYn14yRysX1WhakZ8pEAAAAHnGGPOitbZxpNdIbiMoCvhUFPDppsvP0bULZ8laqTeWVDSRUsjvVUnQJ2OkGcV+hQIsgkN+icWT6uyLS5J6IklFEimF/V6VhjP/3CuLAwryTduUFIkldKQ/IWnkz+1ZRX6Fg9yTAGAs+Eo4gp5IQt3RpB7feVAP7ciMBPs8RgGfR/FkWsm0VW1FWGsWz9GqRTUqC/lUGuYLDybXSH9vh+Pv7dT0Xn9cfbHUmD+3xUGvphUFJqFTAJg6mA4xTMexqJrbOrR+a6uiifSo14f8Hq1bXq+mumpVlzMnGJODv7dnrneORfXMOD63V9VV62w+twAK3OmmQxCCh+jojmrtpl3a1p79YRzL5ldqw+oGVbM4DjnG39szF59bAJiY04XgvDksY7J1HBv/FxtJ2tbeqbWbdqmjO+pwZ8Cp8ff2zPUOn1sAcBUhWJm5lM1tHeP+YjNoW3unmls71BtNONQZcGr8vT1zvdcf1zMOfm6P9ccd6gwAzhyEYEnd0aTWb211pNb6rf9/e/cfHMdd3nH880h3ujtZsvwjshIUmYQmQdaAY0A2tFAmJpoOwRk79dCCTQfKUOhPCrS0uO04ncaTGWf6Iy0DQ6GBJu0kBiZ1iRt3oLVxB6a0sR1wnEQ2JRPAjgcrin9IlnR3OklP/7i1rciSo0i7utu992vGY93u6nvf0fPs957b/e5urwbyY6G0BVwNeZtcw8XxUGM7VBwPpS0ASJKaL4KLo+Wr6WdzwclsFEoT2vPUKRVHKSgQHfI2ufLFUiSxzRc50g8Ak9V8Edw/PKpdh06E2uYjB09cuk8rEAXyNrnOjJQiie3F+wsDAMpqvgh217T33JyPk2fziuFNNxAj5G1yEVsAWBg1XwQPFaI5/TtU5LQyokPeJhexBYCFUfNFcL4UzQUjhYjaBSTyNsmILQAsjJovgnPp+kjazaaiaReQyNskI7YAsDBqvghuyqZi1S4gkbdJRmwBYGHUfBFsJnUsy4XaZseynMxCbRJ4GfI2uYgtACyMmi+CWxc1aMvalaG2uXXdSq1ozoTaJjAZeZtcyxvTkcS2tYnYAsBkNV8EZxpS2rSmXdl0OH+KbLpOG29tVwPz7xAh8ja5cpl0JLHNRDTXGADiquaLYElanE1p+4auUNravqFLLTnm3iF66BlWqgAAFKFJREFU5G1yLcrUhxrbpgwFMABMRREsqTmXVs+qNq3vbJ1XO+s7W9XT1aambDqkngEzI2+Ta0ljg24PMbYtjQ0h9QwAkoMiONDWktXOzavn/KGzvrNVOzevVtvibMg9A2ZG3ibXtcQWACJlHsNnaXZ3d/vhw4cjabtvoKB9x/q0Y2+vCqWJS8tTdaaGVJ1GxyY0NnH5b5ZN12n7hi71dLXxYYOKmSlvZ0LexsfpgYL2E1sAmBMze9Ldu6ddRxF8paFCSQP5MT39wnnJpGuaMiqOTahQGlc2Xa9Mqk4vDRXlLq3uWKKWbIpTyai4i3m756lTeuTgCZ08m79im45lOW1dt1Ib17STtzEyMDKqoeL4rGPb1FDPFAgAFZUvlnRmpCRJupAfU740rly6Xs3B9SfLG9PKZaL/DLpaEcyVMNOoM5NM+snZET38xE9n/MD5wFtfq9UdS8rbAxV28fvs+tev0HveeJ3qzDRUHLv05a0pk9KEuwqj45Jf3h7x8ZaVS7W+c4Wy6XoNF8dUKE0om67TokxKhdK4BkdKEnEFUEHnRkY1UhzXY0dOadehmb+0b1m7UpvWtKsxU6+lFfrSzpHgKV4cLJ9Wvufx2Z96vPvOLvWsatMKTj2iQmaaDtHUUK+lixp0bnhUQ6Pjl5ZfOmW+qk1tLeRtNZtpOkQ2VaembEpDhTEVxiYtD2J7+6o2XUtsASyguU7finK8YjrELL04WNBndh/VgeP9r/p313e26r7NqymEseD6BgvaNo+85eKp6kVsAcRFtY5XVyuCuTtEYD4FsCQdON6vz+w+qhcHCyH3DJhZ38DcBx2pnLfbdh9VH3lbdU4TWwAxEdfxiiJY0khxTPuO9c05eBcdON6vfcf6NDI6FlLPgJldyJfCy9vePg0VSiH1DPM1MDKq/SHGdjA/GlLPAODlzoU8Xp0fWbjxiiJY0rl8Sfc83htKW/c83qtzIxQTiN5gYUw79oaTtzv29mogz5e3ajFUHA81thcK46+8IQDMwUjI49VwceHGq5ovgkul8hWMs5nAPRuF0oT2HDmlUokPHUSnODoWft4+dUpFzmJUXKFYiiS2hSJfzgGEKx/ReJVfoPGq5ovg/uGidh08EWqbjxw8of7hYqhtApP1D49q16Eo8pbT5pX20kgpkti+xBkqACE7E9F4dWaBxquaL4InXNPew24+Tp7NayJ+N91AjHhEeRvDm8UkDrEFEBdxH69qvgi+UIjm9G9U7QKSNBRRfg0VydtKI7YA4iLu41XNF8H5iObuFpgTjAiRt8lFbAHERdzHq5ovgnPp+kjazUbULiBFmLcp8rbSiC2AuIj7eFXzRXBzNhWrdgFJaooov6JqF7NHbAHERdzHq5ovgutM6liWC7XNjmU51VmoTQIvYxHlrZG3FUdsAcRF3Mermi+CWxdltGXdylDb3LpupVqbw3/+NXBR66IGbVkbft6uaM6E2iZevWsa05HEtrWJ2AII1/KYj1c1XwSn0/XatKZd2XQ4f4psuk4b17QrXV/zf1pEKNOQCj9vb21XA/NGKy6bSUcS2wzXKQAIWS7m4xWVmqSlubTuvrMrlLbuvrNLSxvTobQFXM3ibErbN4STt9s3dKklx5zRatGUqQ81ts1ZCmAA0WgMebxalFm48YoiWFJjJqWeVW1a39k6r3bWd7aqZ1WbGhsoJhC95lw6vLztalNTli9v1aKlsUG3hxjbxbmGkHoGAC+3NOTxaknjwo1XFMGBFYuzum/z6jkHcX1nq+7bvForFjMXGAunrSWrnfPM252bV6uNvK061xJbADER1/HKPIbP0uzu7vbDhw9H0vaLgwXtO9anex7vVaE08YrbZ9N1uvvOLvWsaqMARsX0DZTzdsfe2eft9g1d6ulqo0iqcqcHCtpPbAHEQDWOV2b2pLt3T7uOIvhKI6NjOjdS0p4jp/TIwRPTPhe7Y1lOH1i3UhvXtGtJY5opEKi4oUJJA/kx7Xnqct42NdRr6aIGnRse1dDouDqW5bQ1yNuWbIopEDExmB/VhcL4y2I71eTYNmfqmQIBoCLOj4xquDj78WpRQ32kUyAogueoVBpX/3BREy5dKIypUBpXNl2v5mxKdSa1Nme5CwSqTr5Y0pmRkiTpQn5M+dK4cul6NQcXvi1vTCuXofiNo0KxpJdGSnKXhoqXx6SmTEpmUmtThrtAAKgKFz+LKj1eXa0I5vDlVaTT9XrNksZKdwOYlQv5kgYLY3rsyCntOjTzt+8ta1dq05p2Lc6m1JyjGI6TbCat6/kCAyAGcjEYrzgSDCTAnOcEr2pTWwvzRgEAycSRYCDB+gYL2vavR3XgeP+sf6dQmtCffeMZ7Tvexx0EAAA1iQmtQIz1DRS0bferK4AnO3C8X9t2H1XfYCHkngEAUN0ogoGYupAvad+xvjkXwBcdON6vfb19GiqUQuoZAADVjyIYiKnBwph27O0Npa0de3s1kB8LpS0AAOKAIhiIoeJo+S4Qs7kIbjYKpQnteeqUiqMUwgCA2kARDMRQ//Codh06EWqbjxw8of7h0VDbBACgWlEEAzHkrmnvAzwfJ8/mFcM7JgIAMCcUwUAMDRWimbYwVGQ6BACgNlAEAzGUL41H0m4honYBAKg2FMFADOUiet56NhX9c9wBAKgGFMFADDVlo3nYY1TtAgBQbSiCgRgykzqW5UJts2NZTmahNgkAQNWiCAZiqHVRg7asXRlqm1vXrdSK5kyobQIAUK0ogoEYyjSktGlNu7LpcHbhbLpOG29tVwNzggEANYIiGIipxdmUtm/oCqWt7Ru61JJjPjAAoHZQBAMx1ZxLq2dVm9Z3ts6rnfWdrerpalNTNh1SzwAAqH4UwUCMtbVktXPz6jkXwus7W7Vz82q1Lc6G3DMAAKobRTAQc22Ls9r5y6t1711vuGKOcM8trdq5qVM9t7y8SM6m63TvXW+gAAYA1Cxz90r34VXr7u72w4cPR/4++WJJZ0ZKkqQL+THlS+PKpevVHMydXN6YVi7DKWRUh6FCSQP5MS3J1ensyLjMpMF8SYXShLLpOi3OpeUuLWus1/nChFqyKaZAxAxjEoC4qJbxysyedPfu6dZxJcw0zo2MaqQ4rseOnNKuQyd08mz+im06luW0Ze1KbVrTrsZMvZY2NlSgp8BlpYnyF9qH/ufkrPL24vaofoxJAOIiTuMVR4KnOD1Q0P5jfdqxt1eF0sQrbp9N12n7hi7dvqpN17ZwWhmVQd4mF7EFEBfVOF5d7UgwRfAkfYMFbdt9VAeO97/q3+UCI1QKeZtcxBZAXFTreHW1IpgL4wKnB+YePEk6cLxf23YfVd9gIeSeATMjb5OL2AKIi7iOVxTBKs9f2X+sb87Bu+jA8X7t6+3T+ZHRkHoGzIy8TS5iCyAu4jxeUQRLGimOa8fe3lDa2rG3V8PF8VDaAq6GvE0uYgsgLuI8XtV8EZwvlvTYkVOzmsA9G4XShPY8dUr5YimU9oDpkLfJRWwBxEXcx6vIi2Aze7eZ/dDMnjOzbdOsz5jZ14L1T5jZDVH3abIzIyXtOnQi1DYfOXji0r3xgCiQt8lFbAHERdzHq0iLYDOrl/R5SXdI6pK0xcy6pmz2EUnn3P0mSfdLui/KPk3lrmnvYTcfJ8/mFcObbiBGyNvkIrYA4iLu41XUR4LXSXrO3Z9391FJX5W0aco2myQ9FPz8qKTbzcwi7tclQ4WxaNotRtMuIJG3SUZsAcRF3MerqIvgdkknJ71+IVg27TbuPiZpQNLyqQ2Z2cfM7LCZHe7vn98ViJPlS9FMwC5E1C4gkbdJRmwBxEXcx6vYXBjn7l9y9253725tbQ2t3Vy6PrS2JsumomkXkMjbJCO2AOIi7uNV1EXwKUkdk15fHyybdhszS0lqkXQm4n5d0pRNxapdQCJvk4zYAoiLuI9XURfBhyTdbGY3mlmDpPdL2jNlmz2SPhT8/F5J3/YFfJazmdSxLBdqmx3Lclq4Wc2oReRtchFbAHER9/Eq0iI4mOP7e5K+JemYpK+7+7Nmdo+ZbQw2+7Kk5Wb2nKQ/kHTFbdSitLwxrS1rV4ba5tZ1K9XalAm1TWAy8ja5iC2AuIj7eBX5nGB3/3d3v8Xdf87d7w2W3e3ue4KfC+7+K+5+k7uvc/fno+7TZLlMWpvWtCubDudPkU3XaeOt7cpENE8GkMjbJCO2AOIi7uNVbC6Mi1Jjpl7bN0y9ffHcbN/QpUUZPmwQPfI2uYgtgLiI83hFESxpaWODbl/VpvWd87vrxPrOVvV0tWlJY0NIPQNmRt4mF7EFEBdxHq8oggPXtmS1c/PqOQdxfWerdm5erbbF2ZB7BsyMvE0uYgsgLuI6XtkC3oghNN3d3X748OFI2j49UND+Y33asbdXhdLEK26fTddp+4Yu9XS18WGDiiFvk4vYAoiLahyvzOxJd++edh1F8JXOj4xquDiuPU+d0iMHT0z7XOyOZTltXbdSG9e0a1FDPacbUXHkbXIRWwBxUW3jFUXwHOWLJZ0ZKcm9/BzrQmlc2XS9mjIpmUmtTRmuuEbVIW+Ti9gCiItqGa+uVgTzCKGryGXSuj6TrnQ3gFeFvE0uYgsgLuIwXnFhHAAAAGoORTAAAABqDkUwAAAAag5FMAAAAGoORTAAAABqDkUwAAAAag5FMAAAAGoORTAAAABqTiyfGGdm/ZJ+GuFbXCPppQjbR2UR3+QitslGfJON+CZbpeL7WndvnW5FLIvgqJnZ4ZkesYf4I77JRWyTjfgmG/FNtmqML9MhAAAAUHMoggEAAFBzKIKn96VKdwCRIr7JRWyTjfgmG/FNtqqLL3OCAQAAUHM4EgwAAICaQxEMAACAmkMRPImZvdvMfmhmz5nZtkr3B/NjZh1mdsDMes3sWTP7RLB8mZn9p5n9KPh/aaX7irkzs3oz+4GZPR68vtHMngj246+ZWUOl+4i5MbMlZvaomR03s2Nm9vPsv8lhZp8KxuZnzGyXmWXZf+PLzL5iZi+a2TOTlk27v1rZZ4M4HzWzN1eizxTBATOrl/R5SXdI6pK0xcy6KtsrzNOYpD909y5Jb5P0u0FMt0na7+43S9ofvEZ8fULSsUmv75N0v7vfJOmcpI9UpFcIw99J+qa7d0q6VeU4s/8mgJm1S/p9Sd3u/gZJ9ZLeL/bfOHtQ0runLJtpf71D0s3Bv49J+sIC9fFlKIIvWyfpOXd/3t1HJX1V0qYK9wnz4O4/c/fvBz9fUPkDtF3luD4UbPaQpLsq00PMl5ldL2mDpAeC1ybpXZIeDTYhvjFlZi2S3inpy5Lk7qPufl7sv0mSkpQzs5SkRkk/E/tvbLn7dySdnbJ4pv11k6R/8rL/lbTEzK5bmJ5eRhF8Wbukk5NevxAsQwKY2Q2S3iTpCUlt7v6zYNVpSW0V6hbm728l/bGkieD1cknn3X0seM1+HF83SuqX9I/BdJcHzGyR2H8Twd1PSforSSdULn4HJD0p9t+kmWl/rYqaiyIYiWdmTZL+RdIn3X1w8jov3yOQ+wTGkJndKelFd3+y0n1BJFKS3izpC+7+JknDmjL1gf03voK5oZtU/rLzGkmLdOWpdCRINe6vFMGXnZLUMen19cEyxJiZpVUugB92993B4r6Lp12C/1+sVP8wL2+XtNHMfqLy9KV3qTyHdElwelViP46zFyS94O5PBK8fVbkoZv9Nhh5JP3b3fncvSdqt8j7N/pssM+2vVVFzUQRfdkjSzcGVqQ0qT9DfU+E+YR6C+aFflnTM3f9m0qo9kj4U/PwhSY8tdN8wf+7+J+5+vbvfoPL++m13/4CkA5LeG2xGfGPK3U9LOmlmrw8W3S6pV+y/SXFC0tvMrDEYqy/Gl/03WWbaX/dI+mBwl4i3SRqYNG1iwfDEuEnM7D0qzzGsl/QVd7+3wl3CPJjZOyR9V9LTujxn9E9Vnhf8dUkrJf1U0q+6+9TJ/IgRM7tN0qfd/U4ze53KR4aXSfqBpF9z92Il+4e5MbM1Kl/02CDpeUkfVvngDftvApjZX0h6n8p38vmBpN9QeV4o+28MmdkuSbdJukZSn6Q/l/QNTbO/Bl98PqfyFJgRSR9298ML3meKYAAAANQapkMAAACg5lAEAwAAoOZQBAMAAKDmUAQDAACg5lAEAwAAoOZQBAMAAKDmUAQDQAWY2UYz2/bKW17xezeY2TMR9Oc2M/uFSa8fNLP3Xu13ACDOUq+8CQAgbO6+R9X1VMrbJA1J+l6F+wEAC4IjwQAQsuBo7fHgaOr/mdnDZtZjZv9tZj8ys3Vm9utm9rlg+wfN7LNm9j0ze362R2DNrN7M/tLMDpnZUTP7zWD5bWb2X2b2aNCPh4MnNMnM3hMsezJ4z8fN7AZJvyXpU2Z2xMx+MXiLd07tk5ldZ2bfCbZ7ZtK2ABArFMEAEI2bJP21pM7g31ZJ75D0aZUf3z3VdcH6OyXtnOV7fETSgLuvlbRW0kfN7MZg3ZskfVJSl6TXSXq7mWUlfVHSHe7+FkmtkuTuP5H095Lud/c17v7dq/Rpq6RvufsaSbdKOjLLvgJAVWE6BABE48fu/rQkmdmzkva7u5vZ05JumGb7b7j7hKReM2ub5Xv8kqTVk44ct0i6WdKopIPu/kLw/keC9xyS9Ly7/zjYfpekj12l/en6dEjSV8wsHaynCAYQSxwJBoBoFCf9PDHp9YSmPwAxeXub5XuYpI8HR2/XuPuN7v4f07Q3PsN7vpIr+uTu35H0TkmnJD1oZh+cQ7sAUHEUwQAQX9+S9NvBUVmZ2S1mtugq2/9Q0uuCOcCS9L5J6y5Ian6lNzSz10rqc/d/kPSApDfPod8AUHFMhwCA+HpA5WkO3w8ufOuXdNdMG7t73sx+R9I3zWxY5akNF/2bpEfNbJOkj1/lPW+T9EdmVlJ5egVHggHEkrl7pfsAAFggZtbk7kNB0fx5ST9y9/sr3S8AWGhMhwCA2vLR4EK5Z1W+kO6LFe4PAFQER4IBoAqZ2Rsl/fOUxUV3f2sl+gMASUMRDAAAgJrDdAgAAADUHIpgAAAA1ByKYAAAANQcimAAAADUnP8HJJeUXFEO9rAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Rc5X3v/88zM3tmj662bElgWYoTLpaEEQoRbq4FB9OQ2Njg0J6YJCdt0vLraZLThnNS3BCTFpfUkJ6kTVdPT2iTNsmKnaaJwQbTEgyGpklaWyS2YiQbCCE2NsgCGes293l+f0gmsqzbSHtLM573ay0ve2b2fP3F2mx9tOe5GGutAAAAgGISmO8GAAAAgLlGCAYAAEDRIQQDAACg6BCCAQAAUHQIwQAAACg6ofluYCYWL15sly1bNt9tAAAAII899dRTr1hrq8d7rSBD8LJly9Te3j7fbQAAACCPGWN+OdFrDIcAAABA0SEEAwAAoOgQggEAAFB0CMEAAAAoOoRgAAAAFB1CMAAAAIoOIRgAAABFhxAMAACAolOQm2UAAAAgf8USKb06lJIk9cfSiqUyijpBlUeHo+eiEkfRiDOfLRKCAQAA4I1TQ0kNJTLaeeC4tu8/qmO9sXOOqa+KauNVDVrfWqeSSFALS8Lz0KlkrLXz8hfPRltbm2XbZAAAgPzx8um4Huvq1pbdnYqnslMe7zoBbV7TrGubanVBpetLT8aYp6y1beO9xp1gAAAAzEp3X1x/cn+H9h7umfZ74qms7njgkPYc7tbWDS2qrfAnCE+EiXEAAACYsZdPx7VpR24BeLS9h3u0aUeHuvviHnc2OUIwAAAAZuTUUFKPdXXPOACfsfdwj/Z0duu1oaRHnU2NEAwAAIAZGUpktGV3pye1tuzu1GAi40mt6SAEAwAAIGexREo7Dxyf1iS46Yinstp18LhiiZQn9abiawg2xnzNGHPSGHNogteNMebLxpjnjDEdxpgr/ewHAAAA3nh1KKXt+496WnPbvqOvry/sN7/vBP+TpOsnef29ki4Z+XWrpL/zuR8AAAB4wFqNuw7wbBzrjWmuVu/1NQRba/9dUu8kh6yX9A077D8lLTDGXOhnTwAAAJi9gXjan7oJf+qONd9jguskHRv1+MWR585hjLnVGNNujGnv6ZndDEQAAADMTizlzyS2uE91x5rvEDxt1tr7rLVt1tq26urq+W4HAACgqEWdoC913ZA/dcea7xB8XFL9qMdLR54DAABAHitz/dl42K+6Y813CN4l6b+PrBLxVkmnrbUvzXNPAAAAmIIxUn1V1NOa9VVRGeNpyQn5vUTadkk/lrTcGPOiMeZjxpjfN8b8/sghD0t6XtJzkv5e0h/42Q8AAAC8sajE0carGjytecvKBlWXRTytORFf7zdbazdO8bqV9HE/ewAAAID3ohFH61vr9OXHn/VkwwzXCWjdFXWK+DTWeKz5Hg4BAACAAlUSCWrzmmZPam1e06zSyNwEYIkQDAAAgBlaWBLWtU21WtU4u5W7VjVWa3VzrRaUhD3qbGqEYAAAAMzYBZWutm5omXEQXtVYra0bWlRb4Xrc2eQIwQAAAJiV2gpXf3FTi+6+cYVc5+x4WRYOqn5hVGXhs4c6uE5Ad9+4Yl4CsOTzxDgAAAAUhwsqXa1puVDXLK/RQCIl1wkqaIz64inFU1m5TkAVrqOMtYonMyqLOioNB+d0CMRohOBJpFIZ9QwmlLVSfzytWCqjqBNUuRtSwEjVpRE5czSDEQAAIN8FRxb5fazrpLbvP6pjvbFzjqmvimrjVQ1a31r3+vHzwQyvUlZY2trabHt7u2/1hxJpnYqltPPAcW3fN/wFDAWMwqGAkums0lk7/AVcOfwFXBh1VBLh5wkAAFC8uk/HtaerW1t2d05ryTTXCWjzmmatbqpVbaU/wyGMMU9Za9vGfY0QfLaTfXE92tWtzz/cpXdevFjvu/xC1S2IKjUSfkMBIycU0PHXYtrd8ZJ++PNX9Jn3Nem6plrVzMN4FgAAgPnW3RfXph0d2nu4J+f3+jkxjhA8TSf74rp9R4fKI44++s5lSqayqihxFHWCGhg1HKLMDSmWyuj0UFIRJ6iv/ccL6k+kdM+GFoIwAAAoKt2n49p0/8wC8Bl+BeHJQjCf4Y842RfX53Yd0s1X1qtugatFpRE9ePDElONZbrhiiT76jmU6/trw+/9s3QqCMAAAKAr9sZT2dHXPKgBL0t7DPdrT2a31rUtU5joedTc57gRreAzwgx0ndFF1qRaVufrRc6/kPJ7l7Rcv1qsDcT3fM6i1VyxRSZifLwAAwPnt+KmYrv3iE55tm/zYbdeobmHUg86GTXYnmHWCJZ2KpVRb4erCyhLd9dDTuuOBQ9P+YsZTWd3xwCHd9dDTurCyRDUVrk4NpXzuGAAAYH4lkmntPHDckwAsDWeqXQePK5FMe1JvKkUfglOpjDpefE0X15Tpszt/NuPb+XsP9+izO3+mi2vK1PHia0qlMh53CgAAkD96BpPavv+opzW37TuqnsGkpzUnUvQh+ORAQq1LK/XkkR5PxrM8eaRHrUsrdXIg4VGHAAAA+cdajTtvajaO9cY0VyN1iz4Eh4JGGStt2d3pSb0tuzuVscN1AQAAzlcDcX+GLQwkGA4xJ0JBo10HTng6nuXBgycIwQAA4LwW82noZ3yOhpQW/RIGsWTWl/EsN1yxRCr1tCwwLZlMVr1DSaWzVv3xtFLpjJzQ8HbfoYBRVUlYwWDR//wLAJilqBP0pa4b8qfuWEUfggt9PAtwRjKdVe9gUh3HXlNWVovLIkqks4qnMnKdoPpiKb0ykJCRdEX9QlWVhhUOEYYBADNT5voTI/2qO1bRh+D+uD/Lmc3VeBZAknoHk+o8cVplrqPOl/v0vZ+8qGO9MS1wQ6qpcHWyL67X4mnVV0X1/iuXqrYyqudO9qt5SaWqSsPz3T4AoAAZM7x5mJc3E+urojJzNKK06EOwV2OBz63LEmmYG68OJPRMd7+OdPfr7/b+XH/3oSv1/iuXyhipL5ZSPJWV6wRUEXVkrXTitSH97j/t1/9YdZGCAaNLa8u1qCwy3/8ZAIACU10a1sarGnTvI0c8q3nLygbVlM/N96SiD8GFPp4Fxa13MKnjp2L6yr8/rz+89hLt/MQ79eDBE/rWvoM61huTGwqozA1pIJ5WPJ1VfVVUH1z5Bu38xDt1sj+uv37sWd22+lIFjNFC7ggDAHIQCYe0vrVOX378Wc92jFt3RZ3CjAmeG4U+ngXFK5nO6mR/XP/SflR/seFyPXG4Rx/5x336/V9/k77y4beoNDwcfmOpjKJOUGVuSIPJtB7vOqn3fvnf9SfXN+kvNlyu//v4s/rQ25apNBJijDAAICcVbkib1zTrjgcOzbrW5jXNqozOXX4q+qRW6ONZULxODyXVefw1feLaS/WZHT/TOy5epN2ffJcePHhC/983nxr3nK6vimrjVQ3a/cl36dHOl/XZ+w/p8xsu1w+fPamqkrCqK9x5+C8BABSq8qij1U212nO4e1abjq1qrNbq5lqVuY6H3U2u6G/7lISD2nhVg6c1b1nZoLJw0f98AR9lMln1JdJ6+8XVuufhLm16b6MioaCu+9KTuveRIxP+UHesN6Z7Hzmi6770pCKhoDa9t1H3PNylt19crb5EWpmMP2PkAQDnr9pKV1s3tGhVY/WM3r+qsVpbN7Sodo5vxBhbgGt5tbW12fb2dk9qpVIZnRxI6NovPunZeJbHbrtaNRWuHNZihU96BxPqi6V04OhresuyKt2569CMfgJf1Vitu9at0E9+2avW+gUqjzqqKmWSHAAgd92n49rT1a0tuzunlalcJ6DNa5q1urnWtwBsjHnKWts23mtFn9IcJ6hwaPiL4IXNa5oVCQUIwPDVUDKjcCioFXWVMw7AkrT3cI/u3HVIl9VVygkFNZRkVRMAwMzUVrpa37pEj912jW6/frnqq6LjHldfFdXt1y/XY//rGq1vXTLnd4DP4DN7SaXhkK5eXq1VjdWzHs9y9fJqlUT4Z4W/yqNBPdc9qMMv9c/qnJWGg/Dqxlo1Xliui2vZ5hAAMHNlrqMy19FH375MN1yxRNYO751wZuOmskhIxkg15ZE5WwViIqQ1SSWRkIYSaf35+sv1Wf1sxh8r//n6yxUJGpUwHhg+G4hlVFPu6oP/8F+e1Nuyu1OPfupqDcQyqmRuHABgliLhkJbmeR7iM/sRiytcRYJGd669THffuEKuM71/GtcJ6O4bV+hzay9TJGi0mNn1mANuOKAHD57wbLOXeCqrhzpOyA1zSQAAFAe+442yuMJVaTiolqWVevRTV09rPMujn7paLUsrVRIOEoAxZ4YSWW3ff9TTmtv2HdVQgtUhAADFIb/vU8+DmgpXZW5Ip4ZSantDlVY11sh1ghpMpF/ffrY0ElI8ldFALK1gwOiimjKGQGDOebm2tR/1AADIZyS3cZSEQyoJh1RTGlbPYEJZKwWMUSQ4/HsoYFThhnRRdRmrQGBe9MdTvtQdSKR9qQsAQL4hBE/CcYJasqBkvtsAzuHVWOBz67JEWj5LpTKv/2DeH08rkc4oEgqq3A0pYKTq0ogcZ35nWwNAoSAETyKTyap3KKl01g5/w0llFHGGv+GEAkZVJWEFuROMeRD1Kei487xcDcY3lEjrVCylg0dPKRAwWlwWUSKdfX3JocFEWq8MJJTJWrU2LNTCqMNSjQAwBa6S40ims+odTOqhjhP6+o9fGHesZH1VVB952zKtbVmiqtKwwiHCMOZOuevP/7p+1cXMneyLq+ulPlWWhPXMyQF97ycvTnhNev+VS1W3sETPdfer6cIK1TBZFwAmxHe8MXoHk9rT1a07dx6a9CPnY70x/fnuLv3l94/orvUrtLqpVlWl4TnsFMXMmOHQ4+VktvqqqAw/y+WVnr64njs5oOd6BvSFR45MeU36qz3P6v89+XN9+j3L5QQDMpKqCcIAMC6+5Y3y6kBCf/zdg/rj73ZMe8xlPJXVH3+3Q3/83YN6dSDhc4fAsJqyiDaubPC05i0rG1RTTmDKFz19cZ04Hdd9P3heWx7qyumatOWhLt33g+d14nRcPX1xnzsFgMJECB7RO5jU7d/r0J6ukzN6/56uk7r9ex06NZj0uDPgXI4T1PrWumlv6jIV1wloXWsdq53kiaFEWq8MJvWlPc/oiSMz2xb7iSM9+tKeZ/TKYFJDSVb9AICx+I6n4THAe7pennEAPmNP10k92tWtZJoNB+C/hVFHm9c2e1LrzrXNWljieFILs9efSOtHP39lxgH4jCeO9OhHP39F/XFCMACMRQiW1DuY0J07n/ak1p07D6l3kGER8F9JJKTrmmq1qrF6VnVWNVZrdVMtG77kiVQqo/54Wl945Ign9b7wyBENxNNKsfwdAJyl6ENwJpPVgwdf8mzd1Xgqqwc7XlImw91g+K+mwtU9G1pmHIRXNVbrng0trCKQR16LJ7W744Sn16TdPzuh1+IM1QKA0Yo+BL86mNQ3/vMFT2t+48cv6FXGBmOO1FS4+oubWnT3jSumPUbYdQK6+6YV2koAzjuJtNV3f/KipzX/5akXlUhbT2sCQKEr+hCcymQ9XWZKGl6qKMWdYMyRk31x/cn9HaqtcPXYbdfo9uuXq74qOu6x9VVR3X79cj122zWqLXe1aUeHTrJ6QF7JWuvLNSlrCcEAMFrRDwL0a8JIf4KJKPDfyb64PrfrkG6+sl6S1SsDCa1aXqP3XX6hAsZoIJF+fVexskhIWWsVSw7vLiZZ3XxlvT6365D+bN0K7gjnCb+uSQNxxgQDwGhFH4K9Gnc3VsKnusAZQ4m0njhyUh95+xuVzVrFUxlZSf/29Muv7yrmhgIqc0MaiKcVT2df31XsmuU1ChijhSUhfeTtb9QTR05q7RVLmByXB/xaXSaZJgQDwGhF/x0v4tN2x2yjDL+diqW0oCSsskhQfbG0fvHqoP5g20/O+sEuns4qPvCr8eljdxVruqBC5ZGgFpSEdWooRQjOA1En6Etd16e6AFCoij6plUT8+cZQEuYbDvyTSmXU8eJraqiKKpPVrHYVS2elhkVRdbz4Gsto5YHSiD8/iPhVFwAKVdGHYGs14SSimaqvioo5KPBTz2BCl9aUycp4squYrNGltWXqYY3reRcKGl+uSU7QeFoTAApd0Ydg1wno/Vcu9bTmzVcuVdSj7WyB8YSCRq4T9GxXsR/+/BVFQ0GFAgSl+RYw0offuszTmv/9rcsUMHxtAWC0ok9qqYzVtY01015fdSquE9C7G2uUzHArGP7JZIeHNHi5q1gsnRWn7fxLpq2ubfL4mtRUowTbuQPAWYo+BEcco1++OqhPv2e5J/U+/Z7l+mXvoG8T7gBJCgakh7zeVazjhPjEfP4NxNP66z3P6k/XXeZJvT9bd5n+6tFnNMCyjQBwlqJPaq4TUOOFlVpSGdU1y2e29ewZ1yyv1pLKqJouqFSUiXHwUSLFrmLnq1gqo10HT2hRSVirm2pmVWt1U42qSsJ6sOMlxZn0CABnKfoQXOo4Ko+E1DMQ162//qYZB+Frllfr1l9/k3oG4iqLhFhqCr6y8mdXMStC8Hw7s0TaH/3zAd3662+acRBe3VSjW3/9Tfqjfz4gSXJD/GAOAKMVfQgOBgMKBaWrli3SN370gn7zLfXavLZp2uPxXCegzWub9Jtvqdc3fvSCrlq2SKGgFGSCEXw0wK5i560yd/gH6MFkRr/zj/t105uX6u4bV+R0Tbr7xhW66c1L9Tv/uF+DycxZdQEAw7gqSip3w0plrP7HNRfrS3ueUXkkpG//3lv15DM9+u7Izltj1VdFdfOVS3X1pdX66n/8Qv2JV/Sp1ZeqqsRRuRueh/8KFBO/Jjmxq9j8M2b4+nKsN6bBZEYf3/YT3dByob5969v045+/om37jk54TbplZYPedtFiffUHz+vBjpfOeo3FIQDgbIRgDe/uFg4FdUGFq1vf9SZ1vdynD371v/SOixbrf//Gci1ZEFUqk1U8lZXrBOQEAzrxWkwPdbyk+37wvG677lI1XVChCyrckVpFf4MdPmNXsfNXSTigjVc16N5RK3882PGSHj70sq5trDnrmpRMZxUOnX1N+svvP6NM9uxhLbesbFAp8xQA4CyE4BFVpWG9OpDQssWlSmWy+tbvvlVPHjmpv/z+ER3rjSkUMAqHAkqms0pn7et3gj++6mKdHkpq2eJShYJGC0u5Cwz/savY+SuVsVrXukRffvzZs1b/yGStvt/Zre93dkvSOdekibhOQDdcsUQp1r8DgLPwHW+URWUR9Q4mVV8VVSQU0iU1ZbrjfU1aVBY5507wqwMJZa1VdVlElW5QUSdIAMacCQbM6x+Ze6W+KspmGXmgdyClipKQNq9p1h0PHJrwuHTWKp2cevjK5jXNCkp6dTCpmgrXw04BoLDxuf0YVaVhLV1YqmDA6OKaMjVdODzMYWFJWItKHS0sCeuCCldNF1bo4uoyBQNGdQtLCcCYU9WlYX34rW/wtOaH3/oGLS6PeFoTuYulMrrnX4/o6uXVWtU4u2UbVzVW6+rl1fr8vx5miTQAGIMQPI5wKKALKl1dVF2mknBQoaBRKGAUcQIKBYxCQaOScFAX1ZTrgkqXMcCYc44T1NqWJZ7uKra2ZYmcIOfyfIs6Qe06eELPdPfrz9dfPuMgvKqxWn++/nI9092vBzteYok0ABiD73iTCAYDqi53dWFlVJfUlqvxgkpdUluuCyujqi53WQYN82pB1PF0V7EFJY4ntTA7Z5Yy++S2n+ql00O6c+1lM1oi7XNrL9NLp4f0yW0/PasuAGAYIRgoUCWRkN69vEbXNs5uV7FrG2u0ankNG7zkiTNLpA0mM/rI1/ar80SfVtRV6NFPXa3br1+u+qrouO+rr4rq9uuX69FPXa0VdRV6+kSfPvK14XWCWSINAM5lrC28GcNtbW22vb19vtsA8kJ3X1yf2fEzPXb4ZM7vvbaxRp/fcLlqmTCVNxLJtL76wxfOWiLthpYL9bF3vVGJVEaVJWG5TlCDifTrk3VLIyHFUxn1DSUVdoL66g9+cdY6wbdfv1wfe+cbFWZIBIAiY4x5ylrbNu5rhGCgcPUOJpVIZhTPZPWfP39Vf/bQ02ctqzUR1wnoc2sv09suWqRIMCA3zOom+eT4qZiu/eITZ30tgwGjaxtrtKblQi1ZEFUmk1U6YxUKGgVHrRP8+OGTZ60T7DoBPXbbNapbOP4dZAA4n00Wgvn8EyhQyXRWQ8m0Nu88pL2He7R5TZMe/dTV2v2zl/St//rlhLuKfejX3qD3XX6hvv/0y7rmL5/QqsZqbVm/QqWREJM880SFe+4SaTNdJ3jzmmZVRrnUA8BYXBmBAtUfS+rJIz3ae7hHkrRld5fueeSI/ue7L9ZXPvwWlYRDGhr1kXlJJKShZFqPd53UtV98UsmRrZf3Hu7Rk409es9ltVpczrCIfFAedbS6qVZ7Dne//vUdazrrBK9qrNbq5lqVuUx6BICxGA4BFKBMJquX+uJa/cUnJx3+4IYCKnNDGoinFU9PcpwT0J7brtaFFa6CLJOWN7r74tq0o2PCIDyZVY3V2rqhhfHeAIraZMMh+G4HFKD+ZEq7DpyYcvxvPJ3VKwPJSQOwJMVTWT148IT6kykv28Qs1Va42npTy4yWSCMAA8DkGA4BFKCBeEbb9x/1tOa2fUd1wxVLtID5U3mlttLV+tYlumZ5jXYdPK5t+45OON77lpUNWtdap0o3xBAIAJgCIRgoQNZq3CA0G8d6YyrA0VFFocx1VOY6+u23vUE3XLFE1koDibTiqYxcJ6iySEjGDG+nHWG9ZwCYFq6WQAHqj/szbGEgkfalLmanP5ZSXzytnQeOa/v+4TvBZSPL2p0aTGpgZEOMjVc1aH1rnSrckMqj3AkGgMkQgoECNJ21gGdWd/LVBjD3uk/HtaerW1t2d571dR9IZjSQ/NWnAcd6Y7r3kSP68uPPavOaZq1uqlVtJWOCAWAivk+MM8Zcb4w5Yox5zhizaZzXG4wxe40xPzXGdBhj3ud3T0Chizr+7PzlsqNYXunui2vT/R2644FD0/7BJ57K6o4HDmnT/R3q7ov73CEAFC5fQ7AxJijpbyW9V1KzpI3GmOYxh31W0nestW+W9AFJ/9fPnoDzQZnrz4c4ftVF7rpPz3x5NGl4/edNOwjCADARv+8Er5T0nLX2eWttUtK3Ja0fc4yVVDHy50pJJ3zuCSh4ATO8GoCX6quiCrBoYl7oj6W0p2vijTKma+/hHu3p7NaAT2PIAaCQ+f0tr07SsVGPXxx5brQ/lfQhY8yLkh6W9EmfewIKXk1ZRBtXNnha85aVDaphx7i80BdPa8vuTk9qbdndqdMxJjwCwFj5cN9no6R/stYulfQ+Sd80xpzTlzHmVmNMuzGmvadndndHgELnOEGtb62b9gYKU3GdgNa11slht7h5l0gOrwLh1eTHeCqrXQePK5EkCAPAaH5/xzsuqX7U46Ujz432MUnfkSRr7Y8luZIWjy1krb3PWttmrW2rrq72qV2gcCyMOtq8duwQ+5m5c22zFpawpFY+6BlM+rIRSs9g0tOaAFDo/A7B+yVdYox5ozEmrOGJb7vGHHNU0rWSZIxp0nAI5lYvMIWSSEjXNdVqVePsfihc1Vit1U21KmGThbzARigAMDd8DcHW2rSkT0h6RFKXhleBeNoYc5cxZt3IYf9L0u8ZYw5K2i7pt63lcg1MR02Fq3s2tMw4CK9qrNY9G1pUU8FY4HwxEPdn2AIboQDA2Xy/9WOtfVjDE95GP3fnqD93SnqH330A56szQfjRrm5teahzWmNJXSegO9cOb6hAAM4vMZ82LGEjFAA4G59/AueBmgpXN725Ttcsr9GuA8e1bd/RcT9Sr6+K6paVw1vrLihxGAKRh9gIBQDmBt8BgfNESTikknBIv/uON2p96xJlrdQfTyueysh1gip3QwoYqbrcZRWIPMZGKAAwN7gqAucZxwlqyYKS+W4DM2RGNkLxcnJcfVVUxnhWDgDOC9wOAoA8Ul0a1sar/NgIJeJpTQAodIRgAMgjkXDI+41QrqhTmDHBAHAWQjAA5JkKN6TNa7zZCGXzmmZVRhn5BgBjEYIBIM+URx2t9mojlOZalbnsBggAYxGCASAP1Va62jrLjVC2bmhRLetAA8C4CMEAkKdqK1xtvalFd9+4YtpjhF0noLtvXEEABoApMFAMAPKYEwro7RdV6bHbrtGug1NvhLLuijol02nWggaAKRCCASBPvTqQ0Kbv/UyPdnUrGg7qC++/XN/82K8paIwGEr/aCKUsElLGWh168TWt/tKTiiUzuq6pVlvff7kWlbE0GgCMhxAMAHmodzD5egCWpFgyo09sP/D662XhoBaWhnVqMKmBZOac9z/a1S19T7r35hYtLA3PWd8AUCj4vAwA8kwyndVjXd2vB+DxDCQzOnYqNm4APuPRrm7t6epWMp31o00AKGiEYADIM72DSW3eeciTWpt3HlLvYNKTWgBwPiEEA0AeyWSyeqjjhOIpb+7exlPD9TIZ7gYDwGiEYADII71DSX39xy94WvPrP35BvUPcDQaA0QjBAJBH0lk77hJos3GsN6Z01npaEwAKHSEYAPJIfzztS90Bn+oCQKEiBANAHkmkJl7tYVZ1WSECAM5CCAaAPBJxgr7UDYe43APAaFwVASCPlLv+7GHkV10AKFSEYADII6GAUX1V1NOa9VVRhQLG05oAUOgIwQCQR6pKwvrI25Z5WvMjb1umqtKIpzUBoNARggEgjwSDAa1tWSLX8eby7DrD9YLcCQaAsxCCASDPVJWGtWX9Ck9qbVm/QlWlYU9qAcD5hBAMAHkmHAro2qZaXddUO6s61zXVanVTLStDAMA4uDICQB6qKg1r6/svn3EQvq6pVlvff7kWchcYAMZFCAaAPLWoLKJ7bm7RF25umfYYYdcJ6As3t+jem1u0qIzJcAAwERaOBIA8VlUa1vrWOr3rkmo91HFCX//xCzrWGzvnuPqqqH777cu05vIlqioNMwQCAKZACAaAPBcOBXRBpavfefsyrW9donTWaoSLpOYAACAASURBVCCeViKdVSQUUJkbUihgVFUaYRUIAJgmQjAAFIhgMKDqcnf4QeX89gIAhY4QDAAFIpXKqGcwoayV+uNpxVIZRZ2gyt2QAkaqLo3IcYLz3SYAFARCMADkuaFEWqdiKe08cFzb9x2dcEzwxpUNWt9ap4VRRyURLu8AMBljrZ3vHnLW1tZm29vb57sNAPDdyb649nR1666HOhVPZac83nUCunNts1Y31aqmwp2DDgEgfxljnrLWto33GrcKACBPneyL6/YdHdp7uGfa74mnsvrM/Yf0aFe37tnQQhAGgAmwhg4A5KGZBODR9h7u0e07OnSyL+5xZwBwfiAEA0CeGUqktaere8YB+Iy9h3u0p6tbQ8m0R50BwPmDEAwAeeZULKW7Hur0pNZdD3Xq1FDKk1oAcD4hBANAHkmlMtp54Pi0JsFNRzyV1a4Dx5VKZTypBwDnC0IwAOSRnsGEtu876mnNbfuOqmcw4WlNACh0hGAAyCNZq3HXAZ6NY70xZQtvNUwA8BUhGADySH/cn0lsftUFgEJFCAaAPBLzaexunDHBAHAWQjAA5JGoE/SlrutTXQAoVIRgAMgj5a4/G3n6VRcAChUhGADySMBI9VVRT2vWV0UVMJ6WBICCRwgGgDxSXRrRxpUNnta8ZWWDqstdT2sCQKEjBANAHnGcoNa31sl1vLk8u05A61rr5AS53APAaFwVASDPLIw6unNtsye17lzbrIUljie1AOB8QggGgDxTEglpdVOtVjVWz6rOqsZqrW6qVUmYSXEAMBYhGADyUE2Fq3s2tMw4CK9qrNY9G1pUU8FYYAAYDyEYAPLUmSD8+ZtWTHuMsOsE9PmbVhCAAWAKfEYGAHmspsLVjW+u09XLa7TrwHFt23dUx3pj5xxXXxXVB1c2aF1rnRaUOAyBADCvYomUXh1KSZL6Y2nFUhlFnaDKo8PXpkUljqKR+Z2vwFUSAPJcSTikknBIv/uON2p96xJlrdQfTyueysh1gip3QwoYqbrcZRUIAPPq1FBSQ4mMdh44ru37J/6hfeNVDVrfWqeSSFALS8Lz0KlkrLXz8hfPRltbm21vb5/vNgAAADDi5dNxPdbVrS27OxVPZac83nUC2rymWdc21eqCSn+GbxljnrLWto33GneCAQAAMCvdfXH9yf0d2nu4Z9rviaeyuuOBQ9pzuFtbN7Sodo7nMfC5GQAAAGbs5dNxbdqRWwAebe/hHm3a0aHuvrjHnU2OEAwAAIAZOTWU1GNd3TMOwGfsPdyjPZ3dem0o6VFnUyMEAwAAYEaGEhlt2d3pSa0tuzs1mMh4Ums6CMEAAADIWSyR0s4Dx6c1CW464qmsdh08rlgi5Um9qRCCAQAAkLNXh1Lavv+opzW37Tv6+vrCfiMEAwAAIGfWatx1gGfjWG9Mc7V675Qh2BizYC4aAQAAQOEYiKf9qZvwp+5Y07kT/IoxZo8x5mMEYgAAAEhSLOXPJLa4T3XHmk4I7pL0V5LeLennxpidxpgPGGOi/rYGAACAfBV1gr7UdUP+1B1rOiE4Za19yFr7QUlLJX1L0m9JetEYs83X7gAAAJCXylx/Nh72q+5Y0wnB5swfrLUxa+13rLUbJL1J0iO+dQYAAIC8ZYxUX+XtwID6qqiMmfo4L0wnBH9rvCettaettV/3uB8AAAAUgEUljjZe1eBpzVtWNqi6LOJpzYlMGYKttX85nULGmL+ZfTsAAAAoBNGIo/WtdXIdb1bcdZ2A1l1Rp4hPY43H8nKd4Hd4WAsAAAB5riQS1OY1zZ7U2rymWaWRuQnAEptlAAAAYIYWloR1bVOtVjVWz6rOqsZqrW6u1YKSsEedTY0QDAAAgBm7oNLV1g0tMw7CqxqrtXVDi2orXI87m5yXIXiO5vIBAAAgn9RWuPqLm1p0940rpj1G2HUCuvvGFfMSgCVp2guxGWMut9b+bJJD/nqC910/8lpQ0j9Ya7eOc8xvSfpTSVbSQWvtLdPtCwAAAPPvgkpXa1ou1DXLa7Tr4HFt23dUx3pj5xxXXxXVLSsbtK61TqXh4JwOgRjNWGund6AxP5AUkfRPkr5lrT09jfcEJT0j6TpJL0raL2mjtbZz1DGXSPqOpHdba08ZY2qstScnq9vW1mbb29un1TcAAADmViyR0qtDKVkrDSTSiqcycp2gyiIhGTO8vFo04vjehzHmKWtt23ivTftOsLX2XSOB9aOSnjLG7JP0j9baRyd520pJz1lrnx9p5NuS1kvqHHXM70n6W2vtqZG/Z9IADAAAgPzUH0upL57WzgPHtX3/8J3gsnBQC0vDOjWY1EAyo/qqqDZe1aD1rXWqcEMqj/ofhseT07501tpnjTGfldQu6cuS3myMMZI+Y63dMc5b6iQdG/X4RUm/NuaYSyXJGPNDDQ+Z+FNr7b+NLWSMuVXSrZLU0ODtwswAAACYne7Tce3p6taW3Z2Kp7KvPz+QzGgg+athEcd6Y7r3kSP68uPPavOaZq1uqlVt5dyPCZ72xDhjTIsx5kuSuiS9W9IN1tqmkT9/aRY9hCRdIukaSRsl/b0xZsHYg6y191lr26y1bdXVs1uGAwAAAN7p7otr0/0duuOBQ2cF4MnEU1nd8cAhbbq/Q919cZ87PFcuq0P8jaSfSLrCWvtxa+1PJMlae0LSZyd4z3FJ9aMeLx15brQXJe2y1qastb/Q8BjiS3LoCwAAAPOk+3Rcm3Z0aO/hnhm9f+/hHm3aMfdBOJcQvEbSNmttTJKMMQFjTIkkWWu/OcF79ku6xBjzRmNMWNIHJO0ac8wDGr4LLGPMYg0Pj3g+h74AAAAwD/pjKe3p6p5xAD5j7+Ee7ens1kA85VFnU8slBO+RFB31uGTkuQlZa9OSPiHpEQ0Po/iOtfZpY8xdxph1I4c9IulVY0ynpL2SPm2tfTWHvgAAADAP+uJpbdndOfWB07Bld6dOx9Ke1JqOXCbGudbagTMPrLUDZ+4ET8Za+7Ckh8c8d+eoP1tJt438AgAAQAFIJIdXgZjuGOCpxFNZ7Tp4XB99+zJFwjmt3TAjudwJHjTGXHnmgTHmLZLOXQEZAAAA572ewaS27z/qac1t+46qZzDpac2J5BKz/0jSvxhjTmh4i+QLJP03X7oCAABAXrNW4+4INxvHemOa5j5us5bLZhn7jTGNkpaPPHXEWjt3o5cBAACQNwbi/ozfHUjMzbjgXAdcXCVp2cj7rjTGyFr7Dc+7AgAAQF6LpTK+1I37VHesaYdgY8w3JV0k6YCkM91ZSYRgAACAIhN1gr7UdUP+1B0rlzvBbZKaR1ZzAAAAQBErc/1ZwcGvumPlsjrEIQ1PhgMAAECRM0aqr4pOfWAO6quiMsbTkhPKJQQvltRpjHnEGLPrzC+/GgMAAED+qi4Na+NVDZ7WvGVlg2rKI57WnEgu95v/1K8mAAAAUFgi4ZDWt9bpy48/68mGGa4T0Lor6hSeozHB074TbK19UtILkpyRP++X9BOf+gIAAECeq3BD2rym2ZNam9c0qzI6N+OBpRxCsDHm9yR9V9JXRp6qk/SAH00BAAAg/5VHHa1uqtWqxupZ1VnVWK3VzbUqcx2POptaLmOCPy7pHZL6JMla+6ykGj+aAgAAQGGorXS1dUPLjIPwqsZqbd3QotoK1+POJpdLCE5Ya1/fzNkYE9LwOsEAAAAoYrUVrrbe1KK7b1wh15levHSdgO6+ccW8BGApt4lxTxpjPiMpaoy5TtIfSHrQn7YAAABQSGorXa1vXaJrltdo18Hj2rbvqI71xs45rr4qqltWNmhda50q3dCcDoEYzUx37wtjTEDSxyT9hiQj6RFr7d/72NuE2trabHt7+3z81QAAAJhCIplWz2BS1koDibTiqYxcJ6iySEjGSDXlkTlZBcIY85S1tm2813K5E/xJa+1fS3o9+Bpj/nDkOQAAAEDS8PJpS8Nzt9LDTOQyJvgj4zz32x71AQAAAMyZKSO6MWajpFskvXHMDnHlknr9agwAAADwy3TuU/9I0ksa3jb5/4x6vl9Shx9NAQAAAH6aMgRba38p6ZeS3uZ/OwAAAID/ctkxboMx5lljzGljTJ8xpt8Y0+dncwAAAIAfcpm2d6+kG6y1XX41AwAAAMyFXFaH6CYAAwAA4HyQy53gdmPMP0t6QFLizJPW2h2edwUAAAD4KJcQXCFpSMM7xp1hJRGCAQAAUFCmHYKttb/jZyMAAADAXMlldYhLjTGPGWMOjTxuMcZ81r/WAAAAAH/kMjHu7yX9iaSUJFlrOyR9wI+mAAAAAD/lEoJLrLX7xjyX9rIZAAAAYC7kEoJfMcZcpOHJcDLG3Kzh7ZQBAACAgpLL6hAfl3SfpEZjzHFJv5D0IV+6AgAAAHyUy+oQz0tabYwplRSw1vb71xYAAADgn1xWh/hDY8yZtYK/ZIz5iTHmN6Z6HwAAAJBvchkT/FFrbZ+GN8tYJOnDkrb60hUAAADgo1xCsBn5/X2SvmGtfXrUcwAAAEDByCUEP2WM+b6GQ/AjxphySVl/2gIAAAD8k8vqEB+T1CrpeWvtkDFmkSS2UgYAAEDBmTIEG2MarbWHNRyAJelNxjAKAgAAAIVrOneCb5N0q6T/M85rVtK7Pe0IAAAA8NmUIdhae+vI76v8bwcAAADwXy7rBP/myGQ4GWM+a4zZYYx5s3+tAQAAAP7IZXWIzdbafmPMOyWtlvRVSf/Pn7YAAAAA/+QSgjMjv6+RdJ+1dreksPctAQAAAP7KJQQfN8Z8RdJ/k/SwMSaS4/sBAACAvJBLiP0tSY9Ieo+19jVJVZI+7UtXAAAAgI+mHYKttUOSdkoaNMY0SHIkHfarMQAAAMAv094xzhjzSUmfk9StX22XbCW1+NAXAAAA4Jtctk3+Q0nLrbWv+tUMAAAAMBdyGRN8TNJpvxoBAAAA5koud4Kfl/SEMWa3pMSZJ621X/S8KwAAAMBHuYTgoyO/wmJ9YAAAABSwaYdga+2fSZIxpmzk8YBfTQEAAAB+mvaYYGPMCmPMTyU9LelpY8xTxpjL/GsNAAAA8EcuE+Puk3SbtfYN1to3SPpfkv7en7YAAAAA/+QSgkuttXvPPLDWPiGp1POOAAAAAJ/ltDqEMWazpG+OPP6QhleMAAAAAApKLneCPyqpWtIOSd+TtHjkOQAAAKCg5LI6xClJ/9PHXgAAAIA5kcvqEI8aYxaMerzQGPOIP20BAAAA/sllOMRia+1rZx6M3Bmu8b4lAAAAwF+5hOCsMabhzANjzBskWe9bAgAAAPyVy+oQd0j6D2PMk5KMpHdJutWXrgAAAAAf5TIx7t+MMVdKeuvIU39krX3lzOvGmMustU973SAAAADgtVzuBGsk9D40wcvflHTlrDsCAAAAfJbLmOCpGA9rAQAAAL7xMgQzSQ4AAAAFwcsQDAAAABQEL0Nw0sNaAAAAgG9ymhhnjGmRtGz0+6y1O0Z+f+sEbwMAAADyyrRDsDHma5JaJD0tKTvytJW0w4e+AAAAAN/kcif4rdbaZt86AQAAAOZILmOCf2yMIQQDAACg4OVyJ/gbGg7CL0tKaHhdYGutbfGlMwAAAMAnudwJ/qqkD0u6XtINktaO/D4pY8z1xpgjxpjnjDGbJjnu/cYYa4xpy6EnAAAAIGe53AnusdbuyqW4MSYo6W8lXSfpRUn7jTG7rLWdY44rl/SHkv4rl/oAAADATOQSgn9qjNkm6UEND4eQ9Ksl0iawUtJz1trnJckY821J6yV1jjlui6R7JH06h34AAACAGcllOERUw+H3NzQ8DOLMkIjJ1Ek6NurxiyPPvc4Yc6Wkemvt7skKGWNuNca0G2Pae3p6cmgbAAAAONu07wRba3/H67/cGBOQ9EVJvz2Nv/8+SfdJUltbm/W6FwAAABSPXDbLcCV9TNJlktwzz1trPzrJ245Lqh/1eOnIc2eUS1oh6QljjCRdIGmXMWadtbZ9ur0BAAAgfySSafUMJiVJ/bG0YqmMok5Q5dHh6FldGlYknNPGxZ7L5W//pqTDkt4j6S5JH5TUNcV79ku6xBjzRg2H3w9IuuXMi9ba05IWn3lsjHlC0v8mAAMAABSe/lhKffG0dh44ru37j+pYb+ycY+qrotp4VYPWt9apwg2pPOrMQ6e5heCLrbW/aYxZb639+sgkuR9M9gZrbdoY8wlJj0gKSvqatfZpY8xdktpzXW0CAAAA+an7dFx7urq1ZXen4qnshMcd643p3keO6MuPP6vNa5q1uqlWtZXuhMf7JZcQnBr5/TVjzApJL0uqmepN1tqHJT085rk7Jzj2mhz6AQAAQB7o7otr0/0d2nt4+osXxFNZ3fHAIe053K2tG1pUWzG3QTiX1SHuM8YslLRZ0i4NL3N2ry9dAQAAoCB0n45r047cAvBoew/3aNOODnX3xT3ubHK5rA7xDyN/fFLSm/xpBwAAAIWiP5bSnq7uGQfgM/Ye7tGezm6tb12iMnduxghP+06wMabWGPNVY8y/jjxuNsZ8zL/WAAAAkM/64mlt2T12D7SZ2bK7U6djaU9qTUcuwyH+ScMT3JaMPH5G0h953RAAAADyXyI5vArEZJPgchFPZbXr4HElknMThHMJwYuttd+RlJWGV36QlPGlKwAAAOS1nsGktu8/6mnNbfuOvr6+sN9yCcGDxphFkqwkGWPeKum0L10BAAAgr1mrcdcBno1jvTHZOdoXOJcl0m7T8KoQbzLG/FBStaSbfekKAAAAeW0g7s+whYHE3AyHyCUEd0q6X9KQpH5JD2h4XDAAAACKTCzlz6jYuE91x8plOMQ3JDVK+rykv5F0qYa3UgYAAECRiTpBX+q6IX/qjpXLneAV1trmUY/3GmO8WRMDAAAABaXMzSVGzn/dsXK5E/yTkclwkiRjzK9Jave+JQAAAOQ7Y6T6qqinNeurojLG05ITmjIEG2N+ZozpkPQWST8yxrxgjPmFpB9LavO7QQAAAOSf6tKwNl7V4GnNW1Y2qKY84mnNiUznfvNa37sAAABAQYmEQ1rfWqcvP/6sJxtmuE5A666oU3iOxgRPeSfYWvvLyX7NRZMAAADIPxVuSJvXNE994DRsXtOsyujcjAeWchsTDAAAALyuPOpodVOtVjVWz6rOqsZqrW6uVZnreNTZ1AjBAAAAmLHaSldbN7TMOAivaqzW1g0tqq1wPe5scoRgAAAAzEpthautN7Xo7htXyHWmFy9dJ6C7b1wxLwFYym2dYAAAAGBctZWu1rcu0TXLa7Tr4HFt23dUx3pj5xxXXxXVLSsbtK61TpVuaE6HQIxGCAYAAIAnylxHZa6jj759mW64YomslQYSacVTGblOUGWRkIyRasojc7YKxEQIwQAAAPBUJBzS0nB+x0zGBAMAAKDoEIIBAABQdAjBAAAAKDqEYAAAABQdQjAAAACKDiEYAAAARYcQDAAAgKJDCAYAAEDRIQQDAACg6BCCAQAAUHQIwQAAACg6hGAAAAAUHUIwAAAAig4hGAAAAEWHEAwAAICiQwgGAABA0SEEAwAAoOgQggEAAFB0CMEAAAAoOqH5bgCAt1KpjHoGE8paqT+eViyVUdQJqtwNKWCk6tKIHCc4320CADCvCMHAeWIokdapWEo7DxzX9n1Hdaw3ds4x9VVRbVzZoPWtdVoYdVQS4RIAAChOxlo73z3krK2tzba3t893G0DeONkX156ubt31UKfiqeyUx7tOQHeubdbqplrVVLhz0CEAAHPPGPOUtbZtvNe4DQQUuJN9cd2+o0N7D/dM+z3xVFafuf+QHu3q1j0bWgjCAICiw8Q4oIDNJACPtvdwj27f0aGTfXGPOwMAIL8RgoECNZRIa09X94wD8Bl7D/doT1e3hpJpjzoDACD/EYKBAnUqltJdD3V6Uuuuhzp1aijlSS0AAAoBIRgoQKlURjsPHJ/WJLjpiKey2nXguFKpjCf1AADId4RgoAD1DCa0fd9RT2tu23dUPYMJT2sCAJCvCMFAAcpajbsO8Gwc640pW3grJgIAMCOEYKAA9cf9mcTmV10AAPINIRgoQDGfxu7GGRMMACgShGCgAEWdoC91XZ/qAgCQbwjBQAEqd/3Z7NGvugAA5BtCMFCAAkaqr4p6WrO+KqqA8bQkAAB5ixAMFKDq0og2rmzwtOYtKxtUXe56WhMAgHxFCAYKkOMEtb61Tq7jzf/CrhPQutY6OUEuCQCA4sB3PKBALYw6unNtsye17lzbrIUljie1AAAoBIRgoECVREJa3VSrVY3Vs6qzqrFaq5tqVRJmUhwAoHgQgoECVlPh6p4NLTMOwqsaq3XPhhbVVDAWGABQXAjBQIE7E4Q/f9OKc8YIL3BDurSmTAvGLH3mOgF9/qYVBGAAQNHi889JJJJp9QwmJUn9sbRiqYyiTlDl0eF/turSsCJ8hIw8UFPh6sY31+nq5TXKZrOSjIyR+mIpxVNZuU5AFVFH1kqyVsFgQAtKHIZAAACKFt8Bx9EfS6kvntbOA8e1ff9RHeuNnXNMfVVUG69q0PrWOlW4IZVHmVSE+ZVKZyUrPXjwpWmdt6l0VgrPQ6MAAOQBY62d7x5y1tbWZtvb232p3X06rj1d3dqyu1PxVHbK410noM1rmrW6qVa1lXysjPnx8um4HpvBeXttU60u4LwFAJynjDFPWWvbxn2NEPwr3X1xbdrRob2He3J+76rGam3d0KJaxldijnHeAgAwvslCMBPjRnSfnnmQkKS9h3u0aUeHuvviHncGTOxlzlsAAGaEEKzhMcB7urpnHCTO2Hu4R3s6uzUQT3nUGTCx00NJPebhedsXS3rUGQAA+Y8QLKkvntaW3Z2e1Nqyu1OnY2lPagGTGUhkPD1v++MZT2oBAFAIij4EJ5LDq0BMZzLRdMRTWe06eFyJJEEY/oknUr6ct/EEn2IAAIpD0YfgnsGktu8/6mnNbfuOvr6+MOCHV4ZSvpy3rwwRggEAxaHoQ7C1Gnc91dk41htTAS66gQLCeQsAwOwUfQgeiPszbGEgwXAI+IfzFgCA2Sn6EBxL+TMZKO5TXUDivAUAYLaKPgRHnaAvdd2QP3UBifMWAIDZ8j0EG2OuN8YcMcY8Z4zZNM7rtxljOo0xHcaYx4wxb/C7p9HK3FBB1QUkzlsAAGbL1xBsjAlK+ltJ75XULGmjMaZ5zGE/ldRmrW2R9F1J9/rZ07k9SvVVUU9r1ldFZYynJYGzcN4CADA7ft8JXinpOWvt89bapKRvS1o/+gBr7V5r7dDIw/+UtNTnns5SXRrWxqsaPK15y8oG1ZRHPK0JjLa4xPHlvK0u47wFABQHv0NwnaRjox6/OPLcRD4m6V/He8EYc6sxpt0Y097TM7ttYkeLhENa31on1/Hmn8J1Alp3RZ3CjK2Ej9yI48t5G/FprDEAAPkmbybGGWM+JKlN0hfGe91ae5+1ts1a21ZdXe3p313hhrR5zdhRGjOzeU2zKqOMq4T/yiJBT8/bcpcADAAoHn6H4OOS6kc9Xjry3FmMMasl3SFpnbU24XNP5yiPOlrdVKtVjbML16saq7W6uVZlruNRZ8DEKkvCutbD87YiGvaoMwAA8p/fIXi/pEuMMW80xoQlfUDSrtEHGGPeLOkrGg7AJ33uZ0K1la62bmiZcaBY1VitrRtaVFvhetwZMLELOG8BAJgRY33eJ9UY8z5JfyUpKOlr1tq7jTF3SWq31u4yxuyRdLmkl0bectRau26ymm1tbba9vd2XfrtPx7Wnq1tbdncqnspOebzrBLR5TbNWN9cSJDBvXj4d12OctwAAnMUY85S1tm3c1/wOwX7wMwRL0kA8pdOxtHYdPK5t+47qWG9MZeGgFpaGdWowqYFkRvVVUd2yskHrWutU6YYYAoF51xdLqj+eOeu8HWv0eVseCTIEAgBwXiMEz1AskdKrQylJUn8srVgqo6gTVPnIxLdFJY6iEcIv8suZ89ZaaSCRVjyVkesEVRYJyRhpcakjN8x5W4gSybR6BpOSxr8mVZeGFQkzMRfA/MuX69VkIZir5Tj6Yyn1xdPaeeC4tu+f+I7axqsatL61ThVuSOVRQgXm13jn7XifYHDeFh6uSQAKRSFdr7gTPMaMxwQ31aq2krGVmB+ct+cvvrYACkU+Xq8YDjFN3X1xbdrRob2Hc9+Mg1n2mC+ct+cvvrYACkW+Xq8mC8F5s1nGfOs+PfMvniTtPdyjTTs61N0X97gzYGKct+cvvrYACkWhXq8IwRoev7Knq3vGX7wz9h7u0Z7Obg3EUx51BkyM8/b8xdcWQKEo5OsVIVhSXzytLbs7Pam1ZXenTsfSntQCJsN5e/7iawugUBTy9aroQ3AiOTyDcToDuKcjnspq18Hj/3979x9b1Xnfcfzzxb6+9xoDCdRxUmNKsqQl1kpIZljWdlUoaEpCBhXK1sKmZl3W7GfXdusmNolNG6pEtR/ZqkZduyRLNgXaiqGGlanZQplSrVrANL8NWaKkNUHB8UhiYux7fW1/98c9BMfYhtjn+Po55/2SEL73Hj/3kZ/nfP3xuc85R+UhfukgOczb9GJsAYQi9HqV+RDce2ZIuw93x9rmrkPdb18bD0gC8za9GFsAoQi9XmU+BLtrwmvYzcTx1wcV4EU3EBDmbXoxtgBCEXq9ynwI7i8lc8i9v8xHj0gO8za9GFsAoQi9XmU+BA9WRhJpt5RQu4DEvE0zxhZAKEKvV5kPwcVcXSLtFuqTaReQmLdpxtgCCEXo9SrzIbipUB9Uu4DEvE0zxhZAKEKvV5kPwWZS2+JirG22LS7KLNYmgXdg3qYXYwsgFKHXq8yH4Ob5DdqyelmsbW5ds0yXLcjH2iYwFvM2vRhbAKEIvV5lPgTnG+q1aVWrCrl4fhSF3DxtvK5VDay/Q4KYt+nF2AIIRej1KvMhWJIWFuq1fUN7LG1t39CuRUXW3iF5zNv0YmwBhCLkekUIlrSgmNP6a1u0dkXzjNpZcFgtAgAAENxJREFUu6JZ69tb1FTIxdQzYHLM2/RibAGEIuR6RQiOtCwqaOfmldMexLUrmrVz80q1LCzE3DNgcszb9GJsAYQi1HplHuC9NDs6OryzszORtnv6Snr0aI927O9SqTJ6we0LuXnavqFd69tb+GWDmmHephdjCyAUk9WrpoY6XTq/QW+cGVL/0LkbYcxGvTKzI+7eMeFrhODz9Zcq6hsc1r6nTmjXoe4J74vdtriorWuWaeOqVi0q1PNxI2qOeZtejC2AUJytV/3ligq5OtWZ6XSpolJlVIXcPC0s5DTirtLQiJqKucTr1VQhmLMlJnD274K1H7hMt37wCs0zU395WKXKiAq5OjXl6zUaDaD83PZALTUVcmoq5PTrH1quX7zuvXLXefPWTLpsQZ4rBQSmMlotMhdbk85uDwCz7WwmOnD0Ne0+PPkf7VtWL9OmVa01zVAcCR5n2ofyr21RyyI+egQQr5N9JR2YRk1ad22LLqcmAZhF016+lWCGYjnEReo5XdK2vU/r4LHed/29nIQCIG7UJAChmKv1aqoQzNUhIj190x88STp4rFfb9j6tntOlmHsGIItOUpMABCLUDEUIlvTWYEWPHu2Z9uCddfBYrx7t6lF/qRJTzwBk0RsDQzoQY016c2Aopp4BwDuFnKEIwZJOl4a1Y39XLG3t2N+lvsHhWNoCkE0D5ZFYa9KZ8siFNwSAaQg5Q2U+BJeHhvXwkycuagH3xShVRrXvqRMqDxGEAbx7g+VKIjVpsMwnVADiFXqGynwI7j0zpN2Hu2Ntc9ehbvWe4eNHAO/eqYFKIjXp1AAhGEC8Qs9QmQ/B7prwGnYzcfz1Qa4dDGBaqEkAQhF6vcp8CO4vJXPIvb/McggA7x41CUAoQq9XmQ/Bg5VkThgpJdQugHSjJgEIRej1KvMhuJhL5vaxBW5LC2AaqEkAQhF6vcp8CG4q1AfVLoB0oyYBCEXo9SrzIdhMaltcjLXNtsVFmcXaJICMoCYBCEXo9SrzIbh5foO2rF4Wa5tb1yzTZQvysbYJIBuWNOYSqUnNTdQkAPEKPUNlPgTnG+q1aVWrCrl4fhSF3DxtvK5VDay/AzANxXwukZqUT2jtHoDsCj1DZT4ES9LCQr22b2iPpa3tG9q1qMjaOwDT15ivi7Umzc8TgAEkI+QMRQiWtKCY0/prW7R2RfOM2lm7olnr21vUVMjF1DMAWXRpY4PWxViTLmlsiKlnAPBOIWcoQnCkZVFBOzevnPYgrl3RrJ2bV6plYSHmngHIosupSQACEWqGMg/wXpodHR3e2dmZSNs9fSU9erRHO/Z3qVQZveD2hdw8bd/QrvXtLfyyARC7k30lHaAmAQjAXMxQZnbE3TsmfI0QfL7+UkV9g8Pa99QJ7TrUPeF9sdsWF7V1zTJtXNWqRYV6lkAASMybA0M6Ux656Jo0v6GOJRAAamKuZShC8DSVh4bVe2ZI7tX7WJcqIyrk6tSUr5eZdNmCPFeBADBrBssVnRqoTFqTmpvyXAUCwJwwVzLUVCGYyxhMId9Qr6UN/IgAzA3FfE5L83zqBGDuCyFDcWIcAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBzCMEAAADIHEIwAAAAMocQDAAAgMwhBAMAACBz6mvdgblssFzRqYGKJOmtwWENVkZUzNVpQbH6Y1vSmFMxn6tlF4HzMG/Ti7EFEIoQ6hUheAJvDAxpoDyih588od2Hu3X89cHztmlbXNSW1cu0aVWrGvN1urSxoQY9Bc5h3qYXYwsgFCHVK3P3mrzxTHR0dHhnZ2cibZ/sK+nA0R7t2N+lUmX0gtsXcvO0fUO71l3bossXFRLpE3AhzNv0YmwBhGIu1iszO+LuHRO+Rgg+p+d0Sdv2Pq2Dx3rf9feuXdGsnZtXqmUhv3Qwu5i36cXYAgjFXK1XU4VgToyLnOyb/uBJ0sFjvdq292n1nC7F3DNgcszb9GJsAYQi1HpFCFZ1/cqBoz3THryzDh7r1aNdPXpzYCimngGTY96mF2MLIBQh1ytCsKSB8oh27O+Kpa0d+7t0pjwSS1vAVJi36cXYAghFyPUq8yF4sFzRw0+euKgF3BejVBnVvqdOaLBciaU9YCLM2/RibAGEIvR6lXgINrObzex5M3vRzLZN8HrezL4Vvf64mS1Puk9jnRqoaPfh7ljb3HWo++1r4wFJYN6mF2MLIBSh16tEQ7CZ1Um6R9ItktolbTGz9nGb3SnpDXe/WtLdkr6cZJ/Gc9eE17CbieOvDyrAi24gIMzb9GJsAYQi9HqV9JHgNZJedPeX3H1I0jclbRq3zSZJD0Zf75G0zsws4X69rb80nEy75WTaBSTmbZoxtgBCEXq9SjoEt0o6PubxK9FzE27j7sOS+iQtGd+Qmd1lZp1m1tnbO7MzEMcarCSzALuUULuAxLxNM8YWQChCr1fBnBjn7t9w9w5372hubo6t3WKuLra2xirUJ9MuIDFv04yxBRCK0OtV0iH4hKS2MY+XRs9NuI2Z1UtaJOlUwv16W1OhPqh2AYl5m2aMLYBQhF6vkg7BhyVdY2ZXmlmDpE9K2jdum32S7oi+vl3S930W7+VsJrUtLsbaZtviomZvVTOyiHmbXowtgFCEXq8SDcHRGt/fk/SIpKOSvu3uz5nZX5rZxmiz+yQtMbMXJf2BpPMuo5akJY05bVm9LNY2t65ZpuamfKxtAmMxb9OLsQUQitDrVeJrgt393939/e7+U+7+pei5P3P3fdHXJXf/JXe/2t3XuPtLSfdprGI+p02rWlXIxfOjKOTmaeN1rcontE4GkJi3acbYAghF6PUqmBPjktSYr9P2DeMvXzw92ze0a36eXzZIHvM2vRhbAKEIuV4RgiVd2tigdde2aO2KmV11Yu2KZq1vb9EljQ0x9QyYHPM2vRhbAKEIuV4RgiOXLypo5+aV0x7EtSuatXPzSrUsLMTcM2ByzNv0YmwBhCLUemWzeCGG2HR0dHhnZ2cibZ/sK+nA0R7t2N+lUmX0gtsXcvO0fUO71re38MsGNcO8TS/GFkAo5mK9MrMj7t4x4WuE4PO9OTCkM+UR7XvqhHYd6p7wvthti4vaumaZNq5q1fyGOj5uRM0xb9OLsQUQirlWrwjB0zRYrujUQEXu1ftYlyojKuTq1JSvl5nU3JTnjGvMOczb9GJsAYRirtSrqUIwtxCaQjGf09J8rtbdAN4V5m16MbYAQhFCveLEOAAAAGQOIRgAAACZQwgGAABA5hCCAQAAkDmEYAAAAGQOIRgAAACZQwgGAABA5hCCAQAAkDlB3jHOzHol/STBt3iPpP9LsH3UFuObXoxtujG+6cb4plutxvd97t480QtBhuCkmVnnZLfYQ/gY3/RibNON8U03xjfd5uL4shwCAAAAmUMIBgAAQOYQgif2jVp3AIlifNOLsU03xjfdGN90m3Pjy5pgAAAAZA5HggEAAJA5hGAAAABkDiF4DDO72cyeN7MXzWxbrfuDmTGzNjM7aGZdZvacmX0uen6xmf2nmb0Q/X9prfuK6TOzOjN7wsy+Gz2+0swej/bjb5lZQ637iOkxs0vMbI+ZHTOzo2b2c+y/6WFmX4hq87NmttvMCuy/4TKz+83sNTN7dsxzE+6vVvWVaJyfNrMbatFnQnDEzOok3SPpFkntkraYWXtte4UZGpb0h+7eLulGSb8bjek2SQfc/RpJB6LHCNfnJB0d8/jLku5296slvSHpzpr0CnH4e0nfc/cVkq5TdZzZf1PAzFol/b6kDnf/aUl1kj4p9t+QPSDp5nHPTba/3iLpmujfXZK+Nkt9fAdC8DlrJL3o7i+5+5Ckb0raVOM+YQbc/VV3/1H09Vuq/gJtVXVcH4w2e1DSx2vTQ8yUmS2VtEHSvdFjk/QxSXuiTRjfQJnZIkkflXSfJLn7kLu/KfbfNKmXVDSzekmNkl4V+2+w3P0xSa+Pe3qy/XWTpH/2qv+RdImZXTE7PT2HEHxOq6TjYx6/Ej2HFDCz5ZKul/S4pBZ3fzV66aSklhp1CzP3d5L+WNJo9HiJpDfdfTh6zH4crisl9Ur6p2i5y71mNl/sv6ng7ick/bWkblXDb5+kI2L/TZvJ9tc5kbkIwUg9M2uS9K+SPu/up8e+5tVrBHKdwACZ2W2SXnP3I7XuCxJRL+kGSV9z9+slndG4pQ/sv+GK1oZuUvWPnfdKmq/zP0pHiszF/ZUQfM4JSW1jHi+NnkPAzCynagB+yN33Rk/3nP3YJfr/tVr1DzPyYUkbzezHqi5f+piqa0gviT5eldiPQ/aKpFfc/fHo8R5VQzH7bzqsl/Syu/e6e0XSXlX3afbfdJlsf50TmYsQfM5hSddEZ6Y2qLpAf1+N+4QZiNaH3ifpqLv/7ZiX9km6I/r6DkkPz3bfMHPu/ifuvtTdl6u6v37f3X9F0kFJt0ebMb6BcveTko6b2Qeip9ZJ6hL7b1p0S7rRzBqjWn12fNl/02Wy/XWfpE9FV4m4UVLfmGUTs4Y7xo1hZrequsawTtL97v6lGncJM2BmH5H0A0nP6Nya0T9VdV3wtyUtk/QTSb/s7uMX8yMgZnaTpC+6+21mdpWqR4YXS3pC0q+6e7mW/cP0mNkqVU96bJD0kqRPq3rwhv03BczsLyR9QtUr+Twh6TdUXRfK/hsgM9st6SZJ75HUI+nPJX1HE+yv0R8+X1V1CcyApE+7e+es95kQDAAAgKxhOQQAAAAyhxAMAACAzCEEAwAAIHMIwQAAAMgcQjAAAAAyhxAMAACAzCEEA0ANmNlGM9t24S3P+77lZvZsAv25ycw+NObxA2Z2+1TfAwAhq7/wJgCAuLn7Ps2tu1LeJKlf0g9r3A8AmBUcCQaAmEVHa49FR1P/18weMrP1ZvbfZvaCma0xs18zs69G2z9gZl8xsx+a2UsXewTWzOrM7K/M7LCZPW1mvxk9f5OZ/ZeZ7Yn68VB0hyaZ2a3Rc0ei9/yumS2X9FuSvmBmT5rZz0dv8dHxfTKzK8zssWi7Z8dsCwBBIQQDQDKulvQ3klZE/7ZK+oikL6p6++7xrohev03Szot8jzsl9bn7akmrJX3GzK6MXrte0ucltUu6StKHzawg6euSbnH3n5HULEnu/mNJ/yDpbndf5e4/mKJPWyU94u6rJF0n6cmL7CsAzCkshwCAZLzs7s9Ikpk9J+mAu7uZPSNp+QTbf8fdRyV1mVnLRb7HL0haOebI8SJJ10gaknTI3V+J3v/J6D37Jb3k7i9H2++WdNcU7U/Up8OS7jezXPQ6IRhAkDgSDADJKI/5enTM41FNfABi7PZ2ke9hkj4bHb1d5e5Xuvt/TNDeyCTveSHn9cndH5P0UUknJD1gZp+aRrsAUHOEYAAI1yOSfjs6Kisze7+ZzZ9i++clXRWtAZakT4x57S1JCy70hmb2Pkk97v6Pku6VdMM0+g0ANcdyCAAI172qLnP4UXTiW6+kj0+2sbsPmtnvSPqemZ1RdWnDWf8maY+ZbZL02Sne8yZJf2RmFVWXV3AkGECQzN1r3QcAwCwxsyZ3749C8z2SXnD3u2vdLwCYbSyHAIBs+Ux0otxzqp5I9/Ua9wcAaoIjwQAwB5nZByX9y7iny+7+s7XoDwCkDSEYAAAAmcNyCAAAAGQOIRgAAACZQwgGAABA5hCCAQAAkDn/Dy/HGzKHtEOpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde5iV5X3v/8+9zmuOMDizlAEkSY0zIwzEjsRDmkiB5gCCQX9toMk2h53s69dz7c4OrcG2Uhuiu7rbbnv9anfb2Oyt3WkkQiDdRCiabmMKQyqIM2CMMSDoYsnAHNd53b8/1owZcE5r5nnWrMV6v67LC9dhvn71Wd7PZ551P/dtrLUCAAAAKolnthsAAAAAio0QDAAAgIpDCAYAAEDFIQQDAACg4hCCAQAAUHF8s93AdFxxxRV28eLFs90GAAAAStjhw4ffstY2jvVaWYbgxYsXq7Ozc7bbAAAAQAkzxvx0vNeYDgEAAICKQwgGAABAxSEEAwAAoOIQggEAAFBxCMEAAACoOIRgAAAAVBxCMAAAACoOIRgAAAAVpyw3yyiWZCqj2GBKktQfzyiezirs96o2nP/P1lgdUDDAf0IAxcGYBKBcxJNpnRtKSxp7vJpX5Vc46J/NFgnBY+mPp9WXyGjnC6f1xKGTOtUTf8d7FjaEtemGRdqwvFl1IZ9qw7N7IAFcvhiTAJSL80MpDSWzUx6vqoJeza0KzEKnkrHWzso/eCY6OjqsW9smR3sT2tcd1bY9XUqkc28/7/MYBXwepTI5ZXI/+28W8nu0dW2bVrdGFKkPudITgMo13pg0HsYkALPlzd6E9k9jvFrVGtGVLo1XxpjD1tqOMV8jBP9MtC+hLTuO6sDxmLweo9WtTfrY0qvUPCesdCanTNbK5zXy+zw6fSGuPUff0P7jZ5XNWa1sadT2je2K1HHSAeCM0WNSoRiTABRTqY5XhOApiPYmtOVb+YO3ftl8ffaWxUqks5pTHVDY79VAIqNUJquAz6uakE/xdFbnB1IKB7z6u+de064jZzjpAHDM6DFpuhiTABTDm70J/X6JjlcThWBWh1B+vt2+7qgOvtqjRzZfr8/csljzaoLqGUzrtbcGFetP6kI8rZ6htC7E04r1J/XaW4M6P5TWvJqgPnPLYj2y+XodfLVH+7qiGkikZ/tfCUAZGxmTZnJCkaQDx2OMSQBcdX4opf0OjlcXhlIOdTY5boyT1JfI6KGnT+jvP3ODGmtDOnVuSMYYvXy2X0/+8PVxJ3Xfcf0CzZ8bVn88o7b5dfr7z9yg//d/Htat1zapJsRNKQCmpy+R0bY9XY7U2ranizEJgGuGklnHx6s5VY6Um1TFXwlOpvJ3XG+/Y5kWzKnSGxfi+lGsX5949Hn9t30/GjMAS9Kpnrj+274f6ROPPq8fxfr1xoW4Fsyp0vY7lmnXkdNKpjJF/jcBcDkYGZOmclPJVCTSOcYkAK6IJ9OujFfxZHG+var4EBwbTCnan1DbVbWKDST16L++qm27u6d8QBPpnLbt7taj//qqYgNJtV1Vqzf6Em+v5QkAhYgNpvTEoZOO1nz84EnGJACOOzeUdmW8Gllf2G0VPx3CWuk/3rJY/YmMHt73sp45Mb05LSM/t+WjLfr8BxarDO83xGUim82pZyilTM6qP5FRNpuV1+tVbcgnn8eooSogr7fif/8tWdZq3G+gputUT5wxCYDjyn28qvgzYS5nFfD59NyP35p2AB7xzImYnnvlLQW8PuU446DIUpmc3uxN6MipCzo3mFIqk1M6k9NgKv9nKpPTucGUXjh1QW/2JpTKOPP1FZw1kHBn2sJAkukQAJxV7uNVxV8Jrgp61ZfI6MG9Jxyp9+DeE7r12ibVhSr+Py2KqGcwpTMXhlQfDugHP+mZdJee2+pCejnap/lzqtRQPTs79WBs8XTWlboJl+oCqFzlPl5V/JVgK6vdR844Oql7z9EzKsf1l1Gezg0k1RdP68ipXq15+Fk9sPfEhDd0PrD3hNY8/KyOnOpVXzytcwPJIneMiYT9Xlfqhnzu1AVQucp9vKr4EJxMW33zh687WvOfDr+uZIYQDPf1DKaUSOf0x7tf0j1PHSvohs57njqmP979khLpnM5z01TJqHHpWyS36gKoXOU+XlV8CLay7kzqFiEY7kplchpKZfTlnS9Oe5HyA8dj+vLOFzWYyjBHuEQYk5+24qSFDWEZ42hJACj78ariQ7Brk7oTzL+Du/rjKT17IubILj3PnoipL87V4FLQWB3QphsWOVpz84pFaqoNOloTAOZV+V0ZrxprijNeVXwITrp09SuVIQTDPdlsTvFMztFdehKZnLJZrgbPtmDApw3LmxXyOzM8h/werV/WrABzggE4LBz0uzJeBV2aa3ypig/Brk3qLtIBRGXqT6W16wVnb+j89pEz6k8VZ4FyTKwu5NPWtW2O1Nq6tk31YeYDA3BHVdDr6HhVHSxefqr4EFwddOfk4FZdQMpPt3Fjlx6m8ZSG2rBfq1sjWtnSOKM6K1satbotopqQ36HOAOBic6sCWuXgeDWnqnjLdlZ8CPZ63JnU7fVwFwrcU+679GBykfqQtm9sn/aJZWVLo7ZvbFekLuRwZwBwsSvLdLyq+BA8ryqgT914taM1P3Xj1bqihg0I4J7+hDvTFthVrLRE6kLa/vF23X/7kinPuQv5Pbr/9iUEYABFFakL6StlNl5V/Hf2wYBP69rn66GnX3ZkfmXI79G69vnchAJXOTUX+J11mQ5RaiL1IW1YPl+3XtukXUdO6/GD4+8GuHnFIq1f3qz6kI8pEACK7sr6kNa2X1XQeFUd8BZ1CsRoFR+CJak26NMf3Xadtux4cca1/nj9dWyZDNeV+y49KExNyK+akF+fvXmxbls2X9bmr9on0lmF/F7VBH0yRmqqDfILOIBZNacqoDlV0qdvunrC8aqxJli0VSDGQ1pT/iaUldc2aVVLk/YfPzvtOqtamnTrtU1cgYHryn2XHkxPMODTggDHCEDpCwf9WhAs7TxU8XOCR0TqQ/rTjUu1qqVpWj+/qqVJf7pxKXPwUBQel3bp4X5OAEClIASPEqkL6U8/vlRf2bi0oEndX9m4lACMogoHPK7s0hMO8FU6AKAy8L3aJSL1IX1syZX64DWN2n30jP7nv/103Endn3z/1Vq3bL5qAl7Vz9KkblSmwWRO65fP11/8y48cu6HztmXzNZjMqqHagQYBAChxxpbhwqAdHR22s7PTldpn+xLqfqNP9VUBBTxG1SGfPMa8Y1J3zloNJTNKZq16h1JqvapOTVwJRpF0n+nT86++paDPq3ueOjbjevffvkSJdFY3/9wVar2qzoEO4YZsNqeeoZQyOav+REbJdFZBv1e1IZ98HqOGqoC8Xr7gA4ARxpjD1tqOsV7jSvAosb6EXjk7oFdiA3pw74mLrrBdUeXX/LlhnTkf11tDP1ujNeT36IsfvlZ+r0dGUiNBGEUQT2d13+5u7bv7g1rZ0qgDx2PTrrWypVHvf3eDVj/0PX3r1252sEs4JZXJqWcwpd1Hz+ix518b99upu25arHXt89VQHVDARxgGgIkQgofF+hI605vQo//6qp45EVPA59F/+fB7dWtLk6oDPg0kMoqnswr7vaoJ+TSYyuhfus/qL/7lFW3b3a1br23U765+rySCMNw3Mmd906M/0I5fu0X36ti0gvDKlkbdt36JNv7Vc5KkIMGp5PQMprS/O6qtO49d9Iu5z2MU8HmUyuSUyVmd6onrT/Z0679+94S2bViiVa0RNVQzTQsAxkMIljSUzOitwZQe3veynjkR073rWrWm7Up9+8gZ/aevH9apnvg7TjgLG8LadMMi7b/7Q3q6603dt7tbkvSlj7SoOuRTFcsYwUW1w8vwxQZS2vhXz+nxz9+o1S0RbdvTNaU5wiG/R1vXtmnFuxq08a+eU2wgdVFdlIZzA0ltefJFPd0dlddj9OHrIvrY0qvUPCesVCanVCangM+jgM+j0xfi2nP0De0/flZf/OZRrWmNaPsdSzWvJjjb/xoAUJJIapL6kxl9/8dv6aXTvXr6dz+ogz/p0Uf+/Hv6wM9dof/8S9eqeU5YyUzu7TnBwVEnnEeeeUV/8NFWPf27H9Tmv/mBvv/jt9RQPZ8QDFeZ4SXSTvXEFRtIac3D39PWta16+nc/pN1Hz0y6S8+69vn67ktvas3D37voNcMSaSWjZzD1dgBev2y+PnvLYp3sGXp7moOVlLVWI3d1BH0erV16lX7t1vfo7557TbuOnJGelB64s11zuSIMAO9Q8Uktnc6qP5HR1577Sf5r5V3HVBv063997v165uWY/ut3T4wbJu64fsHbJ5x9x6Pa8Wu3aPPfPK9b39ukhnBW/lneCQWXr7qwV5tuWKQH9p54+7lte7r11b0n9Fu/+HP660/9vKoCPg0mM0qkcwr5PaoO+jQ0PI1n1UPPKpW5+Irx5hWLVB/mSnApSGVy2t8d1fd//JYe2Xy9gj4jGaNX3xrUkz98fcIx6eorqrV+2VX68HVX6r9884j2dUe1YXkzc4QB4BIVvzpErD+ux//tlD629Co99PQJrWtv1pt98XfcGDeekRvjrqwLa/fR07p7zbX652NvaNOKhWqsdXYzA2BENpvTm31JrXromQk/pyGfRzWh/Jz2RGaC9/k92n/3rbqyPiQvO2bMujd7E1r7F9/TI7/688rlrLrf7Ct4TGq9sk4ej9Gv/6/D2vNbH9SV9dyrAKDyTLQ6RMWH4NfPD+m5V96SrLRwXpUe/V7+xrhC3Xpto77wwXfr1LkhWVl94JpGLZhb5UiPwFjODST0f45FHVsi7SNLIppXQ1CabdlsTn///de0YG6VrqoPvX2vQqFGbtZ9ozeh188P6TM3L2b5NAAVZ6IQXPEjYi5ndfN7rlBd2D/tACxJz5yI6dHvvaq6sF+3/FyjcmX4ywXKS20ooF9sbdLKlsYZ1VnZ0qhfbG1SbYh5o6WgZyilU+eHtLAhPO0ALOXHpIf3vayFDWGdPD+knqGUw50CQHmr+BDs93p07HSvzvTGp32yGfHMiZjO9MZ17Eyv/J6K/08LlwV8HgV9Xn3l4+3TDsIrWxr1lY+3K+TzMme0RGRyVp96/yL94NVzjoxJP3j1nD71/kXK5PjFHABGq/izXjqX04K5YT046gajmXhw7wktmBNWOjfzrWyByTRUB+T3Gt1/+1Ldf/uSt9cPnkzI79H9ty/R/bcvld9rWD2ghGSzVjIeR8ckYzz5ugCAt1V8CA76PNp//OyUbjiZikQ6p385fpZNB1A082qCCvm9uuk9Ddp/96360keu1cKGsW/KXNgQ1pc+cq32332rbn5Pg8J+L+vIlhivx2jP0TOOjknfefEMNzwCwCUqfom0eCqnJ3/4uqM1v/nD17Xhfc2O1gQm0lAdUE3Qp57BlFa1NOljS6+SxxgNJDNvr29dE/QpZ62S6ay8HqPmudVMgShBmZzVNx0ek/7p8Ov6+PsWOFoTAMpdxYdgYzTmmpszcaonLq65oNgCPo+urA+psSagnqGUMjkrn8coHPDIa4x8XiOfx6MFc6u4KljCrKwrY9LPttUAAEiEYA0ls+7UTblTF5iM1+tRY+3wUmf1s9sLCjeQyLhT16WxDgDKVcV/F5qcYAOBmbh0Ny4AmAr3xiRCMACMVvEheKp30xeKG+MATEfYpe3WQz62cQeA0So+qdWF/WVVF8DlrSbkziw1t+oCQLmq+FHR7zVa2BB29EaUhQ1h+b3ceITZkUxlFBvM7w7WH88omckq6POqNpz/372xOqBgoOL/1y9ZRnJlTGJEAoCLVfyV4IaqgP7DjYsdrXnXTYvVUM3aqyiu/nhap8/Htf/4WR073as3exO6MJRSfzyjC0Mpvdmb0LHTvdrXfVanz8fVH0/PdssYg89r9Mn3X+1ozU/deLX83oof7gHgIhU/Knq9Ht22bL5jc4NDfo/Wtc9nCSoUVbQ3ocM/Pa/YQFIN1QEtvqJajbVB1YX9Cge9qgv71Vgb1OIrqtVQHVBsIKnDPz2vaG9itlvHJc4NpPShaxsdHZM+eE2jzg1/OwAAyOM7UeU3Gti2YYm++M2jM661bcMSNbAFLYrobF9CP44NqL7Kr3nVAX37lbf0xKGTY36dvrAhrE03LNJty+bLWqsfxwZkjNRUF5qFzjGWRDqnr33/Nd277jr9wbdenHG9P1x3nR458Io++4F3OdAdAFw+Kv5KsJTfZGBVa0RrWiMzqrOmNaLVrRF24ULRnO1NKNaf0FVzwuo606c1Dz+rB/aeGHc+6ameuB7Ye0JrHn5WXWf6dNWcsGL9CZ3t44pwqQj7vdp15Iwaqv1a1dI0o1qrWpo0t9qvbx99g9UhAOASpLVhDdUBbb9j6bSD8JrWiLbfsVRzuQqMIumPp3UhkdKcqqDu2/2S7nnqmBLpqa0xm0jndM9Tx3Tf7pc0pyqoC/GUBhLMES4FI6s4/N43jujzH3z3tIPwqpYmff6D79bvfePIRXUBAHmE4FHm1QT11Tvb9eCd7VOejxfye/Tgne164M52zavhZjgUz1Aqq7Dfpy/vfFEHjsemVePA8Zi+vPNFhQM+DbKjWEkwJj9tZTCV1ee+dkgbr1+g+9ZfV9CYdN/667Tx+gX63NcOaTCVza8OwW0KAHARLg1coqE6oA3Lm/UL1zRq99Ezeuz518adW/npmxdr7dL5aqgOMAUCRZVMZZST1fdejk07AI84cDym77XEtLqlSclUhuXTZlljdUCbblikB/ae0GAqq19//Ie6rf0q/eMXbtT//dFb+t+dp8Ydk36lY6E+cM0V+tt//Ym+ffSNt1/bvGKRmmr5JR0ARjPW2tnuoWAdHR22s7PT9X9ONptTz1BKmZzVQCKjZCanoM+jmpBPPo9RQ3WQVSAwK872x5XKWK1+6NkpT4GYSMjv0b67P6SA16ipLuxAh5iJ0+fjWvXQMxcdW6/HaFVLk9a2X6X5c8JKZ3NKpnMK+j3yez06cyGu3Uff0L8cP6ts7mfjesjv0f67b1XzXI4rgMpjjDlsre0Y6zUu+UzA6/WosXb4rvn62e0FGM3rMdr1wmlHArCUnyP87SNn9Ms3LHCkHmamLuTT1rVtuuepY28/l81Zfbcrqu92RSVJPo9RwOdRKpNTJjf+xYyta9tUH2aoB4BL8R0+UIaGkjk9ceikozUfP3hSQ0lnQjVmpjbs1+rWiFa2NI77nkzOaiiVnTAAr2xp1Oq2iGpCbOMOAJciBANlysltdd2oh5mJ1Ie0fWP7hEF4IitbGrV9Y7sirAENAGMiBANlqN+l5cwGkhlX6mJ6InUhbf94u+6/fUlBq0Pcf/sSAjAATIKJYkAZcmou8DvrskxaqYnUh7Rh+Xzdem2Tdh05rccPjr8b4OYVi7R+ebPqQz6mQADAJAjBQBkK+93Z/YtdxUpTTcivmpBfn7158fCW1/mr9ol0ViG/VzVBX37769qgAhxDAJgSQjBQhtza/YtdxUpbMODTAtZxBgBHMCcYKEMju4o5iV3FAACVhBAMlKGqgEebVixytObmFYtUFeCrdABAZSAEA2Uom7PasGz+lFcMmEzI79H6ZfOVm2DNWQAALieEYKAMzQkF5PEYbV3b5ki9reva5DNG9VUBR+oBAFDqCMFAGfL7vfIYow++t3HamymMWNnSqA+9t1HyGPm9DAkAgMrAGQ8oU7VBn+LpjP5kw9IZ7Sr2JxuWaiiVUS0rQwAAKgghGChTVUGf5oYDujCU1L3rrpvWrmJ/uO46XRhKam44oCqW3gIAVBDOekAZaxzeFvdHZwfUelWtnv7dD2n30TOT7iq2rn2+Yv0JnbkQ1zVNNW/XQWmLJ9M6N5TfMrs/nlE8nVXY71VtOD+Uz6vyKxxkpzgAsy+Zyig2mJI09njVWB1QcJYvvhCCgTLXWBeSldT9Rp88npTet2COVrY0KeT3ajCZUSKdU8jvUXXQp0Q6qwuDKZ0bTKk/kVHrVXUE4DJwYSilwWRWO184rScOjf8LzqYbFmnD8mZVB72aw02OAGZBfzytvkRmyuNVXcin2vDs/PJurC2/JZE6OjpsZ2fnbLcBlJShVEbnh9I6cvK8PB6jeTVBZbM5pbNWfq+R1+vRuYGkctZq+cK5mlPlZwpEGXizN6H93VFt29OlRDo36ftDfo+2rm3TqtaIrqznFxwAxRPtTWjfNMar1a0RRVwar4wxh621HWO+RggGLi/pdFaxwaRyVupPZJTKZBXweVUb8sljpMbaEKtAlIloX0JbdhzVgeOxgn92ZUujtm9sV4Qr/QCKoFTHq4lCsOtnQmPMR4wxJ4wxrxhjtozx+iJjzAFjzL8bY44aYz7mdk/A5czv92r+nCotmFul1qvqtGzhXLVeVacFc6s0f04VAbhMvNk7/ROKJB04HtOWHUcV7Us43BkAXCxapuOVq2dDY4xX0iOSPiqpTdImY8ylq/t/WdI3rLXvk/QJSX/lZk8AUOouDKW0vzs67RPKiAPHY9rXFVXvUMqhzgDgYv3xtPY5OF4NJNIOdTY5ty8JrZD0irX2VWttStI/StpwyXuspLrhv6+XdMblngCgpA0ms9q2p8uRWtv2dGkgmXWkFgBcqi+RcXS86o1nHKk1FW6H4GZJp0Y9fn34udH+SNInjTGvS/qOpN8cq5Ax5gvGmE5jTGcsNrPfNgCgVMWTae184fSUbiqZikQ6p11HTiueLN7VFQCVIZnKuDJeJVPFCcKlMDlwk6SvWWsXSPqYpK8bY97Rl7X2UWtth7W2o7FxZtvEAkCpOjeU1hOHTjpa8/GDJ99eXxgAnBIbTLkyXo2sL+w2t0PwaUkLRz1eMPzcaJ+T9A1JstY+Lykk6QqX+wKAkmStxlxXcyZO9cRVhgsBAShx5T5euR2CD0m6xhjzLmNMQPkb33Zd8p6TklZJkjGmVfkQzHwHABVpIOHO14ADyeLNswNQGcp9vHI1BFtrM5J+Q9JeSd3KrwLxkjHmPmPM+uG3/Z6kzxtjjkh6QtKnbTkuXgwADoin3bmJLeFSXQCVq9zHK9e3i7LWfkf5G95GP3fvqL/vknSL230AQDkI+72u1A353KkLoHKV+3hVCjfGAQCG1YTcuTbhVl0AlavcxytCMACUEGOkhQ1hR2subAjLGEdLAkDZj1eEYAAoIfOq/Np0wyJHa25esUiNNUFHawJAY3XAlfGqqbY44xUhGABKSDjo14blzQr5nRmeQ36P1i9rVtCluXsAKlcw4HNlvAowJxgAKlN10Kuta9scqbV1bZtqggRgAO6oC/kcHa/qw8W7f4EQDAAlZk5VQKtaI1rZMrPdMVe2NGp1W0T1VQGHOgOAi9WG/Vrt4HhVE/I71NnkCMEAUIKurA9p+8b2aZ9YVrY0avvGdkXqQg53BgAXi5TpeGXKcV+Kjo4O29nZOdttAIDr3uxNaH93VNv2dCmRzk36/pDfo61r27S6LUIABlBU0d6E9pXYeGWMOWyt7RjzNUIwAJS2C0MpDSaz2nXktB4/eFKneuLveM/ChrA2r1ik9cuaVR30ag5TIADMgoFEWr3xzNTGq+XNqg/5XJ0CQQgGgDLVM5jS/u6o/vQ73dq24TotWTBHXmM0kMwokc4q5PeqJuhT1lode/2Ctu58SX/wsVatao2ooZogDGB2JFMZxQZTslbvGK+MkZpqg0VZBWKiEMwWQgBQos4NJLXlyRf1dHdUkvQbT7zw9ms1Aa/mVgd0fjClgVT2op/74jePak1rRNvvWKp5rA8MYBYZI8lKfk/+z5GNMGxu9i/CEoIBoAT1DKYuCsCXGkhlNZB659eMI57ujkpPSg/c2a65XBEGUCT98bT6EhntfOG0njg0/nSITTcs0oblzaoL+VQbLt6KEKOxOgQAlJhUJqf93dFxA/BUPd0d1b7uqFKZyW9QAYCZivYmtOvIGa166Bk9sPfEmAFYkk71xPXA3hNa9dAz2nXkjKK9iSJ3mkcIBoAS0zOY0tadxxyptXXnMfUMphypBQDjifYltOVbR3XPU8emtDKEJCXSOd3z1DFt+dZRRfuKH4QJwQBQQrLZnHYfPTPlk8hkEul8vWyWq8EA3BHtTWjLjqM6cDw2rZ8/cDymLTuKH4QJwQBQQnqGUnrs+dccrfnY86+pZ4irwQCc1x9Pa193dNoBeMSB4zHt64pqIJF2qLPJEYIBoIRkcnbceXTTdaonrkwJ3IkN4PLTl8ho254uR2pt29Ol3njGkVpTQQgGgBLSn3DnBDDgUl0AlSuZyq8C4eT0rV1HTiuZKs54RQgGgBKSTGcnf9N06rJCBACHxQZTeuLQSUdrPn7wpGJFupmXEAwAJSTod2cHpYCP4R6As6yVK9O3irWZMaMiAJSQ2pA7exi5VRdA5XJrmtVAkukQAFBxfB6jhQ1hR2subAjL5zGO1gSAuEvTtxIu1b0UIRgASkhDVUB33bTY0Zp33bRYDdVBR2sCQNil6Vshnzt1L0UIBoAS4vV6tK59vkJ+Z4bnkD9fz8uVYAAOq3FpmpVbdS9FCAaAEtNQHdC2DUscqbVtwxI1VAccqQUAoxkjV6ZvmSL9zk4IBoASE/B5tKo1ojWtkRnVWdMa0erWCCtDAHBFY3VAm25Y5GjNzSsWqam2ONO3GBkBoAQ1VAe0/Y6l0w7Ca1oj2n7HUs3lKjAAlwQDPm1Y3uzo9K31y5oVYE4wAFS2eTVBffXOdj14Z/uUTzIhv0cP3tmuB+5s17waboYD4K66kE9b17Y5Umvr2jbVh4u3nCMLRwJACWuoDmjD8mb9wjWN2n30jB57/rUxF6df2BDWp29erLVL56uhOsAUCABFURv2a3VrRPuOR3XgeGzadVa2NGp1W0Q1Ib+D3U3M2GJty+Ggjo4O29nZOdttAEBRZbM59QyllMlZDSQySmZyCvo8qgn55PMYNVQHWQUCwKyI9iW0ZcfRaQXhlS2N2r6xXZG6kON9GWMOW2s7xnqNK8EAUCa8Xo8aa4dPEvWz2wsAjBapC2n7x9u1rzuqbXu6lEjnJv2ZkN+jrWvbtLot4koAngwhGAAAADMWqQ9pw/L5uvXaJu06clqPHzw57vStzSsWaf3yZrP0esAAACAASURBVNWHfEWdAjEaIRgAAACOqAn5VRPy67M3L9Zty+bLWmkgmVEinVXI71VN0CdjpKbaYNFWgRgPd04AAADAFcZIspLfk/9zZCMMm5v9e9K4EgwAAABH9MfT6ktktPOF03ri0PjTITbdsEgbljerLuRTbXh2pkOwOgQAAABmLNqbmN6Nca0RRerduTGO1SEAAADgmmhfQlu+VdgSaYl0Tvc8dUz7jkddWyJtIswJBgAAwLRFe6e/RrAkHTge05YdRxXtSzjc2cQIwQAAAJiW/nha+7pntluclA/C+7qiGkikHepscoRgAAAATEtfIqNte7ocqbVtT5d64xlHak0FIRgAAAAFS6byq0BM5Sa4qUikc9p15LSSqeIEYUIwAAAAChYbTOmJQycdrfn4wZOKDaYcrTkeQjAAAAAKZq3GXAd4Jk71xFWs1XsJwQAAACjYQMKdaQsDSaZDAAAAoETF01lX6iZcqnspQjAAAAAKFvZ7Xakb8rlT91KEYAAAABSsJuTOxsNu1b0UIRgAAAAFM0Za2BB2tObChrCMcbTkuAjBAAAAKFhjdUCbbljkaM3NKxapqTboaM3xEIIBAABQsGDApw3LmxXyOxMnQ36P1i9rVoA5wQAAAChldSGftq5tc6TW1rVtqg8XZz6wRAgGAADANNWG/VrdGtHKlsYZ1VnZ0qjVbRHVhPwOdTY5QjAAAACmLVIf0vaN7dMOwitbGrV9Y7sidSGHO5sYIRgAAAAzEqkLafvH23X/7UumPEc45Pfo/tuXzEoAlqTiTbwAAADAZStSH9KG5fN167VN2nXktB4/eFKneuLveN/ChrA2r1ik9cubVR/yFXUKxGiEYAAAADiiJuRXTcivz968WLctmy9rpYFkRol0ViG/VzVBn4yRmmqDRVsFYjyEYAAAADgqGPBpQaC0YyZzggEAAFBxCMEAAACoOIRgAAAAVBxCMAAAACoOIRgAAAAVhxAMAACAikMIBgAAQMUhBAMAAKDiEIIBAABQcQjBAAAAqDiEYAAAAFQcQjAAAAAqDiEYAAAAFYcQDAAAgIpDCAYAAEDFIQQDAACg4hCCAQAAUHEIwQAAAKg4hGAAAABUHEIwAAAAKo7rIdgY8xFjzAljzCvGmC3jvOeXjTFdxpiXjDGPu90TAAAAKpvPzeLGGK+kRyStkfS6pEPGmF3W2q5R77lG0u9LusVae94Y0+RmTwAAAMCUrgQbY3yj/r7GGNNhjGmYwo+ukPSKtfZVa21K0j9K2nDJez4v6RFr7XlJstaenVrrAAAAwPRMGoKNMZ+WFDXGvGyM+aiko5K+KumIMWbTJD/eLOnUqMevDz832nslvdcY85wx5gfGmI+M08cXjDGdxpjOWCw2WdsAAADAuKYyHeL3JF0rqVbSEUnvs9b+2BgTkfS0pCcc6OEaSbdKWiDpe8aYpdbaC6PfZK19VNKjktTR0WFn+M8EAABABZvKdIistfYta+1PJA1Ya38sSdba6BR+9rSkhaMeLxh+brTXJe2y1qaH/xkvKx+KAQAAAFdMJQSfNMZ8xRjz3yUdN8b8mTHmFmPMH0p6Y5KfPSTpGmPMu4wxAUmfkLTrkvc8pfxVYBljrlB+esSrhfxLAAAAAIWYSgj+pKQ+5a/Yrpf0feVXc2iS9OmJftBam5H0G5L2SuqW9A1r7UvGmPuMMeuH37ZX0jljTJekA5K+aK09N41/FwAAAGBKjLXOTK81xvyltfY3HSk2iY6ODtvZ2VmMfxQAAADKlDHmsLW2Y6zXnNws4xYHawEAAACuYdtkAAAAVBxCMAAAACqOkyHYOFgLAAAAcM2UQ7AxZukkb/nzGfYCAAAAFEUhV4L/yhhz0Bjza8aY+ktftNZ+zbm2AAAAAPdMOQRba39B0q8qvwPcYWPM48aYNa51BgAAALikoDnB1tofSfqypC9J+pCkvzDGHDfGbHSjOQAAAMANhcwJbjfGPKz8zm+/KOk2a23r8N8/7FJ/AAAAgON8Bbz3LyX9D0l/YK2NjzxprT1jjPmy450BAAAALikkBK+VFLfWZiXJGOORFLLWDllrv+5KdwAAAIALCpkTvE9SeNTjquHnAAAAgLJSSAgOWWsHRh4M/32V8y0BAAAA7iokBA8aY64feWCM+XlJ8QneDwAAAJSkQuYE/46kfzLGnFF+i+QrJf2KK10BAAAALppyCLbWHjLGtEi6dvipE9batDttAQAAAO4p5EqwJN0gafHwz11vjJG19h8c7woAAABw0ZRDsDHm65LeI+kFSdnhp60kQjAAAADKSiFXgjsktVlrrVvNAAAAAMVQyOoQx5S/GQ4AAAAoa4VcCb5CUpcx5qCk5MiT1tr1jncFAAAAuKiQEPxHbjUBAAAAFFMhS6Q9a4y5WtI11tp9xpgqSV73WgMAAADcMeU5wcaYz0v6pqS/Hn6qWdJTbjQFAAAAuKmQG+N+XdItkvokyVr7I0lNbjQFAAAAuKmQEJy01qZGHhhjfMqvEwwAAACUlUJC8LPGmD+QFDbGrJH0T5K+7U5bAAAAgHsKCcFbJMUkvSjpP0n6jrX2Hle6AgAAAFxUyBJpv2mt/XNJfzPyhDHmt4efAwAAAMpGIVeC7xrjuU871AcAAABQNJNeCTbGbJK0WdK7jDG7Rr1UK6nHrcYAAAAAt0xlOsT3Jb2h/LbJfzbq+X5JR91oCgAAAHDTpCHYWvtTST+VdJP77QAAAADuK2THuI3GmB8ZY3qNMX3GmH5jTJ+bzQEAAABuKGR1iAck3Wat7XarGQAAAKAYClkdIkoABgAAwOWgkCvBncaY/y3pKUnJkSettTsc7woAAABwUSEhuE7SkKRfGvWclUQIBgAAQFmZcgi21n7GzUYAAACAYilkdYj3GmP2G2OODT9uN8Z82b3WAAAAAHcUcmPc30j6fUlpSbLWHpX0CTeaAgAAANxUSAiustYevOS5jJPNAAAAAMVQSAh+yxjzHuVvhpMx5k7lt1MGAAAAykohq0P8uqRHJbUYY05L+omkT7rSFQAAAOCiQlaHeFXSamNMtSSPtbbfvbYAAAAA9xSyOsRvG2NG1gp+2BjzQ2PML032cwAAAECpKWRO8GettX3Kb5YxT9KnJG13pSsAAADARYWEYDP858ck/YO19qVRzwEAAABlo5AQfNgY813lQ/BeY0ytpJw7bQEAAADuKWR1iM9JWi7pVWvtkDFmniS2UgYAAEDZmTQEG2NarLXHlQ/AkvRuY5gFAQAAgPI1lSvBd0v6gqQ/G+M1K+kXHe0IAAAAcNmkIdha+4XhP1e63w4AAADgvkLWCf5/hm+GkzHmy8aYHcaY97nXGgAAAOCOQlaH2Gqt7TfGfEDSakl/K+n/c6ctAAAAwD2FhODs8J9rJT1qrd0jKeB8SwAAAIC7CgnBp40xfy3pVyR9xxgTLPDnAQAAgJJQSIj9ZUl7JX3YWntBUoOkL7rSFQAAAOCiKYdga+2QpJ2SBo0xiyT5JR13qzEAAADALVPeMc4Y85uS/lBSVD/bLtlKanehLwAAAMA1hWyb/NuSrrXWnnOrGQAAAKAYCpkTfEpSr1uNAAAAAMVSyJXgVyU9Y4zZIyk58qS19iHHuwIAAABcVEgIPjn8V0CsDwwAAIAyNuUQbK39Y0kyxtQMPx5wqykAAADATVOeE2yMWWKM+XdJL0l6yRhz2BhznXutAQAAAO4o5Ma4RyXdba292lp7taTfk/Q37rQFAAAAuKeQEFxtrT0w8sBa+4ykasc7AgAAAFxW0OoQxpitkr4+/PiTyq8YAQAAAJSVQq4Ef1ZSo6Qdkp6UdMXwcwAAAEBZKWR1iPOSfsvFXgAAAICiKGR1iKeNMXNGPZ5rjNnrTlsAAACAewqZDnGFtfbCyIPhK8NNzrcEAAAAuKuQEJwzxiwaeWCMuVqSdb4lAAAAwF2FrA5xj6T/a4x5VpKR9AuSvuBKVwAAAICLCrkx7v8YY66XdOPwU79jrX1r5HVjzHXW2pecbhAAAABwWiFXgjUceneP8/LXJV0/444AAAAAlxUyJ3gyZswnjfmIMeaEMeYVY8yWcX/YmDuMMdYY0+FgTwAAAMA7OBmC33GTnDHGK+kRSR+V1CZpkzGmbYz31Ur6bUn/5mA/AAAAwJicDMFjWSHpFWvtq9balKR/lLRhjPdtk/RVSQmX+wEAAAAcDcGpMZ5rlnRq1OPXh5972/DNdguttXsmKm6M+YIxptMY0xmLxWbcLAAAACpXQTfGGWPaJS0e/XPW2h3Df944zo9NVM8j6SFJn57svdbaRyU9KkkdHR2sTwwAAIBpm3IINsb8naR2SS9Jyg0/bSXtmODHTktaOOrxguHnRtRKWiLpGWOMJF0paZcxZr21tnOqvQEAAACFKORK8I3W2nfc1DaJQ5KuMca8S/nw+wlJm0detNb2Srpi5LEx5hlJ/5kADAAAADcVMif4+bFWdpiItTYj6Tck7ZXULekb1tqXjDH3GWPWF1ILAAAAcEohV4L/Qfkg/KakpPLrAltrbftEP2St/Y6k71zy3L3jvPfWAvoBAAAApqWQEPy3kj4l6UX9bE4wAAAAUHYKCcExa+0u1zoBAAAAiqSQEPzvxpjHJX1b+ekQkn62RBoAAABQLgoJwWHlw+8vjXpusiXSAAAAgJIz5RBsrf2Mm40AAAAAxVLIZhkhSZ+TdJ2k0Mjz1trPutAXAAAA4JpC1gn+uvI7un1Y0rPK7/7W70ZTAAAAgJsKCcE/Z63dKmnQWvuYpLWS3u9OWwAAAIB7CgnB6eE/Lxhjlkiql9TkfEsAAACAuwpZHeJRY8xcSVsl7ZJUI2nMnd8AAACAUlbI6hD/Y/hvn5X0bnfaAQAAANw35ekQxpiIMeZvjTH/PPy4zRjzOfdaAwAAANxRyJzgr0naK2n+8OOXJf2O0w0BAAAAbiskBF9hrf2GpJwkWWszkrKudAUAAAC4qJAQPGiMmaf8VskyxtwoqdeVrgAAAAAXFbI6xN3KrwrxbmPMc5IaJd3pSlcAAACAiwoJwV2SviVpSPmd4p5Sfl4wAAAAUFYKmQ7xD5JaJP2ppL+U9F7lt1IGAAAAykohV4KXWGvbRj0+YIzpcrohAAAAwG2FhOAfGmNutNb+QJKMMe+X1OlOW6Uhnkzr3FB+t+j+eEbxdFZhv1e14fx/tnlVfoWD/tlsEXiHdDqr2GBSOSv1J0Z9bkM+eYzUWB2U3++d7TYxDclURrHBlKSxx6TG6oCCgUKGdQCoXJOOlsaYF5VfEcIv6fvGmJPDj6+WdNzd9mbH+aGUhpJZ7XzhtJ44dFKneuLveM/ChrA23bBIG5Y3qyro1dyqwCx0CvzMUDKj8/F0/nN7cILP7Yr853Zu2K+qIIGpHPTH0+pLZKY8JtWFfKoN8ws6AEzEWGsnfoMxV0/0urX2p452NAUdHR22s9Odi9Bv9ia0vzuqbXu6lEjnJn1/yO/R1rVtWtUa0ZX1IVd6AiZzti+hfd1R3bd76p/be9e1aXVrRE11fG5LWbQ3f2wLHZNWt0YUYUwCUOGMMYettR1jvjZZCC5FboXgaF9CW3Yc1YHjsYJ/dmVLo7ZvbFeEQIEiO9uX0Jdm8Ln96sZ2gnCJYkwCgJmZKAQXsjrEZe3N3umfbCTpwPGYtuw4qmhfwuHOgPHNJABL+c/tl3Yc1Vk+tyUnypgEAK4iBCs/B3h/d3TaJ5sRB47HtK8rqgtDKYc6A8Y3lMxon1Of2+6ohlIZhzrDTPXH084d266oBhJphzoDgMsHIVjSUDKrbXucWe1t254uDSazjtQCJnI+ntZ9u5353N63u0vnhwhKpaIvkXF0TOqN8wsOAFyq4kNwPJm/m34qN5xMRSKd064jpxVPEijgnnQ66/zn9oXTSqf5BW62JVMZV8akJFf6AeAiFR+Czw2l9cShk47WfPzgybfXFwbcEBtM6omDzn9uY4NJR2uicLHBlCtj0sj6wgCAvIoPwdZqzDU3Z+JUT1xluOgGykjOpc9tjs/trGNMAoDiqPgQPJBw5yvCgSRfPcI9/S59bt2qi6ljTAKA4qj4EBx3aQ5kgrmVcBGf28sXxxYAiqPiQ3DY73WlbsjnTl1AcvFz61JdTB1jEgAUR8WH4JqQr6zqApJU69Lny626mDrGJAAojooPwcZICxvCjtZc2BCWMY6WBC7icelz6+FzO+sYkwCgOCo+BM+r8mvTDYscrbl5xSI11gQdrQmM1lgd1KYVLnxua0OO1kThGqsDroxJTbWMSQAwWsWH4HDQrw3LmxXyO/OfIuT3aP2yZgWZWwkX+f1e5z+3y5vl91b8kDDrggGfK2NSgDnBAHARzniSqoJebV3b5kitrWvbVB3kZAP3zQ37de86Zz63965r09wqvyO1MHN1IZ+jY1J9mPnAAHApQrCkuVUBrWqNaGVL44zqrGxp1Oq2iOZUBRzqDBhfVdCn1U59blsjqgoQlEpFbdjv3LFti6gmxC84AHApQvCwK+tD2r6xfdonnZUtjdq+sV2ROuZUonia6kL66gw/t1/d2K4mPrclJ8KYBACuMrYM99Ls6OiwnZ2drtR+szeh/d1RbdvTpUQ6N+n7Q36Ptq5t0+q2CCcbzJqzfQnt647qvt1T/9zeu65Nq1sjBOASF+3NH1vGJAAonDHmsLW2Y8zXCMHvdGEopcFkVruOnNbjB0/qVE/8He9Z2BDW5hWLtH55s6oDXqZAYNYNpTI6P5TWrhcm/tz+6vDndk6VnykQZWIgkVZvPDPlMak+5GMKBACIEDxt8WRa54bSslYaSGaUSGcV8ntVE/TJGKmxJsgqECg56XRWscGkclbqT2SUTGcV9HtVG/LJY6TG2hCrQJSpZCqj2GDq7TEpl8vK4/nZmNRUG2QVCAAYZaIQzGWgCYSDfi0IcjUF5cXjMfJ7PcrkrLweI7/XyOvJ/+XzGG4EuAwYI8lKyYwU9uvtjTBsrvwuagDAbCEEA5eJVCannsGUdh89o8eef23cr8zvummx1rXPV0N1QAEfkbgc9MfT6ktktPOF03ri0PjTITbdsEgbljerLuRTbZhf4AFgIkyHAC4DPYMp7e+OauvOY1O+eWrbhiVa1RpRQzXz2UvZtG+Ma40oUs+NcQAqG3OCgcvYuYGktjz5op7ujhb8s2taI9p+x1LNY5vvkhTtS2jLjqM6cDxW8M+yRBoATByC+S4UKGM9g6lpB2BJero7qi1PvqjzgymHO8NMRXunH4Al6cDxmLbsOKpoX8LhzgDg8kAIBspUKpPT/u7otAPwiKe7o9rXHVUqM/lX7SiO/nha+7qj0w7AIw4cj2lfV1QDibRDnQHA5YMQDJSpnsGUtu485kitrTuPqYerwSWjL5HRtj1djtTatqdLvfGMI7UA4HJCCAbKUDab0+6jZ6Z0o9RUJNL5etksV4NnWzKVXwXCyWO768hpJVMEYQAYjRAMlKGeoZQee/41R2s+9vxr6hniavBsiw2m9MShk47WfPzgScW40g8AFyEEA2Uok7NjrhU7E6d64sqw2cKss1auHNsyXAgIAFxFCAbKUH/Cna+2B1yqi6lz6xgMJDm2ADAaIRgoQ8l01p26rBAx6+IuHduES3UBoFwRgoEyFPR7XanLNsqzL+zSsQ353KkLAOWKMx5QhmpDvrKqi6mrcekYuFUXAMoVIRgoQz6P0cKGsKM1FzaE5fMYR2uicMbIlWNrOLQAcBFCMFCGGqoCuuumxY7WvOumxWqoDjpaE4VrrA5o0w2LHK25ecUiNdVybAFgNEIwUIa8Xo/Wtc9XyO/M/8Ihf76elyvBsy4Y8GnD8mZHj+36Zc0KMCcYAC5CCAbKVEN1QNs2LHGk1rYNS9RQHXCkFmauLuTT1rVtjtTaurZN9WHmAwPApQjBQJkK+Dxa1RrRmtbIjOqsaY1odWuElSFKSG3Yr9WtEa1saZxRnZUtjVrdFlFNyO9QZwBw+eCsB5SxhuqAtt+xdNpBeE1rRNvvWKq5XAUuOZH6kLZvbJ92EF7Z0qjtG9sVqQs53BkAXB6MLcO9NDs6OmxnZ+dstwGUjJ7BlPZ3R7V15zEl0pNveBHye7RtwxKtbo0QgEtctDehfd1RbdvTNeVju3Vtm1a3RQjAACqeMeawtbZjzNcIwcDlIZXJqWcwpd1Hz+ix51/TqZ74O96zsCGsT9+8WGuXzldDdYApEGViIJFWbzyjXUdO6/GDJ8c9tptXLNL65c2qD/mYAgEAIgQDFSWbzalnKKVMzmogkVE6m5Pf61FNyCefx6ihOsgqEGUqmcooNpiStdJAMqNEOquQ36uaoE/GSE21QVaBAIBRJgrB3DIMXMaspGzO6qJcZK0kQnA58nk9Cvo8yuSsvB6jsN/I4zHyeY18HiMvO2IAwJQRgoHLxFSnQ9x102Kta2c6RDnh2AKA85gOAVwGpntj3KrWCOsDlziOLQBMH3OCgcvYuYGktjz5op7ujhb8syNLpM2rYUvdUsSxBYCZmSgE830ZUMZ6BlPTDkmS9HR3VFuefFHnB1MOd4aZ4tgCgLsIwUCZSmVy2t8dnXZIGvF0d1T7uqNKZSb/qh3FwbEFAPcRgoEy1TOY0tadxxyptXXnMfVwxbBkcGwBwH2EYKAMZbM57T56Zko3Sk1FIp2vl81yxXC2cWwBoDgIwUAZ6hlK6bHnX3O05mPPv6aeIa4YzjaOLQAUByEYKEOZnB1zrdiZONUTVyZXfqvFXG44tgBQHIRgoAz1JzKu1B1wqS6mjmMLAMVBCAbKUDKddacuqwjMOo4tABSH6yHYGPMRY8wJY8wrxpgtY7x+tzGmyxhz1Biz3xhztds9AeUu6Pe6UpetdmcfxxYAisPVUdEY45X0iKSPSmqTtMkY03bJ2/5dUoe1tl3SNyU94GZPwOWgNuQrq7qYOo4tABSH25cGVkh6xVr7qrU2JekfJW0Y/QZr7QFr7dDwwx9IWuByT0DZ83mMFjaEHa25sCEsn8c4WhOF49gCQHG4HYKbJZ0a9fj14efG8zlJ/zzWC8aYLxhjOo0xnbFYzMEWgfLTUBXQXTctdrTmXTctVkN10NGaKBzHFgCKo2QmiRljPimpQ9KDY71urX3UWtthre1obGwsbnNAifF6PVrXPl8hvzP/C4f8+XperhbOOo4tABSH2yH4tKSFox4vGH7uIsaY1ZLukbTeWpt0uSfgstBQHdC2DUscqbVtwxI1VAccqYWZ49gCgPvcDsGHJF1jjHmXMSYg6ROSdo1+gzHmfZL+WvkAfNblfoDLRsDn0arWiNa0RmZUZ01rRKtbI6weUEI4tgDgPldHRmttRtJvSNorqVvSN6y1Lxlj7jPGrB9+24OSaiT9kzHmBWPMrnHKAbhEQ3VA2+9YOu2wtKY1ou13LNVcrhSWHI4tALjLWFt+W2l2dHTYzs7O2W4DKBk9gynt745q685jSqQn3xQh5Pdo24YlWt0aISSVOI4tAEyfMeawtbZjzNcIwcDlIZXJqWcwpd1Hz+ix51/TqZ64fB6jgM+jVCanTM5qYUNYn755sdYuna+G6gBfk5eJsY5tyOdRTcingURGiUyOYwsAYyAEAxUknkzr3FBaktQfzyiezirs96o2nN8s4Yoqv0JB/2y2iGlKpjKKDaYkjX1sG2sCCvrZFAPA7Jt0vKoOKBhwf7yaKAQzWgKXid6hlAaSWe184bSeOHRSp3ri73jPwoawNt2wSBuWN6sm6FV9FV+Xl4OhZEbn4+n8sT04wbFdkT+2c8N+VQUZ3gEUX388rb5EZsrnorqQT7Xh2bkww5Vg4DLwZm9C+7uj2rana8rzRreubdOq1oiurA8VoUNM19m+hPZ1R3Xf7qkf23vXtWl1a0RNdRxbAMUT7c2PV4Wei1a3RhRx6VzEdAjgMhbtS2jLjqM6cLzwnRRXtjRq+8Z2RQhLJelsX0JfmsGx/erGdoIwgKIo1XPRRCGYOyeAMvZm7/QHHUk6cDymLTuOKtqXcLgzzNRMArCUP7Zf2nFUZzm2AFwWLdNzESEYKFO9Q/mls6Y76Iw4cDymfV1R9cVTDnWGmRpKZrTPqWPbHdVQKuNQZwBwsf542rnxqiuqgUTaoc4mRwgGytRAMqtte7ocqbVtT5f6E1lHamHmzsfTum+3M8f2vt1dOj9UvJMKgMrSl8g4ei7qjRfvl3ZCMFCGEsn8SgFTufFgSvXSOe06clqJJGFptqXTWeeP7QunlU7zSw4AZyVTGVfORckifXtFCAbK0FtDaT1x6KSjNR8/eFJvccVw1sUGk3rioPPHNjaYdLQmAMQGU66ci0bWF3YbIRgoQ9ZqzLUXZ+JUT1xluFjMZSfn0rHNcWwBOKzcz0WEYKAMDSTc+apoIMkNVLOt36Vj61ZdAJWr3M9FhGCgDMVdmt+ZYN7orOPYAigX5T5eEYKBMhT2e12pG/K5UxdT59qxdakugMpV7uciQjBQhmpCvrKqi6mrdekYuFUXQOUq93MRIRgoQ8ZICxvCjtZc2BCWMY6WxDR4XDq2Ho4tAIeV+7mIEAyUoSuq/Np0wyJHa25esUiNNUFHa6JwjdVBbVrhwrGtDTlaEwAaqwOunIuaaotzLiIEA2UoFPRrw/JmhfzO/C8c8nu0flmzgswbnXV+v9f5Y7u8WX4vwz0AZwUDPlfORQHmBAOYSE3Qq61r2xyptXVtm2pDBOBSMTfs173rnDm2965r09wqvyO1AOBSdSGfo+ei+nDx7l8gBANlqr4qoFWtEa1saZxRnZUtjVrdFlFdOOBQZ5ipqqBPq506tq0RVQW4KQ7A/9/e3QfHdZV3HP892l3t6sVWIqNsiGLjQAKWJnEElV0ClImx0yE4Y6WGFmw6BIZCXynQ0o7bjum0nsw405e0DAyFBpq0QwxMcLEbd6CxcQcG0tgKOI4jGUhDcCKwIqxEtiXti6Snf+xNrCqSLEv3anV3v58Zj7X33n32jM49/+kUdgAAE+xJREFU5z46e+650VhWlwqvv2rPqjGzeH+0kwQDMXZlU0a7t66dd+ezYU2Ldm9dq+xy5osuNVcsz+iuBdbtXVvX6grqFkDEsjG9FpnH8DmpnZ2d3t3dXe5iAEvG6aGcDvX2a9eBHuWKExc9PpOq0c7N7drUniUBXuKeO5vTwd5+/fWDc6/bT97Wrk1tWRJgAIuqf6jUXy2la5GZPerundPuIwkGKsPZ0YLO5ca1/7E+3X/k1LTPc1/ZXKft61dpS0erlqUTTIGIiZHCmJ4fKWr/sdnr9r1B3V5Wn2IKBICyOJ8ramh0bM7XoqZMMtIpECTBQBXJ5Yv6xUhR7qXnrxfGxlWbTKgxnZSZ1NKYZhWImCoWxzUwnNeES+dyY8oVx5VJJbQsk1SNSS3LMqwCAWBJyBfGNDBceOlaVGPjmvAL16IrlqUXZRWI2ZJghgqACpNKJpROjmtswpWoMdWYKVFjSiZMyZrSP8RTKpXQVZfVl7sYAHBRE8Egq5kkl4YLUl1KLz0IY3x8QlqkpdBmQhIMVIjC2IQGhwt68PjPdN/DT8/4FdQdN63WbWuvUnNDrWqTjBoCAMLz/EhBI/lx7TvWpz1HZ54OsW3dKnV1tKo+ndDl9eWZmsd0CKACDA4XdKi3Xzv3nZjzzQi7uq7XxrasmhuYFwwAWLj53qS9sS2rK5u4MW5OSIKBC86cz2vH1x7XQ739l/zeW9qy2v3OG7SCxyUDABag/2xOO/Ye1+GTA5f83iiXSJstCea7UCDGBocL806AJemh3n7t+Nrjen64EHLJAADV4vTQ/BNgSTp8ckA79h5X/9lcyCWbHUkwEFOFsQkd6u2fdwL8ood6+3Wwt1+FsYt/dQUAwGTPj5Sm4803AX7R4ZMDOtjTrxdGFm9QhiQYiKnB4YJ27jsRSqyd+05okNFgAMAlGsmPa9eBnlBi7TrQo+H8eCix5oIkGIih8fEJPXj8Z3O68WAucsVSvPFxRoMBAHMzmi9q37G+UK9F+x/r02i+GEq8iyEJBmJocKSg+x5+OtSY9z38tAYX8WsoAEC8nRkpas/RU6HGvP/IKZ0ZIQkGMIOxCZ927cWFeGZwVGMT8VstBgBQHu6K5Fq0WAuXkQQDMXQuNxZJ3PMRxQUAVJ6orhnn84tzLSIJBmIoX4zmxoE8K0QAAOZoNKJrUS6iuFORBAMxlE5F87x1HqMMAJiruoiuRZlkNHGn4ooHxNCyTDJWcQEAlacxomtGVHGnIgkGYihZY1rZXBdqzJXNdUrWWKgxAQCVy0yRXItskS5FJMFADDXX1+qOm1aHGvOOm1aruSEdakwAQOVaUZ/StnWrQo25ff0qtTQuzrWIJBiIoUSiRretvUqZVDhNOJMqxUswEgwAmKO6dEpdHa2hXou23Nga2X0vU5EEAzHV3FCrXV3XhxJrV9f1am6oDSUWAKB61KcT2rm5PZRYOze3qyG9OAmwRBIMxFZtskYb27K6pS27oDi3tGW1qS3LyhAAgEt2eX2tNrZltWFNy4LibFjTok3tWV1Wv3gDMlz1gBhrbqjV7nfeMO9E+Ja2rHa/8wZdzigwAGCermzKaPfWtfNOhDesadHurWuVXZ4JuWSzM1+sZ9OFqLOz07u7u8tdDGDJGBwu6FBvv3buO6Fc8eIPvMikarSr63ptasuSAAMAQnF6KKdDvf3adaBnzteinZvbtak9G1kCbGaPunvntPtIgoHKUBib0OBwQQ8e/5nue/jpaZ/nvrK5Tu9/02ptvuEqNTfUMgUCABCqF0YKGs6Pa/9jfbr/yKkZr0Xb16/Slo5WNdQmIp0CQRIMVJHx8QkNjhQ0NuE6nxtTfmxC6WSNGjNJJWtMzQ1pVoEAAERqNF/UmZGi3KXz+THliuPKpBJqTCdlJrU0phdlFYjZkmAeDzWLfGFMA8MFSdK50TGNFsdVl0poWV3p19bSUKt0Lb9CLC2JRI1algVfKzWVtywAgOpUl07p6nSq3MWYFRncNM6NFnU2N6Z9x/q05+jMQ/nb1q1SV0erlmeSWla3tCsaAAAAFzAdYor+oZwOzmdSd1tW2abFvasRAAAAM2M6xBz1n81px78f1+GTA3N+T644ob/4+gkdPNlfluU9AAAAcOm4NTzQP5TTjr2XlgBPdvjkgHbsPa7+s7mQSwYAAICwkQSrNAf4YG//vBPgFx0+OaCDPf06nyuGVDIAAABEgSRY0tncmHYd6Akl1q4DPRoaHQslFgAAAKJR9UlwvlBaBWIuN8HNRa44of2P9SlfIBEGAABYqqo+CR4YLmjP0VOhxrz/yKmX1hcGAADA0lP1SbC7pl0HeCGeGRxVDFeeAwAAqBpVnwSfz0UzbeF8nukQAAAAS1XVJ8GjxfFI4uYiigsAAICFq/okuC6ViCRuJhlNXAAAACxc1SfBjZloHpoXVVwAAAAsXNUnwWbSyua6UGOubK6TWaghAQAAEKKqT4JbGmq1bd2qUGNuX79KVyxLhxoTAAAA4an6JDhdm1RXR6syqXB+FZlUjbbc2Kpa5gQDAAAsWVWfBEvS8kxSOze3hxJr5+Z2NdUxHxgAAGApIwmWtKwupU1tWW1Y07KgOBvWtGhTe1aNmVRIJQMAAEAUSIID2aaMdm9dO+9EeMOaFu3eulbZ5ZmQSwYAAICwkQRPkl2e0e5fW6s7b79+znOEM6ka3Xn79STAAAAAMcLk1SmyTRl1dVylm193hfY/1qf7j5zSM4OjevNrmrXhtSt0+Edn9N3/HdTK5jptX79KWzpa1ZRJMgUCAAAgRszdy12GS9bZ2end3d2Rf85ovqgzI0VJ0rnRMY0Wx1WXSmhZcOPbivqU6tIkv1haOG8rF3ULIC6WSn9lZo+6e+d0+xgJnsbzIwWN5Me171if9hwtjQRPtbK5TtvWrVJXR6vq0wldXl9bhpICF3DeVi7qFkBcxKm/YiR4itNDOR3q7deuAz3KFScuenwmVaOdm9u1sS2rK5uYE4zy4LytXNQtgLhYiv3VbCPBJMGT9J/Nacfe4zp8cuCS38vqECgXztvKRd0CiIul2l/NlgSzOkTg9ND8K0+SDp8c0I69x9V/NhdyyYCZcd5WLuoWQFzEtb8iCVZp/sqh3v55V96LDp8c0MGefr0wUgipZMDMOG8rF3ULIC7i3F+RBEsayY9r14GeUGLtOtCj4fx4KLGA2XDeVi7qFkBcxLm/qvokeDRf1L5jfXOawD0XueKE9j/Wp9F8MZR4wHQ4bysXdQsgLuLeX0WeBJvZ283sh2b2pJntmGZ/2sy+Eux/xMxWR12myc6MFLXn6KlQY95/5NRLa+MBUeC8rVzULYC4iHt/FWkSbGYJSZ+RdKukdknbzKx9ymEflPS8u18r6W5Jd0VZpqncNe0adgvxzOCoYrjoBmKE87ZyUbcA4iLu/VXUI8HrJT3p7k+5e0HSlyV1TTmmS9J9wc8PSNpoZhZxuV5yPjcWTdx8NHEBifO2klG3AOIi7v1V1Elwq6RnJr1+Ntg27THuPiZpSNKKqYHM7MNm1m1m3QMDC7sDcbLRYjQTsHMRxQUkzttKRt0CiIu491exuTHO3T/v7p3u3tnS0hJa3LpUIrRYk2WS0cQFJM7bSkbdAoiLuPdXUSfBfZJWTnp9dbBt2mPMLCmpSdKZiMv1ksZMMlZxAYnztpJRtwDiIu79VdRJ8FFJ15nZNWZWK+k9kvZPOWa/pDuCn98l6Vu+iM9yNpNWNteFGnNlc50Wb1YzqhHnbeWibgHERdz7q0iT4GCO7x9I+qakXklfdfcnzOyvzWxLcNgXJK0wsycl/ZGkly2jFqUV9SltW7cq1Jjb169SS2M61JjAZJy3lYu6BRAXce+vIp8T7O7/6e6vdffXuPudwbZPuvv+4Oecu/+6u1/r7uvd/amoyzRZXTqlro5WZVLh/CoyqRptubFV6YjmyQAS520lo24BxEXc+6vY3BgXpfp0Qjs3T12+eH52bm5XQ5qLDaLHeVu5qFsAcRHn/ookWNLl9bXa2JbVhjULW3Viw5oWbWrP6rL62pBKBsyM87ZyUbcA4iLO/RVJcODKpox2b10770rcsKZFu7euVXZ5JuSSATPjvK1c1C2AuIhrf2WLuBBDaDo7O727uzuS2KeHcjrU269dB3qUK05c9PhMqkY7N7drU3uWiw3KhvO2clG3AOJiKfZXZvaou3dOu48k+OVeGCloOD+u/Y/16f4jp6Z9LvbK5jptX79KWzpa1VCb4OtGlB3nbeWibgHExVLrr0iC52k0X9SZkaLcS8+xzhXHlUkl1JhOykxqaUxzxzWWHM7bykXdAoiLpdJfzZYE8wihWdSlU7o6nSp3MYBLwnlbuahbAHERh/6KG+MAAABQdUiCAQAAUHVIggEAAFB1SIIBAABQdUiCAQAAUHVIggEAAFB1SIIBAABQdUiCAQAAUHVi+cQ4MxuQ9NMIP+IVkn4RYXyUF/Vbuajbykb9Vjbqt7KVq35f5e4t0+2IZRIcNTPrnukRe4g/6rdyUbeVjfqtbNRvZVuK9ct0CAAAAFQdkmAAAABUHZLg6X2+3AVApKjfykXdVjbqt7JRv5VtydUvc4IBAABQdRgJBgAAQNUhCQYAAEDVIQmexMzebmY/NLMnzWxHucuDhTGzlWZ22Mx6zOwJM/tosL3ZzB4ysx8H/19e7rJi/swsYWY/MLMHg9fXmNkjQTv+ipnVlruMmB8zu8zMHjCzk2bWa2Y30X4rh5l9POibT5jZHjPL0H7jy8y+aGbPmdmJSdumba9W8qmgno+b2RvKUWaS4ICZJSR9RtKtktolbTOz9vKWCgs0JumP3b1d0hsl/X5QpzskHXL36yQdCl4jvj4qqXfS67sk3e3u10p6XtIHy1IqhOEfJX3D3ddIulGleqb9VgAza5X0h5I63f16SQlJ7xHtN87ulfT2Kdtmaq+3Srou+PdhSZ9dpDL+PyTBF6yX9KS7P+XuBUlfltRV5jJhAdz95+7+/eDncypdQFtVqtf7gsPuk3R7eUqIhTKzqyVtlnRP8NokvU3SA8Eh1G9MmVmTpLdK+oIkuXvB3V8Q7beSJCXVmVlSUr2kn4v2G1vu/m1Jg1M2z9ReuyT9q5f8j6TLzOyVi1PSC0iCL2iV9Myk188G21ABzGy1pNdLekRS1t1/Huw6LSlbpmJh4f5B0p9Kmgher5D0gruPBa9px/F1jaQBSf8STHe5x8waRPutCO7eJ+lvJZ1SKfkdkvSoaL+VZqb2uiRyLpJgVDwza5T0NUkfc/ezk/d5aY1A1gmMITO7TdJz7v5oucuCSCQlvUHSZ9399ZKGNWXqA+03voK5oV0q/bFzlaQGvfyrdFSQpdheSYIv6JO0ctLrq4NtiDEzS6mUAH/J3fcGm/tf/Nol+P+5cpUPC/JmSVvM7GmVpi+9TaU5pJcFX69KtOM4e1bSs+7+SPD6AZWSYtpvZdgk6SfuPuDuRUl7VWrTtN/KMlN7XRI5F0nwBUclXRfcmVqr0gT9/WUuExYgmB/6BUm97v73k3btl3RH8PMdkvYtdtmwcO7+Z+5+tbuvVqm9fsvd3yvpsKR3BYdRvzHl7qclPWNmrws2bZTUI9pvpTgl6Y1mVh/01S/WL+23sszUXvdLel+wSsQbJQ1NmjaxaHhi3CRm9g6V5hgmJH3R3e8sc5GwAGb2FknfkfS4LswZ/XOV5gV/VdIqST+V9BvuPnUyP2LEzG6W9Al3v83MXq3SyHCzpB9I+k13z5ezfJgfM+tQ6abHWklPSfqASoM3tN8KYGZ/JendKq3k8wNJv6XSvFDabwyZ2R5JN0t6haR+SX8p6euapr0Gf/h8WqUpMCOSPuDu3YteZpJgAAAAVBumQwAAAKDqkAQDAACg6pAEAwAAoOqQBAMAAKDqkAQDAACg6pAEAwAAoOqQBANAGZjZFjPbcfEjX/a+1WZ2IoLy3Gxmb5r0+l4ze9ds7wGAOEte/BAAQNjcfb+W1lMpb5Z0XtL3ylwOAFgUjAQDQMiC0dqTwWjqj8zsS2a2ycy+a2Y/NrP1ZvZ+M/t0cPy9ZvYpM/uemT011xFYM0uY2d+Y2VEzO25mvx1sv9nM/tvMHgjK8aXgCU0ys3cE2x4NPvNBM1st6XckfdzMjpnZrwQf8dapZTKzV5rZt4PjTkw6FgBihSQYAKJxraS/k7Qm+Ldd0lskfUKlx3dP9cpg/22Sds/xMz4oacjd10laJ+lDZnZNsO/1kj4mqV3SqyW92cwykj4n6VZ3/yVJLZLk7k9L+idJd7t7h7t/Z5YybZf0TXfvkHSjpGNzLCsALClMhwCAaPzE3R+XJDN7QtIhd3cze1zS6mmO/7q7T0jqMbPsHD/jVyWtnTRy3CTpOkkFSUfc/dng848Fn3le0lPu/pPg+D2SPjxL/OnKdFTSF80sFewnCQYQS4wEA0A08pN+npj0ekLTD0BMPt7m+Bkm6SPB6G2Hu1/j7v81TbzxGT7zYl5WJnf/tqS3SuqTdK+ZvW8ecQGg7EiCASC+vinpd4NRWZnZa82sYZbjfyjp1cEcYEl696R95yQtu9gHmtmrJPW7+z9LukfSG+ZRbgAoO6ZDAEB83aPSNIfvBze+DUi6faaD3X3UzH5P0jfMbFilqQ0v+g9JD5hZl6SPzPKZN0v6EzMrqjS9gpFgALFk7l7uMgAAFomZNbr7+SBp/oykH7v73eUuFwAsNqZDAEB1+VBwo9wTKt1I97kylwcAyoKRYABYgszsBkn/NmVz3t1/uRzlAYBKQxIMAACAqsN0CAAAAFQdkmAAAABUHZJgAAAAVB2SYAAAAFSd/wMDa7QrLC733wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zedX3//+f7Ol850rRJStOUwixNQgkVQwURaCWIs9hCxa8U55z6k+2m8+ZkX6TKypDOreg2nfvt9/2uzMPkNmAOCtQWh6QWxhTWhlOQJAWs0gMlDU2b43W+3r8/ktS0zelKPp/kuno97rebt/Y6vfKi/fjOs5+8D8ZaKwAAACCfeGa7AQAAAGCmEYIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyjm+2G5iKefPm2cWLF892GwAAAMhizz///DvW2vLRXsvJELx48WI1NzfPdhsAAADIYsaYN8d6jekQAAAAyDuEYAAAAOQdQjAAAADyDiEYAAAAeYcQDAAAgLxDCAYAAEDeIQQDAAAg7xCCAQAAkHdy8rAMAAAAZK9YPKnO/rgkqTeSVCSRUtjvVXF4MHqWFwYUDMxuDCUEAwAAwBG9kYR6okk99tIhPbBnvw50RU57T3VZWOsvWaS1y6tUEvKpOOyfhU4lY62dlS88HQ0NDZZjkwEAALJHR3dUTW0d2rSjVdFEesL3h/webVxdp8baSlWWhlzpyRjzvLW2YbTXuBMMAACAaenoiWrDIy3a1d456c9EE2nd8eiv1NTeoc3r6lVZ4k4QHgsL4wAAADBlHd1RbdiaWQAeaVd7pzZsbVFHT9ThzsZHCAYAAMCU9EYSamrrmHIAHrarvVNNrR3qiyYc6mxihGAAAABMSU80qU07Wh2ptWlHq7ojSUdqTQYhGAAAABmLxQd3gZjMIrjJiCbS2vbyIcXiMxOEXQ3BxpjvG2OOGGN+NcbrxhjzXWPMG8aYFmPMxW72AwAAAGd09sf1wJ79jta8f/f+E/sLu83tO8E/lPShcV7/fUlLhv53i6T/43I/AAAAcIC1GnUf4Ok40BXRTO3e62oIttb+l6Sucd6yVtKP7KDnJJ1ljDnbzZ4AAAAwfX1Rd6Yt9MXOgOkQk1Al6cCIxweHnjuNMeYWY0yzMaa5s3N6KxABAAAwPZFEypW6UZfqnmq2Q/CkWWu3WGsbrLUN5eXls90OAABAXgv7va7UDfncqXuq2Q7BhyRVj3i8cOg5AAAAZLGikDsHD7tV91SzHYK3SfrDoV0iLpXUba09PMs9AQAAYALGSNVlYUdrVpeFZYyjJcfk9hZpD0h6VtJSY8xBY8xnjTF/Yoz5k6G3PC5pn6Q3JN0r6fNu9gMAAABnlBcGtP6SRY7WvHnFIlUUBx2tORZX7zdba9dP8LqV9AU3ewAAAIDzggGf1i6v0nd//rojB2aE/B6tuahKgTyZEwwAAIAcVRLyaePqOkdqbVxdp9LwzMwHlgjBAAAAmKLisF+NtZVaVTO9nbtW1ZSrsa5SRSG/Q51NjBAMAACAKassDWnzuvopB+FVNeXavK5elSUhhzsbHyEYAAAA01JZEtLmG+r1jeuXKeQ/OV5WFgW0YvFZqiwKnPR8yO/RN65fNisBWHJ5YVyuS6XS6hqIK5m26o0mlUim5Pd5VRzyyecxKisIyOvl3xEAAACVpSGtXb5AK5dWKBQwGoilZYzUE0komkgr5PeoJOyXtVJBwKNo0qo05JvRKRAjEYJHEU+m1dUf18sHjsvKal5RULFkWtFESiG/Vz2RhN7pi8lIuqh6jsoKAwr4CMMAACC/JdJWkvTvuw/qgT37daArctp7qsvCWn/JIq1dXnXi/bOBEHyKrv64Wt/qVlHIr7a3e/TwCwfH/Av86MULVVka1htHelW3oFRlhYFRKgIAAJz53u6OamdbhzbtaB13y7QDXRF984m9+u7PX9fG1XW6urZS80tnfjqEGdyqN7c0NDTY5uZmx+se7YvptY5etR7u0bee2HvSX2DI51FRyKe+aFLR5Ijn/R7ddu1S1Z1dovMrizW3aGY2eAYAAMgWHT1Rbdjaol3tnRl/1s2FccaY5621DaO9xp3gIV39cR06FtE//9c+PbW3UwGfR1+59nytrKlQYWAo/A5NhygK+dQfT+rnbUf03Z+/oU3b27RyablubTxfHmM0hzvCAAAgT7zdHdVXH5laAJakXe2d2rC1ZcYXyBGCNTgH+EhPVH/f9Jqe2tupO6+r1TV187W95bD++L7nx5wOcfOKc7Tz1qv0ZOvbunt7myRpw+/XqDDoY44wAAA44x0biGtnW8eUA/CwXe2damrt0Or6s3VWwczcTCSpSTo+ENcvfv2OXj3UrSe/fKXCfp+u+fbTuuc/20cNwNLgfJZ7/rNd13z7aYX9Pj355Sv16qFu/eKNd3R8ID7D/wUAAAAzbyCW0qYdrY7U2rSjVf2xlCO1JiPvQ3AqlVZvLKkf/uI32vr5y7X5p+366iOvTPoM7Ggira8+8oo2/7RdWz9/uX74i9+oN5ZUKjX9M7QBAACyVSSW0GMvHZp0ZppINJHWtpcPKRJLOFJvInkfgo9H4tr+8lv6waffq7u2vaqd7UemVGdn+xHdte1V/eDT79WOlrd0PMLdYAAAcOY6OpDQA3v2O1rz/t37dXSAEDwjBuJpzS8Nqfm3XVMOwMN2th9R85tdqigOaiDOnWAAAHDmslZjThudqgNdEc3UxmV5H4KtrC5/1zzd9ZNXHal317ZX9f4l5bLKva3nAAAAJqsvmnSnbsyduqfK+xAc8Hj0+CuHHZ3P8vgrh+X35P0fLQAAOINFEu4sYou6VPdUeb9FWtJa3ffcm47WvO+5N/XhC892tCYwWYlESp39MaWt1BtNKpZMKejzqjjkk8dI5YVB+f3e2W4TAJDjwi59Lwn5ZuZ7VN6H4FyfzwIMG4gldSyS0Mv7j8njMZpXFFQsmT5xyEt/LKl3+mJKpa2WL5qjOWG/CoJ5PwQAAKaoKOTO9xC36p4q778D9rs076Q/PjPzWQBJOtITVdvhHpUWBPTakT49/MJBHeiKnHbcd3VZWB+9eKGq5hTojY5e1Z5doooZPJ0HAHDmMGbw8DAnbyZWl4VljGPlxpX3Idi1+SzxmdvsGfmtsyeqN4706Y3OPv3Dztf1J1eep3/+5HtOHPc9PB1i5HHff/j9/9GXrl4iv9cjI6mcIAwAyNDcAr/WX7JI33xir2M1b16xSOVFQcfqjSfvV28FXTremGOTMRM6e6J6qzuqLc/sk5G044tXaPHcQu0/OqDO3piORxI6NpDQ8UhCnb0x7T86oHPnFmrHF6+QkbTlmX16qzuqzp7obP+nAAByTDjo19rlVQr5nck8Ib9Hay6qUnCG1q3k/Z3gXJ/Pgvw1EEvqnf64vv/f+3THh2t16FhER/vjJ02HONWJ6RBlBTpvXpGuWFKu//fnr+tPVr5LhSGfCgJctwCAySsIerVxdZ3uePRX0661cXWdCoMzt3A7729XeoxRdVnY0ZrVZWF5ZmpCC/JWbyypF/d36bZra9TZG9Ov3+nTTVue1XeaXh9zftaBroi+0/S6btryrH79Tp86e2O67doavbi/S70u7fcIADhzzSkI6OraSq2qKZ9WnVU15Wqsq9RZBQGHOptY3ofggoBXN1680NGaH3vPQhUE2IIK7kkkUuqNJvXec+fqaH9cW57Zp03b2ya933U0kdam7W3a8sw+He2P673nzVVfNKnEDO3NCAA4c8wvDWnzuvopB+FVNeXavK5elTO8PiXvQ3BpyK/rLlrg6HyW1fULVBqeuX/JIP8cj8bV1RdTPGX17abX9NTezinVeWpvp77d9JriSauj/VEdj8Yd7hQAkA8qS0L6mxvq9Y3rl006U4X8Hn3j+mWzEoAlQrC8Xo9Kgj7ddu1SR+rddu1SlQR98nqYDgH3xJJW1XML9MtfvzPlADzsqb2d+uWv39GiOYWKJdngGgAwNfNLQ1pdf7Z23rpSt39o6ZjTTavLwrr9Q0u1889XanX92bMSgCUWxkmSSgsCuvxd87Ryafm0AsXKpeW6/F3zVDqD81mQn0IBj473J/Uth7al+dYTe7Xy/AqVFjIkAACm7qyCgM4qkP7osnP0kYsWyFqpL5Y8cXBTUdAnY6TyouCM7QIxFr7jaXA7s4rikG5tPF+SphSEVy4t162N56uyOMT2aHBdKmW1o+WtSc8Bnkg0kdaOV97Sxy+pdqQeACC/hYN+LQz6Z7uNcZHWhpQVBlQ1J6w/vvI8bbyuNqP5LBuvq9UfX3mequaENaeQu8BwXzxp9dALBx2t+R/PH1Sc6RAAgDzBneAR5hYFtdQYpdJWD95ymZ7ee0QPjbPf6o0XL9RVSyvUH02oZn4JARgzxlrr6DGV0uD2aVaEYABAfiAEn6KsMKAV585VV39cNfOLdceHazW3KKhEKq1oIq2Q3yO/16OjfTEZI80vCans7BKmQGBG9cbc2dO3L8oWaQCA/EAIHkXA59H80pDKiyrVNRBXMm0H91BNpeX3elQU8mnx3AKVFQbZBQKzIp50Zi7w6XUJwQCA/EAIHkcylVZsKGwkU1bxVFpGg9MlUmmrZDIlL8fMYhaEXVpRG5rllboAAMwUEtwoeiMJ9UST+snLb+nfdr855pzgT6wY3P6jJORTcTi7V0DizFIYdOf/um7VBQAg2/Ad7xQd3VH9vP2Ivr791XG3nzrQFdHm/2zXd3a+pr+87gJ9oKZClaWzs9kz8o/XM/gPMScXx1WXhZneAwDIG6zmGqGjJ6qvPfKKvvrIK5PefzWaSOurj7yirz3yijp6oi53CAwqCHr1yUsXO1rzDy9drMIg0yEAAPmBEDykozuqr219RTvbj0zp8zvbj+hrWwnCmBnFAb9W15896f2sJxLye7T6wrNVlOUbmwMA4BRCsAbnAO/ae2TKAXjYzvYjemrvEfVFEw51BozO6/Uo5DX6+poLHKn39TUXKOAzTIfIcqlUWp29UR3ujui1jl69cvC4Xuvo1eHuiDp7o0ql3Nk1BADORMwJ1uCeq3f95FVHav3ltld1xZJyFYW4owZ3FYcDev+75qmxtkJNbVP/B1xjbYXev2SeSsIc9pKt4sm0uvrj2t7ylv712d+OuVj3U5ct1nX1C1RWGGDvcgCYQN6PkrF4Uttb3pr0HOCJRBNpbW95S7G4O4cZAMMCPo/CAZ/uXrtMjbUVU6rRWFuhu9cuU4HfR2jKUl39cT360iGt/Ntd+qsdbScCsM9jVBDwyjd09/5AV0R/taNNK/92lx596ZC6+uOz2TYAZL28vxP8zkBc9z33pqM173vuTa2+8GxVsYcwXFZWGNDRvpj+YnWdGmsrdddPxt/VZFjI79FdH7lAl543V0GfhyO/s9TRvphuf7hFTW1H5PUYXXtBpT584dmqOiusWDKtaCKlkN+roM+jQ8cj2tFyWDvbj+grD7WosbZC93y0XnOLgrP9nwEAWSnvU5pNy9FtpqTBetY6WhIY09yioIwxWlZVoie/fJV++sph3fc/Y+9v/clLz9HvLztbPZG4SsN+AnCW6uqPnwjAay5aoM9cvlhPvdapv/3ZXh3oisjnMQr4PIon00qmrarLwvroxQv1+ZW/p+//4rfa9vJbuv3hFn3rxov4OwaAUeR9CO6LuTNtoY/pEJhBZYUBFQV96uqP6z3nzNGVS8sV8ns1EEsqmkgr5PeoIOhTNJFSfzQpv9ejJZUlTIHIUvFkWk1tb+vZXx/VP918sd7uiegT3/sfvf9d8/S/P7h03DvB9z6zT7dec76uvWC+vvLQy3qyrUPXL6/i7xoATpH3ITiSSLlSNxp3py4wloDPo/mlIZUXBdQ1EFcybZVIemSM5PN4FPR5VBjwaklFMbtAZLmu/pju+Wm77v1Ug7b81z6VhPz6t8++96Q7wac69U7wM9F3dO+nGvTF+1/QlUvmaX5peBb+SwAge+V9CA66dHeEuy6YLV6vR+XFQ6cXls5uL8hcKpXWT14+rLvXXqgf/fK3+th7qvV2T0Q33fvchKdYfqfpdf3fp3+t265dqvklYf3ol7/V3Wsv1E9aDusz71ssr5dxCQCG5X0ILgq680fgVl0AZ7aj/XEdPD6goN/oD9+3WFv+a5+e2ts56c9HE2lt2t6mlUvLdcuV5+mNI706cGxAR/vjqijhaHcAGJb3Sc0Yo+qysKOL46rLwjKGHzdjdqRS6RPTIXqjSSWSKfl9XhWHfPJ5jMoKAtwRzGKJVFo3LK/S4e5oxgF4pOHPfbyhWvVVZynBQRoAcJK8D8FBv9GNFy/Ut5ted6zmx96z0LVpFsBYhg9UaDlwXGlZzSsKKp5MK55MK+DzqCeS0Dt9MRlJF1XP4UCFLJVKWx04NqAjvbEpB+BhT+3t1BVL5imVTqusiB0iAGCkvP8OmE5Lq+sXKOR35o8i5PfowxcukGWPNMygrv64dv/mqN7uiSqaHH9RZjSR1ts9Ue3+zVEOVMhCqbTV4rmF+tYTex2p960n9uqcuYVKpRmTAGCkvA/BsURaQb9Ht1271JF6t127VCGfx7ET6ICJHO2Lae/bPYqOstOJlZSyVqPFn2gipb1v9+hoX8z1HjF54aBXO9uPOHqK5c/bjygc8DpSDwDOFHk/HUJGSqXTuvS8uVq5tHxaP35cubRcl543V6l0WmJOMGZAV39ch4+ffDjLvnf69fALB8fdRuuceYWSJGulw8cj8hjDgQpZIpZI6+EXDjpa86EXDur6d1c5WhMAcl3e3wmWpB/84rfyeYy+3Hi+Vi4tn1KNlUvL9eXG8+X3GH3vl791tkFgFPFkWu/0RU/c5X2za0A3bXlW32l6fcyFnsPbaN205Vm92TUgafBucWdfVPEkP73IFm6cYgkAOFneh+BwwKM5BQHt7xqQx0i3XHGeNl5XO+k5wiG/Rxuvq9UtV5wnjxkMInMLAgr7+dEj3NU9EFcqbZW20pZn9mnT9rZJ/wh9eButLc/sU9oOzkPtHmB+cDYYiLlz0M4AB/gAwEnyPgTLGl1dU6END7ecOD1uUVmBHrzlMn25cYmqy0Y/Zam6LKwvNy7Rg7dcpkVlBZIGT5/b8HCLPlBTITEbAi5KpdKKptJKW+nbTa9Naxutbze9prSVYsm0UmyjNetiLt2R504/AJws7+cEzy0M6KUDx/X5Ve/Sp3+wR9+88SIVBAb/bXDu3ELd8eFazS0KKpFKK5pIK+T3yO/16Ghf7MQ3K5/H6NhAQl956GXd+sHzdbgnqroFHNUF93RHE5KVntt31LFttD5YN1/d0YTKCoMOdYmpCDq0U82p2A4PAE6W96Oi1+tR/cJSLSgN65Jzy/SF+1/Q1hcOSbLyjPjTMZK8xpx0g9drJMlq6wuH9IX7X9Al55ZpQWlY9VWl8nq4FQz3JNNpxZJpR7fRiiXTSnIneNZxiiUAzAxGRUllhUFFEkndcuV5kqSftBzW4796W1fXVGh1/dkn3jcy1saSaW1vOayftx9RKm1PHFH6dneUO2lwnbXSjpa3HN1G6/FX3tLHL6l2pB6mLm2tK6dYptm7HABOQgjW4I8JVy6t1MZHX9HH3lOtK5bM07ee2KuftXboZ60dkganPAR8HsWTaSVHbDof8nv0tQ/XaH5JWP/23Jv6q+sv5MeOcF08afWQw9to/cfzB3XDuxc6WhOZC/s9+nhDtf72Z685VvOmS6pZrAsApyCtDSkrDOjutcv0yIsH9dL+43rwc5eetDAumbYaiKdOBOATC+M+d6le2n9cj7x4UHevXcZeq5gR1lpXttHipMNsYHTV+eWOnmJ55ZKpbf0IAGcy7gSPMLcoqG/eeJGa2jr0ie/9jy7/vXn63x9cqgVnhU9bGPfW8Yi2txzWlmf26a6PXKDG2koCMGZMXyzpUl220Zptw4t1b7t2qTZtb5t2vduuXcpiXQAYBSH4FGWFAV2/vEpXLinX9pa39Lc/26sDXZHTpkNUl4X1qfct1qa1y1RWGGAKBGaUe9toEYJnm9fr0YULS0+sNZjuKZYLSsO6kMW6AHAaQvAoAj6P5peG9On3Ldba5QuUTFv1RZOKJdMK+jwqCvnk8xiVFQb5xoJZ4db8zhDzRrPC3MKgIvHfLdadShD+3WLdiOayWBcATkMIHofX61F5cWjwAT9JRBYpCrm0jZZLdZGZgM+jlTWnL9adzG4gIb9Ht127lMW6ADABvuMBucjKlW20kD2GF+ve/nCLwn6vHvzcpXr6tU499MLBUf/eq8vCuvHihbrq/HJ9779/o0jiqO75aD1rFQBgDIRgIAel0lafvHSx/vrx6S+cGvaHly5WKsXuENlkqot1//IjF+gaFusCwLgIwUAO8niMrq6t0N8/ObkfkU8k5PfoA7UV8jDHPeuwWBcA3GFycV/QhoYG29zcPNttALPm4LEB3fvMPtWdXaLbH35l2vXu+eiFevVwj2654jwtnFPgQIdwQyqVVtdAnMW6ADBJxpjnrbUNo73GnWAgBxWFvKosDqmsIKDG2go1tR2Zcq3G2gqVFQR0dklIJSyMy2os1gUA5/DzMiAHFQf8WrN8gTZsbdEtV56nxtqKKdVprK3QLVeepw1bW/SRixaoMOh3uFMAALITt32AHOT1ehT2eXTrNUv16R/s0TdvvEirllZo047WSW+jtXF1nc4qCOjTP9ijr324ViGfhx+lZ7lEIqXO/pjSVuqNJhVJpBT2e1Uc8sljpPLCoPzs9QwAk0IIBnJUcTigq5aWq6m9Q1+4/wV9pP5sPXjLZXr21+/o/t37x9xG6+YVi3TZ783T957Zp5+0HNaqmnJdtbRcJWF2EshWA7GkjkUSeuylQ3pgnL/b9SsWae3yKs0J+1UQZHgHgPGwMA7IYV39cUXiKf3FY69oV3unvB6jq2sqtLr+7BPbaMWTaQV8J2+j9fP2I0qlrVbVlOuv1l6ogoCX7bSy1JGeqJraOnT39snf5b/zujo11laqoiQ0Ax0CQPYab2Gc6yHYGPMhSf8gySvpX6y1m095fZGkf5V01tB7NlhrHx+vJiEY+J2jfTH1RpP6xRvvnDYd4tRttIYNT4e4/F3zVBzyaW4Rx+pmoyM9Ud2+tUW72jM/NnlVTbnuWVdPEAaQ12YtBBtjvJJek3SNpIOS9khab61tHfGeLZJetNb+H2NMnaTHrbWLx6tLCAZO1tUf1+HjAyoJB7S95a0Jp0NcV79APZG4FpxVwB3gLDWdADyMIAwg383mFmkrJL1hrd031MiDktZKah3xHiupZOj3pZLecrkn4IxTVhhQUdCnrv64Viwu06qaCoX8XvXHkidOFSsM+hRNpDQQTcrv9WhJZQkHKmSpgVhSTW0d0wrAkrSrvVNNbR26/t1VKggwRxgARnJ7VKySdGDE44OS3nvKe+6S9DNjzBclFUpqdLkn4IwU8Hk0vzSk8qLAiQMVEkmPPEbyeTwK+jwqDHi1pKKYXSCy3LFIQndvb534jZNw9/ZWXbW0ghAMAKfIhlFxvaQfWmv/zhhzmaT7jDHLrLUnrQAxxtwi6RZJWrRo0Sy0CeQGDlTIbYlESo+9dMiR47AlKZpIa9tLh/T/XH4u26cBwAhu/yz0kKTqEY8XDj030mcl/ViSrLXPSgpJmndqIWvtFmttg7W2oby83KV2AWB2dfbH9MDu/Y7WvH/3fnX2xxytCQC5zu0QvEfSEmPMucaYgKSbJG075T37JV0tScaYWg2G4OlNhAOAHJW2GnVR43Qc6IoonXu7YQKAq1wNwdbapKQ/lfSEpDZJP7bWvmqMudsYs2bobX8u6XPGmJclPSDpj2wubl4MAA7ojSZzqi4A5CrX5wQP7fn7+CnP3Tni962SLne7DwDIBZFEypW6UZfqAkCuYn8kAMgiYZcWr4VYFAcAJyEEA0AWKQ658wM6t+oCQK4iBANAFvGYwZP9nFRdFhZbQwPAyQjBAJBFyguDWr/C2b3Qb16x6Hd7RwMAJBGCASCr+P1erV1epZDfmeE55PdozfIq+b0M9wAwEqMiAGSZOWG/7ryuzpFad15XpzkFfkdqAcCZhBAMAFmmIOhTY22lVtVM73TMVTXlaqytVEGARXEAcCpCMABkoYqSkO5ZVz/lILyqplz3rKtXRQlzgQFgNIRgAMhSw0H4r29Ydtoc4cqigFYsPkuVRYGTng/5PfrrG5YRgAFgAvyMDACyWEVJSNe/u0pXLa1QyG80EEvLGKknklA0kVbI71FJ2C9rpYKAR7Gk1VkFfqZAAJhVsXhSnf1xSVJvJKlIIqWw36vi8ODYVF4YUHCWxylGSQDIcrFkWrLSv+8+qAf27NeBrshp76kuC2v9JYu0dnmVYsm0CgKjFAIAl/VGEuqJJvXYS4cmNV6VhHwqDs/O4l1jrZ2VLzwdDQ0Ntrm5ebbbAADXvd0d1c62Dm3a0apoIj3h+0N+jzaurtPVtZWaX8p0CAAzp6M7qqYpjFeNtZWqdGm8MsY8b61tGPU1QjAAZKeOnqg2bG3RrvbOjD+7qqZcm9fVq5J5wQBmQLaOV+OFYBbGAUAWert76t9QJGlXe6c2bG1RR0/U4c4A4GQdOTpeEYIBIMscG4hrZ1vHlL+hDNvV3qmm1g4dH4g71BkAnKw3klCTg+NVXzThUGcTIwQDQJYZiKW0aUerI7U27WhVfyzlSC0AOFVPNOnoeNUdSTpSazIIwQCQRSKxhB576dCkFpVMRjSR1raXDykSm7m7KwDyQyyedGW8isVnJggTggEgixwdSOiBPfsdrXn/7v06OkAIBuCszv64K+PV8P7CbiMEA0AWsVaj7qs5HQe6IsrBjYAAZLlcH68IwQCQRfqi7vwYsC82c/PsAOSHXB+vCMEAkEUiCXcWsUVdqgsgf+X6eEUIBoAsEvZ7Xakb8rlTF0D+yvXxihAMAFmkKOTLqboA8leuj1eEYADIMtVl4ayuBwCSZIw745UxjpYcEyEYALLIWQVerb9kkaM1b16xSHMK/I7WBIDywoAr41VFcdDRmmMhBANAFjncHdfa5VUK+Z0ZnkN+j9ZcVKW3uqOO1AOAYcGAz5XxKsCcYADIP8Uhn1LplDaurnOk3sbVdUrZlHcP2H0AACAASURBVIqZEwzABSUhn6PjVWl45sYqQjAAZBGfx+gT39utq2srtKqmfFq1VtWU6+raSn3iX3bL55mhSXYA8kpx2K/G2kpHxqvGukoVhWZu6hYhGACySFlBQJ+6bLG+/O8vafO6+il/Y1lVU67N6+r15X9/UZ+6bLHKCmdmjh2A/FNZGnJkvKosCTnc2fgIwQCQRbxej66rX6AXDxzXnz34ov7mhgv1jeuXTXrOXcjv0TeuX6a/uaFef/bgi3rxwHFdV79AXu4EA3BRZUlIm2+on9J4NRsBWJKMzcED5RsaGmxzc/NstwEArogn03rspUO67aEWSdJ/feUqeY1X214+pPt379eBrshpn6kuC+vmFYu05qIqpWxKV37zaUnSt26s19rlVQr4uOcBwH190YS6I8nJjVfLq1Qa8rk6BcIY87y1tmHU1wjBAJB9uvrjuv2hFj3Z1iFJKisM6NHPv09maAPNvlhS0URKIb9XRcHBhSTWpnX9//esuvrjkqRraiv1zRvrNacwMDv/EQDyViyeVGd/XNaePl4ZI1UUB2dkF4jxQjDLhQEgC5UVBrT5oxdKD0tPtnWoqz+uK7/11InXK4sCOmdegd58Z0AdffHTPn9NbaU2f/RCAjCAWREM+LQwkN0xM7u7A4A8NrcoqHturNcH2zq08bFfKZpIn3itoy8+avgN+T3atHaZGmsrCcAAMA5CMABksbLCgNYur9IVS8q1veUt/euzvx1zjt0fvW+xVl+4QGWFAeYAA8AECMEAkOUCPo/ml4b06fct1trlC5RMW/VFk4ol0wr6PCoK+eTzGJUVBtkFAgAmiRAMADnC6/WovHhoG6HS2e0FAHIdPy8DAABA3iEEAwAAIO8QggEAAJB3CMEAAADIO4RgAAAA5B1CMAAAAPIOIRgAAAB5hxAMAACAvEMIBgAAQN4hBAMAACDvEIIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyDiEYAAAAecc32w0AAADgzBKLJ9XZH5ck9UaSiiRSCvu9Kg4PRs/ywoCCgdmNoYRgAAAAOKI3klBPNKnHXjqkB/bs14GuyGnvqS4La/0li7R2eZVKQj4Vh/2z0KlkrLWz8oWno6GhwTY3N892GwAAABjS0R1VU1uHNu1oVTSRnvD9Ib9HG1fXqbG2UpWlIVd6MsY8b61tGO017gQDAABgWjp6otrwSIt2tXdO+jPRRFp3PPorNbV3aPO6elWWuBOEx8LCOAAAAExZR3dUG7ZmFoBH2tXeqQ1bW9TRE3W4s/ERggEAADAlvZGEmto6phyAh+1q71RTa4f6ogmHOpsYIRgAAABT0hNNatOOVkdqbdrRqu5I0pFak0EIBgAAQMZi8cFdICazCG4yoom0tr18SLH4zARhQjAAAAAy1tkf1wN79jta8/7d+0/sL+w2QjAAAAAyZq1G3Qd4Og50RTRTu/dOeos0Y0y5pIWSUpL2WWv7XOsKAAAAWa0v6s60hb7YzEyHmDAEG2PqJH1X0mJJiyS9KKnCGPO0pC9Za7td7RAAAABZJ5JIuVI36lLdU01mOsT3JX3BWvsuSe+X1G6tPVfSLyR9z83mAAAAkJ3Cfq8rdUM+d+qeajIhOGyt3StJ1trdki4c+v29ki5wsTcAAABkqaKQOwcPu1X3VJMJwb82xmw0xlxujPk7SS9JkjHGP8nPAwAA4AxjjFRdFna0ZnVZWMY4WnJMkwmxn5FULOmrkqKSvjT0fIGkT7nUFwAAALJYeWFA6y9Z5GjNm1csUkVx0NGaY5kwBFtrj1trv2Ktvc5ae4e1tnfo+W5r7XPD7zPG/KObjQIAACB7BAM+rV1epZDfmYkBIb9Hay6qUiCL5gRP1uUO1gIAAECWKwn5tHF1nSO1Nq6uU2l4ZuYDS8zpBQAAwBQVh/1qrK3UqpryadVZVVOuxrpKFYX8DnU2MUIwAAAApqyyNKTN6+qnHIRX1ZRr87p6VZaEHO5sfE6G4BlaywcAAIBsUlkS0uYb6vWN65dNeo5wyO/RN65fNisBWMrs2OQLrbWvjPOWfxjjcx8aes0r6V+stZtHec//knSXJCvpZWvtzZPtCwAAALOvsjSktcsXaOXSCm17+ZDu371fB7oip72vuiysm1cs0prlVSoN+WZ0CsRIxlo7uTca84ykoKQfSvq3yRyXbIzxSnpN0jWSDkraI2m9tbZ1xHuWSPqxpA9Ya48ZYyqstUfGq9vQ0GCbm5sn1TcAAABmViyeVGd/XNZKfbGkoomUQn6vioI+GSNVFAdnZBcIY8zz1tqG0V6b9J1ga+0VQ4H1M5KeN8bslvQDa+2T43xshaQ3rLX7hhp5UNJaSa0j3vM5Sf9krT029HXGDcAAAADIbsGATwsDM7fTw1RkNCfYWvu6pL+QdLukqyR91xjTboxZN8ZHqiQdGPH44NBzI50v6XxjzC+MMc8NTZ84jTHmFmNMszGmubOzM5O2AQAAgJNMOgQbY+qNMd+W1CbpA5I+Yq2tHfr9t6fRg0/SEkkrJa2XdK8x5qxT32St3WKtbbDWNpSXT28bDgAAAOS3TO4E/6OkFyRdZK39grX2BUmy1r6lwbvDozkkqXrE44VDz410UNI2a23CWvsbDc4hXpJBXwAAAEBGMgnBqyXdb62NSJIxxmOMKZAka+19Y3xmj6QlxphzjTEBSTdJ2nbKex7V4F1gGWPmaXB6xL4M+gIAAAAykkkIbpIUHvG4YOi5MVlrk5L+VNITGpxG8WNr7avGmLuNMWuG3vaEpKPGmFZJuyTdZq09mkFfAAAAQEYyWbYXstb2DT+w1vYN3wkej7X2cUmPn/LcnSN+byXdOvQ/AAAAwHWZ3AnuN8ZcPPzAGPMeSafvgAwAAABkuUzuBP+ZpP8wxrylwSOS50v6uCtdAQAAAC7K5LCMPcaYGklLh57aa61NuNMWAAAA4J5Mj/K4RNLioc9dbIyRtfZHjncFAAAAuGjSIdgYc5+k35P0kqTU0NNWEiEYAAAAOSWTO8ENkuqGdnMAAAAAclYmu0P8SoOL4QAAAICclsmd4HmSWo0xuyXFhp+01q4Z+yMAAABA9skkBN/lVhMAAADATMpki7SnjTHnSFpirW0aOi3O615rAAAAgDsmPSfYGPM5SQ9J+uehp6okPepGUwAAAICbMlkY9wVJl0vqkSRr7euSKtxoCgAAAHBTJiE4Zq2NDz8wxvg0uE8wAAAAkFMyCcFPG2O+JilsjLlG0n9I+ok7bQEAAADuySQEb5DUKekVSX8s6XFr7R2udAUAAAC4KJMt0r5orf0HSfcOP2GM+dLQcwAAAEDOyORO8KdGee6PHOoDAAAAmDET3gk2xqyXdLOkc40x20a8VCypy63GAAAAALdMZjrELyUd1uCxyX834vleSS1uNAUAAAC4acIQbK19U9Kbki5zvx0AAADAfZmcGLfOGPO6MabbGNNjjOk1xvS42RwAAADghkx2h/impI9Ya9vcagYAAACYCZnsDtFBAAYAAMCZIJM7wc3GmH+X9Kik2PCT1tqtjncFAAAAuCiTEFwiaUDSB0c8ZyURggEAAJBTJh2CrbWfdrMRAAAAYKZksjvE+caYncaYXw09rjfG/IV7rQEAAADuyGRh3L2SviopIUnW2hZJN7nRFAAAAOCmTEJwgbV29ynPJZ1sBgAAAJgJmYTgd4wxv6fBxXAyxtyoweOUAQAAgJySye4QX5C0RVKNMeaQpN9I+gNXugIAAABclMnuEPskNRpjCiV5rLW97rUFAAAAuCeT3SG+ZIwZ3iv428aYF4wxH5zocwAAAEC2yWRO8GestT0aPCxjrqRPStrsSlcAAACAizIJwWbo1w9L+pG19tURzwEAAAA5I5OFcc8bY34m6VxJXzXGFEtKu9MWAAAAclUsnlRnf1yS1BtJKpJIKez3qjg8GD3LCwMKBjKJoc7L5Kt/VtJySfustQPGmLmSOEoZAAAAkqTeSEI90aQee+mQHtizXwe6Iqe9p7osrPWXLNLa5VUqCflUHPbPQqeSsdaO/wZjaqy17caYi0d73Vr7giudjaOhocE2NzfP9JcFAADAGDq6o2pq69CmHa2KJiaeLBDye7RxdZ0aaytVWRpypSdjzPPW2obRXpvMneBbJd0i6e9Gec1K+sA0egMAAECO6+iJasMjLdrV3jnpz0QTad3x6K/U1N6hzevqVVniThAey4Qh2Fp7y9Cvq9xvBwAAALmkozvzADzSrvZObdjaMuNBOJN9gj82tBhOxpi/MMZsNca8273WAAAAkM16Iwk1tXVMOQAP29XeqabWDvVFEw51NrFMtkjbaK3tNca8X1KjpO9J+r/utAUAAIBs1xNNatOOVkdqbdrRqu5I0pFak5FJCE4N/bpa0hZr7Q5JAedbAgAAQLaLxQd3gZjMIrjJiCbS2vbyIcXiMxOEMwnBh4wx/yzp45IeN8YEM/w8AAAAzhCd/XE9sGe/ozXv373/xP7CbsskxP4vSU9IutZae1xSmaTbXOkKAAAAWc1ajboP8HQc6Ipogt17HTPpEGytHZD0mKR+Y8wiSX5J7W41BgAAgOzVF3Vn2kJfbGamQ0z6xDhjzBcl/aWkDv3uuGQrqd6FvgAAAJDFIonUxG+agqhLdU+VybHJX5K01Fp71K1mAAAAkBvCfq8rdUM+d+qeKpM5wQckdbvVCAAAAHJHUSiTe6mzX/dUmXyVfZKeMsbskBQbftJa+/eOdwUAAICsZoxUXRZ2dHFcdVlYxjhWblyZ3AneL+lJDe4NXDzifwAAAMgz5YUBrb9kkaM1b16xSBXFQUdrjmXSd4KttV+XJGNM0dDjPreaAgAAQHYLBnxau7xK3/35644cmBHye7TmoioFsm1OsDFmmTHmRUmvSnrVGPO8MeYC91oDAABANisJ+bRxdZ0jtTaurlNpeGbmA0uZTYfYIulWa+051tpzJP25pHvdaQsAAADZrjjsV2NtpVbVlE+rzqqacjXWVaoo5Heos4llEoILrbW7hh9Ya5+SVOh4RwAAAMgZlaUhbV5XP+UgvKqmXJvX1auyJORwZ+PLaHcIY8xGSfcNPf4DDe4YAQAAgDxWWRLS5hvq1dTWoU07Wic1Rzjk92jj6jo11lXOeACWMgvBn5H0dUlbNXhS3DNDzwEAACDPVZaGtHb5Aq1cWqFtLx/S/bv3j7p9WnVZWDevWKQ1y6tUGvLN6BSIkYy1dla+8HQ0NDTY5ubm2W4DAAAAo4jFk+rsj8taqS+WVDSRUsjvVVHQJ2OkiuLgjOwCYYx53lrbMNprk74TbIx5UtLHrLXHhx7PkfSgtfZaZ9oEAADAmSAY8GlhYOZ2epiKTBbGzRsOwJJkrT0mqcL5lgAAAAB3ZRKC08aYE8eCGGPO0eDcYAAAACCnZHKf+g5J/22MeVqSkXSFpFtc6QoAAABwUSbHJv+nMeZiSZcOPfVn1tp3hl83xlxgrX3V6QYBAAAAp2U0Y3ko9G4f4+X7JF087Y4AAAAAl2UyJ3gixsFaAAAAgGucDMEskgMAAEBOcDIEAwAAADnByRAcd7AWAAAA4JqMFsYZY+olLR75OWvt1qFfLx3jYwAAAEBWyeTY5O9Lqpf0qqT00NNW0lYX+gIAAABck8md4EuttXWudQIAAADMkEzmBD9rjCEEAwAAIOdlcif4RxoMwm9LimlwX2Brra13pTMAAADAJZncCf6epE9K+pCkj0i6bujXcRljPmSM2WuMecMYs2Gc933UGGONMQ0Z9AQAAABkLJM7wZ3W2m2ZFDfGeCX9k6RrJB2UtMcYs81a23rK+4olfUnS/2RSHwAAAJiKTELwi8aY+yX9RIPTIST9bou0MayQ9Ia1dp8kGWMelLRWUusp79sk6R5Jt2XQDwAAADAlmUyHCGsw/H5Qg9MghqdEjKdK0oERjw8OPXeCMeZiSdXW2h3jFTLG3GKMaTbGNHd2dmbQNgAAAHCySd8JttZ+2ukvbozxSPp7SX80ia+/RdIWSWpoaLBO9wIAAID8kclhGSFJn5V0gaTQ8PPW2s+M87FDkqpHPF449NywYknLJD1ljJGk+ZK2GWPWWGubJ9sbAAAAkIlMpkPcp8GQeq2kpzUYaHsn+MweSUuMMecaYwKSbpJ0YnGdtbbbWjvPWrvYWrtY0nOSCMAAAABwVSYh+F3W2o2S+q21/ypptaT3jvcBa21S0p9KekJSm6QfW2tfNcbcbYxZM9WmAQAAgOnIZHeIxNCvx40xyyS9Laliog9Zax+X9Pgpz905xntXZtAPAAAAMCWZhOAtxpg5kjZqcEpDkaRRwywAAACQzTLZHeJfhn77tKTz3GkHAAAAcN+k5wQbYyqNMd8zxvx06HGdMeaz7rUGAAAAuCOThXE/1OACtwVDj1+T9GdONwQAAAC4LZMQPM9a+2NJaenEzg8pV7oCAAAAXJRJCO43xsyVZCXJGHOppG5XugIAAABclMnuELdqcFeI84wxv5BULulGV7oCAAAAXJRJCG6V9IikAQ2eFPeoBucFAwAAADklk+kQP5JUI+mvJf2jpPM1eJQyAAAAkFMyuRO8zFpbN+LxLmNMq9MNAQAAAG7L5E7wC0OL4SRJxpj3Smp2viUAAADAXRPeCTbGvKLBHSH8kn5pjNk/9PgcSe3utgcAAAA4bzLTIa5zvQsAAABgBk0Ygq21b85EIwAAAMBMyWROMAAAAHBGIAQDAAAg7xCCAQAAkHcIwQAAAMg7hGAAAADkHUIwAAAA8g4hGAAAAHmHEAwAAIC8QwgGAABA3iEEAwAAIO8QggEAAJB3CMEAAADIO4RgAAAA5B1CMAAAAPIOIRgAAAB5hxAMAACAvEMIBgAAQN4hBAMAACDvEIIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyDiEYAAAAeYcQDAAAgLxDCAYAAEDeIQQDAAAg7xCCAQAAkHcIwQAAAMg7hGAAAADkHUIwAAAA8g4hGAAAAHmHEAwAAIC8QwgGAABA3iEEAwAAIO8QggEAAJB3CMEAAADIO4RgAAAA5B1CMAAAAPIOIRgAAAB5hxAMAACAvEMIBgAAQN4hBAMAACDvEIIBAACQdwjBAAAAyDuEYAAAAOQdQjAAAADyjm+2G8hmsXhSnf1xSVJvJKlIIqWw36vi8OAfW3lhQMEAf4TILpFYQkcHEpJGv27nFvgVDvpns0UAAGYdCW4UvZGEeqJJPfbSIT2wZ78OdEVOe091WVjrL1mktcurVBLyqThMqMDsOjYQ10AsNenrtiDo1ZyCwCx0CgDA7DPW2tnuIWMNDQ22ubnZldod3VE1tXVo045WRRPpCd8f8nu0cXWdGmsrVVkacqUnYCJvd0e1cwrX7dW1lZrPdQsAOEMZY5631jaM+hoh+Hc6eqLasLVFu9o7M/7sqppybV5Xr8oSAgVmFtctAACjGy8EszBuSEf31IOEJO1q79SGrS3q6Ik63Bkwtre5bgEAmBJCsAbnADe1dUw5SAzb1d6pptYO9UUTDnUGjO3YQFw7Hbxujw/EHeoMAIDsRwiW1BNNatOOVkdqbdrRqu5I0pFawHgGYilHr9v+WMqRWgAA5IK8D8Gx+OAuEJNZTDQZ0URa214+pFicIAz3RGIJV67bSIyfYgAA8kPeh+DO/rge2LPf0Zr3795/Yn9hwA1HBxKuXLfD+wsDAHCmy/sQbK1G3U91Og50RZSDm24gh3DdAgAwPXkfgvui7kxb6IsxHQLu4boFAGB68j4ERxLuLAaKulQXkLhuAQCYrrwPwWG/15W6IZ87dQGJ6xYAgOlyPQQbYz5kjNlrjHnDGLNhlNdvNca0GmNajDE7jTHnuN3TSEUhX07VBSSuWwAApsvVEGyM8Ur6J0m/L6lO0npjTN0pb3tRUoO1tl7SQ5K+6WZPp/coVZeFHa1ZXRaWMY6WBE7CdQsAwPS4fSd4haQ3rLX7rLVxSQ9KWjvyDdbaXdbagaGHz0la6HJPJykvDGj9JYscrXnzikWqKA46WhMYaW6B35XrtryI6xYAkB/cDsFVkg6MeHxw6LmxfFbST0d7wRhzizGm2RjT3Nk5vWNiRwoGfFq7vEohvzN/FCG/R2suqlKAuZVwUTjod+W6Dbo01xgAgGyTNQvjjDF/IKlB0rdGe91au8Va22CtbSgvL3f0a5eEfNq4+tRZGlOzcXWdSsPMq4T7CoJeR6/bwiABGACQP9wOwYckVY94vHDouZMYYxol3SFpjbU25nJPpykO+9VYW6lVNdML16tqytVYV6mikN+hzoCxzSkI6GoHr9uzCgIOdQYAQPZzOwTvkbTEGHOuMSYg6SZJ20a+wRjzbkn/rMEAfMTlfsZUWRrS5nX1Uw4Uq2rKtXldvSpLQg53BoxtPtctAABTYqzL56QaYz4s6TuSvJK+b639hjHmbknN1tptxpgmSRdKOjz0kf3W2jXj1WxoaLDNzc2u9NvRHVVTW4c27WhVNJGe8P0hv0cbV9epsa6SIIFZ83Z3VDu5bgEAOIkx5nlrbcOor7kdgt3gZgiWpL5oQt2RpLa9fEj3796vA12R095TXRbWzSsWac3yKpWGfEyBwKw7PhBXfyx10nUb8nlUFPKpL5pUNJk+6botDHiZAgEAOKMRgqcoEkvo6EBC1kp9saSiiZRCfq+Kgj4ZM7hNVThI+EV2Gb5uJak3klQkkVLY71Xx0IJNrtvcxd8tgFwRiyfV2R+XNPp4VV4YUDDg/kYC44VgtjEYxfAdtcdeOqQH9gzeUSsKeDWnMKBj/XH1xVOqLgtr/SWLtHZ5lQqD3FHD7BuIJXUskhi8bsf5Ccb6FYPX7ZywXwVBhoBccGwgroFTxqRTjRyTCoJezWFMAjALeiMJ9USTkx6vSkI+FYdn5x/v3Ak+xVTnVl5dW6n5pcytxOw40jM4l/3u7ZO/bu+8rk6NtZWqYE5wVmNMApArpryuqrZSlS6NV0yHmKSOnqg2bG3RrvbMD+NglT1my5GeqG6fxnV7z7p6gnCWYkwCkCuydbwaLwRnzWEZs+3t7qn/5UnSrvZObdjaoo6eqMOdAWObTgCWBq/b27e26AjXbdZhTAKQKzpydLwiBGtwDvDOto4p/+UN29XeqabWDnUPxB3qDBjbQCypJqeu27YODcSTDnWG6Trm8Jh0nDEJgEt6Iwnnvhe1dqgvmnCos4kRgiX1x1LatKPVkVqbdrSqL5ZypBYwnmORhO7e7sx1e/f2Vh0bmLmBB+MbcHhM6mdMAuCSnmjS0fGqOzJzN2TyPgRHYoOr6SczgXsyoom0tr18SJEYgQLuSSRSzl+3Lx1SIkFYmm2MSQByRSyedGW8is3QTybzPgQfHUjogT37Ha15/+79J/byBNzQ2R/TA7udv247+2OO1kTmGJMA5IrO/rgr49Xw/sJuy/sQbK1G3cNuOg50RZSDm24gh6Rdum7TXLezjjEJQK7I9fEq70NwX9SdW+59MRYZwT29Ll23btXF5DEmAcgVuT5e5X0Ijrg0BzLK3Eq4iOv2zMXfLYBckevjVd6H4LDf60rdkM+duoDk4nXrUl1MHmMSgFyR6+NV3ofgopAvp+oCklTs0vXlVl1MHmMSgFyR6+NV3odgY6TqsrCjNavLwjLG0ZLASTwuXbcerttZx5gEIFfk+niV9yF4boFf6y9Z5GjNm1csUnlR0NGawEjlhUGtX+HCdVvs/LntyAxjEoBcUV4YcGW8qiiemfEq70NwOOjX2uVVCvmd+aMI+T1ac1GVgsythIv8fq/z1+3yKvm9eT8kzDrGJAC5IhjwuTJeBZgTPHMKg15tXF3nSK2Nq+tUFOSbDdw3J+zXndc5c93eeV2d5hT4HamF6StweEwqZEwC4JKSkM/R8ao0PHPrFwjBks4qCOjq2kqtqimfVp1VNeVqrKtUaUHAoc6AsRUEfWp06rqtrVRBgIVT2WKOw2PSWYxJAFxSHPY7972orlJFoZm7IUMIHjK/NKTN6+qn/Je4qqZcm9fVq7KEOZWYORUlId0zzev2nnX1quC6zTqMSQByRWWOjlfG5uBZmg0NDba5udmV2m93R7WzrUObdrQqmkhP+P6Q36ONq+vUWFfJNxvMmiM9UTW1deju7ZO/bu+8rk6NtZUE4CzHmAQgV3R0D34vyqbxyhjzvLW2YdTXCMGn6x6Iqy+W0raXD+n+3ftHPRe7uiysm1cs0prlVSoKeJkCgVk3EE/q2EBC214a/7r9xNB1e1aBnykQOeL4QFz9GYxJhQEvUyAAzIq+aELdkeSkx6vSkM/VKRCE4AzFk2l19cfVE4nr/2/v7mPrqu87jn++vr4PfgghTt1LyUNDB11sQQjMZNB2FWnCBA2KK9qthU2lFSt77Npu3ZRNyqYtqpRqW9mqVl076GBToa0oajIytYM0U6u1g5gCIcRhIEoDKXHdJCTxw32w/d0f90CMYzvBPuden3PeLynKvece/+5X/p3f9379u79zTj6bUZOZhspjKlXHVchm1J5v1oS7ytVxndeSU0dbTrlmVpZgYahWxzU4XNaES6dKp4/bRYVmNZnUuajAVSBi5tRoVSdLY8pnTaOV2uzK1JwkSW25jEarEzqv0KxFLZzoCKD+jo9UNFIe16lSVS25mWuoUmVc7YWsWvMZLYnwj/bZimCmgaY4NlzR7v4Bbd2x/3VT+e25jJa05XR8uKKhyul7WheyTdrWe6k2dBXV0cbMCxovm83owvNbGx0GQjLT14vF9pze+qZW/fQXIxoYqry2/bWvF7uKKi5mOQSA+plp+dZsNdTWTd3a0FXUBQ3IV8wET3J0qKwt33pKD/UPvOGfva6rqO3vv0xLuSA9gJAMnCxpywP7tOfg4Bv+WU6MA1BPCzVfzTYTzHeigWPDlTkXwJL0UP+AtnzrKR0frpx9ZwA4i4ETc/9AkaQ9Bwe15YF9GjhZCjkyAHi9IzHNVxTBqq0B3t0/1My/hAAAEDRJREFUMOcC+FUP9Q/o4f4BVcbOfkYkAMzk1GhVD/cPzPkD5VV7Dg7q4QMDGipVQ4oMAF7v+EhtGWlY+eqVkfpNJlIEqzYLvHXH/lDa2rpjv44xGwxgHk6WxrRt14FQ2tq264BOjI6F0hYATDVSHg81Xw2Xx8++Y0hSXwSPj0/owX0/O6fr2Z2LUrXW3vg4s8EA3rhyZUw7njgcak7a+eRhlSsUwgDCNVquRpKvRsv1+fYq9UXwsZGK7vnRC6G2ec+PXtCxOk7nA0iOweGK7tt7KNQ27330kAb5hgpAyI6OVCPJV0dHKILrYmzCp72Q83y8eGxUYxPxu+oGgMZzVyQ5KYYXAgKwwMU9X6W+CD5ViuYrwqGI2gWQbFHljqEyOQlAuOKer1JfBJer0SzALnOFCABzMBpRTipF1C6A9Ip7vkp9EZzPZiJpl9soA5iLlohyUqE5mnYBpFfc81XqK7VFhWjuHB1VuwCSrT2i3BFVuwDSK+75KvVFcHOTaUVHS6htruhoUXOThdomgHQwUyQ5yUhJAEIW93yV+iK4ozWnW69ZFWqbt16zSh1t+VDbBJAOnW053XzVylDbvGXdSr15ETkJQLiWtmYjyVed7fXJV6kvgjOZJt245kIVsuH8KgrZWnsZZoIBzEE+16zetctCzUmbL1+mHGuCAYSsJZ+NJF9Fdb7WVKkvgiWpoy2nbb2XhtLWtt5L1dGWC6UtAOl0XqFZWzd1h9LW1k3dWtzCemAA0WjNZ0LNV235+v3BThGs2pUcNnQVdV1XcV7tXNdV1MauIleGADAvi1qy2thV1PrVnfNqZ/3qTm3sLqq9kA0pMgB4vSWtOW0IMV+d31q/iUSqtUBHW07b33/ZnAvh67qK2v7+y7SEWWAAISguLmj7TWvm/MGyfnWntt+0RsXzCiFHBgCvd0FM85V5DO+l2dPT4319fZG0fWy4ot39A9q6Y79K1bPf8KKQbdK23ku1satIAQwgdAMnSnq4f0Dbdh0455y0dVO3NnYXKYAB1NWREyXtXmD5yswec/eeaV+jCD5TZWxCx4YrenDfz3TPj16Y9r7YKzpa9JF3rNKmyy5UR1uOJRAAIjNUqurE6Jh2PnlY9z56aMacdMu6ldq8dpkWF5pZAgGgIV4ZqWi4PH7O+aotl4l0CQRF8ByNj0/o2EhFYxOuodKYymMTyjc3qb3QrOYmU0dbnqtAAKibcmVMg8MVuUtD5TGVquMqZDNqzzfLTHrzojxXgQCwIIyWqzo6Up0xX3W25+tyFYjZimBOGZ5FJtOkzkXB9PzixsYCAPlcs5bnSNsAFr6WfFbL8wv7Gym+wwcAAEDqUAQDAAAgdSiCAQAAkDoUwQAAAEgdimAAAACkDkUwAAAAUociGAAAAKlDEQwAAIDUoQgGAABA6lAEAwAAIHUoggEAAJA6FMEAAABIHYpgAAAApA5FMAAAAFKHIhgAAACpQxEMAACA1KEIBgAAQOpQBAMAACB1KIIBAACQOs2NDmAhGy1XdXSkKkk6NTqm0eq4WrIZLWqp/dqWtmbVks82MkTgDBy3yUXfAoiLOOQriuBpHB+paKQ8rh1PHNZ9ew/pxWOjZ+yzoqNFN1+1Ur1rl6k1n9GS1lwDIgVO47hNLvoWQFzEKV+Zuzfkjeejp6fH+/r6Imn7yImSdvcPaNuuAypVJ866fyHbpK2burWhq6gLFhciiQk4G47b5KJvAcTFQsxXZvaYu/dM+xpF8GkDJ0va8sA+7Tk4+IZ/dv3qTm2/aY2K5/Ghg/riuE0u+hZAXCzUfDVbEcyJcYEjJ+beeZK05+CgtjywTwMnSyFHBsyM4za56FsAcRHXfEURrNr6ld39A3PuvFftOTiohw8M6JWRSkiRATPjuE0u+hZAXMQ5X1EESxopj2vbrgOhtLVt1wENl8dDaQuYDcdtctG3AOIizvkq9UXwaLmqHU8cPqcF3OeiVJ3QzicPa7RcDaU9YDoct8lF3wKIi7jnq8iLYDO73syeMbPnzGzLNK/nzewbweuPmNmqqGOa7OhIVfftPRRqm/c+eui1a+MBUeC4TS76FkBcxD1fRVoEm1lG0hcl3SCpW9LNZtY9ZbfbJB1394sl3SHps1HGNJW7pr2G3Xy8eGxUMbzoBmKE4za56FsAcRH3fBX1TPA6Sc+5+/PuXpH0dUm9U/bplXRP8Ph+SRvMzCKO6zVDpbFo2i1H0y4gcdwmGX0LIC7inq+iLoKXSXpx0vOXgm3T7uPuY5JOSFo6tSEzu93M+sysb3BwfmcgTjZajWYBdimidgGJ4zbJ6FsAcRH3fBWbE+Pc/Svu3uPuPZ2dnaG125LNhNbWZIXmaNoFJI7bJKNvAcRF3PNV1EXwYUkrJj1fHmybdh8za5a0WNLRiON6TXuhOVbtAhLHbZLRtwDiIu75KuoieK+kS8zsIjPLSfqQpJ1T9tkp6dbg8Qckfc/reC9nM2lFR0uoba7oaFH9VjUjjThuk4u+BRAXcc9XkRbBwRrfP5L0XUn9kr7p7k+b2d+a2eZgt7skLTWz5yT9iaQzLqMWpaWtWd181cpQ27xl3Up1tudDbROYjOM2uehbAHER93wV+Zpgd/9Pd3+7u/+Su38m2PZX7r4zeFxy999w94vdfZ27Px91TJO15LPqXbtMhWw4v4pCtkmbL1+mfETrZACJ4zbJ6FsAcRH3fBWbE+Oi1JrPaOumqZcvnputm7rVlufDBtHjuE0u+hZAXMQ5X1EES1rSmtOGrqLWr57fVSfWr+7Uxu6izm/NhRQZMDOO2+SibwHERZzzFUVw4ILFBW2/ac2cO3H96k5tv2mNiucVQo4MmBnHbXLRtwDiIq75yup4IYbQ9PT0eF9fXyRtHzlR0u7+AW3bdUCl6sRZ9y9km7R1U7c2dhf5sEHDcNwmF30LIC4WYr4ys8fcvWfa1yiCz/TKSEXD5XHtfPKw7n300LT3xV7R0aJb1q3U5rXL1JbL8HUjGo7jNrnoWwBxsdDyFUXwHI2Wqzo6UpV77T7Wpeq4CtmM2vPNMpM62/OccY0Fh+M2uehbAHGxUPLVbEUwtxCaRUs+q+X5bKPDAN4Qjtvkom8BxEUc8hUnxgEAACB1KIIBAACQOhTBAAAASB2KYAAAAKQORTAAAABShyIYAAAAqUMRDAAAgNShCAYAAEDqxPKOcWY2KOmnEb7FmyT9IsL20Vj0b3LRt8lG/yYb/Ztsjerft7p753QvxLIIjpqZ9c10iz3EH/2bXPRtstG/yUb/JttC7F+WQwAAACB1KIIBAACQOhTB0/tKowNApOjf5KJvk43+TTb6N9kWXP+yJhgAAACpw0wwAAAAUociGAAAAKlDETyJmV1vZs+Y2XNmtqXR8WB+zGyFme0xswNm9rSZfSLY3mFmD5nZs8H/SxodK+bOzDJm9riZPRg8v8jMHgnG8TfMLNfoGDE3Zna+md1vZgfNrN/MrmH8JoeZfSrIzfvN7D4zKzB+48vMvmpmPzez/ZO2TTterebzQT/vM7MrGxEzRXDAzDKSvijpBkndkm42s+7GRoV5GpP0p+7eLelqSX8Y9OkWSbvd/RJJu4PniK9PSOqf9Pyzku5w94slHZd0W0OiQhj+SdJ33H21pMtV62fGbwKY2TJJfyypx90vlZSR9CExfuPsbknXT9k203i9QdIlwb/bJX2pTjG+DkXwaeskPefuz7t7RdLXJfU2OCbMg7u/7O4/Dh6fUu0DdJlq/XpPsNs9kt7XmAgxX2a2XNImSXcGz03SeyTdH+xC/8aUmS2W9G5Jd0mSu1fc/RUxfpOkWVKLmTVLapX0shi/seXu35d0bMrmmcZrr6R/85r/lXS+mb2lPpGeRhF82jJJL056/lKwDQlgZqskXSHpEUlFd385eOmIpGKDwsL8/aOkP5c0ETxfKukVdx8LnjOO4+siSYOS/jVY7nKnmbWJ8ZsI7n5Y0t9LOqRa8XtC0mNi/CbNTON1QdRcFMFIPDNrl/QtSZ9095OTX/PaNQK5TmAMmdmNkn7u7o81OhZEolnSlZK+5O5XSBrWlKUPjN/4CtaG9qr2x86Fktp05lfpSJCFOF4pgk87LGnFpOfLg22IMTPLqlYAf83dHwg2D7z6tUvw/88bFR/m5Z2SNpvZC6otX3qPamtIzw++XpUYx3H2kqSX3P2R4Pn9qhXFjN9k2CjpJ+4+6O5VSQ+oNqYZv8ky03hdEDUXRfBpeyVdEpyZmlNtgf7OBseEeQjWh94lqd/dPzfppZ2Sbg0e3yppR71jw/y5+1+4+3J3X6XaeP2eu/+WpD2SPhDsRv/GlLsfkfSimf1ysGmDpANi/CbFIUlXm1lrkKtf7V/Gb7LMNF53SvpwcJWIqyWdmLRsom64Y9wkZvZe1dYYZiR91d0/0+CQMA9m9i5JP5D0lE6vGf1L1dYFf1PSSkk/lfSb7j51MT9ixMyulfRpd7/RzN6m2sxwh6THJf22u5cbGR/mxszWqnbSY07S85I+qtrkDeM3AczsbyR9ULUr+Twu6XdUWxfK+I0hM7tP0rWS3iRpQNJfS/q2phmvwR8+X1BtCcyIpI+6e1/dY6YIBgAAQNqwHAIAAACpQxEMAACA1KEIBgAAQOpQBAMAACB1KIIBAACQOhTBAAAASB2KYABoADPbbGZbzr7nGT+3ysz2RxDPtWb2jknP7zazD8z2MwAQZ81n3wUAEDZ336mFdVfKayUNSfphg+MAgLpgJhgAQhbM1h4MZlP/z8y+ZmYbzex/zOxZM1tnZh8xsy8E+99tZp83sx+a2fPnOgNrZhkz+zsz22tm+8zsd4Pt15rZf5vZ/UEcXwvu0CQze2+w7bHgPR80s1WSfk/Sp8zsCTP7teAt3j01JjN7i5l9P9hv/6R9ASBWKIIBIBoXS/oHSauDf7dIepekT6t2++6p3hK8fqOk7ef4HrdJOuHuV0m6StLHzOyi4LUrJH1SUrekt0l6p5kVJH1Z0g3u/iuSOiXJ3V+Q9M+S7nD3te7+g1liukXSd919raTLJT1xjrECwILCcggAiMZP3P0pSTKzpyXtdnc3s6ckrZpm/2+7+4SkA2ZWPMf3+HVJaybNHC+WdImkiqRH3f2l4P2fCN5zSNLz7v6TYP/7JN0+S/vTxbRX0lfNLBu8ThEMIJaYCQaAaJQnPZ6Y9HxC009ATN7fzvE9TNLHg9nbte5+kbv/1zTtjc/wnmdzRkzu/n1J75Z0WNLdZvbhObQLAA1HEQwA8fVdSb8fzMrKzN5uZm2z7P+MpLcFa4Al6YOTXjsladHZ3tDM3ippwN3/RdKdkq6cQ9wA0HAshwCA+LpTtWUOPw5OfBuU9L6Zdnb3UTP7A0nfMbNh1ZY2vOo/JN1vZr2SPj7Le14r6c/MrKra8gpmggHEkrl7o2MAANSJmbW7+1BQNH9R0rPufkej4wKAemM5BACky8eCE+WeVu1Eui83OB4AaAhmggFgATKzyyT9+5TNZXf/1UbEAwBJQxEMAACA1GE5BAAAAFKHIhgAAACpQxEMAACA1KEIBgAAQOr8P634nw7IrhzvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ beams\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXjV5Zn/8fdz9pMVAkmAEKRYTYhIKEbcWoVKtS0IanUqdKpdRjvTZWbqjNWOpTNTauvSbezl/KZSO506xXa0LhScakFQa2sRLCBmEQeVABoiAUKSc3K25/dHAo0xyznJ95ws5/O6Li44252HfP/55Mn9vR9jrUVEREREJJu4RnoBIiIiIiKZphAsIiIiIllHIVhEREREso5CsIiIiIhkHYVgEREREck6npFewFBMnjzZzpw5c6SXISIiIiKj2Pbt29+21hb39dqYDMEzZ85k27ZtI70MERERERnFjDFv9Pea2iFEREREJOsoBIuIiIhI1lEIFhEREZGsoxAsIiIiIllHIVhEREREso5CsIiIiIhkHYVgEREREck6CsEiIiIiknXG5GEZIiIiIjJ6dUZiNLdHADgeihGKxgl63eQHu6Jnca4Pv29kY6hCsIiIiIg44ngoSms4xmM7DvDAC/tobAm96z3lRUFWnD2D5fPKKAh4yA96R2ClYKy1I/KFh6Ompsbq2GQRERGR0aPpWJiNdU2s3lBLOJoY9P0Br4tVS6pYPLuU0sJAWtZkjNlura3p6zXtBIuIiIjIsDS1hrnlkV1srm9O+jPhaIJbH93Nxvombr9yLqUF6QnC/dGNcSIiIiIyZE3HwtzycGoBuKfN9c3c8vAumlrDDq9sYArBIiIiIjIkx0NRNtY1DTkAn7C5vpmNtU20haMOrWxwCsEiIiIiMiSt4RirN9Q6Umv1hlqOhWKO1EqGQrCIiIiIpKwz0jUFIpmb4JIRjiZYt/MAnZHMBOG0hmBjzE+MMYeMMbv7ed0YY+42xrxqjNlljJmfzvWIiIiIiDOa2yM88MI+R2uu3brv5HzhdEv3TvBPgQ8P8PpHgNO6/9wA/L80r0dEREREHGAtfc4BHo7GlhCZmt6b1hBsrX0GaBngLcuBn9kuzwMTjDFT07kmERERERm+tnB62hbaOsdBO0QSyoDGHo/3dz/3LsaYG4wx24wx25qbh3cHooiIiIgMTygaT0vdcJrq9jbSIThp1tp7rbU11tqa4uLikV6OiIiISFYLet1pqRvwpKdubyMdgg8A5T0eT+9+TkRERERGsbxAeg4eTlfd3kY6BK8Dru2eEnEucMxa++YIr0lEREREBmEMlBcFHa1ZXhTEGEdL9ivdI9IeAP4AVBhj9htjPmuM+WtjzF93v+VxYC/wKrAG+Hw61yMiIiIizijO9bHi7BmO1ly5YAYl+X5Ha/YnrfvN1toVg7xugS+kcw0iIiIi4jy/z8PyeWXc/dQeRw7MCHhdLKsuw5clPcEiIiIiMkYVBDysWlLlSK1VS6ooDGamHxgUgkVERERkiPKDXhbPLmVR5fAmdy2qLGZxVSl5Aa9DKxucQrCIiIiIDFlpYYDbr5w75CC8qLKY26+cS2lBwOGVDUwhWERERESGpbQgwO1XzOW2y+cQ8CYXLwNeF7ddPmdEAjCk+cY4EREREckOpYUBls+bxsKKEtbtPMDarftobAmR53MzMdfHkfYIbZE45UVBVi6YwbJ5ZRQGPBltgehJIVhEREREHJEX8JIX8PKp807hsuppABwPxQhF4wS9bvK7b3yblOMl6B+Z8HuCQrCIiIiIOOJIR4SOzjiP7TjAAy907QT3Vl4UZMXZM1g+r4wcv5uJOb4RWCmYrlG9Y0tNTY3dtm3bSC9DRERERLq9dSzMpromVm+oTWpucMDrYtWSKi6eXcqUwvT0BBtjtltra/p6TTvBIiIiIjIsTa1hvvrILjbXNyf9mXA0wa2P7mZjfZOmQ4iIiIjI2PLWsTC3PJxaAO5pc30ztzy8i6bWsMMrG5h2ggcQjcZpbu8kYeF4uEdTd8CDy0Bxrh+vNzNH+4mIiIiMNkc6ImyqaxpyAD5hc30zG2ubWDJ3KhMy1COsENyHjs4YR0LRrqburQM0dS/oauqeGPSS49e3UkRERLJLR2ec1RtqHam1ekMtCytKmJDjSLlBqR2il0OtYR7ZcYCLv7uFO3/T0GcABmhsCXHnbxq4+LtbeGTHAQ5leAtfREREZCSFOrs2DJO5CS4Z4WiCdTsPEOqMOlJvMArBPRxqDXPzw7u49ZHdSV/QcDTBrY/s5uaHdykIi4iISNY43BHlgRf2OVpz7dZ9HO5QCM6oEwF4OE3dCsIiIiKSLayl39+YD1VjS4hMTe9VCKarB/i3TjV11zXREYk5tDIRERGR0aktnJ6809aZmRylEAwcCUVZvd6Zpu5vrK/lSIa28UVERERGSjgWT0vdzjTV7S3rQ3A0Gne+qXvHAaLRzFxAERERkZEQSNOYWL8nM+Nnsz4EH2rr5IGtzjd1H2rrdLSmiIiIyGiSl6bxsOmq21vWh+BEmpq6Exlq6hYREREZCXFrKS8KOlqzvChIIkN3xmV9CB7rTd0iIiIiIyEWT/Cx+dMdrXnV/OlE4860qA4m60NwKMneXY/LkONz43GZpN4fVk+wiIiIjGORWIKFpxcT8DoTJwNeFxedXkwklpkQnPVn/fZ34dwuw+LZJXz0zKmUTQjSGUsQjsYJeN34PS4OHA2xYdebbKo/RLyP3ge/J+t/vhAREZFxLD/g5a4nGvj60jP4p0deGna9f156Bvf97jW+8uFKB1Y3uKwPwfkB77ueW1Y9jc9cMJMtrzTznSf7Pjq5vCjIx+ZP5/MLT+Unz73Oup0HB60rIiIiMp5MzPVSXV7IwopitjQM/byFhRXFzC0vpK6p1cHVDUzblXCyqTvX5+aelfOpLi/kmjXP84ONe/q9aa6xJcQPNu7hmjXPU11eyD0r55Prc7+jnoiIiMh4lR90c+15M7n2vj9yw4WzWFhRPKQ6CyuKueHCWVx73x+57ryZFAQ1HSIjAl4XK86eQa7PzZrranhweyOr19clPTc4HE2wen0dD25vZM11NeT63KxcMINgmmbniYiIiIwG1sKmuiYOt0e5/r+2cfVZ5axaOjvpHuGA18WqpbO5+qxyrv+vbRxuj7Kprilj0yGyvh0inrAsf18Z75mcy73P7B3yVv6Jz33n6mqqyycQS2SmqVtERERkJLR3xrn/+Te6/h2J84W1L3LZ3Kn84vpzefqVZh56cX+/LaVXzZ/ORacXc9/vXuPXu+pOvnb/82/w0TOnMjEn/evP+hBsTNc3oaU9MqxeFugKwh+aXYrHgE1uiISIiIjImGT7OGvh17ve5PHdb3FxZQn/eEkF0yYEicYThKMJAl4XXreLg0dDrN/1Jnc/9eq7hgs0toTI0EawQjDA8c44qzfUOlJr9YZazpk1ifyA2iFERERk/Doejvb5fDxhebK2iSdrm4CuMbM+j4tILEEsidPEMnXWQtb3BANs2HUw6R7gwYSjCR5/6eDgbxQREREZw5LNTrGEpSMSTyoAd9XNzFkLWR+CIzHLQy/ud7Tmg9v3E4np3GQREREZv9I1BCDgycxv07M+BFtr+x2DNlRd/SwKwSIiIjJ+5QXS01Wbrrq9ZX0ITlffSVunjk0WERGR8c3psxEyedZC1ofgziTPp/a4DDk+Nx5XcmMfIjGFYBERERm/vG7DirNnOFpz5YIZeN2ZGbGV9dMh+utncbsMi2eX8NEzp1I2IUhnLEE4GifgdeP3uDhwNMSGXW+yqf7Qu8Z7AAR0WIaIiIiMY9G4Zdm8adz91B5HBgwEvC4uq55GNK7DMjKir76TZdXT+MwFM9nySjPfebKh30HPH5s/nc8vPJWfPPc663a+cyJEnj/rv7UiIiIyjrkM/O7Vt1m1pIpbH9097HqrllTxuz3NfOC0oR2/nKqsb4ew9s/9J7k+N/esnE91eSHXrHmeH2zc0+9Nc40tIX6wcQ/XrHme6vJC7lk5n1xf1+5veVEQ3RYnIiIi45nXYzjaEeWcWUUsqhxecF1UWcw5s4poDcfwujMTT7M+BOf6XXzy3FPI9blZc10ND25vZPX6uqS39cPRBKvX1/Hg9kbWXFdDrs/dVc+vdggREREZvzwuF5eeMYVP/+dWvrFszpCD8KLKYr6xbA6f/s+tXFI1RT3BmdLemeDSM6ZQPjGHe5/ZO+Sjk0987jtXV1M1rYD2zjhFuU6uVERERGT0yPd5aI/E+ZuFp/GXP36etdefy5bKZlZvqE1qMzHgdbFqSRULK4pZueZ5Pr/wNDwuk7GW0qzfCYaum+Na2iNDDsAnbGlopqU9Qo5uihMREZFx7nika8zs/BmF3L1iPrc+upuSAj+bblzIzR+uONlu2nvCVnlRkJs/XMGmGxdSUuDn1kd3c/eK+bzvlMKuuhk6Njnrd4K9LkNrOMbqDbWO1Fu9oZZzZ00iR+0QIiIiMo6Fo3F+/Oxerv/ALH64oY6rzypnX0sH//DgTj534Sx+9MmzyPV5aAvHCEXjBL1u8gIe2iMxnqo7xEfufoa/u/g0rj6rnHuf/j++umQ29z67l7++cFZG1p/1IRgXbNh1cNBte4/L4PO4iMQSA559HY4m2PDSQf7i7HKnVyoiIiIyasQTcKQ9yu9fPcwnzjuFe5/ZS0HAy88+vYAtrzTzufu3Dzhh62efXsBPnnudZ8Nvc8OFs/jDq4c50hYhPvxpa0kxY/F435qaGrtt2zZHajW2dLDyx8+/6yINZ05weVGQtX91LuVFOY6sUURERGS0qX+zlXA0zpvHwjy24wCXVZfxVmuIu55oSLon+KZLK5hSEOTXOw+wfF4ZUwsDBHxuKqcUOLJGY8x2a21NX69l/U6wtfZdAXi4c4IbW0JYDUkTERGRcczjNjQe6uBIR4Rrz5+Z8oCBExO2FlYUc8OFs3j10HHiiQSVU50JwIPJ+hDcs/k61+fmzquqeas1xDVrnh/wp5gTc4L/4+n/46ZLK7j0jCl85aGdtEe6jktuC+vYZBERERm/PC4XMyfl4nG5HJmw9fGacqZPDOJxaU5wRkRiXUHXyTnBXXUVgkVERGT8CvpcvH64nYPHQo5M2Dp4LMQbh9sJ+hSCMyLYPc7szquqh/1TzL3P7OXOq6oBCGhMmoiIiIxj4WiCmZNyueuJBkfq3fVEA6dMyk16I3K4sj4E5/o9LKuexlutzvwU81ZriMvmTiU3Q4OeRUREREaC3+NiU/0hx0JrOJrgqfpD+DzaCc4Ir9tw/Qfe4+hPMTdcOCtjR/6JiIiIjIRwLMGvXtzvaM2HXtxPZ0w7wRkR8Ll4ds/bjv4U87tX3yaQoX4WERERkZFgoM8JWsPR2BIiU9uIWZ/UjofiPPDCPkdrrt26j+Mh3RgnIiIi41dHZ3qyTkckMxkq60MwpOenGBEREZHxLF1tCxG1Q2TG8XA0LXXbeswfFhERERlvAt70xEi/bozLjHSN4QhH1Q4hIiIi41d+ID2TsNJVt7esD8HBNM3zDXg0J1hERETGLwuUFwUdrVleFMQ6WrF/WR+C89L000a66oqIiIiMBj6P4ZPnnuJozWvPPQWfW+0QGWFMen6KMRoTLCIiIuNYOJLgo2dOdaw3OOB18ZEzpxKOaTpERhQG3axYMMPRmisXzGBijtfRmiIiIiKjidftYse+I9x0aYUj9W66tIIdjUfwurQTnBFHO+Isry5z9KeYZdVltLSnZ+qEiIiIyGgQS1jueKKBKQVBFlYUD6vWwopiphQEueM3DcQSmekKzvoQfDwcpSMSZdWSKkfqfX1pFe2RqEakiYiIyLhmsTS2hPjKQzu54cJZQw7CCyuKueHCWXzloZ00toSwGbo1LutDcDia4EPff5aLZ5ewqHJ4P8Usqizmg5WlXPL9ZzUiTURERMa1tnDXhl97JM71/7WNq88qZ9XS2Un/dj3gdbFq6WyuPquc6/9rG+3dJ8W1pekkut6yPgSfGJH2N/+9nduvnDvkILyospjbr5zL3/z3NkAj0kRERGR863liXHskzhfWvsiOfUf5xfXn8uXFp/U7eKC8KMiXF5/GL64/lx37jvKFtS+eDMAAkQxtJGb9HK8To8z+1HiMv75/G//vL89iU90hVm+oTeogjYDXxdeXVvHBylL++v5t/Knx2DvqioiIiIxHfZ218Otdb/L47re4uLKEf7ykgmkTgkTjCcLRBAGvC6/bxcGjIdbvepO7n3qVeB/9v4E0neHQW9YnNVf3iLTGlhB/ajzGud9+iie//AE23biQdTsPsHbrPhpbQu/6XHlRkJULZrCsuoz2SJRzv73pHa9l6MZGERERkRGR5+87RsYTlidrm3iytgkAj8vg87iIxBJJ3fTWX12nZX0ILsnzs2LBDO78TcPJ5y75/rMU5nj55fXnsHTuNADaOmOEo3ECXvfJi9PRGeWjP3yWYx3vnASxcsEMSvIDmftPiIiIiGSYy/XnjcSBxBKWWCS5FoeujcTMHLaQ9SHY63WzfF4Zd2/a8472h2MdUT78b787+XhyjpdpE4McPBLi7Y7+x58FvC6WzSvDm6HTTkRERERGgttl+OS5M/nW43WO1bz2vJl4MhSCldSAiUEvq5YOPCLt7Y4ouw60DhiAoWtEmg7KEBERkfEuHE1w6Rmljp61cElVacYmbCkEAzl+Dx+aXerIiLTFs0vJ8WX9BruIiIiMdxYa3mrlX5ed4Ui5byw7g/q3WrGZGROsEHxCSUGAO4Y5Iu2OK+dSUqBeYBERERn/XC7DjEm5lOT7WTy7ZFi1Fs8uoTjfzylFuRnrCVYI7uFEEL7tijkpDXr+1hVzFIBFREQkq7gMPLB1H83HI3zuolOHHIQXzy7hcxedytvHI6x9YV/GJmzp9/a9lBQEuOJ9ZSysKGHdjsFHpC2fV8aEHK9aIERERCSrlOT5KS0IUBD08NPfvcYV75vOxZWl/Ov6l5M+a+Gfl55BQdDLT3/3GpfNm8bUgkDGJmwZm6nGCwfV1NTYbdu2pf3rRKNxmts7SVg4Hv7ziLT8gAeXgeL8gKZAiIiISNY6cDTEsh8+yz2fOIs1z+wlx+fmsx+YxR/3Hua///hGvxuJf3nOKZwzaxL3PbuXjkic6y+cxRd+vp11X/oAZRP6PmluKIwx2621NX29pu3LAXi9bqZNyBnpZYiIiIiMShODXm68pILP/vQF7ryqmsNtnXzix89zwamTT54YF4sniMYTeN0uPO84MW4PN19ayaQ8P5/96QvcumR2RidsKQSLiIiIyJCcmLC1sa6JL6x9kcvmTuXnf3Uubx0NgQEDWAuJBFhX12O/x8WV7yvjC4vey33P7uXXu94ckQlbCsED6IzEaG6PAHA8FCMUjRP0uskPdn3binN9+NULLCIiIlnsxGCBmx/exfJ50yjO8/P8/x3m51v7b4f4xIJTmDt9AsvnTaMtEhuRAQPqCe7D8VCU1nCMx3Yc4IEX+r8xbsXZXTfGFQQ85Ad1QIaIiIhkr7eOhdlU18TqDbVJ3xi3akkVF88uZUphegLwQD3BCsG9NB0Ls3EIF3Dx7FJK03QBRUREREazptYwtzy8i831zSl/dlFlMbdfOZfSNOwEDxSC0z7awBjzYWNMgzHmVWPMLX28PsMYs9kY8ydjzC5jzEfTvab+NLWGueWRXdz66O6kAjB0HRl466O7ueWRXTS1htO8QhEREZHRpenY0AMwwOb6Zm55OPM5Kq0h2BjjBu4BPgJUASuMMVW93vY14H+ste8DrgH+PZ1r6s9YvYAiIiIiI+V4KMrGuqYh56cTNtc3s7G2ibZw1KGVDS7dO8ELgFettXuttRHgF8DyXu+xQEH3vwuBg2le07uM5QsoIiIiMlJawzFWb6h1pNbqDbUcC8UcqZWMdIfgMqCxx+P93c/19C/AXxpj9gOPA1/qq5Ax5gZjzDZjzLbm5uGF1d7G8gUUERERGQmdka4hAsm2kA4mHE2wbucBOiOZyVGj4bizFcBPrbXTgY8C9xtj3rUua+291toaa21NcXGxY198rF9AERERkZHQ3B7hgRf2OVpz7dZ9J8fTplu6Q/ABoLzH4+ndz/X0WeB/AKy1fwACwOQ0r+uksX4BRUREREaCtfQ5RnY4GltCZGpwWbpD8AvAacaY9xhjfHTd+Lau13v2ARcDGGNm0xWCne13GMBYv4AiIiIiI6EtnJ7ferd1joN2CGttDPgi8ARQR9cUiJeNMd8wxizrfts/ANcbY3YCDwCfshkcXjzWL6CIiIjISAhF42mpG05T3d7SfuavtfZxum546/nc13v8uxa4IN3r6M9Yv4AiIiIiIyHodaelbsCTnrq9jYYb40ZUwJueb0GmLqCIiIjISMgLpGcvNV11e8v6EJwf8KalbqYuoIiIiMhIMAbKi4KO1iwvCmKMoyX7lfUhGNJzAUVERETGs+JcHyvOnuFozZULZlCS73e0Zn+yPgTnB91puYAFQe0Ei4iIyPjl93lYPq/MsdbSgNfFsuoyfOoJzoz2cDwtF1DTIURERGS8Kwh4WLWkypFaq5ZUUZjBTcSsD8EleX7awlFHL2BbZ5SS/IAj9URERERGq/ygl8WzS1lUObzTfBdVFrO4qpS8NN2r1ZesD8Fer5u8oJeFFcWOXMCFlcXkBbx43Vn/rRUREZEsUFoY4PYr5w45Ry2qLOb2K+dSWpDZDUQlNWBi0Mu211v49hXDu4DfvmIu219rYWJO5n6KERERERlppQUBbr9iLrddPifpFtOA18Vtl88ZkQAMGTgsYyzI8Xs479TJfPfJer65fA5bKptZvaGWcDQx6GcDXherllSxsKKY7/+2nn+4pJIcn76tIiIikl1KCwMsnzeNhRUlrNt5gLVb99HYEnrX+8qLgqxcMINl88ooDHgy2gLRk8ngCcWOqampsdu2bXO87qHWMDc/vIuVC2ZQNbUwuQtYXUbtm8dYu3Ufd1w5l5IR+ElGREREZDTpjMRobo9gLbR1xghH4wS8bvL8HoyBknx/RqZAGGO2W2tr+npNW5Y9lHRv5W+sa+IrDz3L6uVncP9nz8FtzLsuYNxadu8/ytIfPstNl1ZwuwKwiIiICAAuY3AZOPE79RMnLBsDLgNmFOzBKgT3cLitk1A0zpllhaz74vtZv+sgdzzRQGNLiDyfm4m5Po60R2iLxE/uBK/74vs50h4hFIlzuK2TSXmZGfAsIiIiMtp0dMY4Eory2I4DPDDAb9NXLJjB8nllTAx6yfGPTBxVO0S3lu4g+7XHXmJzfTM+j4u//eB7+eDsEnJ8Hto7Y4SjCQJeF7l+Dx2RGE/VHeLup14lEkuwqLKYby4/k5zusCwiIiKSTQ61htlY18Q31id/X9XXl1axeHZp2n6bPlA7hEIwEIklOHQ8zKrHdrO5vrnP9wQ8LvICHtrCMcKxvi/sospiVi+fQ0l+AJ9HgzdEREQkO5y4r6q/HDWQRZXFabuvaqAQrKQGHA9FeLqhecAL53EZgl43Hpfp9z2b65t5uqGZ1lAkHcsUERERGXWGE4ChKz/d/PAuDrWGHV7ZwLK+JzgeTxCKJVi9ofYdzwd9br571VyqygrxGENrOHqyHaIg4CXWfWPcTb96iVAkfvJzqzfUclFFMfF4ArcOzBAREZFxrKMzxsa6piEH4BM21zezsa6Jy99XlrFRs1kfgo9HoqzbcfAdvSs/vvYsZk8t5LEdB/j2b+r7b+o+ewYbv3wRdW8e469+th2AcDTBr3ceZMU55UwI6iY5ERERGb+OhKJ8Y33t4G9MwjfW13JRRUnGQnDWb1W2heM88MI+AE4pCvLczYtoau3k4u9t4c7uyRB9aWwJcecTDVz8vS00tXby3M2LOKUoCMDarftoC8f7/JyIiIjIeBCNxnlsx4FBb4LzuAw5voFbSqFrI3HdjgNEo5nJUFm/E2xtV6A9pSjILz93Pl99JLWelnA0wa2P7mZRZTG//Nz5fPxHv+eNlhBj8H5DERERkaQ1t3fywNZ973re7TIsnl3CR8+cStmEIJ2xxMmzFvweFweOhtiw60021R8innhnYFq7dR/L501j2oSctK8/60Pw8XAUgLXXn5tyAO5pc30zX31kF2uvP5cL7thMW2fMyWWKiIiIjCqJ7o3EnpZVT+MzF8xkyyvNfOfJvn+jXl4U5GPzp/P5hafyk+deZ93Ogydfa2wJkcjQRmLWh+BwNMGPrz2LLYNMh0jG5vpmtlQ2s+baswhnaCtfREREZCQcD/95wy/X5+bOq6p5qzXENWueH7BForElxA827uE/nv4/brq0gkvPmMJXHtpJe/eggZ510ynre4KDXjezpxa+azrEUK3eUEvV1EICGTgPW0RERGSkhLo3/HJ9btZcV8OD2xtZvb4uqYMyoGsjcvX6Oh7c3sia62rI9bm7n8/MRmLWh+CpE/1JNXUnKxxNsG7nAaZO1GQIERERGb+C3q7QeudV1dz7zF62NAztN+pbGpq595m93HlVNQABb2Y2ErM+BPecDuEUTYcQERGR8S4/4GFZ9TTeag0NOQCfsKWhmbdaQ1w2dyr5AY1IywjbR1P3cDVqOoSIiIiMcy4D13/gPdz1RIMj9e56ooEbLpzFIJPUHJP1IbgtyebrPJ+b8olB8nzJbdFrOoSIiIiMZ5NyfDy7521HW0p/9+rbTMrNTEtp1k+HCPXTfD3UY5NP0HQIERERGc9aO2NpaSm96qzpFGegLzjrQ3Cwj2/ycI5NPkHTIURERGQ8iyVsWlpKYxkaFJz17RB5PZqvnTo2uXddERERkfEmXfN8k21VHS4lNbp2dV3g2LHJznTGiIiIiIxenWlq/eyMZSZJZX0I9nsMK86ewfJ50xw7NnndzoMEPFm/yS4iIiLjmD9Nfbu+DGWorE9qh9uifLxmunPHJjc0c/VZ03m7LeLQCkVERERGn3TN89Wc4AzJC3gIx6yjxyZ3xqx6gkVERGRc87gM5T3uhxrofTk+N54kBgCXFwWTep8Tsj6p5QfdrH2+0fFjk1ecU+5IPREREZHRqCjHx3XnzeSbG+re8bzbZVg8u4SPnjmVsglBOmMJwn0o4+gAACAASURBVNE4Aa8bv8fFgaMhNux6k031h4j3mgRx3XkzKdKc4MxI17HJl1VPY8LgPxyJiIiIjElut4ulc6fxnScbTm4mLquexmcumMmWV5r5zpN9T9kqLwrysfnT+fzCU/nJc6+zbudBAALernruDO0EZ307hI5NFhERERmaolwfq5fPIdfn5p6V86kuL+SaNc/zg417Bhwz+4ONe7hmzfNUlxdyz8r55PrcrF4+h6JcX8bWrp3gdM2407HJIiIiMs75PC4unl1KRWk+39v4ClsaUhszu3p9HQsrinng+nMpL8rJ2GQI0E5wv8cmD5eOTRYREZFsEI0l+LdNe1IKwD1taWjm3zbtIRLP7EkLWR+C+zo22Qk6NllERETGu+OhKBvrmthUf2hYdTbVH2JjbRNt4ahDKxtc1ofgdI0y04g0ERERGe9awzFHx8weC2WunTTrQ7AxJDXjLhXlRUFMZm5sFBERERkRnZEYj+044PiY2c5IZoJw1ofg4lwfK86e4WjNlQtmUJKfmRl3IiIiIiOhuT2SljGzze2ZOXU360Ow3+dh+bwyAl5nvhUBr4tl1WX41BMsIiIi49hYHzOb9SEYoCDgYdWSKkdqrVpSRWFQ/cAiIiIyvo31MbMKwUB+0Mvi2aUsqiweVp1FlcUsriolL+B1aGUiIiIio9NYHzOrENyttDDA7VfOHXIQXlRZzO1XzqW0IODwykRERERGn7E+ZlYhuIfSggC3XzGX2y6fk3SPcMDr4rbL5ygAi4iISFYZ62Nm1bzaS2lhgOXzprGwooR1Ow+wduu+Ppu+y4uCrFwwg2XzyigMeNQCISIiIlnlxJhZJ2+Oy+SYWYXgPuQFvOQFvHzm/JlcVj0Na7uatMPROAGvmzy/B2OgJN+vKRAiIiKSlU6Mmb3ziQbHamZyzKxC8AD8Pg/TffoWiYiIiPR2Yszs3U/tceTAjEyPmVVPsIiIiIgMyVgeM6sQLCIiIiJDMpbHzCoEi4iIiMiQjdUxswrBIiIiIjIsY3HMrO76EhEREZFhG2tjZhWCRURERMQR/Y2ZTSTiuFyja8ys2iFEREREJC2MASx0xrr+PnEQhk3YkVwWkMJOsDGmFCjrfnjAWtuUniWJiIiIyFh0PBSlNRzjsR0HeOCF/tshVpw9g+XzyigIeMgPjkw7hLF24CRujJkH/AdQCBzofno6cBT4vLX2xbSusA81NTV227Ztmf6yIiIiItKPpmNhNtY1sXpDbVKHZwS8LlYtqWLx7FJKC9NzY5wxZru1tqav15LZCf4p8Dlr7R97FT0X+E+getgrFBEREZExq6k1zC2P7GJzfXPSnwlHE9z66G421jeN2hFpub0DMIC19nkg1/kliYiIiMhY0XQszC0PpxaAe9pc38wtD++iqTXs8MoGlkwI/l9jzAZjzMeNMed3//m4MWYD8Jt0L1BERERERqfjoSgb65qGHIBP2FzfzMbaJtrCUYdWNrhB2yGstX9rjPkIsJweN8YB91hrH0/n4kRERERk9GoNx1i9odaRWqs31LKwoiRjc4OTmg5hrf1f4H8Heo8x5ofW2i85sioRERERGdU6I11TIJK5CS4Z4WiCdTsP8JnzZ+L3pf8oCye/wgUO1hoV4vEELR0RYgnL8XCMaCyO1+MmP+DB4zIU5fhwuzVqWURERLJPc3uEB17Y52jNtVv3cVn1NKaPsRA8bkRiCVraI+xqPEoCy+Q8P52xBOFonIDXTWsoytttnRigunwiRbk+fB6FYREREcke1tLnHODhaGwJMcj0XscoBPfS0h6h9uAx8gJeat9q5Vcv7qexJYTHZfB5XERiCWIJS3lRkI/Nn05pYZBXDx2nalohRbm+kV6+iIiISEa0hWPpqduZnrq9ORmCjYO1RsThtk5eaTpOQ9NxvvfbV3j/eyfzj5dUUDYh+I6dYL/HxYGjITbsepM1z+7lxg+djttlOL00n0l5/pH+b4iIiIikXSgaT0vdcJrq9pbKsclnWmtfGuAt/+bAekZMS3uEA0dC/OiZvRQEvPz8s+ew5ZVmvvNkQ79H/n1s/nQ+v/BUfvLc6zy7521uXHw6LmOYqB1hERERGeeCXnda6gY86anbWyo7wf9ujPHTdYLcz621x3q+aK39qYPryqhILMGh42H+fcurXH1WOW+1hrhmzfMD3u3Y2BLiBxv38B9P/x83XVrBlIIg/77lVb78odPJ9XvUIywiIiLjWl4gPV216arbW9JJzVr7AeATQDmw3Riz1hjzobStLIOOdUTY+tphrj1/Jg9ub2T1+rqkx32EowlWr6/jwe2NXHv+TP742mGOdUTSvGIRERGRkWVM12/GnVReFMRkqME2pe1Ka+0e4GvAzcBFwN3GmHpjzJXpWFwmxOMJWjtjFOcFuPeZvWxpGNqJJ1samrn3mb0U5wVo7YwRjzszM09ERERkNCrO9bHi7BmO1ly5YAYl+Zm5vyrpEGyMmWuM+T5QB3wQuMxaO7v7399P0/rS7lg4St3BYxw8FhpyAD5hS0MzB4+FqHvzGMcyeOyfiIiISKb5fR6Wzysj4HWmBTTgdbGsugxfhnqCU1n1D4EXgWpr7RestS8CWGsP0rU7PCZ1ROKcMimXu55ocKTeXU80cEpRLh2RzNzZKCIiIjJSCgIeVi2pcqTWqiVVFAYzN703lRC8BFhrrQ0BGGNcxpgcAGvt/elYXCZ43IZN9YccPfLvqfpDeNxjfmKciIiIyIDyg14Wzy5lUWXxsOosqixmcVUpeQGvQysbXCoheCPQs/s5p/u5MS0cSfCrF/c7WvOhF/c7FqpFRERERrPSwgC3Xzl3yEF4UWUxt185l9KCgMMrG1gqIThgrW078aD73znOLymzjEnPkX/aBxYREZFsUVoQ4PYr5nLb5XOS7hEOeF3cdvmcEQnAkNqc4HZjzPwTvcDGmLOAQdOjMebDdB2k4QZ+bK29vY/3/AXwL4AFdlprV6awrmHp6ExP7656gkVERCSblBYGWD5vGgsrSli38wBrt+7r98CxlQtmsGxeGYUBT0ZbIHpKJQT/PfCgMeYgXUckTwE+PtAHjDFu4B7gQ8B+4AVjzDprbW2P95wGfBW4wFp7xBhTkuL/YVg6Y+lpW4ikqa6IiIjIaJUX8JIX8PKZ82dyWfU0rIW2zhjhaJyA102e34MxUJLvz9gUiP4kHYKttS8YYyqBiu6nGqy1g80BWwC8aq3dC2CM+QWwHKjt8Z7rgXustUe6v86hZNfkBKfGevTm14lxIiIikqX8Pg/TfZmb9DAUqa7ubGBm9+fmG2Ow1v5sgPeXAY09Hu8Hzun1ntMBjDHP0dUy8S/W2t/0LmSMuQG4AWDGDOcGM+f403OBctNUV0RERESGL+mkZoy5HzgV2AGcaHi1wEAhONk1nAYsBKYDzxhjzrTWHu35JmvtvcC9ADU1NXaYX/OkRMJSXhR09Oa48qIg8YRjSxQRERERh6WyXVkDVFlrU0l3B4DyHo+ndz/X037gj92tFa8ZY16hKxS/kMLXGbKgz8XHa8r5zpOvOFbzmrPLyfGNbJ+LiIiIiPQvlcbV3XTdDJeKF4DTjDHvMcb4gGuAdb3e8yhdu8AYYybT1R6xN8WvM2TRuOWi04sdPfLvwtOKicR1Y5yIiIjIaJVK8psM1BpjnjDGrDvxZ6APWGtjwBeBJ4A64H+stS8bY75hjFnW/bYngMPGmFpgM3CTtfZw6v+VockLuNl/JMRNl1YM/uYk3HRpBfuPhigIqCdYREREZLRKJan9y1C+gLX2ceDxXs99vce/LXBj95+My/d5OXN6IQALK4rZ0tA85FoLK4qZVhjkzLJCcv0jM/NORERERAaXyoi0p40xpwCnWWs3GmNy6JrmMKa53S78bhetoSg3XDgLYEhBeGFFMTdcOIvGwx343S7cLp0ZJyIiIjJaJd0OYYy5HngI+FH3U2V09fOOadFonG37jnD+eydz/x9e5+qzylm1dPa7eoQ9LkOOz42nV7gNeF2sWjqbq88q5/4/vM75p01m274jRKM6MU5ERERktEqlHeILdB1+8UcAa+2eTJ/ulg6H2jr51uN1fH3pGaxaegarHt3NBe+dzG+/fBEvHzwGwOQ8P52xxMnTTvweF2+3dQJwxrRCflvbxMMv7mf15XN4+WAr33q8jrllhZRNzBnJ/5qIiIiI9COVENxprY0Y07UTaozx0DUneExLWGhsCfHN9S/z4OfO52tLq4jH47iM4fW3O/j51jf6Pff6EwtO4cyyCVx42iQWVZbgMYZvrn+ZxpYQGhMsIiIiMnqlMh3iaWPMPwFBY8yHgAeBX6dnWZnTFo4BcN+nzuZwexi/x8UfXzvCxd/bwu2/qe/3EI3GlhC3/6aei7+3hT++dgS/x8Xh9jD3fersrrqdsYz9H0REREQkNamE4FuAZuAl4HPA49baW9OyqgwKReN8felsLJaJuQFuffQlbn10N+FocnN+w9EEtz66m1sffYmJuQEsllVLZhNWT7CIiIjIqJVKCP6StXaNtfZqa+1V1to1xpi/S9vKMiTgdfGRM6eS5/Py1Ud2sbl+aCPSNtc389VHdpHn97LkzKn4Pc4cviEiIiIizkslqV3Xx3OfcmgdI6a00I/bGJ6qPzTkAHzC5vpmnqo7hNtlKC30O7RCEREREXHaoDfGGWNWACuB9/Q6IS4faEnXwjIlnrBE47B6Q60j9VZvqGVhRQk6KkNERERk9EpmOsTvgTfpOjb5uz2ePw7sSseiMsnncfHQtsake4AHE44mWLfzACvOKXeknoiIiIg4b9AQbK19A3gDOC/9y8m846E4D7ywz9Gaa7fuY+ncaUwIOlpWRERERBySyolxVxpj9hhjjhljWo0xx40xrelcXKb0NwZttNQTEREREWelcljGncBl1tq6dC1mJBwPR9NSV3OCRUREREavVKZDNI23AAw41gv87rqaEywiIiIyWqWyE7zNGPNL4FGg88ST1tqHHV9VBgW97rTUDXjSU1dEREREhi+VEFwAdACX9HjOAmM6BOcFUvkWjHxdERERERm+pJOatfbT6VzISDEGyouCjt7MVl4UxBjHyomIiIiIw1KZDnG6MWaTMWZ39+O5xpivpW9pmVGc62PF2TMcrblywQxK8nVinIiIiMholcqNcWuArwJRAGvtLuCadCwqk/w+D8vnlRHwpvKt6F/A62JZdRk+9QSLiIiIjFqpJL8ca+3WXs+NizlgAa9h1ZIqR2qtWlJF0KteCBEREZHRLJUQ/LYx5lS6bobDGHMVXccpj2nxeIJQNMHCihIWVRYPq9aiymIWVZbQEU0Qj6dn9JqIiIiIDF8qIfgLwI+ASmPMAeDvgb9Jy6oy6HgkyrodB1m55g98+4q5Qw7CiyqL+fYVc1lx7x/49c6DHI+k5xAOERERERm+pEOwtXavtXYxUAxUWmvfb619PW0ry5C2cJwHXtjHGy0hPv6j3/PN5XO47fI5SfcIB7wubrt8Dt9cPoeP/+j3vNESYu3WfbSFdViGiIiIyGiVynSIvzPGnJgV/H1jzIvGmEsG+9xoZy0nx6O90RLigjs2U1LgZ9ONC7n5wxWUFwX7/Fx5UZCbP1zBphsXUlLg54I7NvNGd53GlhDWZuy/ICIiIiIpSuVEh89Ya//NGHMpMAn4JHA/8GRaVpYhx8Pvblu4/mfbCfrc3PWxM7n/s+fgNoa2zhjhaJyA102e30PcWnbvP8ri7z9NKPLuXd+2znFxz6CIiIjIuJRKCD4x8uCjwM+stS8bM/aPhAhH+76BLRSJ88UHdpx8nOdzMzHXx5H2CG19hN5311U7hIiIiMholUoI3m6MeRJ4D/BVY0w+MOZHIAS9yc3zbYvEaYskf6pcQHOCRUREREatVELwZ4F5wF5rbYcxZhIw5o9Szguk8i0Y+boiIiIiMnyD3hhnjKns/ue87r9nGWPmA6eQWogelVyGfm9+G6ryoiAuZw6gExEREZE0SCbE3gjcAHy3j9cs8EFHV5RhJXl+ViyYwZ2/aXCs5soFMyjJDzhWT0REREScNWgIttbe0P33ovQvJ/O8XjfL55Vx96Y9/d4kl4qA18WyeWV43doKFhERERmtUpkTfHX3zXAYY75mjHnYGPO+9C0tcyYGvaxaWuVIra8vrWJijteRWiIiIiKSHqlsV66y1h43xrwfWAzcB/xHepaVWTl+Dx+aXTrgkckBj4vJeT4Cnv6/ZYsqi1k8u5Qc35hvlRYREREZ11JJaycG3y4B7rXWbjDGfDMNaxoRJQUB7rhyLjc/vIvN9c34PC7+/uL3srCyhFyfh7ZwjFA0TtDrJi/goT0S46m6Q9z91KtEYgkWVRZzx5VzKSlQL7CIiIjIaJdKCD5gjPkR8CHgDmOMn9R2kke9E0H4zWMhinL9/HrnQT53//aTxyr3VF4UZMXZM9h040Ucae9kSmFQAVhERERkjEglBP8F8GHgO9bao8aYqcBN6VnWyNp9sJXV62vfcaOcx2XweVxEYgliCUtjS4g7n2jg7qf2sGppFVMKnR2zJiIiIiLpk3QI7j4g4zGg1Bgzo/vp+vQsa2Qcag2fbIdwuwyXnlHKR8+cStmEIJ2xBOFonIDXjd/j4sDREBt2vcmm+kPc+shuNtY1qR1CREREZIxIOgQbY74E/DPQxJ+PS7bA3DSsK+N6BuBl1dP4zAUz2fJKM995soHGltC7doLLi4J8bP50Pr/wVH7y3Ous23mQmx/epSAsIiIiMgak0g7xd0CFtfZwuhYzUjo6Y/y2romte1u4Z+V83moN8Yn7/sj73zuZf7ykgrIJQSKxBJFYAp/Hha/HTvCaZ/dy44dO59IzpvCVh3aysa6Jy99XpgkRIiIikrVCnVEOd0QBOB7683CB/GBXPpqU4yXoH9mRsqkktUbgWLoWMpKOhKJ878kG1lxXw73P7KUg4OXnnz2HfS0d+LpHolkgbi22+zN+j4slZ049uRP8bPht1lxXw5fWvshFFSUKwSIiIpJ1jnRE6OiM89iOAzzwwr4Bhwssn1dGjt/NxBzfCKwUjLV28HcBxpj7gApgA9B54nlr7ffSs7T+1dTU2G3btjlSKxqNs+a51zilKJdf7zzAZdVl+D2GyfkBtjQc4lcv7u/3An5s/nQWVpTw9vEwnTF78vP7Wtr5qwveg9frdmSNIiIiIqPdW8fCbKprYvWG2qRO4Q14XaxaUsXFs0uZUpieVlJjzHZrbU2fr6UQgv+5r+ettf86jLUNiZMh+MCRDu59di+nFudyemkBiYSl7q1W7nqiIekLeNOlFcyeUoDLZXilqZVXm9v53AdmUTYxx5E1ioiIiIxmTa1hbum+typViyqLuf3KuZSm4Z4qR0Jwj2J5ANbaNgfWNiROhuDGlg4Ot3Vy6HgnpQUBvr/xFbY0pH4BF1YU8+XFp9PUGqYk38+kPD/lRQrBIiIiMr69dSzMVx8ZWgA+IV1BeKAQnPRhF8aYOcaYPwEvAy8bY7YbY85wapEjJZGwNB7poGxicMgBGGBLQzPf3/gKZROD7D/SQSLFHy5ERERExpojHRE21TUNKwADbK5vZmNtE0c7Ig6tbHCpnPh2L3CjtfYUa+0pwD8Aa9KzrMyJW0vV1AKe33t4yAH4hC0NzTy/9zCzpxUQTygEi4iIyPjW0Rln9YZaR2qt3lBLe2fckVrJSCUE51prN594YK3dAuQ6vqIMy/G5sRjueqLBkXp3PdGAtYYcn26KExERkfEr1BnlsR0HkrqHKhnhaIJ1Ow8Q6ow6Um8wqYTgvcaYVcaYmd1/vgbsTdfCMmnDroOOXsDHXzqI9oFFRERkPDvcEeWBF/Y5WnPt1n0n5wunWyoh+DNAMfAw8CtgcvdzY1o0bnnoxf2O1nxw+35iccVgERERGb+spc8xssPR2BIiU7dVJX2ig7X2CPC3aVzLiLDY9FxA7QWLiIjIONYWjqWnbmd66vaWynSI3xpjJvR4PNEY80R6lpU56buAmWvsFhEREcm0UDQ9WSecprq9pdIOMdlae/TEg+6d4RLnl5RZnTFneoF7i8QUgkVERGT8CqbpZNyAJzPDBVIJwQljzIwTD4wxp8DY/53/WL+AIiIiIiMhL5B0V+2oqNtbKl/lVuB3xpinAQN8ALghLavKoLF+AUVERERGgjFQXhR09N6q8qIgxjhWbkBJ7wRba38DzAd+CfwCOMtae7IneKyeHudzuygvCjpas7woiM+Tyia7iIiIyNgyKcfLirNnDP7GFKxcMIPiPL+jNfuTUlKz1r5trV3f/eftXi/f7+C6MmZSro9PnjvT0ZrXnjeTSbmZuYAiIiIiIyHo97J8XhkBrzMbfwGvi2XVZfjT1Kram5PblRnavHaW2+1iWfVURy/gZXOn4naNyW+HiIiISNJy/G5WLalypNaqJVXk+jN3T5WTIXjM3iSX6/PwL5c5083xr8vOIM+vfmAREREZ/ybm+Lh4dimLKouHVWdRZTGLq0qZkONzaGWDU+MqcLwzRlGuj4srhzfx7eLKEibm+GhN0+xhERERkdFmSmGA26+cO+QgvKiymNuvnEtpQcDhlQ3MyRAccbBWxkSjcdbvOsiXf7mD6y+cNeQgfHFlCddfOIsv/3IH63cdJJqhQc8iIiIiI620IMC3r5jLbZfPSbrFNOB1cdvlc0YkAAMYm8IBzcaYucBMeoxWs9Y+7PyyBlZTU2O3bdvmSK2DR0N8/N4/0NgSItfn5s6rqjnc1sm3/reOcHTwgzQCXhf/9JHZTMrz85WHdtIeiVNeFOSXN5zHtAnOTp0QERERGc2OdkRo74yzbucB1m7d1+f4tPKiICsXzGDZvDJyfe60tkAYY7Zba2v6ei3p5lVjzE+AucDLwIl0aIGMh2AnxRP25AVqj8T5wtoXuWzuVH5xw7n8bs/b/HJbY78X8OM15bz/tMnc9+xr/HrXmydfa2wJEU+M2RZpERERkSGZkONjQg586rxTuKx6GtZCW2eMcDROwOsmz+/BGCjO82dsCkR/UrmD61xrrTO3/40i7Z3v7t/99a43eXz3W1xcWcI/XlLBtAlBovEEndEEfq8Lr9vFwaMh1u96k+9v3NNn4G2PqC9YREREslPQ72W63zvSyxhQKiH4D8aYKmttbdpWMwJC/fTuxhOWJ2ubeLK2CQCPy+DzuIjEEsSS2OUNR9QTLCIiIjJapRKCf0ZXEH4L6KRrLrC11s5Ny8oyxJ/kyW6xhCWWQrDViXEiIiIio1cqIfg+4JPAS/y5J3jMywukZ6ZvuuqKiIiIyPClktSarbXr0raSEeIyhvKiYJ83vw1VeVEQl9GJcSIiIiKjVSq/s/+TMWatMWaFMebKE3/StrIMyfG5uWr+dEdrXn3WdHJ8I3vHo4iIiIj0L5UQHKSrF/gS4LLuP0vTsahMKgx4WVo9LenBzoMJeF0smTuNwmDmjv0TERERkdQk3Q5hrf10OhcyUtxuFwV+DzddWsHq9XXDrnfTpRUU+D24XWqHEBERERmtUjksIwB8FjgDOHm2nbX2M2lYV0YV5vi44L2TWVhRzJaG5iHXWVhRzAXvnUxhGk8+EREREZHhS6UH4H5gCnAp8DQwHTiejkVlms/joiQ/wI2LT2dhRfGQaiysKObGxadTmh/QeDQRERGRUS6V6RDvtdZebYxZbq39L2PMWuDZdC0s04pyfVhr+dyFs/jAaZO564kGwtHBJ8EFvC5uurSCqqkFlE0MMjFXu8AiIiIio10qITja/fdRY8wc4C2gxPkljZxJeX4qjCGesPzihvN4uuEQD724v8/xaeVFQa6aP52LKkpoD0epnFKgACwiIiIyRqQSgu81xkwEVgHrgDzg62lZ1QgqyvWx4D2TaGmPUDkln1s/OptJeX6i8QThaIKA14XX7eJwWyfGwJSCAEVTC9QCISIiIjKGpDId4sfd/3wamJWe5YwOPo+LKYUBivNKaemIEEtY2sIxovEEXreLvICHmZNyKMr1awqEiIiIyBiUynSIUuBbwDRr7UeMMVXAedba+9K2uhHmdrsozu8ehFE4smsREREREeek8jv8nwJPANO6H78C/L3TCxIRERERSbdUQvBka+3/AAkAa20MiA/2IWPMh40xDcaYV40xtwzwvo8ZY6wxpiaFNYmIiIiIpCyVENxujJkEWABjzLnAsYE+YIxxA/cAHwGqgBXdbRS935cP/B3wxxTWIyIiIiIyJKmE4BvpmgoxyxjzHPAz4EuDfGYB8Kq1dq+1NgL8Aljex/tWA3cA4RTWIyIiIiIyJKmE4FrgEeAFoAlYQ1df8EDKgMYej/d3P3eSMWY+UG6t3ZDCWkREREREhiyVEPwzoJKuCRE/BE6n6yjlITPGuIDvAf+QxHtvMMZsM8Zsa25uHs6XFREREZEsl8phGXOstT37eTcbY2oH+cwBoLzH4+ndz52QD8wBthhjAKYA64wxy6y123oWstbeC9wLUFNTY1NYt4iIiIjIO6SyE/xi981wABhjzgG2DfB+6GqdOM0Y8x5jjA+4hq6+YgCstcestZOttTOttTOB54F3BWAREREREScNuhNsjHmJrokQXuD3xph93Y9PAeoH+qy1NmaM+SJd84XdwE+stS8bY74BbLPWrhvo8yIiIiIi6ZBMO8TS4XwBa+3jwOO9nvt6P+9dOJyv5bTOSIzm9ggAx0Mx4ok4bpeb/GDXt60414ffl0pHiYiIiIiMBoMmOGvtG5lYyGhyPBSlNRyjrTNKwOvGbQwWSyQOAZcFC3Free1wB/kBLwUBD/lB70gvW0RERESSpG3MXpqOhTkejhD0edlUd4gHXthHY0voXe8rLwqy4uwZLJ9XRlNriI5InNLCwAisWERERERSZawde4MWampq7LZtzt8793ZrmEjCsrn+EKs31BKOJgb9TMDrYtWSKhZVluBzGSYXKAiLiIiIjAbGmO3W2pq++9kqZgAAGSBJREFUXktlOsS49vaxMDELtz76Erc+ujupAAwQjia49dHd3ProS8RsV5AWERERkdHt/7d3t7Fxped5x6+bnJczFEVKXFOjFU3uxmggiqYpxqaErtEaIiS0cdgVtUKRWGqAbJ0mKOCirfNJ2y1RtKxgtSnQl6ANGiS2AyRSkTjSigXR2JFCOEUBW+LWkqwl6TZ1E8qMNcuutJQozgyH5NMPHDk0RYqcmefwUJz/DxDm5Rzec1MHFC4d3uc5hGAtzwAX5PTWlTsamSjvRhwjE9N668odFZzTbK7guUMAAAD4RAiWNL+wqD8ef7/sAPzUyMS0/nj8feUKi546AwAAQBiqPgTn5xeUW3AaHN7o5nebMzg8pvyCU35+wUs9AAAA+Ff1ITi7uKirt6Y2PQO8kVxhSUO3p5Rd5GwwAADAdlX1IfhxdlGXbk56rXnxxqQeZwnBAAAA21XVh2BJa64DvJ3qAQAAwK+qD8GPQ1rJYTbPTDAAAMB2VfUh2Ncs8LN1GYcAAADYrqo+BKfitaHUDWLh1AUAAEDlqj4E1wexF6ouAAAAKlf1IdhMam1Kea3Z2pSSmdeSAAAA8KjqQ3DzroTOHGnzWvPs0Tbt2530WhMAAAD+VH0ITiZi6u9uURD381cRxGt08nCLEswEAwAAbFtVH4IlqSGIaaCvw0utgb4ONaaYBwYAANjOCMGSdqfiOnEord725orq9LY360RHWvVB3FNnAAAACAMhuCjdGOjC6a6yg3Bve7MunO5SuiHw3BkAAAB8IwSvkG4IdOGNLp0/1bnpGeEgXqPzpzoJwAAAAC8QhldXSTcG6u8+oGMH92no9pQu3pjUvQfZZ/ZrbUrp7NE2nexuUWMQYwQCAADgBUIIXoNzy4+9B/fpZz7xsmrMNJtfUK6wqCBeq/pkTEvOKTe/KLm/3B8AAAAvBkLwKpmZnK6NZzQ4PKZcYelH79cnarV3V0IPn8xrdn7xR+8H8RoN9HXoxKG00o2MQwAAALwICMErZB7ldO7KHY1MTD+zbXZ+UbPzz45F5ApLevudu7o2kWEuGAAA4AXBhXFFmZmczl1eOwBvxsjEtM5dvqPMo5znzgAAAOAbIVjS42xB18YzZQfgp0YmpnVtLKPZXMFTZwAAAAgDIVjSo9yCBofHvNQaHB7TTHbBSy0AAACEo+pDcH5+QVdvTf3YRXCVyBWWNHR7Svl5gjAAAMB2VfUhePrJvC7dnPRa8+KNSU0/mfdaEwAAAP5UfQh2TmveDKMS9x5kWTsYAABgG6v6EDybC2dsYTbPOAQAAMB2VfUhOFtY3HinMuRCqgsAAIDKVX0ITsVrQ6kbxMKpCwAAgMpVfQiuD8K5aV5YdQEAAFC5qg/BZlJrU8przdamlMy8lgQAAIBHVR+Cm3cldOZIm9eaZ4+2ad/upNeaAAAA8KfqQ3AyEVN/d4uCuJ+/iiBeo5OHW5RgJhgAAGDbqvoQLEkNQUwDfR1eag30dagxxTwwAADAdkYIlrQ7FdeJQ2n1tjdXVKe3vVknOtKqD+KeOgMAAEAYCMFF6cZAF053lR2Ee9ubdeF0l9INgefOAAAA4BsheIV0Q6ALb3Tp/KnOTc8IB/EanT/VSQAGAAB4gTC8ukq6MVB/9wEdO7hPQ7endPHGpO49yD6zX2tTSmePtulkd4sagxgjEAAAAC8QQvAa6oO46oO4Pv/pV/X64QNyTprNLyhXWFQQr1V9MiYzad/uJKtAAAAArJLNF/TBXEGS9Di7oGxhUal4rXYXFw94qS6uVDLaE4iE4OdIJmL6aIK/IgAAgM14ODevufyirt6a0qWb6/82/cyRNvV3t6guWau9dYkIOpXMORfJB1eip6fHjY6ORt0GAAAAiu7P5HR9PKPB4THlCksb7h/EazTQ16Hjh9La3xjOdVVm9q5zrmetbZzmBAAAQEUyj3J668odjUxMb/prcoUlvf3OXV2byESywACrQwAAAKBs92dyOne5tAC80sjEtM5dvqPMo5znzp6PEAwAAICyPJyb1/XxTNkB+KmRiWldG8vow7l5T51tjBAMAACAsszlFzU4POal1uDwmJ7kF73U2gxCMAAAAEqWzRd09dbUpi6C24xcYUlDt6eUzRe81NsIIRgAAAAl+2CuoEs3J73WvHhj8kfrC4eNEAwAAICSOac11wGuxL0HWW3V6r2EYAAAAJRsNrcQTt18OHVXIwQDAACgZNlCOBex5UKquxohGAAAACVLxWtDqRvEwqm7GiEYAAAAJasPwrnxcFh1VyMEAwAAoGRmUmtTymvN1qaUzLyWXBchGAAAACV7qS6uM0favNY8e7RNzfVJrzXXQwgGAABAyVLJuPq7WxTE/cTJIF6jk4dblAxp1ng1QjAAAADKUpes1UBfh5daA30d2pXcmgAsEYIBAABQpr11CR0/lFZve3NFdXrbm3WiI609dQlPnW2MEAwAAICy7W8MdOF0V9lBuLe9WRdOdyndEHju7PkIwQAAAKhIuiHQl97o0vlTnZueEQ7iNTp/qjOSACxJW7MQGwAAAHa0/Y2B+rpe1rGD+zR0e0oXb0zq3oPsM/u1NqV09mibTna3aFeidktHIFYiBAMAAMCLPXUJ7amT3nztFb1++ICck2bzC8oVFhXEa1WfjMlseXm1VDIeaa+EYAAAAHjx4dy8nuQXdfXWlC7dXD4TXJ+o1d5dCT18Mq/Z+UW1NqV05kib+rtbtCsZ3Zlgc85F8sGV6OnpcaOjo1G3AQAAgKL7MzldH89ocHhMucLShvsH8RoN9HXo+KG09jeGMxNsZu8653rW2saZYAAAAFQk8yint67c0cjE9Ka/JldY0tvv3NW1iQyrQwAAAODFcn8mp3OXSwvAK41MTOvc5TvKPMp57uz5CMEAAAAoy4dz87o+nik7AD81MjGta2MZzczNe+psY4RgAAAAlOVJflGDw2Neag0Oj2k2v+il1mYQggEAAFCybL6gq7emNnUR3GbkCksauj2lbL7gpd5GCMEAAAAo2QdzBV26Oem15sUbk/pgjhAMAACAbco5rXlHuErce5DVVq3eSwgGAABAyWZzC+HUzYdTdzVCMAAAAEqWLYRzEVsupLqrEYIBAABQslS8NpS6QSycuquFHoLN7KfN7Htm9qdmdm6N7b9iZmNmdsfMrpvZK2H3BAAAgMrUB+HceDisuquFGoLNrFbSf5T0WUkdks6YWceq3b4jqcc51yXpa5L+dZg9AQAAoHJmUmtTymvN1qaUzLyWXFfYZ4KPSvpT59z3nXPzkv6LpP6VOzjnRpxzc8WX35L00ZB7AgAAQIVeqovrzJE2rzXPHm1Tc33Sa831hB2CWyTdW/H6B8X31vOLkv7bWhvM7JfNbNTMRqenK7s1HwAAACqTSsbV392iIO4nTgbxGp083KJkSLPGq22bC+PM7Ocl9Uj61bW2O+d+wznX45zraW5u3trmAAAA8IxdyVoN9K2edC3PQF+H6pNbE4Cl8EPwlKTWFa8/Wnzvx5jZCUlvSzrpnMuH3BMAAAA82FOX0PFDafW2V3aCsre9WSc60mqsS3jqbGNhh+Cbkn7SzH7CzBKSPidpaOUOZvZTkv6zlgPw+yH3AwAAAI/2Nwa6cLqr7CDc296sC6e7lG4IPHf2fKGGYOfcgqR/IOnrksYl/Z5z7j0z+xdmdrK4269Kqpf0+2Z2y8yG1ikHAACAbSjdEOhLb3Tp/KnOTc8IB/EanT/VGUkAliRzW3WDZo96enrc6Oho1G0AAABghZm5ec3mFzV0e0oXb0zq3oPsM/u0NqV09mibTna3qD5RG+oIhJm965zrWWvb1qxGDAAAgB2vsS6hxjrpzdde0euHD8g5aTa/oPmFRSVitapPxmQmNdcnt2wViPVsm9UhAAAAsLOYSXLS4tLy49MbYSwtLUXZliTOBAMAAMCTh3Pzmssv6uqtKV26uf44xJkjbervblFdslZ7t3BFiJWYCQYAAEDF7s/kdH08o8HhMeUKG5/pDeI1Gujr0PFDae1vDOfCOGaCAQAAEJrMo5zeunJHIxObv6tvrrCkt9+5q2sTmZ23RBoAAAB2tvszOZ27XFoAXmlkYlrnLt9R5lHOc2fPRwgGAABAWR7Ozev6eKbsAPzUyMS0ro1l9OHcvKfONkYIBgAAQFnm8osaHB7zUmtweExP8oteam0GIRgAAAAly+YLunpralMXwW1GrrCkodtTyuYLXupthBAMAACAkn0wV9Clm5Nea168MakP5gjBAAAA2Kac05rrAFfi3oOstmr1XkIwAAAASjabWwinbj6cuqsRggEAAFCybCGci9hyIdVdjRAMAACAkqXitaHUDWLh1F2NEAwAAICS1Qfh3Hg4rLqrEYIBAABQMjOptSnltWZrU0pmXkuuixAMAACAkr1UF9eZI21ea5492qbm+qTXmushBAMAAKBkqWRc/d0tCuJ+4mQQr9HJwy1KhjRrvBohGAAAAGWpS9ZqoK/DS62Bvg7tSm5NAJYIwQAAACjT3rqEjh9Kq7e9uaI6ve3NOtGR1p66hKfONkYIBgAAQNn2Nwa6cLqr7CDc296sC6e7lG4IPHf2fIRgAAAAVCTdEOhLb3Tp/KnOTc8IB/EanT/VGUkAlqStWYgNAAAAO9r+xkB9XS/r2MF9Gro9pYs3JnXvQfaZ/VqbUjp7tE0nu1u0K1G7pSMQKxGCAQAA4MWeuoT21ElvvvaKXj98QM5Js/kFJWKLml+oVX0yJjOpuT65ZatArIdxCAAAAITCTJKTZuaWH5/eCGNpaSnKtiRxJhgAAACePJyb11x+UVdvTenSzfXHIc4caVN/d4vqkrXaG9E4hDnnIvngSvT09LjR0dGo2wAAAEDR/Zmcro9nNDg8plxh4zO9QbxGA30dOn4orf2N4VwYZ2bvOud61trGmWAAAABUJPMop7eu3NHIxPSmvyZXWNLb79zVtYkMS6QBAADgxXJ/Jqdzl0sLwCuNTEzr3OU7yjzKee7s+QjBAAAAKMvDuXldH8+UHYCfGpmY1rWxjD6cm/fU2cYIwQAAACjLXH5Rg8NjXmoNDo/pSX7RS63NIAQDAACgZNl8QVdvTW3qIrjNyBWWNHR7Stl8wUu9jRCCAQAAULIP5gq6dHPSa82LNyb1wRwhGAAAANuUc1pzHeBK3HuQ1Vat3ksIBgAAQMlmcwvh1M2HU3c1QjAAAABKli2EcxFbLqS6qxGCAQAAULJUvDaUukEsnLqrEYIBAABQsvognBsPh1V3NUIwAAAASmYmtTalvNZsbUrJzGvJdRGCAQAAULKX6uI6c6TNa82zR9vUXJ/0WnM9hGAAAACULJWMq7+7RUHcT5wM4jU6ebhFyZBmjVcjBAMAAKAsdclaDfR1eKk10NehXcmtCcASIRgAAABl2luX0PFDafW2N1dUp7e9WSc60tpTl/DU2cYIwQAAACjb/sZAF053lR2Ee9ubdeF0l9INgefOno8QDAAAgIqkGwJ96Y0unT/VuekZ4SBeo/OnOiMJwJK0NQuxAQAAYEfb3xior+tlHTu4T0O3p3TxxqTuPcg+s19rU0pnj7bpZHeLdiVqt3QEYiVCMAAAALzYU5fQnjrpzdde0euHD8g5aTa/oFxhUUG8VvXJmMykj+yKK0jEI+2VEAwAAAAvHmcLepRb0NVbU7p0c/lM8KtNKX38wG699xeP9WcPsmptSunMkTb1d7eoIYhpdyqaMGzOuUg+uBI9PT1udHQ06jYAAABQlJnJ6dp4RoPDY8oVljbcP4jXaKCvQycOpZVuDGcm2Mzedc71rLWNM8EAAACoSOZRTueu3NHIxPSmvyZXWNLb79zVtYkMq0MAAADgxZKZyenc5dIC8EojE9M6d/mOMo9ynjt7PkIwAAAAyvI4W9C18UzZAfipkYlpXRvLaDZX8NTZxgjBAAAAKMuj3IIGh8e81BocHtNMdsFLrc0gBAMAAKBk+fnlVSA2cxHcZuQKSxq6PaX8/NYEYUIwAAAASjb9ZF6Xbk56rXnxxqSmn8x7rbkeQjAAAABK5pzWvCNcJe49yGqrVu8lBAMAAKBks7lwxhZm84xDAAAAYJvKFhZDqZsLqe5qhGAAAACULBWvDaVuEAun7mqEYAAAAJSsPgjnxsNh1V2NEAwAAICSmUmtTSmvNVubUjLzWnJdhGAAAACUrHlXQmeOtHmtefZom/btTnqtuR5CMAAAAEqWTMTU392iIO4nTgbxGp083KIEM8EAAADYzhqCmAb6OrzUGujrUGNqa+aBJUIwAAAAyrQ7FdeJQ2n1tjdXVKe3vVknOtKqD+KeOtsYIRgAAABlSzcGunC6q+wg3NverAunu5RuCDx39nyEYAAAAFQk3RDowhtdOn+qc9MzwkG8RudPdUYSgCVp6wYvAAAAsGOlGwP1dx/QsYP7NHR7ShdvTOreg+wz+7U2pXT2aJtOdreoMYht6QjESoRgAAAAeFEfxFUfxPX5T7+q1w8fkHPSbH5BucKignit6pMxmUn7die3bBWI9RCCAQAA4FUyEdNHE9s7ZjITDAAAgKpDCAYAAEDVIQQDAACg6hCCAQAAUHUIwQAAAKg6hGAAAABUHUIwAAAAqg4hGAAAAFXHnHNR91AyM5uW9OcRfPRHJP2/CD4X4eK47lwc252LY7szcVx3rqiO7SvOuea1NryQITgqZjbqnOuJug/4xXHduTi2OxfHdmfiuO5c2/HYMg4BAACAqkMIBgAAQNUhBJfmN6JuAKHguO5cHNudi2O7M3Fcd65td2yZCQYAAEDV4UwwAAAAqg4hGAAAAFWHELwJZvZnZvZdM7tlZqNR9wN/zGyPmX3NzCbMbNzMXou6J1TOzA4Wf16f/nlkZv846r5QOTP7opm9Z2Z3zeySmQVR9wQ/zOwfFY/re/y8vtjM7Mtm9r6Z3V3xXpOZ/ZGZ/e/i494oe5QIwaXodc51b7c17lCxfy/pD51z7ZIOSxqPuB944Jz7XvHntVvSpyTNSboScVuokJm1SPqHknqcc52SaiV9Ltqu4IOZdUr6JUlHtfxv8d8ys78SbVeowFcl/fSq985Juu6c+0lJ14uvI0UIRtUys0ZJn5H0W5LknJt3zn0YbVcIwXFJ/8c5F8VdJuFfTFLKzGKS6iT9RcT9wI9Dkr7tnJtzzi1I+qak0xH3hDI55/5E0oNVb/dL+u3i89+WdGpLm1oDIXhznKRvmNm7ZvbLUTcDb35C0rSkr5jZd8zsN81sV9RNwbvPSboUdROonHNuStK/kTQp6YeSZpxz34i2K3hyV9JfN7OXzKxO0s9Iao24J/iVds79sPj8vqR0lM1IhODN+mvOuU9K+qykL5jZZ6JuCF7EJH1S0q87535K0hNtg1/PwB8zS0g6Ken3o+4FlSvOEPZr+T+wByTtMrOfj7Yr+OCcG5f0ryR9Q9IfSrolaTHSphAat7w+b+Rr9BKCN6F49kHOufe1PFd4NNqO4MkPJP3AOfft4uuvaTkUY+f4rKT/6ZzLRN0IvDgh6f8656adcwVJlyV9OuKe4Ilz7recc59yzn1G0kNJ/yvqnuBVxsxelqTi4/sR90MI3oiZ7TKz3U+fS/obWv61DV5wzrn7ku6Z2cHiW8cljUXYEvw7I0YhdpJJSX/VzOrMzLT8M8vFrDuEme0rPrZpeR74YrQdwbMhSb9QfP4Lkq5G2Isk7hi3ITP7mP7yqvKYpIvOufMRtgSPzKxb0m9KSkj6vqS/65x7GG1X8KH4n9ZJSR9zzs1E3Q/8MLN/LunnJC1I+o6kv+ecy0fbFXwws/8u6SVJBUm/4py7HnFLKJOZXZJ0TNJHJGUk/TNJ70j6PUltkv5c0s8651ZfPLelCMEAAACoOoxDAAAAoOoQggEAAFB1CMEAAACoOoRgAAAAVB1CMAAAAKoOIRgAtgkze9XMWIccALYAIRgAAABVhxAMANtLzMx+18zGzexrxbujfcrMvmlm75rZ11fcevSXzOymmd02sz8ws7ri+181s183s2+Z2ffN7JiZfblY86vFfWqL+901s++a2Rcj/J4BYMsRggFgezko6T855w5JeiTpC5J+TdLfds59StKXJT29a+Vl59wR59xhLd8++BdX1Nkr6TVJX9Ty7Ur/raSPS/pE8U6J3ZJanHOdzrlPSPpK+N8aAGwfsagbAAD8mHvOuf9RfP47kv6JpE5Jf2RmklQr6YfF7Z1m9i8l7ZFUL+nrK+r8V+ecM7PvSso4574rSWb2nqRXJX1T0sfM7NckDUv6RqjfFQBsM4RgANheVt/L/rGk95xzr62x71clnXLO3TazNyUdW7EtX3xcWvH86euYc+6hmR2W9Dcl/X1JPyvp8xV3DwAvCMYhAGB7aTOzp4H3rKRvSWp++p6Zxc3s48XtuyX90Mzikv5OKR9iZh+RVOOc+wNJ/1TSJ710DwAvCM4EA8D28j1JXzCzL0sa0/I88Ncl/Qcza9Tyv9v/TtJ7kgYkfVvSdPFxdwmf0yLpK2b29GTIW37aB4AXgzm3+jdvAAAAwM7GOAQAAACqDiEYAAAAVYcQDAAAgKpDCAYAAEDVIQQDAACg6hCCAQAAUHUIwQAAAKg6/x+DUqrz115KkQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3jVV533/ffa550jBHYCCaHYCgmUJkhTBqlauEuLSgu1xdvCPKPTOtR7dE51ptreFZ1H7FhbrR1nfEaLh7FeF61jj1gcaalQtdqhgEApSXrACgQIoRxCkr139mE9fyTBNBySHX6/ncP+vK6Lq+zTt1+Sfz5ZWeu7jLUWEREREZFc4hnqBkREREREsk0hWERERERyjkKwiIiIiOQchWARERERyTkKwSIiIiKSc3xD3cBgjB8/3k6ZMmWo2xARERGRYWzbtm1HrbWRs702IkPwlClT2Lp161C3ISIiIiLDmDHmj+d6TdshRERERCTnKASLiIiISM5RCBYRERGRnKMQLCIiIiI5RyFYRERERHKOQrCIiIiI5ByFYBERERHJOQrBIiIiIpJzRuRlGSIiIiIyfMU7k7S0dwJwKpokmkgR9nspDHdFz0h+gGBgaGOoQrCIiIiIOOJUNEFrLMnTO5p45OV97D8WPeM9lSVhll8xmaWzKigK+SgM+4egUzDW2iH5H1+Iuro6q2uTRURERIaP5pMxNtY3s3r9HmKJdL/vD/k9rFo8g4XTyygrDrnSkzFmm7W27myvaSVYRERERC5Ic2uMO5/cxaaGlgF/JpZIc/dTu9nY0My9N9ZQVuROED4XHYwTERERkUFrPhnjzicyC8C9bWpo4c4ndtHcGnO4s/NTCBYRERGRQTkVTbCxvnnQAbjHpoYWNu5ppi2WcKiz/ikEi4iIiMigtMaSrF6/x5Faq9fv4WQ06UitgVAIFhEREZGMxTu7pkAM5BDcQMQSadbtbCLemZ0g7GoINsb8wBhzxBiz+xyvG2PMt4wxbxhjdhljZrvZj4iIiIg4o6W9k0de3udozbVb9p2eL+w2t1eC/xP44Hle/xAwtfvPbcB/uNyPiIiIiDjAWs46B/hC7D8WJVvTe10NwdbaXwHHzvOWpcDDtstLwBhjzEQ3exIRERGRC9cWc2fbQlt8FGyHGIAKYH+vxwe6nzuDMeY2Y8xWY8zWlpYLO4EoIiIiIhcmmki5UjfmUt2+hjoED5i19iFrbZ21ti4SiQx1OyIiIiI5Lez3ulI35HOnbl9DHYKbgMpejyd1PyciIiIiw1hByJ2Lh92q29dQh+B1wMe7p0TMBU5aaw8NcU8iIiIi0g9joLIk7GjNypIwxjha8pzcHpH2CPA7oMoYc8AY80ljzP8xxvyf7rf8HNgLvAGsAT7tZj8iIiIi4oxIfoDlV0x2tOaKOZMpLQw6WvNcXF1vttYu7+d1C3zGzR5ERERExHnBgI+lsyr41i9fd+TCjJDfw5LaCgI5sidYREREREaoopCPVYtnOFJr1eIZFIezsx8YFIJFREREZJAKw34WTi9jQfWFTe5aUB1h4YwyCkJ+hzrrn0KwiIiIiAxaWXGIe2+sGXQQXlAd4d4baygrCjnc2fkpBIuIiIjIBSkrCnHvR2q454aZhPwDi5chv4d7bpg5JAEYXD4YJyIiIiK5oaw4xNJZ5cyvKmXdzibWbtnH/mPRM95XWRJmxZzJLJlVQXHIl9UtEL0pBIuIiIiIIwpCfgpCfm6dN4Xra8uxFtriSWKJFCG/l4KgD2OgtDCYtSkQ56IQLCIiIiKOCgZ8TAoM75g5vLsTERERkREnGk/wdkcCgFPRJNFEirDfS2H3CLRxeX7CwaHZBtFDIVhEREREHHG8o5OOeIqndzTxyMvn3hO8/IrJLJ1VQV7Qy9i8wBB0Cqbr0raRpa6uzm7dunWo2xARERGRbodPxni+vpnV6/cM6Aa5kN/DqsUzuHp6GROK3ZkOYYzZZq2tO9trWgkWERERkQvS3Brjrid3samhZcCfiSXS3P3UbjY2NGtOsIiIiIiMLIdPxrjzicwCcG+bGlq484ldNLfGHO7s/BSCRURERGRQjnd08nx986ADcI9NDS1s3NPMiY5Ohzrrn0KwiIiIiAxKRzzF6vV7HKm1ev0e2uMpR2oNhPYEn0cikaKlPU7awqlYkngyRdDnpTDkw2Mgkh/E7x/aQc8iIiIiQyEaT/D0jqYBHYIbiFgizbqdTfzley/Kyvg0heCz6IgnOR5NsHPfcTwew/iCIMlUmlTaEvOkaI8nOdoWJ5W2zJo8lrFhP3lBfSlFREQkd7zdkeCRl/c5WnPtln1cX1vOJIXg7DvSGmPPoVbG5gUoLQxREPYR9ntpi/1p0HNByEdByMepaJKjp+K83nyKGROLKM3yqUYRERGRoWItZ50DfCH2H4uSrem9CsG9tLTGeONIG+PyAozJD/CznQf7HfR8fW05HuCNI20YIKIgLCIiIjmgLZZ0p27cnbp9KQR3a2mNcawjTvmYMC++cbTfQc/7j0W5b0Mj3/rl66xaPIMr3z2eYx1xQEFYRERERr9Y0p1DbHGX6valEEzXHuCTsQQFwQBfePqVQQ16XlAd4StLL+NkPEF+p4+8gL60IiIiMnqFXBoOEPRlZ+iARqQBp+JJQn5vxgG4t00NLXzh6VcI+byccunXAyIiIiLDRYFLQwHcqttXzofgRCKFB3ihscWRQc8vNLbg6a4rIiIiMlqlraWyJOxozcqSMOksnYzL+RB8PNZJPJXud9Czz2PIC3jxecx537d6/R7iqTTHo9m78UREREQk25KpNDfNnuRozWWzJ5FMZScE5/zGVb/Xw2Nb959xCM7rMSycXsqHL5tIxZgw8WSaWCJFyO8l6PPQdCLK+l2HeL7hCKn0n75ZsUSan+08yM1zKrP9TxERERHJmngyzfxpEb7zwpuOXJgR8nu4alpEB+OypS2WOmPQ85Lacm69cgqbX2vh6882nnNE2k2zJ/Hp+ZfwgxffYt3Og6dfW7tlH9fVlDM2z/X2RURERIZEYcjP/RsauWNRFaufqb/gencsquL7v/kDn/tgtQPd9S/nt0PAnwY95we8fHvFbGori7l5zUs8uPH1cw6B3n8syoMbX+fmNS9RW1nMt1fMJj/gfUc9ERERkdHs9/uP84GpERZURy6ozoLqCB+YGmHHgRMOdda/nA/Bp2IJoCsAr/lEHT/dtp/Vz9QPeFk/lkiz+pl6frptP2s+UXc6CGdr0LOIiIjIUAj4DJ9bVMXv9h5l5fsvZn7V4ILw/KoIK99/Mb/be5TPL6oi6MtOPM357RA9Yfe+ZbU89Ku9bG4c3ISIns/dt6yWz6zdTkzTIURERGQUO96eYFblWK755gt4jeG+ZbW8f+p47t/QOKDFxJDfwx2LqphQFGblj7aSspbnbr+KY+2dlGbh4rGcXwkO+70sqS3ncGt00AG4x+bGFg63Rrm+ZiKhLA16FhERERkKfq+Hp3c0EUukae9M8Zm129mx7wSPrpzL7QunnnN8WmVJmNsXTuXRlXPZse8En1m7nfbOFLFEmnU7m/B7sxNPjc3SLDYn1dXV2a1btzpSa/+xDt5ui3PzmpccO9n46Mq5jCsIUlmik3EiIiIyOr31djt/8f3/OeMslNdjuLq6lMU1EykfEyaRShNLpAn5Pfi9Hg6eiPLMrkP8ss+ELegKyD/+5J8xZVy+Iz0aY7ZZa+vO9lrOb4cI+g0vvNbiSACGru0Vv3q9hZuv0Ig0ERERGb28xpx1GEAqbXl2TzPP7mkGuu5aCPg8dCbTJNPnX3zdfyyK15z/Tgan5Px2iETK8tj2A47W/Om2A1kb9CwiIiIyFNoHOAQgmbZ0dKb6DcCn63ZmZ7hAzofgdNr5kWb7j0VRBhYREZHRLJ505rfofXU69Nv5/uR8CO4ZkeY0jUgTERGR0cytUWaBLI1Iy/kQ7NRe4DPrakSaiIiIjF55QXcmYblVt6+cD8FhvztfaI1IExERkdEsmbLnHIM2WJUlYVJZ2lOa8yG4IOTOgAy36oqIiIgMBx5juGn2JEdrLps9CY+mQ2SPGz/FiIiIiIxmHg/MnxYh5HcmTob8Hq6aFsFkKZ3mfAjOC3pYPmeyozVXzJlMfpb2s4iIiIgMBY8xPLmjiTsWVTlS745FVTyxo0krwdnSEU+ztLbc0Z9iltSW0x7XwTgREREZvQI+Q0legAlFYeZXRS6o1vyqCBOKwozPDxDI0rXJOR+CC8NeAl4PqxbPOO/7fB5DXsCLz3P+n05WLZ5BwOuhKKw9wSIiIjJ6+TyGxTXlfPHpV7jtAxefMwj3l6HmV0W47QMX88WnX2HxZeX4vNlZCc75pJZOW366/QCLLp3A1dWlPN9wBOi693rh9FI+fNlEKsaEiSfTxBIpQn4vQZ+HphNR1u86xPO97r2+urqU914yjse2H+BjVzi7UVxERERkODnS2klxnp9PL3g3K3+0lfuW1fL+qeN54LnXeN+7x/eboV588yifvWYaE4rCrPzRVj577TTyA16OnIpTkh90vf+cD8EdnWke2bKPRZdO4O+unkrKWopCfm69cgqbX2vh6882nvVGucqSMDfNnsSn51/CD158i9ZYgr+7eioWWLtlH9fXllOSn/1/j4iIiEg2RBMpfvvKUeZdMp5fv+son1m7ne99vI5n/+Eqnt7RdN4MtfyKyXzp+kupP9TKXz28lflVEeZdMp71rxzi8iljs9K/sXbk3e9bV1dnt27d6kit/cc6eG7PYYI+Lw9ufI21K+ey5Q/HWL1+z4Au0gj5u7ZSzHlXCSvWvMQ/LJxGLJHi2ksnUFmS50iPIiIiIsPNnoMn+fC3fsPGz36AeCJFXtDPb984mnGGmvfu8XTEEwT9XhY+8Ct+/nfvY0Z5sSM9GmO2WWvrzvZazu8JbosluWbGBB54rpF/Xf4e7vl5PXc/tXvAN8nFEmnufmo39/y8nn9d/h4eeK6Ray+doGuTRUREZFQrCHZtKPibtdsZXxjiy8+8OqgM9eVnXmV8YYi/Wbv9HXXdlvMhuDDk42c7D/LlpZfx0K/2srmxZVB1Nje28NCv9vLlpZfxzK6DFOmyDBERERnFjDFUloT59xWzufOJXWxqGFyG2tTQwp1P7OLfV8ymsiSM0Yi07LBA86kYh1ujgw7APTY3tnC4Ncqh1hjpkbfLRERERGTAAj7DN5bV8j97jw06APfY1NDC/+w9xjc+WkPQpxFpWfORWRXcv6HRkVr3b2jkxlkVjtQSERERGa6shYqxeaxev8eReqvX76FiTD7pLJ1Xy/kQnE5bNr/WMuD9K/2JJdK88FpL1r6BIiIiIkMhHPDw9M4mRzPUup1NhANaCc6KlLU8vv2AozUf237g9OxgERERkdHoVCzFI1v2OVpz7ZZ9nIpl59bdnA/BPq856wy7C7H/WDRrt52IiIiIDAVrcSVDZeuX6Tkfgjvi7vy0Ee3Mzk8xIiIiIkOhLebOONhsjZnN+RDs1D6WbNUVERERGQ6iCXcW/GIu1e0r50NwyO/OlyBb4z1EREREhsJIz1A5n9TyAt4RVVdERERkOCgM+UdU3b5yPgQn05bKkrCjNStLwpoOISIiIqOeGxkqW3I+BPs8hptmT3K05rLZk/B6NB1CRERERq+Q38PyKyY7WnPFnMmE/dn5bXrOh2BjDPOnRRzb1xLye7hqWiRr916LiIiIDIWOeIols8odzVDX15bTrukQ2fPkjibuWFTlSK07FlXxxI4mR2qJiIiIDFcej8Gm06xaPMOReqsWz8DaNJ4s/TY950Ow32uoGBNmQlGY+VWRC6o1vyrChKIwk8aE8euyDBERERnlvvfiW3xgWoQF1ReWoRZUR/hAVYQ1v3nLmcYGIOdDcDyZZn5VKV98+hVu+8DFgw7C86si3PaBi/ni068wv6qUeFJzgkVERGT0Cgc8lBWGaDh8iq8svWzQQXhBdYSvLL2MhkOnmFgUIj+oPcFZkR/00ni4lX+8tpqVP9rKRy+vZNV10we8vyXk97Dquul89PJKVv5oK/90bTWvHW4lP+hzuXMRERGRoXPgeIylsyq48/GdNJ3o4IvXXco9N8zMKEPdc8NMvnTdpTSd6ODOx3eypLbC8auYzyXnQ7C1MGVcPuMLAsy9eByfWbudHftO8OjKudy+cOo5R3VUloS5feFUHl05lx37TvCZtduZe/E4xhUEuGhcPjZbF1+LiIiIDIGw30P9oZN89poqbvnhy+w52Mr0iYU8d/tVfP6DVefNUJ//YBXP3X4V0ycW8urBVm754ct89poq9hw66dolHH3l/HJlSV6AHftPcLg1ysoPXAzAz3Yd4ue7D3N1dSn/dG0V5WPCJFJpYok0Ib8Hv9fDwRNRntl1iG/98g1SacvV1aWs/MDFvNbcijEwo7x4iP9lIiIiIu7JC/j4q4e38eLnF7CxoZnPrN3O9TUT+eT73sV7Jo1hQXUpIb+X9njydIbKD/qIJVKcaO/k7bY4P3zxLX626xALqiPMr4pw5dc28evPLchK/zkfgr1eD5dVjCGZsvzni3/gxtmTuGpahH/573qe3dPMs3uaga55wgGfh85kmmSvizBCfg9fum4G4wqC/OeLf2DprAouqxijOcEiIiIyqhm6VnVXrHmJn3xqHnc9uesdC4mLayZSPiZMKpUmkbIkkoaOztTphcRfNhwhlbYsqI7w1Y/U8LHv/pbKkjDZSlA5H4IBSvIDxBIpPj5vCg/9ai+FQR+P3jaX37x+lJ9s3c/+Y1GSaUuyM3X6M5UlYT5WV8n7po7n+7/+A6fiSW77wMU0n4xRkh8Ywn+NiIiIiPtSactNsyfx4MbX+dh3f8valXPZXN3C6vV7BryQ+OUllzK/KsLHvvtb/ngsyu0Lp5LK0pZSMxL3rtbV1dmtW7c6WvNYeydffGo3H7psIodbozzw3Gtcecn40z/FJFJp4ok0wT7bIX775lE+e800JhSF+e9XDrH6hpmMVQgWERGRUe73+45jgJvXvEQs0TUVa83HL2fGxGLW7Wxi7ZZ9Zz3kVlkSZsWcySyprWDPoZOsfHgb0BWKH105FwzMqhzrSI/GmG3W2rqzvqYQ/Cdvt8W58/FXCPk9fPJ97+KF11p4bPsB9h+LnvFTTGVJmGXdWye+/5s/EEukufemyxhXEHS8LxEREZHhpv5QK/+x+U1qK4tZ/Uz96efDAS/333QZMyeNwWsMbfEksUSKkN9LQdBHylp2HzjBHY+/QrTXb9lXXTedHftO8OkF72b6xCJHejxfCNZ2iF7GFQT52rIanq9v5s+//z9cecn4fg/GPfTrvfzz9ZeycHqZVoBFREQkZxQEfazbeZBFl05gflWEzY0tAEQ7U/zNIzv+9L6Al7H5AY63d9LWK/T21nPh2M921fO5D1ZnpX+F4D5K8gMsnVXB+6dGeGbXQb7+bOM5V4L/ct4UVi+dSUl+gIAv56fNiYiISA5J2a489LnHdrLmE12LrT1BuLe2zhRtneee/dtz4djKH22lsiRMOku7FBSCzyLg8zChOMQt86awdFY5ybSlLZYknkwT9HkoCPnweQwl+UFNgRAREZGclEr96WDcyh9t5b5ltbx/6nju39B4eo/w+YT8Hu5YVMWEojArf7SV9s4Ut82eRDKlEDzkvF4PkcJQ1wON/RURERE5LZFKM39ahO+88CbtnanTc4IfXTn3Heeq+up7rupnu7r2E4f8Hq6aFiGR6j9AO0EH40REREQkY03HO/jaLxrPOBjn9Zh3zAk+17mqnjnBPXoOxt35oWoqxuY50qMOxg1SvDNJS3snAKeiSaKJFGG/l8Jw15ctkh8gGNCXUERERHKP3+vh9/uPn3EwLpW2A5oT3FvPwbgdB97Cn6VzVkpwZ3EqmqA1luTpHU088vK5Z9wtv2IyS2dVUBTyURj2D0GnIiIiIkNjXH6Aj8+d0u/BuL4XjvXV+2DcP1wzjXH52Rk3q+0QfTSfjLGxvpnV6/cMeFP3qsUzWDi9jLLikCs9iYiIiAxHh09Gmf/1zXiN4b5ltRxujQ7qYNznHttJylo2/9N8JhSHHevvfNshNNerl+bWGHc+uYu7n9o9oG8eQCyR5u6ndnPnk7tobo253KGIiIjI8FGSH+TLSy89fTBux74TPLpyLrcvnEplydnDbGVJmNsXTuXRlXPZse8En1m7nfbOFF9eOpOSLK0Cg1aCT2s+2RWANzWcuYw/UAuqI9x7Yw1lRVoRFhERkdxwrL2Tzz22k431R4DBHYxbOL2U+5fVOn7xmA7G9eNUNMHG+uYLCsAAmxpa2LinmaWzyikIaY+wiIiIjH4l+QG+dlMNn398Fxvrj2R8MG7h9FK+dlNN1m/e1XYIoDWWZPX6Ped9j89jyAt48fVzOcbq9Xs4GU062Z6IiIjIsDauIMh9y2q5b1kNIf8742UybenoTJ0RgEN+D/cvq+H+ZbWMK8jeNogeOb8SHO/smgLRdw+w12NYOL2UD182kYoxYRLJNMmUxec1+H0emk5EWb/rEM/3mXEXS6RZt7OJW+dN0fg0ERERyRkl+QGumVHGlZeMZ93OJtZuOfeErRVzJrOktoK8oJexedldAe6R8ymtpb2TR17e947nltSWc+uVU4glUozJDxD2e7uvTU4R9HkpCPkoCPkoLQjy6fmX8IMX32LdzoOnP792yz6ury1nkkKwiIiI5IjDJ2M8X9/Mv/x3PVdeMp5/urbqvHuC/33TG/zfD03n6ullTBiCCVuupzRjzAeBfwW8wPestff2eX0y8CNgTPd77rTW/tztvnpYy+mfUvIDXu5bVkv5mBDjCoK8cuAEJ6IJxhcE6UymiSfTBH1pookUR9vipFKWmpIx3HLlFBZdOoHPPbaT9s4U+49FGYHnDUVEREQGpbk1xl29BgwMdE/w3U/tZmND85AMFnA1BBtjvMC3gWuAA8DLxph11treG3C/APyXtfY/jDEzgJ8DU9zsq7e2WNf+3fyAlx/ecgWRwhB/PNqOxxjeeruj38syJpXkcbIjwYzyIn54yxXc8sOXae9M0RbXvmAREREZ/Q6ffGcA7qu/yzI2NbRw5xO7sh6E3T4YNwd4w1q711rbCTwKLO3zHgsUdf+9GDhIFkUTXd+UB29+D5PG5HHoRJSmE1E+9tDvuG9D41kDMHStHt+3oZGPPfQ7mk5EOXQiyqQxeTx483sAiCXO/c0WERERGQ2Od3TyvIMTtk50dDrUWf/cDsEVwP5ejw90P9fbPwP/jzHmAF2rwH97tkLGmNuMMVuNMVtbWi7sC91b2O9lSW050ycUcqwjzg9e/MOgLsv4wYt/4FhHJ9MnFnJ9zURCPq9jPYqIiIgMRx3xVL8TtgZq9fo9tMezt4g4HEakLQf+01o7Cfgw8GNjzBl9WWsfstbWWWvrIpGIY//zgpCPO66dSntnkgc3vn560HOmNtYf4cGNr9EeT/K5D06jIKRDcSIiIjJ6ReOJs07YGqyeCVvReMKRev1xOwQ3AZW9Hk/qfq63TwL/BWCt/R0QAsa73NdpQb/B7/OyY/+JQQfgHhvrj7Bj/wkCXi9B3/nnCYuIiIiMZG93JM6YsHWh1m7Zx9sdoyMEvwxMNca8yxgTAG4G1vV5zz7gagBjzHS6QrBz+x36EfB66ExZvrTuVUfqfWndq8RTloB/OCyyi4iIiLij94Qtp2RzwparSc1amwT+BtgA1NM1BeJVY8yXjTFLut/2j8BKY8xO4BHgL63N3oCxzlSaX+w+7OhS/obdh+l0qJ6IiIjIcNQzYcvxulmasOX6xtXumb8/7/PcF3v9fQ9wpdt9nEsyZfnxS285WvPhl95icc0ER2uKiIiIDCdRlyZhZWvCVs7/zj6VdmcpP6WFYBERERnFwn53JmFla8JWzofgdpeW3Ns7dVmGiIiIjF5uTcLK1oStnA/Bri3ln+dmFBEREZGRzpiuG3SdVFkSxmRpwFbOh+CAz50vgVt1RURERIaDcXl+ll8x2dGaK+ZMJlIQdLTmueR8UisMurSU71JdERERkeEgHPSzdFYFIYfGwob8HpbUVhB0aa9xXzkfgj0e48pSvsejyzJERERkdMsLelm1eIYjtVYtnkF+MDsBGBSCCfoMy2ZPcrTmRy+fREjbIURERGSUG5sX4OrpZSyojlxQnQXVERbOKGNMXsChzvqX80ltTCjA4ppyR5fyF19WTnEWv4kiIiIiQ2VCcYh7b6wZdBBeUB3h3htrKCsKOdzZ+eV8CPb7vRSGfNyxqMqRencsqqIg5MPvzfkvrYiIiOSIsqIQX/1IDffcMHPAC4shv4d7bpg5JAEYsnBj3EhQGPQx75LxzK+KsLmxZdB15ldFmHfJeAqzNN9OREREZLiYUBxicc1E5leVsm5nE2u37DvrhWSVJWFWzJnMktoK8oPerG6B6E1pDcgL+hifH+D2hdMABhWE51dFuH3hNMbnB8gL6MsqIiIiueVYeyfP1zfztf9u4Nt//h6uqykHoC2eJJZIEfJ7T0/POnSig6X//hs+/6Fqrp5eRkl+9oOwsdZm/X96oerq6uzWrVsdr9vSGuP1I23UH27l/g2NxBL9330c8nu4Y1EV0ycUMbW0gMgQLOeLiIiIDKW32+Lc+fgrPFfffMZr5UVBLinN580j7RxsjZ/x+jXTy7j3pssY58J8YGPMNmtt3dle05JlL5GiEBZIpNI8ett7eaHxCI9tP3DOpfxlsydxVVUpJzs6ebcCsIiIiOSgY+2d7wjA4YCXbyyrYUZFMT5jaI0liCXShPweikJ+ktay+8AJ7nj8FaKdqa7PPQ73LathbBZXhBWC+ygtClEQ8nG8I8HU0gLu/vB0xhUESaTSp7+Bfq+Ht9vipK2ltDDItLICbYEQERGRnNOZTPN8ffPpAPy9j1/O9InFPL2jia/+ouGcC4nLr5jMxtuvov7QSf7q4W08V9/Mxvpmls6qyNqtu9oOcR6JRIqW9jhpC6diSTqTKQK+rmkSHgORwpCmQIiIiEjOOnwyxvyvb6KsMMjalXPZ3NjC6vV7BryldNXiGcyvirBizUs0n4qz+Z8WMKHYud+sazvEIPn9XsrH5A11GyIiIlwsepEAACAASURBVCLDTiqV5pldBykrDPKTT83jrid3salh4MMFYok0dz+1mwXVEX7yqXl87Lu/5ZldB7ll3hS8WVhkVAg+j3hnkpb2TgBORZMkUin8Xi+F4a4vWyQ/QFDbIERERCQHHevo5Ee/e4tHV87NOAD3tqmhhbue3MXalXO5ec1LLJ1VTqTQ/XNWSnBncSqaoDWW5OCJDgrDfsJ+L2lrSaYtXo8llbZEEykOHo9SMTaPopCPwrB/qNsWERERyZpk2vKl62awubFl0AG4x6aGFjZXt/DF62aQTGdnq642tPbRfDLG3qNtpK2l5VSct46203IqzologuMdCU5EE+94Pm0te4+20XwyNtSti4iIiGTNqViS6ROLWb1+jyP1Vq/fw4yJxbTFko7U649WgntpaY3RkUhxvD2BxfDakTYeP8+ItJtmT6KiJI8T7QmKwgFaWmMakyYiIiI5oSTPz39tPTCgQ3ADEUukWbeziY9ePsmRev3RSnC3lpMxEinLoRNR3jzaxs0P/Y4HN75+1gAMsP9YlAc3vs7ND/2ON4+2cehElETK0tKqFWEREREZ/aKJNI+8vM/Rmmu37CPqUKjuj0IwXXuAO9NpWtriPPTrvax+pn7AP9XEEmlWP1PPQ7/eS0tbnM5UmrZYwuWORURERIbeuRYLh0u981EIBmKJFK2xJN/c+BqbGwe3sXtzYwvf3PgarbEk0c6Uwx2KiIiIDC9u7d1ti2dnT3DOh+B4Z5KUtfz2zaODDsA9Nje28Ns3j5K2lnhndr6BIiIiIkMhmnBn0S/mUt2+cj4EtyeStMVT3L+h8bzvKwh4qRwbpiDgPe/77t/QSFs8RXtCIVhERERGr7D//JlosEI+d+r2lfPTIRIpy/pdB8/YAxwOePnGshpmVBTjM4bWWIJYIk3I76Eo5CdpLbsPnOCOx195x/aHWCLN+lcO8rErKrP9TxERERHJmoKQOzHSrbp95XwI7kxaHtt+4B3Pfe/jlzN9YjFP72jiq79oOOeItOVXTGbj7VdRf+gkf/XwttOv/XTbAT7ynuyM9xAREREZCsZ05SEnD7NVloQxxrFy55Xz2yGstae/eReVhHnx8wtobo1z9QObuW9D43lHpN23oZGrH9hMc2ucFz+/gItKwqdfs2TnthMRERGRoRDJD7D8ismO1lwxZzKlhUFHa55LzofgU90nEC8qCfOTT83jC0/v5u6ndmc0Iu3up3bzhad385NPzTsdhNtimhAhIiIio1cw4GPprApCfmfiZMjvYUltBYEs7QnO+RDcmewKu2tXzuWuJ3cN+u7rTQ0t3PXkLtaunNtdVyFYRERERreikI9Vi2c4UmvV4hkUh7O3UzfnQ3DY7+V7H7+czY0tgw7APTY1tLC5sYU1H7+ckEsnJkVERESGi8Kwn4XTy1hQHbmgOguqIyycUUZByO9QZ/3L+RBcEPQxfWIxq9fvcaTe6vV7mDGxmIJgzp85FBERkRxQVhzi3htrBh2EF1RHuPfGGsqKQg53dn45H4KL8rw8vaNpwHuA+xNLpFm3s4miPK0Ei4iISG4oKwpx70dquOeGmQPeIxzye7jnhplDEoBBI9JojaZ45OV9jtZcu2Uf19eWMwTfTxEREZEhUVYcYumscuZXlbJuZxNrt+w755jZFXMms2RWBcUhX1a3QPSW8yHYWhydbwfdI9I0IU1ERERyTEHIT0HIz63zpnB9bTnWQls8SSyRIuT3UhD0YQyUFgazNgXiXHI+BLfF3LneuC2ua5NFREQkNwUDPiYFhnfMzPk9wdGEO6PMYi7VFREREZELl/MhOOzSKLPQEC/xi4iIiMi55XwILgi5s1TvVl0RERERuXA5H4KN6Tql6KTKkjDGOFpSRERERByU8yE4kh9g+RWTHa25Ys5kSguDjtYUEREREefkfAgOBnwsnVUx4MHO/Qn5PSyprRjysR8iIiIicm45H4IBikI+Vi2e4UitVYtnUBzWfmARERGR4UwhGCgM+1k4vWzQd173WFAdYeGMsiG7+UREREREBkYhuFtZcYh7b6wZdBBeUB0ZsruvRURERCQzCsG9lBWFuPcjNdxzw8wB7xEO+T3cc8NMBWARERGREUSbV/soKw6xdFY586tKWbezibVb9rH/WPSM91WWhFkxZzJLZlVQHPJpC4SIiIjICKIQfBYFIT8FIT+3zpvC9bXlWAtt8SSxRIqQ30tB0IcxUFoY1BQIERERkRFIIfg8ggEfkwL6EomIiIiMNtoTLCIiIiI5RyFYRERERHKOQrCIiIiI5JwLCsHGmAKnGhERERERyZYLXQne40gXIiIiIiJZ1O/oA2PMZ8/1EqCVYBEREREZcQayEvwvwFigsM+fggF+XkRERERkWBnIENztwFPW2m19XzDG/JXzLYmIiIiIuGsgIfgW4O1zvFbnYC8iIiIiIlnR73YGa22jtfboOV5r7vm7MebfnGxMRERERMQtTu7pvdLBWiIiIiIirtHBNhERERHJOQrBIiIiIpJznAzBxsFaIiIiIiKuGXAINsZc1s9b/vUCexERERERyYpMVoL/P2PMFmPMp40xxX1ftNb+p3NtiYiIiIi4Z8Ah2Fr7fuDPgUpgmzFmrTHmGtc6ExERERFxSUZ7gq21rwNfAD4PXAV8yxjTYIy50Y3mRERERETckMme4BpjzDeBeuB/Addba6d3//2bLvUnIiIiIuK4gVyb3OPfgO8B/9daG+150lp70BjzBcc7ExERERFxSSYheDEQtdamAIwxHiBkre2w1v7Yle5ERERERFyQyZ7gjUC41+O87udEREREREaUTEJwyFrb1vOg++95zrckIiIiIuKuTEJwuzFmds8DY8zlQPQ87xcRERERGZYy2RP8D8BPjTEH6boieQLwMVe6EhERERFx0YBDsLX2ZWNMNVDV/VSjtTbhTlvDQyKRoqU9TtrCqViSaCJF2O+lMOTDYyCSH8Tv9w51myIiIiKSoUxWggGuAKZ0f262MQZr7cOOdzXEOuJJjkcTPL2jiUe27GP/sSgFAS9j8wMcb++krTNFZUmY5XMms3RWBWPDfvKCmX4pRURERGSoDDi5GWN+DFwC7ABS3U9bYFSF4COtMTbWN3P/hkbuuWEmP/7kn+EzhtZYglgiTcjvoSjkJ2ktuw+c4Lpv/Zo7FlWxcHoZpUWhoW5fRERERAYgk+XLOmCGtda61cxQO9Ia4/NP7OLP50zmmb99P0/vaOKrv2hg/7Ezz/9VloRZfkXX++oPneTzT+ziazfWKAiLiIiIjACZTIfYTddhuFHpSGuMbzzbwFeWzqS5Nc7VD2zmvg2NpwOwz2PIC3jxeQwA+49FuW9DI1c/sJnm1jhfWTqTbzzbwJHW2FD+M0RERERkADJZCR4P7DHGbAHiPU9aa5c43lWWdcSTvPTmUW6/ppq7ntzFpoYWvB7DokvL+PBlE6kYEyaeTBNLpAj5vQR9HppORFm/6xDPNxzh7qd2s6A6wlc/UsNLbx5l4aUTyAtoj7CIiIjIcJVJUvtnt5oYasejCS6fUnI6AC+pLefWK6ew+bUWvv5s4zm3Q9w0exKfnn8JP3jxLdbtPMhdT+7iKzfM5HhHQiFYREREZBjLZETaC8aYi4Cp1tqNxpg8YMTPB0skUrRFE2z943G27D3Gt1fM5nBrlJvXvEQskT7n5/Yfi/Lgxtf5zgtvcseiKhZdOoHPPbaTzQ0t1E0ZSyIR0Pg0ERERkWFqwHuCjTErgceA73Y/VQE8NYDPfdAY02iMecMYc+c53vO/jTF7jDGvGmPWDrQnJ7S0xykI+XnguUbWfKKOn27bz+pn6s8bgHuLJdKsfqaen27bz5pP1PHAc40UBP20tMf7/7CIiIiIDIlMfmf/GWAO8D8A1trXjTGl5/uAMcYLfBu4BjgAvGyMWWet3dPrPVOBu4ArrbXH+6vptLygl7Uv7efLSy/joV/tZXNjy6Dq9Hzuy0svY93OJpb/WaWTbYqIiIiIgzIJwXFrbacxXdMRjDE+uuYEn88c4A1r7d7uzzwKLAX29HrPSuDb1trjANbaIxn0dMFORVM0n4oR9HsGHYB7bG5s4f1Tx3OoNcapaIoxYYeaFBERERlB4p1JWto7ATgV7XXrbrgrekbyAwSH+PxUJv/3F4wx/xcIG2OuAT4N/Kyfz1QA+3s9PgD8WZ/3TAMwxrxI1x7jf7bW/qJvIWPMbcBtAJMnT86g7f59ZFYFN695yZFa929o5NGVcx2pJSIiIjKSnIomaI0lu27dfXnfee9aWDqrgqKQj8Kwfwg6zWxO8J1AC/AK8Cng59baux3owQdMBeYDy4E1xpgxfd9krX3IWltnra2LRCIO/G+7pNOWza+1DHgPcH9iiTQvvNZCevTeKSIiIiJyhuaTMdbtPHjGXQt99b5rYd3OgzSfHJo7FjIJwX9rrV1jrf2otXaZtXaNMebv+/lME9B7c+yk7ud6OwCss9YmrLV/AF6jKxRnRcpaHt9+wNGaj20/QCqtECwiIiK5obk1xp1P7uLup3ZnNFzg7qd2c+eTu2gegsvGMgnBnzjLc3/Zz2deBqYaY95ljAkANwPr+rznKbpWgTHGjKdre8TeDPq6ID6POedPKoO1/1j09M1yIiIiIqNZ88kYdz7RddfCYGxqaOHOJ7IfhPvdE2yMWQ6sAN5ljOkdYAuBY+f7rLU2aYz5G2ADXft9f2CtfdUY82Vgq7V2Xfdr1xpj9gAp4A5r7duD++dkrqMz5U7dhDt1RURERIaLU9EEG+ubBx2Ae2xqaGHjnmaWziqnIJSdPcIDORj3W+AQXdcmf6PX86eAXf192Fr7c+DnfZ77Yq+/W+Cz3X+yzqm9wH3FXaorIiIiMly0xpKsXr+n/zcOwOr1e5hfVTp8QrC19o/AH4H3ut9O9oUDmewIGbiQ3526IiIiIsNBvLNrCoSTwwXW7Wzi1nlTsjI+LZMb4240xrxujDlpjGk1xpwyxrS62Vw25A3wi+zzGPIC3gHv9R1oXREREZGRqKW9k0de3udozbVb9p2eL+y2TJLafcD11tp6t5oZChZLZUn4jMNxXo9h4fRSPnzZRCrGhIkn08QSKUJ+L0Gfh6YTUdbvOsTzDUfOmARRWRLG9nuPiIiIiMjIZS2uDBfI1pTZTEJw82gLwAABn4ebZk/iwY2vn35uSW05t145hc2vtfD1Z88+566yJMxNsyfx6fmX8IMX32LdzoOnX1s2exJBnzcr/YuIiIgMhbZY0p26cXfq9pVJCN5qjPkJXSPN4j1PWmufcLyrLDrRnuD62nK+88KbeI3hvmW1HG6NcvOal867x2X/sSgPbnyd77zwJncsqmLRpRP43GM7SVnLdbXlHO/opKwolMV/iYiIiEj2RF2ahBXL0oStTEJwEdABXNvrOQuM6BAcT6YpzvPz5SUzmVQS5qFf7WVz48DHfMQSaVY/U8/8qghrPlFH07Eo+X4vR1z66UhERERkOAj73fmtdyhLv00fcAi21t7iZiNDZWJxkG1/PMG8d49j1dO7MwrAvW1ubMEYWL10Jr8/cILZk8+4+VlERERk1CgIuTMEwK26fWUyHWKaMeZ5Y8zu7sc1xpgvuNdadnSmLNPKCnjxjaOODHp+8Y2jTCsrIJHSwTgREREZvYzpOiPlpMqSMCZLl+5mMsx2DXAXkACw1u6i6xrkEc3vNfh9Hr607lVH6n1p3av4vR78Xl2bLCIiIqNXJD/A8ismO1pzxZzJlBYGHa15LpmE4Dxr7ZY+z434ja9pC7/Y3ezooOcNu5tJayFYRERERrFgwMfSWRWOXRAW8ntYUltBIEt7gjPp+qgx5hK6DsNhjFlG13XKI5q1lh+/9JajNR9+6S1stobciYiIiAyRopCPVYtnOFJr1eIZFIezd9lYJiH4M8B3gWpjTBPwD8Bfu9JVFqXS7gx6TjmzsCwiIiIybBWG/SycXsaC6sgF1VlQHWHhjDIKQn6HOuvfgEOwtXavtXYhEAGqrbXvs9a+5VpnWdLu0kDm9s4Rv1NEREREpF9lxSHuvbFm0EF4QXWEe2+syfr9CplMh/h7Y0zPrOBvGmO2G2Ou7e9zw51rg547szPoWURERGSolRWFuPcjNdxzw8wB7xEO+T3cc8PMIQnAkNllGbdaa//VGLMIGAf8BfBj4FlXOsuSgM+ZzdzZqisiIiIyHJUVh1g6q5z5VaWs29nE2i37zrrltLIkzIo5k1kyq4LikC+rWyB6yyQE98z8+jDwsLX2VWOyNcnNPYUjfNCziIiIyHBREPJTEPJz67wpXF9bjrXQFk8SS6QI+b0UBH0YA6WFwaxNgTiXTJLaNmPMs8C7gLuMMYXAiD/+5TGGypKwo4fjKkvCeEb+zwciIiIigxIM+JgUGN4Lgpn8zv6TwJ3AFdbaDiAAjPirlIM+w7LZkxyt+dHLJxHSdggRERGRYavfpGaMqe7+66zu/15sjJkNXERmK8nD0phQgMU15Y4Oel58WTnFeQFH6omIiIiI8wYSYj8L3AZ84yyvWeB/OdpRlvn9XgpDPu5YVMXqZ+ovuN4di6ooCPnwe7USLCIiIjJc9RuCrbW3df93gfvtDI3CoI95l4xnflWEzY0tg64zvyrCvEvGu3bYTkRERESckcmc4I92H4bDGPMFY8wTxpj3uNda9uQFfYzPD3D7wmnMrxrcoOf5VRFuXziN8fkB8ob5RnARERGRXJfJ7+xXWWtPGWPeBywEvg98x522si9SFKK8OMRt77+YVddNz2jQ86rrpnPb+y+mvDhEZAiGPYuIiIhIZjJZsuy5Am0x8JC1dr0x5isu9DRkPB5D+ZgwiVSaR297Ly80HuGx7QfOOeh52exJXFVVysmOTsrHhPF4NBZNREREZCTIJAQ3GWO+C1wDfM0YEySzleRh7Vh7J59/fBcb64+wavF0rr10AlNLC7j7w9MZVxAkkUoTS6QJ+T34vR7ebouTtpZx+QG2vXWMT/zwZRZOL+X+ZbWMzddkCBEREZHhLJMQ+7+BDcAia+0JoAS4w5WusqwzmWbjnsNsrD8CwOr19Vz9wAvsPdrO5HF5RAqDFIf9jM3zUxz2EykMMnlcHntb2rn6gRdYvb5rqsTG+iM8V3+YzuSIv0NEREREZFQz1tqBv9kYL1BGrxVka+0+F/o6r7q6Ort161bH6h06GWXB1zcTS5w7vIZ8HgpCPtpiSWLnCbkhv4dN/zSficVhx/oTERERkcwZY7ZZa+vO9lom0yH+FmgGngPWd/95xpEOh1AqleZnOw+dNwADxJJpjrZ1njcAA8QSaZ7ZdYhUSqvBIiIiIsNVJnuC/x6osta+7VYzQ+Ht9k5+/NJb/b7P5zEEfB46k2mS6fOvnj/8u7dYWltOqSZFiIiIiAxLmYTg/cBJtxoZKp2p9FmnP3g9hoXTS/nwZROpGBMmnkwTS6QI+b0EfR6aTkRZv+sQzzccIdUnFO8/FqVTK8EiIiIiw1YmIXgvsNkYsx6I9zxprX3A8a6yqC2WPOO5JbXl3HrlFDa/1sLXn20854i0m2ZP4tPzL+EHL77Fup0H31k3fmZdERERERkeMgnB+7r/BLr/jArRROr03/MDXu5bVsvh1ig3r3npvPuE9x+L8uDG1/nOC29yx6IqFl06gc89tpP2zq56sc7UOT8rIiIiIkNrwCHYWvv/AhhjCroft7nVVDYFfF1nA/MDXtZ8oo6HfrWXzY0tA/58LJFm9TP1zK+KsOYTdaz80VbaO1On64qIiIjI8JPJdIiZxpjfA68CrxpjthljLnWvtewoDHX9HHDfstqMA3BvmxtbeOhXe7lvWS0ABaFMFtlFREREJJsyWa58CPistfYia+1FwD8Ca9xpK3s8xvCJeRdxuDU66ADcY3NjC4dbo3x83kV4jK5QFhERERmuMgnB+dbaTT0PrLWbgXzHO8qyoM/Dx+dO4f4NjY7Uu39DI5947xRCPq8j9URERETEeZmE4L3GmFXGmCndf75A18SIES3oNzzf0NzvZRkDFUukeb6+mYDfkXIiIiIi4oJMQvCtQAR4AngcGN/93IjWGk3x45f+6GjNH7/0R1qjmg4hIiIiMlxlMh3iOPB3LvYyJKzlrHOA+8rkxrj9x6LY879FRERERIbQgEOwMeY54KPW2hPdj8cCj1prF7nVXDaciiXO+nzfG+M6k2kSqTR+r4dAPzfGgS7LEBERERnOMtkOMb4nAMPpleFS51vKrrPtBV5SW87jf/1erq8pJ9g979cD+Iw5/QUL+jxcXzuRx//6vSypLT9LXW2HEBERERmuMhlmmzbGTLbW7gMwxlwEjPhf+of9f5ri0HNjXNjvAQyXRPLJC/rwGkNrLEEskSbk91AU8hMpDNIeS9KZttwwq/yMG+M0HUJERERk+MokBN8N/MYY8wJggPcDt7nSVRb1XGqRH/Dyw1uuIJmyRAoD5AX8PL2jiUde3nfWPcOVJWGWXzGZpbMqyA94aDnVyQ9vuYJbfvgy7Z0pXZYhIiIiMowNeDuEtfYXwGzgJ8CjwOXW2g09r4/U2+M8pivQPnjzLAqDXqaMz2fLH45z9QObuW9D4zkPze0/FuW+DY1c/cBmtvzhOFPG51MY9PLgzbOoLAnj0a3JIiIiIsOWsQ6NMTDGbLfWznakWD/q6urs1q1bHamVSKTY2HiEd5fmUxgMcNeTu9jUkPnNcQuqI3z1IzW0xTt5/Ug7C6eX4fcqCYuIiIgMFWPMNmtt3dleczKljch7gv1+L7Mnj6Ug4B90AAbY1NDCXU/uIj/o5/LJYxWARURERIYxJ5PaiDwkl0qlMcAvG44MOgD32NTQwi/rj2C664qIiIjI8JTzy5UnYwkSKcvq9Xscqbd6/R46U5aT55g/LCIiIiJDz8kQ3OlgrazxeODpHU1nnRc8GLFEmnU7m3QwTkRERGQYy2iOlzGmBpjS+3PW2ie6/zvX0c6y5FQ0xSMv73O05tot+7iuppwxYUfLioiIiIhDMrk2+QdADfAq0LNsaoEnXOgrq841Bm241BMRERERZ2WyEjzXWjvDtU6GyCmX9u62xZOu1BURERGRC5fJztXfGWNGXQh2ai/wmXVTrtQVERERkQuXyUrww3QF4cNAnK65wNZaW+NKZ1kS9ntdqRvyuVNXRERERC5cJiH4+8BfAK/wpz3BI15BKKOzgUNeV0REREQuXCZJrcVau861ToaIMVBZEnb0MFtlSRgzIu/PExEREckNmewJ/r0xZq0xZrkx5saeP651liWR/ADLr5jsaM0VcyZTWhh0tKaIiIiIOCeTEBymay/wtcD13X+uc6OpbAoGfCydVUHI78ztFiG/hyW1FQS0J1hERERk2Brwdghr7S1uNjKUikI+Vi2ewd1P7b7gWqsWz6A4rP3AIiIiIsNZJpdlhIBPApcCoZ7nrbW3utBXVhWG/SycXsbGhmY2NbQMus6C6ggLZ5RREPI72J2IiIiIOC2TPQA/BiYAi4AXgEnAKTeaGgplxSHuvbGGBdWRQX1+QXWEe2+soawo1P+bRURERGRIZRKC322tXQW0W2t/BCwG/sydtoZGWVGIez9Swz03zBzwHuGQ38M9N8xUABYREREZQTLZvNpzv/AJY8xM4DBQ6nxLQ6usOMTSWeXMrypl3c4m1m7Zd9bxaZUlYVbMmcySWRUUh3zaAiEiIiIygmQSgh8yxowFVgHrgALgi650NcQKQn4KQn5unTeF62vLsRba4kliiRQhv5eCoA9joLQwqCkQIiIiIiNQJtMhvtf91xeAi91pZ3gJBnxMCmjSg4iIiMhoM+A9wcaYMmPM940x/939eIYx5pPutSYiIiIi4o5MDsb9J7ABKO9+/BrwD043JCIiIiLitkxC8Hhr7X8BaQBrbRJIudKViIiIiIiLMgnB7caYcYAFMMbMBU660pWIiIiIiIsyOfX1WbqmQlxsjHkRiADLXOlKRERERMRFmYTgPcCTQAddN8U9Rde+YBERERGRESWT7RAPA9XAvwD/Bkyj6yplEREREZERJZOV4JnW2hm9Hm8yxuxxuiEREREREbdlshK8vfswHADGmD8DtjrfkoiIiIiIu/pdCTbGvELXRAg/8FtjzL7uxxcBDe62JyIiIiLivIFsh7jO9S5ERERERLKo3xBsrf1jNhoREREREcmWTPYEi4iIiIiMCgrBIiIiIpJzFIJFREREJOcoBIuIiIhIzlEIFhEREZGcoxAsIiIiIjnH9RBsjPmgMabRGPOGMebO87zvJmOMNcbUud2TiIiIiOQ2V0OwMcYLfBv4EDADWG6MmXGW9xUCfw/8j5v9iIiIiIiA+yvBc4A3rLV7rbWdwKPA0rO8bzXwNSDmcj8iIiIiIq6H4Apgf6/HB7qfO80YMxuotNauP18hY8xtxpitxpitLS0tzncqIiIiIjljSA/GGWM8wAPAP/b3XmvtQ9baOmttXSQScb85ERERERm13A7BTUBlr8eTup/rUQjMBDYbY94C5gLrdDhORERERNzkdgh+GZhqjHmXMSYA3Ays63nRWnvSWjveWjvFWjsFeAlYYq3d6nJfIiIiIvL/t3f/sXHf9R3HX2+fv77vXZw4cXCd1rFT0FAdExxDnYhWG6uVaIN5TdIIAckQdEBhEmhbkSbSddk0sqgZbOwH2hCslDJtyYCSNpnMaEnksokJEnckaWq7G2PDqddcvSaNm/rufLY/+8OXzjj+dXffr7+O7/mQIt/d93vve8dfOXrl68/3/S1joYZg59yYpE9KelJSn6RvOOeeM7PPmNmOMD8bAAAAmE1l2B/gnPu2pG9Pe+33Z9n3rrD7KUR2dExDr41Kkl5NjymdG1fCi2llYvLbVreiSvGq0L+FAAAACBgJbgavpnMazozp2JlBHTk9oAuX0tft01ib0J4tTdrZ1qBVfqVWJrwIOgUAAEAxzDkXdQ8Fa29vdz094Swbx63ARwAAFgtJREFUTl3J6ERfSge6epXJTcy7v+9VaH9ni7ZvrFd9jR9KTwAAACicmT3jnJtx4AJngqdIDWe07/Fz6u5f+BziTG5CDz5xXif6Uzq0u1X1qwjCAAAAS12kc4KXktSVjPYdLSwAT9XdP6R9R88pNcxN7wAAAJY6QrAm1wCf6EsVHYCv6e4f0onelK5mcgF1BgAAgDAQgiUNZ8Z0oKt3zn2qq2JqXJNQdVVszv0OdPXqSnosyPYAAAAQsLJfE5wdnZwCMf0iuERVTH/6nla1NNSo0kzDmZwyuQn5XoVW+Z7GnNP5F17R73zrWaVHx19/XyY3oeNnB/XhO29lfBoAAMASVfYpbei1UR05PfAzrz38wdu18eYaHTszqIe+0z/niLQT9/+i+l68oo/+7TOvbzt8akB3b75F6wnBAAAAS1LZL4dwTq+H3A21CX3/0x1KDWe17fNP67NPPj9jAJYm3/PZJ5/Xts8/rdRwVt//dIc21CZe33YDTp4DAAAoG2V/qvJqZnL97obahL7+8Tv1QJEj0jqa6/T1j9+p933pX/XTS2ldzbIuGAAAYKkq+zPB6dzket7D972j4AA8VXf/kB54/JwO3/cOSVImNz7POwAAABCVsg/Bvlehhz94u55+fiiQEWlPPz+kv/ng7YpXlv23FgAAYMkq+6S20ve08eaaeUekLdSBrl613Fyjlb4XSD0AAAAEjxCciM04Iq1Y10akrUzMPU8YAAAA0Sn7EHw1M37diLRSHT41oKsZ1gQDAAAsVWUfgqeOSAsKI9IAAACWtrIPwddGpAVelxFpAAAAS1bZh+B0SKPMGJEGAACwdJV9CE544VzA5ldyYRwAAMBSVfYhuNoP56Z5YdUFAABA6co+BJtJjbWJQGs21iZkFmhJAAAABKjsQ3Ddiirt2dIUaM29W5t008p4oDUBAAAQnLIPwfGqSu1sa5DvBfOt8L0K7djcoCrWBAMAACxZZR+CJWmVX6n9nS2B1Nrf2aKaBOuBAQAAljJCsKSVCU/bN9aro7mupDodzXXa3lKvat8LqDMAAACEgRCcV1/j69Du1qKDcEdznQ7tblX9Kj/gzgAAABA0QvAU9at8HbqnVQd3bVrwGmHfq9DBXZsIwAAAADcQFq9OU1/ja2fbLbrrtpt0/OygDp8a0IVL6ev2a6xNaO/WJu1oa1CNX8kSCAAAgBsIIXgG1b6nat/Th++8VXdvvkXOSVezY8rkxuV7MVXHK2Um3bQyzhQIAACAGxAheA7xqkqtr+JbBAAAsNywJhgAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdgjBAAAAKDuEYAAAAJQdQjAAAADKDiEYAAAAZYcQDAAAgLJDCAYAAEDZIQQDAACg7BCCAQAAUHYIwQAAACg7hGAAAACUncqoGwAAAMDyks7m9PJITpL0anpM6dy4El5MKxOT0XNt0lMi7kXZIiEYAAAAwbg8MqqR7LiOnRnUkdMDunApfd0+jbUJ7dnSpJ1tDUrGY1qTrIqgU8mcc5F8cCna29tdT09P1G0AAAAg7+KVjE72pXSgq1eZ3MS8+/tehfZ3tmjbxnqtq/FD6cnMnnHOtc+0jTPBAAAAKElqOKMHHj+n7v6hBb8nk5vQg0+c14n+lA7tblX9qnCC8Gy4MA4AAABFu3glo31HCwvAU3X3D2nf0XNKDWcC7mxuhGAAAAAU5fLIqE72pYoOwNd09w/pRG9Kr4yMBtTZ/AjBAAAAKMpIdlwHunoDqXWgq1evZccDqbUQhGAAAAAULJ3N6diZwQVdBLcQmdyEjp8dVDqbC6TefAjBAAAAKNjLIzkdOT0QaM3DpwZeny8cNkIwAAAACuacZpwDXIoLl9JarOm9hGAAAAAU7GpmLJy62XDqTkcIBgAAQMHSuXAuYsuEVHc6QjAAAAAKlvBiodT1K8OpOx0hGAAAAAWr9sO58XBYdacjBAMAAKBgZlJjbSLQmo21CZkFWnJWhGAAAAAUbG3S054tTYHW3Lu1SXXV8UBrzoYQDAAAgIIl4p52tjXI94KJk75XoR2bGxQPaa3xdIRgAAAAFCUZj2l/Z0sgtfZ3tmhFfHECsEQIBgAAQJHWJKu0bWO9OprrSqrT0Vyn7S31Wp2sCqiz+RGCAQAAULR1Nb4O7W4tOgh3NNfp0O5W1a/yA+5sboRgAAAAlKR+la+H7mnVwV2bFrxG2PcqdHDXpkgCsCQtziA2AAAALGvranx1tt6su267ScfPDurwqQFduJS+br/G2oT2bm3SjrYGraiKLeoSiKkIwQAAAAjE6mSVViele+/YoLs33yLnpKvZMWVy4/K9mKrjlTKT6qrjizYFYjaEYAAAAAQqEfe0Pu5F3cacCMEAAAAIVDqb08sjOUnSq+kxpXPjSngxrUxMRs+1SU+JiEMyIRgAAACBuDwyqpHsuI6dGdSR07OvCd6zpUk72xqUjMe0JqI1weaci+SDS9He3u56enqibgMAAAB5F69kdLIvpQNdvcrkJubd3/cqtL+zRds21mtdTTjTIczsGedc+0zbOBMMAACAkqSGM3rg8XPq7h9a8HsyuQk9+MR5nehPMScYAAAAN5aLVzLad7SwADxVd/+Q9h09p9RwJuDO5kYIBgAAQFEuj4zqZF+q6AB8TXf/kE70pvTKyGhAnc2PEAwAAICijGTHdaCrN5BaB7p69Vp2PJBaC0EIBgAAQMHS2ZyOnRlc0EVwC5HJTej42UGls7lA6s2HEAwAAICCvTyS05HTA4HWPHxq4PX5wmEjBAMAAKBgzmnGOcCluHAprcWa3ksIBgAAQMGuZsbCqZsNp+50hGAAAAAULJ0L5yK2TEh1pyMEAwAAoGAJLxZKXb8ynLrThR6CzexdZva8mf3YzPbNsP1TZtZrZufM7KSZbQi7JwAAAJSm2g/nxsNh1Z0u1BBsZjFJfyXp3ZJaJO0xs5Zpu/1IUrtzrlXSY5I+G2ZPAAAAKJ2Z1FibCLRmY21CZoGWnFXYZ4K3Svqxc+4nzrlRSf8gaefUHZxz3c65kfzTH0haH3JPAAAAKNHapKc9W5oCrbl3a5PqquOB1pxN2CG4QdKFKc9fyL82m49I+qeZNpjZx8ysx8x6hoZKuzUfAAAASpOIe9rZ1iDfCyZO+l6FdmxuUDyktcbTLZkL48zsA5LaJX1upu3OuS8759qdc+11dXWL2xwAAACuk4zHtL9z+krX4uzvbNGK+OIEYCn8EDwoqXHK8/X5136GmW2X9KCkHc65bMg9AQAAIABrklXatrFeHc2lnaDsaK7T9pZ6rU5WBdTZ/MIOwaclvdnM3mhmVZLeL+n41B3M7G2SvqTJAPxSyP0AAAAgQOtqfB3a3Vp0EO5ortOh3a2qX+UH3NncQg3BzrkxSZ+U9KSkPknfcM49Z2afMbMd+d0+J6la0jfN7IyZHZ+lHAAAAJag+lW+HrqnVQd3bVrwGmHfq9DBXZsiCcCSZG6xbtAcoPb2dtfT0xN1GwAAAJjilZFRvZYd1/Gzgzp8akAXLqWv26exNqG9W5u0o61BK6pioS6BMLNnnHPtM21bnGnEAAAAWPZWJ6u0Oinde8cG3b35FjknXc2OKZMbl+/FVB2vlJlUVx1ftCkQsyEEAwAAIFCJuKf1cS/qNuZECAYAAECg0tmcXh7JSZJeTY8pnRtXwotpZWIyeq5NekpEHJIJwQAAAAjE5ZFRjWTHdezMoI6cnn1N8J4tTdrZ1qBkPKY1izgWbSoujAMAAEDJLl7J6GRfSge6epXJTcy7v+9VaH9ni7ZtrNe6mnCmQ3BhHAAAAEKTGs7ogcfPqbt/aMHvyeQm9OAT53WiP7X85gQDAABgebt4JaN9RwsLwFN19w9p39FzSg1nAu5sboRgAAAAFOXyyKhO9qWKDsDXdPcP6URvSq+MjAbU2fwIwQAAACjKSHZcB7p6A6l1oKtXr2XHA6m1EIRgAAAAFCydzenYmcEFXQS3EJnchI6fHVQ6mwuk3nwIwQAAACjYyyM5HTk9EGjNw6cGXp8vHDZCMAAAAArmnGacA1yKC5fSWqzpvYRgAAAAFOxqZiycutlw6k5HCAYAAEDB0rlwLmLLhFR3OkIwAAAACpbwYqHU9SvDqTsdIRgAAAAFq/bDufFwWHWnIwQDAACgYGZSY20i0JqNtQmZBVpyVoRgAAAAFGxt0tOeLU2B1ty7tUl11fFAa86GEAwAAICCJeKedrY1yPeCiZO+V6EdmxsUD2mt8XSEYAAAABQlGY9pf2dLILX2d7ZoRXxxArBECAYAAECR1iSrtG1jvTqa60qq09Fcp+0t9VqdrAqos/kRggEAAFC0dTW+Du1uLToIdzTX6dDuVtWv8gPubG6EYAAAAJSkfpWvh+5p1cFdmxa8Rtj3KnRw16ZIArAkLc4gNgAAACxr62p8dbberLtuu0nHzw7q8KkBXbiUvm6/xtqE9m5t0o62Bq2oii3qEoipCMEAAAAIxOpklVYnpXvv2KC7N98i56Sr2TFlcuPyvZiq45Uyk+qq44s2BWI2hGAAAAAEKhH3tD7uRd3GnAjBAAAACFQ6m9PLIzlJ0qvpMaVz40p4Ma1MTEbPtUlPiYhDMiEYAAAAgbg8MqqR7LiOnRnUkdOzrwnes6VJO9salIzHtCaiNcHmnIvkg0vR3t7uenp6om4DAAAAeRevZHSyL6UDXb3K5Cbm3d/3KrS/s0XbNtZrXU040yHM7BnnXPtM2zgTDAAAgJKkhjN64PFz6u4fWvB7MrkJPfjEeZ3oTzEnGAAAADeWi1cy2ne0sAA8VXf/kPYdPafUcCbgzuZGCAYAAEBRLo+M6mRfqugAfE13/5BO9Kb0yshoQJ3NjxAMAACAooxkx3WgqzeQWge6evVadjyQWgtBCAYAAEDB0tmcjp0ZXNBFcAuRyU3o+NlBpbO5QOrNhxAMAACAgr08ktOR0wOB1jx8auD1+cJhIwQDAACgYM5pxjnApbhwKa3Fmt5LCAYAAEDBrmbGwqmbDafudIRgAAAAFCydC+citkxIdacjBAMAAKBgCS8WSl2/Mpy60xGCAQAAULBqP5wbD4dVdzpCMAAAAApmJjXWJgKt2VibkFmgJWdFCAYAAEDB1iY97dnSFGjNvVubVFcdD7TmbAjBAAAAKFgi7mlnW4N8L5g46XsV2rG5QfGQ1hpPRwgGAABAUZLxmPZ3tgRSa39ni1bEFycAS4RgAAAAFGlNskrbNtaro7mupDodzXXa3lKv1cmqgDqbHyEYAAAARVtX4+vQ7taig3BHc50O7W5V/So/4M7mRggGAABASepX+XronlYd3LVpwWuEfa9CB3dtiiQAS9LiDGIDAADAsrauxldn682667abdPzsoA6fGtCFS+nr9musTWjv1ibtaGvQiqrYoi6BmIoQDAAAgECsTlZpdVK6944NunvzLXJOupodUyY3Lt+LqTpeKTOprjq+aFMgZkMIBgAAQKAScU/r417UbcyJNcEAAAAoO4RgAAAAlB1CMAAAAMoOIRgAAABlhxAMAACAskMIBgAAQNkhBAMAAKDsEIIBAABQdsw5F3UPBTOzIUk/jeCj3yDpfyP4XISL47p8cWyXL47t8sRxXb6iOrYbnHN1M224IUNwVMysxznXHnUfCBbHdfni2C5fHNvlieO6fC3FY8tyCAAAAJQdQjAAAADKDiG4MF+OugGEguO6fHFsly+O7fLEcV2+ltyxZU0wAAAAyg5nggEAAFB2CMEAAAAoO4TgBTCz/zazZ83sjJn1RN0PgmNmq83sMTPrN7M+M7sj6p5QOjO7Lf/zeu3PsJn9dtR9oXRmdr+ZPWdm583siJn5UfeEYJjZb+WP63P8vN7YzOwRM3vJzM5Pea3WzL5rZv+R/7omyh4lQnAhOpxzbUttxh1K9heSvuOca5a0WVJfxP0gAM655/M/r22Sbpc0IunxiNtCicysQdJvSmp3zm2SFJP0/mi7QhDMbJOk+yRt1eS/xb9qZj8XbVcowaOS3jXttX2STjrn3izpZP55pAjBKFtmViPpnZK+IknOuVHn3CvRdoUQbJP0n865KO4yieBVSkqYWaWkpKT/ibgfBGOjpB8650acc2OSvidpd8Q9oUjOuX+WdGnayzslfS3/+GuSdi1qUzMgBC+Mk/SUmT1jZh+LuhkE5o2ShiR91cx+ZGYPm9mKqJtC4N4v6UjUTaB0zrlBSX8iaUDSi5KuOOeeirYrBOS8pF8ws7VmlpT0K5IaI+4Jwap3zr2Yf3xRUn2UzUiE4IX6eefc2yW9W9InzOydUTeEQFRKerukLzrn3ibpNS2BX88gOGZWJWmHpG9G3QtKl19DuFOT/4G9RdIKM/tAtF0hCM65Pkl/LOkpSd+RdEbSeKRNITRucj5v5DN6CcELkD/7IOfcS5pcV7g12o4QkBckveCc+2H++WOaDMVYPt4t6d+cc6moG0Egtkv6L+fckHMuJ+mopDsj7gkBcc59xTl3u3PunZIuS/r3qHtCoFJmdrMk5b++FHE/hOD5mNkKM1t57bGkX9Lkr21wg3POXZR0wcxuy7+0TVJvhC0heHvEUojlZEDSO8wsaWamyZ9ZLmZdJszspvzXJk2uBz4cbUcI2HFJH8o//pCkYxH2Iok7xs3LzN6k/7+qvFLSYefcwQhbQoDMrE3Sw5KqJP1E0q875y5H2xWCkP9P64CkNznnrkTdD4JhZn8o6X2SxiT9SNJHnXPZaLtCEMzsXyStlZST9Cnn3MmIW0KRzOyIpLskvUFSStIfSHpC0jckNUn6qaT3OuemXzy3qAjBAAAAKDsshwAAAEDZIQQDAACg7BCCAQAAUHYIwQAAACg7hGAAAACUHUIwACwRZnarmTGHHAAWASEYAAAAZYcQDABLS6WZ/b2Z9ZnZY/m7o91uZt8zs2fM7Mkptx69z8xOm9lZM/uWmSXzrz9qZl80sx+Y2U/M7C4zeyRf89H8PrH8fufN7Fkzuz/CvzMALDpCMAAsLbdJ+mvn3EZJw5I+IekLkt7jnLtd0iOSrt218qhzbotzbrMmbx/8kSl11ki6Q9L9mrxd6Z9Jeoukt+bvlNgmqcE5t8k591ZJXw3/rwYAS0dl1A0AAH7GBefc9/OP/07S70raJOm7ZiZJMUkv5rdvMrM/krRaUrWkJ6fU+UfnnDOzZyWlnHPPSpKZPSfpVknfk/QmM/uCpC5JT4X6twKAJYYQDABLy/R72b8q6Tnn3B0z7PuopF3OubNmdq+ku6Zsy+a/Tkx5fO15pXPuspltlvTLkn5D0nslfbjk7gHgBsFyCABYWprM7Frg3SvpB5Lqrr1mZp6ZvSW/faWkF83Mk/RrhXyImb1BUoVz7luSfk/S2wPpHgBuEJwJBoCl5XlJnzCzRyT1anI98JOS/tLMajT57/afS3pO0n5JP5Q0lP+6soDPaZD0VTO7djLkgWDaB4Abgzk3/TdvAAAAwPLGcggAAACUHUIwAAAAyg4hGAAAAGWHEAwAAICyQwgGAABA2SEEAwAAoOwQggEAAFB2/g+imRlynLWN5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU9Z33//d3zpMjBJLIIRFpNQQhsBgpaluhYm1FwVO3wvawW1d3f+3uvWt3bW1d+uvK2lrt1t7du9utrL27ulXbekSwRaGgba1VYAWREDxUCacQDKckc57v/UcSGiGQmeS6ZkLm9Xw8eMDMXPPJh1z/vOea7/X5GmutAAAAgELiyXcDAAAAQK4RggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAqOL98NDMbYsWPtpEmT8t0GAAAAhrGNGzcesNZW9vfaaRmCJ02apA0bNuS7DQAAAAxjxph3TvYayyEAAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4JyWm2UAAABg+IrEEnq3KyFJOhpJKpJIKez3qjTcHT3HFPkVDvrz2SIhGAAAAM442BVXVyylJ1/ZrYde3qmW9sgJx9RUhLX4/FotmjlBRUGvRhcF8tCpZKy1efnBQ9HY2GjZNhkAAGD42Hc4qrVNrVq2apuiifSAx4f8Hi1dMFWX1FfrjPKQKz0ZYzZaaxv7e40rwQAAABiS1iNRfeXxLVq3vS3j90QTad32xFat2d6qO69pUHWZO0H4ZLgxDgAAAIO273BUtz6WXQDua932Nt362Ba1Hok63NmpEYIBAAAwKAe74lrb1DroANxr3fY2rdnWqkNdcYc6GxghGAAAAIPSFUtp2aptjtRatmqbOmMpR2plghAMAACArEViCT35yu6MboLLRDSR1orNuxWJJRypNxBXQ7Ax5kfGmP3GmK0ned0YY75njHnDGLPFGDPLzX4AAADgjHe7Enro5Z2O1nzwpZ3H5gu7ze0rwT+W9LFTvP5xSWf3/LlJ0g9c7gcAAAAOsFb9zgEeipb2iHI1vdfVEGytfV5S+ykOWSTpftvtRUmjjDHj3OwJAAAAQ9cRTbpTN+ZO3ePle03wBEktfR7v6nnuBMaYm4wxG4wxG9rahnYHIgAAAIYmknDnJraoS3WPl+8QnDFr7b3W2kZrbWNlZWW+2wEAAChoYb/Xlbohnzt1j5fvELxbUk2fxxN7ngMAAMAwVhJyZ+Nht+oeL98heIWkz/RMiZgj6bC1dm+eewIAAMAAjJFqKsKO1qypCMsYR0uelNsj0h6S9DtJdcaYXcaYG4wxf22M+eueQ56W9JakNyQtl/R5N/sBAACAM8YU+bX4/FpHay6ZXavKkqCjNU/G1evN1trFA7xuJX3BzR4AAADgvHDQr0UzJ+h7v3rdkQ0zQn6PFs6YoKBLa42Pl+/lEAAAADhNFQW9WrpgqiO1li6YquJgbgKwRAgGAADAII0uCuiS+mrNmzK0yV3zplRq/tRqjSoKONTZwAjBAAAAGLQzykO685qGQQfheVMqdec1DaouCznc2akRggEAADAk1WUhffPqBt1x1TSF/JnFy5DfozuumpaXACy5fGMcAAAACsMZ5SEtaBinuXVVWrF5tx58aada2iMqCXg1ujigg51xdcRTqqkIa8nsWi2cOUHFAW9Ol0D0RQgGAACAI0YVBTSqSPrzC87UlTPGS5KORpJKpFLye70qDXdHzzFFfoWD/ny2SggGAACAM45GEjoSTWrvoYhKwj6F/V6lrVU8ZeX1WKXSVpFESnsPRTV+VFhlIZ9Kw/kJw4RgAAAADFnr4aj2H41qVFFAL73drode7l4OcbyairAWn1+rK2eM19vvdqqqNKTq8tyvCTbd+1WcXhobG+2GDRvy3QYAAAAktR2JqiOe0gtvHNCyVdsy2jwj5Pdo6YKpuvD9Y1US8KrShZvjjDEbrbWN/b3GdAgAAAAMWtvhqOIpq9tXvqbbntia8e5x0URatz2xVbevfE3xlFXbkajLnb4XIRgAAACDcjSSUCyd1j89+arWbW8bVI1129v0T0++qlgqrY5owuEOT44QDAAAgEGJJlN6rrlt0AG417rtbXquuU3RRMqhzgbGjXGnEIsn1dYZl9Q93iOWTCno++N4j8rigIIBfoUAAKDwxOJJxZNpLVu1zZF6y1Zt09y6SsXiyZzkKxJcP3rHe2xuOSiPx2hsSVCJZFrJlFXEm1JnPKkDHTGlUlYza0fndbwHAABAPnQmknrylT0ZrwEeSDSR1orNe/TJ8yfmJASzHOI4rYej2vjOQbV1xFRRHNCkscWqLA2qLOxXOOhVWdivytKgJo0tVkVxQG0dMW1856BaD+d2MTcAAEA+dcXTeujlnY7WfPClneqKOxOqB8KV4D72H4nqzbYOlRf5NaY4oKfeOJDRjDtrrd5s65AxUlUe9r4GAADINWvVb0Yaipb2iHI1vZcQ3GP/4ajaOqIaNyqc0Yy7lvaI7lrdrO/96vVjM+7ajnZfDSYIAwCAka4jmnSnbsyduscjBKt7DfChaFyjioJZj/jonXE3b0ql/mXRdB2KxFUU8KokxBphAAAwckUynOTg8xgFfB7Fk2kl0wNf5s3VhAhCsKSueEphv2/oM+70qm5fNE2dsRQhGAAAjGghf/+3lnk9RvPrq3T59HGaMCqsWDKtaCKlkN+roM+j3YciWrVlr9Zu369UP6E46MvNLWsFH4Jj8aTSsnp+x6ln3GXyKWbd9jY9P6VN86dU5Wy8BwAAQD6U9nPBb+GM8frcRZO0fkebvv1M80nvq7p21kR9fu779KPfvq0Vm/cMWNcNBZ/SDscSSqXtCTPuBvspZtmqbbq4rlKHowlVEYIBAMAIZUx3oG1pj6g44NVd183QviMRXb/8xQHvq/rumtf1H8+9qVsuq9Nl556hLz2yWZ3xlGoqwjImN/0XfErzeoxWvLL7PSdrKJ9ioom0ntq8R396/sSc/R8AAAByrSjg0eLza/X9dW9o+Wcbde/zb2l9c3b3VS1b2aS5dZVa/tlG3fhfG7Rkdq1KcnQR0dhczaFwUGNjo92wYYMjtVrau7TkP1884VPM3aubMxr+HPJ7dMtldTqjLPyeTzEP/uUc1VQUOdIjAADAcHOgI6pYwmrLrkP66YaWrALw8ebWVeqTjTVqmDhKQb/R2BJnJm0ZYzZaaxv7e43NMqRjAXj5Zxv1840tWrayKePdT3o/xfx8Y4uWf7ZRxQGv4zPzAAAAhptYIi2PsWrvjA8pAEvS+uY2tXfG5TFWMYd2oBtIwYfg3hl3d103I+vL+H2tb27Tvc+/pbuum9FdN0cz7gAAAPLB7zPqjKdPuK9qsJat2qbOeFp+b24WBRd8CI4kUlo4Y7z2HYk48ilm35GIrmwYl7MZdwAAAPmQTkurtuzJ+NvzgUQTaT396h6lcrRSt+BDcFHAq89dNEl3r252pN7dq5t1wwfPUtjvdaQeAADAcJRIWT2yaZejNX++cZeSOUrBBR+CRxf7tX5Hm6OfYp7b0abRxWyWAQAARi5rbUb3Qfk8RkUBr3yegZc5tLRHZJWbEFzwI9LiSatHM/gUk82Wf49s2qVrZjEiDQAAjFwnu/9pqDvGdcTYNjln+vsUM5QTyHQIAAAw0sWSJ36L7sSOcfEc3VdV8CH4aDRxwnNOnMCjTIcAAAAjWN/7n5zaMU6SQjm6r6rg1wT3/RRTHPDq+0tmaUZNua5f/qK+u+b1k17V7T2B1y9/UTNqyvX9JbNUHPjjScvVpxgAAIB8KA52X0t1cq+FvnXdVvAhuPdTjNMnMFefYgAAAPLBY7q/GXdyr4WairAyuH/OEQUfgns/bTi9WUauPsUAAADkg99ntHRBvaN7LSxdUC+/NzfxtOBDsMdIn73wTEdP4GcuPDNnn2IAAADyoSzg07njRzm618K540epPJybMbMFH4JDAY8+c4Gzm2V89oJJCgdYDgEAAEYuK+kph3eMW7llj9JpZ+oNpOBDsJG0tqnV0RO4tqlVytGgZwAAgHx4tyuhn/z+HUdr/vfv39G7XSdO7nJDwYfgzlhaD7zo7Al84MV31BnLzacYAACAfLDW+b0RWtojsjm6jljwIVhy5wQCAACMZB1Rd/ZEONlOdE4r+BDc32YZTsjVCQQAAMiHiEt7IkRztNdCwYdgp9YCn1iXzTIAAMDIFXZpT4SQjx3jcuJ0P4EAAAD5UBJyZ08Et+oer+BD8Ol+AgEAAPKlpiI8rOudSsGHYGPcOYGGzTIAAMAIVl7k1Z/NPtPRmp/6wJkaVcRmGTlRGvLqzz7g/Aks40owAAAYwdo7k7pyxniF/M7EyZDfoysaxqu9M+5IvYEUfAg+EknpygbnT+DhCNMhAADAyBXyebR510HdclmdI/VuuaxOm3cdVMCXm3ha8CG4KOjRq7sPOXoCt+4+pKJgwf9qAQDACBZNpvXNX2zXGWVhza2rHFKtuXWVOqMsrG/+YrtiSbZNzomuWFp3PN3k6An8l6eb1MWOcQAAYAQz6t4g7EuPbNZNH5486Bw1t65SN314sr70yGa1tEeUq9uqCj4ES+6cQAAAgJGsK9a9J0JnPKUb/2uDPnFejZZeUZ/xEtOQ36OlV9TrE+fV6Mb/2qDOeHe9rnhu9loo+Lu3eneM6z2Bd103Qx86e6zuXt2c0UYaIb9Ht1xWpzPKwu85gewYBwAARrK+yxY64yl94cFNurJhnB6+cY6e29GmRzbt6vfCYE1FWNfNmqiLz6nUfb/5g57a0vSe1+M5Wg5R8CG4b9B18gSyYxwAABjJgv1c8X1qy149vXWfLplSpX/8aJ3GjworkUormkgr5PfI7/Voz6GIVm7Zq+/96g2l0vbEujm6Ma7gQ3B/O8Y5cQLZMQ4AAIxkJxsHm0pbPbOtVc9sa5Uk+TxGAZ9H8WRayX4y0/FKczRmtuBD8Ml+0afLCQQAAMiHtO3+Znyge6GSaatkhut8ayrCyiBmOYIb4zLcMS6ZtuqKpzIKwDUVYeXs1kYAAIA8KAp6XNkxrjiYm2/TCz4EFwU8Wnx+raM1l8yuVXGA5RAAAGDkOhpJ6aL3j3F0w7EL3zdGR6K5GS5Q8CG4M5Z2Zcu/jhg3xgEAgJHLGGn5r//g6IZj9z7/FnOCc6UjltSz2/Zp6YKpjtRbumCqnnltnzoZkQYAAEawrlhKKzbvcXTDsae27M3ZnOCCD8HRREq3r2zS7LMqNG/K0E7gvCmVmn1WhZatamJEGgAAGNF65wQ7ueGYlLs5wQUfgntn0S1Z/qJuXzht0EF43pRK3b5wmpYsf1GSFMjRjDsAAIB86F1K6vSOccwJzpGSnlFmbR1xXfPvv9WDN87R/CnVWrZqW8Y7xi1dMFWzz6rQNf/+W7V1xN9TFwAAYCTqm3Wc3HCMOcE54jHm2Iy7to64Lr3neS1dUK9nb75YK7fs0YMv7TzpCVwyu1ZXNIzXM6/t06X3PP+e1zyGGWkAAGDkSqbsCXOCh7rhWE1FWIkcDQou+BAc8BldN2ui7lnz+rHnlq1q0rdWN+t/feT9+uGnz1NRwKfOWPLYCSwO+tQVT+pXTft1yXeeO2HtyifOm6igl+UQAABg5Eqm01o8u1Z3/bL5Pc8PZcOxJbNrlUzlZk1wwYfg0aGArmgYrx889+Z7lj/Ek2l9+5kd+vYzOyRJIZ9HJSGfOqJJRU+xYDvk92jB9PEaVRxwvXcAAIB8SaasLpzcPSf4VEtIM90xLuT36ILJY5RM5eZKcMFfrvT7vSoJ+QaccRdNpnWgI37KACx1z7grCfnk50owAAAYwUqCPv3ot2/rSw7NCf7SZXW67zd/UEkwN9doSWqSSoM+Xfi+sY7MuLvwfWNztqAbAAAgX4yR/qfloKodmhNcXRbWK7sOKVe3VRGCJRUFfRpbHNDN888Z0oy7m+efo7HFARUFCMEAAGBk83mNPvWBMx2dE/zpOWfm7Nt0QnCPyrKQxpeHdNOHJg9qxt1NH5qs8eUhVZaFXO4UAAAg/9o7Erq4rlIpax2ZE5yyVh8+u1LvdsZd7rybsTY3i4+d1NjYaDds2OBK7f1Homrae0TlRQE917x/4Bl3dVU63BVX/bgyVRGAAQBAgdj0zkH9+IW3NWfyGH318VclSVc2jNMNHzwryznBeyVJ37x6ul5484A+98Gz9Ce1ox3p0Riz0Vrb2N9rfG9/nKqykEpCPh3sSujsqhLddnm9xpQET5hx925HTGlrVVUa1DnVJSyBAAAABSXs92rF5j26fPoZumRKldZu3z/oOcGXTKnS6GK/ntqyV5+f+/6c9E9y64fP45HXGL2/qkRBv1ceY9QRSyqeTCng86ok6FNVaVCxREoeY+TzsKoEAAAUlt4d4/7hZ5t135+fL0lau31/1nOCL5lSpRs/PFk3/Pjl99R1GyH4OO2dcW3bc1ilIb+ef71NP9vQopb2yAlzgmsqwvrTxhp9+OxKvbH/qKaOL1cFs4EBAECBMEbHdoy74ccv667rZujicyr1jV80vWdu8MnmBIf8Hn31493fuN/w45fVGU+ppiKcs+kQrAnu492OmHa0HtXrrR0nnMCT6T2BZ1eX6JzqUo0pCTreFwAAwHATiyd132/f1l2r/7hj3JUN43TDh87Sb14/oJ/2XEg8Xk1FWJ9srNEHzx6r+379xzXBkvTlj9Xphg+epYDP60iPp1oTTAju0d4Z1+6DXfrumte1dvv+rN9/yZQq/f38czRxdFijuSIMAAAKwO6DEV3ynfXvuXDo9RhdMqVKCxrGHVsTHEukFTxuTfCvepZO9Ar5PVr7xbmaMDrsWH/cGDeAeDKttqOxQQdgScfe9+WPTVFx0KeAj3XCAABgZCsL+bR0wVTd9sTWY89luya419IFU1Uezl00JalJOtwV18Z3Dg46APdau32/Nr5zUIe7cjPfDgAAIJ9Kw37Nr6/WvCkn3ygjmbbqiqdOGYDnTanU/KnVKgn53WizXwUfglOptDoTKd2+8jVH6v3zytfUmUgplRp4PTEAAMDprro8pDuvaThlED6VeVMqdec1DarO8X4LBR+CD0cTWr11X0Y3wWUimkjrmdf26XA04Ug9AACA4a66LKQ7r27QHVdNy2rHuDuumpaXACzlIAQbYz5mjGk2xrxhjLm1n9drjTHrjDH/Y4zZYoy53O2e+oomUvrv37/jaM0HXnxH0cSJo0AAAABGqurykBbNHK+1X5yrL3+sTjUV/d/gVlMR1pc/Vqe1/zBXi2aOz0sAlly+Mc4Y45X0fUmXStol6WVjzApr7bY+h/2TpJ9Za39gjJkq6WlJk9zsq69UWv2O7xiKlvaIWA0BAAAKTUnIr5KQX5+7cJKunDFe1kodsaSiiZRC/u4Nx4yRqkqDjo1BGyy3b8GbLekNa+1bkmSMeVjSIkl9Q7CVVNbz73JJe1zu6T06YsmMjisJeDW6OKCDnXF19DPw+XidGdYFAAAYaYIBnyYGhvcQMre7myCppc/jXZI+cNwxX5f0jDHmbyUVS5rfXyFjzE2SbpKk2tpaxxo82bKFcMCrf72uQVMnlMtnjI5EE8f2vS4L+ZW0Vlt3HdItj76qSD+hmOUQAAAAw9dwiOiLJf3YWvuvxpgLJD1gjJlmrX3PggJr7b2S7pW6N8tw6ocH+5nn+5+fOU/148r15Cu79c1fbj/pbieLz6/VmpsvVtPew/rL+ze+53XmBAMAAAxfbie13ZJq+jye2PNcXzdI+pkkWWt/JykkaazLfR1TEvrj54AzK8L67ZfnqfVITJd8Z73uWt180vXCLe0R3bW6WZd8Z71aj8T02y/P05l9FoD3rQsAAIDhxe2k9rKks40xZ6k7/F4vaclxx+yUdImkHxtj6tUdgttc7usYjzGqqQjLI+mnf3WhvvL4Fq3bnvmPjybSuu2JrZo3pVI//asL9ckfvqB0T10AAAAMT66GYGtt0hjzN5JWS/JK+pG19jVjzO2SNlhrV0j6B0nLjTE3q/smuT+31jq23GEgfq/RdbMm6rrzJmYdgPtat71NX3l8ix68cY4e3bRLAS/LIQAAAIYr17+zt9Y+re6xZ32f+1qff2+TdJHbfZxMJJ7W4tm1enZb66ADcK9129u0fkqbFp9fq64MJkgAAAAgPwr+cuXBrrgSKatlq7YNfHAGlq3apnjK6mBX3JF6AAAAcF7Bh+CairCefGW3o9smr9i8WxNPsksKAAAA8q/gQ3A0kdZDL+90tOaDL+10LFQDAADAeQUfgq11Z9vk3N3aBwAAgGwVfAjuiLqzvXGm2zEDAAAg9wo+BEdc2t6YbZMBAACGr4IPwWG/15W6IZ87dQEAADB0BR+C3dremG2TAQAAhq+CD8HGdI9Jc1JNRVjsmgwAADB8FXwIriwOaPH5tY7WXDK7VlWlQUdrAgAAwDkF/519MODTopkT9L1fve7IbN+Q36OFMyYowJpgAABQoCKxhN7tSkiSjkaSiiRSCvu9Kg13R88xRX6Fg/58tkgIlqSykE9LF0zVbU9sHXKtpQumqjzMrxUAABSeg11xdcVSevKV3Xro5Z397sVQUxHW4vNrtWjmBBUFvRpdFMhDpyyHkCSVhv2aX1+teVMqh1Rn3pRKzZ9arZJQfj/ZAAAA5Nq+w1E9vWWvLvnOet21uvmkm5G1tEd01+pmXfKd9Xp6y17tOxzNcafdCME9qstDuvOahkEH4XlTKnXnNQ2qLgs53BkAAMDw1nokqq88vkW3PbE14+Wl0URatz2xVV95fItaj+Q+CBOC+6guC+nOqxt0x1XTFPJn9qsJ+T2646ppBGAAAFCQ9h2O6tbHtmjd9rZBvX/d9jbd+ljugzCLV49TXR7SopnjNbeuSis279aDL518PcuS2bVaOHOCykM+lkAAAICCc7ArrrVNrYMOwL3WbW/Tmm2tWtAwTqNytEaYENyPkpBfJSG/PnfhJF05Y7yslTpiSUUTKYX8XpUEfTJGqioNMgUCAAAUrK5YSstWbXOk1rJV2zS3rkqjihwpNyBC8CkEAz5NDPArAgAAOF4kltCTr+x2ZMSs1L1GeMXm3frzC87Myfg01gQDAAAga+92JfTQyzsdrfngSzuPzRd2GyEYAAAAWbNWJx2DNlgt7RFZ62jJk+K7/lNIJFJq64wpbaWj0aRiyZSCPq9KQz55jFRZHJTfz5pgAABQeDqiSXfqxtypezxCcD+6YkkdjCS0eedBeTxGY0uCiiXTx26M64wldaAjplTaambtaI0O+1UU5FcJAAAKRySRcqVu1KW6xyO5HWf/kaia9h5ReVFAO/Z36NFNu046Iu3aWRM1YXSR3mg9qvpxZapiTjAAACgQYZe+DQ/laPIWIbiPtiNRvbG/Q2+0deju1c2nvNuxpT2i7655Xf/x3Ju65bI6+b0eGUmVBGEAAFAASkLuxEi36h6PG+N6tB2Jas/hqO799VtatrIpqy3/lq1s0r2/fkt7DkfVlodt/wAAAHLNmO5vxp1UUxGWMY6WPClCsLrXAB/ojOueNTu0vnlwO56sb27TPWt26EBnXF3x3CzoBgAAyJcxRX4tPr/W0ZpLZteqsiToaM2TIQRLOhpL6oU3Dww6APda39ymF948oKMu3S0JAAAwXISDfi2aOUEhvzNxMuT3aOGMCQrmaPJWwYfgRCKlo9Gk7l7d7Ei9u1c3qyOaVCJHdzYCAADkS1HQq6ULpjpSa+mCqSoO5m70bMGH4EPRuFZt2ePoln+rXt2jQ9G4I/UAAACGq9FFAV1SX615UyqHVGfelErNn1qtUUUBhzobWMGH4FjS6pFNuxyt+fONuxRL5mi7EwAAgDw6ozykO69pGHQQnjelUnde06DqHE/YKvgQnLbWlS3/0rna8w8AACDPqstC+ubVDbrjqmkZrxEO+T2646ppeQnAEnOCXbuJrSPKmmAAAFA4zigPaUHDOM2tq9KKzbv14Es7T7rh2JLZtVo4Y4KKg96cLoHoq+BDcDyZ2VrgkM+jkpBPHdGkohm8J54kBAMAgMLR3hnX2qZW3bN6hx7+6zm6omG8JKkjllQ0kVLI71VJsDt6WpvWJ/79Bd182Tm6pL5aFcW5D8IFH4JPtuVfwOfR31/yfs2dUqXiQHf4jSVTCvq8Kgn51BlP6ldN+/W9X73Rb5AO5Wi8BwAAQL692xHTrY++qmebWuX1GN3xdJMunz5OE0aFZZNpyVh1xFPqjCW1+1BEq7bsVWtnTLc8skWX1lfrzmuna0yO5gP3KvgQ3N/WfF+7ol6XTj1Dr+46pJ3vdmlsSVCxZLrnU0xakURKBzpiOmtMsdZ+8WI9u22fbl/ZNGBdAACAkaa9M34sAC+cMV6fu2iS1u9o07efaT7pcohrZ03U5+e+Tz/67dtasXmP9Kh013UNGp3DK8IFn9QCXo9qKsJqaY+osiSgB2+co90HI3q3M64d+zv06KZdpzyBEyqKNHlsiZ69+cNasvxFtXXEVVMRVsBb8PccAgCAES6eTGttU6teePOAvr9klvYdiej65S+ecvRsS3tE313zuv7juTd1y2V1uuzcM/SlRzZrTVOrFs2coIAvNxmq4JPamOKAPj1nkipLAnr88xep7WhMbx7o0PX3/k7fXfP6SSdH9J7A6+/9nd480KG2ozE9/vmLVFkS0GfmTMr5JX0AAIBca++M685fNGn5Zxv1840tWrayKeO9F6KJtJatbNLPN7Zo+WcbdecvmtTembt9Fow9DUd5NTY22g0bNjhWb8+hiCLxpDpiKd2zZsegtk+eW1epm+efo5KQV2G/T+NHhR3rDwAAYLhJpdL6vy+8rXHlYf18Y8ug8lOvuXWV+sR5Ndp7OKK/uHCSvA59o26M2WitbezvtYK/EhyLJ3U0klA8ZQcdgCVpfXOb7lmzQ/Gk1dFoQrG4O6PXAAAAhoP2rrhaDnZp35HIkAKw1J2j9h2JaOfBLrV35eZqcMGH4LbOuMqK/HrhzQOOnMAX3jyg8pBfbTm8nA8AAJBrybTV1TMn6O7VzY7Uu3t1s66ZOUHJdG5WKRR8CA4HPOqMpRw9gZ3xlMKBgv/VAgCAESyVslq/oy3jNWd7rpIAACAASURBVMADiSbSem5Hm5IpQnBOJFNWq7bscfQErnp1T85OIAAAQD4k0mk9ummXozUf2bRLybQzmWwgBR+C40mrRxw+gT/fuEvxJCEYAACMXF6POekUrcFqaY/I6zGO1jyZgg/B1lpXTqAVIRgAAIxcXbGUO3Xj7tQ9XsGH4KMxd6Y4dERzcwIBAADyIZpwJ+u4Vfd4BR+C40l31p3Ek4RgAAAwcgX9Xnfq+type7yCD8Fhl05gyKW6AAAAw0FJ0Hda1T1ewYfgkpBLJ9ClugAAAMOBMVJNhbM75NZUhGVyc18cITjg9bhyAgMObfcHAAAwHFUWB7T4/FpHay6ZXauq0qCjNU+m4JPamOKAPj1nkqM1P3PBJI0pyc0JBAAAyIdgwKdFMyco5HcmTob8Hi2cMUEB1gTnhtfr0ZUzxjl6Aq9oGJezGXcAAAD5UhbyaemCqY7UWrpgqsrDuVtOWvAhWJLGFAd1+8JzHal1+6JzNaaYq8AAAGDkKw37Nb++WvOmVA6pzrwplZo/tVolIb9DnQ2MECwp4PNo/tQzNL++akh15tdX6dL6MxTw8WsFAACFobo8pDuvaRh0EJ43pVJ3XtOg6rKQw52dGmmtR0VxQN+6tmHQQXh+fZW+dW2DRhcHHO4MAABgeKsuC+nOqxt0x1XTMl5iGvJ7dMdV0/ISgCXJWHv6be/b2NhoN2zY4Ert9s641jS16mtPblU0MfBGGiG/R7cvmqZL66sJwAAAoKB1RBM6HElqxebdevClnWppj5xwTE1FWEtm12rhzAkqD/lcXQJhjNlorW3s9zVC8IniybTaO+NauWWP/ut3b5/0BH72wkm6Yvp4VRQHWAIBAADQIxZPqq0zLmuljlhS0URKIb9XJUGfjJGqSoM5mQJxqhDMjg79CPg8OqM8pL+4cJIWzRyvZNqqI5pULJlW0OdRScgnn8eoojjIFAgAAIDjBAM+TQwM75g5vLvLM6/Xo8rSnjUq5fntBQAAAM4Z8Dt8Y8x0Y8yLxpgWY8y9xpjRfV57yd32AAAAAOdlspD1B5K+Lmm6pB2SfmOMeV/Pa7kb5gYAAAA4JJPlEKXW2l/2/PvbxpiNkn5pjPm0pNPvrjoAAAAUvIzWBBtjyq21hyXJWrvOGHOtpEclVbjZHAAAAOCGTJZDfEtSfd8nrLVbJF0i6TE3mgIAAADcNGAIttY+aK19sZ/nd1prb+x9bIz5N6ebAwAAANzg5A4PFzlYCwAAAHAN25wBAACg4BCCAQAAUHCcDMHsHwwAAIDTQsYh2BgzfYBD/vcQewEAAAByIpsrwf9ujHnJGPN5Y0z58S9aa3/sXFsAAACAezIOwdbaD0n6M0k1kjYaYx40xlzqWmcAAACAS7JaE2ytfV3SP0n6sqSLJX3PGLPdGHONG80BAAAAbshmTXCDMeYeSU2SPiLpSmttfc+/73GpPwAAAMBxviyO/TdJ/ynpq9baSO+T1to9xph/cryzYSCRSKmtM6a0lY5Gk4okUgr7vSoN+eQxUmVxUH6/N99tAgAAIEvZhOAFkiLW2pQkGWM8kkLW2i5r7QOudJcnXbGkDkYSevKV3XropZ1qaY/I5zEK+DyKJ9NKpq1qKsJaPLtWi2ZO0OiwX0XBbH6VAAAAyKdsktsaSfMldfQ8LpL0jKQLnW4qn/YfierZplZ94+kmffD9Y/WPH63ThFFhxZJpRRMphfxeBX0e7T4U0aote/X9dW/oq5fX69L6alWVhfLdPgAAADKQTQgOWWt7A7CstR3GmCIXesqb/Uei+vJjW1Qa9OsnN3xA63e06dvPNKulPXLCsTUVYV07a6I+P/d9+tFv39aaplZ965oGgjAAAMBpIJvpEJ3GmFm9D4wx50k6MR0exxjzMWNMszHmDWPMrSc55k+NMduMMa8ZYx7MoifH7D8S1ddXbNV1s2o0o6Zc1y9/Ud9d83q/AViSWtoj+u6a13X98hc1o6Zc182q0ddXbNX+I9Ecdw4AAIBsGWttZgcac76khyXtUfcWyWdI+qS1duMp3uOVtEPSpZJ2SXpZ0mJr7bY+x5wt6WeSPmKtPWiMqbLW7j9VL42NjXbDhg0Z9Z2JrlhSK7fs0cSKIt37/Fta39x2wjHHrwk+3ty6St304cna1d6lK2aMV1GANcIAAAD5ZIzZaK1t7O+1jJOatfZlY8wUSXU9TzVbaxMDvG22pDestW/1NPKwpEWStvU55kZJ37fWHuz5OacMwG44GEmoNOR/TwD2eozm11fp8unjNGFUWPFUWolkWn6fRwHvH9cEr92+X6m0Pfa+TzbW6GBXghAMAAAwjGWb1M6XNKnnfbOMMbLW3n+K4ydIaunzeJekDxx3zDmSZIz5rSSvpK9ba395fCFjzE2SbpKk2traLNs+uUQipVd3H9Kew5FjQXbhjPG64YNn6cW33j3lmuBPfeBMfWHe+3Xfb/6gFZv3aH1zmz509lh5jFRVHGB8GgAAwDCVcQg2xjwg6X2SXpGU6nnaSjpVCM60h7MlzZU0UdLzxpjp1tpDfQ+y1t4r6V6peznEEH/mMfs7YppQHtbfP/yKigNe3XXdDB2NJvTJe3+naCJ90ve1tEf0zV9sV8jv0devPFeXnXuGvvTIZt29ulk//6sLuuuOHlH3DQIAAIwY2VwJbpQ01Wa6iLjbbkk1fR5P7Hmur12Sft+ztOIPxpgd6g7FL2fxcwbN7zNau32/vMbo/htm6wfr39SapsxXZEQTad362KuaX1+l+2+Yrc/c95J+tX2/Fs+uGfjNAAAAyItspkNsVffNcNl4WdLZxpizjDEBSddLWnHcMU+o+yqwjDFj1b084q0sf86gdcXTenTTLv2fJbOyDsB9rWnarx+sf1P/Z8ksPbJplyKnuIoMAACA/MrmSvBYSduMMS9JivU+aa1deLI3WGuTxpi/kbRa3et9f2Stfc0Yc7ukDdbaFT2vfdQYs03dyyxusda+O4j/y6AYSX9SM1r7j0YHHYB7rWnar49OrdbMiaOcaQ4AAACuyGZE2sX9PW+tfc7RjjLg5Ii0pj1HVBLy6dJ7njvlGuBMhfwePXvzxeqIJVU/rsyBDgEAADAYpxqRlvFyiJ6w+7Ykf8+/X5a0yZEO8yjgM/rF1n2OBGCpe43wL1/bJ783m5UmAAAAyKWMk5ox5kZJj0j6Yc9TE9S9nve0VhTw6YEX33a05v2/e1vFAcajAQAADFfZXK78gqSLJB2RJGvt65Kq3Ggql1LWnnRr5MFqaY8o1c+ucgAAABgesgnBMWttvPeBMcan7jnBp7WOaNKdunF36gIAAGDosgnBzxljviopbIy5VNLPJT3lTlu5E0mkBj5oEKIu1QUAAMDQZROCb5XUJulVSX8l6Wlr7W2udJVDQZ87N7AFuDEOAABg2MpmTvDfWmv/t6TlvU8YY/6u57nTVkkwm19B/usCAABg6LK5XPnZfp77c4f6yBtjjGoqwo7WrKkIyxjjaE0AAAA4Z8AQbIxZbIx5StJZxpgVff6sk9TufovuCviMrps10dGanzhvomvLLAAAADB0mXxn/4KkvereNvlf+zx/VNIWN5rKJY+RFjSM1w+ee9OxHeMunz5eHq4EAwAADFsDhmBr7TuS3pF0gfvt5N7hSFJBv1e3XFanZSubhlzvlsvqFPJ5dCgS19jSoAMdAgAAwGnZ7Bh3jTHmdWPMYWPMEWPMUWPMETeby4VkysprpDmTx2huXeWQas2tq9ScyWPk8XTXBQAAwPCUzcLVuyQttNaWW2vLrLWl1toytxrLleKgT3f+oll+j9HN888ZdBCeW1epm+efI7/X6JtPb1cx0yEAAACGrWxCcKu1dujrBYYZr0f6n5aD2nM4Kq+RbvrQZC29ol4hf2a/mpDfo6VX1OumD02W10h7DkX1yq5D8nlYEwwAADBcZXO5coMx5qeSnpAU633SWvuY413l0JiigD49Z5K+8JNNuv+G2TJGqq0o0sM3XaDnmvfrkU271NIeOeF9NRVhXTdroi6uq1Lb0aiMkWKptL7wk036+/nnaExJIA//GwAAAGQimxBcJqlL0kf7PGclndYhOBjw6YqGcfrOs836zH0v6a7rZqi0ZynDWWOKddvl9RpTElQilVY0kVbI75Hf69G7HTHFkt3TJIJer9o7E/rSI5uVslYLGsYp4PPm878FAACAU8g4BFtr/8LNRvKpNOjTPy88V19+9FV94cFNurJhnG740GT5+8z6NZK8xqjvIoferZF/vrFFT23ZK0n61rXTVRZiPTAAAMBwlnFaM8acI+kHkqqttdOMMQ3qvlHuX1zrLkdKw37NPadK8+urtKZpv57asldPb92nS6ZUaUHDOEk9IdijYyE4lkxr5Za9+tX2/UqluydBzK+v0ty6KpWE/Pn5jwAAACAj2dwYt1zSVyQlJMlau0XS9W40lQ/V5SF94+rpml9fdey53v0ujKS07R57lrZ/DMJ9rwrPr6/SN66eruqyUK5aBgAAwCBl8719kbX2JfPendCSDveTV1VlId1x1XR95oKjKgv7tb55v779TLNa2iPyeYwCPo/iybSSaauairCunTVRn5/3fh2JJFR3RqmqCMAAAACnhWxC8AFjzPvUfTOcjDHXqXs75RHF7/No35Go/r+fbNQH3z9W//jROk0YFVYsmVYsmVLQ51XQ59HuQxGt2rJXy3/9lv7/K8/VtAnl+W4dAAAAGcomBH9B0r2Sphhjdkv6g6RPudJVnrzbEdOtj76qcMCrn/zlB/Tr1w8cuxJ8vJqKsP60sUafn/c+/eg3b+vZ11p157XTNaaErZIBAACGO2Ntdtv7GmOKJXmstUfdaWlgjY2NdsOGDY7WbO+M62tPbNXHp4/Tux0xfeMXTYom0gO+L+T36Ksf7x6j9otX92rZVdM0upgZwQAAAPlmjNlorW3s77WMb4wzxvydMaZ3VvA9xphNxpiPDvS+00E8mdZzzfv1qQvO1GObdulrK17LKABLUjSR1tdWvKbHNu3Spy44U+ub9yuezOy9AAAAyI9spkN8zlp7RN2bZYyR9GlJd7rSVY61d8ZVHPRp+fNvae32/YOqsXb7fi1//i0VB31q74w73CEAAACclE0I7h0Lcbmk+621r+m9U8JOS6lUWq/uPqQDHfFBB+Bea7fv17sdcb26+5BSKa4GAwAADFfZhOCNxphn1B2CVxtjSiWd9kmvvSuuM8cU6/aVrzlS759XvqYzxxSrvYurwQAAAMNVNiH4Bkm3SjrfWtslKSDptN9K2Rhp3fb9Ga8BHkg0kdb65v0yp/01cgAAgJFrwBBsjJnS88+ZPX9PNsbMknSmshuxNixF42n99+/fcbTmAy++o2j8tL9IDgAAMGJlEmK/KOkmSf/az2tW0kcc7SjHrNTvHOChaGmPKLvBcwAAAMilAUOwtfamnr/nud9O7nXG3Nn5uTM+onaUBgAAGFGymRP8iZ6b4WSM+SdjzGPGmD9xr7XciCRSrtSNulQXAAAAQ5fNjXFLrbVHjTEflDRf0n2S/sOdtnIn6MvmV5C5gNedugAAABi6bJJa76XNBZLutdauUveEiNNaSch/WtUFAADA0GUTgncbY34o6ZOSnjbGBLN8/7DkMVJNRdjRmjUVYXkYkQYAADBsZRNi/1TSakmXWWsPSaqQdIsrXeVQUcCr62ZNdLTmJ86bqOKA19GaAAAAcE7GIbhng4wnJXUaY2ol+SVtd6uxXCkP+XXFjPEK+Z25qB3ye7SgYbzKwqf9ShEAAIARK5vpEH8rqVXSs5JW9fxZ6VJfOeP1elQW9OmWy+ocqXfLZXUqC/rkZT0EAADAsJXNjm9/J6nOWvuuW83k05zJYzS3rlLrm9sGXWNuXaXmTB7jYFcAAABwQzZrAFokHXarkXxJpdJ6/JU9Cvo8unn+OZpbVzmoOnPrKnXz/HMU9Hn0xOY9SqXYNhkAAGC4yuZK8FuS1htjVkmK9T5prf2O413l0Ludce0+1KUX3jygc6rLdNOHJutDZ4/V3aubFU0MHGRDfo9uuaxO9WeUKZJIafOug2o52KV3O+OqKgvl4H8AAACAbGUTgnf2/AloBMwH7hVPpXX1zAm6fvmL8hqju66bodqKIj180wV6rnm/Htm0Sy3tkRPeV1MR1nWzJuriuiq1HY3qYFdCX3pks1LW6uEb5yjOlWAAAIBhK+MQbK39Z0kyxpT0PO5wq6lcSqet1u9oO3bV9wsPbtKVDeN0wwfP0lljinXb5fUaUxJUIpVWNJFWyO+R3+vRux0xxZJpyVqteGWPntqy91jN53a06epZE/L1XwIAAMAAMg7Bxphpkh5Q93xgGWMOSPqMtfY1l3rLiWTa6tFNu97z3FNb9urprft0yZQqLWgYJ0kykrzGqHfmQyyZ1sote/Wr7fuVStv3vP+RTbu0cOb4HHQPAACAwchmOcS9kr5orV0nScaYuZKWS7rQhb5yxucx/S53SKWtntnWqme2tR47LuDzKJ5MK3lc6D1eS3tEXsOINAAAgOEqmxBc3BuAJclau94YU+xCTznVFU9ldFwybZXM8FhJ6kpkfiwAAAByK6vpEMaYpepeEiFJn1L3xIjTWiYTIAYj5lJdAAAADF02c4I/J6lS0mOSHpU0tue505pT2yUfL+hzpy4AAACGLpvpEAcl/S8Xe8mLomA2F8MzV+xSXQAAAAxdxpcrjTHPGmNG9Xk82hiz2p22ciedtqqpCDtas6YifMLECAAAAAwf2XxnP9Zae6j3Qc+V4SrnW8qtcMCjTzbWOFrz+vNrVBTwOloTAAAAzskmBKeNMbW9D4wxZ0o67S93JlJWF59T6dja4JDfow+fXcmOcQAAAMNYNsnvNkm/McY8YIz5b0nPS/qKO23lTmVxQLsORnTLZXWO1LvlsjrtOhRRVWnQkXoAAABwXsYh2Fr7S0mzJP1U0sOSzrPWHlsTbIw51/n23BcM+NQwcZTGl4c1t65ySLXm1lVqfHlYDRNGKeBjOQQAAMBwldUIA2vtAUkrT/LyA+oOyaedspBPRyIJ3fThyZKk9c1tWdeYW1epmz48WS3vdqk8zGQIAACA4czJYban7T7BpWG/5tZV6YHfva1PnFejpVfUZ7xGOOT3aOkV9frEeTV64Hdva+6UKpWE/K72CwAAgKFx8pLlaX2TXHV5SF9fOE23PrZFJQGfHr5xjp7b0aZHNu1SS3vkhONrKsK6btZEXXxOpe77zR/UET+gO69pUHVZKA/dAwAAIBt8b99HdVlId17doDVNrfqz+36vi943Vv/40TqNHxVWIpVWNJFWyO+R3+vRnkMRrdyyV/f++i199eP1mj+1mgAMAABwmnAyBMcdrJU31eUhLZo5XnPrqrRi8259+5lmtbRH5PMYBXwexZNpJXs22Fgyu1ZfX3iuykM+lkAAAACcRrIKwcaYBkmT+r7PWvtYz99zHO0sj0pCfpWE/PrchZN05YzxslbqiCUVTaQU8ntVEvTJGKmqNMgUCAAAgNNQxiHYGPMjSQ2SXpPUuxOElfSYC30NC8GATxMDrBgBAAAYabJJeHOstVNd6wQAAADIkWxGpP3OGEMIBgAAwGkvmyvB96s7CO+TFFP3XGBrrW1wpTMAAADAJdmE4PskfVrSq/rjmmAAAADgtJNNCG6z1q5wrRMAAAAgR7IJwf9jjHlQ0lPqXg4h6Y8j0gAAAIDTRTYhOKzu8PvRPs+N6BFpAAAAGJkyDsHW2r9wsxEAAAAgV7LZLCMk6QZJ50oK9T5vrf2cC30BAAAArslmTvADks6QdJmk5yRNlHTUjaYAAAAAN2UTgt9vrV0qqdNa+1+SFkj6gDttAQAAAO7JJgQnev4+ZIyZJqlcUpXzLQEAAADuymY6xL3GmNGSlkpaIalE0tdc6QoAAABwUTbTIf6z55/PSZrsTjvDSyyeVFtnXJJ0NJJUJJFS2O9Vabj711ZZHFAwkM3nCAAAAAwH2UyHqJb0DUnjrbUfN8ZMlXSBtfY+17rLk6ORhI5Ek3ryld166OWdammPnHBMTUVYi8+v1aKZE1QW8qk07M9DpwAAABgMY63N7EBjfiHp/0q6zVo7wxjjk/Q/1trpbjbYn8bGRrthwwZXarcejmpNU6uWrdqmaCI94PEhv0dLF0zV/PpqVZeHBjweAAAAuWGM2WitbezvtWxujBtrrf2ZpLQkWWuTklIZ/PCPGWOajTFvGGNuPcVx1xpjrDGm30ZzofVIVLc+vkW3PbE1owAsSdFEWrc9sVW3Pr5FrUeiLncIAAAAJ2QTgjuNMWPUvVWyjDFzJB0+1RuMMV5J35f0cUlTJS3uWUZx/HGlkv5O0u+z6MdRrYejuvWxLVq3vW1Q71+3vU23PkYQBgAAOB1kE4K/qO6pEJONMb+VdL+kvx3gPbMlvWGtfctaG5f0sKRF/Ry3TNK3JOUlQR6NJLSmqXXQAbjXuu1tWrOtVR3RxMAHAwAAIG+yCcHbJD0u6WVJrZKWS9oxwHsmSGrp83hXz3PHGGNmSaqx1q7KohdHHYkmtWzVNkdqLVu1TYcjSUdqAQAAwB3ZhOD7JU1R94SIf5N0jrq3Uh40Y4xH0nck/UMGx95kjNlgjNnQ1ja0K7Z9xeLdUyAyXQM8kGgirRWbdysWJwgDAAAMV9mE4GnW2r+01q7r+XOjpHMHeM9uSTV9Hk/sea5XqaRpktYbY96WNEfSiv5ujrPW3mutbbTWNlZWVmbR9qm1dcb10Ms7HasnSQ++tPPYfGEAAAAMP9mE4E09N8NJkowxH5A00JyylyWdbYw5yxgTkHS9utcVS5KstYettWOttZOstZMkvShpobXWnfln/bBW/c4BHoqW9ogynDwHAACAPBhwswxjzKvqngjhl/SCMWZnz+MzJW0/1XuttUljzN9IWi3JK+lH1trXjDG3S9pgrV1xqvfnQkfUnWULHTGWQwAAAAxXmewYd8VQfoC19mlJTx/33NdOcuzcofyswYgkBhx1PChRl+oCAABg6AYMwdbad3LRSL6E/V5X6oZ87tQFAADA0GWzJnhEKgllcjF8+NQFAADA0BV8CJakmorwsK4HAAAAZxV8CA77PVp8fq2jNZfMrlVRgOUQAAAAw1XBh+Cd7REtmjlBIb8zv4qQ36OFMyZoZ3uXI/UAAADgvIIPwSG/R017D2vpgqmO1Fu6YKq27T2soK/gf7UAAADDVsEntdKQX395/0bNravUvClD24lu3pRKza2r1I33b1RpyO9QhwAAAHBawYdgqftGtiXLX9Q3r24YdBCeN6VS37y6QUuWv8iNcQAAAMNcwYfg0rBXi8+v1TvtEX3yhy/oXxZN0x1XTct4jXDI79EdV03Tvyyapk/+8AW90x7Rktm1KgszIg0AAGC4KvgQHPZ6j90Y9057RBd9a52qyoJa+8W5+vLH6k56VbemIqwvf6xOa784V1VlQV30rXV6pz1y7MY4tzbhAAAAwNAV/OXKYMCnUCyppQum6rYntkqSbrx/o8IBr+6+droeuOED8hqjjlhS0URKIb9XJUGfUtZq665Dmn/Pc4rE/7hF8tIFUxX0GQXYMQ4AAGDYKvgQLEkBn1cfqa/SvO2VWre9TZIUiaf0Nw+9cuyYkoBXo4sDOtgZV0ef0NvXvCmV+kh9lUJcBQYAABjWCn45hCSVhv3yy5zyxriOeEotByOnDMDfvLpBfmNUwmQIAACAYY0Q3GNseUg+I91x1fRB3Rh3x1XT5TPS2LKQy50CAABgqFgO0cfYspBaD0c1Z3KF1n5xrlZs3q0HX9qplvbICcfWVIS1ZHatFs6YoGgiKa/HEIABAABOE4Tg41SXh1Qc9epwJKmP1FXp8unj5Onnxri0tYrGU5KRqstCLIEAAAA4jRCC+1ES8qsk5Fcs7ldbZ1zWdj8f6HO/m9djdFZlMVMgAAAATkOE4FMIBnyaGOBXBAAAMNJwYxwAAAAKDiEYAAAABYfv+gEAAOCoWDypts64JOloJKlIIqWw36vScHf0rCwOKJjnJaeEYAAAADjiaCShI9Gknnxltx56+eRjZhefX6tFMyeoLORTaTg/E7aM7R19cBppbGy0GzZsyHcbAAAA6NF6OKo1Ta1atmqboon0gMeH/B4tXTBV8+urVV3uzl4LxpiN1trG/l7jSjAAAACGpPVIVLc+vkXrtrdl/J5oIq3bntiqNdtbdec1DarO8aZj3BgHAACAQWs9HNWtj2UXgPtat71Ntz62Ra1Hog53dmqEYAAAAAzK0UhCa5paBx2Ae63b3qY121rVEU041NnACMEAAAAYlCPRpJat2uZIrWWrtulwJOlIrUwQggEAAJC1WLx7CkQmN8FlIppIa8Xm3YrFcxOECcEAAADIWltnXA+9vNPRmg++tPPYfGG3EYIBAACQNWvV7xzgoWhpjyhX03sJwQAAAMhaR9SdZQsdMZZDAAAAYJiKJFKu1I26VPd4hGAAAABkLez3ulI35HOn7vEIwQAAAMhaScidjYfdqns8QjAAAACyZoxUUxF2tGZNRVjGOFrypAjBAAAAyFplcUCLz691tOaS2bWqKg06WvNkCMEAAADIWjDg06KZExTyOxMnQ/7/1979x8R933ccf73hjvseYHBI8DmmELdbZaAE0wZbc7RWQXa3djTGcaOu9iolbddqUqdtrVTVWYamzbPqLpP2o9qqVW2aSJs9tY4Te7XWJLasbprS2mS1iQNka7vUlMQXGhw7GO444LM/ODSKjeHuvt/7Yng+JOt+fL+8742+Ar385f39fEu0c3OdypgJBgAAwHJW5UXU3dnsS63uzmZVx4szDywRggEAAJCnNfGodjQl1NFYW1CdjsZa7WhOqNKL+tTZ4gjBAAAAyFui2tPB3a15B+GOxlod3N2qRJXnc2c3RwgGAABAQRJVng4+0KoDu1qWPCPsRUt0YFdLKAFYkoo3eAEAAIAVK1HtFFJ0nAAAFHVJREFUqattg+7btE7Hzw/p0JmLGhwZv26/+pq49m5t0M62OlV7kaKOQMxFCAYAAIAvKr2oKr2oPnXvRt2/eYOck0bTk4qUTmlyqlSVsYjMpHVrYkVbBWIhjEMAAADAV9POSZq5oYac9Pb4zOPsjTCmpqZD620WZ4IBAADgi8tjExpLT+nYuSEdPrvwOMSeLQ3qaqtTeaxUt5WXhdCpZC6b1G8l7e3trqenJ+w2AAAAkHXpSkqn+pPaf6JPqcziZ3q9aIm6O5u1vSmh9dXBXBhnZi8659pvtI0zwQAAAChI8mpKjzzdq9MDw0v+mlRmWo8+c0EnB5IskQYAAIBby6UrKe07mlsAnuv0wLD2He1V8mrK585ujhAMAACAvFwem9Cp/mTeAXjW6YFhnexL6q2xCZ86WxwhGAAAAHkZS09p/4k+X2rtP9Gna+kpX2otBSEYAAAAORtPZ3Ts3NCSLoJbilRmWsfPD2k8nfGl3mIIwQAAAMjZm2MZHT570deah85c1JtjhGAAAAAsU87phusAF2JwZFzFWr2XEAwAAICcjaYmg6mbDqbufIRgAAAA5Gw8E8xFbKmA6s5HCAYAAEDO4tHSQOp6kWDqzkcIBgAAQM4qvWBuPBxU3fkIwQAAAMiZmVRfE/e1Zn1NXGa+llwQIRgAAAA5u708qj1bGnytuXdrg2orY77WXAghGAAAADmLx6LqaquTF/UnTnrREu3cXKdYQLPG8xGCAQAAkJfyWKm6O5t9qdXd2ayKWHECsEQIBgAAQJ5uKy/T9qaEOhprC6rT0VirHc0JrS0v86mzxRGCAQAAkLf11Z4O7m7NOwh3NNbq4O5WJao8nzu7OUIwAAAACpKo8vTlB1p1YFfLkmeEvWiJDuxqCSUAS1JxFmIDAADAira+2lNn6526b9M6HT8/pENnLmpwZPy6/epr4tq7tUE72+pUUVZa1BGIuQjBAAAA8MXa8jKtLZce3naX7t+8Qc5Jo+lJpTJT8qKlqoxFZDazvFo8Fg21V0IwAAAAfPH2eEZXU5M6dm5Ih8/OnAmuX+tp0/pKvXJpVINvpVRfE9eeLQ3qaqtTlRfRmng4Ydicc6F8cCHa29tdT09P2G0AAAAgK3klpZP9Se0/0adUZnrR/b1oibo7m7WjKaFEdTAzwWb2onOu/UbbOBMMAACAgiSvprTv6V6dHhhe8tekMtN69JkLOjmQZHUIAAAA3FqSV1LadzS3ADzX6YFh7Tvaq+TVlM+d3RwhGAAAAHl5ezyjk/3JvAPwrNMDwzrZl9RoKuNTZ4sjBAMAACAvV1OT2n+iz5da+0/06cr4pC+1loIQDAAAgJylJ2ZWgVjKRXBLkcpM6/j5IaUnihOECcEAAADI2fC1CR0+e9HXmofOXNTwtQlfay6EEAwAAICcOacb3hGuEIMj4yrW6r2EYAAAAORsNBXM2MJomnEIAAAALFPjmalA6qYCqjsfIRgAAAA5i0dLA6nrRYKpO1/gIdjMPmRmr5jZj81s3w22f8HM+sys18xOmdldQfcEAACAwlR6wdx4OKi68wUags2sVNLfS/qwpGZJe8ysed5uP5LU7pxrlXRE0l8G2RMAAAAKZybV18R9rVlfE5eZryUXFPSZ4K2Sfuyc+6lzbkLSv0jqmruDc+60c24s+/IHkt4RcE8AAAAoUG1FmfZsafC15t6tDVq3JuZrzYUEHYLrJA3Oef3z7HsL+bSkf7vRBjP7rJn1mFnP8HBht+YDAABAYWJlEXW11cmL+hMnvWiJdm6uU9lKmQleKjP7hKR2SY/daLtz7uvOuXbnXHttbW1xmwMAAMB1qryIujvnT7rmp7uzWdXx4swDS8GH4CFJ9XNevyP73i8xsx2SHpW00zmXDrgnAAAA+GBNPKodTQl1NBZ2grKjsVY7mhOq9KI+dba4oEPwWUnvNrN3mlmZpI9LOj53BzN7r6R/1EwAfiPgfgAAAOCjRLWng7tb8w7CHY21Ori7VYkqz+fObi7QEOycm5T0+5KeldQv6dvOuZfN7M/NbGd2t8ckVUr6jpmdM7PjC5QDAADAMpSo8nTwgVYd2NWy5BlhL1qiA7taQgnAkmSuWDdo9lF7e7vr6ekJuw0AAADMMZrK6Mr4pI6fH9KhMxc1ODJ+3T71NXHt3dqgnW11qvYigY5AmNmLzrn2G20r3vQxAAAAVrRKL6pKL6pP3btR92/eIOek0fSkJianVBYpVWUsIjNp3ZpY0VaBWMiyWR0CAAAAK8PspIGZJCdNuZnH2RthTE9Nh9bbLM4EAwAAwBdXxiY0mp7SsXNDOnx24XGIPVsa1NVWp8pYqarLy0LolJlgAAAA+ODSlZRO9Se1/0SfUpnFz/R60RJ1dzZre1NC66uDuTCOmWAAAAAEJnk1pUee7tXpgaXf1TeVmdajz1zQyYHkylsiDQAAACvbpSsp7TuaWwCe6/TAsPYd7VXyasrnzm6OEAwAAIC8XBmb0Kn+ZN4BeNbpgWGd7Evq6viET50tjhAMAACAvIymp7T/RJ8vtfaf6NPbqSlfai0FIRgAAAA5S6UzOnZuaEkXwS2pXmZax88PKZXO+FJvMYRgAAAA5OwXYxkdPnvR15qHzlzUL8YIwQAAAFimnNMN1wEuxODIuIq1ei8hGAAAADkbTU0GUzcdTN35CMEAAADI2XgmmIvYUgHVnY8QDAAAgJzFo6WB1PUiwdSdjxAMAACAnFV6wdx4OKi68xGCAQAAkDMzqb4m7mvN+pq4zHwtuSBCMAAAAHJ2R3lUe7Y0+Fpz79YG1VbGfK25EEIwAAAAcubFoupqq5MX9SdOetES7dxcp1hAs8bzEYIBAACQl8pYqbo7m32p1d3ZrDVecQKwRAgGAABAnqrLy7S9KaGOxtqC6nQ01mpHc0JV8TKfOlscIRgAAAB5W1/t6eDu1ryDcEdjrQ7ublWiyvO5s5sjBAMAAKAgiSpPX36gVQd2tSx5RtiLlujArpZQArAkFWchNgAAAKxo66s93b/5Tt23aZ2Onx/SoTMXNTgyft1+9TVx7d3aoJ1tdVoTKy3qCMRchGAAAAD4oipepqq49Mltd+n+zRvknDSanlQqMyUvWqrKWERmUm1lrGirQCyEcQgAAAD4ymUfzWZeWPbN2RthTE9Ph9PYHJwJBgAAgC8uj01oLD2lY+eGdPjswuMQe7Y0qKutTuWxUt1WHs44hDnnFt9rmWlvb3c9PT1htwEAAICsS1dSOtWf1P4TfUplFj/T60VL1N3ZrO1NCa2vDubCODN70TnXfqNtnAkGAABAQZJXU3rk6V6dHhhe8tekMtN69JkLOjmQZIk0AAAA3FouXUlp39HcAvBcpweGte9or5JXUz53dnOEYAAAAOTl8tiETvUn8w7As04PDOtkX1JvjU341NniCMEAAADIy1h6SvtP9PlSa/+JPl1LT/lSaykIwQAAAMjZeDqjY+eGlnQR3FKkMtM6fn5I4+mML/UWQwgGAABAzt4cy+jw2Yu+1jx05qLeHCMEAwAAYJlyTjdcB7gQgyPjKtbqvYRgAAAA5Gw0NRlM3XQwdecjBAMAACBn45lgLmJLBVR3PkIwAAAAchaPlgZS14sEU3c+QjAAAAByVukFc+PhoOrORwgGAABAzsyk+pq4rzXra+Iy87XkggjBAAAAyNnt5VHt2dLga829WxtUWxnzteZCCMEAAADIWTwWVVdbnbyoP3HSi5Zo5+Y6xQKaNZ6PEAwAAIC8lMdK1d3Z7Eut7s5mVcSKE4AlQjAAAADydFt5mbY3JdTRWFtQnY7GWu1oTmhteZlPnS2OEAwAAIC8ra/2dHB3a95BuKOxVgd3typR5fnc2c0RggEAAFCQRJWnLz/QqgO7WpY8I+xFS3RgV0soAViSirMQGwAAAFa09dWeOlvv1H2b1un4+SEdOnNRgyPj1+1XXxPX3q0N2tlWp4qy0qKOQMxFCAYAAIAv1paXaW259PC2u3T/5g1yThpNTyqVmZIXLVVlLCIzqbYyVrRVIBZCCAYAAIAvJianNXJtQt/tfU1PvvCqBkfGtaEqpl9ZV6GfvHFNr11Nq74mroe2bdRHWjeopqJMZZFwpnPNORfKBxeivb3d9fT0hN0GAAAAskauTehUf1Ldxy4olZledH8vWqL9XS3a3pRQTUUwIxFm9qJzrv1G27gwDgAAAAV5czStLx3p1ReP9C4pAEtSKjOtLx7p1ZeO9OrN0XTAHV6PEAwAAIC8jVyb0L6nXtLz/cm8vv75/qT2PfWSLl+b8LmzmyMEAwAAIC8Tk9M61Z/MOwDPer4/qZP9SU1MLu0ssh8IwQAAAMjLyLUJdR+74Eut7mMXNFLEs8GEYAAAAORsampa3+19bckzwItJZWbqTU0V52wwIRgAAAA5Gxmb0JMvvOprzSdfeFUjY8U5G0wIBgAAQM4mp90N7whXiMGRcU1OF2f5XkIwAAAAcvZ2ajKQuqMB1Z2PEAwAAICcpTNTwdQt0goRhGAAAADkLBYtDaRusW6jTAgGAABAztZ4kVuq7nyEYAAAAOQsUmKqr4n7WrO+Jq5IiflacyGEYAAAAOSsprxMD23b6GvNh7ZtVE1FzNeaCyEEAwAAIGelpSX6SOsGeVF/4qQXnalXyplgAAAALGc1FWXa39XiS639XS2qqSjzpdZSEIIBAACQl7JIibY3JfTBpkRBdT7YlNCOpkTRVoaQCMEAAAAoQE1FmQ5+9O68g/AHmxI6+NG7dVsRzwJLhGAAAAAU6PbKmL7yYKsee7B1yTPCXrREjz3Yqr98sFW3VxbnYri5irMQGwAAAFa0mooydbXV6f3vrtV3e1/Tky+8qsGR8ev2q6+J6+F7N6rz7g2qqSgr6gjEXIRgAAAA+KIsUqL11Z4+ee9GdbVt0OS002hqUunJacUiJar0IoqUmGoqYkVbBWIhhGAAAAD4qrS0RLVrvJkX1eH2shBmggEAALDqEIIBAACw6hCCAQAAsOoQggEAALDqEIIBAACw6hCCAQAAsOoQggEAALDqEIIBAACw6phzLuwecmZmw5J+FsJH3yHpFyF8LoLFcV25OLYrF8d2ZeK4rlxhHdu7nHO1N9pwS4bgsJhZj3OuPew+4C+O68rFsV25OLYrE8d15VqOx5ZxCAAAAKw6hGAAAACsOoTg3Hw97AYQCI7rysWxXbk4tisTx3XlWnbHlplgAAAArDqcCQYAAMCqQwgGAADAqkMIXgIze9XMXjKzc2bWE3Y/8I+ZrTWzI2Y2YGb9ZrYt7J5QODPblP15nf131cz+KOy+UDgz+7yZvWxmF8zssJl5YfcEf5jZH2aP68v8vN7azOxxM3vDzC7Mea/GzJ43s//JPt4WZo8SITgXHc65tuW2xh0K9reSvueca5S0WVJ/yP3AB865V7I/r22S7pE0JunpkNtCgcysTtIfSGp3zrVIKpX08XC7gh/MrEXSZyRt1czv4o+Y2a+G2xUK8ISkD817b5+kU865d0s6lX0dKkIwVi0zq5b0AUnflCTn3IRz7q1wu0IAtkv6iXMujLtMwn8RSXEzi0gql/RayP3AH02SfuicG3POTUr6vqTdIfeEPDnn/l3SyLy3uyQ9mX3+pKRdRW3qBgjBS+MkPWdmL5rZZ8NuBr55p6RhSd8ysx+Z2TfMrCLspuC7j0s6HHYTKJxzbkjSX0m6KOl1SVecc8+F2xV8ckHS+83sdjMrl/RbkupD7gn+SjjnXs8+vyQpEWYzEiF4qX7dOfc+SR+W9Dkz+0DYDcEXEUnvk/Q159x7JV3TMvjzDPxjZmWSdkr6Tti9oHDZGcIuzfwHdoOkCjP7RLhdwQ/OuX5JX5H0nKTvSTonaSrUphAYN7M+b+hr9BKClyB79kHOuTc0M1e4NdyO4JOfS/q5c+6H2ddHNBOKsXJ8WNJ/OeeSYTcCX+yQ9L/OuWHnXEbSUUn3htwTfOKc+6Zz7h7n3AckXZb032H3BF8lzexOSco+vhFyP4TgxZhZhZmtmX0u6Tc082cb3OKcc5ckDZrZpuxb2yX1hdgS/LdHjEKsJBcl/ZqZlZuZaeZnlotZVwgzW5d9bNDMPPChcDuCz45Leij7/CFJx0LsRRJ3jFuUmb1L/39VeUTSIefcgRBbgo/MrE3SNySVSfqppE865y6H2xX8kP1P60VJ73LOXQm7H/jDzP5M0m9LmpT0I0m/65xLh9sV/GBm/yHpdkkZSV9wzp0KuSXkycwOS7pP0h2SkpL+VNIzkr4tqUHSzyR9zDk3/+K5oiIEAwAAYNVhHAIAAACrDiEYAAAAqw4hGAAAAKsOIRgAAACrDiEYAAAAqw4hGACWCTPbaGasQw4ARUAIBgAAwKpDCAaA5SViZv9sZv1mdiR7d7R7zOz7ZvaimT0759ajnzGzs2Z23syeMrPy7PtPmNnXzOwHZvZTM7vPzB7P1nwiu09pdr8LZvaSmX0+xO8ZAIqOEAwAy8smSf/gnGuSdFXS5yR9VdKDzrl7JD0uafaulUedc1ucc5s1c/vgT8+pc5ukbZI+r5nblf61pPdIujt7p8Q2SXXOuRbn3N2SvhX8twYAy0ck7AYAAL9k0Dn3n9nn/yTpjyW1SHrezCSpVNLr2e0tZvYXktZKqpT07Jw6/+qcc2b2kqSkc+4lSTKzlyVtlPR9Se8ys69KOiHpuUC/KwBYZgjBALC8zL+X/duSXnbObbvBvk9I2uWcO29mD0u6b862dPZxes7z2dcR59xlM9ss6Tcl/Z6kj0n6VMHdA8AtgnEIAFheGsxsNvDulfQDSbWz75lZ1Mzek92+RtLrZhaV9Du5fIiZ3SGpxDn3lKQ/kfQ+X7oHgFsEZ4IBYHl5RdLnzOxxSX2amQd+VtLfmVm1Zn5v/42klyV1S/qhpOHs45ocPqdO0rfMbPZkyCP+tA8AtwZzbv5f3gAAAICVjXEIAAAArDqEYAAAAKw6hGAAAACsOoRgAAAArDqEYAAAAKw6hGAAAACsOoRgAAAArDr/B5iFTGVElLziAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3yU5Z3//9c158kRAkMwEMRjEsTAasRTW6GAtgXBqt0tbk9rV7Zfu/1uddetrYvbldpS62q3+9t2q1t3q7vY7deiItgiINjWekIrEZOg1gPIIUTCIYeZzOn6/ZGEYkwgE+57Jsm8n48HD53TJxfhn/d9zef+XMZai4iIiIhIPvHkegEiIiIiItmmECwiIiIieUchWERERETyjkKwiIiIiOQdhWARERERyTu+XC9gKMaPH2+nTp2a62WIiIiIyDD24osvvmetjfT32ogMwVOnTmXLli25XoaIiIiIDGPGmHcGek3tECIiIiKSdxSCRURERCTvKASLiIiISN5RCBYRERGRvKMQLCIiIiJ5RyFYRERERPKOQrCIiIiI5B2FYBERERHJOyPysAwRERERGb6iXQn2dyYAaIsmiSZShP1eisPd0XNcgZ9w0J/LJSoEi4iIiIgzDnTG6exK8ejLu3jwhR3sbI1+4D2VZWGWnDeFxTMnURD0MrYgkIOVgrHW5uQHn4i6ujqrY5NFREREho+9h2JsbGxm+doGYon0cd8f8ntYtmAac2vKmVgacmVNxpgXrbV1/b2mnWAREREROSHNh2N8/eF6NjW1DPozsUSaWx7ZxoamZlZcWUt5iTtBeCC6MU5EREREhmzvoRg3r8osAB9tU1MLN6+qp/lwzOGVHZtCsIiIiIgMyYHOOBsbm4ccgHttamphQ0MzBzvjDq3s+BSCRURERGRIOrtSLF/b4Eit5Wsb6OhKOVJrMBSCRURERCRj0a4Ej768a1A3wQ1GLJFm9dZdRLsSjtQ7HldDsDHmPmPMPmPMtgFeN8aYHxhj3jDG1BtjznFzPSIiIiLijP2dCR58YYejNVc+v+PIfGG3ub0T/F/Ax47x+seBM3r+LAV+5PJ6RERERMQB1tLvHOATsbM1Sram97oagq21vwZaj/GWxcD9ttuzwBhjzElurklERERETlx7LOlO3S536vaV657gScDOox6/2/PcBxhjlhpjthhjtrS0nNgdiCIiIiJyYqIJd25ii7lUt69ch+BBs9beY62ts9bWRSKRXC9HREREJK+F/V5X6oZ87tTtK9cheBdQedTjyT3PiYiIiMgwVhRy5+Bht+r2lesQvBr4XM+UiAuAQ9baPTlek4iIiIgchzFQWRZ2tGZlWRhjHC05ILdHpD0IPANUGWPeNcZ80RjzJWPMl3re8jjwJvAGcC9wvZvrERERERFnjCvws+S8KY7WvGbWFCJFQUdrDsTV/WZr7ZLjvG6BL7u5BhERERFxXjjoZ/HMSfzgydcdOTAj5PewaMYkgi71GveV63YIERERERmhCoJeli2Y5kitZQumURjMTgAGhWARERERGaKxBQHm1pQzp/rEJnfNqY4wb1o5YwoCDq3s+BSCRURERGTIJpaGWHFl7ZCD8JzqCCuurKW8JOTwyo5NIVhERERETkh5SYjvfLKW26+YTsg/uHgZ8nu4/YrpOQnA4PKNcSIiIiKSHyaWhlhQexKzqyaweusuVj6/g52t0Q+8r7IszDWzprBo5iQKA96stkAcTSFYRERERBwxpiDAmAL4woUnc/mMCqyF9q4ksUSKkN9LUdCHMRApCmZtCsRAFIJFRERExFHhoJ/JQX+ul3FM6gkWERERkbyjnWARERERcVRXPElLRxyAtmiSaCJF2O+lONwdPSOFAYKB3MZQhWARERERcURbNMHhWJJHX97Fgy8MfGPckvOmsHjmJEpCPorDuWmbMN0nF48sdXV1dsuWLblehoiIiIj0aD4UY0NjM8vXNgzqGOWQ38OyBdOYV1NOeak7I9KMMS9aa+v6e007wSIiIiJyQpoPx7j54Xo2NbUM+jOxRJpbHtnGhqbmnMwKVgg+hlQqTWtnnGTa0hZL0pVIEfR7KQ758HkMZQUBvF7dWygiIiL5q/lQ5gH4aJuaWrh5VX3Wg7BCcD/iyTStHXHW1O/mp8+8zc7WKGNCPiaUhNh3OMbBWJLKsjCfv3AqC2srKCsMEPApDIuIiEh+aYsm2NDYPOQA3GtTUwsbG5tZNKOColB2eoQVgvto7YizsbGZ7/6yiR995hxW/uUFGAOHowliiTQhv4eSsB9rYffBThb+4Dd87ePVzK0pp6wwNyeeiIiIiOTC4ViS5WsbHKl125oGLjlzgkJwLuxv7+LmX7zC9XNO49G//hCPbd3N/zy/dcA7G/981sk8+tcfYl9bjK89VM+Kq85mXFEwBysXERERya6ueJLH6ncP6ia4wYgl0qyp380XLjw5K+PT9B1+j9aOOP+68XVuu+Ismva0Mfeuzaz4VVO/ARhgZ2uUFb9qYu5dm2na08ZtV5zFv258nQM9M/FERERERrOWjjj/89w7jtb87+feOTJf2G3aCaa7B/iFt/bzf+aczjdWvcLGpn2D/mwskebrD7/C3OoJfPvKs3n+rf3MqS5Xj7CIiIiMegNtFg6XeseipEb3LvCMyjEZB+CjbWzaxzdWvcKMyjG0ajdYRERERrm2WNKVuu0u1e0r70NwKpUmnkyyeXvLkANwr41N+3jqtRbiqSSplDP9MSIiIiLDUVci5UrdWDI7GSrvQ3BrZxyf18s3H3vVkXr/uPpVfB4vrZ3aDRYREZHRK+jzulM3S2cw5H0IDvkNa1y4szHoN47UExERERmOCoLuhGC36vaV9yH4cDTFA886e2fjA8++Q1vUna8IRERERIYDS/fIWCdVloWxjlYcWN6H4LR1587GdLb+BUVERERyIOz3cNU5kx2tefU5kynwayc4Kzq63LkDsSOenTsbRURERHIhnrTMrZ5AyO9MnAz5PXy0egJdujEuO6Ju3dkYVzuEiIiIjF4Bn+HdA1FuuqzKkXo3XVbFuweiBLN01kLeh2C3ftE6LENERERGM5/XcEZ5MRWlYWZXRU6o1uyqCBWlYc4sL8bnzc5wgbxPakVBdw7NKwrpMD4REREZvXweQ1HQS0t7jKUfOXXIQXh2VYSlHzmVlvYYRUEvPo92grPCGDOoOxt9HkNBwIvPc/yrk8qyMAaNSBMREZHRK560eI1h1tRx3P+7t/nUuZXctuisQfcIh/weblt0Fp86t5L7f/c2s04Zh8cYupLZaSnN++1Kv9dw9TmTuXvD6+973usxzKuZwCfOPolJY8J0JdPEEilCfi9Bn4ddB6Osrd/DxqZ9pPqMgvjUuZPxZ2krX0RERCQXygoCHIzG8Rj4ykdP51A0ScBn+NnSC3lq+z4eeundfidwVZaFufqcyVxSNYGWthiFAR9f+ejpeAx4PDCmIJiV9ed9CPZ4YEFtBT966g9HDsxYNKOCay+eyubXWrjzie0D/gNedc5krp99Gvc9/Tart+4Guq9qPnF2Bd5B7BiLiIiIjGSxhOWvH3yJ+6+9gLvWv8LGpn14PYa51RP4u0urqBgTJpFKE0ukCfk9+L0edh+MsqZ+Dz948g1S6e4JE7d/8mw+d9+z/OcXzgdrIQvfqBtrR95A27q6OrtlyxZHar17oJOuRIrNr7Vw1xOvccfVM9h7OMr31m0f1ClyIb+Hmy6rYmJJmL9/aCs3Xnoms6siBH1eJo8tcGSNIiIiIsNNR6yLnz6zk/nTyvn2LxvZ1NTS7/t8HkPA5yGeTJMc4CCFOdURvvHxGjY0NvO5CyopDDmzG2yMedFaW9fvuhz5CSOY32v4/Y7DfPj08dSdXMbdG15j8/b+/xH7E0ukWb6mkdlVEVZedwHhgIfG3YeZdco4F1ctIiIiklsHoinGFQV4/q3WAQMwQDJtSR5ndOymphbmVZcztsDPgWiKwpDTq/2gvL8xrrU9Qc3EYopDfn6w8fWMAvDRNm9v4QcbX6c45KdqYjH7O+IOr1RERERk+LAWLjptPMvXNjhSb/naBi4+PUK2mhTyPgRHEynCQR9PNu1jY9O+E6q1sWkfTzbuoyjgI+bSIRwiIiIiw4HfY3hs6+5BtY8ORiyRZk39bs0JzpZxhQGsxdGrmBTdd0yKiIiIjFbxdJoHX9jhaM2Vz+8gkdKxyVlRFPay+mVnr2Ie27qborDXkXoiIiIiw5HB9DtB60TsbI1m7ayFvA/BnV3uXMV0dmXnKkZEREQkF9pjSXfqdrlTt6+8D8GAK1cxIiIiIqNZ1KX7n7J1X1Xeh+C2WMKVutm6ihERERHJhXDAndbPkD87LaV5H4Kd6gX+YF1NhxAREZHRqzjkznETbtXtK+9DcNilq42QTzfGiYiIyOjlMVBZFna0ZmVZGE927otTCC5y6WrDrboiIiIiw0GkMMiSWVMcrXnNrClEirNwXBwKwRiXrmJMlq5iRERERHLB7/eyeOYkQn5n4mTI72HRzEn4vdmJp3kfgn0ew5LznL+K8WfptBMRERGRXCkJ+li2YJojtZYtmEZpFr9Jz/sQvOdQjEUzK457FePzGAoCXnzHaVQJ+T1cPqOCPQdjTi5TREREZNjpiCc5/5Qy5lRHTqjOnOoI559altXpWnnfuBr0eQh4DcsWTOOWR7Yded7rMcyrmcAnzj6JSWPCdCXTxBIpQn4vQZ+HXQejrK3fw8amfaTS9sjnbl04jYDXEPDl/fWFiIiIjGKpVJrVW/dw76//wKrrL+ZWtrGpqSXjOnOqI9y2aDpX/vBpll5yGtdeNBVvFloi8j4EFwV9JFJw/qnjmFMdYVNTC4tmVHDtxVPZ/FoLdz6xvd/DLyrLwlx1zmSun30a9z39Nqu37u6+ijllHIlUd10RERGR0Wp/R5wHnn2blvY4V/7waVZedwHzqstZvrZhUCNoQ34PyxZMY9YpZVz5w6dpaY9z/zNvs3hGBRNK3L85Lu+TWlmhj/uf2cl/Pv0Wj3z5Yt75UCeNew/z6XufPeY/4M7WKN/f8Dr//tQfuOmyKj59XiUnjyvgin97mms/dAqfvaAyi38LERERkeyKp9If2Ci85MzxzK6azeqtu1j5/A52tkbxebq/IY8n0yTTlsqyMNfMmsKiGZOwNk30qLy1szVKPOXOGQ595X0IPhhN8eALOwCwwH1Pv8WGxn2D/nwskWb5mkbm1Uzgm4vOAmDl8zu4fEYFRdmZ8CEiIiKSde2x7v7dSFGAR66/mHja8pvX9/PPT2znh3/+JyysrcAYaIsmiSZShP1eisM+rIXdBztZ/P/9lr+9tIoLThvHI9dfzBU9u8HZ6gvO+xBsbfdVx4YbL+EfH32VjU2DD8BH29C4D2vhwaUXMu+up7D2+J8RERERGamiPafj/u+XLgRj+NaaV7n49HE8/OWLeWzrbh58qH7AltIl503h4S9fzPqGvXxrTQPLr5jO/37pQj5651NZO3U37+/eao8luXVhDVvebh1yAO61sWkfW95pZdmCmqze3SgiIiKSbUGfh1sX1hD0evjndU3c/PFqgj4v8+9+ijvW9X9PFXRvPt6xbjvz736KoM/LzR+v5s5fNRH0eli2oIZAluYEGzsCtyzr6ursli1bHKn10jsHmFASZN5dTw2qift4Qn4PG268hJa2Lv5kylgHVigiIiIy/Oxo7STs8/D0H97j3JPLuHX1iU2HeOmdVi46bTzRZJopZQWOrNEY86K1tq6/1/J+J7iiNMTjr+xxJABDd4/w46/sYWIW7moUERERyZWioId4yjK9onTIARhgU1MLt67exlmTSomnLEVBnRiXFSlreeDZdxyt+cCz75AegTvsIiIiIpnYezjGc2+1DjkA99rU1MJzb7bSfLj/Fgo35H0ITvfcGOekna1R0srAIiIiMopFE2kmFAdZvrbBkXrL1zYQKQ4RjWdnRFreh+AOl25g64jrxjgREREZvcJ+D49t3e1oS+ma+t2EA2qHyIqoS2M4YvHsjPcQERERyYWOrvSRsxacsvL5HXR0aSc4K4I+d34FAZfqioiIiAwXbrSUZkveJ7XikH9E1RUREREZDnpPjHO8bpbOWsj7EGxM98klTqosC2OMoyVFREREhhXXWkp1Ylx2+L2Gq86Z7GjNq8+ZnLXTTkRERERyIez3ulI35HOnbl95n9QOdCSYfWaEkN+ZX0XI7+GSMyMc6Iw7Uk9ERERkOCoK+UZU3b7yPgRHEynue/ptbrqsypF6N11WxU9++xZRTYcQERGRUcxiXWkptWTnsIW8D8FBn4fVW3czsSTM7KrICdWaXRVhYkmYx+r3aDqEiIiIjGoBr4cl501xtOY1s6YQzFJLad4ntd4t979/aCtLP3LqkIPw7KoISz9yKn//0Nb31RUREREZjRIpy+UzKhxtKV1YW0E8pZ3grDAYKsvCdMRTXPfTLXzq3EqWLawZ9D9oyO9h2cIaPnVuJdf9dAsd8VT3dAg0HkJERERGL4vld394j2ULpjlSb9mCaTz9RovaIbIl6Ddc3TMdoiOe4ssrX+LlHQf52XUXcMO8MwbsdaksC3PDvDP42XUX8PKOg3x55Ut09PQBf+rcyYTUDiEiIiKjWMDrYX97nFmnlDGn+sRaSudUR5h1ShkHOhNZa4fQd/bAwtoKfvTUH46cff1Y/R4e37aXudUT+LtLq6gYEyaRShNLpAn5Pfi9HnYfjLKmfg8/ePINUuk/XrGE/B4W1Fbk6q8iIiIikhW97RDX3PsMK6+7kFvZxqamlozrzKmOcNui6UfqZKsdwlibnR/kpLq6OrtlyxZHaiUSKfa1d/GrV/eyfE3jgO/zeQwBn4d4Mk0yPfDvbNnCGj5+1kQiJSH8mhUsIiIio1TzoSibX2shmbJ8f8NrrLzuAp5/q5XlaxuObCweS8jvYdmCacw6pYxr7n2Wr847E68H5lSXU14ScmSNxpgXrbV1/b2W9ynN7/fi83i46LTxx7wpLpm2dMZTxwzAs6siXHzaeLwejwKwiIiIjGrji4IciiaZdUoZ0yeXMv/uXxNLpFh/wyV87WNVx2wp/drHqlh/wyXEEinm3/1rpk8uZdYpZbTFUowvCmZl/WqHAIpDPg5F49ww70wANm/PfCt/dlWEG+adiccDxWH9WkVERGR083o9XF57En/6498daYdYvraR767bzv/96On8+LPnUhDw0dGVPNJSWhj00RlP8mTjPube9RTxZPp97RA//6uL8HqyM1wg79sherUcjrGvLcahaJLGvYf53rrtg97Kv+myKmomllAa9jGhOETEoS18ERERkeEsnkzz8O/f5c512wdshwj5PBSFfLTHksSSRz3fpx3ipo9VccXMyY6etaB2iEGIlISYUNwdXk8dX8jPll44uOkQSy/k1PGFAArAIiIiklcCPg/zp01kRuWYAdshYsk077XHjwTg/tohZlSOYX7NxKweNqbv7Y8SKQlhgcY9hzHAaZFCbvlEDeOKgh+YDrG/vYtkKo0BPMZw+oQiBWARERHJSzfM724pHUo7xLyaCUc+n00KwX1MKAlRFPJxoDPBrgOdR543gM+8/wgMj8cQKQ5yRnkRBQH9KkVERCS/xJNpNjTs5Z8ea+COq2cwt7qcf1rzKnc+8Rp3PvEacOx2iO988mxKwn7+9N+f4R8XTXO8HeJY1BN8DIlEipaOLtIW2mJJ4skUAZ+X4pAPj4FIscagiYiISP7acyjKnDs3H+kBvrz2JL744VN57s39/Pdz77CzNfqBz1SWhfnM+Sdz/qnj+Mlv3uSx+j1Adyje9HezOam0/1bUoThWT7C2L4/B7/dSMaYg18sQERERGXZSqTSPbd3zvpvg+jtwLJlKE0+mCfg8+I46cOyOddvfd+BYLJFmTf0err1oKt4sbDIqBIuIiIhIxvZ3xHng2bc/8HwqbXmioZknGpqBwR84BnD/M2+zeEYFE7Jwn5VCsIiIiIhkLJ5K99vu0FcybUnGU4OqubM1Sjx1/BG1TlBDq4iIiIhkrD2WdKdulzt1+1IIFhEREZGMRROD293NVMylun0pBIuIiIhIxoIujTILZGnylkKwiIiIiGSsKOjOrWVu1e1LIVhEREREMmaMOXI08rH4PIaCgBefxxz3vZVlYYw5/vucoOkQxxDtSrC/MwFAWzRJNJEi7PdSHO7+tY0r8BMO+nO5RBEREZGc8HkMV58zmbs3vP6+570ew7yaCXzi7JOYNCZMVzJNLJEi5PcS9HnYdTDK2vo9bGza9745wQCfOnfyoMKyI+vPyk8ZYQ50xunsSvHoy7t48IUdA552suS8KSyeOYmCoJexBYEcrFREREQkNzweWFBbwY+e+sORAzMWzajg2ounsvm1Fu58YvuAGeqqcyZz/ezTuO/pt1m9dTfQfWLcJ86uwJulEKxjk/vYeyjGxsZmlq9teN8JKAMJ+T0sWzCNuTXlTCx1f7CziIiIyHCw60AnsUSKza+1cNcTr3HH1TPYezjK99ZtH3SGuumyKiaWhPn7h7Zy46VnMrsqQsjvZZJDJ/Ye69hk10OwMeZjwL8AXuA/rLUr+rw+BfgpMKbnPTdbax8/Vk23QnDz4Rg3r6pnU1PLB14L+TwUhXy0x5LEkh/8h51THWHFlbWUZ+GEExEREZFcSyRSbNi+j1PGFdCVtNy94TU2b/9ghjqe2VURbph3JkG/4a33OplXU47foQkROQvBxhgv8BowH3gXeAFYYq1tOOo99wC/t9b+yBgzDXjcWjv1WHXdCMF7D8X4+sN/DMABn4evzj2d2dUTKAx0h9/enuCikI+OeJInG/fxgyffIN4TihWERUREJJ/sOhjFa+CWh7exsWnfkOvMrZ7A7Z+cTsrCpDHHv9lusI4Vgt3uCZ4FvGGtfbNnIT8DFgMNR73HAiU9/18K7HZ5TR9woDPOxsbmIwH41oU1zJ82kce27uavHnjxmD3BG2+8hPUNe7ltTSObmlrY0NDMgtqTGKMeYRERERnlCgJeHu+5ye1EbGzax0cb97Gg9iSHVnZ8bo9ImwTsPOrxuz3PHe2bwGeMMe8CjwNf6a+QMWapMWaLMWZLS0vmW+3H0tmVYvnaBiJFAdbf8BGCPi/z736KO9b139AN3Wdb37FuO/Pvfoqgz8v6Gz5CpCjA8rUNdHRl56QTERERkVzqzVBOyHaGGg5zgpcA/2WtnQx8AnjAGPOBdVlr77HW1llr6yKRiGM/PNqV4NGXd1Ec9LHq+ov59i8bueWRbYNq6AaIJdLc8sg2vv3LRlZdfzHFQR+rt+4i2pVwbI0iIiIiw01vhhpsZjqeWCKd1QzldgjeBVQe9Xhyz3NH+yLwcwBr7TNACBjv8rqO2N+Z4MEXdvDg0gu4dfW2fm+KG4xNTS3cunobDy69gJXP7zgyX1hERERkNOrNUE7KZoZyOwS/AJxhjDnFGBMAPg2s7vOeHcBcAGNMDd0h2Nl+h2OwFv7ioqk892brkANwr01NLTz3ZitfuHAqI3DynIiIiMigWcuAbaNDtbM1mrUM5WoIttYmgb8G1gGNwM+tta8aY24zxizqedvfAtcZY7YCDwJfsFkcXtweS3LpWRMd7We5bPpE2ruSjtQTERERGY7aY+5knWxlKNdPjOuZ+ft4n+duPer/G4CL3V7HQIpDPla/vNvRfpbHtu5m0YwKR+qJiIiIDEfRhDs3scVcqtvXcLgxLqcsuNLPklY7hIiIiIxiYb/Xlbohnzt1+8r7EAzu9LOIiIiIjGZFIXcaCtyq21feh+CR3s8iIiIikgvGdB8e5qTKsjDGOFpyQHkfgkd6P4uIiIhILowr8LPkvCmO1rxm1hQiRUFHaw4k70NwyO/OryDoy/tfrYiIiIxi4aCfxTMnOZalQn4Pi2ZMIuhSr3FfeZ/UikP+EVVXREREZLgoDHpZtmCaI7WWLZhGUTA7ARgUgkd8P4uIiIhIrowpCDC3ppw51ZETqjOnOsK8aeWUFgQcWtnx5X0ILgp5XelnKcnSnY0iIiIiuTSxNMSKK2uHHITnVEdYcWUt5SUhh1d2bHkfgosDfhbNrHC0n+XyGRUUBtUOISIiIvmhvCTEdz5Zy+1XTB90pgr5Pdx+xfScBGDIwolxw53X6yHs87BswTRueWTbCddbtmAaIZ8Hr0f9ECIiIpI/JpaGWFh7ErOrJrB66y5WPr+j37MTKsvCXDNrCotmTqIo4M1qC8TR8j4EAxSHA1xSFWFOdYRNTS1DrjOnOsIlVRFKwrn5xxQRERHJpdKCAKUF8IULT+byGRVY2312QiyRIuT3UhT0YQxEioJZmwIxEIVgIODzUBDw8a3FZ/MPvDKkIDynOsK3Fp9NQcBLQOPRREREJI+Fg34mD/PWUIXgHmWFAfbbLv5x4VnMq36P5WsbiCXSx/1cyN/dSnHx6eMJ+T2MLdQusIiIiMhwpxB8lHFFQYwxzKwsZf0Nl7Cmfvdx+1kW1lZwOBqnNOxXABYREREBUqk0rZ1xkmlLWyxJVyJF0O+lOOTD5zGUFQTwenP7zblCcB9lhQGKgj5aO+LMmlrGnOoJhPxeOrqSxBJpQn4PhUEfsUSKzlgSv9fDGeUlaoEQERGRvBdPpmntiLOmfjc/febtATcSP3/hVBbWVlBWGMhZhjLW2pz84BNRV1dnt2zZ4vrPOfoqpj2WJJlO4/N4KOq9iikMagqEiIiICNDaEWdjYzPLHt026JbS5YunM7emnDKXvk03xrxora3r7zXtBB+D1+shUtwzt640t2sRERERGa72t3dx8y9eYX1j86A/E0ukuemheubXlLPiqrMZVxR0cYUfpO/wRURERGTIWjviGQfgo61vbObmX7zCgY64wys7NoVgERERERmSeDLNxsbmIQfgXusbm9nQ2Ew8efw2CqcoBIuIiIjIkLR2xFn26ImfuAuw7NFttGZxN1ghWEREREQylkqlWVO/e1A3wQ1GLNFdL5XKzm6wQrCIiIiIZKy1M85Pn3nb0Zo/feZtWjuzsxusECwiIiIiGUumbb9zgE/EztYoyXR2xvcqBIuIiIhIxtpiSVfqtrtUty+FYBERERHJWFci5U7dLE2IUAgWEYQmYdsAACAASURBVBERkYwF/V5X6mbrGGWFYBERERHJWHHInYOH3arbl0KwiIiIiGTM5zFUloUdrVlZFsbnMY7WHEh2ovYI1RVP0tIztLktmiSaSBH2eykOd//aIoUBggH9CkVERCT/lBUE+PyFU/nW2kbHan7+wqmUFQYdq3csSnD9aIsmOBxL8ujLu3jwhR39jv+oLAuz5LwpLJ45iZKQj+KwPwcrFREREckNr9fDwtoK7nxiuyMHZoT83fW8WdoJVjtEH82HYqzeupu5d23mjnXbB5x/t7M1yh3rtjP3rs2s3rqb5kOxLK9UREREJLfKCgMsXzzdkVrLF0+nrDDgSK3BUAg+SvPhGDc/XM8tj2z7wBXN+AI/tZNKGF/w/h3fWCLNLY9s4+aH62k+rCAsIiIi+SPg8zC3ppz5NeUnVGd+TTnzasqzNhkC1A5xRPOh7gC8qakFgNICPz9fegEFAR/GwOFoglgiTcjvoSTsx1ro6ErwZ/c+x6HOBJuaWrh5VT0rrqylvCSU47+NiIiISHaUFQZYcdXZ8AtY39ic8efn15Sz4qqzGZvFXWBQCAa6e4A3NDYfCcDrb/gwBQH/oHqCH//Kh+mMJ5h/92/Y1NTChoZmFs+soCikHmERERHJD+OKgnz36loubWxm2aMf/Ea9PyG/h+WLpzOvpjzrARjAWJud85mdVFdXZ7ds2eJYvV0Hosy9azM1E4v50WfOZWPjPpavbRj0P+CyBdOYWzOB//PfL9K4t42NN85m0lhnR4aIiIiIDHfxZJrWjjhr6nfz02feHnAj8QsXTWXB2RWUFQZcbYEwxrxora3r97V8D8Fd8SQ/efpt1jfs5d8/W8fNq/7YEpGJOdURVlxZy5ce2MKlZ03k2oumanyaiIiI5KVUKk1rZ5xk2tIeS9KVTBP0eSgK+fB5DGWFwaxMgThWCM77lNbSEefBF3bw//7qwiEHYOBIT/CPPlPHp378Oy6fUcFkhWARERHJQ16vh0hxzz1Spbldy0DyfjqEtXDf5+vY2LhvyAG416amFjY2NvOTz9cxAjfYRURERPJG3ofg9liSgoCf5WsbHKm3fG0DhQE/7V1JR+qJiIiIiPPy/vv6k8YGWfnsTkdOOoHuucGrt+5iyfmVjtQTERERGWm64klaOuIAtEWTRBMpwn4vxeHu6BkpDOT83qm8D8Ft0RQPvrDD0Zorn9/BwtoKxmhAhIiIiOSRtmiCw7HkoMbMLp45iZKQj+JwbsbK5n0IBgY8Gnm41BMREREZ7poPxdjQ2HzcMbM7W6PcsW47P3jydZYtmMa8mnLKS7N/0Fjeh+D2mDu9u+oJFhERkXzRfPj9J+8ORiyR5pZHtrGhqTknJ+7m/Y1x0UTKlboxl+qKiIiIDCfNh2KOjJltPhxzeGXHlvchOOR351cQdPH0ExEREZHhoC2aYENjsyNjZjc0NNMeSzi0suPL+6RWHHKnGdutuiIiIiLDxeFY0tExs4ei2WsnHVIINsaUOb2QXDGm+y5FJ1WWhTHunwQoIiIikjNd8e4pEE6Pme2KZycIHzcEG2MuNsY0GmNeNcacb4xZD7xgjNlpjLkwC2t01ZiwlyXnTXG05jWzplBWoJ1gERERGb1aOuKujJntnS/stsHsBN8N/Cnwl8Ba4J+stacBi4E7XVxbVoT9fhbPnORYb3DI72HRjEkE/Xk/eENERERGMWvdGTNrraMlBzSY5Oe31r5irX0GaLHW/hbAWvsSMOKPg/B6PYT8hmULpjlSb9mCaYT9Bq9H/RAiIiIyeo30MbODCcFHv+frfV4LOLiWnCkOBZhbM4E51ZETqjOnOsLcmnKKQqPi1yIiIiIyoJE+ZnYwIXiZMaYAwFr7SO+TxpjTgPvdWlg2BXweAj4vK66sHXIQnlMdYcWVtQR9HgIajyYiIiKjXNjvdaVuyOdO3b6Om9astauttZ39PP8Ha+0dvY+NMf/q9OKyqawwgM9j+M4nz+b2K6YPukc45Pdw+xXT+c4na/F5DGMLtQssIiIio19RyJ37n9yq25eTP+ViB2vlxLiiIK0dceZVR5hdNZvVW3ex8vkd/TZ9V5aFuWbWFBbNmITPWAI+jwKwiIiI5I3eMbNO3hyXzTGzGmHQR1lhgHjSR2tHnCvPmcTC2gqgu0k7lkgR8nspCnb/2oI+Q9oaxhYG1QIhIiIieSVSGGDJeVO4Y912x2peM2sKE4qDjtU7FiW3fgR8HiaWhhhfGCTk9+DzGnweQ2HIg89j8HkNIb+HcUUhJpaGFIBFREQk7wQDPlfGzAay1BPs5E7wqJsJ5vV6iBSHuh+U5nYtIiIiIsNNScjHsgXTuOWRbSdca9mCaZSGs9ekMOjobow5+zhv+ZcTXIuIiIiIjCDFYT/zasodGTM7b1o5RaHsnbibyf71D40xzxtjrjfGfGBf1Fr7X84tS0RERERGgvLSkCNjZstLQg6v7NgGHYKttR8G/hyoBF40xqw0xsx3bWUiIiIiMiKUl4RY8cnaIY2ZzUUABjA2wwOajTFe4ArgB8BhunuBv2GtXeX88vpXV1dnt2zZkq0fJyIiIiKD0B5LcCiaHNyY2ZmTKA35XG2BMMa8aK2t6++1QXcfG2Nqgb8AFgDrgcuttS8ZYyqAZ4CshWARERERGX6KQn6KQn6uvWgql8+owNoPjpk1BiYUB7M2BWIgmdyC96/Af9C963sk1ltrdxtj/sHxlYmIiIjIiBQM+JgcGN7HUWSyugVA1FqbAjDGeICQtbbTWvuAK6sTEREREXFBJtMhNgDhox4X9DwnIiIiIjKiZBKCQ9ba9t4HPf9f4PySRERERETclUkI7jDGnNP7wBhzLvDBW/5ERERERIa5THqCvwr8P2PMbrrHok0E/syVVYmIiIiIuGjQIdha+4Ixphqo6nlqu7U24c6yRERERETck+nsivOAqT2fO8cYg7X2fsdXJSIiIiLiokwOy3gAOA14GUj1PG0BhWARERERGVEy2QmuA6bZTM9ZFhEREREZZjKZDrGN7pvhRERERERGtEx2gscDDcaY54Gu3iettYscX5WIiIiIiIsyCcHfdGsRIiIiIiLZlMmItKeMMScDZ1hrNxhjCgCve0sTEREREXHHoHuCjTHXAQ8BP+55ahLwiBuLEhERERFxUybtEF8GZgHPAVhrXzfGTHBlVcNEKpWmtTNOMm1piyVJJFP4fV6KQz58HkNZQQCvN5N7C0VERERkOMgkBHdZa+PGGACMMT665wSPOvFkmtaOOPU7D5LGMr4oSFcyTSyRIuT3cjia4L32Lgwwo3IsZYUBAj6FYREREZGRIpMQ/JQx5htA2BgzH7geeMydZeVOa0echt2HKAr5adh7mF+89C47W6P4PIaAz0M8mSaZtlSWhbnqnMmUl4Z5Y18b0ypKKSsM5Hr5IiIiIjIImYTgm4EvAq8AfwU8bq2915VV5cj+9i5ea25je3Mbd61/jQ+dPp6/u7SKSWPC79sJDvo87DoYZW39Hu79zZvcOP9MvB7DmeXFjCsK5vqvISIiIiLHkUkI/oq19l+AI8HXGPM3Pc+NeK0dcXYdiPLjX79JScjP/3zxfDa/1sKdT2xnZ2v0A+/v3Qm+fvZp3Pf02/zm9fe4cd6ZeIxhrHaERURERIY1M9hTkI0xL1lrz+nz3O+ttX/iysqOoa6uzm7ZssWxevFkmjffa+f761/j8hmT2Hs4yvfWbSeWSB/3syG/h5suq2JiSZjHtu7ihvlncsr4IvUIi4iIiOSYMeZFa21df68ddyfYGLMEuAY4xRiz+qiXioFWZ5aYW4c64zz/1n4+d9FU7vn1m2ze3jLoz8YSaZavaWR2VYSlHzmV597aT1lBgEhJyMUVi4iIiMiJGEw7xO+APXQfm/zPRz3fBtS7sahsSqXSHO5KEikKZRyAj9b7uT+rq+RwV5KyVFrj00RERESGqeOGYGvtO8A7wIXuLyf7DsUSNO4+RHNb15ADcK/N21v48BnjSdk0Ywv8lBXqJjkRERGR4SiTE+OuNMa8bow5ZIw5bIxpM8YcdnNx2dAZT3HyuEK+t267I/W+t247J5cV0hlPOVJPRERERJyXyff1dwCLrLWl1toSa22xtbbErYVli89r2Ni0b1A3wQ1GLJHmyaZ9+LzGkXoiIiIi4rxMQnCztbYx0x9gjPmYMWa7MeYNY8zNA7znT40xDcaYV40xKzP9GSciFk/zi5fedbTmQy+961ioFhERERHnZTIneIsx5n+BR4Cu3iettasG+oAxxgv8GzAfeBd4wRiz2lrbcNR7zgC+DlxsrT1gjJmQ4d/hhBhDv3OAT8TO1ijaBxYREREZvjIJwSVAJ3DpUc9ZYMAQDMwC3rDWvglgjPkZsBhoOOo91wH/Zq09AGCt3ZfBmk5YZ5c7vbvqCRYREZF81RVP0tIRB6AtmiSaSBH2eykOd0fPSGGAYCCTGOq8Qf90a+1fDKH+JGDnUY/fBc7v854zAYwxTwNe4JvW2l/1LWSMWQosBZgyZcoQltK/rqQ7bQtxl+qKiIiIDFdt0QSHY0kefXkXD76wY8BTd5ecN4XFMydREvJRHPbnYKWZTYc40xiz0RizredxrTHmHxxYgw84A5gNLAHuNcaM6fsma+091to6a21dJBJx4Md2C/ndmeUb1IlxIiIikkeaD8VYvXU3c+/azB3rtg/YbrqzNcod67Yz967NrN66m+ZDsSyvtFsmSe1eunt3EwDW2nrg08f5zC6g8qjHk3ueO9q7wGprbcJa+xbwGt2hOCuKQu5sxbtVV0RERGS4aT4c4+aH67nlkW2DHg4QS6S55ZFt3PxwPc2Hsx+EMwnBBdba5/s8lzzOZ14AzjDGnGKMCdAdmlf3ec8jdO8CY4wZT3d7xJsZrOuEWNu9Le+kyrIw1jpaUkRERGRYaj4U4+ZV9WxqGtqhY5uaWrh5VfaDcCYh+D1jzGl03wyHMeZquo9THpC1Ngn8NbAOaAR+bq191RhzmzFmUc/b1gH7jTENwCbgJmvt/gz/HkM2psDLn8862dGanzn/ZMYW5qa/RURERCRb2qIJNjQ2DzkA99rU1MKGhmbaYwmHVnZ8xg5yy9IYcypwD3ARcAB4C/iMtfZt11Y3gLq6OrtlyxZHau1s7QRg/t1POTLbN+T3sP6GSwCoLCs44XoiIiIiw9WuA1Hm3rXZsQy18cbZTBrr3Df0xpgXrbV1/b026J1ga+2b1tp5QASottZ+KBcB2A3rG/aybME0R2otWzCNJ17d60gtERERkeGqK949BcLJU3dXb91FV/x43bbOyGQ6xN8YY3pnBd9tjHnJGHPp8T433LXFEty2ppFZp5Qxp3rgqRM+j6Eg4MXnGfgYjDnVEWadUsbytY20d2XnH1BEREQkF1o64jz4wg5Ha658fseR+cJuy2SEwbXW2n8xxlwGjAM+CzwAPOHKyrKk9+rlmnufZdX1F/NNXmVj0z68HsO8mgl84uyTmDQmTFcyTSyRIuT3EvR52HUwytr6PWxs2kcqbZlbPYFvLjqLK3/4dE9dHZYhIiIio5e17py6m63hApmE4N4t0E8A9/fc4DbiTwcO+71A9wlvew5F+eKHTmHJrErGF4fYvH0fdz7R/5y7yrIwV50zmevnnM57bTEKAj72HIoeOSku5PNm9e8hIiIikk3tMXe+9c7Wt+mZTId40RjzBN0heJ0xphgY8ceiFffM873j6hnc99u3ONCZYPfBGJ++5xm+v+H1Yw56/v6G1/n0Pc+w+2CMA50J7vvtW9xx9Yz31RUREREZjaIufeudrW/TM0lqXwRmAm9aazuNMeOAoRylPLwY+PxFJ7O/I8bnLprKPb9+k83bBz/mI5ZIc+vqV5ldFWHpR07ljX1tfO6ik/+4by4iIiIyCvV+m+60bH2bftwQbIypttY20R2AAU4dBV0QRxSHvHz2gqm83tyWcQA+Wu/n/qyukotPi1CinWAREREZxUb6qbuD+Sk3AkuBf+7nNQt81NEVZVk0nubNlnZ2H4oOOQD32ry9hQ+fMR6v11AQLKXE2YPoRERERIYNY7rvkXLy5rjKsjDZ2ms9bk+wtXZpz3/n9PNnRAdggETKclJpiO+t2+5Ive+t285JJSGSKZ2bLCIiIqNXpDDAkvOmOFrzmllTmFAcdLTmQDKZE/ypnpvhMMb8gzFmlTHmT9xbWnYE/YaNTfscHfT8ZNM+gr7R0zIiIiIi0lcw4GPxzEmE/JnMWRhYyO9h0YxJBLLUE5zJqpdZa9uMMR8C5gE/Af7dnWVlTzSe5hcvvetozYdeepeoQ6FaREREZLgqCfkcPXW3NJy9e6oyCcG98yoWAPdYa9cCAeeXlH1uDHoWERERGe2Kw37m1ZQf89TdwZhTHWHetHKKQn6HVnZ8mYTgXcaYHwN/BjxujAlm+PlhqbPLnVl0vYdmiIiIiIxm5aUhVlxZO+QgPKc6wooraykvCTm8smPLJMT+KbAOuMxaexAoA25yZVVZ1JV0J6x2JdUOISIiIvmhvCTEik/WcvsV0wfdIxzye7j9iuk5CcCQwWEZPQdkPAqUG2N6bwVscmdZ2RN0adBz0DfiN8lFREREBq28NMTimRXMrprA6q27WPn8jn5bRCvLwlwzawqLZk6iNOTLagvE0QYdgo0xXwH+EWjmj8clW6DWhXVljVvHG+vYZBEREck3RSE/RSE/1140lctnVGAttHcliSVShPxeioI+jIEJxcGsTYEYSCZJ7W+AKmvtfrcWkytuDHoWERERyVfBgI/JgeG9IZjJd/Y7gUNuLSRXIoUB/vz8kx2t+ZnzT87aoGcRERERyVwmEf1NYLMxZi3Q1fuktfYux1eVRcGAj8trK/j+htccOTAj5PewsLYi51v8IiIiIjKwTHaCdwDr6Z4NXHzUnxHPyUHPty7M7qBnEREREclcJtMh/gnAGFPU87jdrUVlW++g5w1NzWxqahlynTnVEebWZHfQs4iIiIhkbtA7wcaY6caY3wOvAq8aY140xpzl3tKya6QOehYRERGRzGXSDnEPcKO19mRr7cnA3wL3urOs3BiJg55FREREJHOZNK8WWms39T6w1m42xhS6sKacGmmDnkVEREQkcxlNhzDGLAMe6Hn8GbonRow6I2nQs4iIiIhkLpMQfC3wT8Aquk+K+03Pc6PWSBj0LCIiIiKZy2Q6xAHg/7q4FhERERGRrMhkOsR6Y8yYox6PNcasc2dZIiIiIiLuyWQ6xHhr7cHeBz07wxOcX5KIiIiIiLsyCcFpY8yU3gfGmJPp7g0WERERERlRMrnr6xbgt8aYpwADfBhY6sqqRERERERclMmNcb8yxpwDXNDz1Fette/1vm6MOcta+6rTCxQRERERcVpG8796Qu+aAV5+ADjnhFckIiIiIuKyTHqCj8c4WEtERERExDVOhmDdJCciIiIiI4KTIVhEREREZERwMgTHHawlIiIiIuKajG6MM8bUAlOP/py1dlXPfy8Y4GMiIiIiIsPKoEOwMeY+oBZ4FUj3PG2BVS6sS0RERETENZnsBF9grZ3m2kpERERERLIkk57gZ4wxCsEiIiIiMuJlshN8P91BeC/QRfdcYGutrXVlZSIiIiIiLskkBP8E+CzwCn/sCRYRERERGXEyCcEt1trVrq1kGEql0rR2xkmmLW2xJKlUCq/XS3HIh89jKCsI4PVq1LKIiIjISJNJCP69MWYl8Bjd7RDAH0ekjSbxZJrWjji7D3RSEPIR9ntJJNNEE2nCfkM8meZQIsWO/Z1MGltAWWGAgE9hWERERAQg2pVgf2cCgLZokmgiRdjvpTjcHT3HFfgJB/25XGJGIThMd/i99KjnRt2ItNaOOLsPdlIaDvDsW608+MIOdrZGCfk8FIV8tMeSxJJpKsvCLDlvCpeXhHit+TAVY7rDsIiIiEi+OtAZp7MrxaMv7zqSofrqzVCLZ06iIOhlbEFu8pOx1ubkB5+Iuro6u2XLFsfr7m/voi2W5Ok33uO765r40kdOZXb1BAoDPeE3kSLk91IU8tERT/Jk4z7u+c2bfO2yai4+fTzFIR/jioKOr0tERERkuNt7KMbGxmaWr20gljj+7WMhv4dlC6Yxt6aciaUhV9ZkjHnRWlvX72uDDcHGmBDwReAs4MhKrbXXOrHITLgRgls74kTjKf7h0Vf48OnjmT9tImvq97Dy+XcGvIq5ZtbJLKw9ifUNe/nNG+/xrcVnUxDwMlY7wiIiIpJHmg/HuHlVPZuaWjL+7JzqCCuurKW8xPkgfKwQnEkj6wPAROAy4ClgMtB24svLvXgyTWc8yffWNfKNj9cQ9vuYf/dTfPdXTf0GYICdrVG++6sm5t/9FGG/j298vIbvrWukI54kntTwDBEREckPew8NPQADbGpq4eZV9TQfjjm8smPLJASfbq1dBnRYa38KLADOd2dZ2dUWjfPcH/bzt5dWs+KXTXz94VcGtY0PEEuk+frDr7Dil0387aXVPPeH/RyOxl1esYiIiEjuHeiMs7GxecgBuNemphY2NDRzsDN7GSqTEJzo+e9BY8x0oBSY4PySsiuVShNNppkxZSzfXP0qG5v2DanOxqZ9fHP1q8ycMpZYMk0qpd1gERERGd06u1IsX9vgSK3laxvo6Eo5UmswMgnB9xhjxgLLgNVAA3CHK6vKorZ4gr2HYmx5u3XIAbjXxqZ9vPBOK3sPxWiLJ47/AREREZERKtqV4NGXdw362/PjiSXSrN66i2hXdjLUoEOwtfY/rLUHrLVPWWtPtdZOsNb+u5uLy4b2WIqJpSG++dirjtT75upXmVgaoj2WvSsZERERkWzb35ngwRd2OFpz5fM7jswXdtugQ7AxptwY8xNjzC97Hk8zxnzRvaVlRzjg4fFX9jh6FfP4K3sIB3R4hoiIiIxe1jLgAIGh2tkaJVvTezNJav8FrAMqeh6/BnzV6QVlWzSe5oFn33G05gPPvkM0rp5gERERGb3aY0l36na5U7evTELweGvtz4E0gLU2CYz47/xH+lWMiIiISC5EE+7EwJhLdfvKJAR3GGPG0X1UMsaYC4BDrqwqizpcutroiGfnKkZEREQkF8J+ryt1Qz536vbly+C9N9I9FeJUY8zTQAS42pVVZZFrVzHxEb9JLiIiIjKgolAmMTL3dfvK5Kc0AA8DnXSfFPcI3X3BI1rQ584NbAGX6oqIiIgMB8ZAZVnY0bbSyrIwxjhW7pgySWr3A9XAt4F/Bc6k+yjlEW2kX8WIiIiI5MK4Aj9LzpviaM1rZk0hUhR0tOZAMgnB0621f2mt3dTz5zrgLLcWli0eY6gsCztas7IsjCdblzEiIiIiORAO+lk8cxIhvzPffof8HhbNmETQpV7jvjJZ9Us9N8MBYIw5H9ji/JKyK+AzXH3OZEdrfurcyQS9aocQERGR0a0g6GXZgmmO1Fq2YBqFwewEYBhECDbGvGKMqQfOBX5njHnbGPMW8AxQ5/YC3Za2sLC2wtGrmAW1FaTRjDQREREZ3cYWBJhbU86c6sgJ1ZlTHWHetHLGFAQcWtnxDSb5LQQuBz4GnAJcAszu+f+Pu7ayLNnfHsfrhZsuq3Kk3k2XVeEzsL89O0f+iYiIiOTSxNIQK66sHXIQnlMdYcWVtZSXhBxe2bEdNwRba9851p9sLNJN8WSau554nYtOG8/sqhO7ipldFeHi08Zz5xOvEU9qRJqIiIjkh/KSEN/5ZC23XzF90N+uh/webr9iek4CMGQ2Im1UCvu9rN66m8tnnMQN884EYPP2lozrzK6KcMO8M9l5oJPH6vfw5TmnO71UERERkWFrYmmIBbUnMbtqAqu37mLl8zv6HZ9WWRbmmllTWDRzEoUBb1ZbII6W9yG4d5TZV3/2Mv/5F+ex9MOn8uEzxvO9dduJJdLH/XzI7+Gmy6qomVhCVzLFV3/28vvqioiIiOSLMQUBxhTAFy48mctnVGAttHcliSVShPxeioI+jIFIUTBrUyAGkvdJLeD1HBn0/Bf/+QJ3XD2DU8cX8rOlF/LU9n089NK7A17FXH3OZC6pmsCBji4OdCb4+4e20hFPUVkWJqDpECIiIpKnwkE/k4P+XC/jmPI+BI8rDPDZC6by7ccb6Yin+PLKl7i89iS++OFTOC1SyC2fqGFcUZBEKk0skSbk9+D3etjf3kUylQYsq17axWP1e47U/NyFUxmXpUHPIiIiIpK5vA/BXq+Hy2ecxF3r/9j+8Fj9Hh7ftpe51RNYUHsSAAbwGUPvERhdyTRr6vfwZNM+Uuk/jkML+T0srD0Jr0eHZYiIiIgMV3kfggHGFQa5bdFZ/P0vXjnyXCpteaKhmScamgHweQwBn4d4Mk0yPfAM4NsWn8W4Qu0Ci4iISP5KJFK0dHSRttAWSxJNpAj7vRSHfHgMRAqD+NUTnHsBn4d50yYyr6GZDY37+n1PMm1Jxo899mxezQTm10wk4FM/sIiIiOSfzq4kB6IJHn15Fw8eYzrEkllTWDxzEmPDfgqCuYmjxtqRd7JZXV2d3bLF+ROb97d38bVf1A8YhI9lXs0EvntVrXqBRUREJC/tOxxjQ2Mzt61pGPSErVsXTmNeTTkTXJoTbIx50Vrb7wnHCsF9tHbE2dDYzK2Pbhv0P+Bti6czv6acsYW5mXMnIiIikkv7Dsf42qp6NjVlftbCnOoI372y1pUgrBCcoXgyTWtHnDX1u/npM28PuJX/+YumsvDsCsoKA2qBEBH5/9u7/+Co7zu/46+39td39QOBHLEYWTLJNGdJJwslEaR2e4k1kGtSbISJ5xq4m8bx5XKdyU2vuWkmuA7XaSgX7FzT9m6uN83kkrjTwv2wsaFmGsdwOO1kkgBuQMaS3KZpTkS216qFAaHd1a706R9a5RQZIa30/e5XaJ+PGY+0u1+99w1fi3npq8/3/QFQkZYTgGcEFYRvFoJZE3wD8WiVNtR7+tS9m9TbtVGFh8KgEwAAGzVJREFUKaexbEG5wpQS0SrVelFFq0wNNQmmQAAAgIo1nivo5EB6WQFYkk4PjujkQFq73tek6nh54ikh+CYikSo11hV/IqkPtxcAAICV5nImry891+9LrS89168P37W+bCGY3+EDAACgZPn8pI6dH17UPVSLkc1P6fj5YeXzN5/G5RdCMAAAAEo2cj2nI2eGfK15+MyQRq7nfK05H0IwAAAASjbldMPhActxaTSjm+xJ5itCMAAAAEp2LVu4perORQgGAABAyTIBrd3NsiYYAAAAK1UyFgmkrhdQ3bkIwQAAAChZnRfMKLOg6s5FCAYAAEDJqmx6B10/NTckVa59yAjBAAAAKFljTUJ7trb4WnPv1pa/3agsYIRgAAAAlCwWi6i3q0lezJ846cWqtLOrSbFIeeIpIRgAAABLsi4Z0+/f3+5Lrd+/v13rqmO+1FqMwEOwmX3UzF41sx+b2b6bHPdxM3Nm1h10TwAAAFi+6kRU29tS6mltXFadntZGbW9LqTpenpvipIBDsJlFJP2JpI9Jape0x8ze8eOCmdVJ+l1JPwyyHwAAAPhr/RpPj+/uXHIQ7mlt1OO7O7V+TXnWAs8I+krwVkk/ds79xDk3IenPJfXe4LgDkh6XlA24HwAAAPhsJgj/wYMdi14j7MWq9AcPdoQSgCUp6GvOTZIuzXr8M0kfnH2Amb1fUrNz7oSZfX6+Qmb2GUmfkaSWFn/vRAQAAMDyrF/jadf7mvThu9br+PlhHT4zpEujmXcc19yQ1K9vbdHOriatrY6VdQnEbOG8a5GZVUn6qqSHFzrWOfc1SV+TpO7ubhdsZwAAAChVdTyq6nhUn/5771Zv10ZNOelatqBsflJeLKI6L6oqkxrrvLJNgZhP0CF4WFLzrMd3FJ+bUSepQ9KLZiZJGyQdN7OdzrlzAfcGAACAAMRiEW1cWx12GzcVdAg+K+m9ZvZuTYffT0jaO/Oic+6KpHfNPDazFyX985USgHMTBY1cn5AkXcsUlMlPKhmLqC45/dfWWBNXIqRL+AAAAFi6QBOcc65gZr8j6XlJEUnfcM69YmZfknTOOXc8yPdfqmuZvK5mCzp2flhHzs6/nmXPlhb1djVpjRdVXbJ8c+0AAABWssnJKY2OT6gw5XQtW1AuP6lEcTlEtMrUUB1XJOTlEObcrbe8tru72507F8zF4vSVrE4OpHXgRL+y+akFj/diVdq/o13b21JK1Zf/zkYAAICVYqIwpdHrE3qu7zU9+f2fznsh8ZP3bNL9nRvVUBNXPBpcGDazl5xzN9yDghA8S/pqVvuO9un04EjJX9vT2qhDuzuVCmHEBwAAQNhGr0/o1EBa+49dXPSFxAO9HdrWllJDTTyQnm4Wgtk2uSh9ZekBWJJOD45o39E+pa8y6hgAAFSWt8Zy+sJTffr8U32LCsCSlM1P6fNP9ekLT/XprbFcwB2+EyFY02uATw6klxyAZ5weHNHJ/rTGsnmfOgMAAFjZRq9PaN/TL+uFgfSSvv6FgbT2Pf2yLheHEZQLIVjS1WxBB070+1LrwIl+XckUfKkFAACwkk0UpnRqIL3kADzjhYG0Tg6kNVFY3FVkP1R8CM5NTE+BWOyl+4Vk81M6fmFYuQmCMAAAWN1Gr09o/7GLvtTaf+yiRst4NbjiQ/DI9QkdOTvka83DZ4Z+Pl8YAABgNZqcnNJzfa/5eiHxub7XNDlZnqvBFR+CndMNx3csx6XRjG7BoRsAAACLNjo+oSe//1Nfaz75/Z9qdLw8FxIrPgSPZYNZtjCWYzkEAABYvQpTLpALiYWp8lxJrPgQnMlPBlI3G1BdAACAleBaUBcSA6o7V8WH4GQssqjjauMRNa9Lqja+uOO96OKOAwAAuBXlArrglyvThIhoWd5lBav1bvxXkIxH9G8e6lR7U72iZrqazSubn5IXq9IaL6aCc7r4s7f1+adfVmbinf8TzFcXAABgNUgs8kJiqYLcRnm2ik9qZtN7WM9e0/L1f/wBtd1er2Pnh/Xlbw/Ou+/1ni0tOvm5D2vg9Sv69H966RdeMytL+wAAAKGoC+iCX1B156r45RC1XkR7trRIku5sSOp7X+hR+mpO2776op54/tV5F3xfGs3oiedf1bavvqj01Zy+94Ue3dmQlCTt3dpSthMIAAAQhmiVqbmYffzS3JBUtKo8VxIrPgS/fjmn3q4m/VKqRn/x2/fqi8cu6rFnL5a07/Vjz17UF49d1F/89r36pVSNdm5u0mtvZwPuHAAAIDwN1XF98p5Nvtb85D2b1FCT8LXmfCo+BGfykxp4/YqefOSDevSZPp0eHFlSndODI3r0mT49+cgH1f/6FaZDAACAVS0SqdL9nRvlxfyJk15sul6EK8HlMTMd4q8H3lxyAJ5xenBEfz3wpiSmQwAAgNWvoSauA70dvtQ60Nuhhpq4L7UWo+JDcK0XVdvt9Tpwot+XegdO9Kv99nqmQwAAgFUvHq3StraUPtKWWladj7SltL0tVbbJEBIhWHXJiI6dH/Z13+vjF4ZVl+RKMAAAWP0aauI69PG7lxyEP9KW0qGP3611ZbwKLBGCNZad1JGzQ77WPHxmSGNZ1gQDAIDKcFttQo8/1KmvPNS56DXCXqxKX3moU0881KnbastzM9xsFf87e+cUyL7XrjzbXgMAAKwIDTVx9XY16Vfe26jn+l7Tk9//6bx7LTx87ybtuHujGmriZV0CMVvFh+Cg9qcey5Vn32sAAICVIh6t0oZ6T5+6d5N6uzaqMOU0li0oV5hSIlqlWi+qaJWpoSZRtikQ86n4EJwJaJQZI9IAAEClikSq1FjnTT+oD7eX+VT8muBkQPteMyINAABg5ar4EBzUKDNGpAEAAKxcFZ/UzKYXaPt5c1xzQ1IW7jIXAACA0OQmChq5PiFJupYpKJOfVDIWUV1yOno21sSViIcbQys+BDfWxLVnS4ueeP5V32ru3dqi9XXlH/UBAAAQpmuZvK5mCzp2flhHzg7NOx1iz5YW9XY1aY0XVV0yFkKnLIdQIh5Vb1eTr/te79zcpDhrggEAQAVJX8nq+IXXtO2rL+qJ51+d97fsl0YzeuL5V7Xtqy/q+IXXlL6SLXOn0yo+BEvSGi+q/Tvafam1f0e76pMVf4EdAABUkPTVrPY906fHnr246F14s/kpPfbsRe17pk/pq+UPwoRgSXXJmLa3pdTT2risOj2tjdrenlKtF85lfQAAgHJLX8lq39E+nR4cWdLXnx4c0b6j5Q/ChOCiVL2nQ7s7lxyEe1obdWh3p1JrPJ87AwAAWJmuZfI6OZBecgCecXpwRCf70xrL5n3qbGGE4FlSazwderBTB3d1lLTv9cFdHQRgAABQca5mCzpwot+XWgdO9OtKpnw77rJ4dY5Uvafero267671On5hWIfPzH9n496tLdrZ1aR6L8oSCAAAUFFyE9NTIBa7Bngh2fyUjl8Y1iP3birL+DRC8A3UejHVejE9cu8mPbB5o5yTxnIFZfOT8mIR1SaiMpPW1yWYAgEAACrSyPUJHTk75GvNw2eG9MDmjbqDEByuRDxalpMAAABwq3FOvm42Jk3Xc87XkvNiTTAAAABKNpYNZv3uWK4864IJwQAAAChZJj8ZSN1sQHXnIgQDAACgZMlYMPdFeWW634oQDAAAgJLVesHcNxVU3bkIwQAAACiZ2fTIWD81NyRl5mvJeRGCAQAAULLGmrj2bGnxteberS1aX5fwteZ8CMEAAAAoWSIeVW9X06J32V2IF6vSzs1NZduDgRAMAACAJVnjRbV/R7svtfbvaFd9snz7MxCCAQAAsCR1yZi2t6XU09q4rDo9rY3a3p5SrRfzqbOFEYIBAACwZKl6T4d2dy45CPe0NurQ7k6l1ng+d3ZzhGAAAAAsS2qNp0MPdurgro5FrxH2YlU6uKsjlAAsSeVbeAEAAIBVK1Xvqbdro+67a72OXxjW4TNDujSaecdxzQ1J7d3aop1dTar3omVdAjEbIRgAAAC+qPViqvVieuTeTXpg80Y5J43lCsrmJ+XFIqpNRGUmra9LlG0KxHwIwQAAAPBVIh7VHfGVHTNZEwwAAICKs7IjOgAAAG45mVxeb43nJUnXMgVl8pNKxiKqK84Bvq06pmQinLXAMwjBAAAA8MXl8QmN5yZ17Pywjpyd/8a4PVta1NvVpOpEROuq4yF0KplzLpQ3Xo7u7m537ty5sNsAAABA0RtXsjo1kNaBE/3K5qcWPN6LVWn/jnZta0tpQ30wI9LM7CXnXPeNXuNKMAAAAJYlfTWrR5/p0+nBkUV/TTY/pceevaiTg2k2ywAAAMCt5Y0rWe07WloAnu304Ij2He1T+mrW585ujhAMAACAJbk8PqFTA+klB+AZpwdHdLI/rbfHJ3zqbGGEYAAAACzJeG5SB070+1LrwIl+Xc9N+lJrMQjBAAAAKFkml9ex88OLugluMbL5KR2/MKxMLu9LvYUQggEAAFCyt8bzOnJ2yNeah88M/Xy+cNAIwQAAACiZc7rhHODluDSaUbmm9xKCAQAAULKxbCGYurlg6s5FCAYAAEDJMvlgbmLLBlR3LkIwAAAASpaMRQKp60WDqTsXIRgAAAAlq/WC2Xg4qLpzEYIBAABQMjOpuSHpa83mhqTMfC05L0IwAAAASnZbdUx7trT4WnPv1hY11iZ8rTkfQjAAAABKlkzE1NvVJC/mT5z0YlXaublJiYDWGs9FCAYAAMCSVCci2r+j3Zda+3e0qyZRngAsEYIBAACwROuq49rWllJPa+Oy6vS0Nmp7e0prq+M+dbYwQjAAAACWbEO9p0O7O5cchHtaG3Vod6dSazyfO7s5QjAAAACWJbXG05cf7NTBXR2LXiPsxap0cFdHKAFYksoziA0AAACr2oZ6Tzs6b9d9d63X8QvDOnxmSJdGM+84rrkhqb1bW7Szq0k18UhZl0DMRggGAACAL9ZWx7W2Wnr4njv1wOaNck4ayxWUzU/Ki0VUm4jKTGqsTZRtCsR8CMEAAADwVTIR0x2JWNht3BRrggEAAFBxCMEAAACoOCyHAAAAgK8yubzeGs9Lkq5lCsrkJ5WMRVSXnI6et1XHlAx5uQQhGAAAAL64PD6h8dykjp0f1pGz80+H2LOlRb1dTapORLQupOkQ5pwL5Y2Xo7u72507dy7sNgAAAFD0xpWsTg2kdeBEv7L5qQWP92JV2r+jXdvaUtpQH8ycYDN7yTnXfaPXuBIMAACAZUlfzerRZ/p0enBk0V+TzU/psWcv6uRgmh3jAAAAcGt540pW+46WFoBnOz04on1H+5S+mvW5s5sjBAMAAGBJLo9P6NRAeskBeMbpwRGd7E/r7fEJnzpbGCEYAAAASzKem9SBE/2+1Dpwol/Xc5O+1FoMQjAAAABKlsnldez88KJugluMbH5Kxy8MK5PL+1JvIYRgAAAAlOyt8byOnB3ytebhM0M/ny8cNEIwAAAASuacbjgHeDkujWZUrum9hGAAAACUbCxbCKZuLpi6cxGCAQAAULJMPpib2LIB1Z2LEAwAAICSJWORQOp60WDqzhV4CDazj5rZq2b2YzPbd4PXf8/M+s2sz8xOmdmdQfcEAACA5an1gtl4OKi6cwUags0sIulPJH1MUrukPWbWPuewH0nqds51SnpK0hNB9gQAAIDlM5OaG5K+1mxuSMrM15LzCvpK8FZJP3bO/cQ5NyHpzyX1zj7AOXfaOTdefPgDSXcE3BMAAACW6bbqmPZsafG15t6tLWqsTfhacz5Bh+AmSZdmPf5Z8bn5/Kak/3ajF8zsM2Z2zszOjYwsb2s+AAAALE8yEVNvV5O8mD9x0otVaefmJiUCWms814q5Mc7MfkNSt6Sv3Oh159zXnHPdzrnuxsbG8jYHAACAd6hORLR/x9yVrkuzf0e7ahLlCcBS8CF4WFLzrMd3FJ/7BWa2XdJjknY653IB9wQAAAAfrKuOa1tbSj2ty7tA2dPaqO3tKa2tjvvU2cKCDsFnJb3XzN5tZnFJn5B0fPYBZvY+Sf9R0wH4zYD7AQAAgI821Hs6tLtzyUG4p7VRh3Z3KrXG87mzmws0BDvnCpJ+R9LzkgYk/aVz7hUz+5KZ7Swe9hVJtZL+yszOm9nxecoBAABgBUqt8fTlBzt1cFfHotcIe7EqHdzVEUoAliRz5dqg2Ufd3d3u3LlzYbcBAACAWd4en9D13KSOXxjW4TNDujSaeccxzQ1J7d3aop1dTaqJRwJdAmFmLznnum/0WnmmEQMAAGDVW1sd19pq6eF77tQDmzfKOWksV1A2PykvFlFtIiozqbE2UbYpEPMhBAMAAMBXyURMdyRiYbdxUytmRBoAAABQLlwJBgAAgK8yubzeGs9Lkq5lCsrkJ5WMRVSXnI6et1XHlAz5SjEhGAAAAL64PD6h8dykjp0f1pGz898Yt2dLi3q7mlSdiGhdGWcDz8Z0CAAAACzbG1eyOjWQ1oET/crmpxY83otVaf+Odm1rS2lDfTAj0pgOAQAAgMCkr2b16DN9Oj04suivyean9NizF3VyML36NssAAADA6vbGlaz2HS0tAM92enBE+472KX0163NnN0cIBgAAwJJcHp/QqYH0kgPwjNODIzrZn9bb4xM+dbYwQjAAAACWZDw3qQMn+n2pdeBEv67nJn2ptRiEYAAAAJQsk8vr2PnhRd0EtxjZ/JSOXxhWJpf3pd5CCMEAAAAo2VvjeR05O+RrzcNnhn4+XzhohGAAAACUzDndcA7wclwazahc03sJwQAAACjZWLYQTN1cMHXnIgQDAACgZJl8MDexZQOqOxchGAAAACVLxiKB1PWiwdSdixAMAACAktV6wWw8HFTduQjBAAAAKJmZ1NyQ9LVmc0NSZr6WnBchGAAAACW7rTqmPVtafK25d2uLGmsTvtacDyEYAAAAJUsmYurtapIX8ydOerEq7dzcpERAa43nIgQDAABgSaoTEe3f0e5Lrf072lWTKE8AlgjBAAAAWKJ11XFta0upp7VxWXV6Whu1vT2ltdVxnzpbGCEYAAAAS7ah3tOh3Z1LDsI9rY06tLtTqTWez53dHCEYAAAAy5Ja4+nLD3bq4K6ORa8R9mJVOrirI5QALEnlGcQGAACAVW1DvacdnbfrvrvW6/iFYR0+M6RLo5l3HNfckNTerS3a2dWkmnikrEsgZiMEAwAAwBdrq+NaWy09fM+demDzRjknjeUKyuYn5cUiqk1EZSY11ibKNgViPoRgAAAA+CqZiOmORCzsNm6KNcEAAACoOIRgAAAAVBxCMAAAACoOIRgAAAAVhxAMAACAikMIBgAAQMUhBAMAAKDiEIIBAABQccw5F3YPJTOzEUl/E8Jbv0vS/wvhfREszuvqxbldvTi3qxPndfUK69ze6ZxrvNELt2QIDouZnXPOdYfdB/zFeV29OLerF+d2deK8rl4r8dyyHAIAAAAVhxAMAACAikMILs3Xwm4AgeC8rl6c29WLc7s6cV5XrxV3blkTDAAAgIrDlWAAAABUHEIwAAAAKg4heBHM7Kdm9rKZnTezc2H3A/+Y2Voze8rMBs1swMzuCbsnLJ+Z3VX8fp3576qZ/bOw+8LymdnnzOwVM7toZkfMzAu7J/jDzH63eF5f4fv11mZm3zCzN83s4qznGszsBTP738WP68LsUSIEl6LHOde10mbcYdn+vaRvO+daJW2WNBByP/CBc+7V4vdrl6QPSBqX9EzIbWGZzKxJ0j+V1O2c65AUkfSJcLuCH8ysQ9JvSdqq6X+L7zezvxNuV1iGb0n66Jzn9kk65Zx7r6RTxcehIgSjYplZvaQPSfozSXLOTTjn3g63KwRgm6T/45wLY5dJ+C8qKWlmUUnVkl4LuR/4o03SD51z4865gqTvStodck9YIufcf5c0OufpXklPFj9/UtKusjZ1A4TgxXGSvmNmL5nZZ8JuBr55t6QRSd80sx+Z2dfNrCbspuC7T0g6EnYTWD7n3LCkP5Q0JOl1SVecc98Jtyv45KKkXzGz28ysWtI/lNQcck/wV8o593rx8zckpcJsRiIEL9bfd869X9LHJH3WzD4UdkPwRVTS+yX9qXPufZKuawX8egb+MbO4pJ2S/irsXrB8xTWEvZr+AXajpBoz+41wu4IfnHMDkh6X9B1J35Z0XtJkqE0hMG56Pm/oM3oJwYtQvPog59ybml5XuDXcjuCTn0n6mXPuh8XHT2k6FGP1+Jik/+mcS4fdCHyxXdL/dc6NOOfyko5KujfknuAT59yfOec+4Jz7kKTLkv5X2D3BV2kzu12Sih/fDLkfQvBCzKzGzOpmPpf0q5r+tQ1ucc65NyRdMrO7ik9tk9QfYkvw3x6xFGI1GZL0d82s2sxM09+z3My6SpjZ+uLHFk2vBz4cbkfw2XFJnyx+/klJx0LsRRI7xi3IzN6jv72rPCrpsHPuYIgtwUdm1iXp65Likn4i6VPOucvhdgU/FH9oHZL0HufclbD7gT/M7F9J+keSCpJ+JOnTzrlcuF3BD2b2PyTdJikv6fecc6dCbglLZGZHJN0n6V2S0pL+paRnJf2lpBZJfyPp15xzc2+eKytCMAAAACoOyyEAAABQcQjBAAAAqDiEYAAAAFQcQjAAAAAqDiEYAAAAFYcQDAArhJltMjPmkANAGRCCAQAAUHEIwQCwskTN7L+Y2YCZPVXcHe0DZvZdM3vJzJ6ftfXob5nZWTO7YGZPm1l18flvmdmfmtkPzOwnZnafmX2jWPNbxWMixeMumtnLZva5EP/MAFB2hGAAWFnukvQfnHNtkq5K+qykP5b0kHPuA5K+IWlm18qjzrktzrnNmt4++Ddn1Vkn6R5Jn9P0dqX/VtIvS7q7uFNil6Qm51yHc+5uSd8M/o8GACtHNOwGAAC/4JJz7nvFz/+zpH8hqUPSC2YmSRFJrxdf7zCzfy1praRaSc/PqvNfnXPOzF6WlHbOvSxJZvaKpE2SvivpPWb2x5JOSPpOoH8qAFhhCMEAsLLM3cv+mqRXnHP33ODYb0na5Zy7YGYPS7pv1mu54sepWZ/PPI465y6b2WZJ/0DSP5H0a5IeWXb3AHCLYDkEAKwsLWY2E3j3SvqBpMaZ58wsZma/XHy9TtLrZhaT9OulvImZvUtSlXPuaUlflPR+X7oHgFsEV4IBYGV5VdJnzewbkvo1vR74eUl/ZGb1mv53+99JekXSfkk/lDRS/FhXwvs0Sfqmmc1cDHnUn/YB4NZgzs39zRsAAACwurEcAgAAABWHEAwAAICKQwgGAABAxSEEAwAAoOIQggEAAFBxCMEAAACoOIRgAAAAVJz/DzcB2W2j//xlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zU9Z3v8dd3bplJwi2QgIEgopAEMbAYEbUqFLxUFLzQU+VxvFQPdE+7PW09tV4o7laO1cVutd3T7lba2tazaLfWCwV3URCsdbXcKhFJohaVcAvRACHJTOb2PX8kQeSSZMLvN7nM+/l48JCZ+c0nnwT/eOc739/na6y1iIiIiIhkEk9PNyAiIiIikm4KwSIiIiKScRSCRURERCTjKASLiIiISMZRCBYRERGRjOPr6Qa6Y9iwYXbMmDE93YaIiIiI9GKbN2/+2Fqbf6LX+mQIHjNmDJs2berpNkRERESkFzPGfHSy17QdQkREREQyjkKwiIiIiGQchWARERERyTgKwSIiIiKScRSCRURERCTjKASLiIiISMZRCBYRERGRjKMQLCIiIiIZp08eliEiIiIivVe4JcYnzTEADofjhGMJQn4vA0Kt0XNotp9Qlr8nW1QIFhERERFnHGiO0tyS4IW3dvPUxp3U1IePu6YoL8RN541m7uSRZGd5GZId6IFOwVhre+QLn4ry8nKrY5NFREREeo99hyKsraxlyartRGLJTq8P+j0snj2BmaXDGTEo6EpPxpjN1tryE72mlWAREREROSW1DRHufa6CdVV1XX5PJJZk0fPbWFNVy8PXlzF8oDtB+GR0Y5yIiIiIdNu+QxHueTa1AHy0dVV13PNsBbUNEYc765hCsIiIiIh0y4HmKGsra7sdgNutq6pjzfZaDjZHHeqscwrBIiIiItItzS0Jlqza7kitJau209SScKRWVygEi4iIiEjKwi0xXnhrd5duguuKSCzJiq27CbfEHKnXGVdDsDHml8aY/caYbSd53RhjfmyMed8YU2GMmeJmPyIiIiLijE+aYzy1caejNZdv2HlkvrDb3F4J/hVwZQevfwEY1/ZnIfAvLvcjIiIiIg6wlhPOAT4VNfVh0jW919UQbK39I1DfwSVzgd/YVm8Cg40xp7nZk4iIiIicusZI3J26Le7UPVZP7wkeCdQc9XhX23PHMcYsNMZsMsZsqqs7tTsQRUREROTUhGPu3MQWcanusXo6BHeZtfZxa225tbY8Pz+/p9sRERERyWghv9eVukGfO3WP1dMheDdQdNTjUW3PiYiIiEgvlht05+Bht+oeq6dD8ArglrYpEdOAQ9bavT3ck4iIiIh0whgoygs5WrMoL4QxjpY8KbdHpD0FvAEUG2N2GWPuMMb8rTHmb9sueRHYAbwPLAO+6mY/IiIiIuKModl+bjpvtKM1508dTX5ulqM1T8bV9WZr7U2dvG6Br7nZg4iIiIg4L5TlZ+7kkfz4lfccOTAj6PcwZ9JIslzaa3ysnt4OISIiIiJ9VHaWl8WzJzhSa/HsCeRkpScAg0KwiIiIiHTTkOwAM0uHM6Pk1CZ3zSjJZ9aE4QzODjjUWecUgkVERESk20YMCvLw9WXdDsIzSvJ5+Poyhg8MOtxZxxSCRUREROSUDB8Y5KHrynjw2okE/V2Ll0G/hwevndgjARhcvjFORERERDLDiEFBZpedxvTiAlZs3c3yDTupqQ8fd11RXoj5U0czZ/JIcgLetG6BOJpCsIiIiIg4YnB2gMHZcNsFp3PNpEKshcaWOJFYgqDfS26WD2MgPzcrbVMgTkYhWEREREQcEY0nqW+KsrJiD79+40Nq6sOML8hhyuhBbNl5iHf3N1GUF+LWC8ZwdVkheTkBAr6e2Z2rECwiIiIip6y+KcraylqWrNrO314ylp/dfC45AR+NkTiReIKbL/CSG/TRFI3zSuV+Ln/sVRbPnsDM0uHk5aR/S4RCsIiIiIickk8aW7jn929zwZl5rPr6xfzHtr185cnN1NSH8XkMAZ+HaDxJPGkpygtx87TTWfX1i3l5+z7ufqaCh284h6FpOimunUKwiIiIiHRbfVOU76+q5DtXFrNl5wGu/NEf+dxZw/j25cWMHByiJZ48sic4y+dh98Ewqyr28qO173H/1RP4zpXFfH9VJd+9egJD0rgibFpPLu5bysvL7aZNm1z/OolEkvrmKPGk5XAkTkssQZbfy4CgD5/HkJcdwOvVlDkRERHJTNF4ktXb9vI3pw/hH1a8Q3bAx+0XjWH9u3X8fsuuk06HuGHKKKaPz+eXr39IczTOP8w5m798dIArJp7m6B5hY8xma235CV9TCD7eiTZ1B30ecoPt+1qSvWZTt4iIiEhP2XcoQjga5wcvVXPVOYXsawjzyOpqIrFkp+8N+j3cdUUxIwaGePHtPXz78mJCAR8jBjk3M1ghOAXHbuqeXlJwZFN3OJYg5P/spu7HX9vRo5u6RURERHpCIpFk6+5DfFDXyGmDQzz+xx2sr65Luc704nwWXjKWfQfDjBmWw6RRgx37pL2jEKw9wUc5dlP3H7buObKp+1hFeSFuOm90j2/qFhEREekJ9c1RRgwMUnso0u0ADBx535fKixgxKER9c5T8Ae6fIKfP8Nscvak7y+flskdfZenq6hMGYICa+jBLV1dz2aOvkuXzHtnUfaApmubORURERNLP5zVs232IPYfC3Q7A7dZX17HnUJhtew7h8xqHOuyYQjCte4Bff6+Ob142nu//RyWLnt/Wpb0sAJFYkkXPb+P7/1HJNy8bz5/eqyMa79p7RURERPqqSCzJaYOCPLK62pF6j6yu5rSBwS5nsFOlEEzrKnDpaQO5f8U21lV17zeZdVV13L9iG6WFA6nXarCIiIj0c14PrK3a71hojcSSvFK1nzQtBCsEJxJJdh8K8+cP6rsdgNutq6rjzzvq2XOwmURCq8EiIiLSf4WjSX6/ZZejNZ/ZsouwVoLTo745SkFuFktWbXek3pJV28kfEKS+WavBIiIi0r+d7N6p3lKvIxkfgr0ewx+27ul0Kd/nMWQHvPg8Ha/RR2JJVlbswdvJdSIiIiJ9WVNL3JW6zdGEK3WPlfEj0ppaEjy1cedxz3s9hlmlBVx1zmkdHvm3tmo/ieRnZy0v37Cz7RCNdH0XIiIiIunl1iCAdA0YyPgQDMcvvc+ZVHjkyL8fvHTiMWntR/59dfqZ/PL1D1mxdc9J64mIiIj0N0G/t0vX+TyGgM9DNJ4knuz8kLasNJ3Cm/EhuDHy6VJ+TsDL0nmT2NcQ5sZlb3a4RaKmPsxja97jX1/9K3ddUcwVZ4/gO89spaltCb/RpY8IRERERHqD3OCJY+SpfJreUV2nZXwIDsdaQ2tOwMuyW8tTPvEkEkuyZGUl04vzWXZrOQt+vYmmaIJILD37WURERER6gse0fjJ+9Cfgp/ppelFeCI/RYRlpEWpbyl86b9IpH/n3+B93sHTeJACCvq59RCAiIiLSF+WF/NwybQzQupj4k/lTmFQ0iBuXvclja97r8NTdx9a8x43L3mRS0SB+Mn8KOYHW3HTLBWMYmhNIS/8ZH4IHBH3MmVTIvgZnjvzb1xDmmrLTGJCmpXwRERGRnhCzSa465zSG5vhZdms5v9tcw5KVlSmdurtkZSW/21zDslvLGZrj56qJpxFNpGdLacYnNQssuPgMvvizNxyp98jqan73lQvofNu3iIiISN8VjiVJWstv7jifR1ZXn9Kn6QC/ueN8ktYSjiYZEHSy0xPL+JXggSEvr733saNH/v3p/Y8ZlK3tECIiItJ/WQtbaw6wteaQI5+mV9QcYuuuA2lbSMz4ENwQPvGc4FOxfMNODjXrxjgRERHpv6Jxy+lDc3hg5TuO1Pveync4PS+HaDw9MTjjQzD07SP/RERERHqC32tYW7Xf0U/TX6naj9+r6RBpcfScYEfrak6wiIiI9GORWJLfb9nlaM1ntuxyLFR3JuNDcNileb6aEywiIiL9mTHufJqepjHBCsGhLh75lyrNCRYREZH+rLnFnQW/5mh6FhIzPgS7Nc9Xc4JFRESkP2uJu7NtIepS3WNlfAim7cg/JxXlhSBNS/kiIiIiPSHodydGZvnSE08zPgRnBzzcNHW0ozXnTx1NdkDbIURERKT/Ghjy96m6x8r4EFx7KMqcSYWO/TYT9Hu4ZlIhtQ0tjtQTERER6Y2S1rryaXrSak5wWoRjCcLROItnT3Ck3uLZE2iOxjUdQkRERPq1gM/wpfIiR2veeF4RAa+2Q6RF0O8hO+Dn/DPymFGSf9LrfB5DdsCLz3Pyzb4zSvI5f2weOQF/2vaziIiIiPSETxpjzJ08stNP07uSoaA1k82ZNJJPmqJOtnnyvtLyVXqxwiFBlr9ZwxOvf8CzX72I+9nGuqo6vB7DrNICrjrnNEYODtESTxKJJQj6vWT5POw+GGZVxV7WVu0nkbTMKMnngTkTuf6nr3P7587gpvOd/c1IREREpDcJxxLkZQe4+4oSvrdy+5HnU81Q7e6+ooSA15O2T9MzPgQ3RhI8tXEndY1Rrv/p6yxfMI0vX3AGA7P9rK/ezw9eqj7hIOiivBA3TBnFV2ecRUM4xmmDglz/09epa4yyfMNOrplUyGBnt8mIiIiI9BpnDMvmqT/XcPnZw/l8ST6vVNUxZ1Iht180hvXv1nWeoaafyS9f/5AVW/fw+ZJ8Lh4/jGf/sosbp6ZnITHjQ7C1n552kh3wkh3wsvtgmIX/b1OHx/bV1Id5bM17/Ourf+Xvrz6bM/NzjkyEqKkPk6Y93SIiIiI9oqklQe3hCFs+OshXp5/JgovHsn1vAzcue7PLGequK4q5aWoRfq/hLx8dZG9DhKaWBEOy3e8/4zeuNkbiAJyeF+K3X7mQ776wjXufe7vL51ZHYknufe5tvvvCNn77lQs5ve0uycaWuGs9i4iIiPQ0a+GmqaP5+Z/+yqghOfz8tQ9YsrIypQy1ZGUlP3/tA0YNyWHZn/7K/PNGp20hMeNDcLht38nyBdO497kK1lXVdavOuqo67n2uguULpgFoOoSIiIj0a8mk5dXqOp64bSr3PlfB2qr93aqztmo/9z5XwRO3TeWP79VpRFq6hPxefn7Luayvrut2AG63rqqO9dV1LLvlXII+HZYhIiIi/ZcxMOG0gY5mqNIRA9J26G7Gh+DcoI/S0waxZNX2zi/ugiWrtjPhtEHkBjN+u7WIiIj0Y8YYxubnOpqhxuYPwJj0xOCMD8EDQl5eeGt3l/evdCYSS7Ji624GhLQSLCIiIv1XKOBxJUOFsnRYRlq0j0hz0vINO2mMaE+wiIiI9F/haNKVDBVucSZUdybjQ/DRI9KcohFpIiIikgncyFDpkvEhuH1EmuN1NSJNRERE+rG+nqEyPgSHXRplphFpIiIi0p/19QyV8SG4/ZQ3p4X8ujFORERE+i+3sk66xsxmfAjOyXJnlJlbdUVERER6A7fGwaZrzGzGh2CAorajjntrPREREZHeqC9nqIwPwUlruWHKKEdrzpsyCqvxECIiItKPDQh5uem80Y7WnD91NANDWglOiwNNUaaPzyfod+ZHEfR7uHR8PgeaY47UExEREemNDjbFmTt5pKMZas6kkWnLUBkfgoN+L798/UPuuqLYkXp3XVHML/70AVm+jP/RioiISD8WSyQ5HImyePYER+otnj2Bw5EY8YQOy0iL3KCPFVv3MGJgiOnF+adUa3pxPiMGhvhDxd60beoWERER6QnxhCUSSzK9OJ8ZJaeWoWaU5DO9JJ9ILEEsnp4tpRkfgg2tm7C/88xWFl4ytttBeHpxPgsvGct3ntlKUV4I42ybIiIiIr1KbtDHL1//kNffr+Oh68q6HYRnlOTz0HVlvP5eHb/40weaDpEu8YTl5mmn0xRNsODXm/jiuUUsvrq0y/tbgn4Pi68u5YvnFrHg15toiia4edrpxJO6MU5ERET6t7/UHCAnK8APX6ri/8ydyIPXTkwpQz147UT+z9yJ/PClKnKyAry166DLHX8q40PwgXCMS9pujGuKJvja8i28tfMgTy+YxrdmjTvpqI6ivBDfmjWOpxdM462dB/na8i00RRME/R4uGZfPQd0YJyIiIv1YdpaHm84bzXee2cq1U0ax6PltFAzMYu2d07n7yuIOM9TdVxaz9s7pFAzMYtHz27h2yii+88xW5k8dTU5Weg7LMH1xlFd5ebndtGmTI7Wq9jXw03V/ZdrYodz33NtHnvd6DDNLCphddhqFg0PEEkkisSRBvwe/18Oeg2FWVuzllar9JI5a9X3ounP4r79+zNc+fxYlIwY60qOIiIhIb/Phx014PYbLHn0VrzEsnTeJfQ1h/u8r77Nk7tlMHDUYrzE0tsSJxBIE/V5ys3wkrGXbroMsfuEd/u7zZzFiYOu21IS1vPytS0lYy5ihOY70aIzZbK0tP9FrGX/31qCgnxVb93DVOSOYWVLA2qr9ACSSlpe21/LS9loAfB5DwOchGk+edKvDzJIChuT4+UPFXu67qjRt34OIiIhIusWTSWobWqdDLHp+G19bvoVryk7jidvO49V36/jH1dXU1IfJDXgZkhPgQFOUxmiCorwQ86aM4onbzuMXf/qAP1RUAvDgtRPZe7CZvNystPSf8SHY5zUU5YX43/++lV/cdh7AkSB8tHjSEo8mTlpnZkkBCy4Zyx2/2khRXgifV7fGiYiISP8VT1iyfB7OPyOPGSX5rKuq4w8Ve3lx2z5mlhTw7cuLO/w0/cevvH/k0/QZJfmcPzaPxkiceCI9uxQyPgTnZQe45YIxPLiqkjt+tZGl8yZx6fh8vv8flURinc+pC/o93PeFUobmZnHHrzbSFE3wrQvGkJeTnt9iRERERHpCbtDHT9f/lWljh/DAnInczzbWVdWl/Gn6jJJ8Hpgzkdfe288bf63n7i+UpKX/jL8xzuv1cE1Z4WdujNv4YT1PL5zGty8f3+Gm7m9fPp6nF05j44f1n7kx7uqyQrwerQSLiIhI/xXwevhLzQEGhbL4weoq7vtC6QmnQ8STluZo4rgA3D4d4r4vlPKD1VUMCmXx1q6DBNJ04FjG3xgHEI0neeGt3dz1TMWR5050Y1xLLElWJzfGPTKvjLmTR6btH1BERESkJyQSSX7x+of8aM27LLu1nMf/uIOLzxrG5WePYGXFHpZv2ElNffi49xXlhZg/dTRXlxXy0jv7eO39j1l4yVgW/HoT37xsPLdfdIZji4kd3RinENymvinK3c9U8HJl7Qlf78qNcZeVDmfpvDKG5AQc7U1ERESkN9p3KMz0H6z/zHSIH619j4UXj+XzpQVkB3w0tcSP7AnOyfLRHI3zSuV+Hn9tB9+YOe4z0yHWf3s6Iwad+FP47lAI7qJPGlu45/dvnzQId+Sy0uE8fMM5DE3THY0iIiIiPS0aT/L8W7v4zjOtY2avKTuNOz53Bq++W8czW3ZRUx8m6POQG/TRGIkTiSePTIe4dHx+23SIvQAsnVfGtQ5/mq4QnIL6pihrK2tZ/MK2Lt8Yt2TuRGaVDtcKsIiIiGSc+qYo33lmK2sqW6drdeeshVmlBTwyb5LjWUpzglOQlxNg7uSRXDwun5UVe/j1Gx+edD/LbReOYfY5heTlBLQHWERERDJSIpHkGzPHYW3rmNlUp0PMLCngGzPHEU90vvjoJK0EdyCRSFLfHCWetDRG4rTEk2S1Len7PIa8nCxNgRAREZGM1dwS5/m3dvPgqkqWzpvEJ40t3Roz+51ntrJodinX/s1IsgPOrdFqJbibvF4P+QOCrQ8G9WwvIiIiIr3NgXCMB1ZuJxJLHjkx7umF0/jTex/z2001J/00/UvlRXxu3DB+8dqne4IfWLmdS4sLHA3BHVEIFhEREZGUxWIJXnhr92dWfU92YtyJxsw+uua9z4yZjcSSrHhrN//jojPw+72u968QLCIiIiIpq2tq4akNO497PtU9wUdbvmEncycXUjg425Wej6YQLCIiIiIpS1pOuN3hWPGkJR5NdKlmTX2YTnKyYzTSQERERERSdjgS71N1j+V6CDbGXGmMqTbGvG+MuecEr482xqwzxvzFGFNhjLnK7Z5ERERE5NSEY11b3U1VxKW6x3J1O4Qxxgv8BLgM2AVsNMassNZuP+qy7wL/bq39F2PMBOBFYIybfXXV0SPSDkfixOIJ/D4vA9pHpGUH8Hq1mC4iIiKZJ+Rz5+a1oEt1j+X2nuCpwPvW2h0AxpingbnA0SHYAgPb/j4I2ONyT52KxpPUN0XZWnMQi2VYbhbReJJoPEnA56EhHOPjxhYMMKloiA7LEBERkYyTG3QnRrpV91huJ7eRQM1Rj3e1PXe0fwD+uzFmF62rwF8/USFjzEJjzCZjzKa6ujo3egVaj/7b8MEn7GuI0BL/dDneAglrOXqvdiSWZF9DhA0ffEJ9U9S1nkRERER6o6K8UK+u15HeMB3iJuBX1tp/MsZcADxpjJlorf3MUSPW2seBx6H1xDg3GvmksYV3aw8TiSXIDfrZ8XETv9+y66SDnm+YMorTh+UQiSWo3tfA+OEDGJqb5UZrIiIiIr1KbtDLTeeNZunqasdqzp86mgH9ZCV4N1B01ONRbc8d7Q7g3wGstW8AQWCYy30dp74pyt6DYayFj+qbufHxN3hszXsnHf1RUx/msTXvcePjb/BRfTPWwt6DYQ5oRVhEREQyQDxhuWZSIUG/M3Ey6PdwdVkhsUTnRy47we0QvBEYZ4w5wxgTAG4EVhxzzU5gJoAxppTWEOzefocTiMaTfHw4QsLC46/tYMnKrp15Da1bIpasrOTx13aQsFDXGCEaT88/noiIiEhPycsOUNfYwuLZExypt3j2BOoOR8jLSc+n6q6GYGttHPg7YDVQSesUiHeMMQ8YY+a0Xfa/gQXGmK3AU8Bt1to0jUludbA5SixpeXTNu6yv7l7+Xl9dx6Nr3iWWsBxs1mqwiIiI9G9er4fCQSHOPyOPGSX5p1RrRkk+54/No3BwNl6PcajDjrk+0sBa+6K1dry19kxr7YNtz91vrV3R9vft1tqLrLWTrLWTrbUvud3T0RKJJC2JJG/u+KTbAbjd+uo63tzxCdF4kkSalvJFREREekpeToDKvQ08MGdit4PwjJJ8Hpgzkco9DeTlBBzu8OQyfq7XoUiMlliSRxza1P3I6moi8SSHIjFH6omIiIj0VgGfh4vG5fPYy+9y3xdKefDaiV3eIxz0e3jw2onc94VSHnv5XT43Lj+tI2czPgTHk0lWVezp8h7gzkRiSV58ew9xrQSLiIhIBsjLCXDf7FKW/mc1kViCl791KXdfWXzScWdFeSHuvrKYl791KZFYgqX/Wc19s0sZksZVYOgdI9J6VEvM8syWXY7W/N3mXVz3N6McrSkiIiLSWw3NzeIf55WxtrKW2f/8GgsvHsvPbj6X7ICPppY4kViSoN9DTpaP5micVyr3M/ufX2Px7AksnVeW9gAMCsFYa086Bq27aurDfPZYDREREZH+LS8nwNzJI7l4XD4rK/bwlSc3U1MfJujzkBv00RiJE4knKcoLcduFY3jpm5f26Km7GR+CG1vi7tSNJDq/SERERKQfCfg8jBgU5MsXjmHu5ELiSUtjJE5LPElWWxj2eQx5OVlpmwJxMhkfgltcmukbjSsEi4iISGbyej3kDwi2PhjUs72cTMbfGBfye12pG3SproiIiIicuowPwTlZ7iyGu1VXRERERE5dxodga+1JR3h0V1FeiDQfeiciIiIiKcj4EAxw87TTe3U9EREREXFWxn9mb4zhkvH5/PDldx05MCPo93DJuHyM6dk7HkVERER6SrglxifNrafnHg7HCccShPxeBoRao+fQbD+hLH9PtqgQ7PUYntqwk/uvPpv7nnv7lOv9/dVns3zjTv7nJWc60J2IiIhI33GgOUpzS4IX3trNUxt3nvAshqK8EDedN5q5k0eSneVlSHb6D8oAbYcgPyfAyMEh8nL8zCwpOKVaM0sKGJLjZ9TgEMMGZDnUoYiIiEjvt+9QhBcr9jLzh+tZurr6pIeR1dSHWbq6mpk/XM+LFXvZdyiS5k5bZXwI9vu9XF1WyKLn3mbBJWO7HYRnlhSw4JKxLHruba4uK8TvzfgfrYiIiGSI2oYI9z5XwaLnt3V5e2kklmTR89u497kKahvSH4SV1IDBIT93XVnCHb/ayPVTRvHAnLMJ+rv2own6PTww52yunzKKO361ke9cWcLg7J7d4yIiIiKSLvsORbjn2QrWVdV16/3rquq459n0B2GFYCA7y8fniwuYNnYoX1u+hY0f1vP0wml8+/LxR8an+TyG7IAXX9sRf0V5Ib59+XieXjiNjR/W87XlW5g2digzigvIDmT8VmsRERHJAAeao6ytrO12AG63rqqONdtrOdgcdaizzpm+OM+2vLzcbtq0yfG6+xsi3Pvs26yt2k/A5+EbM89iRkkBOQEfjZE4kViCoN9LbtBHUzTOK5X7+fEr7xONJ5lZUsBD159DwcCg432JiIiI9Ea7D4SZ+cP1jk3YWnvndEYOce78BmPMZmtt+Yle05LlUQoGBnno+nOo2neYQSE/r7//MV95cnOHdzb+7isXcCgco2TEAAVgERERyRjhlhgvvLXbkQAMrXuEV2zdzW0XnJ6W8WnaDnGMpIW9h8J86fE3unRn45cef4O9h8Ik+96CuoiIiEi3fdIc46mNOx2tuXzDziPzhd2mEHyU2oYI333+be7+/dsp3dl49+/f5rvPv90jdzaKiIiI9ARrOeliYXfV1IdJ105dheA2tYciLHrubdZU7u/W+9dU7mfRcwrCIiIikhkaI3F36ra4U/dYCsHAoeYo69/d3+0A3G5N5X7WV++nIZy+OxtFREREekI4lnClbsSlusdSCAaaogn+fsU7jtT6+xXv0NiSnn88ERERkZ4S8ntdqRv0uVP3WBkfgiMtMVZW7HX0zsZVFXuJtKRnU7eIiIhIT8gNujNkzK26x8r4EFwfjvHkmx86WvM3b35IfVghWERERPovYzhyqJhTivJCGONoyZPK+BCcSLpzZ2PCmYVlERERkV5paLafm84b7WjN+VNHk5+b5WjNk8n4ENzk0hONXPIAACAASURBVB2ITdH03NkoIiIi0hNCWX7mTh5J0O9MnAz6PcyZNJIsl/YaHyvjQ7BrdzZGdXOciIiI9G/ZWV4Wz57gSK3FsyeQk5WeAAwKwQR87vwI3KorIiIi0lsMyQ4ws3Q4M0ryT6nOjJJ8Zk0YzuDsgEOddS7jk9qALJfubHSproiIiEhvMmJQkIevL+t2EJ5Rks/D15cxfGDQ4c46lvEh2Bjj0p2Nabq1UURERKSH+TyGh647hwevndjlPcJBv4cHr53IQ9eV4fOkPzdlfAj2+wzzpoxytOYXzx1FwKcQLCIiIv1ffVOUe37/NtMeeoWLxw9l7Z3TufvK4pMuMhblhbj7ymLW3jmdi8cPZdpDa7nn929zoCm9J+7qM/skzC4r5F9e/asjB2YE/R5mn1OI1Yg0ERER6eei8SRrK2t5ubIWgEuWvkpeToDnv3ohV5cVAtDYEicSSxD0e49sF7U2yTX/90/UtwXflytrWVNZy9zJI9N2X1XGrwTHkpacLC93XVHsSL27rigmJ+AllrSO1BMRERHpreqboix+YdtnngvHEmzbfYiEtRjAWovf0/pfAySspWLXoeMmdC1+YduRUJwOGb8SbAz88d06LjxzGNOL81lfXdftWtOL87nwzGGsf3c/nxt3andJioiIiPRmiUSSlRV7PvNJ+s9vOZfS0wbxwlu7eeg/q054IFlRXoibzhvNmm9dSuXeQ/yP32wGIBJrrfflC8fg9bq/TpvxK8H5OQE+aYzi9xq+NWs804u7F16nF+fzrVnj8XsNB5pjFAxIz2knIiIiIj2hvjnKr9/4EIDT80K8fvcMahtamPnD9SxdXX3SE3lr6sMsXV3NzB+up7ahhdfvnsHpbfuHf/3Gh9Q3p2c1OONDcFbAx9zJI/nyExsYmhNg4cVjWXx1aUp3Ni6+upSFF49laE6ALz+xgTmTRhLwpW/Ys4iIiEi6xZOWmvowp+eF+O1XLuS7L2xj0fPbunyPVSSWZNHz2/juC9v47Vcu5PS8EDX1YeJp2lKa8SEYYGDQx99eehbX/fR18gdkcVZ+Lk8vvIBvzRrX4Z2N35o1jqcXXsBZ+bnkD8jiup++zt9eehaDQhm/y0RERET6ucOROADLF0zj3ucqWFfVvS2l66rquPe5CpYvmAZAY1tdtymtAQNCfmaVDmdNVS2XPfpHFs8u5fKzRzCuIJdFV5UyNDeLWCJJJJYk6Pfg93r4pLGFpLUMzQmw+cN6bn1i45HTTnKD/p7+lkRERERc1RJL8PNbzmV9dV23A3C7dVV1rC+pY9kt59IST8+ILWNt35tiUF5ebjdt2uR43dqGCPc82/qbTMDn4X99/iw+X1pAdsBHU0ucaDxJwOchJ8tHczTOK5X7+fEr7xONJ3vstBMRERGRnvBu7WFyAj5m/nC9Y2Nm1945naZonPHDBzjQIRhjNltry0/0mlaCjzJ8YJCHrytjTWUtS1Zt5wcvvcsPXnoXgKDPQ27QR2MkTuSo31DaTzuZNWG4ArCIiIhkjOEDA/zbmzWOBGBo3SO8Yutu5p9f5Ei9zigEH2P4oCBzJxcyvbiAFVt3s3zDTmrqw0TiSSKNn96tWJQXYv7U0cyZPJJBQZ+2QIiIiEhGORxJ8NTGnY7WXL5hJ9dMKmTQiW/JcpRC8AnkBv3kBv3cfuEYrplUiLXHn3ZiDBQMyNIUCBEREclI1nLSMWjdVVMfJl07dRWCO5AV8DEqoB+RiIiIyLHcmuLQ2JKe6RAakSYiIiIiKTv22GOnRFyqeyyFYBERERFJWcjvzpbQYJq2mioEi4iIiEjKcoPubBl1q+6xFIJFREREJGXGcNKTdburKC+EMY6WPCmFYBERERFJWX5OgJvOG+1ozflTR1MwIMvRmiejECwiIiIiKcsK+Jg7eSRBvzNxMuj3MGfSyLSNn1UIFhEREZFuGRj0sXj2BEdqLZ49gUGh9I2mVQgWERERkW4ZEPIzq3Q4M0ryT6nOjJJ8Zk0YntYTeBWCRURERKTbhg8K8vD1Zd0OwjNK8nn4+jKGDww63FnHFIJFRERE5JQMHxjk4evKePDaiV3eIxz0e3jw2ok9EoBBxyaLiIiIiAOGDwoyd3Ih04sLWLF1N8s37KSmPnzcdUV5IeZPHc2cySMZFPSldQvE0RSCRURERMQRuUE/uUE/t184hmsmFWItNLbEicQSBP1ecrN8GAMFA7LSNgXiZBSCRURERMRRWQEfowK9O2Z2a0+wMWaO042IiIiIiKRLpxHdGHP9sU8BPzHG+ACstc+60ZiIiIiIiFu6sk79W2A1sJ/WAAyQA1wDWEAhWERERET6lK6E4AuBh4GN1tp/ATDGTLfWftnVzkREREREXNLpnmBr7UbgMiBgjFlnjJlK6wqwiIiIiEif1KXb9qy1SeBHxpjfAY+525KIiIiIiLtSmg5hrd1jrf1v1tqxx75mjPln59oSEREREXGPk8cmX+RgLRERERER1zgZgkVERERE+gSFYBERERHJOE6GYNP5JSIiIiIiPa/LhzobY86x1r7dwSU/cqCfXqUlGqeuKQrA4XCccCxByO9lQKj1x5afEyCrl5+LLSIiIiLHSyXB/dQYkwX8Cvg3a+2ho1+01v7Kwb561OFwjIZInBfe2s1TG3dSUx8+7pqivBA3nTeauZNHMjDoY0DI3wOdioiIiEh3GGu7fu6FMWYccDvwRWAD8IS19mWXejup8vJyu2nTJldq1x6KsKayliWrthOJJTu9Puj3sHj2BGaVDmf4oKArPYmIiIhI6owxm6215Sd8LZUQ3FbMC1wL/BhooHUv8H3W2mdPtdGucisE1zZEuOfZCtZV1aX83hkl+Tx8fRnDByoIi4iIiPQGHYXgLt8YZ4wpM8Y8ClQCnweusdaWtv39UUc67UG1h7ofgAHWVdVxz7MV1DZEHO5MRERERJyWynSIfwa2AJOstV+z1m6B1lPkgO+60Vy6HA7HWFNZ2+0A3G5dVR1rttfSGIk51JmIiIiIuCGVEDwbWG6tDQMYYzzGmGwAa+2TbjSXLg2ROEtWbXek1pJV2zkUjjtSS0RERETckUoIXgOEjnqc3fZcn9YSbZ0C0ZWb4LoiEkuyYutuWqIKwiIiIiK9VSohOGitbWx/0Pb3bOdbSq+6pihPbdzpaM3lG3YemS8sIiIiIr1PKiG4yRgzpf2BMeZc4PgBuscwxlxpjKk2xrxvjLnnJNf8N2PMdmPMO8aY5Sn0dMqs5YRzgE9FTX2YFIduiIiIiEgapXJYxjeB3xlj9tA6Fm0E8KWO3tA2Tu0nwGXALmCjMWaFtXb7UdeMA+4FLrLWHjDGFKT4PZySxog72xYaW7QdQkRERDJTXzh1t8tf3Vq70RhTAhS3PVVtre1sDMJU4H1r7Q4AY8zTwFzg6LvQFgA/sdYeaPs6+7vakxPCsYQrdSMu1RURERHprfrSqbupRvDzgDFt75tijMFa+5sOrh8J1Bz1eBdw/jHXjAcwxrwOeIF/sNb+57GFjDELgYUAo0ePTrHtkwv5vY7VOlrQ505dERERkd6oq6fu1tSHWbq6mh+/8l6Pnrrb5RBsjHkSOBN4C2hf5rRARyG4qz2MA6YDo4A/GmPOsdYePPoia+3jwOPQemLcKX7NI3KD7izFu1VXREREpLepbYhwz3OpHToWiSVZ9Pw21lTV9sipu6kktXJggk3tnOXdQNFRj0e1PXe0XcCf27ZWfGCMeZfWULwxha/Tbca0Lss7eXNcUV4IYxwrJyIiItJr1R5KPQAfrf3U3XQH4VSmQ2yj9Wa4VGwExhljzjDGBIAbgRXHXPM8ravAGGOG0bo9YkeKX6fb8nMC3HSec9srAOZPHU3BgCxHa4qIiIj0Nn351N1UQvAwYLsxZrUxZkX7n47eYK2NA38HrAYqgX+31r5jjHnAGDOn7bLVwCfGmO3AOuAua+0nqX8r3Td38kiC/lR+FCcX9HuYM2kkNqkZaSIiItK/9eVTd1PZDvEP3fkC1toXgRePee7+o/5ugTvb/qRdXVOUD+qaWDx7Aoue33bK9RbPnsCOusNYchnVw6M/RERERNzi1qm7t184Ji3j07q8/GmtfRX4EPC3/X0jsMWlvtLGWrj5lxuYXpzPjJL8U6o1oySf6cX53PzLjTosQ0RERPq1vn7qbpdDsDFmAfAM8LO2p0bSup+3T2s/LGP+sjd56LqybgfhGSX5PHRdGfOXvdlaV4dliIiISD/W10/dTWUj7NeAi4AGAGvte0BaT3dzQ/thGR/Vh7ntiT/z/evO4cFrJ3Z5j3DQ7+HBayfy0HXncNsTf+ajtv8ZdFiGiIiI9Gd9/dTdVEJwi7X2yPq0McZH65zgPq39sIycgJf7rzmbe599m4KBWay9czp3X1lMUV7ohO8rygtx95XFrL1zOgUDs7jn2be5/5qzyQm01tNhGSIiItKf9fVTd1PZdfyqMeY+IGSMuQz4KvAHd9pKn/ZDLZbOm8Tjf9zB+uo61lfXEQp4eeSGc3jyjvPxGkNjS5xoPEHA5yU3y0fCWrbtOsisR18lHP30H2vpvEl8bfkWHZYhIiIi/VpfP3U3laR2D3AH8DbwFeBFa+0yV7pKI48Hbr3wdPY1hFlf/emMu2g8yR8q9pKwMHJwiGgiSTSeJOBL0NQSZ/fBMKsq9hKNf3pH5PrqOi4eN4xbLjwdjw7LEBERkX6sr5+6m8pX+bq19kfAkeBrjPlG23N9lt9ruHnaGK7+59eOPDdnUiG3XzSG9e/W8YOXqk+46bsoL8QNU0bx1eln8svXP2TF1j0APLK6mpVfv5gsrzNzh0VERER6o75+6m4qSe3WEzx3m0N99BhrYW1lLZFYkpyAl5/Mn8KkokHcuOxNHlvz3kn/YWvqwzy25j1uXPYmk4oG8ZP5U8gJeInEkrxSVUui72+XFhERETmpvn7qbqch2BhzkzHmD8AZR58UZ4xZB9S736K7wtEk/+/PH5ET8LLs1nJ+t7mGJSsruzz4ORJLsmRlJb/bXMOyW8vJCXh58s2PCDs0OFpERESkN8oK+Fw5dTfQi/YE/xewl9Zjk//pqOcPAxVuNJVOxrSu6v5k/pQjN8Z1R/v72m+M05ZgERER6e8GBn2Onro7KJS+wQKdfiVr7UfAR8AF7reTfs0tCeZMKqT2mBvjumN9dR2XjBvGNWWn0RzVnGARERHp3waE/MwqHc6aqlrWVXU/R80oyWfWhOHkBv0OdtexVE6Mu94Y854x5pAxpsEYc9gY0+Bmc+nQEk9y+0VjWLq62pF6S1dXc8fnzvjM1AgRERGR/mr4oCAPX39qp+4+fH0ZwwcGHe6sY6ls4lgKzLHWDrLWDrTWDrDWDnSrsXTJy/HzXzs+6fIe4M5EYkne2PEJQ7LT95uMiIiISE8aPjDIw9eVdevU3Z4IwJDaiLRaa22la530EI/H8NSGnY7WXL5hJ9dMKnS0poiIiEhvNnxQkLmTC5leXMCKrbtZvmHnScfMzp86mjmTRzIo6EvrFoijpRKCNxljfgs8D7S0P2mtfdbxrtLIgKPz7WirpxvjREREJNPkBv3kBv3cfuEYrplUiLXQ2BInEksQ9LeeumsMFAzIStsUiJNJJQQPBJqBy496zgJ9OgQfjsTdqdviTl0RERGR3i4r4GNUIH2THrqjy91Za7/sZiM9xam9wMdq0ZxgERERkV4rlekQ440xa40x29oelxljvutea+mR5XPneOOAjk0WERER6bVSSWrLgHuBGIC1tgK40Y2m0ik7y539KG7VFREREZFTl0oIzrbWbjjmuT6/8dXSepeik4ryQlhHK4qIiIiIk1IJwR8bY86kNTdijJlH63HKfVp2wMMNU0Y5WnPelFFk+7USLCIiItJbpRKCvwb8DCgxxuwGvgn8T1e6SqN4wjKzpKDLg507E/R7+HxJAfGkbowTERER6a26nPystTustbOAfKDEWvs5a+2HrnWWJvk5Wew6GOauK4odqXfXFcXsOhgmf0D6Tz4RERERka5JZTrEN4wx7bOCHzXGbDHGXN7Z+3o7v99L2ajBFA4KMb24e2det5tenE/hoBBlowbj13QIERERkV4rlaR2u7W2gdbDMoYCNwMPu9JVmg0J+TkcibHwkrHdDsLTi/NZeMlYDkdiDMnumeP/RERERKRrUgnB7ScBXwX8xlr7zlHP9WnZWT6mFxfw5Bsf8sVzi1h8dWmX9wgH/R4WX13KF88t4sk3PmR6cQHZvfyEFBEREZFMl0pa22yMeQk4A7jXGDMA6Dd3fxUMDPK9ORO5+9kKcgM+nl4wjVffreOZLbuoqQ8fd31RXoh5U0Zx6fh8fvGnD2iMfsw/Xl9GwUDtBRYRERHp7Yy1XZtoa4zxAJOBHdbag8aYocDItkMz0qq8vNxu2rTJldr7GyKsqazlwRcruejMYcwuO43CwSFiiSSRWJKg34Pf62HPwTArK/byX3/9mEVXlTKrdLgCsIiIiEgvYozZbK0tP9Frna4EG2NKrLVVtAZggLHG9ItdECdUMDDItX8zkkuLC1jx1m5+8FI1NfVhfB5DwOchGk8ST1qK8kLMnzqa7805m8HZfm2BEBEREelDupLc7gQWAv90gtcs8HlHO+oN2hbHzz19CDNKCgj6vTS1xI+sBOdk+YjEEjSEY62X6ng4ERERkT6l0xBsrV3Y9t8Z7rfT89q3QzywcjuR2KdbnoM+D7lBH42ROJH4Uc/7Pdx/9QRthxARERHpQ1KZE/zFtpvhMMZ81xjzrDHmb9xrLf32N0S4+9kK7ntu22cCMEAknuTjxuhnAjBAJJbkvue2cfezFexviKSzXRERERHpplRGpC221h42xnwOmAX8AvhXd9pKv/YAvK6qrlvvX1dVpyAsIiIi0kekEoITbf+dDTxurV0FBJxvKf2aW+KsqaztdgBut66qjjWVtTRH4w51JiIiIiJuSCUE7zbG/Az4EvCiMSYrxff3WgfCMR5Yud2RWg+s3M6B5pgjtURERETEHamE2P8GrAausNYeBPKAu1zpKo1isQQvvLX7uD3Ax/J5DNkBLz5Px+PhIrEkK97aTSyW6PA6EREREek5XR5ua61tNsa8AAw3xoxue7rKnbbSp66phac27Dzuea/HMKu0gKvOOY2Rg0O0xJNEYgmCfi9ZPg+7D4ZZVbGXtVX7SSQ/OyNt+YadzJ1cSOHg7HR9GyIiIiKSgi6HYGPM14G/B2r59LhkC5S50FfaJC3HHYs8Z1Iht180hvXv1h05LOPYEWlFeSFumDKKr04/k1++/iErtu458v6a+jBJzQ4WERER6bVSOebsG0CxtfYTt5rpCYcjn97ElhPwsnTeJPY1hLnliQ387SVj+dnN55ITaA2/4ViCkN9LbtBHUzTOK5X7ueWJDXxj5jiuOHsE33lmK03RxHF1RURERKR3SSUE1wCH3Gqkp4Tb9u7mBLwsu7Wcx/+4g0vGDWPV1y/mD1v38JUnNx+3UgxQlBfipvNGs+rrF/Py9n38bnMNy24tZ8GvN9EUTRDRnmARERGRXiuVG+N2AOuNMfcaY+5s/+NWY+kS8nkBWDpvEr/dsJNFV5WS5fNy2aOvsnR19QkDMLRueVi6uprLHn2VLJ+XRVeV8tsNO1k6bxIAwba6IiIiItL7pLISvLPtT4B+Mh8YIDfoY86kQg6FW/j2FSXcv2LbCecFn+zY5EgsyaLntzGjJJ8H5kzktff2c03ZaeQGU/nRioiIiEg6pTId4nsAxpjctseNbjWVbgsuPoOQ3/uZABzwefjmzLOYXlLQ4Z7gH7/yPtF4knVVddzPNhZdVco5Iwf38HckIiIiIh1JZTrEROBJWucDY4z5GLjFWvuOS72lxcCQl9qGJBW7Dh0JwPdfXcplE0Z8Zk+wz2MI+DxE40niSXtkT/DaOy/l5e37eGBlJeuq6phVMpziEQMYFNJKsIiIiEhvZazt2iwvY8x/AYustevaHk8Hvm+tvdC99k6svLzcbtq0yZFaew42k0jCZY++yoAsH8sXTGPDB/V8/z8q+dxZwzqdE/z6Xz/mvi+UMvWMPOYve5PDLXFe/taleD1oTrCIiIhIDzLGbLbWlp/otVSWK3PaAzCAtXa9MSbnlLvrYSG/l6c21DAgy8ezX72I+1dsY0CWn3+74/zPzAk+1rFzgtdU1fLsVy/i+p++zsqKPdx4XlEPfDciIiIi0hWphOAdxpjFtG6JAPjvtE6M6NMaWxI8tXEnyxdM4/svbmfelCL2NYS5cdmbHR6lXFMf5rE17/Gvr/6Vu64oZsTAEN9/cTvLF0zj9l9v5OqyQob0+V8RRERERPqnVLZDDAG+B3yO1pPiXgO+Z6094F57J+bkdoia+mZe3r6PnICPoqHZPP7HHayvPn46RGemF+ez8JKx1HzSTGNLnMvPHkFRnrZDiIiIiPQUR7ZDtIXd/+VYV71EYyTOZRNGsG33oW4HYODI+75UXsSFZw2jsUUnxomIiIj0Vl0+LMMY87IxZvBRj4cYY1a701b6DAj52Lb7EHsOhbsdgNutr65jz6Ew2/YcYqDmBIuIiIj0WqmcGDfMWnuw/UHbynCB8y2ll7UwakiIR1ZXO1LvkdXVjBocItm1XSYiIiIi0gNSCcFJY8zo9gfGmNNp3RvcpwV8hrVV+zu8CS4VkViSV6r2E/AZR+qJiIiIiPNS+cx+EfAnY8yrgAEuBha60lUahaNJfr9ll6M1n9myi7l/M9LRmiIiIiLinFRujPtPY8wUYFrbU9+01n7c/rox5uy+eHqcMZxwDvCpqKkPo3VgERERkd4rpbu32kLvypO8/CQw5ZQ7SrPmloQ7daPu1BURERGRU5fKnuDO9MnFz5a4M3uBjxV1qa6IiIiInDonQ3CfvEku6HfyR/CpLJ87dUVERETk1GV8UhsY8vepuiIiIiJy6pwMwVEHa6WN32soygs5WrMoL4Tf2yd3h4iIiIhkhJRCsDGmzBgzxxhzffuf9testdM6em9vlZcd4JYLxjha89YLxpCXk+VoTRERERFxTpenQxhjfgmUAe8A7Xd9WeBZF/pKG6/XwzVlhfzTS9WOHJgR9Hu4uqwQr0crwSIiIiK9VSoj0qZZaye41kkPyssJsGTuRO56puKUay2ZO5G8nIADXYmIiIiIW1LZDvGGMaZfhuCAz8PM0uFcVjr8lOpcVjqcWaXDCWgyhIiIiEivlspK8G9oDcL7gBZa5wJba22ZK52lWV5OgIdvOAd+Dy9X1qb8/stKh/PwDecwRKvAIiIiIr1eKiH4F8DNwNt8uie4Xxmam8U/zivj8spaFr+wrUt7hIN+D0vmTmRW6XAFYBEREZE+IpUQXGetXeFaJ71EXk6AuZNHcvG4fFZW7OHXb3xITX34uOuK8kLcduEYZp9TSF5OQFsgRERERPqQVELwX4wxy4E/0LodAgBrbZ+eDnEiAZ+HEYOCfPnCMcydXEg8aWmMxGmJJ8nyecgN+vB5DHk5WZoCISIiItIHpRKCQ7SG38uPeq7Pj0jriNfrIX9AsPXBoJ7tRURERESc0+UQbK39spuNiIiIiIikSyqHZQSBO4CzgWD789ba213oS0RERETENanczfUkMAK4AngVGAUcdqMpERERERE3pRKCz7LWLgaarLW/BmYD57vTloiIiIiIe1IJwbG2/x40xkyk9VaxAudbEhERERFxVyrTIR43xgwBFgMrgFzgfle6EhERERFxUSrTIX7e9tdXgbHutCMiIiIi4r4ub4cwxgw3xvzCGPMfbY8nGGPucK81ERERERF3pLIn+FfAaqCw7fG7wDedbkhERERExG2phOBh1tp/B5IA1to4kOjsTcaYK40x1caY940x93Rw3Q3GGGuMKU+hJxERERGRlKUSgpuMMUNpPSoZY8w04FBHbzDGeIGfAF8AJgA3GWMmnOC6AcA3gD+n0I+IiIiISLekEoLvpHUqxFhjzOvAb4Cvd/KeqcD71tod1too8DQw9wTXLQH+EYik0I+IiIiISLekEoK3A88BG4FaYBmt+4I7MhKoOerxrrbnjjDGTAGKrLWrUuhFRERERKTbUgnBvwFKgO8D/wyMp/Uo5W4zxniAHwL/uwvXLjTGbDLGbKqrqzuVLysiIiIiGS6VwzImWmuP3s+7zhizvZP37AaKjno8qu25dgOAicB6YwzACGCFMWaOtXbT0YWstY8DjwOUl5fbFPoWEREREfmMVELwFmPMNGvtmwDGmPOBTZ28ZyMwzhhzBq3h90ZgfvuL1tpDwLD2x8aY9cC3jw3AIiIiItJ3tETj1DVFATgcjhOOJQj5vQwItUbP/JwAWYFUYqjzOv3qxpi3aZ0I4Qf+yxizs+3x6UBVR++11saNMX9H63xhL/BLa+07xpgHgE3W2hWn+g2IiIiISO9wOByjIRLnhbd289TGndTUh4+7pigvxE3njWbu5JEMDPoYEPL3QKdgrO14Z4Ex5vSOXrfWfuRoR11QXl5uN21yf7G4L/wWIyIiItIb1B6KsKayliWrthOJJTu9Puj3sHj2BGaVDmf4oKArPRljNltrT3gGRacJridCbk/rS7/FiIiIiPS02oYI9zxXwbqqrg8viMSSLHp+G2uqann4+jKGD3QnCJ9MpyvBvZGbK8G98bcYERERkd6q9lDqAfhYM0ryXQnCHa0EpzIird9r/y1m0fPbjgvAuQEvRUNC5Aa8n3m+/beYe56roLZBZ32IiIhI5jgcjrGmsvaUAjDAuqo61myvpTESc6izzmlDa5tjf4sJBbz807wyJowchM8YGiIxIrEkQb+HgUH//2/vjoPivO/8jn++wO4+uyAhoaCVRcBO2oyAw4jEiIncXmJGyjWpbCHrPNdIuandXHLXmXTa5mYyluuQm4bqIic31/Zueje9ySVxp5V6d7ZsqdY0jqUqaSeTRMKNhGXAvbvUh4LtNTWysAS7LPDrlm0RowAAGllJREFUH4CPYBDs7vPsg9j3a0YD7D5898s8g+azD9/f79GUc7ry87f1padf0sTktM4PjujIyb5QLucDAACEYSw9pZ4zK+2Yuzo9Z/p1346tqvKKM2JKCNZ738V88x/fo6Y7qnXq0rC+9t3BW84En/3ixzXw+nV97j+9+O67mK627UU7gQAAAGHITM6un1rN+OhqpLMzOn15WJ+9966ibDzAOIT+9l3MnTVx/fDRTqXGMtrz+9/X159/ZckALElXRyf09edf0Z7f/75SYxn98NFO3VkTV8+Zfl2fmCryTwAAAFBcIzcndeLikK81j18YendnrqCVfAiefxeT3BDTn/3WvfryqStLzgQvZ34m+MunrujPfuteJTfEdPrysDKTBGEAALB+OadlLxbm6+rohIq1Z0PJh+D5dzHHP/9RPVbAysbzgyN67Jk+Hf/8R4v6LgYAACAMN9LBXPC7kSnOhcSSD8HOSb9zf7O+/8qILysbv//KiL5yf3PR3sUAAACEYSI7HUjddEB1Fyv5EHwjPaWmO6p9XdnYfEd10d7FAAAAhCEeKV/5oDx4FcHUXazkQ/CWqkggKxu3VLI7BAAAWL+qvGB2cAiq7mIlH4IzUy6QlY2ZKeYhAADA+mU2u2Wsn+pr4jLzteSySj4ES8GsbAQAAFjPaiujOrSrwdeahzsatHVDzNeayyn5EHy7r2wEAAAIQyxaoa62OnkRf+KkFynT/p11ijITXBy3+8pGAACAsGz0KtS9r9mXWt37mlUdL97NjEs+BN/uKxsBAADCsiEe0d6mpDobawuq09lYq73NSVV5xdtYoORD8O2+shEAACBMyWpPxw625h2EOxtrdexgq5IbPZ87u7WSD8G3+8pGAACAsCU3ejr2YKuOHmhZ9YywFynT0QMtoQRgSSr5y5VbEhEd2tWgrz//im81D3c0qLaqOCsbAQAA1oJktaeutu26b8dWnb48rOMXhpbcMau+Jq7DHQ3a31anaq+iqCMQC5V8CI7HIupqq9Mf/I+/9OWGGfMrG2MBzRoDAACsVVVeRFVeRJ+99y49sHO7nJvdMSudnZYXKVdVrEJm0tYNsaLtArGckh+HkKRErNzXlY2VMQIwAAAoXWVmKjO9Ox5aMZc4zTT7+Bq4p1jJXwmWpM2JqPY0JXV2MKXzgyN515lf2bgpEfWxOwAAgNvDeGZK1yayOnVpWCduMQ5xqKNBXW112hyPKBELJ46ac2sgiueovb3d9fb2+l43NZbWkZN9eQXhsFY2AgAArAVvjqV1diClrz7Xv6oRUy9Spq/c36y9TUltDSg/mdmLzrn2JZ8jBP+iN66ndW4gpZ4zqz+B3fuatbc5SQAGAAAl6c2xtB4t4ELiEwdbAwnChOAcvT0+qZuZ6VWvbKyMljMCAQAASlIhAXheUEH4ViGYmeAlbEpEtSkhPbL7zluubKytirELBAAAKFnjmSmdHShsTZUknR8c0dmBlA58uE6JaHHiKSH4FuKxiN4fC2fvOgAAgLXu2kRWX32u35daX32uXx/fsbVoIZgt0gAAAJCzbHZapy4N+3KfBUlKZ2d0+tKwstlpX+qthBAMAACAnI3czOjEhSFfax6/MKSRmxlfay6HEAwAAICczTgtuXlAIa6OTmimSHs2EIIBAACQs3fSU7dV3cUIwQAAAMjZRECzu2lmggEAALBWxQPaJtYr0vazhGAAAADkbIMXzFZmQdVdjBAMAACAnJXZ7B10/VRfE1eZ+VpyWYRgAAAA5Ky2MqZDHQ2+1jzc0aDaDf7eOnk5hGAAAADkLBIpV1dbnbyIP3HSi5Rpf1udIuXFiaeEYAAAAORlczyir9zf7Eutr9zfrM2JiC+1VoMQDAAAgLwkYhXa25RUZ2NtQXU6G2u1tympRLQ4i+IkQjAAAAAKsHWjpycOtuYdhDsba/XEwVZt3VicWeB5hGAAAAAUZD4I/+6DLaueEfYiZfrdB1tCCcCSVLxrzgAAAFi3tm70dODDdfr4jq06fWlYxy8M6eroxHuOq6+J6zMdDdrfVqdNiUhRRyAWIgQDAADAF4lohRLRCn3u731AXW3bNeOkd9JTmpyaVrSiXBu8CpWZVLvBK9ouEMshBAMAAMBXZWWmSHmZpmacystMZWYqL5v9V1Fma2IelxAMAAAAX0xOzWj05qSe63tNT/7o1WXHIR7efZfub92umsqoohXhRGJzzoXywoVob293vb29YbcBAACAOaM3J3VuIKXuU1eUzs6seLwXKVNPV4v2NCVVUxkNpCcze9E5177Uc2vhajQAAABuY2/dyOjRp/r0paf6VhWAJSmdndGXnurTo0/16a0bmYA7fC9CMAAAAPI2enNSR55+SS8MpPL6/hcGUjry9Eu6dnPS585ujRAMAACAvExOzejcQCrvADzvhYGUzg6kNDm1uqvIfiAEAwAAIC+jNyfVfeqKL7W6T13RaBGvBhOCAQAAkLPp6Rk91/faqmeAV5LOztabni7O1WBCMAAAAHI2Oj6pJ3/0qq81n/zRqxodL87VYEIwAAAAcjY145bcB7gQV0cnNDVTnO17CcEAAADI2TvpqUDq3gio7mKEYAAAAOQsk50Opm6RdoggBAMAACBnsUh5IHWLdRtlQjAAAABytsGruK3qLkYIBgAAQM4qykz1NXFfa9bXxFVRZr7WXA4hGAAAADmrSUT18O67fK358O67VFMZ87XmcgjBAAAAyFl5eZnub90uL+JPnPQis/XKuRIMAACAtaymMqqerhZfavV0taimMupLrdUgBAMAACAv0Yoy7WlK6hNNyYLqfKIpqb1NyaLtDCERggEAAFCAmsqojv3q3XkH4U80JXXsV+/W5iJeBZYIwQAAACjQlqqYnnioVd94qHXVM8JepEzfeKhVX3+oVVuqirMYbqHibMQGAACAda2mMqqutjr98odq9Vzfa3ryR6/q6uiEtm+M6e9srdRfv3lTr41lVF8T1yP33qV9d29XTWW0qCMQCxGCAQAA4ItoRZm2VXv6TEe9PtmyTZL0zsSUJrLTikfKtSE+Gz23JCKKxyJhtkoIBgAAgD+ujU9qPDOtU5eGdeLikK6OTrznmPqauA7talBXW50SsXJtThR3FnieOedCeeFCtLe3u97e3rDbAAAAwJw3rqd1biClnjP9SmdnVjzei5Spe1+z9jQlta3aC6QnM3vROde+1HNcCQYAAEBBUmNpPfZMn84Pjqz6e9LZGT3+7BWdHUzp2MFWJTcGE4SXw+4QAAAAyNsb19M6cjK3ALzQ+cERHTnZp9RY2ufObo0QDAAAgLxcG5/UuYFU3gF43vnBEZ3tT+nt8UmfOlsZIRgAAAB5Gc9Mq+dMvy+1es7062Zm2pdaq0EIBgAAQM4mMlmdujS8qkVwq5HOzuj05WFNZLK+1FsJIRgAAAA5e2s8qxMXh3ytefzCkN4aJwQDAABgjXJOS+4DXIiroxMq1u69hGAAAADk7EZ6Kpi6mWDqLkYIBgAAQM4mssEsYksHVHcxQjAAAAByFo+UB1LXqwim7mKBh2Az+6SZvWJmf2VmR5Z4/rfNrN/M+szsnJndGXRPAAAAKEyVF8yNh4Oqu1igIdjMyiX9B0mfktQs6ZCZNS867KeS2p1zrZKekvT1IHsCAABA4cyk+pq4rzXra+Iy87XksoK+Etwh6a+ccz9zzk1K+q+SuhYe4Jw775wbn/vyx5LeH3BPAAAAKNCWRESHdjX4WvNwR4Nqq2K+1lxO0CG4TtLVBV//fO6x5fyGpP++1BNm9ptm1mtmvSMjhd2aDwAAAIWJxyLqaquTF/EnTnqRMu3fWadYQLPGi62ZhXFm9uuS2iV9Y6nnnXN/4pxrd86119bWFrc5AAAAvEciVq7ufYsnXfPTva9ZlbHiBGAp+BA8LKl+wdfvn3vsF5jZXkmPS9rvnMsE3BMAAAB8sDkR1Z6mpDobC7tA2dlYq73NSW1KRH3qbGVBh+CLkj5kZh8ws6ikT0s6vfAAM/uwpP+o2QD8ZsD9AAAAwEfbqj0dO9iadxDubKzVsYOtSm70fO7s1gINwc65KUn/TNLzkgYk/blz7mUz+6qZ7Z877BuSqiT9hZldMrPTy5QDAADAGpTc6OlrD7bq6IGWVc8Ie5EyHT3QEkoAliRzxbpBs4/a29tdb29v2G0AAABggbfHJ3UzM63Tl4d1/MKQro5OvOeY+pq4Dnc0aH9bnSqj5YGOQJjZi8659qWeK85uxAAAAFj3NiWi2pSQHtl9px7YuV3OSTcyUzJNy6lcVbEKmUm1VbGi7QKxnDWzOwQAAADWFzNJThqfnP04fyOMmZmZMNuSxJVgAAAA+OTa+KTGM9M6dWlYJy4uPw5xaFeDutrqlIiVa3MRd4RYiJlgAAAAFOyN62mdG0ip50y/0tmVr/R6kTJ172vWnqaktlUHszCOmWAAAAAEJjWW1mPP9On84Orv6pvOzujxZ6/o7GBq/W2RBgAAgPXtjetpHTmZWwBe6PzgiI6c7FNqLO1zZ7dGCAYAAEBero1P6txAKu8APO/84IjO9qf09vikT52tjBAMAACAvIxnptVzpt+XWj1n+nUzM+1LrdUgBAMAACBnE5msTl0aXtUiuNVIZ2d0+vKwJjJZX+qthBAMAACAnL01ntWJi0O+1jx+YUhvjROCAQAAsEY5pyX3AS7E1dEJFWv3XkIwAAAAcnYjPRVM3UwwdRcjBAMAACBnE9lgFrGlA6q7GCEYAAAAOYtHygOp61UEU3cxQjAAAAByVuUFc+PhoOouRggGAABAzsyk+pq4rzXra+Iy87XksgjBAAAAyNmWRESHdjX4WvNwR4Nqq2K+1lwOIRgAAAA5i8ci6mqrkxfxJ056kTLt31mnWECzxosRggEAAJCXRKxc3fuafanVva9ZlbHiBGCJEAwAAIA8bU5Etacpqc7G2oLqdDbWam9zUpsSUZ86WxkhGAAAAHnbVu3p2MHWvINwZ2Otjh1sVXKj53Nnt0YIBgAAQEGSGz197cFWHT3QsuoZYS9SpqMHWkIJwJJUnI3YAAAAsK5tq/a0r/UO3bdjq05fHtbxC0O6OjrxnuPqa+I63NGg/W11qoyWF3UEYiFCMAAAAHyxKRHVpoT0yO479cDO7XJOupGZUjo7LS9SrqpYhcyk2qpY0XaBWA7jEAAAAPBV2dwdL8wkOSkenf347o0wnAurtXdxJRgAAAC+eGciq7H0lE5dGtaJi8uPQxza1aCutjpt9Cq0IR4JoVPJ3BpI4rlqb293vb29YbcBAACAOanraZ0dSKnnTL/S2ZkVj/ciZere16y9TUklq4NZGGdmLzrn2pd6jivBAAAAKEhqLK0jz/Tp/ODIqr8nnZ3R489e0dnBFFukAQAA4PaSup7WkZO5BeCFzg+O6MjJPqXG0j53dmuEYAAAAOTlnYmszg6k8g7A884Pjuhsf0o30lmfOlsZIRgAAAB5GUtPqedMvy+1es706/rElC+1VoMQDAAAgJxlJmd3gVjNIrjVSGdndPrysDKTxQnChGAAAADkbOTmpE5cHPK15vELQxq5OelrzeUQggEAAJAz57TkPsCFuDo6UbT7aBCCAQAAkLMb6WDGFm5kGIcAAADAGjWRnQ6kbjqguosRggEAAJCzeKQ8kLpeRTB1FyMEAwAAIGdVXjA3Hg6q7mKEYAAAAOTMTKqviftas74mLjNfSy6LEAwAAICc1VZGdWhXg681D3c0aOuGmK81l0MIBgAAQM5i0Qp1tdXJi/gTJ71ImfbvrFOUmWAAAACsZRu9CnXva/alVve+ZlXHizMPLBGCAQAAkKcN8Yj2NiXV2VhbUJ3OxlrtbU6qyov41NnKCMEAAADIW7La07GDrXkH4c7GWh072KrkRs/nzm6NEAwAAICCJDd6OvZgq44eaFn1jLAXKdPRAy2hBGBJKt7gBQAAANatZLWnrrbtum/HVp2+PKzjF4Z0dXRCVdFyba6M6trNSd2YnFZ9TVyHOxq0v61O1V5FUUcgFiIEAwAAwBdVXkRVXkSP7L5TD+zcLkl6Z2JKE9lpxSPl2jC38G1LIqJ4LJzwO48QDAAAAF9cG5/UeGZapy4N68TF2SvBi9XXxHVoV4O62uqUiJVrcyIaQqeSOedCeeFCtLe3u97e3rDbAAAAwJw3rqd1biClnjP9SmdnVjzei5Spe1+z9jQlta06mJlgM3vROde+1HNcCQYAAEBBUmNpPfZMn84Pjqz6e9LZGT3+7BWdHUyxOwQAAABuL29cT+vIydwC8ELnB0d05GSfUmNpnzu7NUIwAAAA8nJtfFLnBlJ5B+B55wdHdLY/pbfHJ33qbGWEYAAAAORlPDOtnjP9vtTqOdOvm5lpX2qtBiEYAAAAOZvIZHXq0vCqFsGtRjo7o9OXhzWRyfpSbyWEYAAAAOTsrfGsTlwc8rXm8QtDemucEAwAAIA1yjktuQ9wIa6OTqhYu/cSggEAAJCzG+mpYOpmgqm7GCEYAAAAOZvIBrOILR1Q3cUIwQAAAMhZPFIeSF2vIpi6ixGCAQAAkLMqL5gbDwdVdzFCMAAAAHJmJtXXxH2tWV8Tl5mvJZdFCAYAAEDOtiQiOrSrwdeahzsaVFsV87XmcgjBAAAAyFk8FlFXW528iD9x0ouUaf/OOsUCmjVejBAMAACAvCRi5ere1+xLre59zaqMFScAS4RgAAAA5GlzIqo9TUl1NtYWVKezsVZ7m5PalIj61NnKCMEAAADI27ZqT8cOtuYdhDsba3XsYKuSGz2fO7s1QjAAAAAKktzo6WsPturogZZVzwh7kTIdPdASSgCWpOJsxAYAAIB1bVu1p32td+i+HVt1+vKwjl8Y0tXRifccV18T1+GOBu1vq1NltLyoIxALEYIBAADgi02JqDYlpEd236kHdm6Xc9KNzJTS2Wl5kXJVxSpkJtVWxYq2C8RyCMEAAADwVTwW0ftjkbDbuCVmggEAAFByCMEAAAAoOYRgAAAAlBxCMAAAAEoOIRgAAAAlhxAMAACAkkMIBgAAQMkhBAMAAKDkmHMu7B5yZmYjkv4mhJd+n6T/F8LrIlic1/WLc7t+cW7XJ87r+hXWub3TOVe71BO3ZQgOi5n1Oufaw+4D/uK8rl+c2/WLc7s+cV7Xr7V4bhmHAAAAQMkhBAMAAKDkEIJz8ydhN4BAcF7XL87t+sW5XZ84r+vXmju3zAQDAACg5HAlGAAAACWHEAwAAICSQwheBTN71cxeMrNLZtYbdj/wj5ltMrOnzGzQzAbMbHfYPaFwZrZj7vd1/t+Ymf3LsPtC4czsi2b2spldMbMTZuaF3RP8YWb/Yu68vszv6+3NzL5lZm+a2ZUFj9WY2Qtm9pdzHzeH2aNECM5Fp3Ouba3tcYeC/XtJ33XONUraKWkg5H7gA+fcK3O/r22S7pE0LumZkNtCgcysTtI/l9TunGuRVC7p0+F2BT+YWYukz0vq0Oz/xfeb2d8NtysU4DuSPrnosSOSzjnnPiTp3NzXoSIEo2SZWbWkj0n6U0lyzk06594OtysEYI+kv3bOhXGXSfivQlLczCokJSS9FnI/8EeTpJ8458adc1OSfiDpYMg9IU/Ouf8paXTRw12Snpz7/ElJB4ra1BIIwavjJH3PzF40s98Muxn45gOSRiR928x+ambfNLPKsJuC7z4t6UTYTaBwzrlhSb8naUjS65KuO+e+F25X8MkVSb9sZlvMLCHpH0qqD7kn+CvpnHt97vM3JCXDbEYiBK/W33fOfUTSpyR9wcw+FnZD8EWFpI9I+mPn3Icl3dQa+PMM/GNmUUn7Jf1F2L2gcHMzhF2afQO7XVKlmf16uF3BD865AUlPSPqepO9KuiRpOtSmEBg3uz9v6Hv0EoJXYe7qg5xzb2p2rrAj3I7gk59L+rlz7idzXz+l2VCM9eNTkv63cy4VdiPwxV5J/9c5N+Kcy0o6KenekHuCT5xzf+qcu8c59zFJ1yT9n7B7gq9SZnaHJM19fDPkfgjBKzGzSjPbMP+5pF/R7J9tcJtzzr0h6aqZ7Zh7aI+k/hBbgv8OiVGI9WRI0kfNLGFmptnfWRazrhNmtnXuY4Nm54GPh9sRfHZa0sNznz8s6VSIvUjijnErMrMP6m9XlVdIOu6cOxpiS/CRmbVJ+qakqKSfSfonzrlr4XYFP8y9aR2S9EHn3PWw+4E/zOxfS/pHkqYk/VTS55xzmXC7gh/M7H9J2iIpK+m3nXPnQm4JeTKzE5Luk/Q+SSlJvyPpWUl/LqlB0t9I+jXn3OLFc0VFCAYAAEDJYRwCAAAAJYcQDAAAgJJDCAYAAEDJIQQDAACg5BCCAQAAUHIIwQCwRpjZXWbGPuQAUASEYAAAAJQcQjAArC0VZvZfzGzAzJ6auzvaPWb2AzN70cyeX3Dr0c+b2UUzu2xmT5tZYu7x75jZH5vZj83sZ2Z2n5l9a67md+aOKZ877oqZvWRmXwzxZwaAoiMEA8DaskPSHznnmiSNSfqCpD+U9JBz7h5J35I0f9fKk865Xc65nZq9ffBvLKizWdJuSV/U7O1K/62kX5J099ydEtsk1TnnWpxzd0v6dvA/GgCsHRVhNwAA+AVXnXM/nPv8P0v6V5JaJL1gZpJULun1uedbzOzfSNokqUrS8wvq/DfnnDOzlySlnHMvSZKZvSzpLkk/kPRBM/tDSWckfS/QnwoA1hhCMACsLYvvZf+OpJedc7uXOPY7kg445y6b2SOS7lvwXGbu48yCz+e/rnDOXTOznZL+gaR/KunXJH224O4B4DbBOAQArC0NZjYfeA9L+rGk2vnHzCxiZr809/wGSa+bWUTSZ3J5ETN7n6Qy59zTkr4s6SO+dA8AtwmuBAPA2vKKpC+Y2bck9Wt2Hvh5SX9gZtWa/X/730l6WVK3pJ9IGpn7uCGH16mT9G0zm78Y8pg/7QPA7cGcW/yXNwAAAGB9YxwCAAAAJYcQDAAAgJJDCAYAAEDJIQQDAACg5BCCAQAAUHIIwQAAACg5hGAAAACUnP8Pc/4DiKbGz68AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdfXRcd33v+89XmtHskfWQyB7LWJHiBIIlYWQXZJPA4WLV5qlKLMctLfZpC4VL7rotfYBzWDgN6inR8sG0PbDas6CH0FIO3GNz2l4ndhE9oTYiXYcnW6a2k8gK5KYgR4knIk4ky5oZjUa/+4dko8qSNXu090iO36+1vKTZe8/X3+SvT3757t/PnHMCAAAAbiQlS90AAAAAUGyEYAAAANxwCMEAAAC44RCCAQAAcMMhBAMAAOCGE1nqBgqxatUqt27duqVuAwAAAMvYyZMnf+acS8x177oMwevWrVNvb+9StwEAAIBlzMx+Ot89xiEAAABwwyEEAwAA4IZDCAYAAMANhxAMAACAGw4hGAAAADccQjAAAABuOIRgAAAA3HAIwQAAALjhXJeHZQAAAGD5SmWyenEsK0m6mJpQKptTPFqqyvhU9FxZHlU8Fl3KFgnBAAAACMZLY+May+R0+NSgDp4Y0LkLqaueqa+Ja/fmBnVsqlN5rFQ3l5ctQaeSOeeW5C9ejNbWVsexyQAAAMvH+eG0jp1Nqqu7T+ns5ILPe9ESdbY3a1tTrdZUe6H0ZGYnnXOtc91jJRgAAACLkhxJ6/6Hz6infyjv76Szk3rgkSd0tD+p/btaVFsVThCeDy/GAQAAoGDnh9O6/5C/ADxTT/+Q7j90RsmRdMCdXRshGAAAAAV5aWxc3+pP6lsFBuDLvtU/pGNnk3p5bDygzhZGCAYAAEBBxjI5Pfj1vkBqPfj1Pl3K5AKplQ9CMAAAAHxLZbL6hzPP5fUSXD7S2Ul9/cxzSmWygdRbCCEYAAAAvr04ltX/+MFPA635//zgp1f2Fw4bIRgAAAAFmWsf4OVU71oIwQAAAPDtYnoilLqjIdWdjRAMAAAA3zLZcF5iS08EM2O8EEIwAAAAfCuLhBMjY6XFiaeEYAAAAPi2IhbOwcPlsdJQ6s5GCAYAAEBB6mviy7retRCCAQAA4Fu8rES//IZbAq35K2+4RfEoK8EAAABYprI5p22Nq+VFg4mTXrREv9i4WtkcL8YBAABgmaqJR/X8cFofe+f6QOp97J3r9fxIWqsqYoHUWwghGAAAAL7FY1FtqKtW/c3l2ta4elG1tjWuVv3N5dqwtloxxiEAAACwXOVyk3p+OK1bV5br97bdoa3rEwXV2bo+od/bdoduXVmu88Mp5RiHAAAAwHL1s9GMbopHdPKnL2vPF7+v97yxXp13N+U9I+xFS9R5d5Pe88Z67fni9/XDn76s6vKofjaaCbnzKYRgAAAA+GeSk+nBrz+pS+M5/c6BH+rUwMv62ofu1Ee23zHvdmf1NXF9ZPsd+tqH7tSpgZf1Owd+qEvjOX3y60/KOZOsOO2Hs8sxAAAAXtGck7rPPKd09ufjC/9w5nl944nz2ta4Wv/xHeu19qa4srlJpbOT8qIlipaW6LmXU/r6mef1F996WrlJd+W76eykvvH4c3pPa31R+icEAwAAwLdszunvf/jsVddzk07f7Evqm31JSVKkxFQWKdH4xKQmZoTeufzdyWd17y8Eu/fwfAjBAAAA8M05p3MXUgs+NzHpNDGey6vmuQspOV07KAeFmWAAAAD4NpqZCKlufoF5sQjBAAAA8C0zEc5WZuNZQjAAAACWqXhIh1p4HJYBAACA5arCC+fVsrDqzkYIBgAAgG/REpt3L+BC1dfEFS0tTjwlBAMAAMC3VRUx/cad6wKt+Zt3rdOqiligNedDCAYAAIBvpaUluqflVXkfk7wQL1qiu1//KpWWFOfIOEIwAAAACrKyIqZP7nhdILUe7HidVhZpFVgiBAMAAKBAZZESvb15jbY3rZ73mUiJqbysVJFrrPBub1qttzetUVmkeNGUE+MAAACwKJ/csUHOPaFj/S+otMS0vWm1fun1r1LdTXFlJiaVzubkRUsVi5Ro8OWUus88r2P9Lyg36bStcbU+uWND0XsmBAMAAKAg4xOTemEkrS/972f0YMfr9L43r1NVPKpvP/WC/uybT815rHJ9TVy//IZb9Nttr9FIKqtXJ1boz48+pQ+89XatiEWKthpszhXnfOYgtba2ut7e3qVuAwAA4Ib2wkhaR8+e19vuWK3xSafv/38v6pNff1Lp7MKnyXnREv2nu1+nO1+9UmUlpsd+/IK2N63R6iovsP7M7KRzrnWue8wEAwAAwLdcblIXMxO68/aVkpke/PqTuv/hx/MKwJKUzk7q/ocf14Nff1Iy052vXqmLmQnlcuEcxzwbIRgAAAC+DaezevFiRmWRUn3i8OPq6R8qqE5P/5A+cfhxlZWW6sXRtIbT2YA7nRshGAAAAL6NZXJat2qFHntqqOAAfFlP/5Aee2pIt62s0FgmF1CH10YIBgAAgG9erETjuUl1dfcFUq+ru0+Z3KS8GMcmAwAAYJkySUdOPZf3DPBC0tlJ/cPp51Sc8+IIwQAAACjAWGZSB08MBFrzwPEBjWV4MQ4AAADL2Fz7AC+netdCCAYAAIBvF0PaxWE0MxFK3dkIwQAAAPAtqFngq+uyOwQAAACWqXi0NJS6XiScurMRggEAAOBbhRe5rurORggGAACAb2ZSfU080Jr1NXFZkfZIIwQDAADAN5O0e0tDoDX3bGlgn2AAAAAsXy+nstqxca28aDBx0ouW6J6NazWcCmfXidkIwQAAAPCtMhbRN588r8725kDq/dHdzXr0ifOqiDETDAAAgGXKzPQ33/2J7rx9pdoaE4uq1daY0JtuW6kvf+8nsiINBROCAQAA4FtZxPQrb7hF733oe+rq2FBwEG5rTKirY4Pe+9D39J433qJYpDjxlBAMAAAA37ITTu0ta3UxM6F7P/cd/eG7m7Rv54a8Z4S9aIn27dygP3x3k+793Hd0MTOh9tevVTYXziEcsxGCAQAA4NvF9IRWxEr1sXeu19DouN7+2X9WOpvTP33kbfr4u9bPu31afU1cH3/Xev3TR96mdDant3/2nzU0Oq6PvXO9VpSVaiRVnGOTizN5DAAAgFeUCi+if3z8eb351au0dX1C335qSF3dZ/XpR5/S7/3ia/SF33ijyssiupSZUDo7KS9aohWxiMbGJ/Stsy9o22ce0/jE1Krv1vUJvfnVq9T9+PN6x+vWFKV/QjAAAAAK8jff/Yn+j9cm9JHtr5UkffupIY1PTOrPvvkj/dk3fyRJ8iIlqvAiGk1PKD1x9ajD1vVT34+Wmr78vZ8ULQQzDgEAAADf4mUl2r25Qbsf+r5WrijTfW+9XZ13N101E5yemNTPRsevCsBetESddzfpvrferpUryrT7oe9rz5YGlZeVFqV/QjAAAAB8S41PqmNT3dSLcZ//jhKVMb0mUaGv3XeXPrL9jmvOBH9k+x362n136TWJCiUqY7r381Mvxu3YWKex8VxR+jfnXFH+oiC1tra63t7epW4DAADghnXuwph+8rNLGrgwpgceeUKS1NnepHe8bo0ef/ZllZSYVlbElM1NXpkJjpaW6MXRjCad0+vrbtI3nzyvru6zkqR9OzeooSaudasqVF9THkiPZnbSOdc61z1WggEAAOBbpMR0ZnBYW9cnruwR3NV9Vts+85ie+dklNawsV6Iypup4VDeXR1UdjypRGVPDynI9M3RJ2z7z2JUA3NaY0Nb1CT0+OKJISXEOy2AlGAAAAL6dH0lpNJ3Tb/+PXn3lA3fq/ofPqKd/6KrnFnoxrq0xoU/d26Lf/NL39fl/36pKr1S1VXOPUvh1rZVgdocAAACAbxM5J5PTezc36Ne+8F0d+NCd+nbjkLq6+5TO/jzspicmlR4dv+r7XrREne3N2ro+oV/7wnf1vjevk5lTNlecBVrGIQAAAOBbLGI6+/yI3nT7St2WqNBbPt2j1VUxHfvo1rwOyzj20a1aXRXTWz7do9sSFXrT7St19vkReUU6NpmVYAAAAPh2k1emxldV65mh0Sv7BH/oKycVLyvVn/7y6/XVD75JpWYazUwonc3Ji5aqIhZRzjk98ezL2v7Zx5Qaz13ZJ3jwpZSa1lSrurysKP0TggEAAOBbNFqqSi+i8yMpVcWjuu+tt+utd6zSnz76lD588NSV5yrKSnXzijK9dGlcozO2P7u8T3DTmiqlsjmdH0lpY/1NipYWZyWYcQgAAAAUpDIW0eZ1K/Xl7/yrXhrLqqGm3Nc+wQ015XppLKsvf+dftXndSlV6xVufZSUYAAAABSmPRbRqRZn+762v0WeP/kiVsYg++O9u085Nddr1hltkJo2kslf2Ca6KR+WcNDnp9NLYuI6cek4XMxP6yPbXatWKMpWXEYIBAABwHUhUeZKk+956uxKVZSovi+rwqUEdPDGgcxdSVz1fXxPX7s0N6thUp9/b9hoNXRzX2mrvSp1iYZ9gAAAALNr54bSOnU1etUXafC5vkbatqVZrqsMJwEt6YpyZvcvMnjKzp81s7xz3G8ysx8z+xczOmNkvhd0TAAAAgpMcSev+h8/ogUeeyCsAS1I6O6kHHnlC9z98RsmRdMgdXi3UEGxmpZI+J+ndkpol7Taz5lmPfULS3zrnfkHSeyV9PsyeAAAAEJzkcFp7D819Wlw+evqHtPdQ8YNw2CvBWyQ97Zx7xjk3LulrkjpmPeMkVU3/Xi3puZB7AgAAQAAuprI6ejZZcAC+rKd/SEf7khpNZwPqbGFhh+A6SedmfH52+tpMfyzp183sWUnfkPS7cxUys/vMrNfMeoeGFvcvGgAAAIs3kp5QV3dfILW6uvs0nJoIpFY+lsM+wbslfdk5d4ukX5L0VTO7qi/n3EPOuVbnXGsikSh6kwAAAPi5zPiEDp8azHsGeCHp7KSOnB5UZrw4QTjsEDwoqX7G51umr830QUl/K0nOue9J8iStCrkvAAAALMLQpXEdPDEQaM0Dxwc0dGk80JrzCTsEn5B0h5ndZmZlmnrx7cisZwYkbZMkM2vSVAhm3gEAAGAZc05z7gO8GOcupFSs3XtDDcHOuQlJH5b0qKSzmtoF4kkze9DMdkw/9h8kfcjMTks6KOn97nrcvBgAAOAGMpoOZ2xhNFOccYjQT4xzzn1DUy+8zbz2RzN+75P0lrD7AAAAQHBS2VwoddMh1Z1tObwYBwAAgOtMPFoaSl0vEk7d2QjBAAAA8K3CC2egIKy6sxGCAQAA4JuZVF8TD7RmfU1cZoGWnBchGAAAAL4lVpRp9+aGQGvu2dKg1ZWxQGvOhxAMAAAA32JlEXVsqpMXDSZOetES7dhYpzJmggEAALCcVXkRdbY3B1Krs71Z1fHizANLhGAAAAAUqDIe1famWrU1JhZVp60xoe3NtarwogF1tjBCMAAAAApWW+1p/66WgoNwW2NC+3e1qLbKC7izayMEAwAAYFFqqzztv7dF+3ZuyHtG2IuWaN/ODUsSgKUinBgHAACAV77aak8dm9Zq6/rVOnJ6UAeOD+jchdRVz9XXxLVnS4N2bKpTtRcp6gjETIRgAAAABKLCi6rCi+r9d92qezaulXPSaGZC6WxOXrRUFbGIzKSV5VHFY0sTfi8jBAMAACAQL42NayyT0+FTgzp4YmoluKKsVDevKNNLl8Y1Op5TfU1cuzc3qGNTncpjpbq5vGxJejXn3JL8xYvR2trqent7l7oNAAAATDs/nNaxs0l1dfcpnZ1c8HkvWqLO9mZta6rVmupwZoLN7KRzrnWue6wEAwAAYFGSI2nd//AZ9fQP5f2ddHZSDzzyhI72J9kdAgAAANeX88Np7T3kLwDP1NM/pL2Hzig5kg64s2sjBAMAAKAgL42N69jZZMEB+LKe/iEd7Uvq5bHxgDpbGCEYAAAABRnL5NTV3RdIra7uPl3K5AKplQ9CMAAAAHxLZbI6fGowr5fg8pHOTurI6UGlMtlA6i2EEAwAAADfXhzL6uCJgUBrHjg+oBfHCMEAAABYppzTnCfCLca5CykVa/deQjAAAAB8G01PhFM3E07d2QjBAAAA8C2VDecltnRIdWcjBAMAAMC3eLQ0lLpeJJy6sxGCAQAA4FuFF87Bw2HVnY0QDAAAAN/MpPqaeKA162viMgu05LwIwQAAAPBtZXlUuzc3BFpzz5YGJSpigdacDyEYAAAAvo2O59SxqU5eNJg46UVLtGNjnUbS7BMMAACAZWpi0umFi2l1tjcHUq+zvVnJkZQmJouzUTAhGAAAAL5dTE/o3s9/V7/YtFptjYlF1WprTGhb02rt+svvhbb/8GyEYAAAAPiWmd7P97f+5rj272opOAi3NSa0f1eL3v83x6fqTkwG1uO1EIIBAADgW2x6n+D+86N635d+oP987+u1b+eGvGeEvWiJ9u3coE/d+3q970s/UP/5UUlSWaQ48ZQQDAAAAN8qZ+zn239+VHd96ltqelWljn10qz7+rvXzbp9WXxPXx9+1Xsc+ulVNr6rUnZ/61pUAPLtumIrztwAAAOAVJVJiqq+J69yF1JVru/7ye6rwIvrr33yj7m5ZK0kazUxocjKnkpJSVcSmoufzL4/pnX/+z1fN/9bXxBUpKc5GwawEAwAAwLea8jK97651V13PTTq9ODqunHMySc45ZSamfpqknHN64WJGuTl2gXjfXetUs6I4+wSzEgwAAADfSktLdHfLWv3ZN59SOjv1Mttf/eYb1fSqah0+NahP/a/+f7NKfFl9TVy7Nzfo6EfeprPPD+v//MpJSVMzwne3rFUpK8EAAABYzmpWlKmrY4NurYnrOx9vU3Iko22f+bb+5NGn5gzAknTuQkp/8uhT2vaZbys5ktF3Pt6mW2vi6urYoJoVZUXr3ZwrzobEQWptbXW9vb1L3QYAAMAN78KlcY1PTOr+h8+op3/I9/fbGhP61L0tikVKdHPAIdjMTjrnWue6x0owAAAACpZdRACWpJ7+Id3/8BmN54qzP/BlhGAAAAAU5GIqq6NnkwUH4Mt6+od0tC+p0XQ2oM4WRggGAABAQUbSE+rq7gukVld3n4ZTxTkyWSIEAwAAoACZ8QkdPjV4ZWeIxUpnJ3Xk9KAy48UJwoRgAAAA+DZ0aVwHTwwEWvPA8QENXRoPtOZ8CMEAAADwzTnNuw1aoc5dSKlYG5cRggEAAODb7COPA6ubYRwCAAAAy1QqmwulbjqkurMRggEAAOBbPFoaSl0vEk7d2QjBAAAA8K3Ci1xXdWcjBAMAAMA3M6m+Jh5ozfqauMwCLTkvQjAAAAB8S6wo0+7NDYHW3LOlQasrY4HWnA8hGAAAAL7FyiLq2FQnLxpMnPSiJdqxsU5lzAQDAABgOavyIupsbw6kVmd7s6rjxZkHlgjBAAAAKFBlPKrtTbVqa0wsqk5bY0Lbm2tV4UUD6mxhhGAAAAAUrLba0/5dLQUH4bbGhPbvalFtlRdwZ9dGCAYAAMCi1FZ52n9vi/bt3JD3jLAXLdG+nRuWJABLUvEGLwAAAPCKVVvtqWPTWm1dv1pHTg/qwPEBnbuQuuq5+pq49mxp0I5Ndar2IkUdgZiJEAwAAIBAVHhRVXhRfeDN63TPxrVyThrNTCidzcmLlqoiFpGZtLoyVrRdIObDOAQAAABCYSbJSdGSqZ+XD8Jwk24p25LESjAAAAACcjGV1Uh6QodPDergifnHIXZvblDHpjpVeRFVxpdmHMKcW/ok7ldra6vr7e1d6jYAAAAwLTmc1tGzSXV19ymdnVzweS9aos72Zm1vqlVtdTgvxpnZSedc61z3WAkGAADAoiRH0tr78Bn19A/l/Z10dlIPPPKEjvYn2SINAAAA15fkcFp7D/kLwDP19A9p76EzSo6kA+7s2gjBAAAAKMjFVFZHzyYLDsCX9fQP6WhfUqPpbECdLYwQDAAAgIKMpCfU1d0XSK2u7j4NpyYCqZUPQjAAAAB8y4xP7QKRz0tw+UhnJ3Xk9KAy48UJwoRgAAAA+DZ0aVwHTwwEWvPA8QENXRoPtOZ8CMEAAADwzTnNuQ/wYpy7kFKxdu8lBAMAAMC30XQ4YwujGcYhAAAAsEylsrlQ6qZDqjsbIRgAAAC+xaOlodT1IuHUnY0QDAAAAN8qvHAOHg6r7myEYAAAAPhmJtXXxAOtWV8Tl1mgJedFCAYAAIBviRVl2r25IdCae7Y0aHVlLNCa8yEEAwAAwLdYWUQdm+rkRYOJk160RDs21qmMmWAAAAAsZ1VeRJ3tzYHU6mxvVnW8OPPAEiEYAAAABaqMR7W9qVZtjYlF1WlrTGh7c60qvGhAnS2MEAwAAICC1VZ72r+rpeAg3NaY0P5dLaqt8gLu7NoIwQAAAFiU2ipP++9t0b6dG/KeEfaiJdq3c8OSBGBJCn3wwszeJenPJZVK+ivn3P45nvlVSX8syUk67ZzbE3ZfAAAACE5ttaeOTWu1df1qHTk9qAPHB3TuQuqq5+pr4tqzpUE7NtWp2osUdQRiplBDsJmVSvqcpLdLelbSCTM74pzrm/HMHZLul/QW59xLZrY6zJ4AAAAQjgovqgovqg+8eZ3u2bhWzkmjmQmlszl50VJVxCIyk1ZXxoq2C8R8wl4J3iLpaefcM5JkZl+T1CGpb8YzH5L0OefcS5LknHsh5J4AAAAQolhZRLeUFW+nh0IUNBNsZjV5Plon6dyMz89OX5vptZJea2bfMbPvT49PAAAAAKFZMASb2Sdm/N5sZj+SdNLMfmJmbwqgh4ikOyRtlbRb0hfN7KY5+rjPzHrNrHdoaCiAvxYAAAA3qnxWgnfN+P1PJf2+c+42Sb8q6bMLfHdQUv2Mz7dMX5vpWUlHnHNZ59y/SvqRpkLxv+Gce8g51+qca00kFrcXHQAAAG5sfsch1jrn/lGSnHPHJcUXeP6EpDvM7DYzK5P0XklHZj3ziKZWgWVmqzQ1HvGMz74AAACAvOUzsXy7mR2RZJJuMbNy59zY9L1r7mnhnJswsw9LelRTW6R9yTn3pJk9KKnXOXdk+t47zKxPUk7Sx5xzLxb6DwQAAAAsJJ8Q3DHrc4kkmVmtpL9c6MvOuW9I+sasa38043cn6aPTfwAAAIDQLRiCnXOPzXM9qak9gCVJZvZfnXO/G2BvAAAAQCiCPDb5LQHWAgAAAEITZAgGAAAArguEYAAAANxwggzBFmAtAAAAIDR5h2Aze/0Cj/z5InsBAAAAisLPSvDnzey4mf22mVXPvumc+3JwbQEAAADhyTsEO+feKunfa+oY5JNmdsDM3h5aZwAAAEBIfM0EO+d+LOkTkj4u6W2S/sLM+s1sVxjNAQAAAGHwMxPcYmaflXRW0i9Kusc51zT9+2dD6g8AAAAIXD7HJl/2XyX9laQ/dM6lLl90zj1nZp8IvDMAAAAgJH5CcLuklHMuJ0lmViLJc86NOee+Gkp3AAAAQAj8zAQflRSf8bl8+hoAAABwXfETgj3n3OjlD9O/lwffEgAAABAuPyH4kpm94fIHM3ujpNQ1ngcAAACWJT8zwX8g6e/M7DlNHZG8RtKvhdIVAAAAEKK8Q7Bz7oSZNUpaP33pKedcNpy2AAAAgPD4WQmWpM2S1k1/7w1mJufcVwLvCgAAAAhR3iHYzL4q6dWSTknKTV92kgjBAAAAuK74WQluldTsnHNhNQMAAAAUg5/dIZ7Q1MtwAAAAwHXNz0rwKkl9ZnZcUubyRefcjsC7AgAAAELkJwT/cVhNAAAAAMXkZ4u0x8zsVkl3OOeOmlm5pNLwWgMAAADCkfdMsJl9SNLfS/rC9KU6SY+E0RQAAAAQJj8vxv2OpLdIGpEk59yPJa0OoykAAAAgTH5CcMY5N375g5lFNLVPMAAAAHBd8ROCHzOzP5QUN7O3S/o7Sf8QTlsAAABAePyE4L2ShiQ9Lun/kvQN59wDoXQFAAAAhMjPFmm/65z7c0lfvHzBzH5/+hoAAABw3fCzEvy+Oa69P6A+AAAAgKJZcCXYzHZL2iPpNjM7MuNWpaQLYTUGAAAAhCWfcYjvSnpeU8cm/5cZ1y9KOhNGUwAAAECYFgzBzrmfSvqppLvCbwcAAAAIn58T43aZ2Y/NbNjMRszsopmNhNkcAAAAEAY/u0P8iaR7nHNnw2oGAAAAKAY/u0MkCcAAAAB4JfCzEtxrZv9T0iOSMpcvOucOBd4VAAAAECI/IbhK0pikd8y45iQRggEAAHBdyTsEO+d+K8xGAAAAgGLxszvEa83smJk9Mf25xcw+EV5rAAAAQDj8vBj3RUn3S8pKknPujKT3htEUAAAAECY/IbjcOXd81rWJIJsBAAAAisFPCP6Zmb1aUy/Dycx+RVPHKQMAAADXFT+7Q/yOpIckNZrZoKR/lfTroXQFAAAAhMjP7hDPSNpuZisklTjnLobXFgAAABAeP7tD/L6ZXd4r+LNm9kMze8dC3wMAAACWGz8zwR9wzo1o6rCMlZJ+Q9L+ULoCAAAAQuQnBNv0z1+S9BXn3JMzrgEAAADXDT8h+KSZfVNTIfhRM6uUNBlOWwAAAEB4/OwO8UFJmyQ945wbM7OVkjhKGQAAANedBUOwmTU65/o1FYAl6XYzpiAAAABw/cpnJfijku6T9F/muOck/WKgHQEAAAAhWzAEO+fum/7ZFn47AAAAQPj87BP8numX4WRmnzCzQ2b2C+G1BgAAAITDz+4Qnc65i2b27yRtl/TXkv5bOG0BAAAA4fETgnPTP9slPeSc65ZUFnxLAAAAQLj8hOBBM/uCpF+T9A0zi/n8PgAAALAs+AmxvyrpUUnvdM69LKlG0sdC6QoAAAAIUd4h2Dk3JumwpEtm1iApKqk/rMYAAACAsOR9YpyZ/a6k/yQpqZ8fl+wktYTQFwAAABAaP8cm/76k9c65F8NqBgAAACgGPzPB5yQNh9UIAAAAUCx+VoKfkfRtM+uWlLl80Tn3mcC7AgAAAELkJwQPTP8pE/sDAwAA4DqWdwh2zn1SksysYvrzaFhNAQAAAGHKeybYzDaY2b9IelLSk2Z20sxeF15rAAAAQDj8vBj3kKSPOududc7dKuk/SPpiOOb+YOoAACAASURBVG0BAAAA4fETglc453ouf3DOfVvSisA7AgAAAELma3cIM+uU9NXpz7+uqR0jAAAAgOuKn5XgD0hKSDok6f+VtGr6GgAAAHBd8bM7xEuSfi/EXgAAAICi8LM7xD+Z2U0zPt9sZo+G0xYAAAAQHj/jEKuccy9f/jC9Mrw6+JYAAACAcPkJwZNm1nD5g5ndKskF3xIAAAAQLj+7Qzwg6X+b2WOSTNJbJd0XSlcAAABAiPy8GPe/zOwNku6cvvQHzrmfXb5vZq9zzj0ZdIMAAABA0PysBGs69H59nttflfSGRXcEAAAAhMzPTPBCbM6LZu8ys6fM7Gkz2zvvl81+2cycmbUG2BMAAABwlSBD8FUvyZlZqaTPSXq3pGZJu82seY7nKiX9vqQfBNgPAAAAMKcgQ/Bctkh62jn3jHNuXNLXJHXM8VyXpE9LSofcDwAAABBoCB6f41qdpHMzPj87fe2K6Zft6p1z3dcqbmb3mVmvmfUODQ0tulkAAADcuHy9GGdmLZLWzfyec+7Q9M875/nateqVSPqMpPcv9Kxz7iFJD0lSa2sr+xMDAACgYHmHYDP7kqQWSU9Kmpy+7CQdusbXBiXVz/h8y/S1yyolbZD0bTOTpDWSjpjZDudcb769AQAAYPlIZ7L62VhWknQxNaFUNqd4tFSV8anouao8Ki8WXcoWfa0E3+mcu+qltgWckHSHmd2mqfD7Xkl7Lt90zg1LWnX5s5l9W9J/JAADAABcf4bHxjWayenwqUEdPDGgcxdSVz1TXxPX7s0N6thUp4pYqarLy5agU38h+Htm1uyc68v3C865CTP7sKRHJZVK+pJz7kkze1BSr3PuiM9+AQAAsAydH07r2Nmkurr7lM5OzvvcuQsp/cmjT+kvvvVjdbY3a1tTrdZUe0XsdIo5l994rZm9TdIRSeclZTS1L7BzzrWE197cWltbXW8vi8UAAADLQXIkrb2Hzqin3//mBW2NCe3f1aLaquCDsJmddM7NeQaFn5Xgv5b0G5Ie189nggEAAHADOz+c1v0PFxaAJamnf0h7D50JLQjPx88WaUPOuSPOuX91zv308p/QOgMAAMCyNjw2rmNnkwUH4Mt6+od0tC+pkdRcO+6Gw89K8L+Y2QFJ/6CpcQhJP98iDQAAADeW0UxOXd15vy52TV3dfdq6frWq4oGUW5CfleC4psLvOyTdM/3n7jCaAgAAwPKWzmR1+NTgNV+C81UvO6kjpweVzmQDqbeQvFeCnXO/FWYjAAAAuH78bCyrgycGAq154PiA7tm4VrcUYQ9hP4dleJI+KOl1kq5MLTvnPhBCXwAAAFjGnNOc+wAvxrkLKeW5cdmi+RmH+KqmTnR7p6THNHX628UwmgIAAMDyNpqeCKduJpy6s/kJwa9xznVKuuSc+++S2iW9KZy2AAAAsJylsrlQ6qZDqjubnxB8eUr5ZTPbIKla0urgWwIAAMByF4+WhlLXi4RTdzY/W6Q9ZGY3S+rU1MlxFZL+KJSuAAAAsKxVeH5i5NLXnc3P7hB/Nf3rY5JuD6cdAAAAXA/MpPqaeKAvx9XXxGUWWLlrynscwsxqzeyvzewfpz83m9kHw2sNAAAAy9Wq8qh2b24ItOaeLQ1KVMQCrTkfPzPBX5b0qKS1059/JOkPgm4IAAAAy58Xi6pjU528qJ84eY160RLt2FinWEizxrP56XqVc+5vJU1KknNuQlJxXt8DAADAslMRK1Vne3MgtTrbm1XpFScAS/5C8CUzWynJSZKZ3SlpOJSuAAAAsOxVl5dpW1Ot2hoTi6rT1pjQ9uZaVcXLAupsYX5C8Ec1tSvE7Wb2HUlfkfS7oXQFAACA68Kaak/7d7UUHITbGhPav6tFtVXewg8HyM8eFH2SHpY0pqmT4h7R1FwwAAAAbmC1VZ4+dW+Ljp1Nqqu7T+ns5ILf8aIl6mxv1vbm2qIHYMlfCP6KpBFJ/3n68x5NHaX8nqCbAgAAwPVlTbWneza+SlvXr9aR04M6cHxgzu3T6mvi2rOlQTs21akyVlrUEYiZ/ITgDc65mZPPPWbWF3RDAAAAuD5VxctUFZd+665bdc/GtXJOGs1MaCKXU6S0VBWxiMykREWsaLtAzMfPTPAPp1+GkySZ2Zsk9QbfEgAAAK5nNn3ihZkkJ2VzUz+vHITh3FK1dsWCK8Fm9rimdoSISvqumQ1Mf75VUn+47QEAAOB6cTGV1Uh6QodPDergifnHIXZvblDHpjpVeRFVxqNL0KlkboEkbma3Xuu+c+6ngXaUh9bWVtfbyyI0AADAcpEcTutoIS/GNdWqtjqcF+PM7KRzrnWuewuuBC9FyAUAAMD1IzmS1t6Hz6infyjv76Szk3rgkSd0tD+5JFukBXPOHQAAAG5IyeG09h7yF4Bn6ukf0t5DZ5QcSQfc2bURggEAAFCQi6msjp5NFhyAL+vpH9LRvqRG09mAOlsYIRgAAAAFGUlPqKs7mB1zu7r7NJyaCKRWPgjBAAAA8C0zPrULRD4vweUjnZ3UkdODyowXJwgTggEAAODb0KVxHTwxEGjNA8cHNHRpPNCa8yEEAwAAwDfnNOc+wItx7kKqaOdoEIIBAADg22g6nLGF0QzjEAAAAFimUtlcKHXTIdWdjRAMAAAA3+LR0lDqepFw6s5GCAYAAIBvFd6CBw8vq7qzEYIBAADgm5lUXxMPtGZ9TVxmgZacFyEYAAAAviVWlGn35oZAa+7Z0qDVlbFAa86HEAwAAADfYmURdWyqkxcNJk560RLt2FinMmaCAQAAsJxVeRF1tjcHUquzvVnV8eLMA0uEYAAAABSoMh7V9qZatTUmFlWnrTGh7c21qvCiAXW2MEIwAAAAClZb7Wn/rpaCg3BbY0L7d7WotsoLuLNrIwQDAABgUWqrPO2/t0X7dm7Ie0bYi5Zo384NSxKAJal4gxcAAAB4xaqt9tSxaa22rl+tI6cHdeD4gM5dSF31XH1NXHu2NGjHpjpVe5GijkDMRAgGAABAICq8qCq8qD7w5nW6Z+NaOSeNZiY0kcspUlqqilhEZtLqyljRdoGYD+MQAAAACNSkc5KmDtSQk7K5qZ+XD8LI5SaXrLfLWAkGAABAIF4aG9dYJqfDpwZ18MT84xC7NzeoY1OdymOlurm8bAk6lcxNJ/XrSWtrq+vt7V3qNgAAADDt/HBax84m1dXdp3R24ZVeL1qizvZmbWuq1ZrqcF6MM7OTzrnWue6xEgwAAIBFSY6kdf/DZ9TTP5T3d9LZST3wyBM62p9kizQAAABcX84Pp7X3kL8APFNP/5D2Hjqj5Eg64M6ujRAMAACAgrw0Nq5jZ5MFB+DLevqHdLQvqZfHxgPqbGGEYAAAABRkLJNTV3dfILW6uvt0KZMLpFY+CMEAAADwLZXJ6vCpwbxegstHOjupI6cHlcpkA6m3EEIwAAAAfHtxLKuDJwYCrXng+IBeHCMEAwAAYJlyTnPuA7wY5y6kVKzdewnBAAAA8G00PRFO3Uw4dWcjBAMAAMC3VDacl9jSIdWdjRAMAAAA3+LR0lDqepFw6s5GCAYAAIBvFV44Bw+HVXc2QjAAAAB8M5Pqa+KB1qyvicss0JLzIgQDAADAt5XlUe3e3BBozT1bGpSoiAVacz6EYAAAAPgWj0XVsalOXjSYOOlFS7RjY51iIc0az0YIBgAAQEHKY6XqbG8OpFZne7NWxIoTgCVCMAAAAAp0c3mZtjXVqq0xsag6bY0JbW+u1U3lZQF1tjBCMAAAAAq2ptrT/l0tBQfhtsaE9u9qUW2VF3Bn10YIBgAAwKLUVnn61L0t2rdzQ94zwl60RPt2bliSACxJxdmIDQAAAK9oa6o9tbe8SlvXr9aR04M6cHxA5y6krnquviauPVsatGNTnVaUlRZ1BGImQjAAAAACcVN5mW4ql95/1626Z+NaOSeNZiY0PpFTWaRUFbGIzKRERaxou0DMh3EIAAAABKpk+sQLM0lOyrmpn1cOwnBuqVq7gpVgAAAABOJiKquR9IQOnxrUwRPzj0Ps3tygjk11qvIiqoxHl6BTydwySOJ+tba2ut7e3qVuAwAAANOSw2kdPZtUV3ef0tnJBZ/3oiXqbG/W9qZa1VaH82KcmZ10zrXOdY+VYAAAACxKciStvQ+fUU//UN7fSWcn9cAjT+hof5It0gAAAHB9SQ6ntfeQvwA8U0//kPYeOqPkSDrgzq6NEAwAAICCXExldfRssuAAfFlP/5CO9iU1ms4G1NnCCMEAAAAoyEh6Ql3dfYHU6uru03BqIpBa+SAEAwAAwLfM+NQuEPm8BJePdHZSR04PKjNenCBMCAYAAIBvQ5fGdfDEQKA1Dxwf0NCl8UBrzocQDAAAAN+c05z7AC/GuQupop2jQQgGAACAb6PpcMYWRjOMQwAAAGCZSmVzodRNh1R3ttBDsJm9y8yeMrOnzWzvHPc/amZ9ZnbGzI6Z2a1h9wQAAIDFiUdLQ6nrRcKpO1uoIdjMSiV9TtK7JTVL2m1mzbMe+xdJrc65Fkl/L+lPwuwJAAAAi1fhhXPwcFh1Zwt7JXiLpKedc88458YlfU1Sx8wHnHM9zrmx6Y/fl3RLyD0BAABgkcyk+pp4oDXra+IyC7TkvMIOwXWSzs34/Oz0tfl8UNI/znXDzO4zs14z6x0aWtypJAAAAFicxIoy7d7cEGjNPVsatLoyFmjN+SybF+PM7NcltUr607nuO+cecs61OudaE4lEcZsDAADAvxEri6hjU528aDBx0ouWaMfGOpW9EmaCJQ1Kqp/x+Zbpa/+GmW2X9ICkHc65TMg9AQAAIABVXkSd7bNf9ypMZ3uzquPFmQeWwg/BJyTdYWa3mVmZpPdKOjLzATP7BUlf0FQAfiHkfgAAABCQynhU25tq1da4uP9L39aY0PbmWlV40YA6W1ioIdg5NyHpw5IelXRW0t865540swfNbMf0Y38qqULS35nZKTM7Mk85AAAALDO11Z7272opOAi3NSa0f1eLaqu8gDu7NnPFOpsuQK2tra63t3ep2wAAAMC05HBaR88m1dXdp3R2csHnvWiJOtubtb25NrQAbGYnnXOtc90r3uAFAAAAXrFqqz11bFqrretX68jpQR04PqBzF1JXPVdfE9eeLQ3asalO1V6kqCMQMxGCAQAAEIgKL6oKL6r333Wr7tm4Vs5Jo5kJpbM5edFSVcQiMpvaXi1WtrQxlBAMAACAQFxMZTWSntDhU4M6eGJqJbiirFQ3ryjTS5fGNTqeU31NXLs3N6hjU52qvIgq40uzEsxMMAAAABat4JngplrVVjMTDAAAgOtMciStvQ+fUU9//qf6prOTeuCRJ3S0P7kku0MsmxPjAAAAcP1JDqe195C/ADxTT/+Q9h46o+RIOuDOro0QDAAAgIJcTGV19Gyy4AB8WU//kI72JTWazgbU2cIIwQAAACjISHpCXd19gdTq6u7TcGoikFr5IAQDAADAt8z41C4Q+bwEl490dlJHTg8qM16cIEwIBgAAgG9Dl8Z18MRAoDUPHB/Q0KXxQGvOhxAMAAAA35zTnCfCLca5CykVa/deQjAAAAB8G02HM7YwmmEcAgAAAMtUKpsLpW46pLqzEYIBAADgWzxaGkpdLxJO3dkIwQAAAPCtwgvn4OGw6s5GCAYAAIBvZlJ9TTzQmvU1cZkFWnJehGAAAAD4llhRpt2bGwKtuWdLg1ZXxgKtOR9CMAAAAHyLlUXUsalOXjSYOOlFS7RjY53KmAkGAADAclblRdTZ3hxIrc72ZlXHizMPLBGCAQAAUKDKeFTbm2rV1phYVJ22xoS2N9eqwosG1NnCCMEAAAAoWG21p/27WgoOwm2NCe3f1aLaKi/gzq6NEAwAAIBFqa3ytP/eFu3buSHvGWEvWqJ9OzcsSQCWpOINXgAAAOAVq7baU8emtdq6frWOnB7UgeMDOnchddVz9TVx7dnSoB2b6lTtRYo6AjETIRgAAACBqPCiqvCi+sCb1+mejWvlnDSamVA6m5MXLVVFLCIzaXVlrGi7QMyHcQgAAACEwkySm/VTkpt0S9mWJFaCAQAAEJCLqaxG0hM6fGpQB0/MPw6xe3ODOjbVqcqLqDK+NOMQ5tzSJ3G/WltbXW9v71K3AQAAgGnJ4bSOnk2qq7tP6ezkgs970RJ1tjdre1OtaqvDeTHOzE4651rnusdKMAAAABYlOZLW3ofPqKd/KO/vpLOTeuCRJ3S0P8kWaQAAALi+JIfT2nvIXwCeqad/SHsPnVFyJB1wZ9dGCAYAAEBBLqayOno2WXAAvqynf0hH+5IaTWcD6mxhhGAAAAAUZCQ9oa7uvkBqdXX3aTg1EUitfBCCAQAA4FtmfGoXiHxegstHOjupI6cHlRkvThAmBAMAAMC3oUvjOnhiINCaB44PaOjSeKA150MIBgAAgG/Oac59gBfj3IWUirV7LyEYAAAAvo2mwxlbGM0wDgEAAIBlKpXNhVI3HVLd2QjBAAAA8C0eLQ2lrhcJp+5shGAAAAD4VuGFc/BwWHVnIwQDAADANzOpviYeaM36mrjMAi05L0IwAAAAfEusKNPuzQ2B1tyzpUGrK2OB1pwPIRgAAAC+xcoi6thUJy8aTJz0oiXasbFOZcwEAwAAYDmr8iLqbG8OpFZne7Oq48WZB5YIwQAAAChQZTyq7U21amtMLKpOW2NC25trVeFFA+psYYRgAAAAFKy22tP+XS0FB+G2xoT272pRbZUXcGfXRggGAADAotRWedp/b4v27dyQ94ywFy3Rvp0bliQAS1LxBi8AAADwilVb7alj01ptXb9aR04P6sDxAZ27kLrqufqauPZsadCOTXWq9iJFHYGYiRAMAACAQFR4UVV4UX3gzet0z8a1ck4azUxILidZqSpiEZlJqytjRdsFYj6MQwAAACBQk85JmjpQQ05KZad+Xj4II5ebXLLeLmMlGAAAAIF4aWxcY5mcDp8a1MET849D7N7coI5NdSqPlerm8rIl6FQyN53Uryetra2ut7d3qdsAAADAtPPDaR07m1RXd5/S2YVXer1oiTrbm7WtqVZrqsN5Mc7MTjrnWue6x0owAAAAFiU5ktb9D59RT/9Q3t9JZyf1wCNP6Gh/ki3SAAAAcH05P5zW3kP+AvBMPf1D2nvojJIj6YA7uzZCMAAAAAry0ti4jp1NFhyAL+vpH9LRvqReHhsPqLOFEYIBAABQkLFMTl3dfYHU6uru06VMLpBa+SAEAwAAwLdUJqvDpwbzegkuH+nspI6cHlQqkw2k3kIIwQAAAPDtxbGsDp4YCLTmgeMDenGMEAwAAIBlyjnNuQ/wYpy7kFKxdu8lBAMAAMC30fREOHUz4dSdjRAMAAAA31LZcF5iS4dUdzZCMAAAAHyLR0tDqetFwqk7GyEYAAAAvlV44Rw8HFbd2QjBAAAA8M1Mqq+JB1qzviYus0BLzosQDAAAAN9Wlke1e3NDoDX3bGlQoiIWaM35EIIBAADgWzwWVcemOnnRYOKkFy3Rjo11ioU0azwbIRgAAAAFKY+VqrO9OZBane3NWhErTgCWCMEAAAAo0M3lZdrWVKu2xsSi6rQ1JrS9uVY3lZcF1NnCCMEAAAAo2JpqT/t3tRQchNsaE9q/q0W1VV7AnV0bIRgAAACLUlvl6VP3tmjfzg15zwh70RLt27lhSQKwJBVnIzYAAAC8oq2p9tTe8iptXb9aR04P6sDxAZ27kLrqufqauPZsadCOTXVaUVZa1BGImQjB15DKZPXiWFaSdDE1oVQ2p3i0VJXxqX9tK8ujiseiS9kiAADAsnFTeZluKpfef9etumfjWjknjWYmlM7m5EVLVRGLyExKVMSKtgvEfAjBc3hpbFxjmZwOnxrUwRPz/1fM7s0N6thUp/JYqW5eov+KAQAAWG7isahuWeYLheacW+oefGttbXW9vb2h1D4/nNaxs0l1dfcpnZ1c8HkvWqLO9mZta6rVmuriz7MAAABgbmZ20jnXOtc9VoJnSI6kdf/DZ9TTP5T3d9LZST3wyBM62p9cssFuAAAA+MPuENPOD6e195C/ADxTT/+Q9h46o+RIOuDOAAAAEDRCsKZmgI+dTRYcgC/r6R/S0b6kXh4bD6gzAAAAhIEQLGksk1NXd18gtbq6+3QpkwukFgAAAMJxw4fgVCarw6cG83oJLh/p7KSOnB5UKpMNpB4AAACCF3oINrN3mdlTZva0me2d437MzP7n9P0fmNm6sHua6cWxrA6eGAi05oHjA1f2FwYAAMDyE2oINrNSSZ+T9G5JzZJ2m1nzrMc+KOkl59xrJH1W0qfD7Gk25zTnPsCLce5CStfhznMAAAA3jLBXgrdIeto594xzblzS1yR1zHqmQ9J/n/797yVtMzMLua8rRtMT4dTNhFMXAAAAixd2CK6TdG7G52enr835jHNuQtKwpJWzC5nZfWbWa2a9Q0OL28VhplQ2nJfY0iHVBQAAwOJdNy/GOececs61OudaE4lEYHXjIZ1b7UWW9jxsAAAAzC/sEDwoqX7G51umr835jJlFJFVLejHkvq6o8MI5NC+sugAAAFi8sEPwCUl3mNltZlYm6b2Sjsx65oik903//iuSvuVc8V4rM5Pqa+KB1qyviat4U80AAADwK9QQPD3j+2FJj0o6K+lvnXNPmtmDZrZj+rG/lrTSzJ6W9FFJV22jFqaV5VHt3twQaM09WxqUqIgFWhMAAADBCf3/2TvnviHpG7Ou/dGM39OS3hN2H/OJx6Lq2FSnv/jWjwM5MMOLlmjHxjrFQpo1BgAAwOJdNy/Ghak8VqrO9tnbFxems71ZK2IEYAAAgOWMECzp5vIybWuqVVvj4nadaGtMaHtzrW4qLwuoMwAAAISBEDxtTbWn/btaCg7CbY0J7d/VotoqL+DOAAAAEDRC8Ay1VZ4+dW+L9u3cIC+a378aL1qifTs3/P/t3X3IlXcdx/H3J2+fFd2mW5vNLSlszKXpkowSY1Gth21ErLWCrYdFIFT2V0URQf0RBD0MGsSmDkqh3KpFMB3+YRHM2tpEna1oNd1yasy2amW6vv1xXzeZSdPdl173fa73C26u61zncM7n8OPcfM45v3P9LMCSJEnjiCezPcFLZ03hHa++kFULz+eeHU+y4Rd72ff03//ndhefO5Ubl8/nmiXzmD5pglMgJEmSxhFL8EnMnjaJ2dPg5hWX8K7FF1EFfz1yjH8cfZ4pEycwY/IQCcydMdmzQEiSJI1DluD/Y+rkibxs8sSuY0iSJKllzgmWJElS71iCJUmS1DuWYEmSJPWOJViSJEm9YwmWJElS71iCJUmS1DuWYEmSJPWOJViSJEm9k6rqOsNpS3IIeLyDh54D/KmDx9WZ5bgOLsd2cDm2g8lxHVxdje0lVTX3ZFeMyxLclSQPVNWVXedQuxzXweXYDi7HdjA5roNrLI6t0yEkSZLUO5ZgSZIk9Y4l+PR8u+sAOiMc18Hl2A4ux3YwOa6Da8yNrXOCJUmS1Dt+EixJkqTesQRLkiSpdyzBpyDJH5LsTPJwkge6zqP2JJmdZFOSXyfZk2RF15k0ekkWNq/Xkb9nk3yy61wavSRrkuxOsivJxiRTus6kdiT5RDOuu329jm9J1iY5mGTXccfOTXJfkt8223O6zAiW4NPxpqpaMtbOcadR+wZwb1W9ClgM7Ok4j1pQVY82r9clwDLgOeAHHcfSKCWZB3wcuLKqFgETgBu6TaU2JFkE3AIsZ/h/8TuTvKLbVBqF9cDbTjj2aWBrVb0S2Npc7pQlWL2VZBawErgDoKr+WVV/7jaVzoCrgN9VVRerTKp9Q8DUJEPANOCPHedROy4DtlfVc1V1DNgGvLvjTHqRquqnwNMnHL4WuLPZvxO47qyGOglL8KkpYEuSB5N8tOswas3LgUPAuiQPJbk9yfSuQ6l1NwAbuw6h0auqJ4GvAnuB/cAzVbWl21RqyS7gjUnOSzINeDtwcceZ1K4Lqmp/s/8UcEGXYcASfKreUFVLgauB1UlWdh1IrRgClgK3VdVrgL8xBr6eUXuSTAKuAb7fdRaNXjOH8FqG38BeBExP8oFuU6kNVbUH+AqwBbgXeBh4vtNQOmNq+Py8nZ+j1xJ8CppPH6iqgwzPK1zebSK15Angiara3lzexHAp1uC4GvhVVR3oOoha8Wbg91V1qKqOAncDr+84k1pSVXdU1bKqWgkcBn7TdSa16kCSCwGa7cGO81iCX0iS6UlmjuwDb2H4axuNc1X1FLAvycLm0FXAIx1GUvveh1MhBsle4HVJpiUJw69Zf8w6IJKc32znMzwfeEO3idSye4Cbmv2bgB91mAVwxbgXlGQB//lV+RCwoaq+3GEktSjJEuB2YBLwGPDBqjrcbSq1oXnTuhdYUFXPdJ1H7UjyReC9wDHgIeAjVXWk21RqQ5KfAecBR4FPVdXWjiPpRUqyEVgFzAEOAF8Afgh8D5gPPA5cX1Un/njurLIES5IkqXecDiFJkqTesQRLkiSpdyzBkiRJ6h1LsCRJknrHEixJkqTesQRL0hiR5NIknodcks4CS7AkSZJ6xxIsSWPLUJLvJtmTZFOzOtqyJNuSPJhk83FLj96S5JdJdiS5K8m05vj6JLcluT/JY0lWJVnb3Of65jYTmtvtSrIzyZoOn7MknXWWYEkaWxYC36qqy4BngdXArcB7qmoZsBYYWbXy7qp6bVUtZnj54A8fdz/nACuANQwvV/o14HLgimalxCXAvKpaVFVXAOvO/FOTpLFjqOsAkqT/sq+qft7sfwf4LLAIuC8JwARgf3P9oiRfAmYDM4DNx93Pj6uqkuwEDlTVToAku4FLgW3AgiS3Aj8BtpzRZyVJY4wlWJLGlhPXsv8LsLuqVpzktuuB66pqR5KbgVXHXXek2f7ruP2Ry0NVdTjJYuCtwMeA64EPjTq9JI0TToeQpLFlfpKRwnsjcD8wd+RYkolJLm+uhBJxOAAAAJJJREFUnwnsTzIReP/pPEiSOcBLquou4HPA0lbSS9I44SfBkjS2PAqsTrIWeITh+cCbgW8mmcXw/+2vA7uBzwPbgUPNduZpPM48YF2SkQ9DPtNOfEkaH1J14jdvkiRJ0mBzOoQkSZJ6xxIsSZKk3rEES5IkqXcswZIkSeodS7AkSZJ6xxIsSZKk3rEES5IkqXf+DS1WL78+2HepAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Rc5Xnv8d8z95HlC7IlGcsShAQsC1d2qOxA0yR2cQKJiW0cehrT5uTWuuc0bXNpOXFCzWnxcus0adOmK71AU9KmxyYJNdjBnAPYMbRNobZMjGMkGSilFgKEsIwv0sxoLu/5Q7IjZMmaLe09ktH3sxbLmr33PPOs9p9fd5/3fc05JwAAAGAqCU10AwAAAECpEYIBAAAw5RCCAQAAMOUQggEAADDlEIIBAAAw5UQmuoGxmDNnjrv88ssnug0AAABMYgcPHnzdOVc53L2LMgRffvnlam5unug2AAAAMImZ2X+NdI9xCAAAAEw5hGAAAABMOYRgAAAATDmEYAAAAEw5hGAAAABMOYRgAAAATDmEYAAAAEw5hGAAAABMORflYRkAAACYvFKZrI73ZiVJp1M5pbJ5JaNhTU/2R8/ZZVEl49GJbJEQDAAAAH+c6O1TbyavnYc6tP3AMbV3p857prYiqfVL67RmSY3K4mFdUhabgE4lc85NyA+PR1NTk+PYZAAAgMnj1ZNp7W3t1ObdLUpnC6M+n4iGtGlVg65fWK25MxOB9GRmB51zTcPd400wAAAAxqXzVFpfuv+w9rV1Ff2ddLag2x84oj1tndq6rlHVM4IJwiNhYRwAAADG7NWTaW3c4S0AD7avrUsbdxxW56m0z51dGCEYAAAAY3Kit097WzvHHIDP2tfWpT0tnXqjt8+nzkZHCAYAAMCY9Gby2ry7xZdam3e3qCeT96VWMQjBAAAA8CyVyWrnoY6iFsEVI50taNfTHUplsr7UG02gIdjM/s7MXjOzIyPcNzP7hpk9b2aHzeyaIPsBAACAP473ZrX9wDFfa27bf+zc/sJBC/pN8Lcl3XiB+x+UdOXAfxsk/VXA/QAAAMAHzmnYfYDHo707pVLt3htoCHbO/bOk7gs8skbSP7h+T0qaZWaXBtkTAAAAxu9MOhdM3UwwdYea6JngGkntgz6/NHDtPGa2wcyazay5q2t8KxABAAAwPqlsMIvY0gHVHWqiQ3DRnHN3OeeanHNNlZWVE90OAADAlJaMhgOpm4gEU3eoiQ7BHZJqB32eP3ANAAAAk1h5IpiDh4OqO9REh+Bdkv77wC4R10o66Zx7ZYJ7AgAAwCjMpNqKpK81ayuSMvO15IiC3iJtu6QnJC0ws5fM7NNm9j/M7H8MPPKQpBckPS/pbkm/EWQ/AAAA8MfssqjWL63zteaty+pUWR73teZIAn3f7JxbP8p9J+kzQfYAAAAA/yXjUa1ZUqNv/PA5Xw7MSERDWr24RvGAZo2HmuhxCAAAAFykyuJhbVrV4EutTasaNC1emgAsEYIBAAAwRpeUxXT9wmqtqB/fzl0r6iu1sqFas8piPnU2OkIwAAAAxmzuzIS2rmsccxBeUV+presaVT0j4XNnF0YIBgAAwLhUz0joj25u1Ja1i5SIvjlelsfCqr0kqfLYm0cdEtGQtqxdNCEBWAp4YRwAAACmhrkzE1rVeKmWL6jSmUxWiWhYYTOdSmeVzhaUiIY0IxFV3jml+/IqT0Y1LRYu6QjEYIRgAAAA+CI8sMnv3tbXtP3AMbV3p857prYiqfVL67RmSc255yeC9e9SdnFpampyzc3NE90GAAAABnSeTGtPa6c2724pasu0RDSkTasatHJhtapnBjMOYWYHnXNNw93jTTAAAADGpfNUWhvvP6x9bV1FfyedLej2B45oT1snC+MAAABwcek8mdbGHd4C8GD72rq0ccdhdZ5K+9zZhRGCAQAAMCanU1ntae0ccwA+a19bl/a0dOpMOutTZ6MjBAMAAGBMTqVz2ry7xZdam3e36GQq50utYhCCAQAA4FmmL6edhzqKWgRXjHS2oF1PdyjTV5ogTAgGAACAZ109fdp+4JivNbftP6aunj5fa46EEAwAAADPnNOw+wCPR3t3SqXavZcQDAAAAM/OZIIZW+gJqO5QhGAAAAB4lsnmA6mbzgVTdyhCMAAAADxLRMPB1I0EU3coQjAAAAA8K4sHE1aDqjsUIRgAAACe5fNOtRVJX2vWViSVL5RmZRwhGAAAAJ6FQqaPXDPf15q3XDNfITNfa46EEAwAAADPzKTlV1UqEfUnTiaiIb3vqkqVKAMTggEAAOBdyEz3H+rQbTcs8KXebTcs0I5DHbwJBgAAwOQVi5gqymKaOyOp5Qsqx1Vr+YJKzZ2R1JxpMcXDpYmnhGAAAAB45px00+J5umPnT7ThvVeMOQgvX1CpDe+9Qnfs/IlWNc5TiQ6MIwQDAADAu+4zWc2IR/SF9y/QZ7f/WLd/aKG2rF1U9IxwIhrSlrWLdPuHFuqz23+sL7x/gWbEIzre0xdw5/0iJfkVAAAAvKVEwqaevrwqp8f1tx9fqi0PtWp6PKJ7f+1aPf5sl+576iW1d6fO+15tRVK3XDNf77uqUt/61//Uo62d+tuPL1XnqbR6+vKKhkszE0wIBgAAgGfl8Yi+19yuBXOn6xt7n9NjR7skSQ8deVXX11fpdz+wQPNmJZXNF5TOFpSIhhQNh/TyGyk9ePgVfeOHz5/bEzhspl9smq9dT3foF3+2tiT9E4IBAADgWa7g1N3bp443Utrb9tq56/mC0yMtnXqkpVOSFAmZYpGQ+nIF5UY4CGNv22v6uXfM1us9fSM+4zdmggEAAOCZk9PNS2r01YePXvC5XMGpty8/arj96sNHtW5JjVyJlsYRggEAAOCZK0iPPduldLbgS710tqDHn+2SK9H2EIRgAAAAeJZ3Tv/01Eu+1rzvqZdUYBwCAAAAk1UkbMPu/jAe7d0phUu0OwQhGAAAAJ71ZvLB1O0Lpu5QhGAAAAB4ls75Mws8VManGePREIIBAADgWbLIk+EiIVNZLKxIqLgxh2JPnBsv9gkGAACAZ2Wx4WNkOGRaubBKH/qZS1UzK6lMrqB0Nq9ENKx4JKSON1LaffgV7W177dxhGcXU9RshGAAAAJ7lC061Fck3LY5bvXiePvXuy/XYs1362iNHRzw2+SPXzNdvLH+7/u5HL2rX0y+/6V6+RHukMQ4BAAAAz7L5gn6pqf+I42mxsL556zVaXDtTH737Sf3ZnudG3DmivTulP9vznD5695NaXDtT37z1Gk2LhSVJH11aq1yemWAAAABMUrm805olNZo9Laq7P96k7x9s1+YHW4s+PCOdLWjzg636/sF23f3xJs2eFtXqxTXK5krzJphxCAAAAHhWUR7Vi6/36h9/9Vp95f+16bGjXWOqc/Z7//ir1+qVN3p12ZxpfrY5It4EAwAAwLNs3mlOeUw/PvbGmAPwWY8d7dKhY29o9vS4snlmggEAADBJxSImJ9OdDz7jS70/ePAZOWeKR0oTTwnBAAAA8KxQkHYffrnoGeDRpLMFPfSTl5UbZtu0IBCCAQAA4Fk273TfUy/5WvP7B19SjnEIAAAATFbOuRG3QRur9u6UnAjBAAAAmKTOZHIB1c0HUncoQjAAAAA8y+SCOdSiL0sIBgAAwCSVjIYDqZsIqO5QhGAAAAB4Ni0ezJlrQdUdihAMAACAMamtSE7qehdCCAYAAIBnsYjpV951ma81P3btZRyWAQAAgMkrX3BaUV+lRNSfOJmIhrR8QRWHZQAAAGDyyuWdXny9R3fcdLUv9f73TVfrxdd7lCsEs+vEUIRgAAAAeHa8p09vryrXnPKYrq+vGlet6+urNLs8prdXlau7p8+nDi+MEAwAAADP4pGQ/nzPczqVzurX3nvFmIPw9fVV+rX3XqHT6az+7NFnFQszEwwAAIBJqjwR0a6nX9bMRFTfeeJFrbtmvu5cfXXRM8KJaEh3rr5a666Zr+888aJmJKL6weFXVJ4ozRZppfkVAAAAvKWYTLUVSX3uu4d0zyeX6q5/fkHJaFj3brhW//rc6/puc7vau1Pnfa+2IqlfaqrVz185R9/6l/9UKpvXhvdeoU/ec0C1FUmZrCT9E4IBAADgWSRkuuWa+fr6nuf0yXsO6I9vWaw3evv0y3/773r32+fodz+wQPNmJZXNF5TJFhSPhhQNh/TyGyk9ePgV/dXj/6Evf3ChZpXF9Ml7DqinL69f/9n5ioQJwQAAAJikzmRyWtU4T3/1+H+opy+vz2x7Sh9uvFT/51ev1RP/8bq+9shRtXenFAmZYpGQ+nIF5QpOtRVJ3bqsTp9Z8Q59619e0A8OvyKpfzziQz8zTz2ZXEn6JwQDAADAs1zeKRp2uu2GBdr8YKsk6QeHX9FDR17V9fVVb3oT3JcrKBZ585vgrz3yrPKD9gS+7YYFcq6gXL40/ROCAQAA4Fl5IqKvPnxUv/6+K7R8QaUeO9olqf8QjUdaOvVIS6cknfcmeDjLF1Tq2itm6xt7n9f/urG+JP0TggEAADAmP24/ofbulD6/8ipJOheEB8sVnHJ9I7/eXb6gUp9feZXau1M69NIbgfU6FFukAQAAwLOQSeuX1ul3vneof4eH91yhTTct9LRF2qabFmrDe65QKpvX73zvkG5dVqdQadbFEYIBAADg3el0TquXzFPeOX362wd0ojeruooy3bvhOn1+5ZWqrUgO+73aiqQ+v/JK3bvhOtVVlOlEb1af/vYB5Z3ThxfP0+l0aRbGmXPDz2ZMZk1NTa65uXmi2wAAAJiy2rt79WjLq4pHwrr9gSOSpA83XqpP//zbdOx4r2LRkGaXx5XNF5TOFpQY2CLt+JmMMrmCLqso07f+9T/P7Q6xZe0ipbN5feDquaqtKPOlRzM76JxrGu4eb4IBAADgWcike/7tRb3rigqtqK+U1L87xEf++gk9+JNXlMkVJEkmKWw/PQIjkyvowYHnzgbgFfWVetcVFfr2Ey+WbByChXEAAADwLJXN62PXXq71dz2pHb/xbt2hI9rX1uV5d4gV9ZW6c/UirfvLH2nDe9+uVLY0e6TxJhgAAACeZXIFXb+wSqczOa37yx/pyx9cqC1rF523MC5XcOrty58XgBPRkLasXaQvf3Ch1v3lj3Q6k9MvLKxS38Ab5KARggEAAODZ9EREf77nOf3+6qvVdaZP7//6PyudzevRz79PX7xxwQUXxn3xxgV69PPvUzqb1/u//s/qOtOnP1h9tf7s0WdVnijNoALjEAAAAPAsZKYft5/Qhxsv1cqFVdrT+po2727VVx4+qt/+hXfobz72syqLRdSTyZ1bGDctHlFvX04/bH1N1//p4+fe+q5cWKWKspgOvfSGQlaaoWBCMAAAADyLR0y3XDNfn/vuId3zyaWSpD2tr6kvV9DXHnlWX3vkWUlSIhJSeSKiM+mc0sOMOqxcWKUN771Cn7zngH79fVcoESnNoALjEAAAAPBsViKmVY39+wR/8p4Duvmd84edCU7nCnr9TN95AfjsTPDN75yvT97Tv0/wqp+Zp5llsZL0H3gINrMbzeyomT1vZhuHuV9nZvvM7MdmdtjMPhR0TwAAABifaDSs6YmIbrthgXr68vrMtqf05AvHde+G64qaCb53w3V68oXj+sy2p9TTl9dtNyxQeSKiaLg072gDHYcws7Ckb0p6v6SXJB0ws13OuZZBj/2epO855/7KzBokPSTp8iD7AgAAwPhNj0f0c2+fo+ULKvXY0S794PAreujIq7q+vkq/+4EFmjcrqWy+oL5cQbFI/2EZL7+R0oOHX9HXHnlW+YEdI5YvqNTPvX2OppdoUZwU/EzwMknPO+dekCQzu1fSGkmDQ7CTNGPg75mSXg64JwAAAPigLB7RnGkxfX7lVZKkx4563yd4+YJKfX7lVZozLaay2FsnBNdIah/0+SVJ7xryzO9LesTMfkvSNEkrhytkZhskbZCkuro63xsFAACAd5UzEpKkDe+5Qu+5co6++vBRpbM/nf/NFZxyfecfgJGIhnTbDQu0cO4MzZuZOFenVCbD7hDrJX3bOfcnZnadpO+Y2SLn3Jump51zd0m6S5KamprO/z8jAAAAMCEqZyTkJGXzBd274To9fvQ13ffUS2rvTp33bG1FUrdcM1/vW1Clk719ekdVeckDsBR8CO6QVDvo8/yBa4N9WtKNkuSce8LMEpLmSHot4N4AAADgk6oZCZUnIjrRm9WVVeW6/UMLNbs8rmy+cG6f4Gg4pONnMio4p6rpcV1VXV7SEYjBgv7VA5KuNLO3qT/8flTSrUOeOSbpeknfNrOFkhKSugLuCwAAAD4ri0VUFouoalpMXT0ZFZx0Op1TXy6vWKR/N4maWQlVTk+UbBeIkQQagp1zOTP7TUkPSwpL+jvn3DNmdqekZufcLkm/I+luM/u8+hfJfcI5x7gDAADARSoaDWverLKJbuOCAn//7Jx7SP3bng2+dsegv1skvTvoPgAAAICzODEOAAAAUw4hGAAAAFMOIRgAAABTDiEYAAAAUw4hGAAAAFMOIRgAAABTDiEYAAAAUw4hGAAAAFMOIRgAAABTDiEYAAAAUw4hGAAAAFMOIRgAAABTDiEYAAAAUw4hGAAAAFMOIRgAAABTDiEYAAAAUw4hGAAAAFMOIRgAAABTDiEYAAAAUw4hGAAAAFNOZKIbAAAAwFtLPl9Qd2+fcgWn0+mcMtm84tGwpiciioRMFWUxhcMT+y6WEAwAAABf9OUK6u7p04OHX9bfP/Gi2rtT5z1TW5HUx6+7XDc1zlPFtJhikYkJw+acm5AfHo+mpibX3Nw80W0AAABgQHdPn/a2dmrTziNKZwujPp+IhrR5zSJdv7BaFdNigfRkZgedc03D3WMmGAAAAONy/ExGX7zvsG6773BRAViS0tmCbrvvsL5432EdP5MJuMPzEYIBAAAwZt09fdr4Tz/Ro62dY/r+o62d2vhPP9GJnj6fO7swQjAAAADGpC9X0N7WzjEH4LMebe3UntZO9eWKe4vsB0IwAAAAxqS7p0+bdh7xpdamnUfUXcK3wYRgAAAAeJbPF/Tg4ZeLngEeTTrbXy+fL83bYEIwAAAAPOvu7dPfP/GirzX//okX1d1bmrfBhGAAAAB4liu4YfcBHo/27pRyhdJs30sIBgAAgGen07minouETGWxsCIhK+r5M0XWHS9OjAMAAIBnmWx+2OvhkGnlwip96GcuVc2spDK5gtLZvBLRsOKRkDreSGn34Ve0t+015Yd565sp0Q4RhGAAAAB4Fo+Gz7u2evE8ferdl+uxZ7v0tUeOjnhs8keuma/fWP52/d2PXtSup19+0/1SHaNMCAYAAIBn0xM/jZHTYmH98S2L9eqplD5695MX3DGivTulP9vznP768f/QbTcs0A1Xz9X/uu9p9fTlz6sbJGaCAQAA4FkkZKqtSGpaLKy7P96k7x9s1+YHWz0dm7z5wVZ9/2C77v54k6bFwqqtSBY9OzxevAkGAACAZxVlMX38ust16cyk7vrnF/TY0a4x1Tn7vT++ZbFeOZlSxbS4n22OiDfBAAAA8CwcDmn14nl69VRqzAH4rMeOdunVUymtXjxP4RK9CSYEAwAAYExyBaevPnzUl1pfffhoyfYIlgjBAAAAGINMX04P/LjD12OTdx7qUKavNPsEE4IBAADgWVdPn7YfOOZrzW37j6mrh2OTAQAAMEk5p0COTXYlmoggBAMAAMCzoI43PpNhHAIAAACTVGqEY5PHKx1Q3aEIwQAAAPAsOcyxyX5IRIKpOxQhGAAAAJ6VB3S8cVB1hyIEAwAAwDMzqbYi6WvN2oqkrDRnZRCCAQAA4F3ltJjWL63zteaty+pUNZ1jkwEAADBJxWMRrVlSo0TUnziZiIa0enGNYswEAwAAYDKbkYho06oGX2ptWtWgmcnSzANLhGAAAACM0fRkVCsXVmtFfeW46qyor9TKhmqVJ6I+dTY6QjAAAADGrHpmQlvXNY45CK+or9TWdY2qnpHwubMLIwQDAABgXKpnJLT15kZtWbvovBnh8lhYtZckVR5786xvIhrSlrWLJiQAS1LpBi8AAADwllU9M6E1S+Zp+YIqnclklYiGFTbTqXRW6WxBiWhIMxJR5Z1Tui+v8mRUMxORko5ADEYIBgAAgC+c6/93b+tr2n7gmNq7U+c9U1uR1PqldVqzpObc8xPB3ET++hg1NTW55ubmiW4DAAAAAzpPprWntVObd7conS2M+nwiGtKmVQ1aubBa1TODGYcws4POuabh7vEmGAAAAOPSeSqtjfcf1r62rqK/k84WdPsDR7SnrZOFcQAAALi4dJ5Ma+MObwF4sH1tXdq447A6T6V97uzCCMEAAAAYk9OprPa0do45AJ+1r61Le1o6dSad9amz0RGCAQAAMCan0jlt3t3iS63Nu1t0MpXzpVYxCMEAAADwLNOX085DHUUtgitGOlvQrqc7lOkrTRAmBAMAAMCzrp4+bT9wzNea2/YfU1dPn681R0IIBgAAgGfOadh9gMejvTtVsr2DPYdgM3uHmX3EzBqCaAgAAACT35l0MGMLZzKTZBzCzPaZ2ZyBvz8m6SFJH5T0XTP7rYD7AwAAwCSUyuYDqZsOqO5QxRyWUemce33g79+WdJ1z7riZlUl6UtJfBNYdAAAAJqVkNBxI3UQkmLpDFTMOkTWzmoG/z0jqGfg7I6k0XQIAAGBSKU8Ec/BwUHWHKuZXPi/pETP7J0nPSPqhmT0s6ecl3RNkcwAAAJiczKTaiqSvi+NqK5Iy863cBY36Jtg595ikn5P0iqSspIOS0pJ+yzn3tUC7AwAAwKRUOS2m9UvrfK1567I6VU2P+1pzJEW9b3bOnZT0Vxd6xsz+wjnHQjkAAIApIB6LaM2SGn3jh8/5cmBGIhrS6sU1ik2imeBivdvHWgAAAJjkZiQi2rTKn11zN61q0MxkaeaBJQ7LAAAAwBhNT0a1cmG1VtRXjqvOivpKrWyoVnki6lNnoyMEAwAAYMyqZya0dV3jmIPwivpKbV3XqOoZCZ87uzA/Q3CJ1vIBAABgMqmekdDWmxu1Ze0iJaLFxctENKQtaxdNSACWilwYJ0lm9jPOuZ9c4JE/H+F7Nw7cC0v6W+fc1mGe+W+Sfl+Sk/S0c+7WYvsCAADAxKuemdCaJfO0fEGVdj3doW37jw27fVptRVK3LqvT6iU1mpmIlHQEYjBzzhX3oNm/SIpL+rak/zOwY8Ro3wlLelbS+yW9JOmApPXOuZZBz1wp6XuSfsE5d8LMqpxzr12oblNTk2tubi6qbwAAAJRWpi+nrp4+OSedyeSUzuaViIZVHo/ITKqaHi/JLhBmdtA51zTcvaLfBDvn3jMQWD8l6aCZ7Zd0j3Pu0Qt8bZmk551zLww0cq+kNZJaBj3za5K+6Zw7MfA7FwzAAAAAmNzisYjmx0q308NYeJoJds49J+n3JH1R0vskfcPM2sxs3QhfqZHUPujzSwPXBrtK0lVm9iMze3JgfOI8ZrbBzJrNrLmrq8tL2wAAAMCbFB2CzazRzL4uqVXSL0j6sHNu4cDfXx9HDxFJV0paLmm9pLvNbNbQh5xzdznnmpxzTZWV49uGAwAAAFOblzfBfyHpKUmLnXOfcc49JUnOuZfV/3Z4OB2Sagd9nj9wbbCXJO1yzmWdc/+p/hniKz30BQAAAHjiJQSvkrTNOZeSJDMLmVmZJDnnvjPCdw5IutLM3mZmMUkflbRryDMPqP8tsMxsjvrHI17w0BcAAADgiZcQvEdSctDnsoFrI3LO5ST9pqSH1T9G8T3n3DNmdqeZrR547GFJx82sRdI+Sbc554576AsAAADwxMuyvYRz7szZD865M2ffBF+Ic+4hSQ8NuXbHoL+dpC8M/AcAAAAEzsub4B4zu+bsBzP7WUnn74AMAAAATHJe3gR/TtL3zexl9R+RPFfSLwXSFQAAABAgL4dlHDCzekkLBi4ddc5lg2kLAAAACI7XozyWSrp84HvXmJmcc//ge1cAAABAgIoOwWb2HUlvl3RIUn7gspNECAYAAMBFxcub4CZJDQO7OQAAAAAXLS+7QxxR/2I4AAAA4KLm5U3wHEktZrZfUubsRefc6pG/AgAAAEw+XkLw7wfVBAAAAFBKXrZIe9zMLpN0pXNuz8BpceHgWgMAAACCUfRMsJn9mqT7JP3NwKUaSQ8E0RQAAAAQJC8L4z4j6d2STkmSc+45SVVBNAUAAAAEyUsIzjjn+s5+MLOI+vcJBgAAAC4qXhbGPW5mX5aUNLP3S/oNST8Ipi0AAABcrLLZvLp6Mio46XQ6p1Q2r2Q0rOmJiEImVU6LKxqd2KVlXkLwRkmflvQTSb8u6SHn3N2BdAUAAICLTm8mpxOprHYe6tD2/cfU3p0675naiqTWL6vTmiU1uiQZVVncSxz1jxV7AJyZfdY59+ejXSuFpqYm19zcXOqfBQAAwAheO5XWntZO3flgi9LZwqjPJ6Ih3XFTg1YurFbVjEQgPZnZQedc03D3vMwEf3yYa58YU0cAAAB4y3jtVFpf3HFYX77/SFEBWJLS2YK+fP8RfXHHYb12Kh1wh+cbNQSb2Xoz+4Gkt5nZrkH/7ZPUHXyLAAAAmKzOBuB9bV1j+v6+tq4JCcLFDGH8m6RX1H9s8p8Mun5a0uEgmgIAAMDk15vJaU9r55gD8Fn72rq0p7VTa99Zo7JYaWaER/0V59x/SfovSdcF3w4AAAAuFidSWd35YIsvte58sEXvW1BVshDs5cS4dWb2nJmdNLNTZnbazE4F2RwAAAAmp2w2r52HOoqeAR5NOlvQrkMdymbzvtQbjZeFcX8sabVzbqZzboZzbrpzbkZQjQEAAGDy6urJaPv+Y77W3Lb/mLp6Mr7WHImXENzpnGsNrBMAAABcNApOw+4DPB7t3SkVSnQesZehi2Yz+66kBySdi+jOuR2+dwUAAIBJ7XQ6d1HVHcpLCJ4hqVfSBwZdc5IIwQAAAFNMKqDZ3XSJZoKLDsHOuU8G2QgAAAAuHsloOJC6iYDqDuVld4irzGyvmR0Z+NxoZr8XXGsAAACYrKYngtnKLKi6Q3lZGHe3pC9JykqSc+6wpEEhNGsAAB+kSURBVI8G0RQAAAAmt5BJtRVJX2vWViQVMl9LjshLCC5zzu0fcq00k8sAAACYVCqnxbV+WZ2vNW9dVqfK6Qlfa47ESwh+3czerv7FcDKzW9R/nDIAAACmmGg0rDVLapSIeomTI0tEQ1q9pEbRsD/1RuPlVz4j6W8k1ZtZh6TPSfqfgXQFAACASe+SZFR33NTgS607bmrQJWVRX2oVo+gQ7Jx7wTm3UlKlpHrn3M87514MrDMAAABMamXxiFYurNaK+spx1VlRX6mVC6tVFivNojjJ2+4QnzWzs3sFf93MnjKzD4z2PQAAALx1Vc1I6CvrGscchFfUV+or6xpVNaM0s8BneRmH+JRz7pT6D8uYLeljkrYG0hUAAAAuGmeD8B/evKjoGeFENKQ/vHnRhARgyduJcWc3rPiQpH9wzj1jZiXaxAIAAACTWdWMhNa+s0bvW1ClXYc6tG3/MbV3p857rrYiqV9eVqfVS2o0qyxa0hGIwbz86kEze0TS2yR9ycymSyoE0xYAAAAuNmWxiMpiEf3qu9+mNUvmqeCk0+mc0tm8EtGwpiciCplUOT1Rsl0gRuIlBH9a0hJJLzjnes1stiSOUgYAAMCbRKNhzZtVNtFtXNCoIdjM6p1zbeoPwJJ0BVMQAAAAuJgV8yb4C5I2SPqTYe45Sb/ga0cAAABAwEYNwc65DQP/rgi+HQAAACB4XvYJ/sWBxXAys98zsx1m9s7gWgMAAACC4WVZ3ibn3Gkz+3lJKyV9S9JfB9MWAAAAEBwvITg/8O8qSXc553ZLivnfEgAAABAsLyG4w8z+RtIvSXrIzOIevw8AAABMCl5C7H+T9LCkG5xzb0iqkHRbIF0BAAAAASo6BDvneiXtlNRjZnWSopLagmoMAAAACErRJ8aZ2W9J+t+SOvXT45KdpMYA+gIAAAAC4+XY5M9KWuCcOx5UMwAAAEApeJkJbpd0MqhGAAAAgFLx8ib4BUmPmdluSZmzF51zf+p7VwAAAECAvITgYwP/xcT+wAAAALiIFR2CnXN/IElmVj7w+UxQTQEAAABBKnom2MwWmdmPJT0j6RkzO2hmVwfXGgAAABAMLwvj7pL0BefcZc65yyT9jqS7g2kLAAAACI6XEDzNObfv7Afn3GOSpvneEQAAABAwT7tDmNkmSd8Z+Pwr6t8xAgAAALioeHkT/ClJlZJ2SPonSXMGrgEAAAAXFS+7Q5yQ9NsB9gIAAACUhJfdIR41s1mDPl9iZg8H0xYAAAAQHC/jEHOcc2+c/TDwZrjK/5YAAACAYHkJwQUzqzv7wcwuk+T8bwkAAAAIlpfdIW6X9K9m9rgkk/QeSRsC6QoAAAAIkJeFcf/PzK6RdO3Apc85514/e9/MrnbOPeN3gwAAAIDfvLwJ1kDofXCE29+RdM24OwIAAAAC5mUmeDTmYy0AAAAgMH6GYBbJAQAA4KLgZwgGAAAALgp+huA+H2sBAAAAgfG0MM7MGiVdPvh7zrkdA/9eO8LXAAAAgEml6BBsZn8nqVHSM5IKA5edpB0B9AUAAAAExsub4Gudcw2BdQIAAACUiJeZ4CfMjBAMAACAi56XN8H/oP4g/KqkjPr3BXbOucZAOgMAAAAC4uVN8LckfUzSjZI+LOmmgX8vyMxuNLOjZva8mW28wHMfMTNnZk0eegIAAAA88/ImuMs5t8tLcTMLS/qmpPdLeknSATPb5ZxrGfLcdEmflfTvXuoDAAAAY+ElBP/YzLZJ+oH6xyEk/XSLtBEsk/S8c+4FSTKzeyWtkdQy5LnNkr4i6TYP/QAAAABj4mUcIqn+8PsB9Y9BnB2JuJAaSe2DPr80cO0cM7tGUq1zbveFCpnZBjNrNrPmrq4uD20DAAAAb1b0m2Dn3Cf9/nEzC0n6U0mfKOL375J0lyQ1NTU5v3sBAADA1OHlsIyEpE9LulpS4ux159ynLvC1Dkm1gz7PH7h21nRJiyQ9ZmaSNFfSLjNb7ZxrLrY3AAAAwAsv4xDfUX9IvUHS4+oPtKdH+c4BSVea2dvMLCbpo5LOLa5zzp10zs1xzl3unLtc0pOSCMAAAAAIlJcQ/A7n3CZJPc65v5e0StK7LvQF51xO0m9KelhSq6TvOeeeMbM7zWz1WJsGAAAAxsPL7hDZgX/fMLNFkl6VVDXal5xzD0l6aMi1O0Z4drmHfgAAAIAx8RKC7zKzSyRtUv9IQ7mkYcMsAAAAMJl52R3ibwf+fFzSFcG0AwAAAASv6JlgM6s2s2+Z2f8d+NxgZp8OrjUAAAAgGF4Wxn1b/Qvc5g18flbS5/xuCAAAAAialxA8xzn3PUkF6dzOD/lAugIAAAAC5CUE95jZbElOkszsWkknA+kKAAAACJCX3SG+oP5dIa4wsx9JqpR0SyBdAQAAAAHyEoJbJN0vqVf9J8U9oP65YAAAAOCi4mUc4h8k1Uv6Q0l/Iekq9R+lDAAAAFxUvLwJXuScaxj0eZ+ZtfjdEAAAABA0L2+CnxpYDCdJMrN3SWr2vyUAAAAgWKO+CTazn6h/R4iopH8zs2MDny+T1BZsewAAAID/ihmHuCnwLgAAAIASGjUEO+f+qxSNAAAAAKXiZSYYAAAAeEsgBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMqJTHQDAAAAeGtJZbI63puVJJ1O5ZTK5pWMhjU92R89Z5dFlYxHJ7JFQjAAAAD88UZvn3oyee081KHtB46pvTt13jO1FUmtX1qnNUtqNC0e1qyy2AR0KplzbkJ+eDyamppcc3PzRLcBAACAAa+eTGtva6c2725ROlsY9flENKRNqxp0/cJqzZ2ZCKQnMzvonGsa7h5vggEAADAunafS+tL9h7Wvravo76SzBd3+wBHtaevU1nWNqp4RTBAeCQvjAAAAMGavnkxr4w5vAXiwfW1d2rjjsDpPpX3u7MIIwQAAABiTN3r7tLe1c8wB+Kx9bV3a09Kpk719PnU2OkIwAAAAxqQnk9fm3S2+1Nq8u0VnMnlfahWDEAwAAADPUpmsdh7qKGoRXDHS2YJ2Pd2hVCbrS73REIIBAADg2fHerLYfOOZrzW37j53bXzhohGAAAAB45pyG3Qd4PNq7UyrV7r2EYAAAAHh2Jp0Lpm4mmLpDEYIBAADgWSobzCK2dEB1hyIEAwAAwLNkNBxI3UQkmLpDEYIBAADgWXkimIOHg6o7FCEYAAAAnplJtRVJX2vWViRl5mvJERGCAQAA4NnssqjWL63zteaty+pUWR73teZICMEAAADwLBmPas2SGiWi/sTJRDSk1YtrFA9o1ngoQjAAAADGZFo8rE2rGnyptWlVg8rjpQnAEiEYAAAAYzSrLKbrF1ZrRX3luOqsqK/UyoZqzSyL+dTZ6AjBAAAAGLO5MxPauq5xzEF4RX2ltq5rVPWMhM+dXRghGAAAAONSPSOhP7q5UVvWLip6RjgRDWnL2kUTEoAlqTQbsQEAAOAtbe7MhG5qvFTLF1Rp19Md2rb/mNq7U+c9V1uR1K3L6rR6SY3KY+GSjkAMRggGAACAL6LhkGR5Lb28Qivqq5SIhtWTySmdLSgRDWlaPKJ0Nq8z6dxPn58ghGAAAACM22un0trT2qk7H2xROls4dz0RCak8EdGZdE7p3KDr0ZDuuKlBKxdWq4pxCAAAAFxsXjuV1hd3HNa+tq7z7qVzBaXP9J1/PVvQl+8/okdbO/WVdY0lD8IsjAMAAMCYXSgAF2NfW5e+uOOwXjuV9rmzCyMEAwAAYEx6Mzntae0ccwA+a19bl/a0dqq3L+dTZ6MjBAMAAGBMTqSyuvPBFl9q3flgi070Zn2pVQxCMAAAADzLZvPaeajjTYvgxiOdLWjXoQ5ls3lf6o2GEAwAAADPunoy2r7/mK81t+0/pq6ejK81R0IIBgAAgGcFp2EPwxiP9u6UCs7XkiMiBAMAAMCz0+lgFrEFVXcoQjAAAAA8SwU0u5tmJhgAAACTVTIaDqRuIqC6QwUegs3sRjM7ambPm9nGYe5/wcxazOywme01s8uC7gkAAADjMz0RzMHDQdUdKtAQbGZhSd+U9EFJDZLWm1nDkMd+LKnJOdco6T5JfxxkTwAAABi/kEm1FUlfa9ZWJBUyX0uOKOg3wcskPe+ce8E51yfpXklrBj/gnNvnnOsd+PikpPkB9wQAAIBxqpwW1/pldb7WvHVZnSqnJ3ytOZKgQ3CNpPZBn18auDaST0v6v8PdMLMNZtZsZs1dXeM7mg8AAADjE42GtWZJjRJRf+JkIhrS6iU1ioZLs2Rt0iyMM7NfkdQk6avD3XfO3eWca3LONVVWVpa2OQAAAJznkmRUd9w0dNJ1bO64qUGXlEV9qVWMoENwh6TaQZ/nD1x7EzNbKel2Saudc6U5JgQAAADjUhaPaOXCaq2oH98LyhX1lVq5sFplsdIsipOCD8EHJF1pZm8zs5ikj0raNfgBM3unpL9RfwB+LeB+AAAA4KOqGQl9ZV3jmIPwivpKfWVdo6pmlGYW+KxAQ7BzLifpNyU9LKlV0vecc8+Y2Z1mtnrgsa9KKpf0fTM7ZGa7RigHAACASehsEP7DmxcVPSOciIb0hzcvmpAALEnmXIkOaPZRU1OTa25unug2AAAAMEhvX04nerPadahD2/YfU3t3SnPKopp3SVIvn0jp9d6saiuS+uVldVq9pEazyqKBjkCY2UHnXNNw90o3eAEAAIC3tLJYRGWxiD5x3WX68OJ5kqTTqZxS2byS0bCmJ/uj5+yyqJLx0i2CGw4hGAAAAL440dun3kxeOw91aPuB/jfBQ9VWJLV+aZ3WLKlRWTysS8piE9Ap4xAAAADwwasn09rb2qnNu1uUzhZGfT4RDWnTqgZdv7Bac2cGMxPMOAQAAAAC03kqrS/df1j72oo/0CydLej2B45oT1untq5rVPVbaXcIAAAAvLW9ejKtjTu8BeDB9rV1aeOOw+o8lfa5swsjBAMAAGBMTvT2aW9r55gD8Fn72rq0p6VTb/T2+dTZ6AjBAAAAGJPeTF6bd7f4Umvz7hb1ZPK+1CoGIRgAAACepTJZ7TzUUdQiuGKkswXterpDqUzWl3qjIQQDAADAs+O9WW0/cMzXmtv2H9PxXkIwAAAAJinnNOw+wOPR3p1SqXbvJQQDAADAszPpXDB1M8HUHYoQDAAAAM9S2WAWsaUDqjsUIRgAAACeJaPhQOomIsHUHYoQDAAAAM/KE8EcPBxU3aEIwQAAAPDMTKqtSPpas7YiKTNfS46IEAwAAADPZpdFtX5pna81b11Wp8ryuK81R0IIBgAAgGfJeFRrltQoEfUnTiaiIa1eXKN4QLPGQxGCAQAAMCZl8bA2rWrwpdamVQ2aFi9NAJYIwQAAABijS8piun5htVbUV46rzor6Sq1sqNassphPnY2OEAwAAIAxmzszoa3rGscchFfUV2rrukZVz0j43NmFEYIBAAAwLtUzEvqjmxu1Ze2i82aEIyFTWSysSOjN2z4koiFtWbtoQgKwJJVmIzYAAAC8pc2dmdCqxku1fEGVnm4/oVDINKc8rkyuoHQ2r0Q0rHgkpNfPZFQoOC2uu0TTYuGSjkAMRggGAACAL9zAv+0nUvrHf/8vtXenznumtiKpX3nXZVpce8m55yeCOTeRPz82TU1Nrrm5eaLbAAAAwIBXT6a1t7VTm3e3KJ0tjPp8IhrSplUNun5htebODGYcwswOOueahrvHm2AAAACMS+eptL50/2Hta+sq+jvpbEG3P3BEe9o6WRgHAACAi8urJ9PauMNbAB5sX1uXNu44rM5TaZ87uzBCMAAAAMbkRG+f9rZ2jjkAn7WvrUt7Wjr1Rm+fT52NjhAMAACAMenN5LV5d4svtTbvblFPJu9LrWIQggEAAOBZKpPVzkMdRS2CK0Y6W9CupzuUymR9qTcaQjAAAAA8O96b1fYDx3ytuW3/MR3vJQQDAABgknJOw+4DPB7t3SmVavdeQjAAAAA8O5POBVM3E0zdoQjBAAAA8CyVDWYRWzqgukMRggEAAOBZMhoOpG4iEkzdoQjBAAAA8Kw8EczBw0HVHYoQDAAAAM/MpNqKpK81ayuSMvO15IgIwQAAAPBsdllU65fW+Vrz1mV1qiyP+1pzJIRgAAAAeJaMR7VmSY0SUX/iZCIa0urFNYoHNGs8FCEYAAAAY1IWD2vTqgZfam1a1aBp8dIEYIkQDAAAgDG6pCym6xdWa0V95bjqrKiv1MqGas0qi/nU2egIwQAAABizuTMT2rquccxBeEV9pbaua1T1jITPnV0YIRgAAADjUj0joT+6uVFb1i4qekY4EQ1py9pFExKAJak0G7EBAADgLW3uzIRWNV6q5QuqtOvpDm3bf0zt3anznqutSOrWZXVavaRG02Lhko5ADEYIBgAAgC9mlcU0q0z6xHWX6cOL58k56Uwmp3Q2r0Q0rPJ4RGb926sl49EJ7ZUQDAAAAF+cTmV1Kp3TzkMd2n6g/03wnLKo5l2S1MsnUnq9N6vaiqTWL63TmiU1mpGIaHpyYsKwOecm5IfHo6mpyTU3N090GwAAABjQeTKtPa2d2ry7RelsYdTnE9GQNq1q0MqF1aqeGcxMsJkddM41DXePN8EAAAAYl85TaW28/7D2tXUV/Z10tqDbHziiPW2d7A4BAACAi0vnybQ27vAWgAfb19aljTsOq/NU2ufOLowQDAAAgDE5ncpqT2vnmAPwWfvaurSnpVNn0lmfOhsdIRgAAABjciqd0+bdLb7U2ry7RSdTOV9qFYMQDAAAAM8yff27QBSzCK4Y6WxBu57uUKavNEGYEAwAAADPunr6tP3AMV9rbtt/TF09fb7WHAkhGAAAAJ45p2FPhBuP9u6USrV7LyEYAAAAnp1JBzO2cCbDOAQAAAAmqVQ2H0jddEB1hyIEAwAAwLNkNBxI3UQkmLpDEYIBAADgWXkimIOHg6o7FCEYAAAAnplJtRVJX2vWViRl5mvJERGCAQAA4FnltJjWL63zteaty+pUNT3ua82REIIBAADgWTwW0ZolNUpE/YmTiWhIqxfXKMZMMAAAACazGYmINq1q8KXWplUNmpkszTywRAgGAADAGE1PRrVyYbVW1FeOq86K+kqtbKhWeSLqU2ejIwQDAABgzKpnJrR1XeOYg/CK+kptXdeo6hkJnzu7MEIwAAAAxqV6RkJbb27UlrWLip4RTkRD2rJ20YQEYEkq3eDFRSiVyep4b1aSdDqVUyqbVzIa1vSBeZXZZVEl46V7bQ8AADBZVc9MaM2SeVq+oEq7nu7Qtv3H1N6dOu+52oqkbl1Wp9VLajQzESnpCMRghOBhnOjtU28mr52HOrT9wMj/C1y/tE5rltSoLB7WJWWxCegUAABg8ihPRFWeiOpTP3e5Prx4npyTzmRySmfzSkTDKo9HZCZVTY+XbBeIkZhzbkIbGIumpibX3NwcSO1XT6a1t7VTm3e3KJ0tjPp8IhrSplUNun5htebOLP2rfAAAAAzPzA4655qGu8eb4EE6T6X1pfsPa19bV9HfSWcLuv2BI9rT1jlhMy0AAADwhoVxA149mdbGHd4C8GD72rq0ccdhdZ5K+9wZAAAA/EYIVv8M8N7WzjEH4LP2tXVpT0un3ujt86kzAAAABIEQLKk3k9fm3S2+1Nq8u0U9mbwvtQAAABCMKR+CU5msdh7qKGoRXDHS2YJ2Pd2hVCbrSz0AAAD4L/AQbGY3mtlRM3vezDYOcz9uZt8duP/vZnZ50D0Ndrw3q+0Hjvlac9v+Y+f2FwYAAMDkE2gINrOwpG9K+qCkBknrzaxhyGOflnTCOfcOSV+X9JUgexrKOQ27D/B4tHendBHuPAcAADBlBP0meJmk551zLzjn+iTdK2nNkGfWSPr7gb/vk3S9mVnAfZ1zJp0Lpm4mmLoAAAAYv6BDcI2k9kGfXxq4NuwzzrmcpJOSZg8tZGYbzKzZzJq7usa3i8NgqWwwi9jSAdUFAADA+F00C+Occ3c555qcc02VlZW+1U1GgzmyLzHBRwECAABgZEGH4A5JtYM+zx+4NuwzZhaRNFPS8YD7Oqc8EcyheUHVBQAAwPgFHYIPSLrSzN5mZjFJH5W0a8gzuyR9fODvWyT90LnSLSszk2orkr7WrK1IqnRTzQAAAPAq0BA8MOP7m5IeltQq6XvOuWfM7E4zWz3w2LckzTaz5yV9QdJ526gFaXZZVOuX1vla89Zldaosj/taEwAAAP4J/P9n75x7SNJDQ67dMejvtKRfDLqPkSTjUa1ZUqNv/PA5Xw7MSERDWr24RvGAZo0BAAAwfhfNwrgglcXD2rRq6PbFY7NpVYOmxQnAAAAAkxkhWNIlZTFdv7BaK+rHt+vEivpKrWyo1qyymE+dAQAAIAiE4AFzZya0dV3jmIPwivpKbV3XqOoZCZ87AwAAgN8IwYNUz0joj25u1Ja1i5SIFvc/mkQ0pC1rFxGAAQAALiJsZjvE3JkJrWq8VMsXVGnX0x3atv+Y2rtT5z1XW5HUrcvqtHpJjabFwoxAAAAAXEQIwcOYVRbTrDLpE9ddpg8vnifnpDOZnNLZvBLRsMrjEZlJleVxdoEAAAC4CBGCLyAZj2p+PDrRbQAAAMBnzAQDAABgyiEEAwAAYMohBAMAAGDKIQQDAABgyiEEAwAAYMohBAMAAGDKIQQDAPD/27v/0LvqOo7jz1f7KrU11JxJjZaNYomTrc2kRY2FURmREmH2A+yXEQyq9VdFEUH9EQT9EBJCtwnloKaVEbjJ/lgRONJUtrksspzW3BYtjQTTevfHPV/6Ngbu6/d897nfe54P+HLOPedyz+vy5nx533M/93wkDY5NsCRJkgYnVdU6w6wlOQ480uDQy4C/Njiu5pd1nVzWdnJZ28lkXSdXq9q+sqouONWOBdkEt5Lknqq6rHUO9cu6Ti5rO7ms7WSyrpNrHGvrcAhJkiQNjk2wJEmSBscmeHa+1zqA5oV1nVzWdnJZ28lkXSfX2NXWMcGSJEkaHK8ES5IkaXBsgiVJkjQ4NsGnIcmfkuxPcn+Se1rnUX+SnJtkZ5LfJjmUZEPrTJq7JKu683X678kkn2mdS3OXZEuSg0kOJNmR5IWtM6kfST7d1fWg5+vClmRrkmNJDszY9pIkdyX5fbc8r2VGsAmejbdU1dpxu8ed5uzbwJ1V9VpgDXCocR71oKoe6s7XtcB64Cngx41jaY6SLAc+BVxWVauBRcC1bVOpD0lWA9cDlzP6X/yuJK9um0pzsB14x0nbPgfsqarXAHu6x03ZBGuwkpwDbARuBqiqf1XV39um0jy4AvhDVbWYZVL9mwJelGQKWAz8pXEe9eNiYF9VPVVVzwJ7gfc0zqTnqap+AfztpM1XAbd067cAV5/RUKdgE3x6Ctid5N4kn2gdRr15FXAc2JbkviQ3JVnSOpR6dy2wo3UIzV1V/Rn4BnAYOAI8UVW726ZSTw4Ab05yfpLFwDuBVzTOpH5dWFVHuvXHgQtbhgGb4NP1pqpaB1wJbE6ysXUg9WIKWAfcWFWvA/7JGHw9o/4kORt4N/Cj1lk0d90YwqsYfYB9ObAkyYfaplIfquoQ8HVgN3AncD/w76ahNG9qdH/e5vfotQk+Dd3VB6rqGKNxhZe3TaSePAY8VlX7usc7GTXFmhxXAr+pqqOtg6gXbwX+WFXHq+oZ4HbgjY0zqSdVdXNVra+qjcAJ4HetM6lXR5O8DKBbHmucxyb4uSRZkmTp9DrwNkZf22iBq6rHgUeTrOo2XQE82DCS+vd+HAoxSQ4Db0iyOEkYnbP+mHVCJHlpt1zBaDzwrW0TqWd3ANd169cBP22YBXDGuOeUZCX/+1X5FHBrVX2tYST1KMla4CbgbOBh4CNVdaJtKvWh+9B6GFhZVU+0zqN+JPkK8D7gWeA+4ONV9XTbVOpDkl8C5wPPAJ+tqj2NI+l5SrID2AQsA44CXwZ+AvwQWAE8AlxTVSf/eO6MsgmWJEnS4DgcQpIkSYNjEyxJkqTBsQmWJEnS4NgES5IkaXBsgiVJkjQ4NsGSNCaSXJTE+5BL0hlgEyxJkqTBsQmWpPEyleQHSQ4l2dnNjrY+yd4k9ybZNWPq0euT/DrJA0luS7K42749yY1J7k7ycJJNSbZ2r7m9e86i7nkHkuxPsqXhe5akM84mWJLGyyrgu1V1MfAksBm4AXhvVa0HtgLTs1beXlWvr6o1jKYP/tiM1zkP2ABsYTRd6TeBS4BLu5kS1wLLq2p1VV0KbJv/tyZJ42OqdQBJ0v95tKp+1a1/H/gCsBq4KwnAIuBIt391kq8C5wIvBnbNeJ2fVVUl2Q8crar9AEkOAhcBe4GVSW4Afg7sntd3JUljxiZYksbLyXPZ/wM4WFUbTvHc7cDVVfVAkg8Dm2bse7pb/mfG+vTjqao6kWQN8Hbgk8A1wEfnnF6SFgiHQ0jSeFmRZLrh/QBwN3DB9LYkZyW5pNu/FDiS5Czgg7M5SJJlwAuq6jbgi8C6XtJL0gLhlWBJGi8PAZuTbAUeZDQeeBfwnSTnMPq//S3gIPAlYB9wvFsuncVxlgPbkkxfDPl8P/ElaWFI1cnfvEmSJEmTzeEQkiRJGhybYEmSJA2OTbAkSZIGxyZYkiRJg2MTLEmSpMGxCZYkSdLg2ARLkiRpcP4LB0QzlW4DR7MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3hcZ3nn/889o5k5I8myrUSSE0VKgIJlYWSTym6AdhNjU2id2I5JW+xtCyVLtldLv23ZspgGZ7txA07aLS3dfr/bUGiBqzZQ6sQmTpvGwWFbSmvLYLuOrJA0gBQlUUTk2JY0M5ofz/cPSa4iS9ac0Tkj2Xq/rsuXNGeeuXWT+edzHZ5zP+acEwAAALCQROa6AQAAAKDcCMEAAABYcAjBAAAAWHAIwQAAAFhwCMEAAABYcCrmuoFSXH311e6GG26Y6zYAAAAwjx07duxHzrm6qd67LEPwDTfcoI6OjrluAwAAAPOYmf1wuvfYDgEAAIAFhxAMAACABYcQDAAAgAWHEAwAAIAFhxAMAACABYcQDAAAgAWHEAwAAIAFhxAMAACABeeyPCwDAAAA81cqk9Urw1lJ0vlUTqlsXslYVIuSo9HzqsqYkonYXLZICAYAAEAwzgyPaDiT1/7jvdp7tFs9A6mL1jTVJrVtTbM2r25UZSKqpZXxOehUMufcnPzh2Whvb3ccmwwAADB/vHQ2rSdO92nXwU6ls4UZ13uxiHZubNX6FQ1attgLpSczO+aca5/qPe4EAwAAYFb6zqX18YdO6nBXf9GfSWcLuvvhUzrU1afdW9vUUBNOEJ4OD8YBAACgZC+dTWvHPn8BeKLDXf3ase+k+s6lA+7s0gjBAAAAKMmZ4RE9cbqv5AA87nBXvw519unV4ZGAOpsZIRgAAAAlGc7ktetgZyC1dh3s1FAmH0itYhCCAQAA4Fsqk9X+471FPQRXjHS2oAMnepXKZAOpN5NQQ7CZfd7MXjazU9O8b2b2GTN71sxOmtmNYfYDAACAYLwynNXeo92B1txzpPvCfOGwhX0n+K8kvecS7/+MpDeO/btL0v8Xcj8AAAAIgHOacg7wbPQMpFSu6b2hhmDn3P+VNHCJJZslfdGN+hdJS8zsmjB7AgAAwOwNpnPh1M2EU3eyud4T3CipZ8Lr58euXcTM7jKzDjPr6O+f3ROIAAAAmJ1UNpyH2NIh1Z1srkNw0ZxzDzrn2p1z7XV1dXPdDgAAwIKWjEVDqetVhFN3srkOwb2Smia8vm7sGgAAAOaxai+cg4fDqjvZXIfgA5J+eWxKxE2SzjrnXpzjngAAADADM6mpNhlozabapMwCLTmtsEek7ZX0bUnLzex5M7vTzH7VzH51bMmjkp6T9Kykz0r6tTD7AQAAQDCuqoxp25rmQGtuX9usuupEoDWnE+r9Zufcthned5J+PcweAAAAELxkIqbNqxv1mW88E8iBGV4sok2rGpUIaa/xZHO9HQIAAACXqcpEVDs3tgZSa+fGVlUlyhOAJUIwAAAASrS0Mq71Kxq0rmV2k7vWtdRpQ2uDllTGA+psZoRgAAAAlGzZYk+7t7aVHITXtdRp99Y2NdR4AXd2aYRgAAAAzEpDjadP3d6m+7aslBd7bbysjkfVtDSp6vhrtzp4sYju27JyTgKwFPKDcQAAAFgYli32tLHtGt2yvF6Dmay8WFRRM51LZ5XOFuTFIqrxYso7p/RIXtXJmKri0bJugZiIEAwAAIBARMeG/D5x+mXtPdqtnoHURWuaapPatqZZm1c3Xlg/F2x0Stnlpb293XV0dMx1GwAAABjTdzatQ6f7tOtgZ1Ej07xYRDs3tmrDigY1LA5nO4SZHXPOtU/1HneCAQAAMCt959La8dBJHe7qL/oz6WxBdz98Soe6+ngwDgAAAJeXvrNp7djnLwBPdLirXzv2nVTfuXTAnV0aIRgAAAAlOZ/K6tDpvpID8LjDXf061NmnwXQ2oM5mRggGAABASc6lc9p1sDOQWrsOdupsKhdIrWIQggEAAOBbZiSn/cd7i3oIrhjpbEEHTvQqM1KeIEwIBgAAgG/9QyPae7Q70Jp7jnSrf2gk0JrTIQQDAADAN+c05Rzg2egZSKlc03sJwQAAAPBtMB3OtoXBDNshAAAAME+lc/lQ6mZCqjsZIRgAAAC+ebFoKHUTFeHUnYwQDAAAAN+qE+EcPBxW3ckIwQAAAPAt75yaapOB1myqTapQpifjCMEAAADwLZcv6L03XhdozTtuvE7ZfDBzh2dCCAYAAIBv2ZzTLW+qkxcLJk56sYhuflOdsjnuBAMAAGCeqvYq9Plv/UAffffyQOp99N3L9bl/+r6qPfYEAwAAYJ4yk77bc0bLapK6ZXndrGrdsrxOy2qSOv78qzILqMEZEIIBAADgW2U8qm1rmvXfv3ZCv3rzG7S+pb6kOutb6vWrN79B//1rJ7R9bbOq49wJBgAAwDxVEZU2r268sCf4zp98nXbeuqLoPcJeLKKdt67QnT/5uguvN61qVDRanlvB5YnaAAAAuKKcS+WVqIjor//LTdr991168ul+3dZ2jb78oZv0ze/162vfeV49A6mLPtdUm9QdN16nm99Up8/90/e165HTumV5nf76QzcpUWE6m8pqkRcLvX9CMAAAAHxblIzq2b4hPdM3qCef7pckff3ki3r01Eta31Kv3/np5bp2SVLZfEHpbEFeLKJYNKIXXk3pkZMv6jPfeFb5wugkiCef7tfPrFymH6uv1o81VJWlf3NlGkgcpPb2dtfR0THXbQAAACxYvWeGVXDSuz79TaWz08/2rYiY4hURjeQKyhWmz51eLKLHf/tmRUxqXFoZSI9mdsw51z7Ve+wJBgAAgG9ePKKvn3jhkgFYknIFp+GR/CUDsCSlswU9cvIFefHyxFNCMAAAAHwbzhS092h3oDX3HOnWcIYT4wAAADCPTfXg23yqdymEYAAAAPh2Pp0Npe5gJhdK3ckIwQAAAPBtpr3A4yoipsp4VBWR4ub/prP52bRVNEakAQAAwLdkLDrl9WjEtGFFvX72LdeocUlSmVxB6WxeXiyqREVEva+mdPDki3qi6+ULI9Im8iqmrhs0QjAAAAB8W+RdHCM3rbpWH3zHDXrye/36w394etrDMt5743X6tVveoM9/6wc6cOKFGeuGgRAMAAAA38xGA23PQEpV8ageuGOVXjqX0vs++y+X3CrRM5DSHx96Rv/nm/+uj757ud795mX67187oaGRvJpqk7IybdZlTzAAAAB8q69OaNvaZlXFo/rs+9v1N8d6tOuR00XvFU5nC9r1yGn9zbEeffb97aqKR7V9bbPqF3khdz6KO8EAAADwLRaLasvqRr3uqio9+H+fu3B0sl/jn/vDn1ulVU1LFItyWAYAAADmsVjUNDA0UnIAHvfk0/0aGBpRPFrcBIkgEIIBAADgWzab19lUTrsOdgZSb9fBTp1N5ZQt04g0QjAAAAB8O5Me0cGTLxS9B3gm6WxBB//tBZ1JjQRSbyaEYAAAAPiWyTp97TvPB1rzb449r0zu4tnBYSAEAwAAwDfn3JRzgGejZyAlJ0IwAAAA5qnzmVwodQfT7AkGAADAPDWSC2Yv8MV1CcEAAACYp5KxaCh1vZDqTkYIBgAAgG9ViXDOXAur7mSEYAAAAPhWETU11SYDrdlUm1SsTAdmEIIBAADgW8SkX7rphkBr/vJNNyhihGAAAADMUyM5p/Ur6uXFgomTXiyid66oVyakB+4mIwQDAADAt8F0Tn9y6Bn93qY3B1Lvf256s/748e9pMKTRa5MRggEAAOBbKpvXgRMv6KrKuDasqJ9VrQ0r6lVbGdfXT76odJYRaQAAAJinxkek/dZXjuuu//T6koPwhhX1uus/vV6/9ZXjkiSvghFpAAAAmKeqvdFRZkMjef3KXx7V7W+9TvdtWVn0HmEvFtF9W1bq9rdep1/5y6MaGsm/pm7YyvNXAAAAcMVpqk2qZyCloZG8fn3Pd3Rb2zX68l1v07f//Ufac6RbPQOpKT+zfW2z3vaGq/W5f3xOXz/54mveKxdCMAAAAHyrSkS0bU2zHnjs6QvXvn7yRT166iWtb6nX7/z0cl27JKlsvqCRXEHxiohi0YheeDWlR06+qD/8h+8pX3Cvqbl9bbOqE+XZDkEIBgAAgG/ZvNOm1dfqM994Runsf4w1yxec/qGzT//Q2SdJqoiY4hURjeQKyk0KvRN5sYhuW3Wtsvnp1wSJPcEAAADwbWAoKzNp58bWS67LFZyGR/KXDMDSaJ2opIGhkQC7nB4hGAAAAL6ls3nd/3dP6+bldVrXUjerWuta6nTz8jp98u+6lM4xIg0AAADzlFcR1YETL+h7fef1+5vfUnIQXtdSp9/f/BZ9r++8vn7yRSWijEgDAADAPDU+yuw39nxXL54d1j23vrmkEWn/49Y368Wzw/qNPd99Td2wEYIBAADgm9noSLOhkbze//mj6nzhnFY21ujx375ZH3vP8mnHnTXVJvWx9yzX4799s1Y21uipF87p/Z8fnRPcVJuUWXn6ZzoEAAAAfKuril8YkTZxTvCdP/U63di8ROta6uXFohrK5JTOFuTFIqpKVCidzevc8IheGcroc//4/dfMCd6+tln1ixJl6Z8QDAAAAN8S8QptXt34mhFpE+cEb2y7RtcuSSqfLyiXd8rmTMMj+Qtzgr/R9fJr5gR7sYg2rWpUvEzHJhOCAQAAUJLqRFQ7N7bq7odPXbhW6pzgnRtbtcgrTwCW2BMMAACAEuXyBb1zRf0lJ0MUMyd4XUud3rmiXiO5wrRrgkYIBgAAgG/5fEGpXEHv//y/6lO3t81qRNqnbm/T+z//r0rnCsrnyxOECcEAAADw7fxIVgeOv6Dv9Q3pF/78n/X7m1eWNCLt9zev1C/8+T/re31D+vqJF3R+JBty56MIwQAAAPBtMJ3X3qPdkqQfDqT0jvsPq74moSc+cktRI9Ke+Mgtqq9J6B33H9YPB1KSpD1HujWYLs+JcTwYBwAAAN+ck3rGwuu4D33xmGqr4tr/a2/XrW3XSpIGMzmls3l5saiqExVjny3otv/9TxoYGnnN53sGUnLTbx0OFCEYAAAAvp1PX7xt4S9++ce14prF2n+8V3uPdqtnIKXqeFRLq+I6MzSiwbEDMbatadbXP/yTOv3iWf2XLx57TY3BTK4s/bMdAgAAAL6NzwaWpOtrk/rWx9ap71xG6//oST3w2NMX7hIPjuTVcyalwZHRbQ49Ayk98NjTWv9HT6rvXEbf+tg6XT9h60Q6W57tEKGHYDN7j5k9bWbPmtmOKd5vNrPDZvZdMztpZj8bdk8AAACYnWRsdKbv9bVJfeW/vl2f2H9Kdz986jXh+FLS2YLufviUPrH/lL7yX99+IQh7ZTosI9QQbGZRSX8m6WcktUraZmatk5Z9QtJXnXNvlfQ+Sf9vmD0BAABg9qq90V21ez50kz7+0Ekd7uovqc7hrn59/KGT2vOhm15TN2xh3wleK+lZ59xzzrkRSV+WtHnSGiepZuz3xZJeCLknAAAAzFLEpC99cK2efLq/5AA87nBXv558ul9f+uAaRcq0WTfsP9MoqWfC6+fHrk30e5J+0cyel/SopN+YqpCZ3WVmHWbW0d8/u//QAAAAmJ366oReX1etXQc7A6m362CnXl+3SPWLvEDqzWQ+PBi3TdJfOeeuk/Szkr5kZhf15Zx70DnX7pxrr6sr7UQSAAAABKPgnPYf7y16D/BM0tmCDpzoVeEKOTGuV1LThNfXjV2b6E5JX5Uk59y3JXmSrg65LwAAAMxC/9DIhcMygrLnSLf6J80ODkvYIfiopDea2evMLK7RB98OTFrTLWm9JJnZCo2GYPY7AAAAzGNTHZYxW+U8LCPUEOycy0n6sKTHJJ3W6BSIp8zsXjPbNLbsv0n6kJmdkLRX0gecK9f/fAAAAJRiMB3OoRblOiwj9BkUzrlHNfrA28Rr90z4vVPSO8LuAwAAAMFJhXSoxRVzWAYAAACuPOOHZQTtijgsAwAAAFemsA61uFIOywAAAMAVyExqGjvqOChNtUmZBVpyWoRgAAAA+FZXFde2Nc2B1ty+tln1ixKB1pwOIRgAAAC+JeIV2ry6UV4smDjpxSLatKpRcfYEAwAAYD6r8Sq0c2NrILV2bmzV4mR59gNLhGAAAACUaFEypg0rGrSupW5Wdda11GlDa4OqvVhAnc2MEAwAAICSNSz2tHtrW8lBeF1LnXZvbVNDjRdwZ5dGCAYAAMCsNNR42n17m+7bsrLoPcJeLKL7tqyckwAsleHEOAAAAFz5YhURvf0NtXriI7fowIle7TnSrZ6B1EXrmmqT2r62WZtWNWokl1MsOjf3ZAnBAAAAmJVXBjPa8bf/psdP9ykZj+oP3vsWfenOn1DUTIOZnNLZvLxYVNWJCuWd06nnX9WGT39TqZG83rWiQbvf+xZdVV2e0WjjCMEAAAAo2cDQyIUALEmpkbw+vPf4hfer41EtrYrrzNCIBkfyF33+8dN90t9KD9zRpqVV8bL1zZ5gAAAAlGQkV9ATp/suBOCpDI7k1XMmNWUAHvf46T4dOt2nkVwhjDanRAgGAABASQaGRrRz/6lAau3cf0oDQyOB1CoGIRgAAAC+5fMFPXLyBaWzwdy9TWdH6+Xz5bkbTAgGAACAbwPDI/rCt38QaM0vfPsHGhguz91gQjAAAAB8yxXclCPQZqNnIKVcwQVaczqEYAAAAPh2Pp0Lpe5gSHUnIwQDAADAt0x2+mkPs6pbpgkRhGAAAAD4lohFQ6kbryhPPCUEAwAAwLdFXjhnroVVdzJCMAAAAHyriJiaapOB1myqTaoiYoHWnA4hGAAAAL7VVsb1/rfdEGjN97/tBtVWJQKtOR1CMAAAAHyLRiO6te1aebFg4qQXG60X5U4wAAAA5rPaqrh2bV4ZSK1dm1eqtioeSK1iEIIBAABQknhFROtXNOhdKxpmVeddKxq0YUVD2SZDSIRgAAAAzEJtVVy73/uWkoPwu1Y0aPd736KlZbwLLBGCAQAAMEtXVSd0/x1t+oM72oreI+zFIvqDO9r0wB1tuqq6PA/DTVSeQWwAAAC4otVWxbV5daN+6o11euTkC/rCt3+gnoHUReuaapP6wNtv0Ma3XKvaqnhZt0BMRAgGAABAIOIVES1b7OlX3n6DNq++VrmC02A6p0yuoERFRNVehSoiptqqRNmmQEyHEAwAAIBARaMR1S3yRl8snttepkMIBgAAQKCy2bz6hzIqOOl8OqdUNq9kLKpFXoUiJtVVJRSLRee0R0IwAAAAAjGcyelMKqv9x3u190j3tHuCt61t1ubVjVqajKkyMTdx1Jxzc/KHZ6O9vd11dHTMdRsAAAAY8/K5tA6d7tO9j3QqnS3MuN6LRXTPra3asKJB9TVeKD2Z2THnXPtU73EnGAAAALPy8rm0PrbvpA539Rf9mXS2oN996JQeP92n+7e2hRaEp8OcYAAAAJSslAA80eGufn1s30m9fC4dcGeXRggGAABASYYzOR063VdyAB53uKtfh073aXgkF1BnMyMEAwAAoCRnUlnd+0hnILXufaRTZ4azgdQqBiEYAAAAvmWzee0/3lvUQ3DFSGcLOnC8V9lsPpB6MyEEAwAAwLf+oYz2HukOtOaeI93qH8oEWnM6hGAAAAD4VnCacg7wbPQMpFQo0/ReQjAAAAB8O58O5yG2sOpORggGAACAb6mQ9u6m2RMMAACA+SoZi4ZS1wup7mSEYAAAAPi2yAvn4OGw6k5GCAYAAIBvEZOaapOB1myqTSpigZacFiEYAAAAvtVVJbRtbXOgNbevbVbdIi/QmtMhBAMAAMC3WCyqzasb5cWCiZNeLKJNqxsVi5YnnhKCAQAAUJKlyZjuubU1kFr33NqqpZWxQGoVgxAMAACAklQmKrRhRYPWtdTNqs66ljptWNGgynh5HoqTCMEAAACYhfoaT/dvbSs5CK9rqdP9W9tUX1OevcDjCMEAAACYlfEg/MnbV160R/jqypjaGmt09aStDl4sok/evnJOArAkle+eMwAAAK5Y9TWetry1UTcvr1csImVyTmbSuVRW6WxBXiyimmRMzknxqCnvpCWVsbJugZiIEAwAAIBAZHIFyUlfO9arvUe71TOQumhNU21S29Y0a/PqRmVyBVXG56BRSeacm5u/PAvt7e2uo6NjrtsAAADAmJfOpvXE6T7tOtipdLYw43ovFtHOja1av6JByxaHsx3CzI4559qneo87wQAAAJiVvnNpffyhkzrc1V/0Z9LZgu5++JQOdfVp99Y2NfBgHAAAAC4XL51Na8c+fwF4osNd/dqx76T6zqUD7uzSCMEAAAAoyZnhET1xuq/kADzucFe/DnX26dXhkYA6mxkhGAAAACUZzuS162BnILV2HezUUCYfSK1iEIIBAADgWyqT1f7jvUU9BFeMdLagAyd6lcpkA6k3E0IwAAAAfHtlOKu9R7sDrbnnSLdeGSYEAwAAYJ5yTlPOAZ6NnoGUyjW9d8YQbGZLytEIAAAALh+D6Vw4dTPh1J2smDvBPzKzQ2Z2J4EYAAAAkpTKhvMQWzqkupMVE4JPS/pjSe+U9O9mtt/M3mdmyXBbAwAAwHyVjEVDqetVhFN3smJCcNY594hz7j9Luk7SX0v6eUnPm9meULsDAADAvFTthXPwcFh1JysmBNv4L865lHPuq865rZJeL+mx0DoDAADAvGUmNdUGuzGgqTYps5nXBaGYEPzXU110zp11zn0h4H4AAABwGbiqMqZta5oDrbl9bbPqqhOB1pzOjCHYOfeHxRQysz+dfTsAAAC4HCQTMW1e3SgvFszEXS8W0aZVjUqEtNd4siDnBL8jwFoAAACY5yoTUe3c2BpIrZ0bW1WVKE8AljgsAwAAACVaWhnX+hUNWtdSN6s661rqtKG1QUsq4wF1NjNCMAAAAEq2bLGn3VvbSg7C61rqtHtrmxpqvIA7u7QgQ3CZnuUDAADAfNJQ4+lTt7fpvi0ri94j7MUium/LyjkJwJJU9CA2M3uLc+7fLrHkT6b53HvG3otK+gvn3O4p1vy8pN+T5CSdcM5tL7YvAAAAzL1liz1tbLtGtyyv14ETvdpzpFs9A6mL1jXVJrV9bbM2rW5UVTxa1i0QE5lzrriFZv8oKSHpryT9tXPubBGfiUr6nqR3SXpe0lFJ25xznRPWvFHSVyW90zl3xszqnXMvX6pue3u76+joKKpvAAAAlFcqk9Urw1k5Jw1mckpn8/JiUVUnKmQ2Ol4tmYiF3oeZHXPOtU/1XtF3gp1zPzUWWD8o6ZiZHZH0l865xy/xsbWSnnXOPTfWyJclbZbUOWHNhyT9mXPuzNjfuWQABgAAwPx0PpXVuXRO+4/3au/R0TvB1fGollbFdWZoRIMjeTXVJrVtTbM2r25UjVehRcnww/BUfJ1L55x7xsw+IalD0mckvdXMTNLvOuf2TfGRRkk9E14/L+knJq15kySZ2bc0umXi95xzfz+5kJndJekuSWpuDnYwMwAAAGan72xah073adfBTqWzhQvXB0fyGhz5j20RPQMpPfDY0/rMN57Rzo2t2rCiQQ2Ly78nuOgH48yszcw+Lem0pHdKus05t2Ls90/PoocKSW+UdIukbZI+a2ZLJi9yzj3onGt3zrXX1c1uDAcAAACC03curR0PndTdD596TQC+lHS2oLsfPqUdD51U37l0yB1ezM90iD+V9B1Jq5xzv+6c+44kOedekPSJaT7TK6lpwuvrxq5N9LykA865rHPu+xrdQ/xGH30BAABgjvSdTWvHvpM63NVf0ucPd/Vrx77yB2E/IXijpD3OuZQkmVnEzColyTn3pWk+c1TSG83sdWYWl/Q+SQcmrXlYo3eBZWZXa3R7xHM++gIAAMAcOJ/K6tDpvpID8LjDXf061NmnwXQ2oM5m5icEH5KUnPC6cuzatJxzOUkflvSYRrdRfNU595SZ3Wtmm8aWPSbpFTPrlHRY0kedc6/46AsAAABz4Fw6p10HO2deWIRdBzt1NpULpFYx/DwY5znnBsdfOOcGx+8EX4pz7lFJj066ds+E352kj4z9AwAAwGUgMzI6BaLYPcAzSWcLOnCiVx98+w1KxH3NbiiJnzvBQ2Z24/gLM/txSRdPQAYAAMAVr39oRHuPdgdac8+RbvUPjQRaczp+YvZvSfobM3tBo0ckL5P0C6F0BQAAgHnNOU15Itxs9AykVOQ5brPm57CMo2bWImn52KWnnXPl270MAACAeWMwHc7+3cFMefYF+91wsUbSDWOfu9HM5Jz7YuBdAQAAYF5LZfOh1E2HVHeyokOwmX1J0hskHZc03p2TRAgGAABYYJKxaCh1vYpw6k7m505wu6TWsWkOAAAAWMCqvXAmOIRVdzI/0yFOafRhOAAAACxwZlJTbXLmhT401SZlFmjJafkJwVdL6jSzx8zswPi/sBoDAADA/FVXFde2Nc2B1ty+tln1ixKB1pyOn/vNvxdWEwAAALi8JOIV2ry6UZ/5xjOBHJjhxSLatKpR8TLtCS76TrBz7puSfiApNvb7UUnfCakvAAAAzHM1XoV2bmwNpNbOja1anCzPfmDJRwg2sw9J+pqkPx+71Cjp4TCaAgAAwPy3KBnThhUNWtdSN6s661rqtKG1QdVeLKDOZuZnT/CvS3qHpHOS5Jx7RlJ9GE0BAADg8tCw2NPurW0lB+F1LXXavbVNDTVewJ1dmp8QnHHOXTjM2cwqNDonGAAAAAtYQ42n3be36b4tK+XFiouXXiyi+7asnJMALPl7MO6bZva7kpJm9i5Jvybp6+G0BQAAgMtJw2JPm1dfq1uW1+vAiV7tOdKtnoHUReuaapPavrZZm1Y3arFXUdYtEBNZsWdfmFlE0p2SflqSSXrMOffZEHubVnt7u+vo6JiLPw0AAIAZZEZy6h8akXPSYCandDYvLxZVdaJCZlL9okRZpkCY2THnXPtU7/m5E/wbzrk/kXQh+JrZb45dAwAAACSNjk+7Ll6+SQ+l8LMn+P1TXPtAQH0AAAAAZTNjRDezbZK2S3rdpBPiFkkaCKsxAAAAICzF3Kf+Z0kvavTY5P814fp5SSfDaAoAADWZfiEAAB+HSURBVAAI04wh2Dn3Q0k/lPS28NsBAAAAwufnxLitZvaMmZ01s3Nmdt7MzoXZHAAAABAGP4/tPSDpNufc6bCaAQAAAMrBz3SIPgIwAAAArgR+7gR3mNlXJD0sKTN+0Tm3L/CuAAAAgBD5CcE1koY1emLcOCeJEAwAAIDLStEh2Dn3K2E2AgAAAJSLn+kQbzKzJ8zs1NjrNjP7RHitAQAAAOHw82DcZyV9XFJWkpxzJyW9L4ymAAAAgDD5CcGVzrkjk67lgmwGAAAAKAc/IfhHZvYGjT4MJzO7Q6PHKQMAAACXFT/TIX5d0oOSWsysV9L3Jf1iKF0BAAAAIfIzHeI5SRvMrEpSxDl3Pry2AAAAgPD4mQ7xm2Y2Piv402b2HTP76Zk+BwAAAMw3fvYEf9A5d06jh2VcJemXJO0OpSsAAAAgRH5CsI39/FlJX3TOPTXhGgAAAHDZ8BOCj5nZP2g0BD9mZoskFcJpCwAAAAiPn+kQd0paLek559ywmV0liaOUAQAAcNmZMQSbWYtzrkujAViSXm/GLggAAABcvoq5E/wRSXdJ+l9TvOckvTPQjgAAAICQzRiCnXN3jf1cF347AAAAQPj8zAn+ubGH4WRmnzCzfWb21vBaAwAAAMLhZzrETufceTP7SUkbJH1O0v8Jpy0AAAAgPH5CcH7s50ZJDzrnDkqKB98SAAAAEC4/IbjXzP5c0i9IetTMEj4/DwAAAMwLfkLsz0t6TNK7nXOvSqqV9NFQugIAAABCVHQIds4NS9ovacjMmiXFJHWF1RgAAAAQlqJPjDOz35D0PyT16T+OS3aS2kLoCwAAAAiNn2OTf1PScufcK2E1AwAAAJSDnz3BPZLOhtUIAAAAUC5+7gQ/J+lJMzsoKTN+0Tn3R4F3BQAAAITITwjuHvsXF/OBAQAAcBkrOgQ75/6nJJlZ9djrwbCaAgAAAMJU9J5gM1tpZt+V9JSkp8zsmJm9ObzWAAAAgHD4eTDuQUkfcc5d75y7XtJ/k/TZcNoCAAAAwuMnBFc55w6Pv3DOPSmpKvCOAAAAgJD5mg5hZjslfWns9S9qdGIEAAAAcFnxcyf4g5LqJO2T9LeSrh67BgAAAFxW/EyHOCPp/wmxFwAAAKAs/EyHeNzMlkx4vdTMHgunLQAAACA8frZDXO2ce3X8xdid4frgWwIAAADC5ScEF8ysefyFmV0vyQXfEgAAABAuP9Mh7pb0T2b2TUkm6ack3RVKVwAAAECI/DwY9/dmdqOkm8Yu/ZZz7kfj75vZm51zTwXdIAAAABA0P3eCNRZ6H5nm7S9JunHWHQEAAAAh87MneCYWYC0AAAAgNEGGYB6SAwAAwGUhyBAMAAAAXBaCDMEjAdYCAAAAQuPrwTgza5N0w8TPOef2jf28aZqPAQAAAPNK0SHYzD4vqU3SU5IKY5edpH0h9AUAAACExs+d4Jucc62hdQIAAACUiZ89wd82M0IwAAAALnt+7gR/UaNB+CVJGY3OBXbOubZQOgMAAABC4udO8Ock/ZKk90i6TdKtYz8vyczeY2ZPm9mzZrbjEuvea2bOzNp99AQAAAD45udOcL9z7oCf4mYWlfRnkt4l6XlJR83sgHOuc9K6RZJ+U9K/+qkPAAAAlMJPCP6ume2R9HWNboeQ9B8j0qaxVtKzzrnnJMnMvixps6TOSet2Sbpf0kd99AMAAACUxM92iKRGw+9Pa3QbxPiWiEtplNQz4fXzY9cuMLMbJTU55w5eqpCZ3WVmHWbW0d/f76NtAAAA4LWKvhPsnPuVoP+4mUUk/ZGkDxTx9x+U9KAktbe3u6B7AQAAwMLh57AMT9Kdkt4syRu/7pz74CU+1iupacLr68aujVskaaWkJ81MkpZJOmBmm5xzHcX2BgAAgPkjM5JT/9CIJOl8KqdUNq9kLKpFydHoWVcVVyLu6+DiwPn561+S1CXp3ZLulfSfJZ2e4TNHJb3RzF6n0fD7Pknbx990zp2VdPX4azN7UtLvEIABAAAuP+dTWZ1L57T/eK/2Hu1Wz0DqojVNtUltW9OszasbVeNVaFEyNged+gvBP+ac+zkz2+yc+8LYQ3L/eKkPOOdyZvZhSY9Jikr6vHPuKTO7V1KH32kTAAAAmJ/6zqZ16HSfdh3sVDpbmHZdz0BKDzz2tD7zjWe0c2OrNqxoUMNib9r1YfETgrNjP181s5WSXpJUP9OHnHOPSnp00rV7pll7i49+AAAAMA/0nUtrx0Mndbir+OEF6WxBdz98Soe6+rR7a5saasobhP1Mh3jQzJZK2inpgEbHnD0QSlcAAAC4LPSdTWvHPn8BeKLDXf3ase+k+s6lA+7s0vxMh/iLsV+/Ken14bQDAACAy8X5VFaHTveVHIDHHe7q16HOPm1efa2qvfLsES76TrCZNZjZ58zs78Zet5rZneG1BgAAgPnsXDqnXQcnn4FWml0HO3U2lQukVjH8bIf4K40+4Hbt2OvvSfqtoBsCAADA/JcZGZ0CcamH4PxIZws6cKJXmZHyBGE/Ifhq59xXJRWk0ckPkvKhdAUAAIB5rX9oRHuPdgdac8+R7gvzhcPmJwQPmdlVkpwkmdlNks6G0hUAAADmNec05Rzg2egZSMmV6VxgPyPSPqLRqRCvN7NvSaqTdEcoXQEAAGBeG0yHs21hMFOe7RB+QnCnpIckDUs6L+lhje4LBgAAwAKTyoazKzYdUt3J/GyH+KKkFkmflPSnkt6k0aOUAQAAsMAkY9FQ6noV4dSdzM+d4JXOudYJrw+bWTAzMQAAAHBZqfb8xMi5rzuZnzvB3xl7GE6SZGY/Iakj+JYAAAAw35lJTbXJQGs21SZlFmjJac0Ygs3s38zspKQfl/TPZvYDM/u+pG9Lag+7QQAAAMw/dVVxbVvTHGjN7WubVb8oEWjN6RRzv/nW0LsAAADAZSURr9Dm1Y36zDeeCeTADC8W0aZVjYqXaU/wjHeCnXM/vNS/cjQJAACA+afGq9DOja0zLyzCzo2tWpwsz35gyd+eYAAAAOCCRcmYNqxo0LqWulnVWddSpw2tDar2YgF1NjNCMAAAAErWsNjT7q1tJQfhdS112r21TQ01XsCdXRohGAAAALPSUONp9+1tum/LSnmx4uKlF4vovi0r5yQAS/7mBAMAAABTaljsafPqa3XL8nodONGrPUe61TOQumhdU21S29c2a9PqRi32Ksq6BWIiQjAAAAACUe3FVO3F9MG336DbVl0r56TBTE7pbF5eLKrqRIXMpPpFibJNgZgOIRgAAACBSsQrdF18fsdM9gQDAABgwSEEAwAAYMEhBAMAAGDBIQQDAABgwSEEAwAAYMEhBAMAAGDBIQQDAABgwSEEAwAAYMEhBAMAAGDBIQQDAABgwSEEAwAAYMEhBAMAAGDBIQQDAABgwSEEAwAAYMEhBAMAAGDBIQQDAABgwSEEAwAAYMEhBAMAAGDBIQQDAABgwamY6wYAAABwZclm8+ofyqjgpPPpnFLZvJKxqBZ5FYqYVFeVUCwWndMeCcEAAAAIxHAmpzOprPYf79XeI93qGUhdtKapNqlta5u1eXWjliZjqkzMTRw159yc/OHZaG9vdx0dHXPdBgAAAMa8fC6tQ6f7dO8jnUpnCzOu92IR3XNrqzasaFB9jRdKT2Z2zDnXPtV73AkGAADArLx8Lq2P7Tupw139RX8mnS3odx86pcdP9+n+rW2hBeHp8GAcAAAASlZKAJ7ocFe/PrbvpF4+lw64s0sjBAMAAKAkw5mcDp3uKzkAjzvc1a9Dp/s0PJILqLOZEYIBAABQkjOprO59pDOQWvc+0qkzw9lAahWDEAwAAADfstm89h/vLeohuGKkswUdON6rbDYfSL2ZEIIBAADgW/9QRnuPdAdac8+RbvUPZQKtOR1CMAAAAHwrOE05B3g2egZSKpRpei8hGAAAAL6dT4fzEFtYdScjBAMAAMC3VEh7d9PsCQYAAMB8lYxFQ6nrhVR3MkIwAAAAfFvkhXPwcFh1JyMEAwAAwLeISU21yUBrNtUmFbFAS06LEAwAAADf6qoS2ra2OdCa29c2q26RF2jN6RCCAQAA4FssFtXm1Y3yYsHESS8W0abVjYpFyxNPCcEAAAAoydJkTPfc2hpIrXtubdXSylggtYpBCAYAAEBJKhMV2rCiQeta6mZVZ11LnTasaFBlvDwPxUmEYAAAAMxCfY2n+7e2lRyE17XU6f6tbaqvKc9e4HGEYAAAAMzKeBD+5O0rL9ojfG1NQj/1Y7W6tibxmuteLKJP3r5yTgKwJJXvnjMAAACuWPU1nra8tVE3L69XVSKi86m8zKRzqazS2YK8WEQ1yZickxZ5UQ2PFLSkMlbWLRATEYIBAAAQiEyuIDlpz7/0aO/RbvUMpC5a01Sb1LY1zdq8ulGZXEGV8TloVJI55+bmL89Ce3u76+jomOs2AAAAMOals2k9cbpPuw52Kp0tzLjei0W0c2Or1q9o0LLF4WyHMLNjzrn2qd7jTjAAAABmpe9cWh9/6KQOd/UX/Zl0tqC7Hz6lQ1192r21TQ08GAcAAIDLxUtn09qxz18AnuhwV7927DupvnPpgDu7NEIwAAAASnJmeERPnO4rOQCPO9zVr0OdfXp1eCSgzmZGCAYAAEBJhjN57TrYGUitXQc7NZTJB1KrGIRgAAAA+JbKZLX/eG9RD8EVI50t6MCJXqUy2UDqzYQQDAAAAN9eGc5q79HuQGvuOdKtV4YJwQAAAJinnNOUc4Bno2cgpXJN7yUEAwAAwLfBdC6cuplw6k5GCAYAAIBvqWw4D7GlQ6o7GSEYAAAAviVj0VDqehXh1J0s9BBsZu8xs6fN7Fkz2zHF+x8xs04zO2lmT5jZ9WH3BAAAgNmp9sI5eDisupOFGoLNLCrpzyT9jKRWSdvMrHXSsu9KanfOtUn6mqQHwuwJAAAAs2cmNdUmA63ZVJuUWaAlpxX2neC1kp51zj3nnBuR9GVJmycucM4dds4Nj738F0nXhdwTAAAAZumqypi2rWkOtOb2tc2qq04EWnM6YYfgRkk9E14/P3ZtOndK+rup3jCzu8ysw8w6+vtndzQfAAAAZieZiGnz6kZ5sWDipBeLaNOqRiVC2ms82bx5MM7MflFSu6Q/mOp959yDzrl251x7XV1deZsDAADARSoTUe3cOHmna2l2bmxVVaI8AVgKPwT3Smqa8Pq6sWuvYWYbJN0taZNzLhNyTwAAAAjA0sq41q9o0LqW2d2gXNdSpw2tDVpSGQ+os5mFHYKPSnqjmb3OzOKS3ifpwMQFZvZWSX+u0QD8csj9AAAAIEDLFnvavbWt5CC8rqVOu7e2qaHGC7izSws1BDvncpI+LOkxSaclfdU595SZ3Wtmm8aW/YGkakl/Y2bHzezANOUAAAAwDzXUePrU7W26b8vKovcIe7GI7tuyck4CsCSZK9cBzQFqb293HR0dc90GAAAAJnh1eERDmbwOnOjVniPd6hlIqSJiildENJIrKFdwaqpNavvaZm1a3aiqeDTULRBmdsw51z7Ve+WZRgwAAIAr3pLKuJZUSh942/W6bdW1kqTzqZxS2bySsagWJUej51WVMSUTsblslRAMAACAYJwZHtFwJq/9x3u19+joneDJmmqT2ramWZtXN6oyEdXSMj4MNxHbIQAAADBrL51N64nTfdp1sFPpbGHG9V4sop0bW7V+RYOWLQ5nTzDbIQAAABCavnNpffyhkzrcVfyBZulsQXc/fEqHuvquvOkQAAAAuLK9dDatHfv8BeCJDnf1a8e+k+o7lw64s0sjBAMAAKAkZ4ZH9MTpvpID8LjDXf061NmnV4dHAupsZoRgAAAAlGQ4k9eug52B1Np1sFNDmXwgtYpBCAYAAIBvqUxW+4/3FvUQXDHS2YIOnOhVKpMNpN5MCMEAAADw7ZXhrPYe7Q605p4j3XplmBAMAACAeco5TTkHeDZ6BlIq1/ReQjAAAAB8G0znwqmbCafuZIRgAAAA+JbKhvMQWzqkupMRggEAAOBbMhYNpa5XEU7dyQjBAAAA8K3aC+fg4bDqTkYIBgAAgG9mUlNtMtCaTbVJmQVaclqEYAAAAPh2VWVM29Y0B1pz+9pm1VUnAq05HUIwAAAAfEsmYtq8ulFeLJg46cUi2rSqUYmQ9hpPRggGAABASSoTUe3c2BpIrZ0bW1WVKE8AlgjBAAAAKNHSyrjWr2jQupa6WdVZ11KnDa0NWlIZD6izmRGCAQAAULJliz3t3tpWchBe11Kn3Vvb1FDjBdzZpRGCAQAAMCsNNZ4+dXub7tuysug9wl4sovu2rJyTACxJ5RnEBgAAgCvassWeNrZdo1uW1+vAiV7tOdKtnoHUReuaapPavrZZm1Y3qioeLesWiIkIwQAAAAiEG/v5c+3X6da2ayVJg5mc0tm8vFhU1YnR6FkVjyqVLVxYPxcIwQAAAJi1l86m9cTpPu062Kl0tnDhekN1XNdfXakf/mhYfYMjF657sYh2bmzV+hUNWraY7RAAAAC4zPSdS+vjD53U4a7+i98bHHlN+B2XzhZ098OndKirjwfjAAAAcHl56WxaO/ZNHYCLcbirXzv2nVTfuXTAnV0aIRgAAAAlOTM8oidO95UcgMcd7urXoc4+vTp88R3jsBCCAQAAUJLhTF67DnYGUmvXwU4NZfKB1CoGIRgAAAC+pTJZ7T/e+5qH4GYjnS3owIlepTLZQOrNhBAMAAAA314Zzmrv0e5Aa+450q1XhgnBAAAAmKec05SHYcxGz0BKrkzDgwnBAAAA8G0wnQunbiacupMRggEAAOBbKhvOQ2zpkOpORggGAACAb8lYNJS6XkU4dScjBAMAAMC3ai+cg4fDqjsZIRgAAAC+mUlNtclAazbVJmUWaMlpEYIBAADg21WVMW1b0xxoze1rm1VXnQi05nQIwQAAAPAtmYhp8+pGebFg4qQXi2jTqkYlQtprPBkhGAAAACWpTES1c2NrILV2bmxVVaI8AVgiBAMAAKBESyvjWr+iQeta6mZVZ11LnTa0NmhJZTygzmZGCAYAAEDJli32tHtrW8lBeF1LnXZvbVNDjRdwZ5dGCAYAAMCsNNR4+tTtbbpvy8qi9wh7sYju27JyTgKwJJVnEBsAAACuaMsWe9rYdo1uWV6vAyd6tedIt3oGUheta6pNavvaZm1a3aiqeLSsWyAmIgQDAAAgEEsq41pSKX3gbdfrtlXXyjlpMJNTOpuXF4uqOlEhM6muOlG2KRDTIQQDAAAgUMlETNclYnPdxiWxJxgAAAALDiEYAAAACw4hGAAAAAsOIRgAAAALDiEYAAAACw4hGAAAAAsOIRgAAAALDiEYAAAACw4hGAAAAAsOIRgAAAALDiEYAAAACw4hGAAAAAsOIRgAAAALDiEYAAAACw4hGAAAAAsOIRgAAAALDiEYAAAACw4hGAAAAAsOIRgAAAALTsVcNzCfpTJZvTKclSSdT+WUyuaVjEW1KDn6n+2qypiSidhctggAAIASEIKncGZ4RMOZvPYf79Xeo93qGUhdtKapNqlta5q1eXWjKhNRLa2Mz0GnAAAAKIU55+a6B9/a29tdR0dHKLVfOpvWE6f7tOtgp9LZwozrvVhEOze2av2KBi1b7IXSEwAAAPwzs2POufap3uNO8AR959L6+EMndbirv+jPpLMF3f3wKR3q6tPurW1qqCEIAwAAzHc8GDfmpbNp7djnLwBPdLirXzv2nVTfuXTAnQEAACBohGCN7gF+4nRfyQF43OGufh3q7NOrwyMBdQYAAIAwEIIlDWfy2nWwM5Bauw52aiiTD6QWAAAAwrHgQ3Aqk9X+471FPQRXjHS2oAMnepXKZAOpBwAAgOCFHoLN7D1m9rSZPWtmO6Z4P2FmXxl7/1/N7Iawe5roleGs9h7tDrTmniPdF+YLAwAAYP4JNQSbWVTSn0n6GUmtkraZWeukZXdKOuOc+zFJn5Z0f5g9TeacppwDPBs9AyldhpPnAAAAFoyw7wSvlfSsc+4559yIpC9L2jxpzWZJXxj7/WuS1puZhdzXBYPpXDh1M+HUBQAAwOyFHYIbJfVMeP382LUp1zjncpLOSrpqciEzu8vMOsyso79/dlMcJkplw3mILR1SXQAAAMzeZfNgnHPuQedcu3Ouva6uLrC6yVg0sFoTeRXh1AUAAMDshR2CeyU1TXh93di1KdeYWYWkxZJeCbmvC6q9cA7NC6suAAAAZi/sEHxU0hvN7HVmFpf0PkkHJq05IOn9Y7/fIekbzpXvsTIzqak2GWjNptqkyrerGQAAAH6FGoLH9vh+WNJjkk5L+qpz7ikzu9fMNo0t+5ykq8zsWUkfkXTRGLUwXVUZ07Y1zYHW3L62WXXViUBrAgAAIDih/3/2zrlHJT066do9E35PS/q5sPuYTjIR0+bVjfrMN54J5MAMLxbRplWNSoS01xgAAACzd9k8GBemykRUOzdOHl9cmp0bW1WVIAADAADMZ4RgSUsr41q/okHrWmY3dWJdS502tDZoSWU8oM4AAAAQBkLwmGWLPe3e2lZyEF7XUqfdW9vUUOMF3BkAAACCRgieoKHG06dub9N9W1bKixX3n8aLRXTflpUEYAAAgMsIw2wnWbbY08a2a3TL8nodONGrPUe61TOQumhdU21S29c2a9PqRlXFo2yBAAAAuIwQgqewpDKuJZXSB952vW5bda2ckwYzOaWzeXmxqKoTFTKT6qoTTIEAAAC4DBGCLyGZiOm6RGyu2wAAAEDA2BMMAACABYcQDAAAgAWHEAwAAIAFhxAMAACABYcQDAAAgAWHEAwAAIAFhxAMAACABYcQDAAAgAXHnHNz3YNvZtYv6Ydz8KevlvSjOfi7CBff65WL7/bKxXd7ZeJ7vXLN1Xd7vXOubqo3LssQPFfMrMM51z7XfSBYfK9XLr7bKxff7ZWJ7/XKNR+/W7ZDAAAAYMEhBAMAAGDBIQT78+BcN4BQ8L1eufhur1x8t1cmvtcr17z7btkTDAAAgAWHO8EAAABYcAjBAAAAWHAIwUX4/9u71xAr6jiM498nNylNtLSkJCkpLFzRtCSjxCi6ERkR3cHuBEJlryqKCOpFEHSDeuMtqITSrgSp+MIiSLqo6GoWWallKmQaCab19OLM0rYIajvr/6zn+cAy/7kw5xmWOfzOzH/mL+kHSaslrZT0Rek8UR9JQyQtkPS1pHWSJpfOFD0naXR1vnb+7ZL0YOlc0XOSZkrqkLRG0nxJx5TOFPWQ9ED1f+3I+dq3SZojaZukNV2WnSBpiaRvq+nxJTNCiuBDcbHt8c32jrvosReAj2yfBYwD1hXOEzWwvb46X8cDE4HdwDuFY0UPSRoB3A+ca7sd6AfcVDZV1EFSO3APMInGd/HVks4omyp6YB5wRbdlDwNLbZ8JLK3mi0oRHC1L0mBgCjAbwPaftn8rmyp6wSXAd7ZLjDIZ9WsDjpXUBgwAfi6cJ+pxNrDc9m7b+4BlwHWFM8X/ZPtj4Ndui6cBr1btV4FrD2uo/UgRfHAMLJb0paR7S4eJ2pwObAfmSlohaZakgaVDRe1uAuaXDhE9Z/sn4FlgI7AF2Gl7cdlUUZM1wEWShkoaAFwFnFo4U9RruO0tVfsXYHjJMJAi+GBdaHsCcCUwQ9KU0oGiFm3ABOAV2+cAf9AEt2eiPpL6A9cAb5XOEj1X9SGcRuMH7CnAQEm3lU0VdbC9DngGWAx8BKwE/ioaKnqNG+/nLf6O3hTBB6G6+oDtbTT6FU4qmyhqshnYbHt5Nb+ARlEcR44rga9sby0dJGpxKfC97e229wJvAxcUzhQ1sT3b9kTbU4AdwDelM0Wttko6GaCabiucJ0XwgUgaKGlQZxu4jMZtm+jjbP8CbJI0ulp0CbC2YKSo382kK8SRZCNwvqQBkkTjnM3DrEcISSdV05E0+gO/UTZR1Ox9YHrVng68VzALkBHjDkjSKP59qrwNeMP20wUjRY0kjQdmAf2BDcAdtneUTRV1qH60bgRG2d5ZOk/UQ9KTwI3APmAFcLftPWVTRR0kfQIMBfYCD9leWjhS/E+S5gNTgWHAVuAJ4F3gTWAk8CNwg+3uD88dVimCIyIiIqLlpDtERERERLScFMERERER0XJSBEdEREREy0kRHBEREREtJ0VwRERERLScFMEREU1C0mmS8h7yiIjDIEVwRERERLScFMEREc2lTdLrktZJWlCNjjZR0jJJX0pa1GXo0XskfS5plaSFkgZUy+dJekXSZ5I2SJoqaU61z3nVNv2q7dZIWi1pZsFjjog47FIER0Q0l9HAy7bPBnYBM4CXgOttTwTmAJ2jVr5t+zzb42gMH3xXl/0cD0wGZtIYrvQ5YAwwthopcTwwwna77bHA3N4/tIiI5tFWOkBERPzHJtufVu3XgEeBdmCJJIB+wJZqfbukp4AhwHHAoi77+cC2Ja0GttpeDSCpAzgNWAaMkvQS8CGwuFePKiKiyaQIjohoLt3Hsv8d6LA9eT/bzgOutb1K0u3A1C7r9lTTv7u0O+fbbO+QNA64HLgPuAG4s8fpIyL6iHSHiIhoLiMldRa8twCfASd2LpN0tKQx1fpBwBZJRwO3HsqHSBoGHGV7IfAYMKGW9BERfUSuBEdENJf1wAxJc4C1NPoDLwJelDSYxvf280AH8DiwHNheTQcdwueMAOZK6rwY8kg98SMi+gbZ3e+8RUREREQc2dIdIiIiIiJaTorgiIiIiGg5KYIjIiIiouWkCI6IiIiIlpMiOCIiIiJaTorgiIiIiGg5KYIjIiIiouX8A9SeCNlbrqinAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf3Rcd3nv+88z0mj2yLIUK5HlWJEScppYFq5sgmwCHMA6dvlRJbbjAy12aZtCk951oactLcVpanpufHwxcFpW20PvbSgtP9a1KU2d2GBOA3YVzjnlUFsG2ziSDCEUKUoyUSzHjqyZ0UjzvX9ICkLRj9mjvWck6/1aK0uz9+x59IRZZn288+zv15xzAgAAAJaSSLEbAAAAAAqNEAwAAIAlhxAMAACAJYcQDAAAgCWHEAwAAIAlp7TYDeTjhhtucLfcckux2wAAAMACdvr06RedczXTvbcoQ/Att9yijo6OYrcBAACABczMfjLTe4xDAAAAYMkhBAMAAGDJIQQDAABgySEEAwAAYMkhBAMAAGDJIQQDAABgySEEAwAAYMkhBAMAAGDJWZSbZQAAAGDhSqYzujiUkSS9nBxRMjOqeLREy+Nj0fP68qjisWgxWyQEAwAAIBiXhoY1lB7VkTN9OnSqR70DyVddU18d166NDdq+oU7lsRKtKC8rQqeSOeeK8ovno6WlxbFtMgAAwMLx/OWUTnQltO9Yp1KZ7JzXe9GI9rY1acvaWq2q8kLpycxOO+dapnuPO8EAAACYl8SVlB549Jzau/tz/kwqk9WDj53X8e6EDuxsVm1lOEF4JjwYBwAAgLw9fzmlPYf9BeDJ2rv7tefwOSWupALubHaEYAAAAOTl0tCwTnQl8g7AE9q7+3W8M6GXhoYD6mxuhGAAAADkZSg9qn3HOgOpte9Yp66mRwOplQtCMAAAAHxLpjM6cqYvp4fgcpHKZHX0bJ+S6Uwg9eZCCAYAAIBvF4cyOnSqJ9CaB0/2vLK+cNgIwQAAAPDNOU27DvB89A4kVajVewnBAAAA8G0wNRJO3XQ4daciBAMAAMC3ZCach9hSIdWdihAMAAAA3+JlJaHU9aLh1J2KEAwAAADfKmLhbDwcVt2pCMEAAADIS311fEHXmw0hGAAAAL5lndMvt9QHWvO9G+vlCrQ8BCEYAAAAvg1cHdb2DXXyosHESS8a0bb1dRq4WpitkwnBAAAA8O36ZWU603tJH3nHmkDqfeQda3S295Kql5UFUm8uhGAAAAD4Zmb65OMXtKoyrs1rauZVa/OaGq2qjOsTj1+QmQXU4ewIwQAAAMhL70BSf/jIWd3/1lvzDsKb19To/rfeqj985GzgO9DNhhAMAAAA3yZ2drs6PKr7vtCh97y+XnvvWpvzjLAXjWjvXWv1ntfX674vdOjq8NgmGVcLtGNcYRZiAwAAwDUlOfzTnd2uDo/qgwe/q7ubb9SX77tT3/pBvx757jPT3tmtr47r3XfcpLfdXqPP/a8f66vnun62boF2jCMEAwAAwLf4NDu7ffXcc/r6+ee1pXGl/uDta7T6urgyo1mlMll50YiiJRE9+1JSXzv3nP7in5/SaPbVy6F5pYXZMY4QDAAAAN8qvOlj5GjW6RudCX2jMyFJKo2YykojGh7JamSa0Jtr3aAxEwwAAADfzHLb4W0k6zQ0PJpTAK6vjqtAi0MQggEAAOBfeVlEuzY2BFpz96YGlZcVZhyCEAwAAADfrqaz2rZhdaA7xt29frWupgvzYBwhGAAAAL4Npkb0jSef1962pkDq7W1r0uPnn39l6bWwEYIBAADgWzIzqoe+1qU33Fqt1sb57RjX2lijN9xarX3HupQq0BJphGAAAAD4NjEGsevh72jf9nV5B+HWxhrt275Oux7+jiQpVlqYeMoSaQAAAPBtuReVJA0Nj+rZl5L62F2v1dbGF7XvWKdSmewr1820RJoXjWhvW5Pe/HM36NmXkhoa33xjom7YCMEAAADwbWKJtD3vXKu/euJHeuJCvz77a6/XiQ9v1tneS4pETDdUxJQeySqVGZUXLVGsNKIXB9PKZp3W169Q53OXtfm/PqHNa2r0yXev14F/6irYEmmEYAAAAPhW6ZXoj961Vs9eTurUjwf0md13yCS9OJjWj168qq909M64bfIvtdSrbkW5TNJndt+hP3zkrN5y2w36o19cq6p4Ye4Em3NzL1y80LS0tLiOjo5itwEAALBkDVxNKTnstO2//U995lder2zWqev5K/rU4xd+ZhxiJl40oo+8Y43WrqpUJGL64P93Wkc/9BaVl0W0YlkskB7N7LRzrmXa9wjBAAAA8OuFl5M68r3nVF9drhurPH36+A/0xIV+33U2r6nR7229Xc9dTqn30pC2r79RKyvn3okuF7OFYFaHAAAAgG/pjNMzLw2pvjqedwCWpCcu9OvTx3+g+uq4ei8NKT1SmBu0hGAAAAD4Zib96hsa9J2nL+YdgCc8caFf33n6on71DQ0FezCOEAwAAADfslknWUSfevxCIPU+9fgFmUWULdCoLiEYAAAAvkVLIjp27tmcHoLLRSqT1de//6yikcLEU0IwAAAAfBvJOj3y3WcCrfkPp5/5mQ01wkQIBgAAgG9Obtp1gOejdyApJ0IwAAAAFqjB1Eg4ddOjodSdihAMAAAA39IjwcwCTzWcIQQDAABggYpHS0Kp64VUdypCMAAAAHyr8EoXVd2pCMEAAADwzSTVVwezvfGE+uq4CrRXBiEYAAAA/pWWmN73hpsDrfmrd96saAnrBAMAAGCBujg4rLetqZEXDSZOetGI3npbjS5eHQ6k3lwIwQAAAPAtlcnqr9p/pI/d9dpA6v3JXa/VZ9qfUorVIQAAALBQxaMlOnr2WVUvi2pL48p51drSuFIrlkX11XPPyStldQgAAAAsUBOrOPz+V87qvrfemncQ3tK4Uve99Vb9/lfO/kzdsBGCAQAA4JvZ2GoOV4dH9YHPn9LOO27SQ9tem/OMsBeN6KFtr9XOO27SBz5/SleHR8dWhyjQ8hCEYAAAAPh2fXlUuzY2SJKuDo/qgwe/q1P/NqAv33+n/uDtt8+4fFp9dVx/8Pbb9eX779SpfxvQBw9+V1eHx+aAd29qUM2ysoL0b865gvyiILW0tLiOjo5itwEAALBkvfByUpkRacufPaFU5qdbKJdETFsaV6qt+Uatvi6uzGhW6UxWsWhE0ZKInn0pqa+de07/3P2CRrM/zaFeNKITH96saIm0sjKY9YfN7LRzrmW69wozdAEAAIBrSknEdCk1rL1tTXrwsfOvnB/NOn2jM6FvdCYkSaURU1lpRMMjWY1kZ775uretSYPpjG5YXpg7wYxDAAAAwLehdFa/+aUObV5To9bGmhmvG8k6DQ2PzhqAWxtrtLmxRr/5xQ4NpbMzXhckQjAAAADy0juQ1O7Pfkcfv6d51iA8m9bGGn38nmbtfvg76h1IBtzhzBiHAAAAgG8vpzKSpJ8MJPXLf/1tHbzvTj3R2K99xzp/ZkZ4Jl40or1tTdq8pka//Nff1k/GA/BgeiTUvidwJxgAAAC+TQ66PxlI6s2faNfKyphOfHizPvrONbOuDvHRd67RiQ9v1srKmN78ifZXAvBY3cLsGMedYAAAAPgWj756Z7f7vnha8bISfeo//ry+9IE3qMRMg+kRpTKj8qIlqoiVatQ5nX/mJW399LeUHH514C3UjnGEYAAAAPg2085uyeFRfejQmZ9eV1aiFcvKdOnqsAanCb251g0a4xAAAADwbWLHuLkMDo+q91IypwDMjnEAAABY0MrLItq1qSHQmrs3Nai8rDDjEIRgAAAA+Daaddq+frW8aDBx0otGtG39amVnWU84SIRgAAAA+HadV6ZIxLS3rSmQenvvalKpmarK2TEOAAAAC1Q0WqKImd56++w7xuWitbFGb7u9RoqYoiWFiaeEYAAAAORleaxUycyI/sv2n5/XjnH/ZfvPa2h4RMsLtDKERAgGAABAnspjpVoRL9NLQ2l97K7Xav+Oda+aEfZKI7qhokxe6ZTz0Yj271inP7nrtXppKK0V8TKVlxUuBLNOMAAAAPJWU+lJkn74wqDW3rhc3/y9tylxJaUKr1TxaIkGUyNKZkYVj5aowitVMjOqwdSIais99b+c0rMvJXXbyopX6hQKIRgAAADzUlPpyUkqiUipjNPJHw/o0Kke9U7aDnlCfXVcuzY2aPuGOt18fblGsyp4AJYIwQAAAAhA1knfPJ/QvmOdSmWyM17XO5DUJx+/oL/45x9qb1uTtqytLWCXP0UIBgAAwLwkrqT0wKPn1N7dn/NnUpmsHnzsvI53J3RgZ7NqC3w3OPQH48zsnWZ2wcyeMrM907zfYGbtZvY9MztnZr8Ydk8AAAAIxvOXU9pz2F8Anqy9u197Dp9T4koq4M5mF2oINrMSSZ+R9C5JTZJ2mdnUFZX/WNJXnHOvk/ReSX8VZk8AAAAIxqWhYZ3oSuQdgCe0d/freGdCLw0NB9TZ3MK+E7xJ0lPOuaedc8OSvixp+5RrnKTK8ddVkp4NuScAAAAEYCg9qn3HOgOpte9Yp66mRwOplYuwQ3CdpN5Jx8+Mn5vsP0t6n5k9I+nrkn57ukJmdr+ZdZhZR3///P62AQAAgPlJpjM6cqZv1ofg/Ehlsjp6tk/JdCaQenNZCJtl7JL0eefcTZJ+UdKXzOxVfTnnHnbOtTjnWmpq5rc1HwAAAObn4lBGh071BFrz4MkeXRy6NkJwn6T6Scc3jZ+b7AOSviJJzrn/LcmTdEPIfQEAAGAenNO06wDPR+9AUs4FWnJGYYfgU5JuM7PXmFmZxh58Ozrlmh5JWyTJzNZqLAQz7wAAALCADaZGwqmbDqfuVKGGYOfciKQPSXpcUpfGVoF40sweMrNt45f9vqT7zOyspEOS7nWuUH8HAAAAQD6SmXAeYkuFVHeq0DfLcM59XWMPvE0+97FJrzslvTnsPgAAABCceLQklLpeaTh1p1oID8YBAABgkanwwrmXGlbdqQjBAAAA8M1Mqq+OB1qzvjous0BLzogQDAAAAN+uL49q18aGQGvu3tSgmopYoDVnQggGAACAb/FYVNs31MmLBhMnvWhE29bXKRbSrPFUhGAAAADkpTxWor1tTYHU2tvWpGWxwgRgiRAMAACAPK0oL9OWtbVqbZzfbr6tjTXa2lSr68rLAupsboRgAAAA5G1VlacDO5vzDsKtjTU6sLNZtZVewJ3NjhAMAACAeamt9PTxe5q1f8e6nGeEvWhE+3esK0oAlgqwWQYAAACufauqPLU136jNa1bq6Nk+HTzZo96B5Kuuq6+Oa/emBm1bX6dlsZKCjkBMRggGAADAvA1cHdaJroQ+/fgP9OX/407d1bxakjSYHlEqMyovWqKK2Fj0dC6r9/zVt/V777hdW9bWqnpZ4YMw4xAAAACYl4uDaX30kXP6yCPndCmd0fm+yxp1TibJOad4dOynSRp1TueeuaxL6Yw+8sg5ffSRc7o4mC54z9wJBgAAQN4Grg5rzz9+X9/sSuhvfu31WntjlY6c6dPH/6l7xnGIXRsbdPz33qau5y7rN794WvpH6ZPvbtaKAt4R5k4wAAAA8jI8ktWJroR+kLiif/loqxJX0tryZ0/ok49fmDYAS1LvQFKffPyCtvzZE0pcSetfPtqqHySu6HhXQsMj2YL1zp1gAAAA5GXg6rA++z9/pL//rTfpgUfPqb27P+fPpjJZPfjYebU21ujvf+tN+rW//Y7ecluNVlUVZqUI7gQDAADAt9HRrL527ln93b2bfAfgydq7+/XAo+f0d/du0tfOPavR0cLcDSYEAwAAwLeBoWGtqV2uJy705x2AJ7R39+uJC/1aU1uhgaHhgDqcHSEYAAAAvo1knW6tqdC+Y52B1Nt3rFO31izXSNYFUm8uhGAAAAD4Fis1HTnTp1QmmPGFVCaro2f7FCu1QOrNhRAMAAAA366mszp0qifQmgdP9uhqmplgAAAALGAzLYO2UOrNhhAMAAAA3wZTI+HUTYdTdypCMAAAAHxLZkZDqZsKqe5UhGAAAAD4Fo+WhFLXKw2n7lSEYAAAAPhW4YWz8XBYdaciBAMAAMA3M6m+Oh5ozfrquKwwK6QRggEAAOBfzbIy7drYEGjN3ZsatHJ5LNCaMyEEAwAAwLdYWam2b6iTFw0mTnrRiLatr1MZM8EAAABYyCq9Uu1tawqk1t62JlXFCzMPLBGCAQAAkKfl8ai2rq1Va2PNvOq0NtZoa1OtKrxoQJ3NjRAMAACAvNVWeTqwsznvINzaWKMDO5tVW+kF3NnsCMEAAACYl9pKTwfuadb+HetynhH2ohHt37GuKAFYkgo3eAEAAIBrVm2Vp+0bVmvzmpU6erZPB0/2qHcg+arr6qvj2r2pQds21KnKKy3oCMRkhGAAAAAEosKLqsKL6v1vukV3r18t56TB9IhSmVF50RJVxEplJq1cHivYKhAzYRwCAAAAoTCT5KRoZOznxEYYLuuK2ZYk7gQDAAAgIC8nM7qSGtGRM306dGrmcYhdGxu0fUOdKr1SLY8XZxzCnCt+EverpaXFdXR0FLsNAAAAjEtcTul4V0L7jnUqlcnOeb0XjWhvW5O2rq1VbVU4D8aZ2WnnXMt073EnGAAAAPOSuJLSnkfPqb27P+fPpDJZPfjYeR3vTrBEGgAAABaXxOWU9hz2F4Ana+/u157D55S4kgq4s9kRggEAAJCXl5MZHe9K5B2AJ7R39+t4Z0KDqUxAnc2NEAwAAIC8XEmNaN+xzkBq7TvWqcvJkUBq5YIQDAAAAN/Sw2OrQOTyEFwuUpmsjp7tU3q4MEGYEAwAAADf+q8O69CpnkBrHjzZo/6rw4HWnAkhGAAAAL45p2nXAZ6P3oGkCrV6LyEYAAAAvg2mwhlbGEwzDgEAAIAFKpkZDaVuKqS6UxGCAQAA4Fs8WhJKXa80nLpTEYIBAADgW4UXzsbDYdWdihAMAAAA38yk+up4oDXrq+MyC7TkjAjBAAAA8K1mWZl2bWwItObuTQ1auTwWaM2ZEIIBAADgW6ysVNs31MmLBhMnvWhE29bXqYyZYAAAACxklV6p9rY1BVJrb1uTquKFmQeWCMEAAADI0/J4VFvX1qq1sWZedVoba7S1qVYVXjSgzuZGCAYAAEDeaqs8HdjZnHcQbm2s0YGdzaqt9ALubHaEYAAAAMxLbaWnA/c0a/+OdTnPCHvRiPbvWFeUACxJhRu8AAAAwDWrtsrT9g2rtXnNSh0926eDJ3vUO5B81XX11XHt3tSgbRvqVOWVFnQEYjJCMAAAAAJR4UVV4UX1/jfdorvXr5Zz0mB6RKnMqLxoiSpipTKTVi6PFWwViJkQggEAABCoWFmpbipb2DGTmWAAAAAsOYRgAAAALDmEYAAAACw5hGAAAAAsOYRgAAAALDmEYAAAACw5hGAAAAAsOYRgAAAALDmEYAAAACw5hGAAAAAsOYRgAAAALDmEYAAAACw5hGAAAAAsOYRgAAAALDmEYAAAACw5hGAAAAAsOYRgAAAALDmEYAAAACw5hGAAAAAsOYRgAAAALDmhh2Aze6eZXTCzp8xszwzX/JKZdZrZk2Z2MOyeAAAAsLSVhlnczEokfUbSL0h6RtIpMzvqnOucdM1tkh6Q9Gbn3CUzWxlmTwAAAEBOd4LNrHTS6wozazGz6hw+uknSU865p51zw5K+LGn7lGvuk/QZ59wlSXLOvZBb6wAAAEB+5gzBZnavpISZ/cDM3iXpnKRPSDprZrvm+HidpN5Jx8+Mn5vsdkm3m9m/mNl3zOydM/Rxv5l1mFlHf3//XG0DAAAAM8plHOL3Ja2RtFzSWUmvc879yMxqJX1T0qEAerhN0mZJN0n6H2b28865lyZf5Jx7WNLDktTS0uLm+TsBAACwhOUyDjHqnHvROfdjSYPOuR9JknMukcNn+yTVTzq+afzcZM9IOuqcy4z/jh9oLBQDAAAAocglBPeY2cfN7L9J6jazPzWzN5vZn0h6bo7PnpJ0m5m9xszKJL1X0tEp1zymsbvAMrMbNDYe8bSffwkAAADAj1xC8PskXdHYHdttkr6tsdUcVkq6d7YPOudGJH1I0uOSuiR9xTn3pJk9ZGbbxi97XNJFM+uU1C7pI865i3n8uwAAAAA5MeeCGa81s790zv12IMXm0NLS4jo6OgrxqwAAALBImdlp51zLdO8FuVnGmwOsBQAAAISGbZMBAACw5BCCAQAAsOQEGYItwFoAAABAaHIOwWb283Nc8ufz7AUAAAAoCD93gv/KzE6a2f9pZlVT33TOfT64tgAAAIDw5ByCnXNvkfQrGtsB7rSZHTSzXwitMwAAACAkvmaCnXM/lPTHkj4q6W2S/sLMus1sZxjNAQAAAGHwMxPcbGaf1tjOb/9B0t3OubXjrz8dUn8AAABA4Ep9XPuXkv5G0h8555ITJ51zz5rZHwfeGQAAABASPyG4TVLSOTcqSWYWkeQ554acc18KpTsAAAAgBH5mgo9Lik86Lh8/BwAAACwqfkKw55wbnDgYf10efEsAAABAuPyE4KtmdsfEgZm9XlJylusBAACABcnPTPDvSvoHM3tWY1skr5L0y6F0BQAAAIQo5xDsnDtlZo2S1oyfuuCcy4TTFgAAABAeP3eCJWmjpFvGP3eHmck598XAuwIAAABClHMINrMvSfp3ks5IGh0/7SQRggEAALCo+LkT3CKpyTnnwmoGAAAAKAQ/q0Oc19jDcAAAAMCi5udO8A2SOs3spKT0xEnn3LbAuwIAAABC5CcE/+ewmgAAAAAKyc8Sad8ys5sl3eacO25m5ZJKwmsNAAAACEfOM8Fmdp+kRyT99fipOkmPhdEUAAAAECY/D8Z9UNKbJV2RJOfcDyWtDKMpAAAAIEx+QnDaOTc8cWBmpRpbJxgAAABYVPyE4G+Z2R9JipvZL0j6B0lfDactAAAAIDx+QvAeSf2Svi/ptyR93Tn3YChdAQAAACHys0Tabzvn/lzSZydOmNnvjJ8DAAAAFg0/d4J/fZpz9wbUBwAAAFAwc94JNrNdknZLeo2ZHZ301nJJA2E1BgAAAIQll3GIb0t6TmPbJv/ppPMvSzoXRlMAAABAmOYMwc65n0j6iaQ3ht8OAAAAED4/O8btNLMfmtllM7tiZi+b2ZUwmwMAAADC4Gd1iE9Kuts51xVWMwAAAEAh+FkdIkEABgAAwLXAz53gDjP7e0mPSUpPnHTOHQ68KwAAACBEfkJwpaQhSW+fdM5JIgQDAABgUck5BDvnfiPMRgAAAIBC8bM6xO1mdsLMzo8fN5vZH4fXGgAAABAOPw/GfVbSA5IykuScOyfpvWE0BQAAAITJTwgud86dnHJuJMhmAAAAgELwE4JfNLN/p7GH4WRm79bYdsoAAADAouJndYgPSnpYUqOZ9Un6saT3hdIVAAAAECI/q0M8LWmrmS2TFHHOvRxeWwAAAEB4/KwO8TtmNrFW8KfN7Ltm9va5PgcAAAAsNH5mgt/vnLuisc0yrpf0q5IOhNIVAAAAECI/IdjGf/6ipC86556cdA4AAABYNPyE4NNm9g2NheDHzWy5pGw4bQEAAADh8bM6xAckbZD0tHNuyMyul8RWygAAAFh05gzBZtbonOvWWACWpFvNmIIAAADA4pXLneAPS7pf0p9O856T9B8C7QgAAAAI2Zwh2Dl3//jP1vDbAQAAAMLnZ53g94w/DCcz+2MzO2xmrwuvNQAAACAcflaH2Ouce9nM/r2krZI+J+n/DactAAAAIDx+QvDo+M82SQ87545JKgu+JQAAACBcfkJwn5n9taRflvR1M4v5/DwAAACwIPgJsb8k6XFJ73DOvSSpWtJHQukKAAAACFHOIdg5NyTpiKSrZtYgKSqpO6zGAAAAgLDkvGOcmf22pD+RlNBPt0t2kppD6AsAAAAIjZ9tk39H0hrn3MWwmgEAAAAKwc9McK+ky2E1AgAAABSKnzvBT0t6wsyOSUpPnHTO/VngXQEAAAAh8hOCe8b/KRPrAwMAAGARyzkEO+f+L0kys4rx48GwmgIAAADClPNMsJmtM7PvSXpS0pNmdtrMXhteawAAAEA4/DwY97CkDzvnbnbO3Szp9yV9Npy2AAAAgPD4CcHLnHPtEwfOuSckLQu8IwAAACBkvlaHMLO9kr40fvw+ja0YAQAAACwqfu4Ev19SjaTDkv5R0g3j5wAAAIBFxc/qEJck/acQewEAAAAKws/qEN80s+smHa8ws8fDaQsAAAAIj59xiBuccy9NHIzfGV4ZfEsAAABAuPyE4KyZNUwcmNnNklzwLQEAAADh8rM6xIOS/peZfUuSSXqLpPtD6QoAAAAIkZ8H4/7JzO6QdOf4qd91zr048b6ZvdY592TQDQIAAABB83MnWOOh92szvP0lSXfMuyMAAAAgZH5mgudi0540e6eZXTCzp8xsz4wfNvuPZubMrCXAngAAAIBXCTIEv+ohOTMrkfQZSe+S1CRpl5k1TXPdckm/I+lfA+wHAAAAmFaQIXg6myQ95Zx72jk3LOnLkrZPc90+SZ+QlAq5HwAAACDQEDw8zbk6Sb2Tjp8ZP/eK8Yft6p1zx2Yrbmb3m1mHmXX09/fPu1kAAAAsXb4ejDOzZkm3TP6cc+7w+M87Z/jYbPUikv5M0r1zXeuce1jSw5LU0tLC+sQAAADIW84h2Mz+VlKzpCclZcdPO0mHZ/lYn6T6Scc3jZ+bsFzSOklPmJkkrZJ01My2Oec6cu0NAAAA8MPPneA7nXOveqhtDqck3WZmr9FY+H2vpN0TbzrnLku6YeLYzJ6Q9AcEYAAAAITJz0zw/55uZYfZOOdGJH1I0uOSuiR9xTn3pJk9ZGbb/NQCAAAAguLnTvAXNRaEn5eU1ti6wM451zzbh5xzX5f09SnnPjbDtZt99AMAAADkxU8I/pykX5X0ff10JhgAAABYdPyE4H7n3NHQOgEAAAAKxE8I/p6ZHZT0VY2NQ0j66RJpAAAAwGLhJwTHNRZ+3z7p3FxLpAEAAAALTs4h2Dn3G2E2AgAAABSKn80yPEkfkPRaSd7Eeefc+0PoCwAAAAiNn3WCv6SxHd3eIelbGtv97eUwmgf4VLEAABwMSURBVAIAAADC5CcE/5xzbq+kq865L0hqk/SGcNoCAAAAwuMnBGfGf75kZuskVUlaGXxLAAAAQLj8rA7xsJmtkLRX0lFJFZKm3fkNAAAAWMj8rA7xN+MvvyXp1nDaAQAAAMKX8ziEmdWa2efM7L+PHzeZ2QfCaw0AAAAIh5+Z4M9LelzS6vHjH0j63aAbAgAAAMLmJwTf4Jz7iqSsJDnnRiSNhtIVAAAAECI/IfiqmV2vsa2SZWZ3SrocSlcAAABAiPysDvFhja0KcauZ/YukGknvDqUrAAAAIER+QnCnpEclDWlsp7jHNDYXDAAAACwqfsYhviipUdL/LekvJd2usa2UAQAAgEXFz53gdc65pknH7WbWGXRDAAAAQNj8hODvmtmdzrnvSJKZvUFSRzhtAQAAYLFKpjO6OJSRJL2cHFEyM6p4tETL42PR8/ryqOKxaDFbnDsEm9n3NbYiRFTSt82sZ/z4Zknd4bYHAACAxeLS0LCG0qM6cqZPh071qHcg+apr6qvj2rWxQds31Kk8VqIV5WVF6FQy59zsF5jdPNv7zrmfBNpRDlpaWlxHBzehAQAAFornL6d0oiuhfcc6lcpk57zei0a0t61JW9bWalWVF0pPZnbaOdcy3Xtz3gkuRsgFAADA4pG4ktIDj55Te3d/zp9JZbJ68LHzOt6d0IGdzaqtDCcIz8TP6hAAAADAz3j+ckp7DvsLwJO1d/drz+FzSlxJBdzZ7AjBAAAAyMuloWGd6ErkHYAntHf363hnQi8NDQfU2dwIwQAAAMjLUHpU+44Fs2LuvmOdupoeDaRWLgjBAAAA8C2ZzujImb6cHoLLRSqT1dGzfUqmM4HUmwshGAAAAL5dHMro0KmeQGsePNnzyvrCYSMEAwAAwDfnNO06wPPRO5DUHKv3BoYQDAAAAN8GUyPh1E2HU3cqQjAAAAB8S2bCeYgtFVLdqQjBAAAA8C0eLQmlrlcaTt2pCMEAAADwrcKbc+PhBVV3KkIwAAAAfDOT6qvjgdasr47LLNCSMyIEAwAAwLfry6PatbEh0Jq7NzWopiIWaM2ZEIIBAADgWzwW1fYNdfKiwcRJLxrRtvV1ioU0azwVIRgAAAB5KY+VaG9bUyC19rY1aVmsMAFYIgQDAAAgTyvKy7Rlba1aG2vmVae1sUZbm2p1XXlZQJ3NjRAMAACAvK2q8nRgZ3PeQbi1sUYHdjarttILuLPZEYIBAAAwL7WVnj5+T7P271iX84ywF41o/451RQnAklSYhdgAAABwTVtV5amt+UZtXrNSR8/26eDJHvUOJF91XX11XLs3NWjbhjotKysp6AjEZIRgAAAABOK68jJdVy7d+8abdff61XJOGkyPKJsdVSRSoopYqcykmopYwVaBmAnjEAAAAAjUxH4XZpKclB4Z+zmxEYbLZovU2U9xJxgAAACBuDw0rMH0qI6c6dOhUzOPQ+za2KDtG+pUEStRVZHGIcw5V5RfPB8tLS2uo6Oj2G0AAABg3POXUzrRldC+Y51KZea+0+tFI9rb1qQta2u1qiqcB+PM7LRzrmW697gTDAAAgHlJXEnpgUfPqb27P+fPpDJZPfjYeR3vTrBEGgAAABaX5y+ntOewvwA8WXt3v/YcPqfElVTAnc2OEAwAAIC8XB4a1omuRN4BeEJ7d7+OdyZ0JTkcUGdzIwQDAAAgL4PpUe071hlIrX3HOvVyajSQWrkgBAMAAMC3VDqjI2f6cnoILqd6mayOnu1TKp0JpN5cCMEAAADw7cWhjA6d6gm05sGTPXpxiBAMAACABco5TbsO8Hz0DiRVqNV7CcEAAADwbTA1Ek7ddDh1pyIEAwAAwLdkJpyH2FIh1Z2KEAwAAADf4tGSUOp6peHUnYoQDAAAAN8qvHA2Hg6r7lSEYAAAAPhmJtVXxwOtWV8dl1mgJWdECAYAAIBvN5RHtWtjQ6A1d29qUE1FLNCaMyEEAwAAwDcvFtX2DXXyosHESS8a0bb1dYqFNGs8FSEYAAAAeamIlWhvW1Mgtfa2NWm5V5gALBGCAQAAkKeq8jJtWVur1saaedVpbazR1qZaVcbLAupsboRgAAAA5G1VlacDO5vzDsKtjTU6sLNZtZVewJ3NjhAMAACAeamt9PTxe5q1f8e6nGeEvWhE+3esK0oAlqTCLMQGAACAa9qqKk93r79Rm9es1NGzfTp4ske9A8lXXVdfHdfuTQ3atqFOy2MlBR2BmIwQDAAAgEBUxstUGZd+44036+71q+WcNJgeUSozKi9aoopYqcykmopYwVaBmAnjEAAAAAhUSSSiiOmVjS/KxvOumRSxhRFAuRMMAACAQAylR3QpmdGRM306NMs4xK5NDdq+oU4r4lGVx4oTR805V5RfPB8tLS2uo6Oj2G0AAABg3AtXUjreldBDX+tUKpOd83ovGtHH7mrS1rW1WhnSg3Fmdto51zLde9wJBgAAwLy8cCWljx4+p/bu/pw/k8pk9UePntc3uxL6xM7m0ILwTBbCSAYAAAAWqXwC8GTt3f366OFzeuFKKuDOZkcIBgAAQF6G0iM63pXIOwBPaO/u1/GuhIaGRwLqbG6EYAAAAOTlUjKjh77WGUith77WqUtDmUBq5YIQDAAAAN8ymVEdOdOX00NwuUhlsjp6pk+ZzGgg9eZCCAYAAIBv/VfTOnSyJ9CaB0/2qP9qOtCaMyEEAwAAwLes07TrAM9H70BS2QKt3ksIBgAAgG8vp8J5iC2sulMRggEAAOBbMqTZ3dS1MhNsZu80swtm9pSZ7Znm/Q+bWaeZnTOzE2Z2c9g9AQAAYH7i0ZJQ6noh1Z0q1BBsZiWSPiPpXZKaJO0ys6Ypl31PUotzrlnSI5I+GWZPAAAAmL/lXjgbD4dVd6qw7wRvkvSUc+5p59ywpC9L2j75Audcu3NuaPzwO5JuCrknAAAAzFPEpPrqeKA166vjiligJWcUdgiuk9Q76fiZ8XMz+YCk/z7dG2Z2v5l1mFlHf//8diUBAADA/NQsi2nXpoZAa+7e1KCa5V6gNWeyYB6MM7P3SWqR9Knp3nfOPeyca3HOtdTU1BS2OQAAAPyMaLRE2zfUyYsGEye9aETbNtQpWlKYeBr2b+mTVD/p+Kbxcz/DzLZKelDSNudcYVZIBgAAwLysiEf1sbumPu6Vn4/d1aQV5dFAauUi7BB8StJtZvYaMyuT9F5JRydfYGavk/TXGgvAL4TcDwAAAAJSHivV1rW1am2c33+lb22s0da1tSovK8xDcVLIIdg5NyLpQ5Iel9Ql6SvOuSfN7CEz2zZ+2ackVUj6BzM7Y2ZHZygHAACABWZlpadP7GzOOwi3NtboEzubtbKyMLPAE8y5Au1NF6CWlhbX0dFR7DYAAAAw7oUrKR3vSuihr3UqlcnOeb0XjehjdzVp69ra0AKwmZ12zrVM917h7jkDAADgmrWy0tOO19XpbWtW6uiZPh082aPegaRKI6ay0oiGR7IayTrVV8f1K5satG1Dna4rjxZ0BGIyQjAAAAACUV5WqvKyUt37xpt19/rVkqSXkyNKZkYVj5ZoeXwsel5fHlU8VriH4KZDCAYAAEAgLg0Nayg9qiNn+nTo1Nid4Knqq+PatbFB2zfUqTxWohXlZUXolJlgAAAABOD5yymd6Epo37HcZ4L3tjVpy9parapiJhgAAACLTOJKSg88ek7t3bnv6pvKZPXgY+d1vDuhAzubVVvg1SEWzI5xAAAAWHyev5zSnsP+AvBk7d392nP4nBJXUgF3NjtCMAAAAPJyaWhYJ7oSeQfgCe3d/TremdBLQ8MBdTY3QjAAAADyMpQe1b5jnYHU2nesU1fTo4HUygUhGAAAAL4l0xkdOdOX00NwuUhlsjp6tk/JdCaQenMhBAMAAMC3i0MZHTrVE2jNgyd7dHGIEAwAAIAFyjlNuw7wfPQOJFWo1XsJwQAAAPBtMDUSTt10OHWnIgQDAADAt2QmnIfYUiHVnYoQDAAAAN/i0ZJQ6nql4dSdihAMAAAA3yq8cDYeDqvuVIRgAAAA+GYm1VfHA61ZXx2XWaAlZ0QIBgAAgG/Xl0e1a2NDoDV3b2pQTUUs0JozIQQDAADAt3gsqu0b6uRFg4mTXjSibevrFAtp1ngqQjAAAADyUh4r0d62pkBq7W1r0rJYYQKwRAgGAABAnlaUl2nL2lq1NtbMq05rY422NtXquvKygDqbGyEYAAAAeVtV5enAzua8g3BrY40O7GxWbaUXcGezIwQDAABgXmorPX38nmbt37Eu5xlhLxrR/h3rihKAJakwC7EBAADgmraqylNb843avGaljp7t08GTPeodSL7quvrquHZvatC2DXVaVlZS0BGIyQjBAAAACMR15WW6rly694036+71q+WcNJgekcuOyiIlqoiVykyqqYgVbBWImTAOAQAAgFCYSXJSamTs58RGGNlstphtSeJOMAAAAAJyaWhYQ+lRHTnTp0OnZh6H2LWxQds31Kk8VqIVRRqHMOdcUX7xfLS0tLiOjo5itwEAAIBxz19O6URXQvuOdSqVmftOrxeNaG9bk7asrdWqqnAejDOz0865lune404wAAAA5iVxJaUHHj2n9u7+nD+TymT14GPndbw7wRJpAAAAWFyev5zSnsP+AvBk7d392nP4nBJXUgF3NjtCMAAAAPJyaWhYJ7oSeQfgCe3d/TremdBLQ8MBdTY3QjAAAADyMpQe1b5jnYHU2nesU1fTo4HUygUhGAAAAL4l0xkdOdOX00NwuUhlsjp6tk/JdCaQenMhBAMAAMC3i0MZHTrVE2jNgyd7dHGIEAwAAIAFyjlNuw7wfPQOJFWo1XsJwQAAAPBtMDUSTt10OHWnIgQDAADAt2QmnIfYUiHVnYoQDAAAAN/i0ZJQ6nql4dSdihAMAAAA3yq8cDYeDqvuVIRgAAAA+GYm1VfHA61ZXx2XWaAlZ0QIBgAAgG/Xl0e1a2NDoDV3b2pQTUUs0JozIQQDAADAt3gsqu0b6uRFg4mTXjSibevrFAtp1ngqQjAAAADyUh4r0d62pkBq7W1r0rJYYQKwRAgGAABAnlaUl2nL2lq1NtbMq05rY422NtXquvKygDqbGyEYAAAAeVtV5enAzua8g3BrY40O7GxWbaUXcGezIwQDAABgXmorPX38nmbt37Eu5xlhLxrR/h3rihKAJakwC7EBAADgmraqylNb843avGaljp7t08GTPeodSL7quvrquHZvatC2DXVaVlZS0BGIyQjBAAAACMR15WW6rly694036+71q+WcNJgeUSozKi9aoopYqcykmopYwVaBmAnjEAAAAAhUZHzHCzNJTiqJjP18ZSMM54rV2iu4EwwAAIBAvJzM6EpqREfO9OnQqZnHIXZtbND2DXWq9Eq1PB4tQqeSuQWQxP1qaWlxHR0dxW4DAAAA4xKXUzreldC+Y51KZbJzXu9FI9rb1qSta2tVWxXOg3Fmdto51zLde9wJBgAAwLwkrqS059Fzau/uz/kzqUxWDz52Xse7EyyRBgAAgMUlcTmlPYf9BeDJ2rv7tefwOSWupALubHaEYAAAAOTl5WRGx7sSeQfgCe3d/TremdBgKhNQZ3MjBAMAACAvV1Ij2nesM5Ba+4516nJyJJBauSAEAwAAwLf08NgqELk8BJeLVCaro2f7lB4uTBAmBAMAAMC3/qvDOnSqJ9CaB0/2qP/qcKA1Z0IIBgAAgG/Oadp1gOejdyBZsH00CMEAAADwbTAVztjCYJpxCAAAACxQycxoKHVTIdWdihAMAAAA3+LRklDqeqXh1J2KEAwAAADfKrxwNh4Oq+5UhGAAAAD4ZibVV8cDrVlfHZdZoCVnRAgGAACAbzXLyrRrY0OgNXdvatDK5bFAa86EEAwAAADfYmWl2r6hTl40mDjpRSPatr5OZcwEAwAAYCGr9Eq1t60pkFp725pUFS/MPLBECAYAAECelsej2rq2Vq2NNfOq09pYo61NtarwogF1NjdCMAAAAPJWW+XpwM7mvINwa2ONDuxsVm2lF3BnsyMEAwAAYF5qKz0duKdZ+3esy3lG2ItGtH/HuqIEYEkq3OAFAAAArlm1VZ62b1itzWtW6ujZPh082aPegeSrrquvjmv3pgZt21CnKq+0oCMQkxGCZ5FMZ3RxKCNJejk5omRmVPFoiZaPD21fXx5VPFacLw4AAGChqfCiqvCiev+bbtHd61fLOWkwPaJUZlRetEQVsVKZSSuXxwq2CsRMCMHTuDQ0rKH0qI6c6dOhUzP/LWbXxgZt31Cn8liJVpSXFaFTAACAhSdWVqqbyhZ2zDTnXLF78K2lpcV1dHSEUvv5yymd6Epo37FOpTLZOa/3ohHtbWvSlrW1WlVV+HkWAAAATM/MTjvnWqZ7b2FH9AJLXEnpgUfPqb27P+fPpDJZPfjYeR3vThRtsBsAAAD+sDrEuOcvp7TnsL8APFl7d7/2HD6nxJVUwJ0BAAAgaIRgjc0An+hK5B2AJ7R39+t4Z0IvDQ0H1BkAAADCQAiWNJQe1b5jnYHU2nesU1fTo4HUAgAAQDiWfAhOpjM6cqYvp4fgcpHKZHX0bJ+S6Uwg9QAAABC80EOwmb3TzC6Y2VNmtmea92Nm9vfj7/+rmd0Sdk+TXRzK6NCpnkBrHjzZ88r6wgAAAFh4Qg3BZlYi6TOS3iWpSdIuM2uactkHJF1yzv2cpE9L+kSYPU3lnKZdB3g+egeSWoQrzwEAACwZYd8J3iTpKefc0865YUlflrR9yjXbJX1h/PUjkraYmYXc1ysGUyPh1E2HUxcAAADzF3YIrpPUO+n4mfFz017jnBuRdFnS9VMLmdn9ZtZhZh39/fNbxWGyZCach9hSIdUFAADA/C2aB+Occw8751qccy01NTWB1Y1Hw9m32ivyftgAAACYWdghuE9S/aTjm8bPTXuNmZVKqpJ0MeS+XlHhhbNpXlh1AQAAMH9hh+BTkm4zs9eYWZmk90o6OuWao5J+ffz1uyX9s3OFe6zMTKqvjgdas746rsJNNQMAAMCvUEPw+IzvhyQ9LqlL0lecc0+a2UNmtm38ss9Jut7MnpL0YUmvWkYtTNeXR7VrY0OgNXdvalBNRSzQmgAAAAhO6P/N3jn3dUlfn3LuY5NepyS9J+w+ZhKPRbV9Q53+4p9/GMiGGV40om3r6xQLadYYAAAA87doHowLU3msRHvbpi5fnJ+9bU1aFiMAAwAALGSEYEkrysu0ZW2tWhvnt+pEa2ONtjbV6rrysoA6AwAAQBgIweNWVXk6sLM57yDc2lijAzubVVvpBdwZAAAAgkYInqS20tPH72nW/h3r5EVz+5/Gi0a0f8c6AjAAAMAiwmK2U6yq8tTWfKM2r1mpo2f7dPBkj3oHkq+6rr46rt2bGrRtQ52WlZUwAgEAALCIEIKncV15ma4rl+594826e/1qOScNpkeUyozKi5aoIlYqM6mmIsYqEAAAAIsQIXgW8VhUN8WixW4DAAAAAWMmGAAAAEsOIRgAAABLDiEYAAAASw4hGAAAAEsOIRgAAABLDiEYAAAASw4hGAAAAEsOIRgAAABLjjnnit2Db2bWL+knRfjVN0h6sQi/F+Hie7128d1eu/hur018r9euYn23NzvnaqZ7Y1GG4GIxsw7nXEux+0Cw+F6vXXy31y6+22sT3+u1ayF+t4xDAAAAYMkhBAMAAGDJIQT783CxG0Ao+F6vXXy31y6+22sT3+u1a8F9t8wEAwAAYMnhTjAAAACWHEIwAAAAlhxCcA7M7N/M7PtmdsbMOordD4JjZteZ2SNm1m1mXWb2xmL3hPkzszXjf14n/rliZr9b7L4wf2b2e2b2pJmdN7NDZuYVuycEw8x+Z/x7fZI/r4ubmf2tmb1gZucnnas2s2+a2Q/Hf64oZo8SIdiPVufchoW2xh3m7c8l/ZNzrlHSekldRe4HAXDOXRj/87pB0uslDUl6tMhtYZ7MrE7Sf5LU4pxbJ6lE0nuL2xWCYGbrJN0naZPG/r/4LjP7ueJ2hXn4vKR3Tjm3R9IJ59xtkk6MHxcVIRhLlplVSXqrpM9JknNu2Dn3UnG7Qgi2SPqRc64Yu0wieKWS4mZWKqlc0rNF7gfBWCvpX51zQ865EUnfkrSzyD0hT865/yFpYMrp7ZK+MP76C5J2FLSpaRCCc+MkfcPMTpvZ/cVuBoF5jaR+SX9nZt8zs78xs2XFbgqBe6+kQ8VuAvPnnOuT9F8l9Uh6TtJl59w3itsVAnJe0lvM7HozK5f0i5Lqi9wTglXrnHtu/PXzkmqL2YxECM7Vv3fO3SHpXZI+aGZvLXZDCESppDsk/T/OuddJuqoF8J9nEBwzK5O0TdI/FLsXzN/4DOF2jf0FdrWkZWb2vuJ2hSA457okfULSNyT9k6QzkkaL2hRC48bW5y36Gr2E4ByM332Qc+4Fjc0VbipuRwjIM5Kecc796/jxIxoLxbh2vEvSd51ziWI3gkBslfRj51y/cy4j6bCkNxW5JwTEOfc559zrnXNvlXRJ0g+K3RMClTCzGyVp/OcLRe6HEDwXM1tmZssnXkt6u8b+sw0WOefc85J6zWzN+KktkjqL2BKCt0uMQlxLeiTdaWblZmYa+zPLw6zXCDNbOf6zQWPzwAeL2xECdlTSr4+//nVJR4rYiyR2jJuTmd2qnz5VXirpoHNufxFbQoDMbIOkv5FUJulpSb/hnLtU3K4QhPG/tPb8/+3dP2hVZxjH8e9P4yKGVmonQSSLlEQsDQ7ZsnV1KAp2Kf4BIVO6VZRS6N5SQbeYwSKIFkEconQIRUgpIiGmxUUoHULoIK2TtPTpcM+F29Al9Sb3puf7Wc655z2c87zL5ce577kPMFZVvw26HvVHks+AU8CfwBPgXFW9GmxV6ock3wFvAX8AH1fVtwMuSf9RkpvANHAAWAc+Be4Ct4BDwM/Ayara+PLctjIES5IkqXVcDiFJkqTWMQRLkiSpdQzBkiRJah1DsCRJklrHECxJkqTWMQRL0pBIcjiJ/0MuSdvAECxJkqTWMQRL0nAZSfJ1kp+S3G66o00mWUzyOMlCT+vR80l+SLKc5E6Svc3x+STXkiwleZ5kOslcc8355pzdzXlPk6wkmR3gnCVp2xmCJWm4HAGuVtU7wO/ADHAF+KCqJoE5oNu18puqOl5Vx+i0Dz7bc539wBQwS6dd6RfAOHC06ZT4LnCwqiaq6ihwfeunJknDY2TQBUiS/uGXqnrU7N8ALgITwMMkALuBtWZ8IsnnwJvAPmCh5zr3qqqSrADrVbUCkGQVOAwsAmNJrgD3gQdbOitJGjKGYEkaLht72b8EVqtq6l/OnQdOVNVyko+A6Z6xV832r5797ueRqnqR5BjwPnABOAmcee3qJWmHcDmEJA2XQ0m6gfc0sAS83T2WZE+S8WZ8FFhLsgf4cDM3SXIA2FVVd4BLwHt9qV6SdgifBEvScHkGzCSZA36ksx54AfgqyRt0vre/BFaBy8D3wK/NdnQT9zkIXE/SfRjySX/Kl6SdIVUbf3mTJEmS/t9cDiFJkqTWMQRLkiSpdQzBkiRJah1DsCRJklrHECxJkqTWMQRLkiSpdQzBkiRJap2/AQk3Rv+BSsi1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3Rcd3nv/88z0kgzkiw7SmQ5lqU4IcGWMIoJihtuSVybqxI7MeGA3VIIlPSsQ3u4nMPBNDW/Nl4ppvRyCotffw0ECqzaKU2dxOCUBBtzaUuw5WCbRFYgDSBZiRUR360ZaSQ9vz80dhVZsrSlvWdkz/u1lpe0b888K7Oc9cnO92LuLgAAAKCQxPLdAAAAAJBrhGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCU5zvBqbisssu84ULF+a7DQAAAMxge/fu/Y27V4917YIMwQsXLlRra2u+2wAAAMAMZma/Hu8awyEAAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4FyQm2UAAABg5urrH1DP6X5J0snUgFKZQSXjRZqVHI6e1eUlKi3JbwwlBAMAACAUJ1MZnUgP6JF9Xdqyp0OdR1Ln3FNXldTa6+u1emmtKhPFmpWM56FTydw9Lx88Hc3Nzc62yQAAADNH9/G0dhzs1sbtbUpnhia8PxGPaUNLo1Y21KhmdiKSnsxsr7s3j3WNN8EAAACYlu4Taa1/6IB2tfdM+pl0Zkh3P/yUdrR3a9OaJtVURhOEx8PEOAAAAExZ9/G01m8NFoBH2tXeo/VbD6j7RDrkzs6PEAwAAIApOZnKaMfB7ikH4DN2tfdoR1u3TqUzIXU2MUIwAAAApuREekAbt7eFUmvj9jYdTw2EUmsyCMEAAAAIrK9/eBWIyUyCm4x0Zkjb9neprz83QTjSEGxmXzGzF83sqXGum5l93syeNbMDZnZdlP0AAAAgHD2n+7VlT0eoNTfv7ji7vnDUon4T/A+S3nae62+XdE32z12S/i7ifgAAABACd425DvB0dB5JKVer90Yagt39h5KOnOeW1ZK+7sOekDTHzC6PsicAAABM36l0NMMWTvVdBMMhJqFWUueI40PZc+cws7vMrNXMWnt6pjcDEQAAANOTygxGUjcdUd3R8h2CJ83d73P3Zndvrq6uznc7AAAABS0ZL4qkbqI4mrqj5TsEd0mqG3G8IHsOAAAAM1hFIpqNh6OqO1q+Q/A2Sb+XXSXiBknH3f2FPPcEAACACZhJdVXJUGvWVSVlFmrJcUW9RNoWST+WtMjMDpnZB83sv5vZf8/e8qik5yQ9K+lLkv5HlP0AAAAgHNXlJVp7fX2oNdctq9fcWaWh1hxPpO+b3X3tBNdd0oej7AEAAADhKy0p1uqltfr8934RyoYZiXhMq66tVUmBjAkGAADABaoyUawNLY2h1NrQ0qjZydyMB5YIwQAAAJiiWcm4VjbUaPni6a3ctXxxtVY21qgiEQ+ps4kRggEAADBlNbMT2rSmacpBePniam1a06SaykTInZ0fIRgAAADTUlOZ0Kbbm3TvbUuUiL88Xs6vLNWbrq7S/MqXT3hLxGO697YleQnAUsQT4wAAAFAYamYntHrpfN28aK7KEzGdTA3KTDqRyiidGVIiHlNlMi53aVaiSKf7hzQ7UZzTIRAjEYIBAAAQisyQS5I2P9GpLXs61Hkkdc49dVVJrb2+XquX1p69Px9seJWyC0tzc7O3trbmuw0AAABkHT6e1s6D3dq4vW1SS6Yl4jFtaGnUioYazZsdzXAIM9vr7s1jXeNNMAAAAKal+0Ran3rogHa190z6mXRmSHc//JR2tHczMQ4AAAAXlsPH01q/NVgAHmlXe4/Wbz2g7hPpkDs7P0IwAAAApuRob792HuyecgA+Y1d7j3a0detYb39InU2MEAwAAIAp6e0b1MbtbaHU2ri9Taf7BkOpNRmEYAAAAASW6svokX1dk5oENxnpzJC27e9Sqi8TSr2JEIIBAAAQ2Eu9GW3Z0xFqzc27O/RSLyEYAAAAM5S7xlwHeDo6j6SUq9V7CcEAAAAI7FR6IJq6fdHUHY0QDAAAgMDSA9FMYuuLqO5ohGAAAAAElogXRVK3tDiauqMRggEAABBYRWk0Gw9HVXc0QjAAAAACG3JXXVUy1Jp1VUkN5WhmHCEYAAAAgQ0MDumd1y0IteYd1y3QwCAhGAAAADNU38CQbn5ltRLxcOJkIh7TTa+sZmIcAAAAZq6KRLG+8u+/0ifeuiiUep946yLd/2+/VEWCMcEAAACYoWJm+mnnUc2rTOrmRdXTqnXzomrNq0xq36FjipmF1OH5EYIBAAAQWDIe0x3XLdCfbntKG1cv0fLFUwvCyxdXa+PqJfrTbU/pXa9doLKS3CyRlpv3zQAAALiomEmrl9bqlTWzdO/2Nt1xXZ3eePVl+txjzyidGZrw+UQ8pk+8dZHmVSZ17/Y23bN6iRour1Ru3gMTggEAADAFvf1DKi8p0pHT/frO0936ztPdurXpcj3woRv0g5/36MEnD6nzSOqc5+qqkrrjugW66ZXVuv/ffqlvHTgoSXrTNdUqLynS6f5BXVIeff/mOVqLLUzNzc3e2tqa7zYAAAAK1m9Op3X89IBavvCjl735LYqZViyeq5amyzV/TlKZwSGlM0NKxGOKF8X0/LGUvn3gBX2v/UUNDv1XDk3EY9r+R2/S7PJiXVaeCKVHM9vr7s1jXeNNMAAAAAIbHHR9+8Dz5wx9GBxyPd7WrcfbuiVJxTFTSXFM/QNDGhga/+VrOjOk7T97Xu++vi7Svs9gYhwAAAAC6x9wPfjkoQnvGxhy9fYPnjcAn/HPew+pf4DNMgAAADBDufuYY36no/NISi5CMAAAAGaok30DkdQ9lWbHOAAAAMxQ/QMTL4M2tbqEYAAAAMxQyXg0m1okIqo7GiEYAAAAgZWXRrPIWFR1RyMEAwAAILCi2PDGF2Gqq0qqKJabPeMIwQAAAAisrLRI771hYag1f++GhSovZTgEAAAAZqhZJXG1NF2uRDycOJmIx9Ty6stVURoPpd5ECMEAAAAIrKgoppIi05+telUo9f5s1atUUmwMhwAAAMDMNuTSG6++TCsb5k6rzsqGuXrj1ZdpEpvKhYYQDAAAgMD6+gf0yL4uPdN9UvesXjLlILyyYa7uWb1Ez3Sf1MP7utTXH80mHKPlZg0KAAAAXFR+09uvbzzxa6X7B/Xwh9+gD7zhSt14TbX+/F8PKp2ZeCONRDymP357g66eWyF31ycfPKBESZFaXn25akuij6i8CQYAAEBgPiR1Hklp421L9OlHnta6L/9EA0Ou737sJn3ybYvOLp9WHDOVlRSpODvWt64qqU++bZG++7GbNDDkWvfln+jTjzytjbctUeeRlDxHQyJ4EwwAAIDATvUNaNW183XkdEZPPPeSvrjuOh0+kVLLF36kP7jxKv39e1+r8pJinUoPKJUZVDJepIpEsU73D+h7B19Uyxd+pI+suEZfXHed/s+D+7WyoUa3Nl2uUwyHAAAAwEyVygzqfyx/hX7nS0/oS+9r1n0/fE6Vibi+fucyff/nPfqDb+xV55HUOc/VVSX1zusW6Ot3LtNX/v1X+lH6N/rS+5r1R5uf1D/+/g1K9w/mpH/zXL1zDlFzc7O3trbmuw0AAICC9evfnNZjbYdVO6dM39rfpVuvrdXhEyl97rFnJj0m+BNvXaR5lcmzz3cd69VbG+fpisvKQ+nRzPa6e/NY13gTDAAAgMCKi0xdx1JKxGP6vdcv1H0/fE7ff6Zn0s+nM0Pa+O2DunlRte668So9++JJHTqWUnFRbtYJJgQDAAAgMJd0+9JavXA8HTgAj3TmuXc316mpdo5yNUaB1SEAAAAQ2NCQq/Nor54/nppyAD7j+8/06PnjKR062quhHA3VJQQDAAAgsMEh18JLy/W5x54Jpd7nHntGV1xarsEcbRtHCAYAAEBgydIi7Wx/cVKT4CYjnRnS99pfVLKkKJR6EyEEAwAAILC+zJD+5clDodZ88MlD6gspVE+EEAwAAIApGWsd4JlU73wIwQAAAAisty+aTS16c7RZBiEYAAAAgfUNRDNsoT+iuqMRggEAABBYaTyaGFlSnJt4SggGAABAYBWl0ey5FlXd0QjBAAAACGzIXXVVyVBr1lUl2SwDAAAAM1ciHtO7m+tCrfme6+uUjLNOMAAAAGaowSHXTa+sViKkscGJeEw3XlOtAXaMAwAAwEyVGXC9cDytT7x1USj1PvHWRXrheFoZVocAAADATHWkt1+vmFuh+bOTunlR9bRq3byoWvNnJ/WKuRU62tsfUofnRwgGAABAYMl4kf52xy/U2z+gu268aspB+OZF1brrxqvU2z+g//vdnyvBmGAAAADMVBWJYm3b/7wqE3H94xO/1rteW6cNtzRMeoxwIh7Thlsa9K7X1ukfn/i1KhNxfevAC6pI5GaJtNx8CgAAAC4uPryk2Uf/aZ++euf1uu+HzykZL9IDH7pBP/h5jx588pA6j6TOeayuKqk7rlugm15Zrfv/7ZdKZV7SXTdepTu/uif0JdfOhxAMAACAwAaHXO+9YaH+/NGDuvOre/QXd1yrY739+p37f6I3vOIy/e+3LNL8OUllBoeUzgwpEY8pXhTT88dS+vaBF3Tfj57TH7+9QXPKSnTnV/fodP+gPnrDQg0O5mZ1CEIwAAAAAovFTCsa5uqvv/uMTvcP6sObn9StTZfrH3//Bv34P3+jv3z8GXUeSak4Ziopjql/YEgDQ8MbbKxbVq8PL79a9//oOX3rwAuShodH/HbDXMVilpP+zXO0K0eYmpubvbW1Nd9tAAAAFKxDR3v1pR89p8bLK/XJf/nZ2fNFMdOKxXPV0nT52TfB/QNDKil++Zvg77W/qMERawJ/9p2v1tMvnNBdb7pKCy4pC6VHM9vr7s1jXeNNMAAAAAKrSBSpZlZCVWUlWtkwVzsOvihpeJjE423derytW5LOeRM8lpUNc1VVVqLLKxOqzNHEOFaHAAAAQGCzSuJatXS+1m89oLtuvEorG+aOed/AkKu3f/C8AfiuG6/S+q0HdOu181VeGo+y7bMIwQAAAAisqCimZHFMH3/zIt351T26/TULdO9tSwItkXbvbUt0+2sW6M6v7tHH37xIieKYinI0JpjhEAAAAJiSWckS3bSoWjvau89OjHvgrtfpx//5G23e3THuEmnrltXrda+47OzEuOWLq3XTompVJkty1jsT4wAAADBlR073K50Z1IaHn9LO9hcDT4xbsXiuNt62RMl4kS4pDzcE53VinJm9TdLfSiqS9GV33zTqer2kr0mak71nvbs/GnVfAAAAmL6q8hK9eCKtD77xSr3+6kv1uceemdTEuEQ8pj9+x2I1zKtUccxCD8ATiXRMsJkVSfqipLdLapS01swaR932J5K+6e6vkfQeSf9vlD0BAAAgPC+eSOuTWw9o3Zd/on0dx/TAh27Qx1Zec3b3t9ET4+qqkvrYymv0wIdu0L6OY1r35Z/ok1sP6MUT6Zz2HfWb4GWSnnX35yTJzB6QtFpS24h7XFJl9vfZkp6PuCcAAACEoLdvQDsOdmtXe48k6VsHXtCjTx3WisVzJ9wx7vPfe/bsOsG72nu042C3bntNrcpKcjNlLepPqZXUOeL4kKTfGnXPn0p63Mz+SFK5pJVjFTKzuyTdJUn19fWhNwoAAIBgjqYyuufbbS87N5V1giXpnm+36aZFc3MWgmfCEmlrJf2Duy+Q9A5J3zCzc/py9/vcvdndm6urq3PeJAAAAP5LJjOoR/Z1KZ0ZOu99E60TfEY6M6Rt+7qUyQyG2ea4og7BXZLqRhwvyJ4b6YOSvilJ7v5jSQlJl0XcFwAAAKah53SftuzuCLXm5t0d6jndF2rN8UQdgvdIusbMrjSzEg1PfNs26p4OSSskycwaNByCeyLuCwAAANMw5BpzHeDp6DyS0gQvjEMTaQh29wFJfyjpMUkHNbwKxNNmdo+Zrcre9r8kfcjM9kvaIun9fiEuXgwAAFBATqYHLqi6o0U+8ji75u+jo859esTvbZLeEHUfAAAACE8qorG76YtkTDAAAAAuQsl4USR1ExHVHY0QDAAAgMBmJaIZUBBV3dEIwQAAAAgsZjq7K1xY6qqSilmoJcdFCAYAAEBg1eWlWrss3A3M1i2rV/WsRKg1x0MIBgAAQGDxeJFWL61VIh5OnEzEY1q1tFbxotzEU0IwAAAApuSSZFyfvqUxlFqfvqVRl5TFQ6k1GYRgAAAATElZabFWNtRo+eLqadVZvrhaKxtqVFaSm0lxEiEYAAAA0zC3MqHPrmmachBevrhan13TpLmVuRkLfAYhGAAAANNyJgj/+e1LzhkjvLAqqZYlc7Vw1EoSiXhMf377krwEYCkHO8YBAADg4je3MqHbXlOrmxbNVWUipmO9gzKTTqQySmeGlIjHVJmMy12aU1akk+khzSmL53QIxEiEYAAAAISib2BIcukbP+7Ulj0d6jySOueeuqqk1l5fr9VLa9U3MKSykjw0KsncPT+fPA3Nzc3e2tqa7zYAAACQdfh4WjsPdmvj9jalM0MT3p+Ix7ShpVErGmo0b3Y0wyHMbK+7N491jTfBAAAAmJbuE2l96qED2tXeM+ln0pkh3f3wU9rR3q1Na5pUw8Q4AAAAXCgOH09r/dZgAXikXe09Wr/1gLpPpEPu7PwIwQAAAJiSo7392nmwe8oB+Ixd7T3a0datY739IXU2MUIwAAAApqS3b1Abt7eFUmvj9jad7hsMpdZkEIIBAAAQWKovo0f2dU1qEtxkpDND2ra/S6m+TCj1JkIIBgAAQGAv9Wa0ZU9HqDU37+7QS72EYAAAAMxQ7hpzHeDp6DySUq5W7yUEAwAAILBT6YFo6vZFU3c0QjAAAAACS2WimcSWjqjuaIRgAAAABJaMF0VSN1EcTd3RCMEAAAAIrCIRzcbDUdUdjRAMAACAKamrSs7oeudDCAYAAEBgVWVFWnt9fag11y2r12Xl8VBrjocQDAAAgMC6jvdr9dJaJeLhxMlEPKZV19aq81g6lHoTIQQDAAAgsFmJYpUWmza0NIZSb0NLo0qLTbMYEwwAAICZqjhmuv3v/kMrGuZq+eLqadVavrhaKxpqdPvf/YeKYxZSh+dHCAYAAEBgVWUlet/rFmrTo23atKZpykF4+eJqbVrTpE2PPq33vW6hqspLQ+50bLl53wwAAICLSlFRTLc0zddfPv6MJOkzt79aOw++qI3b25TODE34fCIe04aWRq1oqNFntj+t77S9qPXveJWKcvQmmBAMAACAKakqL9HG1Uv0iQcP6OH9h9V69wrdvGiutu3v0ubdHeo8kjrnmbqqpNYtq9eqa2tVWmxqvnenJOlzdzSpqrwkZ70TggEAADAlJcUxrWio0ZsbavTdg91qvnenaiuT+vZH36BbmuZLkk71DSidGVQiXqSK0uHoWZko1jv+77+p68RwSH5zQ41WNtSopDh3I3UJwQAAAJiyqvISbXrnq6V/kb57sFtdJ1J6zT07zl5fWJXUq+bP0tPPn9Svxngz/OaGGm1656t1SQ7fAkuEYAAAAEzTpRWl+uwdTXrLwW5teOSpl40J/tWR1JjhNxGPaePqJVrZUJPzACwRggEAABCCqvISrV5aqzddU61vH3heX/vxr8YdE/z+1y9Uy6vnq6q8JKdDIEYiBAMAACAUJcUxzZud0J2vX6jVS+drYMh1Kj2gvoEhlRbHVJEoVnHMVFVemrNVIMZDCAYAAECoiopiqp6VGD6Ynd9exsNmGQAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAgkMIBgAAQMEhBAMAAKDgFOe7AQAAAFxc+voH1HO6X5J0MjWgVGZQyXiRZiWHo2d1eYlKS/IbQwnBAAAACMXJVEYn0gN6ZF+XtuzpUOeR1Dn31FUltfb6eq1eWqvKRLFmJeN56FQyd8/LB09Hc3Ozt7a25rsNAAAAZHUfT2vHwW5t3N6mdGZowvsT8Zg2tDRqZUONamYnIunJzPa6e/NY13gTDAAAgGnpPpHW+ocOaFd7z6SfSWeGdPfDT2lHe7c2rWlSTWU0QXg8TIwDAADAlHUfT2v91mABeKRd7T1av/WAuk+kQ+7s/AjBAAAAmJKTqYx2HOyecgA+Y1d7j3a0detUOhNSZxMjBAMAAGBKTqQHtHF7Wyi1Nm5v0/HUQCi1JoMQDAAAgMD6+odXgZjMJLjJSGeGtG1/l/r6cxOECcEAAAAIrOd0v7bs6Qi15ubdHWfXF44aIRgAAACBuWvMdYCno/NISrlavXfSS6SZWbWkBZIGJT3n7qci6woAAAAz2ql0NMMWTvXlZjjEhCHYzBolfV7SQkn1kn4qaa6Z/UDSR9z9eKQdAgAAYMZJZQYjqZuOqO5okxkO8RVJH3b3qyW9UVK7u18p6d8l3R9lcwAAAJiZkvGiSOomiqOpO9pkQnDS3Z+RJHffLenV2d+/JOlVEfYGAACAGaoiEc3Gw1HVHW0yIfg/zWyDmb3BzP5K0j5JMrP4JJ8HAADARcZMqqtKhlqzriops1BLjmsyIfYDkmZJ+pSktKSPZM+XSXpfRH0BAABgBqsuL9Ha6+tDrbluWb3mzioNteZ4JgzB7n7M3f+Pu9/i7ne7+8ns+ePu/sSZ+8zsC1E2CgAAgJmjtKRYq5fWKhEPZ2BAIh7TqmtrVTKDxgRP1htCrAUAAIAZrjJRrA0tjaHU2tDSqNnJ3IwHlhjTCwAAgCmalYxrZUONli+unlad5YurtbKxRhWJeEidTYwQDAAAgCmrmZ3QpjVNUw7CyxdXa9OaJtVUJkLu7PzCDME5mssHAACAmaSmMqFNtzfp3tuWTHqMcCIe0723LclLAJaCbZv8anf/2Xlu+dtxnntb9lqRpC+7+6Yx7vlvkv5Ukkva7+7rJtsXAAAA8q9mdkKrl87XzYvmatv+Lm3e3aHOI6lz7qurSmrdsnqtWlqr2YninA6BGMncfXI3mv1IUqmkf5D0j5PZLtnMiiT9XNKbJR2StEfSWndvG3HPNZK+Kem33f2omc119xfPV7e5udlbW1sn1TcAAAByq69/QD2n++UuneobUDozqES8SBWlxTKT5s4qzckqEGa2192bx7o26TfB7v6mbGD9gKS9ZrZb0lfd/bvneWyZpGfd/blsIw9IWi2pbcQ9H5L0RXc/mv2c8wZgAAAAzGylJcVaUJK7lR6mItCYYHf/haQ/kfRJSTdJ+ryZtZvZmnEeqZXUOeL4UPbcSK+U9Eoz+3czeyI7fOIcZnaXmbWaWWtPT0+QtgEAAICXmXQINrMmM/sbSQcl/bakW929Ifv730yjh2JJ10i6WdJaSV8yszmjb3L3+9y92d2bq6untwwHAAAACluQN8FfkPSkpGvd/cPu/qQkufvzGn47PJYuSXUjjhdkz410SNI2d8+4+y81PIb4mgB9AQAAAIEECcEtkja7e0qSzCxmZmWS5O7fGOeZPZKuMbMrzaxE0nskbRt1z8MafgssM7tMw8MjngvQFwAAABBIkBC8Q1JyxHFZ9ty43H1A0h9KekzDwyi+6e5Pm9k9ZrYqe9tjkl4yszZJuyR9wt1fCtAXAAAAEEiQaXsJdz915sDdT515E3w+7v6opEdHnfv0iN9d0sezfwAAAIDIBXkTfNrMrjtzYGavlXTuCsgAAADADBfkTfBHJf2zmT2v4S2S50l6dyRdAQAAABEKslnGHjNbLGlR9tQz7p6Jpi0AAAAgOkG38rhe0sLsc9eZmdz966F3BQAAAERo0iHYzL4h6RWS9kkazJ52SYRgAAAAXFCCvAlultSYXc0BAAAAuGAFWR3iKQ1PhgMAAAAuaEHeBF8mqc3MdkvqO3PS3VeN/wgAAAAw8wQJwX8aVRMAAABALgVZIu0HZnaFpGvcfUd2t7ii6FoDAAAAojHpMcFm9iFJD0r6++ypWkkPR9EUAAAAEKUgE+M+LOkNkk5Ikrv/QtLcKJoCAAAAohQkBPe5e/+ZAzMr1vA6wQAAAMAFJUgI/oGZ/bGkpJm9WdI/S/pWNG0BAAAA0QkSgtdL6pH0M0l/IOlRd787kq4AAACACAVZIu2P3P1vJX3pzAkz+0j2HAAAAHDBCPIm+H1jnHt/SH0AAAAAOTPhm2AzWytpnaQrzWzbiEuzJB2JqjEAAAAgKpMZDvEfkl7Q8LbJfzXi/ElJB6JoCgAAAIjShCHY3X8t6deSXhd9OwAAAED0guwYt8bMfmFmx83shJmdNLMTUTYHAAAARCHI6hB/IelWdz8YVTMAAABALgRZHaKbAAwAAICLQZA3wa1m9k+SHpbUd+aku28NvSsAAAAgQkFCcKWkXklvGXHOJRGCAQAAcEGZdAh29zujbAQAAADIlSCrQ7zSzHaa2VPZ4yYz+5PoWgMAAACiEWRi3JckfUpSRpLc/YCk90TRFAAAABClICG4zN13jzo3EGYzAAAAQC4ECcG/MbNXaHgynMzsDg1vpwwAAABcUIKsDvFhSfdJWmxmXZJ+Kel3I+kKAAAAiFCQ1SGek7TSzMolxdz9ZHRtAQAAANEJsjrER8zszFrBf2NmT5rZWyZ6DgAAAJhpgowJ/oC7n9DwZhmXSnqvpE2RdAUAAABEKEgItuzPd0j6urs/PeIcAAAAcMEIMjFur5k9LulKSZ8ys1mShqJpCwAAABeqvv4B9ZzulySdTA0olRlUMl6kWcnh6FldXqLSkiAxNHxBPv2DkpZKes7de83sUklspQwAAABJ0slURifSA3pkX5e27OlQ55HUOffUVSW19vp6rV5aq8pEsWYl43noVDJ3P/8NZovdvd3Mrhvrurs/GUln59Hc3Oytra25/lgAAACMo/t4WjsOdmvj9jalMxMPFkjEY9rQ0qiVDTWqmZ2IpCcz2+vuzWNdm8yb4I9LukvSX41xzSX99jR6AwAAwAWu+0Ra6x86oF3tPZN+Jp0Z0krfLNUAABueSURBVN0PP6Ud7d3atKZJNZXRBOHxTBiC3f2u7M/l0bcDAACAC0n38eABeKRd7T1av/VAzoNwkHWC35WdDCcz+xMz22pmr4muNQAAAMxkJ1MZ7TjYPeUAfMau9h7taOvWqXQmpM4mFmSJtA3uftLM3ihppaT7Jf1/0bQFAACAme5EekAbt7eFUmvj9jYdTw2EUmsygoTgwezPFkn3uft2SSXhtwQAAICZrq9/eBWIyUyCm4x0Zkjb9neprz83QThICO4ys7+X9G5Jj5pZacDnAQAAcJHoOd2vLXs6Qq25eXfH2fWFoxYkxP43SY9Jequ7H5NUJekTkXQFAACAGc1dY64DPB2dR1KaYPXe0Ew6BLt7r6RHJJ02s3pJcUntUTUGAACAmetUOpphC6f6cjMcYtI7xpnZH0n6fyR167+2S3ZJTRH0BQAAgBkslRmc+KYpSEdUd7Qg2yZ/RNIid38pqmYAAABwYUjGiyKpmyiOpu5oQcYEd0o6HlUjAAAAuHBUJIK8S81/3dGCfMpzkr5vZtsl9Z056e5/HXpXAAAAmNHMpLqqZKiT4+qqkjILrdx5BXkT3CHpuxpeG3jWiD8AAAAoMNXlJVp7fX2oNdctq9fcWaWh1hzPpN8Eu/ufSZKZVWSPT0XVFAAAAGa20pJirV5aq89/7xehbJiRiMe06tpalcy0McFmtsTMfirpaUlPm9leM3tVdK0BAABgJqtMFGtDS2MotTa0NGp2MjfjgaVgwyHuk/Rxd7/C3a+Q9L8kfSmatgAAADDTzUrGtbKhRssXV0+rzvLF1VrZWKOKRDykziYWJASXu/uuMwfu/n1J5aF3BAAAgAtGzeyENq1pmnIQXr64WpvWNKmmMhFyZ+cXaHUIM9sg6RvZ49/V8IoRAAAAKGA1lQltur1JOw52a+P2tkmNEU7EY9rQ0qiVjTU5D8BSsBD8AUl/JmmrhneK+1H2HAAAAApczeyEVi+dr5sXzdW2/V3avLtjzOXT6qqSWresXquW1mp2ojinQyBGMnfPywdPR3Nzs7e2tua7DQAAAIyhr39APaf75S6d6htQOjOoRLxIFaXFMpPmzirNySoQZrbX3ZvHujbpN8Fm9l1J73L3Y9njSyQ94O5vDadNAAAAXAxKS4q1oCR3Kz1MRZCJcZedCcCS5O5HJc0NvyUAAAAgWkFC8JCZnd0WxMyu0PDYYAAAAOCCEuQ99d2S/s3MfiDJJL1J0l2RdAUAAABEKMi2yd8xs+sk3ZA99VF3/82Z62b2Knd/OuwGAQAAgLAFGrGcDb3fHufyNyRdN+2OAAAAgIgFGRM8EQuxFgAAABCZMEMwk+QAAABwQQgzBAMAAAAXhDBDcH+ItQAAAIDIBJoYZ2ZNkhaOfM7dt2Z/3jDOYwAAAMCMEmTb5K9IapL0tKSh7GmXtDWCvgAAAIDIBHkTfIO7N0bWCQAAAJAjQcYE/9jMCMEAAAC44AV5E/x1DQfhw5L6NLwusLt7UySdAQAAABEJ8ib4fknvlfQ2SbdKuiX787zM7G1m9oyZPWtm689z3zvNzM2sOUBPAAAAQGBB3gT3uPu2IMXNrEjSFyW9WdIhSXvMbJu7t426b5akj0j6SZD6AAAAwFQECcE/NbPNkr6l4eEQkv5ribRxLJP0rLs/J0lm9oCk1ZLaRt23UdJnJX0iQD8AAADAlAQZDpHUcPh9i4aHQZwZEnE+tZI6Rxwfyp47y8yuk1Tn7tvPV8jM7jKzVjNr7enpCdA2AAAA8HKTfhPs7neG/eFmFpP015LeP4nPv0/SfZLU3NzsYfcCAACAwhFks4yEpA9KepWkxJnz7v6B8zzWJaluxPGC7LkzZklaIun7ZiZJ8yRtM7NV7t462d4AAACAIIIMh/iGhkPqWyX9QMOB9uQEz+yRdI2ZXWlmJZLeI+ns5Dp3P+7ul7n7QndfKOkJSQRgAAAARCpICL7a3TdIOu3uX5PUIum3zveAuw9I+kNJj0k6KOmb7v60md1jZqum2jQAAAAwHUFWh8hkfx4zsyWSDkuaO9FD7v6opEdHnfv0OPfeHKAfAAAAYEqChOD7zOwSSRs0PKShQtKYYRYAAACYyYKsDvHl7K8/kHRVNO0AAAAA0Zv0mGAzqzGz+83sX7PHjWb2wehaAwAAAKIRZGLcP2h4gtv87PHPJX007IYAAACAqAUJwZe5+zclDUlnV34YjKQrAAAAIEJBQvBpM7tUkkuSmd0g6XgkXQEAAAARCrI6xMc1vCrEVWb275KqJd0RSVcAAABAhIKE4DZJD0nq1fBOcQ9reFwwAAAAcEEJMhzi65IWS/pzSV+Q9EoNb6UMAAAAXFCCvAle4u6NI453mVlb2A0BAAAAUQvyJvjJ7GQ4SZKZ/Zak1vBbAgAAAKI14ZtgM/uZhleEiEv6DzPryB5fIak92vYAAACA8E1mOMQtkXcBAAAA5NCEIdjdf52LRgAAAIBcCTImGAAAALgoEIIBAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHAIwQAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFhxAMAACAgkMIBgAAQMEhBAMAAKDgEIIBAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHAIwQAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOIRgAAAAFBxCMAAAAAoOIRgAAAAFpzjfDQAAAODikurL6KXejCTpZGpAqcygkvEizUoOR89Ly+JKlsbz2SIhGAAAAOE42tuv3r5BPbKvS1v2dKjzSOqce+qqklp7fb1WL61VWWmRLikryUOnkrl7Xj54Opqbm721tTXfbQAAACDr8PG0dh7s1sbtbUpnhia8PxGPaUNLo1Y01Gje7EQkPZnZXndvHusab4IBAAAwLd0n0vrUQwe0q71n0s+kM0O6++GntKO9W5vWNKmmMpogPB4mxgEAAGDKDh9Pa/3WYAF4pF3tPVq/9YC6T6RD7uz8CMEAAACYkqO9/dp5sHvKAfiMXe092tHWrWO9/SF1NjFCMAAAAKakt29QG7e3hVJr4/Y2ne4bDKXWZBCCAQAAEFiqL6NH9nVNahLcZKQzQ9q2v0upvkwo9SZCCAYAAEBgL/VmtGVPR6g1N+/uOLu+cNQIwQAAAAjMXWOuAzwdnUdSytXqvYRgAAAABHYqPRBN3b5o6o5GCAYAAEBgqUw0k9jSEdUdjRAMAACAwJLxokjqJoqjqTta5CHYzN5mZs+Y2bNmtn6M6x83szYzO2BmO83siqh7AgAAwPRUJKLZeDiquqNFGoLNrEjSFyW9XVKjpLVm1jjqtp9Kanb3JkkPSvqLKHsCAADA9JlJdVXJUGvWVSVlFmrJcUX9JniZpGfd/Tl375f0gKTVI29w913u3ps9fELSgoh7AgAAwDRdWhbX2uvrQ625blm9qitKQ605nqhDcK2kzhHHh7LnxvNBSf861gUzu8vMWs2stadnelvzAQAAYHqSpXGtXlqrRDycOJmIx7Tq2lqVRjTWeLQZMzHOzH5XUrOkz4113d3vc/dmd2+urq7ObXMAAAA4R1lpkTa0jB7pOjUbWhpVXpqbACxFH4K7JNWNOF6QPfcyZrZS0t2SVrl7X8Q9AQAAIASXlJVoRUONli+e3gvK5YurtbKxRnPKSkLqbGJRh+A9kq4xsyvNrETSeyRtG3mDmb1G0t9rOAC/GHE/AAAACNG82QltWtM05SC8fHG1Nq1pUk1lIuTOzi/SEOzuA5L+UNJjkg5K+qa7P21m95jZquxtn5NUIemfzWyfmW0bpxwAAABmoJrKhD5ze5PuvW3JpMcIJ+Ix3XvbkrwEYEkyz9UGzSFqbm721tbWfLcBAACAEY719ut036C27e/S5t0d6jySUkVJkS4pL9HR0/061T+ouqqk1i2r16qltSovKYp0CISZ7XX35rGu5WY1YgAAAFz05pSVaE6Z9P7XXaFbr50vSTqZGlAqM6hkvEizksPR89KyuJKl8Xy2SggGAABAOI729qu3b1CP7OvSlj3Db4JHq6tKau319Vq9tFZlpUW6JIeT4UZiOAQAAACm7fDxtHYe7NbG7W1KZ4YmvD8Rj2lDS6NWNNRo3uxoxgQzHAIAAACR6T6R1qceOqBd7ZPf0CydGdLdDz+lHe3dF9/qEAAAALi4HT6e1vqtwQLwSLvae7R+6wF1n0iH3Nn5EYIBAAAwJUd7+7XzYPeUA/AZu9p7tKOtW8d6+0PqbGKEYAAAAExJb9+gNm5vC6XWxu1tOt03GEqtySAEAwAAILBUX0aP7Oua1CS4yUhnhrRtf5dSfZlQ6k2EEAwAAIDAXurNaMuejlBrbt7doZd6CcEAAACYodw15jrA09F5JKVcrd5LCAYAAEBgp9ID0dTti6buaIRgAAAABJbKRDOJLR1R3dEIwQAAAAgsGS+KpG6iOJq6oxGCAQAAEFhFIpqNh6OqOxohGAAAAIGZSXVVyVBr1lUlZRZqyXERggEAABDYpWVxrb2+PtSa65bVq7qiNNSa4yEEAwAAILBkaVyrl9YqEQ8nTibiMa26tlalEY01Ho0QDAAAgCkpKy3ShpbGUGptaGlUeWluArBECAYAAMAUXVJWohUNNVq+uHpadZYvrtbKxhrNKSsJqbOJEYIBAAAwZfNmJ7RpTdOUg/DyxdXatKZJNZWJkDs7P0IwAAAApqWmMqHP3N6ke29bMukxwol4TPfetiQvAViScrMQGwAAAC5q82Yn1NJ0uW5eNFfb9ndp8+4OdR5JnXNfXVVS65bVa9XSWpWXFOV0CMRIhGAAAACEwrM/f+e36nRL03xJ0qm+AaUzg0rEi1RROhw95yTjOpEeOHt/PhCCAQAAMG2Hj6e182C3Nm5vUzozdPZ83ZyEFs2r0DOHT6nzWPrs+UQ8pg0tjVrRUKN5sxkOAQAAgAtM94m0PvXQAe1q7znnWuex9MvC7xnpzJDufvgp7WjvZmIcAAAALiyHj6e1fuvYAXgydrX3aP3WA+o+cW5QjhIhGAAAAFNytLdfOw92TzkAn7GrvUc72rp1rLc/pM4mRggGAADAlPT2DWrj9rZQam3c3qbTfYOh1JoMQjAAAAACS/Vl9Mi+rpdNgpuOdGZI2/Z3KdWXCaXeRAjBAAAACOyl3oy27OkItebm3R16qZcQDAAAgBnKXWNuhjEdnUdS8hwtHkwIBgAAQGCn0gPR1O2Lpu5ohGAAAAAElspEM4ktHVHd0QjBAAAACCwZL4qkbqI4mrqjEYIBAAAQWEUimo2Ho6o7GiEYAAAAgZlJdVXJUGvWVSVlFmrJcRGCAQAAENilZXGtvb4+1JrrltWruqI01JrjIQQDAAAgsGRpXKuX1ioRDydOJuIxrbq2VqURjTUejRAMAACAKSkrLdKGlsZQam1oaVR5aW4CsEQIBgAAwBRdUlaiFQ01Wr64elp1li+u1srGGs0pKwmps4kRggEAADBl82YntGlN05SD8PLF1dq0pkk1lYmQOzs/QjAAAACmpaYyoc/c3qR7b1sy6THCiXhM9962JC8BWJJysxAbAAAALmrzZifU0nS5bl40V9v2d2nz7g51Hkmdc19dVVLrltVr1dJalZcU5XQIxEiEYAAAAIRiTlmJ5pRJ73/dFbr12vlyl071DSidGVQiXqSK0mKZSdUVpTlbBWI8hGAAAACEKlka14LSeL7bOC/GBAMAAKDgEIIBAABQcAjBAAAAKDiEYAAAABQcQjAAAAAKDiEYAAAABYcQDAAAgIJDCAYAAEDBIQQDAACg4BCCAQAAUHAIwQAAACg4hGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOMX5bmAmS/Vl9FJvRpJ0MjWgVGZQyXiRZiWH/7FdWhZXsjSezxYBAAAwBYTgMRzt7Vdv36Ae2delLXs61Hkkdc49dVVJrb2+XquX1qqstEiXlJXkoVMAAABMhbl7vnsIrLm52VtbWyOpffh4WjsPdmvj9jalM0MT3p+Ix7ShpVErGmo0b3Yikp4AAAAQnJntdffmsa7xJniE7hNpfeqhA9rV3jPpZ9KZId398FPa0d6tTWuaVFNJEAYAAJjpmBiXdfh4Wuu3BgvAI+1q79H6rQfUfSIdcmcAAAAIGyFYw2OAdx7snnIAPmNXe492tHXrWG9/SJ0BAAAgCoRgSb19g9q4vS2UWhu3t+l032AotQAAABCNgg/Bqb6MHtnXNalJcJORzgxp2/4upfoyodQDAABA+CIPwWb2NjN7xsyeNbP1Y1wvNbN/yl7/iZktjLqnkV7qzWjLno5Qa27e3XF2fWEAAADMPJGGYDMrkvRFSW+X1ChprZk1jrrtg5KOuvvVkv5G0mej7Gk0d425DvB0dB5J6QJceQ4AAKBgRP0meJmkZ939OXfvl/SApNWj7lkt6WvZ3x+UtMLMLOK+zjqVHoimbl80dQEAADB9UYfgWkmdI44PZc+NeY+7D0g6LunS0YXM7C4zazWz1p6e6a3iMFIqE80ktnREdQEAADB9F8zEOHe/z92b3b25uro6tLrJeFFotUZKFEdTFwAAANMXdQjuklQ34nhB9tyY95hZsaTZkl6KuK+zKhLRbJoXVV0AAABMX9QheI+ka8zsSjMrkfQeSdtG3bNN0vuyv98h6XvuuZtWZibVVSVDrVlXlVTuRjUDAAAgqEhDcHaM7x9KekzSQUnfdPenzeweM1uVve1+SZea2bOSPi7pnGXUonRpWVxrr68Ptea6ZfWqrigNtSYAAADCE/n/s3f3RyU9Ourcp0f8npb0rqj7GE+yNK7VS2v1+e/9IpQNMxLxmFZdW6vSiMYaAwAAYPoumIlxUSorLdKGltHLF0/NhpZGlZcSgAEAAGYyQrCkS8pKtKKhRssXT2/VieWLq7WysUZzykpC6gwAAABRIARnzZud0KY1TVMOwssXV2vTmibVVCZC7gwAAABhIwSPUFOZ0Gdub9K9ty1RIj65fzSJeEz33raEAAwAAHABYTHbUebNTqil6XLdvGiutu3v0ubdHeo8kjrnvrqqpNYtq9eqpbUqLyliCAQAAMAFhBA8hjllJZpTJr3/dVfo1mvny1061TegdGZQiXiRKkqLZSZVV5SyCgQAAMAFiBB8HsnSuBaUxvPdBgAAAELGmGAAAAAUHEIwAAAACg4hGAAAAAWHEAwAAICCQwgGAABAwSEEAwAAoOAQggEAAFBwCMEAAAAoOObu+e4hMDPrkfTrPHz0ZZJ+k4fPRbT4Xi9efLcXL77bixPf68UrX9/tFe5ePdaFCzIE54uZtbp7c777QLj4Xi9efLcXL77bixPf68VrJn63DIcAAABAwSEEAwAAoOAQgoO5L98NIBJ8rxcvvtuLF9/txYnv9eI1475bxgQDAACg4PAmGAAAAAWHEAwAAICCQwieBDP7lZn9zMz2mVlrvvtBeMxsjpk9aGbtZnbQzF6X754wfWa2KPv39cyfE2b20Xz3hekzs4+Z2dNm9pSZbTGzRL57QjjM7CPZ7/Vp/r5e2MzsK2b2opk9NeJclZl918x+kf15ST57lAjBQSx396UzbY07TNvfSvqOuy+WdK2kg3nuByFw92eyf1+XSnqtpF5JD+W5LUyTmdVK+p+Smt19iaQiSe/Jb1cIg5ktkfQhScs0/O/iW8zs6vx2hWn4B0lvG3VuvaSd7n6NpJ3Z47wiBKNgmdlsSTdKul+S3L3f3Y/ltytEYIWk/3T3fOwyifAVS0qaWbGkMknP57kfhKNB0k/cvdfdByT9QNKaPPeEKXL3H0o6Mur0aklfy/7+NUm35bSpMRCCJ8clPW5me83srnw3g9BcKalH0lfN7Kdm9mUzK893UwjdeyRtyXcTmD5375L0l5I6JL0g6bi7P57frhCSpyS9ycwuNbMySe+QVJfnnhCuGnd/Ifv7YUk1+WxGIgRP1hvd/TpJb5f0YTO7Md8NIRTFkq6T9Hfu/hpJpzUD/vcMwmNmJZJWSfrnfPeC6cuOIVyt4f+AnS+p3Mx+N79dIQzuflDSZyU9Luk7kvZJGsxrU4iMD6/Pm/c1egnBk5B9+yB3f1HD4wqX5bcjhOSQpEPu/pPs8YMaDsW4eLxd0pPu3p3vRhCKlZJ+6e497p6RtFXS6/PcE0Li7ve7+2vd/UZJRyX9PN89IVTdZna5JGV/vpjnfgjBEzGzcjObdeZ3SW/R8P+2wQXO3Q9L6jSzRdlTKyS15bElhG+tGApxMemQdIOZlZmZafjvLJNZLxJmNjf7s17D44E357cjhGybpPdlf3+fpEfy2IskdoybkJldpf+aVV4sabO735vHlhAiM1sq6cuSSiQ9J+lOdz+a364Qhux/tHZIusrdj+e7H4TDzP5M0rslDUj6qaTfd/e+/HaFMJjZjyRdKikj6ePuvjPPLWGKzP7/9u4QtKoojuP496eziKLCTMIYFhE3Jg7D2prVIAtaRBEEk1FRLHZFQdu2oAjiRBDDNBkERQwyp1gEMYxhEDRZ/Bt2HzyHZejmm/f7Kfe+ew7nnlMeP+479/1zBxgH+oFF4BLwALgLDAAfgYmqWv7y3JoyBEuSJKl13A4hSZKk1jEES5IkqXUMwZIkSWodQ7AkSZJaxxAsSZKk1jEES1KPSDKYxP8hl6Q1YAiWJElS6xiCJam39CW5neRdkntNdbTRJE+TvEoy21V69FSSl0leJ5lJsrm5Pp3kZpLnST4kGU8y2Yw53fTZ2PR7k2Quydl/uGZJWnOGYEnqLXuAG1W1F/gKnAGuA0eqahSYBDpVK+9X1cGqGmGpfPDJrnF2AGPAWZbKlV4B9gHDTaXE/cCuqhqqqmFgavWXJkm9o+9fT0CS9ItPVfWsOb8FnAeGgCdJADYCC037UJLLwHZgCzDbNc7Dqqokc8BiVc0BJJkHBoGnwO4k14FHwONVXZUk9RhDsCT1luW17L8B81U19pu+08Dhqnqd5Dgw3tX2vTn+6DrvfO6rqi9JRoBDwGlgAjjxx7OXpHXC7RCS1FsGknQC71HgObCzcy3JpiT7mvatwEKSTcCxldwkST+woapmgAvAgb8ye0laJ3wSLEm95T1wJskk8Jal/cCzwLUk21j63r4KzAMXgRfA5+a4dQX32QVMJek8DDn3d6YvSetDqpb/8iZJkiT939wOIUmSpNYxBEuSJKl1DMGSJElqHUOwJEmSWscQLEmSpNYxBEuSJKl1DMGSJElqnZ+bqJ+wt4TfjQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "for x_name in [\"temps\",\n", + " \"reps\",\n", + " \"lengths\",\n", + " \"min_lengths\",\n", + " \"beams\"]:\n", + " print('X_name------------------------------ {}'.format(x_name))\n", + " for i in range(max_beam):\n", + " fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + " fig.set_figheight(8.27)\n", + " fig.set_figwidth(11.7)\n", + " sns.scatterplot(y='beam_consisentency_{}'.format(i), x=x_name ,data=df[df.names == model_selected],s=500)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ reps\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3Tb1f3/8eeVbMt7xc5y9oCQPUwSKBRKgfKlzLLCpiWEthRKaUsphS+0/XXRSSktCbMQdtl82ZSwM5xF9h4eSWwn3kPWuL8/bAXH8Yz1kePo9TjHJ7H00fU7zjnSS1f3vq+x1iIiIiIiEk1cPV2AiIiIiEikKQSLiIiISNRRCBYRERGRqKMQLCIiIiJRRyFYRERERKJOTE8XcCiysrLssGHDeroMERERETmMLV26tNRam93afb0yBA8bNoy8vLyeLkNEREREDmPGmB1t3aflECIiIiISdRSCRURERCTqKASLiIiISNRRCBYRERGRqKMQLCIiIiJRRyFYRERERKKOQrCIiIiIRJ1e2SdYRESgtKoerz9IwFqCQXC7DAZIjneTnujp6fJERA5rCsEiIr2IzxegpKaBNUWVPLlwBysLyimr9e2/f0BaPNOGZHDNV4YxMD2BgekJPVitiMjhSyFYRKSX2FNZz4bdVfz4+ZWUVHlbvWZXRT2vr9rF66t2MbpvMvfOmky/1Hj6JGtmWESkOa0JFhHpBfZU1vPXdzdy1SOL2wzALW0qrubsf3zKKyuKKK6sd7hCEZHeRTPBIiKHud0Vdfz+zfW8vKKoy48NBC2/en0tARvkvMk5ZKfEO1ChiEjvo5lgEZHDWI3XxyebSw8pADf32zfWs6tCs8EiIiEKwSIih7HyWj//+8qabo9jLdz09HJ2VdSFoSoRkd5PIVhE5DBV1+DnhWX51DYEwjLe9r21bNxTFZaxRER6O4VgEZHD1L4aH08s3BnWMR/6eJs2yYmI4HAINsY8YowpNsasbuN+Y4z5uzFmszHmC2PMVCfrERHpTfzBYKc7QXTW8p3l+ALBsI4pItIbOT0T/BhwRjv3/w8wuulrDvAvh+sREek1isrDv3632uvHF7BhH1dEpLdxNARbaz8C9rVzybnA47bRQiDdGDPAyZpERHqLijpfxxcdAs0Ei4j0/JrgHCC/2fcFTbcdxBgzxxiTZ4zJKykpiUhxIiI9KS7G7ci4LpdxZFwRkd6kp0Nwp1lr51lrc621udnZ2T1djoiI4wZnJoR9TLfLEB/Ta576RUQc09PPhIXA4GbfD2q6TUQk6iXFxRDnDu/T9KjsZLQiWESk50Pwq8BVTV0iZgIV1tpdPVyTiMhhwRPj4vRx/cI65gXTBtE/xRPWMUVEeqMYJwc3xjwNnAxkGWMKgLuAWABr7QPAG8CZwGagFvi2k/WIiPQmfZI9fPekkbz+RXjmBjwxLr45cQAxDq01FhHpTRwNwdbaSzu43wI3OFmDiEhvlp3i4bzJA3l5RVG3x/rZGWNIiVMAFhGBnl8OISIi7eiXGs/PzhhDTnr3NskdOyyDMyf0JzUxLkyViYj0bgrBIiKHuQHpCTx13QwGpsUf0uOnDE7nvkun0j8t/N0mRER6K4VgEZFeYGifJF743vGcOb5/px/jMnD9V0fwryum0f8QA7SIyJHK0TXBIiISPgPSE7jrnHFce+II7vvvJj7cWIJtpd9ZaAPc904aSWZSHH2S1Q1CRKQlhWARkV6kX2o8/VLjueeCiTQEguyraWDdrkrqGgKkJsRyzIBUUuNjSIxzk5Gk8Csi0haF4DbUeH2U1/nx+gLs3FdLWa2P+BgXw7OTSPHE4Ilxk6VemyLSQ/qmNi5vGJSRyMRB6T1cjYjIgXZX1OEPWspqfOzYW0PAWrKTPeRkJBDjMvRL8fR4u0aF4BYq6xqoqPMzf+EOnlmST0Wd76Br3C7D18f05YavjaJ/WuOsjIiIiEi0211Rx/rdVfxzwRYWb9vX6jU56Qlc85VhfHPCAPomx/VYGDa2tQVlh7nc3Fybl5cX9nH3VNbz1urd/PaNdXj9wU495qyJA7j9zGMY2M32RSIiIiK9Va3XT3GVl1ueW8mynWWdekxmUhx/vmgSYwem0C/VmRxljFlqrc1t7T51h2iyp7KeO19ezV2vrul0AAZ4/YtdXPivz9heWuNgdSIiIiKHpxqvj/V7qvjm3z/udAAG2FfTwLcfW8ITC3dSXFnvYIWtUwgGdlfU85vX1/HO2j2H9Piiinoue3AhReV1Ya5MRKRzgsHOv3kXEQmnwvJ6Ln9wETUNgUN6/D/+u5mXVxRSVtMQ5sraF/Vrgusb/KzIL+PVL7p3JGlRRT3/7/W13HXOOK0RFhFHBYNBdld6qfb6WbGznJUF5dT7AqTGxzJtaAbjc9KIj3WrN7CIOG53RT03PLmMOt+hBeCQe97awElHZZORFLlTLaM+BO+r9XHbi6vCMtYbq3cz+8QRCsEi4pg9lfW8v24Pcz/ayo69tQfd/+hn2wGYOCiNm08dzficNPqm6DlJRMLP7w/w1ppdbCqu7v5YQcvPXljFPy+fGrF9VlG/HGLpjjLKaw/uAHGo7v9gc4+saxGRI5vXF2BLSTXffnQJt7+0utUA3NwXBRV857E8fvafL7RUS0QcUVzt5aGPt4VtvBX55VTV+8M2XkeiOgTvrqzjqcU7wzrmBxuKaQhobZ6IhI/XF2DjnirO/cenrN1V2aXHfrChhIvnfs7Ofe2HZhGRrqqs81NQFt432c/n5Udsj0NUh+BAAFYXVIR1zKCl1d7CIiKHak+Vl8seXES199BmSArK6rj6kcXs0adUIhJGy/PLHRlzd6U37OO2JrpDcDBI1SG+qLRncxjWxoiIQOMa4Fv/s7Lbz1XbSmuY99FWymoi8+IiIke+1YXhnUgE2FRcRTBCZ1hEdQgOOvQ7ru/mDkkRkZCtJdUs3Nr6qUtd9cin2xx54y8i0ScYDDqSdxr8QVzGhH3c1kR1CHa7nPklp8THOjKuiESXkqp6/rlgS9jGsxaeWZxPvU9BWES6x+VykZ4Q/ryT4olchor6FmnZKR5KqsL78eCwPklhHU9EolNDwPLp5tJW75s6JJ3Tx/Vn7IBUPDEuLGAMVNX7WV1YwWsri9hScvBJlm+s2sXlM4aQkxH1T/8i0k2TBmcA28M65jEDUojQRHB0h2C3C6YNzeCt1bvDNmZCrJu4mAj974nIEa2yznfQsq2Tjsrm+18bycbd1byyopC/vbeRet+XO6lTE2KYOjiDm089imRPDPe8vZ51u6r2379DXSJEJExG9g3/pN/UoRnEOvRJfUtRHYJdxnDB1EFhDcHnTh6ILxCZBd0icmQrbNZ6KD7Wxd3njMNtDNc9nkeKJ5ZTx/Zj1vTBDM5IxNK43GFLSTVfFFRw5yurSfbE8P/OG0/ejjL+8d/N0HRN89AsInIogsEgJVVeJg1KY2WYOm25DJx8VDZef2Seo6I6BPuDlrgYw6i+yWHp6BDjMlyUO5j42Kheai0iYRLaIZ0Q62buldN4dkk+20pr+NOFkzAGXlu5i/v+u5md+2qxtnGfw6jsZKYOTeefl0+lsKyOn7+4im9NHcRvz5/AL15eRYQ2XYtIFNixt5Y5Xx3BDU8tD8t4Z04YwPL8Mk49pn9YxutIVKc1tzGsKqjg1+eOJxwz79efNJIFG4o1yyIiYZGd4gHgjxdNZP6iHYzul8ytZxzNb95Yx3WPL+XVlUXs2Fu7P9gGgpYNe6p4enE+lz24iKcX53PfpVPYXVFHQVktN54yCoAYt5ZsiUj3GGMYnJnAsD5JnHpM326Pl5YQy61njGFTcTVxMZGJp1Edgr3+IMeNzGJXRR13njW2W2PNHJHJhdNySIxz64hSEQmLPslxnDNpILsr6jlrwgCq6v1c8+iSDo9MDlm2s4zLHlzE1CEZxLpdTBmcwYwRmY51xhGR6GGM4Zj+qWwuqeb7J49iSGbiIY8V4zL88cKJPJ+Xz4VTB5MQpxDsOLfLsLaogpHZyVhruf1/xhzSjPBJR2Xxo1OP4r/rizllTF98OjZZRMKgwR/kuhOHkxDnZuHWfTz8ybaujxEI8ouXV5OZFMeSbfv4+RljMCgEi0j3WWDeR1v58fMruXfWZEb3Te7yGAmxbv5+6RTeXbeHf3ywmT7JcSTGuMNfbCuiOgQbA/3T4rn9pVUs3VHOV0b14cnZMxiR1bndjolxbu4+Zxy3nHY0RRV1/PGtDTQELEf1TXG4chGJBtZa1u+uwhPj4qnFO7s11q9eX8tXj86mtiFA40uXiEj3eP0B1hRVsq20hhufXs7d54zjuhNHdPrTpunDM3ly9gxeXl7I83kFWNvYxtEfoaeoqA7BqfExJHtiyEiM44Jpg/jWvz7njpfX8IcLJvLU7Bl8fUxf0lo0gvbEuJg0KI3ff2sCL33/eFbuLOPc+z9ldWElt54xhufz8kmOj+r9hiISJjFuF6P7pfCr19d2e6xA0PK/r6wGowgsIuGxqllXiIKyOq58eBFBa/nPd4/jB6eM4qh+yQcF4n6pHs6dPJAnrp3OxbmDuO7xPN5Zu2f//Z9sLqWizheR+qM6rfmDlleWF/GT04/iqkcWk5EYx8/PHMPy/HLeXr2br4zuw6zpQ0hLiCVoLcaAP2DZsLuKN1ftYtnOcq48bhi7q7w8/Mk2/nLxJIq21OEPajmEiHRffKybV1fuorIuPCe8bdxTTVW9nxitCRaRbgoGLct2lh94m4WHP9nGvz/bzmlj+3HN8cMY2Td5/ztvYwzFVfUs31nOzc+sYG9Nw0Hjrt9VhU8t0pxX2xBg6tB07n1/M8Ozkrjr7HHc9eoaVhU2vrNZurOswzHeWbub35w3gfED0/jla2t57NvHUtugECwi3VfXEODZbi6DaOmZxfmMG5ga1jFFJBpZKutbn7H1By1vrt7Nm4dwDkNNgz9iJ8ZF9XIIgKF9kigsr+XOs8Zy3eN5+wNwZ5XX+vjB08sYnpXEuZMH8sGGYspqD35nIyLSVRYoqqhv95r+qfF8ZVQfvnZ0X2aOyCQjMbbd65fu2KdewSLSbS6Xi6S48G9g80RoUxxE+UywyxheW1nEb86fwM3Ptj4t3xnWwh0vr+Kxb0/nnws2c+b4AWGuVESiUUmVt9XbjxmQwhUzhnJ0/xR2VdSzqbgKry9IkieGa08YTmaSh4Vb9/Lkwh0HhejKej+Blmcxi4h0kbWWiYPSgfB+WnVUv2RcEZoKjuoQ7A8GGdonkReXFVBQ1r3evkELv3h5FfdcMAmX1tuJSBhUtfioMSMxlrvOHocx8Nin21meX97q41wGTjqqL7+/YCJriir423ubDjiGVCFYRMLh6P7h74Y1eXA6cTGRyVFRvRzCZQy5wzJ5Zkl+WMbL31fHul2V1HrDs4lFRKJbnPvLp+hJg9J49JpjeS4vnx8+s6LNAAyNb8o/2FDMVY8sZktJDfNnz2BAWvz++yO13k5Ejmz1vgBD+xz6IRmtOW1sP7wROnk3qkNwjDG8vWZ3WNfHzV+4I2LH/YnIkW1gRgIAE3LSuOOssVz77zw+27K3S2P8Z2kBd7y0mn9ePpW+KR5cprHrhIhIdxhjWJFfztXHDevw2qQ4NymemA77Bx87LIOtJTURe6ce1cshfMEgCzaUhHXMraU1xLoVgkWk+xLj3KQnxPKrc8cx5/Glh7xvYcOeKu58ZTV/vHAiv359HeoULCLh4IlxMzgzkXEDU1lTVLn/9sykOC6aNojjR/YhIS6Gam/jXoSU+BgMsG53Fc8tyWftri8fE+d28bMzxnDffzdx2jH9IlJ/VIdgl3Gxqbg67OOWVHkZ3U+nxolI98S6XPzpoknc/8FmSqpb3yTXWasLK1myo4zbvzmGBM0Ei0gYTB2SzvVPLOXvl07h248uIWAtt54xhlHZyTyXl8/3nlzWdErll9wuw6RBaXznhGH0TYnnV6+vZXNxNbeecTTPLy1gcEYiaUntd7kJl6gOwQ2BoCMbRIrKu7fJTkQEwBMLfZLjeG9dcVjGe2DBFhb89OROH2kqItKe7JR4an0B/vLuRubPno7F8K8FW7j71TVtPibQdMjGsp3lDOuTyK/PG0+9L8DOfbU8uySfl75/PDGuyHyiHtWf2zv1MqCjMkQkHLw++NeCLWEbzx+0vLKiiFiFYBEJk6uOG0a9L0jQwux/L+HtNZ0/IGP73lquemQxxVVequv9DMlMJDMp7qDOOE6J6hAc6zY48VowMC0h/IOKSNTxBS3/XR+eWeCQF5cVUloTmRcYETmy1TT4uWz6YO46eyzfeWwJpdVd37dgLfzipdVkp8Qz98qpFO6rpa7FEgqnRPVyCAuMzE4O+7rgQZkKwSLSfdX1fvxhXrK1rbQ6Yo3oReTIlpUUS2l1A798bQ1ltQe+uT66XwonjM5iQk7a/haN1V4/a4oqWbajjI83lx6wJPVXr6/htR+cwLCsJBJjIzNHG9UhuE9SHF8b0zesIXhwZgKxEVrLIiJHtoKy2rCPGbSNvT1FRLrLF4DF28tYtvPLvuUnH53NdSeOYE9lPe+u3cPba3bvP5AsNT6GcTlpHDeiDz88dTTvrt3DQx9voyEQpN4X5O7X1vD7b03E48BxzK2J6hCcEBfD5TOGMO+jrWEbc/YJI+ifGhe28UQkevkCzuwwsGqRJiJhUOvz89DH2wBI8cRw9znjaAgEufHp5RhgxohMLp8xhIHpCbiMobzWx9pdFbz+RRF/f38TF04bxJPXzeDuV9ewpqiSTzfvpareR056fPs/OEyiOgQDeGJcXDA1hxeWFXZ7rAFp8Zw+rh9Ba1ADIhHprswkZ95Qq5e5iIRDjTfAlpJqMhJjmXtlLv9asIXiqnruOnssGYlxfLixhP+uL2bnvlqCFjIT4xifk8qcr44gJz2RZ5bs5Kanl/O3SyZz7/ub+GzLXl7/YhcD0uLJSPI4Xn9Uh+C91V7+8NZafvqNsXy8qZTiqu714bx31hReWlrIJdMH0yfZ+f88ETmy9Xdgk21qfAwx6g4hImGwqrCCWLfh/sun8ud3NnDC6CzGDkjl92+ub3WpaUmVlw17qnhhWSGpCTFce8IIzpucw50vr+bX541nX00Dy3aWUecbSkYE6o/q6QCXMVx93AhcJsj8a2eQmnDo7wl+e/54ctLjGZKV6EjvYRGJPm4DA9PC+7HgtKGZxLoVgkWke4LBIKsKKrjha6N4e/VuvnvSSHaV13Ptv/M6tdeqss7PX9/dyJ/e2cDvL5jIvz7cwi/PHceW4mqCNjI5KqpDcJLHTVZKHNVei9cf4JGrj2VU3+SujRHn5k8XTSQnPYHiKi/ThqbjidCuRhE5smWneLj6K8PCOub1J42gb6o62IhIdxk8sS6mDsnghNFZPL14J08t3tnlUdYUVfLd+Uu56ZTRfLq5lPOn5ESsg01Up7W4GDfWGhr8Qa58ZDE/eX4ld589jpu+Por0xPaP7ItxGc6c0J/5s2fwzpo9XP3oEgrL6vAFLIlxUb3KRETCJC7GzdkTB3brU6rmjuqXzNDMxLCMJSJy/Ig+bCmpZkV+Be+s3XPI4xRXefn5i6s4dmgmZ04YiI3QTLCJ1A8Kp9zcXJuXl9ftcWob/OyuqOf3b67f/5/nMnD2pIFcnDuY0movS3eUsW5XJVX1fmLdLkb1TWZCThpThqTz3/XFPLFwB+VNvfEyk+J4ds5MMhJjyUqJzM5GETlyVdQ2kLejjLLaBn7y/BfdGsvtMjw1ewap8bEMSI8nPVFdbESke7aX1rCnqp7LHlwUlqWgN319FFMHZzA+J42slPDsrTLGLLXW5rZ2X1RPWdbW+6ltCBzw7iVoYcm2fYzqm8zJR/dlSGYipx7TD4vFYPDEuEj2xLClpJrPt+zdH4AB9tU08Obq3cw6dnBP/HNE5AhT7w/y69fXcu0JI7hs+pBD+qgx5H/PGsurK4soq2ngN+ePD2OVIhKNrLXUNvh59NPtYdsL9cgn2zl9Tn+MicwEbVSH4ADw7JL8/d/Hug03njKaKUPSeeST7fz13Y209f86um8yVx8/jO+ePJI7XlrN7sp6AJ5atJPzp+REoHoROdI1+INs31vL3a+t4a8XTyLR4+bhT7bRlQ/wPDEu7jp7LHsqvTy5aCfpibHUNQTJSHKubhE58hljiHG7eK8byyBaqvb6WVlQTt+UfmEbsz1RvSa4wR/k082lQOMGlPnXzqCwvI4rH17MBxuK2wzAAJuKq7nj5dXc+94m/nHZFE4YlQXA7sp6ncYkImFRWt3YtjEQtNz87AqS4mJ49JpjGdanc+t6pw7J4MnZM8jbUca9728CoLzWhy/ozCEcIhI9rLXs2FsT9qPdP91cSqT610T1TLAxsG1vDZlJcTxwxTT+95XVrCmq7NIYqworuObRJTxwxTQAPtlcyo59tYzul+JEySISRUqa9S4PWpj70RZ+960JPHzNsRSW1fHCsgJW5pezY18t1jZu2B3dL5kpgzO4KHcQaQmxvLqyiJeXH3gYkD/Q+/aCiMjhZ2V+RdjHXFVYQb0/Mm/UozoE+wIWa+EPF0zgd2+s63IADqn2+vne/KX8+zvTWb+78oAXLhGRQ9W8S9DI7CT+eOEkHv10Gz96diUD0+I5bVx/fnDKKAZnJGIBa2FLSTUrC8q55tElVHv9zD5hOI99ezo3PbN8/x4GRWAR6S5r7f6loOFUWtVApM7zieoQ7DJw/pQcthTXkLejrFtjVXn9/PaNdfzynPFaDiEiYTGg6cS4EVmNAfimZ5ZTUFYHQFFFPf/+bHuHY8z9aCtLd5Qx78pcrns8j8p6H/HqZS4i3eRyuXCina/LNK43joSofiaMdbu48rih/O39jWEZL29HGf5gkKP7aymEiHRfWkIs8bEu7rlwIj989ssA3FV5O8r467sbuefCiQzNTOzSxjoRkbYc7cDSz0EZidgIfV4V3SHYBct3lFHvC9/akyc+30FGBwdtiIh0httl+P23JvLkop3k7zu0ABzy+da97Nhbyy2nH0WcO6qf+kUkTKYNzQj7mJMGp9EnKTJ9zKP6mdAftPzfql1hHTNvRxnacyIi4WCwjOqbzEstNrYdqj+/s4GpQzJwR2rrtYgc0fqlxpPsCe/K2vMm5xAfG5nVulEdggMW1u46tM1w7dHGOBEJBws89PHWsI3n9Qd5e81uAloPISJhkJYQw0W5g8I2Xv/UeIZlRa6JeVSHYH/AhnUpRMiW4uqwjyki0Sdo4c3Vu8M65n+WFuDTx1UiEgZJnlhmnzCc1ITwzNz+8txxZIfpuOTOiOoQ7NTLgGZZRCQcarx+vGHul7lxTzUR60QvIke87GQPf7pwUrfH+ca4fkwdkk5sBPcsRHUIjnVoYVzfCL6LEZEjV2F59zbDtSYQtDREqBG9iBz54mLdTB2awe1njjnkMXKHZvCrc8eTnRIfxso6FtUh2GUMgzISwj7u8AiuZxGRI5dTyxbCfMqpiES5jIRYzpk4kH9ePpXU+K4tjbh8xhD+cdlUEmPdDlXXtqgOwemJsRw/sk/Yx0yIi/x/pIgceZxqt+jUp2AiEn0CgSC7KuuoqPezvbSa1288gcumDyahg1B73Ig+vPC94zljfH8+2rCHXRV1VNb5IlR1o6g+Mc7nD3LlzKE8l1cQtjGvOm4Y8TEKwSLSff1Tw//RYFKcW32CRSQsQgG4xhtk1rzPKav18e/Pd3D7mcfw3ZNHsWNvDYu37WNrSQ0Ba8lK8jB9RAYTc9Ipqa7nb+9t5ONNpQD89rzx5A5rHDc1ITLnLUR1CA5YyEyOY8bwDBZt696xyQCJcW4uzh1EMKj1diLSffGxbrKTPZRUh6/t4uQh6SSFua+niESnkur6AwIwwJ5KLz98ZgUAYwekcMb4/nxjXD9cLkNZTQOvrijilmdX0HJrwu0vr+a3543n2OEGYyAl3vkgHNXTAf5AkCcX7uDOs8YRH9v9X8UvzxnHgx9txYGuayIShTKT4rjq+KFhHfO7J42M2CyLiBzZahsODMAtrd1VxV/e3cTv31zPM4vzufOVNby3rvigABxy+8urWb6zLGKbd6M6BMe5XYwbmM4/P9jM3y6ZjKsby+Quzh2EMbCvtgFXVP9WRSRcKup8nDc5p8O1dZ01ODOBoX0SKatpCMt4IhLdEuPcDMpIbPeanPQEnrn+OO6dNZmzJw3ocLwxA1JJitOJcY5LT4rjKyP78M2JA6n2+nnkmmMP6fi/a08YzvVfHcnnW/dy51lj6RvhFh8icmQKWEtNg59fnjO222MZA/deMoW91Q34tWRLRMKgf1oCD141jQk5aa3en5OewNNzZjIkM5E+yR7uPGtsm0E4Mc7NM3NmclS/FOIj1GAgqkMwQGyMiylD0khPjGP+wh3Mv3Y6p4zJ7tRjh2Qm8ti3jyU9MZZ5H23h1tPHEKNpYBEJFwv3vb8JT6ybsye2P4PSkZ+efjTvrdvDp1tKw1SciEjbQbh5AA7pmxLfahA+IABHsFVaVO+OqPH6KSqvZce+Oq5/YimBoGXJ9jJu+voovn/yKN5Zs4cl2/exbncl9b4gLgPDs5KZmJPGWZMG4A9a/vTOBlYXVgKNJ9Dd8LVRQONaPhGR7nC7DOV1Pm79zxfMvXIacTEuXlhW2KUxXAZ++o2jSfLEcM/bG7jm+GF6sy4iYRUKwtc9vpRVhRWtBuCQUBAGeG3lrh4LwADG9sIjfnNzc21eXl63xymtrmdlfgVzmgJwcwmxbr5+TF8mDkpnTP8UEuLcBIKW7XtrWF1QwQcbSlo9zemiaYP4yTeOpp8DrY1EJPrsrfZy49PLWbqjjDu+OZaMpFj+95U17OvEut7hWUn85vzxLNhQwryPtnLN8cO4+dTRpCfqTbqIhN/uijruenUtv/jmMa0G4OaKq+r58zsbuXzGEEcDsDFmqbU2t9X7ojkEl1TVc89bG3h+aft9gmeOyGTulbk8l5fPb/5vXbvXDu2TyHPXH6cQLCJhEwrCn23Zy3Ej+3DjKaMoKq/npeUFrCqooLLev//a7GQPU4akc2HuIAzwh7c2sLm4WgFYRCJib42XPkmeTl1bWlVPcnysozPACsHtKKmq53dvrOfF5WkseKsAACAASURBVK1/xDhzRCb3zppCv9R4Squ9vLS8sM0gPLRPIk/OntHhTkkRka4KBeGFW/cStPDwVblMGpxGkMaDf4K2cflEjNvgNob5C3fwt/c3AXD1cQrAIhKdFII70FYQbh6AQ9oKwgrAIuK0fdVeSqq91PkCjMxObreZfHltA9tKa4DGZREKwCISCeW1DSTFuontxOzu3movbpdx9PmpvRCs3RFAdko8Pz9zDN+akrP/ttYCMEBWsofzp+Twi28es/82BWARiYSGgOUXL61m+c5y6nyB9q/1B3lq8U6eWrwzYo3nRSS6FZTVcs2jS9i2rxZfB89Reyrr+dGzK1hVWEF5bc/0Lo/q7hDNhYIwQFFFXasBOCQUhAHmL9yhACwijttdUc/3n1zGsp1l5O0oI2gtZ08a2Gpf8uLKev7w1vr9nSSCQcvPzhhDX+1VEBGHFJTVcsVDi9i+t5aL537Oc9cfx/DMxFZnhPdU1nPzMyv4fOtePt+6l0euOZYJOWkR/8RKyyFaKKmqx1o69WJRWu3FZYzaoYmIo5oH4ObuPOuYg4JwywAccsHUHAVhEXFE8wAckp4Y22oQbh6AQ2LdxrEg3KPLIYwxZxhjNhhjNhtjbmvl/iHGmA+MMcuNMV8YY850uqb2ZKfEd/pFIivZowAsIo5qKwAD/Pr1dby2sojiqnqg7QAM8MKyQv7w1nqKK+sdr1lEokdrARigvNbHxXM/P2BpRGsBGMAXsHznsSURXxrhaAg2xriB+4H/AcYClxpjWp7/eQfwnLV2CjAL+KeTNYmI9BbFlW0H4JBQEK6s97UZgEMUhEUknNoKwCHNg3BJVesBOKQngrDTa4KnA5uttVsBjDHPAOcCa5tdY4HUpr+nAUUO1yQi0msc1S+53RAMjUH4yYU72drUDaI9EwelY+l9y+BE5PATtOAPtv98Ul7r46IHPmdQRgJriio7HM/rCx50gJlTnF4OkQPkN/u+oOm25u4GrjDGFABvADe2NpAxZo4xJs8Yk1dSUuJErSIihxULXHLsYL41teXT5sE6E4BvO2MMEwelYTBhqE5Eot2QzESeum4mgzIS2r2uos7XYQB2uwxzr5jGlCHp9Enu3GEb3XU4tEi7FHjMWjsIOBN4whhzUF3W2nnW2lxrbW52dnbEixQRiTSXgV++tobTxvbrVBBuz21njCFoLQ9/vA1jFIJFJDw6G4Tb0xMBGJwPwYXA4GbfD2q6rblrgecArLWfA/FAlsN1iYgc9rJT4nngimnM/XBLt4JwKACvKarkrnPGkp0SuRcZETnydScI91QABudD8BJgtDFmuDEmjsaNb6+2uGYn8HUAY8wxNIZgrXcQEQH6pyV0Kwg3D8B3nzOW7Fb6CouIdNehBOGeDMDgcAi21vqBHwBvA+to7AKxxhjzK2PMOU2X/Ri4zhizEngauMb2xubFIiIOCQXhhz/Zyq3fGEOfTrZmnD48kxkjMhWARSQihmQm8sS1Mzp9/fdPHsn04Zk9EoBBh2WIiPQaeyrr+f2b63lpedtt0Fq6/cxjOHfywDZPwBQRCZfQUcifbWm9DVpL6YmxPDfnOIb3af1kuXDo0cMyRESk+4or67nnra4FYIDfvrGO17/48kANEREndDUAQ1Mf4Xmfs23vlwdqRJJCsIjIYa69k+A6o+XJciIi4XQoATikJ4OwQrCIyGGsuwE4REFYRJzQnQAc0lNBWCFYROQw1ZUAPDI7qcNr9gdhHZssImHQ2QDsMpDiaf+Q4p4IwgrBIiKHsR17azu85rYzxjDvylzOn9Jx+7T1u6t0aLKIhEVlvY+V+eXtXuN2GeZdmctbN3+1w/Zp5bU+PtpUQlmdL5xltkkhWETkMOV2wR8vmsTUIRltXhPqA3zm3z/i9HH92g3C50/J4cZTRhHn1olxItJ9g9ITeGbOTJLiWu/sEOoDPG1oBjkZCR32Ef7x6UdxzqSB9I1QNxuFYBGRw5Tb5eL6J/K47X/GtBqEmx+Esej2U5n74ZY2g/D5U3I4fVw/fvr8F4BCsIh0X0JcDKP6JrcahJsH4Iym3ubtHajx49OP4pLcwRELwKAQfJBqr5+K2s5Nw/sCAcprGxyuSESiVXpiHPOuzOUXL606KAi3PAkuPTFu/8lyLYNwKADP/XAL986avP8FSUSku1oLwq0F4JDWgnBPBGDQYRkHqPH6KSirJWgtA9MTSEto+4XCFwiwq8KLzx8kIymOTL2oiIhDtpfWcN3jefzm/An8/s31nD62X5tHIe+uqOO785dy/UkjeWfNHoD9AfiBK6bRP63zR5qKiHRWXYOfzcXVXP7wIv5y0eRWA3BzO/fVctmDC7nk2MGOBuD2DstQCG5S4/VTWF5L/r46CsvqmDmyD/1SPa0G4VAArq738Z+lBVxz/DCS42MVhEXEMaEg/MeLJvHZ5tJ2j0JuHoQBBWARiYi6Bj/+oMUfsJ36xGlvtZdA0Do6A9xeCG6/X0WUaB6A5zyxlEDQ8stzxnLcyCyAA4Jw8wA8a95CKuv91HgD3PC1xhcbBWERccKwrCQevCqXS+Z+Tu6wzDYDMED/tAQeuGIasx9vnCx46KpcBWARcVxCXNdiZZ9kj0OVdE7UzwS3FoBDQkE4NCPcWgAOuSR3MDd8baRmhEXEUUXldcS6TZsBuLndFXUACsAiErXamwmO6o1x1e0EYIC7Xl3L51tK2VPppare12YABng2L5/7P9hCdb2PfTXaLCcizhiYntCpAAyN4VcBWESkdVEdgut9/jYDcEgoCJfX+toMwCGhIOwPBJ0sW0RERES6KarXBFsL767d02YADrnr1bWsLarizdW72gzAIYu27dVpTCLimEAggNvdemN6ERHpvKieCXa7XJw7OYfzJnd81OizefkdBuBhfRL52yWTiY+J6l+riDikpq6Btbur96/17cj20hq2l9Y4XJWISO8U1Wkt1RNDdnIcZ08a0Kkg3J5hfRL56yWT2V1ZT6AXbjYUkcNbTV0D64urueiBz5j9eF6HQXh7aQ0Xz/2ci+d+riAsItKKqA7BMTEuhvVJYmhm4v4gnBofQ3ZK51p2xLgMQzIT9wfgPZX1TB+eSWZSz7b8EJEjSygAX/7QIup9QVYXVrYbhEMBuLjKS3GVV0FYRKQVUd8iDcDvD7J9bw2F5XX0TfXgD1i+9+QyCsranmmJcRnunTWFMf1T8AUaH68ALCLh1jIANzc+J/WgHsDNA3BzfVM8PHf9cQzLSopI3SIihwO1SOtAaEb46H4p1DU0vsj864qpB5xrfcD1TQE4IzGWoLV4YgwzRygAi0h4tReAgYNmhNsKwIBmhEVEWlAIblJe10BRRT33vr+J215chbWtB+HmAfidtXu47KFFlNX6qazzddhlQkSkK6zLxXcey2s1AIeEgvDK/PI2A3BIcZWXG55aRkWdz4lyRUR6FYVgoLSqnp376rj3/U18uLGENUWV/LyVINwyAD/22XZKqrxcP38ppdU+CstqFIRFJGxsMMhDV+fi6aDjzOrCSs69/9N2AzBAdoqHf1w6heQ4PfWLiET9M2HLABzSMggPz0o6KACHKAiLiBNSEuIY0y+Z+bNndBiEO5Kd4uG5OTMZkpmgPsMiIkR5CC6vbaCgvP6gABzSPAjPv3ZGqwE4pHkQrqzTsckiEh7hCMIKwCIiB4vqEOwPBpn74ZZWA3BIKAhjaDMAh5RUebn+iaX4NRMsImHUnSCsACwi0rqoDsEuY7j6+GHEx7b/a1hTVMkpf1rQbgAOmTV9ML2w65yIHOaaB+E4d+eeuvskxSkAi0hE7a1uf29Cc8VV9VT14KfnUR2Cg9YyKD2BR685tsMg7PW3vTs75MZTRnHRtEG4ovq3KiJOSUmIIzvF0+nZ4PTEWBLiYhSARSQidpXXcctzKzvVirG4sp5fv7aWDXuqeywIR3Vc88S4KSyvo19qfKeCcHtuPGUUF04bxPvrizUTLCKO2F5aw8UPfE6V19+p67eU1DD78SXs6uCIZRGR7tpVXse3H1vChxtLOuxJXlxZzy9eXsVrX+ziiocX9VgQjuoQnBIfy9iBqZRUebsVhEMB+L/rizlr4gCyU+IdqFZEoll7B2G0Z3VhJdc9nqcgLCKOCQXg9burgPYP5wkF4HfXFgNQ7wv2WBCO6hAMBwfhJ2fP6FIQvvnU0VycO1gBWEQcc6gBOERBWESc0jIAh7QWhFsG4JCeCsJRH4LhyyDsdhkS42KYMbxPpx6XEOvm4tzBBK3lnEkDFYBFJOy6G4BDFIRFJNzaCsAhzYNwabW31QAc0hNBWCG4iT9oKSqv49kl+e22TGuuzhfgusfzqNCRySLigPLaBi6Z13EAzk72cNfZYzt1stwPnlrOvhr1MheR7vP6g+zt4PmkuMrLRXM/53vzl7YZgJuPV1BWR30nmhGEg0IwUFbbwPpdlby9Zg8b91RxzqSBnXrcyOwkjh+Zxc9fXMXuynqKK+sdrlREook/EORHpx7V7jXZyR6evX4ml+QO4olrp7cbhD0xLn52xtF0Yw+wiMh+gzPieW7OTLJTPO1eV1LlZcn2snavMQb+cvEkThiVFbFP1qP+qbB5AN5SUs0NXxvFGeP7c1HuoHYfNzI7iT9dNImcjATOm5KjICwiYZeVEs+px/Tl99+a0Or9oQA8NDOBRE8sx/RPaTMIe2JcPHHtdI7pn0JKQpzTpYtIFHC73QzJTOhUEG5PKACfOCqbrG6M01VRHYLLahrYsPvLAPzdk0Zy/RNLuenp5Zx8VN82g3AoAN/49HLufnUNdQ2BA4Lw3moFYREJj7aCcPMAHOoDnJIQ12oQVgAWEad0Nwj3VACGKA/BXn+QDzaUHBCAq71+/EHLD585MAifekxf4mNdBwTggrLGDSZ/eXfj/iB82wur8AV68l8lIkealkG4tQAc0jIIKwCLiNMONQj3ZAAGMLYXnuyQm5tr8/Lyuj1OSVU963dV4nK59gfg5mJchntnTcEYy/Ejsygsr6PBHzwgADd3y2lHMapvErlDM+mbqk4RIhJepVX1fLyplEmD01sNwM1V1TWwrmnHtgKwiERCIBBg295aTv3LR526/rsnjeR7J40gLdG55ydjzFJrbW5r90X1THCyJ4bMJE+rARjYPyOc4oklxmVIjY9tMwBD44zwrop6ME5XLiLRKCslnq8eld1hAIYvZ4QVgEUkUvbW+PjDW+s7ff2LywrYV9tz3WqiOgTXNAT48zsbWw3AIf6g5duPLeHZvAIufXBhmwE45L7/bsZllIJFxBl9kj0dBuCQlIQ4BWARiYi2DsJo9zFVXi6Zu5BtpdUOVta2qA7BWckefnfBBKYPz2z3On/Q8uvX13YYgNMTY3l2znGkeWLCWaaIiIjIYetQAvD+x/ZgEI7qEAzQLzWe+y6d0mEQ7kgoAI/ok0hsbOdmaURERER6s+4E4P1j9FAQjvoQDN0PwgrAIiIiEm26EoA7OtGyJ4KwQnCTQw3CCsAiIiISjcpqfXy0sbTda4yBv14ymXd/9NUO26cVV3l5beUuSqsic96CQnAz/VLj+celUxifk9qp6z0xLp6/XgFYREREos/ANE+7x7U39gGezImjsshJ7/iI5WtPGM4lxw4mS8cm9wyvP0hZja9T1/oCQYrK66jR6RgiIiISZdo6pRIODMBZKZ4OD9S49oThzPnqCPpF8JwFheBm8vfVcumDCyksb78LREjQwrX/zmNlfjnlPdjnTkRERKQntBaEWwbgkLaCcE8EYFAI3i8UgDtqg9aSP2gVhEVERCRqNQ/C8bGuVgNwSMsg3FMBGKL82OSQQw3AzcW4DA9fncukwemkO3j8n4iIiMjhqKquAV8QgkHbagBuLhAIsLfGhwVHA7COTW5HOAIwaEZYREREoltKQhyZSXEdBmBonBHumxrfIzPAIVEdgvfVNHDrC1906iS4F753PMcOy2j3On/Qcv38pejQZBEREZHDW1SH4MykOO65YCKDMxPavCbUB3hSTir3XTa13SAc4zLMvTKXoBPFioiIiEjYRHUIBhicmchTs2e2GoSbH4QRE+Omf2p8m0E4xmV4+JpjmTgojQytCRYRERE5rEV9CIbWg3BbJ8G1FoQVgEVERER6F4XgJs2DcEdHITcPwgrAIiIiIr2PWqS1kL+vljpfgOGZHR+FvLuynqLyOoZnJSkAi4iIiBxm2muRFhPpYg53gzMTCQQCuN3tB2BonBHOTort1LUiIiIiR7qy2gaSY90dTiQClFZ7iXGZHjtfQcshWtGVUKsALCIiIgIFZbV859ElbNtXi88XaPfaPZX1/PjZFXxRUNFj5yt0OgQbY/oZY6Y2ffVzsigRERER6T0Kymq54qFFLM8v55K5n7cbhPdU1vOjZ1fw4aZSrv33kh4Lwh2GYGPMZGPMQmABcE/T14fGmIXGmKkO1yciIiIih7FQAN6+txaAslpfm0E4FIA/27IXAF/A9lgQ7sxM8GPAD621x1hrT236GgPcDDzqaHUiIiIicthqGYBDWgvCLQNwSE8F4c6E4CRr7aKWN1prFwJJ4S9JRERERA53bQXgkOZBuKSq9QAc0jwIl0UoCHemO8Sbxpj/Ax4H8ptuGwxcBbzlVGEiIiIicvgKWvAH22+1W1br4+K5n5OTnsCaosoOx2vwBwl2MGa4dKpPsDHmf4BzgZymmwqBV621bzhYW5uc7BMsIiIiIp2zc28tlz20kIKyum6N43YZ5l4xjalDM8hMCl/LtG73CbbWvgm82cEPuc9ae+Mh1CciIiIivdCQPo0n7nYnCDsVgDsSzj7BXwnjWCIiIiJyGCuraSB/Xy3JHjdPzZ7JoIyELo8RCsATclKp8frJ31dLWU1k1gTrsAwRERER6bKGQJDC8jo2FlfjDwZ5avaMLgXhUAAeMyCZbXtrKSyvo7C8joZA0MGqv6Rjk0VERESky+oaAsyat3D/97d+42ie+M50vvbnDzv1+O+fPJKj+ydzwh8WHHD7gp+cHMYq2xbOEGzCOJaIiIiIHMbiY108M2cmAAmxbvqnxfOjZ1d0+vHzF+7g7EkD+fCnJ7GrwnvAuJHQlWOTJ3Rwyb3drEVEREREeok6X5BZ8xZy1yur6ZfqabcPcGtCfYS9fsuyHfuYNW8hs+YtpM53+C2H+KcxxkPjCXJPWmsrmt9prX0sjHWJiES90iov1V6/I2Mne2LISvE4MraIRI+j+yXz7+9M55bnVnYpAIeEgvCz1x8HwD1vbwx3iW3qdAi21p5ojBkNfAdYaoxZDDxqrX3XsepERKJYtdfPyX9a4MjYC35yskKwiHRLjJtuBeCQlkE4Urq06MJauwm4A/gZcBLwd2PMemPMt5woTkQkmjl5ZlJkzmMSkSNZnNvdqQDsMpDiaX/eNRSETx3bn+R4dzjLbLuuzl5ojJlojPkrsA44BTjbWntM09//6lB9IiIiInIYqqjzsTK/vN1r3C7DvCtzefPmEztsn1ZW6+PDDSUEApF5m96VmeD7gGXAJGvtDdbaZQDW2iIaZ4dFREREJEpkJMby9JyZJMW1PnMb6gOc5HHzwIItHfYRvuW00Zw2tl/ENsZ1JQR/E3jKWlsHYIxxGWMSAay1TzhRnIiIiIgcnqq9AdYVVbYahJsH4EsfXMT8RTuZ99HWNoPwLaeN5pxJOY7tg2hNV0Lwe0DzqhObbhMRERGRKPSzF1cdFIRbBuCQtoJwTwRg6FoIjrfWVoe+afp7YvhLEhEREZHeonkQTo2PaTUAh7QMwj0VgKFrIbjGGDM19I0xZhpQ19GDjDFnGGM2GGM2G2Nua+Oai40xa40xa4wxT3WhJhERERHpYaEg/Oltp7QZgENCQfiVG77SYwEYunZYxs3A88aYIhqPSO4PXNLeA4wxbuB+4DSgAFhijHnVWru22TWjgZ8DX7HWlhlj+nbx3yAiIiIiPexnL67i0c+2sX53dYfXzl+0kyXb97FhT8fXOqUrh2UsMcaMAY5uummDtdbXwcOmA5uttVsBjDHPAOcCa5tdcx1wv7W2rOnnFHe2pu7SaUwiIiIi4dOZABzSkwEYujYTDHAsMKzpcVONMVhrH2/n+hwgv9n3BcCMFtccBWCM+RRwA3dba99qOZAxZg4wB2DIkCFdLLt1Oo1JREREJDp1OgQbY54ARgIrgEDTzRZoLwR3tobRwMnAIOAjY8wEa+0B3ZettfOAeQC5ublh6aKs05hEREREolNXZoJzgbHW2q7ku0JgcLPvBzXd1lwBsKhpacU2Y8xGGkPxki78HBERERGRTutKd4jVNG6G64olwGhjzHBjTBwwC3i1xTUv0zgLjDEmi8blEVu7+HNERERERDqtKzPBWcBaY8xiwBu60Vp7TlsPsNb6jTE/AN6mcb3vI9baNcaYXwF51tpXm+473RizlsZlFj+11u49hH+LiIiIiEindCUE330oP8Ba+wbwRovb/rfZ3y1wS9OXiIiIiIjjutIi7UNjzFBgtLX2PWNMIo2zuyIi4gBjeufYIhIdnHoaidTTU1e6Q1xHY4uyTBq7ROQADwBfd6Y0EZHoFh/j4pk5Mx0bW0SkO5x6Mx2pN+ldWQ5xA42HXywCsNZu0uluIiLOqfMFmTVvoSNjf/CTkx0ZV0Sih8ehN+qeCL1J70oI9lprG0xTPDfGxKB2uCIiIiJRqd7vzBv1BT89OexjtqYrUftDY8ztQIIx5jTgeeA1Z8oSERERkcNZl06OOAzGbakrIfg2oARYBVwPvGGt/YUjVYmIiDbGiYg4qCvLIW601t4LPBi6wRjzw6bbREQkzJycDYnUTIuIyOGqKzPBV7dy2zVhqkNEREREJGI6nAk2xlwKXAYMN8Y0P/I4BdjnVGEiIiIiIk7pzHKIz4BdNB6b/Odmt1cBXzhRlIiIiIiIkzoMwdbaHcAO4DjnyxERERERcV6n1wQbY75ljNlkjKkwxlQaY6qMMZVOFiciIiIi4oSudIe4BzjbWrvOqWIizckOQeo+JCIiInL46kp3iD1HUgAGZ4+7U/chERERkcNXV2aC84wxzwIvA97QjdbaF8NeVYQkxDpz5nVobBERERE5PHUlBKcCtcDpzW6zQK8NwXU+Z868BvjgJyc7Mq6IiIiIdF+nQ7C19ttOFtITdCSpiIiISHTqSneIo4wx7xtjVjd9P9EYc4dzpTlPR5KKiIiIRKeuLFx9EPg54AOw1n4BzHKiKBERERERJ3UlBCdaaxe3uM0fzmJERERERCKhKyG41BgzkqbuX8aYC2k8TllEREREpFfpSneIG4B5wBhjTCGwDbjCkapERERERBzUle4QW4FTjTFJgMtaW+VcWSIi4nKwy4yTY4uI9AadDsHGmB8CjwJVwIPGmKnAbdbad5wqTkQkmqXGx/LxrV9zZOxkT1c+CBQROfJ05VnwO9bae40x3wD6AFcCTwAKwSIiDshIiiMjKa6nyxARaVWyx+3I4WDJHnfYx2xNV0Jw6MOzM4HHrbVrjNGRECIiIiLRKDslnuyUnq7i0HWlO8RSY8w7NIbgt40xKUDQmbJERERERJzTlZnga4HJwFZrba0xpg9wxB2lLCIiIiJHvg5DsDFmjLV2PY0BGGCEVkGIiIiISG/WmZngW4A5wJ9buc8Cp4S1IhERERERh3UYgq21c5r+dKZPj4iIiIhIhHV6Y5wx5qKmzXAYY+4wxrxojJniXGkiIiIiIs7oSneIO621VcaYE4BTgYeBB5wpS0RERETEOV3pDhFo+vObwDxr7f8ZY/6fAzWJiAhQWuWl2ut3ZOxkTwxZKR5HxhYR6Q26EoILjTFzgdOAPxhjPHRtJllERLqg2uvn5D8tcGTsBT85WSFYRKJaV0LsxcDbwDesteVAJvBTR6qKECcbvamJnIh0l+2lY4uI9AadngluOiDjFaCfMWZI083rnSkrMpI9MSxw4Mzr0NgiIiIiR6qymgZHlmwle2LISIoL+7gtdTqpGWNuBO4C9vDlcckWmOhAXRGRleLRx4Ei0mskxLl566YTWV1UwQ1PLe/w+ldvOB6Ac+7/zOnSRCQKVXv9nHjPB/u/zx2Szv1XTONv723k6cX57T42PSGW1288gY82lXD7S6sPuO/jW792eIVg4IfA0dbavU4VIyIirUuIc/Pej77KY59t5/Rx/bn/sintBuE3bjqB1YUV+/9+5t8/iVSpIhIl4mJcPDNnJgDJcW6yUjz86rW13PY/Y5h9wnBKqhtafZwbGJKVyN/f28ysGUP4+KcnUVjhPWDcSOjKT8kHKpwqREREWhcKwHM/2sqDH2/jiocW0Tc1nvsva71VeygA3/rCKm59YRWrCyt446YTIly1iBzprG3cXRAKwN+dv4z/W7WLSx9cSFyMm+zkg2dzQwH4d2+s58nFO7l03kLK6wPkpHkOGtdpXQnBW4EFxpifG2NuCX05VZiIiBwYgB//fAcAXn+wzSDcPACHKAiLiBPqfEH+9NZ6+jQF4BX55QAUlNVx6YMLiY1x88qKQmbNW8iseQv57hNLGZTZGIBfXlEENC6pCAXhrSXVzJq3kDpfsL0fGzZdCcE7gXeBOCCl2ZeIiDikZQAOaS0ItxaAQxSERSTc4txw3+VT+V6zABxSUFbHZQ8u5Hsnj+LS6YNJT4jlzR+eyB/e+jIAh4SC8IRB6fz2/PERq990dcrZGJMMYK2tdqSiTsjNzbV5eXk99eNFRCJiT0Ud9y/YclAAbs4T42L+7BkM65PIB+uLWw3Azd1zwQTGDkwlyRPL8KykcJcsIlFkd0XdATPArRmUkcBT180kPsbFb99Yd1AAbi7ZE8PTc2YyICWOrNSEsNRojFlqrc1t7b6udIcYDzxBY39gjDGlwFXW2jVhqVJERA5gXIalO8ravSY0I3zWxAG8sKywwzE/3FjCV4/KjtjHjSJy5KppCLB9b02714RmhEdmJ/PhxpJ2r632+llVCOSwfAAAGvpJREFUUE7W0dnhLLNNXVkOMQ+4xVo71Fo7FPgx8KAzZYmIiN8f5KGrcxk3MLXd67z+YKcC8Jnj+3PHWWM5+z51ihCR7ktLiOHZOTNJT4xt97qCsroOAzDAr84dx9QhGdT7D7+NcUnW2v3N4Ky1CwB9liYi4hBvwPLj51Z2Kgh35Mzx/bnz7LGcc98nbbYtEhHpiqr6AAvWF3cqCHfkV+eOY/qwTM649+MwVdexLnWHMMbcaYwZ1vR1B40dI0RExCGfbdnb7SCsACwiTvndWxu6HYR7IgBD10Lwd4Bs4EXgBSCr6TYREXFQd4KwArCIOK07QbinAjB0IQRba8ustTdZa6daa6dZa2+21ra/Y0NERMIiFIQfv3Y6mZ08TnTSoDR+fd54BWARcdzv3trA4m17eeq6mZ1+zOwThnPKmL49EoChCyHYGPOuMSa92fcZxpi3nSlLRERauuObx/D+2j3sq+lcoF2/u4qtpTXcfc44hysTkWiXnhDLqcf0Z96HWzr9mLfW7CZo4dLpgx2srG1dWQ6RZa3d3wiuaRa4b/hLEhGRlto7CKMt7Z0sJyISLu0dhNGelgdqRFqn+wQDQWPMEGvtTgBjzFAgMj0sHFJa5aXa63dk7GRPDFkpno4vFBHpwKEE4JBQEJ4/ewb3XzaFG55a7kCFIhKtDjUAh4SCcGgZxdOL88NdYpu6EoJ/AXxijPkQMMCJwBxHqoqQmgY/J/9pgSNjf/jTk8lCIVhEuqc7AThEQVhEnNKdABzSMghHSlc2xr0FTAWeBZ4Bpllr968JNsb0ukVnQQfnsZ0cW0SiQ0Ksq9MB2GXav19LI0Qk3BLjXJ0OwB09RzVfGpHscYepwg5q6srF1tpSa/9/e/ceZWV15nn8+1CUVWCVV0pASgPpwZGLBBGidAwBjRccl8bYM+2ltY0m6bXGdKfHMKFnXCaMtkk0yEombfe0UduQtLlMxmntbjDGEYIabSSK2vGSsBKMGC/IdAyFU2UV7PmjDnRZXKpO1XnPqar9/azF4pz3vOc5T7EX7/qx2We/6R9Kv97s9fI3K9iXJGWvsb6OW374sz7PO2fmBJ687ox+3VnuS6tfYP7vjKtUi5Iy9i9vd/KPz77a53nXnz+DH17zoX7dWe57T1RvOURZIbgPfWR8SVI56kYF3/nEKRx1gO8XnDNzAp8/bwb/752dfe4jPOPoQ/iLS07k7Y4uDq7STIukkevwsfXc8YfzqK/bfwS84fwZnDzlCB786Wt97iN80bxjuOTkY2nr2FlEu3upZAh2AYAkVVDXzsRhY+v57h/tOwjvDsCdXbvo2pUYRdpvEJ5x9CHc/odzGUUiAfWjKnn5l5Sjt9/ZBaT9BuEbzp/B+6ccwVlfebjPG2pcNO8Y/uT0qZy54kdV6LybV0FJGqIOP/ggDj+4gSnjmvYKwrsD8PhDGmk9YizHHDGW8YeOZeKhY/YKwrsD8MRDxzD+0O5zD+/nDTck6UAuv/MJ9hWEewbg3fYXhHsG4LZ3qjMLDJUNwd6OSJIK0jMI9wzA+9IzCPcMwJJUSbsjb+8gvK8AvFvvILyvAFyt9bXlbJFGRMwCJvd8X0rpntLv1d3XQpIyM2VcE3939QeoGxX7DcC77Q7Cux9LUpEuv/MJVl45j0eWnsZv3n5nnwF4ty/e/yIAq/7kgwBVnwHerd8hOCLuBGYBPwV2lQ4n4J4C+pIk7cPRh/U/0Bp+JRUpek3ZXn7nE/z+3Fa+u2FLn+/94v0v8uyv32LtC1v3CsC96xalnJngU1JK0wvrRJIkScPGIY31PPzZRXsd/9RpU/tdY+nZ0/Y61tRQ1kKFASvnUx6LiOkppecK60aSJEnDQveXd4fvl2zLCcEr6Q7CrwEddK9bTimlWYV0JkmSJBWknBB8B3AZ8Cz/uiZYkiRJGnbKCcFbU0r3FdaJJEmSVCXlhOCnIuJu4O/pXg4B/OsWaZIkSdJwUU4IHkN3+D2zxzG3SJMkSdKw0+8QnFL6WJGNSJIkSdVSzs0yGoGrgBnAnlsVpZSuLKAvSZIkqTCjyjj3m8AE4CzgR0ArsL2IpiRJkqQilROC/01K6TpgR0rpG8C/A04upi1JkiSpOOWE4M7S77+JiJnAocBRlW9JkiRJKlY5u0PcFhGHA9cB9wFNwOcK6apKxtSP4jufPKWw2pIkSRqaytkd4vbSwx8B7y2mnepqGF3HpMPGFFZbkiRJQ1M5u0OMB74AHJ1SWhwR04H5KaU7CuuuYIcffBCHH3xQrduQJElSlZXzf/Z3AT8Aji49/xnwp5VuSJIkSSpaOSF4XErpe8AugJRSF7CzrzdFxNkR8WJEbIqIPzvAeRdGRIqIuWX0JEmSJJWtnBC8IyKOpPtWyUTEKcBbB3pDRNQBtwKLgenAxaVlFL3PawY+DfxTGf1IkiRJA1JOCL6G7l0h3hsRjwIrgT/u4z3vBzallH6RUnoH+A5w/j7OuwG4CWgvox9JkiRpQMoJwc8B/xt4Angd+Drd64IPZBLwco/nW0rH9oiIOcAxKaV/LKMXSZIkacDKCcErgePp3iHia8BxdN9KecAiYhSwAvhMP879ZERsiIgNW7duHczHSpIkKXPl3CxjZkqp53reNRHxXB/veQU4psfz1tKx3ZqBmcDaiACYANwXEeellDb0LJRSug24DWDu3LmpjL4lSZKkdylnJvjJ0pfhAIiIk4ENBzgfupdOTI2IKRFxEHAR3euKAUgpvZVSGpdSmpxSmgw8DuwVgCVJkqRK6nMmOCKepXtHiHrgxxHxq9Lz9wAvHOi9KaWuiPgU3fsL1wF3ppR+GhHXAxtSSvcd6P1F27q9nbaOPnd5G5CmhjpamhsLqS1JkqTB6c9yiHMH8wEppVXAql7HPrefcxcO5rPK1daxk0XL1xZSe82ShbQ0F1JakiSp5oqaTKzWRGKfITil9FLhXUiSJGlYKWoysVoTieWsCZYkSZJGBEOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKzuhaN1BLTQ11rFmysLDakjQYW7e309axs5DaTQ11tDQ3FlJbkoaDrENwS3MjLc217kKS9q2tYyeLlq8tpPaaJQu9/kkalKImE6s1kZh1CJYkSdLADPfJRNcES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlZ3StG6ilrdvbaevYWUjtpoY6WpobC6ktSZJUa0XlqGplqKxDcFvHThYtX1tI7TVLFtLSXEhpSZloaqhjzZKFhdWWpMEoKkdVK0NlHYIlaShraW70H9OSVBDXBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpSd0bVuoJaaGupYs2RhYbUlaTDe3N5BW0dXIbWbGkYzrrmhkNqS8lBUjqpWhso6BLd17GTR8rWF1F6zZCEtzYWUlpSJto4uFhZ0jVq7ZKEhWNKgtDQ3Duus43IISZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlJ3CQ3BEnB0RL0bEpoj4s328fk1EPBcRz0TE/4mI9xTdkyRJkvJWaAiOiDrgVmAxMB24OCKm9zrtKWBuSmkW8H3g5iJ7kiRJkoqeCX4/sCml9IuU0jvAd4Dze56QUlqTUnq79PRxoLXgniRJkpS5okPwJODlHs+3lI7tz1XA6n29EBGfjIgNEbFh69atFWxRkiRJuRkyX4yLiD8A5gJf3tfrKaXbUkpzU0pzW1paqtucJEmSRpTRBdd/BTimx/PW0rF3iYgPA9cCH0opdRTckyRJkjJX9EzwE8DUiJgSEQcBFwH39TwhIk4E/ho4L6X0RsH9SJIkScWG4JRSF/Ap4AfA88D3Uko/jYjrI+K80mlfBpqA/xkRGyPivv2UkyRJkiqi6OUQpJRWAat6Hftcj8cfLroHSZIkqafCQ/BQ1tRQx5olCwurLUmD0dQwmrWFXaOyvvxLUt4hWJKGskQiFVhbknKWdQhu69jJouVrC6m9ZslCWpoLKS0pE16jJKk4Q2afYEmSJKlaDMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUnRGzT3BnZydbtmyhvb293+/p2rmLr583sZB+2l7bzPNbq/9vjMbGRlpbW6mvr6/6Z0uSJA0XIyYEb9myhebmZiZPnkxE9Os9HZ07Sa9vL6Sf48Y301Bf3Vsnp5TYtm0bW7ZsYcqUKVX9bEmSpOFkxCyHaG9v58gjj+x3AB6JIoIjjzyyrNlwSZKkHI2YEAxkHYB3889AkiSpbyMqBEuSJEn9YQiukN++9Rbf/cbttW5DkiRJ/WAIrpDtv32L7668o9ZtSJIkqR8MwRXy1S8uY8tLm/kPZ32QFX9+HStuWc68efOYNWsWn//85wHYvHkzxx9/PFdccQXHHXccl156KQ8++CAf+MAHmDp1KuvXrwdg2bJlXHbZZcyfP5+pU6fy9a9/HYBXX32VBQsWMHv2bGbOnMnDDz9cs59XkiRpODMEV8in/8syWt8zme/94GFO+eAiNm3axPr169m4cSM/+clPWLduHQCbNm3iM5/5DC+88AIvvPACd999N4888gjLly/nC1/4wp56zzzzDA899BCPPfYY119/Pb/+9a+5++67Oeuss9i4cSNPP/00s2fPrtWPK0mSNKyNmH2Ch5LH1q1h7YM/5MQTTwSgra2Nn//85xx77LFMmTKFE044AYAZM2Zw+umnExGccMIJbN68eU+N888/nzFjxjBmzBgWLVrE+vXrmTdvHldeeSWdnZ185CMfMQRLkiQNkDPBBUgp8Z8/u5SNGzeyceNGNm3axFVXXQVAQ0PDnvNGjRq15/moUaPo6ura81rvrc4iggULFrBu3TomTZrEFVdcwcqVK6vw00iSJI08huAKObipibd3tAHwux86jZV3/Q1tbd3PX3nlFd54442y6t177720t7ezbds21q5dy7x583jppZcYP348n/jEJ/j4xz/Ok08+WfGfQ5IkKQcuh6iQww4/gtlzT+ajp8/n1EUf5vcvupj58+cD0NTUxLe+9S3q6vp/G+VZs2axaNEi3nzzTa677jqOPvpovvGNb/DlL3+Z+vp6mpqanAmWJEkaoEgp1bqHss2dOzdt2LDhXceef/55pk2bVladzp272LWrmJ9/1Kigvm5gE+3Lli2jqamJJUuWDOj9A/mzkDT0bN3eTlvHzkJqNzXU0dLcWEhtSXko6hpVyetTRPwkpTR3X69lPRNcXzcK+j85K0lVtaNjJ4uWry2k9tolC2lpLqS0pEy0FXSNWlOl61PWIXioWrZsWa1bkCRJGtH8YpwkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBFfQlVdeyVFHHcXMmTNr3YokSZIOINsQvHr1as4991zmzZvHueeey+rVqwdd84orruD++++vQHeSJEkqUpZbpK1evZobb7yR9vZ2AF577TVuvPFGABYvXjzgugsWLGDz5s2VaFGSJEkFynIm+NZbb90TgHdrb2/n1ltvrVFHkiRJqqYsQ/Drr79e1nFJkiSNLFmG4PHjx5d1XJIkSSNLliH46quvprGx8V3HGhsbufrqq2vUkSRJkqopyxC8ePFirr32WiZMmEBEMGHCBK699tpBfSkO4OKLL2b+/Pm8+OKLtLa2cscdd1SoY0mSJFVSlrtDQHcQHmzo7e3b3/52RetJkiSpGFnOBEuSJClvhmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMEV9PLLL7No0SKmT5/OjBkz+OpXv1rrliRJkrQPWe4T3NnZyTXXXAPATTfdxNKlSwFYsWIF9fX1A647evRobrnlFubMmcP27ds56aSTOOOMM5g+fXpF+paUl4Mb6lizZGFhtSVpMJoKukY1Ven6lGUIvuaaa3jyyScBOOecc+js7Nxz/Gtf+9qA606cOJGJEycC0NzczLRp03jllVcMwZIGpK1jJ4uWry2k9polC2lpLqS0pEy0NDcO6+tIliF4t46ODjo6OgBoaGioaO3Nmzfz1FNPcfLJJ1e0riRJkgYvyzXBN910017LHurr67n55psrUr+trY0LL7yQr3zlKxxyyCEVqSlJkqTKyTIEL126dM8SiN06Ozv57Gc/O+janZ2dXHjhhVx66aV89KMfHXQ9SZIkVV7WyyEaGhqor6/fKxAPVEqJq666imnTpu354p0kSZKGnixnglesWMGcOXOYM2cOq1at2vN4xYoVg6r76KOP8s1vfpOHHnqI2bNnM3v2bFatWlWhriVJklQpWc4E19fXv2sXiMHsCNHTqaeeSkqpIrUkSZJUnCxngiVJkpQ3Q7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7WW6RVqTJkyfT3NxMXV0do0ePZsOGDbVuSZIkSb1kGYIXLFjA22+/vdfxsWPHsm7dukHXX7NmDePGjRt0HUmSJBUjy+UQ+wrABzouSZKkkSXLEFykiODMM8/kpJNO4rbbbqt1O5IkSdqHLJdDFOmRRx5h0qRJvPHGG5xxxhkcf/zxLFiwoNZtSZIkqQdngits0qRJABx11FFccMEFrF+/vsYdSZIkqTdDcAXt2LGD7du373n8wAMPMHPmzBp3JUmSpN6yXA4xduzY/e4OMRivv/46F1xwAQBdXV1ccsklnH322YOqKUmSpMrLMgRXYhu0fXnve9/L008/XUhtSZIkVU6WIViShoOmhjrWLFlYWG1JypkhWJKGqJbmRlqaa92FJI1MI+qLcSmlWrdQc/4ZSJIk9W3EhODGxka2bduWdQhMKbFt2zYaGxtr3YokSdKQNmKWQ7S2trJlyxa2bt1a61ZqqrGxkdbW1lq3IUmSNKSNmBBcX1/PlClTat2GJEmShoERsxxCkiRJ6i9DsCRJkrJjCJYkSVJ2YjjuphARW4GXavDR44A3a/C5KpbjOnI5tiOXYzsyOa4jV63G9j0ppZZ9vTAsQ3CtRMSGlNLcWvehynJcRy7HduRybEcmx3XkGopj63IISZIkZccQLEmSpOwYgstzW60bUCEc15HLsR25HNuRyXEduYbc2LomWJIkSdlxJliSJEnZMQRLkiQpO4bgXiLizoh4IyL+eT+vR0T894jYFBHPRMScaveo8vVjXC8tjeezEfHjiHhftXvUwPQ1tj3OmxcRXRHxe9XqTYPTn7GNiIURsTEifhoRP6pmfxq4flyTD42Iv4+Ip0tj+7Fq96jyRcQxEbEmIp4rjdun93HOkMlRhuC93QWcfYDXFwNTS78+CfxVFXrS4N3Fgcf1l8CHUkonADcwBBfwa7/u4sBjS0TUATcBD1SjIVXMXRxgbCPiMOAvgfNSSjOAf1+lvjR4d3Hgv7dXA8+llN4HLARuiYiDqtCXBqcL+ExKaTpwCnB1REzvdc6QyVGG4F5SSuuA/3uAU84HVqZujwOHRcTE6nSngeprXFNKP04p/Uvp6eNAa1Ua06D14+8swB8D/wt4o/iOVCn9GNtLgHtSSr8qne/4DhP9GNsENEdEAE2lc7uq0ZsGLqX0akrpydLj7cDzwKRepw2ZHGUILt8k4OUez7ew9wBreLsKWF3rJlQZETEJuAD/12YkOg44PCLWRsRPIuLyWjekivkLYBrwa+BZ4NMppV21bUnliIjJwInAP/V6acjkqNG1+FBpqIqIRXSH4FNr3Ysq5ivA0pTSru5JJY0go4GTgNOBMcBjEfF4SulntW1LFXAWsBE4Dfgd4IcR8XBK6be1bUv9ERFNdP/v258O5TEzBJfvFeCYHs9bS8c0zEXELOB2YHFKaVut+1HFzAW+UwrA44BzIqIrpfR3tW1LFbAF2JZS2gHsiIh1wPsAQ/Dw9zHgS6n7ZgabIuKXwPHA+tq2pb5ERD3dAfhvU0r37OOUIZOjXA5RvvuAy0vfbjwFeCul9Gqtm9LgRMSxwD3AZc4ijSwppSkppckppcnA94H/aAAeMe4FTo2I0RExFjiZ7jWIGv5+RfcMPxExHvi3wC9q2pH6VFrDfQfwfEppxX5OGzI5ypngXiLi23R/E3VcRGwBPg/UA6SU/gewCjgH2AS8Tfe/VjXE9WNcPwccCfxlacawK6U0tzbdqhz9GFsNU32NbUrp+Yi4H3gG2AXcnlI64FZ5Ghr68ff2BuCuiHgWCLqXNL1Zo3bVfx8ALgOejYiNpWP/FTgWhl6O8rbJkiRJyo7LISRJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJGkZKG8x77ZakQfJCKklDXERMjogXI2Il8M/AdRHxREQ8ExH/rcc5L0TE30bE8xHx/dJd1IiIL0XEc6Xzl9fyZ5GkocKbZUjSEBcRk+m+ZezvAocAvwf8Ed130roPuJnu28z+Ejg1pfRoRNwJPAf8DfBj4PiUUoqIw1JKv6n6DyFJQ4wzwZI0PLyUUnocOLP06yngSeB4YGrpnJdTSo+WHn8LOBV4C2gH7oiIj9J9m1JJyt7oWjcgSeqXHaXfA/hiSumve75Ymi3u/V97KaXUFRHvB06newb5U8BpxbYqSUOfM8GSNLz8ALgyIpoAImJSRBxVeu3YiJhfenwJ8EjpvENTSquA/wS8r+odS9IQ5EywJA0jKaUHImIa8FhEALQBfwDsBF4Eru6xHvivgEOBeyOike5Z5Gtq0rgkDTF+MU6SRoDScoh/SCnNrHErkjQsuBxCkiRJ2XEmWJIkSdlxJliSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpSd/w9VtnWQ9jJ/TQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5RdVd3/8fe+bXovmfTeGymkSEeaSpMiLTSB0EQUlceCitiQR38WHqVEaugIShEQAZGahCSk9zKpk0ym1zu37d8fkxsmkzstc+6E5H5ea2Uxc+85O3uGtU4+d599vl9jrUVEREREJJG4DvUERERERER6mkKwiIiIiCQchWARERERSTgKwSIiIiKScBSCRURERCTheA71BA5Gfn6+HTRo0KGehoiIiIh8ji1atKjMWlsQ673DMgQPGjSIhQsXHuppiIiIiMjnmDFmS1vvaTuEiIiIiCQchWARERERSTgKwSIiIiKScBSCRURERCThKASLiIiISMJRCBYRERGRhKMQLCIiIiIJ57CsE9xTqhsC1DaFAAiFLS4DbpcLr9tQmJl8iGcnIiIiIgdLITiGnVWN7Klt4pGPNrOwuJLtlY373stM8TChbzYXT+vP5AE55KZ6Sfbp1ygiIiJyOFF6a6GyoYmy2gDffm4JK3bUxDympjHEBxvK+GBDGdmpXn791fFMHphDL60Mi4iIiBw2tCd4r9IaP2+vLuXLf3q/zQDcWlVDkBufXMxdr6xkd40/zjMUEREREacoBNO8Avze+j189/llBMO2y+f/c/kufvDicnZXKwiLiIiIHA4UgoGy2gA/eHF5t8Z4Z00pryzbSXVDwKFZiYiIiEi8JHwILqlq5FvPLjmoFeDW7nljLVWNQQdmJSIiIiLxlPAheFeNn5U7O7cHuCOBcIRHPiym1q/VYBEREZHPs4QOwVUNTTz8wWZHx/zbou3U+EOOjikiIiIizoprCDbGPGyMKTXGrGjjfWOM+ZMxZoMxZpkxZnI859NaXVOYT4orHR4zRGMg4uiYIiIiIuKseK8EPwqc0c77XwKG7/0zG7gvzvPZj7XN2yGctm53reNjioiIiIhz4hqCrbXvARXtHHIO8LhtNg/INsb0juecWgpFuv8wXCyVqhAhIiIi8rl2qPcE9wW2tfh++97XDmCMmW2MWWiMWbhnzx5H/nKXcWSYAyR5DvWvVURERETac9ikNWvtg9baqdbaqQUFBY6M6XG5SPO5HRmrpRG9MhwfU0REREScc6hD8A6gf4vv++19rUe4XDC2b5ajYxoDuWk+R8cUEREREWcd6hD8MnDF3ioRM4Bqa21JT/3lvbNSuGhq/44P7IJjhubjcx/qX6uIiIiItMcTz8GNMU8DJwL5xpjtwE8BL4C19n7gNeDLwAagAbg6nvOJZebQPDKSPNQ2OVPb9xsnDaMwM9mRsUREREQkPuIagq21l3TwvgVujuccOpKd4uVn54zltueWdnusk0YWMLgg1YFZiYiIiEg8Jfx9+9QkD8cMy+eLowq7NU5+uo+fnzuOXpkpDs1MREREROIl4UMwQK/MZH513niOGZp3UOfnp/t4ZvZMemcmOTwzEREREYkHheC9emUm87uvHcVtpw7H04UCwieMKOAfNx/D4LwU3G7ny62JiIiIiPPiuif4cFOUlczlMwZx1sQ+zHlvEy9+ugN/MBLz2JlD8/jGScMYWpBOUZYehBMRERE5nJjmZ9MOL1OnTrULFy6M699R1RCgPhCmzh9idUk1VQ1BkjxuRvXOID89Ca/bpfArIiIi8jlmjFlkrZ0a6z2tBLchO9VH9t5CDyOL1AFORERE5EiiECwicpiqaghQ6w/hMoawtbhdhkjEkpPqIT1ZnStF5NAqrfETCEfAggVcLgPWUpDuw+c99BH00M9ARES6ZGdVI5vL6pk7bwvLtlWxs9oPNLdtH5yXxpSBOVzxhUHkp/nona2yjSLSc+r8QWr8IT7cUMZLS3ayYmfzllIAn9vFyKIMjh2Wz8XT+pPsdR3S0rLaE9yGpkCIsvoAoYiltKaJqsYgSR4XfbNTSPa5SfW6yElTSTQR6TmlNX6Kyxu47bklbK9s7PD48X2z+H9fm0h+ho+cVF2vRCS+dlc38u9Vpfz69dXUB8LtHmsMnDm+Nz/48mgK0nx4vfGpsNXenmCF4Fbqm4JUNYZ4cfF2npi3hd01TQcck+x18aVxvbn++CHkpvnUJllE4m53jZ8H/ruRhz8s7tJ5Xrfh5+eM4+RRhbpWiUjclFQ3cuszS1iwuaJL5+Wm+Xj06qMZkpdKeorz27gUgjtpd00j768v46cvrezwE0zURVP78+1Th1OUpVuOIhIfu6r9/PHt9Ty9YOtBj/HLc8dx+tgi8jO0IiwiztpV7eeaxz5h5c6agzo/2evi+etnMqZ3huM9F9oLwWqWsVdpjZ9fvbaG7z6/rNMBGODZhdu46MF5bKtoiOPsRCRRNQZCLNxS0a0ADPDjl1ZQWut3aFYiIs1Ka/z89s21Bx2AAfzBCNc+vpDSuoCDM+uYQjDNK8C/fXMtLy3ZeVDnbylv4LK/zmdXtf6BERFnVTYE+cELy7s9TsTCLU8voaSq473EIiKdtbWigb8t2t7tcXbXNHHv2+sprztwG2q8JHwIDgbDrNpZy3MLu/c/cGtFA795Yw2lNQrCIuKMpkCIl5fupLYp5Mh4G/fUUVxe78hYIiK7qhv53ZvrHBvv+UXb2+zUGw8JH4L31Af43t+WOjLW3z/dwS6FYBFxSFlDkEe7+CBcRx747yZ9WBcRRwTClo83lTs2XjBseXPVLsfG60jCh+Bl26spc3APyv+9s4Gy2p5byheRI1c4EnH8g/WiLZWEIoffA9Ei8vmzpuTg9wG35f31ZT22JSKhQ/DuGj9PzNvi6JhvrymlKdT5B+tERNoSq0Rjd9U2hQiGe+52o4gcuRYWVzo+5sqd1TR0oUBBdyR0CA6FIyzbXtXhcW6XIdXnxufu+NcVjliqG4NOTE9EElxVQ3yelA6FtRIsIt0TiUQor3f+g3p1YxCXcXzYmBK6bXIoYqnxx37gZPrgXM6d1JehBelErKUhEMbndpHkdVFeF+Dt1bt5eelOmkIHrqis2VXLmD5Z8Z6+iBzhXKaH/iUQEekil8uFtxOLg13ldbnoqStfQofgSIxGITOG5PKd00ayYkc1j31UzNrdtbQ+rCA9iTMn9ubp62bwz+UlPPLhZlpusWsMajuEiHRfn2znm/C4DPg8CX0TUEQcMrZPpuNjDilIa+6p3AMSOgS7Xa4WXxt++OVRFGYkc/3cRVTUt30bck9dE498WMxjHxVz7XFDmHvNdG57bsm+/XtZKd64z11EjnypPjdetyHo4PaFIQXpaDOEiDhhdG/nQ/D4vlkkeXvmg3pCLwe4XYb8dB8uA7//2kQ2lzVwy9OfthuAW4pYePC9Tfzyn6u577Ip9M5KBmBEr4x4TltEEoTHZTh5VC9HxzxzQm9Svc62JRWRxGOtxe0yFDjciv20sUUEeqjAQGKHYAOTBuRw26kjWbKt6qArRawqqeGHf1/OHy4+ivQkN6k+/QMjIt3nMobLpg9wbDyv23DqmF6qYCMi3WatZeWOai6Z1t+xMYcXplPrD9FTBWwSOgQbY7j6mEGMLMrg4W4WpF+zq5aXl+zkN+dPpN6h7k4ikth8HhduF5wxrsiR8W4+aRiNgbC2bIlIt0UfjDtmWD79crr//IIxcMdXRvPmyl09Vh0ioUNwQyBMUWYyP31pRZvHFGYkccKIAr48vohTx/RiWGF6m/9znpy/lSEFaWworY3TjEUkkTSFIqQnebj99JEUdvOW41H9sjhldPPWiiqVcRQRB4zvl8UvX13N/106CU83k+v1xw+luLye3HQf6ck988haQodgn9uwZlcNO6v378jULyeF/zljJC/e+AV+etZYxvfLIj89iYF5qVxz7GCemT2Tey+ZxPTBuQeMed+7G+iV6fwT3SKSeOqbQizYXMn2igb+ctnkgw7CY/tk8pOzx+J1Gx56f7NKr4mII1zGcO6kvqzaWcMfLjoKr/vgri3nTe7L0YNyGNMniy+NK8LfQ80yEro6hMsYnlu4fd/3PreLW08Zzvi+WTz0wWbu+dfaA8qjRQ0tSOeKmQO54YSh3PGPFeyoagTg9RW7uO3UkT0xfRE5wu2oamTKwByuenQBF03tz99umMlPXlrJu+v2dHqMWdMHcMOJQ/nR31dQUt3Id08bqTKOItJtkUiEFTurGds3k4semMd5k/vy2NenccffV7CprL5TY6R43dx+xkgyU7zc8MQiLpran69O6keghxr6JPRKcNhalmxr7hjXKzOJuddOo7isniseXsB/1+1pMwADbNxTx09fXslv31zLHy4+ihNHFAAQDFv8euhERByQmezh/Q1lTBuUy/QheZx/30d8ZUJv/nzp5Jh3oqLcLsPpY4t48trp5GckceF9H3PLycMwGCzg0UqwiDggM9nLn95aD8CLi3fw43+s4OfnjuPHZ45mSH5am+dlJHm4YuZAnr5uOou2VPKd55YSDFueW7gdn7fnrk8JvRJsLVQ1BMlP93HfZVP48UsrWLmzpktjrNxZw1UPL+C+WVOIWMt768tYv7uOUUXO184TkcSSnerj7VW7+MlZY5n10Hz8wQjf+9syhhakcdn0gdx+xijK6ppYv7uOplCYtCQPo4oySE/y8N76PXzr2SXsqW2uX/7Npz/lj5dM4sH/buKnZ485xD+ZiBzujDEMyk/jw43l+17buKeey/46nxlDcrnt1BH0ykpmW0UD2yoaCFtLbloSI3qlYy28tGQnl8yZv9+dqUA4wiebKzlzQu8e+RkSOgSHIs01OO4+fwK/+OfqLgfgqPpAmJueXMzjX5/G6l211Kk6hIg4wO0y3HDiMH7+6ir8wc9qBm3cU89dr64CIC/Nx5CCNHweF42BMH9+ZwO1Ma5BO6v9PLdwG5MHZvfY/EXkyGWMYWtFQ8z35m2qYN6mCgD656bQNzsFlzFUNwZZv7uOQDs10D7cWMZZE52piNORhA7BbmM4f3Jf1u2qZfHWym6NVdcU4hf/XM3Pzh5LINRDBe5E5IhW4w8SjliWbq9u85jy+gDlnWzw8/zC7bxw4xeIRNQzTkS6b9GWjrPTtopGtlU0dnrMlTtqVCe4J7hdhstnDOSPb693ZLzFWysJhCJM6JflyHgiktg8LtdBN/Fpy8tLd+LuqSKcInLEstZSWuPv+MAuqmoM9Fhr94QOwRlJbhZuqaTJwZXbxz/eQnIP9bwWkSNbitfNguIKR8d8e/VuwloJFhEHeN3O5x2vy0W4h6pDJPR2iLpAhH8uK3F0zMVbK3tsGV9EjmwNgVC7VWq8bsOIXhkMLUjH53HREAixdlctm8rq2zxve2UjLq0Ei0g3WWsZ3ivD8XEHF6RBD12iEjoEW2tZVXJwD8O1Z09tE/1zUx0fV0QSy67q2LcavzA0j1kzBpKX5mP1rlo27K6lKRShMCOZ40cUMKIwgzW7anli3paY17imoD6pi0j3uFwuxvd1vhLW+L5ZJHt65o56QofgYNg6uhUiasOeOiYPzHF8XBFJLOFWy7l9s1P4xbnjKC6v55431lBcHvvJbICJ/bK48cShNATC/OLVVTErRoiIdEd6kpf8dB9ldZ17OLczvjSuiGAPbdlK6M2r8foVB7UfQkQckJv2WZvkY4fl86dLJvHbN9fys1dWtRuAAZZur+aWpz/ljRW7ePyaaQwt+KxwvecgW5uKiLTkMpaLpw1wbLyhBel4XC6yU3yOjdmehA7BB9vjuiMF6UkdHyQi0oG8tOZ/CGYOyeOGE4Zy1cMLulzP/D9rS7nl6U/57YUTGZiXSn66D5c6xomIAzJTfJwwooA+WcmOjHfHV0aDgRSf25HxOpLQIdha6JeT4vi4wwrTHR9TRBKPx22YOjCb288YyU1PLjroLQ3bKxv5znNL+c35Ezh2WH5cnugWkcST5DF8tKGcX503vtulFy+fMZB1u2sZ0IPPVCX0lTDF52bmkDxHx8xJ9eLroQ3dInJkS/a4ueuccdzzr7XU+Lu3p3dTWT3/WrmLW744jGSPVoJFpPvK65o456g+vL16N7+7cCKegwzCZ0/sw3HD88lJ87Fudw0V9U0OzzS2hH4wzoPl6mMG8fyi7Y6Nedn0AaT5EvrXKiIOSfe52NQU5uON5Y6M99hHxVx9zGDcWgkWEQdkpyaxvrSW8X2z+WhjOY9cfTQ/+vsKtlY0MKQgjYum9mdc3yyyU70YoDEYZuOeet5cuYu3VpeS5HFx26kj6J2VzNx5xdx59jhSfe79noeIp4ROa2kpPrJDlumDc5m/ufsF6dN8bi6ZNgCX/n0REQdU+8Pc+44zHS0BIhaeXbCV2ccPcWxMEUlchZnJuFwwJD+dVSU1/PzVVfz1yil43W7q/EFeXVbCn95ez9aKBsIRS166j3F9s7hgSj9+etZYDPDbN9fxwuLtzLliKhnJnh4LwJDgIdjrduHzwD0XTOCMP7xPYzDcrfF+fu44kjxusnroqUYRObKFreXDDWWOjvnP5SVcMn0AWam6TolI94UjcNvzS7hgSj8undaf6oYQP/rHp6zbXXfAsaW1TawuqeX5hdvJSvFy80lDue20EdQ3Bfn6o5/w6NXTyE2L8ZfEScKvWab7vCS7Xdw3a3K3NnVfNLUf0wfnYhL+NyoiTqlpDOJ0ucwtFe2XVhMR6YqFxRWsLqlhyoBcnpi/lQsf+DhmAG6tujHIr15bw41PLCLF52FkUQY/eWkFe2pjNwmKh4SObA2BENsqG2gKRxiQm8ojVx1NRlLXF8dnHzeEb50yAgtU1AWorHeuaLSIJK5tlY2Oj2mtOsaJiDNKqhr58zsbePHGY7j79dU8/vGWLo+xcmcNFz3wMbefPopaf4iGQPfuyndFQofgplCEuqYwp//hfXZUNlKU6eO1W4/jlNGFnTp/cH4aL9w4k4un9ScUsXz1zx/y+ooSAmqWISIOCEficy2JxK1VkIgkkoZAmOtOGMIry3byxsrdBz3O7pombnhiEb+9cCJ//3SHgzNsX0KH4HDE8pd3N9AYDPObN9aQnerD5zb87OyxvH7rcVx//BCmDMwhdW/RZrfLMKJXOudP7svca6bxyFVH0z83hTSvm7dWl7CnLsBjH23pdq08ERGA/Dg13vGpOoSIOGBLRT1jemdy79sbuj3Wml21vLp8J2OKMtlV7fxdsFgS+sG4/PQkfn7OOArS1nPrKcOpb4rw7rpS7n59DcbASSMLOXV0L245eRjJXjcRaykuq2f5jmpu/9sySqr9fGV8b37wpVF8cVQRWMOxwwvwqSWpiDigMNP5EJyd6tUHdRFxREF6En94az0hhx5euP/dTbx+63GOjdeRhA7BlfUBKuoDfPOU4QQjll+/vpo3V322nP/6il28vmJXu2P8c3kJi7ZU8tR10zlzQm/qmsK60SgijnAZw6C8VIrLnXuYbcbgPHWME5FuC4cjZKf6+Peqg98G0VpdU4iFxRWcOLLAsTHbk9Ah2BhIT3LTFIzw23+v3S8Au12G6YNzmdgvm1G9M0hL8hAMRyguq2fFjho+2FBGdWMQgF01fi6dM5+/3TiTFK8bqxQsIg7ISHLz9WMG85OXVzo25uzjh5CkjnEi0k1ut4vNZfWOr9r+e/VujhuhEBx31kJqkoeFxVW8srQEgGSvi2uOHcIpowv5eGM5C7dU8o8lO6hpDOLzuBhakM7E/tncP2sKWysa+Mu7G9hS3sCuGj+/em01P/jSaJIP8c8lIkcGj9vFKWN6ce87G9hT1/02opP6Z9M7K4m0g6iCIyLS2ifF3W801tryHdU09lCFiIS+J+Z1Q1PI8j8vLANg6sAcnrp2BiXVjVx4/8fc86+1vLOmlJJqP/WBMJUNQRZuqeShDzZzyZx5PDl/C3efN4GrjxmEMfDa8l3sqW0iFFJ1CBHpvlAwQiAU5mfnjO32WEkeF3ecORpjDHX+nitBJCJHpkgkQkm18zV9y2oDuHrouYWEDsGhsGXJ1kqqG4OcOaE33zh5GLPnLuTFxTs6tby/bHs1sx6aT1aKl9+cPwGXgT//ZwNh7YcQEQcEI5Z739nApj313HTi0IMex2Xg7vMn8OiHxby1upRkLQSLSDe5XC7iEVVdBnpqX2lCh2B/KMIT87dy3PB8vjqpL7MfX0RZXdcaXYQjlj+8tZ41JTX8+Mwx/GdtKcEeeqpRRI5sgYjl1WUl/PbNtfTOSuH7Z4zC08UVkowkD3+6ZBKLt1TyyrISnpq/lYqGUJxmLCKJIhKJMLTQ+R7H/XJSHe+U2ZaEDsHhiGVLWT23nTqCbz2zpFtNLh7+sJjMFC/HDMvf98CciEh3NAbDNO3dXvXjl1awvaqRp66bwVH9szs81xg4dUwvHr9mGi8s2sHcec2dnNbtroW4rN+ISCIxxjB1YK7j447vl0V6ktvxcWNJ6Jti4YjlhhOH8se31lPb1P2VkbteWcWjVx/Nht11jO2T5cAMRSSR7WjVNvmJeVv477pSbj5pGN//0ijeXLmLJduq2VBaS1MoQlqSh1FFGUwemMPJIwtZsLmCKx9ZQE3jZ9e3UMTSFNKeYBHpvl6ZyaQneahzIENFnTOxDz3VeDehQ7AFRvbK4CcvOVN+qLoxyDtrSpk6MMeR8UQksTXEeEJ6W0Uj339hOZkpHk4YXsDpY3tx44lDSfK4aAiEWbu7lmXbq5jz3qZ9q8itRfTcgoh0kzGG0lo/F0zpx6MfFTsyZlFmMn1zUnrs2aqEDsHJHjf/WOJsj+pnPtnGWRP7ODqmiCSm9m4J1jSGeGVZCa8sK+nyuG5XQu+EExGHNDSF+Pqxg3jx0+373XE6WD89awwLNpdz+tgiB2bXsYS+EgbCET7eWO7omHtqm7r84IqISCy9s1IcHzPV58ar1u4i4oDB+ek8M38rvzl/QrfHOm1ML/rlpGItJHt7Zo02oUOwy8CWCufakUZtjcOYIpJ4kjwu8tJ8jo45sX82LqMQLCLd53Ublu2oJivFy/e/NOqgx5kyMIcfnzWGG59YxPEjC+mpppYJHYJDERuXUnRltV0rsyYiEkuS18WFU/o5OuZl0wfg00qwiDigMRjmlpOHc+mc+Uzsl8X/XTqJjC52pLx0en/+cNFRXPHX+Zw6thcbS2up8vdMla2EDsHx4tZvVUQcYIDzJvcj2evMRaVfTgqjizLx6iIlIg5IT/JQmJnErOkDuGTOfNbvruPVbx7LRUf37/C6NX1wLs/fMJMvj+vNGX94n6ZQhMtnDGRYYUaPXaMS+sE4r9uFz+3qVn3gWAbmO188WkQST1qSh4ZAmO+eNpJf/HN1t8f75bnjSPG6yUzxOjA7EUl0wbAlEAxz/QlDWbmzhj++vZ5nPtnKj748mptPGsbmsjoWbK5g0556ItaSl+Zj2uA8JvbPorwuwL1vr+e/68tI87m5//Ip+DwuKhsCpCY5/zxELAkdgl0GRvXOYNn2akfHLUhPcnQ8EUlMwXCEUMRy9KBcTh3Ti3+v2n3QY9180jBy031goDEQJrWLtyxFRFozxvDzf64hJ9XLny6ZxA//vpz315fxzWeWADCuTyanjyviy+N74zJQ2RDgteU7uf2FZQT2lnAszEjiwSumUlLdyFWPfMJT107H20PPLST0VbAwI5lzj+rraAge3zeLtB7qdCIiR7Zg2PL++jKmDsrh+uOHkORx8WoXS6IZ0xyAZwzOJRi2vLB4O7OmD1AIFpFuq2sKsnhrJQ2BMJGI5Wdnj2XepnLufmMNNY0hVuysYcXOmpjnugycP7kfs48fwrrdNdz8VHNw/mBDGRcd3b9H5m/sYVg0ferUqXbhwoWOjLWr2s9x97xDMOzM72HOFVM4dUzP1LcTkSNbjT9I8Z76fV2OS6r81DWFuOvVVZ1qz94/N4VfnDOOmsYQhZlJBEMRUpM8DC1MJ0tbIkSkm7aU17OzqpFrHltIQyDMyaMKufWLw2kIhNle2cAbK3exfHs1pbVNQHOJxrF9MvnC0HxOHFlASVUjjcEI33l+KQC3fnE4xwzNY0yfLNKTnfmgboxZZK2dGuu9hF8KyErx8u1TR3DPG2u7PdbYPplMHqBucSLiDLcBl8vgNoYIlvRkD/5gmDlXTGH97jpeWrqT5duraQx+1lkuK8XLpAHZXDClH5nJHgJhi89rSPG68bkNPo/RE9Ei4ojCzCRqGoM8dOVUZs9dxFkT+/Dcwm08OX8r4/pmcuywfL46qS8F6UlYoCkYZlVJDYu3VvGXdzcwMC+Ne86fQN/sFC6Y0o8pA3MY3ivDsQDckYRfCQYor2vi8ocWsKok9pJ9ZyR5XLzxreMYnJ/u2LxEJLGFwhG2VtTT0BTB7TI0hcOs213L8MIMVu2sIWItA/PSSPK6sBZcxlDjD7KtooH0JA9DCtLZWl5P35wUvC4XHrehICOJojg04RCRxNMYDLGptJ46f5De2Sk8+N4mnpi/tUtjDC9M575Zk6luaL67NaQgnRwH66O3txKsBQEgK9nLg5dPYfBBVnVI8rh4+KqjdXtRRBzlcbsYkJtGapKLcMTiwuAPRHAZQygSISfNR7LXTThi8QfDhCOWjGQPWSleAqEIyR4XZXVNuI1RABYRx22raOTiOfPon5fGIx8WdzkAA6wvrePGJxZTlJ3CXz/YzGMfFVPn734L5s5I+JXgUCjC5vJ6bntuCb85fyL3vrOe11fs6vT5g/JS+ePFk5jz/iZOGFHAF0cXkpum6hAi4pyWK8Iet6GiPkBBho+0JC9NoTBbyxsIhCOk+Tz0y03F4zI0BcNUNgSwFnwelwKwiDiusj5AYzDMA+9t4rGPirs11vDCdB69ehrJHkNeRrIzE0QrwW2KBuCvPfAxvTKTqahr4vjhBfz50slM6p/d7rm9MpO47dQR/Pq8CSwsrmD64Dxuf2EZb68upaK+qYd+AhFJBC1XhC0Wj9uQk5ZEn+wUBuenc8LIQk4dU8QXhuUzIDeVPtkppPjceFwuvG4FYBGJj2A44kgAhuYV4aseWUCTQ4UKOiOhH4yraQrxs1dWMWVgDpfPGJyXu20AACAASURBVMh1cxfRGAwzqiiDy2cM5I4zx7B2Vy2rS2qo8QfxeVwMK0hnTJ9MQmHL0wu28oe31hGxcNOJQ7nr7HH87JWVnDK616H+0UTkCBMNwjsqGynISCa/g3rkLUOvArCIxENZXROPf1zc4XE3nTiULwzNZ/bc5ioSbVlfWsdjHxVz/QlDeuSuekJvh6hpDFLXFGLTnjque7w5ACd5mldO6ppCuEzzBu3RRc1PKgbDlk176lldUkNjMIwxkJ3ipXLvZu6bThzKBVP6kZXiIS/duaV8ERERkc+b3TV+PtlcwS3PfEpbcfLmk4bRKzOJd9aUcs2xg7l+7qI2g/CXxhbx07PHkJvqw+d1pueCSqS1IRiOsK2iYV8ATvG6eeDyKaQlebh+7kLK6gJsKK1jQ2kdXrfZr5awMfDLc8czbXAu33hqMWt21fKXdzficRsumz7wEP5UIiIiIvFX5w8xsiiD33/tKL793JIDgnA0AP/kpZXNL1h44PIpMYPw6WN78ZOzx/DJ5nK+MKyAPIdCcHsSek+w22V45MPN+wXgxz8u5q5XVnL/rCnkpzeX6BhVlMHCH53C7OOHAJ8F4C3l9cz663x+9dXxjCrKAOCp+VvxuHqm3Z+IiIjIoZKT5uW5hdtYvqOa35w/gZbdjg8IwMC76/bw0PubeeDyKaT6Pgu5p4/txUVHD+DaxxYyZVAeeR1s93JKQq8EZ6f6+OVXxxO2cPmMgTz+cTFvrS4F4OevruL+WVP47Ztr+dPFk8hK9XHTiUMBGJSXxpbyeh54bxMANz25mL9cNpl7/rWGu8+bQK6D9e1EREREPo9Ka5v46websRauOXYwvzl/Av/zwjJuOnH/APzd00ZwwshCLnrgY95dtwf4bEX4uOH5XHT0AG58YhFNoQiPfVTMLV8cTnoPtHZP6D3BUbtr/Nzxj+X8e1Xpfq9P7JfFA5dP2e+hkt01fuZ+XMz//WfjfscWZSbzzOwZDMxLxRitBIuIiMiRrb4pxHvr9nDTU4v3BeFzjurDkm1V+wLw904fyawZA0n1uVm3u5YL7/+YhkCYE0cU8K1TR1BRH9gXgL88vohfnDve0cXE9vYEJ3wILq3x86MYATiqZRAurfHz+Lwt/N87G2IeW5SZzDPXz2BQ3sE13RARERE5nLQOwpP6Z/PptirgswAcbSYWDEf2C8JjemeycU9d3AIwqE5wm/bU+vnZKyv3C8CnjenFZdMH7Pt+6fZqrp+7iOrG4AEBeGyfTL572sh9e2B21fi5+IF5lNb4e+xnEJHEsqfWT1Ow7RJDLVXWN1GpuuUiEkdpSR6OH1HAXy6djDG0GYABvG4XI3pl8PwNM0n1uVlVUhPXANyRhA7ByR43l88cRJKn+ddwxrgiLjq6P0f1z+aaYwfvO27p9mq+8Ou3DwjAPzt7LOFIhF+fN35fED5zQu8e/RlEJHGU1vr55/JdbC6v7zAIVzUEWLq9mqXbq6lqCPTQDEUkEbUOwrECcFTrIHyoAjBoOwS1jUFWltTwxLwtfHVSX256cjGBcITfnD+BtbtqeeiDzQecEw3ANz65mD21TVxz7GCG90pnw+46Zh8/hMJM1QgWEWeV1vp5cfEO7n59DVkpXp7bu/UqKUYZoaqGAEu2VXHtY83Xyb9eOZWj+meTnaqHdkUkfuqbQuyu8ZOXnhQzALcUDEfYUdlIZoo3rgFYe4I7UFnfxPrSOi5/aAFNoQjQXAYtVhBuHYCjbjhhCFcfM5heCsAi4rCWATiqrSDcMgCHIs3Xd4/LKAiLSEI6pHuCjTFnGGPWGmM2GGO+H+P9AcaY/xhjPjXGLDPGfDnec2qptjHAhtL6/QIwgLXwPy8sY2RRxr6tEW0FYID7/7uJRz7crP3AIuKoWAEYoLoxyNcemEdxi60RsQIwQChiufaxhSzZVqWtESISN4FQhIr6AHVNwQ6PtdZSWus/pNekuIZgY4wb+DPwJWAMcIkxZkyrw+4AnrPWTgIuBv4Szzm1VNsYYM2uOmY9NH+/ABzVMgj/+MzRbQbgqPv/u4mHFYRFxCFtBeColkG41h+MGYCjFIRFJJ4CoQjLtlcx89dv8/bq0naDsLWWLRUNfPmP7/OXdzcesmtSvFeCpwEbrLWbrLUB4BngnFbHWCBz79dZwM44z2kff8jy0IebYwbgqGgQLqsNtBuAo15cvAOVCRYRJ3hcLp6cv6XdY6JB+K8fbG4zAEeFIpYH39tEuJ1jRES6KhqAL/tr86Lit55d0mYQjgbgC+77iLK6AA++t+mQBeF4h+C+wLYW32/f+1pLdwKzjDHbgdeAW2INZIyZbYxZaIxZuGfPHkcmV5CRxM/OHstJowraPc5auO+/GzsMwIUZSTx7/QwKMrQvWES6L8Xr4slrp9M/N6Xd46obg/zxrfXtBmCAaYNz+X9fO4okb0IXBhIRB7UOwNCcm2IF4dYBOOpQBeHPw5XwEuBRa20/4MvAXGPMAfOy1j5orZ1qrZ1aUNB+aO2KXpnJ3H3eBL44qrBb40QD8OD8dIdmJiKJLhSx3PrMEv508aQOg3BHpg3O5TunjeC255YQCmslWES6L1YAjmodhNsKwFGHIgjHOwTvAPq3+L7f3tdaugZ4DsBa+zGQDOTHeV77cQHfO2MkJ448uHBdmJHEnCumkpnUfjkQEZGuCEcsN54wlO/9bVm3gvC+APzsUn70ldGkxiirJiLSVVvK62MG4KiWQXh7ZWObATjqwfc28eT8rdT6O36wzgnxDsGfAMONMYONMT6aH3x7udUxW4EvAhhjRtMcgp3Z79AJpTV+Hpu3hfP+8hHXHDu4y0G4MCOJ+2ZN4Yd/X87XH/uEXdWNcZqpiCSa7FQf0wbncvvpIw86CLcMwA9eMYXhBen4FIJFxAHpSR5OGNHxltJbn1nCyb97t90ADNArM4lTR/fqsecW4hqCrbUh4BvAv4DVNFeBWGmMucsYc/bew74DXGeMWQo8DVxle6h48a5q/75WyA2BMNfPXcSNJw5l8oCcTp2f7HXx0JVH85OXVrByZw1Lt1cze+4idlWrOoSIOKN1EL5/1pQOi9BHjeyVwQ++NEoBWETiwmUM1x43hNPG9Orw2GAH27B6ZSZx32VTcLtMj92t8sT7L7DWvkbzA28tX/tJi69XAcfEex6xuAz0btHcYnB+Gh6Xi20VDZ06vykUYfWuGmYMyWPlzhoAclJ9qg4hIo6KBuH/vWACxWUN1DWFOnVeSU0jwbDl8a8fTf+cVAVgEXFUr6zmDHXtcUMAeHPV7oMbZ28Azkrx0j8npceuVZ+HB+MOmcLMZE4b24tfnjuOsX0yueuccdzwxCL21LVfBSKqdUONE0YUcM8FE9Q1TkTiotYf4tZnPu30rcKaxhDXPb6QsG2uRSki4rReWckMzE3t9IrwAecfogAMapsMQGWdnz11QS57aH6HZdBiMQZ+d+FEjhmWrwAsIo6ragiwdFsV13RQB7gtbbVYFhFxyu5qP1sqGvjr+5s6vSLcEwH4kLZN/rwLh8NUNYYOOgBD84rwd55fyifFFZQd5BgiIrF0NwBD7BbLIiJO6pWVzND8NL5x8rBOn3PWxD4UZSX3+ApwVEKH4HA4zNaKRr724LyDDsBR1sItT3/KvM3lCsIi4ggnAnCUgrCIxJO1ltpAiK8/+kmnz3nog818UlxBINJ25954SugQXO0Pc8dLKzrVCe6t247vVGe57z2/DI9bT8aJSPd5XC5ufXZJpzrBvfKNYzvVWe47zy/FrxAsIg7qqBFG2+c11xF+a1XsFsvxltAhODfNx/9eMJHhhW13eYt2ghtWmMHd501oNwgne13MvWYaysAi4oSIjfDUtTPISGq7kE+0DvBPX17RYR3h/rkp3H/ZFDweXaRExBkHG4A/Ox++/dyhCcIJHYIB+mSn8NjXp8UMwq1bIUdbLMcKwsleF09cM52RvdLJSPHFfd4icuQLhi0Pf7CJB66YEjMIt2yEcfSg3HYbavTPTeFPF0/i3nfW4w8cmluPInJk6W4A/mycQxOEEz4EQ+wg3DoAR8UKwgrAIhIP1lr65abyl/9sPCAIt+4Ed8vJw/je6SP57vNLDwjC0QD83eeXcvLoXrhdWgkWke7bVtFxK2RorgIxfXBuu8dEg/A7a0o7XQu9uxSC92oZhJsD8MwDAnBUNAh/cVQhyV4XT16rACwizsvPSGbW9AFMHZSzXxCO1Qo5PdnL9MG53H7GqP2CcMsAfPsZo5g+OJfsVF2rRKT7vG5DYUb7pWGLMpO5f9YUvnf6yA7rCCd5XPTNTiUc7pm7VaoT3EJptZ9dtX7CEUtBRhJ9slJwtbFiUl7XxJbyBizNK8FDC9JJVv1NEYmDslo/T8zfysLiSr596ghCkUibrZCrGgLM31zBPW+s4bcXTgRQABaRuNhR2UhZXRM/eHE5q0pqDni/KDOZ+2ZNJjPZS2aKh81lbdcRTva6eGDWFNKSPAwrTHfsWtVenWCF4L1Kqhq5eM48moIR0pLcVNQHeOHGLzAoL+2AIFxe18QtT3/Kkm1VjOyVwYqd1TxxzXQm9s9WEBaRuIgG4X+v2k1VQzBmAI6KBuFf/XMVAD/8yhgFYBGJix2VDZTVBQ4Iwi0DcLQOcFsNNVoG4OG9MshK8To2P4XgDkQD8Jbyhv1ez0n1HhCEowH4o43l+x3rdRsFYRGJq7JaP88v2sHxI/LbDMBR0SAMKACLSFxFg/BPX1rJGeOKeGnJDn513vj9AnBUyyA8rDCd99fv4bunjYxLAAaF4Ha1FYCjWgbhyoZAzAAcpSAsIvFWVttEZrKnU92Vquqba6BnpyXFe1oikuB2VjbgchmeXrCNi47uTygcoSgzOea1ane1n1Akwr9W7uKkUYWEwhEKM1McD8Cgtsltqm4MctvzS9sMwACVDUHOv+8jVpXUtBuAobmc0ZWPLKAppPJDIhIf+RlJnW4vmp2WpAAsIj3C43Zx16ur+ePb67n5ycX4PO42r1XGwIuf7uCuV1dz6Zz5+DzuuATgjiR0CM5K8fLbCybSN7v9LkuVDUHOvPeDdgMwgNtlmHP5VLzqliEiIiIJYneNnztfXslry0sA+HRbFTc+sYhd1f4Dji2t8fPswm387s11AJRU+7n4wXlsKa/v0TlDgodggL45KTx3/cx9QXjqwJwOS3hEDchNZdaMgUBzAH70qqOZMiiHVF/b3Z1EREREjhS7a/z87OWVvLZi136vxwrCrQNw1KEKwgm/JzhqR2Ujv/znKq78wiBq/CFeWbqTl5fubPP4Abmp/PHio1i3u47SWj9H9ctWABaRuAuGI3jdnVu/iESat2a5XAm/3iEicdBWAG5pUv9s7ps1BY8Lnv7kwADcUu+sZJ6ZPYOBeWmOzbG9PcFKbHvlp/u49ZThXPjAx/gDEf582SSAmEE4GoBve24pm8vq+eW54xhZlKEALCJxVdcUZFtFIzkpXoo62MYViUTYWtGIobljnIKwiDitsiHAW6tL2z3m021V3PDEIiYPyObhD4vbPbak2s+Li3dw+cyB5KfH/3kGXRWBpmCYzWX1XPjAx9Q0hgiEI9z85KecNbE3Z0/ss9+xrQMwwI/+sYJ/rdzFnpoD976IiDihrilIcVkDTaEwO2v87KpubPPYSCTCtspGqhuDVDUG2VbZuG9VWETEKb2zknn060fj6+Du1JJtVR0GYIDLZwzksukDeiQAg0LwvgD8tQebA3BUrCAcKwBH/fillbyhICwicRANwHVNIa54eAH/+6+17KyOHYSjAbiqIcitz3zKrc98SlWDgrCIOC8rxcfYPpmdCsIduXzGQG45eRiFme23YXZSQofgtgJwVMsgfN1xQ9oMwFEKwiLitJYBePbchdQ0hvh4Y3nMINw6ABeXN1Bc3qAgLCJx40QQPhQBGBI8BNc1hfj162tiBuCoaBDum5PSbgCO+t9/rcXdzU9DIiIQOwBHtQ7CsQJwlIKwiMRTd4LwoQrAkOAhOC89id+cP4FJ/bPbPS4QjnDnyys7DMAZSR6emT2TVG9C/1pFxCnWUB8jAEe1DMKrdtbEDMBR0SBc4w9R39T2B38RkYMRDcIPXRWzEENMX53Ul29+8dAEYEjwEAzg8xjuOmccR3UQhDuSkeRhzpVTyUzx4POoZbKIdJ/FcsMTi9q9WxUNwh6Pq80AHFVc3sAPX1yORQ19RMR5TcEIi7dWdvr4jXvqCB/CG1MJHYKrGgL8zwvLueqRBfzoK6MPOghnJHl48Iqp/Ont9Zx17wdUNgYcnqmIJCKPy8XvLzoKt6v90PrxxnLO+MP77QZggMxkD7/72kTSfPqgLiLOijbC+P2/13f6nGXbq7mhjc5yPSGhQ3BakodvnzIcfzDMDXMXHVQQjgbge99Zz0cby7n5pGF4VY9TRByQ4nMzfXAeD105tcMg3JHMZA9/u/ELDM1P03MLIuKotjrBdcaSvXWED0UQTugrodftYnivDJ6/Yea+IHzHV0YzundGp873uV3MufKzAHzHV0bztan9yUzxxnnmIpIonAjCCsAiEi/dCcBRhyoIJ/zVsGUQLkj34XYZ6pvCnTo3bC21/iD56UkKwCISN90JwgrAIhIvTgTgqEMRhHVF5LMg/OCVR3Pbc0vZWtH+vrqocMRy85OfcuHUfnx1Ul8FYBGJmxSfm2mDcphzxZROB+GMJA/P3TBTAVhE4mJPXVOnAvDlMwby6NWd6yw35/1NVNY3OTXFdumquNfuGj9XPrygwzJorQXCEa55dCHrdtdSrQfiRCROIpEIe+oC9MlOIT3J06lz+uWmEApb9tT1zD8oIpJY8tOS+MmZY9o9ZtaMAXzjpGGM75PFQ1dObTcIzxyax7XHDSYnTW2Te8z2ygYuf6jrATgqEI5w5cOfsGpnjYKwiDiuZSOMG+Yuorox2KnzVpfU8svXVrfZYllEpDsqGwM0BkP84EujYr5/6bQBHD0ol5ufWsycDzbz/KLt/N+lk2IG4ZlD8/jmycP526LtlPXQB/eED8HdDcBRCsIiEg/tdYLrjLZaLIuIdFdRZjIT+mUTikQOCMKXThvA9CG53PbcUhZuqeT+/27k5aU7eXVZyQFBOBqA31xVwkVT+5OfrpXguKuoD3D735Z1qhPcE9dM67B8WiAc4epHP8FaJ2cpIomquwE4SkFYROIhO9XH+L5ZBwThlgE4HNk/FLUOwi0D8I0n9Gz3OGMPw8Q2depUu3DhQkfG2lJez8UPzqOkjacRM5I8PHv9DIYVpFHREOKGJxaxZFtVzGPdLsP9syYzZWAuuWk+R+YnIomr1h9k0576bgXglmYOzeN/Th/J4Pw0slJ1jRIRZ1Q1BFi+o5pl26sY3zebyoZAzADc0tkT+3Dp9AFYS1wDsDFmkbU2Zi/nhF4JBhiYl8Yzs2fQO+vAX3w0AA/JT8Pn9VCUlcz9s6bEXBFWABYRpwVCkU4F4MxkD7ecPKxTneX+31vrCR+Gix8i8vnVckV47rziDgMwNK8I/+GtdYdkBTgq4UMwxA7CLQNwsu+zJ7FjBWEFYBGJB4/bxcXTBrR7TLQO8E0nDu2wjrDbZfj6MYNI8XauuoSISGdFg/Cl0wd2GICjCjOSD1kABoXgfVoG4bYCcFTLIKwALCLxkpXi5ZJpA/h+G09et2yEkeLztNtQw+0yPHTlVKYPziPF54731EUkAQVCEVaX1HT6+O2VDXQyL8dFwu8Jbm1LeT31gTBD8lJjBuCWdlX72VxWz8iiDAVgEYmb6sYgTy/Yyt2vr9n3Wlud4BoDYeZvLueaxxbuW41RABaReCut8fPipzv2u051xpSBOfz50skUxdiW6gTtCe6CgXlpDG1jBbi1oqxkJvfPUgAWkbhqvSLcXivk1i2WFYBFJN4ONgADLNpSyc1PLe7RdslRWgkWETlMVDcGeXHxdo4Zlt9hK+ToijCgACwicdOdANxSvFaEtRIsInIEyErxcsGUfh0GYGheEZ42OJdpg3MVgEUkLpwKwHBoVoQVgkVEDiMZyd4OA3BUqs9Daie2domIHIw9dU2dCsAXH92fBy+fgtfdfhnHRVsqmfP+Rirr1TZZRERERD6nCtKTuOMro9s95pJp/bnt1BFMH5zLw1cd3W4QnjY4l+uOH0pOmtomi4iIiMjnVGFmMmdP7NNmEL5kWn++fcoICjOTydpbR7itIDxtcC5/umQSRT1YM1ghWEREREQOSltBuGUAjspuIwgfigAMCsEiIiIi0g2tg3CsABzVOggfqgAMKpEmIiIiIg4orfGzcU89QwvSOmyFXNUQYHNZPb2zU+IagNsrkabHhkVERESk2wozk8lL8+J2d1yWMTvVx4S+7k4dGy/aDiEiIiIijuhKqD2UARgUgkVEREQkASkEi4iIiEjCUQgWERERkYTTrRBsjEl3aiIiIiIiIj2luyvBqxyZhYiIiIhID+qwRJox5ra23gK0EiwiIiIih53OrAT/CsgBMlr9Se/k+SIiIiIinyudaZaxGPiHtXZR6zeMMdc6PyURERERkfjqTAi+Gihv472YbehERERERD7POtzOYK1da60ta+O93dGvjTH3OjkxEREREZF4cXJP7zEOjiUiIiIiEjd6sE1EREREEo5CsIiIiIgkHCdDsHFwLBERERGRuOl0CDbGjO/gkD92cy4iIiIiIj2iKyvBfzHGLDDG3GSMyWr9prX2UeemJSIiIiISP50Owdba44DLgP7AImPMU8aYU+M2MxERERGROOnSnmBr7XrgDuB/gBOAPxlj1hhjzovH5ERERERE4qEre4InGGN+D6wGTgbOstaO3vv17+M0PxERERERx3WmbXLUvcBfgR9aaxujL1prdxpj7nB8ZiIiIiIicdKVEPwVoNFaGwYwxriAZGttg7V2blxmJyIiIiISB13ZE/wWkNLi+9S9r4mIiIiIHFa6EoKTrbV10W/2fp3q/JREREREROKrKyG43hgzOfqNMWYK0NjO8SIiIiIin0td2RP8LeB5Y8xOmlskFwEXxWVWIiIiIiJx1OkQbK39xBgzChi596W11tpgfKYlIiJltU3UNYXiMnZ6kof8jKS4jC0icjjoykowwNHAoL3nTTbGYK193PFZiYgIdU0hTvztu3EZ+93vnqgQLCIJrdMh2BgzFxgKLAHCe1+2gEKwiEgcJHtdPDN7RtzGFhHpjnjdreqpO1VdWQmeCoyx1tp4TUZERD7TGIxw8YPz4jL2f757YlzGFZHEEa+7VT11p6orIXgFzQ/DlcRpLj2usj4Q1/12OWm+uIwtIiIicqjF625VT92p6koIzgdWGWMWAE3RF621Zzs+qx5S1xTiuHv+E5ex37/9JIVgEREROWLF625VT92p6koIvjNekxARERER6UldKZH2X2PMQGC4tfYtY0wq4I7f1ERERERE4qMr1SGuA2YDuTRXiegL3A98sYPzzgD+SHNg/qu19u4Yx3yN5pVmCyy11l7a2Xl1h88TvyevfR49eS0iIiLyedWV7RA3A9OA+QDW2vXGmML2TjDGuIE/A6cC24FPjDEvW2tXtThmOPAD4BhrbWVHYzqpMRCO25PX7+rJaxGJg/sum8ybq3bx9093dnjs989o7m109xtr4z0tEZHDTldCcJO1NmCMAcAY46F55bY904AN1tpNe895BjgHWNXimOuAP1trKwGstaVdmJOISMJ4+rrphCKW75w6EoPhxU93tHnsnWeNYfqQPACSvW7ufGVVm8eKiCSiroTg/xpjfgikGGNOBW4CXungnL7AthbfbwemtzpmBIAx5kOat0zcaa19o/VAxpjZNG/HYMCAAV2YdttUiF5EDhdPXzedhkCY2XMX0T8nhSeuab6UxgrC0QB80QMfA/Ds9TO586wxCsIiIi10JQR/H7gGWA5cD7xmrZ3j0ByGAycC/YD3jDHjrbVVLQ+y1j4IPAgwdepURxp2qBC9iBwOWgbgcMRSXN7ArIfmxwzCLQNwjb+5DvpFD3ysICwi0kpXlitvsdbOsdZeaK29wFo7xxhzawfn7AD6t/i+397XWtoOvGytDVprNwPraA7FIiIJr3UAjooG4dtOHcF5k/oCsQMwQI0/xEUPfMz0IXncedaYHv8ZREQ+j7oSgq+M8dpVHZzzCTDcGDPYGOMDLgZebnXMP2heBcYYk0/z9ohNXZiXiMgRKdVrYgbgqJZB+JnZ02MG4CgFYRGR/XUYgo0xlxhjXgEGG2NebvHnP0BFe+daa0PAN4B/AauB56y1K40xdxljop3m/gWUG2NWAf8BvmetLe/ODyUiciRITfLy3eeXxgzAUdEgXN0YajMAR9X4Q9z+t2Wcu3flWEQkkXVmT/BHQAnNbZN/1+L1WmBZRydba18DXmv12k9afG2B2/b+ERGRvfyhEE9dN6PDcFtc3sD1cxd1ON6gvFTuu2wyd72yim+eol1nIpLYOlwJttZusda+a62daa39b4s/i/eu9IqISBzU+SPM31TOs9fPJDO5K88xH2hQXipPXDOd//fvdbz46Q6sI48Xi4gcvjq9J9gYc54xZr0xptoYU2OMqTXG1MRzciIiiSzF62JU70zSkjzdCsLRAOwPhvna0f15ZvYMUlTGUUQSXFeuqPcAZ1lrV8drMiIi8pmWZRzvPGsMz14/s8OtEa21XgGOUhlHEemulDj1W+ipD+ldCcG7FYBFRA6NO19ZtS8In/eXj2gMhjs8p292SswALCLihHj1W+ipD+ldCcELjTHP0lzSrCn6orX2RcdnJSIiIiISR10JwZlAA3Bai9csoBAsIhJnLRthdGYVGGBHVWObneVERBJdp0OwtfbqeE5ERERia6sTXGe012JZRCSRdaU6xAhjzNvGmBV7v59gjLkjflMTEZHuBOCoWC2WRUQSXVcev5sD/AAIAlhrl9HcBllEROIgPdnV7QAc1ToIG+PQJEVEDlNdCcGpDPlgQgAAG8BJREFU1toFrV5TswwRkThJ9ni4dM68DgPwoLxUHrh8Sod1hIvLG7jxycX85KwxapYhIgmvKyG4zBgzlOaH4TDGXEBzO+XDVjwXQrTIIiLd1dAU5H8vmIjb1fYVJVoHOCvFwzOz22+okZns4TfnT+Af2hcsIg6I1x2lnrpT1ZUQfDPwADDKGLMD+BZwY1xmJSIiNAQtaUluHpg1JWYQbtkI4+IH57Ngc3mbQTgzuTkkL9hczp2vrOqJ6YvIES5ed5R66k5Vp0OwtXaTtfYUoAAYZa091lpbHLeZiYgIl8yZHzMIx+oEd+crq2IGYQVgEZEDdaU6xK3GmGit4N8bYxYbY07r6LzPs3gut+uhExFxSusg3FYrZDgwCCsAi4jE1pXtEF+31tbQ3CwjD7gcuDsus+ohrjgm1XiOLSKJJxqEH7366A5bIbcMwgrAIiKxdSUER1Pdl4HHrbUr0fNfIiI95pI586nzh/jdv9d22PTizldW8d66Ut5bV6oALCISQ1faJi8yxrwJDAZ+YIzJACLxmZaIiMRy45OLO33s3W+sjeNMREQOb10JwdcARwGbrLUNxpg84LBupZye5OH920+K29giIiIi8vnUYVIzxoyy1q6hOQADDDFHyH7XnDQfOWm+Qz0NEREREelhnVmuvA2YDfwuxnsWONnRGYmIiIiIxFmHIdhaO3vvf+Ozb+AQqqwPUNcUn87P6UkerTKLiIiIfE51euOqMeZC4A1rbe3/b+/+w+ws6zuPv7+ZDGeAOaibDBESIbEbICHEGIIkFWMi8rN7iYB2FYRFWOlVsYsbolnXjaZaLUia2nXRiuLyw7LWtWyhJVR0mRBAaAy/yw9rLgyQqGHIKs4EM84k9/4xJzGGkMzJnOf8mPv9uq65Zs5znvme7+S+cvLJPfdzPxHx34DZwGdTSg8X1l3BfrV1gLdfvaqQ2nd/bIEhWNKI7OVuyU1dW5JaQTVbpC2tBOCTgHcC1wF/XUxb9bG9wNvyFVlbUh7cy1ySilPNFgbbKp//ALg2pXR7RPxZAT1JknAHG0kqUjXvghsj4qvAKcBVEVGiuplkSVIV3MFGUjM7sH0M37p0biF166GaEPyHwOnA8pTSLyPiMOBjxbQlSZKkZjZ2zBhef0hHIXXrYdghuHKDjFuBCRFxROXw08W0JUmSpGY2vlxifLnU6Db2WzW7Q/wJ8GlgE7+9XXICZhbQlyRJklSYapZDXA4cnVLaXFQz9VbktdFedy1JktS8qgnBzwMvFdVII3QUtKB7R21JkiQ1p2pC8DPAqoi4HejfcTCltKLmXdXJrwe2875rHyikdvfiBYXUlSRJ0shVE4Kfq3wcUPmQJEmSWlI1u0P8KUBEdFYe9xXVlCRJklSkYS9cjYgZEfEw8ATwREQ8GBHHFteaJEmSVIxqrt66FliUUjoypXQkcAXwtWLakiRJkopTTQg+OKXUveNBSmkVcHDNO5IkSZIKVtXuEBGxFLip8vgDDO0YIUmSJLWUamaCLwa6gFuAvwPGV45JkiRJLaWa3SF+AfynAnuRJEmS6mLYITgivge8N6X0y8rj1wHfSimdVlRzkpSzX2z5DX39g4XU7iyN5XUHu+W7pHxVsyZ4/I4ADEMzwxFxaAE9SZKA/sFtbPzlrwupPXncQYXUlaRWUU0I3h4RR6SUngOIiCOBVExbkiRv7S6pmfX0bqWvf1vN63aW2ugqd9S87u6qCcGfBO6NiLuBAN4GXFpIV3US0Zq1JUmSGq2vfxsLl6+qed3uxQvoKte87CtUc2HcP0XEbGBu5dBHU0ov7ng+Io5NKT1R6waLlAqcxy6ytiRJkkammplgKqH3H1/l6ZuA2SPuSJIkSSpYNfsE74sLACRJktQSahmCXQAgSZKkllDLECxJkiS1hFqG4N/UsJYkSZJUmKoujIuImcDkXb8vpXRL5fPcV/k2SZIkqalUc9vkbwAzgSeA7ZXDCbilgL7qosgr+bxKUJIkqXlVMxM8N6U0vbBOGqCzNJZVBd01qbNU1SS7JEmS6qiapHZ/RExPKT1ZWDd1Nr5cYny51Og2JEmSVGfVhOAbGQrCPwf6GfqNf0opzSykM0mSJKkg1YTg64ALgMf57ZpgSZIkqeVUE4J7Ukq3FdaJJEmSVCfVhOCHI+Jm4B8YWg4B/HaLNEmSJKlVVBOCD2Qo/J66y7GW3iJNkiRJeRp2CE4pfbDIRiRJkqR6qeZmGR3AJcCxQMeO4ymliwvoS5IkSSrMmCrOvQl4PXAacDcwCegtoilJkiSpSNWE4H+bUloKbEkp3QD8AXBiMW1JksYUeP/1ImtLUiuo5sK4gcrnX0bEDODnwKG1b0mSBHDwAcXd2v3gA7y1u6S8VfMueG1EvA5YCtwGdAKfKqQrSZK3dpekAlWzO8TXK1/eDbyxmHYkSZLUCjpLbXQX8NuqzlJbzWvuSTW7Q0wAPg8cnlI6IyKmA/NSStcV1p0kSZKaUle5g65yo7vYf9VcGHc98F3g8MrjfwU+WuuGJEmSpKJVE4LHp5S+DWwHSCkNAtsK6UqSJEkqUDUheEtEjGPoVslExFzgpUK6kiRJkgpUze4QixjaFeKNEXEf0AW8p5CuJEmSpAJVE4KfBP4P8DJDd4r7e4bWBUuSJEktpZrlEDcCxzC0Q8SXgKMYupWyJEmS1FKqmQmekVKavsvj7oh4stYNSZIkSUWrZib4ocrFcABExInA2tq3JEmSJBVrnzPBEfE4QztCtAM/iIjnKo+PBJ4utj1JkiSp9oazHOLfFd6FJEmSVEf7DMEppWfr0YgkSZJUL9WsCZYkSZJGBUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4WH4Ig4PSJ+FBHrIuK/7OW8cyMiRcSconuSJElS3goNwRHRBlwDnAFMB94fEdP3cF4ZuBz45yL7kSRJkqD4meC3AOtSSs+klH4DfAs4aw/nfRa4CthacD+SJElS4SF4IvD8Lo83VI7tFBGzgTeklG7fW6GIuDQi1kbE2p6entp3KkmSpGw09MK4iBgDrACu2Ne5KaVrU0pzUkpzurq6im9OkiRJo1bRIXgj8IZdHk+qHNuhDMwAVkXEemAucJsXx0mSJKlIRYfgHwJTI2JKRBwAvA+4bceTKaWXUkrjU0qTU0qTgQeAd6WU1hbclyRJkjI2tsjiKaXBiPgI8F2gDfhGSumJiPgMsDaldNveK0hSvnp6t9LXv62Q2p2lNrrKHYXUlqRWUGgIBkgprQRW7nbsU69y7oKi+5GkVtHXv42Fy1cVUrt78QK6yoWUlqSWUHgIbmbOskiSJOUp6xDsLIskSVKeGrpFmiRJktQIhmBJkiRlxxAsSZKk7BiCJUmSlJ2sL4yTJEnS/ilql6167bBlCJYkSVLVitplq147bLkcQpIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUnbGNbkCStGedpTa6Fy8orLYk5SzrEOw/MJKaWVe5g65yo7uQpNEp6xDsPzCSJEl5ck2wJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO1nvDiFJkqT9U9RWs/XaZtYQLEmSpKq1+lazLoeQJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsjG10A43U07uVvv5thdTuLLXRVe4opLakPPgeJUnFyToE9/VvY+HyVYXU7l68gK5yIaUlZcL3KEkqjsshJEmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJys7YRjfQSJ2lNroXLyistiSNhO9RklScrENwV7mDrnKju5CkPfM9SpKKk3UIfrG3n77+wUJqd5bGMr5cKqS2pDz09G6lr39bIbU7S210lTsKqS1JrSDrENzXP8iC5asKqb1q8QJDsKQR6evfxsKC3qO6Fy9wlllS1rwwTpIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuj5rbJAwMDbNiwga1btw77ewa3bedr7zqskH56f76ep3rq/3+Mjo4OJk2aRHt7e91fW5IkqVUUHoIj4nTgr4A24OsppSt3e34R8B+BQaAHuDil9Gy1r7NhwwbK5TKTJ08mIob1Pf0D20ibeqt9qWE5akKZUntbIbVfTUqJzZs3s2HDBqZMmVLX15YkSWolhU5VRkQbcA1wBjAdeH9ETN/ttIeBOSmlmcB3gC/sz2tt3bqVcePGDTsAj0YRwbhx46qaDZckScpR0b+vfwuwLqX0TErpN8C3gLN2PSGl1J1Serny8AFg0v6+WM4BeAf/DCRJkvat6BA8EXh+l8cbKsdezSXAHXt6IiIujYi1EbG2p6enhi1KkiQpN02zO0REfACYA1y9p+dTStemlOaklOZ0dXXVt7lh+NVLL/G3N3y90W1IkiRpGIoOwRuBN+zyeFLl2O+IiHcCnwTelVLqL7inQvT+6iX+9sbrGt2GJEmShqHoEPxDYGpETImIA4D3AbftekJEvBn4KkMB+IWC+ynMX/35MjY8u54/PO1trPizpaz4i+WccMIJzJw5k09/+tMArF+/nmOOOYaLLrqIo446ivPPP5/vf//7vPWtb2Xq1KmsWbMGgGXLlnHBBRcwb948pk6dyte+9jUAfvaznzF//nxmzZrFjBkzuOeeexr280qSJLWyQkNwSmkQ+AjwXeAp4NsppSci4jMR8a7KaVcDncD/johHIuK2VynX1C7/xDImHTmZb3/3Hua+bSHr1q1jzZo1PPLIIzz44IOsXr0agHXr1nHFFVfw9NNP8/TTT3PzzTdz7733snz5cj7/+c/vrPfYY49x1113cf/99/OZz3yGn/70p9x8882cdtppPPLIIzz66KPMmjWrUT+uJElSSyt8n+CU0kpg5W7HPrXL1+8suod6u391N6u+/z3e/OY3A9DX18ePf/xjjjjiCKZMmcJxxx0HwLHHHsvJJ59MRHDcccexfv36nTXOOussDjzwQA488EAWLlzImjVrOOGEE7j44osZGBjg3e9+tyFYkiRpP42aO8btjzFjgqMnlGtSq/TrgymNbePoCWVed9BYlixZwof/+I9/55z169dTKpV2ef0xOx+PGTOGwcHBnc/tvtVZRDB//nxWr17N7bffzkUXXcSiRYu48MILa9K/pObTWWqje/GCwmpLUs6yDsHtbWOG7mNXA+P/zWvp6+ul1N7GmWecwdKlS7nwggvo7Oxk48aNVd/G+NZbb+UTn/gEW7ZsYdWqVVx55ZU8++yzTJo0iQ996EP09/fz0EMPGYKlUayr3EFXbf6fLknaTdYheGDbdrZvTzWp1XnIa5k77/c59tgZnHb6afz7972fefPmDT3X2ck3v/lN2tqGn7hnzpzJwoULefHFF1m6dCmHH344N9xwA1dffTXt7e10dnZy44031qR3SZKkavX0bqWvf1vN63aW2ugqd9S87u4ipdqEwHqaM2dOWrt27e8ce+qpp5g2bVpVdfoHtvGjTb21bG2noyeUKbXv3zTzsmXL6OzsZPHixfv1/fvzZyFJklSNn7y4hYXLV9W8bvfiBUwZf3BNakXEgymlOXt6rmluliFJkiTVS9bLIZrVsmXLGt2CJEnSqOZMsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEE19CnrvgIC2ZN5ZyT5zW6FUmSJO1FtiH4jjvu4Jyzz+Lis0/hYx86j/vv/r8jrnnWe9/PV276Tg26kyRJUpGy3CLtjjvu4HOf+xxbt24FYHPPC9zw5RUAzHv7yftd9/i5b2Xj88/VpEdJkiQVJ8uZ4GuuuWZnAN7hN/393PLN6xrUkSRJkuopyxC8adOmPR7f/GJPnTuRJElSI2QZgidMmLDH4+PGd9W5E0mSJDVCliH4sssuo6Oj43eOHVAqcc4HLmlQR5IkSaqnLEPwGWecwSc/+UkmvP71EMG4rkP5Dx9eNKKL4gCWXHYJF777VJ59Zh2/N+VIrrvONcaSJEnNKMvdIWAoCL/jnafyo029Nat51TW/Db1HTyhTam+rWW1JkiTVTpYzwZIkScqbIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpSdbLdIAxgzJjh6Qrlm9Z5//nkuufgiXtj0AjEm+KNLL+Xyyy+vWX1JkqRm0Vlqo3vxgkLq1kOWIXhgYIBFixYBcNVVV7FkyRIAVqxYQXt7+37XPfjAEn+5YgWzZ8+mt7eX448/nlNOOYXp06fXpG9Jeenp3Upf/7ZCaneW2ugqd+z7REkapbIMwYsWLeKhhx4C4Mwzz2RgYGDn8S996Uv7Xfewww7jsMMOA6BcLjNt2jQ2btxoCJa0X/r6t7Fw+apCancvXkBX7X4RJilDRb1H1ev9KcsQvEN/fz/9/f0AlEqlmtZev349Dz/8MCeeeGJN60qSJGnksrww7qqrrnrFsof29na+8IUv1KR+X18f5557Ll/84hc55JBDalJTkiRJtZNlCF6yZMnOJRA7DAwM8PGPf3zEtQcGBjj33HM5//zzOeecc0ZcT5IkSbWX9XKIUqlEe3v7KwLx/kopcckllzBt2rSdF95JkiSp+WQ5E7yisoPD7NmzWbly5c6vV6xYMaK69913HzfddBN33XUXs2bNYtasWaxcubJGXUuSJKlWspwJbm9v/51dIEayI8SuTjrpJFJKNaklSZKk4mQ5EyxJkqS8GYIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZyXKLtCJNnjyZcrlMW1sbY8eOZe3atY1uSZIkSbvJMgTPnz+fl19++RXHDzroIFavXj3i+t3d3YwfP37EdSRJklSMLJdD7CkA7+24JEmSRpcsQ3CRIoJTTz2V448/nmuvvbbR7UiSJGkPslwOUaR7772XiRMn8sILL3DKKadwzDHHMH/+/Ea3JUmSpF04E1xjEydOBODQQw/l7LPPZs2aNQ3uSJIkSbszBNfQli1b6O3t3fn1nXfeyYwZMxrclSRJknaX5XKIgw466FV3hxiJTZs2cfbZZwMwODjIeeedx+mnnz6impIkSaq9LENwLbZB25M3vvGNPProo4XUliRJUu1kGYIlqRV0ltroXrygsNqSNBJFvUfV6/3JECxJTaqr3EFXudFdSNKetfp71Ki6MC6l1OgWGs4/A0mSpH0bNSG4o6ODzZs3Zx0CU0ps3ryZjo6ORrciSZLU1EbNcohJkyaxYcMGenp6Gt1KQ3V0dDBp0qRGtyFJktTURk0Ibm9vZ8qUKY1uQ5IkSS1g1CyHkCRJkobLECxJkqTsGIIlSZKUnWjF3RQiogd4tgEvPR54sQGvq2I5rqOXYzt6Obajk+M6ejVqbI9MKXXt6YmWDMGNEhFrU0pzGt2HastxHb0c29HLsR2dHNfRqxnH1uUQkiRJyo4hWJIkSdkxBFfn2kY3oEI4rqOXYzt6Obajk+M6ejXd2LomWJIkSdlxJliSJEnZMQRLkiQpO4bg3UTENyLihYj4l1d5PiLiv0fEuoh4LCJm17tHVW8Y43p+ZTwfj4gfRMSb6t2j9s++xnaX806IiMGIeE+9etPIDGdsI2JBRDwSEU9ExN317E/7bxjvya+JiH+IiEcrY/vBeveo6kXEGyKiOyKerIzb5Xs4p2lylCH4la4HTt/L82cAUysflwJfqUNPGrnr2fu4/gR4e0rpOOCzNOECfr2q69n72BIRbcBVwJ31aEg1cz17GduIeC3wZeBdKaVjgffWqS+N3PXs/e/tZcCTKaU3AQuAv4iIA+rQl0ZmELgipTQdmAtcFhHTdzunaXKUIXg3KaXVwP/byylnATemIQ8Ar42Iw+rTnfbXvsY1pfSDlNIvKg8fACbVpTGN2DD+zgL8CfB3wAvFd6RaGcbYngfcklJ6rnK+49sihjG2CShHRACdlXMH69Gb9l9K6WcppYcqX/cCTwETdzutaXKUIbh6E4Hnd3m8gVcOsFrbJcAdjW5CtRERE4Gz8bc2o9FRwOsiYlVEPBgRFza6IdXM/wCmAT8FHgcuTyltb2xLqkZETAbeDPzzbk81TY4a24gXlZpVRCxkKASf1OheVDNfBJaklLYPTSppFBkLHA+cDBwI3B8RD6SU/rWxbakGTgMeAd4B/B7wvYi4J6X0q8a2peGIiE6Gfvv20WYeM0Nw9TYCb9jl8aTKMbW4iJgJfB04I6W0udH9qGbmAN+qBODxwJkRMZhS+vvGtqUa2ABsTiltAbZExGrgTYAhuPV9ELgyDd3MYF1E/AQ4BljT2La0LxHRzlAA/puU0i17OKVpcpTLIap3G3Bh5erGucBLKaWfNbopjUxEHAHcAlzgLNLoklKaklKanFKaDHwH+LABeNS4FTgpIsZGxEHAiQytQVTre46hGX4iYgJwNPBMQzvSPlXWcF8HPJVSWvEqpzVNjnImeDcR8b8YuhJ1fERsAD4NtAOklP4aWAmcCawDXmbof6tqcsMY108B44AvV2YMB1NKcxrTraoxjLFVi9rX2KaUnoqIfwIeA7YDX08p7XWrPDWHYfy9/SxwfUQ8DgRDS5pebFC7Gr63AhcAj0fEI5Vj/xU4ApovR3nbZEmSJGXH5RCSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJLWQygbzvndL0gj5RipJTS4iJkfEjyLiRuBfgKUR8cOIeCwi/nSXc56OiL+JiKci4juVu6gREVdGxJOV85c38meRpGbhzTIkqclFxGSGbhn7+8AhwHuAP2LoTlq3AV9g6DazPwFOSindFxHfAJ4E/ifwA+CYlFKKiNemlH5Z9x9CkpqMM8GS1BqeTSk9AJxa+XgYeAg4BphaOef5lNJ9la+/CZwEvARsBa6LiHMYuk2pJGVvbKMbkCQNy5bK5wD+PKX01V2frMwW7/6rvZRSGoyItwAnMzSD/BHgHcW2KknNz5lgSWot3wUujohOgIiYGBGHVp47IiLmVb4+D7i3ct5rUkorgf8MvKnuHUtSE3ImWJJaSErpzoiYBtwfEQB9wAeAbcCPgMt2WQ/8FeA1wK0R0cHQLPKihjQuSU3GC+MkaRSoLIf4x5TSjAa3IkktweUQkiRJyo4zwZIkScqOM8GSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTs/H+wgKqnhw2y9QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5jcVd3+8feZtr239N5DCrAhgRAITVQUVLoCIiWIWBF9LNgfG6ioz08QEJBeRUQBQZQOSUgIpJJeN9leZtv08/tjd+Imme0zsyRzv67Ly8zM93v2ZMM1e++Zcz4fY61FRERERCSVOIZ6AiIiIiIiyaYQLCIiIiIpRyFYRERERFKOQrCIiIiIpByFYBERERFJOa6hnsBAFBcX23Hjxg31NERERETkA2zlypW11tqSWK8dliF43LhxrFixYqinISIiIiIfYMaYnd29pu0QIiIiIpJyFIJFREREJOUoBIuIiIhIylEIFhEREZGUoxAsIiIiIilHIVhEREREUo5CsIiIiIiknMOyTnCyNLUFaPaHAAiFLQ4DTocDt9NQmps+xLMTERER+WCpa/FTlJ3Wp2trmn1kuhxkZXgSPKvYFIJj2NvYTk2zn3ve3M6KHQ3saWjf/1puhovZI/O56LjRHDOmgMJMN+kefRtFREQkte1rbOfbT67hB2fPZHxxVo/XVnl9/PSZ9Xz2hHFMK80ekiBsrLVJ/6KDVV5ebhPRMa6hzU9tc4CvPfYuayu8vV6fn+nm55+cxTFjCyjTyrCIiIikqH2N7Vxx79ts2NdMWW4ajyw5vtsgXOX18b2n1vLC+irS3Q4evGp+woKwMWaltbY81mvaE9yp2uvj3xuq+ejvX+tTAAZobAty7YPv8OO/r6PK60vwDEVEREQ+eLoGYIAqr5+L7niL7bWth1zbNQAD+IIRPvOnZbxf3UJreyCp81YIpmMF+NXNNdzw+GqC4f6vjD+zppJvP7mGqiYFYREREUkdBwfgqFhB+OAAHDVUQVghGKhtDvDtJ9cMaoz/vF/N31fvpaktub/FiIiIiAyF7gJwVNcgXNPsjxmAo7oG4ZYkBeGUP9G1r7Gdrz767oBWgA920z83csaMMvIyh+aUo4iIiEiy+EJhapt7DqxVXj8X3v4W44qzWL69vsdr/aEIu+vbGFOYSXY8J9qNlF8JrvT6WLe3b3uAexMIR7jnjR00+7QaLCIiIke2MQUZPHrNAkp6KYlW3ezvNQAbA78+fw4LJxVTkpOcYgMpHYIb2/zc/fr2uI75xMo9eH2huI4pIiIi8kHjdDoZW9i3INyTaABeNDl5ARgSHIKNMXcbY6qNMWu7ed0YY35vjNlijFltjDkmkfM5WIs/zNs7GuI8Zoj2QCSuY4qIiIh8EA02CA9VAIbErwT/GfhwD69/BJjc+b8lwG0Jns8BrO3YDhFvm6pibxAXEREROdIMNAgPZQCGBIdga+2rQE+bQM4B7rMdlgL5xpjhiZxTV6FIYhqFNKhChIiIiKSQaBB+6Or5fb7nmpMmctq00iEJwDD0e4JHAru7PN7T+dwhjDFLjDErjDErampq4vLFHSYuwxwizTXU31YRERGR5KptDXLz8xv7fP2T7+yhfggXDg+btGatvcNaW26tLS8pKYnLmC6HgyyPMy5jdTWlLCfuY4qIiIh8UHXXCKMn1c1+Lrx9KdtrWxI4s+4NdQiuAEZ3eTyq87mkcDhg5si8uI5pDBRmqU6wiIiIpIaBBOCooQzCQx2CnwYu66wSsQBostbuS9YXH56XwYXlo3u/sB8WTizG4xzqb6uIiIhI4g0mAEcNVRBOdIm0h4G3gKnGmD3GmCuNMZ83xny+85JngW3AFuBO4AuJnE8sx08sIictfo3zvnjKJEpzh2aDt4iIiEiy9CcA97ZAOBRBOKFtk621F/fyugWuS+QcepOf4eZH58zk+sfeG/RYp0wtYXxJZhxmJSIiIvLB1tgW4JVNPRcriJZBO3ZsAefd9hY1Lf5ur61u9vP39/Zx8XGjk1IxIuU/t89Mc7FwUjGnTSsd1DjF2R5+8omjKMvNiNPMRERERD64huemc9+Vx3VbFSsagE+aXMKo/PRe6whfsXAcF85LTgAGhWAAynLT+dmnZrFwYtGA7i/O9vDIkuMZnjvwloEiIiIih5PcTA/Ty3JiBuGuAbg4J63XhhpXLBzHNSdPpCyJW0oVgjuV5abz6wvmcv0Zk3H1o4DwyVNKeOq6hYwvysDpjH+5NREREZEPqlhB+OAAHNVdEB6KAAxgOrblHl7Ky8vtihUrEjJ2Q2uAxvYAd766jSdXVeALRmJed/zEIr54yiQmlmQzLE8H4URERCR1edsCbKhq5rK7lvPzT806JAB3FQ6H2VnfzoW3L+Xjc4YnNAAbY1Zaa8tjvqYQHFtjW4DWQJgWX4gN+5pobAuS5nIybXgOxdlpuJ0OhV8RERGRTt62ACELkYjtNgBHhcNhaluDAAldAe4pBCe0OsThLD/TQ35noYepw9QBTkQ+WOpa/PhDEVr9IbbXtuILhslJdzO2KJN0t5OcdCc56WrcIyLJk5t56HtOQ1uANn8YsLidDoqyPDidDpxOJ2W5Q7uNVCFYROQwUuP1Udsa4I+vbOXZNfsIhg/9NC87zcWF80bz2ePHkpPhpiDGDyYRkUSpbGqn2RfihfVVvL2jnt31bUQsFGR6mDM6jzOmlzGuOIuSLA9u99AFYW2HEBE5TFQ1+fjdvzfz0PJdfbre7TR848ypfGLuSDXxEZGEa2gNUNHYzo1PreXd3Y09XluSk8bXTp/M6dPLEvr+pD3BgxSKRAiFLU6Hwa2WyCIyBPY0tHHZXcvZVtva73tPnFjMry+ck/ST1yKSOmqafdzzxg7++MpWIv2IlseOLeD3Fx3NyILE9FlQCB6AuhY/Xl+QzVUtVHl9hCMWYwz5mW7GF2cxLC+dgkyPQrGIJFxlUzufvnPZgAJw1OKpJfzy3NkKwiISd9XNPn727Ps8tapiQPePKsjgkSULGFUQ/667PYVgJbiDNLQFWLq1llc31dDQGqSxPci22lbWVDTxfqWXmmY/Lf4Q6/d6eW7NPmqafUM9ZRE5gtU2+/h//9kyqAAM8PLGGl7bVEOrLxinmYmIQLMvyFOr9g44AAPsaWjn2gfeodqb3Eylg3FdVHl9rNrVABgeWLaLlTsbur12RF46lywYy7baVhragowuzCDDrW+niMRXfVuQB5b1bQ9wb773t3WcMKmYrHR3XMYTEalp9vOr5zcOepw1FU08/d5ePj1/DJme5OQprQR3qvL6qGzy8bd39/L5B1b2GIAB9jb5uOn5jXznyTXUtwbYUtWCLxhO0mxFJBU0tfm5/ZWtcRuvPRjmpferCYf1XiUig9fQGuC3L24iEI7dWKy/fv/vzTS2Je/TKoVgoL7VT7XXx/WPvcdzayv7de/WmlY+e/dyqpv92hohInHVGojwj9X74jrmQ8t3Udnsj+uYIpKa2gKhfuemnnh9oc5P5JMj5UNwqz9EldfPt55cw9aalgGN4Q9FuO6hd6htCVDfqh8uIhIf7cEw/lB8VliiNlY2gzVxHVNEUtOOuraYtcoH47m1lbT6k7ManPIhuNkX5Lm1+1i31zuocXzBCN/721rqW3XoRETiY3d9W9zHDEUs/pC2Q4jI4C3fXh/3MddUNNGQpC0RKR2CwxFLayDMH1/eFpfx1lZ4WbOnkca2QFzGE5HUlqhzBpHDsDSmiHywRCIRKhrb4z5utddPsj6rSulyBi2+IM+vq4y5oXv68BzOmTuSo0bk4XE5iFiLMWAwbK9t5d8bqvj3+9WED6oIfc+bOzhufCH5alMqIoOUnZaYt2inI6XXP0QkDozpPqqmux18fPYITpxczIj8DCKdWcnhMLT4Qqza3cATK/awt+nQs1TGQLJ+TU/tEOwP8fxBG7pnjsjlWx+ZRqs/RF1LAF8wjNvV+Q9t6QzMljNnlnHt4ok8tGwXj6/cs//+1Xua4r4/RkRS08gEFI7P9DhxO7UnWEQGxxjD+OKsA55zOw3XLp7IyVNK+ft7e7npnxsPWS3OTXdx3PhCfnTOUfhDYX76zAb2dQnDI/IzkpaCUzoEW+D9yub9j7982iROmFjc+RGk4aWN1azc2XDA3pQ0l4MZw3P52JzhRCKWk6aU8KGZw/jmE+/tv67K62PcQf9hiIj0l8dpKMzyUN8avy1Wc0bl40jah40iciSbN65w/58nlmTx80/N5qlVFZx725vd3uP1hXhxQzUvbqhm1sg8fn/x0TywdCd/e3cvAHNG5ZGT7kz43CHF9wSHwnb/yeufffIoZgzPI2ItP/nHBj7/wEpe3FB9yOZsfyjCqt2N/OQfG7js7uXUtwZwOw1/+mw5hVkdWyB21MX/MIuIpB6Py8EF5aPiOuZlx48lzZ3Sb/0iEiejCjLIcDuZUpbNzefN4YbH3+Oh5X1v7rOmoonP3LmMk6eU8NkTxgFwztyRZHiS09BH74TAFxZPZFxRFjvqWrnkT8v6XCqtNRDmB0+v4543duA0hj98+hgcBpK3m0VEjmRt/jAXlI8mzRWft+oReenMHJGLX419RCQOXA7DxfNG88tzZ3PdQ++wawAVbQLhCDc8/h7zxhbwibkjmFCchcuRnE+rUjoEu52GKWXZnDVrOGsqmvjFc+8TGUB+fWVTDb98fiM56S6uPHECpbnp8Z+siKScLTUtNLUF+N7HZsRlvN9eNJel2+ppD8a39rCIpKam9iCfPWEcv35h0wH7evsrYuHbT67hS6dOZtmOOnzBUBxn2b2UDsEAP/vkLFoCIW4aZN/rt7bW8fy6Ss4vH8WE4vgfZhGR1BMMR/jrqgqOHVvAadNLBzXWtSdPpDDLw0PLd2H1aZWIxMGuulZWVzTx+pbaQY/V7A9x0z/fx0agqV0hOOHSXU4Ksjzc+Ne1h5Q6G4jbXt5KMBwh3ZmcDd0icmQrzPTwqWNGcfEdS/ns8eP4yFHDBjTOFxZPZFxxFpff/TbXnzEFl0qkicggWWvJ8Lj44ytb4zbmCxuqmFSak7Rf01P6nTBsLRUN7WyuHli75IOFIpYHlu5EHzSKSDyMLc7khfVVNLYHWXL/Ck6ZVspN580mN71vhX1GFWRwz+XzcDkN33pyNXsa22lqD5Lp0S/qIjI41lryM92D7rh74Jjw6uYa0lzJ2ROc0iXSwhHb4ynGTI+TGcNzmTY8l+w0J8GwZXttK2sqmqhp9se852/v7uXaxZMSNWURSSGhMDz69m6gozX7N59YzSlTS7nr8nls2Oflb+/uZd3eJnxd9vjmpruYOzqf88tHk5vu4pf/3Mj6ff/9IfXQ8l2Ujy1I+t9FRI40hi3VrXEfddn2Os47Nr5VcbqT0iE4FLG8s7PhkOfnjy/k0gVjKcz28N7uRjbsa2ZPQxtpLgfThuVwfvkoCjM9PPHOHp5+d+/+MmsAbYEwrf7k7GURkSNbOBKh7qAawS9trOaljdUcO7aADx81jK+dPgW3y2AtOIyh1R9idUUTv31xc8xKN+/tbtSOYBGJA8uq3YdmqK5GF2Ywa2QeI/IzcBhDY1uQ9fua2FjZ3G1jsff3Ncd8PhFSOgQDVHdZ0S3M8vCjs2fS4g9xy4ub2FoT6zecKqBjteX88tE8eNV8fvKP9by3p2n/FVuqW5g+PDfRUxeRI9zexu5PW6/c2cDKGL/E96YtECYQ0qYtERkcYwxN7cFDns/NcHFB+Wg+etRwdtW3saaikR21rURsR846/9jRHDUyj/V7vdz31o5DtqS2BpK3kJjSITjU5TDc1LIcfnnuLH75z428ta2u13u9vhB3vb6df6zeyy8+NZsX1lfy8PKOjy2bfYf+RyEi0l/NCfpUKRSHg8AiIhnuA88XnDmzjM+fPJH7l+7k4juXHvBJedQTK/cAcMyYfL71kWlsrmrhlhc37b82zeUkkqT3qJQ+GOfs3Hc9riiTX5w7i2sffKdPAbirKq+fq+5bwYIJRfv3sGSlpfTvFiISJ25nYg6HJKkOvYgc4WaM+O+n3jeeNZ3TppVyyZ+W8eQ7FTEDcFfv7GrkyntXsKWmhfuuPI6izq67U8qycahZRuI5nYa8DDe/OHc2X3/svQEXeg5HLF9/7D3OPWYU44uzmFSaHeeZikgqGp4X/8Y7LofBE6cOdCKSuowxzByRB8C3PzKN9mCYb/5lDa2B/nWkfGLlHn7x7Pvcfumx5KS5mDM6n/QkvUel9JJltsfN18+YwgvrKtlWO7gTjqGI5can1vLjs2eSn5GcntcicmTzuJykuRy9rqj0x5SynLjURRcR8TgNF5SPYnheOl9+5N0Bj7NqdyO3vbKVH5w9gwnF2ZCkT6tSejnA6TAsmlLCvW/tjMt4W2taqGhsJ6ePNTxFRHriMoYPD7BBRnfOnjtCdYJFJC6yPU6uPXki3/3r2kGP9e8N1aS7nbicBo8zOfE0pUOwwfLc2n1xXRW5+43tCTvMIiKpxemEi+aNidt4GW4nJ0wsiuvKsoikrgyPi/ve2hm33PPjv6+nKMuDw2hPcMI1tgd5ZvW+uI65qaqFUDe170RE+sNhDDXNPs4vj0/h+G+cOZVd9W1aCRaRuAhZy2MrdsdtvOpmPzvq2shMUoGBlA7BGMOmqvgXZR7oATsRka48LkNxdhoXlI9mfHHWoMZaNLmYstw0ppbl4FJ5CBGJg32Nvn4fhOvNU6sqaE/SJ+opHYKDoUi3HUsGY2dd/NsIikjqsRaG5aXz11UV/OaCOYwryhzQOMdPKOKLp0xie20rWWlOHYwTkbhYsbM+7mO+t6eRhhhNOBIhpUNwon4MRLTdTkTiwGDI8ji5ZP5Yfvz39fzq/Dmce8zIPt/vchi+fNokrj5pAr/510ZOnVaKwxjCeo8SkTjYXHVoa/bBqmhoJ2LVLCPhPE4Hidh7PTw//rU9RST1hCKWGx5fjdtp+O5Z0/nyw6uYVJrNg1fN52Ozh3fbTCPL4+SSBWN57JrjqW8JcNNz7/Pds2bgD4X59QubkvYDRkSOXJFIJCGLicn8oCqla3lFrGVCcRZba+K7fWFc0eD27omIQMfBuLK8dL7z1zX8+OyZ3HbJsdz0/Pvc9fp2LigfzQNXzidiYVd9G75gmOx0F6MLMvGHwjy3ppJL7lrGWbOG8/NzZ+FxObjq3ne4/IRxSevGJCJHtmEJaOhTkpNGsn5PT+kQXJjl5qQpJXENwSPy0hPW6lREUktuhosvnzaZJ1bsBmNwOuDKheNp9oe4980d3PryVtxOw6iCTDxOB62BEBWN7Rhg8dRS/njJsTS1B/E4HYTCls+fPIFTppXub08qIjJQDoeDY8bkx33cWSPzSFPHuMQLReCSBWO5540dcRvz8oXjKFDHOBGJA4/LSVmOm08eM5ILbl+Kw8BPzjkKj9PBZceP5cazZrC3sZ3N1S34Q2Gy0lxMG5ZLYZaHrdXNgKWhLcD5t69mfHEWf7qsnGF56Zgk1eAUkSPbxJJsXA5DKI57GBZPLSHDnZwyjim9JzgnzUWmx8FZs+LTkak428PHZ48gvsVCRCRVhcNh9jb6ueD2pdQ0+6ny+lly/0r+9Pp2wJDpcTKmMIPFU0v48MxhnDixmGG5aWR5nLQFI/z4Hxv4/t/W0RYIs26vl6vuW0GlVyUcRSQ+PC4HH5pZFrfxctJcHDO2gCQ1jEvtEOz1BdlT18p3z5pBYRw+Hrzlwrl4XIaAujGJSBy0BCJceEdHAI4akZfOjWdNY964Qioa21hd0cTqPY2s3tPE6opG1lZ4qW8NcMb0Mm786HS69sVYt9fLdQ+uoqE1MAR/GxE54ljLkpMmxq32+FUnTSA7zUVTu+oEJ1zYWiLGwTOrK/jz5+YNqovSN8+cSml2Gre/uj2uHwuISOoKhMJ848yp+x9//6zpPHHtCWyqamFPQxtYQ1luOhNLsplYksXEkmwKs9yEIxE2VzfT5AvwyjdO5cLOjnNpLgff+eg0krTdTkSOYJGIJRi2eJyG606ZNOjxZo7I5dSpJWys9OJK0tmqlN4THInAvW/sYF+Tjw8fNZwnPn8CS+5fwZ6G9j6PkeZy8KOzZ3LipGIeXbGbv71bwVWLxidw1iKSKkpy0jlpSgk//cRRTCrNIt3tpLLJx4j8dEpz0khzOVi+o4G1FU34QxGy05wcPaaA8rEFOBwGl8OwrbaFa06eyNFjChhdmMm44kxyMnQwTkQGb0NlM6v3NHHatFI2Vzfz7JrKAY0zIi+dn39qFsGw5c9v7OCX582O80xjM/YwrBdZXl5uV6xYEZexqrw+6loC/O8z6/jlubNwOpz8+c0d3P/WTtqD3e/uNQZOnFTMj885CpeBO17bzklTipkxPJeRBQPr6iQi0lVdi58l96/gp584ilZ/GI/LQX6mh3+s3sc9b2ynuss2iYNNLMnmi6dOYs6oPHzBMGkuBxurmnllYw3f+sh0ClQhQkQGwVrLT5/ZwD1v7uC+K+bhdDj459pK7n1rR79KnM0ZlcePzpmJ0zi4/rF3aWwP8tcvnMCoOGUpY8xKa215rNdSeiUYwGng6fcq+O5HZ1DfGuJ3L25gREEG9195HBsrm1m5q4H1e700+0K4nYZJpdnMGpXPoknFrNjZwFcfXcXXz5jKR44axn82VjN7ZPzLhYhIagpHLBfPG02620nEgjGGz969nG21vZd13FrTwtcefZfjxhfyq/NmE4pEOHZsAf5AmJDaWopIHNS3BQhHLNc++A53XlrOrJG5/Pnyedz0/EbW7fX2eG9hlocliyYwY0Qu1sJPnl3P5uoW0t3J26+V0ivB3vYglU0+2oIhHMbwhQffOWArxMwRucwdnc8xYwrISXcRDEd4v7KZd3Y1sGJHA/7OA3Bup+G3Fx7N2KJM3t/n5YwZZeRlapVFRAanqrOSQ3sgRE1LgEvvWoYv2P8AW5qTxiNLFuByGNxOBw5Hx15iEZGBikQifPeva3n47d1AR6fK7541g9IcD62BMKU56by6qYY1FU3sqm8jYi2FWR6OGpHH/AmFFGWlsbuhjQklWXz/qXVsrGoGIDfdxXNfWRS3T9W1EtyNYDjC9roWRhVk8tVH3t0fgDM9Tj4xdyQfndXRlnRHXRs769vwOB3MG1fISVNKWLmjgQeW7WRPQzvBsOVrj77Lg1fPZ3JZNq2BMHnaESEig5TpdtLQFiBi4bK7lg8oAANUN/u57O7lPHrN8QQjETIdyanBKSJHLofDwfQRufsftwbCfOevazhhYhFLTpqA1xegIMvNadNLyUl34TCGtkCY1kCItkCYMYVOtlS38L2n1h5QUGBSaXbS/g4pHYJ9wTCTS3N45O3dbK5uAeDi40ZzQflo/rJyD9fcv4LWwKH7go2BkyaX8IOPz6Sm2c/Pnt1Aiz/EjX9dy/99+mjUkVRE4qEtEMbhMNzw6Ls9nlHoiz0N7dz60hauXTwRozcpEYmDuaMP3QL65tY63txax4TiLE6YVMyskXkMy83A4YDGtiD7mny8vLGG7/y1Lube4dmj8snwJCeepnQITnc7aAuEufv17WR5nPz2orms3+vlgtvfIhjufpuItfDKphpe2VTDadNLuf/K47jxqbWs2+tl1a4GTphYlMS/hYgcqZwO2FjVyju7GuMy3oPLdnHVogm4HdoTLCKDl5/hZnheOvuaDm3Cs622tU/nFw529pwR5KQlJ56mdLXIUNjy3NpKPC4Hd1xWzv1v7eSWFzf3GIAP9u8N1Sy5fyU/OnsmM0fkcu+bOzn8dlmLyAdRIGy57eWtcR3zwWU7cWolWETiIMPt5NIFY+M23swRHW3f/UE1y0i4YNjywvpKfnzOTO59cwevbq4d0Dg1zX6+8OA7/O8njmJ3fRuhfoRoEZHuWGtZur0urmM+v66S9gHuLRYR6crjNpw+o4wJxVmDHsth4Psfm0GGx8HgNn/142sm6et8MBkYnptOKGJ5YX3VoIaqbvbz/17awrc/Op3q5kM/FhAR6a+m9mC/6m32xe76dowWgkUkDiqb/OSmu/jFubNJG2QryutOmURxtodl2+v79Yn8YKR0CA5HLFefNJGfPbMhLuP9e0M1JTlp1LcE4jKeiKS2PY19717ZHwOtMiEi0lVZbjoNbQEKMt3c+pljBlzj97Ljx3LSlBJaA2EWjC+iODstzjONLaVDsMfpYHNVM15f/PaePLB0J8PzM+I2noikLpugrGp1ckFE4iA/08PwvAzcTkNRlof7r5zPzC5l03qTm+7i5vNmc8rUUkbkpTMsN53SJNYwT+kQbC38ffXeuI756uYa8tUoQ0TioCQnMashg/3YUkQkKj/Tg8flZFtNK7npLr79kWncdN5sZo3M6/aekuw0rjtlEvddcRxFWR6G5aVT0dBOWhK7xUGKl0izWNbsaYrvmBZa/ck51SgiR7ZEhOCiLA8OtClYROKjorGdy+5axtaaVk6eXMxPPnEUzb4QVy8az4j8DBraguyubyPc2TFuTGEmrb4Q1V4fBVke3t7RwBX3rsDjdPDnK+Yxc0QueRnJWUxM6eWAcMTGbIYxWFs6G2+IiAyGMfHvnnTCpCI8LoVgERm8rgEY4JXNtZx088u8vaOeqWU5FGR58LgMuRku8jPcZLodZKe5GFechQU++Yc3+emzHeeyAuEIl9/9Nuv2emlq8ydl/im9EhxJ0LY4fyhZxT1E5EiWnebiqhPH860n18RtzKsXTSDNqbbJIjJ4oXCEthiLiXe/sYO739gBwLxxBRw3voiiLDevbKzhPxuraAvEPvAQikTwtgeTVh0ipUOwy5mY1RDtCRaReMhNd7FoSjEj8tLZG6MjU3/NH19IUZaHvCy9R4nI4I0tyuKRJQu46I6lMbvGAby9o4G3dzT0OpbDwB8+fQzzxhVSpOoQiedyGMpy4/+NnlgS348vRSQ1ORwOMt0dLd0HK8Pt5JfnzsajQ3EiEkfRIDw8b+BVHaIB+LjxyQvAoBBM+diCuI6Z5XGS6dFHjSISH3kZbkqy0/jex6YPeAy303DHZceS5jKU5CSv/JCIpIbBBOGhCsCQ6iHYabhy0YS4jnnBvNF4ErTNQkRSj8PhIMPj5MRJxfzq/P53ZSrK8vNErfwAACAASURBVPDAlfMpy0nTKrCIJMxAgvBQBmBI8RCcn5nGyLx0pg3Lict4bqfhcyeMo1grLSISJ3Ut/v2HRCaVZvPcVxaxaHJxr/e5nYbzjhnFU9ctJDfDRXsgQkNbkMY2dbQUkcQYW5TFg1fN7/P11y6exMJJxUMSgCHFQzBAWV4G/3fx0bgcg1+9/eaHp1GSgD3GIpKa6lv9tAXC/PK59znzt6+xvaYNY+CGD03lP18/mRs+NIXFU0oYmZ9BcbaHsUWZnDlzGD88ewb//vrJXHTcaLCW59ZUcs6tb/D8uipqW/wKwiKSEFVeHz98el2fr39k+S6qm/0Eg0NTVctYe/i1zywvL7crVqyI23jtgTD/WL2XbzyxesBjLJ5Swm8unEuhTl2LSJxUeX385O/r+ceaffufWzylhOs/NIV0p4N9Xh/pbifZ6S6cxhCKWJrbg/jDEcYVZVHZ1M53/rqGbbVt++//xplTOe/YUZQlsTWpiBz5qrw+vvH4e7y6ubZf9xVleXj0muMZW5CB2x3/M1XGmJXW2vJYr6X8SjBAhsfJmTOHcfN5swe0Ivzho8r49QVzFIBFJK4MUNf631Xb0YUZfPPDU9lS3cKV973NtpoWrLXkpLnIzXCT6XESjFhW72nk4juWEgH+95OzyEn7bzXMfY3tGB1bEJE4GmgAho73uAtvf4udDe1JXxFWCO6Um+HmY7NH8NxXFvV5j3BuuotbP3MMP//k7CHbzyIiR67S3HR+e9FcFkwoZHRhBr+/6Gi++NAqVu1q5GtnTOUnz2xgR10bWWkuRuRnkJPu4oV1ldz56nZ+feEcbn1pK7e+tJXbLzuWnDQXl8wfw1dOn0ypzi2ISJwMJgBHDVUQ1naIGGpb/OxtbOeOV7fx9o56qrz/bd+X5XFy1Mg8Lj1+LMeNK6Qgy4Pbqd8lRCRxapv9VDX7+NJDq9hW29Ge9NIFY7n4uNEUZ3sozc3Yf22110dti5+fPfs+r2/p+KF04qRivvPRaRRnp1GqbRAiEid9DcDGdNQqj9VdrqtEbI3oaTtESneM605xdhrF2WncdN5sWnwhQhFLOGIxBjxOBx6XQ13hRCQpKr0+6lsCBwRggPuX7iTd7eC0aWW4nU4KsjzUNfvZ19TOb/61eX8ABnh9Sy2//OdGrj9jMk5jKMrRJ1ciMnhN7cFeu8FFy6DNGpXH+X98q9vOctCxIvzi+krOPXYUJQnYH3zI3BL+FQ4ztS1+qps7/oEyPS5Kc9MZkZ/B6MJMRhVkUpqbvj8AN/uC1LX4expORGTAvO0Bapv9fPGhdw4IwFF3vradf62vYmNlM82+ILsb2vj1vzbzyqaaQ659ZVMNv/7XZvY0ttOk6hAiEgcj89N5+Or5ZHQTWLvWAR5VkNlrHeEvnTqJTx0zKmlNfRSCu6ht8bNxn5f39zVT09z9byrQEYC317aytaaFKm/P14qIDEQobPnyw6tiBuCou97oCMJtgTC/eXEzr8YIwFGvbqrhty9uInz47YITkQ+grDQ3k8uyYwbhWI0wemqo8aVTJ3HpgrFJ3bKlENyptsXPpkovW2tbeX1LLZurWroNwtEAXNcS4M9v7mBPQ7uCsIjEXchaPjpreK/X3fXGds74zSs9BmDo+KH0qWNGcTieBRGRD6ZYQbinTnCxgvBQBGDQnmDgvwF4S00r3/9bR5Hnrj8jui7Ldw3An39gJf5QBF8wwnWnTAJQ7U0RiRuP08HCSUVErOXWl7f2eK3XF+rxdYeBX50/h+F5aaS5tf4hIvHTNQhfctdybj5vdo+tkKNB+KI7lnLesaOGJABDEkKwMebDwO8AJ/Ana+0vDnp9DHAvkN95zbestc8mel5RsQIwwJ2vbTvgupKc9JgBGOA/71cDKAiLSFzlZ3qYPjx3/+PegnB3ogF4TGEG04bnkp3mjtcURUSA/wbhN751KqFwpNfSsWOLsvj7l04kErFDVrUmoSHYGOME/gCcAewB3jbGPG2tXd/lshuBx6y1txljZgDPAuMSOa+o7gJwVNcg7HY62FXfdkgAjlIQFpFEGGwQVgAWkWTJ6uf7S/EQ91hI9ErwccAWa+02AGPMI8A5QNcQbIHoO3wesDfBc9ovErHsbmiPGYCjokE4ze3A2x6KGYCj/vN+NQb42admJWK6IpKiBhqEFYBFJNla/ME+v9d42wPkZgxdydlEh+CRwO4uj/cA8w+65ofAC8aYLwFZwOmxBjLGLAGWAIwZMyYuk/O4HOyub+v1ujtf28aW6hbe3FrbbQCOqvL6cKgnqYjEWX6mh0kl2UwqzeHRt3cf0E65O0ePKWD++ELSXE4FYBFJuGqvj+fWVvLho4b1+ol4TbOPt7bWcczYAkYVZCZphgf6IJyOuBj4s7V2FPBR4H5jzCHzstbeYa0tt9aWl5SUxOUL52d6uGrRBK47ZWKv1760sbrXAHzUiFzu/tw8SlSIXkTirK7ZT0VTOzc8/l6fAjDAyp0N3PPmDrZUt9DQx3tERAai2uvjlhc38YOn1/H1x97tsWpWTbOPF9ZV8eVH3uWyu5ZT0dD7gmQiJDoEVwCjuzwe1flcV1cCjwFYa98C0oHiBM9rv/xMD1f3MQj3JBqAS5NU4FlEUkdds5/dDW38pptGGD35U5eGGgrCIpII0QD88PKOD/9f31LXbRCOBuDvPrUWgG21rVw6REE40SH4bWCyMWa8McYDXAQ8fdA1u4DTAIwx0+kIwf17lx+kwQZhBWARSZT9AbiXRhg9iTbUUBAWkXg7OABHxQrCBwfgqKEKwgkNwdbaEPBF4HlgAx1VINYZY35sjDm787KvA1cbY94DHgYut0NQyX2gQVgBWEQSpb5l8AE4SkFYROKtuwAc1TUI17XEDsBRQxGEE14nuLPm77MHPff9Ln9eDyxM9Dz6wukwfGb+WNZVeHm5Dz9wMtxO7r58Hk6dgxORBAhFLLf0IQA7DBw/sYg3ttT1eN1db2zHGJhYmhXPaYpIiqprDfDo27EDcNTrW+q4/tF3OWFSMTc/v7HHa7fVtnLfWztZcvIEirISf77qg3Aw7gMh2ghjY2Uzb23r+QdJVHswzJ2vbWdjZfctlkVEBsxARi/d3aJl0L555jS+sLj3T7Ky09UoVETiozQnjdsuORZHL4uBb2yt6zUAA5w9ZwRXnDg+KQEYFIKB2K2Q++rO17bx0sYaNlcpCItIfDmN4eqTJnDmzLKYr3etAzyhJItFk4t7DMJfWDyR+eMLcTn11i8ig1eUnUb52II+BeHenD1nBN89a3pSm42l/JLAYAJwVKwWyyIigxVtO7rkpAkAPL+uav9rsRph9NRQ4wuLJ7JocjHTh+eSnzl0xelF5MjSNQhf+8BKIgM41TUUARhSPATHIwBHKQiLSCLECsLddYLrrrOcArCIJNJggvBQBWBI8RDsD4Zp9vXcCjkqzeXo9Zo7X9vWeegkO57TFJEU1zUIO4zhjBll3bZCPjgIAwrAIpJw0SD8f58+husefKdP95w5o4wbz5pO6RAEYEjxPcEup4OHlu3sNdzOHJHL8u+e3qdDJ39dVYFzsBtjREQOUpSdxriiLK5YOJ7RBbEDcFQ0CC+cWMTCiUUKwCKSFBFrqWvx9/l6ry9E0mvidpHSITg/08OPzzmKU6d134Z55ohc7vncPPIy3Cw5aUKPQbgkJ42/fP4EirL0w0ZE4q8oO41JZdlMH9F9AI7Kz/QwY2QeM0bmKQCLSMJFG2F8/2/r+nzPW9u67yyXDCkdgqHjh8rN582JGYSjATjaCCM/09NtEI4G4NGFGRijlWARSYyCTE+vAbjrtQUKwCKSYN11guuLnlosJ1rKh2CIHYQPDsBRsYKwArCIiIikosEE4KihCsIKwZ26BuHuAnBU1yCsACwiIiKpKFYAnjs6v8/3Tx+eQ5qrI4oORRA21g7lluSBKS8vtytWrEjI2JXedqyF4XkZvV4b/YfKy3CR7k7pQhsikgT+YJi9TT4yPc4+lROqaGgHYGRB7+9nIiL9tX5vEx/9/ev7H1+xcByfOHok7+5uPGBv8MfnDGfx1FK+8fh7+8unLZ5SwlfPmEJ9a4Bru1TpuvLEcXzxlEkUxKlrnDFmpbW2PNZrWgnuorKpnS888A6fu/ttdtW19nhttdfHj/6+jvP/+CabqlrwBcNJmqWIpCJ/MMz2ulY+8Yc3uOGx93pdLaloaOfSu5Zx6V3L9odhEZF4Ks5J46unTwY6AvC04bmc84c3qPL6+fE5M4GOOsDfO2sGp04t2d9ZbvGUEq5cNJ5P37mUR9/ezW2XHEuay8HsUXlcvWhC3AJwb7QS3KmyqZ0r713Bur1eAEbmZ/Dw1fMZU5R1yLXVXh8/eHodz62tBCDT4+SRJQuYUpZDutsZ13mJiEQD8IW3L6WpPQjAoknF/OqCOTFXhKMBeFttxy/zE4qzuP/K+VoRFpG4q272sXpPI/WtQf7nL6uJxsrrTpnEsWPyOWpk3v46wHUtfrbVtOALRbjm/pW0BToWEM+cOYzPLRzHuKJMhvXhk/j+0EpwLw4OwAAVje1cfOeyQ1aEDw7AAG2BMBfdsZRNVc1aERaRuIoVgAFe21Ibc0X44AAMsK22VSvCIpIQDgyBkD0gAAP84aUtbKhshi7HpTLcTtLdzgMCMMDz6yp5YOnOpJ+tSvkQHCsARx0chGMF4CgFYRGJt+4CcNTBQThWAI5SEBaReKtt9rN0ex3XPfQOsTYW3Pz8Rh5etovqZh9t/hBbalq48I6lBwTgqH+s3scPn16X1INxKR2C61sD3PD46pgBOCoahHfXt3UbgKPaAmEuvmMp7TH+cUVE+ssfivDpO5fFDMBR0SC8t7H7ABy1rbaVax9cSWNbIBHTFZEUU93s40sPr4oZgKNueXEzDy7dxebqFi7qJgBHPbe2krtf3059a9+7zg1GSu8JDoUibK9r5YLb36KhrfsfMv1x83mzOW16KYVJ2tQtIkeuuhY/K3Y0cO2DK/efqB6M7DQXjyxZwMSSLDI8qmgjIoNT7fXxh5e3cu+bO+Iy3qTSbO694jhG5sdvX7D2BHfD5XIwviiLx645noLMvnVg6okCsIjEU1F2GuXjCrjtMx0nqgdDAVhE4q00N53rFk/ksyeMG/RYiQjAvUnpEAzxC8IKwCKSCPEIwgrAIpIo8QjCQxGAQSEYGHwQVgAWkUQaTBBWABaRRBtMEB6qAAwKwfsNNAgrAItIMhRlpzFvXMH+YvN9oQAsIskSDcKXHT+2z/cMZQAGheADuFwOCrM8TC7L6dP16W4HCycVKwCLSFJYYO7ofHIz+vaL+tiiTMpy02n1hRI7MREROn7x/uTRI/t8/YIJhaS7hi6KKgR3Ud3s43tPrWX59vo+Xe8LRjj/j2+xq74twTMTkVRX1+LHFwzz6TuX0tjHajbr9nr5+uPvErJQm8TamyKSeqJ1gC/507I+3/PA0l08sHQn1UP0/qQQ3Km62ccP/7aOZ3uoAxxLRWM7F9+xVEFYRBImGoAvu3s5W2u6rwMcy6ubavnmX95TEBaRhIkG4IvvWEprP3sl3PLiZh5evmtIgrBCMAMPwFEKwiKSKIMJwFEKwiKSKIMJwFFDFYRTPgQPNgBHKQiLSLx52wcfgKO6BuH6luR0YxKRI1s8AnDUUAThlA7BNc0+fvqPDX0KwJ9bOK7XqhHRIJzMvtcicuQKhOlTAM5Oc3HNSRN6rRrx6qZa/ufJ1YQPv0ahIvIBFM09vQXgSaXZnDN3RK/j3fLiZp56t4Ka5uTkqJQOweluJxfMG43b2fNPjpvPm81XT5/Sp/JpZ8woG3RnJxERgHDEctbsnn9wZKe5uP3SY5lYms2vzp/T4/uPw8DF80ajtygRiYfcDDdzR+f3eM3k0mzuu+I4vnfWjF7rCBdkujllain56YPv4tsXKR2Cc9LdzB6Vx58/d1y3QThaBzgvw91rHeHLTxjHdadMpCQnPZHTFpEUUZabzmfmj+HLp02O+Xo0AN/28la++cRqVu1q7DYIOwzc+pljKB9bSHGOyjqKyOCV5abzmwvnsnBiUczXJ3fWAR6Rn0FxTlqPDTUKMt08ds3xjCvMxO12JnDW/5XSIRgODcILJxVx9pyOlZeDG2Ec3FBjYkk2S06aACgAi0hidBeEuwbg17fUAnD/0p0xg7ACsIgkSndBuGsAjuqus9xQBGAAY+3htzmsvLzcrlixIq5jNvuCbK9txQC+YJhg2DJteE7MRhihUIQ9je20B8PUtvgIR2DmiFwFYBFJmCqvjweX7eL3/94cMwB3demCsRw9Jp8bHn8PUAAWkcSr8vq4/tF3eWNrXcwA3FW118cfXt7KvW/uSHgANsastNaWx3pNfTQ7ZbidZHqc1LcGafaFKMlJI8MT+x/D5XKQ7nbg9QWp8voZmZ9Bmit5v7mISOqJrginuRzMHZ3fbQCGjhVhgF+dP4dMj1MBWEQSLroi/Pt/b+a6UyZ1G4DhvyvCOekuzpkzIukrwFEpvx0CIBSOsLOulfrWIHe+upV/rN5LTbOfLVUttAcPbTda6fVR3eznN//axMbKFjbsa2bd3ia87X3r4iQiMhAO4ILyUdy/dEe3ATjq/qU7qWxqZ86ofA6/z/tE5HBUlpvO9WdM6TEAR5XmpnPZgrFDFoBBK8H7A3Bda5C7Xt/G5QvH09Qe5MUNVZw+vQyASWXZZLg7vlWVXh/VXh+/+dcmvnLaZN7b00QwHGHDvmYAZo7IIzcjOacaRSR1VHt97K5v447XtvH8uqo+3XPT85to8Yc79+rlUqLVYBFJoNoWP3sb24lY2+sWUa8vQF1rACyU5ikEJ93BAfiy48dxzf0r8QXD/O6iow8IwpPLcmhsDx4QgL/08Cr2NLRz/RlTyPA4FYRFJCEGEoCjbn15a5dHCsIikhi1LX42VnoBQ4u/BaDbIOz1BdhW3Yo/FKE92FFjuDQv+eeqUno7RIs/hNcXOiAAt/hDhCKWrzyyihMnlfDihiqqm/28s7MhZgAG+M2/NtEeCBO2lvcrm/GFBtc1RUQkajABOOrWl7fyxtY6NlV6qWlWtzgRia9oAN6wr5nP/GkZz66pZHN1S8ymF9EAXNMS4LK7l/Or5zeyp6md6qbkNxpL6RAcjlheWFd5QACOOjgIb61pjRmAo6JB2AAuR0p/W0UkTuIRgKO6BuHqJHVjEpEjX9cA/L/PbADggaU7YwbhrgH4iw+9gz8U4c2tdUMWhFM6rWV6nHxszohDAnBU1yBc0+LrNgBH/eZfmwhFLOFIJNFTF5EUcWcfA/CskXm9XnPry1t5e2cDh2NpTBH54IkVgKMODsLNvuAhAThqqIJwSofg1kCYXz+/KWYAjooG4Uy3q8cAHPX/XtqCMWpKKiKD53QYWgO9b6+65cI5PHT1fK5eNL7Xa1v9ITxOlXQUkcFr8YViBuCorkF4wz5vzAAcFQ3CdW0BGtsCiZ46kOIhuDg7jZ+fO4v54wt7vC4Usfzin+/3GoDzM908uuR48tJS+ryhiMRJUXYav71wLosmF3d7zS0XzuGMGWXkpLu57pRJPQbhqxeN57pTJlGQ5UnEdEUkxbQFwt0G4KgHlu7kmdX7qO0hAEe9ubWOJ9/Zg8uZnHia0iEYOmra/f7io3sNwr2JBuAJRUNX705Ejjw9BeFoAM5O66hGk5/p6TYIRwNwfqYCsIjEx8iCdG44c0qv1z24bBdfeLDnAAwwd1QeS06aQHaSFhNTPgTD4IOwArCIJFKsIHxwAI6KFYQVgEUkEfIyPFy6YGyfgnBv5o7K487PlvdaXziezOF4QKK8vNyuWLEi7uNWNvn4yiOrWLa9vs/3dATgBYzOzyAzXbWBRSRx6lr8fO2x9/jk0SNiBuCuGtsC/OGlLQAKwCKSUE3tAe5fupNfPb9pQPcnMgAbY1Zaa8tjvqYQ3KHK66O22U8wYrnxqTWsrfD2ek+ay8GDV83HWku623lAZzkRkURobAvgcpoeA3BUQ+fhkgIFYBFJsIEG4USvAPcUgrUdgo4AXOX1cfMLG7HW0tAa7NN9wXCEKq+fJ1dVUN3sZ0tVC+3B7itNiIgMVn6mp08BGDrCrwKwiCRDXoaHi+aN5munT+7zPbNG5vHHS5O7BaKrlA/B0QDctRFGRWPPVSCiIpZDOsspCIuIiEiq8foC7GloZ+qw3D7fM6Eki531rTE7yyVDSodgry9IbYu/x05wvYnVYtkfVLMMERERSQ37O8E1B/jKI6v6fN/f3t3L39/b122L5URL6RAcClvueX37gAPw/nG6BOF/b6iO8yxFREREPphitULuj+5aLCdDSofgwiwPXz59yqACcFQ0CH9oZhnBsFaCRURE5Mg22AAcNVRBOKVDcH1rgP/5y+o+dYL7y7UncNy4gh6vC0Usn39gJZ4kdToRERERGSp1LYFBB+CoaBDeVd9GQ6vaJidcYZaHm86dzejCjG6viTbCmDMyl99/+pgeg7DLYbj90nK0DiwiIiJHumDI9ikAzxmVx1U9tHSPemDpTt7cWofLaeI1xR6ldAgGGF2YyUNXLYgZhLt2gnO5nAzLTe82CLschrsun8fsUXkqSSQiIiJHvOKcNE6fXtbjNXNH5fGnz5bz5VMn99pZblhuOp+YO5KcJDUfS/kQDLGDcHetkGMFYQVgERERSTWFWR5+8omjOGvW8Jivd22EkZvh7rHF8rDcdB7//PGMLsxM5JQPoBDcqWsQ7i4AR3UNwgrAIiIikqq6C8KxOsHlZXhiBuGhCMCgtsmH2F3fRnswzPjC2AG4q0qvj72N7YwvzlIAFhERkZRV3xrge0+t5Zk1+3pthdy1xXKiA3BPbZNdCfmKh7HRhZmEw2Gczp4DMHT85lKS5e7TtSIiIiJHquiK8KTSLC5ZMLbHVsjRFeHcNDenTCtN+gpwlEJwDP0JtQrAIiIiIh1B+JqTJpKZ1nu8zMvw8KljR5KdlpxDcLFoT7CIiIiIxEVfAnDUUAZg6EMINsbMMsYsNcbsNsbcYYwp6PLa8sROT0REREQk/vqyEnwb8ENgFrAJeN0YM7HztaGN8CIiIiIiA9CXNesca+0/O//8K2PMSuCfxphLgcOvtISIiIiIpLw+bdwwxuRZa5sArLUvGWPOBf4CFCZyciIiIiIiidCX7RC/BKZ3fcJauxo4DXgyEZMSEREREUmkXkOwtfYha+3SGM/vstZeHX1sjPm/eE9ORERERCQR4lkibWEcxxIRERERSRjVCRYRERGRlKMQLCIiIiIpJ54h2MRxLBERERGRhOlzCDbGzOrlkt8Nci4iIiIiIknRn5XgW40xy40xXzDG5B38orX2z/GbloiIiIhI4vQ5BFtrFwGfAUYDK40xDxljzkjYzEREREREEqRfe4KttZuBG4H/AU4Gfm+Med8Y86lETE5EREREJBH6syd4tjHmFmADcCrwcWvt9M4/35Kg+YmIiIiIxJ2rH9f+H/An4DvW2vbok9bavcaYG+M+MxGRFFfb7KfFH0rI2NlpLopz0hIytojI4aA/IfgsoN1aGwYwxjiAdGttm7X2/oTMTkQkhbX4Qyz+1csJGfvlGxYrBItISutPCH4ROB1o6XycCbwAnBDvSYmICKS7HTyyZEHCxhYRSWX9CcHp1tpoAMZa22KMyUzAnEREBGgPRrjojqUJGfulGxYnZFwRkcNFf5YCWo0xx0QfGGOOBdp7uD563YeNMRuNMVuMMd/q5poLjDHrjTHrjDEP9WNOIiIiIiL91p+V4K8Cjxtj9tLRInkYcGFPNxhjnMAfgDOAPcDbxpinrbXru1wzGfg2sNBa22CMKe3n30FEREREkqyhNZCQw7vZaS4KsjxxH/dgfQ7B1tq3jTHTgKmdT2201gZ7ue04YIu1dhuAMeYR4BxgfZdrrgb+YK1t6Pw61X2dk4iIiIgMDa8vyMk3vxz3cV/5xuIPVgjuNA8Y13nfMcYYrLX39XD9SGB3l8d7gPkHXTMFwBjzBuAEfmit/efBAxljlgBLAMaMGdPPaYuIiIhIPEXs4TXuwfocgo0x9wMTgXeBcOfTFugpBPd1DpOBxcAo4FVjzCxrbWPXi6y1dwB3AJSXlyfp2yMiIiIiR6L+rASXAzOstf0JoBXA6C6PR3U+19UeYFnn1ortxphNdITit/vxdURERERE+qw/IXgtHYfh9vXjnreBycaY8XSE34uATx90zVPAxcA9xphiOrZHbOvH1xiwRG3ohuRt6hYRERGR/utPCC4G1htjlgP+6JPW2rO7u8FaGzLGfBF4no79vndba9cZY34MrLDWPt352oeMMevp2GbxDWtt3QD+Lv0WjETwhyIJGTvNnZhxRURERGTw+hOCfziQL2CtfRZ49qDnvt/lzxa4vvN/SRWJWGpb/L1fOADZac6EjCsiIiIig9efEmmvGGPGApOttS92dos7rJOeujGJiIiIpKY+d4wzxlwNPAHc3vnUSDr284qIiIiIHFb60zb5OmAh4AWw1m4G1N1NRERERA47/QnBfmttIPrAGOOio06wiIiIiMhhpT8h+BVjzHeADGPMGcDjwN8TMy0RERERkcTpTwj+FlADrAGuAZ611n43IbMSEREREUmg/pRI+5K19nfAndEnjDFf6XxOREREROSw0Z+V4M/GeO7yOM1DRERERCRpel0JNsZcTEer4/HGmKe7vJQD1CdqYiIiIiIiidKX7RBvAvvoaJv86y7PNwOrEzEpEREBYw7PsUVEDge9hmBr7U5gJ3B84qcjIiJRNoFFKBM5tojI4aA/HeM+ZYzZbIxpMsZ4jTHNxhhvIicnIiIiIpII/akOcRPwcWvthkRNRkRE/isrzcmL15+csLFFRFJZf0JwlQKwiEjyuB0O0lz9KeLTv7FFRFJZf0LwCmPMo8BTgD/6pLX2ybjPSkREKMjyUJDlGeppiIgckfoTgnOBNuBDXZ6zkPu+qgAAG59JREFUgEKwiIiISIrJcDt4ZMmChIybDH0OwdbazyVyIiIiIiIiydLnEGyMmQLcBpRZa48yxswGzrbW/m/CZiciIiIiH0hpLicj8zMSMm4y9Ge9+U7g20AQwFq7GrgoEZMSEREREUmk/uwJzrTWLjcHthkKxXk+IiIiInIYaPGHWHTTS3Ef97VvnpKUQ8H9CcG1xpiJdByGwxhzHh3tlA9bjgS2DU3k2CIiIiJDzeNKzME4T4JKQx6sPyH4OuAOYJoxpgLYDlySkFklSabHyUs3LE7Y2CIiIiJHKl8wzEV3LI37uK98Y3Hcx4ylP9UhtgGnG2OyAIe1tjlx00qOkpx0SnKGehYiIiIih5+IPbzGPVif15uNMV8xxkRrBd9ijHnHGPOh3u4TEREREfmg6c+miyustV46mmUUAZcCv0jIrEREREREEqg/ITh61OujwH3W2nVdnhMREREROWz0JwSvNMa8QEcIft4YkwNEEjMtEREREZHE6U91iCuBucA2a22bMaYIUCtlERERETns9BqCjTHTrLXv0xGAASYc1DBDREREROSw0peV4OuBJcCvY7xmgVPjOiMRERERkQTrNQRba5d0/v8piZ+OiIiIiEji9XlPsDHmfOCf1tpmY8yNwDHAT6y1qxI2OxGRFNbQGqDFH0rI2NlpLgqyPAkZW0TkcNCfg3Hfs9Y+bow5ETgduBn4IzA/ITMTEUlxLf4Qi256KSFjv/bNUxSCRSSl9adEWrjz/88C7rDWPgPoHVREJEEiNnG9QxM5tojI4aA/IbjCGHM7cCHwrDH/v737j7Kyuu89/v4yDDPITKKFEaOIEIsCIoIZVGpCIMYo/aHRm2T5MzUavXdVUyNiNPWq1Kwk/qAu03s1rYleNdZ608RbTaoNTQOiiZagEq2ClRh/oEaRRstgGBnY9485GBwR5syc55wzs9+vtVjMec5zvuc77MUzHzb77Ceayny9JKkMReZUM7Ck3JWzHOIzwNHAwpTS6xHxAeCCYtqSJDU3DuGOsw4rrLYk5azXIbh0g4y7gNERMbZ0eFUxbUmSfrtpCyfc8FAhtRfPn11IXUkaKMrZHeILwGXAK/zudskJmFpAX1Wxdv1GOjo37/zEPmhpaqCttbmQ2pIkSeqfcpZDnAvsn1JaV1Qz1dbRuZk5C5cUUnvx/Nm0tRZSWpIkSf1UzqKwF4A3impEkiRJqpZyZoKfAZZExD8BnVsPppSuqXhXkiRJqmsxwOr2VE4Ifr70axjuDyxJkqQBrJzdIf4SICJaSo87impKkiRJ9W34sIZCtnEcPqyh4jW3p5zdIaYA3wF+r/T4NeCzKaUnCupNkiRJdWpYwxD22nV4IXWroZzlEDcA81JKiwEiYjbwLeAPCuhLkiRJdWy3EcPYbcTAXSFbTtQesTUAA6SUlgAjKt6RJEmSVLCydoeIiEvoXhIBcArdO0ZIkiRJA0o5M8GnA23AncD3gVGlY5IkSdKAUs7uEL8B/rzAXiRJkqSq6PVMcET8S0Tsus3j3SLiR8W0JUmSJBWnnOUQo1JKr299UJoZ3r3yLUmSJEnFKicEb4mIsVsfRMQ+QKp8S5IkSVKxytkd4mLggYi4j+7bOn8EOKuQriRJkqQClfPBuH+OiIOBrffH+2JK6bWtz0fEAd49TpIkSQNBOTPBlELvD9/j6e8AB/e7I0kSAENiYNaWpIGgkjdn9pIqSZKkAaGSIdgPyUlSBQ2J4uYWiqwtSQNBWcshJEnV09I0lPu/NKew2pKUs0peBd+qYC1Jyt5uI4ax24hhtW5DkgalskJwREwFxm37upTSnaXfD3uPl9WtlqYGFs+fXVhtSZIk1adeh+CIuAmYCjwBbCkdTsCdBfRVFW2tzbS11roLSZIkVVs5M8GHpZQmF9aJJEmSVCXl7A7xYEQYgiVJkjTglTMTfCvdQfjXQCfd+wKnlNLUQjqTJEmSClJOCL4ROBV4nN+tCZYkSZIGnHJC8NqU0t2FdSJJkiRVSTkh+NGIuB34Ad3LIYDfbZEmSZIkDRTlhODhdIffT2xzbEBvkSZJkqQ89ToEp5Q+V2QjkiRJUrWUc7OMZuAM4ACgeevxlNLpBfQlSZIkFaacfYK/A+wBHAXcB4wB1hfRlCRJklSkckLw76eULgE2pJRuAf4IOLSYtiRJkqTilBOCN5V+fz0ipgDvB3avfEuSJElSscrZHeKGiNgNuAS4G2gBLi2kK0mSJKlA5ewO8e3Sl/cBHyymHUmSJA0Ea9dvpKNzc8XrtjQ10NbavPMT+6mc3SFGA18D9kwpzY2IycDMlNKNhXUnSZKkutTRuZk5C5dUvO7i+bNpa6142XcpZ03wzcCPgD1Lj/8D+GKlG5IkSZKKVk4IHpVS+i6wBSCl1AXsdA48Io6OiKciYnVEXLSD8/5bRKSIaC+jJ0mSJKls5YTgDRExku5bJRMRhwFv7OgFEdEAXAfMBSYDJ5aWUfQ8rxU4F/i3MvqRJEmS+qSc3SHm0b0rxAcj4qdAG/CpnbzmEGB1SukZgIi4AzgWeLLHeV8BrgQuKKMfSRrUivrQCVTvgyeSVK/KCcFPAv8PeJPuO8X9I93rgndkL+CFbR6voccNNiLiYGDvlNI/RURVQ7A/YCTVs6I+dALV++CJJNWrckLwrcB/0b1DBMBJdN9K+dN9ffOIGAJcA5zWi3PPAs4CGDt2bF/f8h38ASNJkpSnckLwlJTStut5F0dEz2UNPb0I7L3N4zGlY1u1AlOAJREBsAdwd0Qck1Javm2hlNINwA0A7e3tqYy+JUmSpHco54Nxj5Q+DAdARBwKLN/B+QA/ByZExPiIGAacQPe6YgBSSm+klEallMallMYBDwHvCsCSJElSJe10JjgiHqd7R4hG4GcR8Xzp8T7Aqh29NqXUFRHn0L2/cANwU0rpiYi4HFieUrp7R6+XJEmSitCb5RB/3J83SCndA9zT49il73Hu7P68lyRJktQbOw3BKaXnqtGIJEmSVC3lrAmWJEmSBgVDsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUnd7cNlmSJEl6h5amBhbPn11I3WowBEuSJKlsba3NtLXWuou+czmEJEmSsmMIliRJUnYMwZIkScqOa4IlqU4V9aGTrbUlKWdZh2B/wEiqZwP9QyeSVM+yDsH+gJEkScqTa4IlSZKUHUOwJEmSspP1cghJqmevre+ko7OrkNotTUMZ1dpUSG1JefjNhrcKuUa1NA1ltxHDKl63J0OwJNWpjs4uZi9cUkjtJfNnG4Il9UtHZxcfuWpxxeve/6U5VQnBLoeQJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO0Nr3UAtrV2/kY7OzYXUbmlqoK21uZDakvIwoqmBxfNnF1ZbkvqjuXFIIdeo5sbqzNFmHYI7OjczZ+GSQmovnj+bttZCSkvKxMZNWwq7Rt3/pTmF1JWUj6JyVLUylMshJEmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdmJlFKteyhbe3t7Wr58eb/rrF2/kY7OzRXo6N1amhpoa20upLakPHiNklTPirpGVfL6FBEPp5Tat/fc0Iq8wwDV1tpMW2utu5Ck7evo3MychUsKqb14/myvf5L6ZaDnKJdDSJIkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwUHoIj4uiIeCoiVkfERdt5fl5EPBkRj0XEv0bEPkX3JEmSpLwVGoIjogG4DpgLTAZOjIjJPU57FGhPKU0FvgdcVWRPkiRJUtEzwYcAq1NKz6SU3gLuAI7d9oSU0uKU0pulhw8BYwruSZIkSZkrOgTvBbywzeM1pWPv5Qzg3u09ERFnRcTyiFi+du3aCrYoSZKk3NTNB+Mi4hSgHbh6e8+nlG5IKbWnlNrb2tqq25wkSZIGlaEF138R2Hubx2NKx94hIj4OXAx8NKXUWXBPkiRJylzRM8E/ByZExPiIGAacANy97QkRMR34W+CYlNKrBfcjSZIkFRuCU0pdwDnAj4CVwHdTSk9ExOURcUzptKuBFuAfImJFRNz9HuUkSZKkiih6OQQppXuAe3ocu3Sbrz9edA+SJEnStgoPwZKkvmlpamDx/NmF1ZaknBmCJUmSVLbfbHiLjs6uitdtaRrKbiOGVbxuT4ZgSapTHZ2bmbNwSSG1F8+fTVtrIaUlZaKjs4uPXLW44nXv/9KcqoTgutknWJIkSaoWQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlZ9DsE7xp0ybWrFnDxo0ba91KTTU3NzNmzBgaGxtr3YokSVLdGjQheM2aNbS2tjJu3Dgiotbt1ERKiXXr1rFmzRrGjx9f63YkSZLq1qBZDrFx40ZGjhyZbQAGiAhGjhyZ/Wy4JEnSzgyaEAxkHYC38s9AkiRp5wZVCJYkSZJ6wxBcIa+//jrXX399rduQJElSLxiCK8QQLEmSNHAYgivkoosu4pe//CXTpk3jggsu4Oqrr2bGjBlMnTqVyy67DIBnn32WiRMnctppp7Hffvtx8skn8+Mf/5jDDz+cCRMmsGzZMgAWLFjAqaeeysyZM5kwYQLf+ta3AHj55ZeZNWsW06ZNY8qUKdx///01+34lSZIGMkNwhVxxxRXsu+++rFixgiOPPJKnn36aZcuWsWLFCh5++GGWLl0KwOrVqzn//PNZtWoVq1at4vbbb+eBBx5g4cKFfO1rX3u73mOPPcZPfvITHnzwQS6//HJeeuklbr/9do466ihWrFjBL37xC6ZNm1arb1eSJGlAGzT7BNeTRYsWsWjRIqZPnw5AR0cHTz/9NGPHjmX8+PEceOCBABxwwAEcccQRRAQHHnggzz777Ns1jj32WIYPH87w4cOZM2cOy5YtY8aMGZx++uls2rSJT37yk4ZgSZKkPnImuAApJb785S+zYsUKVqxYwerVqznjjDMAaGpqevu8IUOGvP14yJAhdHV1vf1cz63OIoJZs2axdOlS9tprL0477TRuvfXWKnw3kiRJg48huEJaW1tZv349AEcddRQ33XQTHR0dALz44ou8+uqrZdW766672LhxI+vWrWPJkiXMmDGD5557jtGjR3PmmWfy+c9/nkceeaTi34ckSVIOXA5RISNHjuTwww9nypQpzJ07l5NOOomZM2cC0NLSwm233UZDQ0Ov602dOpU5c+bw2muvcckll7Dnnntyyy23cPXVV9PY2EhLS4szwZIkSX0UKaVa91C29vb2tHz58nccW7lyJZMmTSqrzqbNW9iypZjvf8iQoLGhbxPtCxYsoKWlhfnz5/fp9X35s5BUf9au30hH5+ZCarc0NdDW2lxIbUl5KOoaVcnrU0Q8nFJq395zWc8Eb9mSeOqV9YXU3n90K/R+4leS3qWjczNzFi4ppPbi+bNpay2ktKRMbCjoGrWkStenrENwvVqwYEGtW5AkSRrU/GCcJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRX0KXnn8PsaRM4/oiZtW5FkiRJO5BtCL733ns5/rhjOf24I7ngzJN48L5/7XfNYz99It/8zvcq0J0kSZKKlOUWaffeey9f/epX2bhxIwDr1r7KLddfA8DMjx7R57ofOuxwXnzh+Yr0KEmSpOJkORN83XXXvR2At3qrs5M7b7uxRh1JkiSpmrIMwa+88sp2j697bW2VO5EkSVItZBmCR48evd3jI0e1VbkTSZIk1UKWIfjss8+mubn5HceGNTVx/Cln1KgjSZIkVVOWIXju3LlcfPHFjN5jD4hgZNvu/OmfzevXh+IALjz7DD77yU/w3DOr2Xf8Ptx4o2uMJUmS6lGWu0NAdxD+2Mc/wVOvrK9YzSuv+13o3X90K02NDRWrLUmSpMrJciZYkiRJeTMES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIrqBfv7SGMz7zJxz3scOYftBUvvGNb9S6JUmSJG1HlvsEb9q0iXnz5pFS4itf/Tr/8+IvA3DlVQtpbGzsc933bdmV/3XtNUyffjAbNnRw2CEzOPLII5k8eXKlWpeUkZamBhbPn11YbUnqj5amoSwp4BrV0lSdeJplCJ43bx6PPPIIAMf8yR/T1dUFwDnnnse8y77e98JDWthlzwk89cp6Ju7RyqRJk3jxxRcNwZL6pK21mbbWWnchSds3qrWJUa1NtW6jz7IMwVt1dnYCnQA0DqvsID777LM8+uijHHrooRWtK0mSpP7Lck3wlVde+a5lD0OHDuXsCy+tSP03N3Rwwmc+w7XXXsv73ve+itSUJElS5WQZgi+88EI2bdr0jmNdXV1cd+Xl/a69adMm5p31p5xw4okcf/zx/a4nSZKkyst6OURTUxNDGoa+vSa4v1JKLLjgC3xwwn588bzzKlJTkiRJlZflTPA111zDwQcfzLTp0/mrG+9g/wOmsv8BU/nzv+jfTPCjP3+IH37//7Lsp0uZ8aEPMW3aNO65554KdS1JkqRKiZRSrXsoW3t7e1q+fPk7jq1cuZJJkyaVVeetrs2s+vX6Srb2tol7tDJsaG22IOrLn4UkSdJgExEPp5Tat/dcljPBkiRJypshWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlJ2sb5ZRhLkzp7LLiBZ2aRpGY+NQem7lJkmSpNrLMgTPmjWLN998813Hm4cP5/q//0G/63/7uz9g5uRxNdsnWJIkSTuW5XKI7QVggI2//W2VO5EkSVItZBmCCxXB/zj5eA475BBuuOGGWncjSZKk7chyOUSRbv7+vYz+wJ783pDf8kdzj2bixInMmjWr1m1JkiRpG84EV9joD+wJwO67785xxx3HsmXLatyRJEmSejIEV9Cbb25gQ8d6ADZs2MCiRYuYMmVKjbuSJElST1kuh9hll13ec3eI/vjPtWs578xTAGiIxMknncTRRx/dr5qSJEmqvCxD8NKlSwF4q2szq369vmJ1x+wzjn9Y9AAAE/dodYs0SZKkOpVlCN5qSAQT92gtrLYkSZLqU9YheGiDS6IlSZJyNKhSYEqp1i3UnH8GkiRJOzdoQnBzczPr1q3LOgSmlFi3bh3Nzc21bkWSJKmuDZrlEGPGjGHNmjWsXbu21q3UVHNzM2PGjKl1G5IkSXVt0ITgxsZGxo8fX+s2JEmSNAAMmuUQkiRJUm8ZgiVJkpQdQ7AkSZKyEwNxN4WIWAs8V4O3HgW8VoP3VbEc18HLsR28HNvByXEdvGo1tvuklNq298SADMG1EhHLU0rtte5DleW4Dl6O7eDl2A5OjuvgVY9j63IISZIkZccQLEmSpOwYgstzQ60bUCEc18HLsR28HNvByXEdvOpubF0TLEmSpOw4EyxJkqTsGIIlSZKUHUNwDxFxU0S8GhH//h7PR0T8dUSsjojHIuLgaveo8vViXE8ujefjEfGziDio2j2qb3Y2ttucNyMiuiLiU9XqTf3Tm7GNiNkRsSIinoiI+6rZn/quF9fk90fEDyLiF6Wx/Vy1e1T5ImLviFgcEU+Wxu3c7ZxTNznKEPxuNwNH7+D5ucCE0q+zgG9WoSf1383seFx/BXw0pXQg8BXqcAG/3tPN7HhsiYgG4EpgUTUaUsXczA7GNiJ2Ba4HjkkpHQB8ukp9qf9uZsd/b88GnkwpHQTMBv4qIoZVoS/1TxdwfkppMnAYcHZETO5xTt3kKENwDymlpcB/7uCUY4FbU7eHgF0j4gPV6U59tbNxTSn9LKX0m9LDh4AxVWlM/daLv7MAXwC+D7xafEeqlF6M7UnAnSml50vnO74DRC/GNgGtERFAS+ncrmr0pr5LKb2cUnqk9PV6YCWwV4/T6iZHGYLLtxfwwjaP1/DuAdbAdgZwb62bUGVExF7Acfi/NoPRfsBuEbEkIh6OiM/WuiFVzP8GJgEvAY8D56aUttS2JZUjIsYB04F/6/FU3eSoobV4U6leRcQcukPwh2vdiyrmWuDClNKW7kklDSJDgQ8BRwDDgQcj4qGU0n/Uti1VwFHACuBjwL7Av0TE/Sml/6ptW+qNiGih+3/fvljPY2YILt+LwN7bPB5TOqYBLiKmAt8G5qaU1tW6H1VMO3BHKQCPAv4wIrpSSv9Y27ZUAWuAdSmlDcCGiFgKHAQYgge+zwFXpO6bGayOiF8BE4FltW1LOxMRjXQH4L9LKd25nVPqJke5HKJ8dwOfLX268TDgjZTSy7VuSv0TEWOBO4FTnUUaXFJK41NK41JK44DvAX9mAB407gI+HBFDI2IX4FC61yBq4Hue7hl+ImI0sD/wTE070k6V1nDfCKxMKV3zHqfVTY5yJriHiPh7uj+JOioi1gCXAY0AKaW/Ae4B/hBYDbxJ979WVed6Ma6XAiOB60szhl0ppfbadKty9GJsNUDtbGxTSisj4p+Bx4AtwLdTSjvcKk/1oRd/b78C3BwRjwNB95Km12rUrnrvcOBU4PGIWFE69hfAWKi/HOVtkyVJkpQdl0NIkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkjSAlDaY99otSf3khVSS6lxEjIuIpyLiVuDfgUsi4ucR8VhE/OU256yKiL+LiJUR8b3SXdSIiCsi4snS+Qtr+b1IUr3wZhmSVOciYhzdt4z9A+B9wKeA/073nbTuBq6i+zazvwI+nFL6aUTcBDwJ/B/gZ8DElFKKiF1TSq9X/ZuQpDrjTLAkDQzPpZQeAj5R+vUo8AgwEZhQOueFlNJPS1/fBnwYeAPYCNwYEcfTfZtSScre0Fo3IEnqlQ2l3wP4ekrpb7d9sjRb3PO/9lJKqSsiDgGOoHsG+RzgY8W2Kkn1z5lgSRpYfgScHhEtABGxV0TsXnpubETMLH19EvBA6bz3p5TuAc4DDqp6x5JUh5wJlqQBJKW0KCImAQ9GBEAHcAqwGXgKOHub9cDfBN4P3BURzXTPIs+rSeOSVGf8YJwkDQKl5RA/TClNqXErkjQguBxCkiRJ2XEmWJIkSdlxJliSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpSd/w/mzUIulYMUfQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3Rc1bn+8e+eqt6LZVnuFWzjItuYckNCIJQkQIoxJTSHlnATSMhN4+am/dIrIRB674QeEiCB0I17Ny64W7Z6L1P37w95HCGrWmfkMs9nLdZCM+dsb8trHT3as/f7GmstIiIiIiKJxHWoJyAiIiIiMtgUgkVEREQk4SgEi4iIiEjCUQgWERERkYSjECwiIiIiCcdzqCdwMPLy8uzIkSMP9TRERERE5DC2dOnSKmttflfvHZEheOTIkSxZsuRQT0NEREREDmPGmO3dvaftECIiIiKScBSCRURERCThKASLiIiISMJRCBYRERGRhKMQLCIiIiIJRyFYRERERBKOQrCIiIiIJJwjsk7wYKlvCdIYCAMQjlhcBtwuF163oSAj6RDPTkQSXVVjG4FwlIi1RKPgdhkMkJbkJivFf6inJyJyWFMI7kJZXSuVjQHufXcrS7bVsqu2df97GckephZnMX92CTOGZ5OT4iXJp2+jiAyOUChCZXOQtWUNPLxwOyt31VHbEtr/flFmEjOHZ3PZiSMZmpXM0KzkQzhbEZHDl7HWHuo59FtpaamNR8e42pYAVY1BbnhiBWt2N/R6fVaKl5+fN4UZI7Ip1MqwiMRZeUMbG/Y28s0nV1LZGOj1+nEFafxx/jQKM5LITdPKsIgkHmPMUmttaVfvaU/wPhUNbfxrfQVn3fxWnwIwQF1LiGsfXsaPX1hLeUNbnGcoIomsvKGN37+6kUvuWdSnAAywqaKJz9zyDs+tKKNCzygRkY/Q5/i0rwC/uamSG59cdVD3/231XlpDUX5+3hQKM7UiLCLO2lvfyi/+/gHPrijr972RqOXHL64jYqOcO62Y/HQ9o0REQCvBAFQ1Bvnu06sHNMZrH1Twwqoy6luCDs1KRASaAyHe3lx1UAG4o5+99AF76rUaLCISk/AheE9dK9c/voJQZOB7o3/1jw3UtYZ6v1BEpI/qWsL84Lm1Ax7HWvjao8vZU9/a+8UiIgkg4UPw3oY21pb1bQ9wb4KRKPe+s43GNq0Gi8jAtQbD/HXZTlqCEUfG21bdwsbyRkfGEhE50iV0CK5rCXDP21sdHfOppbtoaAs7OqaIJKaa5hAPLtzh6Jh3vbVVh+RERIhzCDbG3GOMqTDGrOnmfWOMudkYs9kYs8oYMyOe8+msKRBh8bZah8cM0xqMOjqmiCSmcDTa50oQfbV8Rx2hiJ5RIiLxXgm+Dzijh/fPBMbt++8q4LY4z+cjrG3fDuE0fdwoIk4oq3N+/25TIOzIGQgRkSNdXEOwtfZNoKaHS84BHrDtFgJZxpiieM6po3A0Pj8IalUhQkQcUB+ng7ZaCRYROfR7gouBnR2+3rXvtQMYY64yxiwxxiyprKx05A93GUeGOYDfc6i/rSJyNPB53HEZ1xWvh5+IyBHkiElr1to7rLWl1trS/Px8R8b0uFyk+pz/ITO+MN3xMUUk8ZTkJDs+pttlSNIv6iIihzwE7wZKOnw9bN9rg8LlgmOLMx0d0xjISfU5OqaIJKZUnwef29nH9Nj8NLQjWETk0Ifg54FL9lWJOB6ot9buGaw/vCgzmfNLS3q/sB9OHJPn+A8tEUlMfo+L048tdHTMz88cxpB0v6NjiogcieJdIu1R4D1ggjFmlzFmgTHmGmPMNfsueQnYAmwG7gS+Es/5dGXumFzS/R7Hxrvu42MpyEhybDwRSVy5aX6u+dgYx8bze1ycPbUIT5z2GouIHEmcS39dsNZe0Mv7FvhqPOfQm6xkLz8651i+8cTKAY/18Qn5jMpPcWBWIiLt8tP9nDttKM+uKBvwWN8+YyLpcTgHISJyJEr4z+1T/B5OHJvHqRMLBjROXpqPn5w7mcIM5w+yiEjiKsxI4ttnTKQ4a2DPllkjszlryhAyUnRmQUQEFIKB9h8yP/vcFE4ck3tQ9+el+XjsqrkUZWifnYg4rygrmUeunMPQzIPbajW9JIs/XTCDIZn6JV1EJEYheJ/CjCR+O28a3zhtHJ5+1ND82Ph8nv3qiYzKTcbt1seMIhIfI3JT+eu1J3DW5CF9vsdl4Or/Gs1tF89kyEEGaBGRo5Vp35Z7ZCktLbVLliyJy9i1zUHqWoPc+eYWnl6+m7ZQ152V5o7J5bqPj2VMfpp+uIjIoClvaGNXbSt/em0Tb2yspKtHeOwA3LUfG0NOqo/cNH1KJSKJyRiz1Fpb2uV7CsFdq2sJ0hyM0NQWZv2eeupaQvg9biYWpZOX5sfrdin8isghU9HQRjASpaY5yPo9DbQGI2Qke5lUlEFGkocUn5vsVIVfEUlsPYXguFaHOJJlpfjI2lfoYcIQdYATkcNLrBTjsOwUpg7LOsSzERE58mhPsIiIiIgkHIVgEREREUk42g4hIiIiIo4JBMNUt4RobAuzalcdG8ubiNooBelJlI7MZkhG0mFxbkEhWEREREQcsae+laeX7eb+d7dR0Rjo8hqf28XZU4fw358YR3aqj+xD1MRHIVhEREREBqSmKcCWqmb++9Hl7Klv6/HaYCTKM8vLeHHVHm44bTyfnzGMwozBr7ilENyNhtYQzcEwu2pbWb6jjuqmAEleN1OHZTK2II1Uv4c81d4UERGRBFfTFOCdD6v5+mPLifaj8m4oYvnVPzawamcdPz5n8v6qN4NFIbiTxrYQO2ta+M0rG3h9Q9eF6AHGFqTx9VPHccKYXBWiF5FBV9ccpDkYpi0UZWdtC22hCOlJXoqzkvG6DVkpXlL93kM9TRE5ykUiETZXNvU7AHf0j7Xl5KT5uP7U8YMahBWCO6hqDPCHf23koYU7+Ni4PO6/fBbF2SkYIBy1uAx43C6qmwL8a105X398OZOGZPDni2YwLCsZj1vFNkQkviob2qhrDXHnW1t4YeUeWkORA67JTvEyf9ZwLpwznMwkDxmHaL+diBz9KhqDXPfIwQfgmEfe38lnjysmN9WL2+12ZnK9UMe4fSoa27j83sUUZSbxvbMmsbO2hXve3say7bU0BsL7r/O6DeML0/li6TBOnVjIK2v38rtXN/LENXOZUJiuICwicbO3vo2/vPEh97+3rdtPqTrye1x858yJnDm5SB0uRcRxLcEwf3ljCzf/a5Mj443MTeGRLx/P0OxkR8YDtU3uVU1zgKseWMqXTx5FUWYyX39sOduqW3q9L8nr4qazJ3H86FyufWgZ91w2i5KcFMfmJSISs7uulcvvXcTG8qZ+3/vxCfn84vNTD8nBExE5epXVtXL2zW9R2xJybMxnvnIC04dnOzZeTyE44ZctA6EIf1u1h++eNZEdNS2ce+s7fQrAAG2hKDc9u5YfPr+Wey6bxS9eWk9NczDOMxaRRFNe38Zl9xxcAAZ4fUMl//vsGsp7ObEtItIf1U0BRwMwwNPLdhMMhXu/0AEJH4JrW0Pkp/lZtqOOn730QZ8+Yuzs7c3VfPPJlfzPmRNZvbve+UmKSMKqbGjj9rc+ZFPFwQXgmFfWlfPeliqaA87+wBKRxLViZ53jYy7fWUtV0+AsKCZ0CLbWsr6snuKcFH7+0voBjbVoaw1PL9sN1lKr1WARcUh9W4h739nmyFjff2YNDW2Ds8IiIke/NWUNjo+5raoFjHF83K4kdAiuawkxMi+V6wdQ1qOjW17fzLDsFFqD+iEjIgNX1xzkrre2HtQnVF1pDkZ4Y2MlkciBFSVERPojGo0SjkQdHzccjTJY59USOgSHo5a9DW18WNnsyHiRqOWut7Zw5B01FJHDUUsowrMrdjs65kMLt1PeqE+rRGRgXC5XXPokZKf4HFmY7IuEDsFRG+W+d7Y7OuYzK3YrBIuII9pCEdpCzq60bNjbqGeUiAyYtZZpJVmOjzu5OBO/Z3DiaUI3ywiFLct21Do6ZlsoSktQHzWKyMDtqm3t8f00v4djh2YwJj8Nn8dFSzDChr0NfLC3kUC46/AcilgCXTTYEBHpD2st4wrSMAbHtmwBzB2dO1hbghM7BFugsjHQ4zXpSR4+Ni6f7FQvbeEoi7bWsL2XEmob9jYyvjDdwZmKSCLq6hdql4HTjilk/qzhuAxsLG+ioS2EtZCZ7GVSUTqTijKobAzw4MLtLNpac8AY0SOwPryIHF5cLhfhaJSTx+bx5qYqR8b0e1zMHZPraKjuSUKH4HC065WS4uwkvnfmJCYXZ9IUCLOurIHaliB+j5svzBxGYXoS1c0B/vTaZv69ofKA+xvbVIJIRAYu1f/R1qFj8lP5ybmT2bi3kR01LRw7NIPR+alsrmgiEI6S5vcwtiANlzHsqWvj/NISLjl+BP/3/FqqO1StcbsGaZlFRI5a1lq8bhdXnjzasRA8f/ZwGtpC5KYOTqv3hA7Brk7r7S4X/PH8aUwqyuD2N7bwjSdWdvuR4uxROXz1lDF8+4yJXPPQ0o+sDid5B6fntYgc3YZm/ad16OnHFHLVyaPZXddKcXYy97+7nR++sLbLFROv23DGsUO4+PgRbK5o4u5LS/n+s2tYW9ZAsteNV+3dRcQB6/c0ELVw0ZzhPPz+jgGNNSw7mU9PLQLbXrhgMCR0CPa4XKT7PTQGwhRnJ/HwguP567JdXP/4SiK9/AMs2lrDoq01nDQ2lweumM2fX9vME0t3AWgrhIg4wu92kZXiZXpJNl8+eRQet+HF1Xt4dV15j/eFIpYXVu3hxdV7uGTuSMYVpvGz86Zw45MryUn1JfaJaBFxhDGGSARKcpLJn1rEhr2NLNl+cOesMpI8/HbecWytamZnTQvzZw93eLZdS+hnoccFU4ZlUpSRxGNXzuU7T6/iT69t7jUAd/T25mrOu/VdFpw8inkzh+EykJXijeOsRSRR+L0uLp07khs/NR6Py8U1Dy3rNQB3ZC3c/+42fvq39Vgsv/z8VC6YPRyPR9shRGTgxham8ciiHWzY08i3zpjAJyYW9HuMoZlJ3HlJKS+sKCMz2UsgHCVpkJ5RCR2CCzOTuWjOcO67Yhb/++waFm458ABJX9Q0B7nwzve57tSxfHHmMHz6qFFEHBCOWL44cxjWwnWPLGNvQ9tBjbNqVz0/eXE9LgMzR2Th1zNKRAbIWkuKz82ibTVkpfr49/oKvnPmRG6+YHqf9vR63YaLjx/OE9fM5c2NlXx+5jBuenYNZ08pwq2OcYNjzqhcVu+u598bDzzg1h/VzUH+95k1fP3U8RRkJDk0OxFJZKleN62hCH9540PK6g8uAMcs3V7LOx9W43YZghFVhxCRgTHG4HYZLjl+JL97dQPnzx7Ot59axV+X7uIP86fxh/OncfaUIobnpOwveZaV4uWksXncePoEnrh6Lqk+D+fc8g6fmFTI08t2MSwrmRSfm8gglYcwg9WazkmlpaV2yZIlAx4nErVUNLRx2u/fpCngTKvjR6+cw+Sh6aQnO99FRUQSS0VDK1uqWph/x0JHxvO5Xbz4tZMoykgiPVnbtkRkYLZXNdMaihAMR/nWU6vYUN64/71xBWmcNC6PycWZFGclY4CGthBryxpYtu+X8tj2U7/HxZ2XlDIkw4/f66YgPYlknzNFBowxS621pV29l9AH4wKhCG9vrnIsAAPc8vpmfvOF40hP7v1aEZGeRKPwwHvbHBsvGInyytq9nF9aohAsIgPm9bjwegy/eWXjRwIwwKaKJjZVNPVpnEA4yjefWMnz151Ic1vIsQDcm4TeDlHbGuLJfRUdnPJuh99sREQGIhS1/HNdhaNjPr+yjLZuSj+KiPRHJBplR00rTy/bPeCxKpsC/P6fG2kNR4kOUo5K6BCMtazZXe/0kNS0BHu/UESkF83BMMGIs4H1w8rmQWtJKiJHt1DE8rtXNzo23tPLdpOV4qO+dXCajiV0CA5FbZdtSQdqY6ePBEREDsau2lbHx4xEbbdNgERE+sPtMl22Zj9Y4ajl1XXleAapq2VCh+B4nQnUDxgRcUK8PhI8Eg9Ei8jhxVp7wD5gJ7y1qYrWkPMLlF1J6BAcr980clIGp+e1iBzdsuL0LPG4EvrRLyIOMMawZNvBdYjrydqyese3gXUn4Z+ERZnO1/QdW5jm+JgikngKM5wvtZjm9+BTxzgRGaBoNEp1U8DxcRvaQrjULCP+UrwuSkdkOzpmut9DindwSnuIyNHN53ZRkO5sEJ45PEsrwSIyYMYYvHHoPulzu4gO0pathH4Sulyw4KRRjo75xdJhpPgVgkVk4HJSvFx24khHx7zqY2PU1VJEBswYw4Qh6Y6POzp/8D5NT+hmGdmpSbSGLJOLM1izu+GA90fmpnBcSRaThmSQ6vcQikTZWtXMmt31rN5dT7jToRW/x8VlJ4zE51YIFpGB8/s8nDutmD+/tpnmTpVsXAaOHZrJlOJMxhSk4nO7aQmG2VDeyKpd9Wzuokj9qLxURuenDtb0ReQoFo1GmVKc6fi4U4ozSfYOzhptQodggFSfi9/Pm8ZZN79FKGJxGTh3ejFfnFnC3oY2lm6r4ZV15TS0hfB7XIzJT+PsqUX84DPH8MbGSu5/dxu1Le317L59xkSSvC5S/Qn/bRURh6T6Xfy/86Zw/eMrgPYtV1+aO4LTjilkxc46Vu6s5+lluwmEo6T5PUwcks7V/zWaEbmpPLN8F08u2UU42v5s+9MF08lK1vNJRAbO5XKR7HNTmOGnvMG5vcFnThlCcJCqbCX809C97x/x11+Yyh//tZmfnjuZ97ZUc/VDS2hoPbCd8tqyBp5fWYbbZfjkpELuuWwWf3ljC1Eb5czJQzDowImIOKOqKcCLq8r4xIQCvjhzGBWNAa7/5Djue3cb825/j1DkwH1zK3bW8djinaT5PZw/q4SHr5zD/z23lvmzSwhFoizbUc/UYZmkJ6ltsogMjAu4cM4Ifu9Qw4yJQ9KJRi0Zg9TWPaFDcH1LkCeX7iIQjnLe9KHcetEMrntkGR9WNvd6byRqeXntXt7aVMlPz53MiWNy2Vvfyi9f3sjN86eT5/BhFhFJPG5juOONLVQ0Brjx9PGs3FXPpfcu6vIX9M6aAmHufnsrL6/dy60XzaAoI4kbn1pFayjCXy6eOQizF5GjXUaylzmjchiek8KOmpYBjWUMfP/sSYSjllT/4ITghD4YF9l3+jAYDtPQGub829/rUwDuqCUY4RtPrOTldeV4PG6iUTtopxpF5OiW5HPx5DVz+eKMYSzcUsPVDy3tUwDuaFdtK+ffvpDd9a385NzJ3HLBdHxufWIlIgOX6vPwr/Xl/PxzU/ANsFLEVSePZsm2GsYXOn/YrjvmSOwcVFpaapcsWTLgcWpbgqzeWcO4wkw+++d3qGwc2J6Wx686nqEZflL8XnK1EiwiA1TV1Mae+jYMhs/e8jYDaSCXkezhpa+dTHNbkGHZaaQmJfQHgSLikA8rm7jltU2cMbmIrz26fH/X3BnDszl5XB6TizP2b78KRywbyxtZtqOWV9eV7792/qwSThybR3lDGxfOHk6Kg2erjDFLrbWlXb2X0E/B7BQf44dk8quXNww4AAN8/bEVPPPVExSARcQRfo+b3FQ/F931/oACMEBDa5gfPLuW//vsMYSiau0uIs7IT/UxcUgGL6ws44ErZvPqur18anIR6/c08Oq6cu5/bxt1+woI+NwuJgxJZ+6YXB698ngWb6shM9mLBe56ewu3XzzT0QDcm4TeDgHQFory9LLdjoy1t6GNf6zZSyQyOD2vReToluxxsWRbDVur+rdNqzuvbaigNRSJWztmEUkswXCErdUtnDqpgMwkD02BMKPz07j83sX84Lm1vLWpan8ABghGoqzeXc8db27h8395lw/2NjJ1WBZvbKjg5vnTeWXdXupagoM2/4QOwa3BMI8s2uHomHe/vZW9DpYKEZHEVd4U5PY3tzg65l1vbRnUHzIicvTaUdPK+Xe8x7efWs1/nzqOO9/cwveeWUNToPezC9bCM8t386W73+ernxjLsh21/OC5dTy6aAeNbaFe73dCQofgqqYgr39Q4eiYu2pbCQ30c0sREcBay9qyAxv5DMSbG6toauvf4ToRka6k+z2cOrGAP1wwjQX3L2Hh1pp+j1HdHGTeXxYyNj+NS44fzqeOHcJgnVdL6BDsMu0bup22o3pgZUJERACqm5xfsa1oDKBf00XECXWtQW46+xhu+demAf3C3hqK8OUHlnDtx8eyckcNg3VsIaFDcChiB3zYpCu761qdH1REEs7e+ra4jBsI69yCiAxcfpqfPfVtPL5k14DHKm8IcNvrm5k7Nh/vILVNTugQrNUQETmsxa2cr+oEi8jAtYUj/PrlDY6N9+jinUSiEAwNzi/qCR2CfW4XbpfzPwxG5KQ4PqaIJJ6hmclxGdfvSehHv4g4JBKF97ZUOzZeKGJ5/YNyUnyDUyYtoZ+EUWsZV5Dm+LjF2fH5wSUiiSUn1fnWoUMzkzBaCBYRB2wsb3R8zNc2VNKmleD4y0rxcNoxhY6OOSY/FU8cVpdFJPEYY5gxPMvRMT8xqYD0QSxGLyJHr0Xb+l8Nojdry+r7VGLNCQkdgsMRy7zSEpzMrFd/bAzZKc6v3ohI4kn1ubn2lDGOjnn5CaOIDlL5IRE5ekWjUaoc6LbbWX3r4NQIhoQPwVE8LsOFs4c7Mt6I3BROHptHg2pwiogDGtrCHDM0k0lF6Y6M9+mpRXjdhuagqkOIyMB53c7HSK/LNWhbthI6BAOUN7Tx2WnFDBvgPl6XgZ+eO5nnVuzGqu6EiDjAWsvfV+/hh589Fq97YD8V8tJ8XHHiKNaVNWjLlogMmMvl4piiDMfHHZ2fGpfytV1J6BActe1tjr//zGr+OH86+Wn+gxrHGPj556by8pq9/Om1zYP2jyciR7dgJMrtb27h4YU7+P350w46vGYke/jzhTP40Qtreej9HYQiekiJyMBNikMInlKcSbLX7fi4XUnoEByOWhZvq2VTRRM/fH4tt39pJtNK+ncIJSfVx60XzWBjeSMPvb+D5mCEVn3UKCIOcBlDZWOA51eW8caGSu68pJTCjP79sj5xSDr3XDqL3726kZW76lm+ozZOsxWRRBKNRvF6XOSnH9wCYndOP3YIocjgtIxL6CPCUQt7G9o7Mq3eXc+1Dy/lJ+dMZmdtC3e/tZWyHro1JXvdnDt9KF+cWcKvXv6AhVv+c0Lyw8pmxhY4s4dPRBJXZYdDJ08u3cWmiib+fOEMXly1h6eW7urxBHV+up/LThjJ5KEZXP/4CnbVtneybA5GdDBORAbM5XKxqbyBC2aXcPO/Njsy5riCNFqC4UH7tCqhQ3C4076F8oYAVz24lFMm5POjcybjdhmW76hl3Z4GGtvCeN2GsQXpTC3OZERuCs+vLOOiu96ntVM9u9rm4GD+NUTkKNXY6ZDtip11XHTX+5w3vZh7LpvFnvpWVu6sY1NFE4FwlFSfh0lF6UwfnoXX7eLRRTv5zSsb6Jx5tR1CRAYqGo2S7PVw4tg8nl62e/8v2gfLGLjp7En8c31Fvz+VP1gJHYK721737w2V/HtDJdkpXqYUZzKxKIM0v4dQJMrWqmZufm0T26tbuh3XM8ADLCIi0PWzJBCO8tjinTy2eCfDspOZUpzJcSVZ+NwuWoJh1u9p5Mklu6hs6r50kc7FichAGWMYW5DGDU+s4GfnTeGK+xYfsLjYH5efMJIl22sZmpWE2zU4u3UTOgS7XYZUn7vbckG1LSHe3FTFm5uq+jXu6Dznu9CJSOIZkpHU4/u7alv7vfridhl8apssIgNkjKE1FCEz2cvzK8v4w/nTuOGJFQf1SdPnZhQza1QONzy+gr9eewLBsDrGxZ0LmFyc6eiYxkBOms/RMUUkMfk9LnwO1+EcV5BGRCVsRMQBKT43V548mqeW7uK1DRXcf8VsRuel9vn+JK+LH3z6GE4am8fXHl3OZ48rZmd1K2mD1NUysVeC3S7OmTaU97c61/bvpLF5aDeEiDjBAqcfW8iLq/Y4Nuanpw4dtPJDInJ0S/K62V3bynnTi3l62W5W7qzjJ+dO5oO9DTy0cAdbq5q7vC/d7+G8GcV8bnoxd729lRdX7aEg3c+80mG4jcHv1XaIuHMZw6yROaT7PTQ61Kf6shNGDlppDxE5uiV5XcyfNdyxEOz3uDh5XJ4OxomII1J8HpqDYS6YPZyN5Y2sLWvgorveZ+7oXL552ngKMpLYWdvCzpoWIlFLTqqP8YXt1bOeX1nGBXe2FxdI8rr47bzjeHjhdq47ddygfVqV0CE4GI5gDHz3rEl875nVAx7v4xMKKMhIwu9N6G+riDjEYNhT38o504by3IqyAY93wyfHs2ZXHZ+ZVuzA7EQk0WUmezllQgE/eG4NPz5nMr/4+3oWb6vlvS3VvLelGoCSnGSGZaXgckFdS4hN5U0EOywW5qT6+MP503jwve1cfuJIMpO9pPq9gzL/hN4TnJvmZ8WOOsYXpnHqpIIBjZWf5uebp4+noTWklqQi4oiirGSSvC4umTtywK3d54zKYXR+KjNG5pCRPDg/YETk6NbYFiIzycM3T5/AdY8sY8FJo/neWZNI8f1ny9XOmlbe21LNO5urWVvWsD8AGwNnTyni7ktL+dNrmxhbkEZ6kofBTFAJHYKTvG6mDMsiGI7y1VPGctLYvIMaJz/Nz20XzwBr+WBPPTmpOhgnIs4oHZnDH/+5kZvnTz/oIDxjeDY3fmoCz60o0/NJRBxT0RjgxqdW4XEZfnzOZL7+2HLW7K7ngStm88PPHsuJY3PJSP7Pp+Net2FycQZfPnkUf73mBCYXZ3DRXe8zYUgGJ47NY9mOOu54cwvVzd2XeHSSsUdg56DS0lK7ZMkSR8aqaQ5w07Orufq/xtDYFmbxtlr+/PrmPte6O2VCPtd/cjwtgTCPL9nJd86cSFHmwFZsREQ6Wr2rnm8+uYJffn4qd761hZdW7+3TfS4DC04azcfG5/P9Z1bx8JXHMyw7Jc6zFZFEUdHQxu//uZGC9CSOGZpBdoqPHz6/lnV7Gpg1MpuTxmtG8gEAACAASURBVOYxuThzf7WHiLVs2NvI8h11vLx2L36Pi5s+fQzpSR4yk7389MV13HlJKcUOPqeMMUuttaVdvpfoIRhgZ00LC+5fzC8+N5XVu+uYUpzFk0t38uzysgO6wUH7Ev6JY/L40twRBMNR8tP9PPL+Dk6dVMCZk4fg8+jktYg4p7yhjXc2V/G/z63hW5+ayIicFB5cuJ1/b6igq9/X/R4Xn55axPzZw3llbTkPv7+NhxYcz6i8VLK1EiwiDuoYhKcWZ+LxGPbUt/Hge9tZW9bQ5T25qT7On1XC6ccUsqasnhG5qfz6Hxu47eIZjgZgUAjuVUNriCXbarj+8RV858xJ5KR42VLVzLThWbiMYUtlEw1tYXxuF6PzU0n1e1i/p4FI1DKpKIP/fXYN04dncePpEyjopbi9iEh/VDUF+MpDS7nipFF43C6+8fgK0vweLpgznONH59IajPBhZXvb5DS/h9H5qbiM4dV15Ty1dBfpSR7+cvFMXvuggr31bXzrUxMUhEXEUbEgvKOmhRtPn8CirTXkpfkZnptCbXOQHfuqQ+Sm+Riek0pzIMzasnqml2TzzodVvLK2nPuvmOV4AAaF4B41B8Ks2VVHdpqPsro2vvrwMkbkpnLx8SOYMCSdDXsbqGgMEIlaDJCR7GF8YQZRa3l00U7+ub6cy+aO5MI5w9la1cSMETnacycijqhuCnDtQ0tZtK0WgOs+MYZ5M0v49Ssb+PvqvYSjlhSfm5G5qfg87W2Tt1W1EIxESfW5uXDOCC6ZO4Jf/v0DXlzdXmbtwtnDFYRFxHGxIPzs8jJu+OQ4Pn3cUCobA6zaXUdlQ4CohbQkN5OGZDC2II099W1c//gKfG4XDy6YHZcADArB3YoFYI/HhdsYHl20g/mzh/OHf27ijY2VuF2GsflpTCxKJ83vIRiJsq2qmXVlDTQHI5TkJPN/nzmWjXsbGZGTgnGB1+1ipoKwiDigsrGNn7/0AU8v373/teKsJH58zmTGFabxzuZq3t9SzaaKJtpCUdL8biYVZXDSuDyOG5bF4m013PTsalqC/ylHdNPZkzh3ejF5af5D8VcSkaNYRUMbf1+zlzMmD6Gwwyfj0aglai2eDh0wKxvbeO/DamaOyI5bAAaF4G7VtQTZWdtCJGK57tHl7KptJSvFy9dPHcfk4kz+sWYvS7fXsn5PA4FwFGNgVG4qU4Zl8umpRVgLf3ptM6t31+NxGf5w/jTcLpg5IkfbIkRkwKqbAnywt5Enluw8oE6wz9Pe8fLEMXkUZyXjcRsC4fZf1F//oIKX15UfMN6Np09gwpA0SkfkaCVYROKiKRAirY91fhtag2Qkx/dZpBDcjYbWILtqW7nqwaXsqm39yHspPjefnFTIzBHZnDIhn3DU4nUb1pc18vbmKl7fUHHAPR6X4Y/zpzFndK5WWURkwAKhCJVNAbZXt3QZhPvjxtMnMLYgleNKshiSkYQxqmcuIke/nkJwQtcJthh++rf1B4RZgJZghOdXlvF/z6/lM7e8zfbqFm54fCVXP7SUBxdu7/KecNTyzSdX4nUn9LdVRBwSjlq+dNci/B4X80pLOGfa0IMaJxaA3S7DNQ8tdaxNvIjIkSyh01pmspfffvE4huf0vBeloTXMFfctZun22h6v87oN9102G78nob+tIuIQr9vwh/nT+Npjyw86CHcMwD96YS23XDCDjCR1jBMRSfi0VpSVzONXHd9rEO6N12148Io5TBueRZJXdYJFZOB8HjeTitK57aKZfO2x5SR5Xdx09jHk9nE/7+xROXzq2ML9AfjRK+dSMsBnnYjI0SLhQzAMPAgrAItIvMSC8F8umkldS4g/vLqR6uZgn+5dtLWG97dWs7u2VQFYRKQTheB9irKSeewggrDXbXjgitkKwCISNz6Pm2HZyby2voKHF+3o1703PbsWr9tFVoq2QIiIdKQQvE8oEiEYjvDggtkMy07u0z0uA3dfOoskr5tA+MD2yiIiTqhtDvLbVzf2OwDHfP/ZNbywsozGtpDDMxMROXIpBNMegLdVtdDYFsYAn5iY36f7RuSmMCI3heZAmMVba6lv7dtHlCIifVXbHOQ3r2zg4ffbA/Dv5h3HZ6YW9eneG04bxw2njQPge88oCIuIdJTwITgWgNtCETJTvFQ3B/n4hELOmDykx/uGZSfzu3nTWLajlpLsFJI8LgVhEXFU5wB8z2WltATDfPUTY/nscR8NwiNzP7qV69tnTGB6STbTS7L59hkTgP8E4QYFYRGRxA7BBwTgpiBX3LeYax5ayrzSkm6D8LDsZP50wXS+9dQqbnh8JW9sqqQkR0FYRJwVjlrWlTUA7QF4S2UzNz27lvl3LOQrH/9PEL7x9Ancd/ns/eXTvn3GBI4dmsmC+xez4P7FHDs0c38QXrajjlAk2vUfKCKSQBK8Y1yIPfWtJPvc+wNwbUv7Conf4+K2i2fyxJKd/GPN3v33dAzAmyua9r/+43OO5WPj8tlZ28LEIenkpattsogMTENLkA+rmgmGI6ze3cBP/7Z+/3tZKV4eu+p4dla3ELGW40qy2FLZTHMgRJLXw4L7FxOKtD/fvW7D3ZfOoi0UJi3Jy7FFGWSmqG2yiBz9DmnHOGPMGcaYDcaYzcaY73Tx/nBjzOvGmOXGmFXGmLPiPaeOUrsIwACBcJRrO60IdxeAAX7w3Nr2FeHsFHweVYkQkYFLT/YyNDOJNWUfDcAAdS0h5t+xkBF5qUwdlsnnbn2XcQWpJPs+GoABQhHLgvsXk+zzML4gTQFYROKmsS1EINS3YgG1zUHqWw7dp+dxDcHGGDfwZ+BM4BjgAmPMMZ0uuwl4wlo7HZgP3BrPOXUUtVGqmg8MwDEdg/BjV87h1otmdBmAY2JBWJUiRMQJFY0BXly1h5+8uL7L9+taQsy7/T2aAhFevv5kNpQ3ccV9Hw3AMaGI5Yr7FrN+byPVTYF4T11EEtD26mbOu/VdNlU09RqEy+vbWHD/Yt75sPqQBeF4rwTPBjZba7dYa4PAY8A5na6xQMa+/88EyuI8p/0iUfjdKxu7DMAxsSC8t6GNbzyxstsAHPPLv3+A25XQW61FxCE+t4t7393W4zWxIHz/e9u7DcAxoYjl1tc/xBiHJyoiCW97dTPz71jI5oom5t+xsMcgXF7fxlUPLmHZjjque2TZIQvC8U5rxcDODl/v2vdaRz8ELjbG7AJeAv67q4GMMVcZY5YYY5ZUVlY6MrncND+/+sJUJg/N6PG6QDjK9Y/3HoBTfW4eu3oufu2GEBEHpPncPPLlOb3WLq9rCfHbVzb2GIABSkdk8/vzp5GT6ndymiKS4GIBeE99GwBNgXC3QTgWgFfuqgcgajlkQfhwWLK8ALjPWjsMOAt40BhzwLystXdYa0uttaX5+X2r49sXQzKTuevS0l6DcG9iAXh0bjKpSdpvJyID5/W6KcpI6lMQ7k3piGxuuXAGQzJ1aFdEnNM5AMd0FYQ7B+CYQxWE4x2CdwMlHb4etu+1jhYATwBYa98DkoC8OM/rIwYahBWARSRenAjCCsAiEg/dBeCYjkG4srHrABwTC8LvflhNbfPgnFuIdwheDIwzxowyxvhoP/j2fKdrdgCnAhhjJtEegp3Z79APBxuEFYBFJN4GEoQVgEUkXjxuFyk+T4/XNAXCnH/7e8y7fWG3AXj/eC4XWSle3IO0TyGuf4y1NgxcB7wMrKe9CsRaY8yPjTGf3XfZN4ErjTErgUeBy+whKl4cC8LjC9P6dL3XbRSARWRQxILwY1cdT0Zyzz90YsYXpnHrRQrAIhIfLuC+y2cxJr/n3NQcjLC1qrnHa3xuF/ddMYtUvwfXgbti46JvT9IBsNa+RPuBt46v/aDD/68DToz3PPoqEqXXwyUx1kJrMEwgEiU1zvMSEWkKhtla1UxLoG9lGMsbAtS1hshO9uL16sSuiDirICOJPXUt3Hf5LC67dzEfVvZcQKA7sQCc5nMzMi+VtCSvwzPt2uFwMO6wsbu2lUvvXdTrbysx4ajlS3cvYnNFMzXNXe+HERFxQm1zgDVlDVxx32LC0b79ol7f2l4+bWtNC6E+Fq8XEekrt8tQlJWCwfZpRbgrHwnA+WlkDFIABoXg/WIBuLcyaJ0FwlEFYRGJq44BuK+fVMXE6ggrCItIPAwkCB/KAAwKwcDBB+AYBWERiZeBBOAYBWERiadYEPa5DXdfVtrn+645ZQwjclIOSQAGheABB+AYBWERcZoTAThGQVhE4sntMoDh648u7/M9d7+1hZrmIP7BKgfRSUKH4JrmIN96qm+d4O65tJRj+9BZ7tJ7Fg/aqUYRObp53W7++9HlfeoE9+oN/9WnznLfeGIFzQrBIuKw7hph9KQ5GGH+HQvZWN7YbYvleErotJaZ5Ob/nTeF/PTuW4im+tw8dtXxzB2dy129BGGXgd/OO45wNBqP6YpIgglHIzxwxWzS/N0X8onVAR6Vm9prHeFh2cnceuEMUlQpQkQcdDABOOZQBuGEDsFut5vh2Uk8cfXcLoNwLACPzksh2e+haF8d4a6CsMvALRfOYPaobPLSVJNTRAYuK8XP8JxkHrlyTpdBuGMjDI/HxZAeGmoMy07mkS/PYUhGEj6FYBFxyEACcMyhCsIJHYKh+yDcMQB3bITRVRBWABaReOkuCHfVCc7ndXcZhBWARSQe+hqAfW4X+Wndf+oOhyYIJ3wIhgODcHcBOKZjEFYAFpF46xyEe2qF3DkIKwCLSLw0BcNsr2np8Rq/x8X9V8ziuetO7FNnuTVlDTQHwk5Os1vmEHUoHpDS0lK7ZMkSx8eNRCLsqG2jqS3M6LzeWyHvqW9lU3kTxwxNVwAWkbirawmwtyFAVrKv11bIwVCEvQ3tlWoUgEUkHsrqWmhsC3P+HQupawkd8L7f4+K+y2eR6nOTl+YnYumxs9yPzzmWWSOzKclOJS3JmabGxpil1tou67ZpJbiD2Irw2ILUXgMwtK8Izx6pFWARGRxZKX5G5qb0GoChfUW4MCOJQgVgEYmT7FQfxsDjVx1PVspH6/x2DMAj89MozEzusaHGj885luklWQzJSHYsAPdGIbgTt9tNsq/v3/ykflwrIjJQSd6+P3P8Xjd+BWARiZNkr4eSnJQDgnDnAJyR5O2xs1wsAA/LTiE7tfdFSKcoBHcSiVqC4b5vyG5TvU0RERFJUJ2DcEG6/4AAHNNVED5UARgUgj8iErVsrWpm9e56guHea/3urW/l9Q8qaGw7cB+MiIiISCLoGIRf++bHugzAMR2D8BNXH3/IAjAoBO8XC8Cfv+1dLrzzfVbtqusxCO+tb+XCO9/n2oeX8fc1exWERUREJGHFgnBzMNJtAI6JBeFgJHrIAjAoBAMfDcD1rSEC4SgX3dV9EI4F4C1VzQD8z1OrFIRFREQkoSV7PRRmJPUYgGPcLkNRZvIhC8CgEHxAAI7pLgh3DsAxCsIiIiIiR46EDsHdBeCYjkE4FI52G4BjFIRFREREjgwJHYKb2kL85MW1XQbgmFgQfmFVWY8BOOYnL6wjHDnyGpCIiIiIJJKEDsGZKT5+88VpTCvJ7PG6QDjKN55Y2WsATvd7ePLauaQPUpFnERERETk4CR2CAfLT/dx5yaxeg3BvYgF4bH4aHnfCf1tFREREDmtKaww8CCsAi4iIiBxZlNj2OdggrAAsIiIicuRRausgP93PXZfMYlJRep+u97ldPKUALCIiInLEUXLrJByN0hKM9OnaiLU0toWJqhiEiIiIyBFFIbiDWB3g7dUtfbo+ErU9dpYTERERkcOTQvA+vTXC6E5vLZZFRERE5PCjEMxHA7DbZfB7+v5tSfG5FYRFREREjjAJH4I7BmCf28VtF83ggQWzyUjuveHF986axAvXncSovFQFYREREZEjSEKH4PrW0P5OcD63i1sunM6Lq/bw+1c3cueXSvcH4XS/h0e+PIfjOpRP+95ZkwiEI1xx/2J+N++4/UH44rvfp7WPB+tERERE5NBI6BCcmezll5+fSkl28v4A/PzKMhZuqeH3/2wPwsWZSTx57Vxmj87hrktmcVxJ5v4A/NtXNrK9uoXrH1/B7+Ydx5j8VG69aAZejznUfzURERER6YGx9sir71VaWmqXLFni2Hh76lv5xUsf8NzKso+8fvzoHH43bxoF6f79dYDL69v467Jd/OrlDR+5dkRuCvddPpshGX6Sfb1vpRARORgtwTApfXzGBEJhAPxePZNEZHD05xnVHAiR6vfGdT7GmKXW2tKu3kvolWCAioY2fvWPDQcEYICFW2r4xhMrqG4O7r/2uZVlBwRggO3VLVx27yKqm4Jxn7OIJKa6liCLt9Wwq6b3Mo7BUITNlc1srmwmGNIWLRGJv4qGNl5ctYfyhrZer61qbOPtzdWU1bUOwsy6ltAhuKKhjV+9vIFnlu/u9pqFW2r4+mPLaWgN8eyK3fzspfXdXru9uoUL73q/T//4IiL9UdcSZNHWGq64bwkX3vV+j0E4GIqwqbKJ+bcvZP7tC9lU2aQgLCJxVdHQxm1vfMj/PLWK7z69uscsVNXYxr83VnLNQ0u59J5FhywIJ3QI9noMZ08pwuPqeQ/vwi01fOK3/+ZnL33Q65gnjMlFO4JFxEmxAHztw8uIRC07alq6DcIdA3BjIExjIKwgLCJxFQvA976zDYDXPqjoNgjHAvC3nlqFtbCpoumQBeGEDsHZKX6mDc/kzktKew3CVX3Y5jB/VgnfOG08BRlJTk1RRBJc5wAc01UQ7hyAYxSERSReOgfgmK6CcOcAHHOognBCh2DoXxDuiQKwiDituwAc0zEIh8JdB+AYBWERcVp3ATimYxCubuo6AMcciiCc8CEYBh6EFYBFJB7cLsN3nl7dZQCOiQXhV9aVdxuAYxoDYb779GpaFIJFxAFVTQHue3dbj9e89kEF33l6Fc+uKOs2AMdsqmji3ne2UdMccHai3VAI3udgg7ACsIjEi8Hw8Jfn9NrBckdNC199ZHmPARhgVF4qf75wBh63Ti6IyMAVZCTxx/OnYXp5pLz+QSU/eXF9jwEY4FPHFvLlk0eRk+p3bpI9UAjuIDvFz/ThWXxsQn6frk/2uvn+2ZMUgEUkLlyu9of041fN7VMr956Mykvl/itmA5Zk1Q0WEQfkpfk5YWxen4Jwbz51bCE/PmcyhYOYqRSCO6hoaOOJJTv51/qKPl3fGopw5QNLVBJNROIixeehJDdlwEE4FoANlqFZKbgHcP5BRKSjWBC+5YIZBx2Ez5o8hJ8McgAGheD9Khra9tUB7r0MWkexOsIKwiISDwMNwgrAIhJv0aglGInw889N6XcQPv2YQi6eO4JQJBqfyfVAIZiDD8AxCsIiEk+dg3CKz92n+4ZlJysAi0hcVTS08euXN3DD4yvZVN7ET8+Z3Od7T5mQz4VzhnPFfYvbK93U9t4N00kJH4IHGoBjFIRFJJ5SfB6Ks5OIWku0t9Ml+0SjFgMKwCISF7EA/OTSXQD4PS5CPVSz6SwcsbiMwWUM26tbuGiQg3BCh+Dy+r4H4OklWX3qLKcgLCLxEAxF2F7TyvzbF9IW6tvHhmX1bVx01/vsOUQtSUXk6FbdHOTp5bsB+MopYyjKTOZHL6zt8/1vb67i3ne28ZeLZ5Lic7O9uoVH3t9BdZNKpA0C22P9zZj5s0q49/JZfSqfFola6PsvQSIivequE1xf9NRiWURkIAoz/Nx+8Uy+ui8A/+D5Nb2WQevs9Q0V+4Pw/FklXHrCSHLTDuMSacaYHKcncigUZibz+RnD+J8zJnR7TawOcFaKr9c6wrNGZnPLBTMozFTJNBFxxkACcIyCsIjEQ06qn6nDMhmdn3pQATjm9Q0V3P/uNm44bfzhVSLNGHOiMWa9MWatMWaOMeZVYLExZqcxZu4gzDGuCjKS+EI3QbhzI4yeGmooAIuI05wIwDEKwiLitKrGNt7cVMmNvXSC64t/dWixPFj6shL8e2Ae8GXgb8CPrLVjgHOA38RxboOmqyDcXSe4roKwArCIxEMgEuWiu97vUye4uy4p7VNnuWseXkpdS9DJaYpIgqpoDPTaChngtGMKuensSb2WT3vtgwrufHPLYdU22WutXW2tfQ+otNa+DWCtXQYkx3V2g6hjEO6tFXLHIDx3dK4CsIjERSAU5XfzjuvxLEKsDnBemq/XOsIZyR5+/YXjEv0wiIg4JC/Nz1Unj+7xmtOPKeSiOcOpbgr2Wkd4UlE6C046vNomd7zmu53e8zk4l0MuFoRv6CEAx8SC8C0XTlcAFpG48Hlc5KT6uOOSmV0G4Y6NMCYWZfTYUCMj2cPjV83FBXg8isEiMnAFGUksOGkUV/9X10H49GMKuXDOcK55aCm3vfEhm8qbug3Ck4rSuefSWRRlDd76al+ehP9rjEkBsNY+G3vRGDMGeCBeEztUCjKS+rwpOzvFP2gnGEUk8WQkexmdl9ZlEO7cCS7J6+62s1zHAFySm0KK7+DaL4uIdBYLwl85ZcxHXu8YgGNlHe9+e2uXQfhQBGDoQwi21j5vrT3gJIW19kNr7a9iXxtj/uT05EREEl1XQbi7VshdtVhWABaRwXDm5CEsOGkU0HUAjukchCcVpfPrLxyHxz34DX2MHehxvthAxiyz1s5wZLBelJaW2iVLlgzGHyUiclhoaA2xpaqJ5kCEkpyUHlshtwTD7KxuIfajRwFYROKloqGNl9bs4UcvrOOXn5+KAfLT/V0G4I4WnDSKmSOyKcxI4tqHljImP43fnz+NIQ5vMTXGLLXWlnb5nkKwiMiRoaE1xOaKRvLT/b22Qm4Jhtle1QzAiLxUBWARcVwsAP/w+XUAGAMXzBrO08t39amz5WemFrFoWw3lDe3VIOaOznU8CPcUgnU6QkTkCJGR7GVcYXqvARjat0aMyEtVABaRuKlsCuwPwADWwiOLdhwQgM+bXszN86cd8Nx6YdWe/QEY4L0t1dz51ofUHkYl0vpq8DdziIgkmPQkb68BOCbF51EAFpG4yU/3c+Pp3XfdBfjc9GK+c+ZETh6fz+0Xz+zx+TW9JIsrTx5N9mFUIg0AY8yUXi754wDnIiIiIiJHiIL0JObNGtZtEP7c9GK+feZECjOSyE7xMWNEVrdBeHpJFrddPIMhmYdXibSYW40xi4wxXzHGZHZ+01p7n3PTEhEREZHDXXdBuGMAjslJ9XcZhA9FAIZ+hGBr7cnARUAJsNQY84gx5rS4zUxEREREDnudg3BXATimcxA+VAEYDqI6hDHGDZwL3Aw00L4X+HvW2qedn17XVB1CRERE5PBS0djGmt0NHDs0o9fGYzXNATaVNzEiNyWuAbin6hB9PjFhjJkKXA6cDbwKfMZau8wYMxR4Dxi0ECwiIiIih5eC9CROHuvD24fW7DmpfqYP9+DzuAdhZl3rz7HhPwF30b7q2xp70VpbZoy5yfGZiYiIiMgRpS8BOOZQBmDoXwg+G2i11kYAjDEuIMla22KtfTAusxMRERERiYP+VIf4J9Bx00bKvtdERERERI4o/QnBSdbaptgX+/4/xfkpiYiIiIjEV39CcLMxZkbsC2PMTKC1h+tFRERERA5L/dkTfD3wpDGmjPayaEOA8+MyKxERERGROOpzCLbWLjbGTARiLUE2WGtD8ZmWiIiIiEj89GclGGAWMHLffTOMMVhrH3B8ViIiIiIicdSfZhkPAmOAFUBk38sWUAgWERERkSNKf1aCS4FjbH/7LIuIiIiIHGb6Ux1iDe2H4UREREREjmj9WQnOA9YZYxYBgdiL1trPOj4rEREREZE46k8I/mG8JiEiIiIiMpj6UyLtDWPMCGCctfafxpgUwB2/qYmIiIiIxEef9wQbY64EngJu3/dSMfBsPCYlIiIiIhJP/dkO8VVgNvA+gLV2kzGmIC6zEhEREZHDWm1zkKZA2PFx0/weslN9jo/bWX9CcMBaGzTGAGCM8dBeJ1hEREREEkwwEmV3Xavj447KS3V8zK70JwS/YYz5HpBsjDkN+ArwQnymJSIiVY2BuKyyQPtKS166Py5ji0hiiFfriMFqSdGfEPwdYAGwGrgaeMlae2dcZiUiIjQFwpzym3/HZex/33iKQrCIDEhrKMr8OxY6Pu7rN57i+Jhd6U8I/m9r7R+B/cHXGPP1fa+JiIiIiBwx+tMx7tIuXrvMoXmIiEgn8fxAUAc6RCTR9boSbIy5ALgQGGWMeb7DW+lATbwmNhjidaoRBu9ko4iIiIj0X1+2Q7wL7KG9bfJvO7zeCKyKx6QGS1MgzMm/ej0uY7/1Px9XCBYRERE5TPUagq2124HtwNz4T2dw+TwuHrvq+LiNLSIiIiKHpz4fjDPGfA74JVAAmH3/WWttRpzmFnetwUhcTjVC+8lrERERETk89ac6xK+Az1hr18drMoMtyRu/leAkr1aCRURERA5X/QnB5QcTgI0xZwB/BNzAXdbaX3RxzTzgh7QfWF5prb2wv3/OwYhXfTsYvBp3InL02teg84gbW0TkSNCfELzEGPM48CwQiL1orX26uxuMMW7gz8BpwC5gsTHmeWvtug7XjAO+C5xora01xhT08+8gInJU6qpp0s0XTOPlNXv52+q9vd7/jU+OA+B3/9zUp7FFRBJJf0JwBtACnN7hNQt0G4KB2cBma+0WAGPMY8A5wLoO11wJ/NlaWwtgra3ox5xERBLGQwtm43YZvnvWJIyBF1d1H4RvOnsiJ4/LxwJJPhc/e2nD4E1UROQI0OcQbK29/CDGLwZ2dvh6FzCn0zXjAYwx79C+ZeKH1tp/dB7IGHMVcBXA8OHDD2IqIiJHrocWzCYStVx272KG56TwwILZQNdBOBaA593evt3r8avbzz4oCIuI/EefT28ZY8YbY/5ljFmz7+upxpibHJiDBxgHnAJcANxpjMnqfJG19g5rbam1tjQ/P9+BP1ZE5MgQC8AL7l9COGrZUtXMAvqlJgAAIABJREFUJXcv4jtnTuLTU4d85NqOAbi+NUR9a4jzb1/If40v4HtnTThEfwMRkcNPf0oY3En73t0QgLV2FTC/l3t2AyUdvh6277WOdgHPW2tD1tqtwEbaQ7GISMLrHIBjugrCnQNwjIKwiMiB+rMnOMVau8h89Ehxbz2HFwPjjDGjaA+/82lvwdzRs7SvAN9rjMmjfXvEln7M66DF83C0Dl6LyECl+FxdBuCYWBB+YMFszi8toSAj6YAAHBMLwrGtESIiia4/K8FVxpgxtB+GwxjzBdrbKXfLWhsGrgNeBtYDT1hr1xpjfmyM+ey+y14Gqo0x64DXgW9Za6v7+fc4KPE8HK2D1yIyUKk+L19/fEWXATgmFoRDUdttAI6pbw1x45MrmVeqcxUiIv0JwV8FbgcmGmN2A9cD1/Z2k7X2JWvteGvtGGvt/9v32g+stc/v+39rrf2GtfYYa+0Ua+1jB/H3OCiqwSkih7O2YIiHFswhzd/zh3Zbqpq54r4lPQZggJKcZG67aCY/f+mo6XkkInLQ+hyCrbVbrLWfBPKBidbak6y12+I2s0EQzzqZqsEpIgPVGIyycmcdj111fK9BuDclOck88uXjueW1TTy+ZJdDMxSRRBavBb/BWkjs81PVGPN14F6gkfYKDjOA71hrX4nX5OItOY5tk5PVNllEHPD9Z9fw/86dzGNXHc/8OxbSFOjtKMaBFIBFJB7+f3t3Hh5lfe99/PPNZDIDmagUEJSIYKUqWwVZHwWD+hxEqdrjca/iUrB9aA+VIh7LQ+ty2RZUzunTWiuKRbSCFq1aCy09bRCrLG4oi7VSRIHjEhaBJCRk+T1/ZAZjzDKTmXuW3O/XdeXK3Pfc85sv3hfjh9/8lnC+NzkqnJ+eDJVI18L1zrmfmdl4SV0lXS3pUUk5G4LZNhlALkgmCBOAAXjFqxyVrgyVSNSOdU6fJ2mRc26TWAQBANJi1jMbDw+NCMf5TdMxR4YJwADQgkRC8GtmtkINIfhPZlYkqd6bsgAATR2sqVUwYMqLc8BcIM+UZ1LFocSHUABAR5fIcIgbJJ0qaatzrtLMukpqz1bKAIA4NJ63cOyRYR2sqdOlD6xR5aG6uF6/Y+9BXb1gnR69YYT+/ax+2lP52eoRzFsAkKxcnxjX5qegmZ0cfXhq9PcJ0UlxxyuxEA0ASEBVdLzdxp2fHg7AbS2D1tTWXRW6esE6FYby9diabbp8/hpdPn+Nqmr4Ig9AcrxaCStdK2zFE2KnS5oi6d5mnnOSzkppRQAASQ0fsC1thZyIWBB+9IYRkqTn3/qIDX0A+F6bIdg5NyX6e5z35QAAYiKhQNIBOKZpEAYAv4t7UJiZXRKdDCcz+79m9rSZDfGuNADwt3AwoCseXBvXTnA/v2JIXDvLffs3r+vOiwalskwAyEmJzIyY7Zw7YGZnSDpH0gJJv/KmLABARXWtfvL1QcprZZJIbB3gY48M64k2dpaLhPL1468P0rK3PvSgWgDILYmE4Nh05PMlzXfO/UFSQepLAgBIDRPjuhQGdf9VpzUbhBtvhHHxr1brzR2fthiEI6F8LZkySm9u/1SzntnIIu8AfC+RELzTzB6QdJmkZWYWSvD1WcfLJTjStbwHgI7t0gfWNBuEm9sJ7ge/29hsEG4agAEAiS1xdqmkcyXd45z71MyOkXSzN2Wlh5dLcKRreQ8AHVcklK+V0e1Dj/9SZ91/1Wn69m9eU68uDQE4HMzTt0tO1LdLTvz86woCeuLGUbrsgYbtTJdMGaWeRQWKnNjtcHttjR8GgI4u7k/B6AYZz0rqYWa9o6f/7k1ZAIBuRSF1KwodPh4WyNOCScN14tERHfelzpKk7kXNv7YwnK8nbhwl56Qvdy9Up4J8dUtH0QCQI+IOwWb2XUk/kvSxPtsu2Uka7EFdAIAmukZCGnZ8FxV1CrZ5baeCfJ3QrfDwYwDA5yXyyThN0knOud1eFQMAaF08ATiG8AsALUtkYtt2Sfu8KgQAAABIl0S6CbZKWmlmf5BUHTvpnJuX8qoAAAAADyUSgj+I/hSog6wP7OUqZqyQBgAAkL0SWR3idkkys0j0uNyrogAAAAAvxT0m2MwGmtkbkjZJ2mRmr5nZAO9K8x6bZQAAAPhTIhPj5kua7pw73jl3vKTvS3rQm7LSI8/DpOpl2wAAAEhOIiG40DlXGjtwzq2UVJjyigAAAJD18jzq7/Oq3aYSWh3CzGZLejR6/A01rBiRsyKhfL04c5xnbQMAAHRUhQWfbe2e6nbTIZF3uV7S7ZKeVsNOcS9Gz+WsLoUF6lLYIRa6AAAASKumW7vnmkRWh9gr6d89rAUAAABIi0RWh/izmR3V6LiLmf3Jm7IAAAAA7yQyMa6bc+7T2EG0Z/jo1JcEAAAAeCuREFxvZr1jB2Z2vBrGBgMAAAA5JZGJcbMk/c3MXlDDrsBjJE3xpCoAAADAQ4lMjPujmQ2VNCp66nvOuV2x581sgHNuU6oLBAAAAFItoYXYoqH3+RaeflTS0KQrAgAAADyWyJjgtrBPMAAAAHJCKkMwk+QAAACQE1IZggEAAICckMoQfCiFbQEAAACeSWhinJkNltSn8eucc09Hf49q4WUAAABAVok7BJvZw5IGS9okqT562kl62oO6AAAAAM8k0hM8yjnX37NKAAAAgDRJZEzwajMjBAMAACDnJdITvEgNQfgjSdVqWBfYOecGe1IZAAAA4JFEQvACSVdL2qDPxgQDAAAAOSeREFzmnHvOs0qySF1dnQKBQMqvBYBE7K04pPLqWk/ajoTy1aWwwJO2AfhXLmWoRELwG2b2uKTfq2E4hKTPlkjrKHbsqdTB2jr16dJZwWDrN+bj/VX6cF+V+nTtrKM68z8TAKlVU1+v6lpvvngLBflCD0BqfbK/Su/tqlDfboU6+ohwq9d+WnlI23ZXqucRYfU8svVrvZJICO6khvD7L43Odagl0nbsqdRVC9Zq/8EaPXnjaPX5UstB+OP9VZq25A299v5e/fra4RrY60iCMICUqqiu0znzXvCk7dIZJVKRJ00D8IldB6oPf1sVDuZp2YaPdMfzm3XlyOM07ayv6GBNXbOvCwfztOWTcl238BUN7d1FP7t8iGrr61QbvTwSyle3opDn9ccdgp1z13lZSKbFAvD7uyslSZc+sLrFIBwLwGu27pEkXbfwFYIwAADwlfLqWpXcs1J/vmms/vr3T3TH85slSY+v3S5JmlrST+f85ws6eOizMPzwpGEqyM/TdQtfUU2d09r39mjakjf0X5efqm8+sk5//6hcK2eUpCUEx71EmpmFzWyqmf3SzB6O/XhZXLo0DcCStLeyRpc+sFrb9lSqptG/ZJoGYEmqqXO6buEr2rhznz6tZPdoAADQ8ZlJf75prF58d9fhABzz+Nrtum/lu/rvm85Up4KGzsSmAThm7Xt79L0l6/Xr60bo5J4RmaWn/kTWCX5UUk9J4yW9IKlY0gEvikqn5gJwTOMgXFtb12wAjiEIAwAAPwnl5zUbgGMaB+FF1w9vNgDHNA7CgUTSaRISeZsTnXOzJVU45x6RdL6kkd6UlR57Kg7p5qfeajYAx8SC8MYP97cYgGNq6py+uehVL0oFAADIKrsrDrUYgGMeX7tdvyh9V4dqXYsBOGbte3v00Itb1SmYyJS19kskBNdEf39qZgMlHSnp6NSXlD5fKizQnIsHqddRnVq9bm9ljS667+VWA7AkBfJMv7zqNDm1fIMBAAA6gq6FBZo5/qQ2r1u8bru+uejVVgOwJA3t3UXfHHOCqmq8WRqyqURC8Hwz6yJptqTnJG2WNNeTqtJk14FqdQ4GtHjyyDaDcFsCeaYHrxmmgcceoX2Vtdp1oLrtFwEAAOSogzX1Ondgz7iCcFuG9u6i+64aom89+poONb+oRMrFHYKdcw855/Y6515wzp3gnDvaOfcrL4vzWnl1rYbd9Rc99LetSQXhQJ7pwatPUyjfNOLHf1HJPSs9W+AeAAAgW5x17wtJB+HGAfjNHftSWF3rElkdooeZLTCz5dHj/mZ2g3eleS8czNOSKaN03qBjVVvv2hWEYz3AJ/UsUiCvob0lU0YpHEzTqG4AAIAMSiYIZyoAS4ltlrFQ0q8lzYoe/0PSE5IWpLimtDlYU6/L5685fHzN6N5aPHmkLpu/Rh/uq2rz9Xmmwz3Ap88p/dxzpTNKUl0uAABAVjrr3hf01++fqXon3bPinbhec+pxR2UsAEuJjQnu5px7UlK9JDnnaiWladRGeqx7b49CwYC6ReJboDkYyFPvroV6c/unHlcGAACQ3d7fXaGBvY6I+/rju3aWc9I/Pin3sKqWJRKCK8ysqxq2SpaZjZKU/tjukZN7RrTwupGatuQNbdgZ3x+rurZel/zqZf3v/j01c/xXPK4QAAAgOz08aZiCgTxNTmCp2GfX/49+Ufr5DTXSKZEQPF0Nq0KcYGYvSVok6bueVJVmsQD8vSdaXwe4ObF1hAnCAADAj1raCS4eze0sly6JhODNkn4n6RVJH0t6UA3jgnNaMgE4hiAMAAD8KJkAHJOpIJzIxLhFkvZL+nH0+Eo1bKV8SaqLSpdgQEkH4JhYEH7yxtEpqg4AACB7FRbkJR2AYx5fu12S9N83nalDdfWpKK9NifQED3TOfdM5Vxr9mSxpgFeFpUM4mK9Zv9sQ105wt044Oa6d5S59YLUuHd5boYClslQAAICssqeyJq4APLT3UZo8pm+b7T2+drueePUDFaapNziREPx6dDKcJMnMRkqKf/RzFnLOado5/Vr9jx3bCOOcU46Oax3hyWNO0P6DNapO8l9EAAAA2axL5wKdO6Bnq9c0rAM8VFePOr7NdYR7HdVJFw8tlqWpH7HNEGxmG8zsLUmnSXrZzLaZ2XuSVksa5nWBXiqvrtM7H+7X4imjmg3CsQBcEMzT2fNWtbmz3MzxJ+ncgT111r0veF06AABARlUdqtMPzj9FXxt8TLPPN94IY+zdK1vdUKPXUZ30+OSRenDVVpVXp2cF3nh6gidK+pqkcyX1lXSmpJLo4wmeVZYmNz+1odkg3DgAf+OhdZKkRas/aDEIE4ABAICf1Eua+PO/NRuEm9sJrqWd5RoH4MfWfpCu8tsOwc6591v7SUeRXmsahJsLwDHNBWECMAAA8KPd5Ye+EIRb2wq5aRDOVACWElsdokO7+akNuvviQVo8ZZR2l1crmP/FAByzaHXDTVo8eaRe+EeZTj+xGwEYQMp5OSyOqbsAUiUWhJ//7hnq16NIlwwrbnUr5NgWy0d0CmpMv24ZCcBSYhPjOrybn9qgjTv3qd6pxQAcE+sRHnLcUQRgAADga7EgPHHwMa0G4Jiz7n1BpxYfmbEALNET/AU/+N3GuK9dtPqDw73CAJBqkVC+Vs4o8axtAEil3eWHEuoYnPiLlzyspm18CgJAlupWFFK3olCmywCAZnUK5mnJlFFtX9iOdtOBEAwAAICEhfIDbe6f0N5204EQDAAAgIR1KSxQl8KCTJfRbkyMAwAAgO8QggEAAOA7hGAAAAD4jq9DsHm4WryXbQMAACA5vp4YF873ZmmPWNsAAADITr4OwVU19bp8/hpP2vZqgXsAAAAkj+5KAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDveB6CzexcM3vHzLaY2X+0ct3FZubMbJjXNQEAAMDfPA3BZhaQdJ+kCZL6S7rCzPo3c12RpGmS1npZDwAAACB53xM8QtIW59xW59whSUskXdjMdXdKmiOpyuN6AAAAAM9DcC9J2xsd74ieO8zMhko6zjn3h9YaMrMpZvaqmb1aVlaW+koBAADgG/mZfHMzy5M0T9K1bV3rnJsvab4kDRs2zKXi/SOhfK2cUZKKppptGwAAANnJ66S2U9JxjY6Lo+diiiQNlLTSzCSpp6TnzOwC59yrHtembkUhdSsKef02AAAAyDJeh+BXJPUzs75qCL+XS7oy9qRzbp+kbrFjM1spaUY6AjAAZLuyA1Uqr67zpO1IKKDuRWFP2gaAXOBpCHbO1ZrZdyT9SVJA0sPOuU1mdoekV51zz3n5/m3ZW3FI5dW1nrQdCeWrS2GBJ20D8Ify6jqNu2elJ22XzihR9yJPmgaAnOD5wFXn3DJJy5qc+2EL15Z4XU9j5dW1GjO31JO2X5w5jhAMAACQpdgxDgAAAL5DCAYAAIDvEIIBAADgO75ezDYYMC2ZMsqztgEAAJCdfB2CD9bU6/L5azxpu9SjTTgAAACQPIZDAAAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHd8vToEAAAA2qfsQJXKq+tS3m4kFFD3onDK222KEAwAAICElVfXadw9K1PebumMEnUvSnmzX8BwCAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4Du+3izDLDfbBuAPkVBApTNKPGsbAPzM1yHYudxsG4A/dC8Kp2XXJADwI4ZDAAAAwHcIwQAAAPAdQjAAAAAS5tX8p3TNqyIEAwAAIGFezX9K17wqX0+MY+Y1AACAP/k6BDPzGgAAwJ8YDgEAAADfIQQDAADAdwjBAAAA8B1CMAAAAHyHEAwAAADf8fXqEAAAAGifTsE8LZkyypN204EQDAAAgIQdrKnX5fPXpLxdr/ZwaIrhEAAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA38nPdAEAAADIPZFQQKUzSjxpNx0IwQAAAEhY96Kwuhdluor2YzgEAAAAfMfXPcFlB6pUXl3nSduRUEDdi8KetA3AH/ZWHFJ5da0nbUdC+epSWOBJ2wD8wascla4M5esQXF5dp3H3rPSk7dIZJTn9FQGAzCuvrtWYuaWetP3izHGEYABJ8SpHpStDMRwCAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvpOf6QIAAADQPjU1NdqxY4eqqqrS/t61dfV68IJjUt5u+Ufb9HZZYv204XBYxcXFCgaDcb+GEAwAAJCjduzYoaKiIvXp00dmltb3rq6pk/v4QMrb/UqPIoWCgbivd85p9+7d2rFjh/r27Rv36xgOAQAAkKOqqqrUtWvXtAfgbGJm6tq1a8K94YRgAACAHObnABzTnv8GhGAAAAD4DiEYAAAA7bJ/3z498chDmS6jXQjBAAAAaJcD+/fpiUULMl1Gu/h6dYhIKKDSGSWetQ0AyYiE8vXizHGetQ0AycjLM/36P+/Szg+26erzS3T2OWere/ej9dTSpaqurtYFF16oH/7oNm3btk0XTDxfI0aO1JrVq3XasGG6ZtIk3XnH7SorK9PCRxZp+PARuvOO27V161Zt/ec/tXv3Ls2cOVOTJ0/Whx9+qMsuu0z79+9XbW2t7r//fo0ZMybp+n39Kdi9KKzuRZmuAgCa16WwQF0KCzJdBgA0KxjI09y5c7R58ya9+eZ6rVixQkuXLtUrr6yTc04XXHCB1q5+Sb1799Y//7lFS5f+VgMGDNDw4cO19Mkn9PJLL+m5557TPXPn6JlnnlF+IE+bNm7QmjVrVFFRoSFDhuj888/X4sWLNX78eM2aNUt1dXWqrKxMSf2+DsEAAABIjRUrVmjFihUaMmSIJKm8vFzvvvuuevfurb59+2rQoEGSpAEDBujss8+WmWnQoEHatm3b4TYuvPBCderUSZ06ddK4ceO0bt06DR8+XNdff71qamp00UUX6dRTT01JvYwJBgAAQNKcc7r11lu1fv16rV+/Xlu2bNENN9wgSQqFQoevy8vLO3ycl5en2traw881XerMzDR27FitWrVKvXr10rXXXqtFixalpF5f9wSXHahSeXWdJ21HQgF1Lwp70jYAf+AzCkC2Kyoq0oEDDbvGjR8/XrNnz9ZVV12lSCSinTt3JrSNsSQ9++yzuvXWW1VRUaGVK1fqpz/9qd5//30VFxdr8uTJqq6u1uuvv65rrrkm6dp9HYLLq+s07p6VnrRdOqOE8cYAksJnFIBs17VrV51++ukaOHCgJkyYoCuvvFKjR4+WJEUiET322GMKBOJfLGDw4MEaN26cdu3apdmzZ+vYY4/VI488orvvvlvBYFCRSISeYAAAAGTe448//rnjadOmfeGajRs3Hn68cOHCw4/79OnzuecGDx78hZA7adIkTZo0KUXVfoYxwQAAAPAdeoIBAACQcbfddlta34+eYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAALTb9ddfr6OPPloDBw7MdCkJIQQDAAD4xPLlyzVx4kQNHz5cEydO1PLly5Nu89prr9Uf//jHFFSXXiyRBgAA4APLly/XXXfdpaqqKknSRx99pLvuukuSNGHChHa3O3bsWG3bti0VJaYVPcEAAAA+cN999x0OwDFVVVW67777MlRRZnkegs3sXDN7x8y2mNl/NPP8dDPbbGZvmdlfzOx4r2sCAADwm48//jih8x2dpyHYzAKS7pM0QVJ/SVeYWf8ml70haZhzbrCkpZLmelkTAACAH/Xo0SOh8x2d1z3BIyRtcc5tdc4dkrRE0oWNL3DOlTrnKqOHayQVe1wTAACA70ydOlXhcPhz58LhsKZOnZqhijLL6xDcS9L2Rsc7oudacoOkZqcpmtkUM3vVzF4tKytLYYkAAAAd34QJEzRr1iz17NlTZqaePXtq1qxZSU2Kk6QrrrhCo0eP1jvvvKPi4mItWLAgRRV7K2tWhzCzb0gaJunM5p53zs2XNF+Shg0b5tJYGgAAQIcwYcKEpENvU4sXL05pe+nidQjeKem4RsfF0XOfY2bnSJol6UznXLXHNQEAAMDnvB4O8YqkfmbW18wKJF0u6bnGF5jZEEkPSLrAOfeJx/UAAAAA3oZg51ytpO9I+pOktyU96ZzbZGZ3mNkF0cvulhSR9FszW29mz7XQHAAAAJASno8Jds4tk7SsybkfNnp8jtc1AAAAAI1lzcS4TIiEAiqdUeJZ2wCQDD6jAMA7vg7B3YvC6l6U6SoAoHl8RgGAdzzfNhkAAAAd0/bt2zVu3Dj1799fAwYM0M9+9rNMlxQ3X/cElx2oUnl1nSdtR0IBdS8Kt30hAABAGtTU1Gj69OmSpDlz5uiWW26RJM2bN0/BYDDx9urqVedMP5kzV0OGDNWBAwc0euQInVlylk7p37/ddeblmYIB7/tpfR2Cy6vrNO6elZ60XTqjhK8xAQBA1pg+fbpef/11SdJ5552nmpqaw+d//vOfJ9xefb3T/ryIOh/bT+98fECSVNz3RK3dtEV5XY9r49UtO6lHkZSGaQu+DsEAAAB+U11drerqhr3JQqFQytrduf0D/X3TWxo05LSUteklxgQDAAD4wJw5c74w7CEYDGru3LlJt11ZUa7v33iNbr7tJ4oUHZF0e+lACAYAAPCBW2655fAQiJiamhrNnDkzqXZramo0fcoknXfRJTpnwteSaiudGA4BAADgI6FQSMFg8AuBuD2cc7rt5u/qhH5f0TVTpqaguvShJxgAAMAH5s2bp6FDh2ro0KFatmzZ4cfz5s1rd5tvvLJGzz/1hNa9tEqXjh+jS8eP0Yt/XZHCqr1DTzAAAIAPBIPBz60C0Z4VIZoaOmK03ty+N+l2MoGeYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+wxJpAAAASMqE0YPVuTCiQCCgQCBfi5eVZrqkNhGCAQAAfGDs2LGqrKz8wvnOnTtr1apVSbf/0JO/V5cvdU26nXRhOAQAAIAPNBeAWzvf0RGCAQAAkBwzfeuqf9Xl55Vo6W8WZrqauDAcAgAAAElZ+NRy9TjmWO3eVaZvXfl19f1yP5026vRMl9UqeoIBAACQlB7HHCtJ6tqtu846d6I2rn89wxW1jRAMAACAdqusrFBF+YHDj1ev+qtOPOmUDFfVNoZDAAAA+EDnzp1bXB0iGXvKynTT5G9Ikmrr6nTehRfr9HHnJNVmOhCCAQAAfCAVy6A1p/j4Pvrtir950raXfB2CI6GASmeUeNY2AABAR5WXZzqpR5En7aaDr0Nw96Kwuqf+3gEAAHR4wUCelMN9fkyMAwAAyGHOuUyXkHHt+W9ACAYAAMhR4XBYu3fv9nUQds5p9+7dCofDCb3O18MhAAAAcllxcbF27NihsrKyTJeSUeFwWMXFxQm9hhAMAACQo4LBoPr27ZvpMnISwyEAAADgO4RgAAAA+A4hGAAAAL5juTib0MzKJL2fgbfuJmlXBt4X3uK+dlzc246Le9sxcV87rkzd2+Odc92beyInQ3CmmNmrzrlhma4DqcV97bi4tx0X97Zj4r52XNl4bxkOAQAAAN8hBAMAAMB3CMGJmZ/pAuAJ7mvHxb3tuLi3HRP3tePKunvLmGAAAAD4Dj3BAAAA8B1CMAAAAHyHENyEmT1sZp+Y2cYWnjcz+39mtsXM3jKzoemuEYmL475eFb2fG8zsZTP7arprRPu0dW8bXTfczGrN7N/SVRuSE8+9NbMSM1tvZpvM7IV01of2i+Mz+Ugz+72ZvRm9t9elu0YkzsyOM7NSM9scvW/Tmrkma3IUIfiLFko6t5XnJ0jqF/2ZIun+NNSE5C1U6/f1PUlnOucGSbpTWTiAHy1aqNbvrcwsIGmOpBXpKAgps1Ct3FszO0rSLyVd4JwbIOmSNNWF5C1U639vp0ra7Jz7qqQSSfeaWUEa6kJyaiV93znXX9IoSVPNrH+Ta7ImRxGCm3DOrZK0p5VJD0aZAAAEDklEQVRLLpS0yDVYI+koMzsmPdWhvdq6r865l51ze6OHayQVp6UwJC2Ov7OS9F1JT0n6xPuKkCpx3NsrJT3tnPsgej33N0fEcW+dpCIzM0mR6LW16agN7eec+9A593r08QFJb0vq1eSyrMlRhODE9ZK0vdHxDn3xBiO33SBpeaaLQGqYWS9JXxff2nREX5HUxcxWmtlrZnZNpgtCyvxC0imS/kfSBknTnHP1mS0JiTCzPpKGSFrb5KmsyVH5mXhTIFuZ2Tg1hOAzMl0LUua/JN3inKtv6FRCB5Iv6TRJZ0vqJGm1ma1xzv0js2UhBcZLWi/pLElflvRnM3vRObc/s2UhHmYWUcO3b9/L5ntGCE7cTknHNToujp5DjjOzwZIekjTBObc70/UgZYZJWhINwN0knWdmtc65ZzJbFlJgh6TdzrkKSRVmtkrSVyURgnPfdZJ+6ho2M9hiZu9JOlnSusyWhbaYWVANAfg3zrmnm7kka3IUwyES95yka6KzG0dJ2uec+zDTRSE5ZtZb0tOSrqYXqWNxzvV1zvVxzvWRtFTS/yEAdxjPSjrDzPLNrLOkkWoYg4jc94EaevhlZj0knSRpa0YrQpuiY7gXSHrbOTevhcuyJkfRE9yEmS1Ww0zUbma2Q9KPJAUlyTn3K0nLJJ0naYukSjX8axVZLo77+kNJXSX9MtpjWOucG5aZapGIOO4tclRb99Y597aZ/VHSW5LqJT3knGt1qTxkhzj+3t4paaGZbZBkahjStCtD5SJ+p0u6WtIGM1sfPfcDSb2l7MtRbJsMAAAA32E4BAAAAHyHEAwAAADfIQQDAADAdwjBAAAA8B1CMAAAAHyHEAwAAADfIQQDQA6JLjDPZzcAJIkPUgDIcmbWx8zeMbNFkjZKmm1mr5jZW2Z2e6Nr/m5mvzGzt81saXQXNZnZT81sc/T6ezL5ZwGAbMFmGQCQ5cysjxq2jP1fko6Q9G+SblTDTlrPSZqrhm1m35N0hnPuJTN7WNJmSb+W9LKkk51zzsyOcs59mvY/BABkGXqCASA3vO+cWyPpX6I/b0h6XdLJkvpFr9nunHsp+vgxSWdI2iepStICM/tXNWxTCgC+l5/pAgAAcamI/jZJP3HOPdD4yWhvcdOv9pxzrtbMRkg6Ww09yN+RdJa3pQJA9qMnGAByy58kXW9mEUkys15mdnT0ud5mNjr6+EpJf4ted6RzbpmkmyR9Ne0VA0AWoicYAHKIc26FmZ0iabWZSVK5pG9IqpP0jqSpjcYD3y/pSEnPmllYDb3I0zNSOABkGSbGAUAHEB0O8bxzbmCGSwGAnMBwCAAAAPgOPcEAAADwHXqCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4Dv/HytaEZNUl5FsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3Qc1f3+8ffdqt4lV7nJBvcqYxsDAVIgELrpvUMgyTe/VEJISA+BhBBC6ITeO4SahI5tLNu49y7LVu/avvP7Q5Yj26rW7Bq8z+sczrF2Z66ubM7o2Tt3Ph9jWRYiIiIiIonEcaAnICIiIiISbwrBIiIiIpJwFIJFREREJOEoBIuIiIhIwlEIFhEREZGE4zrQE9gfeXl51rBhww70NERERETkC2zhwoVVlmXld/TelzIEDxs2jJKSkgM9DRERERH5AjPGbOnsPW2HEBEREZGEoxAsIiIiIglHIVhEREREEo5CsIiIiIgkHIVgEREREUk4CsEiIiIiknAUgkVEREQk4Xwp6wTHS31LkMZAGIBwxMJhwOlw4HYaCjKSDvDsRCTRVTX6CYSjRCyLaBScDoMB0pKcZKV4D/T0RCQB1TQHyEn1EolEqGgMErUgHI1iWeB2GiwgJ8VNitdNVaOfVI+TZK/7gMxVIbgDZXU+KhsD/PPTTZRsrqW01rf7vYxkFxMHZXHOYYVMHZJNToqbJI/+GkUkPkKhCJXNQVaUNfDEvC0sKa2jtiW0+/0BmUlMG5LNJbOHMTArmYFZyQdwtiKSSHbU+yiv9+MPRXl3ZTmvLiljZVkDvlAEAIeB4XlpHDEyl4tmDcPlNJTXBxiRn3JAgrCxLCvu37SviouLrVh0jKttCVDVGOT7z37O8u0N3R6fleLmD6dNYOrQbPppZVhEYqy8wc+anY384LklVDYGuj1+VEEad5wzmX4ZSeSmaWVYRGKnuslHMAyvLCnj9nfXEghHuz3nq6ML+NUp4zC0rg7HIggbYxZallXc4XsKwa0qGvx8uK6SG15cRijSu7+TEyf05xcnjVMQFpGYKW/wc/u7a3l6wbZened0GG48YQzfmjhA27hEJCaqm/wEwhbXPr6QJaX1vTo3I9nFgxdPZ2BmUkyCcFchWA/G0boC/OG6Sn743NJeB2CAfy3byQ0vLqO83h+D2YlIottZ7+MPb6zqdQAGiEQtfv36Sl5Zsp3KRl2jRMReO+p9BCMWFz/0Wa8DMECDL8wFD8ynvCFAdUsIXyDU/Uk2UQgGqhqD3PDisj6N8d/VFby2tIz6lqBNsxIRgeZAiI/XV/Hy52V9Guf3b6xmhz6oi4iNdtT7CISi/P5fq1hX0bTf4wTCUa56rASHMaypbKIlTkE44UPwjjof//fM5/u1Ary3P721hjpf/D7BiMjBr64lzC9eWdHncSwLvvvUYnbU+7o/WESkB1wOw44GH68t3dHnsaqagvzl3bXkpXjx92A/sR0SPgTvbPCzoqz7h+B6IhiJ8s9PNtPo12qwiPSdLxjmhUXbaAlGbBlvc3ULa8sbbRlLRCQcsfjLO2ttG+/lxdsxxpCTGp8HeRM6BNe1BHjo4022jvn8wlIa/GFbxxSRxFTTHOKxeVttHfOBjzZR0aBtESLSd8FIlAWba20bLxy1eGN531eVeyqmIdgY85AxpsIYs7yT940x5m/GmPXGmKXGmKmxnM/emgIRW//xWscM4wvGZxlfRA5u4Wi0R6XQemPx1jpCEV2jRKTvVu2w5056e5+sr6K6yd7rXmdivRL8MHB8F+9/Exi167+rgLtjPJ89WFbrdgi76XajiNihrM7+/btNgbAtz0CIiCzYXGP7mCvLGvDZtAWsOzENwZZlfQh09Td0CvCo1WoekGWMGRDLObUXjsbmF0GtKkSIiA3qY/SgrVaCRaSvotEodS32X6Ma/CGMsX3YDh3oPcGDgPaFL0t3vbYPY8xVxpgSY0xJZWWlLd/cEaO/ZK/rQP+1isjBwONyxmRcR6wufiKSMBwOB54Y5B2P00G87lV9adKaZVn3WZZVbFlWcX5+vi1juhwOUj32/5I5pF+67WOKSOIpzEm2fUynw5CkD+oiYoNxAzNtH7MoPy1mi5R7O9BXwu1AYbuvB+96LS4cDhg3yN5/QGMgJ9Vj65gikphSPS48Tnsv0yPz0+K2yiIiB7epQ7JsH3NyYRYFafFp8X6gQ/CrwEW7qkTMBOoty4pbbYwBmcmcXVzY/YG9MLsoz/ZfWiKSmLwuB98Y18/WMc+YNpj+6fGpwSkiB7esFA/9M+wNrHOKB+OK092qWJdIewqYCxxqjCk1xlxujLnGGHPNrkPeADYC64H7gW/Hcj4dmVWUS7rXZdt41x8zkgKb/4cQkcSUm+blmq8U2Tae1+XgxIkDcMVor7GIJJZ0r4tLZw+zbbyxAzLISnbbNl53Yl0d4lzLsgZYluW2LGuwZVkPWpZ1j2VZ9+x637Is6zrLsoosy5pgWVZJLOfTkaxkN786ZZwtYx1zaD7D81NsGUtEBCA/3cupkwfaMtZPjh9NegyegxCRxFRW7+PkSQMZltv37OMw8Kc5E1mzo5Gag6RO8BdeitfF7JF5fHV0QZ/GyUvz8JtTx9Mvw/4HWUQkcfXLSOInx49mUFbfri3Th2VzwoT+ZKTomQURscfgrGT8oQh3nT+1z5Wxrj92FCkeBxMKM8lJU9vkuOmXkcTvT5/A7KLc/To/L83D01fNYkCG9tmJiP0GZCXz5JUzGJi5f1utphRmcee5U+mfqQ/pImKf1CQ3BelespLd/PPS6fsdhC+aNZRzpxeSnuQmPz1+W0oVgnfpl5HEn8+azP/7+ihcvajN8ZVD8nn5utkMz03G6dRtRhGJjaG5qbxw7eGcML5/j89xGLj6qBHcfcE0+u9ngBYR6UpqkpusZDdDspN57TtHMGZAz8vEpntd3HHOZK46cgQup4lrAAYwlvXlK5ZTXFxslZTEZvtwbXOQOl+Q+z/cyIuLt+MPddxZaVZRLtcfM5Ki/DT9chGRuClv8FNa6+PO/67jg7WVdHQJb3sA7tqvFJGT6iE3TrcWRSRxNftDlNX7SPW6Kdlcwz0fbGTljoYOj81J9XD+jCGcM30IFQ0tDM5JjVkANsYstCyruMP3FII7VtcSpDkYockfZtWOeupaQnhdTkYPSCcvzYvb6VD4FZEDpqLBTzASpaY5yKodDfiCETKS3YwZkEFGkosUj5PsVIVfEYmfZn+IYMTC63JQ5wsRjkQpq/OzvrKJSDRKQUYSh/ZLx+tykJ3ioTkQBkNMV4AVgkVEREQkpkKRKP5QBJfDQXIPKtHUNAdxOiAzOXYP7HYVgrUnuAcafCFqmgPUtgQJRzreHiEiIiKSqEKRKOvKG5n9x/8yb2M1vmAEgGA4Qm1zkJrmIE2B0O7jt9f6OOnOj3ly/lbqfcEDMmf7ukQcRMK7bjFuq/WxvqIRfyiCMQbLAqfDMDAzibEDM0lPcpFqY6MNEZH90RQIE41auJ2GZI+uSSISX20BeM49c8lKdrOuopGhuSmUbKnlk/VVbKluIWpZ5KR4OGxEDkeMzKOiMUBhTjK3vLUGgPNmDInpinBHdLXcS3VTgJLNNbidDpwOw456P6t2NNLgD+F1OigqSCPN66K0toWNlU0cOSqf/HQvLrVKFpE4CYaj1LUE2VLTwuaqZpoDYSxaq0FkJrspKkijX0YSualenL2odiMi0lttAfjMe+dy+pRBnDJlEH/7zzr+8OZq+qUnMWFwJpMKs3AYqGsJ8criMv78zloGZyfz3WNHMWfaYH79+kog/kFYIXiXaNSirM7HxqomdjQEeOCjjZTW+vY57v21lQCkeJycPnUwo/qlU1bn49D+6aQlxa/Vn4gkpspGPx+vqyYv3UMkalFW72d9eSOBcJRUr4vR/dPpl5HMjro6jIGpQ7JVHUJEYqItAJ993zx+c8p4djb4ufKREk6ZMojvfXUUOxv8LCutZ2tNC1ELclLdXDRrKGMHZrB4ax1/f289Q3NTePTSw7j+qcVAfIOwHowDLMuitLaF6uYQv35tJYu21vb43NxUD384fQJZKW7GDsgkLUmfK0TEfv5QhK3VLTT4Q3y8voon5m2lsovWoiPyUrnsiOEMzk5mZH4aA7OScWhVWERstKGiiZP+/jE3nzyOFdvr2Vbr47vHjuTJz7bx6pLOy8wCzBiewzVfKWLZ9nr+tXQHt8yZyBWPLOC6Y0YyZ9pg0m1aWFR1iG5UNwfYVu3jysdKqGzsfb/qtn7XkwZnMapfz4tEi4j0RCAcYd3OJpqCYW54cRmbqpp7fO70YdnceOJYclPdDM5OwRgFYRGxR3VTgKc+20pWiodGf4i8NC+/fm0ljYFwj8c4e3ohp04exAMfbeD8GUMZlpfKsNxU2z60qzpEFxr9ISoaAnz36cX7FYABohb85IVlVDYFqGnevzFERDpT0RCgvNHPxQ991qsADLBgcy1XPlpCVVOQ6uYD8wS2iBycctO8nDx5EE2BEKGIxY+eX9qrAAzwzIJt3PbOGq46qoi6liCD4njXSiHYH+KJ+VvZWtPSp3EiUYufvbiM2uYgX8bVdRH5YqppDlDTHOT6JxcTCO9ficbKxgDXP9n6Qb/BF+r+BBGRHvAFw7y1fAcF6Un85d21+z3Owi21PPDxJqJAXRyvUQkdgsORKE2BCE/O32LLeJurW/hkQzX1+iUjIjapbQ5x86sr8IUifRpne52Phz/dTINf1ycRsUeDL8T0YTnc/NqKPo/17spyjDGU9nFRsjcSOgQ3+kO88nkZURsXbh+du4WmXt4KEBHpSH1LkHUVjSzeVtflcU6HIcntoLs7iM8s2EaDL0Sgj4FaRASgwR/mxUXbafDZk3tufWsNxhiC+3nXq7cSupRBczDCf1eX2zrm+oqmuP3jicjBrTkY4eFPN+/zuttpOG5cf44b15/+mUmEIlGC4ShJbicOY9hU1cyrS7bz6YZq9t6d9dzCUq47ZiRed/ctTUVEuhK1LF5avN228XY2+KlsCtDoC5GbHvvSjgm9EgywrrzJ9jHL6vatLywi0luRqMX8TTV7vHbO9EKeu3oWR43KIxSJEo1au1aCWwNwOBrFGJgzrZDnrzmco0bl7XH+v1eV4w9qJVhE+sayLKqagrbf/X53ZTnxerIqoVeCQxGLcCd7IQpzkjl50iAmF2aSkezGssDsOmf1zgb+s6qCuRurOzy3oyYbIiK9VecL7V7JzU5x8+ezJu/uDlfdHOTlxWWsq2jcY0uXx+lg/KBMziweTCQa5ZLDh3L8+P788tUVhCIW22p8cfsFIyIHL2MMy7bX2z7ustJ6/OH4fFBP6BDc0fa5EXmp/PSbowF4tmQbT87fQm3L/x4k8bocjB2QwcmTB/KDbxzC/R9t4u0VO/cYQwXpRcQOO3bdVcpOcfPAxcU0ByJUNQX48fNLO31QLhiJsmhrLYu21pKf5uXXp44jN83LXedN5bonFxGKWPtdZUJEpI1lWWyo6PhuujFweFEuR47MZ+zADLyu/2082FDZzKKttby5bAfNHdyVKq1t6TCfxUJCh2C30+Aw7F5FuXT2MI4b158bX1rOhsqO/2ED4SiLt9WxeFsdqR4nPzthDCdO6M/PXlq++5bAwMykeP0IInIQM6b1v7+fNxWHMTz48SY+2NW6vScqmwJc+/giLpo1lBMmDOCmE8fyi1f7/hS3iAjQ4V2lM6cN5tzDhlCypZZ3V+7kb/9dR8uusOswUJSfxqyiXB6+7DCWldZz+7tr96gtHLVaH/aNh4QOwQAj8tNYX9HEz04Yg9MB590/r8fVIpqDEW58eTnHHJrPgxcXc+WjJTT4wwzOTontpEUkIRSkJ3HxrGFkJLn441ur+WR9x1uwuvPo3C04jOH0qYOYNSIXj1N3q0Sk79ov+uWne/nj6RNYuaOBc++fx6CsZGaPzOPM4sLWBhjGUOcLsqKsgUVbajn73rkcO7qARy8/jFvfXsOnG1qvb3npHsKR+GzaSugQ7HIajhyVxxEj8/A4DTe/tnK/xnlvTSWhsMWd507h5y8vt3mWIpKo8tI8nDdjCG8t37nfAbjNw59u5vCiXG761hhczoR/JlpE+sgYw8TBWUBrGP77eVP59esrSfE4ue/CaTT6w7yzspy739/A1poWopZFToqH8YMyOWpUPj867lBeX7qDKx4p4bYzJ5GZ7ObN5TuZMCgTtys+16iEDsGBUJQzpg4mGIly5j1z+zTWxxuqmDUyl1+dPI6tNc0My0u1aZYikqjcLgfRQJg7/7vOlvFufHk5T185kzSvyqOJSN9Eo1EGZSeT5nVyx7lT+NVrKzjnsCF4nA5++PxSKhsD+5xT3Rzkg7WVfLC2Eo/TwTmHFfKPC6by29dX8sNvHEp5Q4DDi/IwcbpZldDLAVELnAZ+8vxSIjZ0zLj93bUMz0/t8B9eRKS3jAXPLthGyKZbg5WNAZaU1unBOBHpM4fDwfbaFm47cxLPl2zjhhPG8P6aCn7w3JIe5aBgJMqjc7fwg2eXcNO3xvHEvK3c9K0xjB2YQUjNMmLP63ZQ3hBmXSdPN+aleZgwKIsxA9JJ9boIRaJsqmpm+fZ6NlQ273N8OGrxz082c+bUwbGeuogkgEAkyguL7CtED/D0gm3MHJFj65gikpgykz1ELYuTJg3i9nfX7lPXvCdKa31c8egCHrhoOv9ZVc7MolxSvfG5m57QIdgBHXZj+tqYAs6bMZSoZbFoSy2rdjTS4A/hcTkoyk/jmq8UMSI/jX8tLeOZBdv2KPHx/MJSrj6qKH4/hIgctPyhKPW+UPcH9sLS0jpbW8WLSOIamJXEe6srWFvRtF8BuE2DL8wPn1vCrXMmkpfuJcUTny1bCR2Cw1GLhVtqd3/dPyOJ3542no2VzfzsxWXsbPDvc87cDdU8Tmu94FMmD+Kxy2dw6ztrmLvrqcaWYARfyN7uKSKSmHbEoPukPxRVa3cRsc2wvDRusqH04taaFt5esZNjDi1gQEYSnjgk1ITfE1yxa9/KpMGZ/OP8qdzx73X8/o1VHQbg9gLhKM+WbOOyRxZwwYyhXHnkiN3vre9ke4WISG80B2PzgTpiaSlYRPrGsixqW4I88NFG7LqkPDF/K7lpHttbMXcmoUNwW8vkQ/qlcdO3xnLloyW9bgFY1xLi+qcWMTwvlYtmDQWgtjlo+1xFJPGkemOzFOKK16PXInJQczsdfLCu5w18uhMIR5m3sSZurd0TOgQ7TGvXuN+dNoH/e+ZzqvczvFoW/PzlZXxtTD8O7ZeOx6XyQyLSd4Oykm0f0+00eOJUg1NEDl6WZbGxstm2VeA28zZWY/ugnUjoPcFOh+H6Y0fy4qJSSmv7tvcuasGNLy/jT2dMIjlOG7pF5OCW5HaS7HbiC0U6PcbtNAzOTsHjdNASCrO91tflg2+j+2fErSWpiBy8HA4HS7bV2T7u8u31BNUxLvacxvDV0f046e8f2zLethofq3Y0cOKEAbaMJyKJzesynDZlIE9+tm2P1/PSPJxVXMhXDsknYllsqW4hEI6S5nVSmJNCKGzx5vIdvLR4Oy3BPQP0RbOGkp3iieePISIHIcuyqGyyvy9CTUsQR5y2bCV0CE71OHnqs522rro/Pm8Lx43rZ9+AIpKwkt0uLjtiOE8t2IZltVal+f7XDmH8oEye/GwL9z+4scNGGqkeJ6dOGcTjl8/gpcXbeXz+FiwL0r0ujhiVp+0QItJnxhjcMWjB7nI4cMXpblVCXwmbghHeWVlu65gbq5pt6T4nIpLidZGe5OLKI0cwNDeFJ66YwdqKRi54cD5vLNvZaSe55mCEJ+Zv5ax755KV4uahi6eTkeziD6dPIMXtwOjBOBGxwdgBGbaPOTQ3BZdTK8ExZ1l02i2uL0prfQzJjU+3ExE5uEWjcNWRIzhp4gC+89RiNle39PjccNTizv+uZ+aIHJ68Yib5aR5CKhEsIjaZNizb9jGnDMkiM8Vt+7gdSeiV4GAkGpNV2y01Pf8lJSLSmbqWIFc/voBwNNrrANzevI01/OntNVgYrn9yEfUtKuMoIn2Xn+Yly+bAeua0QlyO+MTThA7BuiEoIl9koXCUf5xXzF//vW6/A3CbD9dW8t/V5fz5zElELC0Hi0jfZSS7uGjWMNvGG5KTQkG617bxupPQ2yHcToPD0GU5of0xONv+2p4iknhcDkN1IMzTC7Z1f3AP/Ob1VRz9gwKiUS0BiEjfldb6+frYfjz12VYqG/esFHHBjCF8Y1w/Bmal7CrLaGEwVDUFWFpax1//vY4G/56d4X59yjgWba1lpstBblrsw3BCh+CoBUX5abbvCy7MSbF1PBFJTGHL4t4PN9g2ni8U4d2V5cyZOtC2MUUkcWWnuKE5yh9OG8+Vjy3EsuCmE8fwjXH9mbuxmvs+3MSy7fXU+0IAeJwODumfxpEj83n5utnsrPfz3acXU9UUZM60wWSnuBmak0p6jLpl7i2hQ3B2iodjRhfYGoILc5Jxx2kvi4gc3EIRizeW7bR1zGcWbOOrYwpITVKtYBHpm+ZgmAsfWsAJEwbwj/OmMqpfGp9uqOb4v35Ic3DfJj/BSJTl2xtYvr2Bez7cwIkTBvDSt2fzwZpyCnNSOfu+efztnClkpbjwuGPfeCyh01ooEuX8GUNsHfOKI0aQk6qOcSLSdy3BCIGwvft315Y3qkSaiNjC5XCQ4nHhdsLkIVn87KXl/OKVFR0G4L1ZFry+dAen3PUJEwZnMygrmWgUMpPdcSs1m9Ah2OU0eFwOzpg6yJbxBmQm8Y1x/WgJqk6wiPTd9jr7K82EoxbBLtowi4j0VEswzN/OnMglhw/nikdK+GxTTa/HqGkOcvZ9c/GFInzyk6PYXtuCQ80yYi/V46K6McAPvnGoLU8j3nHOZCoaAnHrdCIiB7dgODYfqCN2tskUkYSV4nGRl5nEbe+sZUVZw36P4w9FueLREsKWg2lDc/C64nNHPaFDcE1zkFpfiLnrK3n0ssPISN7/LdK/PmUcGUluLCxaenAbQESkO7F6OCReNThF5OCWneJka62P5xeW9nms8oYAd/5nHckeJ6lxejAuoa+EkWgUj9PBiIJ0/vDmKh68eDojC9J6NUaqx8ltZ06ktjnIsu31rChr0CqLiNgiP8P+EkEpHmfcWpKKyMGt1hfhL++stW285xaWdtoOPhYSujqEReuDJ3e9t54P11WxpbqF3546gc82V/Po3C3UtYQ6PdflMHxjXD+uPHIEd7+/gXdWlpOR5OLRy2fY/iCLiCQmy4LcVA/VzfZ1eJtUmGV7bXQRSUzhiMXcjdW2jReKWLyzcieXzh5u25hdSegQHLYsUr0uPlxXBcDm6hYuemg+J00ayF3nTaWqKcDCLbWs2tFAoz+M2+lgZEEaEwZlMmVIFv9dXcGlDy/YHZYb/GHeXVnOOdMHH8gfS0QOEoFQhDnTBnPvhxttG/Ps4sLEvgUoIrZZvWP/9wF35qN1VZw0cSB5cegcl9Ah2O0wvLBoz30sUQte+byMVz4vY0hOCpMGZ3L0oQWkel2EI1E2VTXz8ufb+d0bqzos4fHMgq2cNkWF6EWk77wuB98c359H5m7GH+r7HaZBWcnkpXnUM15EbLFgc++rQXRnRVk9vjhVsEnoEBwIWczrYhl/a00LW2taeG3pjh6PWdUUjFt9OxE5uCV5nNzz4QZ+8I1D+d2/VvV5vN+eOp7nFpbyo+MOtWF2IpLIotEoNTZu1WpT7wsRryJbCX1XzOGALdX21+HcVuOzfUwRSTwepwOnw8GAjCS+PrZfn8a67piRLN5Wy7Sh2XErPyQiBy+Hw4HbaX+MdDscxGspMaFDcKxWbGtb7P9kJCKJx+UwXDBjKD9+YQkXzhzKiRMG9HoMY+D6Y0cyKCuZhz/ZzBEj83Al9JVfROwydkCG7WOOyE+1fczOJPSlMFaVzJxqliEiNjAYMpJcnHvYUK58tIQjD8njtjMnkpns7tH5hTnJPHzJdCwLfvbSMn5x0liS3K1tTkVE+sKyLKYOzbZ93MmFWeSkeGwftyMJfSV0Ox14XQ7bS5oV5qTYOp6IJKZgNEpzMMzlRwxn3sZqfvrCMr5ySD73XTSN9eVNvPz5dpZvb9jjIZLMZDdTCrOYUzyYVI+LP7y5mtU7GzlxQn9mDM+lJRjBEGRAVvIB/MlE5GCQkewmP91LZWPAtjFPnzqYRn+QlDg0zEjoEBy1oozun86S0npbx82O0ycYETm4+UMRtlS38MT8rfzmlPHc9MpyPlhbyQdrK5lSmMVx4/vznWNH4XU7sCxwGEODP8Ty7fX85Z21bKxqBuC4cf05q7iQd1buJD8tiVlFOQf4JxORLztjDOt2NnLxrKHcZlPDjFEFaSS5HdhQDKdHEjoEe1xOvj62v60heOLgTPxxKu0hIgc3B4ZUr4sn5m/lnZXl/PXsyXywtpIHPtrI4m11LN5W1+X5KR4nPz5+NNkpbq56bCGWBc9fOwufWruLiA3eXbWT644ZxdMLtlFa27eiAMbALWdM5K731nPDN8fYNMOuJfieYIvZI3Px2Ph040WzhhJV22QRsUHEivLE/K0AVDYGuPDB+UQti+euOZyLZg3tdG/wgMwkvvfVUTx5xQzmb6zme09/TiAcJRiJ8t7qCpLcqg4hIn1XmJPK799Yxd/PnYK7j+3YrzxyBHW+IMu3N8Tt2aqEXgmOWvD+mgquOXoEf/vP+j6PN2FQJpnJHrK0HUJEbGBh+O/q8t1fRy144KNNPDFvKydPHsjtZ08mI8lFbUuIQDhCqsdFWpKLysYAr3xext/fW79PFZzXl+7g1CmD4v2jiMhB6LDhOdz69hqOGJXHfRcWc9VjJYQivV8IPHPaYM4uLuSbf/uIE8b3j1uOSugQXJDuJWpB8dBsxg/KYPn2/W//l+R28MuTxnLLW6v5+7lTbJyliCQqfyjS4S8UXyjCMwu28cyCbQBkJLnwuBz4ghGau9nqsKGySRVsRMQWhdnJeF0ObnxpOb86eRwvfXs233t6MRsqm3t0frLbyS++NZbJQ7I46e8fEQxHOWXyIDxxquOY0NshXE4HZ08v5KcvLuM3p4ynKD9tv8bxuhvFcIIAACAASURBVBzcdd5U7vtwI3OmDaYgI8nmmYpIItpZ7+/RcQ3+MFVNwW4DMLSuJgdtrogjIokpM9nNKZMHAvDLV1dw61ur+ecl0/n9aeMZkdd5vd90r4vLZg/jrf87kqZAmG/e8REtwSjZKW7GDrS/9nBnEnolGFr/AY8dXcB3nlrMHedM4cGPN/LGsp09Pr8oP5XfnTaBhz/dzIqyBn532niM0SqLiPRdrBr66LEFEbFDMGJx7dFFvLqkDH8oygfrqjjq1ve5bPYw7j5/Ki6Xg01VzayvaCISteiX4WXcwEyS3U7mb6zmtLs+paZdg7EfHz8aZxwzVMKH4PQkN//3tVH8d3UFFzwwn598czSnTB7E/R9upGRLbafnDcpK5vwZQ5hUmMXPXlzGpupmXrluNvnpWgUWEXtkpfSsKUZvudUyTkRsUFbn494PNnDTiWO58eXlu19/6JPNPPTJZgCmD8tmwqBMnA7DqrIGfvHKclqC+96NmjE8m9xUDw9+vJGrjioiOzX2+4ITPgQD5KV5efKKmZx29yfc/OoKRhakccHModx44hjWVzSxckcDjf4wbqdhZEEaYwZk0ByI8OT8rdz2zhqiFtx+9mRG7Od2ChGRjvTPtP9DdbrXRZJCsIjYIDfVg9flwO1ycPHhQ3nk0y37HLNgcy0LNne+qAhQlJ/GDSeM5eZXl/P386bGJQADGOtLeF+suLjYKikpsXXMaNSitM7H1Y+VsGpHI9Bas25Ybiqj+6eT5nURjETZXNXM6p2Nu7vMZSS5+Nu5Uygemk1aUmxWbUQkMVU2Bjjpzo/Z2dCzvcE9cfQh+dx53hTSdb0SkT5aX9EEWDzw0UYOG57LzgY/t7+7tlcVIo4+NJ/vfXUUt7y5mj/Nmciy7fUcdUi+bdcoY8xCy7KKO3pPywG7OByGITkpPH75DH550ljy0jxYFmyqaubN5Tt5bmEpr3xexpLSegLhKB6ngzOmDubt7x/FESPzFIBFxHZul+H8mUNsHfOiw1XLXETskZ3i5s9vreXyI0Ywb2M122t9PHXlTI4clUd3W3uH5abwl7MmceKEAdz08nL+NGciv39zFeMGZpIWh5bJoJXgDoUjUWpagmypauHDdZUs3FK7azuEg9H90zlyVB5ThmaT7nWRGqd/KBFJPPUtQRoDYb75149oDIT7PF5RfiqPXHYY2SkeXbtExBbVTQF+/uJy/t9xh3D/Rxv5aF0VPz7uUKYOzeaDNZUs2lrHlupmIpZFTqqHaUOzOXJUPi6H4Tevr6S8wc+jlx3G799cxU+PH8PQ3BRbCwx0tRKsELyXnfU+QhGLwpyU3a81+EOEIxYOA2leF65dHeYqGv20BCL0z0giyaMOTCJir+qmANVNAZZur+eHzy3t01gOA89fc/jubV7x2nMnIge/9kH4o3VVfH1sP375yjJuO2syaV4XzYEIFq0lZS3L4uFPNzO5MIuKxgDFQ7NjFoBB2yF6bGe9j8sfKeHc++extaZl9+sZSW5yUls7wbUPwDe/soIT//YR6yoa8fegPqeISG9ELIs/vLmaUMRizrTBfRrrhhPG8OqSMt5asZNwVHWCRcQ+uWlefnv6eP7y9lqG56Vy40tL+eMZk8hJ9eJxOclO9ZCT2noHKi3JzQUzhzJ3YzUGE9MA3B2F4F3aAvCKsgZKa32ct1cQbq8tAL+xfCfNwQjn3DdPQVhEbOc0BrfTwU0vL+erYwq4cObQXo/hdhp+edJYQuEoD3+6Ga/TgdupS7+I2KstCH+yvorbzpzcZeOwrBQPVx45gvJG/wELwKDtEMCeAbi9wdnJPHnlTIa02xrRPgC3l+px8vRVMxlVkK6tESJim+qmADe8uIz/rK7gB18/hFH90rn51RVsr/N1e+64gRn88qRxvLS4lKc+28Z3jx3J5UcMJzNFWyFEJDaa/KEeFwto9IdI87piGoC1J7gLnQXgNu2DcGcBuI2CsIjEQlsQfmdlOZMGZ/K9rx2CPxTh1c/LWFJax45d7ZXb9vtOHZLFKZMHUdsS5Na311Ba61MAFpGEpBDciZrmIN97ejEfravq8rjB2ck8c9VMfvevVZ0G4DZpXhcf/fgYPXQiIrZqH4SNgUcunc6kwVkEI1EiUYhaFk6HwWEMHqfhqc+28se31gAoAItIwuoqBCd0jZwMr4tffGssZ907l9qWUKfHldb6mH3Lez0a8xffGsuX8YOFiHyx5aZ5+cPpE3AYw6lTBjJtaE6XZc7OPWwILbueU1AAFhHZV0KH4KZgmPkbq3j6qlmcc1/XQbgnbjljAgMyk1AEFpFYyE3z8oczJuBxOrqt85uZ4uGyI4bv/rOIiOwpoR8RTvE4mViYzeNzN/H0VbPITtn/rm+3nDGBgvQklpTW4XLG/wlHEUkMvWl0kZXSWtpRRET2ldAh2ONyMrp/OmdOH9KnINwWgFeU1XPhrKFkJuuXjoiIiMgXWUKHYOh7EFYAFhEREfnyiXkINsYcb4xZY4xZb4z5aQfvDzHGvGeMWWyMWWqMOSHWc9pbWxA+e/oQ0pNcjOqX3qPzktwOjhyVT1MgrAAsIiIiCa8pEO7xsY3+0AEtJhDTEGyMcQJ3Ad8ExgLnGmPG7nXYz4FnLcuaApwD/COWc+qMx+WkICOJ3/1rFZ9tqunROf5QlLPuncukwiwFYBEREUloNc0BFm6pobLJ3+2xdS1BPt9Wx4563wELwrFeCT4MWG9Z1kbLsoLA08Apex1jARm7/pwJlMV4Th2qaPTzq9dW8q9lO3p1XnctlkVEREQOdjXNATZVNoMFO+v8XQbhupYgq3Y0EI1a1DWHD1gQjnUIHgRsa/d16a7X2rsZuMAYUwq8AXyno4GMMVcZY0qMMSWVlZW2TrKi0c+vXm0NwOMGZnB4UW6PzuuX4eXkSQMVhEVERCRhtQXgUNRifWUToajVaRBuC8ChSJTyxgChaPSABeEvwoNx5wIPW5Y1GDgBeMwYs8+8LMu6z7KsYsuyivPz82375u0D8IRBmfzq5HFce3QRx44u6PK8fhle7j5/GseN68+VR45QEBaRuIhEe/5LwrIsNe8RkZhqH4BfWFTKb15fxZ/fWdNhEG4fgNdVNPHj55fy/Wc+J2QdmCAc6xC8HShs9/XgXa+1dznwLIBlWXOBJCAvxvMCoLLRz+//tWp3AP7lSWO59vFFXPXoQi45fNgeQfjSw4ftrhrRFoBvfHkZ1z+1iKKC1N1B+Nz75lHR0P1eGBGR3gqGo2yqaqKysftrjGVZbK/zsb3uwO23E5GD294B+LmSUgA+WV+9TxCu94X2CMC/eX0VABurmvn+0wcmCMc6BC8ARhljhhtjPLQ++PbqXsdsBb4KYIwZQ2sItne/QyfcTgdnFhcyufB/AbiyKYAvFOHqx/4XhG+dM5FvH1PEs1fP4pB+absD8KodjVgW3PDist1B+GtjCtQxTkRsFwxH2VDZSE1zkLI6f5dB2LIsyup8VDUGqGoMUKYgLCIx4A9F9wnAbdoH4R11fpaV1u0TgNu0D8KBcJSWYM8rTPRFTEOwZVlh4HrgbWAVrVUgVhhjfm2MOXnXYT8ArjTGLAGeAi6x4nS1Dkctdtb7+NOcSbsDcJu2IPzto4twOOClxdt54KONPHjx9N0B+H8/Z2sQHjMgndOmDsLpUMc4EbFPWwCubAxy8UMLuPnVFZ0G4bYAXNkY4NonFnHtE4uoVBAWkRiw6DgAt2kLwuGoRShidRiA27QF4XDEittiovkyXhSLi4utkpKSPo/T7A9R3hjg7Hvn7RGA20t2O7n3wmm8vnQH50wv3CcAt2cM3HnuFGYV5ZKb6u3z/ERE2gfgqx9biC8UAWBKYRY3nzyOgVlJ5KcnAfsG4B31rSF5QGYSd58/lfx0LwOzkjFGH9RFpO9W72zghDs+ortHFQ4vymX6sBzu+M+6bsf89tFFfPuYkaT1sD18d4wxCy3LKu7ovS/Cg3EHTNiCm15Z3mkAhv+tCM8ckdNlAIbWFeEfP78Up37BiIgNOgvAAIu31e2xItxZAAbYUe/XirCI2G5ITgoPXFRMdzfAP91Q3aMAfNqUgVxx5AjbAnB3EjoEZya7+ctZkzmkX1qXx/lCEf7fs0u6DMDQ2kHuqatmkuJx2jlNEUlQgXCEqg4CcJv2QXhdRWOHAbhNWxCubg7SHKf9diJycEvxuJhZlNujINyd06YM5KZvjSMnNX7NxxI6BAP0y0jisctndBuEu5PkdvDM1bMY0z8dj0shWET6zgDXP7W4wwDcpi0IN/jCnQbgNjvq/dzw4jIi0RhMVkQSkh1B+EAEYFAIBvoehBWARSQmDNxzwVQ8zq4v1Yu31THnnrldBmCA3FQPd5wzhVS3rlMiYp+2IHz/fgThAxWAQSF4t/0NwkluB09fpQAsIvZL87qZMDiTRy6b3m0Q7k5uqodnrp7FsJwUXC5d+kXEXsFwlIGZSfz1nMk9PucbY/vxg28cSiR6YG5P6UrYTjhqceucSRTlp/boeJfDcM8F07CiFv5w57crRUT2lx1BWAFYRGKprRNcZVOAnfWdFxvYW6M/TEVjgB31Xdc+jxVdDXfZWtPCdU8sJBK1elw+yBhwGMNd769n4eY6GvzBGM9SRBJRX4KwArCIxNLerZB//0bHdYA7Mnfj/+oIH4ggrCsirQH4u08t4hffGseNLy9jfUVTj84LRSyufmwhF80axhPztygIi0jMtAbhDB69/DDczp59UM9OcfOsArCIxMjeAbizRhhdad9QI95BOOGvinsH4O7KoO2trY6wgrCIxJJlWdS3hEn1OEnu4YNtuWlefKEItT5dk0TEfo3+UJ8CcJv2QbiuJURT4CBom/xFV9sc5JY3V+13AG7TPgg/vWArlsoPiYiN2jfC+OObq7vtztSmyR/mr++u7bTFsohIX0Qt9gnAkwuzenz+mAHpeHfdpWofhOMloUNwdqqHn584tk8BuE1bEL7mK0VqSSoitmkfgO/5YAM/On409144rduOSoU5ydx9wVSuO3Ykd7+/XkFYRGzXEozsEYAvmz2MX58yjl+fMm6P406dMpA7z5myR/m0ow/J5w+nT+TuC6btEYRfXFQal7lDgofg+pYQP3p+aY86wd19wdQedZa74IH5RNWSVERssHcAvnT2cC5+6DPufn9Dl0G4MCeZv50zhR88u4QfPLuEq79SpCAsIrYbmJXMj447BGgNwKMHZHDKXZ9Q3hDYHYRPmzKQX3xrHF8bW7C7ocbRh+Rz+ZHDOe/+eTyzYNvuIDxpcCZXHVUUt7bJ5svYQ764uNgqKSnp8zjRqMWWmhbm3P0p1c0d75lLcjt45qpZjB2YQU1zkAsfnM/a8o4fnDMG7jh7MseOKSDN6+7z/EQksTUHQqwrb+aeD9Zz6ezhXPXYQup9IQCOGJnHtUcXcfVjC/fYP9c+AG+sagZgRF4qfz5rEvd+sIFvHzOSYbmpZCTrGiUifVfvC1GyuZrq5hA/eWEpbbHyumNGMm1oFpMLs3c3wmgJhllV1kDLrrvnLcHW8rLHjevPpbOHUZSfRn6619b5GWMWWpZV3NF7Cb0S7HAYhuak8Py1h5PbQaeStgA8ZkA6bqejy4YaCsAiYrdgxOowAAN8vL5q94rwkOxkfnbCaIryUvcJwAAbq5p3rwjf/+HGuO65E5GDWygcJRC29gjAAHe9t55VOxoJt2+EYYHH5dgjAAO8vWInj8/bEvc76Qm9EtymoxXh9gF4705w5Q3+PVaEFYBFJBZqmwNsr/Nz/gPz9wjA7R0xMo9b50wkO9VDRYOfS/65YI8A3N6IvFQevnQ6uWkeUnWtEpE+qmoMMG9TNd95ajGdxcnvf20U584YQprHxfrKJs65b94eAbi9b47vz80nj6NfRpJtc9RKcDfarwiP6Z/O2IHpnQZg+F+L5UmDM5k6NEsBWERiwulwcNFDn3UagKF1RfgnLyylpjnYZQCG1hXh659aTCjy5Vv8EJEvnopGf5cBGOD2f6/jiXlbWVfRdQAGeHP5Th76eBM1zT3vOtcXWgluJ7qrUHMgHGFQlhevu+tQW17vp7o5yIBML9mp9u5hERGpbgpQsrmWa59Y2OOyaF1J87p4+qqZFOWnkuyJz4MnInLwqmjwc9f7G3jk0822jDeyII1HLjuMQVnJtowHWgnusZ0Nfi7552ecfd88yuoDRCKdf1qpaPDz0xeXcto/PmFDZTONKkYvIjbLTfNSPCybu8+ftkdpof2hACwidivISOK6o4u4+PBhfR4rFgG4OwrBu5TV+bj4oc9YV9FEZWOAs+6dx9ZaX4dBuKLBz49fWMp7ayoJhKOc/8B81pQ3KQiLiO3sCMIKwCISKwUZSXz76CIu7UMQHlmQxqNxDsCgEAzsGYDbdBaE2wLw+2sqd7+mICwisdQ+CGcmuXochr0uB7mpHgVgEYmZJn+IuRuqmFiYxQUzhvT6/JEFafzpjInc/u4aqpvisxe4TcLvCe4oALeXn+7l2atnMiQ7merm0D4BuD2vy8ETV8zg0H5ppCfvW3JNRKQv6lsCNAejzNtYzQ+fW9LlPuE0r4v7L5rGkNxUclLcCsAiYrsmf4h3V5Xz/WeW4HQYbjtzEiWba3hi/tYend8WgL/z1GK21/k4dnQ+t86ZRG6afc9ZaU9wJ2qag/zo+SWdBmD434rwxqqWLgMwtK4IX/jgZ+jBaxGJheZglAsfnM+SbXXceuakTleE07wu7r1wGne/v4EbX1xGgz/c8YEiIn1QWuvj+88sASAStXhtSRnHjevf4/OnD8tmQ2UT2+t8APx3dSX3frBxjwZAsZTQITgzyclvTx3fbXeSysYAX7/9wy4DMIDDwG1nTiSiQvQiYrOyOh8XPjifDZXNPDJ3S6dBuC0A3/PBBj5cV8X7ayv5yfNLKW9Qu2QRsVeq18WVR44AWlshXzZ7ONc+vrDH5z/12TY2V7fsbrE8bmAGc4oHE4lEuznTHgm/HSISibC11sdZ986jsnH/96I4DNx57hRmjsi1dRlfRKR9AG7vollDmVSYxY92bY1oH4A/Wle1x7FHH5LPLXMm2lqEXkQSW0Wjn/XlTWytaWFwdgpXP1ZCcxd1gDtz3TEjOaRfGsNyUylI9zJAJdLiw+l0MiQ7mWevnrnf/aoVgEUkVjoLwACPtlsRzkjuPAADWhEWEdsVpCcxekAa4wdl7ncAhtYWy6W1Pvpn2BuAu5PwIRj6FoQVgEUkVqqbAp0G4DZtQfid//tKpwG4zftrK7nhhaVUxfkJbBE5OLUEwpTW+jn73rn7HYDb3Pr2Gp5esI2KOH5QVwje5X9BeFaPg7AxcNf5UxWARSQmIpbVo4dMHp27hW/89YMuAzC0fmg/dcogLD23ICI22F7n49z75nUbgEcWpHHSxAHdjnf7v9fx8ufbqWyMTxBWCG4nELFwOQyF2T1bive6HIzIS8Opv0URiQULjjm0gGu/UtTtoQ2+rp+mdhi49cxJDMlNwdHX9nMiIkBGspvJhVldHjNqVxm048cP6LaOcHaKm2MOLSAryW3nNDul+LZLSzBMZWOAm15ezqKtdT06xx+KcsGD89le66euRbcXRcReBRlJDM1N4djRPQvCnWkLwEX5qRRmp+jOlYjYol9GEn85ezKzi3I7fH9UQRq37KoD/N2nFzNtWE6nQTg7xc2zV89iWE4KbrczltPeTSGY/wXgX76ygvfXdl0GbW+VjQEueXiBgrCIxERfg7ACsIjEUlsQPnJk3h6vtw/A2+t8RKIWP3xuSYdBODvFzbPXxDcAg0JwnwJwGwVhEYml/Q3CCsAiEmvBcITyeh/XHTuSw3etCO8dgNt0FISzU9zce2Ex8zdU0xzq28N1vZXQfTTtCMBt2oLww5dMByArRb9sRMQ+BRlJGOCKI4fzbMk2qpuD3Z4zZUg2s4tycTsdCsAiYrtgOMLKsgbOvm8eHqeD+y4qZnheKmdMHbxPAG7TFoRvO3MS6UlujhldwB/fXM2irbWU1fu56qgRZKV44jL/hF4Jbg6E+eObq7sNwA4D1x8zsked5S55eAFB9U0WkRiIAq98Xkb/zJ41vMhOcfPe6kp1sRSRmNhS3cLZ980jEI7SGAhz1aMlTCrM2icAjxuYwVnFhbu/bgvCeeme3QEY4B/vb+Cpz7bS6A/FZf4JHYKTXA6uPHIEXlfnfw0OA7ecMZGsFDf3XDCt2yB87mGF6LlrEbFbeYOfD9ZUkOJ18utTxjNuYEaXxx8/vj/nzRhKv8wk3ltdEdfamyKSGNK8Lma32wvcGAjz4+eX7hOAf3/aBE6ZNGB3i2VoDcK/eX3V7gAMkJ/u5ZjRBYTj1DY5oUNwerKHUQWpPHXlzA6DcFsAXrWjgd/+axW/eGV5l0H4u18dyYUzh5KfrrakImKftgDsC0X56QvLuObxhV0G4ePH9+es4kKufXwh1z6+kPwMBWERsZ/DYbjumJEcO7qgw/fbAnC/DC+jB2RwzKH5ewTh9vLTvdx74TSSnA7SvSqRFhedBeH2AfihTzYDsKKsodMgrAAsIrHQPgD/8tUVQOvWq86CcPsAHAhHCYSjCsIiEhP9MpIYnJ3cYRBuH4D7ZyaTm+ZlVL+0DoNwWwDOSXYzODsFVxd36O2U8CEY9g3CHQXgNh0FYQVgEYmFjgJwm/ZBePzADGYV5e4TgNvsHYTL6/d9WEVEZH90FIT3DsBt8tOT9gnCByoAAxjL+vI9MFFcXGyVlJTYPm6jL8i6yma2VLewrLRunwDc3riBGfzmlPEs3FLDqVMGKQCLiO3KG/z8e1U5N760vNNj8tO9PHnFDPpnJrF8ez2X/HPBHgG4Pa/LwcOXTmdkQZquWSJiq/IGP6W1Pt5avpNvTRywTwBur7LRz7ryJhZurWX2yLyYBmBjzELLsoo7ek8rwe0ke1xkp7hZsq3rAAytK8I3vbKciYOz8LriV9hZRBKH1+Xgb/9Z1+UxlY0BzntgPi8u2t5lAIbWFeE/v7MWl0OXfhGxV9uK8BGjcrsMwPC/FeEJgzIPyApwG60E7xKORFlf2cScu+fSFAj36tybTxrH6VMHkZEcn43cIpI4NlU1cfa986ho7HsjnvEDM7j/4mIGdPHLSUSkL2qag+Sk9qzOb1VjgKxkd0wDsFaCu9GXAAxw82sreHHRdhp88alrJyKJY3heGs9cPZOCbsozdkcBWETioacBGCAv3XtAVoDbJHwI7msAbqMgLCKx0tcgrAAsIrKvhA7BvQnApgcdMBSERSRW9jcIKwCLiHQsoUNwUyDMrW+v6TYAF+WnsvDnX+fCGUO6HfOv/1lLWC1KRSQGhuel8ezVs0j3unp0fFF+Kg9cPF0BWESkAwkdgrNSPNxyxkRmjMjp9Jii/FSeuGImOake/t9xh3YZhDOT3bxwzeFk6gE5EYmBRl+QyqZAlxUg2qv3hfAFw0QikRjPTETkyyehQzBAXpqXu86b2mEQbgvA/TNb62lmp3QehDOT3bx47eEMy0vF6ejB3gkRkV5o9AVZXd7EBQ/MJxjpWQiuagpy1n3z2FrjUxAWEdlLwodg6DgI7x2A23QUhBWARSSW2gfgnq4Ct6lsDCgIi4h0QCF4l/ZBuLMA3KZ9EFYAFpFY6ksAbqMgLCKyLzXL2EtVU4BI1KJfRvctRWtbgvhDEQrSkxSARcR2dgTg9vLTvTx71UyG5CTjdKrTpYgc/NQsoxfy0rw9CsDQuiI8IDNZAVhEYsI4HFzxSEm3AXjcwAxeuW52t+XTKhsDXP/UYpqCfQ/UIiJfdgrBIiJfUFY0ygMXF+PtoqPSuIEZPHBxMZMKs3jm6pnkdxGE89O9/P28KapgIyKCQrCIyBdWerKH0f3SePyKGR0G4bYA3FYHuLWOcMdBOD/dy7NXz2R4XlrM5y0i8mWgECwi8gXWWRDeOwC36SgIKwCLiOxLIVhE5Atu7yDcWQBu0z4IKwCLiHRM1SFERL4kGn1BNle3kJfu7VEr5E1VTQAKwCKSsLqqDtGzBvQiInLApSd7GDvA2ePyZgq/IiKd03YIEZEvEdX3FRGxx36FYGPMyXZPREREREQkXrrdDmGMOX3vl4C7jDEuAMuyXozFxEREREREYqUne4KfAd4GKmgNwACpwEmABSgEi4iIiMiXSk9C8OHAH4EFlmXdDWCMOdqyrEtjOjMRERERkRjpdk+wZVkLgK8DHmPMe8aYw2hdARYRERER+VLqUYk0y7KiwB3GmOeAv8Z2SiIiIiIisdWr6hCWZZVZlnWWZVkj9n7PGHOnfdMSEREREYkdO+sEz7ZxLBERERGRmFGzDBERERFJOArBIiIiIpJw7AzBpvtDREREREQOvB5VhwAwxkywLGtZF4fcYcN8RERERORLoLLRT1MgYvu4aV4n+elJto+7tx6HYOAfxhgv8DDwhGVZ9e3ftCzrYRvnJSIiIiJfYE2BCMfc9r7t4773w6PJT7d92H30eDuEZVlHAucDhcBCY8yTxpivx2xmIiIiIiIx0ts6weuAnwM/Ab4C/M0Ys9oYc3osJiciIiIiEgs9DsHGmInGmNuBVcCxwEmWZY3Z9efbYzQ/ERERERHb9WZP8J3AA8DPLMvytb1oWVaZMebnts9MRERERCRGehOCTwR8lmVFAIwxDiDJsqwWy7Iei8nsRERERERioDd7gv8NJLf7OmXXayIiIiIiXyq9CcFJlmU1tX2x688p9k9JRERERCS2erMdotkYM9WyrEUAxphpgK+bczDGHE9rIw0n8IBlWX/s4JizgJsBC1hiWdZ5vZiXiMhBKVaF6CF+xehFRL6oehOC/w94zhhTRmuL5P7A2V2dYIxxAncBXwdKgQXGmFcty1rZ7phRwA3AbMuyao0xBb38GWxV3uDHsiz6ZyZ3e2xFgx8LyEt143Q6Yz85EUkosSpED/ErRi8i8kXV4xBsWdYCY8xo4NBdhf49CAAAIABJREFUL62xLCvUzWmHAesty9oIYIx5GjgFWNnumCuBuyzLqt31fSp6Oqe+qm0O0hQIA63L1E6Xgx89t4TKpgAPXTwdp4FAxOrwXI/LwT0fbOC1JWU8c/UscpJdNAWju99P87rITvXE48cQERERkV7qVbMMYDowEZgKnGuMuaib4wcB29p9XbrrtfYOAQ4xxnxijJm3a/vEPowxVxljSowxJZWVlb2cdseCkSjb63xUNfp3B+AP11Wxakcjlz2ygIgFTYEQ2+t8e/zndrYG4H9+spmqpiBn3zuXGl+YaDS6+5hgJNr9BERERETkgOhNs4zHgNuAI2gNw9OBYhvm4AJGAUcD5wL3G2Oy9j7Isqz7LMsqtiyrOD8/34ZvC75ghJ+9uJQBWSm7A3CbtiCcmezhnvc3cM5987jowXkMzk7m3g9bA3CbtiActuDT9ZWcc988fMHY7OMTERERkb7rzZ7gYmCsZVkd7w/o2HagsN3Xg3e91l4pMH/X1opNxpi1tIbiBb34PvvF6YAnr5zFj5/fMwC3WbWjkcsfWcCDF0/nV6+u5KaTxvDgx5v2CMBt2oLwM1fPivW0RURERKSPerMdYjmtD8P1xgJglDFmuDHGA5wDvLrXMS/TugqMMSaP1u0RG3v5ffZLkvv/t3f3UXbV9b3H39+ZDDMhMyiS8GAiJFpoCAFjSIQoxkSeLUUB2/IgLYLSu4pebIxgS1GKF1swZOlV+hBEES1ir+VesQ1CKQkPAo0BAsiTZmmQIEJIK2TADJPke/+YM3GIeZiTOfucM7Pfr7VmZfY++3zPd7JX9vrML7/92618+qYfbTUA9+sPwpd/4OBtBuB+/UH4zFmT6OyodqaJJEmS6qWakeCxwGMRsQzo6d+ZmSdu6w2ZuSEiPgrcQt+9Z1/NzEcj4lJgeWbeVHntmIh4DNgIfDIz1+7Ez1K1JPkfs9/CXT9+gV/3bnv6wuPPruPtl/3HoOb5nnHYfrzy6oa+VSM6a9ispNKJGJ61JWk4qCYEX7IzH5CZi4HFW+z79IDvE5hX+aqrl3s28fR/vcI/ffgwzvjKf243CA8mAJ9/5P6cPH0871m4lNv+fE4NO5VURlVNPmui2pI0HFSzRNodEbEfsH9m3hYRu9I3ujusnf/tFXzxj6YNKghvt86AALzRe+Ik1cDothZuOPfwwmpLUpkNOgRHxEeAc4E3AG+hb6mzfwCOLKa1+hlqEDYASyrCr3s3ceqi+wqpvWT+nELqStJwUc1QwHnAO4GXADLzJ0BDn+5WS+d/e8XmqRGj2wY/wG0AliRJGn6qCcE9mflq/0ZEjAJG1KyyT35nBfvtsSszJ+4+qONHt7Vy1jsmcun3HjUAS5IkDSPV3Bh3R0T8JTA6Io4G/gz4XjFt1d8urXD7/Ll8ecnK7S6ZNtCvezdy+lfu45o/mcnGGx9h6Y9r8yQ7SZKkZtfZ3lrI1KrO9vrcclbNSPCngDXAI8CfAosz86JCuqqz/gC8o3WAt6Z/HeHPnXwwcw6ozZPsJEmSmt2olhZGtUQBX/W5cbeakeCPZeYXgav7d0TE+ZV9w9ZQAnC/gU+W+0tHhCVJUgl092zgXVcsqXnduy6Yy+5jdql53S1VE7X/ZCv7zqpRHw0z1ADczxFhSZJUJpsKWnC8qLpb2uFIcEScBpwOTIqIgY887gL+q6jG6mF0WwtX3zW4AHzMlL246yc7frLcOV//IV876+1s2OSdcpIkaeTaVFBWLarulgYzHeIe4Fn6Hpt85YD964CHi2iqnqaO342I7T896fwj9+fMWfvx87Wv7HAd4X3fsCuQrhYhSZLUxHY4HSIzn8rMpZk5KzPvGPD1QGZuqEeTRfl17yZ+Z9wYFv7hW4nY+jH96wAf9je37XAd4WMP2ou/PvEg3n/V3ez4IcuSJElqlEHPCY6IkyPiJxHxYkS8FBHrIuKlIpurh9//8j3bDMJbPghjew/UGBiAf/nSq0iSJKl5VXNj3BXAiZn5uszcLTO7MnO3ohqrp60F4W09CW5rQdgALEmSNLxUE4Kfy8zHC+ukwQYG4Y8ftf1HIQ8Mwu+f9kYDsCRJ0jBTTQheHhHfjojTKlMjTo6IkwvrrAF+/8v3MGmPMfz+W9+4zQDcrz8IX3DcZAOwpEJs616FZq8tScNBNQ/L2A14BThmwL4EbqxpRw32/r+7Z9DHnv/tFQV2Iqnsilwqs07LcEpS0xp0CM7MDxXZiCRJklQv1awOcUBE/EdE/KiyfUhE/FVxrUmSJEnFqGZO8NXAXwC9AJn5MHBqEU1JkiRJRapmTvCumbksXns3xbB+WMbothZuOPfwwmpLkiSpOVUTgl+IiLfQdzMcEfEB+h6nPGyNamlh7906CqstSUPRUuAKDkXWlqThoJoQfB6wCJgcEc8APwM+WEhXdTK2q52xXe2NbkOStqqlwHXMiqwtScNBNatD/BQ4KiLGAC2Zua64tiRJne2juOuCuYXVlqQyG/RVMCLOB74GrAOujojpwKcy89aimpOkMtt9zC7sPmaXRrchSSNSNRNXz87Ml+h7WMYewJnA3xbSlSRJklSgakJw/wSy9wLXZeajA/ZJkiRJw0Y1Ifj+iLiVvhB8S0R0AZuKaUuSJEkqTjV3RpwDTAN+mpmvRMQegI9SliRJKqGinrdQr2ct7DAER8TkzHyCvgAM8OYYIUvrvLCuh+6eYp730dk+yuXXJEnSiLW+dxOnLrqv5nWXzp9T85pbM5iR4HnAucCVW3ktgffUtKM66u7ZwJwFSwupvXT+HEOwJElSk9phCM7Mcyt/FrNYZQPlMK0tSZLUaJ3towoZta3XOubVrBP8B8D3M3NdRPwVMB34bGY+WFh3kiRJakrD/cm71cw8vrgSgI8AjgKuAf6hmLYkSZKk4lQTgjdW/vw9YFFm/hvgo4wkSZI07FQTgp+JiH8E/ghYHBHtVb5fkiRJagrVhNg/BG4Bjs3MXwFvAD5ZSFeSJElSgQZ9Y1zlARnfBfaKiH0ru58opi1J0n+//Gqha5nvPsYZbZLKq5rVIT4GfAZ4jt88LjmBQwroS5JKr7tnA++6Ykkhte+6YK4hWFKpVbMQ2/nA72bm2qKakST9RntbC7fNe3dhtSWpzKoJwU8DLxbViCTptV7u2chRC+8opPaS+XOgq5DSkjQsVBOCfwosjYh/A3r6d2bmwpp3JUmSJBWomhD888rXLrg+sCRJkoaxalaH+GuAiOisbHcX1ZQkSZKa2wvregpZwaazfVRdHsdczeoQU4Fv0Lc+MBHxAvDHmfloQb1JkiSpSXX3bGDOgqU1r7t0/pzmCsHAImBeZi4BiIg5wNXAOwroS5IkSU2so62FG849vJC69VBNCB7TH4ABMnNpRIwpoCdJkiQ1uV/3buLURffVvO6S+XNqXnNrqlodIiIupm9KBMAH6VsxQpIkSRpWqhlvPhsYB9wI/AswtrJPkiRJGlaqWR3iv4H/WWAvkiRJUl0MeiQ4Iv49Il4/YHv3iLilmLYkSZKk4lQzHWJsZv6qf6MyMrxn7VuSJEmSilXNjXGbImLfzPw5QETsB2QxbdXHmPZWbpv37sJqS5IkqTlVE4IvAu6OiDuAAN4FnFtIV3XS1tJC+6hi1qJra6nPGneSJEmqXjU3xn0/IqYD/asifzwzX+h/PSIOGm5Pj9t9zC7sPmaXRrchSZKkOqtmJJhK6P3Xbbz8DWD6kDuSJEmSClbL/7OPGtaSJEmSClPLEDysb5KTJElSeXj3liRJkkqnliH41RrWkqTSK3KOmfPXJJVdVTfGRcQhwMSB78vMGyt/Hr6Nt0mSJElNZdAhOCK+ChwCPApsquxO4MYC+pKk0utsH8XS+XMKqy1JZVbNVfDwzJxSWCeSpNcY29XO2K72RrchSSNSNXOC740IQ7AkSZKGvWpGgq+jLwj/Euih776KzMxDCulMkiRJKkg1Ifga4EzgEX4zJ1iSJEkl1FLQMjNF1d1SNSF4TWbeVFgnkiRJGjZaopi0WlTdLVUTgh+MiOuB79E3HQL4zRJpkiRJ0nBRTQgeTV/4PWbAPpdIkyRJKqHO9lHcdcHcQurWw6A/JTM/VGQjkiRJGj52H7MLu4/ZpdFt7LRqHpbRAZwDHAR09O/PzLML6EuSJEkqTDXrBH8D2Bs4FrgDmACsK6IpSZIkqUjVhODfycyLgZcz8+vA7wGHFdOWJEmSVJxqQnBv5c9fRcRU4HXAnrVvSZIkSSpWNbffLYqI3YGLgZuATuDThXQlSZIkFaia1SG+Uvn2DuDNxbQjSZIkFW/Q0yEiYq+IuCYibq5sT4mIc4prTZIkSSpGNXOCrwVuAd5Y2f4x8PFaNyRJkiQVrZoQPDYz/xnYBJCZG4CNO3pTRBwXEU9GxMqI+NR2jjslIjIiZlTRkyRJklS1akLwyxGxB32PSiYiDgde3N4bIqIVuAo4HpgCnBYRU7ZyXBdwPvCfVfQjSZIk7ZRqQvA8+laFeHNE/AC4DvjYDt7zdmBlZv40M18FbgDet5XjPgtcDqyvoh9JkiRpp1QTgh8D/i/wQ+A54Gr65gVvz3jg6QHbqyv7NouI6cCbMvPfquhFkiRJ2mnVhODrgMnA54AvAQfQ9yjlnRYRLcBC4BODOPbciFgeEcvXrFkzlI+VJElSyVXzsIypmTlwPu+SiHhsB+95BnjTgO0JlX39uoCpwNKIANgbuCkiTszM5QMLZeYiYBHAjBkzsoq+JUmSpNeoJgQ/EBGHZ+Z9ABFxGLB8B+/5IbB/REyiL/yeCpze/2JmvgiM7d+OiKXA/C0DcFHWrFtPd88OF7jYKZ3trYzr6iiktiRJkoZmhyE4Ih6hb0WINuCeiPh5ZXs/4IntvTczN0TER+lbX7gV+GpmPhoRlwLLM/Omof4AQ9Hds5G5C5YWUnvJ/DmM6yqktKSS8Bd1SSrOYEaCTxjKB2TmYmDxFvs+vY1j5wzlsyRpJPEXdUkqzg5DcGY+VY9GJEmSpHqpZnUISZIkaUQwBEuSJKl0qlkdYsTpW5Vt+NWWJElqtKJu3q3XjbulDsFZ4GrDRdaWJElqtKJu3q3XjbtOh5AkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOqMa3UAjjW5r4YZzDy+stiRJkppTqUPwr3s3ceqi+wqpvWT+nELqSpIkaehKHYIlqZl1trcW9gt1Z3trIXUlabgwBEtSkxrX1cG4rkZ3IUkjkxNXJUmSVDqGYEmSJJVOqadDjNmlldvmvbuw2pIkSSNVUfct1OuehVKH4Fde3chRC+8opPZSV4eQJEkj2HC/b8HpEJIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0hnV6AYaaUx7K0vmzymstiRJkppTqUPw+t5NzF2wtJDad10wt5C6kiRJGjqnQ0iSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0RjW6gUbqaGthyfw5hdWWpKFYs2493T0bC6nd2d7KuK6OQmpLKoeirlH1uj6VOgR392xk7oKlhdReMn8O47oKKS2pJLxGSWpmRV2j6nV9crhSkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hYfgiDguIp6MiJUR8amtvD4vIh6LiIcj4j8iYr+ie5IkSVK5FRqCI6IVuAo4HpgCnBYRU7Y47EFgRmYeAnwHuKLIniRJkqSiR4LfDqzMzJ9m5qvADcD7Bh6QmUsy85XK5n3AhIJ7kiRJUskVHYLHA08P2F5d2bct5wA3b+2FiDg3IpZHxPI1a9bUsEVJkiSVTdPcGBcRHwRmAJ/f2uuZuSgzZ2TmjHHjxtW3OUmSJI0oowqu/wzwpgHbEyr7XiMijgIuAt6dmT0F9yRJkqSSK3ok+IfA/hExKSJ2AU4Fbhp4QES8DfhH4MTMfL7gfiRJkqRiQ3BmbgA+CtwCPA78c2Y+GhGXRsSJlcM+D3QC/yciVkTETdsoJ0mSJNVE0dMhyMzFwOIt9n16wPdHFd2DJEmSNFBkZqN7qNqMGTNy+fLlQ66zZt16uns21qCj39bZ3sq4ro5CaksqB69RkppZUdeoWl6fIuL+zJyxtdeaZnUISZIkqV4Knw7RzLp7NjJ3wdJCai+ZP4dxXYWUllQSXqMkNbOirlH1uj45EixJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKp0Rs05wb28vq1evZv369YN+z4aNm7j6xH0K6af7l6t4fE39f8fo6OhgwoQJtLW11f2zJUmShosRE4JXr15NV1cXEydOJCIG9Z6e3o3kc+sK6eeAvbpob2stpPa2ZCZr165l9erVTJo0qa6fLUmSNJyMmOkQ69evZ4899hh0AB6JIoI99tijqtFwSZKkMhoxIRgodQDu59+BJEnSjo2oECxJkiQNhiG4Rl568UW+/fWvNLoNSZIkDYIhuEbWvfQi377umka3IUmSpEEwBNfIF//mElY/tYo/PPZdLPxfF7PwygXMnDmTQw45hM985jMArFq1ismTJ3PWWWdxwAEHcMYZZ3Dbbbfxzne+k/33359ly5YBcMkll3DmmWcya9Ys9t9/f66++moAnn32WWbPns20adOYOnUqd911V8N+XkmSpOHMEFwj5//FJUzYbyL/fMtdHP6uuaxcuZJly5axYsUK7r//fu68804AVq5cySc+8QmeeOIJnnjiCa6//nruvvtuFixYwOc+97nN9R5++GFuv/127r33Xi699FJ+8YtfcP3113PssceyYsUKHnroIaZNm9aoH1eSJGlYGzHrBDeTe+9cwtLb/p23ve1tAHR3d/OTn/yEfffdl0mTJnHwwQcDcNBBB3HkkUcSERx88MGsWrVqc433ve99jB49mtGjRzN37lyWLVvGzJkzOfvss+nt7eX973+/IViSJGknORJcgMzkkxdcyIoVK1ixYgUrV67knHPOAaC9vX3zcS0tLZu3W1pa2LBhw+bXtlzqLCKYPXs2d955J+PHj+ess87iuuuuq8NPI0mSNPIYgmtkTGcnr7zcDcA73v0errv2a3R3920/88wzPP/881XV++53v8v69etZu3YtS5cuZebMmTz11FPstddefOQjH+HDH/4wDzzwQM1/DkmSpDJwOkSNvH73NzBtxmGcfOQsjph7FH906mnMmjULgM7OTr75zW/S2jr4xygfcsghzJ07lxdeeIGLL76YN77xjXz961/n85//PG1tbXR2djoSLEmStJMiMxvdQ9VmzJiRy5cvf82+xx9/nAMPPLCqOr0bN7FpUzE/f0tL0Na6cwPtl1xyCZ2dncyfP3+n3r8zfxeSms+adevp7tlYSO3O9lbGdXUUUltSORR1jarl9Ski7s/MGVt7rdQjwW2tLTD4wVlJqqvuno3MXbC0kNpL5s9hXFchpSWVxLiujmF9HSl1CG5Wl1xySaNbkCRJGtG8MU6SJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIbiGzj77bPbcc0+mTp3a6FYkSZK0HaUNwTfffDMnnHACM2fO5IQTTuDmm28ecs2zzjqL73//+zXoTpIkSUUq5RJpN998M5dddhnr168H4Je//CWXXXYZAMcff/xO1509ezarVq2qRYuSJEkqUClHgq+66qrNAbjf+vXrueqqqxrUkSRJkuqplCH4ueeeq2q/JEmSRpZShuC99tqrqv2SJEkaWUoZgs877zw6Ojpes6+jo4PzzjuvQR1JkiSpnkoZgo8//nguuugi9t57byKCvffem4suumhIN8UBnHbaacyaNYsnn3ySCRMmcM0119SoY0mSJNVSKVeHgL4gPNTQu6VvfetbNa0nSZKkYpRyJFiSJEnlZgiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCa+jpp59m7ty5TJkyhYMOOogvfvGLjW5JkiRJW1HKdYJ7e3uZN28eAJdffjkXXnghAAsXLqStrW2n644aNYorr7yS6dOns27dOg499FCOPvpopkyZUpO+JZVLZ3srS+bPKay2JA3FmnXr6e7ZWPO6ne2tjOvq2PGBQ1TKEDxv3jweeOABAN773vfS29u7ef+XvvSlna67zz77sM8++wDQ1dXFgQceyDPPPGMIlrRTuns2MnfB0kJqL5k/h3FdhZSWVBJFXaPqdX0qZQju19PTQ09PDwDt7e01rb1q1SoefPBBDjvssJrWlSRJ0tCVck7w5Zdf/lvTHtra2rjiiitqUr+7u5tTTjmFL3zhC+y22241qSlJkqTaKWUIvvDCCzdPgejX29vLBRdcMOTavb29nHLKKZxxxhmcfPLJQ64nSZKk2iv1dIj29nba2tp+KxDvrMzknHPO4cADD9x8450kSZKaTylHghcuXMj06dOZPn06ixcv3vz9woULh1T3Bz/4Ad/4xje4/fbbmTZtGtOmTWPx4sU16lqSJEm1UsqR4La2ttesAjGUFSEGOuKII8jMmtSSJElScUo5EixJkqRyMwRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdEq5RFqRJk6cSFdXF62trYwaNYrly5c3uiVJkiRtoZQhePbs2bzyyiu/tX/XXXflzjvvHHL9JUuWMHbs2CHXkSRJUjFKOR1iawF4e/slSZI0spQyBBcpIjjmmGM49NBDWbRoUaPbkSRJ0laUcjpEke6++27Gjx/P888/z9FHH83kyZOZPXt2o9uSJEnSAI4E19j48eMB2HPPPTnppJNYtmxZgzuSJEnSlgzBNfTyyy+zbt26zd/feuutTJ06tcFdSZIkaUulnA6x6667bnN1iKF47rnnOOmkkwDYsGEDp59+Oscdd9yQakqSJKn2ShmCa7EM2ta8+c1v5qGHHiqktiRJkmqnlCFYkoaDzvZWlsyfU1htSRqKoq5R9bo+GYIlqUmN6+pgXFeju5CkrRvu16gRdWNcZja6hYbz70CSJGnHRkwI7ujoYO3ataUOgZnJ2rVr6ejoaHQrkiRJTW3ETIeYMGECq1evZs2aNY1upaE6OjqYMGFCo9uQJElqaiMmBLe1tTFp0qRGtyFJkqRhYMRMh5AkSZIGyxAsSZKk0jEES5IkqXRiOK6mEBFrgKca8NFjgRca8Lkqlud15PLcjlye25HJ8zpyNerc7peZ47b2wrAMwY0SEcszc0aj+1BteV5HLs/tyOW5HZk8ryNXM55bp0NIkiSpdAzBkiRJKh1DcHUWNboBFcLzOnJ5bkcuz+3I5HkduZru3DonWJIkSaXjSLAkSZJKxxAsSZKk0jEEbyEivhoRz0fEj7bxekTE/46IlRHxcERMr3ePqt4gzusZlfP5SETcExFvrXeP2jk7OrcDjpsZERsi4gP16k1DM5hzGxFzImJFRDwaEXfUsz/tvEFck18XEd+LiIcq5/ZD9e5R1YuIN0XEkoh4rHLezt/KMU2TowzBv+1a4LjtvH48sH/l61zg7+vQk4buWrZ/Xn8GvDszDwY+SxNO4Nc2Xcv2zy0R0QpcDtxaj4ZUM9eynXMbEa8H/g44MTMPAv6gTn1p6K5l+/9uzwMey8y3AnOAKyNilzr0paHZAHwiM6cAhwPnRcSULY5pmhxlCN5CZt4J/Nd2DnkfcF32uQ94fUTsU5/utLN2dF4z857M/O/K5n3AhLo0piEbxL9ZgI8B/wI8X3xHqpVBnNvTgRsz8+eV4z2/w8Qgzm0CXRERQGfl2A316E07LzOfzcwHKt+vAx4Hxm9xWNPkKENw9cYDTw/YXs1vn2ANb+cANze6CdVGRIwHTsL/tRmJDgB2j4ilEXF/RPxxoxtSzXwZOBD4BfAIcH5mbmpsS6pGREwE3gb85xYvNU2OGtWID5WaVUTMpS8EH9HoXlQzXwAuzMxNfYNKGkFGAYcCRwKjgXsj4r7M/HFj21INHAusAN4DvAX494i4KzNfamxbGoyI6KTvf98+3sznzBBcvWeANw3YnlDZp2EuIg4BvgIcn5lrG92PamYGcEMlAI8F3hsRGzLz/zW2LdXAamBtZr4MvBwRdwJvBQzBw9+HgL/NvocZrIyInwGTgWWNbUs7EhFt9AXgf8rMG7dySNPkKKdDVO8m4I8rdzceDryYmc82uikNTUTsC9wInOko0siSmZMyc2JmTgS+A/yZAXjE+C5wRESMiohdgcPom4Oo4e/n9I3wExF7Ab8L/LShHWmHKnO4rwEez8yF2zisaXKUI8FbiIhv0Xcn6tiIWA18BmgDyMx/ABYD7wVWAq/Q99uqmtwgzuungT2Av6uMGG7IzBmN6VbVGMS51TC1o3ObmY9HxPeBh4FNwFcyc7tL5ak5DOLf7WeBayPiESDom9L0QoPa1eC9EzgTeCQiVlT2/SWwLzRfjvKxyZIkSSodp0NIkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCQNI5UF5r12S9IQeSGVpCYXERMj4smIuA74EXBxRPwwIh6OiL8ecMwTEfFPEfF4RHyn8hQ1IuJvI+KxyvELGvmzSFKz8GEZktTkImI5eA85AAABOElEQVQifY+MfQewG/AB4E/pe5LWTcAV9D1m9mfAEZn5g4j4KvAY8DXgHmByZmZEvD4zf1X3H0KSmowjwZI0PDyVmfcBx1S+HgQeACYD+1eOeTozf1D5/pvAEcCLwHrgmog4mb7HlEpS6Y1qdAOSpEF5ufJnAH+Tmf848MXKaPGW/7WXmbkhIt4OHEnfCPJHgfcU26okNT9HgiVpeLkFODsiOgEiYnxE7Fl5bd+ImFX5/nTg7spxr8vMxcCfA2+te8eS1IQcCZakYSQzb42IA4F7IwKgG/ggsBF4EjhvwHzgvwdeB3w3IjroG0We15DGJanJeGOcJI0AlekQ/5qZUxvciiQNC06HkCRJUuk4EixJkqTScSRYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpfP/AepPr7EaNCnPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxcVf3/8ffJZDKTZLI1Tbqke2npTpe0pVY2ESgguyI7yC7LFwUEXBDUn3wVFfSLoCyi7IKCgAoICLRspaSlLW0p3eiSLkm6ZM8kk+T8/kimhHSyTHJv0vS+no9HH83cufPJp+njcfOeM+eeY6y1AgAAALwkobcbAAAAAHoaIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHhOYm830BX9+/e3I0aM6O02AAAAsB9bvHjxTmttTqzn+mQIHjFihAoKCnq7DQAAAOzHjDGb2nqO6RAAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM/pk+sE95Sy6jpV1NZLkuobrBKM5EtIkN9nlJse7OXuAHjdzoqwausb1WCtGhslX4KRkRQK+pSZEujt9gB4WENDg4or6tRopfrGRlkr+X1GVlK/FL9SAv7ebpEQHMu20hqVVNTqz+99poKNe1S4p2bvc+nJiZqSl6mzZg3V9GFZ6pfiVzCJHyOAnhGJNKikqk4rt5XriYWbtKywVHuqI3ufH5QR1IxhWbpo7ggNzkzW4MzkXuwWgNeUVtepuq5Br60q0ovLtmnVtnLVRBokSQlGGtk/pC8flK0L5oxQasCngRm9d40y1tpe++ZdlZ+fb93YMW5Pda12VtTpu88s1Yqt5R2en5ni1/+eNlnTh2dpACPDAFxWVB7WpzsqdMPflqmkorbD88fkhvS7s6ZqQHpQ2SFGhgG4a0dZWM8v3aq7X1uj2vrGDs8/elyufnLKRPVPTXJtQNEYs9hamx/zOUJwk+LysBasLdH3n/tYkYb4fiYnTh6oH580kSAMwDVF5WHd/doa/fXDLXG9zpdg9MMTxutrUwYxjQuAa7aV1ujbjy/WssKyuF6XnpyoP104U+MGpCkt2fkpEu2FYG6MU9MI8IK1Jbrxb8vjDsCS9O+Pd+j7z32sorKwC90B8LodZTX635c+iTsAS1JDo9VP/7VKLyzbqpIKrlEAnLejrEYXPrwo7gAsSeU19TrvoQ+0tqRSkeZpEz2FECxpZ0Wdvv/cx92q8cbqYv1z+TaVVdc51BUASFW1Eb2zbqeeX7qtW3XueGm1tvNGHYDDisrDuuPfq7W2uLLLNWrrG3X5owUqqerZDOX5ELy9tEbfeXppl0aAW7vzlU9VWhPp+EQA6KTS6nr9+IWV3a5jrfQ/T32k7WU1HZ8MAJ302c4qvbi8e2/SJWlnZZ3uem2NdvbgJ1aeD8E7ysNaua3jm+A6o66hUX95d6MqwowGA+i+mrp6Pbtki6rrnPmIcOOuaq0pqnCkFgBsL6vRb1791LF6z3+0VbX1PXevmqdDcGl1rf787meO1vzb4kKVh+sdrQnAm3ZXRfTYws2O1nzo7c9UXM60CADdV1ffqA837nGsXn2j1SsrtjtWryOeDsGVtQ1a9Jlz/3lNNesVrut4WRAA6EhDY2OnlkKLx0ebSxVp4BoFoPs+3eH8J0tvr9upXZXOXvfa4ukQLDVNh3DaupKuTw4HgCg3bmSrrK1XfWPfWxoTwP7HyVHgqJaba7jN0yHYiZvhYimr5uY4AN1X4dLUKkaCAXRXY2Ojdlc5P2JbHo4owRjH68bi6RCc4NLP2O/rmf88AAe2RJeuJT31CwbAgSshIUFJic7HyCRfghp7aCM3T4dgX4JRapLP8brDs1MdrwnAewZlOL/Dmy/BuPKLC4C3WGs1bmCa43VH54Qcr9kWT18JrZUm5mU4WtMYKcOFbf8AeE9Sok9JPmcv0wflhNTAnGAA3WSt1cTBzmYoSZo8JEPJfucHKGPxdAgOJCboa1MGOVpz7uj+Ctf37LZ/AA5MkYYGHTNhgKM1v3bIIAX8nr70A3BAdDrEwHRnP7GaN2mg6hq4Mc51dfWNmpSXobRAomM1z58z3JUpFgC8J9nv01mzhjpWL5CYoMMO6q9G7osD4ID6+kadM3uYY/UmDEpXXX2jgn7ncll7PB2CUwM+fbB+l245fpwj9Y48OEeV4Xr5fYRgAN0XSPRp485qnTp1sCP1bjh2rN5bv0shB9/4A/Cu7LSAZo7opxHZKd2ulWCkH5wwXjsra5WVkuRAd534nj3yXfZTWakBzRqVrQHpQX11fPc+cuwfStIPThivNTvKlRYkBAPovn6pSUpKNLr+mLHKy0zuVq2ZI7I0b9IgTRuWqXTuWwDggGS/T08t2qw7Tp+sQDdvuP32EaP1zroSzRnV36HuOubpECw13X09MCOgK44YpS+Nzu5Sjf6hJP3hvBkqrarVRXNHKj25Z97BADiwJfoSdNiYHP3w+RW65+xpGtzF1SKmDc3UzfPG6Y5/f6IR/Vm9BoAzUgM+nTlzqGojjXrg/BldDsLnzR6mM2cOVVVtvRy+F7hdng/BktWj72/SxX/+UJceNkrXfOUgJcaxgPARY3P04AX5+tm/Vum6p5eprqFRDSxED8AhCzfs0ttrd+rmZ5fr3nOna96kgZ1+bYKRLvnySN1w7MG6/LHFemXlDpWymQ8Ah1TU1mtkdoqKysN6umCLHr1klsYP6vyyaWmBRP3v6ZM1flC6fviPj3XlEaO1eXe1ix1/kadDcE1dvcpq6vW3xYWqqK3XJY98qLLqiJ6+Yo6+OXOogu3cQT1ndLb+cN50fW3KIF3450VaXlim7WVhvbqySHuq63rwXwHgQLW9tEb3z98gSVpbXKlzH/pAXxqdrYcvmqkjD85RW3teBBITdNq0PP318jlKTDC68M+LtLuq6br0wIL1Kq/hGgWg+yprIioP1+un/1qllz7eoRueWaabjhunO06brAmD0tt8Xb/UJF15xCg9dsksvf5JkX74/Aq9s26XFqzdqezUJIV7aNtkY3toVw4n5efn24KCgm7XKa4I68EFG/Tg25994XhaIFGnTc/T8ZOalk9bX1KpinBEfl+CRueEFAomatmWUj2+cJM27vriO5Zh/VL0xKWzNbRf9yeJA/C2Lburddidb+5zfEhWss6eNUyzRvZTdW291pdUqba+QamBRI3OCSkxwej1T4r1t8Vb9hn5zQkF9PzVX1JeFtcoAN2zZXe17nljnZ4p2PKF44cMydD5c4ZreHaqdlXWafPuajU2WvULJWlEdqqq6+r13JKtemXFDtW1+PQ8OzVJT19xqPqlBtQv1ZmppcaYxdba/FjPefoW4dpIo976tGSf4xW19Xr0/U169P1N8vuMRvZPVSjgV6ShUZt2Vak8XN9mzc27q7/wHwoAXbWrqjbm8cI9NfrVfz6VJKUm+TQyJ1VJPp+q6+r12c4q1da3fQ0qqaxVQ98b+wCwn7HWqqHR6sVlW/d5bllhmZb9bbmkpjfegzOD8iUY7amOaOOuKrU1/rqrqk5riyo1Z1TAzdb38nQINqZplLc9kQarNUXtn9Palt3VPbrtH4ADU1F57BDcUlVdg1ZsLY+rbh0b+gDoJmOMCvfUKBxpf+CvpLJWJZUdX8ui/rOySPnDs7rbXqd4ek5wfYOVG7uHbi8LO18UgOd0/hbd/acyAG+w1mrJ5j2O1/14a5lqe+gTdU+HYLf44lhdAgDaMribawO3JdjN9TwBwBjjykoO28tqZNq669dhnr4S+n0JrgTWYdxwAsABmSn+NleA6KohWcliSjCA7nJzYYWeGkr0dAhO8hmNyXV+7u7gzK4taA8ALSUYOT437ujxuUoNsKslgO4xxmi4A9sltzYgPdhjn6h7OgRnhZI0b2LnF57vjFH9U5Wc5On7DQE4JC3g15VHjHa05gVzRiiFaxQAB8we2c/xmpOHZCgrpWe2dvd0CE5MSNDXZwxx9OPGbx85WjlpPbO0B4ADW1qyX+MGpmlyXoYj9b4+Y4iS/QkK+hkJBtB9Q/ulKMnhfY5PmjxISYk9c43ydAiWpIwUvy6YM9yRWkP7JevIg3MdqQUAkpQS8Onub05VoJs3sw1ID+g7Xx2j1EDPjLAAOPBlJPt10iGDHauXnpyoQ4ZmOlavI54PwWlBv6456iDldfMu7AQj3XfOdEaBATgqKyWgFH+CHr5oZpdHXPqlJunxS2YrxZ+gjGRCMABnpCQl6n+OPqjbb9Kjbj5unDJTnNkprjM8H4IlKSctqCcuna3sLm7RZ4z0u7OmaRQbZABwQVZqkkb0S9FzV31JQ7I+f8M+OidVp0wdrOuPGatbjh+n644eo+MmDtTgjM9vzp06JEP/uOpLykhOVGYKb9IBOGtgelC3fm18t+tMG5qp4ycNUlIPLuFo3Fziwi35+fm2oKDA0ZrWWm3dU6Mrn1gc1+5LmSl+/f7saZo2LEupAW42AeC88pqIVmwrU0VNRNmhgEoqajUwI6i1xZVavqVUa4srVVvfqNSAT+MGpmvasEzlhAKqrK1XgjEK+hOUGkjUwQPTFOihuXYAvKO4PKzfvr5GTy7asveYMdKI7FRNzstQXmayjJHKaiJaua1cn2wv/8L27sOzU/TkpbOV58ISs8aYxdba/FjPkdqaWWvVYK1+eMJ4fbqjQn+Yv77dLUsDiQk6bVqeLpgzXLur6hTpod1NAHiLtVbby2q0Ymu5Xlu1Q98/YbzeXb9Tf19cGHO70nfX7ZIkZaX4ddGXRmrG8Czd9sJKfW/eweofCri2AQcAbyqpCOt/X16to8flamBGsh55b6POzB+qYycO0LriSi0vLNMn28vVaK2yUpN04pRB+sEJ47W+pFKPvr9RWSlJunneOF3/zDL96utTNCw7tcd6ZyRYUmNjozbuqtb1zyzTbSdNUGogUXuq6uRLMFq4YZcKNu5RebheSYlG4wem60sHZWtQRrL8vgSV19TpsYWbdfT4XB0xNqdH57IAOPDtrqzV8q1lem1VkY48OFfff265dlbWdfr1o3NC+sUZk/WHN9fpu8cerLzMoPqlMi0CQPeVVIT1s399on9/vF2/PGOypgzJUJLPp7teW6OXV2xXpKHtjDllSIZuOu5gDc9OVWlNna58bIkk6anLZjsahNsbCfZ8CG4dgK9/ZpnKayL64/kz9OCC9brl+PHql5okK8lnjOobG3X7iyt19qzhuueNtSrYuEf3njtN/1y2nSAMwFHWWm3YWaUnFm7S5CGZuvFvy9TQGP81Oy2QqAcuyNfLH2/TJYeN0vAeHGkBcOBavaNcJ93zjn526iTNGJalj7aU6rYXVqom0tDpGqdOHazvHXewyqojOu/hRTp39jB9a+4Ix96sE4LbECsAf7azSpKUnZqkP54/Q//33zW69cSJGtE/ReXhen3v78t0+WGjdc8ba/Xe+qaPHZN8CQRhAI7bXVWr+WtKNCgjWec99IHquxCAo/qlJumhC/LVaBs1bmC6QkFWiQDQPVv3VGl3VUSpgUQ9v3Sb/u+/a7tUZ8qQDP3h3OnaWVmnrBS/+oUCCjl0n1V7IdjTq0OU1tTrnjfW7hOAM1P8Om16noykm+eNV8HG3XrkvU16YelWXXn4aIWCiZo3aeDeLZfrGhp19RMf6aRDBmnBmpJe/BcBOJDU1DVqQHpQtz6/olsBWJJ2V9Xp/gUbtLsqouq6zo/SAEBbslIDGpAe0PLCsi4HYElaXlimH/xjhfqlJik92e9YAO6Ip2+M65eapBuPPVjn/WmRPttZpQQjfWvuSJ0waaCeXLRZ5z70wRfuXmwpf3iWvnvMWEUamqZH7KmO6OonPtIjF8+Sr2e2vAZwgEsw0tY9NVpbXOlIvf+s3KFLDxvJjbwAHGFkFK5v1I+eX9HtWvPXlGjJpj06/OBsBzrrHE+PBJfVRPS9vy/XZzurlJHs11++NUspST594/739eySrW0GYEkq2LRHVz2xRM98uEV/+dYsTR+WpbqGRn3rL4vUaEnBALqvOtKgxxducrTm3xcXyufkXvEAPKuqLqL7529QZW29I/X+30ufqKq2596kezoEZyT7defXp2hMbkgPX5ive99cp3veWKd4PnV8d/0uXfTnRfrx18Yrf3iW/njejB5d6BnAgSvBGC0rLHO05oI1JapjJBiAA2rrrf7x0VbH6pVU1GpdcaXq2hmEdJLn09qQrBQ9evEs3fPmOn3w2e4u1dhTHdG3/vKh7jrzEM0ema3kJBajB9B95TURx2tuLwvLMBIMwAHb9tQ4fo/BP5dtU02d89e+WDwfguvqG7Rwwy699Wn3bmjbUx3RrS+sVDiOZUEAoD0lFW1v2NMdPTXKAuDAtmhj1wYP27O8sEwV4Z7JUp4PwXuqI45M6JaaJnWvKapwpBYAuDVgy0AwgO6y1mpj86paTtpWWiP10DXK8yH43XU7VeXgUP7//XetSqs7v5sTALRlYHrQlbpBP1O2AHSPtVZu7DTRaHssA3s7BJdW1+mpRZsdrfnu+l2O3SUJwNuyQ85vujMgPaBE1nEE0E0JCQkanOn8G/Xc9IAr4ToWT4fg6roGrdxW7njdPVWMBAPovqREnybnZTha8+hxA5TGbnEAHDB7pPNr+k7Oy1Ao0DOfVnk6BEcaGl3ZOWldiTML2wPwtgQjXTx3hKM1z541VHXcwAvAASOyU+R3+JOleRMHKjGhZ+Kpp0NwN3chbVMNW5ICcECkoVEzRmRpdE7IkXrzJg5Q0O9TpKGnPmwEcCAL+n2aN3GgY/XSg4maPjxLoR76tMrTITgxwZ15cRnJfNQIoPuMMXp2caH+36mT5Ovm9Sozxa8rjhitpVv29NhNJwAObNmhgL5zzFjHRoOvPXqMMnswQ3k6BEvSoAznJ3WPznVm1AaAt1krzV+zU//4aKt+ecZkdTUHpyb59Puzp+uOlz7RO+t2iVWCATglNy2gG489uNt1JuWl6+RDBislkOhAV53j6RCclJigmSP6OVozLZCo1KSe+w8EcAAzVnedeYjWFFXo463luu/cGcpKiW+UZGT/VD38rZl68O0NGpSRrO9+dawSWSgYgEPSgn6dNi1Pp04d3OUaQ7KS9cdzZ2iAS8tCtsXTITiQmKCzZw11tOYZM4Yo4Pf0jxWAQ3JCQYUCibrrzEO0bEupHnl/ox6+aKa+MWOIAontX2fSkxN11ZGjdcdpk/XDf6xQRrJf1x8zVunBRGW5sPQaAO/KTQ/qhyeO17ePGBX3ZjzTh2Xpr5cfqiH9Utxprh3G2r53g0R+fr4tKCjodp2ymjrtrqrT/zy1VB9vLet2vUBigl68Zq5yQgH1CwW6XQ8AJKm4PKzK2npd/8wyrS2q0FmzhunEyYO0ekeFlhWWam1RpWrrGxQKJGrcoHRNH5ap3LSg/r54i55fuk0nTh60NwBzbQLglqLysIrKw7r1+RVaVth+rspJC+i6o8foK+NylZnsd20ahDFmsbU2P+ZzXg7BuytrVVffqO3lYX3z/oWqa+jeTLlbjh+nk6cMVkpSgjJT+UUDwDktg/DSLaUyRjp4QJom52VoVE6qkhITVF3XoDU7KrSssEybd1dLkk4+ZLBuOHas0gIEYADu2VFWo8seXazsUJK++9WxCvgT9OrKHVqyqVSbd1erwVplpyZpypBMHT0uV0OykvWvj7frD2+t11OXHaoxuSFXgjAhuB17KmtVGo7og89265ZnP+5ynWMnDNC1XzlIOWkBZYcC8vuYEgHAOaXVdVq1rUwH5aZp3u/e1u5ObMozdWim7jt3uraVVmv8oAyl9uANJwC8IxqAW36qPig9qDNmDNG0YZnKTk2SMUbVdfX6dEeF/v3xdn24cc/ec1OSfK4F4fZCsOeviFmhgCINViOyU/SLMybrthdWqrY+vhHhU6YO1gWHDldOWlDZoSQCMABHlVbX6U/vfCa/L0Fri6s6FYAladW2cq0pqtBzS7bq+EkDdfjYHIIwAEfFCsCStL08rN+/ua5TNarrGnT2gwtdHRGOhbQmKTcjqBHZqRqUHtQTl87W9GGZnXpd/1CSfnfWVJ04eZCG9EtRVnIiARiAo1oG4OQkn257cWWnX1vX0KjLH12skw4ZpJdX7NCCNSWqqq13sVsAXtJWAG4tkJigAentT8eKBuG1xZWqCvfMdYrEpqaJ3Nc8+ZHKayLKTPbrssNG6YlLZ+sbM4ZoVP/UL9zpmBMK6KiDc3X3N6fqd2dNU1Zykkb2T9U5Dy7Uxt01isQ5igwAbWkdgH/+70/irlHX0Kirn/iIIAzAcdV1DdpaWtPuOYHEBD12ySy9eM2XNaaDfRSq6xq0eke5qup65hrl+TnBReVhXf3EEhVs2qNxA9N0z1nTZBKMymsiWrW9XKkBnwZnJMtKMkYqrY6opCKs3LSgxg9KV2l1nZ4uKNTjCzcpI9mvZ66Yo1H9U+XvYPkiAOjI7qpa/Wv5dtXWN3YpALeU5EvQvedO04adVTozf6iyUlgmDUD3RCIN2rSnWmfevzDmNK1oAB43IE3pKUnaVlqjCx9epLXFlTHr/e9pk/XV8bnKcXC94PbmBHs6qe2qrNXNzy7fG4DvOG2yLvjzIn31rvn62b9WakBaQBMGpSs3vWmub04ooDG5IY3OCWnBmhIdduebOvW+9zRjeJbOO3S4ymoiOvP+91UejvT2Pw3AAcDvS5Dfl9CpANzRNvDREeFpQzOVkuRzqkUAHub3+zQ8K0XPXHGo+qV+8Y116wAsSYMzk/XIxbNijgi7EYA74umR4NpIg9YWV+rHL6zQj06coKufXKLtZeG46/gSjH79jUO0eNMeDeuXotOn56k/SxEB6KbS6jod/7u3O7wunXzIYP3ghPG68vHFWrqltN1zZ4/sp/vPn6FMRoIBOKT1iHCsANxS6xFhNwMwI8FtCPh9Gpsb0m/OnNrlACxJDY1WN/5tmb58ULZOmzaYAAzAEYk+oz+cO0ODMtr+xXDyIYN1/qHDFfQn6CcnT9TUoW3f2Dt1aKZ+eOJ4JbBtMgAHtRwRHpQRbDcAS5+PCI8dEOqVEeAoT48ES1Lh7mp94/73uxyAW/IlGD14/gwdOjpbKUksQwSge6y12lZao5KKWn37iX3fqEcD8OjcVPVLDaikIqxtpWHd9uLKfUaEpw7N1E9OnqjBmUHlpPX8LxsAB75IpEG1jVaNDY1tBuCW9lTXqb6+0dUAzEhwG8pqIrrp2eUdBuDs1CQ9fcWhmntQdrvnNTRaXf3kR6pjhQgADjDGaHBmsnLSAvrDudO/MCLcOgBLUk5aUIMzg/uMCBOAAfQEv9+nUCCxUwFYkrJSknplBDjK0yFY1uqHJ47XqP6pbZ6SnZqkBy6YoVAgUTcce3C7QTiQmKB7zp6mPji4DmA/FSsIxwrAUa2DMAEYAGLz/HSIbaU1Kqms1Xf/ulQbdlZ94bloAM5KSdLQfinaU1mnwrIa/ebVT/Xuul1fODeQmKDfnzNdOaGmdYMzuOkEgIOiUyPKw/WqDNfHDMAtRadGSCIAA+gxuyprld3Je6NKysPKTPbL73dvxRqmQ7RjcGayckIB3X3W1C+MCLcOwH5fgnIzghqSkbzPiDABGIDboiPCmSn+DgOw1DwinNH0hwAMoCcUlYf1m1c/7XADDUkqLg/rL+9t1Ge7qxWJNPRAd/vyfAiW9g3CsQJwVOsgTAAG0FOMMRqUkdxhAI7KSQ/26nw7AN5RVB7Wd59eqicXbdGFDy9qNwgXl4f1+zfX6d631uub97/fa0HY89MhWopOjWhosMpM8e8TgFsqLgursKxpm+RAYgIBGAAAeFI0AL+3/vOpogflhvTIxbOUl5n8hXOjAfjR9zftPZaV4tfTV8zRyH4pjk+N6NXpEMaYecaYT40x64wxt8R4fpgx5k1jzEfGmOXGmBPc7qktgzOT1T8UUFYHAVj6fEQ4PdlPAAYAAJ4UKwBL0rriyn1GhGMFYEnaUx3plRFhV0OwMcYn6V5Jx0uaIOlsY8yEVqf9SNIz1tppks6SdJ+bPXUkLzNZQ7PaD8BRuRlBHZQbIgADAADPaSsAR7UMwjsra2MG4KjeCMJu7+gwS9I6a+0GSTLG/FXSKZJWtTjHSkpv/jpD0jaXe+pQYmLn3xt0JiwDAAAcaMpqIlrWwVbt64ordcGfFmni4HS9uKz9iLenOqL5n5Yoa9pg5bi4YkSU2wkuT9KWFo8Lm4+1dLuk84wxhZJeknRtrELGmMuNMQXGmIKSkhI3egUAAEAn5WUk66+XH6rUpPYD6/qSyg4DsCRdf8wYnTJ1cI+taLM/DGOeLekv1tohkk6Q9JgxZp++rLUPWGvzrbX5OTk5Pd4kAAAAPpcaTNSo/qFOBeGOXH/MGJ01c5hye3BFG7dD8FZJQ1s8HtJ8rKVLJD0jSdba9yUFJfV3uS8AAAB0kxNBuDcCsOR+CP5Q0hhjzEhjTJKabnx7sdU5myUdLUnGmPFqCsHMdwAAAOgDuhOEeysASy6HYGttvaRrJP1H0idqWgVipTHmp8aYk5tPu0HSZcaYZZKeknSR7YuLFwMAAHhUajBRo3NCeuLS2Z1+zXmHDtO5s4f3SgCW3F8dQtbal9R0w1vLYz9u8fUqSXPd7gMAAADuqayt13MftZ712rb31+/Wt49sdLGj9u0PN8YBAACgD2trI4z2rC/Zd0ONnkQIBgAAQJd1JQBHxdpZrqcQggEAANAl3QnAUb0VhAnBAAAAiJsTATiqN4IwIRgAAABx21lZp8cXdhyAv3vMGP3zmrkdLp+2rrhSj763Uburap1qsV2EYAAAAMRtQHpAvz9nuhJM2+fccOxYnT1zmEbndLyO8AmTBuriL49Uv9SAC93uixAMAACAuGWHApo9sl+bQfiGY8fqm/lDlZseVEqg/Q01Tpg0ULedPFEDDqBtkwEAAHCAaisItwzAUW3tLNcbAVgiBAMAAKAbWgfhWAE4qnUQ7q0ALEmmL+5QnJ+fbwsKCnq7DQAAADTbVVmrspqIQoHEDrdCrgrXq7iyVilJPlcDsDFmsbU2P9Zzrm+b3NcUl4clI+WmdfwfsrMiLJ8vQVkpST3QGQA0/ZJpsED/Ag8AACAASURBVLZT16ji8rAkdfjLCACckB0KKDvUuZvaUoOJGhns3RjKdIgWisvD+sP89frRP1aoqPmXR1t2VoQ1f81OnfvgB9reS9v9AfCWHWVhXfboYv1z2TYVV7R/jSouD+uXr6zWL19ZvTcMAwA+x0hws2gA/vO7G/ce+9mpk2IO0UcD8I1/XyZrpYsf+VAPXzhTgzKTe7BjAF6yoyysq55YoiWb92jJ5j2SpJMOGRxzRDgagJ9dsnXvsZvnjWNEGABaYCRYsQPwq6uKdOvz+44Itw7AkvTJ9gpd/MiHjAgDcEXLABz1s399EnNEOFYAfnbJVkaEAaAVz4fgWAE4qnUQjhWAowjCANwQKwBHtQ7CsQJwFEEYAL7I0yG4qKxG9y/YEDMAR0WDcGl1XZsBOCoahHeU8UsGQPcVl7cdgKOiQbg8HGkzAEcRhAHgc56eE5yQYDQpL13GqM1gKzUF4bX3vaeNu6raPU+ShvVLkWln+0AAiMeonNR2Q7DUFISfWLhZG3ZWdVhvUl6GU60BQJ/m6ZHgnLSgDjsoR3edeUiHwfWznR0H4OMmDtBPT4l9Mx0AxCs3PaibjjtYX58xpMNzOxOAbztpgr42eRA3yAGAPB6CJal/WqDTQbg98wjAAFwQTxBuTzQA53CNAgBJhGBJTUF47uhs/errU7oUhI+dMEA/IQADcEl3gzABGAD2RQiWVFpdp7+8t0nriiv181MnxRWEj50wQOfMHqZvP75YJR0sXg8AXdXVIEwABoDYPB+CS6vr9MCCDbrvrfX64/wNystM1lfHD+jUa5P9Pv38tEn67tNLtWRzqS7684cEYQCuyU0P6icnT1R2aue2ap81sp9On55HAAaAGDwdglsGYEm66sjR2rKnRq9/UtSp19dEGvSDf6zQb785Vcl+n1ZuK9eFD3+okopaN9sG4FHF5WH9+IUV2lVV16nzF322W39fXNjhFssA4EWeDsGJPqODB6bJmKYAPDgzWbe+sKLDVSBaem1VkR7/YLP+eN50Jft9GpadIp+nf6oA3NDeRhjtaWtnOQDwOk+vExwK+HX0+Fw9e+WXtGp7edwBOOq1VU0jx09eNlvDs1PULzXgcKcAvKyrATjqZ//6RJJ00iGDlZvG1AgAkDw+EixJ4boGbdpV1eUAHPXaqiLdv2C9Ig3dKAIArXQ3AEcxIgwAX+TpEFxSEdb8NTt1/d/a3go5alT/1A5XjXhlRdMWy0VsSQrAAfEE4NE5qR2eszcIc40CAG+H4IZG6ZPt5R0G4GMnDNAfz5+h/3dKx8unbdlT3a0RZQBoaeOu6g7Pue2kCfrHVXP19el5HZ77ybZycYkCAI+H4IEZQV1++ChdPHdEm+dE1wE++ffvaMue6naD8PhBaXr4wpkamMGcOwDdl5se1L3nTNf0YVltnhNdBzg92a+b5o1rNwh/fXqebpo3jo19AEAeD8FS0y+ZK48YHTMIRwPwlY8vVjjSqD/O39BmEI4G4EGZyT3TOABPGJgR1H3nxg7CrTfCyE0PthmEowE4lwAMAJIIwZKafnFcccQoXfrlkXuPtQ7AUbGC8PhBaXr4IgIwAHfECsJt7QQXKwgTgAFgX8b2wQms+fn5tqCgwLF6lbX1mv9pscKRRi0rLNWOsnDMANzSlUeM0tCsFD25aLN+esokPbu4UDced7D6dXInJwCI146ysK56YolOOmRQh1shF5eHdecrqyWJAAzAs4wxi621+TGf83oIjgbga576SEbSnV+fopxQQFe0E4CjrjxilE6dlqcLH16kovJanTh5kH526iSCMADX7KqsVWOj7dRWyNFVIAjAALyKENyGynC95q9pCsAtfwzGaJ8VHkZkp8S8S7v1uQRhAADgRTsralVWE1FaMLHDN9/VtfXaUR5WaiDR1Zt12wvBnp4TXN/YqOWFZfsE3taP500aqBev+bJ+e9bUfWq0Pnd9SaUaGtsfQQYAADiQ7Kyo1cLPdumrd8/XU4s2t7sxT3VtvdaVVOpr97yj219c2Wv7K3g6BGemJOnbR47W5YePavOceZMG6o7TJik92a+vjs+NGYSjxg1M06MXz1IO25ICAACPiAbga5s/Wb/79bV66oPYQTgagM96YKGq6xr08oodvRaEPR2CpaYgfFUbQTgagPulBiRJoUDbQTgagJl7BwAAvKJ1AI6KFYRbB+Co3grCng/BUuwg3DoAR8UKwgRgAADgNW0F4KiWQbitABzVG0E4sce+034uGoQlafPu6pgBOKplEL5//no98i0CMAAA8JbiinCbATjq7tfXqtFKXxmXq7MfjB2Ao15esUPD+qXoiiNGtZnBnOTp1SFiKa2uU6NVp1Z3qKyNqKFRykj2u9ILAADA/qq4PKx731qvR97b6Ei9g3JDeuTiWcpzcPOx9laHYCS4lcyUzi9tFgoQfgEAgDflpgd1dfOn6N0Nwm4E4I4wJxgAAABdEg3CF35pRJdr9EYAlgjBAAAA6IbuBOHeCsASIRgAAADdFA3CF8wZ3unX9GYAlgjBAAAAcEAokKjTpuV1+vxDR/VTMLH3oighGAAAAN0SXQf4vIc+6PRrHl+4WY8v3KRitk0GAABAXxMNwGc/sFBV7awDHMvdr6/VU4s290oQJgQDAACgS7oTgKN6KwgTggEAABA3JwJwVG8EYUIwAAAA4ra1tKZTAfig3JBOmTq4w3p3v75Wzy/dqpKKngnC7BgHAACAuKUn+zV1aKbeXb+rzXPGNC+DluRLUGZKUrs7y2Wl+HXUwbnKDPbMjryMBAMAACBuA9KDuuubUzV3dHbM56MBeHBmsvqnBdrdUCMrxa9nrpijEf1S5Pf7XOz6c4RgAAAAdElbQbhlAI5qa2e53gjAEiEYAAAA3dA6CMcKwFGtg3BvBWCJOcEAAADopmgQ/r//rtXVRx0UMwBHRYNwWjBRpxwyuFcCsEQIBoA+ZVdlrTKTE+XzdfwLo6KmTpKUlpzkdlsAoAHpQV1/zFhlhwIdnpubHtQFhw5XVrK/VwKwxHQIAOgzdlaE9c66ndq8u0YNDe0vSVRRU6fVRZVaXVS5NwwDgNs6E4CjctODvRaAJUIwAPQJOyvCemN1sa7761Kd+cDCdoNwNACf99AHOu+hDwjCABADIRgA9nPRAHzTsx9LkkoqatsMwi0DcG19o2rrGwnCABADIRgA9mOtA3BUrCDcOgBHEYQBYF+EYADYT7UVgKNaBuGa2vqYATiKIAwAX0QIBoD9VKIvQb95bU2750SD8DOLC9sMwFG19Y36xcur1c4pAOAZhGAA2E9lpiTpr5cfqty09u+2Lqmo1W0vrmw3AEvSxMHp+v0505SVypJpAEAIBoD92Mj+IT19RcdBuCMTB6froQvzNSij7QXsAcBLCMEAsJ/rbhAmAAPAvgjBANAHdDUIE4ABIDZCMAD0ESP7h/TMFXOUFujcjvejc1L1pwtnEoABIAZCMAD0ERU1dSqprO3wBriospqIaurqO9xiGQC8iBAMAH1Ay40w6ho6F4J3VtZ1uMUyAHgVIRgA9nNt7QTXGe1tsQwAXkYIBoD9WHcCcBRBGAD2RQgGgP2UEwE4iiAMAF9ECAaA/ZRJSNCljxR0aie4F66e26md5a556iNV1rFvMgAQggFgP2UbG/XQhfkKJLZ9qY6uA3zI0Ew9fcWhymknCOekBfT7c6YpI9nvRrsA0KcQggFgP5WWnKRxA0J6/NLZMYNw640wmtYRjh2Ec9ICeuaKQzWyf8j1vgGgLyAEA8B+rK0g3NZOcLGCMAEYAPZFCAaA/VzrINzRVsgtgzABGABiM9Zad7+BMfMk/U6ST9JD1tpfxDjnTEm3S7KSlllrz2mvZn5+vi0oKHChWwDYf1XU1Gnjrmr1Twt0aivkz3ZWShIBGIBnGWMWW2vzYz3XuQ3ou/6NfZLulXSMpEJJHxpjXrTWrmpxzhhJ35c011q7xxiT62ZPANBXpSUnacIgn3w+X6fOJ/wCQNvcng4xS9I6a+0Ga22dpL9KOqXVOZdJutdau0eSrLXFLvcEAH1WZwMwAKB9XQrBxph+nTw1T9KWFo8Lm4+1NFbSWGPMu8aYhc3TJwAAAADXdBiCjTE/avH1BGPMGkmLjTEbjTGzHeghUdIYSUdKOlvSg8aYzBh9XG6MKTDGFJSUlDjwbQEAAOBVnRkJPr3F17+SdJ21dqSkMyXd3cFrt0oa2uLxkOZjLRVKetFaG7HWfiZpjZpC8RdYax+w1uZba/NzcnI60TYAAAAQW7zTIQZba1+WJGvtIkkd3Z78oaQxxpiRxpgkSWdJerHVOc+raRRYxpj+apoesSHOvgAAAIBO68zqEKOMMS9KMpKGGGNSrLXVzc+1u/emtbbeGHONpP+oaYm0h621K40xP5VUYK19sfm5Y40xqyQ1SPqetXZXV/9BAAAAQEc6E4Jbr+aQIEnGmAGS/tDRi621L0l6qdWxH7f42kq6vvkPAAAA4LoOQ7C1dn4bx4vUtAawJMkYc4+19loHewMAAABc4eQ6wXMdrAUAAAC4xu3NMgAAAID9DiEYAAAAnuNkCDYO1gIAAABc0+kQbIyZ3MEpv+tmLwAAAECPiGck+D5jzCJjzFXGmIzWT1pr/+JcWwAAAIB7Oh2CrbWHSTpXTdsgLzbGPGmMOca1zgAAAACXxDUn2Fq7VtKPJN0s6QhJ/2eMWW2MOd2N5gAAAAA3xDMneIox5m5Jn0j6iqSTrLXjm7++26X+AAAAAMd1ZtvkqHskPSTpB9bamuhBa+02Y8yPHO8MAAAAcEk8IfhESTXW2gZJMsYkSApaa6uttY+50h0AAADggnjmBL8uKbnF45TmYwAAAECfEk8IDlprK6MPmr9Ocb4lAAAAwF3xhOAqY8z06ANjzAxJNe2cDwAAAOyX4pkT/B1JfzPGbFPTFskDJX3Tla4AAAAAF3U6BFtrPzTGjJN0cPOhT621EXfaAgAAANwTz0iwJM2UNKL5ddONMbLWPup4VwAAAICLOh2CjTGPSRotaamkhubDVhIhGAAAoBdEIhEVFhYqHA73diu9KhgMasiQIfL7/Z1+TTwjwfmSJlhrbdydAQAAwHGFhYVKS0vTiBEjZIzp7XZ6hbVWu3btUmFhoUaOHNnp18WzOsQKNd0MBwAAgP1AOBxWdna2ZwOwJBljlJ2dHfdoeDwjwf0lrTLGLJJUGz1orT05ru8IAAAAx3g5AEd15WcQTwi+Pe7qAAAAOGCVlpbqySef1FVXXdXbrcSt09MhrLXzJW2U5G/++kNJS1zqCwAAAPu50tJS3Xfffb3dRpd0OgQbYy6T9HdJ9zcfypP0vBtNAQAAYP93yy23aP369Zo6daq+973v6Ve/+pVmzpypKVOm6LbbbpMkbdy4UePGjdNFF12ksWPH6txzz9Xrr7+uuXPnasyYMVq0aJEk6fbbb9f555+vOXPmaMyYMXrwwQclSdu3b9fhhx+uqVOnatKkSXr77bcd6T2eG+OuljRXUrkkWWvXSsp1pAsAAAD0Ob/4xS80evRoLV26VMccc4zWrl2rRYsWaenSpVq8eLEWLFggSVq3bp1uuOEGrV69WqtXr9aTTz6pd955R7/+9a91xx137K23fPlyvfHGG3r//ff105/+VNu2bdOTTz6p4447TkuXLtWyZcs0depUR3qPZ05wrbW2Ljrx2BiTqKZ1ggEAAOBxr776ql599VVNmzZNklRZWam1a9dq2LBhGjlypCZPnixJmjhxoo4++mgZYzR58mRt3Lhxb41TTjlFycnJSk5O1lFHHaVFixZp5syZuvjiixWJRHTqqac6FoLjGQmeb4z5gaRkY8wxkv4m6Z+OdAEAAIA+zVqr73//+1q6dKmWLl2qdevW6ZJLLpEkBQKBveclJCTsfZyQkKD6+vq9z7Ve5cEYo8MPP1wLFixQXl6eLrroIj36qDP7tMUTgm+RVCLpY0lXSHrJWvtDR7oAAABAn5OWlqaKigpJ0nHHHaeHH35YlZWVkqStW7equLg4rnovvPCCwuGwdu3apbfeekszZ87Upk2bNGDAAF122WW69NJLtWSJM+syxDMd4lpr7e8kPRg9YIy5rvkYAAAAPCY7O1tz587VpEmTdPzxx+ucc87RnDlzJEmhUEiPP/64fD5fp+tNmTJFRx11lHbu3Klbb71VgwcP1iOPPKJf/epX8vv9CoVCjo0Em87ugmyMWWKtnd7q2EfW2mmOdBKH/Px8W1BQ0NPfFgAAYL/yySefaPz48b3dhiNuv/12hUIh3XjjjV16fayfhTFmsbU2P9b5HY4EG2POlnSOpJHGmBdbPJUmaXeXugQAAAB6UWemQ7wnabuatk3+TYvjFZKWu9EUAAAAvOX222/v0e/XYQi21m6StEnSHPfbAQAAANwXz45xpxtj1hpjyowx5caYCmNMuZvNAQAAAG6IZ3WIOyWdZK39xK1mAAAAgJ4QzzrBRQRgAAAAHAjiCcEFxpinjTFnN0+NON0Yc7prnQEAAGC/d/HFFys3N1eTJk3q7VbiEk8ITpdULelYSSc1//maG00BAACgb7jooov0yiuv9HYbcev0nGBr7bfcbAQAAADuevnll3XvvfeqqKhIAwYM0NVXX63jjz++WzUPP/xwbdy40ZkGe1A8q0OMNcb81xizovnxFGPMj9xrDQAAAE55+eWX9fOf/1w7duyQtVY7duzQz3/+c7388su93VqviGc6xIOSvi8pIknW2uWSznKjKQAAADjr3nvvVTgc/sKxcDise++9t5c66l3xhOAUa+2iVsfqnWwGAAAA7igqKorr+IEunhC80xgzWpKVJGPM19W0nTIAAAD2cwMGDIjr+IEunhB8taT7JY0zxmyV9B1J33alKwAAADjq6quvVjAY/MKxYDCoq6++ult1zz77bM2ZM0effvqphgwZoj/96U/dqtdT4lkdYoOkrxpjUiUlWGsr3GsLAAAAToquAuH06hBPPfWUE+31uE6HYGPMdZL+LKlC0oPGmOmSbrHWvupWcwAAAHDO8ccf3+3Qe6CIZzrExdbacjVtlpEt6XxJv3ClKwAAAMBF8YRg0/z3CZIetdaubHEMAAAA6DPiCcGLjTGvqikE/8cYkyap0Z22AAAAAPd0ek6wpEskTZW0wVpbbYzJlsRWygAAAOhzOgzBxphx1trVagrAkjTKGGZBAAAAoO/qzEjw9ZIul/SbGM9ZSV9xtCMAAAD0CVu2bNEFF1ygoqIiGWN0+eWX67rrruvttjqlwxBsrb28+e+j3G8HAAAAfUViYqJ+85vfaPr06aqoqNCMGTN0zDHHaMKECb3dWoc6fWOcMeYbzTfDyRjzI2PMc8aYae61BgAAAKdEIhFde+21uvbaa1VdXb3360gk0uWagwYN0vTp0yVJaWlpGj9+vLZu3epUy66KZ3WIW621FcaYL0v6qqQ/SfqjO20BAADASddff72WLFmiJUuW6IQTTtj79fXXX+9I/Y0bN+qjjz7S7NmzHanntnhCcEPz3ydKesBa+29JSc63BAAAALfU1taqsrJStbW1jtWsrKzUGWecod/+9rdKT093rK6b4gnBW40x90v6pqSXjDGBOF8PAACAXvLLX/5Sfr//C8f8fr/uvPPObtWNRCI644wzdO655+r000/vVq2eFE+IPVPSfyQdZ60tldRP0vdc6QoAAACOuvnmm/eZ/xuJRHTTTTd1uaa1VpdcconGjx/v2LSKntLpEGytrZb0gqQqY8wwSX5Jq91qDAAAAM4LBAIKhUIKBALdrvXuu+/qscce0xtvvKGpU6dq6tSpeumllxzo0n2d3jHOGHOtpNskFenz7ZKtpCku9AUAAAAH3XXXXXtHa3/5y1/q5ptv3nu8q7785S/LWutIfz0tnm2Tr5N0sLV2l1vNAAAAwB1+v1/33HPP3sctv/aieOYEb5FU5lYjAAAAQE+JZyR4g6S3jDH/lrR3TQ1rbdfH0AEAAIBeEE8I3tz8J0msDwwAAIA+rNMh2Fr7E0kyxoSaH1e61RQAAADgpk7PCTbGTDLGfCRppaSVxpjFxpiJ7rUGAAAAuCOe6RAPSLreWvumJBljjpT0oKQvudAXAAAA+ogRI0YoLS1NPp9PiYmJKigo6O2WOhRPCE6NBmBJsta+ZYxJdaEnAAAA9DFvvvmm+vfv39ttdFpcq0MYY26V9Fjz4/PUtGIEAAAA9nOHH364qqur9zmekpKiBQsW9EJHvSuedYIvlpQj6TlJz0rq33wMAAAA+7lYAbi94/EwxujYY4/VjBkz9MADD3S7Xk+IZ3WIPZL+x8VeAAAA0Ae98847ysvLU3FxsY455hiNGzdOhx9+eG+31a54Vod4zRiT2eJxljHmP+60BQAAgL4iLy9PkpSbm6vTTjtNixYt6uWOOhbPdIj+1trS6IPmkeFc51sCAABAX1FVVaWKioq9X7/66quaNGlSL3fVsXhujGs0xgyz1m6WJGPMcEnWnbYAAADQFxQVFem0006TJNXX1+ucc87RvHnzermrjsUTgn8o6R1jzHxJRtJhki53pSsAAAA4KiUlpc3VIbpj1KhRWrZsWbdq9IZ4box7xRgzXdKhzYe+Y63dGX3eGDPRWrvS6QYBAADQfV5cBq098YwEqzn0/quNpx+TNL3bHQEAAAAui+fGuI6YmAeNmWeM+dQYs84Yc0ubLzbmDGOMNcbkO9gTAAAAsA8nQ/A+N8kZY3yS7pV0vKQJks42xkyIcV6apOskfeBgPwAAAAc8a1mnoCs/AydDcCyzJK2z1m6w1tZJ+qukU2Kc9zNJv5QUdrkfAACAA0YwGNSuXbs8HYSttdq1a5eCwWBcr4trTnAH6mIcy5O0pcXjQkmzW57QfLPdUGvtv40x32uruDHmcjWvRjFs2LDudwsAANDHDRkyRIWFhSopKentVnpVMBjUkCFD4npNXCHYGDNF0oiWr7PWPtf896FtvKy9egmS7pJ0UUfnWmsfkPSAJOXn53v37Q4AAEAzv9+vkSNH9nYbfVKnQ7Ax5mFJUyStlNTYfNhKeq6dl22VNLTF4yHNx6LSJE2S9JYxRpIGSnrRGHOytbags70BwIGopCKsytoGV2qHAj7lpMX30SEAtLSnqk6VtfWO1w0FEpWVmuR43dbiGQk+1Fq7z01tHfhQ0hhjzEg1hd+zJJ0TfdJaWyapf/SxMeYtSTcSgAFAqqxt0FG/fsuV2m/eeKRy0lwpDcAjKmvrddidbzpe9+2bjuqREBzPjXHvx1rZoT3W2npJ10j6j6RPJD1jrV1pjPmpMebkeGoBAAAATolnJPhRNQXhHZJq1bQusLXWTmnvRdbalyS91OrYj9s498g4+gEAAAC6JJ4Q/CdJ50v6WJ/PCQYAAAD6nHhCcIm19kXXOgEAAAB6SDwh+CNjzJOS/qmm6RCSPl8iDQAAAOgr4gnByWoKv8e2ONbREmkAAADAfqfTIdha+y03GwEAAAB6SjybZQQlXSJpoqS9K6xbay92oS8AAADANfGsE/yYmnZ0O07SfDXt/lbhRlMAAACAm+IJwQdZa2+VVGWtfUTSiZJmu9MWAAAA4J54QnCk+e9SY8wkSRmScp1vCQAAAHBXPKtDPGCMyZJ0q6QXJYUkxdz5DQAAANifxbM6xEPNX86XNMqddgAAAAD3dXo6hDFmgDHmT8aYl5sfTzDGXOJeawAAAIA74pkT/BdJ/5E0uPnxGknfcbohAAAAwG3xhOD+1tpnJDVKkrW2XlKDK10BAAAALoonBFcZY7LVtFWyjDGHSipzpSsAAADARfGsDnG9mlaFGGWMeVdSjqSvu9IVAAAA4KJ4QvAqSf+QVK2mneKeV9O8YAAAAKBPiWc6xKOSxkm6Q9I9ksaqaStlAAAAoE+JZyR4krV2QovHbxpjVjndEAAAAOC2eELwEmPModbahZJkjJktqcCdtgAAoYBPb954pGu1AaA7gv4EV65RQX88ExW6rsMQbIz5WE0rQvglvWeM2dz8eLik1e62BwDeFY406qhfv+VK7bdvOsqVugC8o6q2wZVr1Fs3HqmcNMfL7qMzI8Ffc70LAAAAoAd1GIKttZt6ohEAAACgp/TMpAsAAABgP0IIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOck9nYDAIDYQoFEvX3TUa7VBoDuCAUS9daNR7pStyd4+ipYUhFWZW2DK7VDAZ9y0oKu1AbgDfWNjapvtK7VBoDusLJy4wrlTtV9eToEV9Y26Khfv+VK7TdvPFI5aa6UBuARXKMA7M/cukb11PWJOcEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzjLW2t3uIW35+vi0oKOh2nZKKsCprGxzoaF+hgE85aUFXagPwBq5RAPZnbl2jnLw+GWMWW2vzYz2X6Mh36KNy0oLKSevtLgAgNq5RAPZnlbUNOurXbzle980bj+yRax/TIQAAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnuN6CDbGzDPGfGqMWWeMuSXG89cbY1YZY5YbY/5rjBnudk8AAADwNldDsDHGJ+leScdLmiDpbGPMhFanfSQp31o7RdLfJd3pZk8AAACA2yPBsySts9ZusNbWSfqrpFNanmCtfdNaW938cKGkPFf6LQAAE/dJREFUIS73BAAAAI9zOwTn/f/27jxKzqrM4/j3qepKL+nOQmggZiGRsIsINCCZeEwAlWUkiqKozOLgOHMEh1E5ozKOI+KICy6HUVQURcZ9QUVWFwKyGCQgQyAIEwiQRCAJZOskvVTVnT+6wNCEpJOuql7e7+ccDlX13n766XNP3v71rVvvCyzf6vmKymsv5kzgum0diIh3R8SiiFi0evXqKrYoSZKkrBk2H4yLiDOADuCz2zqeUro0pdSRUupob2+vb3OSJEkaVRpqXH8lMG2r51Mrrz1PRBwP/Dvw6pRSd417kiRJUsbVeiX4TmDfiJgZEWOA04Grth4QEYcBXwNOSSmtqnE/kiRJUm1DcEqpCJwN3AA8APwopXR/RHw8Ik6pDPss0Ar8OCLuiYirXqScJEmSVBW13g5BSula4Np+r310q8fH17oHSZIkaWvD5oNxkiRJUr3UfCV4OFu9sYvO7lJNarc25mlva6pJbUmSpKHW2phnwblza1K3HjIdgju7S8y76Kaa1F5w7lza22pSWpIkaci1tzWN6KzjdghJkiRljiFYkiRJmWMIliRJUuYYgiVJkpQ5hmBJkiRljiFYkiRJmWMIliRJUuYYgiVJkpQ5hmBJkiRljiFYkiRJmWMIliRJUuYYgiVJkpQ5hmBJkiRljiFYkiRJmWMIliRJUuYYgiVJkpQ5hmBJkiRljiFYkiRJmWMIliRJUuYYgiVJkpQ5DUPdwFBqbcyz4Ny5NastSZKk4cmVYEmSJGVOpleCO7tLzLvopprUXnDuXNrbalJakiRJg+RKsCRJkjLHECxJkqTMMQRLkiQpcwzBkiRJyhxDsCRJkjLHECxJkqTMMQRLkiQpcwzBkiRJyhxDsCRJkjLHECxJkqTMMQRLkiQpcwzBkiRJyhxDsCRJkjLHECxJkqTMMQRLkiQpcwzBkiRJyhxDsCRJkjLHECxJkqTMMQRLkiQpcwzBkiRJypyGoW5gKLU25llw7tya1ZakwVi9sYvO7lJNarc25mlva6pJbUkaCTIdgju7S8y76Kaa1F5w7lza22pSWlJGeI6SpNpxO4QkSZIyxxAsSZKkzDEES5IkKXMMwZIkScocQ7AkSZIyxxAsSZKkzDEES5IkKXMMwZIkScocQ7AkSZIyxxAsSZKkzDEES5IkKXMMwZIkScocQ7AkSZIyxxAsSZKkzDEES5IkKXMMwZIkScocQ7AkSZIyxxAsSZKkzDEES5IkKXMMwZIkScocQ3A/s2eO48y/mv7c89ZmuPq9s7njvGO5+dy5nHjQHs87dsH8A4eiTUkZ9dGT9mev1r88nz1zHAs+8GruOO9YbjhnzvOOvfHle/HGl+9V/yYlaQSIlNJQ97DTOjo60qJFiwZdZ/XGLjq7S889bwJyhTyJRFMhx6buEl29ZR5Z08m6zb00FnLMam9lfHOBfC6Y0Bhs7A3GN+VYub7nebVbG/O0tzUNukdJ2dX/HDW5rYEN3YnWhsTGIhRLiQ1dRZau6qSrt0RbU4FZe4yluZCnpZCjXIJiQD6V2Nj7/NqeoyQNVv9z1ISmPLl8npYGWL2pl1IZnu7sZtmaTZRSYo+2Jqbv1kJDPmhvLbCxq0yxXGZLb/l5dat5foqIu1JKHds61lCV7zBCdXaXmHfRTUDfismHTj6YQj6xqSfx9Vse5seLlrOhq/iCr8sFzNt/D86aN4uXjG9i/YYizQ3BKz+14LkxC86dS3tbvX4SSaPR1ueoG86Zw5rNQUMueGRtD5fctJRf3f8UxfILFzJaxuQ59fApvGvOSxk7Jkcp8lz3v4/xmV8vfW6M5yhJg7X1OerujxxHRGJLd5E7l23gkpse5u7H127z6/Ya18Tfzd6b+a+YQltjHoDjv3gjnVv6jtfr/OR2CPoC8HknH0wCrvzjExz/+Zu57NZl2wzAAOUEv/3TKk79yu2cf/USevI5Jo0tsPBD8+rbuKRMuOGcOcyc1Ew+F3z2hgf56/++lWsXP7nNAAywuafEdxY+zvGfv5nv/WE5KSXeceTe/NtrZtW5c0lZcPdHjiOAtZtL/PN37+ZdVyx60QAM8OSGLj59/YOcdPEtLFz2DCT4zb8eS2tz/XoGQ/BzK8DlgH//2WI+cc0DdBfLO/7Ciuvue5I3XXI7K9Z1G4QlVd2zAfipziKnX7qQn969csBfWywnvvCb/+OcH9xDV8IgLKnq7v7IcUDi4TWbOeniW7ln+boBf+26zb384xV3cfnvHwXqH4QzvSf4iTWb+vYAp8QF1yzhmsVP7nKtvcY1ceV7ZtNYKtObD7YUEzN3HzvoHiVlV1d3N2s2l8jngrddupBHn968y7VeNWt3Pnvay4kIfnrnY5x46FTPUZIGZW1nF42FHI+v7eINX76Nrt6BLyL298ET9ufNh0+llBJbestVOz9tb09wpleC82PyNDbAXcvXDSoAQ9/S/sd/eT89+Ry5XI6JdV7SlzT6bOqFhoAv/vr/BhWAAW5ZuobfPrCKQg7ecvSM6jQoKdNWd/ayoavE2d/746ACMMBFv3qINZt6KOSgpVCfeJrpEJwDNvcmzrtycVXqXX//U6xct4XxjcHaLVUpKSnDGimzbkuRHy5aXpV6F1yzhK5iolQa3C8rSQKYPqGJaxc/ydJVnYOuVSonPvjTe+kuJsY2RhW627FMh+AJLQ0sevQZ1m/p3fHgAfrSgqWs3eIvGEmDt6UMX/vdw1Wr19Vb5ob7n2RcU75qNSVl19Nberns1mVVq3fvivVs6CrS01Pa8eAqqHkIjogTIuLBiFgaER/axvHGiPhh5fgdETGj1j09a1VnD9//Q3VWWJ71u4dWUxyB+6wlDT89Zbh2kFu1+vvxohWs2bTtK99I0s7Y2FVk5brqvvX947uWM66lsao1X0xNQ3BE5IEvAycCBwFvi4iD+g07E1ibUpoFfAH4dC172lo5weKV66tec93mXlqqWlVSFm3pKe3U1WoG4qGnNpKL+rzVKGl0295l0HbVHx9fz1MbenY8sApqvRJ8FLA0pfRISqkH+AEwv9+Y+cC3K49/AhwXUZ8zdKmc6Oyu/orIg09uZLfxY6peV1K2LH9mcB+G25ZiOdFVrM9bjZJGt/uqvJAIsHT1Ruq1qbTWIXgKsPV+gxWV17Y5JqVUBNYDk/oXioh3R8SiiFi0evXqqjRXrtG2ha5iiTrleEmjWHeNwupIvDSmpOGlXC5X/Z0qgJ5imXpFqBHzwbiU0qUppY6UUkd7e3tVajbkavPjj28uUCr74ThJgzOuqVCTurU690nKjlwux7jm6p+j2hoLdftDvdZnwpXAtK2eT628ts0xEdEAjAeernFfAASwR1v1N1/vt2cbf95QvStOSMqml9TgguMtY/I05H2nStLgdey9W9VrHvSScRTyo+M6wXcC+0bEzIgYA5wOXNVvzFXA31Uevxm4MdXpT4CmQnDE3hOrWrNlTJ6xY7z8kKTBK+SCSWOr+/mCV0ybQM4MLKkKXjZlXNVrHrPPJNpb6/O5qpqG4Moe37OBG4AHgB+llO6PiI9HxCmVYZcBkyJiKfB+4AWXUauV5kJw5pyZVa156uFT6nanE0mj2/jmBt5+9PSq1nzXnJmGYElVUcjnOGzahKrVy+eCkw+ZzONru6pWc3tqntZSStemlPZLKe2TUvqvymsfTSldVXnclVI6LaU0K6V0VErpkVr39KwNXWVeMqGJ/fZsrUq9hlzwrjkvpVxKtLoYLGmQNvWUeeuR02iq0h/WUyc2c8DkcfRtBpOkwWkf28D7XrNf1eqdfMhejMkHTQ3eMa7mIoLmQp6LTz+MfBWWRt73mn0Z25ijGIFXIJJUDc2FHP9xcv/Lq++ai08/jPFNDVWpJUmrOovst2crrzt4z0HXmthS4EMnHsj6rk001OnyEJkOwVt6y/QUy+zWUuD8Uwb3S2bOrEm86fBplFPw7dsepj4L+ZJGs96eEsUyHHfgHpwwyF8y73/Nvkye0ERnd4lXXnhjlTqUlGUTW3IUyvCx1x/MzN3H7nKdQj746hlHMK4xz6TmVjp763OFrUyHYICjL7yRBBx/4J58fP7Bu7QiPG//di467RU0Bnz7toe55OZHq96npOzpBT7288VEBOef8jLmHzp5p2tEwAdeux9v7ZhGjuDoC39b/UYlZdJTG4us6Oxit+Yc/3PmURywV9tO12gZk+dbf38kM3Zvobu3zBGfrN85KvMhGPqCcAAnHLQnV793DrP2GNge4dbGBj73lkP55KmHUAj4ugFYUpVdt2QVH/v5Ygj48EkH8pUzDmf8AK/NOX23Fn72ntmcdsRUMABLqoH5X76dP63azKTmHJe/80j+5bhZNAxwQfGYfSZx/Tmv4uDJbTQQdQ3AAG4Oqzj6whu548PHste4Rq74h6NYsXYz37hlGXc9tpanN/3lHtZNhRwHTR7PW4+cyqv2baelkKO7lLjMACypRq5bsgpYzMfecAiz95nIdee8ijsffYbv3fE4i1euZ3PPXz6EMKGlwGHTJnLmnBm8tL2VtsY8m3vKBmBJNTP/y7fzi7Nms3trE2ccPZ23dEzjqnv+zNX3PsFDT22kWP7LlW+nTGjmmH1248w5L2V8cwOUy5TL1D0AgyH4eY6+8EYWfvhYAhhbCD7xhpfRXSyTUqK3nMgFjMnngMTEljFs6e7br+cWCEm19mwQPv8Nh5APmLtfOx2V65z3lhKllGjIBflcUMgFnV29REBnT4lj3AMsqcaeDcLTdhtLPor8/ey9ef2hk8lFPHd75WdvgjG2Mc+jq9bT3jqeyOWGJAADxEi8h3xHR0datGjRoOus3thFZ3dtLuPQ2pinva2pJrUlZYPnKEnDWa3OUdU8P0XEXSmljm0dy/RKcHtbE+07v4dbkurCc5Sk4Wykn6P8YJwkSZIyxxAsSZKkzDEES5IkKXMMwZIkScocQ7AkSZIyxxAsSZKkzDEES5IkKXNG5M0yImI18NgQfOvdgTVD8H1VW87r6OXcjl7O7ejkvI5eQzW3e6eU2rd1YESG4KESEYte7K4jGrmc19HLuR29nNvRyXkdvYbj3LodQpIkSZljCJYkSVLmGIJ3zqVD3YBqwnkdvZzb0cu5HZ2c19Fr2M2te4IlSZKUOa4ES5IkKXMMwZIkScocQ3A/EfHNiFgVEfe9yPGIiIsjYmlE3BsRh9e7R+28AczrOyrzuTgibo+IQ+vdo3bNjuZ2q3FHRkQxIt5cr940OAOZ24iYGxH3RMT9EXFzPfvTrhvAOXl8RPwyIv63MrfvrHeP2nkRMS0iFkTEksq8nbONMcMmRxmCX+hy4ITtHD8R2Lfy37uBr9ShJw3e5Wx/XpcBr04pHQJcwDDcwK8XdTnbn1siIg98GvhVPRpS1VzOduY2IiYAlwCnpJQOBk6rU18avMvZ/r/bs4AlKaVDgbnA5yJiTB360uAUgQ+klA4CXgmcFREH9RszbHKUIbiflNLvgGe2M2Q+cEXqsxCYEBGT69OddtWO5jWldHtKaW3l6UJgal0a06AN4N8swHuBnwKrat+RqmUAc/t24MqU0uOV8c7vCDGAuU1AW0QE0FoZW6xHb9p1KaUnUkp3Vx5vBB4ApvQbNmxylCF4500Blm/1fAUvnGCNbGcC1w11E6qOiJgCvBHftRmN9gMmRsRNEXFXRPztUDekqvkScCDwZ2AxcE5KqTy0LWlnRMQM4DDgjn6Hhk2OahiKbyoNVxExj74QPGeoe1HVfBH4YEqp3LeopFGkATgCOA5oBn4fEQtTSg8NbVuqgtcB9wDHAvsAv46IW1JKG4a2LQ1ERLTS9+7bvw7nOTME77yVwLStnk+tvKYRLiJeDnwDODGl9PRQ96Oq6QB+UAnAuwMnRUQxpfTzoW1LVbACeDqltAnYFBG/Aw4FDMEj3zuBT6W+mxksjYhlwAHAH4a2Le1IRBToC8DfTSlduY0hwyZHuR1i510F/G3l042vBNanlJ4Y6qY0OBExHbgS+BtXkUaXlNLMlNKMlNIM4CfAewzAo8YvgDkR0RARLcDR9O1B1Mj3OH0r/ETEnsD+wCND2pF2qLKH+zLggZTS519k2LDJUa4E9xMR36fvk6i7R8QK4D+BAkBK6avAtcBJwFJgM31/rWqYG8C8fhSYBFxSWTEsppQ6hqZb7YwBzK1GqB3NbUrpgYi4HrgXKAPfSClt91J5Gh4G8O/2AuDyiFgMBH1bmtYMUbsauL8C/gZYHBH3VF47D5gOwy9HedtkSZIkZY7bISRJkpQ5hmBJkiRljiFYkiRJmWMIliRJUuYYgiVJkpQ5hmBJkiRljiFYkkaQygXmPXdL0iB5IpWkYS4iZkTEgxFxBXAf8B8RcWdE3BsR52815k8R8d2IeCAiflK5ixoR8amIWFIZf9FQ/iySNFx4swxJGuYiYgZ9t4ydDYwD3gz8E3130roK+Ax9t5ldBsxJKd0WEd8ElgDfAm4HDkgppYiYkFJaV/cfQpKGGVeCJWlkeCyltBB4beW/PwJ3AwcA+1bGLE8p3VZ5/B1gDrAe6AIui4hT6btNqSRlXsNQNyBJGpBNlf8HcGFK6WtbH6ysFvd/ay+llIoRcRRwHH0ryGcDx9a2VUka/lwJlqSR5QbgHyKiFSAipkTEHpVj0yPimMrjtwO3VsaNTyldC7wPOLTuHUvSMORKsCSNICmlX0XEgcDvIwKgEzgDKAEPAmdttR/4K8B44BcR0UTfKvL7h6RxSRpm/GCcJI0Cle0QV6eUXjbErUjSiOB2CEmSJGWOK8GSJEnKHFeCJUmSlDmGYEmSJGWOIViSJEmZYwiWJElS5hiCJUmSlDn/DyTmkNVv5vr8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3Rc1bnG4d8ejTTqkq3iIvcCNi64yGBjcOj10gk1JIRikhACISGENEiBG1pCIKTQkgvEtITQDMEhFNOMkRu44m7LRZJldWk0bd8/JDnCqI10ZmRx3mctL2tm9tn6MGuNXu3Z59vGWouIiIiIiJt4ersAEREREZF4UwgWEREREddRCBYRERER11EIFhERERHXUQgWEREREdfx9nYB3ZGbm2tHjBjR22WIiIiIyAFsyZIle6y1eW291idD8IgRIygqKurtMkRERETkAGaM2drea9oOISIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKu0yf7BMdLVX2AmsYQAKGwxWMgweMhMcGQn5ncy9WJiNvtqfHTGIoQtpZIBBI8BgOkJyeQnerr7fJERA5oCsFt2FnZQFlNI395fzNFWyoormjY91pmipfJBdlceNhQpg3rR//URJKT9M8oIvERDIYpqwuwamc1f1u0lRXFlVTUB/e9PigrmenD+nHZ7BEMzk5hcHZKL1YrInLgMtba3q4haoWFhTYWJ8ZV1DeypybAd59Zzsod1Z2Oz05N5H/PnsS04f0YoJVhEYmxkmo/63bX8L1nV1BW09jp+LH56fzuwikMyEwmJ10rwyLiPsaYJdbawrZe057gZqXVfv6zppRT73unSwEYoLI+yDf/tpRfvLSKkmp/jCsUETcrqfbz239/ylcfXdylAAywvrSW03//Hi8s30mp3qNERD5Dn+PTtAK8cH0Z33/2425dP/+T3TQEI/zv2ZMYkKUVYRFx1u6qBn796lqeX74z6mvDEcsvXl5N2EY4a0oBeRl6jxIRAa0EA7CnJsDNz33SozneWFvKSx/vpKo+4FBVIiJQ1xjk3Q17uhWAW7v9lbXsqtJqsIhIC9eH4F2VDVz/9HKC4Z7vjb7zX+uobAh2PlBEpIsq60P87IVVPZ7HWvjOk8vYVdXQ+WARERdwfQjeXe1n1c6u7QHuTCAc4S/vbaHGr9VgEem5hkCIfyzdTn0g7Mh8W8rr+bSkxpG5RET6OleH4Mr6Rh59d7Ojc/59STHV/pCjc4qIO+2tC/L4om2OzvnwO5t1k5yICDEOwcaYR40xpcaYle28bowx9xljNhhjPjbGTItlPfurbQzz0ZYKh+cM0RCIODqniLhTKBLpcieIrlq2rZJgWO9RIiKxXgn+K3ByB6+fAoxt/jMX+GOM6/kMa5u2QzhNHzeKiBN2Vjq/f7e2MeTIPRAiIn1dTEOwtXYhsLeDIWcCj9kmi4BsY8ygWNbUWigSmx8EFeoQISIOqIrRjbZaCRYR6f09wQXA9laPi5uf+xxjzFxjTJExpqisrMyRb+4xjkzzOT5vb/+zisgXQZI3ISbzemL15ici0of0mbRmrX3QWltorS3My8tzZE6vx0NakvM/ZA4akOH4nCLiPkP7pzg+Z4LHkKxf1EVEej0E7wCGtno8pPm5uPB4YEJBlqNzGgP905IcnVNE3CktyUtSgrNv02Py0tGOYBGR3g/BLwJfbe4SMROostbuitc3H5SVwgWFQzsfGIXZo3Md/6ElIu7k83o4ccIAR+c8d/oQBmb4HJ1TRKQvinWLtCeBD4CDjTHFxpgrjDHfMMZ8o3nIK8AmYAPwEPCtWNbTllmjc8jweR2b79vHjCE/M9mx+UTEvXLSfXzjS6Mdm8/n9XDa5EF4Y7TXWESkL3Eu/bXBWntRJ69b4JpY1tCZ7JREfn7mBG54ZkWP5zrm4DxG5qU6UJWISJO8DB9nTRnM88t39nium04eR0YM7oMQEemLXP+5farPy+wxuRw3Lr9H8+SmJ/HLsyYyINP5G1lExL0GZCZz08njKMju2XvLjBH9OHXSQDJTdc+CiAgoBANNP2RuP2cSs0fndOv63PQknpo7i0GZ2mcnIs4blJ3CvKsOZ3BW97ZaTR2azf0XTWNgln5JFxFpoRDcbEBmMvecP4UbThiLN4oeml86KI/nr5nNyJwUEhL0MaOIxMbwnDT+8c0jOHXiwC5f4zFw9ZxR/PEr0xnYzQAtIvJFZZq25fYthYWFtqioKCZzV9QFqGwI8NDCTTy3bAf+YNsnK80ancO3jxnD6Lx0/XARkbgpqfZTXNHA/W+s5+1Py2jrLbzlBrhvfmk0/dOSyEnXp1Qi4k7GmCXW2sI2X1MIbltlfYC6QJhaf4g1u6qorA/i8yYwblAGuek+EhM8Cr8i0mtKq/0EwhH21gVYs6uahkCYzJRExg/KJDPZS2pSAv3SFH5FJP7qAyEq6oNU1AVYurWCT0tqiFhLfmYyh43oz7CcVJK9HnIzYp+jOgrBMe0O0ZdlpyaR3dzo4eCBOgFORA4s+ZnJNATCJHsTGJyVjMXgMWAtZKZ4Y3bksohIe8LhMKW1AeZ9uI0nFm2loj7Y5jivx3DCIQP47gkHkZuWRP9e+rRKIVhEpA+x1lJW28iWPfX85b3NLN9eya4qP9B0YuXInDRmjOjHZbNHkp/h01YIEYmLsho/60true7J5ZTVNnY4NhSxvLpyNwtWl3DNMaO55PDhDOiFMxa0HUJEpI+obgiyoayWa+ctY0dlQ6fjJxZkct+FUxmUnUxKotY8RCQ2ymr8vL2ujBv/8XGb9yl05phxefz6nMkxCcIdbYdQdwgRkT6goi7A79/cwDl/eL9LARhg5Y5qTrp3IfM/3k11Q9sfS4qI9EQwGGbd7tpuB2CAN9eWcddr6yip9jtbXCcUgjsQDEXYU9tISbWfnZUN7K7yU1rjpz4Q6u3SRMRFKusD3LNgHQ8u3BT1tcGw5fvPruDVlbuoa9R7l4g4q6wuwPVPL+t2AG7x9yXFrC+pIRwOO1NYF+jzsTbsrQuwty7A4x9s4YNN5WwsqyMcafq/OzAzmUOHZvG1WSMYOyCDnLQkPFH0FRYRiUYoHGHRpnKe+HBbj+a5+blPmDI0m4MHZjpUmYi4XV1jkCc+2Mqe2oAj8938z0946qpZFPSLz8E+CsGtBEIRSqr9fP/ZFXy4eW+bY3ZX+9m9ys9rq0rIz/DxuwuncMjgLLJSEuNcrYi4wZ7aRm589uMezxOx8K2/LePpq2eSq5vlRMQBVQ0h5n3Us1/QW9u+t4GdVQ1xC8HaDtGs1h/i7U/LOP43b7cbgPdXWtPIRQ99yB2vrmVvnTO/BYmItAiHI7y4Yhc1Dm1j2FhWy8bSWkfmEhEpq2mksp02aN31z6XFNAbjs3VLK8GAPxjm/Y17uPqJJd3a0zJv8TbqAiFuOX0C/dOSnC9QRFypvC7Ao+9ubvO1of1TOGH8ACYWZFGQnULLW9emsjo+2VHJv1bubrNH5x/f2sghgzPJSNanVyLSM8u2VTg+54riKspqAwzpF/uIqhBM0zGk1z7Zs03dLyzfyRGjczh76hCSvFpgF5Ge84fC7N7vbukJgzO5/viDiFjLi8t3smD1pxRXNHWL8BgYlZfOtGH9uP+iaZRU+7lnwTp2Vv13jiVbK6hrDCkEi0iPrdlV7ficW8vrMSY+91q5PgSX1zZy/VPLaQxFejzXLS+u4qixeQzOjs9eFhH5Yiup/m/D+QSP4brjxjKxIItbXlzJ9r2fb5MWsbChtJYNpbU8U7SdKUOz+d1FU3mmaDvPFhUDUNMYcuT9TkTcLRKJEIo4f9ZEOGKJV7sB1y9ZltQ0smx7pSNz+YMRnli0laB+wIiIAyqa7zXwegy/u2AKFfUBLv/rR20G4LYs317JJQ99yKSCLL57wkH7ng+G+94hSSJyYPF4PORlOH+Tbf+0pH0duWLN1SG4IRDm4W703ezIEx9upaJeN8mJSM8lNLdf/PkZE3hnwx7+8t6WqOcIhCP87IVVZCZ7+crM4QBxW2URkS+uSCTClKHZjs87sSATn1fbIWKutjHEok3lbb6W4fNy4oQBHDo0mzH56XiMwQC7qvx8sqOKN9aWsnlP3eeuq24IUReIX6NnEfniKshO4eiD80jyenj6o+09mutX89fwxBWH8/6GMnyJrl7/EBEHGGMYkZuGxzRtxXLKzFE5eOK0RuvqEBwIRz5zwwhAbnoS3z3+IMbkp/PSx7t4cvE21pfU7tv3MqRfCpMKsvj+iQeT5kvgvv+sZ+m2z26n2Fhay8jctLj9d4jIF1Oaz8t1x43la48u7vFc4Yjlpy+s5OdnTOzxyU4iIsYYahqCfOmgfN5cV+rInMmJHgqH98Mfp1PjXB2C99+7e8rEgVx11CjuWrCODza2vUJcXNFAcUUDr67czaCsZG45fQLb9tZz12tr9+2zU89gEXFCWlICL27YQ7XfmZ6ZG0prsc3zioj0VKovgSuPGslbn5Y68sv1V2YOZ1NZHUf3T+35ZF3g6s/EWnfguHz2CE6cMJBLHv6w3QC8v11Vfr7xxBI2ltXyx69Mx9fcGk2nKIuIExpCkR4fl7y/v7y3OSZ3dIuI+2QkJ7FsWwVfmzWix3ONyEnluHEDGJydErcWjq4OwQkeQ0piAmccOpgJBVnc8MxyGoLRL8E//dF2nl+2gzvPmwzACG2FEBEHhMIRdu23ZaunirZUEAyrg42I9Fy6L4FQJMKx4/KZNTqn2/NkpSRy53mH8vA7m8jP9OGJ02qiq0OwtXDkmBy+dsQIfvTcJz1ayn/5412U1wY4ffIg+qXq1DgR6bndDgdgaOoTrBZpIuKErOREzpk2lNtfWcP1x4/lfyYPinqO4Tmp/PXrM7jzX2v59rFjSPfFb6euq0NwalIC1x1/ELfNX+NI8/g7X1vLN44ejQ6MExEnxKrdYiiilWAR6bm6QIj6xhC3nH4IiR7D/0wexL0XTGFAZuf9g31eD5fPHsE9Xz4UgDOnDKa02k8kjnfuuvrGuFA4jDGw1KGzr/3BCPM/3sVVR410ZD4RcbfEhNj8Rm3UKVhEHFDbGOb2V9bww1PGc/NzH7OiuIpZo3L433Mm4w+GeX1NCZ8UV7Ftbz0Ra+mflsTEgixmjsph+rB+vLhiJxc8uAif18PTc2dy64uruevLGeRlxKd+V4fgxIQEHnn3U0fnfOLDrVx8+DD6aVuwiPTQ0BjcIe0xkJyo7hAi0nONoTCHjczhL+9vZkVxFQAfbCrng03lDM9JZfboXL4+eyRD+qVgDFTVB1m1s5rXV5dw+ytr9m1DrQ+Emfv4Eu67aCpvrytlcHZKXN6nXB2C6wJhPty019E5qxtCjmytEBFJ83nxeoyj3RxG5aVj0Z5gEem5reX1TCzI5O4F69p8bWt517vb7Kry8/yyHUwcnEmNPxiXEOzq3avGwI7KBsfnXV9S4/icIuI+SR7DsePyHZ3z7KkF5KXp5l0R6RlrLcbAgws3OTbns0XFHDI4i0CcFhNdHYJDMbpDWodliIgT8jKT+dbRox2bLzHBcOaUwfiSXP0hoIg4JD8jmfe7eLZCVwTCERZtKscXpy1brg7BsRKrm1lExF1Kqv3kpPs4ecIAR+a7/viDCIQiMWm9JiLuYoxhY1mt4/Mu3rKXcJx6mbs6rSV6PaTE4LeNMfnpjs8pIu5jgNvmr+anp08gL6PzlkMdmTwki7OnFvDAf9Z/5rRMEZHu+qT5ZjgnrdpRTTBOp1q6OgR7jeGQwZmOz5ub3rMfViIiAPmZydx6xkReX72LJ6+aSV4331vGD8rgT1+Zzj+XFvODU8czIDPZ4UpFxG2steypbXR83sqGAElx+kTd1SE4LyOJc6YVODrn4SP749NpGSLikIFZyZw0YTCLNpbxz2uOYM7Y3Kiuv/iwoTx62QxeWr6D8wqHKgCLiCOMMTEJq4me+GUoV98d4fF4OObgfFISE2gIhh2Z85pjRpOvHzIi4qAkLxw7fiB3vbaW286exKayWu5/YwNFW9s+6CfBYzhuXD7XHjuGJK+H+/6znmuPHUtSgvZBiIhzJg3J5smPtrf52vhBGRw5Jo9JBZn7fvmuC4RZvbOapdsqWPhpWZvtH0fkpuGN03uVq0MwQHZKIj8+bTw/eX5lj+eaNSqHgwc6v71CRNyrrMbPgws38ebaUv56+WF8e94yJg/J5K4vTybR46G4ooFVu6ppCITISklk0pAs8tJ91DWGuG3+GvqlJfGd48Zy4m8XctvZE5kzNpd+adqyJSI9N3VY9ueeO3ZcPlceNZKdlQ38e3UJL3+8k13NN+Nm+LxMKMhk5qgcvnPsGP69ppSHFm4i0OpGuGnDs8lOiU8bR2PjeEazUwoLC21RUZFj85VW+7nuqeV8sKn7bT4yU7y8fO1RDIvBCU8i4k4tAfihdzYDMCYvjX9+aza7qv34gyHW7qolPdnL4KxkjMcQDlu2V9QTikSYXJBFMGwZkOljzp1vUxcIYQzce8EUBWERcURpjZ9Tf/cOe2oDZCZ7ufWMCfiDYe56bR0V9cEOr03wGM6dNoTzC4dw60urWLmjGoD51x7JhIIsx2o0xiyx1ha29ZrrV4Kh6eaT314whW8+sYRl2yujvj4zxctTV81kkLZBiIiDDIaFn+4BwOOBhy8rZGdVA8UVDXiMYfGWvazYXsnGsloiFpISPBw8MINpw/sxpF8qe2sDpPsSeeLKwzj7D+9jLbz88U5mj45uX7GISFt8CR4uO2IEj763hT99ZTp/eHMDb31a1qVrwxHLM0XbWfhpGfdeOIXfv7GBXVUNZKclEY5YEjyx3xKhlWCgIRiirLqRRK+Hh9/ZzKPvbaar/yzThvXjN+cfSlpSAl6vh36pOolJRJxR7Q9Q0xBi7mNFPPS1QtbuqiHR6+HnL61mQ2nn/TlnjurPD04eRygUISPFyz0LPuWXZ00kMzmRNJ/WQESkZ3ZVNdAQCFNeF+B/X1nD0m3RLyQCpPu8PPy1QjKTveSkJ5GW5CU9OdGRGjtaCXZ9G4OGYIhdlX42lNVywj1vc8ToHOZ/5yhOnTQQbwe/hUwsyOSBS6Zx53mT+MbjS/jN659S0xCkol6nxYmIM0JhuOPVdTxy2QyKKxoo2lrBVx9d3KUADLBo014ufmgRW/fWUx8I879nT+Lu1z79zP47EZHusrbpz0srdnY7AAPUNob43jMrSE3ysqWsHk+cmpm7eiW4JQBvKa9j7mNLCEUsWSmJ3HL6eGYM7w/GUFbbyLJtFVTWB/F5E5gwOJORuWl4jKGyIcDNz33Cqp1N+1guOmwo3/zSaDJSErUiLCKOqKgNsLvaz1NF2/m/97d0e57bz57E7DE59Evxkpmq/cAi0nMbSmsoq2nkooc+dGS+S2cO58qjRpKVkki2QzlKe4LbUecPs7W8fl8APnZcPt85dgy/+88GfvTPlRw7Lp9Zo3KYMaI/SQkeLLB5Ty0PvdN0p3ai18Mtp09g5Y4q7vvPep5c3NQm5PrjD+rd/zAR+UIoqfKDgXUlNT0KwAA/e2ElT189E5/XQ7g2QL90/aIuIj2TlODhD29tdGy+Z4q2c9nsEVh0YlzMWSzzP95JKGK55PBhnDttCN+at4zZY3L425WHM6x/Kv9ctoML/ryIk3/3Dqfd9w6/+fd6/MEwvzp7Ej86dTz3LFhHeV2A3188jcQEw3sbut9hQkSktTRfAjX+ELe+tKrHc4Uilp88v5KGYIQE50+LFxGXsdYSilje3bDHsTkbQxEWflrW5fuyesrVK8F5GcncdMo4xg1qauT8jyXF/OGSqfz+jQ38av6az42PWNhQWsuG0lr+sXQHI3JS+cWZE1m2vZLX1+zmt+dPYcrQbJ3IJCKO8AfDLFi1m8pOWg111ZpdNWwtr6NfinPth0TEnYwxrNtd43hgfW/DHk6dNNDZSdvh6pVgaArCJx4ygI+2lHPR4UO59OHFvL6mtEvXbimv56uPLqamIcjx4wcQtpYBWdprJyLO8IcizFu8zdE5H1+0lYaQbowTkZ6x1rJ0W9unVvbEqp3VBMPaDhEXe+sCPFO0nSPH5PGNJ5ZS0xiKeo6H393MW+vKiFjLnlp1hxARZwTDluKKBkfn/GjLXsJtHFUqIhKtvXXOZ56K+kDcukO4PgRX1Ac4ZdIgrntqeY9+MDz10XYiEfhwczlBtR8SEQeUVvsdn7O6IUQoTqssIvLFZYwhMcH5GOn1xC+aujoE+4Nhymoa+eXLq2kIhns8389eWMm4gZlUxOA3IxFxn1j1Hdcv6iLihAmDMx2fc0RuKj5vfOKpq0NwbWOQtKQEFm3a68h8dYEwr3yyi0gf7L0sIgcenzc2bRw8cTiOVES++KYN6+f4nFOH9iM71ZnT4jrj6hBsLTyxaKujcz7+wVYaddOJiDigoF+K43MaA8lxWmURkS+2fmlJ9E9ztuf4edOH0BiMT45y9TthIBThvY3O9vWtqA/qphMRcUS6z0uCw6u2o3LTHJ9TRNwpMcHw9SNGODbfyNw08jJ8RHRYRuxZcPzOa4DNe+ocn1NE3CfN5+WYg/McnfOcaUPITVcrRxHpuWDYcsKEAQx06HyE286eSF1jiHCc7ltwdQiOVR+60prGmMwrIu6SlZLINceMcWy+BI/hrCmD8cbgjm4RcZ/6QIhbnl/J3ecfSk8/YPrarBEs31bJuxv2EK9dpa5+J4zVB4L6qFFEnFKQlczx4/Mdmeu648aSkqgzk0XEGUP7pfLT0yfw5poS7r1gSrfzz+mTB3H0wXl4PYbTJw8mJ06fVrk6BCcmmJi04RiZm+b4nCLiPntq/GyvbODHp47v8c0n4wdlcMahg9lSXk9VjFqviYi7+BITGJufztnThrB8eyV//foMCrK7fkNvUoKHm08ZxymTBrGhtLZpu1ZG/LZruToEG2Ni0uMuT/vtRMQBEeD1NaXc8MwK/nLZDPp1s23Q6Lx07jrvUC55eBHbK+oJqE+wiDikJQifM20I976+nnsvmMIPTjqYQVnt7xP2eT2cXziEp+bOZENZLdvK6zl7akFcAzCAN67f7QCT7kvg1EmDWLqt0rE5pw/vR5LaD4mIAxI9Hhas2s3Gsjp+/tJq/u/yw7ht/mo+3FzR5TnOnVbAJYcP5xtPLGFHpZ8Xlu/kSwc5e7OdiLhbSxD++RkTuPihRcwY2Z9fnjWRDJ+XTWV1bNtbRzgCOelJjBuYQUqSl3+t3MVlf13Mt740hvOmx3cFuIWxffBgh8LCQltUVNTjeay1bN5Txym/e8ex3r6/v3gqR43JIytOjZ5F5Ittd5WfSx5exMayOnLTk/j5GRMJRSI8uHATq3ZWt3mNMXDk6FyumjOKT0tquHvBOvzBCEcflMc95x8at/12IuIuVfUBtpTXc+YD7wHg9RjG5KdT0C8FjzFU1gdYs6uG2sYQAJfOHM51x4+NaccaY8wSa21hW6+5eiXYGEO6z8t1x43lztfW9Xi+6cP7ccigTAVgEXHMwKxk/nblzH1B+Jp5S5lUkMVXZ41gTH46Oyrr2VBaiz8QISPZy0EDM8jP8LF4815+8vxKtu2tB1AAFpGYqqwPUNUQ5Nkl2/c9F4pY1u6uYe3umjaveX/jHubOGUV5TSM5WgnuGqdWgv3BMJv31GGt5SfPr2Lptq5/xLi/dJ+XeVcdjgGG9k8lO9XZE1RExN1arwi3Nqx/KqPy0vB5PdQHwqzbXfO5No0KwCISSy0B+KF3NvHEom1RXTs6L42/fv0wUhMTYhKEO1oJdvXm1drGEA++vYnSmkZ+fuaEbt8kl5aUwJ++Mp2kBA8/+udKHZssIo5rWREenffZ7jPb9tbz1royXltVwjvr9ygAi0hc9SQAA2wsq+OyvyymPhimPM7nLLg6BFsLXz1iOC9/vAtrLbedPZHzC4dGNceEwZk8dsVhZCQn8Ke3N/LLsybiVZ9gEYmB1CQPj11+ONld3HI1YXAmd5w3mXSfq3e+iUiM9DQAt+itIOzqEJyX4aOgXwoXHzaMJxZtIxCKcOy4PB67/DCOPjivw9NPxuSn84szJ/CT0w4h0ePhr+9v4bLZIxmQ6dOKi4g4rqo+wIbSOhZtLqe6Idila7aW17OxrJbiinoag+EYVygibuMPhnscgFu0BOGGUJj65hvnYs3Ve4JblNb4Kd7bwCPvbmb8oExmjOjHzqoGhvdPo6TGz+qd1dT4QyQmeBiTn86ovDQq64OEIxGSvAn8/o31/Oz0CQzI9DEoq+tNokVEuqKqPsDGsjo2l9dx47MriETxtp3u8/LgV6czIMPHkH6p+HRinIg4ZM2uak67751O35O+f+JBHHNwPhc8uGhfZ4j2XD1nFN88erRj91ZpT3An8jOSGdI/hSuOHMknO6r43rMr2FnpByAxwcPwnFTGD8pgbH46GclerG367efR97bw0+dXKgCLSMz0JABD070Pcx9bQklNo1aERcRRg7OSeeDiaR1+cn7jSQdz4YxhjMlP56m5MzvcnnXapEFcceTIuDUX0EpwK6U1fsqqG7n1pVV8tKWpU0Reuo9xgzJI93kJhiNs3lPHpj11WAvJiR5euOZIMlO8CsAi4rieBuDWtCIsIrFQVR/g/Y3lXDNv6efeo2486WAuKBy67yCMxmCY9aW1XNjGivBpkwZxy+mHkJ/Z/klz3aGV4C7KTfPhS0xgQ2ntvufKaht5Z/0eXl25m9fXlLKxrCkAA/iDEVbvrCJDN52ISAyErWWrAwEY/rsivKc2QINWg0XEIVmpSRwxOudzK8L7B2D478ly+68IxyoAd0YhuFkkYtlSXseX//Q+FfVdu+kE4LvPrODfa0qo9Xf9GhGRrkhM8PCr+Ws6DcBHH5THhz867nPt0/ZX2xji9lfW4DHqYCMiztk/CLcVgFvsH4R7KwCDtkMA/w3A5/4xugDc2m8vOJQTxg8gPVmnxYmIMyIRy6Y9dZz3p/epbOe9qXUf4PYO1GgxOi+Nv105k4FZ8f9hIyJffFX1ASrqg6T7vG0G4NYag2F2VflJTUqIaQDWdogOOBGAAb77tFaERcRZHo9hVG4af//GEW32BlDfP9EAACAASURBVN7/IIz2DtQABWARib2s1CRG5KZ1GoChaUV4RG5ar6wAt3B1CHYqALdQEBYRp7UXhNs7Ca6tIKwALCLyea4OwdX+ID97YVWnAbggO4VXrzuKkyYM7HTOn/xzJcFw39tiIiIHrv2DcGdHIbcOwgrAIiJti/meYGPMycDvgATgYWvtr/d7fRjwf0B285gfWmtf6WhOp/YEV9QH2FnZwA/+/jGrdla3OaYgO4UHLpnGwMxkdlY18Oe3N/Haqt1tjk1NSuDBS6czsSArbj3uRMQ9IhHLjsoGUpMSunQy5e6qpn7nCsAi4la9tifYGJMAPACcAhwCXGSMOWS/YT8BnrHWTgUuBP4Qy5pa65eaRF56Er8+ZxITBmd+7vWWADwg08fArGSG9Evh6i+NanNFuCUAD8hMJln9N0UkBjwew9D+qV0+mn1gVrICsIhIO2K9HeIwYIO1dpO1NgA8BZy53xgLtCTQLGBnjGv6jPzMFAZk+j4XhFsH4JaDMPIz2g7CrQPw0P6pCsEiIiIiB7hYh+ACYHurx8XNz7V2K/AVY0wx8ApwbVsTGWPmGmOKjDFFZWVljha5fxBuKwDvG7tfEFYAFhEREel7Yron2BhzHnCytfbK5seXAodba7/daswNzXXcY4yZBTwCTLTWRtqbN2bHJlc3UFLdSMRCfhsB+DNja/wUVzSQYAypSQkKwCIiIiIHmI72BMf6vN8dwNBWj4c0P9faFcDJANbaD4wxyUAuUBrj2j4nP7Mp9IYidBiAoWlFGCAQjJCb4VMAFhEREelDYr0d4iNgrDFmpDEmiaYb317cb8w24DgAY8x4IBlwdr9DFPIzUxic3XEA3jc2I5khWgEWERER6XNiGoKttSHg28BrwBqaukCsMsb8whhzRvOw7wFXGWNWAE8Cl9m+eJaziIiIiPQZsd4OQXPP31f2e+5nrb5eDcyOdR0iIiIiIi1cfWKciIiIiLiTQrCIiIiIuI5CsIiIiIi4jkKwiIiIiLiOQrCIiIiIuI5CsIiIiIi4jkKwiIiIiLiOQrCIiIiIuI5CsIiIiIi4jkKwiIiIiLiOQrCIiIiIuI5CsIiIiIi4jkKwiIiIiLiOQrCIiIiIuI5CsIiIiIi4jkKwiIiIiLiOQrCIiIiIuI5CsIiIiIi4jkKwiIiIiLiOQvB+guEw9YFQl8fXNXZ9rIiIiIgcGBSCWwmGw6zbXcvizXtpCIQ7HV9cUc9zS4upagjEoToRERERcYq3tws4ULQE4C//6QMC4QiPfK2Qw0fmkJKU0Ob44op6vvynD9hV5aeuMcxFhw8lKyUpzlWLiIiISHdoJZjPBuCGYJhwxHLF/xXx4ebyNleEWwdggF//ay1PfrhdK8IiIiIifYTrQ/D+AbhFe0F4/wDcQkFYREREpO9wdQhuLwC3aB2E/cFwuwG4hYKwiIiISN/g6hBc1xjm/v+sbzMAt2gJwo99sKXDANzioXc2EQpbhysVERERESe5+sa47NQkbj9nEvXBMO+s39PuuHDEcvsrazudLyctib9/8wj6p+kGOREREZEDmatXggFy0n3ce8EUjhqb27N5mgPwiJxUjDEOVSciIiIiseD6EAw9D8IKwCIiIiJ9i0Jws+4GYQVgERERkb5HIbiVnHQf93z5UG4/a2KXxh99UC4vXTtbAVhERESkj1EIbqWiLsCK4iqq/EF+eMq4DsfOHpPD3C+N5k9vb6KspjFOFYqIiIiIExSCm1XUBSjaWsHVjxdxx7/WEQrbdoPw7DE5XHPMGK5+bAmPfbCVO19bR2l1x63TREREROTAoRDMZwNwpLnF790L2g7CrQNwTWMIgL8vKVYQFhEREelDXB+C2wrALfYPwm0F4BYKwiIiIiJ9h6tD8N4OAnCLliD8+4umthuAWygIi4iIiPQNrj4xLhSO8PrqknYDcIu7F6zjvGkFvLaqpN0A3GLp1gp0aLKIiIjIgc3VITg/M5kbThhLyEb4x5IdHY79+9KOXwcYlZvGX74+g+zURKdKFBEREZEYcPV2CIABWSn84MSDOXd6QY/maQnAA7OS8XkTHKpORERERGLB9SEYeh6EFYBFRERE+haF4GbdDcIKwCIiIiJ9j0JwKwOyUrj5lPHMHp3TpfEpiQk8NXemArCIiIhIH6MQ3Io/EKKk2s/HxVVdGt8QDPPSxzupqg/GuDIRERERcZJCcDN/IMTGPXVc+OdFnbZBa+2XL6/hhRU71RtYREREpA9RCKb7AbjFbfMVhEVERET6EteH4J4G4BYKwiIiIiJ9h6tDcDQB2JjO51MQFhEREekbXB2CawNh7nptXacBeFRuGh/9+Hi+PH1Ip3P+/o0NJHi6kJhFREREpNe4OgTnpvu449zJFA7v1+6YUblpPH7FYeSm+7jxpIM7DMJZKYk8ffVM0n2uPo1aRERE5IDn6hAMMCAzmQcumdZmEG4JwAX9UgHIz0xuNwi3BOCROWn4EtUzWERERORA5voQDG0H4f0DcIu2grACsIiIiEjfohDcrHUQbi8At2gdhBWARURERPoeY63t7RqiVlhYaIuKimIyd0m1n3DEMjg7pdOxpdV+gmFLbnqSArCIiIi42t66RhoCERITDPmZyR2O9QdClNUGSPJ6GNDJ2J4wxiyx1ha29ZpWgvczIDO5SwEYmlaEC/qlKACLiIiIq+2ta2TZtkrm3PUmL3bSLtYfCLG5vJ7T7nuHO15dS0kvtZZVCBYRERGRbmsJwHMfX0I4YvnV/DXtBuGWAHzBnz+g2h/iuWU7ei0IKwSLiIiISLfsH4BbtBWE9w/ALXorCKuhrYiIiIhErb0A3OJX89cAcMahg8lM9rYZgFs8t2wHADedMi6me4RbUwgWERERkaiVVDe2G4Bb/Gr+GiwwZ2xeuwG4xXPLdjAwK5krjhxJTrovBhV/lrZDiIiIiEjUctKSOGdqQafjbpu/hpPuXdhhAAYYnpPKxYcPi0sABoVgEREREemGjk7SjdbwnFT+duXhDGnnjIZYUAgWERERkW5xIgj3RgAGhWARERER6YGeBOHeCsDQjRBsjBljjDnXGHNILAoSERERkb6lO0G4NwMwdCEEG2PeNMbkNn99KfAKcArwtDHm2hjXJyIiIiJ9QGayl68dMaLL448bl09qUu81KuvKd86z1u5p/vo7wCxrbbkxJhVYBNwfs+pERERE5IDXchDGxQ8t6vI1j763hUHZyZx5aAH5ceoN3FpXtkMEjTEt/S9qgbrmrxuBhJhUJSIiIiJ9QnsnwXXFbfPX8sKKHW0esRxrXVkJ/i6wwBjzD2AV8IYx5jXgSOAvsSxORERERA5cPQnALW6bvxYg7ivCna4EW2vfAo4AdgFBYAngB6611t4d0+pERERE5IDkRABu0Rsrwl3ajWytrQL+2NEYY8z91lrdKCciIiLiAsWV/i4F4GH9Uzl4YDr/Xl3a4bjb5q8lKSGBUycOJC8OK8JO3pI328G5REREROQAlu7zMnZABku2VrQ7pqUNWnJiAtkpa3l2SXG7YzOTvcwY0Z+M5Ph0jNBhGSIiIiIStYFZyTxw8TSmD+/X5uut+wDnpvs67COcmezlqbmzGJWbSnKc2qYpBIuIiIhIt7QXhNs6CKO9AzV6IwCDsyHYODiXiIiIiPQB+wfhjk6C2z8I91YAhihCsDFmUidDftfOdScbY9YZYzYYY37YzpjzjTGrjTGrjDHzulqTiIiIiPS+liB81pSCTo9CbgnCX589otcCMICx1nZtoDHvAD7gr8DfmjtGdHZNAvApcAJQDHwEXGStXd1qzFjgGeBYa22FMSbfWtvh7YOFhYW2qKioS3WLiIiISHyU1zaSk+7r0tjSaj+Zyd6YBmBjzBJrbWFbr3V5JdhaexRwCTAUWGKMmWeMOaGTyw4DNlhrN1lrA8BTwJn7jbkKeMBaW9H8fTrunyEiIiIiB6SuBmBoWhHujRXgFlHtCbbWrgd+AtwEfAm4zxiz1hhzTjuXFADbWz0ubn6utYOAg4wx7xljFhljTm5rImPMXGNMkTGmqKysLJqyRUREREQ+I5o9wZONMb8F1gDHAqdba8c3f/3bHtTgBcYCRwMXAQ8ZY7L3H2StfdBaW2itLczLy+vBtxMRERERt4tmJfh+YClwqLX2GmvtUgBr7U6aVofbsoOm7RMthjQ/11ox8KK1Nmit3UzTHuKxUdQlIiIiIhKVaELwacA8a20DgDHGY4xJBbDWPt7ONR8BY40xI40xScCFwIv7jXmeplVgjDG5NG2P2BRFXSIiIiIiUYkmBL8OpLR6nNr8XLustSHg28BrNG2jeMZau8oY8wtjzBnNw14Dyo0xq4E3gRutteVR1CUiIiIiEpVobslLttbWtjyw1ta2rAR3xFr7CvDKfs/9rNXXFrih+Y+IiIiISMxFsxJcZ4yZ1vLAGDMdaHC+JBERERGR2IpmJfh64FljzE6ajkgeCFwQk6pERERERGKoyyHYWvuRMWYccHDzU+ustcHYlCUiIiIiEjvRHtMxAxjRfN00YwzW2sccr0pEREREJIa6HIKNMY8Do4HlQLj5aQsoBIuIiIj0gmAwSHFxMX6/v7dL6VXJyckMGTKExMTELl8TzUpwIXBIczcHEREREellxcXFZGRkMGLECIwxvV1Or7DWUl5eTnFxMSNHjuzyddF0h1hJ081wIiIiInIA8Pv95OTkuDYAAxhjyMnJiXo1PJqV4FxgtTFmMdDY8qS19oz2LxERERGRWHJzAG7RnX+DaELwrVHPLiIiIiJfWJWVlcybN49vfetbvV1K1Lq8HcJa+zawBUhs/vojYGmM6hIRERGRA1xlZSV/+MMferuMbulyCDbGXAX8Hfhz81MFwPOxKEpEREREDnw//OEP2bhxI1OmTOHGG2/krrvuYsaMGUyePJlbbrkFgC1btjBu3Dguu+wyDjroIC655BJef/11Zs+ezdixY1m8eDEAt956K5deeimzZs1i7NixPPTQQwDs2rWLOXPmMGXKFCZOnMg777zjSO3R3Bh3DTAbqAaw1q4H8h2pQkRERET6nF//+teMHj2a5cuXc8IJJ7B+/XoWL17M8uXLWbJkCQsXLgRgw4YNfO9732Pt2rWsXbuWefPm8e6773L33Xdz++2375vv448/5o033uCDDz7gF7/4BTt37mTevHmcdNJJLF++nBUrVjBlyhRHao9mT3CjtTbQsvHYGOOlqU+wiIiIiLjcggULWLBgAVOnTgWgtraW9evXM2zYMEaOHMmkSZMAmDBhAscddxzGGCZNmsSWLVv2zXHmmWeSkpJCSkoKxxxzDIsXL2bGjBlcfvnlBINBzjrrLMdCcDQrwW8bY34EpBhjTgCeBV5ypIoDSEm1n52VDV0aW1bjZ0dFA8FQJMZViYiIiBzYrLXcfPPNLF++nOXLl7NhwwauuOIKAHw+375xHo9n32OPx0MoFNr32v5dHowxzJkzh4ULF1JQUMBll13GY485c05bNCH4h0AZ8AlwNfCKtfbHjlRxgCip9nPN35bylYc/ZEdFx0G4rMbP3a+t49T73mHTnjoFYREREXGdjIwMampqADjppJN49NFHqa2tBWDHjh2UlpZGNd8LL7yA3++nvLyct956ixkzZrB161YGDBjAVVddxZVXXsnSpc70ZYgmBF9rrX3IWvtla+151tqHjDHXOVLFAaAlABdtrWDTnjoufaT9INwSgJ8uKqaqIcj5f/5AQVhERERcJycnh9mzZzNx4kT+/e9/c/HFFzNr1iwmTZrEeeedty8gd9XkyZM55phjmDlzJj/96U8ZPHgwb731FoceeihTp07l6aef5rrrnImfpqunIBtjllprp+333DJr7VRHKolCYWGhLSoqcmy+1gG4tVG5aTx+xeEU9EvZ91zrANxaVkoiz1w9i1G5aSR6o/ndQkRERKR71qxZw/jx43u7DEfceuutpKen8/3vf79b17f1b2GMWWKtLWxrfKdpzRhzkTHmJWCkMebFVn/eBPZ2q8oDSHsBGPjcinB7ARjQirCIiIhIH9KV7hDvA7toOjb5nlbP1wAfx6KoeCmvbeSmf3zcZgBu0RKEn/3GrHYDcIuWIPzG975ETrqv3XEiIiIi8lm33nprXL9fpyHYWrsV2ArMin058ZXu83LjSQezZEsFNY2hdsdt2lNH4W2v05WdI98+doz6xomIiIgc4KI5Me4cY8x6Y0yVMabaGFNjjKmOZXGx5ktMYExeOk9dPZMMX8e/D3QlAP/4tPGcPbWAXK0Ci4iIiBzQormD607gDGttlrU201qbYa3NjFVh8RJNEO6IArCIiIhI3xFNCC6x1q6JWSW9qKdBWAFYREREpG+JJgQXGWOebu4WcU7Ln5hVFmfdDcIKwCIiIuJml19+Ofn5+UycOLG3S4lKNCE4E6gHTgROb/7zP7Eoqrf4EhMYnJXCpCFZXRqfkpigACwiIiKudtlll/Gvf/2rt8uIWpeXPK21X49lIQeClj7A728s79L4hmCY8//0wecO1BARERE5EL366qs88MADlJSUMGDAAK655hpOOeWUHs05Z84ctmzZ4kyBcRRNd4iDjDH/McasbH482Rjzk9iVFl8dHYTRkc6OWBYRERE5ELz66qvcdttt7N69G2stu3fv5rbbbuPVV1/t7dJ6RTTbIR4CbgaCANbaj4ELY1FUvHU3ALdQEBYREZED3QMPPIDf7//Mc36/nwceeKCXKupd0YTgVGvt4v2ea/+EiT6ipwG4hYKwiIiIHMhKSkqiev6LLpoQvMcYMxqaDkQzxpxH03HKfVZZjZ/f/PvTLgXgc6YVkN5J14iWIFxS7e9wnIiIiEi8DRgwIKrnv+iiCcHXAH8GxhljdgDXA9+MSVVxkpjg4eiD8/GYjsf9+LTx3PI/h/DU3JmdBuFDh2Z3Op+IiIhIvF1zzTUkJyd/5rnk5GSuueaaHs170UUXMWvWLNatW8eQIUN45JFHejRfvETTHWITcLwxJg3wWGtrYldWfGSnJnH4yP788SvT+eYTS4i0cTRySx/grNQkkhMTeGruTC58cBG1jZ/fCXL21AJ+dOo48jKSPz+RiIiISC9q6QLhdHeIJ5980ony4i6a7hDXGWNaegX/1hiz1BhzYuxKi4/WQXj/Fdz9D8LwJSYwNj+9zRVhBWARERE50J1yyim8/PLLfPTRR7z88ss9DsB9WTTbIS631lbTdFhGDnAp8OuYVBVnbQXh9k6CaysIKwCLiIiI9C1dPx8YWtZJTwUes9auMsZ8YXa/tg7C2/fWc1YHJ8G1DsJPLt7G9cePVQAWERER6UOiCcFLjDELgJHAzcaYDCASm7J6R0sQnjasX6dHIbcEYQVgERERkb4nmhB8BTAF2GStrTfG5ABfuKOUs1OTujzWl5hAXmJCDKsRERERkVjoNAQbY8ZZa9fSFIABRn2BdkGIiIiIiAt1ZSX4BmAucE8br1ngWEcrEhEREZE+Yfv27Xz1q1+lpKQEYwxz587luuuu6+2yuqTTEGytndv89zGxL0dERERE+gqv18s999zDtGnTqKmpYfr06ZxwwgkccsghvV1ap6LpE/zl5pvhMMb8xBjznDFmauxKExERERGnBINBrr32Wq699lrq6+v3fR0MBrs956BBg5g2bRoAGRkZjB8/nh07djhVckxF0yf4p9baGmPMkcDxwCPAn2JTloiIiIg46YYbbmDp0qUsXbqUU089dd/XN9xwgyPzb9myhWXLlnH44Yc7Ml+sRROCw81/nwY8aK2dD3S9lYKIiIiI9LrGxkZqa2tpbGx0bM7a2lrOPfdc7r33XjIzMx2bN5aiCcE7jDF/Bi4AXjHG+KK8XkRERER6yR133EFiYuJnnktMTOTOO+/s0bzBYJBzzz2XSy65hHPOOadHc8VTNCH2fOA14CRrbSXQH7gxJlWJiIiIiKNuuummz+3/DQaD/OAHP+j2nNZarrjiCsaPH+/Ytop46XIIttbWAy8AdcaYYUAisDZWhYmIiIiI83w+H+np6fh8HZ+O2xXvvfcejz/+OG+88QZTpkxhypQpvPLKKw5UGXtdPjHOGHMtcAtQwn+PS7bA5BjUJSIiIiIO+s1vfrNvtfaOO+7gpptu2vd8dx155JFYax2pL96iOTb5OuBga215rIoRERERkdhITEzk/vvv3/e49dduFM2e4O1AVawKERERERGJl2hWgjcBbxlj5gP7empYa7u/hi4iIiIi0guiCcHbmv8kof7AIiIiItKHdTkEW2t/DmCMSW9+XBurokREREREYqnLe4KNMRONMcuAVcAqY8wSY8yE2JUmIiIiIhIb0WyHeBC4wVr7JoAx5mjgIeCIGNQlIiIiIn3EiBEjyMjIICEhAa/XS1FRUW+X1KloQnBaSwAGsNa+ZYxJi0FNIiIiItLHvPnmm+Tm5vZ2GV0WVXcIY8xPgcebH3+Fpo4RIiIiInKAmzNnDvX19Z97PjU1lYULF/ZCRb0rmj7BlwN5wHPAP4Dc5udERERE5ADXVgDu6PloGGM48cQTmT59Og8++GCP54uHaLpDVADfiWEtIiIiItIHvfvuuxQUFFBaWsoJJ5zAuHHjmDNnTm+X1aFoukP82xiT3epxP2PMa7EpS0RERET6ioKCAgDy8/M5++yzWbx4cS9X1LlotkPkWmsrWx40rwznO1+SiIiIiPQVdXV11NTU7Pt6wYIFTJw4sZer6lw0N8ZFjDHDrLXbAIwxwwEbm7JEREREpC8oKSnh7LPPBiAUCnHxxRdz8skn93JVnYsmBP8YeNcY8zZggKOAuTGpSkREREQclZqa2m53iJ4YNWoUK1as6NEcvSGaG+P+ZYyZBsxsfup6a+2elteNMROstaucLlBEREREes6NbdA6Es1KMM2h9+V2Xn4cmNbjikREREREYiyaG+M6YxycS0REREQkZpwMwbpJTkRERCTOrFUE686/gZMhWERERETiKDk5mfLyclcHYWst5eXlJCcnR3VdVHuCOxFwcC4RERER6cSQIUMoLi6mrKyst0vpVcnJyQwZMiSqa6IKwcaYycCI1tdZa59r/ntmO5eJiIiISAwkJiYycuTI3i6jT+pyCDbGPApMBlYBkeanLfBcDOoSEREREYmZaFaCZ1prD4lZJSIiIiIicRLNjXEfGGMUgkVERESkz4tmJfgxmoLwbqCRpr7A1lo7OSaViYiIiIjESDQrwY8AlwInA6cD/9P8d4eMMScbY9YZYzYYY37YwbhzjTHWGFMYRU0iIiIiIlGLZiW4zFr7YjSTG2MSgAeAE4Bi4CNjzIvW2tX7jcsArgM+jGZ+EREREZHuiCYELzPGzANeomk7BPDfFmntOAzYYK3dBGCMeQo4E1i937hfAncAN0ZRj4iIiIhIt0SzHSKFpvB7Ik3bIFq2RHSkANje6nFx83P7GGOmAUOttfM7msgYM9cYU2SMKXJ7Q2gRERER6ZkurwRba7/u9Dc3xniA3wCXdeH7Pwg8CFBYWOjeswFFREREpMeiOSwjGbgCmADsO5zZWnt5B5ftAIa2ejyk+bkWGcBE4C1jDMBA4EVjzBnW2qKu1iYiIiIiEo1otkM8TlNIPQl4m6ZAW9PJNR8BY40xI40xScCFwL6b66y1VdbaXGvtCGvtCGARoAAsIiIiIjEVTQgeY639KVBnrf0/4DTg8I4usNaGgG8DrwFrgGestauMMb8wxpzR3aJFRERERHoimu4Qwea/K40xE4HdQH5nF1lrXwFe2e+5n7Uz9ugo6hERERER6ZZoQvCDxph+wE9p2tKQDrQZZkVEREREDmTRdId4uPnLt4FRsSlHRERERCT2urwn2BgzwBjziDHm1ebHhxhjrohdaSIiIiIisRHNjXF/pekGt8HNjz8Frne6IBERERGRWIsmBOdaa58BIrCv80M4JlWJiIiIiMRQNCG4zhiTA1gAY8xMoComVYmIiIiIxFA03SFuoKkrxChjzHtAHnBeTKoSEREREYmhaELwauCfQD1NJ8U9T9O+YBERERGRPiWa7RCPAeOA24H7gYNoOkpZRERERKRPiWYleKK19pBWj980xqx2uiARERERkViLZiV4afPNcAAYYw4HipwvSUREREQktjpdCTbGfEJTR4hE4H1jzLbmx8OBtbEtT0RERETEeV3ZDvE/Ma9CRERERCSOOg3B1tqt8ShERERERCReotkTLCIiIiLyhaAQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIirqMQLCIiIiKuoxAsIiIiIq6jECwiIiIiruPt7QJERKRtZTV+ahvDMZk73ZdAXkZyTOYWEXfYU9NIbWPI8XnTfV5yM3yOz7s/hWARkQNUbWOYY+5+KyZzv/n9o8nLiMnUIuIStY0hjo7Be9Rb3z86LiFY2yFERERExHUUgkVERETEdRSCRURERMR1FIJFRERExHUUgkVERETEdRSCRURERMR1FIJFRERExHUUgkVERETEdRSCRURERMR1FIJFRERExHUUgkVERETEdRSCRURERMR1FIJFRERExHUUgkVERETEdRSCReT/27v3KDvr+t7j7+/eszOXzORCGC4mgSDhLiAwXE9YJoAtl1OiVBQtvVgs5yyxh4ocRWs9om1RpNTFKViptEirpVWpUgVBJSAXg4TLIRKEBgIkCCSB3GaSuezZv/PHbDDEIUyy97Pn8rxfa7HYez+/+c531m/lmc/89m8/jyRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJ39JhdwAAFK1JREFUudM02g2MpnU9/XT3lTOp3d7cxPTJkzKpLUmSpNrkOgR395U58fJFmdS+++MLDMGSatLeXGTRxfMzqy1JtWhrLvLji96RSd1GyHUIlqSxrLOjhc6O0e5CkobXN1DhlCvvqnvduz++oO41h+OeYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5k3kIjohTI+KJiFgeEZcMc/yiiFgWEY9GxE8iYu+se5IkSVK+ZRqCI6IIXA2cBhwMvD8iDt5m2MNAV0rpMODbwOVZ9iRJkiRlvRJ8DLA8pfR0SqkfuBFYuPWAlNKilNLm6tPFwKyMe5IkSVLOZR2CZwIrt3q+qvraGzkPuHW4AxFxfkQsiYgla9asqWOLkiRJypsx88G4iDgX6AK+NNzxlNK1KaWulFJXZ2dnY5uTJEnShNKUcf3ngdlbPZ9Vfe11IuIU4M+Bd6SU+jLuSZIkSTmX9UrwA8B+EbFPREwCzgFu3npARBwBfBU4M6W0OuN+JEmSpGxDcEqpDHwEuA14HPj3lNJjEfG5iDizOuxLQDvwrYh4JCJufoNykiRJUl1kvR2ClNItwC3bvPaZrR6fknUPkiRJ0tYyD8FjWXOpwKKL52dWW5Jqsa6nn+6+cia125ubmD55Uia1JeVDVjmqURkq1yG4p2+QBVfcmUntRRfPh45MSkvKie6+MideviiT2nd/fIEhWFJNsspRjcpQLldKkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknKnabQbGE2tpQI3nn9cZrUlqRbNpQKLLp6fWW1JqkVWOapRGSrXIbi3XOGcaxdnUvvO/z0/k7qS8qOnb5AFV9yZSe1FF8+HjkxKS8qJvoxy1F0NylC5XgpIaXzWliRJGm2VjLJOVnW3lesQLEmSpHwyBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJI1REeOztiSNB02j3cBoam8usuji+ZnVlqRatDQVuPH84zKrLUm1yCpHNSpD5ToEd3a00Nkx2l1I0vC2DFQ459rFmdTOagFAUn6M9xzlUoAkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSePIZ04/gD3af/38hH2msOhj7+D+T53EbRfOe92xdx+2B+8+bI/GNylJ40CklEa7hx3W1dWVlixZUnOdNZt66e4bfO15C1AoFUkkWkoFevoG6R2o8PTabtZvHqC5VGBuZztTW0sUC8G05mDTQDC1pcDzG/pfV7u9uUhnR0vNPUrKr9Ube9nYW37t+cypJTb1JdqbEpvKUB5MbOwts3x1N70Dg3S0lJi722RaS0XaSgUqg1AOKKQyG/peX3tKSxO7TfEcJWnnbZujprUUKRSLtDXBmp4BBivwcncfK9b2MJgSu3W0sNcubTQVg872Ept6K5QrFbYMVF5Xt54ZKiIeTCl1DXesqS7fYZzq7htkwRV3AkMrJpeccQilYqKnP/EPdz/Ft5asfN0voFcVAhYcsBsXLJjLW6a2sGFjmdam4LgvLHptzKKL59PZ0aifRNJE1NM/yClX3gXAbRfO4+XNBZoKwdPr+rnmzuXc/thLlCu/uZDRNqnIWUfO5EPz3srkSQUq0cTtS5/l8h8tf23MoovnN+rHkDRBbZ2jHvr0yUQktvSVeWDFRq658ykeem7dsF+3x5QW/vCEvVn49pl0NBcBOOXLd9C9Zeh4ozKU2yEYCsCfOuMQEnDTwy9wypV3cd09K4YNwACVBD/55WrO+sp9XPr9ZfQXC8yYXGLxJQsa27ikXLjtwnnsM6OVYiH40m1P8N//7z3csvTFYQMwwOb+Qf5l8XOccuVdfPPnK0kp8XtH783H3zm3wZ1LyoOHPn0yAazbPMj//MZDfOiGJW8YgAFe3NjLF3/4BKdfdTeLV7wCCX78ZyfR3tq4nsEQ/NoKcCXgz/9jKX/5g8fpK1fe/Aurbv3Fi/zuNfexan2fQVhS3b0agF/qLnPOtYv5zkPPj/hry5XE3/74v7jwxkfoTRiEJdXdQ58+GUg8tXYzp191D4+sXD/ir12/eYA/ueFBrv/ZM0Djg3Cu9wS/sLZnaA9wSnz+B8v4wdIXd7rWHlNauOnDJ9A8WGGgGGwpJ/bZdXLNPUrKr96+PtZuHqRYCN5/7WKeeXnzTtc6ce6ufOnsw4gIvvPAs5x2+CzPUZJqsq67l+ZSgefW9fKuq++ld2Dki4jb+sSpB/CeI2cxmBJbBip1Oz9tb09wrleCi5OKNDfBgyvX1xSAYWhp/3P/+Rj9xQKFQoHpDV7SlzTx9AxAU8CXf/RfNQVggLuXr+Unj6+mVID3HjunPg1KyrU13QNs7B3kI998uKYADHDF7U+ytqefUgHaSo2Jp7kOwQVg80DiUzctrUu9Hz72Es+v38LU5mDdlrqUlJRjzVRYv6XMvy1ZWZd6n//BMnrLicHB2n5ZSRLAXtNauGXpiyxf3V1zrcFK4hPfeZS+cmJyc9ShuzeX6xA8ra2JJc+8woYtA3Wr+XeLlrNui79gJNVuSwW++tOn6lavd6DCbY+9yJSWYt1qSsqvl7cMcN09K+pW79FVG9jYW6a/f/DNB9dB5iE4Ik6NiCciYnlEXDLM8eaI+Lfq8fsjYk7WPb1qdXc///rz+qywvOqnT66hPA73WUsae/orcEuNW7W29a0lq1jbM/yVbyRpR2zqLfP8+vq+9f2tB1cypa25rjXfSKYhOCKKwNXAacDBwPsj4uBthp0HrEspzQX+Fvhilj1trZJg6fMb6l5z/eYB2upaVVIebekf3KGr1YzEky9tohCNeatR0sS2vcug7ayHn9vASxv733xgHWS9EnwMsDyl9HRKqR+4EVi4zZiFwNerj78NnBzRmDP0YCXR3Vf/FZEnXtzELlMn1b2upHxZ+UptH4YbTrmS6C035q1GSRPbL+q8kAiwfM0mGrWpNOsQPBPYer/Bquprw45JKZWBDcCMbQtFxPkRsSQilqxZs6YuzVUy2rbQWx6kQTle0gTWl1FYHY+XxpQ0tlQqlbq/UwXQX67QqAg1bj4Yl1K6NqXUlVLq6uzsrEvNpkI2P/7U1hKDFT8cJ6k2U1pKmdTN6twnKT8KhQJTWut/jupoLjXsD/Wsz4TPA7O3ej6r+tqwYyKiCZgKvJxxXwAEsFtH/Tdf7797B7/aWL8rTkjKp7dkcMHxtklFmoq+UyWpdl1771L3mge/ZQql4sS4TvADwH4RsU9ETALOAW7eZszNwB9WH78HuCM16E+AllJw1N7T61qzbVKRyZO8/JCk2pUKwYzJ9f18wdtnT6NgBpZUB2+bOaXuNY/fdwad7Y35XFWmIbi6x/cjwG3A48C/p5Qei4jPRcSZ1WHXATMiYjlwEfAbl1HLSmspOG/ePnWtedaRMxt2pxNJE9vU1iY+cOxeda35oXn7GIIl1UWpWOCI2dPqVq9YCM44dE+eW9dbt5rbk3laSyndklLaP6W0b0rpr6qvfSaldHP1cW9K6eyU0tyU0jEppaez7ulVG3srvGVaC/vv3l6Xek2F4EPz3kplMNHuYrCkGvX0V3jf0bNpqdMf1rOmt3LgnlMY2gwmSbXpnNzER9+5f93qnXHoHkwqBi1N3jEucxFBa6nIVeccQbEOSyMffed+TG4uUI7AKxBJqofWUoG/OGPby6vvnKvOOYKpLU11qSVJq7vL7L97O799yO4115reVuKS0w5iQ28PTQ26PESuQ/CWgQr95Qq7tJW49MzafsnMmzuD3z1yNpUUfP3ep2jMQr6kiWygf5ByBU4+aDdOrfGXzEXv3I89p7XQ3TfIcZfdUacOJeXZ9LYCpQp89ncOYZ9dJ+90nVIx+Ptzj2JKc5EZre10DzTmClu5DsEAx152Bwk45aDd+dzCQ3ZqRXjBAZ1ccfbbaQ74+r1Pcc1dz9S9T0n5MwB89rtLiQguPfNtLDx8zx2uEQEf+639eV/XbAoEx172k/o3KimXXtpUZlV3L7u0Fvjn847hwD06drhG26Qi//RHRzNn1zb6Bioc9deNO0flPgTDUBAO4NSDd+f7fzqPubuNbI9we3MTf/Pew/nrsw6lFPAPBmBJdXbrstV89rtLIeCTpx/EV849kqkjvDbnXru08R8fPoGzj5oFBmBJGVh49X38cvVmZrQWuP6DR/O/Tp5L0wgXFI/fdwY/vPBEDtmzgyaioQEYwM1hVcdedgf3f/Ik9pjSzA1/fAyr1m3ma3ev4MFn1/Fyz6/vYd1SKnDwnlN539GzOHG/TtpKBfoGE9cZgCVl5NZlq4GlfPZdh3LCvtO59cITeeCZV/jm/c+x9PkNbO7/9YcQprWVOGL2dM6bN4e3drbT0Vxkc3/FACwpMwuvvo/vXXACu7a3cO6xe/Hertnc/Miv+P6jL/DkS5soV3595duZ01o5ft9dOG/eW5na2gSVCpUKDQ/AYAh+nWMvu4PFnzyJACaXgr9819voK1dIKTFQSRQCJhULQGJ62yS29A3t13MLhKSsvRqEL33XoRQD5u/fSVf1OucDg4nBlGgqBMVCUCoE3b0DREB3/yDHuwdYUsZeDcKzd5lMMcr80Ql78zuH70kh4rXbK796E4zJzUWeWb2BzvapRKEwKgEYIMbjPeS7urrSkiVLaq6zZlMv3X3ZXMahvblIZ0dLJrUl5YPnKEljWVbnqHqenyLiwZRS13DHcr0S3NnRQueO7+GWpIbwHCVpLBvv5yg/GCdJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyp1xebOMiFgDPDsK33pXYO0ofF9ly3mduJzbicu5nZic14lrtOZ275RS53AHxmUIHi0RseSN7jqi8ct5nbic24nLuZ2YnNeJayzOrdshJEmSlDuGYEmSJOWOIXjHXDvaDSgTzuvE5dxOXM7txOS8Tlxjbm7dEyxJkqTccSVYkiRJuWMIliRJUu4YgrcREf8YEasj4hdvcDwi4qqIWB4Rj0bEkY3uUTtuBPP6e9X5XBoR90XE4Y3uUTvnzeZ2q3FHR0Q5It7TqN5Um5HMbUTMj4hHIuKxiLirkf1p543gnDw1Iv4zIv5fdW4/2OgeteMiYnZELIqIZdV5u3CYMWMmRxmCf9P1wKnbOX4asF/1v/OBrzSgJ9XuerY/ryuAd6SUDgU+zxjcwK83dD3bn1siogh8Ebi9EQ2pbq5nO3MbEdOAa4AzU0qHAGc3qC/V7nq2/+/2AmBZSulwYD7wNxExqQF9qTZl4GMppYOB44ALIuLgbcaMmRxlCN5GSumnwCvbGbIQuCENWQxMi4g9G9OddtabzWtK6b6U0rrq08XArIY0ppqN4N8swJ8C3wFWZ9+R6mUEc/sB4KaU0nPV8c7vODGCuU1AR0QE0F4dW25Eb9p5KaUXUkoPVR9vAh4HZm4zbMzkKEPwjpsJrNzq+Sp+c4I1vp0H3DraTag+ImIm8G5812Yi2h+YHhF3RsSDEfEHo92Q6ubvgIOAXwFLgQtTSpXRbUk7IiLmAEcA929zaMzkqKbR+KbSWBURCxgKwfNGuxfVzZeBT6SUKkOLSppAmoCjgJOBVuBnEbE4pfTk6LalOvht4BHgJGBf4EcRcXdKaePotqWRiIh2ht59+7OxPGeG4B33PDB7q+ezqq9pnIuIw4CvAaellF4e7X5UN13AjdUAvCtwekSUU0rfHd22VAergJdTSj1AT0T8FDgcMASPfx8EvpCGbmawPCJWAAcCPx/dtvRmIqLEUAD+RkrppmGGjJkc5XaIHXcz8AfVTzceB2xIKb0w2k2pNhGxF3AT8PuuIk0sKaV9UkpzUkpzgG8DHzYATxjfA+ZFRFNEtAHHMrQHUePfcwyt8BMRuwMHAE+Pakd6U9U93NcBj6eUrnyDYWMmR7kSvI2I+FeGPom6a0SsAv4PUAJIKf09cAtwOrAc2MzQX6sa40Ywr58BZgDXVFcMyymlrtHpVjtiBHOrcerN5jal9HhE/BB4FKgAX0spbfdSeRobRvDv9vPA9RGxFAiGtjStHaV2NXL/Dfh9YGlEPFJ97VPAXjD2cpS3TZYkSVLuuB1CkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVpHKleYN5ztyTVyBOpJI1xETEnIp6IiBuAXwB/EREPRMSjEXHpVmN+GRHfiIjHI+Lb1buoERFfiIhl1fFXjObPIkljhTfLkKQxLiLmMHTL2BOAKcB7gP/B0J20bgYuZ+g2syuAeSmleyPiH4FlwD8B9wEHppRSRExLKa1v+A8hSWOMK8GSND48m1JaDPxW9b+HgYeAA4H9qmNWppTurT7+F2AesAHoBa6LiLMYuk2pJOVe02g3IEkakZ7q/wO4LKX01a0PVleLt31rL6WUyhFxDHAyQyvIHwFOyrZVSRr7XAmWpPHlNuCPI6IdICJmRsRu1WN7RcTx1ccfAO6pjpuaUroF+ChweMM7lqQxyJVgSRpHUkq3R8RBwM8iAqAbOBcYBJ4ALthqP/BXgKnA9yKihaFV5ItGpXFJGmP8YJwkTQDV7RDfTym9bZRbkaRxwe0QkiRJyh1XgiVJkpQ7rgRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpd/4/uY3LjnHZD2MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxcVf3/8deZbJO1abN1SfeF7pQ2UAqKIiCbLALKKiJIQZAviiL6VRRQVET9qvzQr2yCyFYEAQUE2bdCm67Qje5tuiRpmj2Z/fz+SKbf0E6SmcydSdN5Px+PPpq5c+/Jh/B43L5z5tzzMdZaRERERERSiau/CxARERERSTaFYBERERFJOQrBIiIiIpJyFIJFREREJOUoBIuIiIhIyknv7wL6ori42I4ZM6a/yxARERGRg9iSJUv2WGtLIr03IEPwmDFjqKys7O8yREREROQgZozZ2t17Wg4hIiIiIilHIVhEREREUo5CsIiIiIikHIVgEREREUk5CsEiIiIiknIUgkVEREQk5SgEi4iIiEjKGZD7BCdLY5uPZm8AgEDQ4jKQ5nKRkWYoLXD3c3Uikur2NHvwBkIErSUUgjSXwQB57jQKc7L6uzwRkYOaQnAEOxvaqW328pf3NlO5pZ6q+vZ97xVkpzNzRCEXHDWS2aMGMyQnA3emfowikhx+f5DaVh+rdjbxyPtbWVHVQH2bf9/7wwa5mTNqMJcdO4bhhdkML8zux2pFRA5exlrb3zXErKKiwiaiY1x9m5c9zT6+vWA5H+1o6vX8wpwMfvHFGcwePZgyzQyLSIJVN3lYt7uZ7zy5gtpmb6/nTyzN4/cXzKKswE1RnmaGRST1GGOWWGsrIr2nNcGdapo8vLqmhtP+8HZUARigoc3PNx5Zym3/XEV1kyfBFYpIKqtu8vA///mYSx9YFFUABlhf08IZ/+9dnl2+kxrdo0REPkGf49MxA/zW+lq+++TKPl3//Ie7afeH+MUXZ1A2SDPCIuKs3Y3t/PLFtTyzfGfM1wZDltv+tZqgDXH2rBGU5OseJSICmgkGYE+zjx88/WFcY7y2toZ/rtxJY5vPoapERKDV6+edDXv6FIC7+vkLa9nVqNlgEZGwlA/Buxra+dYTy/EH418b/at/r6Oh3d/7iSIiUWpoC/DjZ1fFPY618F+PLWNXY3vvJ4uIpICUD8G7mzys2hndGuDe+IIh/vLuFpo9mg0Wkfi1+wI8tXQ7bb6gI+NtqWvj4+pmR8YSERnoUjoEN7R5eeCdzY6O+fclVTR5Ao6OKSKpaW+rn4ff3+bomPe9vVkPyYmIkOAQbIx5wBhTY4z5qJv3jTHmD8aYDcaYlcaY2YmsZ38t3iCLt9Q7PGaAdl/I0TFFJDUFQqGod4KI1rJtDfiDukeJiCR6JvhB4JQe3j8VmNj5Zz7wpwTX8wnWdiyHcJo+bhQRJ+xscH79bos34MgzECIiA11CQ7C19i1gbw+nnAX81XZ4Hyg0xgxLZE1dBUKJ+YegXjtEiIgDGhP0oK1mgkVE+n9N8Ahge5fXVZ3HDmCMmW+MqTTGVNbW1jryzV3GkWEOkJXe3z9WETkUZKanJWRcV6JufiIiA8iASWvW2nustRXW2oqSkhJHxkx3ucjNdP4fmUll+Y6PKSKpZ+SQbMfHTHMZ3PpFXUSk30PwDmBkl9flnceSwuWCaSMGOTqmMTAkN9PRMUUkNeVmppOZ5uxtekJJHloRLCLS/yH4OeDSzl0ijgYarbW7kvXNhw3K5vyKkb2fGINjxxc7/o+WiKSmrHQXn59W5uiY584pZ2h+lqNjiogMRIneIu0xYCFwmDGmyhhzhTHmamPM1Z2nvABsAjYA9wLXJLKeSOaNLyI/K92x8b55/ARKC9yOjSciqasoL4urPzPesfGy0l2cPnMY6QlaaywiMpA4l/4isNZe2Mv7Frg2kTX0pjA7g1vPmsYNC1bEPdbxh5UwtiTHgapERDqU5Gdx9qzhPLN8Z9xj3XTKZPIT8ByEiMhAlPKf2+dkpXPshGJOmFwa1zjFeZn89OzplBU4/yCLiKSusgI3N50ymRGF8d1bjhwzmNNmDKUgR88siIiAQjDQ8Y/Mz8+ZwbHji/p0fXFeJo/Pn8ewAq2zExHnDSvM5tEr5zJ8UN+WWh0xspC7LpzN0EH6JV1EJEwhuFNZgZvffHkWN5w0kfQY9tD8zKQSnrn2WMYWZZOWpo8ZRSQxRhfl8tQ3juG06UOjvsZl4KrjxvGnS+YwtI8BWkTkUGU6luUOLBUVFbaysjIhY9e3+mho93HvW5t4etkOPP7InZXmjS/im8dPYHxJnv5xEZGkqW7yUFXfzl2vrefNj2uJdAsPPwD3jc+MZ0huJkV5+pRKRFKTMWaJtbYi4nsKwZE1tPlo8wVp8QT4uLqZhnY/WekuJpXlU5SXSWaaS7tAiEi/qWny4AuG2NvqY82uJtp9QQqyM5gyrIACdzo5mWkMzlX4FZHka/MFqG/zU9/qY+nWej6ubiZkLaUFbo4aM4RRRTm4010U5yc+R/UUghO6O8RAVd3kob7Vx0PvbWHptgaMseRkZuAPhmj1BhhXkstFR41mirWU5GaRru5LIpJk4V/CywfnMLO8sJ+rERGBYDBITYuPRz/Yxt/e30p9mz/ieekuw0lTy/j2SZMozs1kSD99WqWZ4C5avH5qm33c+OQKKrfW93p+SX4Wd543k2nDCyhJwm8zIiIiIgej2mYP62tauP6x5dS2eKO6Js1luPb48Vw8dzRlCfp0XcshorC31cvCjXu5YcFyvIHI64C7c96ccr53ymGUKgiLSBK1+4I0e/3YEAStJc1lcBnDoOx0MtUQQ0SSpLbZw5vrarnxqZURn1PozfGTS/jlOTMTEoS1HKIXzR4/722s47rHlvXpf97fl1TR6g1w65nTtE5YRBKuttnDrgYPa3c3ke/OYEheJtaCAWqaPfgCIWaOLGRIjh6KE5HE8vuDrNvd0ucADPD62lrufGkdN558WMJmhCNRCAZqm73c8MSKPv/PA3jxo93MG1/EebPLyXGwDbOISFhTu5+dje3UNnlp8QV4fV0tK6sa2dHQDnRsiTa2OJfZowZTWuBmy55WJg/Npzg/i+wM3ZdExHm1rT6+9UTfJhG7+vuSKs6eNZzi3IykbTmb8nfF3Y3tfPuJ5fiCsS2BiOT259dw/GGlCsEi4rj6Vh/LtzcQtJZbnltFVX37AeeELGysbWVjbStPLqliZvkgbj59KjvqPUwdXkBBdkY/VC4ih6pWr5+HF25lT4vPkfF+8I8PefzKeYwYnJzGPim/rUFNs5cVVY2OjOUNhHho4RbavAFHxhMRgY4tGzftaeWNj2v5+kOVEQNwJCurGrnovvdZV93Mhppm3ZtExFGN7QEeW7zNsfG2721nZ2N09zcnpHQIbm73c/87mx0dc8Hi7TR0syWIiEisAsEQuxo9PLF4Ow+9tyXm6/1By0+eW8Xy7Y3UNkf3xLaISDRqm72OZ56nllTh9SfnF/aUDsGNHj+LN+91dMwmT4A2f9DRMUUkdTW0+fiwqpEFldvjGuf2F9ZQ3exlb6szH1uKiFRudTZDAXy4o5Fah5ZX9CalQ7C1sLPR4/i4G2qaHR9TRFJPMBiisT3AT/+1Ov6xQpYfPP0hTe36pEpEnLFut/N5Z2tdm+NjdielQ3AglJg9kus00yIiDmhs9/OvlTtpdmgt78baFjbWttDiVRAWkfiEQiGCCchRwZDFZYzj40aS0iE4UT/iLLVRFhEHtPmDPL44vmUQ+3v4/a20ePSAnIjEx+VyJWRP3yG5mYSS1MgtpdNaRpqL7Azn96KbUJrv+Jgiknr8nQ/FOWnJlvqEfQomIqnDWsuskYWOjzt9RAHpacmZCU7pDW0NlmnDC6jcWn/Ae/lZ6Xx+WhmHjyxkQmkeLmMwwK5GDx/uaOS1tTVs3tMacdyi3MwEVy4iqWB3o/O7OTR7AwSCCsEiEh9rLaOG5OAyHXuUO2Xu2CLSTXLmaFM6BBfmZHLenPJPhODivEy+feIkJpTm8c+Vu3hs0TbWV7fsmzkpH5zNjBGD+O7nDyM3K40/vLqepdsa9l0/b1xR0n6DEZFDW2N7988XjCjM5qSpZcwYMYjywdlYOh723VTbwoqqRl5evbvbrYsCofibA4lIanO5XGyta+Mzk0p5fV2NI2O6M1zMGlmIJ5CcXbZSOgTnZKXz6Ykl5Gam0eoLcur0oVz56XHc+fI6Fm6si3hNVX07VfXtvPjRboYNcvOTM6axbW8bd760Fn/Qcs3x48nPSk67PxE5tLnTD7yXTB1WwLdOnIgx8M8Vu/j9q+vZtrfjaeo0l2FCSR6zRxdy90Wz2dnQzm9e/pjdTZ9cUpGsh05E5NDW4vXz9U+P5Y2Pa+JumwxwydGj+WBzHWfPGhH/YFFI6RAM4M6EW86cxppdTcwoL+Ti+z6gPcp9fnc1erj6b0s4/8iR/OmSOTzy/hYmluaR59ZyCBGJX9fWoS4D/3XCRGaNLOQnz62KuI1QMGRZV93MuupmHlu0ndmjCrnroiN4fNE2nlq6Y984enhXRJxw2NACXvhwF1+dN4YH+9DMp6sxRTmcMLmMl1btoiQ/y5kCe5Hyd8JWT4jDyvI4fGQhNyxYHnUA7uqJxdt5ZtkObjlzOq3eAL6APmoUkfjlZqWTkWZIcxl+d/4smj0BLvvL4qj30Vy6rYGL7/2A2aMGc/0JEwEYV5KnmWARccSQ3EyeXrqDz00uZd74oj6PMyg7g1+ddzg/euYjzpldTnpacuJpSofgdl+QulYfgRB87+8r45rK/9fKXbyxrpal2xpo9mgPThGJX3a6ixOnlnHLGdN4f9PePrV59wVD/PCZjxiSm8klc0fx5YpyipM0yyIih7aS3EwuOXo0P372I+48byanzRga8xiji3J48up5vLxqFy5D0maBAYxN0l5sTqqoqLCVlZVxj7OnxcPaXS389j8fs3TbgTtExMqd4eKJ+fMoysukfHBO3OOJiGysaWbZ9ga+++TKuMZJcxke+fpcRhflMGxQdu8XiIhEYVdjOzsb2rnj32s58/AR5GWl84sX11Dd1PPuNlnpLi6eO4qTpw3l9ufX8P3TJlOUk8mo4hyyM5xbrWuMWWKtrYj0XkqvCfYFQrgMjgRgAI8/xHMrdvK1Y8Y4Mp6IpDZ/MERGehq3OdQ2+cfPfsT9Xz3SgcpERKChzUdze4Cnl+5g0eZ6Fm2uZ964In5xzkw8/iCvrKnmw6pGtu1tI2QtQ3IzmT5iEEePK2LOqME8t2InF933AcGQ5TsLVvDUN46hsT3gaAjuSUqH4DTjYkFllaNjPrlkOxcdNcrRMUUkNTW0+Xl2+Q6a2p3p8PZxdQvra1rIy0pjcK6WRIhIfAJBS7PXzyMfbNt3bOGmOhZuqmN0UQ7Hji/ma8eOpXxwNsZAY5ufVTubeGV1NT9/Yc0nlqHuavTwpzc2cMnRoxmagE50kaR0CPYGQyzestfRMZvaA/iDejBOROLnDQR5rMs/Lk54eOFWpgyd7uiYIpKaWn0BfvPyxxHf21rXxta62O5fTyyu4qrjxtPmC5CTmfiImtIPxhlgR0O74+NurovcSU5EJBb+YIidTrdN3rqX4AB8FkREDj4GeK+bvgp94QuGeGVtNcEktXZP6RCcqB9yU7t2hxCR+CWibXKTR22TRSR+1lrW7m52fNy31+/B24ftavsipUOwK0FbZWojehFxQk9tk+OhtskiEi9jDJVbnNlYoKtVO5po9yfnHpXSaS0rI43sDOdbHI8ryXN8TBFJPe4E3J9AbZNFJH6hUIi6Vuc/rWpo9yVsknJ/Kf1gXGaai6nDC1iy1dnfZIrz9NS1iMRvRKHz+/mqbbKIOMHlcpHRQ2e3qcMK+NTEYmaMGERpZwOMNl+Q1buaWLK1nrc+riUQYVlqhit596eUDsGFORlccORIR0Pw3LFDyMlMzOyNiKSWPHc66S4T8R+KvhpbnNfjP1wiItGaMiz/gGMnTCnlik+NZUd9O/9ZXc1zy3eyu6njAd+8rHSmDS/g6HFFXPe5Cby6toZ739qEN/B/yx/GluTiStJUcEqHYGMMx00qITsjjXaHFmF/68SJFOZkOjKWiKS2/KwMTphSykurqh0b80sV5RTl6h4lIvGbPWrIvq8L3OncetZ02rwBrnlkKQ1tB24S0OIN8MHmvXyweS//7/UNnDN7BI98fS63/nM1H+5oBGBmeSElSfpEPeWnAwbnZHLrWdMcGeuY8UUcNrTAkbFERPLc6Vzz2QmOjZfuMpxx+HDSNBMsIg4oysukOC+TIbmZ3PfVI3lm2Q5++MxHEQPw/oIhy5OVVXzz0WX88PQpfGpCMQBfmlNOepLuUSk9EwyQme7ixCllHDO+KK697gqy07nzvMMZohkWEXHQ6KIcTplexr8/in82+LufP4wh+qRKRBxSlJvJ5ceO4YhRQ/jli2tYuq0h5jF2N3n4+kOV3PfVCnIy0/atH04GTQcAQ3Iz+Z/zZ3HEyMI+XV+Qnc4T8+cxdFBy2vyJSGr50elT4/54cPqIAs44fBghNcoQEYe0+wOcfUQ5zy3f0acAHNbiDfCdBSu4+QtTyUp3qVlGMjV5fGyoaebGUw7jsmPGEMvuQbNHDebBy47infW17G1NzJ6eIpKaGtp8bKhpob7Vx8NXHEVxXt9mcScPzefui2azu8nD+upmWr0BhysVkVTk9YfYXt/GY4u3xz3WjoZ2Hnh3M75giHZfcu5RKb8cosnjY+nWBr7+UCWfm1zKTadO5ozDh3Pf25v4z+rqbp/Knj6igK8dM5ZZIwt54+Ma7vj3OrbWtXH9iZMoSeJUvogcunzBEMGQ5ZnlO1m8ZS+Pz5/Hrc99xNsb6ijJz+KEyaXMGDGIcSV5GNPRZvnj6mZWbG/ktbU1tHgDXDx3FBcfPYoL7nmf60+cyPiSPNr9QXKzUv72LyJxCoQsd726wbHxHv1gG185ejQl+cn5ZN3YAfjRWEVFha2srIx7nK4B+IIjR3L0+CJ+/sJavnn8eOaOGUJWposWT5CQtRhjMEDQWvLd6fgDlppmDz97fg1zRg/mmPHFXPfYUs6vGKkgLCKOqGn2cM+bm3jg3c3c+aXD2VHfxpzRgynLd7O7ycuzK3awYnsDG2tbCYYsWekuDhuaz5zRgzl71gjy3eks2lxHRpqLjbWt/OnNjfz6vMP5zGEl2s9cROK2eU8Ln/vNmzgZJX9yxlTOPWIEBQ49v2CMWWKtrYj0XkpPBXh8IV74cBcnTS1j7rgi/rF0B3++ZDZb97ZR3+7npcpqlmzdy+pdTXj8IVymY4/Nw0cO4tTpw8hIM/zkjGm8v6mOV9bs5hfnzOAPr27guhMm9vd/mogcAtJdhrfW1/Kj06fyUVUjx0woIt+dwTceWcr6mpYDzvcGQqysamRlVSN/eXcL88YV8fNzpvPqmhrKB+fwpTkjeXl1NZ+bUtoP/zUicqhZu6vZ0QAM8O6GPZw6YyjJ2GsrpWeC61t9VNW34XIZFizezqnTh+LOSOP3r27g9XU1vV4/uiiHn5wxjWAoRCgEda1e5o4bwuDsLIb0ce2eiEhXtU0e3t+8lwmleby0ajd/eHU9sTwz4s5w8ZsvHU5WuovivCzKB+dQrE+qRCROoVCIX7y4lnvf3uzouMMGuXny6nmUD85xZLyeZoJT+sG4wbmZlBa4efHDXZxx+HDqWv1ccv+iqAIwwNa6Ni5/cDHvbKhjSG4m2ZlpuNPTFYBFxBG1zR4aPX6GF7p5akkVv3sltgAM4PGH+OZjy2j2BqhqaKe+zUe9HuIVkTgZYxKyIUBDm5/k9ItL8RAMHdtynHH4cHY3ebjusaW09OGp6Yfe28Lji7cxoSSPyq11+IOh3i8SEelFRpqLmiYPe1t93PdO32dbrIUbn1zJxNI8vP4QloH3CaCIHFyMMQlpapHuMkm7Q6V0CPb4g+xp8eIPWm58cmXMMyxdPbV0ByuqGpk2fJBmWUTEER5/kFFFuXzv7yvjHisQsnz7iRXkutOSNssiIoe2acOcX7k7ujgHd3qa4+NGktIhuMXrpzg3i5/+azXt/mDc4/3ihTWELNqMXkQckZnu4t8f7aY+ihak0Vi9q4maZi/6sEpEnDB79GDHxzxi5GAGZWc4Pm4kKR2CARrafXywea8jY7X6gjy1pIpQkjqdiMihrc0b5MH3tjg65r1vbSIQUgoWkfgV5WVSlOvsc1DnzSnH68DEZDRSOgQHgpbHFsXf5aSrBZXbCSgDi4gDgtZSVd/u6JiLtuzttgmQiEgsQiHLZceMcWy8ccW55GWl40vSL+opH4Lf31Tn6Jj1bX48SfoNRkQObTVNXsfHbGoPEAgqBItI/PzBEOfMHsHQAmc6vP3qvJk0e/1kak1w4llwfJYFYFNtq+NjikjqqWt1PgQD2sFGRByR784gEAxx98VHkOaK75Hby44Zw9BBboYWuMlLUlv3lA7BifpIcG+C/uESkdSS7krMLdpltD+EiMSv3R9k9a5m/rF0B3dd2PcgfNbhw/nMpBLufGkdwZDt03a1fZHSbZPj/KWlW1lJmsYXkUPbyCHOdEzqypiOLnIiIvFqag9w7aNLCdmOT9f/dsVR3Pj3lVF/yp6Z5uKmUw5jWGE2V/9tCd5AiKEFbuYfNy4ps8EpfSfMSDNkpTv/Ixhfmuf4mCKSevLd6XF/xLi/ccW5GM0Ei4gDivIyueTo0QA88sE2fvqvNfzPl2fx36dOZvig7tcJuzNcXHDkSBZcPY+11c1c88hSvIEQE0rzuPSYMRTlJae1e0rPBLsz0pg2vICl2xocHbdYbZNFxAHpLsNnJpXw2troWrlH44zDh1OYk5w9OEXk0FZW4Oba4ycA8NeFW1m9q4nz71nIZw8r5dazplPgTmfr3ja21bURDIUozs9iUmk+mRkde6Bfev8HNHk6lj5MKM3jocuPYkRhdtLqT+kQPDgnk/PmlDsagueMHkxuZkr/WEXEITmZaVzz2fGOheA0l+Gc2SPwBULk6Hd1EXFAOAinuwwPvLuFkIXX1tbw2toa0lyGCSV5jBicjcvA4i31/HbXx7T6PrmLVn8EYEjxEGyM4XOTy8hKX4034MzT0v91wkQGO7xxtIikJmstZQVZHH9YCa+vq417vGs+Ox6XMeQm6clrETn0NbT5qKpv49Tpw/AGQjzywbZ97wVDlnXVzayrbu72+gmlefz2y4fT6vVT22QocWi7tWik9JpggME5Gfzo9CmOjHXk6MHMGDHIkbFERDCGqx9eyq1nTmNwnEsYJg/N50tzyvmvR5fR7tNe5iISv4Y2HxtrW1hQWcUF977PUWOHcPHcUVFfP74kj1+dO5NrHlnK1Q8vZVeTh9omTwIr/qSUD8FZGWmcPnMYFXH2v87LSue3589iiGaBRcQhuZnp3HXREfzl3U08euXRfQ7C40tyuefSCu58aR1/+socCrK1JlhE4tfqDbCgsoonFm8nGLI8u3wnp0wfGvX1R40dzMbaFqrq29m0p5VvPb6c+nY/rUnaIi3lQzDAkNws/njJbKYNL+jT9bmZaTwx/2iG9fAkpIhIrFwuw5iiXL4ybyxPLdnOP645liPHxPYL+9mzhvPQ5Ufxu5c/5kdfmEpZEj9qFJFDW5MnwJOV2wH4zKQSLj92LFc/vCTq6x9btJ2te9u49cxpAGza08o/lu5IWkMfY+3Aa59ZUVFhKysrHR3T4w+yt9XHH9/YwN/e39b7BZ2mjyjgDxccwZDcTAr1pImIJEAoZNlS18r3/r6CX547k7W7m/nTGxtZtbMp4vnGwDHji/jWCRMxxvCLF9bwx0vmKACLiKMa2nws2ryXRz7YxpWfHsdVD1ce8NBbNL75uQmU5GWxbFs9/336FErznbtXGWOWWGsrIr6nENwRgHc1tLOr0cPy7Q0cPrKQB97ZzOvrauiuqdzE0jyu+NRYSvKzWFnVwDmzyxmUnaEgLCIJEQ7C5/7pPb55/AROnTEUf9DycXULK6saaPcFKcjOYPaoQsYU5ZKWZvjdfz5m6bYG/vb1uQrAIpIQDa1etu5t56J73+9TAA771okTufCoUY7fqxSCexAOwDsbPXztL4vxBUOMKMzmwqNGcer0oexp8bKiqoG6Fh/ZGWlMHzGIcSW5rN3dzF/e3cziLfUAfO3YMVx2zBgFYRFJmFDIsrOxneyMtKg2k6/ufMBEAVhEEqHVE2DTnhYuuCe+ABx2w0kTueDIUZQ6eM9SCO5GpADclTHw+/NnUTF6MEV5WbT5AjS2+zn3Twupa/UdMJ6CsIiIiKSK9dXNnH33u70G4PEleUwbXsBzK3b2OuYPT5vC2UcMp8ShJRE9heCUfjCu1etnVzcBGMBauP6J5by7sY7qJg97Wnyc000ABvjLu1t48L0t+Bzac1hERETkYFWQncGskYU9njOhNI+HrziKH58xlUvnje7x3ME5GXzmsBIK3cnZwSalQ3DIGh5btC1iAA6zFr731EoeWriV8+95n73dBOCwlz7a7XSZIiIiIgedsgI3vz1/FseOL4r4/oTSPP56+VEML8ymOC+Lbx4/odsgPDgngyeumsfYITlkZKQlsux9UjoEl+RncfMXpnLytLIez7MW7n9nc68BePggN4/NP9rRtSwiIiIiB6vugnDXABxWWuCOGIT7IwBDiodg6Pgf8tOzpvcahHsTDsCji3IdqkxERETk4Ld/EI4UgMP2D8L9FYAB1ECe/wvCAC+tqo75egVgEUmW6iYP2ekuCqJ4+Lamc3cIfTolIokWDsK/f3U93zx+QsQAHBYOwgXuDM6cNbxfAjBoJnifvs4IKwCLSLLUNHn485sbWVPdTFNbz8uz9jR7eXVNDa+uqaG2MwyLiCRSWYGb75w0qccAHFZa4Oar80b3WwAGzQR/QnFeFrefPYO9rb59+//2xJ3h4smrj2FInn6MIpJYNU0e/vDqev72wTYe+WAbf73iKKaU5UecEd7T7OU/q6v5wT8+7DwygxOnlFKiGWERSbBo9jAP6+97kmaCO4VClppmD/VtPjbWtkZ1jccfYuGmOnbWe2jx+hNcoYikqq4BGMAbCHHp/VsVOxcAACAASURBVIsizggfGIDhB//4kFc0Iywi8gkJD8HGmFOMMeuMMRuMMd+P8P4oY8zrxphlxpiVxpjTEl3T/sIBuNkT4IIotkHr6sa/r2DZ9kaqGxWERcR5+wfgsEhBOFIADlMQFhH5pISGYGNMGnA3cCowFbjQGDN1v9N+BCyw1h4BXAD8MZE17W//ANxdI4zuWKsgLCKJ0V0ADusahBvafN0G4DAFYRGR/5PomeCjgA3W2k3WWh/wOHDWfudYoKDz60FA7z31HBJvAA5TEBaRRDAGVlQ19nhOOAjf+tzqHgNw2Hub9mCdKlBEZABLdAgeAWzv8rqq81hXtwCXGGOqgBeA6yINZIyZb4ypNMZU1tbWOlJcqy8QdwAO6xqE23vpoS0iEo2SfDf3XjqHGSMG9XieNxDiH8t39DreF2YM40enT9WWaSIiHBwPxl0IPGitLQdOAx42xhxQl7X2HmtthbW2oqSkxJFv7A9abv3n6l4D8PBBbt668bNRdZb7ybMfke46GH6sInIoGDooO6og3JsvzBjGzWdMpUwBWEQESHwI3gGM7PK6vPNYV1cACwCstQsBN1Cc4LoAGJKbya+/NJOpwwq6PSe8D/Cootxe9xHOyUzj0SuPxp2pECwizok3CCsAi4gcKNFpbTEw0Rgz1hiTSceDb8/td8424AQAY8wUOkKwM+sdojB0UDYPXFYRMQjv3wijp4YaOZlpPHbl0Uwamkd2hvYNFhFn9TUIKwCLiESW0BBsrQ0A3wReAtbQsQvEKmPMbcaYMztP+w5wpTFmBfAYcJm1NqnPbUQKwt11gosUhBWARSQZhg7K5qHLj2JIbu8tkwEOLx/EbWdPVwAWEYkg4YnNWvsCHQ+8dT324y5frwaOTXQdvQkH4csfrKShzddjK+RwEAZ4e/0eBWARSYraJg+vrK2Jei/ztbub2VDTzORuOsuJiKQyk+RJV0dUVFTYysrKhIy9u7EdXyDEqG4CcFc1TR6avQGGF7oVgEUkocIB+AdP974NWldZ6S4evuIoBWERSUnGmCXW2opI7+kJrv0MHZQdVQCGjhnh8SWaARaRxOprAIaO7dO+cv8i1kZosSwiksoUgkVEDmLxBOAwBWERkQMpBIuIHKRiCcAu0/P7CsIiIp+kECwicpDKSHfxu1c+7vW8L8wYxtKbT4qqs9yv/r2OwMB7FERExHEKwSIiB6nCnEyemD+PsoKsbs8J7wNcmJPZ6z7CM0YM4q6Ljoh6izURkUOZQvB+fIEgbd5A1Oe3xHCuiEisxhTndhuE92+E0VNDjRkjBnHPpXMYNig74TWLiAwECsFd+AJB1uxq5r1NdVEF4W1721iweDuN7VpfJyKJEykId9cJLlIQVgAWETmQQnCncAA+/56FzP9rJe9t7DkIb9vbxnl/eo/b/rWah97bqiAsIgnVNQj31gq5axBWABYRiUzNMvhkAPb4Q0DHk9b3fKWCY8YXkZP1yX2AwwG4ptm779gNJ03iq8eMZlC21tqJSOLsbGgnzWWiaoW8u7EdCwrAIpKy1CyjB5ECMEDIwvyHD5wRjhSAAX77n481IywiCTe8MDuqAAwdM8IKwCIikaV0CO4uAId1DcLtvmC3AThMQVhERERkYEjpENzmC/K/b26MGIDDwkH4/nc39RiAwx5euJVAcOAtMRERERFJJem9n3LoKszJ5GdnT8fjD/L6utpuzwtZ+PVLvW9YX5KXxd+/MU97cIqIiIgc5FJ6JhigKC+LX3/pcI4/rCSuccIBeNSQHIzppX+piIiIiPSrlA/BEH8QVgAWERERGVgUgjv1NQgrAIuIiIgMPArBXRTlZfGbL8/iiFGFUZ2fle7i6WuOUQAWERERGWAUgvfT6g2wo749qnN9wRDrdjfT7gsmuCoRERERcZJCcBfb97Zx3v/2vg1amO2moYaIiIiIHNwUgjuFA3B1U3QBOKy7znIiIiIicvBSCKbvAThMQVhERERkYEn5EBxvAA5TEBYREREZOFI6BDe2+7npqZW9BuCSvCz+8+3jet0+LWThuseW4VfbZBEREZGDWkqH4EHZGfz2/FmML8nr9pzwPsATSvN63Uc4K93FI1fOxZ2R0j9WERERkYNeyqe1oQVuHrlybsQgvH8jjJ4aamSlu3hs/tFMG1ZAVkZaMkoXERERkT5K+RAMkYNwd53gIgVhBWARERGRgUUhuFPXINxbK+SuQVgBWERERGTgMdYOvIe4KioqbGVlZULG3t3kwRcIMXJwdq+tkOtavNS1+hg9JEcBWEREROQgY4xZYq2tiPReerKLOdgNLXBHfW5RXhZFeVkJrEZEREREEkHLIfbT0OajNsq2yV5/kNpmT4IrEhERERGnKQR30dDm44PNe3luxQ72tPQchL3+IBtqW/j9q+sVhEVEREQGGC2H6BQOwN/42xJCFqyFs48YQXGE5Q7hAHzBn9+n2RugzRvkB6dNpiQ/+qUUIiIiItJ/NBPMgQEY4GfPr+GZZQfOCO8fgAGeXraDX7ywVjPCIiIiIgNEyofgSAE4bP8gHCkAhykIi4iIiAwcKb0coqcAHPaz59cA8KU55VQ1tEcMwGFPL9sBoKURIiIiIge5lA7BvmCIN9bVdBuAw372/BpW72riP6uquw3AYcu3N/Q6noiIiIj0r5QOwaX5bm44aRKBoOXJJVU9nvv00h29jjeuOJeHrziKshj2GhYRERGR5Ev5NcEl+W6+d8phfGlOeVzjhAPwiME5DlUmIiIiIomS8iEY4g/CCsAiIiIiA4tCcKe+BmEFYBEREZGBRyG4i5J8N/992hSOGV8U1fnZGWk8cdU8BWARERGRAUYhuAufP8jOxnY+rGqM6vx2f5Bnl/feYllEREREDi4KwZ18/iDru2mE0ZPuOsuJiIiIyMFLIZi+B+AwBWERERGRgSXlQ3C8AThMQVhERERk4EjpEBxLADam9/EUhEVEREQGhpQOwc3eAHe+tK7XADyuOJfFPzwxqu3T7nptA1HkZRERERHpRykdgovysrjj3JlUjB7c7TnhfYCL87J63Ud4UHYGT1x1NAXujESUKyIiIiIOSekQDFBW4Obui2dHDML7N8LoqaFGOACPL84jIz3lf6wiIiIiBzWlNSIH4e46wUUKwgrAIiIiIgNLen8XcLAIB+HbnltF0MLNX5jSbSe4cBDOynBR1+Lj+hMnKgCLiIiIDCDGWtvfNcSsoqLCVlZWJmTs3Y0egiHLiMHZvZ5b3eTBFwhRlJtOTlZmQuoRERERGQj2tnpp94XISDOUFrh7PNfjC1Db4iMz3UVZL+fGwxizxFpbEek9TV12sbvRwzWPLOHi+96nqr6tx3Nrmjz86t9rOf0Pb7N1rwePr+97DIuIiIgMZHtbvSzb1sBxd77Ocyt2UtPk6fZcjy/A5ro2Tv/D29zx4lqqezg3kRSCO4UD8NJtDWypa+OS+z7oNgjXNHm4499reWrpDpo8Ac7/80I217UpCIuIiEjKCQfg+Q8vIRiy/Oz5Nd0G4XAAPv/PC2nyBHh62Y5+C8IKwXwyAId1F4S7BuAwBWERERFJRfsH4LBIQXj/ABzWX0E45UNwpAActn8QjhSAwxSERUREJJV0F4DDugbh7gJwWH8E4ZQOwXUtXr7/1MqIATgsHIRrmrsPwGHhINzmDyWiXBEREZGDRnWTt9sAHPaz59fw7IqdbN3b3m0ADnt62Q4eem8LdS3eRJR7gJTeIi03M42bTp3M0m31Pf5P2VLXxlG3vxrVmDd8fhKBoEKwiIiIHNqKcjM554gRPLmkqsfzbn9+DbezptfxRhflcNHcURTlZTlVYo9SeibYnZnO2KIcnrhqHgXu+H8fuOXMqZw2fViv24KIiIiIDHSlBW5uPDlyJ91YjS7K4ZGvz6W8mx4NiZDSIRicC8IKwCIiIpJqnAjC/RGAQSEYiD8IKwCLiIhIqoonCPdXAIYoQrAxpjAZhfS3vgZhBWARERFJdX0Jwv0ZgCG6meA9xphXjDFXHOqB2J2ZTllBFtNGDIrq/OyMNE6boQAsIiIiUuBO56vHjIn6/BMml5KT2X97NEQTgtcAvwM+B2w0xjxrjLnAGJOd2NKSr6bJw+3Pr2Hhxrqozm/3B/ny/y7stcWyiIiIyKEsvA/wRfe+H/U1D7y7haeWbu+xxXIiRROC/dbaf1lrLwbKgUeALwNVxphHE1pdEvXUCKMnvbVYFhERETmU9dYIoye3P7+WZ1fs6JcgHE0INuEvrLXt1toF1tpzgHHASwmrLIn6GoDDFIRFREQkFcUTgMP6KwhHE4IfiXTQWttorX3I4XqSLt4AHKYgLCIiIqnEiQAc1h9BuNcQbK39dTQDGWPuir+c5Kpp8nDnS+uiCsDnV5T3umvElro2Lr7vg6T2vRYRERHpD1UNnqgC8KghOZw0tbTX8W5/fi0vfrSb2iTlKCf3CT7WwbGSIj3NcPK0oaS5TI/n3XLmVH5w2hQen9/79mlHjhlCz6OJiIiIDHx5WelMLMvv8ZzRRTk8euVcfnHOzF63Tytwp3PkmCHkO9DFNxop3SxjSG4Ws0cX8udL5nQbhMP7ABfmZDKuOKfHIHzenHK+d/Jh2jJNREREDnlDB7m5+6LZzBk9OOL7XfcBLs7L6nEf4QJ3Oo/Pn8e44hzcSdo2LaVDMPQchPdvhOHOTO82CCsAi4iISKrpLghHaoTRXUON/gjA4GwIHrCrACIF4e46wUUKwgrAIiIikqr2D8I9dYLbPwj3VwAGMNba6E40Zoa19sMe3r/MWvtghOOnAL8H0oD7rLW/jHDOl4FbAAussNZe1FMtFRUVtrKyMqq6Y7G31cvSrQ3saGjn1OlDewy1Hl+ATXvaWFC5nWs+O14BWESSorrJQ15WGrlZGb2eW9vc8XBJSb7uTyKSeLsbPfzyxbV89+RJvbZCrmny8Kc3N/KlOSMTGoCNMUustRUR34shBL8NZAEPAo9YaxujuCYN+Bg4CagCFgMXWmtXdzlnIrAA+Jy1tt4YU2qtrelp3ESFYIC9LV78IUtZFKHW4wvQ5AkoAItIUtQ0eXho4RZOnFLGpLK8HoNwXYuXt9fvAeDTE4spystKUpUiksrqWrxR329qmjwUuNMTOgPcUwiOejmEtfbTwMXASGCJMeZRY8xJvVx2FLDBWrvJWusDHgfO2u+cK4G7rbX1nd+nxwCcaEPysqIKwNCxNEIBWESSoabJw71vbeLu1zdy0b0f8HF1C61ef8RzwwH42wuW8+0Fy3l7/R7qWrxJrlhEUlEsv3CXFriTvgSiq5jWBFtr1wM/Am4CPgP8wRiz1hhzTjeXjAC2d3ld1Xmsq0nAJGPMu8aY9zuXTxzAGDPfGFNpjKmsra2NpWwRkQEtHIDvfWczAO3+YLdBuGsAthasRUFYRCSCqEOwMWamMeZ/gDXA54AzrLVTOr/+nzhqSAcmAp8FLgTuNcYU7n+StfYea22FtbaipKQkjm8nIjJw7B+AwyIF4f0DcJiCsIjIgWKZCb4LWAocbq291lq7FMBau5OO2eFIdtCxfCKsvPNYV1XAc9Zav7V2Mx1riCfGUJeIyCGpuwAc1jUIN7b7IgbgsK5BeE+zulqKiMQSgk8HHrXWtgMYY1zGmBwAa+3D3VyzGJhojBlrjMkELgCe2++cZ+iYBcYYU0zH8ohNMdQlInJIMsbw9oY9PZ4TDsJ3vLi22wAcZi08/+FOonscWkTk0BZLCH4FyO7yOqfzWLestQHgm8BLdCyjWGCtXWWMuc0Yc2bnaS8BdcaY1cDrwI3W2roY6hIROSSV5GfxwGVHMnloz21J2/1BHl20vccADHDilFJ+dvYMbZkmIkJsW6Qtt9bO6u1YMiRyizQRkYPNzoZ2Ln9wMWt3N/d5jBOnlHL7F2dEvfuNiMihwJEt0oBWY8zsLoPOAdrjLU5ERHo2vDA7qhnh7igAi4gcKJYQ/C3gSWPM28aYd4An6FjqICIiCdbXIKwALCISWSzNMhYDk4FvAFcDU6y1SxJVmIiIfNLwwmz+dsVcBuf03jIZYMaIQdxx7kwFYBGRCGJt03EkMKbzutnGGKy1f3W8KhEROUBdi5d3N+yhoT1yp7j9bahpYdveNtwZrh5bLIuIpKKoQ7Ax5mFgPLAcCHYetoBCsIhIgtW1eHln/R6+1cs2aF2Ft0979Mq5TCrLUxAWOQT5/X6qqqrweFJ7/2+32015eTkZGdHf52KZCa4Aptpot5MQERFH9CUAhykIixzaqqqqyM/PZ8yYMRhj+rucfmGtpa6ujqqqKsaOHRv1dbE8GPcRMDTmykREpM/iCcBhkVosi8ihwePxUFRUlLIBGDoaCxUVFcU8Gx5LCC4GVhtjXjLGPBf+E9N3ExGRqDkRgMMUhEUOXakcgMP68jOIJQTfApwN/Bz4TZc/IiKSABlpLn72/JqoOsEt+dGJUXWWu+2fq/EHtapNRJzR0NDAH//4x/4uo09i2SLtTWALkNH59WJgaYLqEhFJebmZLh6ffzRFuZndnhPeB7gor/cWy5OH5nP3xbMpzOl+PBGRWKRECDbGXAn8Hfhz56ERwDOJKEpERCAtLY0xRdksuGpexCC8fyOMnhpqTB6azwOXHcnwwuyE1y0iqeP73/8+GzduZNasWdx4443ceeedHHnkkcycOZOf/OQnAGzZsoXJkydz2WWXMWnSJC6++GJeeeUVjj32WCZOnMiiRYsAuOWWW/jKV77CvHnzmDhxIvfeey8Au3bt4rjjjmPWrFlMnz6dt99+25HaY1kOcS1wLNAEYK1dD5Q6UoWIiETUXRDurhNcpCCsACwiifLLX/6S8ePHs3z5ck466STWr1/PokWLWL58OUuWLOGtt94CYMOGDXznO99h7dq1rF27lkcffZR33nmHX//61/z85z/fN97KlSt57bXXWLhwIbfddhs7d+7k0Ucf5eSTT2b58uWsWLGCWbNmOVJ7LFukea21vvDCY2NMOh37BIuISAJ1DcJf/vNCjhhV2GMr5HAQvvzBxQAKwCKSFC+//DIvv/wyRxxxBAAtLS2sX7+eUaNGMXbsWGbMmAHAtGnTOOGEEzDGMGPGDLZs2bJvjLPOOovs7Gyys7M5/vjjWbRoEUceeSSXX345fr+fs88+u19C8JvGmP8Gso0xJwHXAP90pAoREelROAg/c+2xZKa7em2FHA7C4a9FRBLNWssPfvADrrrqqk8c37JlC1lZWfteu1yufa9dLheBQGDfe/vv8mCM4bjjjuOtt97i+eef57LLLuOGG27g0ksvjbveWJZDfB+oBT4ErgJesNb+MO4KREQkKmlpaYwcktNrAA4bXpitACwiCZWfn09zczMAJ598Mg888AAtLS0A7Nixg5qampjGe/bZZ/F4PNTV1fHGG29w5JFHsnXrVsrKyrjyyiv5+te/ztKlzuzLEMtM8HXW2t8D94YPGGOu7zwmIiIiIimmqKiIY489lunTp3Pqqady0UUXMW/ePADy8vL429/+RlpaWtTjzZw5k+OPP549e/Zw8803M3z4cB566CHuvPNOMjIyyMvL469//asjtZtouyAbY5Zaa2fvd2yZtfYIRyqJQUVFha2srEz2txURERE5qKxZs4YpU6b0dxmOuOWWW8jLy+O73/1un66P9LMwxiyx1lZEOr/XmWBjzIXARcDY/TrE5QN7+1SliIiIiEg/imY5xHvALjraJnftENcMrExEUSIiIiKSWm655Zakfr9eQ7C1diuwFZiX+HJERERERBIvlo5x5xhj1htjGo0xTcaYZmNMUyKLExERERFJhFh2h/gVcIa1dk2iihERERERSYZY9gmuVgAWERERkUNBLCG40hjzhDHmws6lEecYY85JWGUiIiIictC7/PLLKS0tZfr06f1dSkxiCcEFQBvweeCMzj9fSERRIiIiIjIwXHbZZfz73//u7zJiFvWaYGvt1xJZiIiIiIgk1osvvsjdd99NdXU1ZWVlXHvttZx66qlxjXncccexZcsWZwpMolh2h5hkjHnVGPNR5+uZxpgfJa40EREREXHKiy++yO23387u3bux1rJ7925uv/12Xnzxxf4urV/EshziXuAHgB/AWrsSuCARRYmIiIiIs+6++248Hs8njnk8Hu6+++5+qqh/xRKCc6y1i/Y7FnCyGBERERFJjOrq6piOH+piCcF7jDHjAQtgjDmPjnbKIiIiInKQKysri+n4oS6WEHwt8GdgsjFmB/At4BsJqUpEREREHHXttdfidrs/ccztdnPttdfGNe6FF17IvHnzWLduHeXl5dx///1xjZcssewOsQk40RiTC7istc2JK0tEREREnBTeBcLp3SEee+wxJ8pLuqhDsDHmeuAvQDNwrzFmNvB9a+3LiSpORERERJxz6qmnxh16DxWxLIe43FrbREezjCLgK8AvE1KViIiIiEgCxRKCTeffpwF/tdau6nJMRERERGTAiCUELzHGvExHCH7JGJMPhBJTloiIiIhI4kS9Jhi4ApgFbLLWthljigC1UhYRERGRAafXEGyMmWytXUtHAAYYZ4xWQYiIiIjIwBXNTPANwHzgNxHes8DnHK1IRERERAaE7du3c+mll1JdXY0xhvnz53P99df3d1lR6TUEW2vnd/59fOLLEREREZGBIj09nd/85jfMnj2b5uZm5syZw0knncTUqVP7u7ReRf1gnDHmS50Pw2GM+ZEx5mljzBGJK01EREREnOL3+7nuuuu47rrraGtr2/e13+/v85jDhg1j9uzZAOTn5zNlyhR27NjhVMkJFcvuEDdba5uNMZ8CTgTuB/43MWWJiIiIiJNuuOEGli5dytKlSznttNP2fX3DDTc4Mv6WLVtYtmwZc+fOdWS8RIslBAc7/z4duMda+zyQ6XxJIiIiIpIoXq+XlpYWvF6vY2O2tLRw7rnn8rvf/Y6CggLHxk2kWELwDmPMn4HzgReMMVkxXi8iIiIi/eSOO+4gIyPjE8cyMjL41a9+Fde4fr+fc889l4svvphzzjknrrGSKZYQ+2XgJeBka20DMAS4MSFViYiIiIijbrrppgPW//r9fr73ve/1eUxrLVdccQVTpkxxbFlFskQdgq21bcCzQKsxZhSQAaxNVGEiIiIi4rysrCzy8vLIysqKe6x3332Xhx9+mNdee41Zs2Yxa9YsXnjhBQeqTLyoO8YZY64DfgJU83/tki0wMwF1iYiIiIiDfvvb3+6brb3jjju46aab9h3vq0996lNYax2pL9liaZt8PXCYtbYuUcWIiIiISGJkZGRw11137Xvd9etUFMua4O1AY6IKERERERFJllhmgjcBbxhjngf27alhre37HLqIiIiISD+IJQRv6/yTifYHFhEREZEBLOoQbK29FcAYk9f5uiVRRYmIiIiIJFLUa4KNMdONMcuAVcAqY8wSY8y0xJUmIiIiIpIYsSyHuAe4wVr7OoAx5rPAvcAxCahLRERERAaIMWPGkJ+fT1paGunp6VRWVvZ3Sb2KJQTnhgMwgLX2DWNMbgJqEhEREZEB5vXXX6e4uLi/y4haTLtDGGNuBh7ufH0JHTtGiIiIiMhB7rjjjqOtre2A4zk5Obz11lv9UFH/imWf4MuBEuBp4CmguPOYiIiIiBzkIgXgno7HwhjD5z//eebMmcM999wT93jJEMvuEPXAfyWwFhEREREZgN555x1GjBhBTU0NJ510EpMnT+a4447r77J6FMvuEP8xxhR2eT3YGPNSYsoSERERkYFixIgRAJSWlvLFL36RRYsW9XNFvYtlOUSxtbYh/KJzZrjU+ZJEREREZKBobW2lubl539cvv/wy06dP7+eqehfLg3EhY8woa+02AGPMaMAmpiwRERERGQiqq6v54he/CEAgEOCiiy7ilFNO6eeqehdLCP4h8I4x5k3AAJ8G5iekKhERERFxVE5OTre7Q8Rj3LhxrFixIq4x+kMsD8b92xgzGzi689C3rLV7wu8bY6ZZa1c5XaCIiIiIxC8Vt0HrSSwzwXSG3n918/bDwOy4KxIRERERSbBYHozrjXFwLBERERGRhHEyBOshOREREZEks1YRrC8/AydDsIiIiIgkkdvtpq6uLqWDsLWWuro63G53TNfFtCa4Fz4HxxIRERGRXpSXl1NVVUVtbW1/l9Kv3G435eXlMV0TUwg2xswExnS9zlr7dOffR3dzmYiIiIgkQEZGBmPHju3vMgakqEOwMeYBYCawCgh1HrbA0wmoS0REREQkYWKZCT7aWjs1YZWIiIiIiCRJLA/GLTTGKASLiIiIyIAXy0zwX+kIwrsBLx37Altr7cyEVCYiIiIikiCxzATfD3wFOAU4A/hC5989MsacYoxZZ4zZYIz5fg/nnWuMscaYihhqEhERERGJWSwzwbXW2udiGdwYkwbcDZwEVAGLjTHPWWtX73dePnA98EEs44uIiIiI9EUsIXiZMeZR4J90LIcA/m+LtG4cBWyw1m4CMMY8DpwFrN7vvJ8CdwA3xlCPiIiIiEifxLIcIpuO8Pt5OpZBhJdE9GQEsL3L66rOY/sYY2YDI621z/c0kDFmvjGm0hhTmeobQouIiIhIfKKeCbbWfs3pb26McQG/BS6L4vvfA9wDUFFRkbq9AUVEREQkbrE0y3ADVwDTgH3Nma21l/dw2Q5gZJfX5Z3HwvKB6cAbxhiAocBzxpgzrbWV0dYmIiIiIslV2+yhxRt0fNy8rDRK8t29nxinWNYEPwysBU4GbgMuBtb0cs1iYKIxZiwd4fcC4KLwm9baRqA4/NoY8wbwXQVgERERkYNbizfI8b9+w/FxX//uZynJd3zYA8SyJniCtfZmoNVa+xBwOjC3pwustQHgm8BLdATmBdbaVcaY24wxZ/a1aBERERGReMQyE+zv/LvBGDMd2A2U9naRtfYF4IX9jv24m3M/G0M9IiIiIiJ9EksIvscYMxi4GXgO+51JbAAAF1tJREFUyAMihlkRERERkYNZLLtD3Nf55ZvAuMSUIyIiIiKSeFGvCTbGlBlj7jfGvNj5eqox5orElSYiIiIikhixPBj3IB0PuA3vfP0x8C2nCxIRERERSbRYQnCxtXYBEIJ9Oz84vzmciIiIiEiCxRKCW40xRYAFMMYcDTQmpCoRERERkQSKZXeIG+jYFWKcMeZdoAQ4LyFViYiIiIgkUCwheDXwD6ANaAaeoWNdsIiIiIjIgBLLcoi/ApOBnwN3AZPoaKUsIiIiIjKgxDITPN1aO7XL69eNMaudLkhEREREJNFimQle2vkw3P9v786j7K7r+48/3/fOzSyZSQJhWEzCIgFZRASGtfEYFluWFiwVRUsXi6W/I/ZHpbSitf5E2+JCrYcWrFRapNXSqlSpgriwyGKUsJRIEBrWJAJJINskmeXO/fz+mAuGEMgkc793ls/zcU5O7r3f77zznvM5+cxrPvdzv18AIuJoYGHjW5IkSZKKtc2V4IhYxPAVISrA3RHxdP35XsDPi21PkiRJaryRbIf49cK7kCRJkppomyE4pfRUMxqRJEmSmmV79gRLkiRJk4IhWJIkSdkxBEuSJCk7hmBJkiRlZ3tuliFJkiQB0Nla5taL5hdStxkMwZIkSdpu3V1tdHeNdRc7zu0QkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpOy1j3cBYWrW+n97+aiG1O1tb2KWrtZDakiRJGp2sQ3Bvf5X5l91WSO3bLppvCJYkSRqn3A4hSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKy0zLWDYyltkqJ6847prDakjQaK9f30ds/VEjtztYy3V1thdSWlIei5qhmzU9Zh+D+ao2zr1pQSO3b/2x+IXUl5aO3f4jjL7utkNq3XjSf7q5CSkvKRFFzVLPmp6yXK0sRE7K2JEmSRifrECxJkqQ8GYIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpSdwkNwRJwcEY9ExJKIuHgrxy+MiMUR8WBE/DAi9iq6J0mSJOWt0BAcEWXgCuAU4CDg3RFx0Ban3Q/0pJTeBHwd+EyRPUmSJElFrwQfBSxJKT2eUhoArgPO2PyElNKtKaWN9acLgNkF9yRJkqTMFR2CZwFLN3u+rP7aqzkXuGlrByLivIhYGBELV65c2cAWJUmSlJtx88G4iDgH6AE+u7XjKaWrUko9KaWe7u7u5jYnSZKkSaWl4PrLgTmbPZ9df+1lIuIk4C+At6aU+gvuSZIkSZkreiX4HmC/iNgnIqYAZwM3bH5CRBwGfBE4PaW0ouB+JEmSpGJDcEqpCnwAuBl4GPjPlNJDEfGJiDi9ftpngU7gaxHxQETc8CrlJEmSpIYoejsEKaUbgRu3eO1jmz0+qegeJEmSpM0VHoLHs0o5uO68YwqrLUmj0V4pFTZHtVfGzeeiJU1QRc1RzZqfsg7BfdUaZ1+1oJDat/3Z/ELqSsqHc5Sk8ayoOapZ81PWSwEpTczakvLgHCVpPCtqHmnW/JR1CJYkSVKeDMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyk7LWDcwlkoxMWtLysPUKWV+cOFbC6stSTnLOgS3tpS47rxjCqstSaOxYWCIkz53eyG1b71ofiF1JeWjs7VcyFzS2dqcX9KzDsGbBmucfdWCQmr7A0aSJE1m3V1tdHeNdRc7zuVKSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSstMy1g2Mpc7WMrdeNL+w2pI0Gs5RklScrENwd1cb3V1j3YUkbZ1zlCQVx+0QkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZaRnrBsbSyvV99PYPvfS8DShVyiQSbZUSG/qH6Bus8fiqXtZsHKS1UmJudyfT2yuUS8GM1mD9YDC9rcTytQMvq93ZWqa7q63J35GkyWTLOWqPrhbW9Sc6WxLrq1AdSqzrq7JkRS99g0N0tVWYu+tU2itlOiolakNQDSinIdYPvry2c5Sk0dpyjprRVqZULtPRAis3DDJUg+d7+3li1QaGUmLXrjb23LmDlnLQ3VlhfV+Naq3GpsHay+o2a37KOgT39g9x/GW3AfCbb9qdi087mEo5sWEg8U93PMbXFi5lXV/1FV9XCjj+Dbty/vFzed30Ntauq9LeEhzzqVtfOufWi+bT3dWs70TSZLT5HHXzBfNYtTFoKQWPrx7gytuW8L2HnqNaS6/4uo4pZc48fBbvm/d6pk4pMRRlbvqfp/jM95e8dI5zlKTR2nyOuu+jJxKR2NRf5Z4n1nHlbY9x39Ort/p1u09r4/eO24sz3jyLrtYyACd9/hZ6Nw0fb9b85HYIhgPwR047mARcf/8znPS527n6zie2GoABagl++PMVnPmFu7nk24sZKJeYObXCgouPb27jkrJw8wXz2GdmO+VS8NmbH+HX//5Oblz07FYDMMDGgSH+bcHTnPS52/nqT5eSUuK3j9yLP3/b3CZ3LikH9330RAJYvXGI//OV+3jftQtfNQADPLuuj09/9xFOvfwOFjzxAiT4wZ+cQGd783oGQ/BLK8C1gL/4r0X81Xcepr9a2/YX1t30s2f5rSvvZtmafoOwpIZ7MQA/11vl7KsW8I37lo/4a6u1xN/94H+54LoH6EsYhCU13H0fPRFIPLZqI6deficPLF0z4q9ds3GQP7z2Xq758ZNA84NwpLT1lYTxrKenJy1cuHDUdZ5ZtWF4D3BKfPI7i/nOomd3uNbu09q4/v3H0TpUY7AcbKom9tll6qh7lJSvvv5+Vm0colwK3n3VAp58fuMO13rL3F347FlvIiL4xj1Pccqhs52jJI3K6t4+Wislnl7dx9uvuIu+wZEvIm7pQye/gXccPpuhlNg0WGvY/BQR96aUerZ2LOuV4PKUMq0tcO/SNaMKwDC8tP+J/36IgXKJUqnETk1e0pc0+WwYhJaAz3//f0cVgAHuWLKKHz68gkoJ3nn03o1pUFLWVvYOsq5viA989f5RBWCAy773KKs2DFApQUelOfE06xBcAjYOJj5y/aKG1PvuQ8+xfM0mprcGqzc1pKSkjLVSY82mKv+xcGlD6n3yO4vpqyaGhkb3w0qSAPac0caNi55lyYreUdcaqiU+9I0H6a8mprZGA7rbtqxD8IyOFhY++QJrNw1u++QR+odbl7B6kz9gJI3ephp88UePNaxe32CNmx96lmlt5YbVlJSv5zcNcvWdTzSs3oPL1rKur8rAwNC2T26AwkNwRJwcEY9ExJKIuHgrx1sj4j/qx38SEXsX3dOLVvQO8O8/bcwKy4t+9OhKqhNwn7Wk8WegBjeOcqvWlr62cBmrNmz9yjeStD3W91VZvqaxb31/7d6lTOtobWjNV1NoCI6IMnAFcApwEPDuiDhoi9POBVanlOYCfwd8usieNldLsGj52obXXLNxkI6GVpWUo00DQ9t1tZqRePS59ZSiOW81SprcXusyaDvq/qfX8ty6gW2f2ABFrwQfBSxJKT2eUhoArgPO2OKcM4Av1x9/HTgxojkz9FAt0dvf+BWRR55dz87TpzS8rqS8LH1hdB+G25pqLdFXbc5bjZImt581eCERYMnK9TRrU2nRIXgWsPl+g2X117Z6TkqpCqwFZm5ZKCLOi4iFEbFw5cqVDWmuVtC2hb7qEE3K8ZImsf6CwupEvDSmpPGlVqs1/J0qgIFqjWZFqAnzwbiU0lUppZ6UUk93d3dDaraUivn2p7dXGKr54ThJozOtrVJI3aLmPkn5KJVKTGtv/BzV1Vpp2i/qRc+Ey4E5mz2fXX9tq+dERAswHXi+4L4ACGDXrsZvvt5/ty5+sa5xV5yQlKfXFXDB8Y4pZVrKvlMlafR69tq54TUPet00KuXJcZ3ge4D9ImKfiJgCnA3csMU5NwC/V3/8DuCW1KRfAdoqwRF77dTQmh1Tykyd4uWHJI1epRTMnNrYzxe8ec4MSmZgSQ3wxlnTGl7z2H1n0t3ZnM9VFRqC63t8PwDcDDwM/GdK6aGI+EREnF4/7WpgZkQsAS4EXnEZtaK0V4Jz5+3T0JpnHj6raXc6kTS5TW9v4T1H79nQmu+bt48hWFJDVMolDpszo2H1yqXgtEP24OnVfQ2r+VoKT2sppRtTSvunlPZNKf11/bWPpZRuqD/uSymdlVKam1I6KqX0eNE9vWhdX43XzWhj/906G1KvpRS8b97rqQ0lOl0MljRKGwZqvOvIObQ16Bfr2Tu1c8Ae0xjeDCZJo9M9tYUPvm3/htU77ZDdmVIO2lq8Y1zhIoL2SpnLzz6McgOWRj74tv2Y2lqiGoFXIJLUCO2VEn952paXV98xl599GNPbWhpSS5JW9FbZf7dOfu3g3UZda6eOChefciBr+zbQ0qTLQ2QdgjcN1hio1ti5o8Ilp4/uh8y8uTP5rcPnUEvBl+96jOYs5EuazAYHhqjW4MQDd+XkUf6QufBt+7HHjDZ6+4c45tJbGtShpJzt1FGiUoOP/8bB7LPL1B2uUykH/3jOEUxrLTOzvZPeweZcYSvrEAxw9KW3kICTDtyNT5xx8A6tCB//hm4uO+vNtAZ8+a7HuPL2Jxvep6T8DAIf/+YiIoJLTn8jZxy6x3bXiIA//dX9eVfPHEoER1/6w8Y3KilLz62vsqy3j53bS/zruUdxwO5d212jY0qZf/n9I9l7lw76B2sc8TfNm6OyD8EwHIQDOPmg3fj2H89j7q4j2yPc2drC377zUP7mzEOoBPyTAVhSg920eAUf/+YiCPjwqQfyhXMOZ/oIr825584d/Nf7j+OsI2aDAVhSAc644m5+vmIjM9tLXPPeI/m/J86lZYQLisfuO5PvXvAWDt6jixaiqQEYwM1hdUdfegs/+fAJ7D6tlWv/4CiWrd7Il+54gnufWs3zG355D+u2SomD9pjOu46czVv266ajUqJ/KHG1AVhSQW5avAJYxMfffgjH7bsTN13wFu558gW++pOnWbR8LRsHfvkhhBkdFQ6bsxPnztub13d30tVaZuNAzQAsqTBnXHE33zr/OHbpbOOco/fknT1zuOGBX/DtB5/h0efWU6398sq3s2a0c+y+O3PuvNczvb0FajVqNZoegMEQ/DJHX3oLCz58AgFMrQR/9fY30l+tkVJisJYoBUwpl4DETh1T2NQ/vF/PLRCSivZiEL7k7YdQDpi/fzc99eucDw4lhlKipRSUS0GlFPT2DRIBvQNDHOseYEkFezEIz9l5KuWo8vvH7cVvHLoHpYiXbq/84k0wpraWeXLFWro7pxOl0pgEYICYiPeQ7+npSQsXLhx1nZXr++jtL+YyDp2tZbq72gqpLSkPzlGSxrOi5qhGzk8RcW9KqWdrx7JeCe7uaqN7+/dwS1JTOEdJGs8m+hzlB+MkSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZWdC3iwjIlYCT43BP70LsGoM/l0Vy3GdvBzbycuxnZwc18lrrMZ2r5RS99YOTMgQPFYiYuGr3XVEE5fjOnk5tpOXYzs5Oa6T13gcW7dDSJIkKTuGYEmSJGXHELx9rhrrBlQIx3XycmwnL8d2cnJcJ69xN7buCZYkSVJ2XAmWJElSdgzBkiRJyo4heAsR8c8RsSIifvYqxyMiLo+IJRHxYEQc3uwetf1GMK6/XR/PRRFxd0Qc2uwetWO2NbabnXdkRFQj4h3N6k2jM5KxjYj5EfFARDwUEbc3sz/tuBHMydMj4r8j4n/qY/veZveo7RcRcyLi1ohYXB+3C7ZyzrjJUYbgV7oGOPk1jp8C7Ff/cx7whSb0pNG7htce1yeAt6aUDgE+yTjcwK9XdQ2vPbZERBn4NPC9ZjSkhrmG1xjbiJgBXAmcnlI6GDirSX1p9K7htf/fng8sTikdCswH/jYipjShL41OFfjTlNJBwDHA+RFx0BbnjJscZQjeQkrpR8ALr3HKGcC1adgCYEZE7NGc7rSjtjWuKaW7U0qr608XALOb0phGbQT/ZwH+GPgGsKL4jtQoIxjb9wDXp5Serp/v+E4QIxjbBHRFRACd9XOrzehNOy6l9ExK6b764/XAw8CsLU4bNznKELz9ZgFLN3u+jFcOsCa2c4GbxroJNUZEzAJ+E9+1mYz2B3aKiNsi4t6I+N2xbkgN8w/AgcAvgEXABSml2ti2pO0REXsDhwE/2eLQuMlRLWPxj0rjVUQcz3AInjfWvahhPg98KKVUG15U0iTSAhwBnAi0Az+OiAUppUfHti01wK8BDwAnAPsC34+IO1JK68a2LY1ERHQy/O7bn4znMTMEb7/lwJzNns+uv6YJLiLeBHwJOCWl9PxY96OG6QGuqwfgXYBTI6KaUvrm2LalBlgGPJ9S2gBsiIgfAYcChuCJ773Ap9LwzQyWRMQTwAHAT8e2LW1LRFQYDsBfSSldv5VTxk2OcjvE9rsB+N36pxuPAdamlJ4Z66Y0OhGxJ3A98DuuIk0uKaV9Ukp7p5T2Br4OvN8APGl8C5gXES0R0QEczfAeRE18TzO8wk9E7Aa8AXh8TDvSNtX3cF8NPJxS+tyrnDZucpQrwVuIiH9n+JOou0TEMuD/ARWAlNI/AjcCpwJLgI0M/7aqcW4E4/oxYCZwZX3FsJpS6hmbbrU9RjC2mqC2NbYppYcj4rvAg0AN+FJK6TUvlafxYQT/bz8JXBMRi4BgeEvTqjFqVyP3K8DvAIsi4oH6ax8B9oTxl6O8bbIkSZKy43YISZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJImkPoF5p27JWmUnEglaZyLiL0j4pGIuBb4GfCXEXFPRDwYEZdsds7PI+IrEfFwRHy9fhc1IuJTEbG4fv5lY/m9SNJ44c0yJGmci4i9Gb5l7HHANOAdwB8xfCetG4DPMHyb2SeAeSmluyLin4HFwL8AdwMHpJRSRMxIKa1p+jchSeOMK8GSNDE8lVJaAPxq/c/9wH3AAcB+9XOWppTuqj/+N2AesBboA66OiDMZvk2pJGWvZawbkCSNyIb63wFcmlL64uYH66vFW761l1JK1Yg4CjiR4RXkDwAnFNuqJI1/rgRL0sRyM/AHEdEJEBGzImLX+rE9I+LY+uP3AHfWz5ueUroR+CBwaNM7lqRxyJVgSZpAUkrfi4gDgR9HBEAvcA4wBDwCnL/ZfuAvANOBb0VEG8OryBeOSeOSNM74wThJmgTq2yG+nVJ64xi3IkkTgtshJEmSlB1XgiVJkpQdV4IlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZ+f9gTIFoNZNYGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXiU5b3/8c+dzCSTHQhJgAQE2VcRooBaFK1r3aq2ilalrm3VLu79ddFjT3vq1uW0eo5abSsWFbtp61qPuIsQkEUEBJQlLEkI2ZNJJpP790cyNGKWmeR5JoTn/bouLzMzz3z5itc1+eTO/dxfY60VAAAA4CUJfd0AAAAAEG+EYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4Dm+vm6gJwYPHmxHjhzZ120AAADgILZixYq91tqcjl7rlyF45MiRKioq6us2AAAAcBAzxmzr7DW2QwAAAMBzCMEAAADwHEIwAAAAPIcQDAAAAM8hBAMAAMBzCMEAAADwHEIwAAAAPKdfnhMcL1X1TWoIheX3JchayUhqsVbWSrmZgb5uDwAAAD1ECO5AWU1QtY3Namhq0YY91Vq3q1rVDSEl+RI0JjddU/OzVNUQ0sBUv9KTfQok8dcIwH3BpmbtrAoqLz1JVY1h1Tc2a3VxpVbvqFIwFFZmik8zRgzS5GGZSvIlKDUpQbWNYRUMTO3r1gF4SENTs/bVN6m8tklF2yq0qaRGLS1Sbmayjh41SKMGpyk5MUE5fbygSHprp6K+UXWNYW3cU6P/fWOLlm+t6PTagoEpunT2YTplcp4yA35lpyfHsVMAXhNsalZpTaNS/In659o9+t83tmhref3nrntUWyVJRxRk6btfHKfROWnaXVGvoQRhAC4LhcIqq2vSE+9t06Ll21VZH+rwusQEo5Mm5OrGU8YpNz1Zg/ooQxlrbZ/8wb1RWFhonR6bXF4bVE0wrHtf3qjn1+6O+n2jc9J131emafjAFA3OYIsEAOcFm5pVFQyptjGsbz/5gdbtqo76vSeOz9VPzp2ilKQEDUrjh3UA7iirCWrDnhp97+lV2lvbFNV7Eoz0zeNH67JjRirPpVVhY8wKa21hh3++K39iP1PV0KjqYFhXPV4UUwCWpC1ltZr/yFKt31OjspqgSx0C8KpgU7MqG0Iqq2nSub99J6YALEmvbSzVhQ+/p7rGsMprG13qEoCXldUE9dqGUl322LKoA7AktVjpgde36NY/r1FJdfwzFCFYUl1ji7795AfaXFrbo/cHQy265vEVKq9tUnVD9P/zAaArwaZm7aoMqincoosfWaqaxuYe1SmuaNDljy1TU7hFxRWf30IBAD0VCoW1YU+Nbv/rWvV0c8EbH5fp7pc2qDTOQdjzIbikOqg/ryjW2p1VvarTEArr1r+sUV1j2KHOAHhdqMXK70vQbX9Zq+pgzwJwxCd76/TY25+qJtisynp+WAfgjLK6Jn3v6VU9DsARf125UxtLahQOxy9HeT4ENzW36LevbXak1priKq3YVqH6xo43ggNAbFq0s6JB720pd6Tao29/qrTkRKUmJTpSD4C31TWG9Md3t8a0BaIr3//rWpXUxO+HdE+H4JpgSC+s3a2mcItjNR956xNVNBCCAfRefaPVg68780O61Lr/7qllO9Tc0v9uiAZw8KlqaNZTy3c4Vq+4okE7Kxscq9cdT4fgqobWEOyk1cVVCof5BgOg95pbrN7evNfRmi+s3a1yh1ZtAHhbaXVQVQ4v/P1lRbEaQ73b/hUtT4dgI2nDnhrH6+6p5g5sAL1XHQzJ6UXbbfvqZYyzNQF40/Jtnc9T6Kk1xVWOba/ojqdDcChs1djs3FaIiE/31jleE4D3uPFrQWulxpDzn3sAvGdTifMLidv31Stev0/3dAh26y+5pR8OIAFw8HFrmBGfUAB6q6WlRWEX7i8It1gZxefXVZ4Owf5Ed/6SczOYygSg97JdmvDm1mcfAO9ISEjQ0AEpjtcdlJakeP2o7ukQbK00YlCq43UPz0l3vCYA72n9ZuCsAal+JSYQggH03swRAx2vOSU/UwF/fI5x9HQIHpjq13Fjsx2tOTg9SUk+vsEA6L2mcItGZjv7g/qsUdnshwDQa9ZaFQxMkdM/Ux8zOlstcbptwdMhOD3g14JjRjla87I5I5XtwuoNAO+pDYY0/+gRjta88Kjhaua+BQC9ZK3VlrJazZuQ61jNgD9BMw4bpKY4TY3zdAiWpKwUv+aOG+xIrcyATxfMLFDA73OkHgBvC/h9mnHYQOWkO7M3+IiCLNUGQ/JxRhqAXkpISFBtsFnXzxvj2LGLl80ZqbCDA8y64/kQnJcZ0E/Pnar05N4H13sumKaBqX4HugIAKTPFp5+/uEH/cc7kXtdK9iXoR2dO0mPvfMo5wQAcMSU/S29+XKavHzOy17VGDU7TvPG5qg42x+3mXc+HYEnKTPHr0csLe/WXfuVxo3Tk8AFKSWIVGIAzfAkJ8iUYfbq3TtedMLrHdRKM9PPzp+nx97bpqJGD4nbTCYBDW1O4Rf/92madMD5Xx47p+T1WA1P9uueCafrh39fq5XV7lJrMjXFxYa3Vht3VyslI0qKrZ8e8kptgpJtOGadr5x6uP7z3qaodHh8IwLtS/An65gmj9b+vb9F5Mwr0/86YIF+Md6FkJPv00KUzVTAgoH+u2aULjxruyG++AGD1jkqFW6yu+9NKXTdvjM6cNjTmGiOzU/XwZYX6rxc2aEtZnVYXV6q6gbHJcVFW26hln+7TnqpGlVQ16LEFR+msaUOjuttx4tAMLbxylganJWlXZYPmjs3T7irnJzwB8Kas1CQdNihVD106U3c8t07b9zXoT1fP0vThA7p9rzHSyZPy9PiVR2vR+zv0wod79NClhQr4E5XMSjCAXrLWat2uaklSTWOzrvxDkY4aOUj/fdF0DcsKdPv+gD9BV31hlP7rvGm6/S9rtXJ76wjmbXvrHR8X3xnPLwdsK6/XiRNz9c7mcv3shfVKS0rUNXMP11++eYze+LhMK7ZVaP3ualU3NCvJl6Axuemakp+l0yYPUVlto3787IfaUlanOaOz9YMzJmpNcZXyB6QoPcDeYAC9l5ni12sby/T25r16e/NevfFxqa6bN0a3nTZBr3y0R6t3VGlzaY2CoRalB3yaMCRDR44YqJMm5GrZp/t0+e+Xta6qbJROnTxEg1I8/7EPwAHWWoXa3cTWEArrjufW6ehRg3TXuVMUbrF69aMSrd1ZpW3l9WqxVtlpSZqSn6XZh2dr+vAB+tsHO/W1R9//zOS55jhOjDNujeV0U2FhoS0qKup1nZpgSFvKatXUbDX/kaWf+Z/gTzQ6dvRgTRuepQlDMpWe7FMo3KJP99Zp7c4qvb1pr8rrmj5T74YTx+isI4ZpQMCv3Ch+CgKA7mzfV6cv3v+mmg64Yzozxafjx+ZoSn6WRuemKykxQfVNYW0sqdHa4kq9tWmvGps/+57cjGQ9e92xrkx5AuA9P3thvR5+85MOXxs+KEXHjB6sqflZyh+QosQEo4r6Jq3bVa2V2ypUtK2iw/cNzQromW/MUcFAZ85IN8assNYWdvSap5cEmkItSkv26ZZnVn5u/nUobPX6x2V6/eOyqOv9z+tbdPqUIXE73w7Aoa2uMaQnlm7/XACWpOqGZv1jzW79Y83uqOuV1jRq1Y5KQjAARxw9clCnIXjHvgY9vW+Hnl6+I6aak4dlKjMQn3jq6T3BYWu1uzKoTaW1jtRrbrFauHSbDOcPAXBAZX2zFhfF9g2kO79/d6t2V3LvAoDeGz8kw/EjF48fl6PMlPgMHfN2CG6xWrRsu6M1n121S3E85xnAISwUblFlvbMnzqwprozbTScADm0Bf4KOHe3MwDGp9TzzkybmOVavO54Owc0tVis72ZPSU/VNYdU2xedoDwCHtuKKesdrBkMtampmyxaA3svJCOiWU8c7Vu/io0coLSl+p9d4OgRLrXvknLbFoe0VALytptGdH6ibWQoG4JCCgSm6ZNaIXtfJH5Cia48frazU+GyFkDwegg+8Gc4pNUEGZgDovRSXzvNNjHHgBgB0Jjs9Wd8+aaxmjOj+/PLOpCf79OjlhRoS55O1PB2CE1z6RpDKNCYADhgxyJkjgtrzJxqGZQBwVF5mQA9eMlPHj8uJ+b1DMluPRBs1OM2Fzrrm6RDsTzSujA8dl5vueE0A3pPsT3B8NXjCkEypH54PD+DgVRMM6d3NZbr99An6xVeP0IDUfw8Mywz4ND4vQ5OGZn5mklxigtH8o4brmW/M0avr9qjWpe1fXfH0kmWq36epBVl6b0u5YzUTjOK6nwXAoSvVn6izjhjm6DFp848eocEZyY7VA+Bt4RarFdsqdOMza3RYdqoeuXSm/nH9caqqb5KM0d7axnYT45J1WHaqjJEGpSapxVrd//IG/X31bn1cWqf/PHdyXDOUp0OwjHTJrBGOhuDjx+co2cd+OwC9l5bs09VfGKVnVuxwZPE2PdmnE8bnKNnHdggAziitDuq7T6/S2UcM04JjRmpPdaP21lZr4Xvb9MGOyg7fk5uRrPlHj9C88Tk6fdpQzRmTox/8ba3On5mvuWNzXNuueiBPb4fISvFrxoiBykrxd39xlK6fN1b+BE//tQJwSJIvUQNS/VowZ6Qj9f7z3Cka4ODnHQBvq6pv0mPvbNUJ43J18awRarFW972yUTcuXt1pAJZaT+b69f9t0uW/X67axrAGpyfpVxdO1w/+tlZ7qoNx69/Taa2qvknLPinXPRdMc6Tel6YOUWpSAgfRA3BMTkZA1x4/WuPzMnpV59TJeZp9+CBu3AXgmJpgs4q27tMVx41UfVNYX3v0fa0pror6/VUNId20eLXe2bxXuZnJOmd6vjaV1LRupYgDT38apif7NCk/SyVVQZ19xDA9t3rX/tfG5qbry0fma0p+lgL+RLVYu3804JbSOr26vkSvbyzdH3iHZgV062kT9P4n5cqf4vwd3QC8a0hWQL//+lG64g/LtWFPTczvP3FCru46Z4ryMuN7/BCAQ9u+uibdcfYkNTa36Ft/WqFgqGcjcx97Z6syU/w6c9pQvbxuj44d49wUuq4Y2w/vEi4sLLRFRUWO1AqHW/TJ3jplBHz64d8/1M7KBn3/9InaV9ekxUU79MH2SjWE/j1dKcFIY3MzdOYRQ3XcmMFauHSb3t1crievma3dlfWakj9Amfy6EYAL9lQH9cibn+ixdz7VtPwsnTp5iCYPy1TAnygryRipuiGkNcVV+sfqXdpdFdQPvjRRp04aorw4n78J4ND3r3V7NHxQqq5btFJbyup6VSsxwejJq2crFA5rdE6GY2cGG2NWWGsLO3zN6yFYkspqgnr4zS06c9owBZtbdNPi1SquaOj2fcm+BN1y6nidMnmI7n95o75/xsS4H/QMwBtCzS3aWVmvjECigiGrpZ/s0+KiHVq7s0r1Tf/+QX1Aauu9DpfOPkzjhmQo1Z+gYHOLhmal9GH3AA5Fm0tr9K+PSnT3SxsdqTc1P0u/vPAIZaX4lZPhfgj29HYISWppadGmklqNGJSu1zaU6b9f2xT1XdiNzS36z+fX618flejmU8frkbe26JsnjNHgdI4fAuCcUHOL9lTWK9mXqOVbq3T7X9eosr7jyZSV9SG9tqFUr20o1WHZqfr1RdOVm5Gs3VUNBGEAjrHWypeQoIXvbXOs5tqdVaoJNisnTjnK0zfGSdKe6kYVbdunfXWtdyr2ZGH8/U/36b9e2KATxueqNI53NQI49EUCcFKSTz9/cb2+8cSKTgPwgbaV1+vLD76rv67cKSNpd1X3v+ECgGgYY1QdDGlXlbO557nVu9QcpxMGPB+Cd5TX6cgRA/Wr/9vUqzort1forU179eHOKlXUNTrUHQAvi2yB8PkTdedz6/Ts6t0x17BWuu+Vj/VMUbGsJQgDcM7qLo5B63nNKjU29+wGu1h5OgSX1zZKxujHz65z5CD63731iQ7PSVdDD++OBID2GpvDSvYl6LX1pXrxwz29qvWLVz/WnrYVm6qG+Bw/BODQZa3V+t3VjtfdXFYTt8nung7BoRaryoaQPt3buzsaI1qs9PTyHWoOE4IB9F7Ytv7zk+c/6nUta6VvP/WBbIuk/nc/NICDkBsrtk3NLfuPpHWbp0NwS4vVX1YUO1rzudW7FArzHQZA7yWa1h+se3r25oGKKxq0oaRaqUmMTQbQO8YYDUxNcrxuRsBPCI6HcIvVyu0VjtZsbG5RsDnc/YUA0I2qhmY9uWy7ozV/99anKq9jOwSA3jt61CDHa04amqmMOE229HQIlqS9tc5/M/iklwdGA4AkhVpaHP+MWrWjUuzYAuCEcUN6N869I18YO1gtcdoU7OkQ7NYRHPVNza7UBeAtu6IY2hOr+qawQqRgAA5I8SVqxogBjtVLTDA6dfIQBXzx2bLl6RDsS3Bn00lqkudnkABwQHUwuvOAY9XcQggG0HtWVt85aaxj9c4+YqiqG0IKcU6w+5J9CcoMOB9Yx+SmO14TgPcku7QakhCvu04AHNKMMapsCOmMqUN6XWtgql9XfeFwNTaHXVukPJCnQ3DAn6ipBVmO1kxMcOduSQDeM3xQquM1fQnGtXANwFvyMgOaNWqQbjplvEYNTutxHX+i0UOXzlSCpMn5WUr2sx3CdZkpfl1x7ChHa548MVfpcbqrEcChLTUpUck+Zz+mx+VlyHJQMAAH1ARDqm1sVvG+ev3qwumaODT2G+XSkhL10Ndm6sOdVcpKSVJtMH73VXk6BEvS1PwsZac5t3J7w0ljle7CFgsA3pPkS9DpU3r/a8b2vlJYoKGZyY7WBOBN1Q1NWr+7Rgv+sFzffGKFvn/6RH37pDFRb2c4bky2/nTVLC1cul13/XO97vrnOgVDYdU2xicIez4E+xIS9JNzpjhS65zpw5QZ8Cscpw3dAA5tg9OTde3xox2rF/An6NTJQ5SYyHYIAL1X1RBunURppV1VQV3++2WqqAvpmW/M0c2njNfkYZnyJ342EBcMTNFXCwv01NWzdcbUYVrwh+VasrFUkvTSuhI9/t62uE3e9fSSZWV9k256ZpVOGJ+r82bk668rd/a41vBBKbp8zkid/z/v6KXvHq9BDq4uA/Cu7LQkfbWwQIuLej/d8odfmuTKzcAAvCknI0kL5ozU79/dKql1PPvCpdu0aNl2zRufo68UDtf4vIz9E+ASjNHOygat3Faha59YoaqGz56AMzY3XZcfM1ID4nRvlac/DVus1fXzxuiahUW654Ij1NTcon+u2R1znRGDUvXri6brpsWrdcWxo+L2EwyAQ19uZkA3njxO73+6T9vK63tc57gx2Tp5Yp7SA34HuwPgZTkZAX1rXutvqyJBWGqdyPvq+lK9ur406lpjc9P1xyuO1rABKU632SlPb4dISUpUesCn3148U7f9ZY1OnJCru86ZrNSk6H9VeMHMAv3ywum6cfFqfaWwQFPysxSnkz0AeMSQrBQ9ceUsHZbds9MiZo0apPu/Ml15WQGHOwPgdZEg/PVjRva4Rl8EYMnrIdjv04jsVA1K8+s382fozufW6b0t5Vp01Sxdf+IY5WR0fPNIsi9BZx8xTIuunqXROWm6+JGl+mphgabmZ2nCkAwNzuAbDQBnDR+Uqqevma3zZ+RH/R5fgtH3vjhWv55/JAEYgGt6E4T7KgBLkrFxms/spMLCQltUVORYvYZQs7aX12tfXUjXLixSfVNYJ0/K05ePzNfAtCTtq2tSTTAkf2KChmalKBRu0Zsfl2lx0Q5V1Id022njCcAAXBUOh7VzX4NCkhqawnpwyWa98lFJh+PfU5MSdd6MfF153OGqCYaUk5GsoVnx/wYDwFtKa4J6YMkW/bHd1oiujMlN1+MuB2BjzAprbWGHrxGCWx0YhKvbnVM3MNWvtGSfmsNWpTVBtf+eQwAG4LZwOKzt+xr01YeXqqymUXNGDdIPz5qkrBS/aoLN2lRao2BTizJSfBqTk66UpETtrgzq5mdWadu+Bk0elqnfXV5IEAbgmsZQWHuqG1ReG9J5//NuVO+5ZNYIXXv84coM+F27GY4QHKWGULOq6kP63uLVem9LebfXp/gT9eqNxyvFn6BB6Zy7CcB5BwbgAw1I8euMqUOVEfCptCao59fsUlP483UIwgDc0hgKa3dVgyobmnXxI0tV39GHUCe++8WxOmvaUGWnJ7sShLsKwZ7eE3ygYFOLfvXqpqgCsCQ1hML62qPvq5HTIAC4oLsALEmVDSEtWrZdD735if72QccBWJLW7arWVX8s0u6qBhc7BuA1vQnAkvSrVzfpH2t2q7y2UZX1TS512TFCcJuKuibd/dIGPbV8R0zv+3RvnS5+5H2+sQBwXG1Tiy7sIgBH5GYk6yfnTO52xPK6XdW67k8fqKIuvt9oAByaehuAI/oqCBOC1fMAHEEQBuCGpuawbjl1fJfX5GYk6+lrZ+srMwv0xFWzugzCyb4Eff+MCeomKwNAVPbVN/Y6AEdEgnBF22EE8eD5j8LeBuAIgjAAp+VkBHTC+Bzde8G0Dl+PBOBRg9MVSPJpQl56p0E42ZegJ66apQl56cpIYaIlgN6rCYajCsBjctN17vRh3db71aub9K/1JWpqjs82U0+H4Ir6Jt33ysaoAvD5M/KVkdz1gL1P99ZpfhS/ugSAaHUWhNsH4IiMlKQOgzABGIAbBqT4NWPEgC6vGdt2DNqPzpzU7TnCA1P9mjc+V1lxmmzp6RDc3Nyi48YMVmI3I95uPXW8LphZoIcvK+w2CB85YqBa+uGJGwAOXgcG4Y4CcMSBQZgADMAtuZkB/eKr03XcmOwOX28/CCM7PbnLgRoDU/1afO0cjcpOky9Oe7Y8fUTavrpGbS6t1a7KoG56ZrXCHRw6f+up4zWtIEtT8rNUUh3UvrqQrnm8SDWNzZ+79tzp+bp41nCNHJymXM4MBuCwspqg3ttSrqkFWR0G4PZqGpq0oaRWkgjAAFxVWh3UjYtX6e3N/z5dq7NJcGU1QT24ZIt+326ghpsBmHOCu7CvrkmbS2s6DMKRADxhaKYGpyd/ZqDGgUGYAAwgHvbVNWlQWnSBtqah9S5rAjAAt0WC8JDMgFYXV3U5CjkShPdUB/XRrir97vKjXFsBJgR3IxKEd1cFdePi1iB8+2kTNCU/c38AjogE4Yr6kK7+Y2sQPm9Gvi46igAMAAC8q6Q6qLrGZqUlJSqvm8E8++qCqqxvVmqST4PTklzbAkEIjkJlfZPqGpu1cnuldlU26PQprROYBnaw4hKZLLezskF/W7lTV889XOnJicpOJwADAADvKasOavm2Cl2/aKW+d/I4fXXmcOVldZyLahqatLW8Xhc9vFTHj8vRHWdPVl6mOxmKiXFRCIbCumbhCr2zea8aQmFd/LulHe77laSaYLN+8s/1uv+VjzWlIEvn/PZt7aoMKtjLM/IAAAD6m/YBuMVK97/ysRav2KGSquDnrm0fgOuawnrhwz36j+fWqaT689e6jZVgSXuqGnTlH4u0blf1Z54vGJiiRVfP1ohBqfufK60J6s5n1+mFD/d85tq0pEQ9dc1sjc3NUCAp0bHeAAAADlYHBuD2bjrlsyvCBwbg9s6YMsSVFeE+XQk2xpxmjNlojNlsjLm9g9dHGGOWGGM+MMasMcac4XZP7XUWgCWpuKJBFz+yVNv31UvqPABLUl1TWBc9vFSbSmtYEQYAAIe8rgKw9NkV4a4CsKQ+WRF2NQQbYxIlPSDpdEmTJM03xkw64LIfSlpsrT1S0kWSHnSzp/b21TXplj+v6TAAR0SC8M6K+k4DcERdU1jzH3lfDSFCMAAAOLSV1TZ1GoAj7n/lYz1VtL3LABzxwod79Njbn6q8Nj5Dx9xeCT5a0mZr7SfW2iZJT0k654BrrKTMtq+zJO1yuaf9MpN9+vGZkzQwtevJJMUVDTr27iVdBuCIH505Sf1xiwkAAEAsstOTdMmsw7q97pf/2qSzfvtOlwFYah2vfNkxI5Xd7lQuN7kdgvMltZ9JXNz2XHt3SvqaMaZY0guSbuiokDHmGmNMkTGmqKyszJHmfL4EjcpO0+Jr53QbhKNx9/nTdPLEXA2K0/88AACAvpKXGdD1J47RpbO7D8LdGdM2XCO/k7OF3XAwnA4xX9IfrLUFks6QtNAY87m+rLUPW2sLrbWFOTk5jv3hTgVhAjAAAPAaJ4JwXwRgyf0QvFPS8HaPC9qea+9KSYslyVr7nqSApMEu9/UZvQ3CBGAAAOBVvQnCfRWAJfdD8HJJY40xo4wxSWq98e25A67ZLukkSTLGTFRrCHZmv0MM2gfhATEEYQIwAADwup4E4dE5fReAJZdDsLW2WdL1kl6WtF6tp0CsM8bcZYw5u+2ymyRdbYxZLelJSQtsH91Z5vMlaFBaksblZUR1fcCfoLnjBhOAAQCA56X6E3XejANv/ercnNGDFHBpXHI0GJbRTlfnAHemo4EaAAAAXtLdOcCdOXCghtMYmxyFngRg6fMDNQAAALykpwFY6nrEstsIwep5AI4gCAMAAC/qTQCO6Ksg7PkQ3NsAHEEQBgAAXuJEAI7oiyDs6RBcVhPUz55fH1UAXnDMyKgmy138yFKVxnHuNQAAQF/YXd0YVQAenZOus44Y2m29+1/5WP9Ys0t7qhqcarFLng7BAX+izp9ZIH+i6fK6u8+fqu+dPDaqc4Tnjc+V6bocAABAv5eV4tcRwwd0ec2Y3HQ9fuXRuuOsyd0enzYg1a+5Y3M0MND7Kb7R8HQIzgj4NX34AD224KhOg/Dd50/VyRPzlJWS1O1AjUtnH6ZvnzRGORnu3OEIAABwsMjLDOiXF07XMaOzO3y9/SCMwenJXZ4jPCDVr8XXzNFhA1OUnOxzs+39PB2Cpc8HYX+iUWpSoqR/B+DIOcAdTZbLTGn9H0UABgAAXtNZEO5oElxnAzX6IgBLnBO8X00wpDXFlQqFrdKSfSquqNfxY3M6HITR3NyiT8vrtGJbhQpHDtILa3dr/tHDCcAAAMCTSqqD+t7Tq/TulvJuRyGXVAf129c2a+HSba4H4K7OCY5f3D7IZQT8GpeXqf/4xzrtrgzqwUtmdDoJzudLUBusTqUAACAASURBVE56ssrrmnT5Y8v05DWzCcAAAMCzIivCv371Y1134tguRyFHVoQzAz6dMz0/7ivAEZ7fDhGxr65JP/nnOv1zzW6t2F6h6xat1N6axg6vrWpo0lPLd+jelzdqZ2WD5j+8VDsrOBoNgPvKaxsVDkd3FFF1fZOq65tc7ggAWuVlBnTjKeO7DMDtr73smJF9FoAlQrCk1gB853Mf6rnVu/c/V7StQt94YsXngnBVQ5OefH+Hfv7Shv3P7axs0FcfIggDcFdZTVCvbSjV1n0N3QbhmoaQPtpTo4/21KimIRSnDgF43eBOfovekbzMQJ8FYIkQ3GEAjjgwCHcUgCMIwgDcVFYT1MvrSnTLn9fowofe6zII1zSEtG53tS5/bJkuf2yZ1u2uJggDwAE8HYIr6pv0n89/1GEAjogE4eqGUKcBOCIShMs62UYBAD0RCcA//PuHkqS9tU2dBuH2AbixuUWNzS0EYQDogKdDcIo/URcWDu92WEbRtgodd89rXQbgiNOnDOm2HgBE68AAHNFRED4wAEcQhAHg8zwdggP+RB0xfICeuHJWt8G1uqG523pXHTdK1584RgNSk5xqEYCHdRaAI9oH4brGjgNwBEEYAD7L0yFYii0Id4UADMBp/sQEPbBkc5fXRILwk8t2dBqAIxqbW3T/KxsVaul/58MDgNM8H4Kl3gdhAjAANwxITdKT18zWkMyuzyHfW9uk/3x+fZcBWJKOKMjSb+YfqUFpfFYBACG4TU+DMAEYgJtGZqfpqWu7D8LdOaIgSw9dOlNDsro/vxMAvIAQ3E7An6hJwzL1hbE5UV2f4k/Ud744lgAMwFW9DcIEYAD4PEJwO1UNTfrT+9v12obSqK5vCIX19d8v73SyHAA4padBmAAMAB0jBLepamjSk8t26Ocvdn8MWnudTZYDAKeNzE7T4mtnKzMQ3YSlMbnpeviyQgIwAHSAEKyeB+AIgjCAeKhpCGlXVVANoa5HJkfsq2tSbWNztyOWAcCLPB+CexuAIwjCANzUfhBGKBzdEWf76jqfLAcAXufpEFxZH30AnjVqUFST5QjCAJzW2SS4aHQ1YhkAvMzTIdgYo7Sk7vfWXXXcKD1yWWFUx6elJCXKMDUZgEN6E4AjCMIA8HmeDsFZKX6dM32YfnLOlE6viZwDnJni7/Yc4S+MHaxfXThd2enJbrUMwEOcCMARBGEA+CxPh2BJyuwiCB84CKOrgRoEYABOMwlG1y5cEdUkuOe/fVxUk+W+/eQHqm3qXaAGgEOB50Ow1HEQ7mwSXEdBmAAMwA1GVn/4+lFK8Sd2ek3kHODJw7K6PUd4SGZAD1wyQ1kpfjfaBYB+xVgb3V3GB5PCwkJbVFTkeN3qhpCeXbVL28rruh2FHAyFtXpHpR56Y4vu/coRBGAArqhrDOnjklpd/Mj7nzsaraNBGFvL63TRQ0u1pzr4mWuHZAb01LWzNTI7LS59A8DBwBizwlpb2OFrhODPqm4IKWytBkYxCjkYCisYCjM2GYCrOgrCXU2COzAIE4ABeFVXIZjtEAfITPFHFYCl1q0RBGAAbktL9mtcXroWXT1LKf7Ebkchtx+xTAAGgI6xEgwA/URdY0jbyus1KC0pqlHIW8vrJIkADMCzuloJjm4AvYeUVAdlJOV2c5e11DqNSZIGpbEaDMB9acl+jc9LV2Ji5zfKtUf4BYDOsR2indKaoJ5evl13v7RBpQfcVHKgfXVNWrFtn65dWKQ9VV1fCwBOiTYAAwC6xkpwm9KaoJ5atl2/+Nem/c/ddtqEDleEIwH4G0+sVLjF6lt/WqkHL5mhIVndrx4DAACg77ESrI4D8F9W7uxwRfjAACxJK7dX6Ft/WsmKMAAAQD/h+RDcUQCOODAIdxSAIwjCAAAA/YenQ3BJVecBOCIShCvrOw/AEa1BeAVBGAAA4CDn6T3BxkgZge7Hh/5l5U59XFKrj3ZXdxqAI1L8iTLGqQ4BAADgBk+H4NzMgM6cOlSS9B//+KjLa9furOq23rGjs/WLC6crL4rj1QAAANB3PL0dQpJy2oLwHWdN6lUdAjAAAED/4fkQLPU+CBOAAQAA+hdCcJueBmECMAAAQP9DCG4nJzOgLx+Zry9OzI3q+hR/oh66tJAADAAA0M8QgtvZV9ek5Vv3acnGsqiubwiFdcdzH3Y7YhkAAAAHF0Jwm64GYXSls8lyAAAAOHgRgtXzABxBEAYAAOhfPB+CexuAIwjCAAAA/YenQ3AsATg3I7nbegRhAACA/sHTITgUbtGrH5V2G4CPHZ2tf914vH58ZvfHp63cXqmerycDAAAgHjwdgvMyA7rplHG6YEZ+p9dEzgHOSvHrrGlDuwzCowanaeGVR3NkGgAAwEHO0yFYknIzA7r1tAkdBuEDB2HkZAY6DcKRAFwwMNX1ngEAANA7ng/BUsdBuLNJcB0FYQIwAABA/+Lr6wYOFpEgLEm7q4JdjkKOBGFJWrh0GwEYAACgnzHW9r/buAoLC21RUZErtSMnO+RGsa+3rDooX2KCBqYludILAAAAes4Ys8JaW9jRa6wEHyCa8BuRww1wAAAA/RJ7ggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5hGAAAAB4DiEYAAAAnkMIBgAAgOcQggEAAOA5rodgY8xpxpiNxpjNxpjbO7nmq8aYj4wx64wxi9zuCQAAAN7mc7O4MSZR0gOSTpZULGm5MeY5a+1H7a4ZK+n7ko611lYYY3Ld7AkAAACIaiXYGONr93W6MabQGDMoirceLWmztfYTa22TpKcknXPANVdLesBaWyFJ1trS6FoHAAAAeqbbEGyMWSCpxBjzsTHmdElrJN0tabUxZn43b8+XtKPd4+K259obJ2mcMeYdY8xSY8xpnfRxjTGmyBhTVFZW1l3bAAAAQKei2Q5xk6TxkjIkrZZ0pLV2izEmT9K/JD3pQA9jJZ0gqUDSm8aYqdbayvYXWWsflvSwJBUWFtpe/pkAAADwsGi2Q4SttXuttZ9KqrXWbpEka21JFO/dKWl4u8cFbc+1VyzpOWttqO3P+FitoRgAAABwRTQheLsx5r+MMb+VtMEYc78x5lhjzB2Sdnfz3uWSxhpjRhljkiRdJOm5A675u1pXgWWMGazW7RGfxPIfAQAAAMQimhD8NUnVal2xPVvSu2o9zSFX0oKu3mitbZZ0vaSXJa2XtNhau84Yc5cx5uy2y16WVG6M+UjSEkm3WGvLe/DfAgAAAETFWOvM9lpjzG+stTc4UqwbhYWFtqioKB5/FAAAAPopY8wKa21hR685OSzjWAdrAQAAAK5hbDIAAAA8hxAMAAAAz3EyBBsHawEAAACuiToEG2OmdnPJr3vZCwAAABAXsawEP2iMWWaM+ZYxJuvAF621f3CuLQAAAMA9UYdga+0XJF2i1glwK4wxi4wxJ7vWGQAAAOCSmPYEW2s3SfqhpNskHS/pv40xG4wx57nRHAAAAOCGWPYETzPG/FKtk99OlHSWtXZi29e/dKk/AAAAwHG+GK79jaTfSfp/1tqGyJPW2l3GmB863hkAAADgklhC8JckNVhrw5JkjEmQFLDW1ltrF7rSHQAAAOCCWPYEvyoppd3j1LbnAAAAgH4llhAcsNbWRh60fZ3qfEsAAACAu2IJwXXGmBmRB8aYmZIaurgeAAAAOCjFsif4u5KeMcbsUuuI5CGSLnSlKwAAAMBFUYdga+1yY8wESePbntporQ250xYAAADgnlhWgiXpKEkj2943wxgja+3jjncFAAAAuCjqEGyMWShptKRVksJtT1tJhGAAAIA+EAqFVFxcrGAw2Net9KlAIKCCggL5/f6o3xPLSnChpEnWWhtzZwAAAHBccXGxMjIyNHLkSBlj+rqdPmGtVXl5uYqLizVq1Kio3xfL6RAfqvVmOAAAABwEgsGgsrOzPRuAJckYo+zs7JhXw2NZCR4s6SNjzDJJjZEnrbVnx/QnAgAAwDFeDsARPfk7iCUE3xlzdQAAAByyKisrtWjRIn3rW9/q61ZiFvV2CGvtG5K2SvK3fb1c0kqX+gIAAMBBrrKyUg8++GBft9EjUYdgY8zVkv4s6aG2p/Il/d2NpgAAAHDwu/3227VlyxZNnz5dt9xyi+69914dddRRmjZtmu644w5J0tatWzVhwgQtWLBA48aN0yWXXKJXX31Vxx57rMaOHatly5ZJku68805deumlmjNnjsaOHatHHnlEkrR7927NnTtX06dP15QpU/TWW2850nssN8ZdJ+lYSdWSZK3dJCnXkS4AAADQ7/z85z/X6NGjtWrVKp188snatGmTli1bplWrVmnFihV68803JUmbN2/WTTfdpA0bNmjDhg1atGiR3n77bd1333362c9+tr/emjVr9Nprr+m9997TXXfdpV27dmnRokU69dRTtWrVKq1evVrTp093pPdY9gQ3WmubIhuPjTE+tZ4TDAAAAI975ZVX9Morr+jII4+UJNXW1mrTpk0aMWKERo0apalTp0qSJk+erJNOOknGGE2dOlVbt27dX+Occ85RSkqKUlJSNG/ePC1btkxHHXWUrrjiCoVCIZ177rmOheBYVoLfMMb8P0kpxpiTJT0j6R+OdAEAAIB+zVqr73//+1q1apVWrVqlzZs368orr5QkJScn778uISFh/+OEhAQ1Nzfvf+3AUx6MMZo7d67efPNN5efna8GCBXr8cWfmtMUSgm+XVCZpraRrJb1grf2BI10AAACg38nIyFBNTY0k6dRTT9Vjjz2m2tpaSdLOnTtVWloaU71nn31WwWBQ5eXlev3113XUUUdp27ZtysvL09VXX62rrrpKK1c6cy5DLNshbrDW/lrSI5EnjDHfaXsOAAAAHpOdna1jjz1WU6ZM0emnn66LL75Yc+bMkSSlp6friSeeUGJiYtT1pk2bpnnz5mnv3r360Y9+pGHDhumPf/yj7r33Xvn9fqWnpzu2EmyinYJsjFlprZ1xwHMfWGuPdKSTGBQWFtqioqJ4/7EAAAAHlfXr12vixIl93YYj7rzzTqWnp+vmm2/u0fs7+rswxqyw1hZ2dH23K8HGmPmSLpY0yhjzXLuXMiTt61GXAAAAQB+KZjvEu5J2q3Vs8v3tnq+RtMaNpgAAAOAtd955Z1z/vG5DsLV2m6Rtkua43w4AAADgvlgmxp1njNlkjKkyxlQbY2qMMdVuNgcAAAC4IZbTIe6RdJa1dr1bzQAAAADxEMs5wSUEYAAAABwKYgnBRcaYp40x89u2RpxnjDnPtc4AAABw0LviiiuUm5urKVOm9HUrMYklBGdKqpd0iqSz2v45042mAAAA0D8sWLBAL730Ul+3EbOo9wRba7/uZiMAAABw14svvqgHHnhAJSUlysvL03XXXafTTz+9VzXnzp2rrVu3OtNgHMVyOsQ4Y8z/GWM+bHs8zRjzQ/daAwAAgFNefPFF/fSnP9WePXtkrdWePXv005/+VC+++GJft9YnYtkO8Yik70sKSZK1do2ki9xoCgAAAM564IEHFAwGP/NcMBjUAw880Ecd9a1YQnCqtXbZAc81O9kMAAAA3FFSUhLT84e6WELwXmPMaElWkowxF6h1nDIAAAAOcnl5eTE9f6iLJQRfJ+khSROMMTslfVfSN13pCgAAAI667rrrFAgEPvNcIBDQdddd16u68+fP15w5c7Rx40YVFBTo0Ucf7VW9eInldIhPJH3RGJMmKcFaW+NeWwAAAHBS5BQIp0+HePLJJ51oL+6iDsHGmO9I+r2kGkmPGGNmSLrdWvuKW80BAADAOaeffnqvQ++hIpbtEFdYa6vVOiwjW9Klkn7uSlcAAACAi2IJwabt32dIetxau67dcwAAAEC/EUsIXmGMeUWtIfhlY0yGpBZ32gIAAADcE/WeYElXSpou6RNrbb0xJlsSo5QBAADQ73Qbgo0xE6y1G9QagCXpcGPYBQEAAID+K5qV4BslXSPp/g5es5JOdLQjAAAA9As7duzQZZddppKSEhljdM011+g73/lOX7cVlW5DsLX2mrZ/z3O/HQAAAPQXPp9P999/v2bMmKGamhrNnDlTJ598siZNmtTXrXUr6hvjjDFfabsZTsaYHxpj/mqMOdK91gAAAOCUUCikG264QTfccIPq6+v3fx0KhXpcc+jQoZoxY4YkKSMjQxMnTtTOnTudatlVsZwO8SNrbY0x5jhJX5T0qKT/dactAAAAOOnGG2/UypUrtXLlSp1xxhn7v77xxhsdqb9161Z98MEHmjVrliP13BZLCA63/ftLkh621j4vKcn5lgAAAOCWxsZG1dbWqrGx0bGatbW1Ov/88/WrX/1KmZmZjtV1UywheKcx5iFJF0p6wRiTHOP7AQAA0Efuvvtu+f3+zzzn9/t1zz339KpuKBTS+eefr0suuUTnnXder2rFUywh9quSXpZ0qrW2UtIgSbe40hUAAAAcddttt31u/28oFNKtt97a45rWWl155ZWaOHGiY9sq4iXqEGytrZf0rKQ6Y8wISX5JG9xqDAAAAM5LTk5Wenq6kpOTe13rnXfe0cKFC/Xaa69p+vTpmj59ul544QUHunRf1BPjjDE3SLpDUon+PS7ZSprmQl8AAABw0C9+8Yv9q7V33323brvttv3P99Rxxx0na60j/cVbLGOTvyNpvLW23K1mAAAA4A6/36/f/OY3+x+3/9qLYtkTvENSlVuNAAAAAPESy0rwJ5JeN8Y8L2n/mRrW2p6voQMAAAB9IJYQvL3tnyRxPjAAAAD6sahDsLX2PyTJGJPe9rjWraYAAAAAN0W9J9gYM8UY84GkdZLWGWNWGGMmu9caAAAA4I5YtkM8LOlGa+0SSTLGnCDpEUnHuNAXAAAA+omRI0cqIyNDiYmJ8vl8Kioq6uuWuhVLCE6LBGBJsta+boxJc6EnAAAA9DNLlizR4MGD+7qNqMV0OoQx5keSFrY9/ppaT4wAAADAQW7u3Lmqr6//3POpqal68803+6CjvhXLOcFXSMqR9FdJf5E0uO05AAAAHOQ6CsBdPR8LY4xOOeUUzZw5Uw8//HCv68VDLKdDVEj6tou9AAAAoB96++23lZ+fr9LSUp188smaMGGC5s6d29dtdSmW0yH+ZYwZ0O7xQGPMy+60BQAAgP4iPz9fkpSbm6svf/nLWrZsWR931L1YtkMMttZWRh60rQznOt8SAAAA+ou6ujrV1NTs//qVV17RlClT+rir7sVyY1yLMWaEtXa7JBljDpNk3WkLAAAA/UFJSYm+/OUvS5Kam5t18cUX67TTTuvjrroXSwj+gaS3jTFvSDKSviDpGle6AgAAgKNSU1M7PR2iNw4//HCtXr26VzX6Qiw3xr1kjJkhaXbbU9+11u6NvG6MmWytXed0gwAAAOg9Lx6D1pVYVoLVFnr/2cnLCyXN6HVHAAAAgMtiuTGuO6bDJ405zRiz0Riz2Rhze6dvNuZ8Y4w1xhQ62BMAAADwOU6G4M/dJGeMSZT0gKTTJU2SNN8YM6mD6zIkfUfS+w72AwAAcMizlnMKevJ34GQI7sjRkjZbaz+x1jZJekrSOR1c9xNJd0sKutwPAADAISMQCKi8vNzTQdhaq/LycgUCgZjeF9Oe4G40dfBcvqQd7R4XS5rV/oK2m+2GW2ufN8bc0llxY8w1ajuNYsSIEb3vFgAAoJ8rKChQcXGxysrK+rqVPhUIBFRQUBDTe2IKwcaYaZJGtn+ftfavbf+e3cnbuqqXIOkXkhZ0d6219mFJD0tSYWGhd3/cAQAAaOP3+zVq1Ki+bqNfijoEG2MekzRN0jpJLW1PW0l/7eJtOyUNb/e4oO25iAxJUyS9boyRpCGSnjPGnG2tLYq2NwAAACAWsawEz7bWfu6mtm4slzTWGDNKreH3IkkXR1601lZJGhx5bIx5XdLNBGAAAAC4KZYb497r6GSHrlhrmyVdL+llSeslLbbWrjPG3GWMOTuWWgAAAIBTYlkJflytQXiPpEa1ngtsrbXTunqTtfYFSS8c8NyPO7n2hBj6AQAAAHoklhD8qKRLJa3Vv/cEAwAAAP1OLCG4zFr7nGudAAAAAHESSwj+wBizSNI/1LodQtK/j0gDAAAA+otYQnCKWsPvKe2e6+6INAAAAOCgE3UIttZ+3c1GAAAAgHiJZVhGQNKVkiZL2j+c2Vp7hQt9AQAAAK6J5ZzghWqd6HaqpDfUOv2txo2mAAAAADfFEoLHWGt/JKnOWvtHSV+SNMudtgAAAAD3xBKCQ23/rjTGTJGUJSnX+ZYAAAAAd8VyOsTDxpiBkn4k6TlJ6ZI6nPwGAAAAHMxiOR3id21fviHpcHfaAQAAANwX9XYIY0yeMeZRY8yLbY8nGWOudK81AAAAwB2x7An+g6SXJQ1re/yxpO863RAAAADgtlhC8GBr7WJJLZJkrW2WFHalKwAAAMBFsYTgOmNMtlpHJcsYM1tSlStdAQAAAC6K5XSIG9V6KsThxph3JOVIusCVrgAAAAAXxRKCP5L0N0n1ap0U93e17gsGAAAA+pVYtkM8LmmCpJ9J+o2kcWodpQwAAAD0K7GsBE+x1k5q93iJMeYjpxsCAAAA3BZLCF5pjJltrV0qScaYWZKK3GkrPspqgqptdOeAi/TkROVkBFypDcAb+IwCAPd0G4KNMWvVeiKEX9K7xpjtbY8Pk7TB3fbcVdsY1rz7Xnel9pKbT1BOhiulAXgEn1EA4J5oVoLPdL0LAAAAII66DcHW2m3xaAQAAACIl1hOhwAAAAAOCYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeI6vrxvoS+nJiVpy8wmu1QaA3uAzCgDc4+kQnJMRUE5GX3cBAB3zJSTIl9DiWm0A6I2ymqBqG8OO101PTlRORsDxugfydAgGgINZbWOzvnDPEldqv3XrPA1MS3KlNgBvqG0Ma959rzted8nNJ8RlkZKlAAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4DmEYAAAAHgOIRgAAACeQwgGAACA5xCCAQAA4Dm+vm6gL1XUNam2sdmV2unJPg1MS3KlNgBvSE/26a1b57lWGwB6Iz05UUtuPsGVuvHg6U/B2sZmfeGeJa7UfuvWeYRgAL0yMC2JzxEAB61gqEXz7nvd8bpu/fB/ILZDAAAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8hxAMAAAAzyEEAwAAwHMIwQAAAPAcQjAAAAA8x/UQbIw5zRiz0Riz2Rhzewev32iM+cgYs8YY83/GmMPc7gkAAADe5moINsYkSnpA0umSJkmab4yZdMBlH0gqtNZOk/RnSfe42RMAAADg9krw0ZI2W2s/sdY2SXpK0jntL7DWLrHW1rc9XCqpwOWeAAAA4HFuh+B8STvaPS5ue64zV0p6saMXjDHXGGOKjDFFZWVlDrYIAAAArzlobowzxnxNUqGkezt63Vr7sLW20FpbmJOTE9/mAAAAcEjxuVx/p6Th7R4XtD33GcaYL0r6gaTjrbWNLvcEAAAAj3N7JXi5pLHGmFHGmCRJF0l6rv0FxpgjJT0k6WxrbanL/QAAAADuhmBrbbOk6yW9LGm9pMXW2nXGmLuMMWe3XXavpHRJzxhjVhljnuukHAAAAOAIt7dDyFr7gqQXDnjux+2+/qLbPQAAAADtHTQ3xgEAAADx4vpK8MEs4E/QkptPcK02AADAoSrFn6jXXchRKf5Ex2t2xNMhuLYxrHn3ve5K7SU3n6CcDFdKAwAA9LmGUFgnuJCj3rp1nuM1O8JyJQAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADyHEAwAAADPIQQDAADAcwjBAAAA8BxCMAAAADzH19cN9KX05EQtufkE12oDQG+U1QRV2xh2pXZ6cqJyMgKu1AbgDQF/gis5KuCPzxqtp0NwTkZAORl93QUAdKy2Max5973uSu0lN5/A5x+AXnHrMypen09shwAAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRgAAAAeA4hGAAAAJ5DCAYAAIDnEIIBAADgOYRg/P/27jxKzqrM4/j3qSW9pztLJ4QsJBACScAINAQyzZEQUJaRIIKi4hrGmQM6cTsDOOqAOIKKy2EEFEUjo6ijoCK7yk4I0glIQyLYEMgiWcnSW3XX8swfXcGkaZLu1FtL1/v7nJOTqn5v3Xr63NO3f33rvu8rIiIiEjoKwSIiIiISOgrBIiIiIhI6CsEiIiIiEjoKwSIiIiISOgrBIiIiIhI6sWIXICIiA6utiPLA507KW98iIrnI1xxVqPlJIVhEpEQ11lXSWFfsKkREypNCsIiIiIgMWUdPmvnXPBh4vw987qSCLABoT7CIiIiIhI5CsIiIiIiEjkKwiIiIiISOQrCIiIiIhI5CsIiIiIiEjkKwiIiIiISOQrCIiIiIhI5CsIiIAVdL8gAAEFtJREFUiIiEjkKwiIiIiISOQrCIiIiIhI5CsIiIiIiEjkKwiIiIiISOQrCIiIiIhI5CsIiIiIiEjkKwiIiIiISOQrCIiIiIhI5CsIiIiIiEjkKwiIiIiISOQrCIiIiIhI5CsIiIiIgE4up3zd7j+UVvm8rjl8znictO5pZFTXscu3LhTGqrClndnszdi/fu+6mpqclbWlpy7mdze4KOnvTrzyuBSDyK41TGI3T2pEkkM7y0pYPtXUkq4hGmN9ZSXxUnGjEaKoz2pFFfGWH9jt49+q6tiNJYV5lzjSISXv3nqAl1MXb2OLUxpz0FqbSzM5GibVMHiWSauso408fVUBWPUh2PkElDyiDqadqTe/atOUpEctV/jmqojBKJRqmOwebOJOkMbO3oYfWWTtLujKurZMroamJRo7E2TnsiQyqToTuZ2aPfIOcnM1vu7k0DHYsF8g7DVEdPmvnXPAjAu95yAJeeOZt41OnsdX7wyIv8qmUtOxOpN7wuYjD/sHFcPH86B9ZXsmNniqqYcfzVD7ze5oHPnURjXaG+ExEpR7vPUfcubmZLlxGLGC9t6+X6B9u477mNpDJvXMioHhHlnKMncmHzwdSMiJC2KHf/5RW+/oe219tojhKRXO0+R634wgLMnO6eFE+u3sn1D77IijXbBnzdASMr+fC8g1j41onUVUQBOOU799PR3Xe8UPOTtkPQF4A/f+ZsHLjtqVc55VsPcdOjqwcMwAAZhz/9dRPn3LCUK+5YSW80wpiaOMsunV/YwkUkFO5d3My0MVVEI8Y37n2ef/6fR7mrdcOAARigqzfNT5et4ZRvPcQtf16Lu/OBYw/iP06dXuDKRSQMVnxhAQZs60rzbz9bwYU3t7xpAAbYsDPB1+55njOufYRlq18Dhz9+6uSCb40IfQjetQKcMfjP37TylTtX0ZPK7PuFWXc/u4F3X7+Uddt7FIRFJHC7AvDGjhTn37iMW1esH/RrUxnn23/8G4t/8TQJR0FYRAK34gsLAOfFLV2cce2jPL12+6Bfu70ryb/cvJwlj78MFD4Ih3pP8KtbOvv2ALtz5Z0rubN1w373dcDISm67aB4V6QzJqNGdcqaNrcm5RhEJr0RPD1u60kQjxvtuXMbLW7v2u68Tp4/lG+e9BTPj1idf4fQ5kzRHiUhOtnUkqIhHWLMtwdnXPUYiOfhFxP4uOe0wzj16Eml3upOZwOanve0JDvVKcHRElIoYLF+7PacADH1L+1/+/XP0RiNEIhFGFfFsRxEpD51JiBl85w9/yykAAzzStoU/rdpEPALvmTs1mAJFJNQ2dyTZmUjziVueyikAA1xz3wts6ewlHoHqeGHiaahDcAToSjqfv601kP7ueW4j67d3U19hbOsOpEsRCbEKMmzvTvHLlrWB9HflnStJpJx0OrdfViIiAFMaKrmrdQNtmzpy7iudcS659Rl6Uk5NhQVQ3b6FOgQ3VMdoefk1dnQn9914kL77QBvbuvULRkRy152B7z/8YmD9JZIZ7n1uAyMro4H1KSLhtbU7yU2Prg6sv2fW7WBnIkVvb3rfjQOQ9xBsZqeZ2fNm1mZmlw5wvMLMfpk9/oSZTc13Tbts6ujl538OZoVll4df2ExqGO6zFpHS05uBu3LcqtXfr1rWsaVz4CvfiIgMRXsixfrtwX70/avlaxlZXRFon28mryHYzKLAdcDpwCzgfWY2q1+zRcA2d58OfBv4Wj5r2l3GoXX9jsD73N6VpDrQXkUkjLp700O6Ws1gvLCxnYgV5qNGESlve7sM2v56as0ONu7s3XfDAOR7Jfg4oM3dX3L3XuAXwMJ+bRYCP8k+/jWwwKwwM3Q643T0BL8i8vyGdkbXjwi8XxEJl7Wv5XYy3EBSGSeRKsxHjSJS3p4NeCERoG1zO4XaVJrvEDwR2H2/wbrs1wZs4+4pYAcwpn9HZvZxM2sxs5bNmzcHUlwmT9sWEqk0BcrxIlLGevIUVofjpTFFpLRkMpnAP6kC6E1lKFSEGjYnxrn7je7e5O5NjY2NgfQZi+Tn26+vipPO6OQ4EcnNyMp4XvrN19wnIuERiUQYWRX8HFVXES/YH+r5ngnXA5N3ez4p+7UB25hZDKgHtua5LgAMGFcX/ObrGePr+PvO4K44ISLhdGAeLjhePSJKLKpPqkQkd00HjQ68z1kHjiQeLY/rBD8JHGpm08xsBHA+cHu/NrcDH84+Phe43wv0J0Bl3DjmoFGB9lk9IkrNCF1+SERyF48YY2qCPb/grZMbiCgDi0gAjpg4MvA+TzhkDI21hTmvKq8hOLvH9xPAvcAq4P/c/Tkz+7KZnZVtdhMwxszagM8Ab7iMWr5UxY1FzdMC7fOcoycW7E4nIlLe6qtivH/ulED7vLB5mkKwiAQiHo1w1OSGwPqLRowzj5zAmm2JwPrcm7ynNXe/y91nuPsh7v7f2a99yd1vzz5OuPt57j7d3Y9z95fyXdMuOxMZDmyoZMb42kD6i0WMC5sPJpN2arUYLCI56uzN8N5jJ1MZ0B/Wk0ZVcfiEkfRtBhMRyU1jTYxPnzojsP7OPPIARkSNypjuGJd3ZkZVPMq15x9FNIClkU+feig1FRFSZugKRCIShKp4hC+e2f/y6vvn2vOPor4yFkhfIiKbOlLMGF/LO2aPz7mvUdVxLj19JjsSncQKdHmIUIfg7mSG3lSG0dVxrjgrt18yzdPH8O6jJ5Nx4yePvUhhFvJFpJwle9OkMrBg5jhOy/GXzGdOPZQJDZV09KQ5/qr7A6pQRMJsVHWEeAYuf+dspo2t2e9+4lHjexccw8iKKGOqaulIFuYKW6EOwQBzr7ofB06ZOZ4vL5y9XyvC8w9r5Jrz3kqFwU8ee5HrH3o58DpFJHySwOW/bcXMuOKsI1g4Z8KQ+zCDz759Bu9tmkwEY+5Vfwq+UBEJpY3tKdZ1JBhdFeF/Fx3H4QfUDbmP6hFRfvyRY5k6tpqeZIZjvlq4OSr0IRj6grABp80azx2fbGb6uMHtEa6tiPHN98zhq+ccSdzgBwrAIhKwu1du4vLftoLBZWfM5IYLjqZ+kNfmnDK6mt9cNI/zjpkECsAikgcLr1vKXzd1MaYqwpKPHsu/L5hObJALiiccMoZ7Fp/I7Al1xLCCBmAAbQ7LmnvV/Txx2ckcMLKCmz92HOu2dfHDR1az/JVtbO38xz2sK+MRZk2o573HTuLEQxupjkfoSTs3KQCLSJ7cvXIT0MrlZx/JvENGcffiE3ny5de45Yk1tK7fQVfvP05CaKiOc9TkUSxqnsrBjbXUVUTp6s0oAItI3iy8bim/u3geY2sruWDuFN7TNJnbn/47dzzzKi9sbCeV+ceVbyc2VHHCIaNZ1Hww9VUxyGTIZCh4AAaF4D3Mvep+ll12MgbUxI2vnH0EPakM7k4y40QMRkQjgDOqegTdPX379bQFQkTybVcQvuLsI4kanDSjkabsdc6TaSftTixiRCNGPGJ0JJKYQUdvmhO0B1hE8mxXEJ48uoaopfjIvIN455wJRMxev73yrptg1FREeXnTDhpr67FIpCgBGMCG4z3km5qavKWlJed+Nrcn6OjJz2UcaiuiNNZV5qVvEQkHzVEiUsryNUcFOT+Z2XJ3bxroWKhXghvrKmkc+h5uEZGC0BwlIqVsuM9ROjFOREREREJHIVhEREREQkchWERERERCRyFYREREREJHIVhEREREQkchWERERERCRyFYREREREJnWN4sw8w2A68U4a3HAluK8L6SXxrX8qWxLV8a2/KkcS1fxRrbg9y9caADwzIEF4uZtbzZXUdk+NK4li+NbfnS2JYnjWv5KsWx1XYIEREREQkdhWARERERCR2F4KG5sdgFSF5oXMuXxrZ8aWzLk8a1fJXc2GpPsIiIiIiEjlaCRURERCR0FIJFREREJHQUgvsxsx+Z2SYze/ZNjpuZXWtmbWb2jJkdXegaZegGMa4fyI5nq5ktNbM5ha5R9s++xna3dseaWcrMzi1UbZKbwYytmZ1kZk+b2XNm9lAh65P9N4g5ud7Mfm9mf8mO7UcLXaMMnZlNNrMHzGxldtwWD9CmZHKUQvAbLQFO28vx04FDs/8+DtxQgJokd0vY+7iuBt7m7kcCV1KCG/jlTS1h72OLmUWBrwH3FaIgCcwS9jK2ZtYAXA+c5e6zgfMKVJfkbgl7/7m9GFjp7nOAk4BvmtmIAtQluUkBn3X3WcDxwMVmNqtfm5LJUQrB/bj7w8Bre2myELjZ+ywDGsxsQmGqk/21r3F196Xuvi37dBkwqSCFSc4G8TML8EngVmBT/iuSoAxibN8P3Obua7LtNb7DxCDG1oE6MzOgNts2VYjaZP+5+6vuviL7uB1YBUzs16xkcpRC8NBNBNbu9nwdbxxgGd4WAXcXuwgJhplNBN6FPrUpRzOAUWb2oJktN7MPFbsgCcx3gZnA34FWYLG7Z4pbkgyFmU0FjgKe6HeoZHJUrBhvKlKqzGw+fSG4udi1SGC+A1zi7pm+RSUpIzHgGGABUAU8bmbL3P2F4pYlAXgH8DRwMnAI8Acze8Tddxa3LBkMM6ul79O3T5XymCkED916YPJuzydlvybDnJm9BfghcLq7by12PRKYJuAX2QA8FjjDzFLu/tviliUBWAdsdfdOoNPMHgbmAArBw99Hgau972YGbWa2Gjgc+HNxy5J9MbM4fQH4Z+5+2wBNSiZHaTvE0N0OfCh7duPxwA53f7XYRUluzGwKcBvwQa0ilRd3n+buU919KvBr4CIF4LLxO6DZzGJmVg3MpW8Pogx/a+hb4cfMxgOHAS8VtSLZp+we7puAVe7+rTdpVjI5SivB/ZjZz+k7E3Wsma0D/guIA7j794C7gDOANqCLvr9WpcQNYly/BIwBrs+uGKbcvak41cpQDGJsZZja19i6+yozuwd4BsgAP3T3vV4qT0rDIH5urwSWmFkrYPRtadpSpHJl8P4J+CDQamZPZ7/2eWAKlF6O0m2TRURERCR0tB1CREREREJHIVhEREREQkchWERERERCRyFYREREREJHIVhEREREQkchWERERERCRyFYRGQYyV5gXnO3iEiONJGKiJQ4M5tqZs+b2c3As8AXzexJM3vGzK7Yrc1fzexnZrbKzH6dvYsaZna1ma3Mtr+mmN+LiEip0M0yRERKnJlNpe+WsfOAkcC5wL/Sdyet24Gv03eb2dVAs7s/ZmY/AlYCPwaWAoe7u5tZg7tvL/g3ISJSYrQSLCIyPLzi7suAt2f/PQWsAA4HDs22Wevuj2Uf/xRoBnYACeAmMzuHvtuUioiEXqzYBYiIyKB0Zv834Cp3//7uB7Orxf0/2nN3T5nZccAC+laQPwGcnN9SRURKn1aCRUSGl3uBj5lZLYCZTTSzcdljU8zshOzj9wOPZtvVu/tdwKeBOQWvWESkBGklWERkGHH3+8xsJvC4mQF0ABcAaeB54OLd9gPfANQDvzOzSvpWkT9TlMJFREqMTowTESkD2e0Qd7j7EUUuRURkWNB2CBEREREJHa0Ei4iIiEjoaCVYREREREJHIVhEREREQkchWERERERCRyFYREREREJHIVhEREREQuf/AagxCcvNB1zMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXRb1bn+8e+WZUse48RTEmeeyEwSDCGE0lJmKFAoM7RQKHBpSgfKeFsulP7oLbR0vLSFFChTGAoUaBlvCxQCCcEZSMhE5sSZ7DiebcmStX9/2Mo1xoNkn2PH0fNZKyvW0TlvXsRa8qOtffY21lpERERERBKJp68bEBERERHpbQrBIiIiIpJwFIJFREREJOEoBIuIiIhIwlEIFhEREZGE4+3rBrojNzfXjho1qq/bEBEREZGD2NKlS/dZa/Pae65fhuBRo0ZRXFzc122IiIiIyEHMGLOto+c0HUJEREREEo5CsIiIiIgkHIVgEREREUk4CsEiIiIiknAUgkVEREQk4SgEi4iIiEjCUQgWERERkYTTL9cJ7i1V9Y3UBMMAhJssHgNJHg/JSYb8LH8fdyciIiIi3aUQ3I5dlQ2U1QR55IMtFG+toKSi4cBzWalephdmc9FRw5k1YiCD0pLxp+hlFBEREelPlN5aqagPsq+mkR88u4JPdla3e051Q5iFG/excOM+stOS+e9zpjFr5EAKNDIsIiIi0m9oTnCL0uoA/1pbyum/e6/DANxWZX2I655cxl1/X83e6oDLHYqIiIiIUxSCaR4BfndDGTf+dSWhJhv39a+s2sNtL6xib5WCsIiIiEh/oBAM7Ktp5LYXVvWoxlvrSvn7yl1U1Tc61JWIiIiIuCXhQ/Duyga+/8yKbo0At3Xv6+upbAg50JWIiIiIuCnhQ/Ce6gCrd8U2B7grjU0RHnl/KzUBjQaLiIiIHMwSOgRX1gd5eOEWR2s+t7SE6kDY0ZoiIiIi4ixXQ7Ax5mFjTKkx5pMOnjfGmN8ZYzYaY1YaY2a52U9btcEmPtpa4XDNMA2NEUdrioiIiIiz3B4J/gtwaifPnwaMb/lzDfBHl/v5DGubp0M47dO9NY7XFBERERHnuBqCrbXvAvs7OeVs4DHbbDGQbYwZ4mZPrYUjPb8Zrj0VWiFCRERE5KDW13OCC4EdrR6XtBz7HGPMNcaYYmNMcVlZmSP/uMc4UuZzfN6+fllFREREpDP9Jq1Zax+01hZZa4vy8vIcqen1eEhPSXKkVmsTCjIdrykiIiIizunrELwTGN7q8bCWY73C44EphQMcrWkMDEpPcbSmiIiIiDirr0Pwy8A3WlaJOBqostbu7q1/fMiAVC4sGt71iXGYOzaXlKS+fllFREREpDNeN4sbY54CvgTkGmNKgDuAZABr7Z+AV4HTgY1APfBNN/tpz5yxOWT6vNQEnVnb9zvHjyM/y+9ILRERERFxh6sh2Fp7cRfPW2Cemz10JTs1mZ+cPYUbnv24x7WOPyyP0XlpDnQlIiIiIm5K+O/t03xe5o7L5YSJ+T2qk5uRwk+/OpWCrFSHOhMRERERtyR8CAYoyPLzs3OnMXdsTreuz81I4elr5jAky+dwZyIiIiLiBoXgFgVZfu67YAY3nDQebxwLCH9xQh4vzpvL6JxUkpKcX25NRERERJzn6pzg/mbwAD9fP3oUZx4+lPnvbuaF5TsJhCLtnjtnbA7fOX4cY/MyGDxAN8KJSO9raAwTDEdIblmRxmIJhy1pviRSvPpQLiLSGdN8b1r/UlRUZIuLi139NyrrG6lvbKI2EObTvTVUNoTweT1MKMgkJyOFlCSPVoEQkV5nraU2GKaqIURDYxNrd1fzcUkldcEmBqYlM2vkQCYUZOL1GDL9yWSlJvd1yyKSYOobw1TUh6ioa2TZtgo+3VtDxFrys/wcNWoQI3LS8Hs95Ga6n6OMMUuttUXtPaeR4HbsrQ5QUdfIox9sZdn2SoyxpKUkE2qKUBcMMyYvnUuOGskka8lL9+HVNski0gtqAyFqg2E+2FTO/7y1kc376jo8d9aIbG446TDG5qeTnZZMarLe7kXEXU1NTZTWNrLgw+08sXgbFfWhds/zegwnTS7gBydNIDc9hUEZfXNPlUaCW6kNhiiraeSmv35M8baKLs/Py/Txi/OmM2VoFnm98GlGRBJXZX2Qivow331qOat2VsV83SmTC7jjrCkMSPWS7tOosIi4o6wmwIbSWr731ArKaoMxXZPkMcw7fiyXzh5JgUvfrnc2EqwQ3GJ/XZBFm/Zzw7MrCIbbnwfckfOOGMbNpx5GvoKwiLigsj7IrsoAFz6wuFsb+wwflMqCbx1NbnoKqT6NCIuIs8pqAvx7fRk3Pb+S7sTK4yfm8fNzp7sShDsLwfoeH6gJhPhgUznfeWpZ3AEY4LmlJdzx0mpKqwMudCciiSzcFKEm0MRF87sXgAF27G/gikeWUBVo/6tJEZHuCoWaWL+nttsBGODtdWX84o317O3lHKUQDJTVBLnhmY+7/T8P4LVP9vD66j3UO7T9sogIwL7aILe9sJLqhp69t2wqq+OxRdsoq9GHdRFxTlldI99/ZnmPMhQ0Dyhu2FtDU1OTM43FIOFD8J6qBn7wzAoam+IfAW7r7lfWUl7X6EBXIiLQ1BRhx/4GFm4sd6Ten/69qcNlH0VE4lUXDPH4om3sq3Um+9z2t1Xsqe69HJXwIbi0JsjHJbHfZNKZYDjCo4u2ajRYRBxRXtfI/7y90bF6EQt/XbqDmgZ9WBeRnqtqCPPUR9sdq7djfwO7qhocq9eVhA7BNQ0hHlq4xdGaz360g8oOlgQREYlHqMny3oYyR2v+/ePdVPVwaoWICDRPJ3U68zy/tIRgqHfeoxI6BFcFQny0Zb+jNasDYepDvTefRUQOXbXBEBGHF/DZWl4Hse8MLyLSoeJtzmYogFU7qyhzaHpFVxI6BFsLu6qcv0lkY2mN4zVFJPHs2O/814LWQlDzgkXEAev3OJ93tpXXO16zIwkdgsNOD7G00M1xIuKEcMSdsBqh/60PLyIHl0gkQpMLOaopYvGY3vm6KqFDsFsvsU/bKIuIA3LS3dlKNNmj9ygR6RmPx+PK5haD0lOI9NJGbgn9Tpic5CE1OcnxuuPyMx2vKSKJJz/L+RCcnZaMN0mTgkWk52YMz3a85tTCLJJ76T0qoUOwwTJlaJbjdXPSUxyvKSKJx+sxjMxJc7Tm7NGDSPYoBItIz0QiEUYMSsPpt5PZo3NIMr0TTxN6E/nstBTOO2IYxdsqPvdcps/LyVMKOHx4NuPyMw7MT9lTFWDVzir+tXYvW9uZvD1nTI5GWUTEEVl+L9+YM5Kf/mOtYzWvnDuaQRnuTLMQkcRhjGFbeT1fnJDP2+tLHanpT/YwY3g2gXDvrLKV0CE4zeflC+PzSE9Joq6x+QXPSU/hBydNYHx+Bv9YuZunl+zg0701B26iGzYwlenDBnDTKRNJTUnif97awLLtlQdqfvtLY8n0OT/FQkQST2ZqCqdMGcwf39nkyI5M04cNYPigNJKTEvpLQBFxgDGG6oZGvvWF0bzzaWmPt00GuOzokXy4pZwzDx/a82IxSPh3Qn+y4favTAbgtKmDmf+NIl5ZtZsLH1zM44u3sWZ39WdWkSipaODVVXuYt2AZP/rbKq45biy3nTaR5CTD3HE5jMlPJ8Ov6RAi4oz0lCR+ef7hPa6TkuTh1xfMIDU54d/2RcQh4woyeX/jPi6fM6rHtUblpHHCxAL2VDWQ6eudMdqEfzfM9Cdz7PhcfnLWZE6eMphL//whizaVx3Tt7qoA//HEUjbvq2P+N4r42TnTSE9O6MF1EXFQqCnC/voQG0true6LY7tdx2Pgv782jaeXbKeyQTtaiogzcjN8vLBsJydPKeDYcbndrjMgNZnfXDSTH7/4CWdMLyTTn+xglx1L+BCc4k0iPTmJwuw0bnh2BQ3d2O3tmY928OLynaSmJJGtm+JExCGV9SFeWbmbu19dy/BBqdx48mEkxXkXSobPy28vmsnKkirmL9zClrI6KuqCLnUsIokk3ZfEN+aMJCXJww0nT+C0qYPjrjEyJ42HLi/Cg+WwggwKsnx4eunm3YQPwQBVgTDzFizr0XyWF1fs4p31ZdQ39s5+1yJy6AuGm3h6yXashf/82yeU1QZZ8K3ZTCsc0OW1xsCXJ+bz+FVH8dKKnTz6wVYAHl+8nYB2jBMRBwzwJ/PVmYU8W7yDy/78IXPH5fKbC2dQEMPyjj6vhyvnjuLer03nthdWce0Ty7jt9Elk9NJUCEjwG+MA9lY38MNnPyYY7vkvhTteWs0xY3NIS0n4l1VEHBAKRz6ztfujH2zl7XWlXP/lcRQOTOWN1Xv5eEclG/bWEAxHSPd5mTQkk1kjBnLipAKKt1VwxSMfUdVqCsTSbftp6qWF6EXk0FbZEGJbeR3PFpcA8OMXP2HOmBz++9zpBEJN/HPtXlaVVLF9fz0RaxmUnsLUwgEcPSaHI0YM5OWPd3HJnz88sPPcg+9uZt7x3Z/6Fa+ET2v7ahtZuv3zS6R1R0OoiaeWbOc7x48jVUFYRHpoT/Xnpy1s31/PTc+tZEBqMl86LI+vTB/CmLzxpCR5aAiFWb+nlpUllTy0cEu7H+6rA2HCTQrBItJzgVATv39r42eOLdpczqLN5YzMSWPu2Fy+OXc0wwamYgxU1YdYvauaf67Zy89eXfu5b+Cf+WgHV8wd1Wv9J3RSqw2EeGThFkdrPrF4O5fOHqkQLCI9VtXQ8bJoVQ0hXlqxi5dW7Iq7bjii6RAi0nON4QgfdLCYwLbyeraVb4+vXlOEd9aVUpDpI6MXbo5L6DnB1YEwizbvd7RmVUOIQDdurhMRacvvwrbuwIHNf0REemLtnhrHa36wuZy6YO/cX5XQIThiLTsrGxyvu6ms1vGaIpJ4CgemOl7TY8Dn1YY+ItIzkUiE5Q5NJ21t9c5qQpHembKV0CHYrXlx+2q1/JCI9FxGihevw0sFjcnLIFlbu4tIDxlj2F/X850s26psaKS33qESOgS7xevRyyoiPZfpT+bESQWO1jzviGHkaD1zEekhY4wrW7Anezz01q27CZ3WvEmGVBfm3I3OTXe8pogkngy/l287uFxQcpLhrMOHkuTCLy4RSTxTY1izPF6j89JdyWbtSeh3QmNg8tAsx+vmZnS9SLSISCxGDErj9G7swtSeG08+jIFpGgUWEWfMGpHteM0Zw7N77X0qoUNwps/LV6YPcbTm7NGDSPFqvp2IOCM7LYXbvzKZvMyefbieXjiAc2YWkpqim+JExBk5GT5yM5wNrOcXDdO2yb0h05/MFyfkOTrs/s25o3p1yz8RObSV1QR4ZdUuHrq8iLxufss0cXAmd587jWXbK6io0427IuKMnPQUrpw72rF6Y/MyGJzld6xeVxI6BBtjyPR5+eHJExypN2dMDhMKMslK1deNItJzZTUBHnx3M//vlXX86G+f8PAVRRw3PjeuGpfOHsH/++pUrn60mOueXMa7G/YpCIuIIyobQpw4uYChA5wJrvd8bRp1wSbCTb2zoU9Ch2CAAWkpHDs+lzljcnpUJyvVy4/OmKT5diLiGIPh3U/3AbBqZxWXPbSEr84s5E+XzeKIkQM7vM5j4KTJ+Tx19WyGDEjlkvkfsqc6gLXwj5W7CPfSGpwicmiragjx47+t4ncXzySph1MYrv7CGBZtKmfhxn3UN/bOpmPGtt24uR8oKiqyxcXFjtWrqGukpKKB/3rpE5bvqIz7+qxULw9+vYhROWkMHuD84vYikpiqGhqpCYS56i/FrN/7fzszTSjI4LKjRzJl6AD21QbZXFZLIBQhw+dlXH4GmX4vH2wq56kl29ldFThw3YmT8rnzrCmk+7z6wC4iPbZjfz07Kxt4/ZPdHDM2l28/uaxbH7LPO6KQU6cMYf3eao4encP4gkyyUp3ZNtkYs9RaW9TucwrB0BAKs7+2kb3VQV5asZPHFm8j1pdl1oiB3P6VSaSneCnI8jFAv1hExEHltQEaQpHPBeGo/EwfY/MySPF6qG8M8+neWqoaQp87LxqA01K8DNI6wSLigJ0V9VTUhwiEmsj0e6luCHPjcx+zrbw+put9Xg+3njaR4w/LZ/mOCgoy/fiTk5hQkEGGXyG4XU6G4IZQmOKtFby/oYyvzxlFOGLZV9vIn9/bzP+u2dvhJ5qphVl885jRzByRTXKSh10VDbz2yR6+d+J4BuoXjIg4qKsg3BUFYBFxQ1NThJKKBrxeD999ajk1gRC/PP9wVu6o4oH3NrFjf0O716WlJHH+EcO5ZPYIHnx3E2+s3stf/2MOkYhl+KA0x0aBQSG4Q9EA/PSS7VxxzGhKawLc8vwqUpOTuPToEZwxbQihpgjGNM9zMaZ5q+XUZA9r99TwwL83s2pnFZfPGcmZhw9l2/46Vmyv4oaTJigIi4ijuhuEFYBFxE3VDY386n8/5fmlO7nzrCk0NkV499MyLp09ksFZPgLhCN4kAxYi1uJpyVRPLdmGxXDm4UO58+XVVDWEeP66YyhweHWIzkJwQq/lVR9s4u11pXz3hPFsKK3lu08tJ9OfzLVfHMOM4dk8W1zC0m37Wbu7hoZQEx4DY/IymD5sAKdPG8J3vjyO3/1rA48u2kZNMMw3jxnF8m2VhHrprkYRSRw5GX7KawM8/q2jOOXX71KQ6efKL4xmfH7GgXAbsc0rSqzZVc39b2+kYICfn50zDW+SRwFYRFyxo6KBl1bs4qErjuSP72zCWsu3vjCG0poAT364jVU7qyipaB4Rzkr1MnXoAI4ek8M5M4fxxuq9/PDZFfzivMP57b828NDCLXz/hPGk9dJSswk9ElxeGyQYaqK8rpHzH1jEnDG5fPeEcfz+rY28ta60y+tH5aRxx5lTWLmzit/9awN3njmFkybn403yaNc4EXFcRV2QdXtqGJiWQrgpwprdNaR4PeRn+UgyhlBThL3VAYyB6cOyqQ2E8Xk9jMpLJzU5occ8RMQFVQ2NfP+ZFVz9hTH88Z1NnD1jKOGI5d7X17O/rrHTa70ew/lFwzh31jDufW0dN55yGHe/spb5lxc5Ohqs6RAdqKxrpKIhxC3Pr2RcXgbHjs/lludWUhMMx1XnimNGMXvMIG59fiV//Y9jyM3wadRFRBxVURekvLaRiLVsr2gg2WN4ZdUeVpZUsrG0lnDE4vN6mDQki1kjsjl16hD21QaYMnQABktell9BWEQctauygWeLd1AbCHPSlAIe+PfmmAYRWxs6wM+vL5zBkx9u49KjR7K9vJ7zi4Y71qNCcAcCoSZW76rmwXc3c+b0IXzvmRU0dXP9zK/NKuToMTlsLK3lmuPGkKORYBFxSEVdkLpgE5+W1pCSlMRP/7EmpnnBx4zN4cZTDiPcFGHIAD+5mT4FYRFxzJIt5QRDEZKSDPe9+SlLt1V0q06mz8ufLy+ieNt+slNTOGdWIWkpzrxXdRaCE3qzjNpgmJdX7OTa48Zw03Mrux2AAZ5ftpNgOEJpTYCGUO8s8iwih76KuiBVDSF2VTWwbHsl33j4w5hvjPtgUzmXzF/Mjv0NlNYEKasO0BCK75suEZGOBEIR9lQ38MrK3d0OwAA1wTA//OvHHDkqh6mFA6iN8xv57kroEBwMNXHEqEHc8/o6R4Lrf7+6lsvnjKKhl3Y6EZFDW0VdkO3l9TSEIrz+yR7+562NxPtZPRCKcONzH7OhtBZrDSXl9QrCItJj1lqGZvspyErlyQ+397heSUUD/1i5i6qGEMk93H0uVgkdgo2BnPQUPtyy35F6dY1NvPrJHmoC+gUjIj2X5PFQMMDPhtJaHn5/a7frWAu3v/gJ5fWNpCQnEQxpBRsR6RljDIFQhD+/t9mxms98tIPcDB+hpt6ZqpvQIRgMf1u+09GKfy3eQbovydGaIpKYkg3UBZu446VPelwr1GS5/cVPsJZeG2URkUNbSpKH9zbuc6xeMBzhg037oJfeohI6BIcjERZvLne0ZkX957crFRHpjtpQE2+s2ePY+8rqXdVs319PMKyRYBHpGWstG8tqcHp9hQ+37IdeWrMhoUOwx5gDCzg7qaNtAkVE4hEMR1jgwFy71h5fvI2gNvQRkR4yxrBiR5XjdT/ZWdVrm44ldAjuyWoQndlf3/kC0SIisQg3Wcc/qC/Zsp+mXppvJyKHLmst5bVBx+tW1DdijG6Mc51br3FykubbiUjP7a0OOF6zqiFE2KUBABFJHMYYkpOcj5Fej4feum0hoUNwsseDz+v8SzAmN8PxmiKSeCpc+lYpFNF0CBHpuSlDsxyvOSo3TSPBvcHjced/YE6GtkwWkZ7zed1ZacbTS79gROTQdsTIgY7XnDl8ILm9lKMSOgRn+LycM7PQ0ZpHjByIV8sPiYgDCgemOl7TGFz5BkxEEk9uho+BacmO1rygaBhJnt55j0rod8L6xiaKRg1y9BfC5ceMwuvCHBkRSTwZPi9JDn+oHp2TToreo0TEAQPTU/jm3NGO1RuVk8aQAc5/+O9IQr8TepM8DExL5ocnH+ZIvSNGDqRII8Ei4pAMn5cvTchztOY5swoZlK4pWyLSc8lJHi46cjgFWT5H6t13weG9OqU0oUPwwLQUUrxJnHn4EGaN6Nm8lgyfl/vOPxyf15Cdpl8wItJzWanJzPvyOMfqJXkM584s1LdVIuKYvEwff7z0iB6v6HD5MaMYn5/ZazfFQYKHYIBB6Sn4vUn8zyUzu32TXHpKEk9dPZssfxI5GX6HOxSRRDZiYBpfnpjvSK3rvzyOrFRn5++JSGIzxjAyJ43fXzyz20H4jGlDmPelsb3+/pTwIRia57SkpiTx0OVFXHzk8LiunTI0i79ffyyF2X4GKQCLiIPqg2FWllRy8ymH9fjmk4mDM/nihDx27K8nrB3jRMQhlfWNbNlXx7j8DJ64ajZDB8SehZKTDD88eQK3njaR/XWNlFU7v/lGZxSCW0SnRnz/xAk8dfVsvnRYXqefaMblZ/DTs6fw0OVFZKd6FYBFxHFN1nLTcyv5z799wiPfPIrsbgbhMbnp3HfB4cx7chm3vbCKusYmhzsVkURUWd/IxtJaItby6Afb+Nlra/ntxTP5/onjO50n7PN6OGdmIU9dfTS7Khu44pGPaGyKsK8u2KtB2Fjb/3YOKioqssXFxY7XDYcjbCmv43tPL+eM6UOZMyaHvTUB1uyqpiYQJjnJw7j8DMbkpbO7soHHF2/j/KLhnDgxn0EZzkwKFxGJqg2EWLenhqsfK2ZsXgZ3nDmZn/x9DcXbKmKu8dUZQ7n8mFF89+nl+LxJ/ObCGYzISSPLr2kRItIzJRX17Kps4MXlu1iwZDvQfO/BCRPzueioEaQmJ/Hp3hq2768nYi2D0lOYMnQAmX4vb6zew3NLS6isDwEwNi+DX194OBk+LwVZftJ9Xkd6NMYstdYWtfucQnCzaAC+4IFFVLT8DwHIy/AxcUgm6T4v4aYIW/bVsXlfHa1ftnvPm64gLCKOqw2E2L6/nvrGJq5+rBivx8NdX51CQ2MT89/bzNrdNR1ee8zYHK45bgyby+q49411DBuYxq8vOJwUr4eh2alkKgSLSA+VVNTzh7c3HQjAbSUnGSYUZFKYnYoxhqqGRtbsqqY6EG73/LF5GfzxslkUZqcqBHfE6RDcUQCOh4KwiDgtErHsrGygOhCioSUIV9SHOHzYAL53wnhG5aazuayWVTurqW8Mk52WzIxhAxk+KJVFm/fzx3c2srW8nnH5Gfz6gsNJTvKQk+4jz6HljEQksa3bU83pv32PSBdR8pZTJ/LFCXmc/6cPupyOdd0XxzDvy+PJ6IUQnPBzgp0IwAA3P7eSf64rZX9t707qFpFDl8djKMxOJcufTGpKEvO/UcTAtGSy01IYlJ5CbTDEESMH8YOTJvCjMyYz7/jxTBycSX1jE5OHZOJtmcKlACwibhgxMI0/Xdb58mi3nTaRS2aPYEJBBn/9jzmkp3S8HfxZ04dw9XFjHQvAXUnokWCnAnBrGhEWEae1HhGORCxNEYvHA4XZaeS0815TVh2kvC5IqGUVCAVgEXFLfTDMwo37+I8nln5uRPi20yZy0VEjGNCy9Fm4KcKne2s4/0+LPjcifNb0Idx59lTHN/PRSHAHqoMh7vrHmi4D8LCBqSy85XhOnzq4y5o/eXl1ry70LCKHvtYjwj6vp9MADJCX5SMn3YfXY/B6jAKwiLgmzefl2HG5nxsRbhuAoXmn3gkFmZ8bEXYrAHcloUNwssfDz8+d1ukmGcMGpvLkt2aTlpLEf54xqdMgnJ6SxIKrj0YZWEScFg3Cmf7kTgNwVF6Wj5yM5j8KwCLiprZBuL0AHNU2CPdVAIYEnw4BUF4XINAY4ZrHl7J6V/VnnosG4PSUJHIz/eyva6S+Mcx/v7qOV1bt/sy50QA8KD2ZwQNSSda2pCIiIpJA6oNhymqDZKeltBuAWws3RdhVGSDD73U1AGs6RCdy0v34vR7+cOmsz4wIDxuYyiNXHEm6z0tuZvNGGIPSU8hI8fKfp0/k1FYjwukpSTzyzSMZmu1XABYREZGElObzMjInvcsADM0jwiNy0vpkBDjK9bRmjDnVGLPeGLPRGHNrO8+PMMa8bYxZboxZaYw53e2eWqusa+TDrRVc8MAi7jp7KlOGZjFsYCq/v3gm1z25jGeLd7CvZcWHQGMTOyrqOfP3C7mgaDinTh1MekoSf/r6Edz/9iZ++o+1VNQ19mb7IiIiItINrk6HMMYkAZ8CJwElwEfAxdbaNa3OeRBYbq39ozFmMvCqtXZUZ3Wdmg5RUdfIos3lfGfBMiIW8jJ9/OmyI0gycONzK9lYWgvAzacexiVHjWDH/nouenAxdY1N+Lwe/njZEeSkp/Cr//2Uf39aBsBZhw/lx2dMIj9L2yiLiIiI9KXOpkO4vRDbUcBGa+3mlkaeBs4G1rQ6xwLReQgDgF0u93RAOBJh0aZ9B5b0KKsJcs1jxaSmJFFS0XDgvHtfX8/aXdW8ta70wJIewXCE655YyujcdNbt+b9dm9bsru5y0WgRERER6Vtuh+BCYEerxyXA7Dbn3Am8aYy5HkgHTmyvkDHmGuAagBEjRjjSXF6mnzGK0FEAACAASURBVO+eMJ5wxPLUkuY2y+saoe7z5/595e7PHQuGI58JwOPyM3jsyqMYPECjwCIiIiIHs4PhDq6Lgb9Ya4cBpwOPG2M+15e19kFrbZG1tigvL8+xfzwv088NJ03g4qOG96hONAAPzU51qDMRERERcYvbIXgn0DpdDms51tpVwLMA1tpFgB/Idbmvz+hpEFYAFhEREelf3A7BHwHjjTGjjTEpwEXAy23O2Q6cAGCMmURzCC5zua/P6W4QVgAWERER6X9cDcHW2jDwHeANYC3wrLV2tTHmLmPMWS2n/RC42hjzMfAUcIXtox088jL93HzKROaOy4np/NTkJJ655mgFYBEREZF+xu0b47DWvgq82ubYf7X6eQ0w1+0+YhEMNVFSUc+K7ZUxnd8QauKZ4h1cWDS8yy1MRUREROTgcTDcGHdQCIaa+HRvzYF1gGN17+vreaZ4B+UtG2qIiIiIyMFPIZjuB+AoBWERERGR/iXhQ3BPA3CUgrCIiIhI/5HQITieAOwxXddTEBYRERHpHxI6BNcGw/zmnxu6DMDj8jMo/vGJMS2fNv/dzWjXZBEREZGDW0KH4JwMHz87dxqzRw/q8Jxx+Rk8euVRDEr3dbmO8MC0ZJ69dg7Z/mQ32hURERERhyR0CAYoyPLzu4tnthuEowG4sGUd4M421IgG4NE56Xi9Cf+yioiIiBzUlNZoPwi3DcBR7QVhBWARERGR/kWJrUXrINxRAI5qHYQVgEVERET6H9NHOxT3SFFRkS0uLnal9t7qAJGIZUgMWyGX1QQINVnyM3wKwCLiumAwzN7aRnzJHgqy/F2ev6uyAUBbu4tIryivDVIXDONPTiK/i/eohsYwZTVBfMlJMb2fdZcxZqm1tqi955Tc2ijI8scUgKF5RHhodqoCsIi4LhgMs6Oqga/+4X1ufWEle6sDnZ6/q7KByx9ewuUPLzkQhkVE3FJeG6R4WwVf+uU7PL+shNJO3qMaGsNs3lfHGb9byN2vrO3y/cwtSm8iIge5aAC+4IHF7K9r5O11ZZ0G4WgA3lBay4bSWgVhEXFVNABf98RSIhbueX19h0E4GoAvemAxNcEwL3+8q8+CsEJwG43hJuqD4ZjPrw2GXOxGRBJd2wAc1VEQbh2AoxSERcQtbQNwVHtBuG0AjuqrIKwQ3EpjuIl1e2pYvGU/9Y1dB+Ed++t5fulOquoVhEXEeR0F4Ki2Qbi9ABylICwiTusoAEe1DsIdBeCovgjCCsEtogH4wgcW861HP2LxpvJOg/CO/fWc/6dF3PHyap74cJuCsIg4LhixXPRg+wE4KhqEy2oCHQbgqA2ltXz7yWVU1ndcT0QkVqU1wQ4DcNQ9r6/nuWUlbNlX32EAjnr54108vHAL5XVBF7r9PIVgPhuAG0JNRCx867HiDoNwNADvafm08os31isIi4jjAqEm7jxrCsZ0ft7b68o48u5/dRqAAdJSkrjr7CkkdVVQRCQGOekpXHhkxzvpRt37+npO/917nQZggDG56Xxjzkhy0n1OtdiphA/BbQNwVEdBuG0AjlIQFhGn5Wf5OWrUIH5/8cwug3BX0lKSePqaoxmdk05mqrZ2F5Gey8/y84MT299JN15jctN5/KqjKByY5kBnsUnoENxRAI5qHYQDjU0dBuAoBWERcZoTQVgBWETc4kQQ7osADAkegusbm/jjO5vaDcBR0SD8yAdbOg3AUY+8v4VwJOJ0qyKSwHoShBWARcRtPQnCfRWAIcFDcHZaCv/vq1M5/rC8Ts+LrnnXVQDOzUjhueuOYVB6ipNtioh0KwgrAItIb+lOEO7LAAwJHoIBcjJ8/PL8w7sMwl2JBuCRg9IwuulERFyQn+Vn9uhBZMcYaEfnplOYnaoALCK9ItPv5aKjRsR8/hfG5+JPTnKxo84lfAiGngdhBWAR6Q27Khu4ZP6HVMR438HqXdXc+NzHfbYlqYgkjug6wJfN/zDmax5dtI1nind0usWymxSCW3Q3CCsAi0hv6GwjjM50tcWyiEhPdbURRmfubVlHuC+CsEJwKzkZPu67YAYzR2THdL7P6+GFb89VABYRV3U3AEcpCIuIW3oSgKP6KggrBLdRFwyzsyK2bUUbmyJs3FvT6eoSIiI90dMAHKUgLCJOcyIAR/VFEFYIbiW6DnBpTWzb9dkudpYTEemJfbXBmAJwWkoSlx8zKqad5f7zb6vYF+N7nIhIZ3ZWBmIKwKNz0zl96uAu6937+nr+sXI3Zb0UhBWCW3S1EUZHutpiWUSku5oilhMn5Xd6TnQZtBtOGt/l8mnGwDkzC4lErMOdikgiyvR7mTw0q9NzxuSm88RVs7nr7KldLp82IDWZY8blkNVLK9ooBNP9ABylICwibijI8nPF3NFc98Ux7T7feh3gAakpna4jbAz8/uKZHDVqEPkD/C53LiKJoCDLz+8unsns0YPafb55HeDZFA5MJTfT1+k6wgNSk3nm2ub3M18vLZuW8CG4pwE4SkFYRNzQURBubyOMjjbU+EwAzlIAFhHndBSEWwfgqI421OiLAAwJHoKrGkLc8vzKmHaCe+P7x/GlCV3vLDdvwXJCYX3VKCLOaRuEO9sJrm0QVgAWEbe1DcLtBeCotkG4rwIwgLG2/wW2oqIiW1xc7EitPVUBLpm/mM376tp9vvU6wPvrGvnhsx/zzqdl7Z7r83p48urZTC/MJsWb0J8vRMQFe6sDPLVkO1+emN/lVsil1QGWbN0PoAAsIr1ib3WA+95cz/dOmNBuAG6ttDrAQwu3cM6sQlcDsDFmqbW2qN3nEj0EQ8dBuL2NMMprg+0GYQVgEekNe6oaSE/xxrQV8p6q5uUeBw/o/JeRiIhTymuD5GT4Yjq3tDrAgNRkV0eAOwvBSmvA4AF+Flx9NGNy0w8c62gnuOYNNQ7/zNQIBWAR6S2DB6TGFICj5yoAi0hvijUAQ/PUiN6eAtGaEluL1kG4q62QWwdhBWARERGR/kfTIdrYUxUgGG5iRAxbIZfXBimrDTImN0MBWEREROQg09l0CG9vN3OwGxzH+pk5Gb64hv1FRERE5OCg4UsRERERSTgKwSIiIiKScBSCRURERCThKASLiIiISMJRCBYRERGRhKMQLCIiIiIJRyFYRERERBKOQrCIiIiIJByFYBERERFJOArBIiIiIpJwFIJFREREJOEoBIuIiIhIwlEIFhEREZGEoxAsIiIiIglHIVhEREREEo5CsIiIiIgkHIXgNvZUBdhZ0RDTuaXVAXbsryfQGHa5KxERERFxkkJwK3uqAnz7yaVc+ufFlFTUd3puaXWAe15fxxm/e48t5QrCIiIiIv2JQnCLaABetr2SreX1XPbnDzsMwtEA/PyynVQHwlz4wCIFYREREZF+RCGYzwbgqI6CcOsAHKUgLCIiItK/JHwIbi8AR7UNwu0F4CgFYREREZH+I6FDcHltkFufX9luAI6KBuHSmo4DcFQ0CNeHIm60KyIiIiIO8fZ1A30pPSWJW06byLLtFVQHOh693Vpez1F3/yummjecPIFwk0KwiIiIyMEsoUeC/SleRuek8cy1c8jy9/zzwJ1nTeb0qUPIz/I70J2IiIiIuCWhQzA4F4QVgEVERET6j4QPwdDzIKwALCIiItK/xByCjTF5xpiZxpjpxpgMN5vqC90NwgrAIiIiIv1PlyHYGDPZGPNPYBHwITAfWGWM+YsxZoDbDfYmf4qXgiwfUwpj+89KTU7i9GkKwCIiIiL9TSwjwQ8D86y144BjgXXW2tHA+8BDbjbX20qrA9z9yloWbSqP6fyGUBMX/GlRl1ssi4iIiMjBJZYQnGqtXQ9grV0CTGv5eT4wxcXeelVnG2F0pqstlkVERETk4BNLCN5kjLndGDPXGHMfsALAGJMc4/UHve4G4CgFYREREZH+JZYQeyWQCdwGBIDvtRxPAy53qa9e09MAHKUgLCIiItJ/dBmCrbWV1tqbrbVfsdb+yFpb03K8ylq7OHqeMeb3bjbqhtLqAL94Y31MAfjComFdrhqxtbyeS//8IXurA061KCIiIiIucHI6w1wHa/UKb5LhlCmDSfKYTs+786zJ3Hb6JJ6+puvl044cNYjOq4mIiIhIXzsk5vR216B0H7NGZvPAZUd0GISj6wBnp6UwJjet0yB83hHDuPmUw7RkmoiIiMhBLqFDMHQehNtuhOFP8XYYhBWARURERPoPJ0Nwv50F0F4Q7mgnuPaCsAKwiIiISP8Sz7bJ07o45bcdXHeqMWa9MWajMebWDs65wBizxhiz2hizINaenNQ6CP/krCmdboXcOghfccwoBWARERGRfsZYa2M70Zj3AB/wF+BJa21VDNckAZ8CJwElwEfAxdbaNa3OGQ88C3zZWlthjMm31pZ2VreoqMgWFxfH1He89tcGCUUsBTGE2kBjmOpAWAFYRERE5CBkjFlqrS1q77mYR4KttV8ALgWGA0uNMQuMMSd1cdlRwEZr7WZrbSPwNHB2m3OuBu631la0/DudBmC3DcrwxRSAoXlEWAFYREREpP+Ja06wtXYD8GPgFuCLwO+MMeuMMed2cEkhsKPV45KWY61NACYYY943xiw2xpzaXiFjzDXGmGJjTHFZWVk8bYuIiIiIfEY8c4KnG2N+DawFvgycaa2d1PLzr3vQgxcYD3wJuBiYb4zJbnuStfZBa22RtbYoLy+vB/+ciIiIiCS6eEaCfw8sAw631s6z1i4DsNbuonl0uD07aZ4+ETWs5VhrJcDL1tqQtXYLzXOIx8fRl4iIiIhIXOIJwWcAC6y1DQDGGI8xJg3AWvt4B9d8BIw3xow2xqQAFwEvtznnRZpHgTHG5NI8PWJzHH2JiIiIiMQlnhD8TyC11eO0lmMdstaGge8Ab9A8jeJZa+1qY8xdxpizWk57Ayg3xqwB3gZustaWx9GXiIiIiEhc2t//t31+a21t9IG1tjY6EtwZa+2rwKttjv1Xq58tcEPLHxERERER18UzElxnjJkVfWCMOQJocL4lERERERF3xTMS/H3gr8aYXTRvkTwYuNCVrkREREREXBRzCLbWfmSMmQgc1nJovbU25E5bIiIiIiLuiWckGOBIYFTLdbOMMVhrH3O8KxERERERF8Ucgo0xjwNjgRVAU8thCxwUITgUClFSUkIgEOjrVvqU3+9n2LBhJCcn93UrIiIiIgeteEaCi4DJLas5HHRKSkrIzMxk1KhRGGP6up0+Ya2lvLyckpISRo8e3dftiIiIiBy04lkd4hOab4Y7KAUCAXJychI2AAMYY8jJyUn40XARERGRrsQzEpwLrDHGLAGC0YPW2rM6vqR3JXIAjtJrICIiItK1eELwnW41cSiorKxkwYIFfPvb3+7rVkRERESkCzFPh7DW/hvYCiS3/PwRsMylvvqdyspK/vCHP/R1GyIiIiISg5hDsDHmauA54IGWQ4XAi2401R/deuutbNq0iRkzZnDTTTfxi1/8giOPPJLp06dzxx13ALB161YmTpzIFVdcwYQJE7j00kv55z//ydy5cxk/fjxLliwB4M477+TrX/86c+bMYfz48cyfPx+A3bt3c9xxxzFjxgymTp3Ke++912f/vSIiIiL9WTw3xs0D5gLVANbaDUC+G031Rz//+c8ZO3YsK1as4KSTTmLDhg0sWbKEFStWsHTpUt59910ANm7cyA9/+EPWrVvHunXrWLBgAQsXLuSXv/wlP/vZzw7UW7lyJW+99RaLFi3irrvuYteuXSxYsIBTTjmFFStW8PHHHzNjxoy++s8VERER6dfimRMctNY2Rm+8MsZ4aV4nWNp48803efPNN5k5cyYAtbW1bNiwgREjRjB69GimTZsGwJQpUzjhhBMwxjBt2jS2bt16oMbZZ59NamoqqampHH/88SxZsoQjjzySK6+8klAoxFe/+lWFYBEREZFuimck+N/GmP8EUo0xJwF/Bf7uTlv9m7WW2267jRUrVrBixQo2btzIVVddBYDP5ztwnsfjOfDY4/EQDocPPNd2lQdjDMcddxzvvvsuhYWFXHHFFTz22EGxT4mIiIhIvxNPCL4VKANWAdcCr1prf+RKV/1QZmYmNTU1AJxyyik8/PDD1NbWArBz505KS0vjqvfSSy8RCAQoLy/nnXfe4cgjj2Tbtm0UFBRw9dVX861vfYtly3RfooiIiEh3xDMd4npr7W+B+dEDxpjvtRxLeDk5OcydO5epU6dy2mmncckllzBnzhwAMjIyeOKJJ0hKSoq53vTp0zn++OPZt28ft99+O0OHDuXRRx/lF7/4BcnJyWRkZGgkWERERKSbTKy7IBtjlllrZ7U5ttxaO9OVzjpRVFRki4uLP3Ns7dq1TJo0qbdbccWdd95JRkYGN954Y7euP5ReCxEREZHuMsYstdYWtfdclyPBxpiLgUuA0caYl1s9lQnsd6ZFEREREZHeE8t0iA+A3TRvm3xfq+M1wEo3mkp0d955Z1+3ICIiInJI6zIEW2u3AduAOe63IyIiIiLivnh2jDvXGLPBGFNljKk2xtQYY6rdbE5ERERExA3xrA5xL3CmtXatW82IiIiIiPSGeNYJ3qsALCIiIiKHgnhCcLEx5hljzMUtUyPONcac61pn/dCVV15Jfn4+U6dO7etWRERERKQT8YTgLKAeOBk4s+XPV9xoqr+64ooreP311/u6DRERERHpQsxzgq2133Szkd722muvcf/997N3714KCgqYN28ep512Wo9qHnfccWzdutWZBkVERETENfGsDjHBGPMvY8wnLY+nG2N+7F5r7nnttde4++672bNnD9Za9uzZw913381rr73W162JiIiISC+IZzrEfOA2IARgrV0JXORGU267//77CQQCnzkWCAS4//77+6gjEREREelN8YTgNGvtkjbHwk4201v27t0b13ERERERObTEE4L3GWPGAhbAGHMezdsp9zsFBQVxHRcRERGRQ0s8IXge8AAw0RizE/g+cJ0rXbls3rx5+P3+zxzz+/3MmzevR3Uvvvhi5syZw/r16xk2bBgPPfRQj+qJiIiIiDviWR1iM3CiMSYd8Fhra9xry13RVSCcXh3iqaeecqI9EREREXFZzCHYGPM94BGgBphvjJkF3GqtfdOt5tx02mmn9Tj0ioiIiEj/FM90iCuttdU0b5aRA3wd+LkrXYmIiIiIuCieEGxa/j4deMxau7rVMRERERFJcOW1wZjPLa0OEAw1udhN5+IJwUuNMW/SHILfMMZkAhF32hIRERGR/mRvdYB7Xl/HzoqGLs8trQ7w0MItbCmv67MgHE8Ivgq4FTjSWlsPpACH1FbKIiIiIhK/vdUBvvvUcp4tLuHrD33YaRAurQ7wm399ygPvbubCBxb3WRDuMgQbYya2/Dij5e8xLTfFjSSOG+tERERE5NATDcAfbtkPwOZ9dR0G4WgAXvDhDgCqGkJ9FoRjGQm+oeXv+9r580uX+uqXduzYwfHHH8/kyZOZMmUKv/3tb/u6JRERERHXtA3AUe0F4bYBOKqvgnCXIdhae03L38e38+fL7rfYf3i9Xu677z7WrFnD4sWLuf/++1mzZk1ftyUiIiLiuI4CcFTrILyvNthuAI7qiyAc85xgY8z5LTfDYYz5sTHmBWPMTPdac08oFOL666/n+uuvp76+/sDPoVCoR3WHDBnCrFmzAMjMzGTSpEns3LnTiZZFREREDio1gTCrd1V3ek40CP/Xi590GICjqhpCvL9xH9UNPctjsYrnxrjbrbU1xphjgROBh4A/udOWu2644QaWLVvGsmXLOP300w/8fMMNN3R9cYy2bt3K8uXLmT17tmM1RURERA4Whdl+nrn2aDJ8nd8itnlfHa9+sqfLejefchhnTh9KXpbfqRY7FU8Ijo5NnwE8aK19heYVIvqtYDBIbW0twWDsa9rFora2lq997Wv85je/ISsry9HaIiIiIgeD1BQvY3LTYwrCXbn5lMM474hh5PdSAIb4QvBOY8wDwIXAq8YYX5zXHzTuuecekpOTP3MsOTmZe++9t8e1Q6EQX/va17j00ks599xze1xPRERE5GDlRBDuiwAM8YXYC4A3gFOstZXAIOAmV7py2S233PK5+b+hUIibb765R3WttVx11VVMmjTJ0akVIiIiIgerngThvgrAEEcIbtkg4yWgzhgzAkgG1rnVWG/w+XxkZGTg8/kcqff+++/z+OOP89ZbbzFjxgxmzJjBq6++6khtERERkYNVNAg/eXXs90J9Y85ILjxyeJ8EYIhjswtjzPXAHcBe/m+7ZAtMd6EvV/3qV786MFJ7zz33cMsttxw43hPHHnss1toe9yciIiLS39QEwjzz0faYz1+4YR/XHjfWxY46Z2INbcaYjcBsa225uy11raioyBYXF3/m2Nq1a5k0aVIfdXRw0WshIiIivamjjTC6MiY3ncevmk3hwFRX+jLGLLXWFrX3XDxzgncAVc60JCIiIiKHgu4GYOh8i2W3xTN7eTPwjjHmFeDAmmLW2p7NIRARERGRfqknATgqGoTdHBFuTzwjwduB/6V5beDMVn9EREREJME4EYCj+mJEOOaRYGvtTwCMMRktj2vdakpEREREDm7ldY08vaTrAHzTKYdx/GF5XPDAYmqD4Q7P27yvjscWbeXaL45hULozK3d1JuaRYGPMVGPMcmA1sNoYs9QYM8W91kRERETkYJWf6eOPlx6Bx3R8zs2nHsb5RwxjdAzrCJ95+BCuPHZ0rwRgiG86xIPADdbakdbakcAPgfnutNV/jRo1imnTpjFjxgyKitq9GVFERESk38vJ8FE0amCHQfjmUw/jvFnNG2F0taHGmYcP4cdnTKbgIN02Od1a+3b0gbX2HSDd8Y4OAW+//TYrVqyg7TJuIiIiIoeSjoJw6wAc1VEQ7osADHGuDmGMuR14vOXxZTSvGNHvHHfccdTX13/ueFpaGu+++24fdCQiIiLSP7UOwtc9uZQbT/l8AI5qHYQvfGAxx0/M65MADPGF4CuBnwAv0LxT3Hstx/qd9gJwZ8fjYYzh5JNPxhjDtddeyzXXXNPjmiIiIiIHs2gQfvvGL5GanNTpVsjRIPzKd4/Fn5zUJwEY4lsdogL4rou9HBIWLlxIYWEhpaWlnHTSSUycOJHjjjuur9sSERERcVVOho+cjNhuaktN8TIyJ56xWOfFszrE/xpjsls9HmiMecOdtvqvwsJCAPLz8znnnHNYsmRJH3ckIiIiIm3Fc2NcrrW2MvqgZWQ43/mW+q+6ujpqamoO/Pzmm28yderUPu5KRERERNqKZxw6YowZYa3dDmCMGUnz3GBpsXfvXs455xwAwuEwl1xyCaeeemofdyUiIiIibcUTgn8ELDTG/BswwBeAfnnXV1paWoerQ/TEmDFj+Pjjj3tUQ0RERETcF8+Nca8bY2YBR7cc+r61dl/0eWPMFGvtaqcbdIOWQRMRERFJbHHdltcSev/RwdOPA7N63JGIiIiIiMviuTGuK53sHC0iIiIicvBwMgT3+U1y1vZ5C31Or4GIiIhI15wMwX3K7/dTXl6e0CHQWkt5eTl+f9/svCIiIiLSXzi5VUejg7XiNmzYMEpKSigrK+vLNvqc3+9n2LBhfd2GiIiIyEEtrhBsjJkOjGp9nbX2hZa/j+7gsl6RnJzM6NGj+7IFEREREeknYg7BxpiHgenAaiDSctgCL7jQl4iIiIiIa+IZCT7aWjvZtU5ERERERHpJPDfGLTLGKASLiIiISL8Xz0jwYzQH4T1AkOZ1ga21drornYmIiIiIuCSekeCHgK8DpwJnAl9p+btTxphTjTHrjTEbjTG3dnLe14wx1hhTFEdPIiIiIiJxi2ckuMxa+3I8xY0xScD9wElACfCRMeZla+2aNudlAt8DPoynvoiIiIhId8QTgpcbYxYAf6d5OgTwf0ukdeAoYKO1djOAMeZp4GxgTZvzfgrcA9wURz8iIiIiIt0Sz3SIVJrD78k0T4OITonoTCGwo9XjkpZjBxhjZgHDrbWvdFbIGHONMabYGFOc6BtiiIiIiEjPxDwSbK39ptP/uDHGA/wKuCKGf/9B4EGAoqKixN0bWURERER6LJ7NMvzAVcAUwB89bq29spPLdgLDWz0e1nIsKhOYCrxjjAEYDLxsjDnLWlsca28iIiIiIvGIZzrE4zSH1FOAf9McaGu6uOYjYLwxZrQxJgW4CDhwc521tspam2utHWWtHQUsBhSARURERMRV8YTgcdba24E6a+2jwBnA7M4usNaGge8AbwBrgWettauNMXcZY87qbtMiIiIiIj0Rz+oQoZa/K40xU4E9QH5XF1lrXwVebXPsvzo490tx9CMiIiIi0i3xhOAHjTEDgdtpntKQAbQbZkVEREREDmbxrA7x55Yf/w2McacdERERERH3xTwn2BhTYIx5yBjzWsvjycaYq9xrTURERETEHfHcGPcXmm9wG9ry+FPg+043JCIiIiLitnhCcK619lkgAgdWfmhypSsRERERERfFE4LrjDE5gAUwxhwNVLnSlYiIiIiIi+JZHeIGmleFGGOMeR/IA85zpSsRERERERfFE4LXAH8D6mneKe5FmucFi4iIiIj0K/FMh3gMmAj8DPg9MIHmrZRFRERERPqVeEaCp1prJ7d6/LYxZo3TDYmIiIiIuC2ekeBlLTfDAWCMmQ0UO9+SiIiIiIi7uhwJNsasonlFiGTgA2PM9pbHI4F17rYnIiIiIuK8WKZDfMX1LkREREREelGXIdhau603GhERERER6S3xzAkWERERETkkKASLiIiISMJRCBYRERGRhKMQLCIiIiIJRyFYRERERBKOQrCIiIiIJByFYBERERFJOArBIiIiIpJwFIJFREREJOEoBIuIiIhIwlEIFhEREZGEoxAsIiIiIglHIVhEREREEo5CsIiIiIgkHIVgEREREUk4CsEiIiIiknAUgkVEREQk4SgE/jrcZQAAFYVJREFUi4iIiEjCUQgWERERkYSjECwiIiIiCUchWEREREQSjkKwiIiIiCQchWARERERSTgKwSIiIvL/27v3KLvL+t7j7+/eszOXzORCGCAmgSABuYgIDNcTlwlgy+UULBVFSy8WD+cssYdK6RGt9Yj2FC/UujgFK5UWOdXSqlSpgnghQS5GCZcSCULDNUEgCeQ2Seay937OH7PBEAKZZPbec3ner7Wysvf+/eab76xn5ZnPPPvZv5+UHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGWnZbQbGE1rNvXR219pSO3O1iLdXW0NqS0pD85RksayRs1RzZqfsg7Bvf0VFl6xuCG1F12ygO6uhpSWlAnnKEljWaPmqGbNT26HkCRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdlpeAiOiFMj4pGIWBERl+7g+MURsTwiHoyIH0fEfo3uSZIkSXlraAiOiCJwFXAacCjw3og4dLvT7gd6UkpvAb4JfK6RPUmSJEmNXgk+FliRUno8pTQA3ACcte0JKaVFKaUttadLgNkN7kmSJEmZa3QIngWs3Ob5qtprr+V84JYdHYiICyJiaUQsXbNmTR1blCRJUm7GzAfjIuI8oAf4/I6Op5SuSSn1pJR6uru7m9ucJEmSJpSWBtd/BpizzfPZtddeISJOAf4ceHtKqb/BPUmSJClzjV4Jvgc4MCL2j4hJwLnATdueEBFHAl8GzkwprW5wP5IkSVJjQ3BKqQx8CLgVeBj415TSQxHxqYg4s3ba54FO4BsR8UBE3PQa5SRJkqS6aPR2CFJKNwM3b/faJ7Z5fEqje5AkSZK21fAQLEnaPe2lAjdccHzDakvSSExuLbLokgUNqdsMWYfgyZOK/OjitzestiSNRF+5yrnXLGlI7cV/tqAhdSXlY3N/hYVXLK573UWXLICuupd9laxD8JaBCqd84faG1F7cgN+MJOUlpfFZW5LGA98PkyRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKTstoNzCaOlqLLLpkQcNqS9JItJcK3HDB8Q2rLUk5yzoEb+6vsPCKxQ2pveiSBdDVkNKSMtFfrnLuNUsaUvv2P1vQkLqS8tHZoMXEziYtJGYdgiVpLKum8VlbUh66u9roHscLfr4fJkmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJYkSVJ2DMGSJEnKjiFYkiRJ2TEES5IkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnZaRruB0dTZWmTRJQsaVluSRsI5SpIaJ+sQ3N3VRnfXaHchSTvmHCVJjeN2CEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO4ZgSZIkZccQLEmSpOwYgiVJkpQdQ7AkSZKyYwiWJElSdgzBkiRJyo4hWJIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7LSMdgOjac2mPnr7Ky8/bwMKpSKJRFupwOb+Cn2DVR5f28v6LYO0lgrM6+5kanuJYiGY1hpsGgymthV4ZsPAK2p3thbp7mpr8nckaSLZfo6a2dXCxv5EZ0tiUxnKlcTGvjIrVvfSN1ihq63EvL0m014q0lEqUK1AOaCYKmwafGVt5yhJI7X9HDWtrUihWKSjBdZsHqRShRd6+3li7WYqKbFXVxv77tFBSzHo7iyxqa9KuVpl62D1FXWbNT9lHYJ7+yssvGIxAL/9ln249IzDKBUTmwcSf3/HY3xj6Uo29pVf9XWFgIVv2osLF87jDVPb2LCxTHtLcPxnFr18zqJLFtDd1azvRNJEtO0cdetF81m7JWgpBI+vG+DqxSv4wUPPU66mV31dx6QiZx81iw/MfyOTJxWoRJFb/uMpPvfDFS+f4xwlaaS2naPu+/jJRCS29pe554mNXL34Me57et0Ov26fKW38wYn7cdZbZ9HVWgTglC/eRu/WoePNmp/cDsFQAP7YGYeRgBvvf5ZTvnA71975xA4DMEA1wY9/uZqzv3Q3l313OQPFAjMml1hy6cLmNi4pC7deNJ/9Z7RTLASfv/UR/uv/vZOblz23wwAMsGWgwj8teZpTvnA7X//5SlJK/O4x+/G/3jGvyZ1LysF9Hz+ZANZtqfA/vnYfH7h+6WsGYIDnNvbx2e8/wulX3sGSJ16EBD/6k5PobG9ez2AIfnkFuBrw5/+2jL/83sP0l6s7/8KaW37xHL9z9d2sWt9vEJZUdy8F4Od7y5x7zRK+dd8zw/7acjXxNz/6Ty664QH6EgZhSXV338dPBhKPrd3C6VfeyQMr1w/7a9dvGeS/XX8v1/30SaD5QThS2vFKwljW09OTli5dOuI6z67dPLQHOCU+/b3lfG/Zc7tda58pbdz4wRNprVQZLAZby4n995w84h4l5auvv5+1WyoUC8F7r1nCky9s2e1ab5u3J58/5y1EBN+65ylOO2K2c5SkEVnX20drqcDT6/p451V30Tc4/EXE7X3k1DfxrqNmU0mJrYPVus1PEXFvSqlnR8eyXgkuTirS2gL3rlw/ogAMQ0v7n/r3hxgoFigUCkxv8pK+pIln8yC0BHzxh/85ogAMcMeKtfz44dWUCvDu4+bWp0FJWVvTO8jGvgof+vr9IwrAAFf84FHWbh6gVICOUnPiadYhuABsGUx87MZldan3/Yee55n1W5naGqzbWpeSkjLWSpX1W8v8y9KVdan36e8tp6+cqFRG9sNKkgD2ndbGzcueY8Xq3hHXqlQTH/nWg/SXE5Nbow7d7VzWIXhaRwtLn3yRDVsHd37yMP3tohWs2+oPGEkjt7UKX/7JY3Wr1zdY5daHnmNKW7FuNSXl64Wtg1x75xN1q/fgqg1s7CszMFDZ+cl10PAQHBGnRsQjEbEiIi7dwfHWiPiX2vGfRcTcRvf0ktW9A/zzz+uzwvKSnzy6hvI43GctaewZqMLNI9yqtb1vLF3F2s07vvKNJO2KTX1lnllf37e+v3HvSqZ0tNa15mtpaAiOiCJwFXAacCjw3og4dLvTzgfWpZTmAX8DfLaRPW2rmmDZMxvqXnP9lkE66lpVUo62DlR26Wo1w/Ho85soRHPeapQ0sb3eZdB21/1Pb+D5jQM7P7EOGr0SfCywIqX0eEppALgBOGu7c84Cvlp7/E3g5IjmzNCVaqK3v/4rIo88t4k9pk6qe11JeVn54sg+DLcj5Wqir9yctxolTWy/qPNCIsCKNZto1qbSRofgWcC2+w1W1V7b4TkppTKwAZixfaGIuCAilkbE0jVr1tSluWqDti30lSs0KcdLmsD6GxRWx+OlMSWNLdVqte7vVAEMlKs0K0KNmw/GpZSuSSn1pJR6uru761KzpdCYb39qe4lK1Q/HSRqZKW2lhtRt1NwnKR+FQoEp7fWfo7paS037Rb3RM+EzwJxtns+uvbbDcyKiBZgKvNDgvgAIYK+u+m++PmjvLn61sX5XnJCUpzc04ILjHZOKtBR9p0rSyPXst0fdax76himUihPjOsH3AAdGxP4RMQk4F7hpu3NuAv6g9vhdwG2pSb8CtJWCo/ebXteaHZOKTJ7k5YckjVypEMyYXN/PF7x1zjQKZmBJdfDmWVPqXvOEA2bQ3dmcz1U1NATX9vh+CLgVeBj415TSQxHxqYg4s3batcCMiFgBXAy86jJqjdJeCs6fv39da5591Kym3elE0sQ2tb2F9x23b11rfmD+/oZgSXVRKhY4cs60utUrFoIzDp/J0+v66lbz9TQ8raWUbk4pHZRSOiCl9H9qr30ipXRT7XFfSumclNK8lNKxKaXHG93TSzb2VXnDtDYO2ruzLvVaCsEH5r+RaiXR6WKwpBHaPFDlPcfMoa1Ov1jPnt7OwTOnMLQZTJJGpntyCx9+x0F1q3fG4fswqRi0tXjHuIaLCNpLRa4890iKdVga+fA7DmRya4FyBF6BSFI9tJcK/MUZ219effdcee6RTG1rqUstSVrdW+agvTv5zcP2HnGt6R0lLj3tEDb0baalSZeHyDoEbx2sMlCuskdHicvOHNkPmfnzZvA7R82hmoKv3vUYzVnIlzSRDQ5UKFfh5EP24tQR/pC5+B0HMnNaG739FY6//LY6dSgpZ9M7CpSq8MnfOoz995y823VKxeDvzjuaKa1FZrR30jvYnCtsZR2CAY67/DYScMohe/Opsw7brRXhhW/q5opz3kprwFfveoyrb3+y7n1Kys8g8MlvLyMiuOzMN3PWETN3uUYE/OlvHMR7euZQIDju8h/Xv1FJWXp+U5lVvX3s0V7g/51/LAfv07XLNTomFfnHPzyGuXt20D9Y5ei/at4clX0IhqEgHMCph+7Nd/94PvP2Gt4e4c7WFv763UfwV2cfTing7w3AkursluWr+eS3l0HAR08/hC+ddxRTh3ltzn336ODfPngi5xw9GwzAkhrgrKvu5pertzCjvcB17z+G/3nyPFqGuaB4wgEz+P5Fb+OwmV20EE0NwABuDqs57vLb+NlHT2KfKa1c/0fHsmrdFr5yxxPc+9Q6Xtj863tYt5UKHDpzKu85ZjZvO7CbjlKB/kriWgOwpAa5ZflqYBmffOfhnHjAdG656G3c8+SLfP1nT7PsmQ1sGfj1hxCmdZQ4cs50zp8/lzd2d9LVWmTLQNUALKlhzrrqbr5z4Yns2dnGecfty7t75nDTA7/iuw8+y6PPb6Jc/fWVb2dNa+eEA/bg/PlvZGp7C1SrVKs0PQCDIfgVjrv8NpZ89CQCmFwK/vKdb6a/XCWlxGA1UQiYVCwAiekdk9jaP7Rfzy0QkhrtpSB82TsPpxiw4KBuemrXOR+sJCop0VIIioWgVAh6+waJgN6BCie4B1hSg70UhOfsMZlilPnDE/fjt46YSSHi5dsrv3QTjMmtRZ5cvYHuzqlEoTAqARggxuM95Ht6etLSpUtHXGfNpj56+xtzGYfO1iLdXW0NqS0pD85RksayRs1R9ZyfIuLelFLPjo5lvRLc3dVG967v4ZakpnCOkjSWjfc5yg/GSZIkKTuGYEmSJGXHECxJkqTsGIIlSZKUHUOwJEmSsmMIliRJUnYMwZIkScrOuLxZRkSsAZ4ahX96T2DtKPy7aizHdeJybCcux3ZiclwnrtEa2/1SSt07OjAuQ/BoiYilr3XXEY1fjuvE5dhOXI7txOS4TlxjcWzdDiFJkqTsGIIlSZKUHUPwrrlmtBtQQziuE5djO3E5thOT4zpxjbmxdU+wJEmSsuNKsCRJkrJjCJYkSVJ2DMHbiYh/iIjVEfGL1zgeEXFlRKyIiAcj4qhm96hdN4xx/d3aeC6LiLsj4ohm96jds7Ox3ea8YyKiHBHvalZvGpnhjG1ELIiIByLioYi4vZn9afcNY06eGhH/HhH/URvb9ze7R+26iJgTEYsiYnlt3C7awTljJkcZgl/tOuDU1zl+GnBg7c8FwJea0JNG7jpef1yfAN6eUjoc+DRjcAO/XtN1vP7YEhFF4LPAD5rRkOrmOl5nbCNiGnA1cGZK6TDgnCb1pZG7jtf/f3shsDyldASwAPjriJjUhL40MmXgT1NKhwLHAxdGxKHbnTNmcpQheDsppZ8AL77OKWcB16chS4BpETGzOd1pd+1sXFNKd6eU1tWeLgFmN6Uxjdgw/s8C/DHwLWB14ztSvQxjbN8H3JhSerp2vuM7TgxjbBPQFREBdNbOLTejN+2+lNKzKaX7ao83AQ8Ds7Y7bczkKEPwrpsFrNzm+SpePcAa384HbhntJlQfETEL+G1812YiOgiYHhGLI+LeiPj90W5IdfO3wCHAr4BlwEUpperotqRdERFzgSOBn213aMzkqJbR+EelsSoiFjIUguePdi+qmy8CH0kpVYcWlTSBtABHAycD7cBPI2JJSunR0W1LdfCbwAPAScABwA8j4o6U0sbRbUvDERGdDL379idjecwMwbvuGWDONs9n117TOBcRbwG+ApyWUnphtPtR3fQAN9QC8J7A6RFRTil9e3TbUh2sAl5IKW0GNkfET4AjAEPw+Pd+4DNp6GYGKyLiCeBg4Oej25Z2JiJKDAXgr6WUbtzBKWMmR7kdYtfdBPx+7dONxwMbUkrPjnZTGpmI2Be4Efg9V5EmlpTS/imluSmlucA3gQ8agCeM7wDzI6IlIjqA4xjag6jx72mGVviJiL2BNwGPj2pH2qnaHu5rgYdTSl94jdPGTI5yJXg7EfHPDH0Sdc+IWAX8b6AEkFL6O+Bm4HRgBbCFod9WNcYNY1w/AcwArq6tGJZTSj2j0612xTDGVuPUzsY2pfRwRHwfeBCoAl9JKb3upfI0Ngzj/+2ngesiYhkQDG1pWjtK7Wr4/gvwe8CyiHig9trHgH1h7OUob5ssSZKk7LgdQpIkSdkxBEuSJCk7hmBJkiRlxxAsSZKk7BiCJUmSlB1DsCRJkrJjCJakcaR2gXnnbkkaISdSSRrjImJuRDwSEdcDvwD+IiLuiYgHI+Kybc75ZUR8LSIejohv1u6iRkR8JiKW186/YjS/F0kaK7xZhiSNcRExl6Fbxp4ITAHeBfx3hu6kdRPwOYZuM/sEMD+ldFdE/AOwHPhH4G7g4JRSiohpKaX1Tf8mJGmMcSVYksaHp1JKS4DfqP25H7gPOBg4sHbOypTSXbXH/wTMBzYAfcC1EXE2Q7cplaTstYx2A5KkYdlc+zuAy1NKX972YG21ePu39lJKqRwRxwInM7SC/CHgpMa2KkljnyvBkjS+3Ar8UUR0AkTErIjYq3Zs34g4ofb4fcCdtfOmppRuBj4MHNH0jiVpDHIlWJLGkZTSDyLiEOCnEQHQC5wHVIBHgAu32Q/8JWAq8J2IaGNoFfniUWlcksYYPxgnSRNAbTvEd1NKbx7lViRpXHA7hCRJkrLjSrAkSZKy40qwJEmSsmMIliRJUnYMwZIkScqOIViSJEnZMQRLkiQpO/8fIW4vIgbxScIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ lengths\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hUZdrH8e+Zmt4LIQFCQk3oAQREsWBZrAgWXOwKqKuuu666blHX1V3Lu6uuFTuooFixV2xISwg11ISQ3sskmUw/7x8hIUAayZlBmftzXfxB5syTk+S6zvzOc57nvhVVVRFCCCGEEMKf6I71CQghhBBCCOFrEoKFEEIIIYTfkRAshBBCCCH8joRgIYQQQgjhdyQECyGEEEIIv2M41ifQGzExMWpycvKxPg0hhBBCCPELlpWVVaWqamxHr/0qQ3BycjKZmZnH+jSEEEIIIcQvmKIo+zt7TZZDCCGEEEIIvyMhWAghhBBC+B0JwUIIIYQQwu9ICBZCCCGEEH5HQrAQQgghhPA7EoKFEEIIIYTfkRAshBBCCCH8zq+yTrCv2JxuGmxO3B5weTwoioJRpxBg0hMWYDzWpyeE8HONNidWpxuXW8Wjquh1CgadQojZQKBJLu9CiGNHVVXqm504XB6cbg8qYNTr0OsUwgOMGA3Hfh5WrpIdqG60U26x8dJP+1i3r4ai2ua218ICDYxJjODKqYMYNyCC6GATev2x/0MKIfyDx6NS1WRnR4mFV1bns7mojlqrs+31hPAAJiZHcv30FBIjA4kJMR/DsxVC+JtmpwtLs4tvd1bwTlYROSUWmp1uAHQKDI4J4ZRhMVwxNZmIICMRQaZjdq6KqqrH7Jv31sSJE1VvdIxrdrooq7dxy7JsthVbuj0+IsjIYxePZeKgyGP6RxRC+If6Zic5JfXcunwTlQ32bo8fGhfCU5dPICkykGCzzHkIIbyrutHOh5tKePjzndhdnm6PPzMtnvsvSCcuxOy1CUVFUbJUVZ3Y4WsSgls02Jx8u7OCO1Zsxuk+ut/J+WP7c+95aUTLjIsQwktqmhz896vdLF3baQfQDul1Cvedl8754/oTHijLuIQQ3lFusbFgSSabi+qP6n1hgQaWXDOZtP7hmLywRKKrECzP8WmZAf52ZwW3Ld901AEYYOXmEv783lZqmhxeODshhL+rbXLw0Kc7jjoAA7g9Kn/7cBsfZBfTaHN54eyEEP6ussHO/BfXHXUABrA0u7h08Vp2llnweHw7MSshGCits3HHis19GuPLnHI+3lyC7cC6FyGE0ILT7ebHPZW8k1XUp3Hu+2g7BTVWjc5KCCFa1FsdPPRpDnsqGns9ht3l4dpXN1DV2P0yLy35fQiubrRzy7LsXs0AH+6fn+zw+R9QCHF8q250cvd7W/s8jqrCTW9kUdWDtcRCCNFTeyoaeT+7pM/jVDU6+M9Xu2m0Obs/WCN+H4JL6m1sL+l+E1xPONweXvs5H7tLZoOFEH3ncnv4ILsYq0Oba0p+tbVPszVCCNFerdXBw5/v1Gy8d7KKaLT7btmWX4fgZoeLF3/M03TMZesLqbf67i5GCHH8qrU6eGn1Pk3HfOa7vVia5RolhOi7JruLDfm1mo3n8qh8ub1cs/G649UQrCjKy4qiVCiKsq2T1xVFUZ5UFGWvoihbFEWZ4M3zOVyD3cW6vBpNx2y0uzSbtRFC+DeHS+1RKbSjkV1QJ3sXhBCa2F3eoPmY3+6qoMlHs8Hengl+FTi7i9d/Aww98G8B8KyXz+cQbo9KmcWm+bi5lfK4UQjRd2X1zd0fdJQa7a4e1e8UQojuaD2RCJBTYqHJcRyEYFVVfwC6+g1dACxRW6wFIhRFSfDmObXn0mAzXEfqZDmEEEIDFi+VNHP5uAyREOL4o6qqV4oBWGxO8NEl6livCU4ECtv9v+jA146gKMoCRVEyFUXJrKys1OSb6xRFk3EO541iz0II/2M0eOcapfPOsEIIP6IoCgEGvebjmrzUOa4jv5q0pqrqYlVVJ6qqOjE2NlaTMY16hWCT9n/A1NhgzccUQvifxIhAzcfU6xQCjNpf94QQ/mfcwAjNx0yNDcHooyB8rENwMTCg3f+TDnzNJ0wGHemJ4ZqOqSgQFWzSdEwhhH8KNhk0nxUZEhuCXqaChRAaGJukfQjOGBTpsxbvxzoErwSuPFAlYgpQr6pqqa++eUSQiSumDNJ0zOlDYgg0GTQdUwjhn4LNBs4eFa/pmPMmDyQqSG7UhRB9FxlspF9YgKZjXjxxADof3ah7u0TaMmANMFxRlCJFUa5TFGWRoiiLDhzyKZAH7AVeAG7y5vl05ITBUYSatQutt80c6rM7GCHE8S3YbOCmU4doNp7ZoOPsUf189gEjhDi+RQWbWTgjRbPx0hLCiAnx3U26t6tDzFNVNUFVVaOqqkmqqr6kqupzqqo+d+B1VVXVm1VVTVVVdbSqqpnePJ+ORAab+Nec0ZqMNXNkHKmxIZqMJYQQAAnhgcyZkKTJWH87N43IILlJF0JoQ69TOHdMf5Kjg/o8lk6B/1wylugQswZn1sPv6bPv9Atl1Os4MTWGM9P69sgxJsTEAxeOIlIeMwohNBQeaOSus4f3eZPcCYMjmTWqH2bZFCeE0FBsqJnnr8jA3MfKWH84YxgDovoepo+G34dgODAbfNFoThoa06v3x4SYWLFomubrYoQQAiAuLIC3Fkyhf3jvrjETBkbw9OUZRPlwhkUI4T8Gx4Tw+nUn9DoIXz99MPOnDCJYw+WpPSEh+IDoEDOPXzqOu38zAsNRrJc7bXgsH90yneToIBQv1R0WQoikqCA+uPlEzhvT835COgVuOW0Ii6+cSEyoBGAhhHeYDDrGJIXz2W0nMTIhtMfvCzUbePa3E/jdaUOIOAZP0hVV/fV1Dpo4caKamemd5cPNDjeVDXZe+DGPFVmF2JwdtxedlhrN72cOY2hcCJFSEk0I4SN1VgcF1VYe/2Y3q3ZV0tEl3GzQccG4/iyakUp8WIDPZ1eEEP6rutHOhvwanvxmLzmllg6PiQo2cfW0ZC6ZOIDoEJNX6wIripKlqurEDl+TENyxZqcbS7OTRpuLgpomrA4PBr1CUkQgUSEmAo36Y3LXIoQQAJZmJ1aHi5omB0W1VpxuCDDqGBgVRFigkVCzgSAJv0KIY6S60Y7N6aGioZmyejseVSU8wMiA6CACjXqigk0YfNAUo6sQLMshOqOquD0qOp2CTqfg8nhQVTDoFTwqeH599w5CiOOIx6PiUTnwIdJyjVIU0OkU3B4VFblICSGOHbdHBVSMej0eWq5X+gOh1+VR+SUsIJVpgsM02Z3UWp0sXbOf5RsKqW92HnGMXqdw+og4bj51CP0jAogNlQ1xQgjfqGq0U9lg59nv9vLZtjKc7iPDbojZwNyMJK45MZnIYBNhAVIWTQjhG+UWGztLLTz9XS7r99V0eExiRCDXnJjMOaMTiAs1t4VjX5PlEO1UWGx8vq2MBz/dgd3V8Vrgw503JoF7Zo0koY/li4QQojtl9Tb++9Vu3sos7NHxRr3C7WcMY86EJOKleo0QwotsTjdlFht/eGszGwtqe/SeqGAT/3fxWEYlhnltQlHWBPdAhcXGXz/Yxpc55Uf93v7hAby5YArJ0cGanpMQQrQqqrVy5UvryatqOur3TkuN5r+XjpMgLITwimani52lDcx/cR1NDvdRv/93pw3h6qmDiPFCEJY1wd2osNj458c7ehWAAUrqbVy+eC2ldc0an5kQQrTMAPc2AAP8nFvNnSs2U26xaXxmQggBhTXNXP5C7wIwwFPf7uX97GIsHSxB9Sa/D8EOp5uNBbWs3FLSp3FK6m088HEOlQ3yISOE0E51o50nvtnd6wDc6vs9VXy3q4Jmh0ujMxNCiJY1wDe/sZFmZ+8CcKuHP99Fab1vM5Tfh+Bqq4O739uqyVifbiujsEZmg4UQ2qlqdLBsfc/WAHfnvpU51Fp9O9MihDh+ud0ePttWyp6Kxj6P5fKo3PXuFsrqfZej/D4EZ+bXUqfhh8JTq/ZS1WjXbDwhhP+qtzp47vtczcZrdrr5Oqccj6dnG3+FEKIrFQ12Xvxxn2bjbSqsw9Lsu6dVfh2CKxtsvLm+QNMxv9tVgb2PjwSEEAKgyeHm062lmo75VmYhZRa5URdC9F29zUlRrbYzt29nFvrsRt2vQ7DTrbKtqF7TMT0q8rhRCKGJZoe7x+Uae2pXWYOm4wkh/NemgjrNx8wurKOy0aH5uB3x6xDscntosGs/7b6rXD5khBB9V1hr1XxMl0fFJk+rhBAa2Fqs7UQiwJ6KBlxumQn2Om+1Pna45ANGCNF3Ti99EPwKy8MLIX5hPB6PV26oHS4PiuKbpsp+HYINeu/8kiODTF4ZVwjhX0K91O5Yr/PNB4wQ4vil0+mICNT+GhVq9l2bd78OwQoQG2rWfNwhcSGajymE8D/e6PAWZNJ7bQJACOFfxg6I1HzMkQmh+Oo+3a9DsF6nkDFI2z9goFGPUe/Xv1YhhEY8HpWoYG2fLI1NipDlEEKIPlNVldS4YM3HnTAo0mdPq/w6rbk8KnMmJGk65gXj+ktrUiGEJuptTuZmaHuNumTSAFRJwUIIDVQ22BmbFK7ZeDoFThkWi0Pjqjidfj+ffJdfKKdbJcCo02z5gkGncNW0ZPZXa7+jWwjhh1SVWaP6YTZoc6nuHx5ATIgJicBCiL5SVZX91VYWnJyi2ZizRieQXVjrtcIFh/PrEGzUK5j1Oh68cJQm608WzkhFp0BMiGyME0L0XXSIme0lFu6ZNVKT8R6/bDxf55Sh89HOayHE8Uun05EUGUhydDAzR8b1ebzwQCN3nj2CPRWNmHy0rNSvQ7BeUahqcvDF9jLuPGtEn8aakhLFpORInlmVKxvjhBCa0OsURieFExtq5vQ+fsjcOCOV7IJa5mYMwCgb44QQfaSqKiMTwthb2chNpwxhYFRQr8cy6BQenTuGFZmFzJ0wALNB1gR7nU4HKzKLeHl1Pga9wl1nD+/VjPDJQ2O4feYwbl2ezafbSmWWRQihiUCjnk+2lPLHtzdz1dRkfjOqX6/GuemUVJJjgvn35zsprmvWbHmFEMJ/tdbyXfxDHn9csZknLhvH0F5MAgYa9Tw5bzxf7SjnqVV7ifbhki2/vhK63bCpsBaAf36yg6pGB0uvO4GUmJ7tdgwy6bnv/HQunjiA61/LxNLswulWafRCFzohhP+xO90s31BIs9PNgqWZnDoijkfmjiEswNCj9ydFBvLK1ZMw6BXufm8Lqgovr87H5vTNphMhxPFLVVXsLjfbSyzsq2rilmXZ3Hd+OjeclNLj6g6TB0fxxvUn8EF2MSsyi1BV+HRrKS1FbL2vZ1fS45RbVam1Otv+/9JP+/huVyX3nDMSl1vl7cxCsvbXUt988BizQceIfqGcN7Y/4wdG8tJPeXy6teyQcXMrmxjeL8xnP4cQ4vjkcKtt1x+b08Od72zh1OFxvHT1JHaUWvhwUwnbS+oPCbVhAQbGDYjg4okDCAsw8PDnu8gptbS9vqWozmebToQQxy9FUcgpOXhtKapt5oqX1nHNiYN5Z9FUvtlZwZfby8itbMLd7qITH2ZmSko0czOSKLfYuGFJJtVNjrbXf9pbxcUZA3zyM/h3CO7gkyC3spHrX8tkYFQQF47vz7zJAwkPNOJRVRQFXG6VXWUNfL2jnH9+sqPDcWUmWAihhbL6I8strtpVwapdFWQMiuTsUf24feYwjAYFVQWdotBkd7GluJ7Hv95DbmXjEe+3OT1ea8cshPAvmftrD/m/R22ZUHzt53zOSIvn6mnJpMaF0Lq+QVEUKhpsZBfU8fvlmw4Jv612ljbg8NE1yq9DcFez9QU1Vp78Zm+vxg0y6nt5RkIIcVCD3dnpa1n7a8k67AOop1wyFSyE6CNVVQ95Ut6ey6Py2bYyPttW1uHrXWly+G4i0a/XBOt0ChFB2veoTu7hmmIhhOhKgJduqKU4hBBCC8Em7a9RZoPvJhL9OgQDjEuK0HQ8o14hUGaChRAa6BcWoPmYRr2CUapDCCE0MEbjDAUwLD7ER9vi/DwE6xSYPSFR0zHPSu9HnfXINS5CCHG09Drtb6pH9AvrcD+EEEIcreH9QjUfc9yACJ/VMvfrEOxRITrY1O1sS3igkcSIQGJDzXRXAvi3JwzC6KNOJ0KI41uzw825YxK6PS42xExiRCCRPVjeNXt8olyjhBCasDndDIrufZOMjpyRFo/DJRvjfOKTraU8cGE6NyzJavuaXqcwc2Q8s8cnEh1ios7qwGJzYdbriAsLwOHy8P3uSlZkFVLXrsTaZZMGsD6/hnNHd/+hJYQQ3Qkw6pg7MYl3NrbUz2wVajYwe0IiM0fGE2DUU9Fgw+7yEGI2EBVsos7q5KPNJXy+reyQXdahZgNjksJRVZkJFkL03aaCOq6amsw/Ps7p8rhgkx6domB1urt8EjUpOZK8yiYSIwK1PtUO+XUIDjDoGdkvjL0VjVw1LZnXfs7nrPR4bpyRyre7Krh35TbKLXYAFIW2D6EAo46z0xN4bn4Gmfm1PPnNHpJjgrhoQhJPr9rLeT2YuRFCiO4Emgys3lTCFVMGsWTNfvQ6hYUnp3DqiDjeySrixtezaHK4j3hfTIiJuRlJvL1wCq/+vJ8PNhUD8OdZI/kgu5ibTk319Y8ihDjOKIqC2ahnQFQQ6f3D2N6uZnBUsImLM5KYlhpNoMlAo92F26MSGmBAAXaUNfD2hsJDapib9DruOnsE//t2D6cMj/XJz+DXIdjh9jAlJZpLnl/DQ7NHcXZ6P3IrG/nti+tIiQ1h0YxURvQLQ69TcHtUdEpLRYmi2ma+ziln/ovrmD0hkXcWTcWgV7j+tUwevXisPGoUQmjC5VHZU97I1Scmk1fRxO9OH8Jn28q45Pk1dDWZW9Xo4Lnv83hldT5/PHM4Z6bH89nWUsxGHUlRQZhkY5wQQgPjBkZw49Isnpw3nmte2YBbVbnz7BEMiQ3h7cxCbnxjI9bDbtT1OoWxSeFcOz2ZuNAA/vFxDnsrGrnz7OGsyCpiQGQQJh+tCVZ+jY/FJk6cqGZmZvZ5nAqLDbvLzY97qogPC+DjLaXsq2rizrOHs7/ayorMQrYW1+N0H/o7GhgVxLljEjgjLZ53sopYvbeKJy4bz5vrCrh2ejIKMEw6xgkh+igrvwZFp3D/yu08dfkEbliSyc6yhqMeZ+bIOP5+Xhpzn1nDOzdNw+NRpZSjEKLP9lU1MvuZn0lLCOOus4ejovDsd7l8sb1n9YGTo4N44MJR2JxuCmqsPPDxDt69cRoDIgOJ06g6jqIoWaqqTuzoNb+eCUZVWb23mtGJ4by+toDU2BB+M6oft7+1qW0ZREcKaqw8810ui3/I4+ZTh3Df+encu3IbT10+gX98tJ3bzxjuwx9CCHG8CjQbKK1t5p+zR3P9a5nsKj8YgNP7h3Fmej9G9Q8jJMAAasvjyapGO1uL6vloSwlFtc0AfL2jAp2i8OwVE8gpqWfsAO3LGgkh/IuqqqgqXDpxABvya/GocMOSDVQ19rxCVn61lStfXs8/LxxFo83FwKigAxt8fTNB69czwcW1Vp79PpcpKdE0O9zsqWhk8Q95Rz3OuAER/O3cND7cVMSAqGDOGBkvsyxCiD4rrLHywaZiLM0uXvix5do0NSWaW04fQnFtMx9sKmZrUT0W28EOS7EhZiYMiuCiCUnoFPj3Z7va2ic/edk41u+rYeGMVAZEabujWwjhfzbur0Gv14EKV7+ynlpr510uu/PQ7NGM6BfK2rwqLps8kKhgsybn2NVMsN+H4IIaK5sK62iwuXjmu9xejzU6MZx7Zo3E6fYQHWIivX94n89PCOHf9lY0UNPk5NLFazDqdPz13JFEBBq5/6Mcqpu6n21JiQnmHxeM4vvdlbzwYx4hZgOvXTuZfmFmEiMlBAsh+mbJmnxSYoL5z1e72VhQd8hrw+NDmT40htGJ4SSEtyxtaLS72F5iYeP+Wn7cW3VIpYgAo44Pbz6Rf36yg8cuHkN8mDYVImQ5RCd0OoVGu4uRCWFc8+qGQ14z6BSmpUYzdkAEI/qFEWLW43Cr5Fc3sbWonh/3VB5yx7O1uJ4vc8pISwgjLMCvf61CCI04nB5WZBZi0ut4dn4GH20u4f3s4h6/P6+qiStfXsftZwzj/vPTuXfldjYX1tF/dD8vnrUQwl80213sr7YeEoBPGR7LDSelUG6x8VVOOV9sL2tbmhUWYCA9MZypKdHcNnMoX+WU8+KP+3C4PdicHv7xcQ6/SU8AH/WM8/OZ4GaK66z8ccVmCmta/kBBJj0LTk5hxrBYfthTRVZ+DTvKGrA0OzEbdKTGhjA6KZwz0/pR3mDj6W/3klfVBLSUUXt7wVRiQk0Mjgnp8/kJIfzbvqomZj3xIw9dNJqvc8r5ZGtp22tmg44pKdGMSgwnJTYYs16H1elmV1kDW4rqyNrfskav1e0zh2JzevhpbxXP/HaCLIcQQvSJqqqszavmrx9sJ7eykVCzgfvOT8fh9vDoF7tQgBNSohidGE7/iEB0ikKd1UlOaT1Z+2vJq2xibkYSczKSuG/l9rYSa+/eOJUBkUGyMc7b9LqWUkKtAXhKShR3nT2CV1bn879v9x5R0Nnu8pBdWEd2YR1L1uwnvX8YD1w4iu92VfLiT3moKry5voBbTx96LH4cIcRxxu1ROXVELPXNzrYAHBti5oaTU8gYFMkPuyvZXFjHB9nF2F1ugs0GRvQL44y0ftwzayRf5ZTzyup8mp1uHv9mD69dM5kf9lSi880kixDiOKYoCqEBRnIrG4kMMvL8FRN59rtcKhps3HteGpFBJr7fXcm3OysoqLHiUSEqyMSoxDAWnJxCYkQQyzcUcOuybB6/dBxPfLOHn3Or+SqnnAUnp/jmZ/DnmeCSWit/W7mdb3ZUcMG4/pw/tj93rNh8VAu7dQrceMoQUmKD+dOKzRj1Oj697SRSY2UmWAjRN6v3VBJsNjDvhXU0O92cP7Y/V09L5vGvd/PDnqou32vUK5w3tj/zTxjEvz7bwYb8WgZEBfLABaMYFB0kT6uEEH323sYi7np3C69dO5knvt7D9KExpCWE8e/PdrKnorHL94YFGrhuegpjEsP516c7eODCUdy7cjsRQUaevGy8T2aC/bpiuluF7II6ThkWy7lj+rPo9ayj3tnoUeHpVXvZXFjHfeenY3d5aO6gg5MQQhytYLOBL3PKaXa6+dNZwzlhcBSXv7i22wAM4HSrvLexmBuWZHLjKUOYPT6RwppmGmwu9IpMBQsh+m5TYR03nzqEL7aVsWhGKqV1Nq57LbPbAAxgaXbx369289iXu/j3nDE8+30u91+QTm4P3qsVvw7B0PK48baZQ7n9rU1HNMU4GkvW7CfQqOeUYbHkVfruDyiEOH6FB5lYkVnEjTNS0esU/vLBNmxOz1GNUd3kYOHSTM4e1Y+ZI+N4a0MhelkPIYToI49HxWTQMWFgJNOHxrBsfQFvri846nG2l1hY9HoWt542lNV7q5g9PtELZ9sxvw7Bbo/Kn84azn+/2k2j3dX9G7rxwMc53DZzKHbX0X1ICSFER3QKxIebmTQ4in9/trPX4zjdKr9fvombTx1CflUjiswECyH6SHegilZuZSObCuv5Mqe812NVNNj583tbmTQoilmj+2t4ll3z6xBs0CsMiQvp0aPFnrDYXHy9o4JB0bLrWgjRd+UWG389J42/vr+1z2M1O908/PlObps5DJdbbtSFEH2XGhNCWv8wnvu+930WWu0qb2DD/hrqrA5MBt/EU78OwSa97qhqbvbEWxsK6KfRYm4hhH/TKQo7Si2U1Ns0GW9tXg3xYQH8CvdDCyF+gawOF6+szj+imlZvvfxTPjGhZp9VsPHrEOx0e1ibV63pmFWNDtzyCSOE0EB4oJE31x39GruurMgsxKCX5RBCiL7T63V83YdlEIdrtLvYXFSHw0fLSv06BAPsr7ZqPmZ+lfZjCiH8j9mo69Eu66Pxc241cpsuhOgrVVXZX92ES6NZ4Far91ah8ZCd8usQ3JdqEF2paNDm0aUQwr/VNh1dycaeqG5y4PHVJ4wQ4ri2ubBe8zG3Ftf7rMCAX4dgb9HJzmshhAa8dUPt8NIEgBDCf6iqSplF+2tUVYND1gT7gtGgw+yFHYgpscGajymEEFqR23QhRF/pdDqvhFWdgs/KOPp1CFZVlRH9QjUfNzbUrPmYQgj/kxgR6JVxzUa/vvQLITQyLF77DJUUGeSzG3W/vhKaDTrOSOun6ZhjksJxyaNGIYQGwgONaD0hMiAqUEqkCSE0MTE5SvMxxw4IJzLYqPm4HfHrEGx1uDlxSDQmvXa/hiunDiKvskmz8YQQ/ktRFE4YrO2HzFlp/QgN0Gs6phDCP8WFmgkxGzQd86LxSRg1zGVd8esQ7FFhRWYRi05J0WS80YnhhAeaqGqyazKeEMK/qarK/BMGaTrmeWP702Dre5t4IYRwuT3MyUjSbLx+YQEkRARQ3eTQbMyu+HUINuoVlmcWkDEwklGJYX0aK8Co497z0vj7h9uID5WOcUKIvmuwuVAUhfEDIjQZ79JJA1i1q8Jnm06EEMe36iYHF47rT1igNrPBd549nG92VshMsE+oMCgqmLve3coDF4wiNTakV8OYDTqevnwCi3/Io7TexuAYqQ4hhOi70nob9320nb+em0agsW9LGBIjApmbkcQzq3J9VoNTCHH8UlWVLUX1/Per3dx3XnqfxzszLR6b08PHm0todvjmaZVfh+CoYBMnDY2hzGLjlmXZPDJ3DLNGH91GudTYYF67djIrsor4Mqec+DCzpmuMhRD+y+1RqWyw8/SqvTz92wkE9LKqQ2yomSfnjecv72/F4fbIxjghRJ8pisLOMgs/7KmitN7GH88c1uuxJg6K5LqTBvPgJznsrWj02TXKr9NakNnAVVOTASiqbWb+i+uYPDia56/IYOKgyC7fmxgRyJ1nDecfF4zinve28vm2MgCunpZMbJiUSBNC9F1EUMsO6W93VvDWhgJevWbyUT9pmpQcyeIrMvj7h9vYXd7Sgtmkl+UQQoi+UVW17anSo1/sQq8oPJc/RgQAACAASURBVHbxGMICjm5pxGWTBvCHM4excGkWTQ43DrcHvc438VTbLX2/QqEBBs5Mi+fLnHKanW7uW7mdIXEhzJ8yiL+cM5K9FY3klFposLkw6hWGxIUwMiGMJrubN9cV8NiXu9p6XEcFm7hwXKLP1rIIIY5v8WEH9xd8sb2cvRVNPDR7NOv3VfP6ugIqGzrfhJsaG8x10wcTFmjk+tcy2zaahJoNmPu4tEIIIRRFISb44KTfI1/s4tThcbx27WSWbyhk5aYSmp3uTt8/NSWahTNS2FxUz1Uvr8d5oLxsaIDRZx3j/D4E6xX427lprNtXQ32zE4C9FY3ct3I7igLJ0cGM6BdKiNmA1eFm5aYSHvl8V4dr6h6dOwaDzLAIITQSYNTTLyygrTVpbmUjv31xLWek9ePRuWMA2Fpcz57yRuwuDyFmPSMSwhidGE5Vg52la/ezbl/NIWNmDIokyCQhWAjRdxOTI1n848H/r9pVwYb8Gi6akMjS6yZTbrGzrbieghorblUlOthEev9wRiaEsrGglvs/ymFf1aFlZdMTwnyWpRT1V7g4bOLEiWpmZmafx6lssPHwZzsJCzRy7pj+zHthba83jNxy2hBOTI3hT+9u5p1F0w6ZwRFCiN5wuz28tHofD326s8PXQ80GRiWGkxobjMmgo8nhZndZAzmllk6vZcsXTGFKSrQ3T1sI4ScKa6yc9MiqTl+PCzUzOimcxIhA9DqF2iYn20vqya1sbHuKfri/n5vGNScma1bFRlGULFVVJ3b0ml/PBJsNOs4b15/rXs0kKtjE2wunsnBpVtusS08Y9Qr3zBpJxqBILnxmNZdPGuizaXwhxPGtxupgWmoMoWYDDfYjd0s32F2syatmTV51j8ZLjQ3GqFeobLARK6UchRAamDAwko0FtR2+VtFg55sdFT0eS69TmDE8lpomB9Eh3t9f5deLVz0qNNpdPH7pOB7/eg+v/byPFYumMn/KQMyG7n81kwdH8cktJxFqNnD+U6uZMyGJmWnx4LOu10KI493G/bX85dyRfR5Hp8ADF46i3GJDJ3WChRAaCDTquPGUVM3GO29sAjog2OSbOVq/ngnW6xTsTg9r8qp5/NJx/P6tTXy1o4KH54xh4cmp/LSnih/3VrKjtIEGmxOjXseQuBAmDIzk3DEJNNhc3P3eVjYW1HLxxCRmDItl+bpCHrwo/Fj/aEKI44Be17IZ162qzM1I4p2sol6P9edZI3G5PQQZDejlcZUQQgMxoQGMTlSZNaofnx6oktVbUcEm7jhjOBFBRgJ8tG/Br0NwaICRU4bH4nR7+H5PZVsQvumNjfzlnJGkxASz4ORUwgIMOFwe9DoFg05hY2EtlmYH17yWiaXZ1RaAP8wu5sHZo30yhS+EOP6pKixdu59zRycwb9IAAo16lq7df1RjtC7ZSk8I4+e8alQVxg3UpgOdEMK/lVts/GnFZh66aAy7yhvIrWzq/k0dMOoVnp+fwRvr9nP6yHhGJ4b7pIqNXy+HaLK7WJdXQ0mdjbSEsLYg/NdzRmJ1uPk5t5rd5Q2c/p/vWbA0izP++wOPfrmLiEAT//fVbl64YiLXnJjMjGGxvL+xmCunJfPIFzup8VHPayHE8S06xMz956ezcnMpZfU2ThoawwtXTiQxIrBH70/vH8Yb109hcHQwP+dV43R7uHLqICKCTF4+cyGEP3C6PeypaOJ3b27klWsmk94/7KjHCDEbWHrtCWzIr+H5H/KotTpwdbZrTmN+HYIdbg8bC+p44ps91FmdpCWE8d3uSmqaHFianQzvF8pd727hjLR4Pr5lOo9fOo5Pt5bx7sYirpuewhPf7CY1NoT3NxZz9YnJLFyaxZaietw++uMJIY5vdVYHb6zbz2+nDOSDTSU4XB72VjSw5LrJvHTVRM5O70dC+MENbooCg2OCmTMhkXdvnMq/LxpNflUTm4rqaLS7SIoMYm1eNU0dbLITQoijFWw28MKVGZRb7Ny4NItn52dw+8yhGHtY4mzGsBg+vmU6P+2t5LEvd/HI3DEMiw8loAf7srTg1yXSoOVD5qlv9/LiT/u47fShRAQZKaptPiQA//ui0UQFm2m0Ofl6RwW/f2sTs0b3Y86EJN7OLGL+lIEsXJpFUmQgS687QcqjCSE0Ud1k57cvrGN/tZXnr8hg6Zr9nJ4Wx4+7qzhnTAIK4PKoDIsPIdhsoLbJyc4yCwOiAlmTV43rQJ16u8tNamwI97y/lbPS+/Gv2aOJDJbZYCFE3+yrauKOFZv4y6w0bnpjIx6PyotXZ6Cg8MPuKr7IKWNnaQMO98GSjYOig5iaEs2F4xMJMRt4dtVePttexiNzx7Ct2MKw+FDOG5tAaIBRk3PsqkSa34dgODQI/+60ISSEBfDXD7cdEoBbdRSEb1mWLQFYCOEVFRYbV768/mAQXpvPGWn92Flq4eXV+dw+cyhXT0smPMhETZOdP7+3jS9zynho9mhyK1vaJLcG4DPT+vGvi0Ydck0TQojecrs95FY18ef3trQF4YoGG8EmPcsWTGV/dRPp/cPR6RQUWp5W5ZRYGBwbzL0fbGPtgWY+rQE4OTqYiyYkEhaoTQAGCcE9Umd18PS3ezlnbAKhZiNPfLub+85L7/DDojUIK8CU1Gj+8v4WHpw9RgKwEMIrWoOw3eXmrYVTKa+3cd5Tqw8JwK1ag/B3u8v5+vYZAMz87/ecMixeArAQQnPtg/DDF40hOsRMVYONf322kxtOTmHcgAgC25U8K61r5sY3snjgglHEhwVQ2+Rg2YZCrwRgkBDcYxUWGx9uKiG/uolbTx/aZaitabCztbSeF3/cx6Nzx9IvXAKwEMJ7Khts2F0e/vFRDueP7U9KbDCJEYGHBOBWNU126q3OtpJqczOSCA8ySgAWQniF2+2hrL4Ztwq3Lt/Evy8ajUEPiRFBhwTgVhX1zTg9cPd7W7h++mBiQswMiArSPABD1yHYrzfGtVfVYOfDTSU8+OkO3lhXwJPf7KGioePOcfXNDraVWrj+tUx+3FPF7W9tovwouswJIcTRUlW4f+V2vswp59bl2eyrasLdySSG26PyTlYRT3+Xy9Pf5fJOVpFs2BVCeI1Op6CicOXL69lUWMdlL6zF7aHTDrqqonDHis38uKeK65dkUtVkR8X31ygJwbQE4Pezi3nw0x1tX3tjXQFPfH1kEK5vdrC5sJ7rXtuA093yB1uTV83vl0sQFkJ4R4XFxl/e38pXB9qPelS4ZVk2a3KrqWmyH3JsZYONV1fn8/R3uW1fe/q7XF5dnU9lJzf2QgjRW6qqUlzbzPyX1pFfbQWgzurk0sVrya+2YnceWo2m3GLj98s3tbV7d7pVrn8tk02FddQ3+7bErNdDsKIoZyuKsktRlL2KotzdwesDFUVZpShKtqIoWxRFmeXtc2qvowDc6vAg3FEAbiVBWAjhDYcH4FYdBeGOAnArCcJCCK11FIBbdRSEDw/ArY5VEPZqCFYURQ88DfwGSAPmKYqSdthhfwXeVlV1PHAZ8Iw3z6m9ygZbpwG4VWsQrrN2HoBbSRAWQmipswDcqn0Qrrc6Ow3ArVqDcIVco4QQGugsALdqH4QrGzoOwK1ag/Dmwnrqrb4Jwt5umzwZ2Kuqah6AoijLgQuAnHbHqEBri5FwoMTL53TwG6st3U6688a6AnaXN7CpsK7TANzK4fbwK9xrKIT4hXJ0c41qDcKTB0exNq+mR+MpSs8K2QshRFdU6La7W53VySXPryUpMpDtJZYuj/Wo4PLhNcrbyyESgcJ2/y868LX27gPmK4pSBHwK3NLRQIqiLFAUJVNRlMzKykpNTs5k0HH6yDj+dNbwbo/dkF/bbQDOGBTJ45eOw9DZSnAhhDgKJoOOB2ePZsawmC6P86j0KABfP30w86cMItAo20GEEH0Xajbw+nUnkBTZdSv3+mZntwFYr1N4fn4GQ+NDCDLptTzNTv0SroTzgFdVVU0CZgFLFUU54rxUVV2squpEVVUnxsbGavKNI4JMxIcFMLOHQbgrrQE4wKgjJlTKEAkh+s7tUblzxWbuP39Ut0G4O9dPH8y5YxL479e7u72hF0KInqhrdvLAJzk9CsJdaQ3AhbVW1u2rxeZ0a3iWnfN2CC4GBrT7f9KBr7V3HfA2gKqqa4AAoG9X+6OgRRBuH4BjQ6VesBBCG9EhZp6YN5573tvSpyDcGoBfXZPPveemS8tkIYQmBkYF8ZdZI/sUhNsH4CCTnrPS4wnRqGVyd7wdgjcAQxVFGawoiomWjW8rDzumADgdQFGUkbSEYG3WO/RQX4KwBGAhhDfFhgb0KQhLABZCeItOp5AcHdzrIHx4AJ41OoFQHwVg8HIIVlXVBfwO+ALYQUsViO2KovxDUZTzDxz2R+AGRVE2A8uAq9Vj0MauNQhfMjGJ00bE9eg9gUY9r1wziUCzBGAhhPe0BuF7V27lf/MmEN3DIDtxUCQLZ6RIABZCeE37IPzK6n0suXZyj9970ympRAQZj0kABmmbfIiu6gB3Zv6Ugdx6+lDiJAQLIbys3GJj6Zr9PLVqb4+O1ynwv3njmZwcRWwXbeCFEKKvPB6VykY7v39rE2tyOy6DdriIICPLF0whMSKA0ADv3KRL2+Qe6E0ABnh9bdctloUQQguVDUcXgOFg+bT1+bVHdJYTQggtHW0AhpbyaZctXktJne2IznK+ICGY3gfgVhKEhRDeVNlg47Wfjy4At2oJwhtZk1sjQVgI4RXlFttRB+BWXbVY9ja/D8F9DcCtJAgLIbyhLwG4lQRhIYS39CUAtzpWQdivQ/DRBODwwO4Xa0sQFkJo6WgCcHfXKAnCQgit9TQA65SWxhpdORZB2K9DsMPl4f3s4h51gvv+T6f0qHzad7sqpW2yEEITiqLw2baybo+7fvpgfrrr1B51lnsnq5BuupwKIUSPNNhcbCms6/IYvU5h8RUT+ez3J3VbPq3O6uSnvVU02o+PZhm/aEa9jt/PHMo5YxI6PSZjUCRPXDoOnaJ0W0c4KTKQN64/AbPBr3+tQgiNBBp1LLl2EqmxIZ0e01oH+NTHVnVbR3jGsBj+ddFowgK6npERQoieiAkxsXzBFII7aXPcWge4qM7Kn1Zs5vXru64jfMeZwzhndALRIb7pvOvXaS0iyESI2cCdZw3vMAi3BmCzSUdYoLHLhhqtATjAoO/R0gkhhOiOywN3v7eFV67pOAi3b4TxzR9P7bKhxoxhMdx//ij+/N5Wmp0eH5y9EOJ4V9lg592NRSzrIAi3D8CBRj3/umgM//w4p9MgfMeZw5gwMJLl6wtpsDl9cv5+HYKhpS1pR0G4fQCODWmpr9lZZ7n2ATguzIyiKD7/OYQQx5/wQCMPzR7DPR0E4cM7wYUHGjvtLNcagO95bwuPzB0jN+pCCE0MiArirPR+vHdYEG4fgINMBmaNTmBgVBD3zBrZYRBuDcCfbSvjqmnJPmuaIc0yDqhutNNod/HIF7soq7cdEYDbq7M6KLPY+GZHBcvWF0gAFkJ4VWGNlT+/t4WHLhrDNa9s4NThsZ22Qq5ssHHbsmweumgM967cBtAWgJ+YN166WwohNGVzuskuqOWL7WVcNCGJ+S+t4z8Xj2sLwL8Z1a8t1Ho8KvnVTTz06Q7+em4a819cx2WTBrQF4D+cMUzzzpZdNcuQEHxAk91FZYMNFAWDTsHl8hAVYiIs8Mg/htPtprTeTpPNSUxoAA02J1HBJiKCpCWpEMI7WoPwYxePo6y+uctWyO2DMCABWAjhVe2D8B/OGM572UVHBOBW7YPwvy4aw57yBq8FYJCOcd1qsrv4fnclV7+6AYOioAPuem8rb64rpL7ZccixTrebXWWNXPjUTxgNOjweD6+u3sffP9xGTZOj428ghBB9FBFo5O/npXP54jW8/FM+fzpzOCEBHW9GCTIZ+PecMfzh7Wz+8HY2/54zhiCTbIYTQnhHgFHP0PhQThwSw6n/twqPB04eGtPhsgadTiE62MStpw/lomdW8/6mYhbNSDkmG3b9fia4NQDf99F2nv1tBg9+koPV7uahi0Zz17tbmDMhiXknDCA80NQWgOe/uI7/XDqOtzMLySmp58HZo3npx32EBRq47/xRRHnhTkYI4b/qrA4+3lLC2KQI9DodTXYXHtVDiNnIsH4hGPUHw3Cj3cX6fdXEhpjbSqHplJaWppMHRxPSTa1OIYQ4WlWNdm56PYsBUUH87rShrNxcwvsbi1h2wxQSIg7dBFfb5ODRL3axu7yBBy4cRW5lI3//YBvLF0wlNTYYvV7b+VlZDtGJRruLH9oF4L9/uI3tJRYAEiMC+d+88W1B+LdTBrK/2toWgN/aUMgX21vqdwaZ9Dx/RYYEYSGE5loD8NC4UBYszSLYpKe6ycGk5ChuPjWVsICDQbg1AEcGmfjj25upsbY8nYoKMvF/l4yl1uqQICyE0FRrAF6fXwvA4Jhg9lU1AZAcHXRIEG4NwG+uLwBaCguU1dtweVTCAgy8s2ia5kFYQnAnaq0Olvy8n+lDYw4JwK3aB+GhcSH8nFt9RABu1RqEP9tayu1nDCc21Dc17oQQx6/DA3B986Flg6YPiWkLwoNjg1mbdzAA5x34EGqVEhN8MAgnRxMitYKFEH10eADuSGsQDjTpeeTzgwG4I94IwrImuBORQSYunTTgkAA8KDqIUYlhABTXNXPLsmwenjOGglrrEQE4PNDI9CEtZYisDjcLl2Zx+QmDiAiS8kNCCC2ojOgXdkgAPmFwFLEHCsn/tLeKp1flYrE5eeWn/CMC8NC4EIbGtZRVy6tq4o9vbyYhPBC3KnWChRB912BzsbOs4ZCvnZUej0F3sFJWfrWVy15Yy93vbj0iAE8fEnNIyUaLzUXm/lqsTt90jPPrmeB6q5Ob39zIT3urgIMzJS6PysOf7SRzf8udTWJEIC9eNZHHv95zSABefEUGTrfK+9lFvLuxGIBgk57Vd58mlSKEEH3WYHMy49Hv2jbdnpUez9XTBmMy6Fj0ehaVDXag5YPk3vPSWLg0qy0Ap/cP44ELRgHwt3Y3+mOSwnn9uhMIk1rBQog+crs95FY1MffZn7HYXNz9mxEMiw/F6nDx++WbcHXRo33OhERmj0/CqFfabvTvPz+d2eMTNb0+yXKITrSW6Zjz7M9EHlgzd9vyTVhsThZfMZFHPj8YhNtrDcD/99VusgtqeXLeeL7OKefdjcU8fuk4Zo6MI8RHhZ6FEMcvq8PF2txqrl+SyRlp8cybPJBFr2cxJC6E+88fdUgQbq81AC96PQuA5+Zn8LcPt7G/2so7i6YyJC4Eg8abT4QQ/qk1CP+0p5Jmp4dHv9jFxROTmDEsttMgPGdCIjPT4rl1WTbjB0byxzOGkVfVxDmjEzS/QZcQ3AWPR6W4zkp1k5Nbl2VTUGMFICLI2GEQbh+A1++rAcCoV3hy3ngig0yM6h8mAVgIoRmrw8WuUgv1NheLXs/CdqDl8ajEsA6DcPsAXHHg63GhZp6/IoOIQCMDooIkAAshNFVvdfB+djH3fZTT9rXOgnD7AOx0t3z9hMFR/G/eeOLCtK9lLmuCu6DTKeh1ukMCMECd1cmCpZncefYIJg6KBDoOwABOt8qty7LxqKp8uAghNGXQKSg63SEBGGBbsYV7V27jufkZbRtxOwrAABUNdhYuzUKv18k1SgihKUuzkw83lRwSgAFWZBbx/e5KHr9sXNsa4Y4CMMC6fTXcujybqsYjn2x5k9/PBJfUNXPZ4rWHBOD2WmeEn/8hlwUnpRwRgNsz6hWWXDuZ8QMjCTB2XMReCCF6yuFys6O0gUsXrzkkALfXOiP8v2/2cOvpQ48IwO3FhZp598ZpDIgK8uZpCyH8hKXZyQfZxfx95fZOj2mdEf5hdxWnjog9IgC3NyUliqcun0BMiHYVtmQmuBP1zU7uWLG50wAMB2eEr5qa3GUAhpYZ4Wte3YDdJTuvhRB953SrXPny+k4DMBycEV4wI6XLAAwtM8KLXs/CYnN2eowQQvRUSV1zlwEYDswI76pkamp0lwEYYG1eDc9/n0uj3aX1qXZIZoLrmrnk+TUU1Tb3eSyDTuG1ayczYVAEgUapwSmE6BuHy832EguXLV6ryc11bKiZdxZNZWBUEIqidP8GIYTogqXZyTtZRfzj45zuD+6BScmRPPvbDGI07LUgM8FdiA01seyGKSRFBnZ/cBcMOoWXr55EWkKoBGAhhCZMBj3p/cN484YTMBv6drmODTWzYqEEYCGEdowGhdNHxnHPrJF9HmvioEj+c8m4Q2oMe5tfh2Cn202Fxc7Tq/byv3njex2EDTqFxy8bx6pdFZRb7DQ0OzQ+UyGEv6posPPexmKenZ/R6yAcG2rmufkZPLtqD9WNcn0SQmijwmInt7IJo07h9jOG9XqcjEGR/Ons4byxroC8qiYabb5ZDuHXIbi+2cU/Ps5h+YZC7lixpVdBuDUAf7+7kldW53PFS+uxuX59S0yEEL88tU0OLlu8ljfWFbAis7BXQbg1AN+7chtvZRVz6/Jsaq0ShIUQfWd3ebjx9Szu/ziHYJO+V0E4Y1Akd549nIVLs3ju+1zW5lWj4psc5dchOCzAwKIZqQQYdeRWNnLHii28es0kHp4zmp48LTwrPZ4vbj+Zn3OrWZFZBMD8KQMx6uVRoxCi7zyqynXTBwPw2bYy3t9YxKe3nsQlGUk9ev9fzxnJshumcO/KbWwrtmDUK9x0Sio++nwRQhznQswGThkWC8A/P9lBbIiJr24/mfT+Yd2+N9Co543rT+CBC9JZuDSLOquTuFAzp4+MQ++jJRF+HYKbHG427q/lufkZBBh1nD8ugS1F9eyvtvLghV0H4bPSW7o3PfnNHi4an0igUc/Ck1MYGB3U5c5HIYToKUVRMBt0/Oms4Zj0Oi6ZNICXfsrjtJFxzJmQ2OV77/7NCJxuDz/uqeTijAFtTX1ySup7dJMvhBDdiQgy8pdzR3JWWjz9wgKYMCiSf36ygwcuGNVlEA406nn+igyWry+g0e5m6uAo4kLNvHbtZPqFBxJk8s3eKr+uDmFzutlcWMerP+/jttOHklPawB9XbEZVYeHJKQyKDuYvH2zl8F9RawBuLV5/Vno8d5w5nI0FdeypaOB3pw4hIsjU5/MTQvi3equT19ftx6hXOGVYHC/8lMeKzKK2QNvarv1wd/9mBG6PyqNf7ALg3vPSmJISzYs/5nHO6ASmpEb77ENGCHF8szpc1DY5sDk93PzmRnaWNRB3YBnW3z7cxvYSyyHHtwbgJWvy+XpHBQFGHUuvO4GYEBNRwWbCpW1y17QskWZzuimstbKtqJ4/HAjArToKwocH4FatQTg21CwBWAihmXqrk3KLjRd/yuPtA8uugE6D8OEBuNW956VxYmoMSVG+m2URQviHsnobV7+ynp1lDW1f6ygIHx6AWwUYdSy7YQrp/cMwGbRtNiYl0rrg8njYXmw5IgADPP9DHvurm9qWRnQWgAG+2F7OY1/uwuP59d1UCCF+uTyqekQAhoPt2memxbctjegsAAPc/1EOa/KqcclyLSGEhsotRwZgONicp3VpRGcBGMDm9DDvhbVsL7HgcLl9du5+PRPcaHfydU4Ft7+96YgA3N7Ck1OYlhqNCh0G4PbOSo/nX7NHE6Vhyz8hhH+qbXLwr892HBGA22udETYb9OwotXQYgNu7//x0Zo9PJEzjR45CCP9TbrFx1ctHBuD2WmeEHW4PL/6Yd0QAbs8bM8JdzQT79TMxq93NtuL6LgMwtMwI761sZPXeqi4DMEBRbTNOmQ0WQmjA6fGQV9nU9TEHZoRPGxHHF9vLux1za3Eds0b3AyQECyH6xupwU93UdcnFigY7C1/PIjk6iA35tV0ea3d52FfVxKDoIKI0XhbREb9eDhEVbOKqaclcPS2522O/2VHRbQBO7x/G/+aNJ8jo/T+cEOL4F2TU89jFY5k4KLLL45xutUcBeM6ERG47fZjmG0+EEP4pMsjIK1dPIrabNseVDfZuA7CiwEOzRzM1JZqoYN88TffrEGzQ60gID+C66YN7FIS70hqAY0PMhMoHjBBCAyEBRmJCTDzagyDcnTkTErlt5jDiw8yabzwRQvin0AAj8WGmHgXhrrQG4JOGxhAa6LtFCn4dggEa7S5+3lvFVdMG9ToIp/cP48nLxpNTasHmwwXdQojjn83lIWt/DY/MHdPrIDxnQiK3nDaUH3dX0GSXa5QQQhtl9c0U1diwOd29DsKtAfiEwVFsKqglp8RCo83phbM9kl+H4Dqrg8U/5PHx1lIabC6unHr0QTi9fxhPXDaeOquD0nobV728gcoGu3dOWAjhV6ob7dz0ehb7q63UNDl6FYTnTEjk5lOHUGd18OPeah79Yhe13azhE0KInnB5VG5etpH6Zgc6RT3qINw+ANucbv77zR7KLXY8Pira4Nch2KBXmJYazaIZqVz+wjru/2g7C05OYcaBFoDdCTTqefWayazfV82c59bQ7HBzy+lD0Pv1b1UIoRWdonDVtGRiQszMfW4Nn28v5dn5GUQF96wW+YSBEdxx1nD+89VuLl28lksmDuD0Eb5rSSqEOL4FGvU8MmcMH24qZfYza7A6XCy5dnKP37/o5FSmD4nhhiVZLFiaxWNzxzIkLpgAH+2t8uu4FmDQExVsZuHSLBrtLgKMevIqm1i3r7pH7292unnt53xAQVHgP1/tprSuGYPOr3+tQgiNGPUKdpeHe1duB0Cn6Hg/u4iaHs7kbi2uZ3uxBbNBh93l4cbXs4gMNhFglGuUEKLvjHod72eXsHJzCTpFwe708N+vdvf4/e9uLKK6yUGAUUdRbTO3LMsmLMDos30Lfn0lbLS7+L+vdtFod7U1wrh+yYZuq0C099SqvYc01Hjy2724PD1/vxBCdMatwsOf7wQONsJ46NOdPX6/061y4xtZbQ017C4PD322ecCLVAAAIABJREFUg+ajuMYJIURnKhvtrNxc3NYI47U1+XyZ032lmlYVDXYWLMnkHwcaahTVNrMis4hGm8t7J92OXzfLAKhqtPPKT/uYNDiq20YYXVl4cgpD40MYPyCSwTHB6ORxoxBCAwXVVlbtqqDR7uq2EUZnWhtq5JRYuGLqIOJCAzQ+SyGEP2p2uthSWIfdpXbYCa6n4kLNPDs/g3W5VcybMojIoJ4t+eoJaZvchbAAAzPT4vsUgKGloUZRbTPRISYJwEIIzUQEGVFVeh2A4WBDjakp0YQFSAlHIYQ2Ao0GUuNCeWPd/l4HYGiZEb7x9Sxmje2vaQDujl+HYIfLzY7SBua9sLbbAGw2dP+revzrPSxZs596q+y8FkL0naXZyQfZxdz30fZuj+3uGuV0q1z1ynqyC2qxOaVMmhCi72qa7Pz1g209atbT3TWqosHOJc+toaDaqtXpdcuvQ7DV4eb5H3J71Anu2ztO4aoelE9bumY/LmmbLITQgEdVWfxjXrfHzZmQyA93nkpGDzrLPfnNHgnBQghN1DQ5WLWz6xngljJoo3hn0bRuy6dVNNj5ZGsJDVIn2Psigkw8cMEoTh3eeUm09P5hPHDBKOY++zOjE8O6DMKxIWbeuXFqj8sXCSFEVyKCTLy1cCpJkYGdHjNnQiIz0+I5938/cefZw7sMwpOSI/nf5ROI8OHjRiHE8WtgVBDLFkzpdJZXUeDBC0exv9rKn9/fwnPzM7oMwjfOSGHe5IGE+mjZll+HYIDoEDOPXTy2wyDcGoAXvZ5Fab2NO9/Z0mkQbg3AA6OCUBRZEyyE0EZiRGCnQbg1AN+6LJvKBjsLl2Z1GoQnJUfy7PwMYkJ639pUCCHaMxn0jOof1mEQbh+An/8hj23FFu5dua3TIHzjjBQWzkj9//buPD7q6t7/+PuTPZAgCAjKrqIIiIBhqxXBHVvXXhUX1KKivWpV3K+1Uu/t9WddWvWqFTcERaxLq7bSai2bCiIg7qioIAGULSzZJ8n5/TEzdAiTZIaZ70yS7+v5eOQB853vnPmE74OT95yc7zkp/ZDu+xAsRQ/CkQF4Q2gHuDqnqEG4c0GuXricAAzAG93a52vWpJG7BOHIAByoDU7B2loeiBqEh/XuoEfOIwADSL5wEJ556b+DcP0AHNZQEL48DQFYIgTvVF1Tp8uPOkCj+3aKGoDD6gfhzgW5euT8oSopr1ZlDfPsACRfdU2ttlcE9MA5Q9S9Q37UABxWPwgf3quDbh7XT5WBGrXEJTEBNH+VgTptKavSw+cNVV52RtQAHFY/CF/4o94q6tUhLfdT+X6dYElat7VCZz26UCVl1Xp0QpHa5GRGDcCRMkz63X8M0qDu7TX5T8u1Yv0OPT1xuIb2aq/87Kyk1QbA36pravXpuu0aP3WRundoowfPGazVW8qjBuBI7dtk69EJh0uSLpuxVNmZGXrp8lHqwW+sACTR9oqAXlpWrN+89pnGDeyqW39yiGYsXB01AEca2K2d7jtrsD4q3qobX/xIRb066GEPpmw1tk6w70NwOAAXl1RIkvKyM5SblaltFU3fmZhhwakUG0NhOSvDCMIAkiYyAFfVBFex6VSQo63lgZhGTQpyg/1QaVVw96XOhbkEYQBJExmAw7q0y9UP2xseRIzUuTBXm0urFO7OhvdOfhBms4wGbKsI6LoXPtwZgKXgkH79ANy+Tbb+csURGrH/3rscr3PaGYAlqabO6eKn31d1Tcv7YAGg+QnUOl301Ps7A7AkbSqt3i0AD+zWTq9d9WPtU+9mk9Kqmp0BWAr2V794dpl2VKVmS1IArdu6rRW7BGBJUQPw+SN66smLipSdueuH7407/h2AJWnxqhI9Ou/rXfotL/k6BO+Vn617zzxMPfZuePmh9m2y9dLlP9KgbnvpoXOH7haEI2VlmJ68cJhyshhhAZC47EzT0xOHNbrI/MBu7fTkRcN0aLe9mlyHs3Nhrh4573B2jQOQFPu1z9eUkwc0es6EET113QkH60cHdNT0icN3C8KRRuy/ty4bfcDO32J5zdchWApewOcnjYoahMMBuE+ntsrIMHUqyG0wCGdlmKZPHK4hTIUAkCQ5WZnqv287PX9Z9HU4wwF4n8I8SVLPjm30UgNBODgV4kfq2bGN53UD8Id2+dk6Y2i3BoPwhBE9NfmEg9WhTY7ysrM0uGf7BoPwiP331kPnDFWnJjbUSCbfh2ApehCuH4DDogVhAjAArzQUhOsH4LBoQZgADMArDQXhyAAclt9AEE5HAJYIwTtFBuGGAnBYZBAmAAPwWv0g3FAADosMwgRgAF6rH4SjBeCw+kE4XQFYYnWI3azbWqGKQK36dIwegCNtKq3Suq0V6tulgAAMwHPVNbVauaFUnQpzGwzAkb7bXC5JBGAAKbG9IqDP1m/XwV0LowbgSBWBGn31Q6n22yvf0wDc2OoQJLd6CnKzlJ+d2WQADp/bc+82BGAAKZGTlal998pv9Ea5SO3y6ZsApE67/Gwdsm87FcZwY1t+djBD5WVnpqCy6JgOEWF7RUCvLF+rB//1lbaWVzd6bmWgVsvXbNW1zy/X5tLY1sMDgERsKavSr/7yid79erPKm1hCaFtFtWYsXK0ZC1drW0Xj/RkAJMP6bRW66MnFWrW5THVNrGW+ubRK1z6/XB98V6LKQHp23I05BJtZFzMbGvrq4mVR6RAOwLe98qmefGeVHnir4SAcDsATnnhPc77YqKtnEYQBeGtLWZVu/fMn+tvH6zVpxpJGg/C2impNf3e17n3zS9375pea/i5BGIC31m+r0DlTF+mDNVv1s0febTQIby6t0tWzlmvOFxt1wZOL0xaEmwzBZjbYzBZJmivpd6GveWa2yMyGelxfSkQG4LCGgnBkAA5vWfr2yk0EYQCeCQfg2Z98Lym4UU9DQTgyAIcRhAF4KRyAV4XuQygpDzQYhMMB+O2VmyQFNwVKVxCOZSR4mqSrnXOHOOeODX31k3SNpKc8rS4FogXgsPpBOFoADiMIA/BC/QAcFi0IRwvAYQRhAF6oH4DDogXh+gE4LF1BOJYQ3NY59179g865RZLaJr+k1NnWSAAOCwfh7RWBBgNwGEEYQDI1FIDDIoPwjspAgwE4LByEm7rnAQBi0VAADosMwlvKqqMG4LB0BOFYbh2ebWZ/kzRd0prQsR6SLpD0d68KS5Xy6qb/oZ98Z5U+WbddH3xX0mAADqsM1KrlLToHoDlyTk3+MAgH4RF9OmrhN5ubbLOsuoY+CkBS1Dmppokb4ErKAzrjkXfVrX2+Pl23vcn2qmvqmrypLlliWifYzMZJOlVSt9ChtZJedc697mFtDUrmOsHbKqo1a/Ea3Tl7RcJtFfXqoD9OOFydClK/4DOA1mlzaZWuf+FDzfliY8JtXX7U/rr8qAPUvon1OwEgVmtLynX21EUqLqlIqJ3MDNOTFxZpeJ+Oys9J3rJpja0THNPqEM652c65y51zJ4e+Lq8fgM3swWQUm2p75edo/PAeumVcv4TaIQAD8ELHglzdc+ZhGntw54TaIQAD8EK3Dm30/KSR6t4hf4/b8CoANyWZ6wQfkcS2UqKkrFprtpRre0WNTjlsP9104sF71E5Rrw76v3OHqCpQqzVbyrVmS7lKyphzByA5Eg3CBGAAXkokCKcrAEtJ3DbZzJY551KyZFqypkOs2VKuI383Z+fj35wyQJtKq/Tgv1bG3MbQnh1087h+umzGEpWUB3YeX3DjWPXYm61KAey5krJqlYZWfjBJWZmmm1/6WHO/jH1qxGWj99dFR/RWTb37GQpys9ShLaEYQPLEOzUiFQGYbZNjdPurn2r6xOEae/A+mvPFhibPz8/O1EPnDdHJD769SwAGgGQorarZ5YN6YW6W/n7taJ384NvaEsNvmw7v1UEnDuyqI/7fv1T/PpMFN44lBANIqm4d2ujZS0boqLvnxnT+VUcfqBH7d0zb1snJnA5hSWwrLU4f0k1l1TV6e2VsoywVgVo9+NZK3fbT/srMaPHfPoBmzEy6eVw/zVi4KqYALEkffFeibzaW6fyRvbwtDoAvhaeVrtlSruKScn2/rUK3/vmTmF//9LurtGZL8HXhdlI5pTSebZMPbeKU+xOsJa1OH9JNxw/ool8+90GTy6BFmrn4O733zRbdd9ZhBGEAnjCT/ufUgVpTUq4/zvsm5tfVOemGFz/UYd3b64JRBGEAyRX+bdVPHligNVsqdO2fPmxwHeBoSsoDOuvRhfpuS4WunrVcR/5ujo783Zyd08C8Fs9I8MNmttjM/tPM9qr/pHNuWvLKSq09DcBhBGEAXqhzbo8D8L/biB6E65J0PwgA/6pzTu3ysvTohCI98K+vtPDrptcqr6+kPKDLZizRzeP6aWjPDjvbTYWYQ7Bz7khJ5ym4UcZSM5tpZsd5VlkK1DmXcAAOqx+E+QEDIFHOJRaAw6IFYbooAIkyKaEAHFY/CKeqf4prTrBz7itJv5J0k6SjJD1gZivM7AwvivNaVobFHIDb5Td9D2FkEOYHDIBE5WRlxByAm+qjmBoBINmyszJiCsAZFryxtzGRQTg7MzW/VY9nTvAgM/u9pM8lHS3pZOfcIaG//96j+jyVmWGa/fH3TQbgoT076PVfHqmrjj6wyTbnf7VRB3UpFLMiACQqOzNDb372Q5PnXTCql/5xzWgd2bdTo+fVOem1D9fpxIFdk1UiAB8rrazRR2u2NnpOZobp92cP1nMxrCNcUh7Q+6u2JLPERsUzEvygpGWSDnPOXeGcWyZJzrl1Co4OtzhVgTqdNqRboz8QwusAn/zg2+pUkNtoEO7eIV8PnjNEVz33wW7LEQFAvKoCtbrnzMN0QOe2DZ5zwaheOqx7e53w+/m6/KgDGg3CR/btpEtH769J05d6US4An2mTk6lHJxSpbQNr/GZmmO476zC9980WXfP8cj0wfkijQfjKow9UQW5WQtNT4xFPCP6JpJnOuQpJMrMMM2sjSc65GV4U5zUn6RfPLNVZRT2iBuH6G2Hc/uqnDQbhcAC+4cWPtHJDaQqqB9Da1dQ5XfXcBw0G4XAAvuHFD7W9skaXzVjaYBA+sm8nXX7UAbpsxtKU3XkNoHUL1Do9tuCbqEE4MgDPXPydVm4o1Y0vfdRgEL7y6APVuSBXt7/6aarKjysE/1NSZNVtQsdatKqauqhBuKGd4KIFYQIwAK8Ul1REDcKRATj8m6fSquhBmAAMwCvzvty4WxCuH4DDGgrC6QjAUnwhOM85tzPhhf7eKvYFrh+EGwrAYZFBmAAMwGv1g3C0ABxWPwgTgAF4LTIIt8vLihqAw+oH4XQFYCm+EFxmZkPDD8zscElNbg5tZiea2RdmttLMbm7gnLPM7DMz+9TMZsZRU9JEBuFbTmo4AIeFg/C0nw8nAAPwXDgIP3jOkAYDcFhkECYAA0iFcBB+c/JRDQbgsHAQnvbz4WkLwJLU9Lpf/3aNpBfMbJ2CS8N1lXR2Yy8ws0xJD0k6TlKxpPfN7FXn3GcR5/SVdIukI5xzJWa2T5zfQ9JU1dTpshlLlJWRoYpAbZPn3/7qp2qXl6XtlfxwAeC94pIKnf3oIpVV1zR5821pVY0mTntfUrBvAwCvzftyo477/Txtr2g6F63cUKozHn4nrRkq5hDsnHvfzPpJOjh06AvnXMNDpUHDJa10zn0jSWY2S9Kpkj6LOOdSSQ8550pC77Mh1pq8EKh1CtQ2HYDDCMAAUmlHHCO6hF8AqRZLAN55bpozVDwjwZI0TFLv0OuGmpmcc9MbOb+bpDURj4sljah3zkGSZGbvSMqUNMU59/f6DZnZJEmTJKlnz55xlg0ALY+XiwSxiiOARHnVj6Sqf4o5BJvZDEkHSFouKTxU6iQ1FoJjraGvpDGSukuab2aHOud2WX3ZOTdV0lRJKioqSsq/Dz9gAAAA/CmekeAiSf2di2tD4LWSekQ87h46FqlY0nuhqRXfmtmXCobi9+N4HwAAACBm8awO8YmCN8PF431Jfc2sj5nlSBov6dV65/xFwVFgmVknBadHfBPn+wAAAAAxi2ckuJOkz8xssaSq8EHn3CkNvcA5V2NmV0r6h4LzfZ90zn1qZndIWuKcezX03PFm9pmC0yxucM5t3oPvBQAAAIhJPCF4yp68gXPudUmv1zv264i/O0mTQ18AAACA5+JZIm2emfWS1Nc5908za6Pg6G6L1TYnU/+cfJRnbQNAIsxaZtsA0BLEszrEpQouUba3gqtEdJP0R0nHeFOa98qqa3XsffM8aXvO9WM8aReAf+RlZWjWpJGetQ0AifDqw3SqPqTHMx3iCgU3v3hPkpxzX6Vzd7dkyM/27gdMfjY/YAAAQOvl1Qf1VH1IjycEVznnqi0Uz80sSy18OdyKQJ3GT13kSduMBANIFH0UgOasssabPmruDWOS3mY08UTteWb2X5Lyzew4SS9Ies2bsgAAANCcxbVzRDNot754QvDNkjZK+ljSZZJed87d6klVAAB5OS2O++IAJMqrfiRV/VM80yGucs7dL+mx8AEzuzp0rEXiBwyA5oyt3QE0Z171I6nqn+IZCb4wyrGLklRHWvADBgAAwJ+aHAk2s3MknSupj5lFbnlcKGmLV4UBAAAAXollOsS7ktYruG3yvRHHd0j6yIuiAAAAAC81GYKdc6slrZY0yvtyAAAAAO/FPCfYzM4ws6/MbJuZbTezHWa23cviAAAAAC/EszrE7ySd7Jz73KtiUo3VIQAAAPwpntUhfmhNAVhidQgAAAC/imckeImZPS/pL5Kqwgedcy8nvSoAAL+tAtCs+WmzjHaSyiUdH3HMSSIEA4AH+G0VgOaspW+WEXMIds793MtCAAAAgFSJZ3WIg8zsLTP7JPR4kJn9yrvSAAAAAG/Ec2PcY5JukRSQJOfcR5LGe1EUAAAA4KV4QnAb59ziesdqklkMAAAAkArxhOBNZnaAQvOVzew/FNxOGQAAAGhR4lkd4gpJUyX1M7O1kr6VdL4nVQEAAAAeimd1iG8kHWtmbSVlOOd2eFdWamR4uBCdl20D8Af6KADwTjyrQ1xtZuG1gn9vZsvM7PimXtecOQ8XovOybQD+QB8FoDnz6sN0qj6kxzMdYqJz7n4zO0FSR0kTJM2Q9IYnlaVAfk6mZk0a6VnbAJAI+igAzVletjd9VF52avqneEJwOJefJGm6c+5TM2vRv1CrrqnT+KmLPGl7wY1jPWkXgH/QRwFozrzqo1LVP8WzOsRSM3tDwRD8DzMrlFTnTVkAAACAd+IZCb5Y0mBJ3zjnys2soyS2UgYAAECL02QINrN+zrkVCgZgSdq/hc+CAAAAgM/FMhI8WdIkSfdGec5JOjqpFQEAAAAeazIEO+cmhf7kLgoAAAC0CvGsE3xm6GY4mdmvzOxlMxviXWkAAACAN+JZHeI259wOM/uxpGMlPSHpj96UBQAAAHgnntUhakN//kTSVOfc38zsfzyoCQAgKScrw7PNMnKy4hkDAYDdedVHpap/iicErzWzRyUdJ+kuM8tVfCPJzQ4/YAA0ZxXVtZ5tljH3+jGetAvAP7zqo1LVP8UTgs+SdKKke5xzW81sX0k3eFNWalQGvPsBM++GMZ60CwAAgMTFHIJDG2S8IqmLmfUMHV7hTVmp4dWe1+G2ASARXi7JznLvABLlVT+Sqv4p5hBsZldJul3SD/r3dslO0iAP6kqJaMP49505SPu0y9P5Tyxu8vWXH7W/ThvcTT97ZKHKqmt2eY5fNQJIVEa9nwQ5WRl68bJReufrTbrr7180+fqpE4ZKkibNWNZk2wAQr/r9yIGd2+rxC4dpymufau4XGxt9bducLL34i1F6Zfla/XHeN42265V4pkNcLelg59xmr4pJtz+cfZhyszP12frteuHyUTrzjwsbPPfyo/bXTw7dVzMWrtZfrzpCP33wnd2CMAAkov59C732bqMn3/lWxw/oqn9dN1obdlQ3+Nr92udp0dfB7nr+jWO0bmvlbm0DQLIc2Lmtpk0crjtfX6HfnDJAt7/acBBum5Olv151hB5f8K3OHt5DknYLwqkQTwheI2mbV4WkWzgAX/HsMtU56ZZx/RoMwuEAfM5j76m0qkZl1TUEYQBJF/5tVU5Whv565Y/1yLyvNX3hak1fuFozLh6hD74riToi/NRFw7Tw68266aWPJUl3/exQ7VOYp59Pe3/nOfy2CkCiwh/U87Iy1GWvPP3imWVavmarPizeqpmXjlRZVUDbKnbNRRmSenRso7tmr9Bflq/TKx+u03OTRurMw7tpY2lgZ7upEM+7fCNprpndYmaTw19eFZZK9QOwJN05e4WWrS7RC5eP2uXc+gFYkv6yfJ3uf+sr/fWqI9Q2J57PFQDQuHAAfua9YPiVpKqaOk144j0d3mtv3XTiwbuc/9RFw7RhR+XOACxJN730sTbsqNRTFw1Lae0AWreK6lr96s8fq1Nh7s4ALEnFJRU697FFapOTpT/O+1rjpy7S+KmLdPG0JepcmLszAEtSaVWNzpm6SGXVdZr7xQaNn7pIFdW1jb1t0sQTgr+T9KakHEmFEV8tWrQAHFY/CEcLwGEEYQBeqB+Aw6IF4WgBOIwgDCDZsjKkaROH68qZH+wMwGHFJRU67/H39JtTBmjMwZ13ToG4/62vdgbgsNKqGp372Hs66dB9dflR+6esfnPONX1W5AvMCiTJOVfqSUUxKCoqckuWLEm4nfVbK7S8eGvUABzplnH9dHz/riqtCkQNwJFOG7yfrj6mr8xMvTu1TbhGAP71w7YKPTT3690CcKTcrAzNuHiEOhXk6P1VW6IG4Eh3/exQdSrI1QGdC+ijACTk+20VujxiBDia7h3y9ewlI5Rhpnvf+GK3ABypIDdLMy8doS6FueqyV35SajSzpc65omjPxbM6xEBJMyTtHXq8SdIFzrlPk1JlGpiZFny1sdEALAVHhD9fv13//HxDowFYkj5eu0252Zmqq6tr9DwAaIplmJauLmn0nPCI8E8H7auXlq1tss35X27UDSf0S1aJAHysrLpWqzaXNXpOeET4gM4Fmvdl4ytGlFbV6JO129TpoM7JLLNB8UyHmCppsnOul3Oul6TrJD3mTVmpURmo1cQj9tf40J2JjfnL8nVNBuADOrfVtJ8P19WzPlANGRhAggKBOj064XAN2K9do+dV1dTFFIBPGthVN5zQT6f839vJKhGAjxXkZmrWpSPVvk12o+cVl1Q0GYAl6TenDlCPDm1UXRvfLIU9FU8IbuucmxN+4JybK6nF/y7tpw8s0CU/ji0INyYcgCf/abneX9X4yA0AxCJQ53TJ9CUxBeGmnDSwq248MRiAt1eyig2AxFVU12nGwlUxBeGm/ObUAdq/Y1tNeLLpfRqSJa7VIczsNjPrHfr6lYIrRrRolTV1CQdhAjAAr6xYvyPhIEwABuCVZxevSTgIpyMAS/GF4ImSOkt6WdJLkjqFjrV4iQRhAjAAryUShAnAALyWSBBOVwCW4gjBzrkS59wvnXNDnXOHO+eucc61mtQXDsK/PLqvjjiwY0yvyc/O1POTRhGAAXguHISfnjhce7fNiek1h3XfS7efMoAADMBzzy5eoxeXrtHMS0bE/JpLftxHQ3u0T0sAluIIwWb2ppm1j3jcwcz+4U1Z6XHREb21ubRKH66JbWO8ikCtXlpWrBtP5E5rAN676YR+euvzH7SlrOHtkiOt+H6HVm8u1y/GHOBxZQD8rm1Ols4b0UtT58c+U/bvn36vdvnZGnNwalaDqC+e6RCdnHM7F4ILjQLvk/yS0qOxjTAa09DOcgCQTI1thNGQxnaWA4BkaWwjjMbU31Aj1eIJwXVm1jP8wMx6SUrNGhYe29MAHEYQBuClPQnAYQRhAF7a0wAcls4gHE8IvlXS22Y2w8yekTRf0i3elJUaTokH4LD6QbhVfDoAkHaJBOAwgjAALzgpoQAcVj8IpypDxbVtspl1kjQy9HCRc25TxHMDUrV7XLK2Tf5hW4U27KiKKQBnmJrcWU4KbrE8tFcHdSrIVR+2JAWQgPVbKzT/q40xBeBY+qjwFstLV2/RiQP3pY8CkJAftlXoztkrYgrAsfRR4S2Wc7My1DUF2ybHMxIs59wm59xfQ1+b6j09Y48rTJPMjAz9/s2vYtoJ7v1bj41p+bRH5n2t3h3bKjvDklUmAJ/Kz8nUfW9+2eR5Jw3sqmW3HRfTznJ3/X2Ffja0e7JKBOBjJRUB/e3j9U2e95tTB+iNa4+KaWe5F5YUK8NSk6HiCsFNaHGpryJQoztOG6DhffZu8JzwOsDXPL+8yXWE27fJ1qxLR+oPb36hQCzDxgDQiOraOs28ZKT2Kcxt8JzwOsCTZjS9jvCA/drp/vGDdcFTi8XndACJap+frccvHKbszIY7lDtOHaADOrXVU29/0+Q6wmcX9dBpQ7qpIlDrRbm7SWYIbnGpr85J50xdpPvOOixqEI7cCGPBV5sa3VAjHIBnLFylZxev4QcMgISVV9XqD299qecujR6EIzfCWPxtSaMbagzYr50enXC4Lpm+RCvW71AcM+EAIKrKQJ2KS8obDMJ3nDpA+3dqq/OfWNzkhhpnF/XQpaP3108fWJCy/imZIbjFcU5aU1IRNQhH2wmuoZ3l6gfgcNsAkKjXPlwfNQhH2wmuoZ3l6gdgAEiWW//8SdQgHBmAwxoKwpEBuLKmLmW1ZyWxrdhWb29G8nMyNWtS8D6/DTuq9MD4IfrlrA+0ubRK0ycO19bygK47fvc7qbeUVunqY/rKJM3+5Hs9P2mkMjOkkwd308mDu+1sGwCS4bUPg3Punrt0pM55bJGKenVocCvkcBB+/IIiXTZjqSQRgAF46tY/f6Lfnj5Qj184TJc8/b5u+2n/3QJwWHiwcNalIzX+sUU6oX/XtARgKc4QbGaDJPWOfJ1z7uXQnyMbeFmzVV1Tp/FTF+183KOQxmL/AAAYUUlEQVRDvp6bNFJy0jXPN74Vcl5Whv76yyN15dgD9fCclTsvatiCG8d6VjcA/wkH4Zf/80eqqXWNboUcGYQlEYABeC4chBfceLRWbtgRNQCHhTPT3646UhWB2rQEYCmOEGxmT0oaJOlTSeFKnaSXPagrLdaUVOjMRxZqr/xsrfih8R8Y4akRg3rspcXfNhyWAWBPRf62KmxreUDlgRpNvSDqij+72LSjSpI05eQBUdsGgGS69c+f6I2+32veV/UXENvds4vX6KuNpfpozba0BGApvpHgkc65/p5V0kys316p9dsrYzq3sqaOAAzAM/V/W5VM/LYKQKKifVCXpF+MPTDhdlMhnhC80Mz6O+c+86waAAAAtAhefVBP1Yf0eELwdAWD8PeSqhRcF9g55wZ5UhkAAADgkXhC8BOSJkj6WP+eEwwAAAC0OPGE4I3OuVc9qwQAAABIkXhC8AdmNlPSawpOh5D07yXSAAAAgJYinhCcr2D4PT7iWKtaIg0AAAD+EHMIds793MtCAAAAgFSJZ7OMPEkXSxogKS983Dk30YO6AAAAAM9kxHHuDEldJZ0gaZ6k7pLYhxMAAAAtTjwh+EDn3G2SypxzT0v6iaQR3pQFAAAAeCeeEBwI/bnVzAZK2kvSPskvCQAAAPBWPKtDTDWzDpJuk/SqpAJJv/akqhQpyM3ybGu+gtx4/mkBAABaFq9yVKoylDnnUvJGyVRUVOSWLFmS7jIAwFMlZdUqrarxpO2C3Cx1aJvjSdsA0FyY2VLnXFG05+JZHaKLpP+VtJ9zbpyZ9Zc0yjn3RJLqBABE6NA2h6AKAB6JZ07wNEn/kLRf6PGXkq5JdkEAAACA1+IJwZ2cc3+SVCdJzrkaSbVNvcjMTjSzL8xspZnd3Mh5PzMzZ2ZRh6wBAACAZIknBJeZWUcFt0qWmY2UtK2xF5hZpqSHJI2T1F/SOaFpFPXPK5R0taT34qgHAAAA2CPxhODJCq4Ksb+ZvSNpuqSrmnjNcEkrnXPfOOeqJc2SdGqU8/5b0l2SKuOoBwAAANgj8YTgzyT9WdL7kn6Q9JiC84Ib003SmojHxaFjO5nZUEk9nHN/i6MWAAAAYI/FE4KnS+qn4AoRD0o6SMGtlPeYmWVIuk/SdTGcO8nMlpjZko0bNybytgAAAPC5eFYjHuici5zPO8fMPmviNWsl9Yh43D10LKxQ0kBJc81MkrpKetXMTnHO7bIQsHNuqqSpUnCd4DjqBgAAAHYRz0jwstDNcJIkMxshqakdK96X1NfM+phZjqTxCs4rliQ557Y55zo553o753pLWiRptwAMAAAAJFOTI8Fm9rGCK0JkS3rXzL4LPe4laUVjr3XO1ZjZlQquL5wp6Unn3KdmdoekJc65Vxt7vdfYjQlAc0YfBaA586qPSlX/FMt0iJ8m8gbOudclvV7v2K8bOHdMIu8Vr+raOq3dWuFJ2306tfWkXQD+QR8FoDnzqo9KVf/UZAh2zq1ORSHpUFFdq/FTF3nS9tzrx3jSLgD/oI8C0Jx51Uelqn+KZ04wAAAA0CoQggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvuPrEGzWMtsG4A/0UQCaM6/6kVT1T1mpeZvmKS87U7MmjfSsbQBIBH0UgObMqz4qVf2Tr0NwdU2dxk9d5EnbC24c60m7APyDPgpAc+ZVH5Wq/snX0yEAAADgT4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+E5WugtIp+xM06xJIz1rGwASQR8FoDnzqo9KVf/k6xBcVVOn8VMXedL2vBvGeNIuAP+gjwLQnHnVR6Wqf/L1dAjnWmbbAPyBPgpAc+ZVP5Kq/snXIRgAAAD+RAgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPiOOefSXUPcioqK3JIlSxJuZ+OOSpVW1Sahot0V5Gaqc2GeJ20D8Af6KADNmVd9VDL7JzNb6pwrivZcVlLeoYUqq6rV2HvmetL23OvHqHOhJ00D8InKQJ1nfdSCG8d60i4A//AqR6UqQzEdAgAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO56HYDM70cy+MLOVZnZzlOcnm9lnZvaRmb1lZr28rgkAAAD+5mkINrNMSQ9JGiepv6RzzKx/vdM+kFTknBsk6UVJv/OyJgAAAMDrkeDhklY6575xzlVLmiXp1MgTnHNznHPloYeLJHX3uCYAAAD4nNchuJukNRGPi0PHGnKxpNnRnjCzSWa2xMyWbNy4MYklAgAAwG+azY1xZna+pCJJd0d73jk31TlX5Jwr6ty5c2qLAwAAQKuS5XH7ayX1iHjcPXRsF2Z2rKRbJR3lnKvyuCYAAAD4nNcjwe9L6mtmfcwsR9J4Sa9GnmBmQyQ9KukU59wGj+sBAAAAvA3BzrkaSVdK+oekzyX9yTn3qZndYWanhE67W1KBpBfMbLmZvdpAcwAAAEBSeD0dQs651yW9Xu/YryP+fqzXNQAAAACRzDmX7hriVlRU5JYsWZJwO5t2VKm0qiYJFe2uIDdLnQpzPWkbgD+UlFV72kd1aJvjSdsA/MGrHJXMDGVmS51zRdGe83wkuDlzcvLqI4B3LQPwi5q6OtXUedOX1NTVedIuAP/wKkelKkP5OgSXVtVq7D1zPWl7zvVj1LnQk6YB+AR9FIDmzKs+KlX9U7NZJxgAAABIFUIwAAAAfIcQDAAAAN8hBAMAAMB3CMEAAADwHUIwAAAAfIcQDAAAAN9pNesEBwIBFRcXq7KyMubX1NTW6bFT9vWkntLvV+nzjan/jJGXl6fu3bsrOzs75e8NAADQUrSaEFxcXKzCwkL17t1bZhbTa6oCtXI/7PCknoO6FCo3O9OTthvinNPmzZtVXFysPn36pPS9AQAAWpJWMx2isrJSHTt2jDkAt0Zmpo4dO8Y1Gg4AAOBHrSYES/J1AA7j3wAAAKBprSoEAwAAALEgBCfJ9m3b9PzTj6e7DAAAAMSAEJwkO7Zv0/PTn0h3GQAAAIgBIThJ7r9ziopXr9JZJxyp+/7nNt137z0aNmyYBg0apNtvv12StGrVKvXr108XXXSRDjroIJ133nn65z//qSOOOEJ9+/bV4sWLJUlTpkzRhAkTNGrUKPXt21ePPfaYJGn9+vUaPXq0Bg8erIEDB2rBggVp+34BAABaMkJwklx9yxR179Vbf/rHAo08cqxWrlypxYsXa/ny5Vq6dKnmz58vSVq5cqWuu+46rVixQitWrNDMmTP19ttv65577tH//u//7mzvo48+0r/+9S8tXLhQd9xxh9atW6eZM2fqhBNO0PLly/Xhhx9q8ODB6fp2AQAAWrRWs05wc7Jw/hzN/eebGjJkiCSptLRUX331lXr27Kk+ffro0EMPlSQNGDBAxxxzjMxMhx56qFatWrWzjVNPPVX5+fnKz8/X2LFjtXjxYg0bNkwTJ05UIBDQaaedRggGAADYQ4wEe8A5pxtuvEnLly/X8uXLtXLlSl188cWSpNzc3J3nZWRk7HyckZGhmpqanc/VX+rMzDR69GjNnz9f3bp100UXXaTp06en4LsBAABofQjBSdK2oEDlZaWSpB8ddbSmT3tKpaXBx2vXrtWGDRviau+VV15RZWWlNm/erLlz52rYsGFavXq1unTpoksvvVSXXHKJli1blvTvAwAAwA+YDpEk7TvsrcFFI3TGMaP047HH6uzx52jUqFGSpIKCAj3zzDPKzIx9G+VBgwZp7Nix2rRpk2677Tbtt99+evrpp3X33XcrOztbBQUFjAQDAADsIXPOpbuGuBUVFbklS5bscuzzzz/XIYccElc7gdo61dV58/1nZJiyM/dsoH3KlCkqKCjQ9ddfv0ev35N/CwDNz8YdlSqtqvWk7YLcTHUuzPOkbQD+4FUflcz+ycyWOueKoj3n65HgujqnL37Y4UnbB3cplGIf+AWA3ZRW1WrsPXM9aXvO9WPUudCTpgH4hFd9VKr6J1+H4OZqypQp6S4BAACgVePGOAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuE4CT69XVXaszgvjrjmFHpLgUAAACN8G0Inj17ts44/VRNPP043XDpuVo4762E2zz1zHP0yIwXk1AdAAAAvOTLJdJmz56t3/72t6qsrJQkbd64QU8/fJ8kadRRx+xxu4ePPEJr13yXlBoBAADgHV+OBD/00EM7A3BYdVWVXn7miTRVBAAAgFTyZQj+4Ycfoh7fvGljiisBAABAOvgyBHfp0iXq8Y6dOqe4EgAAAKSDL0PwFVdcoby8vF2O5eTm6ozzL05TRQAAAEglX4bgcePG6dZbb1WXrl0lM3XsvI8u/M/JCd0UJ0k3XXGxLjjteK3+ZqUO6NNLTzzBHGMAAIDmyJerQ0jBIHz0scfrix92JK3Nux76d+g9uEuhcrMzk9Y2AAAAkseXI8EAAADwN0IwAAAAfIcQDAAAAN8hBAMAAMB3CMEAAADwHUIwAAAAfIcQnETfryvWxWedrNOPHqkhhw3S/fffn+6SAAAAEIUv1wkOBAKaPHmynHP679/eqV/deosk6a7f3aPs7Ow9brddXXs9+If7NGTIUJWVlWrk8GE67rjj1L9//2SVDsBHCnIzNef6MZ61DQCJ8KqPSlX/5MsQPHnyZC1btkySdMrJP1VNTY0k6cqrr9Xk2+/c84YzCtRmv7764ocd6te1UIcccojWrl1LCAawRyoDdRp7z1xP2l5w41hP2gXgH171Uanqn3wZgsOqqqokVUmSsnNyk9r2qlWr9MEHH2jEiBFJbRcAAACJ8+Wc4Lvuumu3aQ9ZWVm64qZfJ6X98rJSjT/rLP3hD39Qu3btktImAAAAkseXIfimm25SIBDY5VhNTY0euuuOhNsOBAKaPOlCjT/nHJ1xxhkJtwcAAIDk8/V0iNzcXGVkZu2cE5wo55ym3HCV9u97kK659tqktAkAAIDk8+VI8H333aehQ4dq8JAhuveJWTp4wCAdPGCQfvlfiY0Ef/D+Iv31pee1+J35Gnb44Ro8eLBef/31JFUNAACAZPHlSHB2drYefPBBVdfUasX3OxJbESLC0OGj9OGaEklSv66FysliCSIAAIDmyJcjwQAAAPA3QjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8x5dLpHlp3KhBatO2QG1yc5SdnaUlS5akuyQAAADU48sQPHr0aJWXl+92PC8/Xw8/91rC7T/+p9c0qn9v1gkGAABopnw5HSJaAJakyoqKFFcCAACAdPBlCPaUmS4/7wyNHD5cU6dOTXc1AAAAiMKX0yG8NO2l2eqy737aO6NCPxl3ovr166fRo0enuywAAABEYCQ4ybrsu58kaZ999tHpp5+uxYsXp7kiAAAA1EcITqLy8jKVle6QJJWVlemNN97QwIED01wVAAAA6vPldIg2bdo0uDpEIrZs3KhrLz1fkpRpTuede65OPPHEhNoEAABA8vkyBM+fP1+SVF1TqxXf70hau9179dYLb7wtSerXtZAl0gAAAJopX4bgsAwz9eta6FnbAJCIgtwsLbhxrGdtA0AivOqjUtU/+boXzMpkSjSA5qtD2xx1aJuT7jIAIKqW3ke1qhTonEt3CWnHvwEAAEDTWk0IzsvL0+bNm30dAp1z2rx5s/Ly8tJdCgAAQLPWaqZDdO/eXcXFxdq4cWO6S0mrvLw8de/ePd1lAAAANGutJgRnZ2erT58+6S4DAAAALUCrmQ4BAAAAxIoQDAAAAN8hBAMAAMB3rCWupmBmGyWtTsNbd5K0KQ3vC29xXVsvrm3rxbVtnbiurVe6rm0v51znaE+0yBCcLma2xDlXlO46kFxc19aLa9t6cW1bJ65r69Ucry3TIQAAAOA7hGAAAAD4DiE4PlPTXQA8wXVtvbi2rRfXtnXiurZeze7aMicYAAAAvsNIMAAAAHyHEAwAAADfIQTXY2ZPmtkGM/ukgefNzB4ws5Vm9pGZDU11jYhfDNf1vND1/NjM3jWzw1JdI/ZMU9c24rxhZlZjZv+RqtqQmFiurZmNMbPlZvapmc1LZX3YczH0yXuZ2Wtm9mHo2v481TUifmbWw8zmmNlnoet2dZRzmk2OIgTvbpqkExt5fpykvqGvSZIeSUFNSNw0NX5dv5V0lHPuUEn/rWY4gR8NmqbGr63MLFPSXZLeSEVBSJppauTamll7SQ9LOsU5N0DSmSmqC4mbpsb/314h6TPn3GGSxki618xyUlAXElMj6TrnXH9JIyVdYWb9653TbHIUIbge59x8SVsaOeVUSdNd0CJJ7c1s39RUhz3V1HV1zr3rnCsJPVwkqXtKCkPCYvg/K0lXSXpJ0gbvK0KyxHBtz5X0snPuu9D5XN8WIoZr6yQVmplJKgidW5OK2rDnnHPrnXPLQn/fIelzSd3qndZschQhOH7dJK2JeFys3S8wWraLJc1OdxFIDjPrJul08Vub1uggSR3MbK6ZLTWzC9JdEJLm/yQdImmdpI8lXe2cq0tvSYiHmfWWNETSe/WeajY5Kisdbwo0V2Y2VsEQ/ON014Kk+YOkm5xzdcFBJbQiWZIOl3SMpHxJC81skXPuy/SWhSQ4QdJySUdLOkDSm2a2wDm3Pb1lIRZmVqDgb9+uac7XjBAcv7WSekQ87h46hhbOzAZJelzSOOfc5nTXg6QpkjQrFIA7STrJzGqcc39Jb1lIgmJJm51zZZLKzGy+pMMkEYJbvp9L+n8uuJnBSjP7VlI/SYvTWxaaYmbZCgbgZ51zL0c5pdnkKKZDxO9VSReE7m4cKWmbc259uotCYsysp6SXJU1gFKl1cc71cc71ds71lvSipP8kALcar0j6sZllmVkbSSMUnIOIlu87BUf4ZWZdJB0s6Zu0VoQmheZwPyHpc+fcfQ2c1mxyFCPB9ZjZcwreidrJzIol3S4pW5Kcc3+U9LqkkyStlFSu4KdVNHMxXNdfS+oo6eHQiGGNc64oPdUiHjFcW7RQTV1b59znZvZ3SR9JqpP0uHOu0aXy0DzE8P/2vyVNM7OPJZmCU5o2palcxO4ISRMkfWxmy0PH/ktST6n55Si2TQYAAIDvMB0CAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBoA0M7NSD9ocbGYnRTyeYmbXJ/t9AKClIgQDQOs0WMG1OAEAURCCAaAZMbMbzOx9M/vIzH4TOtbbzD43s8fM7FMze8PM8kPPDQudu9zM7jazT8wsR9Idks4OHT871Hx/M5trZt+Y2S9Dr29rZn8zsw9Drz07amEA0MoQggGgmTCz4yX1lTRcwZHcw81sdOjpvpIecs4NkLRV0s9Cx5+SdJlzbrCkWklyzlUruAvi8865wc6550Pn9pN0Qqj9280sW9KJktY55w5zzg2U9Hevv08AaA4IwQDQfBwf+vpA0jIFQ2vf0HPfOufC25AuldTbzNpLKnTOLQwdn9lE+39zzlWFtp/dIKmLpI8lHWdmd5nZkc65bUn8fgCg2SIEA0DzYZLuDI3eDnbOHeiceyL0XFXEebWSsvag/d3acM59KWmogmH4f8zs13tSOAC0NIRgAGg+/iFpopkVSJKZdTOzfRo62Tm3VdIOMxsROjQ+4ukdkgqbekMz209SuXPuGUl3KxiIAaDV25ORBACAB5xzb5jZIZIWmpkklUo6X6G5vg24WNJjZlYnaZ6k8HSGOZJuNrPlku5s5PWHSro79PqApF8k9l0AQMtgzrl01wAA2ENmVuCcKw39/WZJ+zrnrk5zWQDQ7DESDAAt20/M7BYF+/PVki5KbzkA0DIwEgwAAADf4cY4AAAA+A4hGAAAAL5DCAYAAIDvEIIBAADgO4RgAAAA+M7/B25SzE7KNTaQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3Qc1fn/8fdsVd1V77Jky1WWq+SK6c0UYyAYcKMZbEoICeGbkNASIPVHEjrYlOBCs2mmxwQCGFwld7l39S6tpO278/tDlmJjNVujdfA+r3M4J9qdvRpLOaPP3Ln3eRRVVRFCCCGEECKY6E71CQghhBBCCBFoEoKFEEIIIUTQkRAshBBCCCGCjoRgIYQQQggRdCQECyGEEEKIoGM41SdwMuLi4tTMzMxTfRpCCCGEEOJ/WEFBQbWqqvHtvfejDMGZmZnk5+ef6tMQQgghhBD/wxRFOdTRe7IcQgghhBBCBB0JwUIIIYQQIuhICBZCCCGEEEFHQrAQQgghhAg6EoKFEEIIIUTQkRAshBBCCCGCjoRgIYQQQggRdH6UdYIDxenx0ej04POD1+9HURSMOoUQkx5LiPFUn54QIsg1OT3YPT68PhW/qqLXKRh0ChFmA6EmubwLIU4dVVVpcHhwe/14fH5UwKjXodcpWEOMGA2nfh5WrpLtqGlyUWFz8sp3B1h7oJbiOkfbe5ZQA8NTo7hhQgYj06OIDTeh15/6X6QQIjj4/SrVzS52lNr45/cH2VxcT53d0/Z+sjWEvMxobp3Uj9ToUOIizKfwbIUQwcbh8WJzePlqZyXvFBSzvdSGw+MDQKdA37gIzhkYx+wJmUSFGYkKM52yc1VUVT1l3/xk5eXlqb3RMc7h8VLe4OTuNzeyrcTW5fFRYUaemDaCvIzoU/pLFEIEhwaHh+2lDfzsrU1UNbq6PH5AQgTPzhhNWnQo4WaZ8xBC9K6aJhfLN5Xyl8934vL6uzz+ouxEfj91KAkR5l6bUFQUpUBV1bx235MQ3KLR6eGrnZXct2wzHt+J/UyuGJHCI1OyiZUZFyFEL6ltdvOPL3azeE2HHUDbpdcp/G7KUK4YmYI1VJZxCSF6R4XNydxF+Wwubjihz1lCDSy6eSzZKVZMvbBEorMQLM/xaZkB/mpnJfe8temEAzDAh5tL+c17W6ltdvfC2Qkhgl1ds5s/frrjhAMwgM+v8tDybXywsYQmp7cXzk4IEeyqGl3MenntCQdgAJvDy3UL1rCz3IbfH9iJWQnBQFm9k/uWbe7RGCu2V/Dx5lKcR9a9CCGEFjw+Hyv3VPFOQXGPxvndR4UcrrVrdFZCCNGiwe7mj59uZ09l00mP4fL6ueW19VQ3db3MS0tBH4Jrmlzc/ebGk5oB/qHHP9kR8F+gEOL0VtPk4f73tvZ4HFWFO18voLoba4mFEKK79lQ28f7G0h6PU93k5u9f7KbJ6en6YI0EfQgubXBSWNr1JrjucPv8LFx1EJdXZoOFED3n9fn5YGMJdrc215SDNfYezdYIIcTR6uxu/vL5Ts3Ge6egmCZX4JZtBXUIdri9vLxyv6ZjvrmuiAZ74O5ihBCnrzq7m1e+P6DpmM9/vRebQ65RQoiea3Z5WX+wTrPxvH6VFYUVmo3XlV4NwYqivKooSqWiKNs6eF9RFOVpRVH2KoqyRVGU0b15Pj/U6PKydn+tpmM2ubyazdoIIYKb26t2qxTaidh4uF72LgghNLG7olHzMb/aVUlzgGaDe3sm+DVgcifvXwIMOPLfXOCFXj6fY/j8KuU2p+bj7quSx41CiJ4rb3B0fdAJanJ5u1W/UwghuqL1RCLA9lIbze7TIASrqvot0NlPaCqwSG2xBohSFCW5N8/paF4NNsO1p16WQwghNGDrpZJm3gCXIRJCnH5UVe2VYgA2pwcCdIk61WuCU4Gio74uPvLacRRFmasoSr6iKPlVVVWafHOdomgyzg/1RrFnIUTwMRp65xql651hhRBBRFEUQgx6zcc19VLnuPb8aNKaqqoLVFXNU1U1Lz4+XpMxjXqFcJP2v8Cs+HDNxxRCBJ/UqFDNx9TrFEKM2l/3hBDBZ2SfKM3HzIqPwBigIHyqQ3AJkH7U12lHXgsIk0HH0FSrpmMqCsSEmzQdUwgRnMJNBs1nRfrHR6CXqWAhhAZGpGkfgnMzogPW4v1Uh+APgRuOVIkYDzSoqloWqG8eFWZi9vgMTcec1D+OUJNB0zGFEMEp3Gxgck6ipmNOH9uHmDC5URdC9Fx0uJEkS4imY07LS0cXoBv13i6R9iawGhikKEqxoihzFEW5XVGU248c8imwH9gLvATc2Zvn055xfWOINGsXWu+5YEDA7mCEEKe3cLOBO8/tr9l4ZoOOyTlJAfsDI4Q4vcWEm5l3dj/NxstOthAXEbib9N6uDjFdVdVkVVWNqqqmqar6iqqqL6qq+uKR91VVVe9SVTVLVdVhqqrm9+b5tCc63MSffjJMk7EuGJJAVnyEJmMJIQRAsjWUn4xO02Sshy7PJjpMbtKFENrQ6xQuH55CZmxYj8fSKfD3a0cQG2HW4My6+T0D9p3+Rxn1Os7IiuOi7J49coyLMPHYlTlEy2NGIYSGrKFGfj15UI83yY3rG82lOUmYZVOcEEJD8ZFm5s/OxdzDylj3XjiQ9Jieh+kTEfQhGI7MBl89jDMHxJ3U5+MiTCy7faLm62KEEAIgwRLC23PHk2I9uWvM6D5RPDcjl5gAzrAIIYJH37gIlswZd9JB+NZJfZk1PoNwDZendoeE4CNiI8w8ed1I7r9kMIYTWC933qB4Prp7EpmxYSi9VHdYCCHSYsL44K4zmDK8+/2EdArcfV5/FtyQR1ykBGAhRO8wGXQMT7Py2T1nMiQ5stufizQbeGHmaH56Xn+iTsGTdEVVf3ydg/Ly8tT8/N5ZPuxw+6hqdPHSyv0sKyjC6Wm/vejErFh+fsFABiREEC0l0YQQAVJvd3O4xs6TX+7mP7uqaO8SbjbomDoyhdvPziLREhLw2RUhRPCqaXKx/mAtT3+5l+1ltnaPiQk3cdPETK7NSyc2wtSrdYEVRSlQVTWv3fckBLfP4fFhc3hocnrZXdFIvd2D2ahjYGIksREmQo36U3LXIoQQADaHB7vbS22zm10VjTjdfiJDDQxKjMQSaiTSbCBMwq8Q4hSpaXLh9PgptznYX9WM16+SGGkmKyGCUKOemHAThgA0xZAQLIQQQgghgk5nIVimCTrhdHuptXsA8PlVdIoCqESYDVhlFlgIcYrZHB4anR5Awa+q6HUKqgrR4QbCTFIKTQhxarXOBquoqGpLSTVFgbhwE0bDqa9UIyG4HRU2J3XNbhatPsS6g7Xsr2rCf2TCPNFiZnhaFDPG9mFQUiQJEWYMPSwLIoQQJ6Ks3sH+6mYWrznElqJ6ShucQEvb9r6x4eRmRHPjxEziIkwkWXtWWk0IIU6E3e2lwe7h+33VfLCxlG2lDdQfmVA06XUMSorkzP5xXDc2nXCTnrjIU1dZS5ZDHKXJ5aGq0c2v3tnM+oN1XR6fEGnm/00bTnayhfhT+EsUQgSH6iYX+6uauXfpJorrHF0ePyzVyj+uG0GCxYwlRJ5eCSF6V6XNyYrCCv702Q6a3b5Oj1UUuHxYMr+5dEivTijKmuBuqG12s2Z/Db94exMub/sVITpyTW4av5o8iAQJwkKIXlLZ6OTFr/fx6vcHT+hzRr3C41fmcP6QROKkTrAQopeUNzj42VubWHeg9oQ+FxNu4rWbx9A/Ppwws/bLuDoLwfIcH2h0eli9r5q73thwwgEY4J2CYn63vJAKm7MXzk4IEewqbU7+8cXuEw7AAB6fyq/f3cq/tpVT1+zW/uSEEEGvvMHJnIX5JxyAoWUS8tr5q9lXZcfvP/EM1hMSgoGqRhe/eHtzu/U2u+vTbeV8UViB3eXV7sSEEEHP5fGx7kAtb64r6tE4Dy3fRlmD3KgLIbRV3ejiiRW7KCxtvyZwdzg9fm5dtJ6KRpeGZ9a1oA/B5Q0OfvH2Jty+nt99PPbJdmpkpkUIoaGaZje/eW9rj8fxq3D3mxspa+h6LbEQQnTXwZpm3iko7vE4FTYXz3y5J6BPrII+BFc2uthc3KDJWC6vn0WrD+Jwy2ywEKLnPB4fH2wqoVGjJ0z7qpo4UN2syVhCCFFpc/K3Fbs1G29ZQTF2T+cb6rQU1CG40eHh1e8PaDrm2+uLqDtSCkQIIXqiqtnNolWHNB1zwTf7qWkK7CNHIcTpyeX1s3p/jWbjeXwqKwrLNRuvK0Edgm0uD+v2n/gi7k7HdHpxdFEWRAghusPj81Ou8YbbgkN1J7UBWAghfmhH2cmvA+7Iyj3V1NsDsyQiqEOwqtJWZF5LeyobNR9TCBF8ynvh+tTo8uKWECyE0EB+N3oqnKjC0gaaA1RkIKhDsNfXOzWSa2VznBBCA3W9NBviDXAZIiHE6cfv91PTrP3SqgZH4JaUBnUIVpTeGdf8P9APWwjx42fuvQ5KvTKuECJ46HQ6jHrtr1FGXeCiaVCHYKNeR6hR+8A6IDFC8zGFEMEnLTpM8zF1CoT0UrgWQgQPv9/P0BSL5uP2iw/XfMyOBPWV0O9Xe+UXGB1m0nxMIUTwCTPpMeq1nbXtFx+Bv3dWggkhgohOp2NIsvYZaliqtdeegv1QUIdgk1HHtWPSNR1zQr9YXF6pDiGE6Dmnx895gxM1HfPy4cmYeuERphAiuKiqil6nEB9p1nTci4Ym4Q3QnXpQXwl9PpVR6VGEmbRbEnHTxEx8Ms0ihNBASYODW8/sq9l4Rr3C5KFJmjXfEEIEL0VRKCxpYPpY7SYTByRE0Oj0BmzfQlCHYK9f5Z0NxfzfxYM0GW9iVix2jw+dbDoRQmhAB8SEmZick6TJeHed2x+9TkEmgoUQWjAZdJzRP4606NAej6Uo8OBlQ1hRWI6qykxwr9MpCv/87iDxkWbO6B/bo7Giwoz838WD+P1HhdRLxzghhAYyYsOZ/+1+5p3Vj4QePnIckWZlRFoUX+2sJMJk0OgMhRDBLCfVyh8+3sGzM0Zh0PVsAnDeWVkcrGkmJsKEJcSo0Rl2LqhDsMfnx+3z89v3t3LP+QPJzYg+qXGiwozMn5XLHz7ZQb3dw+Fau8ZnKoQIRnqdwvJNJTzw/jaenzn6pIPw0BQLj0wZyq/e2cKHm0ulY5wQosdUVUVRFK4clcr2UhtPXjfypDfyXj06lTGZ0WSnWLkkJ4kGh3SMCxibw8vcxfn8/IIBzJnUlxO5mRnXN4Z/3jSGJ1bsIv9QS+cUX4Cm8YUQpze724vL62d7mY1HPixkwexczhkYf0JjzBjbh4cvz+b2JQVUNbnYVd6I0sMZGyGEUBSFwtIGhqZa+O372/hqVyULbxlLv7julzgLNep5ZEo2Z/SP4/YlBSzfWIJe0dFLvcyOE9Qh2KBX2hpm1Ns93PjqOvQ6hTfnjueKESmd7qAelR7FP64byezxGdy6MJ/1R7UOjIvQdqekECI4FdU62v53YamNG/65jsuGJ/PcjNGM6xvT4ef0OoWLhybx+q3jSLCYmfXKWiobWzo7ef0qLo9UsBFC9Izf78cSYuTpf+8B4L0NJTz0wTYeuzKHhy4f0mkYjjQbuGFCBm/eNo6CQ3X8culmPD6VpfnFmIwKgbpND+qFYaqqkhETxsGaluULfhUWfLufdwqKmZabxpJbx+H0+NhZ3kij04NRr6N/QgSJlhB2ltmY/80+dpY3HjfuidwFCSFER9y+Y5ct2Bxe/u+dLWTFhzNzXAa/mjyY6iYXeyqacHl9hJsNDE6KJMJs4Ns9Vfz87U1UNR7f1tQvT6uEED2k0+nIjAvn+301ba/tq2pm5strGd8vhnsvHEiiNYSiWjtFtXZ8qkpMuJmBiRGoKizfVMr0l9biOOqm3O3zs/5AHVNGJAfk3xDUITjcZOCM/nEcrDl8zOu1zW7mf7uf+d/uJ8ykZ2BiJOFmPR6fyuI1h9r9o9IqPtKseXF7IURwsoa2vzlkX1Uzj368HYDYcBP94sMxGXQ43D6e+2pvlyXQDAFsSyqEOD35/SpFHeyBWrO/ljX7awFIjwklNSoUnaLQ4PCwp6LpuBv8o32/r5orJAT3PofHx1WjUnl97eEOj7G7fWwqqu/2mNPHpqOT9XZCCA0kWUO6PKam2U1Nc/c3kYQa9ZgMco0SQvSMTqe07YXqTFGt45ilXV0pLLHhDtCi4KCfDigstXHuoARNxrKGGjl3UAK7K5o0GU8IEdyMOoWYcG3bsI9Mj4KArbgTQpyu/H4/lTan5uPWB6gyBAR5CPb5Vf62Yhf3nN8fS0jPJ8UfmZLN31bspsrW8XIJIYToLo9P5ZrcNE3HvHZMujTLEEL0mE6nw9gLFxOjThewfQtBfSlUAZvTyxMrdvPk9aMwG07+xzFnUl/q7R6+21uNEtQ/VSGEVvZXN3FpTlKPrk1HS7GGEBdhoskp1SGEED2jqioDEiM1H7dvfOCKCwR1XDPodJj0Or7bW827BcUsmJ1L/AmWN9PrFO69cCCDkiJ57JOWjSp9osN643SFEEHG74fXVh3ilxdp09r98auG8efPdmoylhAiuCmKwrBUi+bjDku1EqLRjX9XgjoE+1WVQUktdzGfbC3jqS/38uLsXK7JTetWhYeR6VG8ces4aprd/PrdLbTO3keHB6bdnxDi9BYXaeaDTSWkRoVy/pCe7V244+wsthTXU1hqwxSgPzBCiNOXqqpEmA3ERWi7b+GSnCTcAepqGdTVIfQ6hQuyE9la0gDAhsN1zHx5Dbec0Zel8yawdn8tBYfr2F5qo9nlQa9rqRM8LM3KhUMS2V/dzP+9s+WYNslDUyzY3fKoUQjRc9YjexXuW7aZ+bNzMel1fLatvN1j9ToFn7/9dXR3npNFRmw497+3hWRriNQJFkL0mKqq+FWV68f24dmv9moyZlZ8BHqdDkOANi4EdQj2+VXOGhDHs1/twXOkHIfT4+f5r/exen8Nc87oy9mD4lEU8PpU9IqCXq9QaXPybkEx728qaftcq9kTMmhydl6jUwghusOntjxx2lRUz9zF+Tw2NYdzByfwp093MLZvDBcNTaJPTBh+VcXrUzHoFVBhb2UTH24upaTewWNTc9hYVMf977U8rTp7YHyn3TCFEKI7dDodEWYjZw+M572CYkobel4p4sHLhuDx+dAHqNRsUIdgBfhyRyW3ndmP57/eB8DoPlH8avJg9lc18dLK/RSW2vD+YHYlLTqUy4cns3TeBN7dUMLraw+hqpCdbCEhMoS4SGmbLITouXCzntnjM9hUVI/T4+f/3tnCby4ZzPKfnsHHm8t4+ss9HKo5tli9ToEhyRZunJDJuH4xvPCffbyVX9T2/jW5aTITLITQhMmgsGpvNX+8ehhzFuZ3+DSqO2aPz2B3RSPnD0nQbDNwV4J6OsBs0FFhc3JNbhpDkiL51cWDmHd2Fne/uZHfvr+NzcUNxwVggOI6By9+s59pL64mOszIwpvHkmIN4R/XjWD+13sJNepPwb9GCHG68flVRqZHMSgxEkuogZduyMWvqlz492/56792HReAoaX9e2GpjV+9u4Urn/ueCf1j+f0VQzHoFC4bnoxBp7TMGAshRA/pFIWpI1P5ckcFf5s2AsNJzuBeMSKFMwfEERNhItJsCNg1SlF/hDMCeXl5an5+fo/HaWh2UWZzsa20gTGZMSxZc4iXVh444XFGpFl5evooVhSWM7JPNJmxYcRHdt3pSQghOmNzutlV1oiiKPhVlX98sYfV+2tOeJxr89K5KDuRmHATseEmYiKMRIZou5lFCBF8apqcfLu7mganl+2lNqaMSOaB97dxuNZOv/hwrstLJyfVSlSYEYWWTr37qppZUVjOv3dUYjbouPfCgSRbQ1hWUMTs8ZnkpFqxhBiICNGmyICiKAWqqua1+14wh2CPz09lo4v3NhRjd3l54Zv9Jz3W0BQLD12ejaqq5KRa5A+MEKLHqhqd3Ld0M7+4cCB/+mwnaw/UnvRYN07IYFSfKA5U25kzKRNLqFyjhBA9U1Jn55KnV3L/5CHsqmhk9b5qnp0xCqNeT5PTw8dbythUVM/hWjs+v0pshImcVCvnD05gaIoVBXhixW62lzXw56uHM2fhehbckMeQpMiAhOCgXhNs1OvYWWYjJ8XKza+t79FYhaU2PttWzqDECIYka183TwgRfLx+lT6x4Xy5s7JHARhg4epDjOkbw/6qJuxuP5ZQjU5SCBG0apvd2BxeHvxgK/9v2nBmjk2nwe7lgQ82srui6bjjKxtd7ChrZFl+MdZQI3edm8W9Fw2k2eVhzmv51Nk9vL+xmJFTcgJy/kG9Jrje7ibCbOCh5ds0GW/R6oNkJUTg9EqJNCFEz9ldXq4alcoLRzbu9tQjywuZOT5Dk7GEEGLj4XoALKEGcvvEsGTtYabNX91uAP6hBoeHP366kzuWFBBqMjCyTxQAmw43YHN6evW8WwV1CHb7/FQ3uSiuc2gynqrCm2uLcLgkBAshes7p8fHBppJ2N+iejJpmNweqm6U6hBBCE4WlDeh08N4dZ/Dnz3awaPWhkxjDxnXzV/OriweTlxHdtnQiEII6BHt9ft7dUKLpmJ9uLSNAvzshxGku1GTgg43aXqPeKSjG6w9MNyYhxOlLVVW8fpW/TRvBR1tK+byw4qTHqrC5uH1JAU9MG4FK4EJUUIdgvx82FdVrOqbb58fhkZlgIYQ2bBo339lW0oBOkRJpQoieURSFnDQr2ckWnvmy5x3jdpY38vHWUh6bmnNcI7LeEtwhmJZF3VrbX9Ws+ZhCiOBTYet5B6Yfcnn9eAP0B0YIcXo7b1ACT/57j2ZLtl78ej9jMmOICAlM3YagDsG9tebEJRvjhBAaaHL1Tgv2QK23E0Kc3vQ6hS+2n/wyiB9qcnkpOFSHNVSb8mhdCeoQfLKdTboSIh3jhBAaCOula4kuqK/8QgitHKhu1mwWuNWK7eU0abwMrCNBfSnUKUqv3G0MSIjQfEwhRPBJsmpfzNek12HSy426EKLn1vWwfnl7tpY0UO/Qfqlqe4I7BOtaWh5ryaBTZCZYCKEJRYFwk7bXkyHJkfikOoQQoof8fj9lDdrvW6hudKMQmM27QR2CfX6Vq0anaTrmRUMTqWrU/v8UQojg0+zyMmVEiqZjXj06DX0vLQUTQgQPnU7XK1G15fIk1SF6ndenEhdhIiHSrNmYM8dlUFKvTfMNIURw0+sUfpKbhlaZ1RJqIDvFIrXMhRCayEoI13zMtOiwgFUKDuoQbNQrPPXvPTw6VZse1dNy09hcVE9shHahWggRvEJNBv69vYKbz+iryXgPX57NW+sOScc4IYQm8jJiNB9zWJpV82VgHQnqEOxXVWxOD4dr7cwc16dHY2XFh3PtmHSe/Pce0qLDNDpDIUQw8/tVtpTUc/6QBIamWHo01uXDk/H6VSJDTJgMQX3pF0JoQFVVEi0hRJi1rek7dUQKHmmb3PtCTXrOG5zAXz/fyaQBcUzLPbn1wf0TInhi2gh+8fYmkqNCNHt0KYQIbiaDwsyxGdzz1iYenZrDsNST28h7SU4S1+Sm8cjyQq4YmYLXJxvjhBA9o6oqFQ0OrjnJ7NSeJEsIqdGhuL2BuUYFdQh2uv1cNyYdn6py9xsbGZkexRPThmMJ7d5djaLADRMy+MOVOdz95kaK6xzMmdSXZqenl89cCBEMXF4/4WYDaVGh3L6kgF9PHsztZ/fr9sa2MJOex6bmcNHQJOYtLmDqyFSKauzopW2yEKLHFOrtXm6ZlNnt3NSVR6Zks+5ATa/1cfihoA7BKFDe4GRabhpev8oDH2zjo81lvHbTWH49eRCZse0va7CEGJgxtg9L503AEmpk5strKa5zkGIN4dxBCRgMUiJNCNFzoUYD5TYnD16eTZPTyw2vrsXjU1k2bwI3TcwkOqz9Oudp0aH84oIBvHHrOL7bW80v3t5EXISZaXlpxESYArbpRAhx+tLpFPolhPPW2sP85SfDezzeRdmJpEWH0ez2YdIHJp4q6o9wg0ReXp6an5/f43Fqmpw89vEO7rt4ENe8sJpyW0tpM0WBswbEc9WoVFKjQ3G4fTS5vBj1OqLDjDQ6vXy5s5L3NxTT7Pa1fWbp3Am8nV/ELy4YQKqsCxZC9ND+qiZqm928ue4wlw5L5s7XN+Dy+gkx6pgyIoWLhyYRFWqkweFpmTU26Qk3GyhvcLJ8cylf7azE51eJjzTzwszRvLH2MJePSGZgQiRpMXKNEkL0TFGtnfvf28Jd5/ZnS3EDf/5s50mNk5sRzZPXj2T6/DW8dstYYsKNxIRrU2RAUZQCVVXz2ntP29XMPzI6BWaOz+DPn+1g4S1juHb+GhocHlQVvtldxTe7qwAIMeoIMxnweP00utpv5ffHq4ZR1eTCbNBhNgb3BLsQQhshRh1bi+u5ZFgyS/OLee3msfzmvS0crLGzLL+YZfnFAESYDZgMOhxuHw6P75gx8jKieeCyITz2cSEPXjaUCptTNsYJIXqsZRJV5Y6zs5jx0lrevG0cz84YxW/e3dphVmrPjHHp3HF2f254eS3nDIoP2CwwBPlyCK8fUqNC2VXexKJVB3nvjokMSow87jinx09ts7vdX2qk2cCLs0aTZAnhZ29u5LYz+9E75aOFEMFGQWFURjTbSuoZlmrloeXb+NPVw7nn/AHEH1WKscnlpbbZfUwA7hcXzuNX5nDzGX25fUkBt56ZxbKCImIjzPikULAQoocURaG22U1UmIlr89KZ/tJa9lQ08fHPJnHdmHRCupgQHNc3hmW3T+DSnGQmP7kSl9fPjHF98Pj8AdsYF9QzwaCwtbSep6eP4vJnvmNfdTMLbsjl063lvLRyP7XNHfeuNuoVLh2WzL0XDuS9DSU89eUefnnRQCpsTkJN2hePFkIEH6NeYWtxAxFmI34VZo3PYM7C9Zw1MJ4npg3Hr8KWkgb2VjS2baIbnBTJ8LQoappdLFlziF3ljfz1mhGsKCznsuHJVDc5GdgLBe6FEMGnuM5Bn5gwZo/PYHdFI099uYe31h/mgUuHcNe5/TlQ3cS6A7Xsr2rGr6rEhpsY2zeWEelWaprcPPPlHr7ZU024ScTOfB8AACAASURBVM/frxtJiEHHlpJ6xveLDcj5B/WaYIDqJheVNif5h+p4eHkhOh08cMkQzh+SwOFaByv3VLGtxIbN6cGk19E/MYJxfWMY2zeW3eU2HvmokJI6J2dkxfKXnwzHaNCRaAnR5NyEEGJ3RSO7yxtZvrm0ZVPuuAyeWLGL1ftqsIQYGJpqJSs+ArNBR7PLy+6KRraX2fD4VC4blszNZ2Ty1893MTojGrNBx7S8NJKtoaf6nyWEOA1sLqqntMFBZmw4Lo+PJ1bs5ru91W3v56RYuDgniczYcHQK1NndfLu7iq93V7fN9iZEmnny+pEYdQqRIUaWbSji5+cNJDK0/Y2/J6qzNcFBH4IBSurtONw+vt9bw+8/KmxrKTq6TzSThyYyONlCiFGHz69SVNcSjD/bWkbrbP25g+L5w1XD8Kl+YsLMhGtcOFoIEZzqml0crLHzyZZSzhqYwNL8ItYfrOX2s7MYlmrlP7uq2FxUz57KlpngiCMzwaP7RDMhK5b/7Krkle8OcPMZfUmxhmIyKAxLsZIeE0qYWZs/MEKI4FVcZ2fWy2t5buZoVBXKGpyUNzj5fyt2YnN0vi5Yp8BVo1KZOS4Dp8eHCryx9jDTx6YzNMVCdAA2xgV9CD5cY+eW19bxwuxc3B4fiqJw95ub2FfV1OVnw016fj91KLkZ0Zh0Oh74YCszx2cwMStOgrAQoscaHB4uefJbnp0xmgc+2MqNEzMx6nQ8+vF23F4/E/vHMizVSr+4cEwGPXZ3y0zw5uIG1h2oJSUqhMen5rDuYB07ymxcPTqVf35/kJdvzCM6zHSq/3lCiB85u8vLU1/tYc2+Gh69MgeH20dRrZ206DAO19pZsb2crcUNVDa6gJba5UNTLIzvF8t5gxPYWd7IkORIqhrdbCqq54ONJbxzxwRNn1ZJCO5Ag8PDfcs2ceuZ/fh/n+9ixth0RmdE4/NDZZOTV787SMGhumPWBpsNOoamWLg2L50z+sdR2+QixGRgzmvr+du1I3j6yz08PzMXawf1O4UQorv8fj+Hah38/K2NPDo1h3uXbiItOow7z81ib0UTyzeXsrW44ZgNcdZQI6P6RHFNbhrhJgN/+Xwn8ZFm7jq3P0/8axfPzhhFkiyHEEJopLzBySVPfUtKVCiPTs1hT0Ujg5Ii2V5qw+HxkmwNJS7CjAq4PD4OVjfj9asMSbZQ2+wmwWLmw02lLFl7mEW3jGVS/zh0GjbLkBDcifIGJz99YwN+Fe6/ZDDzFudTZ/cwJjOa28/Ook9MGAa9Dq/Pj05R0OkUKm1O/lVYzqvfHwTgsalDKbe1bEJ5e+54+saFYTbKTLAQoudag/Dn28q4JCeZBd/u4411RYxKj+LinCSyky2YjTpUFXSKgs3pYWtxAx9tLqWozs4vLhjIZcOTWbjqAHPPypIALITQlM+vsnpfNbNeWUeIUce9Fw5ieKqVHeU2Qo16MuPC22pmKYpChc1BZaOLFGsoZqOexz7ezoHqZq4cmcLvpw7FGqrtUyoJwR2ot7v55dLN1Nk9xwTgk/Ho1KFUHAnC/7nvHGLC5VGjEEIbDXY36w7WcfcbG7jrvP6MyYzh7fWH+WRLOW7f8aWELCEGrslNY8qIFN5eX8THW8pYOm98ywY6o3S0FEJoq7rJyadby3l4eSEAllAD14xOY2L/OKyhRpweH36/SohJj8+vsq3ExtL8IvZWtiw9nZgVyz+uG9krhQUkBHfA6/NTVGunutnN3EUnH4BbPTp1KP0TIshJsWLRaFejECK41dvdrD1Qyx1LCto27UaHGZmWl865gxLQKS1lilxeH+FmAylRLV0uP95SxoebS3B6WkJyhNnAW3PHMyBBgrAQQjv1djfP/mcvoUY9gxIjeWj5tuPylFGvoFMUXD+o/6socNPETM4dlMDfv9jF/Nl5mgdhCcEd8Hr9HKxtZtqLq3scgFv9bdoIzh0cr1m7PyFE8GovAP+QXqeQbA3BbNBhd/soa3B2OJ4EYSGElloD8MsrDwAwISuWX108iOWbSnlvQzE2Z/sVInQKnD0wgVvP7Mt3e6pZsHI/Pr/KgIQIltw6TtMgLCG4A7XNbn725sZjatq1JzUqlJdvzOPJf+/hX4XlnR4bbtLz3a/PI1qWQwgheqjR6eHs//d1p417ACb1j+ORKdnMW1zA/urmTo8dnmZl0S1jiZLqEEKIHtpZbuOSp1ZydJQMMeqYMiKFn4xOo9nlZVupjcM1zfj8EBthIifVSmZsGN/vreHNdYcpqXccM+YdZ/fjrvMGEKFRla3OQnBQt0026BT+eNUwhqZYOjwmNSqUZ6aP4s+f7eD6MelcPDSpw2PDTHr+efMY/Gpg2v0JIU5vbq+f124eg7WT5VWT+sdxxzlZ/O6jQv527Qj6xXXcDa5fXDhPXT8S+PFNfggh/vekR4fxwszRKEcVc3B6/CzLL+b6BWv4xdJNJFlCuGp0KsPTLPxkdCrP/2cvVz2/iidW7DouAF82LJnbzuqnWQDuSlCHYJfXx+I1B3l0ak67Qbg1AL+1/jBPTx/N4Tp7h0E4zKRn/uxc3ikoJkAtr4UQpzm/CotWH2TBDbntBuHWALzpcB0vzsrlnfyiDoNwv7hw/nbtCF5deQCv77i3hRDihLm8fvrEhPGPa0ceE4RbzR6ficvrY9bL63j04x389fNdPDwlmzDT8cuxLh6ayG8uHdy2jyEQgjoEx0eGMPesfnyypeS4IHx0AP7lRYOwhhq5bFhyu0G4NQB/tLmUn50/QNomCyE0ER9p5pcXDWJZftFxQfjoAHzdmHQiQ4zcc+HAdoNwawB+J7+Iuy8YQFyk7FkQQvScw+3lzXVFbC1p4C8/GX5MEL7r3P4kWsxtFSMAvt5dxSsrDzB/du4xQfjioYlcN6YP8xYXYHd7aXJqs0+rK0EdgqElCN9xTn8+21rWFoRbA/DS/CLuu2hQW6iNizBz2bBkSuodbUH46AB8z/kDSIsOO8X/IiHE6STZGsp9PwjCrQF4a3E9141JJy6y5RqVEBnCPRcO5L0NxW1BuDUAv7ehmHsuHEhCpNykCyG00ejysmTtIV757gC7yhvbgvAPA/AvLxrIR3efQZhJf1wQbg3AdywpoLDUxrL8YtqdVu4FQb0xrlVts4u9lU18uqWMKSNT0SnwxrrDzBjbh/TosGNmTRrsbraVNLC9zEb/hEiiw028sfYQM8dlkBBpJjlKCtELIbRV0eCgotHFotUHmTU+k2aXl3UHahnXN4bsFMsxm9xqmlwcrG7m3Q3FTMtLB2BZfhE/GZ1GZlw4sREyCyyE0Eazy8u3u6u4840NqCrMmdSXqSNT2FRU3xaA77toILMnZBJm0rO7vJFp81djd/s4Z2A8P79wILXNbu5YUoDL6+fSYUk8fuUwTXstSHWITtQ2u/jt+9v4ckcFz0wfzaq91dicniPT8vn0iw/npRvGEB9ppsHuZuHqQ/z9i938evIgDDqFtQfquOvcLH7+9iZcHj/Lbp9AeozMBgshtFFW72D6S2tweHy8MDOX+d/uY3CShYRIMw8u38ZNEzO55/wBRIWZqGlycc9bG8k/VMf8Wbl8srUMaNlsMm9JAXkZ0Tx1/SgJwkIITXh8PopqHaw/WMv9721FVWFUehQbi+oBuPOcLKaOTCE9Oowws4GyBgf7q5q5bVE+dreP7GQL+6qacHn9XJSdyC8uHEiKNQSrhtVrJAR3oM7u5pHlhXy4uRRoKeb8/p1nEG42MPXZ79rq241Mt7LolnG8tuogf/9id9vnn585ijGZsVw7fxUHqu0AJFlC+Phnk4iTPzJCiB6qs7u56rnvOVjTcn1JtJj54M4z2FfVxOxX17WVJbr5jEx+edEgbl+cz3d7a4CWMkUf/nQSAFc8+13bZpOzB8bz1PUjpUSaEKLH9lY2MeWZ75gxrg8DEiP4zZEgDC0BONkayu8+2saLs3IZmmLl6udXMSTZwi2TMo+s/23ZpXtRdiIzxvXh9iUF/PKiQVx/ZJ+DFqREWgfCTQZumJCB2dDyY7j3woHY3V52ltn409XD2o7bVNTAhD99eUwAnjI8mUGJFt7fWMwz00ejO/KTvHp0KgZdYNayCCFObzpFYea4jLavn50xmn/vqCA2wszs8f99/Z/fH2TcH/7dFoABHpmSTWmdg9I6B49MyQZaGmvMmdQXkyGoL/1CCI1EhxmZkBXDK98doKTOwbPTW8ql3XfRQAYlRfLwh9vw+WHu4gLO/9s3lNuc/GdXJf/8/iBvzR1PmEnPpTlJ3HFOFrcvKSDcZOCCIYkBK5EW1DPB0FKHc0txPRsO1TGyTxSzX1mH2+fn2emjALjrjY3HfWbK8GR+fsFArn9pDVWNLu48J4tLhyXz6dYy5p7VT2ZYhBCaaXB4WLq+iJF9oig4VMefP9uJNdTI23PH88a6wyxafei4z/zp6hySLKHctqjlOvnSDXlU2BykRIWRlxlNmCkwf2CEEKe/miYXj31cyL0XDmLlnmpyUq0cqmlmdEY0cxfls72s8ZjjdTr48K5JFJY2MCjJQpPTS7I1hJdX7mPu2f3JjA1D0XBjnCyH6EKjw8POikZmvby2ra+1otBuEP5hAG515zlZ3DQxkwQpjyaE0Fhlo5P3NpTw5892tr3WURA+OgB7j/RaNugUXr4xjxHpUUTLTboQQmMVNie/fW8rX+6s5KLsBL7YUUl2soX5s3OPCcKtAfiTLaW88M1+zuwfR8HhWsLNLdezjJhQ9HptW7qf0uUQiqJMVhRll6IoexVFub+d9/soivIfRVE2KoqyRVGUS3v7nI5mdx0bgHUKmPQ6VBV++mZL+H1uRksYbi8AhxhbfoTPf72P11YdpLrRGcjTF0Kc5mqaXMcE4NblWw0OD9ctWMOMsX24YULL0ogfBmCDTsGgU/D6VW5dmM/monoaHYGpvymECA6VRwXgy4cn89DlQ7nj7CwKS23MW1zAghvyyE6OPC4AD0+z8uDl2Tx+5TBqmlxct2ANh2od+P2Ba5bRqzPBiqLogd3AhUAxsB6Yrqrq9qOOWQBsVFX1BUVRsoFPVVXN7GxcrWaC7S4PhWX/DcBGvcIz00cTFWbktoX5NLq8bTPCKVGhWEKMxwTgX08exEXZSdyycD2HjmxcufOcLG45I7OtbqcQQpysmiYXywqK2wJwosXMqzeNYePheh5avg1V/e+McJPLS6PT2xaAQ4w65s/KBWDekgKcHn/bjHBun2giO2nFLIQQ3VFpc/KbowLw1JGp/PSNDTx4WTZlDQ6e/3ofQ1NaZoSbXV4+2FjSFoAfvjyb25cUcElOMqP6RHHfss3ERph5e+54MmPD0Om0mac9lTPBY4G9qqruV1XVDbwFTP3BMSrQ2qrNCpT28jm1cXj8/PP7A8cE4H8VlvP0l3tYcEMekWZD24zwVzsrjwvAALcuyufJ60aSEdtSFu2dgmJ+fAtMhBD/ixRF4fW1LUsdEi1mXpiZy33LNlNS5+CxqTkoyn9nhFfurT4uAC9Ze5glaw8zf1YuIUYdXr/Kgm/34wngTIsQ4vRVb/fw/b7qYwKwy+vn4Q+3kWwN5c5zWmaE5y4q4LVVB48LwNVNbhavOcTGw/U8MW0ENU0uPt1aRn2Anlj19kzwNcBkVVVvPfL1bGCcqqo/PeqYZGAFEA2EAxeoqlrQzlhzgbkAffr0yT106PjNICeqweFhX2UTz329l2m56fyrsJz3N5YAMDErlrvPG8DcRS0zwkdrDcB/+XwXAH3jwvn7tSN47OPtPHhZNgMSIzQr7SGECF4+v0pJvZ173trIQ5cN5YEPtrLjyNq6O87OIjU6tG1GuNXRAfiL7RUAXJidyKxxfXjpuwM8cc0IkqzypEoI0XMNdjel9U5K6h3cdSQAt1IUePSKnLYZYeC4AHy02eMzWmoKx4S1derVwv96ibTpwGuqqqYBlwKLFUU57rxUVV2gqmqeqqp58fHxmnxja6iRFGsID1+ezRfb/xuAAVbtq+GZr/47I9zqhwEY4EB1M/cu3cyT140kzKTHqP9f+LEKIX7sHG4vv/9oO89MH31MAAZ44Zt9x8wIQ/sBGOCL7RW8vvYwf7pqGPe/uwWbrAsWQmigzu6mstF1XAAGUFWOmRHuLAADLF5ziM+2lVNUa6fpB5OPvaW301oJkH7U12lHXjvaHGApgKqqq4EQIK6Xz6uN2ajn+a/38e6GH57W8UG4vQDc6kB1Mzf+cz2WUCMhRm13NgohgpNep/DIlKHctij/mADc6uggHGrUtxuAW63YXsGjH2/nj1cPI9wk1yghRM+5fSpzF+cfF4BbHR2EH78yp8MA3OqV7w6w5kANgapc1tsheD0wQFGUvoqimIDrgQ9/cMxh4HwARVGG0BKCq3r5vACot7t5YsUu3l5f1OExrUH445+1dF5qLwC3OlDdzIwflE4TQoiTZff4mLe4/QDcqjUIf3HvWR0G4FZfbK/g8U+2t3XDFEKInoiLMHP+kIROj1FVeGj5Nn7ywqpOAzC07H2YMjwlYEtKe7ViuqqqXkVRfgr8C9ADr6qqWqgoyqNAvqqqHwK/BF5SFOUXtGySu0kN0C2A369y5oA43lpfhM/f8bdcta+GaS+uprIb4XZUn+iA3cEIIU5vPp/KuL6xnYZgaAnC724o7vIapShwzqCETq93QgjRXQ63l5njMvCr8Pm28k6P9fg6v+4kWszMn5VLab2DuAgz4QHoGtfri1dVVf1UVdWBqqpmqar6hyOvPXwkAKOq6nZVVc9QVXWEqqojVVVd0dvn1Mpo0GENNfK3aSPQd9HquDsB+MqRqVw3Jr3LsYQQojsMeh0XZice0yK5I90JwI9NzSHFGoJR2iYLITRg0Ov446c7uH5MOpNzkk56nESLmRdn5fLwh4UY9ToMAcpRQX0ljAwxkpNqJdFi5unrR/UovE7LTeP6sekMSIggNsKs4VkKIYJVTLiJIckWJuckMWdS35MeR1HgLz8ZTmZsGMPSorBKjWAhhAYSLSG8etMY/vavXTx02RAmDz3xIJxoMfP23AksXHWQhy/PZliaFXOA9lYFfQP5yBAjw1Ot1Nnd/P3aEdy7dPMJPyq8cmQq887uhyXEKAFYCKGpmHATg5IiSbKE4Pb6WbzmxMpDKgo8PjWHcX1jiAkzSZMMIYSmEi0hvHzTGJasPsj1Y9PxqyorOtmbcOxnzTw/M5cnVuzit5cOITbChNkQuI27QT0TDOD3+6lscnHVC6tZd6C2W0sjjnblyFQm5yRx6dMrWX+wjrrmzhd9CyHEiWh0eCgsaeCSp75lZJ+obi2NaNW6BKK4zsEVz35PaYMTTwe7uIUQ4mRUNzp57fuDPPOffTz/9T7uOCer25+dMiKFLcX1fLyljNsW5VMb4AwV1CHY7/dzqNbOtfNbKjq8vvYwMeEmzh3UvTrEoUY9v710ML99fytur8pP39zAqn01EoSFEJpodHjYcLiOOQvzcftUHv5gG3eem0VMuKlbn8/LiGZoioUXv91Hg8PDtfNXs7+6WYKwEEIT1Y1OXvnuIC98s4/haVZ+dfEgbluU3+3Pv/LdAQw6XVtnuVsX5lPW4OjFMz5WUIfgBoeXBz/Ydkwr5MLSBv69o7Jbn3d4fPz87U08N2N0W4vl+5ZtbitcL4QQPaEoCve8vamtFfLzM0fz8PLCbs+WrD9Yx4rCimNaLP9y2SbsbimRJoToucpGV1sA7qwRRkd+2FCjsNTGKysPUG8PzGRir7ZN7i15eXlqfn737zQ60uBwU1Ln5J63NnL16FSg8zrAHWltsXz3mxt4YtoIhqdZiQmXtcFCiJ5xeXzsq2rmxlfX8sS0EV3WAe5Ia4vlBd/u441bx5MWE9YLZyuECDa1TS42Hq7HGmY84QB8tNYWy0a9wrmDE4KqbfIpE2EyYDbomD87F52inFQAhv821HjvjomAikEX1D9WIYRG7G4fi1cf4N07J550AIaWOsKl9Q4W3TKW5/+zN2CzLEKI01uzy0tyVEiPAjD8d0bYaNCxv6qJRmdgWrsHdVrT63XERZhYuaeaP322s0djrdpXwwPvbyU7xYpFdl8LITSg08FNZ/Tl8Y93nHQAbvX81/tYml/MTZMyMUmdYCGEBnwq3PDqum51ghvfL6bTY1qXlHanL4NWgvpK2ODw8OHmMh75sLDLY4elWrusGrFybw2/XLqZmiZpmyyE6DmfH576954uyw0pCoxIs3Y53vNf7+NfhRW4ZWOcEEIDYWY9CZGdL11IsoTwzu0TeWFWLpcO67yOsNmgo29cOOYA3agHdQhWVZXmbmwQuX5MOq/fOo5XbszrMgg73D5+hMushRD/g1RVxeHxdXqMosDT149iya3jmHdWvy7HbHJ6kUuUEEILCZEhvHbLGLKTLe2+n2QJYdntE0iPCSM6zMTjVw7rMAiHGHUsnTeBwUmRmAJUKzioQ3BUmInpY9O5f/LgDo+5fkw6v548GEuokXF9YzsNwnkZ0bw4K5e4SNkUJ4ToudgIM09MG9Fh2cbWAHzu4HgiQ4zccU5Wp0F43ln9uOOcLKLDuldiTQghupIQGcI/bz4+CCdZQlg6bzzpR23EjQk38ejUnOOCcIhRx9tzAxuAIchDMIA11MT0cf8NwucMjOcnRypFtAbg6CM1OUNN+mOC8MDECO46tz8gAVgI0Tt+GITnTOrLiDTrMQE4wtyyDyEqzHRMEL4kJ4lLclr+2LQG4CgJwEIIDdkcHr7bU80frsphZFoU908ezJCkSF6cncsnW8uoO2ojrtPj40BVE9flpTM5J4k7z8liWKqFl28cw4rCcmzOwJZvDOoSaUdrcLhZubsaS6iRersbl9fPBUMS2wLw0RxuH9tK6tHrdOQfqiPFGsL4frESgIUQvaamycU3u6tocnkZkmzB4fYyOiO6LQAfrd7u5ssdFW2bdG0OD+cPSZQALITQlM3h4cPNpTz4wTb6xITyxm3jWZZfzLS8NO5btpk1+2u5aWIG91wwkDCjnk1F9cx6ZS16ncKHP53Ed3uqOGdQAgtXH2ThqkNMzIrl6emjiIvQLk91ViLNoNl3+ZELM+nJiAvnuvmrcXn9vHxjHiHG9qfkQ016kqyhXDd/NaUNTu6fPBijQTpkCCF6j8mgw+X18/DyQmLDTSy7fQLhpvYv4aEmPekxYcx6eR0AS24dS6gpcI8YhRDBobTewYMfbMNs0PG7K3J4/JMdfL6tnG93V/Hby4Zw++ICXlt1CIDzBicyZ+F6PD6VBy/L5qPNpTzz1V5eWnmA52aMZvW+Glbtq2H+N/u554IBRJh7P6LKTDDg8fnYVd7EtfNXY3e3bELR6xRevTGPsX1jj/vjUVxn59oXWwJwq99cMpjrx6ZjDZWZFiGEthqdHj7dWsav393a9lpsuIl37phIZmwYylFtKl1eH1uKG5j50lrcvpYqECa9jtdvG8fwNCvmAK63E0Kc3mwOD+9uKCYjNpyl+UV8vq287b1R6VFtQbjmqC6Xv79iKNVNLp75am/ba8nWEJ6bMZpFaw7ywKXZxGv4ZF2aZXSivQAM4POr3LIwn3UHanAc9Xp7ARjgT5/t5K11RTQ4pAi9EEI77QVggJpmN9e8sIqDNXZaJzPaC8AAbp+fmS+tZUtxAy5v59UmhBCiuyyhRi4fnsy7BcXHBGCAjUX1/PGTHbw4O5fYI0tL2wvAAGUNTu56YwP3XjBI0wDclaCeCe4oAB+tdUZ4XL9Yqptc7Qbgo8mMsBBCKx0F4KO1zginRoWyubj+uAB8NJkRFkJoqbbZze8+3MaHm8s6PKZ1RnhvZROl9Y7jAvDRkq0tJdXSorVr7S4zwR1odvl45ss9HQZg+O+M8OLVh7oMwAALvt2P1/fju7EQQvzv8ftVnvz3nk6PaZ0RXrLmUKcBGFpmhJ/41y6cHmmWIYTouZomF59v67yZz8aiev7wyQ52lNk6DcDQMiP8/oaSgLVNDuqZYGj5Bf787U2s3FPd47FaZ2QyYsLQddFUQwghuqO4zs60F1dT1sUNeHeM6hPFgtl5AX3cKIQ4fbm8PrYUNTDz5c5vwLvrljMy+dn5AzStZCMzwZ2ICjPx12uGc+aAuB6NExtu4s2544mPMEkAFkJoJibcxOu3jiPZ2nlr0q6MSo/iuRmjiQqTokBCCG2YDXr6J0Tw0g25mPQ9i5Qzx/Vh3ln9AlrKMahDsM+vUlxnp8rm4mfnD2BiVuxJjRMbbuLF2bmU1jvYUtwQsGl8IcTprdnlpbCkgQqbi+dmjj7pIDwyPYqHLs+m0ubkULUdj082xwkheq7O7ubvX+ymutnNqzflnXQQnjW+D3Mm9eWWhespa3BofJYdC+oQbHd5aXR6uX1JAXNeW8/d5514EG4NwH/8ZAdzFuZT3eTC7ZX1dkKInvP4/NicXm765zp+8+5Wnptx4kF4ZHoUD1w2hNsW5TNnYT5NLi8uWRMshNBApc1FmEmP2+tnaX4xz84YdcJBeMbYPozJjOHPn+3gVxcPZun6wzS5AtM5LqhDsB/4w6c7KG1wYnN6mbc4n59fMJARadZufd5s0PHyjXn88ZMdbCyqx+dX+dW7WzDIcgghhAYMOh33Lt2My+tnV0Ujv3lvKy/OysUS0r0lDf0TInhkSnZbnc6aZjcPfLAN/49vK4gQ4n9QosXM0BQLv31/Kx9uLuXjLWU8NX1ktz9/xYgUJmbFcu/SzazYXsmStYeYPjYjII0yIMhDsDXUyN+njSAztqUUR5I1BINOocLm6tbn3T4/h2vtZKdYgJbyQwtvHou5g05zQghxIsxGhSVzxhF65JoyKCmSykYnDk/3ljPUNrvx+lXSY45c4ywhLSE69PhWy0IIcaLKbU7ueXsTrTUWcjOi2VZi6/bnD9Y0k2gNIerINemL7ZW88t2BgM0EB311CICyege/fX8rd583gJ++saHLMmhH0+sU5WmgQAAAIABJREFU/n7tCAoO1nHZ8GRGpEd12G5ZCCFOlMfnY2dZE6+tOsDknCTuen3jCe3Cbl2y9cJ/9vL7qTltgVgIIXqqpM7OgpUHWLjqYIeNMLrSumTr9sUFxEWYeW7mKJIsIUSEaHOz3ll1CAnBRxyuaeb6BWtOKAC30usUFszOZUxmjMywCCE0Z3d72FJs44ZX1p1UGaLYcBNL502gX3z4MS2WhRCiJ2qb3ewos+FXVdYdqD3hANxqZHoUv79iKAadQky4ieSoUM3OUUqkdaG4zn7SARhaqkzMXVzAxsN1x7RYFkKInnJ5fRSWNp50AIaWhhrXzl99TItlIYToqZhwEwMTI9ha3HDSARhgU1E9v/uwkNgIbQNwV4I+BBfX2bvVCa4rrZ3l1h2okSAshNCEy+tjS3FDl53guqO1s5wEYSGEVhocbt7bUMJf/7Wrx2NtLKrnjtc3UNXYvX1ZWgjqENzg8PB/72zpMgDHhpt4a+54JnRRPs3nV5m3pEBKpAkhNOH1qdy68P+3d+fxUVV3H8e/v+xAgmBYlB0ssiNLRFCLULVqF7dqXaEWH7FqWy2lj7XWpfZR61K7WG3BahWtVVtt1aqttQWxFooBcQWVUpBNDMiSkBCy/J4/MoMxZJlh5k4muZ/368VL5s6dMz+4cuabM+eeU9xiAB7Tt4t+/7VJLS6ftnXXHn394WUqTdFNJwDat03bd+vm51a2eN65E/rGtHzaq+9v19yFq1kiLRU65WTq1i+N3rs6RGMKO+XotxcdoQ3bynXbGaObDcI5mRm6Z3qRXIyyAEhcba3rvguK9q4O0ZgxfbvoF+eO1eqSXXqohZ3lDj4gT784d6w6ZIW66weQJIX5Obr2C8ObPef8if0085hDlJ+bpV9/pfkNNSYdUqgLjx7IEmmpUFZZrbsXrNJPzhrTaBCO3lV99RNv6MPSSv3PA8X65mcGNxqEczIz9Itzx+qZ1zeplq8aASRBraTfLl6rOdPGNxqEo3dVz7j/Fe2oqNIVj7za5IYaBx+Qp7vOHac7/7FK5WyWASAJtpdXqaKqWledNLTR56MbYcx+7DW99N4W/WFp0xtqTDqkUN/8zGD9cdn6lO28G/rVIT7YWaGbnlmprx41QN96dLnWbC2X9Mmd4F5dt33v+Z3zsjRnWpF+/o/3tOg/WyV9HID/sfJDzThqoPoXdlBudmp+igHQflXV1Gj9tt36+Qvv6rRxfXTxg0v3rhFcf1mhrbv27H3NkJ4Fuvn0Ubrs4WXaFJnqFQ3A9728Wld/frgOPiB1N54AaL+2l+/Ra+u2682NO5SVkfGJqRHnTuinIwYdqFmPvaaaejv0nHxYL31h9MH6+sMfL/cYDcB/eWuTLpvyKfXovH9bxDeG1SGasLOiSh+V7tGMowfqvpfX7B0RbioAS9q7s1x0RLh+AP7S+D7aXV2j3cwJBpAEe6pd5XuqNf3IAfrjsvV7R4SbCsCS9u4sFx0Rjgbge19erZmTD9H2XXtSNsoCoH37YMduvbO5VKP7dFF1be3eEeGmArCkvTvLRUeEowH4+bc36ZzD+7FZRkuSNRK8o3yPLn90ed1E7Gnj9dC/39eMowaoptZ1YyMBuL7oiLAkPbl8g04f10e3/mWl3t1cqgXfmaoDO+UkXB+AcNtZUaVjf/yienTO1Q9PGakHF63R2RP6KSPDGg3A9UVHhCXp3pdXa8ZRg/S1h5aqT5cOun/GBB3AmuYAErSjfI/e3Vymx5et1zFDumt1SZlG9e6ibeV7Gg3A9Z18WC+de0Q/uUvPvrlRRwws1IqNOzX9yP7q2Tk16wSHOgTX1NTqP1t26Yxf/ktmdRtezFu8VqtLyrRiU2mLr++cl6UJAw/UzMmH6Na/rFTx2m268bSR+uLoXmyaASBhZZXVevGdD/X1372q4Qd31g9PGam75q/Sq+u266NmAnDUId07aXDPfF306UP0tYeWqmx3tR67eJKGHpyv7Ex2tgSQmFUflumLd/5TFVU1+tK43jpueE89sWy9/rGypNkAHDVx0IEa3DNfRwws1BWPLFd1rev7nx+msw7vq4IU7BgX6ukQmZkZOqRbJ/3hkiPlXrfhxQVHDlBmRmw7KlVW1+prxxCAAQQjPzdLxwzpoV+cM1Zvb9qpa558U9/4zKdUFceUq4snE4ABBKNrx2xNHHSgJOnxZRv0wtubdcphvWMKwJLULT9XkwZ12xuACzvl6NhhPVkdIlXqB+EBhR2VlWH6qKzlERZJqqqp1Qc7d2tg904EYACBqB+E+x3YUR+VV6kyxhC8vbxKtS7169qBAAwg6Qrzc3X7mYdp6pDukqRhB3fWqpKymF+/cXuFCvNzlJ+XpcJOOXuzWKq2dw/1dIj6ampqtWF7hc799b+1fltFzK/LyjDNnT5eY/t2UddOuUmtCQCidlZUacWmnZp+35KYQ7AkdS/I1SMzJ6pf1zxlZ7FqDYDk21pWqcWrt2pVyS795G/vxvXa8f276qqThqp7Qa76HZj8AMx0iBhsLq2MOwBLUnWta+a8pXp7U6kqqtiFCUDy7amu0X9KyuIOwJJUUlqps+cu1sYdlWyXDCAQ2ZkZ+mDn7rgDsCQtXbtNt/xlpTrmZKVsBDiKEKy64fgvz1kUdwCOqq51feW+JVq2djtBGEBS7amu0Vsbd+rsuYvjDsBRJaWVOuNXi/T+R+UEYQBJtbOiSn9Yul4//POK/W7jlTXbdOlvl2pLaWUSK2tZ6ENwogE4iiAMINmSEYCjCMIAki0agG/489sJt/XKmm26JMVBONQheEdFlWb//rUWA3CXjtl68rKj9t4B2ZTqWteFD7yiPdV8wABIXFWN64LfvNJiAB7Vu7P+/I2j1aOg+fsSSkordelvl6k0RQvRA2jfNm6viCkAT5vYT7+54HBlZzY/3eGVNds0Z+F/UrZZRqhD8AEdsnX7mYep34EdmzynS8dsPXHJkRrV+wD94txxzQbh7EzTby44XLlZof5rBZAk2ZmmeTMmKC+76T5lVO/Ouu+CwzWy9wF6/JIjmw3CPQpy9avzx6tzktbfBBBuvbp00A0nj2j2nGmT+mvW8UM06ZBCzZsxodkgPHHQgbr4mENYIi1VenXpUHfndCNBOBqABxR2UkaGqVt+bpNBOPphNbZfV+VlswQRgMTlZGVq2MEFenTmpEaDcDQAdy/IkyT1PbBjk0G4R0GuHr/kSPVt5od+AIhH5w7ZOnVs7yaD8LRJ/TXruEPVtVOO8rIzNbZf1yaD8MRBB+oX545Tt/zUrbQV+hAsNR6EGwbgqMaCMAEYQFCaCsINA3BUY0GYAAwgKE0F4foBOKqpINwaAVgiBO9VPwg3FYCj6gdhAjCAoDUMwk0F4Kj6QZgADCBoDYNwYwE4qmEQbq0ALLFZxj42bq/Q7qqaJgNwfVvKKrVxe4UO7VlAAAYQuD3VNVr14S51L8hpMgDXt+6jckkiAANIiZ0VVVr5wU4N7lHQaACub3dVjd7dXKpeXToEGoCb2yyDENwId495weZ4zgWARNHnAEhn6Zah2DEuTvFcED6MAKQSfQ6AdNaWMhQhGAAAAKFDCAYAAEDoEIIBAAAQOgmFYDPLT1YhAAAAQKokOhLc8obRAAAAQJppcXNmM5vV1FOSGAkGAABAmxPLSPBNkrpKKmjwKz/G1wMAAABppcWRYEnLJP3J3Zc2fMLM/if5JQEAAADBiiUEf1XS1iaea3QHDgAAACCdtTidwd3fcfctTTy3Ofp7M7szmYUBAAAAQUnmnN6jktgWAAAAEBhubAMAAEDoEIIBAAAQOskMwZbEtgAAAIDAxByCzWxUC6f8LMFaAAAAgJSIZyT4bjNbYmaXmtkBDZ909/uTVxYAAAAQnJhDsLt/WtJ5kvpKWmpmD5vZ8YFVBgAAAAQkrjnB7v6epO9LulLSMZJ+bmYrzez0IIoDAAAAghDPnODRZvYTSSskfUbSF919WOT3PwmoPgAAACDpYtk2OepOSb+W9D13r4gedPeNZvb9pFcGAAAABCSeEPx5SRXuXiNJZpYhKc/dy939wUCqAwAAAAIQz5zgFyR1qPe4Y+QYAAAA0KbEE4Lz3L0s+iDy+47JLwkAAAAIVjwheJeZjYs+MLPxkiqaOR8AAABIS/HMCb5C0u/NbKPqtkg+SNJZgVQFAAAABCjmEOzur5jZUElDIofecfeqYMpKjW279qissjqQtvNzs9S1U04gbQMIB/ooAAhOPCPBknS4pAGR140zM7n7vKRXlSJlldX69K3zA2n7pf+dygcMgITQRwFAcGIOwWb2oKRDJC2XVBM57JLabAjOycrQIzMnBtY2ACSCPgpAOgvq26pUfVMVz0hwkaTh7u5BFZNqFXtqdPbcxYG0vWD2lEDaBRAe9FEA0llQ31al6puqeELwm6q7GW5TQLUAAACgjQjq26pUfVMVTwjuJultM1siqTJ60N1PTnpVKRLkkHa7GS4HAABoRFDfVqXqm6p4QvD1QRUBAAAApFI8S6S9aGb9JQ129xfMrKOkzOBKAwAAAIIR86QLM7tI0h8kzYkc6i3pTzG87kQze8fMVpnZd5s458tm9raZvWVmD8daEwAAALA/4pl5fJmkoyTtlCR3f09Sj+ZeYGaZku6SdJKk4ZLOMbPhDc4ZLOkqSUe5+wjV7UzXakb27qyjP9UtpnMP6pynU8f0DrgiAGHV2L0FJ408SP0LO8b0+qL+XVXUv2vMbQNAIjJMOn9if3XIjm2iwCljeumgznkBV9W0eEJwpbvviT4wsyy13I9OkLTK3VdHXvuIpFManHORpLvcfZskufuHcdSUVIf1OUDXf3GEZk4epOOGNZvvdVDnPN193jgdN6yHLp48KEUVAgizcyb01alje+unZ43RgBaC8KRBhZp9whDNPmGIJg0qTFGFAMIqw6Rbzxitkb07a8608S0G4YsnD9Lxw3rq7vPGtVoQjicEv2hm35PUwcyOl/R7SU+38JrektbVe7w+cqy+QyUdamYvm9liMzuxsYbMbKaZFZtZcUlJSRxlx+awPgfomi8M19ceWqqLH1yq6ZMGNBmEowH4e398Q9945FX1L+xEEAYQqHMm9NWkQYW69LfL9K1Hl+snzQThSYMKdflxgzVzXrFmzivW5ccNJggDCEw0AL+5Yae++/gbmrdoTbNB+OLJg9S/sJO+8cir+t4f32i1IBxPCP6upBJJb0i6WNKz7n51EmrIkjRY0hRJ50i6x8y6NDzJ3ee6e5G7F3Xv3j0Jb/ux+gF4S9keVVTVNBmE6wfglR+Uyl26+k9vEIQBBCYagL/12GuqqXWt2VreZBCuH4B37q7Wzt3VBGEAgXB9MgDf/681kqQXVnzYZBCOBuCr//SG3KWVH5TuE4RTNV0rnhD8DXe/x93PdPcz3P0eM7u8hddskNS33uM+kWP1rZf0lLtXuft/Jb2rulCcEg0DcFRjQbhhAI4iCAMISsMAHNVYEG4YgKMIwgCC0jAARzUWhBsG4KjGgnAqWKy7IJvZMncf1+DYq+4+tpnXZKku1B6ruvD7iqRz3f2teuecKOkcd/+KmXWT9KqkMe6+tal2i4qKvLi4OKa6m7NhW7k27di9TwCur0N2puZMG6/n3tykM8f33ScA12cm3XjqKK3duktnT+ingd06JVwjgPBav61cy9Zu2ycA1zegsKN+ctYYPbzkfX1pXJ99AnB9nfOyNHd6kX72wnu66fRR9FEAErJxe4XmLly9TwCu77hhPTR90gAtWfOReh3QYZ8AXN/Qgwp002mj1K0gV/0OjO0G4JaY2VJ3L2rsuRZHgs3sHDN7WtJAM3uq3q/5kj5q7rXuXi3p65L+KmmFpMfc/S0zu8HMojvN/VXSVjN7W9J8Sd9pLgAnU05Whn76wntNBmDp4xHhov4HNhuApboR4f975m1NP3KAMs2CKBlAiHTOy9Z1T73VZACWPh4RPuqQbs0GYKluRPjGZ1bo2i8Ob/IcAIjVjooqPbBoTbPnvLDiQz2waI0KcrOaDcBS3YjwM29sUk5marZNbnEkOLJBxkBJN6tuXnBUqaTXI0E3pZI1ErxuW7lKdla2GG5jFR01nrdojb7/heEaUMgoC4D9t2F7udZ9VNFiuI1VdNT4W48u1/0zJtBHAUjI+m3lWvjulhbDbayOHdZDX5k0QP0O7KgBSfqmKqGRYHdf6+4L3H2Su79Y79ey1gjAyVRd47r0t8t002mjNPSggoTaqh+AX1jxYVL+ZwAQbnuqXT974T3NnV6kznnx7HK/r/oBeM3WcvooAAmrqnGt3bpLN546Sol+AR4NwBc/uDT9bowzs9PN7D0z22FmO82s1Mx2BllcKnywc3fCQbhhAAaAZFm0emvCQbhhAAaAZDCT5ixcnXAQrh+AK6pqEg7UsYpn0sWtkk529wPcvbO7F7h756AKS6VEgjABGEDQEgnCBGAAQcnLytAjMydq6tAeGt+/i3521pi4A+wJI3rqui+OUF52hn7z1cP1yMyJystKkznBe080e9ndjwq4npgka07wBzsqPvGhkJOZoe4FubrgN6/oPyVlLb4+O9P02MWTlJOVodIG8/UGFHbUQQd0SLhGAOHVsI/Kz81Shklf+uUiVVTVtPj63l066OGLjtC2XXu0u7r2E8/RRwFI1H+37NLU2xfsfTxz8iD17dpR1zz5ZkyvP+bQ7rrw6IF7R4Cj5s+ekrTVa5qbExzPkEKxmT0q6U+SKqMH3f2JBOtrNRVVtTp77uK9j6PrAMejdHd1o6PA82dPSUKFAMKsYR8VXQc4Hh/t2tPoKDB9FIBka2vrYsUz3txZUrmkz0r6YuTXF4IoqjXU3wgjllFgqW5CeEtbLANAMtTfCCOWUWBJ2rC9osUtlgEgGaIbYVz7VGyjwJL04rslemBR81ssBynmkWB3/2qQhbSmpnaCi0V0HeE508ZLEvOCASRdUzvBxaL+znLMCwYQhKZ2govF3yO5ac608ftMiwhaPKtDHGpmfzezNyOPR5vZ94MrLTUSCcBRjW2xDADJkEgAjmpsi2UASIZEAnDU3yMbaqR6RDie6RD3SLpKUpUkufvrks4OoqhUycq0hANwVMMgzIZxABKVk2UJB+CohkGYPgpAorIzLeEAHFU/CKeqe4onBHd09yUNjrXpzTLysjL047+902IA7pCdqR+feViLy6dVVNXoaw8t1Q9OGamMNjc9HEC6KcjN1iUPLW0xAA8o7KifnjWmxeXT1mwt17VPvqVfnj+ezTIAJKx0d3VMAfgzQ3voqpOGtvjD999XfKgX3y1RXopGg+MJwVvM7BCpbiMPMztD0qZAqkqRPdW1uuK4Q1XYKafJc6LrABev/ajFdYTNpO9/fpjm/WuNavmEAZCgnburdP3JI5SZ0fQnR3Qd4Jf/s0VzpjW/jnDnvCx973PDdMPTbwdRLoCQOaBDtqZPGtDsOccO66ELjhyg0srqFjfUGHpQgT4/6mBV1dY2fVISxROCL5M0R9JQM9sg6QpJlwRSVYpU1bj+789v61fTxjcahOtvhPG7Jeua3VDDTLrx1JFau7VccxauTkH1ANq7qhrX4tVbdceXD2s0CNffCOP3xev187+/12QQ7pyXpTnTivTzv7+nRau3pqJ8AO1cZXWtRvXurK8cOaDR5+vvBPeLf6xqdme5oQcV6KbTRunS3y5TdU1qBhJjDsHuvtrdj5PUXdJQdz/a3dcEVlmKvLZ+R6NBuLGd4JraWY4ADCAov1uyrtEg3NhOcItWb200CBOAAQTlf//weqNBuOFWyFLTWyzXD8Af7NydstrjWR3icjOLrhX8EzNbZmafDa601GkYhJvbCrlhECYAAwhK9DOiYRBubivkhkG4qQDMXQsAkqHW9w3CjQXgqIZBuLUCsBTfjnEz3P1nZnaCpEJJ0yQ9KOn5QCpLsfpBuGJPTaMBOCoahO8+b5w2bK/Qmxt2EIABBOp3S9ZJku4+b5x6FOQ2u+ZvNOzOmVa3UygjwACCFA3Ct54xWjefPkq9u3Rods3fOQtX6+LJg3Tn2WPVq0uHVgnAUnwhODpw8DlJ89z9LbP2tcjOa+t36AdPv6UuHXL0z1Vbmj03GoQnDirUn5ZvSFGFAMLsd0vWaXt5ld7etFNrW9j0YtHqraqqqbu5pHjttlSUByDEokH43CP664an325x04s5C1frlDG99O/VH7VKAJbiC8FLzex5SQMlXWVmBZJSc/teCr25YWfM536wczcBGEBKPffmBzGfS/gFkEq1Lj20eG3M5z+5fGOA1bQsnhB8oaQxkla7e7mZFUpqt1spAwAAoGlBTQdI1TSDFkOwmQ1195WqC8CSNKidzYIAAABAyMQyEjxL0kxJP27kOZf0maRWBAAAAASsxRDs7jMj/50afDkAAABA8OJZJ/jMyM1wMrPvm9kTZjY2uNKCF+SsDmaMAEgUfRSAdBbUvm6p2S8uvm2Tr3H3UjM7WtJxku6V9KtgykoND/BvOci2AYQDfRQABCeeEBxd8O3zkua6+zOScpo5HwAAAO1URkDfKAXVbkPxLJG2wczmSDpe0i1mlqv4QjQAAADaibzsTD0yc2Ig7aZCPCH4y5JOlHS7u283s4MlfSeYslKjQ04wFy/aNgAkgj4KQDrbU12rs+cuTnq7L/1vatZiiDkERzbIeFJSTzPrFzm8MpiyUiOoiyel7gICaL/oowAgODGHYDP7hqTrJG3Wx9slu6TRAdQFAAAABCae6RCXSxri7luDKibVcrIyAvuqMSeL6dIAAADpKp4QvE7SjqAKaQ0Ve2oC+6pxwewpgbQLIDz4QR1AOguqj0pV/xRPCF4taYGZPSOpMnrQ3e9IelUAAH5QB5DWguqjUtU/xROC34/8yhHrAwMAAKANi2d1iB9IkpnlRx6XBVUUAAAAEKSYJ12Y2Ugze1XSW5LeMrOlZjYiuNIAAACAYMQz83iupFnu3t/d+0v6tqR7gikLAAAACE48IbiTu8+PPnD3BZI6Jb0iAAAAIGBxrQ5hZtdIejDy+HzVrRgBAAAAtCnxjATPkNRd0hOSHpfULXIMAAAAaFPiWR1im6RvBlgLAAAAkBIxh2Az+5ukM919e+RxV0mPuPsJQRUHAGGWlx3cjnF52ewYByDc4pkT3C0agKW6kWEz6xFATSnDBwyAdFZRVRvYjnHz2TEOQIKCylGpylDxhOBaM+vn7u9Lkpn1l+TBlAUA6BDgD+od+EEdQMjFE4KvlvRPM3tRkkn6tKSZgVSVIoyyAEhn9FEA0llQfVSq+qd4boz7i5mNkxQdlrjC3bdEnzezEe7+VrILBAAAAJItnpFgRULvn5t4+kFJ4xKuCAAAAAhYMieFWRLbAgAAAAKTzBDMTXIAAABoE7g9GAAAAKGTzBC8J4ltAQAAAIGJ68Y4MxstaUD917n7E5H/BrOYJQAAAJBk8WybfJ+k0ZLeklQbOeySngigrpQI8k4+7hIEAABIX/GMBE909+GBVQIA+AR+UAeQzoLqR1LVP8UzJ3iRmRGCAQAA0ObFMxI8T3VB+ANJlaoL6u7uowOpDAAAAAhIPCH4XknTJL2hj+cEAwAAAG1OPCG4xN2fCqwSAAAAIEXiCcGvmtnDkp5W3XQISR8vkQYAAAC0FfGE4A6qC7+frXesTS+RBgAAgHCKOQS7+1eDLAQAAABIlXg2y8iTdKGkEZLyosfdfUYAdQEAAACBiWed4AclHSTpBEkvSuojqTSIogAAAIAgxROCP+Xu10ja5e4PSPq8pCOCKQsAYAFumxRk2wDQFsQTgqsi/91uZiMlHSCpR/JLSh0+YACks4wAO5Ig2wYQDkF1I6nqnuJZHWKumXWVdI2kpyTlS7o2kKpShA8YAACA/RNU1klVhjJ3T8kbJVNRUZEXFxcn3M62XXtUVlmdhIr2lZ+bpa6dcgJpG0A40EcBSGdB9VHJ7J/MbKm7FzX2XDyrQ/SUdJOkXu5+kpkNlzTJ3e9NSpWtoGunHD4EAKQt+igA6ayt91HxzAm+X9JfJfWKPH5X0hXJLggAAAAIWjwhuJu7PyapVpLcvVpSTSBVAQAAAAGKJwTvMrNC1W2VLDObKGlHIFUBAAAAAYpndYhZqlsVYpCZvSypu6QzAqkKAAAACFA8IfhtSX+UVK66neL+pLp5wQAAAECbEs90iHmShqpuhYg7JR2quq2UAQAAgDYlnpHgke4+vN7j+Wb2drILAgAAAIIWz0jwssjNcJIkMztCUuI7VgAAAAAp1uJIsJm9oboVIbIl/cvM3o887i9pZbDlAQAAAMkXy3SILwReBQAAAJBCLYZgd1+bikIAAACAVIlnTjAAAADQLhCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqBh2AzO9HM3jGzVWb23WbO+5KZuZkVBV0TAAAAwi3QEGxmmZLuknSSpOGSzjGz4Y2cVyDpckn/DrIeAAAAQAp+JHiCpFXuvtrd90h6RNIpjZz3Q0m3SNodcD0AAABA4CG4t6R19R6vjxzby8zGSerr7s8015CZzTSzYjMrLikpSX6lAAAACI1WvTHOzDIk3SHp2y2d6+5z3b3I3Yu6d+8efHEAAABot4IOwRsk9a33uE/kWFSBpJGSFpjZGkkTJT3FzXEAAAAIUtAh+BVJg81soJnlSDpb0lPRJ919h7t3c/cB7j5A0mJJJ7t7ccB1AQAAIMSygmzc3avN7OuS/iopU9J97v6Wmd0gqdjdn2q+hWBt27VHZZXVgbSdn5ulrp1yAmkbQDjQRwFIZ0H1UanqnwINwZLk7s9KerbBsWubOHdK0PXUV1ZZrU/fOj+Qtl/636l8wABICH0UgHQWVB+Vqv4p1DvG1bq3ybYBhAN9FIB0FlQ/kqr+KdQhOMi/Yz5fACSKPgpAOguqH0lV/xTqEAwAAIBwIgQDAAAgdAjBAAAACB1CMAAAAEKQnH0rAAATj0lEQVQn8CXS0lledoYemTkxsLYBIBH0UQDSWVB9VKr6p1CH4IqqWp09d3Egbc+fPSWQdgGEB30UgHQWVB+Vqv6JoQAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACETqhDcIa1zbYBhAN9FIB0FlQ/kqr+KdQhGAAAAOEU6hCcYcH9qBFk2wDCgT4KQDoLqh9JVf8U6hAMAACAcCIEAwAAIHQIwQAAAAgdQjAAAABChxAMAACA0DF3b+0a4lZUVOTFxcUJt7Nt1x6VVVYnoaJ95edmqWunnEDaBhAO9FEA0llQfVQy+yczW+ruRY09l5WUd2ijunbK4UMAQNqijwKQztp6H8V0CAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChk9XaBbSmktLdKqusCaTt/NxMdS/IC6RtAOFAHwUgnQXVR6Wqfwp1CC6rrNHU2xcE0vb82VPUvSCQpgGEBH0UgHQWVB+Vqv6J6RAAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0zN1bu4a4FRUVeXFxccLtlJTuVlllTRIq2ld+bqa6F+QF0jaAcKCPApDOguqjktk/mdlSdy9q7LmspLxDG9W9IE/dC1q7CgBoHH0UgHTW1vuoUIfgLaWVKqusDqTt/NwsdSvIDaRtAOHASDCAdNYWRoKbE+oQXFZZrSm3Lwik7QWzpxCCASSkrLJGUwPqo+bPntKmR3AAtL6g+qhU9U/cGAcAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdNrNtslVVVVav369du/eHfNrqmtqdc/JBwdST+kHa7SiJPU/Y+Tl5alPnz7Kzs5O+XsDAAC0FYGHYDM7UdLPJGVK+rW7/6jB87Mk/Y+kakklkma4+9p432f9+vUqKCjQgAEDZGYxvaayqka+uTTet4rJoT0LlJudGUjbTXF3bd26VevXr9fAgQNT+t4AAABtSaBDlWaWKekuSSdJGi7pHDMb3uC0VyUVuftoSX+QdOv+vNfu3btVWFgYcwBuj8xMhYWFcY2GAwAAhFHQ39dPkLTK3Ve7+x5Jj0g6pf4J7j7f3csjDxdL6rO/bxbmABzF3wEAAEDLgg7BvSWtq/d4feRYUy6U9FxjT5jZTDMrNrPikpKSJJYIAACAsEmb1SHM7HxJRZJua+x5d5/r7kXuXtS9e/fUFheDnTt26NEHft3aZQAAACAGQYfgDZL61nvcJ3LsE8zsOElXSzrZ3SsDrikQpTt36NF597Z2GQAAAIhB0CH4FUmDzWygmeVIOlvSU/VPMLOxkuaoLgB/GHA9gfnZzddr/do1+vIJn9Yd/3eN7vjx7Tr88MM1evRoXXfddZKkNWvWaOjQobrgggt06KGH6rzzztMLL7ygo446SoMHD9aSJUskSddff72mTZumSZMmafDgwbrnnnskSZs2bdLkyZM1ZswYjRw5Ui+99FKr/XkBAADaskBDsLtXS/q6pL9KWiHpMXd/y8xuMLOTI6fdJilf0u/NbLmZPdVEc2nt8quuV5/+A/TYX1/SxE9P1apVq7RkyRItX75cS5cu1cKFCyVJq1at0re//W2tXLlSK1eu1MMPP6x//vOfuv3223XTTTftbe/111/XP/7xDy1atEg33HCDNm7cqIcfflgnnHCCli9frtdee01jxoxprT8uAABAmxb4OsHu/qykZxscu7be748LuoZUW7Rwvha88DeNHTtWklRWVqb33ntP/fr108CBAzVq1ChJ0ogRI3TsscfKzDRq1CitWbNmbxunnHKKOnTooA4dOmjq1KlasmSJDj/8cM2YMUNVVVU69dRTCcEAAAD7qd3sGLc/MjJMQ3oWJKWt3IpOys3K1JCeBeraMUtXXnmlLr3kkk+cs2bNGuXm5tZ7/4y9jzMyMlRdXb33uYZLnZmZJk+erIULF+qZZ57RBRdcoFmzZmn69OlJqR9A+snPzdT82VMCaxsAEhFUH5Wq/inUITg7M6NuH7sk6HZgF5WVlSo3O1OfO+kkXXPNNZo+bZry8/O1YcOGuLcxfvLJJ3XVVVdp165dWrBggX70ox9p7dq16tOnjy666CJVVlZq2bJlhGCgHetekKfuyfk5HQCSrq33UaEOwVU1taqt9aS0ld+5iyZOOlIjRozUCSeeoLPOPkeTJk2qey4/Xw899JAyM2NP3KNHj9bUqVO1ZcsWXXPNNerVq5ceeOAB3XbbbcrOzlZ+fr7mzZuXlNoBpKeS0t0qq6wJpO383Ex1L8gLpG0A4RBUH5Wq/snckxMCU6moqMiLi4s/cWzFihUaNmxYXO1UVtXonc2lySxtryE9C5SbvX/DzNdff73y8/M1e/bs/Xr9/vxdAEg//92yS1NvXxBI2/NnT9HAbp0CaRtAOATVRyWzfzKzpe5e1NhzabNZBgAAAJAqoZ4Oka6uv/761i4BAACgXWMkGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hOImu/fbXNWXMYJ1+7KTWLgUAAADNCG0Ifu6553T6aadoxmnH6zsXnatFL/494TZPOfMc/fLBPyShOgAAAAQplEukPffcc7rxxhu1e/duSdLWkg/1wN13SJImHXPsfrc7fuJR2rDu/aTUCAAAgOCEciT4rrvu2huAo/ZUVuqJh+5tpYoAAACQSqEMwZs3b270+NYtJSmuBAAAAK0hlCG4Z8+ejR4v7NY9xZUAAACgNYQyBF922WXKy8v7xLGc3Fydfv6FrVQRAAAAUimUIfikk07S1VdfrZ4HHSSZqbB7D33l0lkJ3RQnSVdedqGmn/pZrV29SocM7K9772WOMQAAQDoK5eoQUl0Q/sxxn9U7m0uT1uYtd30ceof0LFBudmbS2gYAAEDyhHIkGAAAAOFGCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDohHaJNEnKyDAN6VmQtPbWrVunC2dcoA83fyjLMF08c6Yuv/zypLUPIFzyczM1f/aUwNoGgEQE1Uelqn8KZQiuqqrSrFmz5O764Y036/tXXyVJuuXW25Wdnb3f7WZlZemWW2/T2LHjtGtXmSZOOFzHH3+8hg8fnqzSAYSIyWQBtg0AiQiqj0pV/xTKEDxr1iwtW7ZMknTyF7+g6upqSdLXL/+WZl138/43nJGvjr0G653NpRrSs0DDhg3Thg0bCMEA9ktZZbWm3L4gkLYXzJ6ibgW5gbQNIByC6qNS1T+FMgRHVVZWSqqUJGXnJPcve82aNXr11Vd1xBFHJLVdAAAAJC6UN8bdcsst+0x7yMrK0mVXXpuU9st3lemcs76sn/70p+rcuXNS2gQAAEDyhDIEX3nllaqqqvrEserqat11yw0Jt11VVaVZM7+is885R6effnrC7QEAACD5Qj0dIjc3VxmZWXvnBCfK3XX9d76hQYMP1eVXfCspbQIAACD5QjkSfMcdd2jcuHEaM3asfnzvIxoyYrSGjBitb34vsZHgV19ZrD8//qiWvLxQE4rGa8yYMXr22WeTVDUAAACSJZQjwdnZ2brzzjtVWVWjdzaXJrYiRD3jJkzSa+u2SZKG9CxQbjbrcAIAAKSjUI4EAwAAINwIwQAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQIwQAAAAidUC6RFqSTJo1Wx0756pibo+zsLBUXF7d2SQAAAGgglCF48uTJKi8v3+d4XocOuvt3Tyfc/q8fe1oThw1gnWAAAIA0FcrpEI0FYEnaXVGR4koAAADQGkIZggNlpq+dd7omHTFBc+fObe1qAAAA0IhQTocI0v2PP6eeB/dSV6vQFz53ooYOHarJkye3dlkAAACoh5HgJOt5cC9JUo8ePXTaaadpyZIlrVwRAAAAGiIEJ1F5+S7tKiuVJO3atUvPP/+8Ro4c2cpVAQAAoKFQTofo2LFjk6tDJOKjkhJ966LzJUmZcp133rk68cQTE2oTAAAAyRfKELxw4UJJUmVVjd7ZXJq0dvv0H6DfP/9PSdKQngUskQYAAJCmQhmCozIyTEN6FgTWNgAkIj83SwtmTwmsbQBIRFB9VKr6p1D3gtmZGRKDtQDSVLeCXHUryG3tMgCgUW29j2pXN8a5e2uX0Or4OwAAAGhZuwnBeXl52rp1a6hDoLtr69atysvLa+1SAAAA0lq7mQ7Rp08frV+/XiUlJa1dSqvKy8tTnz59WrsMAACAtNZuQnB2drYGDhzY2mUAAACgDWg30yEAAACAWBGCAQAAEDqEYAAAAISOtcXVFMysRNLaVnjrbpK2tML7Ilhc1/aLa9t+cW3bJ65r+9Va17a/u3dv7Ik2GYJbi5kVu3tRa9eB5OK6tl9c2/aLa9s+cV3br3S8tkyHAAAAQOgQggEAABA6hOD4zG3tAhAIrmv7xbVtv7i27RPXtf1Ku2vLnGAAAACEDiPBAAAACB1CMAAAAEKHENyAmd1nZh+a2ZtNPG9m9nMzW2Vmr5vZuFTXiPjFcF3Pi1zPN8zsX2Z2WKprxP5p6drWO+9wM6s2szNSVRsSE8u1NbMpZrbczN4ysxdTWR/2Xwx98gFm9rSZvRa5tl9NdY2In5n1NbP5ZvZ25Lpd3sg5aZOjCMH7ul/Sic08f5KkwZFfMyX9MgU1IXH3q/nr+l9Jx7j7KEk/VBpO4EeT7lfz11ZmlinpFknPp6IgJM39aubamlkXSXdLOtndR0g6M0V1IXH3q/l/t5dJetvdD5M0RdKPzSwnBXUhMdWSvu3uwyVNlHSZmQ1vcE7a5ChCcAPuvlDSR82ccoqkeV5nsaQuZnZwaqrD/mrpurr7v9x9W+ThYkl9UlIYEhbDv1lJ+oakxyV9GHxFSJYYru25kp5w9/cj53N924gYrq1LKjAzk5QfObc6FbVh/7n7JndfFvl9qaQVkno3OC1tchQhOH69Ja2r93i99r3AaNsulPRcaxeB5DCz3pJOE9/atEeHSupqZgvMbKmZTW/tgpA0v5A0TNJGSW9Iutzda1u3JMTDzAZIGivp3w2eSpscldUabwqkKzObqroQfHRr14Kk+amkK929tm5QCe1IlqTxko6V1EHSIjNb7O7vtm5ZSIITJC2X9BlJh0j6m5m95O47W7csxMLM8lX37dsV6XzNCMHx2yCpb73HfSLH0MaZ2WhJv5Z0krtvbe16kDRFkh6JBOBukj5nZtXu/qfWLQtJsF7SVnffJWmXmS2UdJgkQnDb91VJP/K6zQxWmdl/JQ2VtKR1y0JLzCxbdQH4t+7+RCOnpE2OYjpE/J6SND1yd+NESTvcfVNrF4XEmFk/SU9ImsYoUvvi7gPdfYC7D5D0B0mXEoDbjSclHW1mWWbWUdIRqpuDiLbvfdWN8MvMekoaIml1q1aEFkXmcN8raYW739HEaWmToxgJbsDMfqe6O1G7mdl6SddJypYkd/+VpGclfU7SKknlqvtpFWkuhut6raRCSXdHRgyr3b2odapFPGK4tmijWrq27r7CzP4i6XVJtZJ+7e7NLpWH9BDDv9sfSrrfzN6QZKqb0rSllcpF7I6SNE3SG2a2PHLse5L6SemXo9g2GQAAAKHDdAgAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACEDiEYAFqZmZUF0OYYM/tcvcfXm9nsZL8PALRVhGAAaJ/GqG4tTgBAIwjBAJBGzOw7ZvaKmb1uZj+IHBtgZivM7B4ze8vMnjezDpHnDo+cu9zMbjOzN80sR9INks6KHD8r0vxwM1tgZqvN7JuR13cys2fM7LXIa89qtDAAaGcIwQCQJszss5IGS5qgupHc8WY2OfL0YEl3ufsISdslfSly/DeSLnb3MZJqJMnd96huF8RH3X2Muz8aOXeopBMi7V9nZtmSTpS00d0Pc/eRkv4S9J8TANIBIRgA0sdnI79elbRMdaF1cOS5/7p7dBvSpZIGmFkXSQXuvihy/OEW2n/G3Ssj289+KKmnpDckHW9mt5jZp919RxL/PACQtgjBAJA+TNLNkdHbMe7+KXe/N/JcZb3zaiRl7Uf7+7Th7u9KGqe6MPx/Znbt/hQOAG0NIRgA0sdfJc0ws3xJMrPeZtajqZPdfbukUjM7InLo7HpPl0oqaOkNzayXpHJ3f0jSbaoLxADQ7u3PSAIAIADu/ryZDZO0yMwkqUzS+YrM9W3ChZLuMbNaSS9Kik5nmC/pu2a2XNLNzbx+lKTbIq+vknRJYn8KAGgbzN1buwYAwH4ys3x3L4v8/ruSDnb3y1u5LABIe4wEA0Db9nkzu0p1/flaSRe0bjkA0DYwEgwAAIDQ4cY4AAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhM7/A6FIPfno7//QAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xV9f3H8de5+2bvHRIg7A1hOkDcimLVKtNRFbFaf2q1tVXbapfaqZYibsUBYh24R0VRdhgBwgojZO999zi/P0JSRiCBe3JpuZ/n4+HjYXLv+XASeJz7Pt/z/X6+iqqqCCGEEEIIEUp0p/sEhBBCCCGECDYJwUIIIYQQIuRICBZCCCGEECFHQrAQQgghhAg5EoKFEEIIIUTIMZzuEzgVCQkJanZ29uk+DSGEEEII8V9s48aNtaqqJnb22v9kCM7OziYvL+90n4YQQgghhPgvpijKweO9JtMhhBBCCCFEyJEQLIQQQgghQo6EYCGEEEIIEXIkBAshhBBCiJAjIVgIIYQQQoQcCcFCCCGEECLkSAgWQgghhBAh53+yT3BPanV58PpUYsJMOD0+WpwefH7w+v0oioJRp2Ax6YmyGHF7fdjdPmLCTKf7tIUQIaLR7sZi1GMx6ml1erB7fHh9Kn5VRa9TMOgUIswGrCYDTQ4PANFW42k+ayFEqGiye4gOM6KqKk0OD26vH4/PjwoY9Tr0OoVoixGjQUej3U2YSY/JoD8t5yoh+DCtLg9r9taREGnGqHfw8qoDrDtQT2mDo+M9UVYDw9NjmDsxi0GpUXy0tZwZYzOJCzefxjMXQoSCBpubZXnFXDQ0laJaG6+sKiK/tJEGu6fjPanRFnKzY7nlrN6YDDr2VLUwdWAyURKEhRA9rLrZyfuby7h8RBor99TwzsZSdpQ34/D4ANAp0Dshgin9E5g9IYv9NTaSoywMSIk4LUFYUVU16H9ooHJzc1Wtd4xrdXnYUdYMisJjHxWwvay5y2Niwow8fPkg4sNNjMiMkSAshOgxDTY3m4sbcHj8/ObDAmpaXF0e0y8pgkenD0H1qwzLiJEgLIToMbUtTgqrW1lf1MA/V+zF5fV3eczUgUncPTWHcLOBrPiwHgnCiqJsVFU1t7PXZCSYtgC8t6qV3VWtPPZRAR5f924MGu0e7l+2lUuHpnQEYAnCQgitNdjcFNXZ+LSgkmV5pd0+rrC6lbkvruf+i/pjNenJSYqUICyE0Fxti5OKJiePf7qL/NKmbh/39a5q8g7W89T1o1CAXj0UhI8n5BfGtbo87CxvZltZM498sL3bAfhwn26v5O9fFbK32ka9revRGSGE6K4Gm5udFc28vKropAJwO59f5YnPdrN6Xz3by5podni6PkgIIbqputlJeZOT+97OP6kA3K7Z4WX+6xspa3JQVGvD7fX1wFl2LqRDcKvLw5p9dai0TYEIxIrd1Wwoqmf5lnIJwkIITTTY3HywpYx9NTaW55cHVOsvX+7Gp6p8s7tagrAQQhPVzU6+K6zluZX7KaxuPeU6Lq+fn76dj83tY1dlS9CCcEiHYK9PJSHCzKMfdn8KxIk89VUhY7Ji8XU9DUYIIbrkV1XG9o7jj5/uDLiWqsIj728nKz4cn/9/by2IEOK/j9evEmU18NHWioBr1ba6Wbz2IKoK7iAFqZAOwTFhJvQ6hYLyrhfBdYfb5+eD/HKirDLVWggRuGirkZV7arC7tRkVKaqzY3N5iQ2Xto5CiMBZjXqeW7lfs3rLt5STGGkmwhyctQshHYIdbi8vfn9A05pL1pfQZJdHjUKIwDXY3by0qkjTmgu/3SfTIYQQmrC5vWwoatCsntev8tWOKs3qdaVHQ7CiKC8pilKtKMr247yuKIrytKIoexVF2aooyuiePJ+jtbi8rNtfr2nNVpdXs1EbIURoc3vVbrVCOxmbixtxeuQaJYQI3J6qFs1rfr27GpvLq3ndzvT0SPArwCUneP1SoN+h/+YBC3v4fI7g86tUNjs1r7uv5tQnhwshRLvKJkfXbzpJrS5vt/p3CiFEV7QeSATYUd6MzX0GhGBVVVcCJ/oNTQdeU9usBWIURUntyXM6nFeDxXCdaZTpEEIIDTQ7e+aDwCsL44QQAVJVldpW7bthNTs9EKRL1OmeE5wOlBz2demh7x1DUZR5iqLkKYqSV1NTo8kfrlMUTeoczWQ43b9WIcSZwGjomWuUrmfKCiFCiKIoWHpgYwuTPngZ6n8mramq+pyqqrmqquYmJiZqUtOoVwg3af8X2DcxXPOaQojQkx5j1bymXqdgMQZvRyYhxJlrZK8YzWv2TYzAGKQgfLpDcBmQedjXGYe+FxQmg44h6dGa1lQUiJP2Q0IIDYSbDJqPiuQkRqCXoWAhhAZGZGgfgsdkxRIdpO3dT3cIXg7ccKhLxASgSVXVwDsud1NMmIk543tpWvPsvglYTdInWAgRuHCzgUuGJmtac+a4TOLC5EZdCBG42HAjKVEWTWv+MDcTXZBu1Hu6RdpbwBpggKIopYqi3KIoynxFUeYfessnwH5gL/A88OOePJ+jub0+RvWKJdKsXWidN7kPOkUWnQghAuf3q9x8Vm/N6pkNOqYOTArabkxCiDObyaDjhklZmtUbnBpFuDl407V6ujvETFVVU1VVNaqqmqGq6ouqqj6rquqzh15XVVW9U1XVvqqqDlNVNa8nz+dodrePD/PLefDSgZrUmzIgkbpWN26vhGAhROB8qsrOimauHJGmSb17LujHh/nluKRPsBBCA9UtLkb3iiU7PizgWjoFfnnZIL4rrKHFGZwuW6d7OsRpFRNm4vqxmWTEWZk6MCmgWgkRJu69oD+js2JkTrAQQhMxYSam9E/klrN7B7xIbmx2LCMyYrh+XC+iZTqEEEIDvWLDiLQY+MPVwzAH2Blr/uS+2N1eLh2aSqQlNOYEn3bxEWaGpUVzzwX9mNQ3/pRqJESYWDR3DImRJjJjw1B6qPWaECL0pMWGkRJlZsHs0aRFn9rcu1GZMfxq2hAGpESSEGHW+AyFEKHKbNSTkxhBfLiJZ2aOOuUgPHt8Ly4YlMy43nHEBPEmPeRDMEBchJmMGCv3Xdifu6bmYDiJCdmT+yfy4o1jSY22kBptlQAshNBccrSV1Cgzz84dwyVDU7p9nE6BW87uzcPTBpMWYyFeArAQQmNmo57s+HCy4sJYfMs4BqVGdvvYSLOBP149jCuGp9InMTyoARhA2hgcEhdhRgW2lzXxrzsm8c7GUpZtLMHp6XwByaS+8cw7tw9Ndg9x4UYJwEKIHpUcbcXnV7lgUBI3TMjihe/3s2J3DWonSxDMBh3TR6Yxc1wv8ksayYoPkwAshOgxZqOe7IRw9lS38vNLBtLs8PDst/vZUdHc6fvjwk3cMDGLqQOT2FXRzMDUqKAHYABF7ewK+l8uNzdXzcvrmTV0da0u/KpKhMVIs8NDq9NLcb0Nu9uPQa+QEWMlLsKE1ahHp4DLq5IQYZIALIQIiuoWJ2a9DkVRsLu91NvclDbY8fjAYtTRKy6MKKuRSLMBh9uHCiRESgAWQvQ8l8eH3e3DbNThcPtwevxUtziobGrLVtEWI5nxYViNemLDTDQ6PBj1So8GYEVRNqqqmtvZazISfJT20RK3148CGPU6zAY9Do8fg07BbNShUxQMOh0RFvn1CSGCKymybV6wzeXFZNARE2YEwvCrbbvBRVmMGHUKer1CvIRfIUQQmY16zId2pHR7/VhNeuLCzZj0elDaMlW4WY+Cgl6nkHiar1GS4o7i8vqoa3Xz5vpiviyoondiOINSIgk3G/D4/HxeUMWOiiYyY8O4a2oOGTFWWWkthAiaZoeHRrsbm9vHd4W15Jc0UljdgsvrJ8JsYGBKJGOyYjt2XYoOa3tyJYQQwdBod1PT4qLF6eWbPdVsLW2ipN6OX4XYMBND06OY1DeB7PgwEiPNxIaZgrY5xtFkOsRhGmxuPiuoZO2+Wq4Zk0mL08um4gZ2VjTT7PRg0uvpmxTO8PQYhqZH8UVBFY0ON/dc0J9kjXdMEUKIo9W1uqhtdfH3rwr5YkcVPv/xr99Wo55rx2Rw46RsEiJNxFjlZl0I0XM8Pj81LS6K6+08/ukutpQ0nvD9iZFm7pjch/MGJBMfYSSqh65RJ5oOISH4kPpWF3/9cg8XDk5ma1kTr6wqos7mPu77jXqFy4alctOkbBavKeLeCweQGRd4s2ghhOhMRZOD9Qfqeei97bS6vN0+LjXawt+vH0nfxAiZGyyE6BEen4/KJhevrTnIi9/v5wT358cYkxXLE9cMIznSTGQPBGEJwV1otLt5dfUBzu6XxEPvbWNXZUu3j42yGHhs+lAqmhxcPTpDRoSFEJqranLw5c5qHn5/+ykdbzboePHGXAanRREXLkFYCKGtskY7T3y6m+X55ad0fEaslVduHkd6jBWrSdvpWycKwSHfJ9jn87O7spmJfRO55dUNJxWAAZqdXu5ZugWrycC3u6tptB9/9FgIIU5Wq8vDwXoHj3xwagEYwOX1c8frm2iwe3B7O2/7KIQQp6Kmxcn7m8tPOQADlDY4uHfpFupP8AS+J4R8CK6zuTEZ9Nz91mYa7ae+V/WjHxaQGGmhusWl4dkJIUJdk93D/cvyO+0HfDJaXF4eXV5AnU2uUUIIbfj9KnU2N099VRhwrW1lTSzPL6OuNXjXqJAPwVUtTt5cV0xlszOgOqoKD7+/HbfXT7Pj1MO0EEK0c7q9rNpXR3G9XZN6KwtrqWlx8b84DU4I8d+nttXFgq/34vZp84Rp4Tf7cHh8mtTqjpAOwW1hVeGdTaWa1CtrdLBmfx0eX/D+AoUQZ656m5uXVx3QtOYrq4qoDeJIixDizOXy+vmsoFKzes1OL3lFDUG7UQ/pEOz1+Vm+pbzLx4xhJj2JEWaircYua76+9iCtLgnBQojA+VTYWXFy6xS68t3eWlwyL1gIoYEDtTY8Pm0D61c7q2gI0vqqkN4sw+b28e2e6mO+r1Ngcv8krh6dTkq0BZvLS4uzbXem2DATDreXr3fX8O7GUlqOalV0sM6u+T8IIURoqunmiK1ep2DUK7i9/i5bE9W0tG1fKoQQgco7WK95zW1lTdhcPuLCNS99jJAOwYoC+2psR3xvyoBE7p7aj7X763jy812U1DuOOS7CbGDa8FRevCmXVXvrWLBiL97DPnnKGu3kJEX0+PkLIc5sNc2dh2CjXuHiISlcPCSFlGgLHp8ft9ePxahHpygcqLWxPL+M1fvqOn3SJSPBQohA+f1+yhsDW0/VmepmF8HaQC6kQ7DXp3bsuGTUKzw2fSgmvY6bXl5Ps/P4zehbXV6WbChhyYYSbpiYxZu3jee+t/MpbWgLzJVN2v+jEEKEHqWTD4IZYzOZMTaTL3ZU8finuyhrdBxzTL+kCK4dk8l9Fw7gqa/2sLKw9sj3cHq2KBVCnDl0uuPPqLUYdVwxPI2z+yWQFmPFfyhr6XQKrU4vm0saeCevlPJO8pKiQLCeVYV0CG7/JRt0Cv+YNZqvd1WzdEPJSdV4bc1BVu2tZcGs0dz11iZK6h3oOvvkEkKIk5Qea+34/9gwI3+5biTbypr44aI1x512paqwp6qVP3yykyirgV9NG8wlQ1P49fKCjmMsxpBeDiKE0EjfxCPnLBj1CndM6cvk/kl8mF/Ok5/tPuZGPcpiYFzvOB6dPhSX18fvP95JxWFhOC3GGrTb9JC+Epr0CnqdwoOXDmTV3tqTDsDt9tXYuHfpFp6eMQqzQXfEB5cQQpyqmEOLcWPDjDx3Qy4Lv9nL377c0+11B80OL/cv20rewQYWzBqNUa+QHmMN3jCLEOKMNi47ruP/+yaG88atE6htcXPNwtW8srromAAMbR0gvtpZzW2v5bHo2/08PXMU00emdbw+IiOaaGtwxmhDeiRYURSuGJ5K38QIfvfxzoBq7a+18XZeCfde0I+0aAnBQojA6XQKuVmx3H1+P/74yS42FTecUp13N5WhVxQevnwwRXU2wjTellQIEZpSY6xYjXoy46w8fvVw7lm65aT6mm8ra2L28+t4/JphxISZeHV1EVeNTA94c6DuCumRYKNe4cfn5fCzf23VpN5b60sY3ycek0GmQwghAqdH4aHLB7F2f90pB+B2yzaWEhtm5IaJWR3z84QQ4lS19fJVmTk2kyeuGc6db246pY193D4/9y/LZ2xWLFeNTKN3Qjit7uC0mg3pEOxXobTBTo2GWx2/8N2BoN3BCCHObHaPj0iLkUUr92tS7zcf7sCvttUVQohAKIpCbYuLGydl85cv9hwxr/dk+VX4xbvb+MnUfqzZX4cpSO0hQjwEq7yyqkjTmp8XVB7RLk0IIU6VXlFYvLaoo4tNoOptbvKKGrAYZTqEECIwqqpS2uhka1kT3++t7fqALrS4vDz52S4UwBWk/RZCOgT7/Cr5pU2a1vT6VWzu47dXE0KI7vKqft7dWKZpzaUbinF6ZSRYCBEYRVGIthp49tt9mtX8YmcVOUmRsm1yMPj9Kk0Oj+Z191a1al5TCBF6VJVjdqUMVEF5s7RxFEIETFVVYsNMFJQ3a1gTVhbWBO1pVUiHYF8P3WnYNP7QEkKEpkDm2B2Py+vH45Md44QQgVFV2Ftt6/qNJ2ndgbqgXaNCukWavovRkEiLgQsHJTOudxwRZgMen59dlS18ur3yhCsgraaQ/rUKITTS1Q11XLiJYenR9EkMx6TXYXf72FPVQkF5M60nONYvGVgIESCdTmFzyYm71mTGWRmWHk1ajBWdotBo97CjoondlS3H7Xe+q6KFYC2tCum0plMU4sNN1NncR3z/utwMbpyUjYLChqI6Vu+ro9npwWzQMTAliieuGUZqtJUVu6t58rPdOI5aad0vOSKYP4YQ4gzV2SNBg07hsmGpXJebicPjY1tZI7srW3F5fUSYDUzun8hdU3Owu328vvYg3xUeu2BFZkMIIQLl9/s7nVIaZTVwXW4mlw1NpbjezrayRopqbfjVthv3H47JZGh6NDvKm3ltTRGF1UdOIQ3muqqQDsF6ncKoXjF8tbMagIxYK8/PzaWwuoW739rMvppjh/k/L6jiqX+3/SXPHNuLL+49l8c/3cnH2yoBMBt0RFqMQf05hBBnptRoyxFfD0yJ5NHpQ/h+Ty13L9lM/VE38AAfba0A2kZgbj27N3MmZPHI+9upPtQK0mzQYTKE9Ew4IYRGrEfdqF88JJn5k/uyeO1BZj6/Fpf32MdO72wsBWB0rxgevHQghVWt/O2rPR3vNRv0QetlHtJXQp0C14/tBcCUAYm8eet4HvtoB3cv2dJpAD5cs8PLopX7ufbZ1dw0qTe/mz4EgMuGpYb2L1UIoRmDTiHC3DZWMW14Kr++YjD3L8vnmRV7Ow3Ahyupd/Dr5Tt49pt9PDd3DCMyogEYnBqFX5qZCyECpCgKg9OiOr5++PJBnD8wiTkvrOPdTWWdBuDDbSpu5JZX89hb08prt4wjPtwEQP/kiKA9rQrpvKYC2fFhTBuRyq+vGML1z61lzf66k6pR1exixvNrSY628qtpg7hpUjZen7QfEkIEzmjQceWINC4eksw1ozO46eUNlNQ7TqrG5pK2D5pfXzGEQamRXD06A6shpB8CCiE0MiSt7eb6F5cOxOHx8bN/bcN2kru9vbOxlMc/2cWiuWOINBsYkRmDOUhPq5Rg9WLTUm5urpqXlxdwnbJGO012D7HhJmY/v479tae+ytGgU1h+19lEWHT4/QrZCeEBn58QIrSVN9iptblRVbhu0ZouR1ZOJDXawqK5Y1APzcvLjAvT8EyFEKFoR3kTr6wu4uycBO5esiWgWucPSuLSoSn0SYggI9ZCUpRVk3NUFGWjqqq5nb0W0iPB7XPjXl5VFFAAhrZNMn7y1mb0ip62MWYhhAiMx6diMep55IPtAQVgaGu39tb6EvQKhBlD+tIvhNBIuEnPHZP78tB72wOu9e+d1ViMegx6JWjrFkL6Sujzt33AvPj9AU3q7atpZf2BOqKtsjBOCBE4nQ4qm5xs1Whny7fWFxNuMR63NZEQQpwMi1HPa2sOarapz2Mf7iAu3ESUxaRJva6EdAgOM+p5b3MZPg1XIS78dh/2k5wPI4QQnTHodPxjxV5Na76+9iCK9EgTQmjAp8LbeSWa1atucXGwzq5pLjuRkA7BTU4vn22v1LTmnqpWvMHq8iyEOKP5VZUNRfWa1vy8oLLHdssUQoSWyibnSS+E68r7m8todR3bf7gnhHQIVoA9VS2a163sga1OhRChp8nhReu8WtrgCFoPTiHEmS3voLY36QD5pY04A1wD0V0hHYI9PrVH5sYV1Wm/l7YQIvRUNJ1cO7Tucvlk32QhRGBUVaWwqrXrN56ksgaHTIcIhp76Ffvl80UIoYGemlr1v9gaUwjx36cnriR+te1JfTCEdAg26ZUe2ZUkNcbS9ZuEEKILCRHmHqlr0of0pV8IoZGUaO3zTmKkOWiNZkP+StinBza1yI6XjTKEEIFLiNC+TVBihBmddIcQQgRIURRG94rRvO6w9GgsQeplHtIhONys59x+iZrWTIu2YNTLB4wQInAGncKA5EhNa07KiQ9aI3ohxJmtb2IEBp22mWfKgESMQXpaFdJXQpfbz+wJvTStedNZ2RKChRCaMOl1zJmo7TVqzvgsZFdLIYQWzAYdFw1J1qxepNnA6KxYwk0GzWqeSEiHYLdfpdHu4bKhKZrUS4gwcdmwVPKKGjSpJ4QIbT5VZVx2PBmxVk3qTeobT3SYEb8qN+pCCC2ozDu3r2ajwbee24cIs4EGm1uTel0J6RDs86vc+eYmfnHZIOLCA59795frRvLid/tpccmOcUKIwB2oteP1+fn9D4YGvIg33KTnF5cO5EBtKy6PXKOEEIHz+RVMeoU7z8sJuNaQtCimDkhkd2UzCZE9syj4aCEdgnU6qGp28dL3B3j5prGEmfSnXOuBiwdgNuh4efVBrEGa0C2EOLO1ujw89tEOIk0GHrl88CnXMRt0PD1zFHq9wm+W75BdLYUQmigob+LjbZVM7p/IZcNO/al6WrSFP149DI9P5ZVVRTQ6ZMe4HqdTFGLDjLy8uojv9tTw9u0TT/qxo9mg4/c/GMrZOQnMfH4tAL17oOOEECL0WI161h2oZ/3BBnrFh/HktcNP+mY9KdLMc3PHYDboeH7lASqanOg0XsgihAhN6w/U8+y3+3B4vNwwMZubJmWf9FOrERnR/HPOaBQUfv6vrWwrb8ah8VbMxxPyIXhkZiwAf/5yDy99f4C3bpvArWf3xmrs+oPmnH4JfHz3OZgMOqYvWIWqti1kCTcHZ0K3EOLMlhLddlP+xGe7qGlxYTXoeOPW8VwwKImucqzZoGPmuEwWzhkNwNe7qnlvcxkmvU76BAshAqaqKvV2Nz6/yh1vbEIBhqVH8cpNYxmSFtXl8XHhJh68ZCA/vWgAqgq//XgHhdWttDiDMwoMENJpzaBTuHZMOit2VwPw7uYyPi+o5E/XjuDGSdmsL6pnVWEtOyqaaXF6MeoVcpIiGJMVy8VDUmi0e7j/nS1sKW7qqHnJ0BT00oNTCKEBnQJhJj12t49fvLuNH52VTWqMlakDk7jzvBxW76tja2kjhVWtuLx+ws16BqZEMapXDCMyYthR0YReUXhjXTFf7KgCYGBqJD7Z1lIIoQHzoRvqZoeXH72ygYcuH4zH52feuX1IirSwck8N28qaKK6341dV4sJNDE2LZnyfOOLDzZQ02DEbdTz4r23srmoB2gYTg7WpZUiHYIDkKAvpMVbKGh0A2Nw+fvzmJnQKXJebydRBSdw4KRuzUYfPr1LT4mJzcSMznltDdcuRqxcVBWaP74VZ5gQLITTg8vi4YkQaSzeUAPDSqiK+3lXNT87vh93tw2LQMTY7jgsGJaPXKbi9fpqdHhTAr6q4vH5ufmUDDfb/jKz8YFQ6BmnjKIQIkKIoDDpsxNfm9vHL97YxqW88887tQ7PTTWy4kfMHJRFpMaBTFOxuHza3F7vbR684PXurW3nk/e1HrFPISYpACVIbx5AOwRajDofHx2PTh3DLq3lHvOZXYcmGEpYc+vDpjtnjsyhtsNMrPkzrUxVChCCzUc+1YzJYlldC+2dEUZ2dn76dT1y4iSkDEhmWHk1SpBmTQY/d7aXB7mZdcT1PfLYbx1FdIKIsBoalRwMSgoUQgRuZeeyOcav31bF6Xx19EsKZlJPAsPRoUqKs6HTQaPdQ0eTkm901/PK9uk5HfIdnxBAWpGmlIR2CmxxeeieE88m2Cm49pzcvfHfglGsNTo3iiuGpGHQKikyHEEJowGzQs2JXFTdNyualVUVHvFZvc/PupjLe3VTW7XoPTxvMvzaW8pPzA29nJIQQMWEmUqMtVDQ5j3ltf62N/bW2k6555Yg0IoIUgkP6ub3FoGPN/joSIy0MSYvmxknZp1RnSFoUv7tqKB9sKedgvZ3WILX2EEKc2XRKW6/gCwYnd2uhyYlcNiwFVW1bbGfQhfSlXwihEatRz9wJWZrVG5IWRVy4CadHWqT1OIfHx6uri7C7vHyzu5r0GCsLZo0mIaJ7G2fodQp3TO7Lg5cO5NGPCrh2TAYPvbddNiQVQmiiwe5mxthM7lmyhd9OH3rKQfjiISlcn5vJbz8qYHL/BFxeWRgnhAhck93N+YOS6KNBa1idAr+aNphGhxu97tT3bTipPzMof8p/KZ1OYU9lK499tIMfjEpn48EGXll9gAWzR/PolUMYkhbVaRui5Cgzt57Tm2W3T8Tl9fHLd7fx62lD+Nm/tuLw+KhpdQX/hxFCnHFKGxwU1dkZnRXL7a9v5JeXDWLeuX26bI/WLsyk5zdXDuGyYSnMW7yR287pw5INJRKChRCa+PeuapweH49fMxyzIbBIeed5OURaDCxcsY+6IG2bHNJzgr0+Fbev7cPg9sUb+fMPR1DT4uLGl9YzJC2aWeN6kZMUAYDT48No0GHQ6ahucfLvndXMfH4tlwxN4akZo3jgna3sq2kFoKzBcdp+JiHEmUNR2noEv3HreOa/vpG5L67jR2f3Ztn8SXywpYwPtpTT1Mn0q9RoC9flZnLegEQWrdzPp9srGZkZw/CMGP721QZuPf9r3L4AACAASURBVKfPafhphBBnmr3Vrby3uYwnrxnOP2eP5s43N+H0nPxN9g0Tszi3XyKfbK/k+721PXCmnQvpEHw4l9fPT97azBXDU1ly2wQ+K6jkr1/uoc7mRlHa+tZ5/So+v4pRr3DR4BRevHEsOyubmfn8WhlZEUJoLinKgt3t46H3trNg1mh+/MYmXvjuAG+sLebKkWn87fqRRFkMNNg9uLw+wk0GIiwGalpcfLClnH+s2IvPrzIkLYpHpg1m/uKNAJgMsnhXCBEYv9+PCuyqbOG1tQe5dkw6i28Zz2+WF1BQ3tytGlEWA49MG0x8hIlam4uF3+zDpNcFrX9NSIdgk0GHonBEi44Pt1bweUEVlwxN4clrhxNtNVLZ7KTF6cWk15ERa0UFvius5Z6lm6ltPXbIPjnKErwfQghxxooNMwKwo6KZXy8v4Lm5Y/j7V4V8s6eGpRtKOvoHR1kMmAw6HG4ftqO2G501rhfTR6Yx//WN1LS6SIw0E7yPGCHEmUpRFJKjzAC8s7EUn19l9oRe/OLSgZQ3OVm85iDbypo6PTYxwsx1YzO5cFASVc1OGuweHvzXVnx+lYQYE37ZLKPn6XUK2fHhHDiqhYfb52d5fjnL88sBSIw0E2E24PH5qWxyHtHUuTNZ0idYCKEBvx8GpUays6KFgvJmbnhpPQ9PG8x1YzN5bU0Ra/fXA9Ds9B5xnEGncMHgZG6YmMX6A/XMeXEdHl/bdWty/wT0slmGECJAiqIwrnc8C1bsA+C9zWXklzTy26uGYtbruO2c3qTFWGmweyipt+M7tGNcr7gwbE4vlc1tbdWW51fw8baKjrpD06IJMwVnYVxIh2CrUc+UAYnHhOCj1bS4qGnp3mK35CgzJn1IrzcUQmjEqFe4/dw+3LM0H2gLuz97Zyt9E8OZPT6L+y8aQL3NTWF1a8d0iAEpkYSbDXxXWMP/LdlyzLXrhonZ+IM1zCKEOKP1TQzHoFM6Bgf319qY/cI6JvSJY874LFTA7fVjMeoBFdS29VhGg45NxY08+uGOYzb1uXBwMsYg3aiHdAj2qyozx/Xi5aOa0Afi1nP6YDUG5w5GCHFmc3n99IoLp1dcGMX19o7v76ux8dhHOwCICzfRNzEck0GH3eXjma/30urydlpvyoBE6lrdJESYg3L+Qogzl6qqKApcMCiZzwoqj3ht7f76jidVGbFWMmKt6BSFRruHwuqWjidTRws36RnfO/64r2stpENwTJgJj8/PJUOT+Wx7VcD14sJNTBueSkx49/oMCyHEiUSa9eQVNfDnHw7n+ufWdrrFaL3NTX032glFmg3cf9EAGmxuTDIdQggRIEVRKK13cO+F/fhyZxW+4zxhKm1wUNrNrlnzJ/dFVdXj1tJayD+31+t0/PLSQURbjQHX+ut1IzB0t4GnEEJ0RdGRkxzBN7trePzqYadcxmzQsXDuGN7Oa1tIZ5anVUIIDbh9bVMdfjI18K3YByRH8oPR6Xy5oypoc4JDOgQ32Nw88dkufv6vbbx689iAGj3fd2F/yhocXL1wdbfnDwshxIkYDQqFlS0MTY+mqNbOMzNHEWk+uQd4adEWXrl5LEvWHeTKEWmgtE0FE0KIQPWKC+Ot9cVcMzqDiwYnn3KdpEgzz84dQ4PdjdfvRxekAcWQDsEWk44rhqdx0ZBkiupsLL19Iikn2d7MqFf47fQhDEqNJCcpgkuHpsposBBCGyqMzoqlpN6OosD7W8pYfMs4Lh+Wgr6L64zVqOfms7J5auYo/vDJTs4fnMIn2ypIjbZi0IX0pV8IoRGzQUdeUQMl9TYemTaY2eN7nXSNwalRLL19Il6fj/vezueSoamYDdIdosdZjQYGp0VSUN7EPUvzGZ4RzdvzJ/L8d/t5uxtbi47rHccffzCMJXnFPPJBAeOyY3lm1mhiZU6wEEIDMWEmFNoWloSZDERZjPzolQ3MmZjFO+f0YXNxA5uLGw91h/ATbtYzKDWKMb1iyUmK4IMt5cx7LY/fXjWU9fvrmTEuk7QYC2GmkL70CyE0khJt5f6LB3Dbq3k8f8MYrh+byZUj0njo/e3srW494bFRVgN3TM7hsmEpHZsCDc+IIdpq7PImXyshfSVscrh5b3MZf/x0FwDZ8eEUVjVjNeh567YJ5Jc2sqGonp0VLbQ4PRj1OnKSIhiREcPk/onsqGjmg/wyBqZEoVNgfVEDdy/ZzIJZo2X1tRBCEz4VIswGVuyuwWLUs3DuGP74yS7+uWIfwzNiGJYRzazecR3dIXZXtfDamoPsrGzmgkHJvHTTWJ7+914m5cRT3eIkPVb6mAshtJMdH87Z/RK4+ZU8fn7pQIanR7Ng1micHh8fbS1nS0kjxfV2/P62BgJD06M4f1AyQ9OiKGt0UN7o5OH3t9Fg9/DUjJGYjcF7UqWo/4Nzw3Jzc9W8vLyA6zQ5PLy7qZRHP9zBlSPSuGJEKne+sRm3z4+iwKjMWEZkRjMwJYpwsx6vT+VArY1tZU2s21/XsTPTTZOyGZYRzQPL8hnfJ55nZo6SECyECFi9zc1jHxbw0dYKPvzJ2bydV8KXO6q487wceieE80VBJVtKmthb3XJoJNjAwJRIRmfFMnVAEusO1PHCd/t54OKBxEeYuO21jTx02SCuG5upyWJgIURoq2p2csurG3hs+lAeWJbPvhob43rHcds5fbAadXh9fiIsRsLNBhTa2j42Oz24PT5iws28t7mMt9YXo1PgxRvHsujbfdx7YX+GpUdrtoBXUZSNqqrmdvZaSI8ER1uNXDM6g8zYMFTUjgAMbVspbypuYFNxQ5d1XlldxE2TsnnhxrEMz4iWACyE0ISqqtS2unhk2mA+3V5BYoSZX18xhN8sL6DF5WFyv0QuHpLMHVP6YjbosLvbRoK3ljby/Mr95CRFsHBOLu9vLmV8n3hmj+9FeaNDNssQQmjC4/Njd/nw+1WemTmKB97ZyvoD9aw/UE9GrJWzchIYlh5NWowVvQKNDg8F5c1sOthA3sG2fBVhNvDUjJEkRZmxu32HFsepBCNJhfRIMIDL6yO/pIk5L6zrCMCn6vZz+3DHlL7EhMmcYCGENqqbnby5vpi/f1UIwIiMaP7vgv44PT4+2FLO1tJGKprath9VlLZHk6N6xXDVyHQa7G7+9PluShsc6HUKC2aNYlx2HHFyoy6E0Ehlk4MH3tlKYVUrT1wzjLyDDTz77b5ubXhxbr8E7r2wP099Vci2sibevG08GTFhhFu0G6M90UhwSIdgl9fH1tImZj/fdQCOMBuOuwvT4eZP7sP8yRKEhRCBa3K4WbK+pGPdwuGy48O4aEgKw9KjSYoyw6FLeXG9na2lTXy2vZKa1iPbNep1Ci/dmMu43vFYg9SHUwhx5qprdXH/snxW7K4B2m7EZ43rxbVjMli1t44vdlSyq6LliIyVFR/GhD7x/GBUOoVVrfz5i900OTwAxIebeOeOSWTFhWnWJk2mQxyHw+3jjbUHuwzAozJjePVH43h1dRF/+XLPCd/7wZZybj2nj5anKYQIUX4/vLW+uNPXiursPLdyPwC3nt2bey7sz/zFG/l+b+1x6/n8Ki+tKmJEZoyEYCFEwBrsno7tkaFtKukb64p5a30xk/sncdXIdAZeGklihBmjXkedzUVRrZ1NxQ3Mey2PZueRg4t1Njf/3lnF9WMzibT0/LqFkG8WeeOkbC48QYPnkZkx/ObKIQCMzY5l/uTjB9zUaAsLZ4+WPsFCCE3Ehpt4a94EsuOP39HhlrOzuWtqTse8urNzEo773rNzEvjrdSPkSZUQQhPpsRbemjce61GL2PwqrNhdze8+3kGzw0NipJnshHASIsz8+YvdvLGu+JgADPCTqTlcNTItKAEYQjwEh5n0GPQKcydkdRqER2bG8NDlg/jRKxvI/d1XzHxhHZmxYZ0G4dRoCwtmjWZnRTOKZGAhhEZMOh3PzBzVaRCePb4XV45IR6HtoqNTFH5+yUAm9o0/5r0T+8bz80sGopMLlBBCI+UNThZ9s49Fc8ccE4R1Cvzp2hGs2V/H5uJGKpocPPz+dhbMGk1q9LEbk82f3IeUKAvLt1bQ4vQE5fxDOgSbDHoGJEcSG248Jgi3B+D5izdSZ3Pj9vlRVXj4g+3HBOH2ALy7spnLhqcSbZVRFiFE4OpsLua8tI673trM364feUQQnj2+F+N6x3H1wtUsXltEq8vLQ+9tY/YLa7l7ar8jgvDEvvHcPbUfs19Yy8Pvb6fB5j4dP44Q4gwTE2bE5vbxyuqiI4JwewDOL23k1dUHueXVDVz415V8V1jLL97ddkwQnj+5D5mxYfzli91M6Z9IeJA29AnphXHtmhxu9la1YnP7WLz2IDUtriMC8NEUBX43fSglDXY+2FLOglmjyS9t5PLhqSRFnty2y0IIcTyNdjcLv9nHopX7yYoP4+/Xj+TepVs4KyeBcb3juO/tfHyH2p0lRZqpbmlbCBdlMbBobi5Pf93WUeLuqf24fXEeLS4vT10/kqmDkogwS59gIUTg6lpd3Lt0Cwa9jpsmZfPjNzbx6JVDyC9t5LU1Bzs9ZkByJH+8ehh3vrmJ6SPTOgLwO3dMIjs+XLNFcXCau0MoinIJ8BSgB15QVfXxo17vBbwKxBx6z4Oqqn5yoppahuBmh4f3N5fx3d5abpjQCxWFMJOe248TgP9z3m1BeFzvOFbuqcVi1PHZ9gr+PmMU8dJ+SAihkZoWJwtW7OOV1UVkxYexcPZoCqtbjwjAnWkPwkBHAH7ymuFMHZgk1yghhKaqmp3c9/YWzAY9v//BUBZ+s++4AbjdgORIFswezbr9dfzli90smTeRrHgrZqO2o8CnLQQriqIH9gAXAqXABmCmqqo7DnvPc8BmVVUXKooyGPhEVdXsE9XVKgS3B+BfLS8A4MLBycyd0It7l26hztb1fBRFgXvO70dChJmHP9iOqsLZOfE8JUFYCKGBepuLh97fzoWDktlc3MjitQeJshpodXrpzn4XlkPbj7q8fn47fShlDQ6sJj03TswiWhbHCSE0UNXsZP7ijTxwyQAWrNjLjvJmGuzdm9MbE2ZEBzw7N5c/f76LX1w2iCFpUZgM2nWvOVEI7uk5weOAvaqq7ldV1Q0sAaYf9R4ViDr0/9FAeQ+f0xF/sNPr6/j63zuriLIYmT0+q1vH5yRGMGNsJs98vZf2ewmX18//4AwTIcR/IVUFp9vH/cvyGdUrpm3twqBk+iZGdOv43Kw4crPiOgLwwm/34XB3L0ALIURXqpqd3PDiejaXNHL7axu567wc7r94AJHm7o3mXjM6nZdvHsfjn+5kfVEDM55bS0F5M+7DsllP6ukQnA6UHPZ16aHvHe43wBxFUUqBT4CfdFZIUZR5iqLkKYqSV1NTo8nJRVuNXD+2F7+8bGDHvtWKojA8M4Zpw1NPeGxmnJUnrx3Od3treePW8SRHmRmbHcvC2WNIiJRRYCFE4OIjzPz5hyOY3D+R+5flc+WINM4flMwT1wynX9KJg/CUAYnMO7cP917YH6NOYeG3+7hjch9un9yX2HAZBRZCBM7t9VNvb5s66vD4cHv9+P0qi24Y02UQvveCfgxNjybcbOjY2Mft81PZ5Ax4B9/u6unpENcCl6iqeuuhr+cC41VVveuw99x36Dz+oijKROBFYKiqqsf9DWi/MM5DVbMTh9vHDS+tx+nx8Y9Zo/lgSxkfba045v2ZcVaenjGKn76dz/5aG7+aNpipA5OIshhkO1IhhObqWl18sq0Ck0HPg+9uJS3ayj9mjeJn72ylsLr1mPdPGZDIj87qzfzXNwLw7JwxVDQ6uHhoivQIFkJoRlVVSuodXPfcGn5/1VBW7Krm9XXFnJUTz53n5XD7axtp6WS33Xsv6EeExcBvP9pJn4RwFs4ZzW2v5fHgpYOY3D+R8G6OJHfH6ZwOUQZkHvZ1xqHvHe4W4G0AVVXXABbg+N3ee4KqdgTgJocHl9fPXW9uYvrI9GNGhI8OwACPfbSDr3dV45FnjEKIHmAx6kmINPPgu1tRVShrdHDXm5t58tpjR4QPD8B2tw+728f81zcy+NCIixBCaEVRFDLjrLz/47M6AjDAqr11LFixt9MR4cMDMMD+Wht3vL6J128d39YeLYjXqZ4OwRuAfoqi9FYUxQTMAJYf9Z5i4HwARVEG0RaCtZnv0A1NdjdF9faOANyusyDcWQBu99hHO/h4awVVzc5gnboQIgTYXF6+L6zlx29sOmK9QWdB+OgA3M7u9nH9ojXsqWzBE6THjEKI0NDo8LBgxd6OANyusyB8dABut7/Wxk0vbTgihwVDMFqkXQb8nbb2Zy+pqvp7RVEeA/JUVV1+qCPE80AEbWvVfqaq6hcnqqnVdIhGu5viejtzX1x/3F+82aDjH7NGU9fqYmBKJPd1EoAP96tpg5k2PJWkKOkXLIQITHsAnv/GxuMuuE2PaZsa8cGWcqYOTDomAB8uzKRn2e0T6Z8SiVEf0nslCSE00GB389cv9rB47fHbobVPjcgvacRk0B0TgA/XJyGcN24dT2qMVbNzPK19gnuCViG4webiniVb+Law9oTvMxt0/O6qtr53JwrAAJFmA9/+7DziZOGJECJALU4P5/35G2pbT7zDW3qMlTvP68vvPt553ADcbmRmDK/9aBxRVtksQwgRmJ0VzVz+9HdddpyZ1Dee8X3i+NuXhV3WnD+5L/Mn99Fs/YKE4BOoanZy+2t5bCltCrhWpNnA2/Mn0i8pAoOMsgghAtRod3Ow3s7NL2+gXoOtjvslRbBwzhgSI02yvbsQImBVzQ7W7qvn3re3aNJ6cdrwVH528QCSoixYjNr0Cj6dC+P+6yVHWVh0Qy4jM6IDqiMBWAihNZ9fZfnmMhbNHRPw06V+SRE8ee1wPt9eIX2ChRCaSI6yMqFvHH+7biSB7nTcEwG4KyGf1pweH6UNdv70wxGnHIQjzQbenDeBTQfrae2kFYgQQpyK+Agzt0/pyyfbygMKwu0B+PvCWmaM60WstEkTQmgkOcraNtUhgCA8bXgqD1w8gKRIc9ACMIR4CHZ6fGwpaWTGc2uZ+fzaUwrC7QH4r1/s5qH3C3j634U02gN/bCmEEE0ON+9uLOPCwSl8vPXUgnB7AP73zmoyYq1sLm7ELjfrQgiN1Le6eObrvQxOizqlIDxteCr3XdifV1YdoKrFRTCn6YZ0CHZ4fLyzsQSPT6W21d0RhAemRHbreJNex5u3jeevX+xmxe62rm5f7KjC65NnjUKIwPn8sGxjKfNe28hFQ/4ThMNN3RspyYoP6wjAfRLD+emyfN7aUBy03ZiEEGe2+lYXD763jTfWFXPLq3kMTovizz8c0e3jLxqczH0X9uefK/bx8uqDXPvsGorr7UELwiEdgmPDTDx02WCmj0wDwGrS0+ry4vB0b89qn6pS2ezqaOycEWtl6e0TZdtkIYQm4sJNvHHbeJKjLMx7bSPXjMnA51fxdnNSr9Pjw2rUMyIzmvuX5TO5fyJPXjNcdo0TQmii3u7h20ODgMX1dlYW1uDookPN4WwuL3a3j88LKgGoaXHx6fbKoE0tDfnuEAANNjfPfF3IFSPSOt0I40Ta+wiv3FPN/Ck5pGvY204IIQAqm5089eUeLh+exrzFeV22QTtcex/hdzaWct+F/YmXrd2FEBpxe30UlDcz47m1/HhK3043wujK4Vss3zApi9vO0a49GkiLtG4pb3Qw54V1JxWA25kNOhbfMp6RmTGYDCE9uC6E6AEen59dlS1cv2jNSQXgdukxVpbMm0BmXFgPnJ0QIpS5vT5KGhx8s7v6pANwu7Ny4nlk2mBSoiyaP6mSFmldqGw69QAMbVssz31xHVtLG3F7Za6dEEI7Hp+fPVWnHoChbYvlGc+tpazBofHZCSFCncvrZ+PBhlMOwNC2xfIfPt6JL8j9G0M+BFc2OZj1/H8CcEKEicy47k1pMBt0DE6NAtr+Ecx+QYKwEEI77QH4h8/+JwD3S4og4tA6hK6kRFlIObSFe1mjg+sWrZEgLITQTIvTw6fbK/nZO1s7vjcyM6bbxw9KjcR86An6ysJa7l26hbpWl+bneTwhHYKbHB7uO2wOcGKkmUVzc3l6xij6JUV0vC/SbODNW8czMvM/7dPMBh0L54zhD1cPY0r/RKB9RHj9SU0KF0KI42m/uW4PwGOzY/nTD0ewaO6YI4Jwv6QIls6bcET7tMw4KwvnjGbhnNEdN/ZljQ5ufz2PZocnuD+IEOKMVNboOCIA/+isbB6bPoTHpg854n0/GJXOMzNHHdE+bUr/RP549XAWzhlzRBB+9tv9QVsYF9IhONpq5IlrhpMSZSEx0syzc8bwqw+2c9ebm3nimuH0S4og0mxg2R0TGdcnjudvGMvIzOiOALx0Qwmznl/LLef0Zkr/RHQKLJg9CqMhwG1ThBACMOgUnps7BpNex9jsWO6/aAA3vrSehd/s6wjC/ZIieP3W8YzNjuNfd0wiLrztadbTM0bx07fz+enb+Tw9YxSZcVbiwk08M3N0t0eShRDiRFKjrTxw8QCgLQAPTI1i+oJVVDW7OoLw1aPSeWTaYC4YlMQLN+aiU9oC8C3n9GbW82tZuqGkIwiPyIxm3rl9gnaNkoVxQFmDnZpWFw+9t52C8mbgPyuqo8OM9IoN69gKuabFxb6aVl5eVdTR0iPMpG/r3WnUMzAtijCTfMAIIbTh9PjYW9WCze1j3uKNNB0axT07J4F7LuhHr7gwkg5NefD7VcoaHdTb3Ny7dEvHU64+CeH87fqRxIWbSI+xogt0f1MhhDikyeFh48E6als9/PxfW2mPlXeel8OYrBhGZsZ2PKWyu73sKm/G5vFx++KNHU+5Lh6Sws1nZdM3MYJEjdvMysK4Luh1yhEBGNqG+O96czMGRekIwAB+VeX1tQc7AjCA3d32l2k06OB/755CCPFfTAGMBt0RARjg+721PPP13iMuOTqdgk6nHBGAAfbX2rh36Rb0h14XQgit+P0qTo96RAAGWLBiLzsrWvCr/1knpVMUjAbdEQEY4POCSl5fezCou8WBhGAqmhzc8mreEQG4XVmjg5nPr6O4ru3DpKrZyW+WF/DR1opj3mt3+7j+ubXsrWmVLUmFEJpweXwcqLNx3aK1RwTgdt/uqeH+t/OpanYCUNbgYO5xOt3sr7Ux54V1sjBOCKGZBpubVftqufPNTXSWX//0+W7eXFdMbasTp8fX1unmubWddrr5aGsFv15eQPWh61kwhHQIrmt18cCyrZ0G4HbtQbik3s5vlhfw6fbK477X7vYx87m1uKQ7hBBCAy6vn1nPr+s0ALf7bm8t97+dT3mjg7kvnrjV4/5aG3e8sZFGu7snTlcIEWIqmhz85K3NnQbgdn/9spDFa4vZXdnCjOME4Hafbq/kxe8PBO0aFdJzgj0eH0X1dq5btIYGuzarpf907XCmDEgkMdKiST0hROiqa3WRV9TAHW9sRIv2mRFmA0vmTaBvYjhWWbsghAhQTYuTBSv28crqIk3q5SRF8NqPxpGm4e67Mif4OIxGPdlxYbx9+0Riw4wB15MALITQUnyEmdzsWBbOHkOgU3klAAshtJYYaeHO8/py06TsgGv1RADuSkiHYNAuCEsAFkL0BC2CsARgIURP0SIIn44ADBKCgcCDsARgIURPCiQISwAWQvS0QILw6QrAICG4w6kG4T9dO5zzJAALIXpYfISZsScZhCUACyGCpT0I3zgxq9vHnM4ADBKCj9Di9hFlMdIvObJb77cYdUzqm9DDZyWEEG1UFUZkRhNl7d6NelZ8GImRZtnKXQgRFOEmA1eNSu/2+yf0ievYMvl0kBB8SL3Njd3l5dEPC1h/oL5bxzg9fq5btIZWt4/aluD1tRNChJ66Fhd2j4/ZL6yjsZvdbArKm3lgWT4Oj5/6VlcPn6EQIpTZXV721rQy54V13T7m9bXFvL72YFB7Ax9OQjD/CcB/+GQnn5ygD3BnyhodzH5+nQRhIUSPaQ/AN728nn01x+8D3JmVhbX84t2tEoSFED2mPQDPfG4ttpN88vS3rwp5a33xaQnCIR+CAwnA7SQICyF6SiABuJ0EYSFETwkkALc7XUE4pENwg92N3R1YAG53eBBu0mjjDSFEaGt2uAMOwO0OD8KyY5wQQgtaBOB2pyMIh3QI9nj9/Omz3d0KwDefld1l14j2IOz0yiIUIUTg3D61WwE4wmzgtnN6d9k1YmVhLb98bxte3//eTqFCiP8+ZY2ObgXgnKQIpo9M67Le374q5P0tZdQE6al6SIdgs0HHdWMzMepP/Mnx5DXDuXZMBkvmdd0+7YLByQS4sZMQQgDg96tMG37iD44Is4G3bhvPlSPS+Ofs0ScMwjoFZo3rhSIXKSGEBqKsRkZmxpzwPf2SInj5prH83/n9uHFi9gnfGxtmZMqAJKItwWnpGNIhODrMxNC0KF65edxxg/CT1wwnPsLE5U9/z8urDpwwCN84KZs7p/QlKUp6BgshApcUZWH2+F783/n9On29PQB/uLWCK/6xCofHd9wgrFNg4ewx5GbHEh9h7uEzF0KEguQoC3+9fiRn9Y3v9PV+SRG8dNNY/m/JFi556jtmjss8bhCODTOy9PaJZMdZMRklBAfFiYJwewC+5dU8AJZsKDluEJYALIToCccLwocH4OdW7gfg3qX5nQZhCcBCiJ5yvCB8eADeVNyA2+vnygWrOg3CpyMAg4RgoPMgfHQAbtdZEJYALIToSUcH4c4CcLujg7AEYCFETzs6CB8dgNt1FoRPVwAGUFT1f2+BRG5urpqXl9f1G09Sk93F9vIWyhsdxIUfG4APN2NsJjef1ZsP88u5YWKWBGAhRI+rbnbyzqZSzslJ6DQAH+5v14/AajSgKJCbJQFYCNGzGmxu3D4/T/+7kPmT+x4TgA9nMuhYfudZfLStgitHpJEUYSImvGeuUYqiYPYnOgAAIABJREFUbFRVNbez12Qk+BCfX6XV5SPMpCc50nzCAAxtI8JLNxQzfWQaNrePVqe0RRNC9Byby4vd7eP8gUl8s7v6hAEY2kaEwU9ypBm724fH5w/OiQohQk69zc2e6hY+217BPRf0O2EAhv+MCF81Mo1Wp4eD9Q4qm2SzjNPC51epbHLw9a5qVBXMRj0T+sSd8JjYMCOXDE2lrNHBx1srqGl1SxAWQvQIm8tLTYuL5fllVLe4OCsnkeSoE4+aDEuPJiHCgtev8um2ciqbnBKEhRCaq7e5KaxuYeWeGib3T+IvX+whv7Sxy+PcXj+/+mA7bp/Kqr21VDU7gx6EQz4EHx6Ah6RF85O3NnPb4jzuvaD/cYNwbJiRRXNzefzTXdzyah5Z8WEShIUQPeLwADw4LZpbX83jofe38f/t3Xl81NW9//H3JzuQsAiIQBRoiwICIgaFWi2420Wt3Vxbq4X2Vq2Wora1KteuVmu3axfQXrdLsYu/1l7XegtKb0UMSLWCCxdBWVRAhISQ/fP7YyY2hCwzmTkzk3xfz8eDh5nv9zsnn+T78Mw7Z86c84vzj+owCE8aOUA3fHSCvnjvSn3x3pWaOuoAgjCAtGsdgD951MFa+tJb+ugRI3TzJyZ3uW75RyYP1xUnHip319RRg7IShCMdgtsLwJvf2avdexs7DMKtA/Cq13aqqdl15X2rCcIA0q5tAL70v1aprrFZa7dWdRiEWwfg7dX12l5dTxAGEERtQ9M+Abix2XX+7U9r1Wvv6JZPHtFhEP7I5OE6c8pIfebXK/Szv67bJwhX1Taoui4zOSrSIfjtPXVa8tK2fQJwi7ZB+JgxB+jAsqJ9AnCLtkE41a0DAUCSauob9wvALVoH4eEDijXjvYP3C8AtWgfhR57fwrbJANKitqFxnwD87QfXSpLuXb6xwyDcEoAvWxTr0/7+fzv2CcIbduyRMrTtWKRXh9i9t15v7q7TRf/5zD4BuLX+fQp0z8XH6MCyYjU2e6eTvfPzTP9x7pGqGDVIQ1ktAkCKtlfXas2WKs2+u3KfANza+OFl+uUFR6koP087a+r1mV+v2CcAtzaktEh3X3y0Rgws0cC+rBYBIDWb39mrv7zwxj4BuLULpo/S1EMGav4DL2hoWbHGD++/TwBu7f3vHazLT3if8vJMR5QPVElhflpqZHWIDjQ2S9c/8EKHAViKjQhf+OuntX77Hl3Zxacdm5pdX/ntahUWRPrXCiBNSgoKdPlvnu0wAEuxEeEv3rtSr71d02kAlmIjwlf9/jmZ0UcBSAN3NbnaDcDSv0aEH7jsA7rz4qP18anl7QZgSe+OCA8rK9HeusbQlUuK+EiwJG3eWaPzbn9aG3fUpNxWYb7prs8drSMPGag+RZld8BlA71Pf2KQ1W6p0zsKnVNuQ+jzeYf2L9dsvzNCowf3SUB2AqFu7dbdO/8myLq+7cPoovf99g3Xl4tWd/lEvSbOPG6MrTjpUpcXpyVGMBHdi5KC+WvT5YzRqcN+U2iEAA0i3ooJ8TRhRpsWzZ6ikMLXumgAMIN1GDCzRVace2uV19yzfqH+7t/0R4NamlA/QnOPfk7YA3JXIh2Ap9SBMAAYQSjqCMAEYQAgD+hTpgumjEgrCXZlSPkALP1uhoWWZ+0wVITiuu0GYAAwgtH8F4elJB2ECMICQ0hGEsxGAJULwPooL83XPxUerfFCfhK7PzzPd+bmjNXxgifLz+FUCCMfMNKS0SItmT1dxgh++HVpWrMVzpqtvilMpAKAzJtNphw/XV09OPghPKR+g/zhvqvItM8uitUbPGPfGrlrNf+AF5eflaUCfwoSeU5BnGti3UI+98Iae37xL9V3MdQGA7mhoatYrb1bpNyteU/+SQhXmJ9Z1lxYXqDA/T9956EVt3pn6h38BoK3dexu0ZstuPfHyNr3/fYP15RPfl/BzJ40coJ+dN1U//Z9XtGFHjXZU1QWsdH+EYMUC8LcfXKOvnT5Ol//mWb2wZXdCz6trbNa5C5frA+8bqsoNOwjCANKuJQA/+NwWnXVkuc5dsFzVCS4f9Or2PZp9d6XmnXqYbn70JYIwgLRqCcBrtu5Wk7u27qrVhOEDEn7+e4b20/pt1fp4RbkWLluvjW9nNghHPgS3DsBf/k3n6wC3Z/feRp17O0EYQPq1DcDnLXxa26qTe4FYu7WKIAwgiJ019e8G4OH9S1RckK8rFj+b8PP/tHqL/rL2LVXXNuqiY0dr4bL1equ6LuE/9FMV6RC8a2+Dfr7klW4H4Batg/DKDW9rL9smA0iDusZmPfL81m4H4Batg/Avn/g/7d7bkOZKAURRTX3TvwJwYX6HG2F05t7lG7XkpW3vBuGHn98aqNr9RX6zjDd27dWX/uvZbgfg1vr3KdDi2TN08KA+KktwXjEAdKSmrkFbdtXq3AXdD8CtjR9epjs+O03DyoqVn+C8YgDoyPbqWlVu2Kn8vLxuBeDWLpg+SrMOG6qJIwZo2ID0rRLBZhkd2LGnTl/7w/NdBuDCfNO3z5rY5fJpu/c26pyFT6mhiekQAFLX0Cydm8AI8LD+xfr+2ZO6XD5t7dYqXbZolaoy9FYjgN6turYxLQFY+teI8Os7a5gOkQkDSwp1zenj1L+k4/V9W9YB/sRR5QmtIzz3pEOVhVU+APRG7rr2Q+M77VNa1gH++FHlXW6oUVKYp+s/crj6FuUHKBZA1NQ3eUIB+IjyAfr8cWO6bO/e5Rv11PodytQshUiH4Pz8PB16YKnu+8KMdoNw640wSgrzu9xQY/5HJ+jMKSM0qF9x6NIBRMCAvkWaddhQ/ehTU9oNwq03wijMz+t0Z7mSwjwtnj1DE0aUqaiAEAwgdUNKi3XS+GGdXjOlfIBu/2yFvnzC2C431Diof4nOmjJSZSWZmVIa6RAsdRyEO9oJrqMgTAAGEEJHQbi9neA62mKZAAwghAP6FelbZ03UhycNb/d8653g+vcp7HRnuYP6l+h3X5yhgw9IbufeVEQ+BEv7B+GutkJuG4QJwABCahuEO9sKuW0QJgADCKmjINzeVsgdbbGcjQAssTrEPpqamvXyW9V6p6ZeUw5uPwC3tnlnjZ5+9W3NOmwoARhAcLtq6vX3/9uhCSP6txuAW6tvbNKaLVWSRAAGENzbe+p13R//qQef39puAG5t19563bt8o25+9OXgAbiz1SEIwW00NTWrvqm5ywDcYm99Y8LXAkCqauob1TfBPqe+MbZmOQEYQCa8vaded/19gy6YfkiHAbjFrr31+tPqLZp12IFBR4AJwQAAAAiupq5RfYsT+0O9uq5BpcVhPwTHOsEAAAAILtEALCl4AO5KlyHYzCaZ2XIze93MFpjZoFbnVoQtDwAAAEi/REaCfyFpvqRJkl6W9Dcze2/8HHsDAwAAoMdJZMy6zN0fiX99i5mtlPSImV0oqedNKAYAAEDkJTRxw8wGuPsuSXL3JWb2cUl/kHRAyOIAAACAEBKZDnGTpPGtD7j7c5JOlHR/iKIAAACAkLoMwe6+yN2Xt3P8NXef3fLYzH6W7uIAAACAENK5RNqxaWwLAAAACIZ1ggEAABA5hGAAAABETjpDsKWxLQAAACCYhEOwmU3q4pKfpFgLAAAAkBHJjAT/3MxWmNmXzGxA25Pufmf6ygIAAADCSTgEu/txks6XdLCklWa2yMxODlYZAAAAEEhSc4Ld/RVJ35R0jaQPSvqpmb1oZmeHKA4AAAAIIZk5wZPN7EeS1ko6QdJH3X18/OsfBaoPAAAASLuCJK79maTbJX3D3fe2HHT3LWb2zbRXBgARt3NPvarrGoO0XVpcoEH9ioK0DSAaQvVRmeqfkgnBH5a0192bJMnM8iSVuHuNu98TpLrAeIEBkMuq6xp13A+WBGl72dWz6KMApCRUH5Wp/imZEPy4pJMkVccf95X0mKT3p7uoTOEFBkAuKyrI0+I504O1DQCpCNVHZap/SiYEl7h7SwCWu1ebWd8ANWUMLzAActne+iads2B5kLaXzpsZpF0A0RGqj8pU/5RMCN5jZlPdfZUkmdlRkvZ28RyZ2WmKbaSRL+l2d/9+O9d8StJ8SS7pH+5+XhJ1dRsvMAAAANGUTAi+UtLvzGyLYlskHyTp0509wczyJd0m6WRJmyQ9Y2YPuPuaVteMlfR1Sce6+04zOzDJnwEAAAAZVlIY5h31ksIcmw7h7s+Y2ThJh8UPveTuDV087WhJ69x9vSSZ2WJJZ0pa0+qa2ZJuc/ed8e/zVqI1papvUb4en/vBYG0DQCpCvcC0tA0AqahtbA4zHeKqmWlvsz3JjARL0jRJo+PPm2pmcve7O7l+pKTXWz3eJOmYNtccKklm9r+KTZmY7+6PtG3IzOZImiNJhxxySJJlt29PfZNOuvWJtLTV1hKmQwAAgF7MvWe121bCIdjM7pH0XkmrJTXFD7ukzkJwojWMlTRTUrmkJ81skru/0/oid18gaYEkVVRUZOjXAwDZs7chzCiLxB/qAJDMSHCFpAnuSeXzzZIObvW4PH6stU2Sno5PrXjVzF5WLBQ/k8T3AQAAABKWzKSwfyr2YbhkPCNprJmNMbMiSedIeqDNNX9UbBRYZjZEsekR65P8PgAAAEDCkhkJHiJpjZmtkFTXctDdz+joCe7eaGaXSXpUsfm+v3b3F8zsRkmV7v5A/NwpZrZGsWkWV7n7jm78LAAAAEBCkgnB87vzDdz9IUkPtTl2fauvXdLc+D8AAAAguGSWSHvCzEZJGuvuj8d3i2MdMAAAAPQ4Cc8JNrPZkn4v6VfxQyMVm88LAAAA9CjJfDDuUknHStotSe7+iiR2dwMAAECPk0wIrnP3+pYHZlag2DrBAAAAQI+STAh+wsy+IamPmZ0s6XeS/hymLAAAACCcZELw1yRtk/S8pC9Iesjdrw1SFQAAABBQMkukXe7uP5G0sOWAmV0RPwYAAAD0GMmMBH+2nWMXpakOAAAAIGO6HAk2s3MlnSdpjJm13vK4TNLboQoDAAAAQklkOsTfJW1VbNvkH7Y6XiXpuRBFAQAAACF1GYLdfaOkjZJmhC8HAAAACC+ZHePONrNXzGyXme02syoz2x2yOAAAACCEZFaH+IGkj7r72lDFAAAAAJmQzOoQbxKAAQAA0BskMxJcaWb3SfqjpLqWg+5+f9qrAgAAAAJKJgT3l1Qj6ZRWx1wSIRgAACBi+hTmafGc6UHazYSEQ7C7fy5kIdnQryhfj8/9YLC2ASAVZj2zbQDoCRIOwWZ2qKRfSBrm7hPNbLKkM9z928GqC6ymvkkn3fpEkLaXzpsZpF0A0VFSEGaUpaVtAEhFbUOzzlmwPO3tZipDJTMdYqGkqyT9SpLc/TkzWySpx4bgkkDD+C1tA0AqQr3ASPyhDgDJhOC+7r7C9n0PrTHN9WQULzAAAADRlEwI3m5m71Xsw3Ays08otp0yACCAPkX5wd6t6sPnFgCkKNQ76pl6Nz2ZEHyppAWSxpnZZkmvSrogSFUZwodOAOSyfDMd1L8kWNsAkIq6xjDvqD9x1cy0t9meZFaHWC/pJDPrJynP3avClZUZeQFfBEK2DSAa9jY0aeYtS4O0vezqWUHaBRAdobJOpjJUwuPNZnaFmbWsFfwjM1tlZqd09TwAAAAg1yQz6eJid9+t2GYZgyVdKOn7QaoCAAAAAkomBLeMTX9I0t3u/kKrYwAAAECPkUwIXmlmjykWgh81szJJzWHKAgAAAMJJZnWISyRNkbTe3WvMbLCkXreVMgAAAHq/LkOwmY1z9xcVC8CS9B5j5QMAAAD0YImMBM+VNEfSD9s555JOSGtFAAAAQGBdhmB3nxP/L4tKAgAAoFdIZp3gT8Y/DCcz+6aZ3W9mR4YrDQCirdm9R7YNAD1BMqtDXOfuVWb2AUknSbpD0i/DlAUACJlTycAAoi6ZENwU/++HJS1w9wclFaW/pMxhlAUAACCakgnBm83sV5I+LekhMytO8vk5h1EWAACAaEomxH5K0qOSTnX3dyQdIOmqIFUBAAAgp4V61ztT76YnHILdvUbSnyTtMbNDJBVKejFUYQAAAMhdobJqpt5NT3jHODO7XNINkt7Uv7ZLdkmTA9QFAAAABJPMtslXSDrM3XeEKibTQv6hwZRgAKmijwKQy0L1I5nqn5KZE/y6pF2hCgEAAAAyJZmR4PWSlprZg5LqWg66+61prypD+hTmafGc6cHaBgAAQG5KJgS/Fv9XpB6+PnCL2oZmnbNgeZC2l86bGaRdAAAApC7hEOzu/y5JZlYaf1wdqigAAADktlDvqGfq3fRkVoeYKOkexdYHlpltl/QZd38hUG0AEGlM2QKQy0K9o56pd9OTmQ6xQNJcd18iSWY2U9JCSe8PUBcARB5TtgAgnGSGAvq1BGBJcvelkvqlvSIAAAAgsKRWhzCz6xSbEiFJFyi2YgQAAADQoyQzEnyxpKGS7pf0B0lD4scAAACAHiWZ1SF2SvpywFoAAACAjEh4JNjM/mJmA1s9HmRmj4YpCwAAAAgnmekQQ9z9nZYH8ZHhA9NfEgAAABBWMiG42cwOaXlgZqMkefpLAgAAAMJKZnWIayX9zcyekGSSjpM0J0hVAAAAQEDJfDDuETObKqll+6Ir3X17y3kzO5zd4wAAANATJDMSrHjo/e8OTt8jaWrKFQEAJEl9ivLDbZtclB+kXQDoKZIKwV2wNLaVEbzAAMhl9Y3htk1edvWsIO0CQE+RzhDc4z4kxwsMAABANKUzBAMAACAiQr2jnql309MZguvT2BYAAAByWKh31DP1brq5Jz6LwcwmSxqtVuHZ3e9Pf1mdq6io8MrKypTb2bmnXtV1jWmoaH+lxQUa1K8oSNsAooE+CkAuC9VHpbN/MrOV7l7R3rmER4LN7NeSJkt6QVJz/LBLyngITpdB/Yp4EQCQs+ijAOSynt5HJTMdYrq7TwhWCQAAAJAhyWyb/JSZEYIBAADQ4yUzEny3YkH4DUl1iq0L7O4+OUhlAAAAQCDJhOA7JF0o6Xn9a04wAAAA0OMkE4K3ufsDwSoBAAAAMiSZEPysmS2S9GfFpkNIys4SaQAAAEAqkgnBfRQLv6e0Otajl0gDAABANCUcgt39cyELAQAAADIlmc0ySiRdIulwSSUtx9394gB1AQAAAMEks07wPZIOknSqpCcklUuqClEUAAAAEFIyIfh97n6dpD3ufpekD0s6JkxZAAAAQDjJhOCG+H/fMbOJkgZIOjD9JQEAAABhJbM6xAIzGyTpOkkPSCqVdH2QqgAAAICAklkd4vb4l09Iek+YcjJr5556Vdc1Bmm7tLhAg/oVBWkbQDTQRwHIZaH6qEz1T8msDjFM0ncljXD3081sgqQZ7n5HsOoCq65r1HE/WBKk7WVXz+IFBkBK6KMA5LJQfVSm+qdk5gTfKelRSSPij1+WdGW6CwIAAABCSyYED3H330pqliR3b5TU1NWTzOw0M3vJzNaZ2dc6ue7jZuZmVpFETQAAAEDSkgnBe8xssGJbJcvMpkva1dkTzCxf0m2STpc0QdK58WkUba8rk3SFpKeTqAcAAADolmRC8FzFVoV4j5n9r6S7JV3exXOOlrTO3de7e72kxZLObOe6b0m6SVJtEvWkrNm9R7YNIBroowDkslD9SKb6p2RC8BpJ/0/SM5LelLRQsXnBnRkp6fVWjzfFj73LzKZKOtjdH0yilrQI+Tvm9QVAquijAOSyUP1IpvqnZELw3ZLGKbZCxM8kHarYVsrdZmZ5km6V9NUErp1jZpVmVrlt27ZUvu27Qv6OeX0BkCr6KAC5LFQ/kqn+KZnNMia6e+v5vEvMbE0Xz9ks6eBWj8vjx1qUSZooaamZSdJBkh4wszPcvbJ1Q+6+QNICSaqoqKD/BgAAQLclMxK8Kv5hOEmSmR0jqbKT66XY1ImxZjbGzIoknaPYvGJJkrvvcvch7j7a3UdLWi5pvwAMAAAApFOXI8Fm9rxiI9OFkv5uZq/FH4+S9GJnz3X3RjO7TLH1hfMl/drdXzCzGyVVuvsDnT0fAAAACCGR6RAfSeUbuPtDkh5qc+z6Dq6dmcr3AgAAABLRZQh2942ZKAQAAADIlGTmBAMAAAC9AiEYAAAAkUMIBgAAQOQQggEAABA5hGAAAABEDiEYAAAAkUMIBgAAQOQQggEAABA5hGAAAABETiLbJvdafQrztHjO9GBtA0Aq6KMA5LJQfVSm+qdIh+Dahmads2B5kLaXzpsZpF0A0UEfBSCXheqjMtU/MRQAAACAyCEEAwAAIHIIwQAAAIicSM8J7lOUH+5DJ0X5QdoFEB30UQByWag+KlP9U6RDcFF+nkYO7BOsbQBIBX0UgFwWqo/KVP8U6RA8qF+RBvUrynYZANAu+igAuayn91EMBQAAACByCMEAAACInEhPh9heVafqusYgbZcWF2hIWXGQtgFEw8499UH7qJ78NiYApCrSIbi6rlEzb1kapO2l82YSggGkpLquUcf9YEmQtpddPYsQDCDSmA4BAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAipyDbBWRTv+J8LZk3M1jbAJCKksK8YH1USSFjIABSs62qVtV1TWlvt7Q4X0PLStLebluRDsHVdU2adcvSIG0vmTdTQ8uCNA0gIuijAOSyUH1UpvonhgIAAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOebu2a4haRUVFV5ZWZlyO9uqalVd15SGivZXWpyvoWUlQdoGEA30UQByWag+Kp39k5mtdPeK9s4VpOU79FC1Dc2adcvSIG0vu3pWkHYBRAd9FIBcFqqPylT/xHQIAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkBA/BZnaamb1kZuvM7GvtnJ9rZmvM7Dkz+x8zGxW6JgAAAERb0BBsZvmSbpN0uqQJks41swltLntWUoW7T5b0e0k/CFkTAAAAEHok+GhJ69x9vbvXS1os6czWF7j7EneviT9cLqk8cE0AAACIuNAheKSk11s93hQ/1pFLJD3c3gkzm2NmlWZWuW3btjSWCAAAgKjJmQ/GmdkFkiok3dzeeXdf4O4V7l4xdOjQzBYHAACAXqUgcPubJR3c6nF5/Ng+zOwkSddK+qC71wWuCQAAABEXeiT4GUljzWyMmRVJOkfSA60vMLMjJf1K0hnu/lbgegAAAICwIdjdGyVdJulRSWsl/dbdXzCzG83sjPhlN0sqlfQ7M1ttZg900BwAAACQFqGnQ8jdH5L0UJtj17f6+qTQNQAAAACtmbtnu4akVVRUeGVlZcrt7NxTr+q6xjRUtL/S4gIN6lcUpG0A0UAfBSCXheqj0tk/mdlKd69o71zwkWAAAAD0Pk3Nrqbm9A+mhmizPZEOwdV1jTruB0uCtL3s6lmMsgBICX0UgFxWXdeombcsTXu7S+fN1JCy4rS321bOrBMMAAAAZAohGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDk9Jp1ghsaGrRp0ybV1tYm/JzG5mYtPGN4kHre2fqqqt/M/N8YJSUlKi8vV2FhYca/NwAAQE/Ra0Lwpk2bVFZWptGjR8vMEnpOfWOT/I2qIPUcdlCZigryg7TdEXfXjh07tGnTJo0ZMyaj3xsAAKAn6TXTIWprazV48OCEA3BvZGYaPHhwUqPhAAAAUdRrQrCkSAfgFvwOAAAAutarQjAAAACQCEJwmuzetUv33XV7tssAAABAAgjBaVK1e5fuu/uObJcBAACABBCC0+Qn35uvTRs36FOnHqdbv32dfvjDWzRt2jRNnjxZN9xwgyRpw4YNGjdunC666CIdeuihOv/88/X444/r2GOP1dixY7VixQpJ0vz583XhhRdqxowZGjt2rBYuXChJ2rp1q44//nhNmTJFEydO1LJly7L28wIAAPRkhOA0ueLr81U+arR+++gyTT9ulta9sk4rVqzQ6tWrtXLlSj355JOSpHXr1umrX/2qXnzxRb344otatGiR/va3v+mWW27Rd7/73Xfbe+655/TXv/5VTz31lG688UZt2bJFixYt0qmnnqrVq1frH//4h6ZMmZKtHxcAAKBH6zXrBOeSp55coice/4uOPPJISVJ1dbVeeeUVHXLIIRozZowmTZokSTr88MN14oknysw0adIkbdiw4d02zjzzTPXp00d9+vTRrFmztGLFCk2bNk0XX3yxGhoadNZZZxGCAQAAuomR4ADcXVddfY1Wr16t1atXa926dbrkkkskScXFxe9el5eX9+7jvLw8NTY2vnuu7VJnZqbjjz9eTz75pEaOHKmLLrpId999dwZ+GgAAgN6HEJwm/UpLVbOnWpL0/g+eoLvu/E9VV8ceb968WW+99VZS7f3pT39SbW2tduzYoaVLl2ratGnauHGjhg0bptmzZ+vzn/+8Vq1alfafAwAAIAqYDpEmAwcdoCkVx+jsE2foA7NO0qfPOVczZsyQJJWWluree+9Vfn7i2yhPnjxZs2bN0vbt23XddddpxIgRuuuuu3TzzTersLBQpaWljAQDAAB0k7l7tmtIWkVFhVdWVu5zbO3atRo/fnxS7TQ0Nau5OczPn5dnKszv3kD7/PnpsXzNAAALs0lEQVTzVVpaqnnz5nXr+d35XQDIPduqalVd1xSk7dLifA0tKwnSNoBoCNVHpbN/MrOV7l7R3rlIjwQ3N7teerMqSNuHDSuTEh/4BYD9VNc1adYtS4O0vWTeTA0tC9I0gIjYE6iPWpqh/inSIThXzZ8/P9slAAAA9Gp8MA4AAACRQwgGAABA5BCCAQAAEDmEYAAAAEQOITiNrv/qZZo5ZazOPnFGtksBAABAJyIbgh9++GGd/bEzdfHHTtZVs8/TU0/8T8ptnvnJc/WLe36fhuoAAAAQUiSXSHv44Yf1ne98R7W1tZKkHdve0l0/v1WSNOODJ3a73aOmH6vNr7+WlhoBAAAQTiRHgm+77bZ3A3CL+ro63X/vHVmqCAAAAJkUyRD85ptvtnt8x/ZtGa4EAAAA2RDJEDxs2LB2jw8eMjTDlQAAACAbIhmCL730UpWUlOxzrKi4WGdfcEmWKgIAAEAmRTIEn3766br22ms17KCDJDMNHnqgPvuluSl9KE6Srrn0En3mrFO0cf06vXfMKN1xB3OMAQAAclEkV4eQYkH4hJNO0UtvVqWtzZtu+1foPWxYmYoL89PWNgAAANInkiPBAAAAiDZCMAAAACKHEAwAAIDIIQQDAAAgcgjBAAAAiBxCMAAAACKHEJxGb2zZpEs+9VF97ITpOvKIyfrJT36S7ZIAAADQjkiuE9zQ0KC5c+fK3fWt73xP37z265Kkm35wiwoLC7vdbv/mgfrZj2/VkUdO1Z491Zp+9DSdfPLJmjBhQrpKBxAhpcX5WjJvZrC2ASAVpcUFWhqgjyotzkw8jWQInjt3rlatWiVJOuOjH1FjY6Mk6bIrvqK5N3yv+w3nlarviLF66c0qjTuoTOPHj9fmzZsJwQC6ZWhZiYaWZbsKAGjfkLJiDSkrznYZ3RbJENyirq5OUp0kqbAovTdxw4YNevbZZ3XMMcektV0AAACkLpJzgm+66ab9pj0UFBTo0muuT0v7NXuqdc6nPqUf//jH6t+/f1raBAAAQPpEMgRfc801amho2OdYY2OjbrvpxpTbbmho0Nw5n9U5556rs88+O+X2AAAAkH6Rng5RXFysvPyCd+cEp8rdNf+qy/WesYfqyq98JS1tAgAAIP0iORJ86623aurUqZpy5JH64R2Lddjhk3XY4ZP15W+kNhL87DPL9d9/uE8r/vdJTTvqKE2ZMkUPPfRQmqoGAABAupi7Z7uGpFVUVHhlZeU+x9auXavx48cn1U59Y5NefKMqnaW9a9xBZSoqyM4SRN35XQAAAPQ2ZrbS3SvaOxfJkWAAAABEGyEYAAAAkUMIBgAAQOQQggEAABA5hGAAAABEDiEYAAAAkRPpzTJCOH3GZPXtV6q+xUUqLCxQ26XcAAAAkH2RDMHHH3+8ampq9jte0qePfv6bP6fc/u2//bNmTBidtXWCAQAA0LlITodoLwBLUu3evRmuBAAAANkQyRAclJm+eP7Zmn700VqwYEG2qwEAAEA7IjkdIqQ7//Cwhg0foQPy9urDp5+mcePG6fjjj892WQAAAGiFkeA0GzZ8hCTpwAMP1Mc+9jGtWLEiyxUBAACgLUJwGtXU7NGe6ipJ0p49e/TYY49p4sSJWa4KAAAAbUVyOkTfvn07XB0iFW9v26avzL5AkpRvrvPPO0+nnXZaSm0CAAAg/SIZgp988klJUn1jk158oypt7ZaPGq3fPfY3SdK4g8pYIg0AACBHRTIEt8gz07iDyoK1DQAAgNwU6RBckM+UaAAAgCjqVSnQ3bNdQtbxOwAAAOharwnBJSUl2rFjR6RDoLtrx44dKikpyXYpAAAAOa3XTIcoLy/Xpk2btG3btmyXklUlJSUqLy/PdhkAAAA5rdeE4MLCQo0ZMybbZQAAAKAH6DXTIQAAAIBEEYIBAAAQOYRgAAAARI71xNUUzGybpI1Z+NZDJG3PwvdFWNzX3ot723txb3sn7mvvla17O8rdh7Z3okeG4Gwxs0p3r8h2HUgv7mvvxb3tvbi3vRP3tffKxXvLdAgAAABEDiEYAAAAkUMITs6CbBeAILivvRf3tvfi3vZO3NfeK+fuLXOCAQAAEDmMBAMAACByCMEAAACIHEJwG2b2azN7y8z+2cF5M7Ofmtk6M3vOzKZmukYkL4H7en78fj5vZn83syMyXSO6p6t72+q6aWbWaGafyFRtSE0i99bMZprZajN7wcyeyGR96L4E+uQBZvZnM/tH/N5+LtM1InlmdrCZLTGzNfH7dkU71+RMjiIE7+9OSad1cv50SWPj/+ZI+kUGakLq7lTn9/VVSR9090mSvqUcnMCPDt2pzu+tzCxf0k2SHstEQUibO9XJvTWzgZJ+LukMdz9c0iczVBdSd6c6///2Uklr3P0ISTMl/dDMijJQF1LTKOmr7j5B0nRJl5rZhDbX5EyOIgS34e5PSnq7k0vOlHS3xyyXNNDMhmemOnRXV/fV3f/u7jvjD5dLKs9IYUhZAv/PStLlkv4g6a3wFSFdEri350m6391fi1/P/e0hEri3LqnMzExSafzaxkzUhu5z963uvir+dZWktZJGtrksZ3IUITh5IyW93urxJu1/g9GzXSLp4WwXgfQws5GSPibetemNDpU0yMyWmtlKM/tMtgtC2vyHpPGStkh6XtIV7t6c3ZKQDDMbLelISU+3OZUzOaogG98UyFVmNkuxEPyBbNeCtPmxpGvcvTk2qIRepEDSUZJOlNRH0lNmttzdX85uWUiDUyWtlnSCpPdK+ouZLXP33dktC4kws1LF3n27MpfvGSE4eZslHdzqcXn8GHo4M5ss6XZJp7v7jmzXg7SpkLQ4HoCHSPqQmTW6+x+zWxbSYJOkHe6+R9IeM3tS0hGSCME93+ckfd9jmxmsM7NXJY2TtCK7ZaErZlaoWAD+L3e/v51LciZHMR0ieQ9I+kz8043TJe1y963ZLgqpMbNDJN0v6UJGkXoXdx/j7qPdfbSk30v6EgG41/iTpA+YWYGZ9ZV0jGJzENHzvabYCL/MbJikwyStz2pF6FJ8Dvcdkta6+60dXJYzOYqR4DbM7DeKfRJ1iJltknSDpEJJcvdfSnpI0ockrZNUo9hfq8hxCdzX6yUNlvTz+Ihho7tXZKdaJCOBe4seqqt76+5rzewRSc9JapZ0u7t3ulQeckMC/99+S9KdZva8JFNsStP2LJWLxB0r6UJJz5vZ6vixb0g6RMq9HMW2yQAAAIgcpkMAAAAgcgjBAAAAiBxCMAAAACKHEAwAAIDIIQQDAAAgcgjBAJBlZlYdoM0pZvahVo/nm9m8dH8fAOipCMEA0DtNUWwtTgBAOwjBAJBDzOwqM3vGzJ4zs3+PHxttZmvNbKGZvWBmj5lZn/i5afFrV5vZzWb2TzMrknSjpE/Hj3863vwEM1tqZuvN7Mvx5/czswfN7B/x53663cIAoJchBANAjjCzUySNlXS0YiO5R5nZ8fHTYyXd5u6HS3pH0sfjx/9T0hfcfYqkJkly93rFdkG8z92nuPt98WvHSTo13v4NZlYo6TRJW9z9CHefKOmR0D8nAOQCQjAA5I5T4v+elbRKsdA6Nn7uVXdv2YZ0paTRZjZQUpm7PxU/vqiL9h9097r49rNvSRom6XlJJ5vZTWZ2nLvvSuPPAwA5ixAMALnDJH0vPno7xd3f5+53xM/VtbquSVJBN9rfrw13f1nSVMXC8LfN7PruFA4APQ0hGAByx6OSLjazUkkys5FmdmBHF7v7O5KqzOyY+KFzWp2uklTW1Tc0sxGSatz9Xkk3KxaIAaDX685IAgAgAHd/zMzGS3rKzCSpWtIFis/17cAlkhaaWbOkJyS1TGdYIulrZrZa0vc6ef4kSTfHn98g6d9S+ykAoGcwd892DQCAbjKzUnevjn/9NUnD3f2KLJcFADmPkWAA6Nk+bGZfV6w/3yjpouyWAwA9AyPBAAAAiBw+GAcAAIDIIQQDAAAgcgjBAAAAiBxCMAAAACKHEAwAAIDI+f8TWunW1j9BxAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xV9f3H8de5O3uHLMLeYYcluPfeDMUt4Ky2ttWqba229ldbZ12IFQVEcKAVtVXclp2wZ1gJhOzkJje5e5zfHzEpI5Bxz71Y7uf5ePTxKNxzPpwmfZz7Pt/z/X6+iqqqCCGEEEIIEUl0J/oChBBCCCGECDcJwUIIIYQQIuJICBZCCCGEEBFHQrAQQgghhIg4EoKFEEIIIUTEMZzoC+iK1NRUtWfPnif6MoQQQgghxE9YYWFhjaqqaW199j8Zgnv27ElBQcGJvgwhhBBCCPETpihKybE+k+kQQgghhBAi4kgIFkIIIYQQEUdCsBBCCCGEiDgSgoUQQgghRMSRECyEEEIIISKOhGAhhBBCCBFxJAQLIYQQQoiI8z/ZJzhcmlxebC4vARV8ARWdAgadDpNBR2qs+URfnhAiwtU1uXH5AvgCKgFVxaBTUIA4i4H4KNOJvjwhRAQLBALUNHnwBVS8/gAABr0OBUiONmIxnfgIeuKv4CeoosFJlc3NGyv2UVBspdTqbP0sPsrAsOxEpo7tzqjcJFJjTJiM+hN4tUKISOLzBahqcrOtzMaCVSVsLK3H6vC2fp6ZYGF0bhK3TOxJVlIUmQlRJ/BqhRCRptHppdHtY9m2Sj7eWMa2MhtOrx8AnQK9UmOZ1DeFGyf0JC7KQHqc5YRdq6Kq6gn7x7sqPz9fDcWOcTaXhyqbm/sXb2DLQVu7xydGG/nzlUPJ75lE2gn8JQohIkN1o5vt5TYeeG8j1Y3udo/vlx7L81NHkpVgITFGRoaFEKFVaXPx4fqDPLusCLcv0O7xZw9M5w+XDyE91hyyAUVFUQpVVc1v8zMJwc1qm9x8s7OK3yzZjNffuZ/JxUMz+P2lQ0iPlyAshAiNKpuLZ78s4p01Bzp1nl6n8MhFg7hsRJZM4xJChExZvZM7FxSysbShU+fFRxl446YxDM6MJ9qs/QSF44VgWRhH8wjwNzur+OV7mzodgAE+3VzBQ0s2U2VzheDqhBCRrsrm4snPtnc6AAP4AyqPf7KND9cfpM7e/uixEEJ0VkWDk5veWNPpAAxgc/q4/vXV7KxsxNeB0WMtSQgGKhvc/GbJ5qBqfL2jiqUby2h0eds/WAghOsjp9fH9rmo+2lAWVJ0nP9vOwUPWNwghhBaqG108+ekOdlU1dbmG2xdgxrwCqpvC+6Ae8SG4osHJ/Ys3dGkE+Eh/+fdOrHaPBlclhBDN6uxefvfPrUHXUVW49531VDRIEBZCaGdPtZ2PNwX3kA5Q0+Th6WVFWMP4xiriQ3B5g4utZe0vgusIjz/AG8uLsbtlNFgIETy3188HhaU4PH5N6hXXOiiq7PpojRBCHKrS5uLpL3ZqVu+j9QdxeMI3JSKiQ7DN6eGN/+zTtOb7haU0OH2a1hRCRKZau4f5q0o0rTnnh73UdKCzhBBCtMft9bO22KpZPV9A5V9byjWr156QhmBFUd5QFKVKUZQtx/hcURTlBUVRdiuKsklRlFGhvJ4jNbp9mv7yAJrcPpwajdoIISKbzx/oUCu0zli/vx6PP7yLT4QQJ6dt5dq8ST/Uf3bXYHWEZ2ppqEeC3wQuOM7nFwL9fvzPTOCVEF/PYVQVKkLQ0aGoslHzmkKIyFPWoP39qcntwxPmFdhCiJPT2uI6zWtuK7PhcIfnjXpIQ7Cqqt8Dx/sJXQ7MU5utAhIVRckM5TUdSovFcG0J1xOMEOLkVh+ie4kvICFYCBGcQCBAvUP7NVA2lxdFUTSv25YTPSc4Gzi08WXpj393FEVRZiqKUqAoSkF1dbUm/7guRD9jk+FE/1iFECcDsyE0OyjpwvQFI4Q4eel0upDkHZNeR7j2cfufSWuqqr6mqmq+qqr5aWlpmtQ06nXEmLT/kunfLU7zmkKIyNM9OUrzmnqdgjlE25MKISJLXlaC5jX7pMWiD1M6PdEh+CDQ/ZA/5/z4d2Fh0CkMydb2F6gokBJj0rSmECIyRZsMmDT+NuibFouMAwshtDAyN1HzmiO6J5IWpi3eT3QI/hi48ccuEeOBBlVVw9YbIz3ewpT87u0f2AkT+6SG7BWmECKyRJn0nDekm6Y1rx6dQ7e48HzBCCFObknRJjLiLZrWvDY/B32YhoJD3SLtHWAlMEBRlFJFUW5TFOUORVHu+PGQz4C9wG5gDnBXKK+nLaf0TSHObNCs3j1n9SVVvmCEEBpIijZxx+l9NKtnNui4ZFhm2L5ghBAnt9Q4M7dM7KlZvcGZ8SSH8W16qLtDTFNVNVNVVaOqqjmqqv5DVdVXVVV99cfPVVVV71ZVtY+qqkNVVS0I5fW0JSnaxOOXD9Gk1pkD0uidFqNJLSGEAOgWb+GKEVma1HrwwoHEW7R76BdCRDajXsflI7LpmRIddC2dAk9dM4yMBO3XQhzz3wzbv/QTZTHqmdg3lbMHpgdVJzXWxBNX5JEep+1rASFEZEuLM/PgBQPJTgzui2FMzyQuHppJrMWo0ZUJIQRkJFh46fpRmIPsFHHPWf2Cvs91VsSHYGieG/znq4YysU9Kl85PjTWxaOYEshIkAAshtJeZGMXCGeO6fI8Z2T2RF6eNopvGc/eEEAKgV0oMc28Z0+UgfNOEHtwwPpekMDcWkBD8o/R4C89MGcEvzu2PoRMNhE/vn8ZHd0+kd2o0Op38OIUQodEjJYYP7jyFi/IyOnyOToFZp/Xm1RtG000e0oUQIRJtNjA8O4FP7p3EoMyOt4mNMxt4YeoI7j6rL2kn4E26ooarI7GG8vPz1YKC0Ewftjm91No9zPl+D0vWH8TlbXtnpQl9Urj3zL70TY8lXUZXhBBhUt3o4kCdkxe+3sV3RdVtNpVvWQB3x+l9SI01h310RQgRuSptLlbvreXV7/ayrdzW5jHJMSauH5fL1DG5pMSasISwd7miKIWqqua3+ZmE4LY1urw0unw0unzsKLdhdXgwG/UMyogjNc6M2aA7IU8tQggBUNPkxu31U2v3sL3chtPjJz7KyKDMeOKjjMSa9CRES/gVQpwYFQ1OPL4AZQ0u9lQ14QuodIs3079bHBajnpQYU1g27pEQLIQQQgghIs7xQrBMYhVCCCGEEBFHQrAQQgghhIg40jX9GGxOL3a3j1Krk8L9Vmob3VhMeoblJNC/WxwxJoPsDCeEOGFqm9w4PH52VTWy4UA9TrefxBgTo3IT6ZESQ7RJT6LMCRZCnAB+f4A6hweb08eWsgZ2VDQSCKhkJloYlZtEepyFeIuBaA137O0KCcFHsDm9HLA6+OvnO4+58hqgT1osPzu7L5P6pZISI2FYCBEedXY3a4utPPdlEdvLG4953ITeKfzq/AH0SYuRBXJCiLCpbnTx4fqDvP7DPqoa3W0eY9LruHREFj87qy/p8RaiwrBAri2yMO4QNU1unltWxILV+zt8zpCseF66bhTZSVEY9TK7RAgRGv6ASnmDk/sXb6Cg2Nrh864YmcXDFw2S3SyFECHlcPsoqmrkzgXrKG9wdegco17hwQsGctWoHJJD1MpRukN0QFWji1vmrmVrWds97Y4nxqRn8awJDMyIwyBBWAihsUBAZU9NE9e+upJ6h7fT5/dOjWHhjHFkJIR3S1IhRGRwuH18v6uGu94uJNCFWHnx0EyeuCIvJEFYukO0o87u5s4F67oUgAHsHj9TX1vV4ScfIYTojEqbi8ldDMAAe2vs3PTGWmqa2n41KYQQXaWqKjsqGrscgAE+3VzO818WYXN27R7XVREfgt1eP59uKqewpOOvF9vS5Pbx83c3UCdfMkIIDVntHh75aAvWLgbgFjsrG1m4ugSH26fRlQkhBFQ3urljQdcDcIu3VpZQVNlIOGcoRHwIrnd6+eOn2zWpVVBsZesxtggUQoiuKKlz8PWOKk1qPf/VburDPNIihDh5ef0B3ll74JgL4Drrl+9tpLbJo0mtjojoEKyqKl/vqMLtC2hW87kvd2G1h+8XKIQ4edmcXv7+1S7N6vkDKh+uP4gvoN09TwgRuax2D28u36dZveJaB2UNTs3qtSeiQ3C9w8t7BQc0rVlYYsXp9WtaUwgRmZxeP98WVWta84PCUqx2GQ0WQgSvuskd9FStI71XUIo/TA/qER2Cvf5AlxfDHY8sPhFCaKHJ5cMf7ES7I+yrtWteUwgRmdYFuZ6qLesPWLu8CLizIjoEe/wBTadCtNhTbde8phAi8pRaHZrXVFVwydsqIYQGQjGQWFzjwBemB/WIDsGhGg3x+mW+nRAieF5/aO5R4fqCEUKcvFRVDUne8QUCYXtbFdEhWK9TQlI3WbYoFUJoIDHaGJK6Rn1o7n1CiMihKAopsWbN6yZFm8LWJi2iQ3BAVclJ0n4Hpe7JsiuTECJ4odg9KSHKiE6RECyECI6qqozonqh53bzsBIxh2n03okOwQadjfO8UTWsmhWjkRggReXwB7R/Ux/ZK1rSeECIyKYpCv/RYtH6mnqBxLjueiA7Bqqpy5chsTWtOzu+OwyOLToQQwVNVlWljczWtOTm/u+ZfWkKIyKOqKr5AgFP7pmpW02zQMaFPCuFatRDRIRigtsnNOI1GRmJMei7MyyA+SkaDhRDBMxn0jO+dotkbpiFZ8c1z7WRdnBAiSKqqYtTrmHFqb81qTh2bi83lJVw3qYgOwQa9wrr99Tx4wUCijPqg6/3mokG8taIYsyGif6xCCI34/AHeXL6Pxy4bEnQto17h95cO4cvtlZKBhRBB0+l0bC+zUefwcP244N9Y5SRFccmwTHQoIeuMc6SITmuBAJw3uBuzv9/L364dFlS3iGtH52Ay6EiLt8iOcUIITTg8PgZmxlPd6ObWiT27XEdR4Ikr8niv4ADnDs4I28prIcTJTUUhJzGKi4dlkt8jqct14i0Gnp48nH01dr7fVY0xRN27jhTRIdjjD1Ba78Tt89M7LZZXrh9FnNnQ6Tq3TOzJPWf15Z/rD3JRXgabS+tDcLVCiEgTZTIwvncKr3y7m0GZ8dx7Vl86+90QZdTzt2uGs7faztYyG75AAEOYVl4LIU5uAzLiWLhmPzvLG/nVBQM4a2B6p2tkJViYc2M+SzeUkRBlxOsPkBobnlazEX0nVFV46t87+MNlQ/jLv3awcM1+5t02lrMHdeyX2DMlmrk3jyExysi1r6zk8SvyeGtlCTIQLITQQrzFwDNf7OR3lw7hkY82M7ZXMh/dPZEB3eI6dP7Evil8+rNJuH1+5v44rWLeihLpEyyE0EScxcCa4joSY0x8u72Khy4cyAvTRpLSgfaORr3C9PG5vHvHBL4vqubq0Tk8+tEWrh6Vg14f/BTVjuj8sOdJxKjXMbpHEiv31PJtUTUA6/ZbuefMftx1Rl8+31pBYYmV7eU2HB4/ep1Cn7QYhmYncNHQTDz+AH/9fCfbypu3DXx86VYuHZ5FagiaRwshIk+0yYDZqKPO7ubdWaewaM1+1hZbue/sviRGm/h0czmbSuvZVdmEL6BiMeoYlBHPyNxELsjLZHu5jamvreK2Sb14d9YEFq7Zz4Q+ySTJhj5CCA2kRBu48/Q+PLNsJ/NvHcfPF28gPsrIc1NHUNvkYdm2SjYfbOCA1YGqNm8AlJeVwPjeKUzsm8K/t1Rw+YvLee3GfJasKyUnMYpYS/iiqfK/ODcsPz9fLSgoCLpOZYOLcpuT6a+vocntO+wzi1HHmQPSGZ6TyMDMOKKMevyqSnGNnc0HG/h2ZzXlDa6jar46fTRDsuLpnhwd9PUJISKbzelhR0UjJbUO1uyr473C0tbP0mLNnDkwnaHZCfROi8GgU3D7AuysbGRzaQNfba/Efki7xkcvHkSlzcUN43uQmRCFURbwCiGCVGd3U2Vz4/EF+NX7m9hZ2dj6Wb/0WCb1SyUvO4HsxCgUwObysrXMxroSK8v31LZuj2w26JhzYz7pcWaiTHp6pMRodo2KohSqqprf5meRHIJtDg+fbangoSWbNbiqZhP7pvDXa4aTlSi7xgkhglPR4KTS5mJHRSMPfhDcfUqnwHt3TMDrD9A3LY7UOHljJYQITkmtnXUlVn7YXcOSdQeDqpUWa2bB7eNodHvJy4rHYtRmRPh4ITiihwIaPX6WrA/ul3akFXtqCfwPPlgIIX56vH4VBYXHl24LulZAhV++t4lAAFyycEEIoQGHx0esxRB0AAaobnIz54e9VNvcuLwBDa6ufREdglFVthxs0LoktU0eTWsKISKTisqXOw6f1hCMfTV2rA4PBlkYJ4TQgMPjZ84P+zSr99H6g+QmR2M/YopqqER0CPYG1JBscbynuknzmkKIyOPxBVi05oCmNRevPRC2RvRCiJOXqqpEmwys2VenWU1fQOU/u2swhWnNQkSH4FBtm+T1h2cYXwhxctMpClWNbk1rrtsvfcyFEMFTf2wWoLVVe+vwBWTHuJALZoe445H2Q0IILdQ0aRuAAZrcPlm3IIQImk6nY/0B7R+qt5Y1tHaNCLWIDsEAmQkWzWv2SJH2aEKI4NmcoZkXJ9MhhBDBUlWV2hA8qNtcXvSKbJsccka9EtRe122JMxvQhemXJ4Q4uYXqbVWIygohIoiiKBhDsAW7Sa8L1WzVo0R0CPb7Va4enaNpzStHZWN1SHcIIUTwMhO1f1Ol1ylhW3QihDi5Dcjo2BbundE7LZZwzdiK6DuhwaCjye0jLztek3pmg44rR2bLF4wQQhMWgx6TxiMtfdJiwjbfTghx8lJVlaHZCZrXHZqdQIxZr3ndtkR0WlNVlQ/WlfK7S4Zg1KBv5v3n9OPt1ftJiZGdmIQQ2jhncLqm9S4ZlkW0SZudmIQQkUtRFKJMerrFa5t5LhyaId0hwiE11syE3im8V3iAP1yWF1Stcwal0zM1hm1lNswyEiyE0IDZoGPa2FzN6pn0Ok7vn0ZARoKFEBrQKwrXjeuhWb2BGXEEAipx5vA8qEd0WjPodVw8NIsP1x3kYL2TJ6/M69Krx0uHZXLjhJ78YvFG7j6zD/FRxhBcrRAi0igKVDa4uGRYpib17junH5sP1mMyyMo4IUTwYswGxvVKJjc5+K5YigKPXDwIty+A2xeerd0jOgQ3OL0UltRxz1l9eemb3RSWWHl7xjhGdE/s0PnJMSaenTKC8b1TmDGvgB4p0fROjcHtk80yhBDBi7MYiTLquXViL7KCbOc4ukcSAzLiyO+RjMkQnvl2QoiTm9mg45sdVfz5qqFBr1+YeWpvCorrGJgZF5KuE22J6IlhcWYDQzLjGdMrmU83lfPBuoOs2FPLr84fwIMXDKC41o7FqCcjPgpFAQWwOjzU2T2kxpqJtRh48evdrNhTi0mv47kpI3B4fKjSiF4IoQGn109eTgK//ecW/n7dKO5ZuI7yBlen6wzPSeA3Fw7kzRXFPHBuf9nVUgihCZNBxzWjc3j52938/bqR/Oyd9a0DgaNykzi1Xyp52fHEWZrfkPv8KkWVjazbb2XZtsrWY6eO6U5edgK1TW6MOh1RYVq3ENEhuNHto9Ht452CAzx1zTB+tmg9Lm8Ajz+ATlHYctDGmn117KluomUKXbd4M8NzErliZDY+v4rHF8CoV3hu6ggWrCph1ul9wtbaQwhxcjMbdHh8CjNP68MjH27m5etH8cq3e/hiWyUmvY7RPZMYmp1An7RYTAYdTo+PHRWNbCptYGNp805ON03oyXlDuvGLdzfy6vRRuHx+6WUuhNBEbZObKKOeXqmxLN1Yxrxbx7JsWwXn52WyvdzGsm2VvLWymHqHF2helzAgI44JfVJ4Z8Z41hbXkRBlRAVe/89e/nL1MPZUNxFtNhAbhnnByv/iqGV+fr5aUFCgSa3iGjtn/O1beqfGMPuGUbh8Kk98so01++raPTc9zswTl+fRKy2G177fy/uFpTx22WCmj8vFoJfXjUKI4AQCKp9sKmP9gXp6psTw1L938IfLhjAoq7mt4zc7qtlYWs+uykbcvgAxZgODMuIY3SOJ8b1T0Ongk43lvP6ffbx03SjeWL6PRy8exIAMbdpCCiEiW22Tmz9+uo2zB3Vj+a4azhncjUqbiyc/20GT+/g7XioKXDEimxmn9uaFr4qYdXoffv3+Rt66dRxZiVGaXaOiKIWqqua39VlEjwS7vD4WrtkPwNmDurHlYCMPLdnU4Tm9VY1uZi0oZHJ+DhcNzWTpxjJe/2Ef5w3O0PQXKISITJWNLmZ/v5etZTbuPrMvr904mhiTgWeWFfH1jqo23zrtrmpi6aZyzAYdV4zMZtrY7pw5MI3Z3+/jh101vP7DPn57yWBZwCuECJrL6+fTTRWs3de8purB9zexqgODiACqCh+uP8j3RdXMvWUMi9ccYFeVnQ0H6kmKNhBlCv09KqIXxtU0evhmRxVXjMhmcGYcv3hvQ5cWtb1bUMqSdaX87drhlFqdeGS+nRBCA/6AytYyGwAmvUKlzc11r6/mq+1tB+BDuX0BFq89wIx5hdjdAYw/7pX8XVE1Npc31JcuhIgA++scKAo8PWU4d729rsMB+FC1dg9TZq/iwqGZDMtJ4N9bKghXF8eIDsGKAna3j1sm9uTBDzYHNZf3k03lWB0eLh+Rxf5ah3YXKYSIWLVNzVuw335qL2ItBn7x7kYcns61DqpudHPrm2u5fGQ2ZwxIo6rRLesWhBCaWL2vjp+f05/Faw+0PrB3hdPr54H3NvC7Swazo6IRqz08D+oRHYK9fpWHLhzIYx9v1WT09k+fbmfmab2p7MLqbSGEOFKFzcXgzHgm9U3lj59u73Idjz/Afe+s576z+5EYbQxbD04hxMkrEAjg8vrpnxHHknUHg65XaXPzfmEp5w/pRrjW7kZ0CNYpCtlJUaw/UK9JPbcvwNKN5WQnyXxgIUTwFOC3lwzm0Y+2BD16a/f4+evnO3nowoE/VhZCiK7T6XTk90hizvd7Nav5wbpSzh6o7VbxxxPRIdhi1LFg1X5Nay5cXUJOsoRgIUTw+qTHsquqkVKrU5N6K/bUkpMYTbQpom/9QgiN5KbEsHJvrWb1vH6V1fvqMBvD02Erou+EXn+A1Rr+8gBsLh9ev0y4E0IEz2LQsWBViaY13y88gF4nI8FCiOCV1No1r7l6X13rQt5Qi+gQrAJlIZi/u7da+/9TCCEijwoUVTZpWvM/u2vCtvJaCHFyKyyxal5za1kDTm941i1EdAj2hWjEtrbJHZK6QojIUmf3aF6zpsmDX1KwECJIqqpS3ah93mlwelHCtDIuokNwqMirRiGEFkLxBQPg8kovcyFEcBRFwajXPkYadToCYerjGNEh2KBXiArB5OteqTGa1xRCCK2Eq/2QEOLkNjhT+y3Ye6fFoISpg01Eh2AFGJKl/S8wNdaseU0hRORJjwvNvcQUgtEbIUTkGRSCEDw0OwGzITz3qIi+E5r0Oi4dnqVpzQm9UzDqZZhFCBG8WItB81HbnKSosL1qFEKcvFRVxWjQkabxw/p5QzLCtqFPRIfgACqn9Ekh2qTdlIibT+mJ2yfz7YQQwfMHVMb0TNa05lkD02UkWAgRNEVR2FVpY9rY7prV7Jcei8MTvlazEX0ndHoCgMqvzh+gSb1T+qSQnRTF3hptWxoJISKTxahn+rhcTWteMSJbRoKFEEELBAJEGQ1M7JtKjgY75SoKPHrxIJbvrg3bG/WIDsGKAosLShmek8jEvilB1UqMNvLQhQOxOb3YnD6NrlAIEclcXj8xZgPDcxI0qXfN6ByKa+3SJ1gIETRFUeibHstjH2/lySuHYgiyM9Ytp/SkoMRKVqIFnWyWEXoGncK7aw/gV1V+ed4ARvdI6lKdhCgjs6ePBuCRj7bQM0W6Qwghgtfk8rGn2s5vLxkc9EKRzAQLU8d0J9qkR5WRYCFEkBRFweHxkxBl5OONZTw3ZUSXR3CvGpXNmF7JzPlhL6f1T8MbpmmlER2CdYrCoMx4fvXeRvQ6hV+dP4DbJvWiMw8gY3slM/fmMXi8ft5aUUxxrZ2UWFPoLloIETEMeh1jeiYxb0UxL143qstBODXWxN+njWT293sw6HVha0QvhDh5qapKnMXAjFN7835hKV/vrOKtW8fSuxNtYi1GHb+7ZDCT+qbys3fWc9nwbPbXOoiLMoTwyv8rokOw2ajj8hFZFNc6+OV7G7EYdPRMieadmeO5bHjWcZ9oRnZP5NkpI7h9Ui+cXh+fbqngg3UHmdQ3NSTNo4UQkSc+ysjfv97NKf1S+Wj9QebeMobuyZ2bezcqN5E5N+bzx0+2ccvEXsxdvi9EVyuEiCSKomA26DhodXLlyGyWrDvIbz/awhNX5PHbSwYdd8+EOLOBGyf0YNGM8azbb+UX724kKdrE5PwceiRH4wnTSHB4ovZPlF5RGNsrmTizgaLKJm55cy2PXTaEsnong7PimT6+B06Pjx0VjTS6fRj1OvqmxdIt3sy+Gjs1TS66d0/i8U+2sam0AWjuDiE7xgkhtKBXwO3zo6oQZdLz+NJt/O3a4XxfVMM7a/Yfd1vl3ORobp3Ui8wECzPnFzLztN58sbWSgRnxmAxyjxJCaMMbCDBtbC5FlY1sLbNx/eurmdA7hQfO7U96vIUDVgcH6hz4AyrJMSb6d4sD4OONZUybsxqn14/FqOPpycN5e1UJd5/VlzizMSzXHtEhWAWiTXp+c9EgHv5wM1aHl/sWbWBMzyRunNATXyDArqom7G4fqOD1BSiptaPXKXRPjmZ1YR1//XcRHn/zE8uZA9LJSYrCYpSRYCFE8PQ6hZsm9OSut9fx9+tGEmXUc/2c1VyYl8HzU0fg8gbYfLCeXZVNuH0BYs0GBmbEMSwnkSa3jwWrSli9r5aHLxqE0+PnrZXFfHrvqWHbjUkIcXLT6xTOHdyNB97dyOOX5/F//9rO2mIrK/fWsnJvLQDdk6PISYxGp4N6h5ddlU2tuQkgOcbEc1NGMH9lCfee3Y96u5fMhABmtN/R90jK/+ICifz8fLWgoECTWlU2FwesDl7+dpigK9cAACAASURBVA9fba867LMoo55BmfEMyowjxmzA5w+wt8bOloMN1DQdPgKTFmtm7i1jSIo2kh5vxqgP/S9PCHFys9rdVDS4+N3HW1m3v54Hzu1Pv25xPPbxVg7WO0mKNjI0O4HeabGYDDocHn/zaMzBBuweP0Oy4vn9pUP4cH0p76w5wPRxudx0Sk8yEyzEWsIz0iKEOHlZ7W7eKyhlYt9Ubp9XwO8vHcL+OgfPfVmEw3P8DS8UBS7Ky+T2U3vx5GfbOaVPKkOz4xmSnUBmQvAt1/777yiFqqrmt/lZJIfgBoeH+xatZ+ZpfbAY9TyzrIj/7K7pdJ20WDOvTB+FxaDjgfc2smjmBJJiZHGcECI4dpeXMpsLh9vPdXNWYff4GZ6TwH3n9Mfl9fPPDWVsKq2nvMEFNH+p9EyJYWRuIleMyMbq8PDXz3dSanWSmxzNS9eNwmRQyEqMIk5CsBAiSLsrG3F4/KwprmNIVjw3z13L+UMyuHFCD7aU2Vi2rYLNBxtaW8ca9QoDMuIY3zuFi/IyWb2vlr9/vZvJ+d2ZOqY7K/bWkhxl5JwhGcSatZmsICH4GPwBlX01Tdz99nqeumYojS4fa4utvPTNbnwdbKR5xoA07j+nPw63j/mrSjhzYDoX5mXIF4wQImh2t48Gp4eaRg9Wh4c7317XOrrSMyWa84ZkMDQ7gfR4M6oKCrC/zsGm0gb+vaWC6iY30Nwe7eXrRxFj0hNlNpARb5EFvEKIoFkdHr7cXkm9w4vPH+Dsgd24f/EGtpXbGNMziUl9U8nLTmgNtH5VZWdFI+v31/P51grMBh1PXjmU7snRPLF0C/efO4C+6bFkyEjwsWk5HaIlCN+/aAOPX57H5oP1DM1O5L3CA3y0vgyn9+jhfEWBiX1SuWFCDzy+AGlxZhau3s+kfqkSgIUQmrK7feyqbKTW7ibOYuLRjzZTVNnxXSkn9k3hV+cNwOdvvldlJUVLABZCaMZq97C7qpF3C0rZV2Pnr9cOY8tBG69+t4etZbY2z0mJMXH9+B5cOzqH9woO8NGGMl6+fhSpsSZNAzBICG6X3e2jpNbO7W8VcM9Z/UiONrK3xs6I3ER0isLe6iZsLh8mvY7eaTHEmA1sL7fhD6gMyozntx9t4frxPbh4aCZpcWbNrksIIQAqbS7WlVgx6RWiTAY2ltYzf2UJZT9Og2jLoMw4bpvUi2iTgdRYE15/gMGZ8STFyD1KCKENVVXZX+dgZ2UjSdEmvt1ZxSvf7uGKkdncMrEXsWYDlTYXe6qb8AdU0uMs9E2PQVEUvt1RxdPLdjIsO5FHLh6EXqdQYXMxtmcKsRbt+jZICD4Ou9vH90XVfLGtglmn9WHKa6vomRLN05NH4PUH2Flu40C9E48vgKJAVoKFHikx5CZHM/u7Pby95gCPXzaEpBgT/95SzmOX5ZEs84GFEBqxOjw8+0URl47I4kCdg16pMazcU0O/bnFEmwxsOdjA7qrm7hAxZj0DM+IZnBXPQauT2iY3w7on4nD7KG9wAgoXD8uUt1VCCE3sr3Nw9SsrsNo9PDdlBN5AgIx4C3/7oojCEisAfdNiGJqTiF6BsgYXq/bVEghARryFu8/sQ1ZiFOlxZu5auI5Sq5OXrhvFaf1TidWoTdrxQnBEt0hrCcDPfFnEU1cP44Wvd/HaDaNpdPt49bvdXDu6Oz/sqeWivAzG9UrG6vDy5GfbuW1SHH/6dDszTutNXk4iFQ1OEqKMWIwGHvt4iwRhIYQmrA4Pz3xRxPxVJcxfXcKr00ehVxSMBj2psWY2lTbg8PjJSrQACqqqUu/wsK+miV6psVTZXCRHm1izr46/fr6zta4EYSGEFiwGHSkxJqob3dy/eAPPTRlBqdXB/101lHqnl5V7atl8sIFtZTb8qkpKjIlbTunF2F7JZCdGUWt3E28xctfCdRyoc2I26MhKsGAK05StiB4Jtjo8vLv2AGN7JXPvO+sptToZ3SOJ5BgTy7ZVEh9lYM4N+Ty9rIi0ODPr91t5bspI/vLvHRSWWOmeHMWpfdNYuGY/Bp3Cc1NGsKPCxk2n9JJpEUKIoFU3upk5r4D1B+pb/+7uM/owqkcSekVh08EGAqpKQpQRk16Hy+un0eXDoFcY07P5wf2TjWV8srm89fyrR2XzyEWDSZbt3YUQGqhocHHz3DXsqGjEoFO4bVIvFq7ej19VGdE9kaHZCWQnRaFTFOodXraWNbDhQHNXm+vG5vLD7urWAPzOjPHkZcdjMmjXZlamQxxHaZ2DqXNWUWp1tvl5SxB+Y/k+bpvUuzUAt8WgU3jj5jGM6ZVElDGiB9mFEBqwOb3srm7i8aXb2HBIEAboFm/mnEHdyMtOoGdKDIoCPr/KrqpGNpU28OW2ShrdvsPOuWx4FtPGdmdwVgIJUTISLIQIjs3p5bPNZfTvFs/DH25mR0Vjl+qYDTpemT6atftquW1Sb1I1HEiUEHwMDU4vdy4oZMWe2uMeFx9l4LkpI3npm93HDMAtLEYdqx8+R75ghBCaOGh1UNnobjMId8Zlw7OYMqY7/bvFyZsqIYQmdpTbuOD5H8hMsPDSdaO6FIRbAvDitQf4fGsFM07txX3n9A9Ln+CI7pOTEGXk6WuHk5scfdzjbE4ft765tt0AbNQrvHnLWMyGiP6xCiE0lJ0UTbc4M7+7dDAjuid2qYYEYCFEKGQlRvHE5UMob3Bx98J1PHnlUAZmxHX4/CMD8Pjeycw6vY9mAbg9EZ/WMhOjWDxzfLtBuD1GvcL828YxonsiFqNsmSyE0E4wQVgCsBAiVOKjjFw+Irs1CP9h6VaemTy8w+fPOK03RZWNrQH4xetGkRobvvtURE+HOFR5vZMpr61if52j0+dKABZChMNBqwN/AK54eTl1dk+7x4/onsiTV+aRFmeRACyECBmb08sXWyvolRbL7/655ZibZBwpyqhn9g2jWbm3pnkucAgCsEyH6IDMxCgWdWFE2KhXmHfrWAnAQoiQi48ysnxPdYcCMMC2MhtNbh/xUbJQVwgROvFRRib1S+tUAAZwev3Mml/IhXmZJJyA+5SE4B95/X6a3D5emDqCnKSObdmnU+CFaSNpdHlx+47eXlkIIbTS6PLy6aZyfrNkS4fP8fgDTH99DZtKG+QeJYQImapGF7e9tbZTAbiF0+tnyuxV7ChvwusP731KQjDNAXhnRRM3z11DWpyZn5/Tr0PnnT0oneE5ibzxn2IWrTlAg7NjozNCCNEZLQH4oSWbeWbycC4dltmh835+bj/uPqsP189ZLUFYCBESVY0ubpnbHIBjzQbevn0cPTrwVl1R4JXrR3FG/1ScXj+TZ68MexCO+BDcEoBnzi/g/VkTKG9wEW0y8OSVecc978wBaTx04SCWbizj2Skj+HpHlQRhIYTmDg3Ab9ycj8Pj4+6z+nLZ8OMH4QcvGMDI7kmM7J7Ez8/tJ0FYCKG5IwPwx/dM5Idd1cy/fexhQdhs0JGZYGn9s6LA4pkT2F/n4LeXDDlhQTiiQ/CRAbiswcX0f6zm7oXrSIw2HTMInzkgjUcvGcy011bx53/t4O01JTwnQVgIobEjA/DeajuPfrSVqa+t4q4zDw/CBp3S+t8fvGAAQ7ISuO2ttdz21lqGZCVIEBZCaM7p8VPR4GoNwE9+tp1Xv9vLnQvWtQZhi1HHq9NHM+fGfAZmxLUG4O+Lqvjzv3Ywdc6qw4Lwvpom3N7wNG2I6O4Q9Q4Pjy/dxi/P698agF3eANA83/fF60ZR7/Dw8If/nYN3aACuanS3/v09Z/Xh+rE9+N1HW/i/a4aREsYWH0KIk1O9w8OFz//An67MY2+1nT9+ur31s8RoI4tmjuflb3ajqvDwxYO4Y34hF+RltAZgr7/5/m7UK/zjpjFsLWvgmx1VvHZjPonRsm2yECI4qqpSUmtHBf706Xa+3F7V+tmQrHhemT6aMquTuSuK2VRaz0vXjUKnKHy5vYIXv9nTemxanJlFM8ZT0eBgePckYi3abTh2QrtDKIpygaIoOxVF2a0oykNtfJ6rKMo3iqKsVxRlk6IoF4X6mlokRpt4+OJBRwVggIAK9xwxInysAAzw4td7eHtNCY9fkUeChr88IUTkMhl0fHDnKa0BON5i4L07JnDvWX2pd3iZ+toq7j6zL788vz9NLh+vTh9FXnZzAA6o8NyUETw3ZQQBFW57ay152Qm8MHUE+kNGjYUQoqtcPj9RJgNP/hiAB2bE8d2vzuC0fqlsLbNx54JCclOiKaltosLmIiHKyFc7Knnxmz2kxJhYes8kbjqlJ9WNbqbOWUVWUgzhHJwNaQhWFEUPvARcCAwGpimKMviIwx4F3lVVdSQwFXg5lNd0qHq7m+Ja+2EB+PpxuTxwXn/g8CD87S9P57dHBOBT+6Xy9LXDMembf4wtQbjOIdMhhBDBa3L5+NeW8tYA/NqN+Ty7rIiUWDM/O7s5CE95bRVun0pmgoXd1XZufbM5AD8zeThr9tWxZl8dz0weTkCFW99cy65qO4FAoP1/XAgh2mFz+njkw80s+zEAP3nlUG57q4BZp/dpDcIz5hXwxs1jWf7gmXy04SB//3o3KTEmZt8wmt9/vIWh2fGtQXjy7JXU2L04Xd6wXH+oR4LHArtVVd2rqqoHWARcfsQxKhD/439PAMpCfE2tfKrKnO/3tgbgG8b3YHSPJHSKwm8uHAj8Nwh/tKGMqUcE4DvP6ENBSR0vXjeyNQgvXluKosgoixAieEa9jrnLi1sD8PNf7WLFnloe+3gryTH/DcKTZ69k7oriwwLw6r11LFyzn4Vr9rN673+D8Mvf7MH/vzcLTgjxE1Tv8PLDrprWAHz3wnXsrmpi1vzCo4LwS9/sOSwAP/HJNtbtr+fX7286LAh/srEMhy88D+ohnROsKMo1wAWqqt7+459vAMapqnrPIcdkAl8ASUAMcI6qqoVt1JoJzATIzc0dXVJSosk1Vtpc/Pr9TeQmRzMyN5FfvreRgAoPnNcfk17Hn/+146hzWgLwzHmFNLl9XDY8i0uGZfLY0q3Mv20c2QlmLCaZEiGECI7PF6Dc5qTS5ubpZUWs3FN72OePXTaEOrubF77aDYBepxwWgA913dhczh3cjUGZ8WQcskpbCCG6ymp3c8DqxBdQufvtdZQ3uFo/izUbmH3DaGZ/t4fvd9UAHBaAN5Y2tB6rU+Cpa4ZhNugY2yuFbvHa3aN+6jvGTQPeVFU1B7gImK8oylHXparqa6qq5quqmp+WlqbZP94t3sJT1wxjbK/k1gAM8PQXRXj8gdYR4RZHBmCAjzeW8cmmct6/4xQJwEIIzRgMOqJMBp77ctdRARg4bET4eAEYYOGa/fywqxqL8adw2xdCnAySYswkRhuPCsAATW7fYSPCxwrA0PzW/dfvb8Jk0BNnDt/OcaG+Gx4Euh/y55wf/+5QtwHvAqiquhKwAKkhvq5WDo+PrQcbuG/R+tYA3OLIINxWAG7x8cYynl1WhDNMbT2EECe/2iY39y/awH921xzzmJYg/Mm9k44ZgFu8sbyY57/ahbWD2y4LIcTxlFodTJm96qgA3OLQIDz3ljFtBuAWARXuXFDI8j212I/IWKES6ri9FuinKEovmsPvVOC6I47ZD5wNvKkoyiCaQ3B1iK8LaA7Aq/bUcvu8gqMCcIunvyjigfP68+J1I0mOMbUZgFu8V1gKwMMXDSIpRtoPCSGCo1MUUmLbv5c89vFWhmTFd2jL0swECzrpDiGE0IBBryPadPwo2eT2MXNeAenxFvbV2I9fT6cjMdp4WN/zUArpSLCqqj7gHuBzYDvNXSC2KoryuKIol/142APADEVRNgLvADerYeqP4fYG+Lao+pgBuMXTXxTx5baq4wbgFoUlVnztFRRCiA5IijHx2KVDuHxEVrvHdiQAP3zRQKaMySUhSqZsCSGClxFv4e0Z4+iTFnvc4+wef7sB2KTX8faMcQzLScBs1Gt5mccU0ZtlAFjtHp7+YicLVh/7FWJH9U6NYeGM8bLoRAihKavdw2NLt/LPDV1vniMBWAgRKhU2F9fPWc2e6qYunX9YADZoG4B/6gvjTqikGBMPnDeA6eNyg6ojAVgIESpJMSYevXgQlw5rf0S4LQ9dMJDJo7tLABZChERGvIX5t41td0S4LSa9jvm3jw1JAG5PxIdgaP6CufvMvlwzOqdL5/dOjeGNm8dgMco8OyGE9hocbooqG7lqVDYX5mV06tyfnd2X+CgDVU1ufGHqvSmEiCzVNhefbirjb9cO61QQNul1vHT9SL7ZXkXdCViwKyEY2Fdj5+pXVnDWwPROB+HeqTE8PXk4N72xmpV76qizt71CUgghuqLB4WbTQRs3z13L3QvX8ftLh5DSwYW3Y3omceaAdB7+cAuTZ69kb61dgrAQQlPVNhfzVpXwp8928NjHW/n7tBEdPnfGab3ZU23n1e/3cvtbBZQ3OEN4pUeL+BC8r8bOlNkrKWtwcd+i9Vw1KptT+qR06Nwoo57Xb8rnZ4vWU1Ln5O6F61i91ypBWAihiZYA3LIT3J+vGsoLX+2itoMjJmuLrWwsbThsZzkJwkIIrbQE4Jad4H57yWB+s2Rzh89/c/k+8rISWneWC3cQjugQXGf38MiHm1u3Qh7XKwVVhU3H6GF3JKfXz6eby5k+rgfQ3OPuF+9uRHf0Xh9CCNFpep2ee99Zf9RWyJ1x5BbLv3h3A02e8PTgFEKc3Kqa3EdthXysPsBtsXv8zJpfwMzT/rvF8us/7KXO7g7hVf9XRHeHCAQClDW4uHnuWjLiLdx5Rh9mzW+/DdqRWrZYfmZZEfNuHUv/brEkxZiDvj4hRGRrcHooqXWwv87Bit21nQ7Ah3rssiF4fQHOH9KNzIQojAZ5WBdCBKfa5uKH3TXkJkd3OgAfKsakZ/YN+azYXc2Np/QkIyFKs2s8XneIiA7B0ByEqxrdFNc6uP2tgk4H4BYPnNefC/MySIkxSQAWQmimptHFi9/u4c3lxUHX+tu1wzh3UDcSomUzHyGENiobXMyaX8CGLgbgFjEmPYtnTWBgRhwGvXYP6dIi7TgCKtQ7vEEFYGjeUOOHXTXodRH/IxVCaKTe4eHlDgbg7MT2R05++d4mvtpRRZPLq8HVCSEiXU2jm1kL2g/AJr2OtNjjDxDaPX6mzF5JUWUTPn941i1EdGLz+QPsrmrimldXthuAlQ50P/vD0m0sWXcQm1O+YIQQwfMHVNYW17V73MMXDeTzn5/WoZ3lviuqxuv/33sDKIT46Wly+yiudRz3GLNBx8IZ4/j0vkkd2lluW7kNl9ev5WUeU0SH4Ca3j6c+39FuAO6dGkPBI+d0aEONZ78skm2ThRCaSIk188bNYxiaHX/MY1p2gos1G9rdYvnyEVk8dukQkjrYYk0IIY4nNzmaJXeeQmJ02xvxmA063r59HENzEkiPa3+L5b9cPZTzh3Qj1hKejX0iOgQnRpt46prhjO2ZdMxjmneCG0dKrLndneUSoox8cOcE2ZVJCKGZtDjLMYPwkVshJ8WYjhmEJQALIbSm0yn0TIlpMwgfGoBbdoLLiD92EP7L1UO5aGgmcWEKwBDhIRggNdbMy9NHtxmEWwJwyyrF422x3BKAe6XGotfJznFCCO20FYSPDMAt2grCEoCFEKHSVhBuKwC3aCsIn4gADNIdolVNk5u7FhSyptgKHB2AD2W1e3j6i50sWN3crkgCsBAiHKobXdz65louHZ7VZgA+lNXu4bGlWwEkAAshQi4QUCmutTP1tVW8fP2oNgPwoSpsLq6fs5qZp/UKaQCWFmkd1BKEa5o8xwzALVqC8NJN5RKAhRBhY3V40ClKh6ZdWX/cWU4CsBAiHBqcHlS1eVFvSjvdIJrcXuxuP6qqatoX+EgSgjuhpsmNP6DSLd7S7rFWuweX1096vEUCsBBCCCEiltXh4dllRbyzZj8T+6Ty9OThxwzCjS4v/9pSwSMfbqZ7UnS7A4/BkD7BnZAaa+5QAIbm0ZXMxCgJwEIIIYSIWC0BeN7KErx+lW+Lqnng3Y3UNh29/XFLAP71+5vw+lX21ti5bs5qKhqcYb9uCcFCCCGEEKJLDg3Ah2orCB8agA91ooKwhGAhhBBCCNFpxwrALQ4Nwk3HCMAtTkQQlhAshBBCCCE6rcrmYsGqtgNwi2+LqvnFuxt4Z+2BYwbgFntr7MxbWdLuJmZakRAshBBCCCE6rXtyNK/flE97S6O+K6rhT59ub7feVSOzuf3U3sSaDRpd4fFJCBZCCCGEEJ0WbTIwvndKh4Jwe64amc2jlwwmOYwtHSUECyGEEEKILtEiCJ+IAAwSgoUQQgghRBCCCcInKgCDhGAhhBBCCBGkliA8+4bRHT7n4qGZJywAg4RgIYQQQgihAX9ApfbH7do7onmb5RO3c7GEYCGEEEIIEZSWjTAe+mBzh8/5z+5afr54Q5s7y4WDhGAhhBBCCNFlx9oJriO+31VzwoKwhGAhhBBCCNElRwbgaJO+w+e2HHuigrCE4CNY7Z4O/xJsTi/1jo7PfRFCiGDV2T00ODt236mze6jrxPw8IYTojCMD8Cl9Uvj2l2dw7eicds/tlRrD0nsm8fBFg4ATE4QlBB/Cavfw5Gfbufed9e3+EmxOL0vWHeTyl5ZTXh++fa6FEJGr0uZi2murmLu8uN0gXGf38NCSTTy0ZJMEYSFESBy0Og8LwPee1Y8Lnv+BMwakHxaErxyZzd+njWxtn9YrNYZnJg/n1rfW4vL6DwvCr363N2zbJisnclVeV+Xn56sFBQWa1mwJwO8VlgLNv8y/TxtJSqz5qGNbAvBjS7cC0CMlmkUzxpOZGKXpNQkhRItKm4sb/7GGnZWNANx/Tj9umdiThKijWwu1BOAvtlYCcN6QbvzfVcNOWBsiIcTJqcHpZcGqEpbvruHes/oxa34BNpcPg07h+akj+XZnFf6AyqOXDCbKqGPl3lr+9Ol2/nbtcO5fvIGSWgcAvzi3Pxajnk83l/H6jWNIizs6e3WVoiiFqqrmt/WZjARzeAAelpPA6f3TWLGnts0R4UMDcFaChWtG51BS62DqnFUyIiyECIlDA/CjFw/i1H6pPPflrjZHhA8NwDdN6MFNE3rwxdZKGREWQmguIcrI9PG5/PqCgcyaX4DD4+PFaSNJjDZy36L1nDekG49cPIjkGBNRJgMTeqfwj5vGtAbgP12Rx8juCTyzrAiv389rN+RrGoDbE/Eh+NAAPLJ7Ir+/dDC3n9qL8wZ3OyoIHxmAX75+FKf3T+OuM/pIEBZChMShAfiZycPpmx7LH6/IazMIHxqAZ57ai2vzu3NtfndmntpLgrAQQnN+f4DKBjc3/mM1Do+PT+49FYfXz5I7TyEx2sidC9axs6IRp7d5ekO9w8tNc9dQUuvg9RtHkxpn5oVpoxjZPYG/fl7EZ5vLsTm9Ybv+iA7BVoeHv/x7R2sAfvSSwcyYV8iMeQXcMKHHYUG40XV0AP71B5v42aL1dE+Obg3CU15bRXXjiel3J4Q4udTZPYcF4BiTgdveKuCGf6w5Kgjb3b7DAvBlI7KZ9toqpr22istGZLcG4Yc/3IxVFvQKITSw3+rgmldXtAbgxQUH+PX7m3hs6bbWIHzjG2tYX1JPpc3F1DmrWgOw1eHljgWF3Prm2tYg/Iel21i6sYwmV3iCcETPCXZ6fRQWW3l2WREPXzyYGfMKWkdJLEYdc27MZ/7KEr7YVklqrImaJs9hAbiosgkARYEnrxzKgToHjU4vvzh/AEnRMvdOCBGceoeH13/YR++0GGJMBu5auA5/oPmenZsczfzbxvLoR1v4YVdN6z3q0ADc+OPikjizgXdmjufjDQcZmZvEaf3TiDEbTuT/NCHESaCmyc29i9bx+4uHsLjgAHOXF7d+dtbAdB67dDBXvbKCeoeXWIuBeoe3NQD/+oNNtETQfumxvHHzGB5asonfXzqEPmmx6FtW0QXpeHOCIzoEAzg9Pg5YnUx9bdVRrwmPDMJtBeAWigJPXT2MMwemk9rGYjohhOiKmkYX6/bXc+fb/w3ALY4Mwm0F4BZxZgOLZo6nR3IUsW0sphNCiK6otLl49bs9hwXgFocG4ZomT5sBuEW/9FjevHUsGfEWzQIwSAg+pkBApaTOwdWvrDjmPLmWIPz5lgquGZ3TZgBuoSjw3JQRnD0onVizMejrE0JEtnqHhzX76toMwC1agvDa4joGZsS3GYBbxJkNLJo1nn5psZiMHW9oL4QQbaludPHyt20H4BYtQXhfjZ2qRnebAbhFv/RY3rp1LFkadtuS7hDH0Ojy8duPthx3oYjLG2DGvAJG5CYeNwADqCo8vGQzPv//3oOFEOKnR69TeGjJ5mMGYID9dQ5u+McaLEb9cQMwQKPbx2+WbMbh9YficoUQEaa60c2bK4qPe8zXO6r4/dKt7K5uOm4ABthV1cTc5cVh24gsokeCbU4vB+oc/Or9TWwrtwVdL9qkZ/YNoxmWnUCCzAkWQgTJ6wuwp6aJybNXYnMG3zy+V2oMC24bS3ZStAZXJ4SIdFaHhx+Kqrlv8YbjhtuOOn9IN564PI/0eEvwxX4kI8HHEGcxEB9l5E9X5jE4Mz6oWtEmPa9OH41Rr2DQR/SPVQihEaNBR5/UWN6dNYH4qOAWskkAFkJoLSnaxKn903h+ygiUIKfxhiIAtyei05qiKOQkRZEaa+Zv1w7rchCONumZd+tYTAaFodmJsupaCKGZliD8XhBBuDkAj5MALITQXEsQfnHaqC4H4YvyMnjiivAGYIjwEAzNQTgzwYxJr+vSiHDLCHCd3U3/bnESgIUQmnP7A1Q3uplzQ36ng3Cv1BienTycRpcXr1/mAgshQkAFr9/Pn68a2ukgfN7gbkyf0AP/CVhPFfEh2O8PsKfawVWvrGDW/EKeuCKPvumxHTrXqFd4dfpo5i4vZub8dfxrc0VYdzoRQpz8mtw+MhtuVQAAIABJREFUvt1RxQ1vrOHpZUXMuSGfaFPHOjvkJEXxzOTh/GzRBq58eQXbyxslCAshNGW1e3jq8x3cv3gjuyqb+OPleR0+94wBaVw3Lpdb31zL1DmrKAvzrrsRHYL9/gC7q+1c++oKbC4fBp2CTmlundYRqgoBVcWob37seeSjLSzdWCZBWAihiZYAfO+i9ahq84O3X1UJdHAFSsu9TK9TcHr9TJm9SoKwEEIzLQH4nTUHADAbdHg7mKEAfH4VnaKgUxRKah1MC3MQjugQ3ODy8uRn27G5fGQlWHjp+lE8+MEm9tbYO3S+L6Byx4JCrhuXy3mDuwHwl3/vwOsPhPKyhRARwh9Q+cPSbagqTOybwt1n9mXWvEJc3o7dY8oaXNy3aAPPTB5Or9QYnF4/v//nVuxuCcFCiOBV2ly8W1AKwF1n9CEzIYo/LN3a4fP/s7uGucuLeXX6aKJNekpqHby9ukRapB2PZi3SHB6qmzz837+2c9eZfXmwnT7Ax2Ix6nh1+mg+XFfK9Ak96ZMWQ3KM7BonhAhOvd1NSZ2TV77dzY2n9GTWvMLj9gE+ltzkaJ6fOoIXv97NQxcOJP3/27vz+Kiq+//j70+SyQIJ+75JVATZZAlbFQu17nWviisKglpr9Yu41bZatbUuXdVSUaiKC9blp9Sl0n6/4MqOKAIuqKwqO4SE7Dm/P5KhY5gkM8zcyST39Xw8eMjcuXPmE+7Dk/ecOfecFhlqya5xAGL07Z4iLVm3S598k69OLbP0qzkfH9RSaWN7d9DlR/fUPz/6WteMOVwdWmSoWXp87rGK+45xZtbGObcz5soOUjy3TS4oLtOe4nJd/vfFBxWAgzIDKXr6ipHKbdeMAAwgbvKLSrRxV7HGPVL3Rhj16dGmmZ65YoRaNUtTdiYBGEB8bMkv0jufb9eNL9S9EUZ9juvTQb89e4ByMtPiFoClGNcJNrOjzWyNma0ysxFm9m9JS8xso5mNiluVDaSwtCLmACxV7Sx30WMLtXFnkUrL+aoRQOxKyyriEoClqp3lLnxskXbvi33TDQCQpF2FJXEJwJL0v59s1a0vrVRBceL6qEjmBP9R0nmSrpD0mqRfO+cOk3SGpAc8rM1ze4pKNeUfK+oNwM3SU/XH8wfVu3xacVmlLnh0ofaVEoIBxK6kolIXPbao3gCc2665HrxgcL3Lp23YuU9XPb0sYfPtADRt3+wpjigAH9+3o35x6pH1Lp/2f59s1fS3v0xYHxVJCA4451Y65xZI2uace1eSnHPLJWV5Wp3HTNKtJx+p9tm1T18IrgP8/hfbddeZda8jbCbdflo/bowDEBdOTn88f5DSUmr/zZHbrrn+cN5Rmvfp1nrXEW6RlaYHzj1KzeP4VSMA/2qfk6ErRx9a5zkn9O2oi0b00I6C0nrXET6yc44mHpOrVs0SM2UrkhAces6tNZ5r1BPLMgNpSjGnv10yNGwQDgbgv7+3Ts8v3aSfPL1Md9cShM2ke84eoNbNAgqwbTKAOGiRma6hh7TSo+PzwgbhYAC+bvYKvbR8s/5QvY5wuCDcIitN/7hylA5rl61AGn0UgNi1z8nUxNG5uurY8EH4hL4ddeGIHrrqqWWa9tYX+nxLQa1B+MjOOZo5fpg6t0rc+GokPeEvzayZJDnnXg4eNLPDJD3pVWGJkJ6WosM7tFBWwPTo+O8G4dAAPO/TrZKkLfklujpMEDaTHjj3KLVplq7huW0S9gkGQNMXDMKP1QjCoQF4w859kqRFX+0MG4RbZKXpeQIwAA8Eg/BPxhz2neOhATi4rOOMd78KG4QbIgBLEYRg59wc59y+MMe/cM7dF3xsZg/Gu7hECAbhDjkZevTSqiAcLgAH1QzCZtLvzh6gPh1zNKxnawIwgLjLCqSqe+ss/Wlc1dSIcAE4qGYQbpGVphmXDlOLzAABGIAnMtJSdUr/zpp4TK6k8AE4qGYQPrJzju7/8VHKCCS+f4rbOsFmttw5NyQujdUjnkukSdI3u4t0waMLlZMZ0B2n99O+0nLNfPfAAByqY4sMTbtoqL7NL9ay9bs0a8F6PXXFCA3s1lKZgci2NAWA+pRVVOiTbwp03iMLdNpRXXR8345ql50eNgCHGpHbRlOOP0KS9Pt/f6YNO/bphatGqVubZokqHYAP5BeV6dWPvtZtL3+se88ZKFPVXOFwATjUxGNyNfSQ1urYIlNXP7VMR3TM1p/GDVa7Ou7TOhhxXye4ljdplCE4GIDX7aj6ZdKvSwu1zAro/S921Pvaji0yNCK3reZ8+LUkKT01hSAMIG5CA3BRWdWqMyf266jV3+Rr4876txYd0qO1JGn5hl2SpE4tMgnCAOImGIB//v8+llQ1PfSCYT300gebItrZ8rSBnbV43U5tyS+RJB1zeNu4B+GY1gluyvYUlWnK8x/uD8CStOrr/AMCcIvMND135UgN6dHqO8e35JfsD8CSVFpRqUtnLlJJhFuaAkBdSsudLp6xaH8AlqQ3V205IAD36ZSjF64epbbNvzsda/mGXfsDsCR9m1+sK59apvyiMm8LB+ALm3cX7Q/AkuSc9MziDQcE4POGdtO0i4YotcYNvv/86Jv9AViS3l27Q4+89aUKYlwXPVLxDMH1rP6WfFpmBfTAjweqS8vMWs9pkZmmF676nvJ6tNYjl+QdEIRDpaaYHrl4qAJpje6fAkASSks1zRifp4w65vL26ZSjJycM19AerfXi1d87IAiHats8XQ9dOEQ5mSyRBiB2XVpl6een9KnznPPyuumWU47UmN4dNHN83gFBONTgHq00+dhDlZ2RmD4q4hBsZgPqOeXPMdbSILq2bqbnrxoVNggHA/Bh7ZsrNTVF7XMyag3CqSmmmePzNCy3TVy3+wPgXxlpqRrQraWevmJE2CAcDMAdWmTKzHRI22a1BuG2zdP1wtXfU8+2zWT1rVgPABFomRXQ+cN61BqEz8vrpltOPlJtmqcrKz1Vw3Lb1BqEB/dopemX5Kl9TnznBNclmpHgv5rZYjP7iZm1rPmkc+7x+JWVWOGCcM0AHBQuCBOAAXiltiAcGoCDagvCBGAAXqktCIcG4KBm6Wlhg3BDBGApihDsnBst6SJJ3SUtM7NnzOx4zypLsNAgXFsADgoNwgRgAF6rGYTDBeCgmkGYAAzAazWDcLgAHFQzCDdUAJYOYnUIM0uVdKakv0jKV9Vc4J87516Kf3nhxXuJtFCbd+1TYWmFDmsXPgCH2ra3ROt3Fqpv5xYEYACeKymv0Cff7FXnlplhA3Ao55zW79gnJxGAASTEnqIyrdi4WwO6tgwbgEPtKy3X6q/zdUjb5p4G4LgskWZmAyVdLulUSf+WNMM5t9zMukha4Jw7JF4F18fLECxJFZWuzonbB3suAMQqmj4n2L8TgAEkSmWlU0oSZai6QnA0w5cPSnpMVaO++9fncc59bWa/iLHGpBLNBSEAA0ikaPocwi+ARIs0AEsNn6GiCcGnSipyzlVIkpmlSMp0zu1zzs3ypDoAAADAA9GsDvEfSVkhj5tVHwMAAAAalWhCcKZzriD4oPrv7L0JAACARieaEFxoZkOCD8xsqKT6N68HAAAAkkw0c4Kvl/S8mX2tqmXROkk635OqAAAAAA9FHIKdc0vMrI+k3tWHPnXOlXlTFgAAAOCdaHd4GCapZ/XrhpiZnHNPxr0qAAAAwEMRh2AzmyXpMEkrJFVUH3aSCMEAAABoVKIZCc6T1NdFu88yAAAAkGSiWR3iY1XdDAcAAAA0atGMBLeTtNrMFksqCR50zp0e96oAAAAAD0UTgu/wqggAAAAgkaJZIu0tMztEUi/n3H/MrJmkVO9KAwAAALwR8ZxgM5sk6QVJj1Qf6irpZS+KAgAAALwUzXSIayQNl7RIkpxzn5tZB0+qSpBdhaUqKCn3pO3sjDS1bp7uSdsAAACITTQhuMQ5V2pmkiQzS1PVOsGNVkFJuUbfN8+Ttt+5aSwhGEBM+KAOAN6JJgS/ZWY/l5RlZsdL+omkf3pTFgAgv7hM379/vidtv3XjGEIwgJhs31viyQf17Iw0tcvJiHu7NUUTgm+RNFHSSklXSnrdOfeoJ1UBAOTl1kRsewQgVgUl5RrzwPy4tzt/6pikC8HXOuf+LGl/8DWz66qPNUqVHv4W8LJtAAAAxCaaHePGhzl2WZzqaBCMsgAAAPhTvSPBZnaBpAsl5ZrZnJCnciTt9KowAAAAwCuRTId4X9I3qto2+fchx/dK+siLohLFy8FaBoIBAACSV70h2Dm3XtJ6SaO8LyexrJG2DQAAgNhEs2Pc2Wb2uZntMbN8M9trZvleFuc1RoIBJDP6KADwTjSrQ9wn6TTn3BqvigEAAAASIZrVIbYcTAA2s5PM7FMzW2tmt9RyznlmttrMVpnZM9G+BwA0RUzZAgDvRBOCl5rZc2Z2QfXUiLPN7Oy6XmBmqZIelnSypL6SLjCzvjXO6SXpVklHO+f6Sbo+uh8hvvp2bqFRh7aN6NwOORn60cDOHlcEwK/CTVk4vm9HdWudFdHrB3dvpcHdW0XcNgBEo2Y/YiaNG9ZdGWmRxcsfDeysDmE2xUhU/xTNdIgWkvZJOiHkmJP0Uh2vGS5prXPuS0kys9mSzpC0OuScSZIeds7tkiTn3NYoaoqrfl1a6M4z+quotEIZaSma/9m2Ws/tkJOhaRcP1da9xeqQk6GZ761LXKEAfOncvG46sV8ntW2erp/N/kAbdxbVeu7w3Da64YQjJCc9MPdTLVm3K4GVAvAbM+meswcokJKiE/p10tVPLVNJeWWt5084uqeG57bVZd/rqaufXq5te0sSWG2ViEOwc+7yg2i/q6SNIY83SRpR45wjJMnM3pOUKukO59y/ajZkZpMlTZakHj16HEQpdQsG4KueWqbCknI9cslQSQobhIMB+FevfKzV3+Tr3nMGasLRPQnCADxzbl43jTmig66atUw92jTTX8YNrjUIBwPw5CeXSZKmXzKUIAzAM8EAvHZrgR575yud2K+Tpl08tNYgPOHonurTuYWufnqZ+nZuoWkXDWmQIBzN6hBHmNn/mtnH1Y8Hmtkv4lBDmqReksZIukDSo2Z2wPd3zrnpzrk851xe+/bt4/C2/xUagLftLdG+0gpdOWuZJo7O1ZgjvvteoQF41df5ck66+cWP1KdzC004umdc6wIA6b8B+LrZH6i80unL7YW64R8f6i/jBqt7m+9OjQgNwHuKyrSnqEyTZy3T1BN6a1jP1g30EwBoqmoGYEl6c9W3em7JRk27eOgBUyOCAfjmFz+Sc9Kqr/N1+5xVmnbRELUPMzXCS9HMCX5UVXN3yyTJOfeRpHH1vGazpO4hj7tVHwu1SdIc51yZc+4rSZ+pKhQnRM0AHBQuCNcMwEEEYQBeqRmAg8IF4ZoBOIggDMArNQNwULggXDMABzVUEI4mBDdzzi2ucay8ntcskdTLzHLNLF1VoXlOjXNeVtUosMysnaqmR3wZRV0HLZBqYQNwUGgQ/vHQbmEDcBBBGEC8BVItbAAOCg3CZw7qGjYABxGEAcRbRlpK2AAcFBqErzz20LABOCg0CKdaYtaviSYEbzezw1R9056Z/VhV2ynXyjlXLumnkt6UtEbSP5xzq8zsTjM7vfq0NyXtMLPVkuZJutE5tyPKn+OgZKSl6PdzP61zDkowCI/u1a7WABzknHT7K6s0cfShCbuAAJqullkB3fbyyrABOCgYhH/Yt0OtAThoT1GZ7nptte48o78X5QLwmT1FZbUG4KCqILxBHVtk1hqAg1Z9na83Pv5W6RGuLhErc3VVE3qi2aGSpkv6nqRdkr6SdLFzbp1n1dUiLy/PLV26NOZ2Nu7cp217S3Tzix/p860FMbeXkZaiaRcP1XNLNuqWk/sot13zmNsE4F+bd+3Tuh37dOWsZSooqe+Lt/p1b5Olv4wbrBv+8aFmXDaMPgpATDbv2qf//WSrfvXKqri0N+aI9po4OlfdWzdTzzj1T2a2zDmXF+65iKO2c+5L59wPJbWX1Mc5d0xDBOB4Kq90uvbZD3TvOQPVq0N2TG2FBuA3V30bpwoB+FlqiqllVpqenTRS2RnRrGh5oO5tsjRr4giZSb89e4CyAokZaQHQdJVWOG3JL9GdZ/SLua1gAL5y1rKErRMczeoQ15lZcK3gP5rZcjM7ob7XJbOsQIp+f95RkkkzLht20EE4Iy1FT10xQh1bZOjyo3tq9uSR/IIBELOiskr96MH3dO+/PtEjlww96CAcHAGe8PclOvPh9zVu+kIVldW+ficARCIrkKLRvdpp5KFt9ftzjzrodn7Qp4PuOrO/MtJSNPOyYQnLUNH0qBOcc382sxMltZV0iaRZkuZ6UlkCFJdXatz0hZKkrq2y9OAFg6OeGhEcAX7sna++MwI8/8Yx8S4XgE+9u3a7JOmRS4ZGPTUidArEl9sLvSoRgA8Vlf03R10z9nDdeUa/qKdGjDmivS4/uqdO/NPb2ldaIUmaN3VMvEsNK5qoHbzT6xRJTzrnVqmRbz8fOh168+6i/VMjIp0nl5ZitU6BiHCqNQBE5N212zVt/hd65JKhyoxwlKRzy0wCMICEeHjeWm3JL9Htp/WN+DVHH952/xSIYABOpGhC8DIzm6uqEPymmeVIalLfp5VVVMqpKtxGwqxqCaOS8sRfOABNX81FZkorKpWWakqJcPWZ1Oq+rKzywK6aBWwAxFtRabky0lIjPj89NVXlFU4VdayA46VoQvBESbdIGuac2ycpXdLBbKWclEI3woh0OkRZhataR/iYA3eWA4B4Ct0II9IRk027imrdWQ4AYhU6ZhjcCOO2l1dG/Pp5n27V7DA7y0U4FhmzekOwmfWp/uug6v8eamZDJB2i6OYUJ53gSEhtO8FForYtlhllARCr4LSq2naCi0RtWywzZQtArIIDuLXtBBeJcDvLJWpgOJIQO0XSZEm/D/Ock/SDuFaUQM7FFoCDgkH4kUuGSpLmf7aNXzAA4iKWABwUGoR/NvsDbdxZFOcqAfhVLAE4KHhf1bSLh+rqp5bFsbq61RuCnXOTq/871vtyEiu1+sa2WAJwUM0gDACxCqRazAE4qGYQBoBYBVIt5gAcFBqEE/VlejTrBJ9bfTOczOwXZvaSmQ32rjTvZQVS9Md/f1ZvAM5IS9E9Zw+odx3hfaUVumrWMt19Vn+2TQYQsxaZAV391PJ6A3D3Nlm6/8cD611H+Mvthbp9zio9cjEf1gHEbm9xeUQB+PtHtNfUE3rX296bq77V+19sj3gFnFhF8y6/dM7tNbNjJP1Q0gxJf/OmrMQoKa/Uz47rpdbNArWeE1wHePXX+brvx/XvLHfzyX307OKNqmA+BIAY5ReX6RenHlnnTSLBdYA/2LBb0y+te0ON7Iw03XxSH/329U88qBaA37TMCuii4T3qPGfMEe11xehcVVRW1ruz3OEdsnVK/84qq0hMhoomBAdvRz5V0nTn3GuqWiGi0aqodPrdG5/okUvywgbh0K2QZy1cr58+80GdQfjOM/ppS36JHp63NmF3NgJousoqnD7YsFsPnHtU2D4ldCOMZxZv0LT5X9QahLMz0vTIJUM1bf4X+zffAIBYlJRXKq9nG108InwQDt0K+Y//+bzOLZYP75Ct+84ZqGuf/UDlCbozLpoQvNnMHpF0vqTXzSwjytcnHeek5Rt2hQ3CoQE4OE9l8+6iWoNwaAAOtg0AsZq1cH3YIBxuJ7h3Pt8eNggTgAF45YbnPwwbhEMDcHBZx+CGGjWDcGgA3rw7cTfuRhNiz5P0pqQTnXO7JbWRdKMnVSVYzSAcLgAHhQvCNQMwAMRDMPTWDMJ1bYVcMwjXFoD5tgpArFKs6lv1mkE4XAAOqhmEwwXgRPVPEa/z65zbZ2avSOpoZsG432QmloUG4X2l5Xp28YEBOCgYhB+6cLDW7dintVsLCMAA4i70G6VZC9dLkh68YIi6tMqscyvkdz6vCrvTLx0q5xR2BJhvqwDEKtiPBIPw7889Sr07tVDPds3q3Ar54Xlrdc3Yw/XH8wfpkDbNDhgBTlT/FHEINrNrJd0uaYv+u12ykzTQg7oaxPINu/Tb19eoVbOA5n+6rc5zg0H4e4e11fPLNiWoQgB+Nmvheu0pKtPHm/fUGoCD3vl8u8oqqrrqhV/uTER5AHwsGITHjzpE97yxpt6dLR+et1bnDu2mB77YkdApEKGi2fHtOkm9nXM7vComGazYuDviczfvLiIAA0ioOR9+HfG5hF8AiVRR6TTzvXURn9/QGSqaOcEbJe3xqhAAAAAgUaIZCf5S0nwze01SSfCgc+4Pca8KAAAA8FA0IXhD9Z90NfL1gYO83NSNDeMAAACSVzSrQ/xakswsu/pxgVdFJUqKh0nVy7YBAAAQm4jnBJtZfzP7QNIqSavMbJmZ1b3/HQDgoPFtFQB4J5ob46ZLmuKcO8Q5d4ikGyQ96k1ZAAC+rQIA70QzJ7i5c25e8IFzbr6ZNfegJgCAqrY7fuemsZ61DQB+FtXqEGb2S0mzqh9frKoVIxotfsEASGatm6erdfMmcR8ygCYoOyNN86eO8aTdRIjmXSZI+rWkl1S1U9w71ccaLX7BAAAAHJx2ORlql5PR0GUctGhWh9gl6Wce1gIAAAAkRDSrQ/zbzFqFPG5tZm96UxYAAADgnWhWh2jnnNsdfFA9Mtwh/iUBAAAA3oomBFeaWY/gAzM7RFVzgwEAAIBGJZob426T9K6ZvSXJJI2WNNmTqgAAAAAPRXNj3L/MbIikkdWHrnfObQ8+b2b9nHOr4l0gAAAAEG9RLcRWHXpfreXpWZKGxFwRAAAA4LFo5gTXhz04AQAA0CjEMwRzkxwAAAAahXiGYAAAAKBRiGcILo1jWwAAAIBnoroxzswGSuoZ+jrn3EvV/x1Zy8sAAACApBJxCDazmZIGSlolqbL6sJP0kgd1AQAAAJ6JZiR4pHOur2eVAAAAAAkSzZzgBWZGCAYAAECjF81I8JOqCsLfSipR1brAzjk30JPKAAAAAI9EE4JnSLpE0kr9d04wAAAA0OhEE4K3OefmeFZJA9hVWKqCkvLvHEtPS5HJqaS8/r0/UlKkrLQUFZYe+JkgOyNNrZunx61WAJCkyspKpaSwxDuA5BRNH9XQ/Vk0IfgDM3tG0j9VNR1C0n+XSGuMCkrKNfq+efsfj+7VTnef2V8l5ZWa+e5Xmr1kY62v7do6U89NHqX1O4v04cY9uuOfq77z/Ds3jSUEA4hJzQ/q6WmmbXtL1TY7XXJO5XV8J5cVSFFBSYWcpJyMVBWVffdkPqgDiFXNPiqQalq/Y596tm2u0oq6Jw0EUk3f5peoU4tMVbhKVYacnqj+KZoQnKWq8HtCyLFGvURaelqKZk+uWt64ZVaasjMCunjGIuUXlem5K0dp4jE9taOwLOzrurTM1PXPrdCy9bv098uG6f9uOFZb95Z+5xwAiEXoB/Upxx+how9vq4seW6ReHXI07aIhmvjEEn22peCA150yoJOmntBbFzy6UJL07KSRemDup3p95bf7z+GDOoBYlVZUavPuIklS11ZZen3lt7rz1dW6cER3XTu2l9bv3Bf2dR1y0rV+R7Euf3yJhvRorT+NG6QtBcUqrf5kn9uueULqjzgEO+cu97KQhlBUWqFx0xfuHwG+eMYird9RdcHOf2SBZk8epZc/2PydEeHgCPD1z63Qwi93SpIuf3yJZl42TF9sLdw/Ijx/6piE/zwAmqbQAFxcVqmVm/fo6qeXa+b4YZpQIwiHBuAt+VVf2l3w6EI9O6nqA39oEAaAWARz1LOTRmju6m9116trJEnPLKrKTZd9L1c/evDd/eFWku44rZ/KKpprwuNLVFbhtOirnbp+9go9cO5RGvfoAm3eVZywDGXO1T/3VZLMLFPSREn9JGUGjzvnJnhTWu3y8vLc0qVLY25n3fZC/fKVj3X3mf116czF+wNwUOtmAc2ePEp/f69qakQwAE99/sP9ATgokGrfCcLzp45RzwR9kgHQNG3JL1Zhcbl2F5XpwscWqrjGlIYBXVtq+iVDtXVvsYrKKtWmeUDpqak6f/qC/QE4qGOLDM2ePEplFRXaWVim3HbN1bFFpgDgYK3bXqhv9hRp9Tf5+wNwqAtHdP9OEL7jtH46rMN/A3CoEblt9gfhpyeOjFuGMrNlzrm8cM9F8539LEmdJJ0o6S1J3STtjb28hpOZllJrAJakXfvKNG76Al1+dK6u/cFhtQZgSSqrcJrw+BId1qG57jitXyLKB9DEOee0q6g0bACWpJWb92jyrGVq2zxDb322TWkpKWEDsCRtyS/RuOkLlJaSoicXrFNRaUUCfgIATVlGIKXWACxVjQg//v5XevXaY/Sbs/rXGoAladFXOzX1+Q81e9IopSZoRmk0b3O4c+6Xkgqdc09IOlXSCG/KSoz0QIpueWll2AAcFAzCP+jTsdYAHFRW4TTpyaU6Y3AXBVLMi5IB+Eh2RkATHl8aNgAHBadGnNy/03emQISzJb9E1z77ge4+c4AX5QLwmZ2FpbUG4KBnFm3U39/7Sh1yMmoNwEGLvtqpx9//SlmBaG5ZO3jRhODgHWK7zay/pJaSOsS/pMQpK6/UPWcNUNdWWXWet2tfmc766/t1BmBJSk0xPXzhEL256luVVUY2zQQAalNQUqZHLhmqjHputF25eY9Of+i9OgOwJLXLTtefxw3SnTVWswGAg9GmebpuOrF3vec9u3ijJj25rM4ALElDerTWZd/LVXFZeZ3nxUs0IXi6mbWW9EtJcyStlnSfJ1UlSFFZpe5+bbWevmJEvUG4PqkppumXDNW2ghLd8uLKOFUIwM+Kyyr18eY9emLC8HqDcH3aZadr9uSReuj/1urlFV/HqUIAflZSVqkRh7aJKAjXZ0iP1vrzuEG6dMaiOpd/jKeIe1Xn3GPOuV3Oubecc4c65zo45/7mZXHPTFACAAAbRElEQVRec5L+s2ZrzEE4XABmHBhArJyku19bE3MQDheA6aMAxMM50xbEHIRDA/BXdUxRjbeIe1Qz62hmM8zsjerHfc1sonelJU4sQZgRYABeiyUIMwIMwGuxBOGGCsBSdNMhHpf0pqQu1Y8/k3R9vAtqKKFBuHPLyJYNSjERgAEkRGgQDqRGduNtm+YEYADeCf1GKRiEp55wRMSvH9S9VdgAnKhvqqIJwe2cc/+QVClJzrlySU1qjZ013+YrkGpql50R0fmB1BT1aNNMKzbs9rgyAJCWb9ilTi0ylRVIjej81s3SlZWeptXf5HtcGQBIqzbnq1+XlhGff0jbZiopr9TmPcUeVlW7aEJwoZm1VXVAN7ORkvZ4UlUD6No6U7MnjdINz3+olZsj+7FKyit13iNV6wiPG9bd4woB+FlwJ7jzpy9QfnFkd05/sa1AV81appnjh+mIjtkeVwjAz359Wj/ltm+uybMi38zslRVfa+Z7X+rVa49Reow3/x6MaN5xiqpWhTjUzN6T9KSkaz2pKsGCAfjGF+peBzic0A01CMIAvBBuK+RIhW6xTBAG4IVfn9ZPh9axEUZdQjfUSHQQjubdVkv6f5KWSNoi6VFVzQtu1GIJwEEEYQBeiSUABxGEAXgllgAc1FBBOJotOZ6UlC/pt9WPL1TVVsrnxruoRElLUcwBOCgYhGdPHhWn6gD4XbP01JgDcFBoEJ7wxJI4VQjAz7ICKTEH4KBnFm2UJL167THxKC0i0cTt/s65K5xz86r/TJLUz6vCEiErkKY75qyKaCe4W0/uE9HOcuOmL9ANJ/Rm22QAMctIS9GFjy6KaCe4X556ZEQ7y13/3Ao9NbFR73gPIEnsLiqLKAAP6dFKk0bn1tveM4s26tUPv1azCG/+jVU0IXh59c1wkiQzGyEp8tnPSai8slI/O66XmqfX/o8dXAe4f5cWEa0jPGn0odqws5BtkwHErKi0Qj/7weF1nhNcB7hXx5x61xHOSEvR1BN76xWWSwMQB62bpeukfp3qPKdqHeDBOu2oLvWuI9y1VZbOGtJNLkGLpNUbgs1spZl9JGmopPfNbJ2ZfSVpgaQ8rwv0UlFZpf69+ls9M2lk2CAcuhHGRTMW17uhxk0n9taIQ9vonGkLvC4dgA8Ul1eqa5ss/fbM/mGfD90I49KZi+vcUCMjLUVPTBiulZv26Devr/G6dAA+UFxaoSknHKHTBnYO+3zoRhinP/RenRtqdG2VpaeuGKG7Xl2torLE7JscyUjwjySdJukkSbmSvi9pTPXfT/assgR5aN4XYYNwuJ3g6tpZjgAMwAvjZy4JG4TD7QRX285yBGAAXqiUdPpD74UNwuF2gqttZ7nQAPx/n2xNVPn1h2Dn3Pq6/iSiSK/VDMJ1bYUcLggTgAF4qWYQrmsr5JpBmAAMwEt7i8sPCMJ1bYVcMwg3VACWolsdoskJvXftoXlfSJKemTRSOwpLtHVv7Vsh/2dN1UV6+ooReufzberbpcUBAZj74gDE0/iZS/TEhGF64NyjNKh7yzq3Qr77tTX6xalH6okJwyWJAAzAU8EgPOenR6tXxxydNbhr2AAcdM60BXrx6lG668z+Oubwdg0SgKXoboxrclyNedcPzftCb3z8jTbsKKo1AAcFR4Q7tcgMOwJcs20AiNX4mUuUnmp1BuCgu19bo2Xrd2rZ+p0EYACeCwbh4bmt6wzAQedMW6BOORkNFoAln48Eh/O3t76M+Nz/rNm6f1QYAOIt3DdKP5u9IuLX3/9m7fsZ8W0VgFjV7Ef2Fpdr3PRFEb9+0qxlEbXrFV+H4Kz0VM2ePLL+Ew+ybQCIhZffKPFtFYBYZQa8yVGZCVon2NchuLisQuOmL/Sk7bduHONJuwD8IzOQ4tkH9cyAr2fDAYiD0vJKT3LUOzeNjXub4fg6BDPKAiCZFZd58wtGkuZPHeNJuwDQWDAUAAAAAN8hBAMAAMB3CMEAAADwHV/PCWZ1CADJjD4KALzj6xDs1V2NUuLubATQdNFHAUhm2RlpnvQl2RmJiae+DsEAAAA4OK2bp6t18/SGLuOgMScYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7nodgMzvJzD41s7Vmdksd551jZs7M8ryuCQAAAP7maQg2s1RJD0s6WVJfSReYWd8w5+VIuk7SIi/rAQAAACTvR4KHS1rrnPvSOVcqabakM8Kcd5ekeyUVe1wPAAAA4HkI7ippY8jjTdXH9jOzIZK6O+deq6shM5tsZkvNbOm2bdviXykAAAB8I60h39zMUiT9QdJl9Z3rnJsuabok5eXluXi8f3ZGmt65aWw8mgrbNgDEgj4KALzjdS+4WVL3kMfdqo8F5UjqL2m+mUlSJ0lzzOx059xSj2tT6+bpat083eu3AYCDQh8FAN7xOgQvkdTLzHJVFX7HSbow+KRzbo+kdsHHZjZf0tREBGBJ2lVYqoKSck/azs5I45cXgJjQRwFIZl71UYnqnzwNwc65cjP7qaQ3JaVKmumcW2Vmd0pa6pyb4+X716egpFyj75vnSdvv3DSWXzAAYkIfBSCZ5ReX6fv3z497u2/dOKbxh2BJcs69Lun1Gsd+Vcu5Y7yuBwAAALFzcblDK3Ht1sSOcQAAAPAdQjAAAAB8hxAMAAAA3/F1CK70cNKJl20D8Af6KADJrGp128bTbk2+DsFe/g7g9wuAWNFHAUhmlR71I161W5OvQzAAAAD8iRAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8x/Ntk5NZZiBFsyeP9KxtAIgFfRSAZJblUR+VlaD+ydchuKisUuOmL/Sk7XlTx3jSLgD/oI8CkMy86qMS1T8xFAAAAADfIQQDAADAdwjBAAAA8B1CMAAAAHyHEAwAAADfIQQDAADAdwjBAAAA8B1CMAAAAHzH1yE4xRpn2wD8gT4KQDIzj/oRr9qtydch2LnG2TYAf6CPApDUvOpHEtQ/+ToEAwAAwJ8IwQAAAPAdX4dgL+ecJGo+C4Cmiz4KQDJjTnAjVunhnBMv2wbgD/RRAJKZV/1IovonX4dgLz9oMMgCIFb0UQCSmVf9SKL6J1+HYAAAAPgTIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+k9bQBTSkrPRUzZ480rO2ASAW9FEAkplXfVSi+idfh+DS8kqNm77Qk7bfuWmsJ+0C8A/6KADJzKs+KlH9E9MhAAAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+Y865hq4hanl5eW7p0qUxt7OrsFQFJeVxqOhA2Rlpat083ZO2AfgDfRSAZOZVHxXP/snMljnn8sI9lxaXd2ikWjdP55cAgKRFHwUgmTX2PorpEAAAAPAdX48Eb9tbrIKSCk/azs5IVfucTE/aBuAP9FEAkplXfVSi+idfh+CCkgqNfWC+J23PmzpG7XM8aRqAT9BHAUhmXvVRieqfmA4BAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA30lr6ALipaysTJs2bVJxcXHErymvqNSjp3f2pJ6Cb9dpzbbEf8bIzMxUt27dFAgEEv7eAAAAjUWTCcGbNm1STk6OevbsKTOL6DUlZRVyW/Z6Us8RHXOUEUj1pO3aOOe0Y8cObdq0Sbm5uQl9bwAAgMakyUyHKC4uVtu2bSMOwE2Rmalt27ZRjYYDAAD4UZMJwZJ8HYCD+DcAAACoX5MKwQAAAEAkCMFxkr9nj5574rGGLgMAAAARIATHyd78PXruyRkNXQYAAAAi0GRWhzgYKSmm3h1z4tLW3VN+o80b1umSU8fouB8epw4dOurFF55XSUmJzjrrLP3617/WunXrdNJJJ2nkyJF6//33NWzYMF1++eW6/fbbtXXrVj399NMaPny47rjjDn3xxRdau3attm/frptuukmTJk3SN998o/PPP1/5+fkqLy/XtGnTNHr06LjUDyD5ZGekat7UMZ61DQCx8KqPSlT/5OsQHEhNkeL073zfffdq9epV+vDDFZo7d65eeOEFLV68WM45nX766Xr77bfVo0cPrV27Vs8//7xmzpypYcOG6ZlnntG7776rOXPm6Le//a1efvllSdJHH32khQsXqrCwUIMHD9app56qZ599VieeeKJuu+02VVRUaN++ffEpHkBSap+Tqfbx+ZwOAHHX2PsoX4dgr8ydO1dz587V4MGDJUkFBQX6/PPP1aNHD+Xm5mrAgAGSpH79+um4446TmWnAgAFat27d/jbOOOMMZWVlKSsrS2PHjtXixYs1bNgwTZgwQWVlZTrzzDM1aNCghvjxAAAAGj3mBHvAOadbb71VK1as0IoVK7R27VpNnDhRkpSRkbH/vJSUlP2PU1JSVF5evv+5mkudmZmOPfZYvf322+ratasuu+wyPfnkkwn4aQAAAJoeX48El1VUqrLSxaWt9Mxmyt+7VyVlFRp73A915x136KKLLlJ2drY2b94c9TbGr7zyim699VYVFhZq/vz5+t3vfqf169erW7dumjRpkkpKSrR8+XJdeumlcakfQPLZtrdYBSUVnrSdnZGq9jmZnrQNwB+86qMS1T/5OgRXVjp9Grdtk9PVf/Aw9evfX8eM/aHOHzdOo0aNkiRlZ2frqaeeUmpq5BOQBw4cqLFjx2r79u365S9/qS5duuiJJ57Q/fffr0AgoOzsbEaCgSauoKRCYx+Y70nb86aOadRz+QA0PK/6qET1T74OwfH2u4f+u05w7445umHK/xxwzscff7z/748//vj+v/fs2fM7zw0cOPCAkDt+/HiNHz8+jhUDAAD4E3OCAQAA4DuMBCehO+64o6FLAAAAaNIYCQYAAIDvEIIBAADgO4RgAAAA+A4hGAAAAL5DCI6jX93wU40Z1EtnHzeqoUsBAABAHXwbgt944w2dfdYZmnDW8bpx0oVa8Nb/xtzmGedeoGmzXohDdQAAAPCSL5dIe+ONN/Sb3/xGxcXFkqQd27bqib/+QZI06vvHHXS7Q0cerc0bN8SlRgAAAHjHlyPBDz/88P4AHFRaUqKXnprRQBUBAAAgkTwPwWZ2kpl9amZrzeyWMM9PMbPVZvaRmf2vmR3idU1btmwJe3zH9m1evzUAAACSgKch2MxSJT0s6WRJfSVdYGZ9a5z2gaQ859xASS9Ius/LmiSpY8eOYY+3bdfe67cGAABAEvB6JHi4pLXOuS+dc6WSZks6I/QE59w859y+6ocLJXXzuCZdc801yszM/M6x9IwMnX3xRK/fGgAAAEnA6xDcVdLGkMebqo/VZqKkN8I9YWaTzWypmS3dti22aQsnn3yybrvtNnXs1EkyU9v2HTT+J1NiuilOkm6+ZqIuPfMErf9yrQ7LPUQzZjDHGAAAIBklzeoQZnaxpDxJ3w/3vHNuuqTpkpSXl+difb+TTz5ZP/jhCfp0y95Ym9rv3of/G3p7d8xRRiA1bm0DAAAgfrwOwZsldQ953K362HeY2Q8l3Sbp+865Eo9rAgAAgM95PR1iiaReZpZrZumSxkmaE3qCmQ2W9Iik051zWz2uBwAAAPA2BDvnyiX9VNKbktZI+odzbpWZ3Wlmp1efdr+kbEnPm9kKM5tTS3MAAABAXHg+J9g597qk12sc+1XI33/odQ0AAABAqKS5Ma4hpKSYenfM8axtAIhFdkaq5k0d41nbABALr/qoRPVPvg7BgdQUid8DAJJU+5xMtffmczoAxKyx91Geb5vsJxs3btTYsWPVt29f9evXT3/+858buiQAAACE4cuR4LKyMk2ZMkXOOd31m3v0i9tulSTde98DCgQCB91uhTPdc+99Gjx4iAoLCzRy+DAdf/zx6tu35k7RAFC/7XtLVFBS7knb2RlpapeT4UnbAPzBqz4qUf2TL0PwlClTtHz5cknS6af9SOXlVRfwp9f9j6bcfs/BN5ySrWZdeunTLXvVu2OOjjzySG3evJkQDOCgFJSUa8wD8z1pe/7UMYRgADHxqo9KVP/kyxAcVFJSIqlqb45Aenz/sdetW6cPPvhAI0aMiGu7AAAAiJ0v5wTfe++9B0x7SEtL0zU3/6qWV0RnX2GBLjj/PP3pT39SixYt4tImAAAA4seXIfjmm29WWVnZd46Vl5fr4XvvjLntsrIyTZk8XuMuuEBnn312zO0BAAAg/nw9HSIjI0MpqWn75wTHyjmnO268Vof2OkLXXf8/cWkTAAAA8efLkeA//OEPGjJkiAYNHqzfz5it3v0Gqne/gfrZz2MbCf5gyUK9+uJzWvze2xqeN1SDBg3S66+/Xv8LAQAAkFC+HAkOBAJ68MEHVVJWoU+37I1tRYgQQ4aP0ocbd0mSenfMUUaAnTgAAACSkS9HggEAAOBvhGAAAAD4DiEYAAAAvkMIBgAAgO8QggEAAOA7hGAAAAD4ji+XSPPSyaMGqlnzbDXLSFcgkKalS5c2dEkAAACowZch+Nhjj9W+ffsOOJ6ZlaW/PvvPmNt/7B//1Mgje7JOMAAAQJLy5XSIcAFYkoqLihJcCQAAABqCL0Owp8x01UVna9SI4Zo+fXpDVwMAAIAwfDkdwkuPv/iGOnbuotZWpB+dcpL69OmjY489tqHLAgAAQAhGguOsY+cukqQOHTrorLPO0uLFixu4IgAAANRECI6jffsKVViwV5JUWFiouXPnqn///g1cFQAAAGry5XSIZs2a1bo6RCx2btum/5l0sSQpVU4XXXShTjrppJjaBAAAQPz5MgS//fbbkqSSsgp9umVv3NrtdkhPPT/3XUlS7445LJEGAACQpHwZgoNSUky9O+Z41jYAxCI7I03zp47xrG0AiIVXfVSi+idf94KB1BSJwVoASapdToba5WQ0dBkAEFZj76Oa1I1xzrmGLqHB8W8AAABQvyYTgjMzM7Vjxw5fh0DnnHbs2KHMzMyGLgUAACCpNZnpEN26ddOmTZu0bdu2hi6lQWVmZqpbt24NXQYAAEBSazIhOBAIKDc3t6HLAAAAQCPQZKZDAAAAAJEiBAMAAMB3CMEAAADwHWuMqymY2TZJ6xvgrdtJ2t4A7wtvcV2bLq5t08W1bZq4rk1XQ13bQ5xz7cM90ShDcEMxs6XOubyGrgPxxXVturi2TRfXtmniujZdyXhtmQ4BAAAA3yEEAwAAwHcIwdGZ3tAFwBNc16aLa9t0cW2bJq5r05V015Y5wQAAAPAdRoIBAADgO4RgAAAA+A4huAYzm2lmW83s41qeNzP7i5mtNbOPzGxIomtE9CK4rhdVX8+VZva+mR2V6BpxcOq7tiHnDTOzcjP7caJqQ2wiubZmNsbMVpjZKjN7K5H14eBF0Ce3NLN/mtmH1df28kTXiOiZWXczm2dmq6uv23VhzkmaHEUIPtDjkk6q4/mTJfWq/jNZ0rQE1ITYPa66r+tXkr7vnBsg6S4l4QR+1Opx1X1tZWapku6VNDcRBSFuHlcd19bMWkn6q6TTnXP9JJ2boLoQu8dV9/+310ha7Zw7StIYSb83s/QE1IXYlEu6wTnXV9JISdeYWd8a5yRNjiIE1+Cce1vSzjpOOUPSk67KQkmtzKxzYqrDwarvujrn3nfO7ap+uFBSt4QUhphF8P+sJF0r6UVJW72vCPESwbW9UNJLzrkN1edzfRuJCK6tk5RjZiYpu/rc8kTUhoPnnPvGObe8+u97Ja2R1LXGaUmTowjB0esqaWPI40068AKjcZso6Y2GLgLxYWZdJZ0lvrVpio6Q1NrM5pvZMjO7tKELQtw8JOlISV9LWinpOudcZcOWhGiYWU9JgyUtqvFU0uSotIZ4UyBZmdlYVYXgYxq6FsTNnyTd7JyrrBpUQhOSJmmopOMkZUlaYGYLnXOfNWxZiIMTJa2Q9ANJh0n6t5m945zLb9iyEAkzy1bVt2/XJ/M1IwRHb7Ok7iGPu1UfQyNnZgMlPSbpZOfcjoauB3GTJ2l2dQBuJ+kUMyt3zr3csGUhDjZJ2uGcK5RUaGZvSzpKEiG48btc0u9c1WYGa83sK0l9JC1u2LJQHzMLqCoAP+2ceynMKUmTo5gOEb05ki6tvrtxpKQ9zrlvGrooxMbMekh6SdIljCI1Lc65XOdcT+dcT0kvSPoJAbjJeEXSMWaWZmbNJI1Q1RxENH4bVDXCLzPrKKm3pC8btCLUq3oO9wxJa5xzf6jltKTJUYwE12Bmz6rqTtR2ZrZJ0u2SApLknPubpNclnSJpraR9qvq0iiQXwXX9laS2kv5aPWJY7pzLa5hqEY0Iri0aqfqurXNujZn9S9JHkiolPeacq3OpPCSHCP6/vUvS42a2UpKpakrT9gYqF5E7WtIlklaa2YrqYz+X1ENKvhzFtskAAADwHaZDAAAAwHcIwQAAAPAdQjAAAAB8hxAMAAAA3yEEAwAAwHcIwQDQwMyswIM2B5nZKSGP7zCzqfF+HwBorAjBANA0DVLVWpwAgDAIwQCQRMzsRjNbYmYfmdmvq4/1NLM1Zvaoma0ys7lmllX93LDqc1eY2f1m9rGZpUu6U9L51cfPr26+r5nNN7Mvzexn1a9vbmavmdmH1a89P2xhANDEEIIBIEmY2QmSekkarqqR3KFmdmz1070kPeyc6ydpt6Rzqo//XdKVzrlBkiokyTlXqqpdEJ9zzg1yzj1XfW4fSSdWt3+7mQUknSTpa+fcUc65/pL+5fXPCQDJgBAMAMnjhOo/H0harqrQ2qv6ua+cc8FtSJdJ6mlmrSTlOOcWVB9/pp72X3POlVRvP7tVUkdJKyUdb2b3mtlo59yeOP48AJC0CMEAkDxM0j3Vo7eDnHOHO+dmVD9XEnJehaS0g2j/gDacc59JGqKqMHy3mf3qYAoHgMaGEAwAyeNNSRPMLFuSzKyrmXWo7WTn3G5Je81sRPWhcSFP75WUU98bmlkXSfucc09Jul9VgRgAmryDGUkAAHjAOTfXzI6UtMDMJKlA0sWqnutbi4mSHjWzSklvSQpOZ5gn6RYzWyHpnjpeP0DS/dWvL5N0dWw/BQA0Duaca+gaAAAHycyynXMF1X+/RVJn59x1DVwWACQ9RoIBoHE71cxuVVV/vl7SZQ1bDgA0DowEAwAAwHe4MQ4AAAC+QwgGAACA7xCCAQAA4DuEYAAAAPgOIRgAAAC+8/8Brq3R67aPIpQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3RUZf7H8fedmpn0nhASAiG0hJrQBMXeFbugYC9Y113Lb3VdXV11XXV31bWBWJai2HuvCEoxoYaaEEpISO8zk6n39weEpaTB3BlW5vs6x3M2mXu/3CR77nzmuc/zfRRVVRFCCCGEECKU6I70BQghhBBCCBFsEoKFEEIIIUTIkRAshBBCCCFCjoRgIYQQQggRciQECyGEEEKIkGM40hdwOBISEtTMzMwjfRlCCCGEEOJ/WGFhYa2qqokdvfabDMGZmZkUFBQc6csQQgghhBD/wxRF2d7ZazIdQgghhBBChBwJwUIIIYQQIuRICBZCCCGEECFHQrAQQgghhAg5EoKFEEIIIUTIkRAshBBCCCFCjoRgIYQQQggRcn6TfYIDqdXpxuNVibGaaLK7aHF6APB4VXQK6HU6jHqFpKgwXB4vdpeXGKvpCF+1ECJUNNpdhBn1hBn11La04fT48KoqPh/odQoKEBGmJ8ZqpsnhBiDaYjyyFy2ECDler5fqFhc+FTw+H6oKRr2CCsRZjVjNR/6+JCF4H61ON+vLm+gVa2V7nZ3XftlKwbYGdjY49h4TZTEwLC2GKWPSGZURS2lNK0N6RREXbj6CVy6ECAUNNhdrdzaQlRzF+opm5i/dzuqdjTTY3XuPSY0OIy8jlqsmZJIaHca2OhtD02KIkiAshAiCRrsLu8vLN+ur+Hh1BesrmnG4vQDoFOibEMHE/vFcMT6TcLOelGjLEbtWRVXVI/aPH678/HxV6x3jWp1ualucuL0qv397FUXlzd2eE2M18rfzhzK0dzRWk16CsBAiYBpsLlrb3Gyts3PnO6upaXF2e052UgTPTBmx9/4kQVgIEUiVTW18uKqcf32zGafH1+3xJw1K4qHJOSSEmwgzBWZcVlGUQlVV8zt8TULw7gDcYHOxbGs9976/Frf30H4nZw1N4c9nD8Fk0EkQFkJorsHmwunx8vS3xSz4teyQztXrFP505mBOy0kmMswoQVgIERAVjQ5umlfI6p1Nh3RelMXAK1eOZlByJJEBuD91FYJDfmFcq9NNXcvuAHzXO2sOOQADfLa2kvs+KMLp9lFv6350RggheqrB5sLm8vD4FxsPOQADeH0qD3+6ns/X7qLe5qLZ4e7+JCGEOASVTQ6ufHX5IQdggGaHh2mzl1Fc04p7z7SJYAnpENzqdLO+ohmX18e976/1q9b3G6v5bO0uyhvsEoSFEJposLnYWtPK0tI6PlxV4Vetx77YSHObmw27miQICyE0U9XcxmOfbaS4uvWwazg9Pm6YU0CNzaXhlXUvpEOwx6uSFmPhjrdWHdYI8IGe+HITURYT3u6nwQghRLd8qkpytIUHPlrndy1VhdvfXEl6XDhe329vGpwQ4n/T1lobH6/x70M6QG2ri39+s5naljYNrqpnQjoEx1hNVLc4WVfR/SK4nnB5fbz28zbCjIom9YQQoc1q0vPeijLsLm0eEW6rs1Nc3UJsuLR1FEL4b1eTg398vUmzeh+uLMfpCd6H9JAOwY12J68u3qppzXcLd9Lc5tG0phAiNNXb3MxdukPTmrMXbaW6OXgjLUKIo5fL4+PXbQ2a1fP4VD4v2qVZve4ENAQrivKqoijViqIUdfK6oijKs4qilCiKskZRlFGBvJ4DtTq9mv7xdtf04HDJfAghhP88Pl+PWqEdipU7GnHLnC0hhAY27NLmSfq+fi6ppa41OGurAj0S/DpwehevnwFk7/nvBuDFAF/PflQVKgMwIrK5qkXzmkKI0FPR6Oj+oEPU6vRosgZCCCF+3Vavec31Fc04NJoC1p2AhmBVVX8CuvoNTQbmqLstBWIURUkN5DXtyxOgxSEN9uCubhRCHJ2aAtTFQUaChRD+8vl8NNq1v0c1t7lRgrS06kjPCU4D9m18uXPP9w6iKMoNiqIUKIpSUFNTo8k/rgvQL9lsONK/ViHE0cBk0Aekri5QNz8hRMjQ6XSYApB3THodwXpW9ZtJa6qqzlJVNV9V1fzExERNahp0OsJN2r/JDEiO1LymECL0pMdZNK+p1ymEyQd1IYQGcnpFa14zKzEiYIOUBzrSd8JyIH2fr3vv+V5Q6HSQk6btH1BRIE7aDwkhNBBuMmDSa3ub7p8YEbRRFiHE0W1URozmNUekx5AUEaZ53Y4c6RD8MXDFni4R44AmVVWD1hsjNdrCpfnp3R94CCZkJWj+piWECE1mg45Tc5I1rXlhXm9SIs2a1hRChKYYq4mUKG0D60X5vTEE6WlVoFukvQksAQYqirJTUZRrFUWZoSjKjD2HfA6UAiXAy8DNgbyeA7k8XsZnxRNpNmhW85YT+hNulhAshPBfmF7HjElZmtUzG3ScNTSVIPaiF0IcxRIiTFw9IVOzekNSo4i1Bu9peqC7Q0xVVTVVVVWjqqq9VVV9RVXVl1RVfWnP66qqqreoqpqlqupQVVULAnk9B7K7vOyos/HQ5BxN6p0wMJHesRba3PIOI4Twn1tVsZp0nDeilyb1/u/0QVQ1O3C6g9N+SAhxdDMZ9Ewe0YvMeKvftXQKPHHRMHrFaL8WotN/M2j/0v+gGKuJ7ORIxvaN56RBSX7VSogw8dfzclF0qswJFkJoIsZqwmLQc8/pg0jz841hdGYsp+emkBEfTnQQR1qEEEe3lGgLz18+yu/OWLeemE1qdHDmArcL6RAMEB9hxmLU8egFQ5mQFX9YNRIiTCy4YRwWo460aCtKsBrcCSGOeqmxVixGHfOvH0uvw3yDGJkew7+njsRi0JEQIfOBhRDayoi18trVow87CF8xvg/TxmYQH+T7U8iHYIC4CDNmncJTlwznD6dkYziE3hyTBiTy4c0TiLUaiQs3SwAWQmguNtxMdJiBd286hjNzU3p8nk6BG4/rxwvTRmHW64iVACyECIBIi5Hc1Cg+uW0ig1N73iY20mzg2SkjuPn4LJI0XmDXE4qq/vbmr+bn56sFBdpPH65rdVLZ1IbVpOflRaW8v7KcNnfHOyuNz4rn1hP6kx5nRa9T6SUjwEKIAKtssOP0qtTaXPz7+2IWbq6ho1u42aDjrGGp3DQpC69PJSHSLCPAQoigqGxysHxrPS8tLGX9ruYOj4kLN3H52AymjM4g1mrEqmGDggMpilKoqmp+h69JCN5fXasTVBW9XofN5aW1zcOGXU002t2YDXoGpUaSEGHGqNcRGabD7lJJiDBJABZCBEV1SxsWow6Hy4fL66Pe5mLDrmYcLi9RFiODU6OICjNgNenBB14gQVqiCSGCrKLRgcfro6KxjZKaVrw+H0lRYQxMjsRs0BEXbsJiClz4bSchWAghhBBCBJTb66PN7cWg02HpwY689TYXeh1EWwK3WLerECxzgoUQ4jfM5fFS1exgV6ODmpY2fL6Op3AJIUQgub0+iqtamPD49ywtrcPh6roVY3mDg3P+vZg3lu2gyeEK0lXuL/Dj0EeBljY3TrcXvU4h2mJEp5PPDkKII6fZ4aLV6WXF9gaWbKljY1ULTo+XCLOB3F7RHJudwIDkSGKsxqA8bhRChLb2AHzRS0uwu7xcN6eA2VfkM75fPCaDDpvLg6pCmFGHyaCnosHBJTOXUN7o4O9fbgLgsrEZAR0R7ohMh+iA1+ujusVJTauTX7bUsXJHI81tbsx6HQNTIhnXL56BKZFEhRmICDMG7DqEEGJfbq+PmhYn//6+mPdXlOP0dD7qG20xcs3ETC7NzyAlyL03hRCh48AAHBdu4rKxGZw8OInWNjdeFfQ6BQXw+lRAwWLSs63Wxuu/bGNdxe7Fc/93+sCABGGZE3wIqprb+GlzDc98V8zOBkenx1lNei7NT+f64/qRFGEO2j7XQojQ1Gh3sb6imVvfXEm9reePDvslhDNzeh4ZcVbMxu7n6AkhRE8dGIDPHd6L6yZmYnN5SYu1sq3WxrKtdZTW2PCpkBBuYnTfOEakx9DkcNPm8rK+spknvtyEw+0NSBCWENwDPp+P8sY27liwisIdDT0+Lz7cxHOXjWRIapTswiSECIgmu4slpXXcPH8FvsO4ZYeb9Lx943gGJEdilA/sQgiNbKlu5ZznFuNwe3n43FwGp0aSFGXmhR+28OGqztvMAoztG8fdpw3EqFfweFVumr+C6hYnD54zhIvyehOp0ZN2WRjXAzvqHVzw4i+HFIAB6mwuLp+9jF+21NFoPzITu4UQR7eKpjZueWPlYQVgAJvLy+WvLKOm1anthQkhQlqM1Uhen1gePCeH0ZmxVDa3cdYzi1nwa1mXARhg2dZ6LnppCW8VlJEcHcYrV42mT5yFSQMSCQ/SWgYZCQYqm9q4ZOYSdtTbD7uGXqfw0S0TyE2L1uy6hBCissnBtFeWU1Ld6netM3JTeGhyDkmRMkdYCKGNepuTBpubbzZU8fgXGw+rRl6fWJ6dMgIdkBxtQXcIO/d2R0aCu9Bgc/LyolK/AjDsnux96xsrqGzqfB6xEEIcqlVlTZoEYIAviippsrs1qSWEEAAqKsXVrYcdgAEKtzfw0CfrcavgC+LgbMiH4Fanl9d+3qpJrW11dn7ZUqdJLSGEqGpy8MKPJZrWfP2XbbS2SRAWQvivze3F7vRxz3ur/a719foq1lc00dLm0eDKeiakQ7DT7eXDleWHPc+uIy/8uEVGg4UQmnD7VNbsbNK05ncbqmmWECyE0IDd6eGVxVtpdmgTXP/y8XpsLgnBQdFgd/F50S5Na5ZUt+Lyyo5NQgj/NQRg6kJlcxtyixJCaMHh9vJu4U7N6lU2t7Gt1o47SDepkN5KyKdCcVXHc+0Gp0YyeUQaub2iMRl0+FQVRQEFha21Nr7bUMV3G6v3NH7e366mNjLiwgN9+UKIo1ygniq5uthkQwgheqqy2UmrU9uR249WlTOsdzRGS+DHaUN6JNjl8eE5IMTm9Ipi7rVj+N1J2USaDbS5vajsOUZtf/NQOS0nmXdnjOfivN4H1S3zc5GdEEIABGp9yG+vJ5AQ4n9R4fZ6zWuu2dkUtClbIT0SfKDbT+rPMVkJtLm9gMIPm6op3N6w3yNJs0HHkNQozh6eis+nctyARE7NSeGed1fvPU7LOcZCiNDV1XbHJw9O4rKxGfSOtWLU735aZdAp2JwettXZePHHUtaWdzyf2CwbZggh/KSqaqdP0xUFjsmK59j+iQzpFbXfPWdLjY0VOxr4Yu0ubC7vQefubLCjXYO0roV0CDboFXTK7tD62Pm5xIWb8akqf/10A1tqOv7DOj0+VpY1srKskXCTnntOH0SfeCuzr8zn+jmF1NtcJESYg/yTCCGORnHhB+9CefmYdK4/LouS6lbmLtnBmp2N1O2zjXJajIVRGTE8cM4QYixG/vLxOn7ep2tNSpT0CBZC+E9V1Q6fKl2c15upYzIo2N7AN+srefb7Yux7wq5OgazECMZnxfP6NWNYu7OJf32zmZZ9plT4VFCU4MTgkA7BPp9Kv8QITh2STGZ8OGvKm3jiy409Hsm1ubw8+PE6Jg1I5PcnZ/P8ZaO4fPZS0mIsgb1wIURI8PlUhvWOZs3OJqwmHXOuGYvd5eWSmUuobul497fyRgfljQ4+WbOLAckRPH3pSEqqW7h9wSoAjhuQiElGgoUQftLpdKTu87QqMdLM4xcMZf2uZqa+vDsLTeifwMX56aTFWNApCo0OF+sqmlmxvYFLZy7hxEFJzLl2DE9+tWlvi9mESFOH660CIaRDcJhRxwWj0piUncjiktrDbvS8cHMNLq+PP505mN+fPAC9vL8IITRQ3eJk2rg+PPTxej65bQKzF5XyxvKyHp+/uaqVc55bzP1nDeadGeO5+KUlXJiXhiOILYiEEEev4b1jAOgVHcZzl43i4U/XYzXpmTU9j5Y2D1+vr+LFH7ewo96OT1WJs5rITYvmuOxE7j5tIJ+u2cV1/yngqYuHE20x8kVRJUPTogkL0gf1kA7BHq/KecN7Udbo4ImvNvlVa8mWOr5aV8mFo9IwGyUFCyH812B3kRRp5v2bx/Ps9yV8uLL8kGt4fSoPfbKe+88azILrx7KuvJmEAYkBuFohRChRVZW0WAsRZj3PTB3JQ5+sY8qYDEx6HXe9u4aaDp5W1dlcLNxcw8LNNZj0OqaMSeeFaaN45NP13HXqQKqanRyTlUCwJgWHdFozG/U4PT7u/6BIk6H3F3/cgt3lQxekuSxCiKNbrNVEWb2NoormwwrA+3r08w2Emw0UbKvHqJd7lBDCfxWNDp66eDjvFpRx75mD+XFTNXe+s7rDAHwgl9fHnCXbufPt1fz57BzmL93Bn88ezJBeUQd17gqUkA7BPlWlrMFBcXXHi+AOlcenMnfpNlDlDUYI4b+kSDOTBibxwIdFftdSVbjtzZXcfdpA9Dq5Rwkh/KMoCtEWI7FWE+cMT+Nf32zmq3VVh1xnZ4OD6+b8ynXH9eO7DVXYXR5MuuDE05AOwR6vyhvLd2ha86NVFbJjnBBCE+EmPR+uLO+wjdDh2FZnp6zBgdmo16SeECK0JUeGUVzVwtfrK1m29fB7Bjc7PNz1zmqOzU4kJcoStLHE0A7BPpUV2xs0rWl3eTXfPUUIEZocHh/zlmr7Qf3lRaW4Zcc4IYSffD4fKiqZCRHMXbrd73o76u18ta6SXY0OVJkOERydtRnyR4lG0yuEEKHN61M1v0et3NGIN1Bb0QkhQoaiKDTa3cxeVKrZ7pbzl+0gPsKEJ0j3qJAOwYGaeN0SpO3+hBBHt4pGh+Y1W50ePF4JwUII/5mNOhYW12hWz+nxsbS0PmgNBkI6BAdqgbTVHNKd54QQGmlyBOYDtVvWLQgh/KSqKqU1Ns1GgdstLa0L2rbJoR2CdQoRAQis2UkRmtcUQoQeU4B23pE2jkIIf+l0OlaXNWpet6i8CVeQ1i2EdAg2GXQM7R2taU2dAtEWo6Y1hRChKT3OqnlNvU4hzBTSt34hhAZUVaWmVft1VfV2F7ogtXEM6TthpNnA9HF9NK15wsAkTNKIXgihAavZoPlocP/ECM0fXwohQo+iKBgD8LTKoNMFrZd5SIdgm8vL8PRoYqzajdzecmJ/VNksQwihAaNO4ZQhSZrWvDAvjSiLrFsQQvhvSGqU5jX7xFtlYVwweHwqbyzdzhMXDtOk3tlDUzEoCjvq7ZrUE0KEthanhxsnZWlWz2zQcXpuKjanNptvCCFCW67GU0oBRqTHYJSR4MBzeXw8/2Mpg1IimTy8l1+1UqPDuO+swdzyxgrKGiQECyH8V1Zvx+Xx+X1/anf3aQNZXFyD0y3dIYQQ/jPoFE2fpgOcMiQZZ5A62IR0CFZVlUkDEllX0czF+b05dUjyYdVJjQ7jpWl5vPbzVm46Pkvm2wkhNOHzqawua+Se0wfSKzrMr1r5fWI5PTeFJVvq8MlNSgjhJ1VVWbOzSdO1VRlxVhQIWou0kJ4YZtDr+MMpA7ji1eW4PD7+cclwxvSN48mvNpEUaeb2k7IZkBxJjNWI16eiUxScHh9l9XbeWL6D7zdWc/awVK6Z2Jd73l3DpqoW3rphHAZZGCeE0EBKTBgWk4EHP17HvOvGMm32Miqa2gA4JiueK8f3ISM+HItRj09V0esUmhxutlS38uLCLWyu2r175Yj0GJ6+dATX/aeAx84fiskQ0uMfQggNKIpCjEXPuH5pLPi1jJoDdrecNjaDU3OS6RVj3bPQTUVBobbVyZqdjTz9bTHNbZ79znnwnCEoCniCNBIc2iFYp1BWb9/bkP7m+Su45YQsvrtzEi1tHuYu2c7Mn0oprWmlfXO5pEgzw9NjmDYug4cn57C93s7lLy/D4d49x27mT6U8el7ukfqRhBBHkTiriZkLS/l2QzU6Bd6eMZ6vi3YxaWAyFU0O5i/bweqyRnbtCcaKAn3jw8nrE8tTFw3HaNDx69Z6ThiUxFWvLaekxkbBtnrOH5V2hH8yIcTRICcthr99vpFHz8vlxnmFqCr8+azBnJqTwpLSOmb9tJW15U17c5ZJr2NASgTH9k/kw1smUNnUxu0LVlLb6uKivN6UVLcyum8ckWHBiachHYIVBeYv37H36wfOHsykgUncsWAVBdsbOjynusXJN+ur+GZ9FYmRZp64cBjzrhvDVa/9Skubhx83VeOVR41CCA34VPiyqBKAHzfXcm2Dg9zesVzx6nLKO9hSWVWhtNZGaa2Ndwp3kpsWxb8uGcHS0jpKamwAfLiqgnNHaDPHWAgR2lweH1+vryI9zsqzU0YyODWSX7bUcfrTP2FzHbwA1+X1UVTeTFF5My/9tIWzhqbywc0T+GFjFX3iw7lhbiFXjO/D4FMGBOX6Q/qZmMvrY+3OJgBemjaKpKgwznxmUacB+EA1LU6ufv1X3lxexie3TiQqzIBPheYAbXUqhAgtbW4vTo+PMIOOz26byFfrKrlk5pIOA3BHisqbOfPZRXh8KvOvGwvA5qoWWbcghNBEe4ZasqWWvD6x3PdBEQ98tK7DAHwgVYVP1+xi8vM/Mzw9lqLyJpweH4XbG2k5YJpEoIR0CPZ6VVqdHh46Nwe3V+W2N1fiPIyt+t4t3Mnfv9zIezcdA0BxdavWlyqECEHtYfftGeOZvWgrr/687ZBruL0q976/lq21rTwzZQQen0pbkLYkFUIc3VaWNRIZZmDWFflcP6eA5VvrD7lGvc3FpbOWcGx2IheO6kVJTUvQnqiHdAj2qTC8dzQT+idw59ur/Rod+aKokqWldTx0bg42Z3A+wQghjm4uj4/bT+zP9jo7bxWU+VXrgY/WkZUYwaTsBFQZChZC+ElVVdrcXl6+Ip+nvy1mXUXzYddqc/u4fm4Bvz9lICa9Dr1slhF4ep3C4xcO4863V+HSYCXiI59t4PiBicRZTRpcnRAi1EWYDVycn85976/1u5ZPhd8tWMUD5+YEbUtSIcTRS1EURqbHoFN2PxH3V1Wzkxd+KOHJi4bj9clIcMAZdOD0+Fi9Z06Lv5weH3OXbGd4Rowm9YQQoS0rKZxPVlfQotHTpS01rexqchBu0mtSTwgR2iZkJ/Cvb4o1q/dO4U76J0UE7YN6SIdgo0HH679s1bTm2wVl+IL0CUYIcXRrc/uYs2S7pjVn/7QVj9yjhBB+8vl29yZfUlqnWU23V+XbDVWEm4PzQT2kQ3Cb28fy0kOfxN2V5jYPbbIlqRBCA16fSmVzm6Y1C7c3BO1RoxDi6KXTKWzc1aJ53UXFtdid3XeX0EJIh2BVZe/uS1oqrtb+/xRCiNBTGYD7U4vTg9srIVgI4b9ft2k7kAiwrqIJZ5B2jAvpEByoR4L1NldA6gohQkuDPTD3Eo9PnlYJIfzj8/kCkneaHG6C1BwitENwoH7HRn1I/1qFEBoJ1L1ECdjdTwgRKnQ6XUDuUUadLmgb+oR0WjPqdViM2k++HpAcqXlNIUToSY+zal5Tp0CYMaRv/UIIDaiqypDUKM3r9ksMD9rH9BC/E6rk9NL+DxgXLn2ChRD+s5r0GPXavh1kJUYgU4KFEP5SFIVRfWI1rzsiPYZoi1Hzuh0J6RAcZtBzYV5vTWuO7xePO0gTuoUQRzeP18dJg5I1rXn+yDSsAXgCJoQIPVEWI4mRZk1rXjCqN61Ot6Y1OxPSIbjF6WFi/wSsGjaOv+n4LHbW2zWrJ4QIXaoKMyb106yeUa9wzvBemuyQKYQQxZUtXDm+j2b1spMiCDPq8KmyWUbAGfU6vly7iwfOHqJJvQn940mMNKOTLUmFEBowGXSowJm5KZrU+8MpA1hV1ogvWKtOhBBHtW82VDJ5RBq9Yy1+11IU+PuFw3j+hxJAtk0OOJ+q8v6qcvL6xDKxf4JftWKsRh47fygz5hWSHBWm0RUKIUKZ16fy4o8l3HvmYJKj/HvkOCI9hjNyUync3oBZOtgIITSQHhfOY59v4LmpI/1ev3D9sf1odLgoKm+W7hDBYDHqOGFgEle9vpzHLxxK/mFO8I6xGnnz+nHMWrgFo14XtP52Qoij266mNs4dnsbfv9jI/OvGkXSYc+9yekXx76kjmTG3kHOG98Lm9Gh8pUKIUJTfJ5YviipZt6uZWdPzDzsIX5zXm0vz05kxbwVD06JlYVwwqCicnpvCrsY2Lp+9jH9eMpwZx/XjUGYzjO0bx4e3TGDekm3MX17GtHF9iAwLzh9PCHF0s7k8KIpCeaODZ7/bzHs3HcPxAxIPqcb0cRm8NC2P6+cWMDwjhkXFNajySV0IoYGESDNmg44/fVDEjno7H9w8gazE8B6fbzHq+dv5Q7lmYl/OeW4RLo+PEwcnEaxlCyEdgqMtRiqb27h8bB+219k58R8/MiIjli9+dxznjeiFqYtHhqMyYph9RT5/PS+Xa17/lfnLy8iMtzIkNfKQQrQQQnQmIcLMXz5Zx/1nD+Gb9dVMmbWEu08fyNxrxzCuX1yn5xl0CmfkpvDpbRM5eUgypz29kBaHh4vyevPCD1swadx2TQgRmtaWN3LWsFQAHvx4HU9+uZHXrhrNY+fn0i+h8zAcaTZwzYRMvrzjWFqdHs54ZhF2l49Yq5GkSDNOjzco128Iyr/yP8pk0DE4JYpoi5GFm2vYUW9nxrxC+iWG88fTBvH7UwbQaHeztryJRrsbs0HHkF5R9IoJo8nhZubCUr4oqgRAr1N45LyhVDW3kd+n8zcnIYToqYQIMzUtTp7/oYTnLx/FzfMLOevZxRw/MJG7Th1IQoSZyuY21lU04XD5iAozMLR3NHHhJrbW2rjr3dVs3NVCYqSZZ6eO5N7312A162VXSyGE31RVpWBrA9PG9uHztbtoc/tYWFzLcU/+yDUTMnnx8lEYDDq21tooqW7F61NJjjKT0ysai1HPstI6zn/+F+r32R7+1hP7M3/Zdh44OycoP0NIh2DY3eNu/tLt/OvSEdw0r5DqFielNTZumFcIQJzVxImDEomLMOH0+HivcCcbq1r2q6FT4O8XDmXh5mquP66fdIcQQmhCpyhkxkIaNaAAACAASURBVFv5fmM1Rr3C61eP4d731/Ljphp+3FQD7N5daUJWPBaTnrJ6G8//WEJVs3NvjdGZsdx35mDu/7CIzVWtnJaTgkHuUUIIPymKQniYgdd/2cbdpw3kr59u2Pvaqz9v49WftwG770FD06LR6xQ2VDTzwEdF2F0Hz3cYnRlLarSFWdtK8QZpZVzIh2Cvz8e5I9J45LN1zJyexyOfbaBwe8Pe1+vtLt5dUd7p+QkRJv52wVAWl9QxsX88Pp+0HhJCaCPaYuDaiX3580fr+GpdFSXVNh47fyjLt9Yxb9kOavZ8aC+tsR10blZiONdO7EuUxch1/ymgzrZ7tGXGpH5EWkL+1i+E0MDYvnFc83oBE7MTuHxsBvOX7TjomF+3NfDrtoYOzv6vrMQI7j1jMNfPKWB4egxRQVpbFdJ3wka7i798vJ6yejv3nD6IO95axR/PGMQ5w3vxyuJSyuodnZ4bbtJz/qjeXDAyjb99sYHjByaxtryJ+z8s4rPbjyUhQtsdVIQQocdiMnDqkBSe/a6EmlYnW2pauXz2Uk4ZksKTFw0DYG15E8VVrTg9PiLMegalRjE0LZraFidzl25n2db6vfVGpseQHmfFqJcd44QQ/huYEgXAve+v5cmLhpEcFca/vy/GfQh7s08akMjvTsrm9gUrqbO5OGlQEuHm4MRTRf0NNk3Pz89XCwoK/K5Tb3OxrqKJ6/5TwOjMOG47sT/3vLeGjDgr08b1wWLUs7KskfUVzbS0uTHpdWQlRTCsdzS9Yix8uLKcz9ZWcNepg2ht8/D4lxu5ZkImMyZlkSS9goUQGlBVlSVb6rhs9rKDXos0G8hNiyYrMRyTQYfN5WVzZQvrdzXj9Oz/uNFs0PHVHceR2cViFSGEOBSNdhcz5hWytHT3h+3Lx2YweUQa//6+mMUltV32+82Mt3LLCf0B+Otn62l2eDDqFRbdcyIp0dplKEVRClVVze/wtVAOwQ63h5KqVqpbnNw8fwXpcVYeOS+XHzZWM3/ZDnQ6yO0VzeDUKMLNejxeldJaG0XlTVQ0OjhhUBK3HN+f137eyidrdnH1hExOy0lhYHIkseEmDX5SIUSoq2118uOmanY2OHj62+LDqqFT4NkpI2lxujk9N5VYq9yfhBDaWLWjkfNe+Hnv16nRYVw5PpMxfeMo3NHA2p1NlNXb8aoqceEmctOiGd0nllanlzlLtu33tGrauAz+eMZgIjQcCZYQ3IUDg7DHp3LhqN5cmJdGbYuLn7fUUFTeTEvb7k8o2UkRjO0Xz/DeMSwqruW1n7dSZ3NJABZCaK6u1cmtb65kyZY6/jo5F5fXy98+34jnENYeRJoNPHXJcBYX1zJ36XauGN+H3588QO5TQghN7Gpy8OSXm3h/5f7rp0x6HTm9oshNiyYtxoJOp9Bod7G+opnVOxtpsLv3Oz4p0sy7M8aTGGXGYgxOCA7pOcEAFqOB/skRALxw+Shunr+CdwrLGJkRQ25qFJPOHIzL48PrU3evhDTpaXK4qGhs4/VfJAALIQJHURRS90yt+vNHRUwb14f3bjqGBz9ex6qyxm7OhVMGJ/O7k7N56qvN/LCpGoA+8VbpYCOE0ERFo4Ppry7jb+cPY1NVC+sqmve+5vL6WFnWyMpu7lUAYUYd/7hkOHe8tYrfnzyA/MxYLKbAR9SQD8FwcBCuaXXSLz6czMRwIsxGOGCNm8mgx+nxMXN6Hgs313BMVoIEYCGE5uLCTdx/9hAA3l9Zzryl2/lxUzW3nNCfP54xiK/XVbKqrImS6hacHh/hZgODUiIZ1SeWEwcmsWxrHVNfXkqzY/c2yX8+ezAX56UTFaQtSYUQRzcFcHtUbntzBS9cnsfjX2zothPEgeLCTTx96QjmLNnOmp1NQf2QHvLTIfZV2+Jka20rdpeXQalRJHexuK3J7qKyuY3yxjYGp0SSEh2GIluRCiE05vOpVDW38ejnG/h0za6934+zGnn1qnxSoi3oFGX3u5EKPhV+3VbPXe+s3m9x3B9OGcCl+ekka7jgRAghyhsdTJ21FJvTw6PnD2VHvZ2nv92M3dX1rm+KAmfmpnLdsX157PMNrNzRyGtXj949Chyk6RCybdAeda1O7n53NW8V7GTZ1nquem051c1tHR7baHfx4sIt/PmjdVQ0Ojj/hV/YXm/nt/iBQgjxv8vnU9laa2Py8z8zeUQaZ+/ZntSgU3h4ci5vLN/Jve+vRa9TSIoMw6fC5bOXUt3Sxs3HZ+2t8/uTswk367ls9lIqmzq+rwkhxKGyOT1sq23lmSkjCDcbmDGvkKLyJuZcM4aHzs1hQv94ovbpS27UK+SmRXHDcf14b8Yx5KZFcfnsZazc0cjTU0awtaYVRwcbaQSKjASzOwDf9c5qftizA1O7wamR/OfqMfu1O2u0u3hp4RZeWli637GJEWbeuWk8feKsMiIshNBES5ub45/8kTqbC7NBx3OXjeKzNbs4eXASPxXX8nZBGQAnDEzk8QuHcdnLS9myZ+OMP589mNa23dMgIsIMe3dzGt47mrnXjpUpEUIIv22qbOaMZxbRJz6cf14ynN8tWMWOejvRFiNvXj+W1TubSIo0kxZrwWLUU9HoYEuNjdGZsfz10w0sLqnFoFN4esoIFm6q4Z3Cndw0qR+3nJitWYcI6Q7Rhc4CcLt9g3BnAbidBGEhhJbsTg9LSuu4fk4BPnV3r99/XjKChZtr9gbgrvzxjEEAPP7FRgAizAbemTGe7KQIDHp5ECiE8E+j3cVz35cwe/FW+ibsDsIPfryOP505mKe+3tTp/OAoi4FZ0/P59/fFTB2TsTcA90+KYN61Y6VPcFe0CsGNdhf3vr+WL4oquzxucGokC24Yz4s/lnQagNslRJj46o7jiJcd44QQGjgwCB8uCcBCiEA4MAi/cPkoHvioqNsFclEWAy9Pz+fdwp0BC8AgIbhTLo+XjZUtXDJzCW3uruegmPQ6XN7u56ncdeoApo/vQ7RFOkUIIbThbxCWACyECKR9g/DhCFQABlkY1ymTQc+glEjevnE8YcaufxUSgIUQR4rVbGB8v3heviKfQ+0eJAFYCBFoMVYTt57Yn+sm9j3kcwMZgLsT8nfEQwnCXZEALIQIpMMJwhKAhRDBcjhBOCvxyAVgCEIIVhTldEVRNimKUqIoyh87eD1DUZQfFEVZqSjKGkVRzgz0NR1o3yB81tAUpo3N6NF5uWlR3H3aQAnAQoigsJoNDOsd0+PODn3iraREhUkAFkIERbjZwOSRvXp8/HHZCYSb9QG8oq4F9M6oKIoeeB44AxgCTFUUZcgBh90PvK2q6khgCvBCIK+pMyaDnv6J4Vw9oS95mbFc280nmdy0KB45LxedApeOyZAALIQIuMqmNlbtaOD4AYk9Ov7MoSks3FxNXaszwFcmhAh1bq+P4qpWpsxc2uNzXvtlG/OX7qDJ4QrglXUu0MMDY4ASVVVLVVV1AQuAyQccowJRe/53NFAR4GvqkMvjZVNVK5fPXsYf3l5NblpUp0G4PQBfP6eQv3+5iTm/bKPRfmT+gEKI0FDZ1Ma2OhvNbR5uPbE/543oerTlT2cOJq9PHCnRFpaW1kkQFkIETHsAnjprCdPG9SGyhz1+LxuTwfzl23lzWdkRCcKBDsFpwL7NLHfu+d6+/gJMUxRlJ/A5cFtHhRRFuUFRlAJFUQpqajru6Xu4XB4v6yqamTJrKU6PD1Wl0yC8bwCuadn9pvLv70t4ZfFWCcJCiIBoD8ClNTbufGc1U2ct6zII/+nMwQztHc2Vry7nyleXEx9hliAshAiIfQPwo+cPJTU6jFlX5HUbhH9/cjb5mbH8e+qoIxaE/xcmik0FXldVtTdwJjBXUZSDrktV1VmqquarqpqfmNizR4E9cWAA/u+/d3AQ7igAt5MgLIQIhH0D8H0frAWgptXZaRDeNwA7PT6cHp8EYSFEQBwYgH8preMvn6znhR+3dBmEf39yNnHhJv7w9mr+8NYqnjtCQTigfYIVRRkP/EVV1dP2fH0vgKqqf9vnmHXA6aqqlu35uhQYp6pqdWd1tewT3FEA3v9ngH9eMpx6m4u8PrEdBuB93XZif66d2JcYq8wRFkL4p8HmYlNVy34BeF+JEWbevGEsL/9USozVREKEeb8AvC+zQcd/rhlDXauTCf0T5B4lhPBbaU0r5z//894A/MayHXtfOzY7gZuPz+KGOYUkRYUxvHc0768s3xuA//zRur3H9ksI51+XjuDWN1dwzYS+XJTXm8gwbbZ2P2KbZSiKYgA2AycB5cCvwGWqqq7b55gvgLdUVX1dUZTBwHdAmtrFhWkVghtsLu7/sIjP1u7q5ueAW47vz1sFZV0GYICkSDOf3X4siZGyY5wQwj81LW18u76aezsIwO0SI8wsuHEcKVFmiiqaueKVgwNwO7NBx5xrxzAoOZJoCcFCCD/VtTrZsKuZz4sq9wvA7Y7NTuCOkweQHmvBbNBTsK2eiibHfgG4Xb+EcJ6ZMoJoi5HesVZ0h9oUvRNHbLMMVVU9wK3AV8AGdneBWKcoysOKopy757A7gesVRVkNvAlc1VUA1pJPVbnu2L4cP7Dr6RWqCs/9UNKjAPzS9DwMem3+cEKI0GbU63jmu+Iuj6lpdTJl5lLe+nVnlwEYwOnx8eSXm/zaflkIIdrpdApfravqMAADLCqu5ZlvN6PXKeh1UGtzdhiAAUprbfxuwSpMBp1mAbg7Ib1tcmubm7pWF40ON89+V8x3GzudgdGtpEgzr109GqNOR1KUWR41CiE0sb3OxiUzl1DV7P9c3mFp0cy6Io+UaIsGVyaECHUbdzVz5rOLuv1gfWx2AsdlJ/Lo5xu6rXnz8VncfEJ/InrYYaI7sm1yJyLCjCREmkiIMHHDcf26HRHuTFKkmRen5eHx+kiMlAAshNCGy+Ojtc3Di9PySI7yb4rV0LRoHpqcg9uj8lsc/BBC/O+xmHQ8d9mobnexXFRc26MAfN6IXpw5NFWjq+teSIdggJY2D9NeWc7Vr//KNRO6nxpxoPYA/MBHRVz80lJKqltxerwBulohRChxe31cNnsZf/pgLS9efvhBeGhaNA+eM4Qb5hQyY34hLU6PxlcqhAhFEWFGosIMPHXx8B5v596Zs4elMnVMBomRZs1GgbsT0iG4yeHmD2+vZmutDbvLy4x5hdw0KYtRGbE9Oj/MqOOVK0fzwEdFrKtoxuX1Mf3VZbS5Op+TJ4QQPWUyKMy7dizbau386cPDC8LtAfimeSvQ6xRempZHlEarroUQoa2m2cm0V5azckejX0H47GGpTB6RxhWvLmf2oq20BumDekiH4GiLkScuGkZqdBgA/RLDMeh1lNXbe3S+0+Nj/a5mxvWLB9j7BmMyhPSvVQihEaNez6DUCN6+cfzeIDxzej5RYT0bJclKjODhyTl7A/A7M8aTHmcN8FULIUJFakwYfzx9EHOXbj/sINwegG99YwWDUyO54bi+MhIcLL1jrbwzYzyTBiTw0Lm5zJhXSE0Pm8mrKvzx/TUMSI7kuol9eeXKfMb2jcdi0gf4qoUQoWLfIDwwOZLaVicOd8+mXDXaXXh9KkN6RUoAFkJoLtpiYurY9L1BeMWORv5+4bAen3/KkGTOG/nfAPzyFfkkRoYF8Ir3F5yo/T8uLcbCX87N4ZKZS7ttg3ag9iD87JSRjEiPkQAshNCcUa+nb4KVy8ZmMP2V5bi9PVvYVmdzcdO8Fbx14zjSYoL3xiKECB3tQRjA6fHSYHf3+NzWNg9Wk568PjE8M2VkUAMwyEgwqqqyo95+WAH4vzXg9gUrWVJah00WnAghNGZ3eli/q5np3fQB7khNq5NLZy5lW50dn0/WKwghtBdtMXFxfm/iI8w81oMuEO2WlNbx/A8l/OvS4AdgCPEQ3B6AL3ppyWEH4P/Wgpvnr+Cn4hoJwkIIzdidHooqmg4rALeTICyECKSWNjffbazi/g+LDvncn0vquPud1dT1cCqqlkI6BDe3ebjvg7U92gnuw5uP6dHOcn94azVur7zJCCH8p0UAbidBWAgRCC1tbr4o2sU973a+vXt3fiqu5fdvrQp6EA7pEKwocN+Zg8lOitj7vYQIE+lx/91Nqb0P8COfbTioj7DZoGNIatTer8OMOl6cNgpk12QhhAZ8wPVzCvcLwNlJEQetnB6aFs2CG8Yd1D4tJSqMlKj/PmKsaXVy25sraXFKL3MhhP86CsAj0mN6fP7g1EjMezpqHYkgHNIhOCrMSEK4mX9eMpzspAgSI83MnJ7Ps1NGkp0Usd9GGAXbG5gxr3BvEDYbdLw4LY/HLhjK8QMSCTPqePmKfJIizYQZZHGcEMJ/elRev3o0Ycbdt+rRmbE8efFwZk7P2xuE2/sAv/BDyX59hNPjLLw4bRQvThu194N9cpSZ5y8fRbRF+gQLIfxX3uDYLwBfMyGThyfn8PDknP2OO2toKo+cl7tf+7TjByTytwuG8eK0vP2C8EsLtwStT7DyW9w+Mz8/Xy0oKNCsXk1zG40ONw6Xl3s/WEuj3c3zl40izKjjzndWs66iee+xVpOe2VfkYTLoeXnRVhYV1zBreh7RFiNRFiPJUWbCjNJ0QwjhP1VVqWh0sKXGxksLS/jdSQO4YW4hQ9Oiuen4LJ75tph7Th/ITfNWUNPqZHBqJI+eN5S/fraeB84ewp1vrwbgH5cM5+FP1/PQuTn0jrEQF+HfFsxCCAFQVm/nncIynv2uhGsmZDIoNYr/e28NNx/fn+QoMw98tG5vH+AlW2rJTYvmrndWc1x2Itce25cb5xZybHYil45O56Z5hQxKieTJi4eTFmMhXKNewYqiFKqqmt/ha6Eegutanfzj603cfEJ/bpxbuDfwpsVYmH/dWB75bD3fbqjee3xUmIGPb53IU19v4tM1u4DdwXjBDeP4aXMNZw3rRWa8FUWRORFCCP+0tLk58amF3H5if0b3jePSWUtpcuxuP3Rs/wSevHgYV7/+Kw02N3efNpD7Pyzi7GGp/O7kbK54ZTmltTYA+iWEM+faMTzzbTEl1a28fs0YGQ0WQvitweaizuaktMZGo8PN/723hvZYecsJ/cnLiMGrwq1vrMDp8TF9XB/OyE3Bq6rcOLcQu2v31KzTclK4ekImcVYjseEmTTtFSAjuRKPdxbPfFXPNxL77BeB27UH4b59vIC8zlncLdzJrej5//3IjXxRV7nes1aTnjevHsbi4hqljMoiXkRYhhJ9anR5KqlowG/VM2ScAtzs2O4HHzh+KDkiKDmNHnQ2jQc9Vr/43ALfrlxDO69eMwe3xkhFvxaiXaVtCCP8UV7WwuaoFRVG45Y0VHBgp7z5tIBP7J/Dgx0WM7RuPUa9wak4KU2Yt3RuA2509LJW7TxvIl+squWxMBpEabe8uIbgTbq+X2hYX180pOCgAt0uLsfDG9WNJjQqj3u7moU/WHRSA21lNet68fhyZCVaiLSa/r08IEdrcHh+lta1cMvPgANzu2P4JPHXJcJKjwihvcDD9lWUHBeB2/RLCmXvdWNJiLB2+LoQQh6KmuY1lW+u5bcHKgwJwu9+fnM2UMRlYjHq21tqY+vLBAbjdGbkpPHhODinRwRkJDumFcS1tXu5+d02nARigvNHBZS8vo6rF2WUABrC7vFz28lKk+5AQQgsOt5epLy/rNAADLCqp5a63V1PR2HUABiittXHTvEIa7a5AXK4QIsTUtDq7DMAA//q2mDeW7+g2AAN8UVTJaz9vDdo9KqRHgj0eH1vrbFwyc8khbfPXlScvGsZJg5OIC5fpEEII/zTaXSzbWs9N8wrxaXCrjjAbWHDDOLKTIjAbZTqEEMI/NS1tPP/DFl7/ZZsm9fonRTDnmjH00vBplYwEd8Jg0NE3Ppy3bxxPrNX/uScSgIUQWoqxmhjbN44Xp+Xt11rocEgAFkJoLTEyjFtOyOKqYzL9rhWIANydkA7BoF0Qfuri4Zw4SAKwEEJbMVYTYzPjeMmPICwBWAgRKImRYdx8fBZX+xGEj0QABgnBADQ4XOh18MpVow8rCP91cg4j0mOoa3Xh8shOTEII7Xi8PhocLrKSwvnHJcMPOQhHmA3MvjKfcJOexi7mFgshxOFosDn5aXMNw9JjmDY245DP758UwRMXDuMfX2+iqrktAFfYuZAPwTUtbVQ0tnH7glU88ukGZk7PP6Qg/PDkHCqbnUx+bjE1rU621dolCAshNOHx+ihrsFPT4uLCF5ewYnsjT13c8yAcYTYwc3oez31fwnVzCqlsagv6m4wQ4ujVYHPy7YZq7np3DXe9s5q8zDguP4Qg3B6Ab3tzJe+tKOee99YE9R4V0iG42eGmqtnJnz5cS1F5M+sqmvCpKtnJkT06P8yoY3RmHF+vq8Tm8nLDnAJqWp043BKChRD+c3p81La4uGFuAY12Nz9urmZIryiierjRRZ94K1aTnlVljWypaeUPb6+murmNljYZERZC+G9XUxt3v7sGAK9P5ZPVFZyWk9Lj80dnxrKlppXyRgcACzfV8PJPpUHrDhHSIVhVVZ74ciNF5c2YDTpempbH679sY/nW+h6d3+b2cd1/CnjiomFkJ0Vgc3m5cW6htEgTQmjCp6rMmFdIo91NepyFZ6eM5Jb5K2jsYTebdRXN/PObzcy6Io8Is4EtNa3c/2GRJp0mhBAiKdLMLSdkAXD8gESumdCXm+YV9vj8N5eXsa3OzsOTcwDI6RXFdcf2JcYanL0WQrpFms+nsrXOxmUvL+XxC4bxVkEZX3bRB7gzaTEWnrtsJPe8u4YZk7I4NSdZs51OhBChy+70sLiklkc/W8/TU0Zy1zur2VLTeR/gzhybncBNx2dxx4KVvH71GAYkR2LQh/QYiBBCI7UtbfywqYbUaAs3zi3A1kUf4M7cckJ/BiRHMKZvHKnR2i6Okx3jutBod9Hq9PDIZxsOKwC3S4ux8J+rRxNtMZIYpd1OJ0KI0Fbb7KTF6ea6OQWHFYDbtW+xHG7WSxcbIYQm3F4fO+ptNDs8TJu97LACcLu7Th3AxP4J9E0M13TXXekT3IkGu4ttdTYe8zMAw+6d5a587Vcqmtqot8luTEII/zXZXexqdvgdgAEWFdfypw/WUlbvkB3jhBCaqGxqo7LJ6XcABnjq6818s6Ga0hpb0NYthHQI9nh9/Ofn7XzegwB85TGZ3XaNKG90cPP8Fbi9MilYCOE/t0/ljrdWdRuAI8wGrp3Yt9uuET8V1/L0t5vxeH97TwCFEP97nB4fN8zpfgpE/6QIzhmW2m29538oYcWOBtye4OSokA7BYUY9F+f3xqjv+p3j4ck5DEyO6FH7tNNzk/3e2UkIIQBQYfKItC4PaW+D1ife2m37NJ0CU8dkYOjmnieEED0RFWZgVJ/YLo/J3tMG7fTc1G77CMdajRyXnUhUkNZVhXQIjgwzMrR3NP+5ekynQfjhyTlUNTu574MiHv9iY5dB+NqJmcyYlEVipMwJFkL4LyHSzGVjMvjDKQM6fL09AL/44xYe+GgdK3d03kdYp8BL0/IY0zcuaCuvhRBHt6SoMP5x8XCOzU7o8PXspAj+vqcP8O0LVpKXGddpEI61Gnn7xvH0jQ/HYAhOPA3pEAxdB+H2APz8DyUArNjR0GkQvnZiXwnAQgjNtQfhOw8IwvsG4MUltQDMXbq9wyCsU2CmBGAhRAAkRYXxVAdBeN8AXN7owOtT926ocWAQjrUaeWfGePrEWYIWgEFCMAAuj49eMRZmTs/fG4QPDMDtOgrC08ZlcO3Evri9Kr/FbhtCiP9tXlXlwrw0bjmhP9BxAG53YBDWKfDMlJEMTInEKw2ChRAaq2txUtHg4JYT+nNMVjxwcABu11EQjrUamTk9n8UltdTZ3HiCuK4q5Fuk1bU62Vpr49Wft2LS6zljaArVzU4qm9sOCsD7GpURyx/PGMT3G6sYlBLFv77ZzLNTR5IYaSY1OgxFkTl3Qgj/VTXv3ur4zrdXc+UxmdS1OsnPjOswAO9r+rg+jMyIAWDljkZ21Nv53cnZ9ImzEh8hLdKEEP6ra3FSWmdj2uxlmPQ6Zl2Rz6drKrhwVO+DAvC+9DqFpy4ezubKFk4YlMTjX2xkxY4Grj+2L9dM6EtipFmzXubSJ7gTjXYXpTU2Zi8u5fO1uztEnDu8F4mRZl5ZvLXb80dlxHLWsBQe+3wjXp9K71gLz182iow4K7Hh8shRCOGfZoeLbXV2/vD2akqqW1EUuOvUgSzZUtdlAG43dUw6sHtXJoBJAxK54+Rs+iaEy7QIIYTfNlW2cO5zi3Hu6eYQaTbw53OG8My3xfsF4JxeUeT0iubtgrK939PrFO47cxCfralkxY6Gvd+/89QBTB2dToJG00slBHei3ubk0c828N6K8m6PnTauD5+uqeh2u9LesRbev+kYkmTDDCGEn+panVw6aykl1a1dHhdu0nNxfjpzlmzrdkvkkwYl8cTFw4iXDTOEEH6qbm7jvg/W8u2G6k6PyekVxcOTc9lWZ2PjrhZeXlTa6bGJkWbevnEcfeKs6HSBHwkO6TnBVpOBi/K6b5H24DlDGJoWzazp+cR00yLtlCHJmII4qVsIcfQy6JRue2uGm/TMnJ7PgOQInrhoWLct0i4dnY7FoNf4SoUQoSgpKoy/nT+UU4ckd/h6ewCeMa+Qu95ZTVZSONcf26/DYwMRgLsT0mktzKhnUEoks6/M7zQIP3peLo12N//33hqe+HIjr1zZeRC+YnwfbpqUJY8ZhRCaiLaamDomg9tO7N/h6+EmPa9cNZqXF5Vy3wdFFJU3869LR3TaIu3fU0eS1ycWq9kQ4CsXQoQKt0/l/rMGc/LgpP2+n9Mripem5fF/762mpsWJqsK976/lrGGp3HJC1n7HJkaaWXD9OFodbpye4M1QCOkQ3Gh3sbi4loRwM/+eOvKgINw+AlzR5GBs3zha2tyEmw0dBuGpY9K5Sdiv2AAAIABJREFUcFRvfimppbbFGcwfQwhxlKprdbJwczUnD07mxuP2Hz0JN+l5+cp8YixG6lqdjM+Kp7K5jX4JB48I6xR44qJhZMSF88PGKhpk22QhhAbKGx0UV7Xw7HclXDE+kxMH7Q7C7SPAD32yjkfPH0qfeCs5vaK478zB/LS5hvQ4694R4cRIMy9Ny+ORz9bjUWFteSN2pyco1x/SwwGKAulxVi6dtZTTcpJ5dupIbn9zJW6vyoPnDKHR7uaCF3/hpel5jMmMo97mYtory0iJCmPW9HxumFtAo93N1DHpjO8XzwX/3969x0lZ1n0c//72wO7CLoIcBUTQUERAxOXgGTIVy9QsTUXLIM00s9S0Ms3HstLUDqYpqHkgH7U0tUdNrTiVEgKiKHggBOQgAnHYhWWPv+ePmaF1md2d2Zl7Znbvz/v14uXOPfdc81vulxffuea6r+u3L+vKEw5Ug9rfPGsAucfdVVvvOv2uf+qm00foa8fur3vmrNg9BeKe2Su0dP12PXLhOO3TtVhL1m7XF+5+WeeMHahbvjBSV//xDUmRAPzm2u269k9v6oGvjJXa4b0gAHJPQZ70xKK1eub1dXp2yXrdc/7hOqBXqSYN76uLZyzUxopqbd1Zq99/dZzqGlzPvrFet7/0rsykn54xQleeeKCOPKCnrn/6Tb21brve+6hSM6aOU36Gtt4N9Y1xW3fW6MrHX9ff3o5M6P786P761LA+2rC9Wlt21OhXf3tPUmRe3vWnDNO0uSu0Zkvkbsfy/brr6klD9dLSDRrRv6u+/fjrqm9wdetcqL9feZz25qYTACnaVlWrE38xWxu2V8tMuun0Efpwe5XGDuqh6XNXaPa7GyVFRlK+dfwQ3fh/S3ffpX3BkYM0vH9XSdKba7frgZdXSor0XfddMEZ7lWRmW1IAHde7Gyr0mV/PVW19JEuWFObr6kkH6a5Z/9bGRt+KH75fd40e2E3T5/535S0z6dufOlAvvPWh3lq3fffxy48foguP2V+lxekZp2V1iBZsqqzWN36/SPPe/48k6fRR/dWna5HumdP83Yu769ivuz4zch/9+NlluwPwExcfqcE9uygvQ59iAHRsqzfv1BfuflkfVUSC8DUnDdXL/96kOe+1vkRabDH6Gf9aLUka3q+r7v/KGPVmZ0sAaVBVW6fFq7fqS/fP3x2EU3HeuIG68qSD1D2N91YRglvRNAi3BQEYQFAaB+G2IgADCEJVbZ1eW7VVX/5dakF48riBuirNAVhiibRW9Swt0m8mj9b4wXu36fUEYABBGtijs/548ZHqXda2aVYEYABB2VXToJWbd+iOc0a3uuRsc75Yvq8mDu2tqpr6NFfXMkJwVFuDMAEYQCa0NQgTgAEEZcuOGv3kuWX6/p/e1F+XbWhTEP5i+b469sBeuvjhhTrrnle0rpmtloNACG6kZ2mR7pw8WiOiN5O0pqggT09+nQAMIDMG9uisJ75+pMoSXOf3gF5d9LuvjCUAAwjExspq/em1yK67f1y4Rn9dtkG3nzUq4dd/ZsQ+mjC0ly5/9DXVNbjWbKnS469+oMpdmVkijRDcRHVdg/6zo+WtkWNq6xu0ftsuVddndvgeQDjV1NVrU2X17hUgWrOtqlZVNXVqj/d+AMh9++5dooemjFVBdCDwoL5lWrGx5W3eG1u/rUp7d+m0eyWI88YN1JePHJS2lSFaw41xjazbWqWz7nll9zJoiSjIMz04ZaxG79dNJYWhXnYZQIBq6ur11rrtOnvavIRDsBRZPu2Ji4/Qvnt3lhnfWAFIr9iNcUvXb9fOmnrd/tK7Sb2+fL/u+s6kg/TXpRt0yYRPqHsXbozLuLYEYEmqa3B9+f75WrRqq6pqMzN8DyBc2hqAJWljRbU+f/cr+uA/OxkRBpB2JYUFGrpPmSQlHYAlacGqLbr1L+/oq8fsn/YA3BpCsNoegGMIwgCCkkoAjiEIAwjK9qpaPb14nX787LI2t/Hqqi267JFF2lTZ9mUg2yL0ITjVABxDEAaQbukIwDEEYQDptr2qVk8sWqP/+fPSlNuav3KLLpmxMKNBONQheFtVra78w+utBuBunQv11KVHadz+LS+fVtfgmvrgq6qp4x8YAKmrrXdd8LtXWw3Aw/t31Z8vO7rV5dM2VlTr679fpIpqPqgDSN26rVUJBeDzxg3U/ReUt7p82vyVW3TP7H+rMkN9VKhD8F4lhbrtzEO1794lzZ4TWwd4ZP+9dOe5o1sMwgV5pvu/PEadCrj5BEDqCvNND04Zo6KC5rvq4f276v4LxmhE/730x4uPVK8WgnCvsiL9dvLh6lpcGES5AEKmX7cS3fDZQ1o85/zoVshHHtBDD00Z22IQHrf/3vrasQeoNMFlIFMV6hAsRS7gYxcdETcIN90Io2dpUbNBuCDP9NCUsTqMVSIApEmngnwN26erHvva+LhBOBaAY+sAD+zRWU80E4Qjq0QcqYE9OgdeN4Bw6FpSqDNG9282CJ8/bqCuiG6FXFxYoFEDuzUbhMftv7fuPGe0erZxZ8y2CH0IluIH4eZ2gosXhAnAAILSXBBuGoBj4gVhAjCAoDQXhBsH4JiSZoJwNgKwRAjerXEQbm0r5MZBmAAMIGhNg3BzATimcRAmAAMIWtMgHC8AxzQNwtkKwBKbZexh3dYqVdXWa3CP1rdC3lRZrXVbqzSkTykBGEDgaurqtfyjSvUsK0poK+TVm3dKEgEYQEZsr6rV0vXbdVDfsrgBuLGq2jq9t6FS/fYqCTQAt7RZBiE4DndPeGelZM4FgFTR5wDIZbmWodgxLknJXBD+MQKQSfQ5AHJZe8pQbQrBZnZqugsBAAAAMqXViaxmdkbTQ5LuNLMCSXL3J4MoDAAAAAhKIndzPSbpBUkfKRKAJamLpM9KckmEYAAAALQriYTgIyX9TNKr7v5bSTKzCe7+lUArAwAAAALS6pxgd39V0gmSOpnZTDMbq8gIMAAAANAuJbS4rbs3SPqVmf1B0i+DLQkAAAAIVlKrQ7j7Onc/y933b/qcmd2RvrIAAACA4KRzneCj0tgWAAAAEBg2ywAAAEDoEIIBAAAQOukMwezlCQAAgHYhodUhJMnMRrj7khZO+VUa6smoLTtqVFldF0jbpUUF6t6lUyBtAwgH+igAuSyoPipT/VPCIVjSXWZWJOkBSb93922Nn3T3B9JYV0ZUVtfpmFtmBtL23Ksn8g8MgJTQRwHIZUH1UZnqnxKeDuHux0iaLGlfSQvN7BEzOyGwygAAAICAJLtO8HuSfiDpGknHSfq1mb1tZmcEURwAAAAQhIRDsJmNNLNfSFom6ZOSPuvuB0d//kVA9QEAAABpl8yc4Dsk3Svp++5eFTvo7uvM7AdprwwAAAAISDIh+DOSqty9XpLMLE9SsbvvdPeHA6kOAAAACEAyc4L/Kqmk0ePO0WMAAABAu5JMCC5298rYg+jPndNfEgAAABCsZELwDjMbHXtgZodLqmrh/Nh5k8zsHTNbbmbfbeacs8xsqZm9ZWaPJFFTShrc9zhWUpivbp0LE3p9nkl9uhYl3DYAJCNeP9KrtEiF+Ylt0FlWVKCyoviz3uijAKQqXj/Sb6/ihF/fp2uR8uJ0Z5nqn5IJwd+S9Aczm2tm/5D0mKRvtPQCM8uXdKekkyUNk3SOmQ1rcs4QSd+TdJS7HxJ9n4xo+ndcWlSg+y4o1+8uGKO+XVu+iHkm3XrmoXp46jiNHLBXq20DQLKa9iNDepfqwSlj9JtzR7cahLt3LtR9F4zRfReMUfc4H+zpowCkqmk/csrIffT4xUfokgkHtPrakQP20sNTx+nWMw/dIwhnqn9KZrOMVyUNlfR1SRdLOtjdF7bysrGSlrv7CnevkfSopNOanHOhpDvdfUv0fT5KtKZ0Ki0q0LQvHa7fzvq3vv+nJbpr8uhmg3AsAL+2eqvOnT5P158yLG4QBoB0GdK7VLd8YaQufGihnl/yYYtBuHvnQt1zfrl+9vzb+tnzb+ue88vjBmEASJdTRu6j0w/rr+Nvm61+3UpaDMIjB+yl608ZpnOnz9Nrq7fGDcKZkNRmGZLGSBopabQio7pfauX8/pI+aPR4TfRYYwdKOtDM/mlm88xsUryGzOwiM1tgZgs2btyYZNnxxT5oNA7Ac9/bpGXrK3TtU/GDcOMA/PC8VdpUWaOLZyzcIwgzyAIgXWIB+BuPvKa1W6v01OK1zQbhxgF40eotWrR6C0EYQKBiAfjS3y9SdV2Drnv6zWaDcCwAXzxjoTZV1ujheauyFoST2SzjYUm3SjpakTA8RlJ5GmookDRE0gRJ50iabmbdmp7k7tPcvdzdy3v16pWGt41oGoBj4gXhpgE4prkgDACpcO0ZgGPiBeGmATgmXhDmgzqAdGgagKXIdIZ4QbhpAI7JVhBOZiS4XJF5u5e4+2XRP99s5TVrJe3b6PGA6LHG1kh6xt1r3f19Se8qEooDZ6a4ATimcRDu360kbgCOIQgDSLfCfIsbgGMaB+HeZUVxA3AMI8IA0q0w3/YIwDFNg3BzATimcRDOlGRC8JuS+ibZ/quShpjZYDPrJOlsSc80OecpRUaBZWY9FZkesSLJ92mTksJ8PfDPlXEDcEwsCD/2tfHNBuCYWBD+xVmjsjK3BUDH0rlTQbMBOCYWhP982dHNBuCYRau36LYX39F9Xx4TRLkAQqayuj5uAI6JBeF99irRj08f3mwAjnl43iq9v2mHOhUkO1u3bZJ5l56SlprZC2b2TOxPSy9w9zpFVpB4QdIySY+7+1tmdqOZnRo97QVJm81sqaSZkr7j7puT/1WSV9fQoMnjBqqkML/F85atr9Anb53dYgCOOat8X72yYjNfNQJIWVVNvc4fv1+r5z21eK2OuXlmiwFYiozaTDl6sB56ZZWMD+oAUtS1pEDHHdjyFNVYEP78b19uMQBLkSXTJhzUO/dWh5B0g6TTJf1E0m2N/rTI3Z9z9wPd/QB3vyl67Hp3fyb6s7v7Fe4+zN1HuPujSf8WbVRT55rxr9W6+7zRrQbhmvr4n3Iau2TCAerXrUTXPf0myw8BSFlNfYMa3PXdSUMTOrclhfmm35w7Ws8v+VBPLV5LHwUgZdW1DTp33ECdOKxPq+fW1rfc6fTpWqS7Jh+uHzy1JKHMlQ7JLJE2W9JKSYXRn1+VtCigujLmpaUbEg7CLSEAAwjCLS+8k3AQbk7TAAwAaWHSxTMWJhyEm9M4AC9bX5Gxb6qSWR3iQkl/lHRP9FB/RebztnupBmECMIAgpRKECcAAguIu7aptSCkINw3AsXYzIZnpEJdKOkrSdkly9/ck9Q6iqGxoaxAmAAPIhLYEYQIwgExoaxCOF4AzKZkQXB3d9U2SZGYF6mBLTf5t2Qbl5+VpzKDuCZ1fUpivc8YO1J0zlxOAAQTu3n+8r5NH9NXeXToldP7wfnupd1mRnl2yLuDKAITdrtoG3TXr3/p6Alsmx3z20H56Y83WrARgSTJPML2Z2S2Stkr6kqTLJF0iaam7XxtcefGVl5f7ggULUm7nw21VWrl55+7HfbsWa8a/Vuneue8n3MbB+5Rp2vnl2lhR/bGJ3IN6dFbfvUpSrhFAeDXuowryTH26Futbjy3WwlUtrwLR2JnlA3TZxE9o/bZdHxu1oI8CkKrGfVTnTvmRwcHp81pdBSLGTLrtzEM1vF9X/Wdn7e7j6eyfzGyhu8fd3K0giXa+K2mqpCWSvibpOXefnob6sqaqtkFnT5u3eye4Z99Yn9AyaI0tW1+hix5eoJtOH6FvPbpYH27fJUmaedWEACoGECaxPiq2E9zljy5udRm0pv6wYI1q61wnj+irbzyyaPcd2vRRANKlLQFYisz9vfIPr8cNwpmQzHSIy9x9uruf6e5fcPfpZnZ5YJVlSHNbIScj3hbLAJAOzW2FnIx4WywDQKqqahv0k+eWqaauIekAHBMLwv96f4vmvLtRZ0+bp6razCyRlsx0iEXuPrrJsdfc/bBAKmtBOqdD7KptSHoKRHMaT43o162YrxoBpGTD9irV1HnSUyCa03hqxH5MhwCQorVbdmr9tl2t7gSXCDPpxlOHa/22Kp1Zvq8G9+ySlhpbmg7R6kiwmZ1jZn+WNLjxTnFmNlPSf9JSYZbUu/S7l1cmFIBPHNYnoZ3lLnp4gfJMzW4hCACJcjdd/mjrAbgw33Ty8NZ3tf/DgjW6/aX3tHlHTcZGWgB0XDX1DQkF4D5dizRu8N4tnuMuXf/MmxrQvUQFeZn5xiqROcEvS1qvyLbJjXeIq5D0RhBFZYq766A+pTJreU26SyYcoPJBe2vyuIG6eMYiVdXWN3vuvt07a2tVrbp1TuzubQBojrtrUM/OLU6DiC2DlmemQwd008/+8naLbQ7tW6YVG3fo4H26prtcACFTVJCv3mXFLYbgvl2Lddfk0dpVV68H/rlSLy7d0EJ7eerfrSR3Nstw91XuPsvdj3D32Y3+LHL3ukwUGZTaetfq/+zUTacPb/YvPLYO8NQHX211HeETh/XRueMG6uIZCzvW2nEAsmJXXYNOGNZHZ4zuH/f5xusAX/jQglbXEf7upKFqcNetL74TVMkAQqSuwfXj04drWDMfqmMB+NqnlmjKA6+2uI5wcWGe7jnvcM341+pWt1hOl2R2jDvDzN4zs21mtt3MKsxse5DFZcLds1c0G4SbboTR0oYajQPwLr5mBJAm3/zf1+IG4XgbYbS0oUYsAN/yAgEYQHrUN7i+/vuFcYNw4wC8bH1FixtqNA7AL7UwUpxuyawOcYukU919L3fv6u5l7t4hvk+LF4Sb2wkuXhAmAAMISm297xGEW9oJLl4QJgADCMqG7dV7BOGmATgmXhDOVgCWklsneIO7Lwuskiy7e/YKXXzc/rrp9OFas6Wqxa2QYxfp7vNG64lFa3XG6P4EYACBiQXhX59zmArz8/TJob1b3Ar5lhfe0dUnHbQ7CBOAAQQpFoR/O/lw3fH35brsk5/YIwDHxILw3ecdrpJO+TrjsP5ZCcBSciPBC8zssehqEWfE/gRWWRbcPXuF3t+0Uz1Li5oNwDGxEeFJw/sSgAEELhaExw3eu8UAHHPLC++our5B1fUNBGAAgYsF4SlHD2o2AMfEgvBJh/TNWgCWkhsJ7ippp6QTGx1zSU+mtaIsmz53RcLnvrR0Q9YuHIDwqa13XfH46wmf/4uX3g2wGgD4uA3bq3X+ffMTOndXbYMu+f2igCtqWcIh2N2/EmQh2RDkChzsyQQAAJC7klkd4kAz+5uZvRl9PNLMfhBcacELcgEOlkgDkCo+qANAcJKZEzxd0vck1UqSu78h6ewgigIA8EEdAIKUTAju7O5NJ3q0680yGGUBAABom6CyTqYyVDIheJOZHaDoAIKZfUGR7ZTbrSC35cvUln8AOq68APuRINsGgPYgmdUhLpU0TdJQM1sr6X1J5wVSVYbkBZhUg2wbQDjQRwFAcJJZHWKFpE+ZWRdJee7e/AJwAAAA6NCC+iydqc/oyawOcbmZxdYK/oWZLTKzE1t7HQAAADqeoL5RytQ3VcnMCZ7i7tsV2Syjh6TzJf0skKoAAACAACUTgmOx/NOSHnL3t8QiCAAAAGiHkgnBC83sRUVC8AtmViapIZiyAAAAgOAkszrEVEmjJK1w951m1kNSh9tKGQAAAK0rLSrQ3KsnBtJuJrT6LmY21N3fViQAS9L+xtI6ABC4Bg9uX7cg2waA9iCRqH2FpIsk3RbnOZf0ybRWlEH8AwMglwXZjdBFAUhVZXWdjrllZtrbnXv1RHXv0int7TbVagh294ui/03/eHeWFRfm69GLxgfWNgCkoqRTcH1USSf6KADhlvCkCzM7U9Jf3L3CzH4gabSkH7n7a4FVF7CaugadPW1eIG0HMUcGQLjQRwFAcJJZHeK6aAA+WtKnJN0n6e5gygIAAACCk0wIro/+9zOSprn7s5KCn7ABAAAApFkyIXitmd0j6YuSnjOzoiRfDwAAAOSEZELsWZJekHSSu2+VtLek7wRSFQAAABCghG+Mi26Q8bSkPmY2MHr47WDKyoxOBXmB3XndqYBBcgAAgFyVzOoQl0n6oaQN+u92yS5pZAB1ZURVTX1gd17PumpCIO0CAAAgdcnsS3e5pIPcfXNQxQAA/otvqwDksqD6qEz1T8mE4A8kbQuqEADAx/FtFYBcFlQflan+KZkQvELSLDN7VlJ17KC73572qgAAAIAAJROCV0f/dBLrAwMAAKAdS2Z1iP+RJDMrjT6uDKqoTCkuDG6+XXEh8+0ApIY+CgCCk8zqEMMlPazI+sAys02SvuTubwVUW+CqahsCm283k/l2AFJEHwUAwUlmOsQ0SVe4+0xJMrMJkqZLOjKAugAAAJDDgvq2KlPfVCUTgrvEArAkufssM+sSQE0AAADIcUF9W5Wpb6qSWh3CzK5TZEqEJJ2nyIoRAAAAQLuSzHjzFEm9JD0p6QlJPaPHAAAAgHYlmdUhtkj6ZoC1AAAAABmR8Eiwmb1kZt0aPe5uZi8EUxYAAAAQnGSmQ/R0962xB9GR4d7pLwkAAAAIVjIhuMHMBsYemNl+kjz9JQEAJMnaadsAwiGofiRT/VMyq0NcK+kfZjZbkfqOkXRRIFVlCP/AAAAAhFMyN8b9xcxGS4qtivwtd98Ue97MDmnPu8cBAAAgPJIZCVY09P5fM08/LGl0yhUBAAAAAUvnvnTMAAAAAEC7kM4QzE1yAAAAaBfSGYIBAACAdiGdIbgmjW1lhAU4gSPItgEAAJCapG6MM7ORkgY1fp27Pxn97/hmXpaz8gJMqkG2DQAAgNQkHILN7H5JIyW9JakhetglPRlAXQAQenxbBSCXBdWPZKp/SmYkeLy7DwusEgDAx/BtFYBcFlQ/kqn+KZk5wa+YGSEYAAAA7V4yI8EPKRKEP5RUrci6wO7uIwOpDAAAAAhIMiH4PknnS1qi/84JbtdKiwo09+qJgbUNAKmgjwKA4CTTC25092cCqyQLunfppO5dOmW7DACIiz4KAIKTTAh+zcwekfRnRaZDSPrvEmkAAABAe5FMCC5RJPye2OgYS6QBAACEUFBTtjI1XSvhd3H3rwRZCAAAANqP9j5lK5nNMoolTZV0iKTi2HF3nxJAXQAAAEBgklkn+GFJfSWdJGm2pAGSKoIoCgAAAAhSMiH4E+5+naQd7v6gpM9IGhdMWQAAAEBwkgnBtdH/bjWz4ZL2ktQ7/SUBAAAAwUrm9rtpZtZd0nWSnpFUKun6QKoCAAAAApTM6hD3Rn+cLWn/YMoBAAAAgpfwdAgz62Nm95nZ89HHw8xsanClAQAAAMFIZk7wA5JekNQv+vhdSd9Kd0EAAABA0JIJwT3d/XFJDZLk7nWS6lt7kZlNMrN3zGy5mX23hfM+b2ZuZuVJ1AQAAAAkLZkQvMPMeiiyVbLMbLykbS29wMzyJd0p6WRJwySdY2bD4pxXJulySf9Koh4AAACgTZIJwVcosirE/mb2T0kPSbqsldeMlbTc3Ve4e42kRyWdFue8H0m6WdKuJOoBAAAA2iSZELxU0p8kvSppg6TpiswLbkl/SR80erwmemw3MxstaV93fzaJWgAAAIA2SyYEPyRpqKSfSLpD0oGKbKXcZmaWJ+l2SVcmcO5FZrbAzBZs3LgxlbcFAABAyCWzWcZwd288n3emmS1t5TVrJe3b6PGA6LGYMknDJc0yM0nqK+kZMzvV3Rc0bsjdp0maJknl5eWeRN0AAADAxyQTgheZ2Xh3nydJZjZO0oJWXvOqpCFmNliR8Hu2pHNjT7r7Nkk9Y4/NbJakq5oG4KBs2VGjyuq6QNouLSpQ9y6dAmkbQDjQRwHIZUH1UZnqn1oNwWa2RJEVIQolvWxmq6OP95P0dkuvdfc6M/uGIusL50u6393fMrMbJS1w92dS/QVSUVPfoLVbqwJpe3DPLoG0CyA86KMA5LKg+qhM9U+JjASfksobuPtzkp5rcuz6Zs6dkMp7Jauqpl5nT5sXSNuzrpoQSLsAwoM+CkAuC6qPylT/1GoIdvdVmSgEAAAAyJRkVocAAAAAOgRCMAAAAEInmdUhOpziwjw9etH4wNoGgFTQRwHIZUH1UZnqn0IdgqtqGwK76WQmN50ASBF9FIBcFlQflan+iaEAAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKET6hBs7bRtAOFAHwUglwXVj2Sqfwp1CPZ22jaAcKCPApDLgupHMtU/hToEW4AfNYJsG0A40EcByGV5AfUjQbW7x/tk5m1ykwf4USPItgGEA30UgFwWVD+Sqf4p1CEYAAAA4UQIBgAAQOiYt8PvxMrLy33BggUpt/NRxS5tr6pLQ0V76lpSoN5lxYG0DSAc6KMA5LJNFdWqrE5/H1VaVKCeZUVpacvMFrp7ebznCtLyDu1UdW2DPnX77EDannv1xEDaBRAe9FEAclnPsqK0hdVsYDoEAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CrJdQDaVFhVo7tUTA2sbAFJBHwUgl23ZUaPK6rq0t1taVKDuXTqlvd2mQt0Ldu/SKSN/yQDQFvRRAHJZZXWdjrllZtrbnXv1xIz0fUyHAAAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6hGAAAABph8wDAAARhklEQVSEDiEYAAAAoUMIBgAAQOgUZLuAbNpYsUuV1fWBtF1alK9eZcWBtA0gHOijAOSy4sI8zbxqQiDtZkKoQ3Bldb0m3jorkLZnXjVBvcoCaRpASNBHAchlOwLqo2ZlqH9iOgQAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABChxAMAACA0CEEAwAAIHQCD8FmNsnM3jGz5Wb23TjPX2FmS83sDTP7m5ntF3RNAAAACLdAQ7CZ5Uu6U9LJkoZJOsfMhjU57TVJ5e4+UtIfJd0SZE0AAABA0CPBYyUtd/cV7l4j6VFJpzU+wd1nuvvO6MN5kgYEXBMAAABCLugQ3F/SB40er4kea85USc/He8LMLjKzBWa2YOPGjWksEQAAAGGTMzfGmdl5ksol/Tze8+4+zd3L3b28V69emS0OAAAAHUpBwO2vlbRvo8cDosc+xsw+JelaSce5e3XANQEAACDkgh4JflXSEDMbbGadJJ0t6ZnGJ5jZYZLukXSqu38UcD0AAABAsCHY3eskfUPSC5KWSXrc3d8ysxvN7NToaT+XVCrpD2a22MyeaaY5AAAAIC2Cng4hd39O0nNNjl3f6OdPBV0DAAAA0Ji5e7ZrSFp5ebkvWLAg5XY2VuxSZXV9GiraU2lRvnqVFQfSNoBwoI8CkMs2VVSrsrou7e2WFhWoZ1lRWtoys4XuXh7vucBHggEAANDxuFxBDKUG0+qeQh2CK6vrNfHWWYG0PfOqCepVFkjTAEKCPgpALguqj8pU/5Qz6wQDAAAAmUIIBgAAQOgQggEAABA6hGAAAACEDiEYAAAAoUMIBgAAQOgQggEAABA6HWad4NraWq1Zs0a7du1K+DV19Q2afuo+gdRT+eFKLduY+c8YxcXFGjBggAoLCzP+3gAAAO1FhwnBa9asUVlZmQYNGiQzS+g11bX18g0VgdRzYJ8yFRXmB9J2c9xdmzdv1po1azR48OCMvjcAAEB70mGmQ+zatUs9evRIOAB3RGamHj16JDUaDgAAEEYdJgRLCnUAjuHvAAAAoHUdKgQDAAAAiSAEp8n2bdv02IP3ZrsMAAAAJIAQnCYV27fpsYfuy3YZAAAASAAhOE1+9dMbtGbVSp110jG6/cfX6fbbbtWYMWM0cuRI/fCHP5QkrVy5UkOHDtUFF1ygAw88UJMnT9Zf//pXHXXUURoyZIjmz58vSbrhhht0/vnn64gjjtCQIUM0ffp0SdL69et17LHHatSoURo+fLjmzp2btd8XAACgPSMEp8nl37tBA/YbpMdfmKvxx0zU8uXLNX/+fC1evFgLFy7UnDlzJEnLly/XlVdeqbfffltvv/22HnnkEf3jH//Qrbfeqp/85Ce723vjjTf097//Xa+88opuvPFGrVu3To888ohOOukkLV68WK+//rpGjRqVrV8XAACgXesw6wTnklfmzNSsv76kww47TJJUWVmp9957TwMHDtTgwYM1YsQISdIhhxyi448/XmamESNGaOXKlbvbOO2001RSUqKSkhJNnDhR8+fP15gxYzRlyhTV1tbq9NNPJwQDAAC0ESPBAXB3fefqa7R48WItXrxYy5cv19SpUyVJRUVFu8/Ly8vb/TgvL091dXW7n2u61JmZ6dhjj9WcOXPUv39/XXDBBXrooYcy8NsAAAB0PITgNOlSWqqdOyolSUce90k99MDvVFkZebx27Vp99NFHSbX39NNPa9euXdq8ebNmzZqlMWPGaNWqVerTp48uvPBCffWrX9WiRYvS/nsAAACEAdMh0qRb9701qnyczjj+CB098VP64tnn6IgjjpAklZaWasaMGcrPT3wb5ZEjR2rixInatGmTrrvuOvXr108PPvigfv7zn6uwsFClpaWMBAMAALSRuXu2a0haeXm5L1iw4GPHli1bpoMPPjipdmrrG9TQEMzvn5dnKsxv20D7DTfcoNLSUl111VVten1b/i4A5J6NFbtUWV0fSNulRfnqVVYcSNsAwiGoPiqd/ZOZLXT38njPhXok2N31zoaKQNoe2rcskHYBhMeu2gZNvHVWIG3PvXpiIO0CCI+g+qhM9U+hDsG56oYbbsh2CQAAAB0aN8YBAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQSn0fVXfkMTRg3RGccfke1SAAAA0ILQhuDnn39enzv9NE353An6zoXn6pXZf0u5zdPOPEe/ffiPaagOAAAAQQrlEmnPP/+8brrpJu3atUuStHnjR3rwrtslSUccd3yb2z18/FFa+8HqtNQIAACA4IRyJPjOO+/cHYBjaqqr9eSM+7JUEQAAADIplCF4w4YNcY9v3rQxw5UAAAAgG0IZgvv06RP3eI+evTJcCQAAALIhlCH40ksvVXFx8ceOdSoq0hnnTc1SRQAAAMikUIbgk08+Wddee6369O0rmalHr9768iVXpHRTnCRdc+lUfen0E7VqxXLtP2g/3Xcfc4wBAAByUShXh5AiQfj4E07U2x9WpK3Nm+/8b+gd2rdMnQry09Y2AAAA0ieUI8EAAAAIN0IwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQnEYfrlujqWd9Vp/75HiNOnSkfvWrX2W7JAAAAMQRynWCa2trdcUVV8jd9aObfqofXPs9SdLNt9yqwsLCNrfbtaGb7vjl7TrssNHasaNS48eO0QknnKBhw4alq3QAIVJcmKeZV00IrG0ASEVQfVSm+qdQhuArrrhCixYtkiSd+tlTVFdXJ0n6xuXf1hU//GnbG84rVed+Q/TOhgod1KdMBx98sNauXUsIBtAmO6rrNfHWWYG0PeuqCepVFkjTAEIiqD4qU/1TKENwTHV1taRqSVJhp6K0tr1y5Uq99tprGjduXFrbBQAAQOpC+X3YzTffvMe0h4KCAl16zfVpaX/njkqd88Wz9Mtf/lJdu3ZNS5sAAABIn1CG4GuuuUa1tbUfO1ZXV6c7b74x5bZra2t1xUVf1tnnnKMzzjgj5fYAAACQfqGeDlFUVKS8/ILdc4JT5e664TuXaf8hB+ryb307LW0CAAAg/UI5Enz77bdr9OjRGnXYYbrtvkd10CEjddAhI/XN76c2Evzaq/P0f088pvn/nKOx5Ydr1KhReu6559JUNQAAANIllCPBhYWFuuOOO1RdW693NlSktiJEI6PHHqHXP9giSTqoT5mKCvPT0i4AAADSK5QjwQAAAAg3QjAAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABCJ5RLpAXp5CNGqnOXUnUu6qTCwgItWLAg2yUBAACgiVCG4GOPPVY7d+7c43hxSYnu+t8/p9z+vY//WeMPHsQ6wQAAADkqlNMh4gVgSdpVVZXhSgAAAJANoQzBgTLTxZPP0BHjxmratGnZrgYAAABxhHI6RJAeeOJ59dmnn7pblU759CQNHTpUxx57bLbLAgAAQCOMBKdZn336SZJ69+6tz33uc5o/f36WKwIAAEBThOA02rlzh3ZUVkiSduzYoRdffFHDhw/PclUAAABoKpTTITp37tzs6hCp+M/Gjfr2hedJkvLlmjz5XE2aNCmlNgEAAJB+oQzBc+bMkSRV19brnQ0VaWt3wH6D9IcX/yFJOqhPGUukAQAA5KhQhuCYvDzTQX3KAmsbAFJRWlSgWVdNCKxtAEhFUH1UpvqnUPeChfl5EoO1AHJUz7Ii9SwrynYZABBXe++jOtSNce6e7RKyjr8DAACA1nWYEFxcXKzNmzeHOgS6uzZv3qzi4uJslwIAAJDTOsx0iAEDBmjNmjXauHFjtkvJquLiYg0YMCDbZQAAAOS0DhOCCwsLNXjw4GyXAQAAgHagw0yHAAAAABJFCAYAAEDoEIIBAAAQOtYeV1Mws42SVmXhrXtK2pSF90WwuK4dF9e24+Ladkxc144rW9d2P3fvFe+JdhmCs8XMFrh7ebbrQHpxXTsurm3HxbXtmLiuHVcuXlumQwAAACB0CMEAAAAIHUJwcqZluwAEguvacXFtOy6ubcfEde24cu7aMicYAAAAocNIMAAAAEKHEAwAAIDQIQQ3YWb3m9lHZvZmM8+bmf3azJab2RtmNjrTNSJ5CVzXydHrucTMXjazQzNdI9qmtWvb6LwxZlZnZl/IVG1ITSLX1swmmNliM3vLzGZnsj60XQJ98l5m9mczez16bb+S6RqRPDPb18xmmtnS6HW7PM45OZOjCMF7ekDSpBaeP1nSkOifiyT9NgM1IXUPqOXr+r6k49x9hKQfKQcn8KNZD6jlayszy5d0s6QXM1EQ0uYBtXBtzaybpLskneruh0g6M0N1IXUPqOX/by+VtNTdD5U0QdJtZtYpA3UhNXWSrnT3YZLGS7rUzIY1OSdnchQhuAl3nyPpPy2ccpqkhzxinqRuZrZPZqpDW7V2Xd39ZXffEn04T9KAjBSGlCXw/6wkXSbpCUkfBV8R0iWBa3uupCfdfXX0fK5vO5HAtXVJZWZmkkqj59Zloja0nbuvd/dF0Z8rJC2T1L/JaTmTowjByesv6YNGj9dozwuM9m2qpOezXQTSw8z6S/qc+NamIzpQUnczm2VmC83sS9kuCGnzG0kHS1onaYmky929IbslIRlmNkjSYZL+1eSpnMlRBdl4UyBXmdlERULw0dmuBWnzS0nXuHtDZFAJHUiBpMMlHS+pRNIrZjbP3d/NbllIg5MkLZb0SUkHSHrJzOa6+/bsloVEmFmpIt++fSuXrxkhOHlrJe3b6PGA6DG0c2Y2UtK9kk52983ZrgdpUy7p0WgA7inp02ZW5+5PZbcspMEaSZvdfYekHWY2R9KhkgjB7d9XJP3MI5sZLDez9yUNlTQ/u2WhNWZWqEgA/r27PxnnlJzJUUyHSN4zkr4UvbtxvKRt7r4+20UhNWY2UNKTks5nFKljcffB7j7I3QdJ+qOkSwjAHcbTko42swIz6yxpnCJzENH+rVZkhF9m1kfSQZJWZLUitCo6h/s+Scvc/fZmTsuZHMVIcBNm9r+K3Ina08zWSPqhpEJJcve7JT0n6dOSlkvaqcinVeS4BK7r9ZJ6SLorOmJY5+7l2akWyUjg2qKdau3auvsyM/uLpDckNUi6191bXCoPuSGB/29/JOkBM1siyRSZ0rQpS+UicUdJOl/SEjNbHD32fUkDpdzLUWybDAAAgNBhOgQAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABChxAMAFlmZpUBtDnKzD7d6PENZnZVut8HANorQjAAdEyjFFmLEwAQByEYAHKImX3HzF41szfM7H+ixwaZ2TIzm25mb5nZi2ZWEn1uTPTcxWb2czN708w6SbpR0hejx78YbX6Ymc0ysxVm9s3o67uY2bNm9nr0tV+MWxgAdDCEYADIEWZ2oqQhksYqMpJ7uJkdG316iKQ73f0QSVslfT56/HeSvubuoyTVS5K71yiyC+Jj7j7K3R+LnjtU0knR9n9oZoWSJkla5+6HuvtwSX8J+vcEgFxACAaA3HFi9M9rkhYpElqHRJ97391j25AulDTIzLpJKnP3V6LHH2ml/WfdvTq6/exHkvpIWiLpBDO72cyOcfdtafx9ACBnEYIBIHeYpJ9GR29Hufsn3P2+6HPVjc6rl1TQhvb3aMPd35U0WpEw/GMzu74thQNAe0MIBoDc8YKkKWZWKklm1t/Mejd3srtvlVRhZuOih85u9HSFpLLW3tDM+kna6e4zJP1ckUAMAB1eW0YSAAABcPcXzexgSa+YmSRVSjpP0bm+zZgqabqZNUiaLSk2nWGmpO+a2WJJP23h9SMk/Tz6+lpJX0/ttwCA9sHcPds1AADayMxK3b0y+vN3Je3j7pdnuSwAyHmMBANA+/YZM/ueIv35KkkXZLccAGgfGAkGAABA6HBjHAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAELn/wERmYnS+jkPOwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXRU5eH/8fed7HtCSCCEfUd2CCC41a1udWmrqLhRRcHW7rbV79da67e1e2tbN9xFxLr1p2jVutWdLWHfA7KFBLKvs8/c3x9h0hCTzIS5M1Hm8zrHc2Dm5uEBz7l55869z2OYpomIiIiISCyx9fYERERERESiTREsIiIiIjFHESwiIiIiMUcRLCIiIiIxRxEsIiIiIjEnvrcncCz69u1rDh06tLenISIiIiJfYCUlJdWmaeZ19t6XMoKHDh1KcXFxb09DRERERL7ADMPY19V7uh1CRERERGKOIlhEREREYo4iWERERERijiJYRERERGKOIlhEREREYo4iWERERERijiJYRERERGLOl3Kd4GhpsLtpcnkB8PpMbAbE2WwkxBnkZyb38uxEJNZVNzlxef34TBO/H+JsBgaQnhxHdmpSb09PRGKYz+ejssmN3wSv349pQkKcgQn0SU0gNSmht6eoCO5Meb2DqiYXT3y6h+K9dZTVOdrey0yJZ1JhNlfMHMS0wTn0SU0gOVH/jCISHR6Pj6oWN1vKG3lm5T42lNVTZ/e0vV+Qlcz0wTnMP2koA7JTGJCd0ouzFZFYU293Y3f7eHvrYZZvKGdreSMOjw8AmwHD+qZz8shcrp09lLSkOPpn9d45yjBNs9f+8GNVVFRkRmLHuDq7i+omNz98fj2bDzYGPT47NYHffH0i04bk0E9XhkUkwg43OtlxqIkfv7CBqiZX0ONH5afz1yum0C8zmdx0XRkWkcg61ODk5fUH+cvbO3F5/UGPP3NsPr+8eDx90xIjdkHRMIwS0zSLOn1PEdyqstHJh6VV3P7PTXh8Pfs3uWBif+68cLxCWEQi5nCjk3vf2cmzqw/06OvibAb/e/44vjapQLdxiUjElNc7uHlpCRvKGnr0dZkp8Tx23QzG9ssgI8X6WyS6i2A9GEfrFeAPS6u49YWNPQ5ggH9tOsTt/9zE4QZnBGYnIrHuUIOD37yxrccBDODzm9z92laWbyinqknnKBGx3qEGB9c9vrrHAQzQ6PBy9aOrKK1qxnPktoloUQQD1U1ubv/nprDGeG97Ja9uLKfB7rZoViIi0OLy8MnuGl5eVx7WOL9+fRuH9IO6iFjscKOTe/61ndLK5mMew+X1c9OSYqpaottQMR/BFfUOfvDc+mO6AtzR79/cQb3DE/xAEZEQ1du9/PzlzWGPY5rw3WfXUdHgCH6wiEiI9lS3sHxjeD+kA1Q3u/nz2zupjuInVjEfwYcanWwpD/4QXCjcPj9PfrKXJqeuBotI+BxuLy+vL8PutuYjwr01dnaFcbVGRKS9igYHf3prh2XjvbzuIC5v9J5Vi+kIrre7eOKTPZaO+UJJGU1Or6Vjikhsqmvx8OSn+ywd8+EPP6OyUbdFiEj43F4/a/bWWTae12/yxuYKy8YLJqYjuNnlY/Ue6/7ntY7pxeEOviyIiEgwXtMf0lJoPbFufz1e/5dvVSAR+eLZcajJ8jE/3lVNTbO1572uxHQEQ+vtEFbbVaWPG0UkfBUReJCt2eXFHcL6nSIiwVh5FTig/eYakRbTEWzFw3CdabDr4TgRCV9jhM4luhIsIuHy+/3Utlh/xbbR6cFmGJaP25mYjmBbhP6NE+Ki8z9PRI5vcRE6l0Tp+4uIHMdsNhuJ8dZnZGKcDX+UNnKL6QiOsxmkJcZZPu6Q3DTLxxSR2DMgK8XyMeNsBkkR+MYlIrFnbP8My8cckZdu+ZhdiekzoWnC+MIsS8c0DMiKwLZ/IhJ7UhPjSIyz9jQ9Mi8dv26HEJEw+f1+xg+wtqEAJg7MIiXB+guUnYnpCE6Kt/G1SQWWjnnSiL64vNHd9k9Ejk/xcTbOPqGfpWNeOLmA1KR4S8cUkdgTuB2if2aypeOeO6F/1DoqpiPY4/MzoTCLDAu/IVwze4i+wYiIJQxM5s0abNl4SfE2zhjbD5+uBIuIBdxev6XnqBMKMnF7/SRY/AlYV2I6gtOT4lm3r45ffX2CJeOdOTafRJth+ceXIhKbUpLiiLcZXDR5gCXj/eCsUYBJelJ0PmoUkeNbXkYSM4b2YWhuathj2Qz4n/PHcbjRSV6GtVeXu/wzo/KnfEFlpSZy+th8clITOWNsflhj9U1P5LtnjmJQbiqZyboSLCLhS09MYFBOKt85fQSF2eE9JDdzWA4zh/YhKzWRtCQ9tyAi4UuMs/Hs6v3c842JYT9we/NpI/h4VxUnjexr0eyCi+kIBvCb8O1n1nLTqcOZMyL3mMbom57Ig1dP585XNvPutsqo3dAtIse3+DgbyQmtp+m/XzmVAVnHdnVk6qBsbjt3HP0yk0jSJ1UiYpGC7BSumDEIl8fPw9dMP+YQvnrWYObOGESz0xvV1Wti+mzo8vp4esU+ml1ebnyqmAWnDOeWM0YS34MFhE8bnccj1xbxf69tZWNZA499vIeaFncEZy0isaTW7ubbz6zlZy9t5P6rpnHuhP4hf63NgBtOHsaPvzqGBUuKuevVrbS4vBGcrYjEkmaXl5REG4cbnTxXfIAlN8xkXEHoy6ZlJMXzm29MZFxBJv/7/zZx46nDieYjCzH9uX2D3cOHpVUANLm83PDUGq6eNYTnFs7m+eIDvLL+IE5P59uLzh6Ry7Wzh9Ds9HLdE6tpdLR+Y6lscmF3a3UIEQlfdZOTtfvr2V3VAsBVj67itvPGMrdoEEtW7OWDnVV0tqZ8UryN8ycWcOXMwby77TDXPbEan9/knW2VfOf0keQ4EshMSYzuX0ZEjjvNDg+GYXD3a1uxu31sLGvg/y6eQEWDk6Ur97G1orHTr+uTlsjcooGcO74/f//PLt7dVgnAJ7uqGZmfTj+LV5zoimFGaVcOKxUVFZnFxcVhj1Ne7+Ck3733uW8iGUnxfH1aIedNaF0+bXdVM01ODwlxNkbkpZOeHM+GA/UsXbmPvTX2z4371PUzOG10ePcYi4iU1dlZtLSEzQeP/kYyMCeFK2cOZuawPthdXnZXteDy+khLimdEXjrxNoN3tlXyQskB6jtsvXzZ9IHces5o+mVavxGHiMSWnYcaefTjvTxffOCo1ycPzOKa2UMYkptGTbOb/bV2/H6TPumJDM1Nw+728s+1B3lz8yHcvv9ebMxNS+Sx+TMYV5BBUrw1t5YahlFimmZRZ+/F9JVgt9ff6VWUJpeXJSv2sWTFPhLiDIb1TSM9KQGPz8++mhYand1/nFjZaP1e2iISe3x+83MBDFBW5+AP/94BQFpiHMPy0kiMi8Pu9rKnugWXt/NPsAA+LK3ie2eOiticRSR2mBgs33Dwc69vKGtgwwsbAchLT2JAdjJxNoM6u4e9NS2dthdATYubA7V2BuakkJQe+eerYjqCjRBu/fX4THYebo78ZEREOqgL4fmCFrev01DuyuFGFyZfvk8AReSLxTRNDjU6u7xtNKCq2UVVc+gXB9/dVsns4X3CnV5IYvrBuLgIrek7MEcfM4pI+A43ReZTJXc3V4pFREK14UC95WNuOtiAM0rnqJiOYL8fxvQP/SnGUPXNSLJ8TBGJPXGhL1TTIwYRGlhEYoZhGOyv/fxzUeGqaHBYPmZXYjqCUxLjOOuEfpaOOX5Apr7BiIglCrIi86lSYhTX4RSR41MkF1awhXK/qhV/TlT+lC8skzPG5PVoXeBgrpk9RFuSioglslOt39mtICuZhEhdYhaRmGEYhiXbJXfUL7P1IbpoiOkIzklLpKLByY2nDLdkvHEFGQzOSSXOFtP/rCJikZTEeKYMyrZ0zLPG5ZOdqjWCRSR8M4dZ/wDbpIFZ5ETgAkBnYrrW4m02ThiQyZyRuYwN897gpHgbd100nnq7mzzdEywiFuiTlsgtp4+0dMz5c4aRrK3dRcQCg/qkWr7AwNcmFZBo0RrBwcR0BANkpSSwZm8tv/nGRIYc42X9xDgbf7tyKq9tLGfGsFyLZygisWzK4GzG9LPmAd4LJw/Qg7siYpmslAQunDzAsvEyU+KZPNDaT7+6E/MRnJGcwDUnDuG3b2zn/nnTOHtczx6UG9wnlWU3zuKNTRXMLRqsq8AiYqm+6UncN29q2Pfx5qYlcscF48hKic7HjCJy/EtNjOd7Z44kyaKHbX92ztio3q4V09smt1dWZ2dPdQuVTS4S42w8/OFnHG50MnlQNmP7Z5CWFI/H52dvdQubDjZQb/dw5czBzBmRy/ZDjZw4PJeBOamkJcX0/iMiEgEOt5eVe2pZ8FQxPn/Pz9mZyfG8sGg2o/IzsEXpgRMRiQ0uj48XSg5wx8tbwhpn6qBsHrtuBn3SrY1gbZschMfn53CjkxueLMbt87Pg5KH8ae5k6lrcfFRaxYYD9TQ6vSTG2xiVn873zhjFxIFZrPqslpueLqHB4WHRacNZdNqI3v6riMhxyOeHgdkpPHPDLL777Lq23ZfyMpKYWJjFiLx0EuNtONxeth9qYnN5A42O1u3dR+Wnc/9V00iMs+Hx+Umy6X5gEbFOUkIcXx3fn63ljSxbfaDtdcOAoblpTCzMojA7BcOABoeHLeWNbKtoPGp79yG5qdw3b5rlARyMrgQD5fUOvvqXD8lKSeBXl0xg+6FGHv9kL1Xd7NaUGGfja5MLuObEIfzl7Z18WFrNI9dO54wx+cRFYBc6EYlNzU4v2yoaWHeggX9vOcQd54+jtLKJwblp1NndbDhQT2llMy6Pn7SkeMYVZDB1UDYmUG93k5uexC+Xb+Vn541hUJ9UhuWmkaQH40TEIrUtbn7z+jZOG53HZ9UtPPXpXuYWDeKr4/uxq7KZjWUNHKi14zdNctISmVCYxeSB2eyuambJir3kpCbys3PHcs/r2/jz3MkU5li77Fp3V4JjPoJrW9z8+Pn1NDg83HHBCfz8lc1sKW8M+eszU+L59SUT2VLewLLV+/n3D06N2AL3IhJbmp1eVn5Wjc1m4/on1zB+QCZ3XTSe97dXsnTVfhocni6/tjA7hRtPGcbAPqnc8f820+j08MyCWdgMg7H9MxTCIhK22hY3v3ptK69sKOd335zIyLwMMlPiufedUt7YXIHH13VjThqYxU/OGUO/zGScHh83L10LwPMLT7Q0hLuL4Ji+ZOnzm1Q3u6hocHL7+eNYsKS4RwEM0Ojw8r1/rGNgTirfnDaQF0vKaHJ2/Y1JRCRUPtMkKzWRO/7fJi6aPIDbzhvLD/6xnvvf391tAAMcrHdw16tb+es7pTxw1TTG9s/k92/u4HCTE2e7jyFFRI5VTbOLVzeW8+uvTyA/I5mNB+u54G8fs3xDebcBDLCxrIFrHlvNfe/twu83efCqaTg8Pl6IYkfFdAQ3Oz0sWbGXX10yge8/u47aFvcxjWOa8PNXNvOV0Xms2FVDs9Nr7URFJCYlJxgcqLUzeVA2F0wq4IYnizlY7+jRGJsONnDDU2u47byxNDo9DMxOJV0P8IqIBQb1SWX5d05mVH46Kz+r4c5XtuDw+Ho0xvIN5dy5fAuGYfDYdUVcN2coGcnaLCPiWtw+huam8XxxGeUNzrDGMk3435c3872zRuH26SqLiISvvsXLiyVlXH/yML737LpjPrfU2T3csmwtd188gSc++Ywm57H9wC8i0l5yQhzZaQmUHm7mgfd3H/M4G8sa+ONbO0iKt0X1h/SYjmCbYTBtcA4vlBwIfnAIyuocbD7YQINd32BEJHw+02T+nKH88tUtRz1JfSwqm1w8vWIf4woycbj1g7qIhK+m2UWD3cOv/rUt7LE+2FnFprIG6qLYUDEdwYYBb245hJXPBj6zaj8JUdruT0SOb81OD3a3j80He/asQldeXn+QiVHcjUlEjm8en5+nVuyl2WXNbaB/fHsnTQ4vjUGeebBKTEewx+vngx1Vlo65p7qF+DB3dhIRAfADS1fus3TMV9aX8+VbE0hEvojcXpNX1pdbNl5Vk4vdVc0kR2n1mpiOYJvNYFdVs+XjVjV2vb6wiEiokuPjKN5XZ+mY7++oxHsMu86JiHRUVm/H7u7Zg3DBvLnlEC0uXQmOOI/Pf0xbkAZTEeZDdiIiAC0WfcTYXlmdA+2cLCJWKLH4h3SATWUNlod1V2I6gm2GvhOIyBfX4abI/EDt1jrBIhIm0zTZX2O3fNzyekfrQ1tRENMRnBhvIy4Cl0QG5mjHOBGxQITuWjB0AUBELBCJU5TfhGidoWI6guNsBiPy0iwftyBbESwi4cvPTI7IuEnxMX3qFxELGIbBoAhc9MvPTIrIBcrOxPSZ0GbA6WPyLR1zSG4qWhxCRKyQnWr9rkl5GUn4rVwXUkRi1sxhuZaPObEwi4QohVRMR7DT4+ec8f0tvfXkqllDtGOciFjCb8LY/hmWjnnSiL4kxMX0qV9ELNI/M8nyYD1vQn/MKGVUTJ8JfX6Tj0qr+Oa0gZaMNyArmcmDsthU1mDJeCIS22qaXVw1a4ilY15WNBCnJzpPXovI8cs0TbZWNHLehALLxsxMjmdIbhq+KH1aFdMR7DdNHnh/N1fOHEz/MO+9Mwz41dcncverW8Pe3lREBKC2xc3wvDQG9bHmvrtTRvVlX41d6wSLSNgMw6C0qpkbTxlm2dXg7585iufW7I/ahj4xHcEJcTZcXj93vrKZv105layUY7//7s6vncCnu6vZUt4Y1jgiIgEZyQnc/epWfn3JxLBv20pPiudHZ4/md29uJ1G3Q4iIBSYUZPHMqv385Jwx4Y9VmMnIfumU1TmjFqcxfybMz0hiS3kjv39zO4/Pn8GYfj27/y4jKZ4/z51MbYubRz/aA8CIvPRITFVEYsyA7GR2HG7iPzsquevC8cc8TlK8jb9fOZU/v70Tr8+v1SFExBJj+mfwjzUHKMxO4evTCo95nIE5Kdzz9Yn87MVNnD4mj7wIrYzTUUyfCbNTE5g5tA8Axfvq+OFz6/nfC8bxw7NHk5uW2O3XJsQZXDR5AEtumMlrGyv4+3u7AEhNjCM9OT7icxeR419SvI2+6Yk88cleKptc/HnuZNKTenZ+KchK5tHriniu+AAflVYzeVA2yQlxEZqxiMSSxHgbs4b14UfPb+Dc8f1ZdNrwHn9qNX1wDvfNm8YPn9tATYuLM8dZu2pXdwzzS7hUTlFRkVlcXBz2OD6fnw1lDXzjwU/bXjMMuGBiAZfPGESjw8va/XVsLW+k0ekhMc7GyPx0Jg7MYmJhFm9vPczSVftodPx3a9PrZg/hR2ePJiu1+4gWEQmm2enl0Y8+4953SwE4+4R+fPsrI1j84We8vfVwt9u+JyfYuGz6IC6aMoC7X93KpoOtD+w++a0ZzBmRS2K8QlhEwrO3upndVS3c8FQxcTaDm04Zzsmj+vL7N7ezIcgiAXkZSXznKyPol5XMnS9voarZxdyigVwwsYBpQ3LISLbm1lLDMEpM0yzq9L1YjuB6u5ut5Y3c/dpWth9q+tz7hdkpTBqYxdiCTNKT4vD4TPZUt7D5YAPbKhrp+P0nIc7g+YWzGZKbRp8gV5JFRIJpdHjYW9PC5YtX4jiyokNWSgLfOmkop43OY/WeWjaU1VN6uBmX1096UjxjCzKYNjiHcQWZLN9QzrOr9rct2zgwJ4U/z53MmP6ZenZBRMLm8vooq3Xw9/dKeXl9OQAj8tK44eThjMhL49Pd1Ww40MD+Wjs+0yQ3LZGJhdmcOLwPqYlxLF21n7e3HgZao/iZBbPIz0gi28ILiYrgbtQ2uzjY4OSS+z/p9qpKKG47bywXTOzPgOzUqO12IiLHL9M0qWhw8MHOam7/56aj3ou3GUwZlM3EgVmMyEsnMd5Gi8vLzsNNbCxrYEt541HHGwY8v3A2I/qm0Sc9KZp/DRE5jrm8Pmpb3Fz/5Bq2Vfz3gmJGUjzThuQwoTCLwuwU4mwGdUcuPq7dX0dZnaPt2KR4G88tnM2IvqlkpFh7EbG7CI75m1eTEuLw+vz87/njuPu1rcc8zskj+zJzaB9Sk+IVwCJiCcMwSEmIZ2R+OueM78+/txxqe8/rNyneV0fxvrqQxvruGSPBNEnQQ3EiYqFGh4fb/7mJX18ykV+/vo2SI+ekJpeXD3ZW8cHOqm6/Pic1gb9eMZVHP9rNotNGMqZ/fNQ29Inps2GLy8vHu6r5xoOf4vT4+PnXxh1TwJ45Lp/vnD6Sax9fzf+9upXaFncEZisisabO7uYv7+zk6kdXceXMQVw8ZUCPxzAM+OFZo8jPSOayxSt5Y3MFTU5PBGYrIrGmqsnJDU8V8/6OKm5cUszCU4dz23ljSQnx4dtzJ/Tn8fkzuP8/u3ht4yHmLl7BjkNNeKK0825MR7Db62f1nhpME37/7x3srbbzzIJZjO4X2hJnGUnx3PP1iVwwsYAFT62h2eVlS3lj2LdViIgAeH1+Nhyox+X1s/DpEmYO7cNfLp9CTmpo9/MOzU1lyfUzcXh83PHyZgBW7KrVhj4iYgm729d2W0NNi5ubni5hW0UjT98wk19ceAKzR+SS2W7FrIQ4g/EDMrnh5GG8dPMcpgzK5upHV7FqT23beKWHm6K2q2XM3xNc2ejk7++V8vTK/QAMyU3ltvPGkhBn48WSMkr21VHV5Go7PjUxjvEDMrlw8gDGFWSy+IPdvLOtEoBR+ek8+a2Z9M9K1i0RIhK2uhYX+2sd3PnK5rYnrU8amct3zxjF3poWXllfzqayBppd/12hJjctkamDs7l0+iDi4wx+/+Z2dh5uBuBrkwqYP2coI/LTydEKNiISJr/fZE9NC5c9tOJzn4LPGtaHU0f35dzxBbS4vbi9fvIykijeW8eHpVX8e8shnJ6jfyD/w6WTOHdCf8tWhgA9GNelerubxR/u4vKiISz+cDfPrj7Q9t6ArGS+e+YoZgzNoc7uwec3MYzWXZdaXF5+/+aOo+7FG5WfzkNXT2fVnhrOnVCg1SFEJGxNTg/7auz4/OZRIQwwsTCLn54zhoE5KXj9Jl6/2bYJxoYD9fzlnVL219rbjv/apAKunT2UOBuMzM/Q6hAiErbaFjdPfPIZp47OZ+HTJUeFcFK8jQeumsZLa8t4fdMh4m0G/TKTuW/eVH764kZKK5uPGusXF56Ax+fn/IkFDMxJtWyO3UVwTN8OkZoYx0WTB/L1Bz5h9vBcrpw5qO290f0zGJiTwkX3fcJlD63giodXcvnilVzwt4/5ZFcNF0wqaDt2VH46v790Etc+vhqPz+TL+IOFiHzxGMDBegcGcPfFE5g8MKvtvbPG5YMB6w7U0+j0snx9OQdqHVQ0OCjMSWVSu2MDAezx+UiIM0hJiOlTv4hYpKbZxeIP9vCb17ex+JrpbRcAOwbwXReN56Wb5+D0+Lhl2Tp+f+kkRuX/99bTX1x4AvV2D/e8vp3/t/Zg1J5biOkrwQ12N99/bj3v76gizmbwl7mTWfFZDRUNTm44eRgLny7B7vYxJDeVJ+bP4G/vlfLyutZ18L5/5iiyUxN4dvV+fvfNSdyybB0H6x1kJsfzwU9OJ0dXgkXEAs1OD5/sqqEgKxkTuPOVzZwxNp9pQ3KoanIxJDeNO1/ZzJbyRs4Z3595MwcTHwcJcXEsWbEXoC2AM5LjGds/UxtliIglXF4f6/fXc81jq5lQmMnt54/je8+u41eXTGgL4F9eNJ7qZhcfl1bzPxeMY9HTJSQnxHHfvKn87KWNXDlzMPV2D399t5TrTxrK984cpXWCu2PlPcFVTS4WPl3M2v31bSHcJy2Jm54ubgvgey+fws9e2sitXx3D65sr2kL4e2eO5MJJA5j/xJq2AH5x0RxG5KURF6XlPUTk+Ob2tj54sm5/HaPyM0iMt1HV7PpcAAd0DGEAj8+H3w8j89MpyE7prb+KiBxnGhxuVuyqwWYzuGXZOiYUZvLAVdO5+7UtRwXw39/bBcDUQdltIZwUb+Op62fy6sZy/vbuLubNHMxZJ+QzsTCLvIxky+aoCO7G4QYHFQ1OfvnqVtYdqAcgzmbg85ttAfzD59azt8ZOYpyN++ZNPSqE420GXr9JZnI8D19bRHpS65qeySEuDyIi0hW318f2Q01cvngl1588jOF9UxlXkMn2Q02dBnBAIIQDP4v7/LBs9X42HKjnhUWzGdTHuvvtRCR2bT/UyLn3fsRFkwfwtUkF3LJsHX6z9RmF9gG84ORhnDEun289sYYTCjLbQrjB4cHrN5k3czCzhvfhR89v4PqThvH9s0aRnmTNVha6J7gLDQ4PP3x+A9c/Vcz/XDCOqYOyAT4XwLV2Ny8sms2kgVncsmwd508o4JKpret1tg/gv75byqUPfarlh0TEEh6fyTWPrcbh8XH/f3bxWbWdrRWfD+BxBRn889tz6Jve+hHiv7ccYtnq/Xh8Jh6fybLV+/n3lkMcanSyaGkJjVonWEQsUJidwu8vncTyDeW8trGC++ZNJc5mHBXAN54ynFvOGMn0ITk8s2AWWysauedf23jomulkpSQcFcBzRuSy6LThlgVwMDF/JfhgnYO5i1fg8PhYfM10PthRRXKijZNG9G0L4NZbHNKpa3GzaGkJG8sauG/eVLaUN5CXnsTIfhn89d1SVu+p5cn5M5g+NIfUxJjfjE9EwuT2+tl0sJ55j6zC5fVjGPDwNdN5f0cVz6xqXdZxXEEGT31rJnkZSeyrtXPpg59S3dz6hPadXzsBoG03zL7pibx48xyG9EnFMLSMo4iEr8np4Y3Nh/jpixu5vGgQP/rqaJavP8ivX9/OjacM5zunj2i7x9fl9bGprIGrHl3FhAGZ3HvFVD6rbub6J4uZMyKXey+fQq7F27rrdoggAiF8+pg8zp3Qn0ONTursbv7+3q62AA6s+1vd5GLR0hJsRuvT2v/aVEHR0BxuXFLCY9cWKYBFxFKBEL7q0VX8/IITqGxyMXNYHx76YDfVzS6e+tZM8jNb758zTbMthM+fWMDkga2fbm0oq+f1TRUKYBGJiCanh3e2HaZ/ZgrLNxzksumD+HR3DVefOPhzD7kFQriiwcmW8tdAiOkAACAASURBVAbOGJvPG5squOWMUZYHMCiCQ1JR72BjWQO3PLsWj8/k7ovH85UxeRRmp35u44vaFhf7auxc/+Qa6uwe5s0czI2nDKNfVrICWEQs5/b6OVhv57k1B3jog89IT4rn0euKGJWXRm6HB0hM0+RgvYPVe2q59YUNAPzxssnMHNaHwuwUBbCIRERlk5Mf/mM9n+yuYWR+Okuun8mALh7ErW1xcd97u3j8k73kpCbwwqLZDO+bji0CG43pnuAgnB4f+2rtbQEMcOcrWyjZV4/D7T3qWL/fpN7uaQtgaH3g5OlV+3DrXmARiQCHx8trGyp46IPPAGh2eVnwVDGVzW68vqPPOw63j+0VTdz6wgb8JvhNuPWFDWyvaMLhjs5WpCISW2qaXfzouQ18srsGgF2VzVz7+GoONTo/d2y93c0D/9nN45/sBaDO7uGyh1awt6YFvz+6F2YjHsGGYZxrGMYOwzB2GYZxWyfvDzYM4z+GYawzDGOjYRjnR3pO7Tk9PtYfqOeax1a1BXDAD59bzzvbKmk+8hCJ32+yt6aFbz74aVsABzz+8V7+/t4u6u1HbxsoIhKOBoebJSv28ae3dx71erPLy2UPraC0srkthO0uL5/uruGmp4tp/73Eb8JNTxfz6e4a7K6jf7AXEQlHTbOL7/9jPR/vqj7q9V2VzVz96KqjQrje7ua+93bx6Md7jjq2zu7hmw9+GvUQjmgEG4YRB9wPnAecAFxpGMYJHQ67A3jeNM2pwBXAA5GcU3vdBXDAD46EsN3t7TKAAx77eI9CWEQs0xbAb+3s9P32IWx3dx7AAQphEbFaVwEc0D6EG+yeTgM4oDdCONJXgmcCu0zT/Mw0TTfwD+DiDseYQOaRX2cB5RGeUxuHx8cLxQe6DOCAHzy3nj+9tbPbAA7495ZDQccTEQmF3w8vrzvY7TGBEP7rO6VdBnDbeCY8u2Y/bp9u3RKR8NXbPazbX9ftMbsqm7nqkVX88tUtXQZwQJ3dwwc7q2hxR+cH9Yg+GGcYxqXAuaZpLjjy+2uAWaZp3tLumALgLSAHSAPOMk2zpJOxbgJuAhg8ePD0ffv2WTLH2hY3dy3fzPINFWGPNTAnhecWzqZQOzKJiEUONTi56tGV7K5qCXus08fk8cfLJkfkCWwRiT0en5/Sw81c9tCntFjwzMFt547lylmDyEqJzrbJX4QH464EnjRNcyBwPvC0YRifm5dpmg+bpllkmmZRXl6eZX94n7RE7rpoAhdNLghrHAWwiERC/6xknllwIiPy0sIaRwEsIlZLiLMxql86LyyaQ1pieDvlRiKAg4l0BB8EBrX7/cAjr7V3A/A8gGmaK4BkoG+E53WUcENYASwikRRuCCuARSRSrAjh3ghgiHwErwFGGYYxzDCMRFoffFve4Zj9wJkAhmGMozWCqyI8r8851hBWAItINBxrCCuARSTSwgnh3gpgiHAEm6bpBW4B/g1so3UViC2GYdxtGMZFRw77MXCjYRgbgGeB+WYv7eDRJy2Ruy+ewKxhfUI6PjnBxks3z1EAi0hU9M9K5h83zSY7NSGk48cPyOTPc63fhlREpKNACP9j4Ykhf8235gzlqhMH90oAA0R8ezPTNF8HXu/w2p3tfr0VOCnS8wiF329S2+Jm5+GmkI53evys2F3DWePySU8O7ZuSiMixsru8bCyrp9HR/So1Aftq7BxqdJKRHE983BfhERAROZ61uLy8si70Rb4+LK1m4WkjyOilhtJZ8YjuNsLozg86bKghIhIJdpeXFZ/VcOOS7pdBa6+zDTVERCKhq40wurO7qpmrH1vFoYbP7ywXDYpgjj2AAxTCIhJJxxLAAQphEYm0YwnggF2VvRfCMR/B4QZwgEJYRCIhnAAOUAiLSKSEE8ABvRXCMR3BVgVwgEJYRKxkRQAHKIRFxGpWBHBAb4RwTEdwk8vLXa9uCRrAA3NS+PS2M0JaPu2OlzfjjdKe1yJyfPOZJj99cWPQAD59TB6r/ufMoMunNbu83PbSRuwW7OwkInK40cnjnwQP4J+dO4bXv3dK0OXTdlU289Sne2h2RWfb5JiO4KyUBP542WQmFGZ2eUxgHeAB2SlB1xFOS4zj+YWzSUuK+KIbIhID0hLjeX5h90uiBdYB7pcZfB3hEXlpLL6miMwUrWYjIuEbmJPK4mumYzO6Pub288Yyb9bgkNYRvmhyATeeOoL0KHVUTEcwQH5GMo/Pn9FpCHfcCKO7DTXSEuN4YdEcRvVLJ0FLEYmIBWw2g2F903hp0ZxOQ7jjRhjdbagxIi+NZxacSP+s5IjPW0RiQ1pSPHNG9O0yhG8/byxXzGzdCCPYhhoXTS7grosm0Cft+Nk2+UuhsxDuaie4zkJYASwikdJVCHe1E1xnIawAFpFI6SqE2wdwQFch3BsBDIrgNu1DONhWyO1DWAEsIpHWMYSDbYXcPoQVwCISaR1DuLMADugYwr0VwABGL+1QHJaioiKzuLg4ImNXNjnx+kwGhLAVcm2Lm2anh4LsFAWwiESc329ysN5BamJcSFshB56yVgCLSDS0uLxUNbnISUsIuhWyx+envN5BRnJCRAPYMIwS0zSLOntPT3B1YDMMkuK7ucO7HQOT7NREBbCIRIXNZpCRHI8vxBVoErp/EFtExFIpCTbyM5IwCH6OSoizkZOaiM/fe0s2qt7aqWpycf9/dnH7PzdR2dj9OnV1LS7e21HFFQ+vpKLBEaUZikgsO9zg5Poni3l5/UGqm13dHlvV5OKe17dzz+vbqWrq/lgRkXD5/X721Nj56r0fsvVQMw5X98vPVjQ4uOLhlby7vZK6lt45RymCj6hqcvHA+7t44pO9vLX1MHe8vLnLEA4E8K0vbGBrRSPXP7lGISwiEXW4wcnNz6xl7f46/u+1bbzSTQhXNbn47RvbeGntQV5ae5DfvrFNISwiERMI4MsXr6CszsFVj67sNoQrGhxc/+QatlY08pMXN/ZaCCuCOTqAA7oK4fYBHLideltFk0JYRCKmfQAHdBXC7QM4QCEsIpHSPoCrm90AOD3+LkM4EMDbKpoAME16LYRjPoI7C+CAjiHcWQAHKIRFJBI6C+CAjiHcWQAHKIRFxGqdBXBAZyHcMYADeiuEYzqCK5ucPPTB7k4DOCAQwvV2d5cBHBAI4cNR3PdaRI5flY1dB3BAIISbnJ4uAzjgvyGsc5SIhG9fraPTAA5oH8KHG52dBnBAIIT/s6OK2iiFcEyvDhFvszGhMAvDoMuwhdYQLn3gU/bWtHR7HMDgPqkYoS0uISLSPQOG56V1G8HQGsLPrNzPZ9UtQYdsPefpJCUi4WtdDSK5ywiG1hCe98hKctMSKQ9ykTAp3sbQvmkkx0fnGm1MXwnuk5bIaaPz+PPcKUHDdU918AA+Z3w//u/iCeRnak1OEQlffkYyPz13DJdOHxj02FAC+BcXnsBFkwfQN4Q1hkVEgumflcLj84s4oSCz2+NcXn/QAE5OsLHsxhMZ1y+d1KTPbxMfCTEdwdCzEO6OAlhEIqEnIdydQACHssmGiEioQg3h7rQP4JQoBTAogoHwQ1gBLCKRFG4IK4BFJJL6ZSbz2DGGcHKCjWVHtnmPZgCDIrjNsYawAlhEouFYQ1gBLCKRZJom+2vt/PTFjTx87fQehXBygo1nFszi413VfFRaTbPLG8GZfp4iuJ0+aYmcMSaPs8b1C+n4lIQ4/jx3igJYRKIiPyOZX140nty0xJCOnzmsD9+YVqgAFpGICATwpQ+t4KPSau59eycPXD0t5K9feNoITBP+/PZOvvvsOt7fURnVEFYEt1PX4uKd7ZW8s+1wSMc7PD5++Nz6oFssi4hYoarJxZ2vbKampesnsdtbvaeWF0vKgm6xLCJyLA7UObj0oRVUNbmYWJjFD84azc1LS0L++sUf7Abg1q+OxjThu8+u48OdVbQE2XLZKorgI7rbCKM7wbZYFhGxQncbYXQn2BbLIiLHKjneRm5aIhMLs3jwqmnc+HRxl+sAd8bp8XP1Y6s4cXgut351NEnxNgqzU0iIi06eGmZPiu8LoqioyCwuLrZsvGMN4Pa+ekI/fnWJ7g0WEesdawC39/OvjePiKYVaHk1ELFXb7MTu8XPjkp4FcHvJCTaW3jCL/Iwk+mclkxgfZ9n8DMMoMU2zqLP3Yv5KsBUBDLoiLCKRYUUAg64Ii0hkuHxmWAEM/70iXNXsxufzWzi77sV0BNf2IICH900LumqEQlhErNSTAB6Rlxb0GIWwiFiposHR7VbIAckJrbc5dKf9Fst23RMceV6fyfbyxpB2gvvnt+fwp8smBw3hA3V2/F++O0xE5AvINE321tiDHveLC0/g/337JC6dVhj02G3ljfh1khIRCzg9fqqbun9QN7AM2os3zw5pZ7kDtXac3uhcDY7pCM7PTOam04Zzw0lDuzwmsA5wdmoiXxmT320IjyvI4PH5M+ifpfuCRSR8+ZnJPHDVNKYNzunymMA6wJkpCfz0vLHdhvCl0wr56Xlj9eyCiFhiSJ8Unlt4InldPGsQCOBPdtVw41PF3a4jbBjwp8smc+rovvRJi86zCzEdwQB5Gcks+sqITkO440YYfdK6DuFAABdkdX+5X0SkJ/plJvPg1Z2HcMeNMPIzkrsM4bYAzlAAi4g1bDYbQ3NTOw3h9gH857d3srm8kUVPl3QawoEA/sqYvKgFMCiCgc5DuKud4DoLYQWwiERSZyHc1U5wnYWwAlhEIqWzEO4YwAGdhXAggE8bHd0ABi2RdpSqJicPvb+bsnpH0K2Qa1vcvL+jksc+3sOj1xUpgEUk4g43Orl56VounFwQdCvkyiYnv39jO4ACWEQiqqrJyZOf7OHr0wbxrSdXc+/lUz4XwO1NGJDJQ9dMZ+HTJVx/8jCykhPIz0xibP8MS5dHg+6XSFMEd1Dd7MTACGmb0doWN/E2g8yUhIjMRUSko3q7G7/fpE8I56jq5taVavqmK4BFJDKqmpzMf2INW8obuWTKAH799Yk89vGeLgM4YMKATJYumEXx3hoWLFlLSkIczy080fIQ1jrBPeA3W592DI1JbYsbTxTXtBOR2OXzmzQ6vIR66cLrM/H6IjolEYlh7QMYWm8Z3V3VTHbq0RcHk+JtDOiwaEDf9CT21tix2eJIirfh8Pi4fPFKth9qwh2lE5ciuJ3KJiffemINcxev4GBd98sS1ba4+MXyLZz/t48oPdykEBaRiPL5TfZUN3PhfR/z4+c3UBNkrd9DDQ7mPbKKeY+s5FCD1i4XEes53D4OH9kb4fqThjK2IJOL7/+Ew40u7r54PNB6f/DzC2fzyi0nM7Z/BgBfGZ3HDacMY94jK3luzQEevHp6WwjvrbHj9kXnLgXdDnFEIIADP80UZqfw/MITKcxJ/dyxgQB+dUMFAKmJcby4aDaj+mVEbb9rEYkdgQD+5oMraHC0LiL/ldF5/Gnu5E5v3QoE8GfVLUDrZj/LbjxRyzeKiKVM02RfjZ0XSg4wJDeNn720sW3vhe+cPpIBWclMKMxiXEHrLQ6VjU7++m4p507oz8KnS7C7W6/4njO+P5fPGESzy8MZY/JJT7buNlPdDhFExwAGOFjvYO7ilZ+7ItwxgAHsbh+XPrRCV4RFxHKdBTDA+zurOr0i3DGAAT6rbtEVYRGxnGEY9E1PZMKArKMCGOD+/+yizu5mcJ/Utnt8c9ISuXLm4KMCGODfWw7xUskBZg/PtTSAg4n5CO4sgAM6hnBnARygEBYRq3UVwAEdQ7izAA5QCIuI1VpcXj7ZXcO3l63tdPfdP761k3+s2U+Do/X5qdLDTcxdvOKoAA7416ZD3P3aVmpborete0xHcIPdw4+e29BpAAf8N4QdXQZwgN3t47KHVtDi8kZiuiISY+xuL3MXr+w0gAMCIdxdAAd8Vt3CTU8X09jNeCIioTpQZ2fR0pJOAzjgd2/uYOnK/ew41MSlD3UewAGvbqjgkQ8/ozlKHRXT9wT7/SZ7a1r45oOfUme35pvCvZdP4axx1t7PIiKxye72snJ3DQuWFOO34FSdnhTPi4tmMzI/nXg9vyAiYaq3u7nvP7t49KM9low3Mj+dpQtm0d/Crd11T3AXbDaDoblpvHTzHHJSw49WBbCIWCk1MZ4TR+Ty6LVF2Izgx3dHASwiVstOTeSW00ey4JRhYY8ViQAOJubPhFaFsAJYRCLBihBWAItIpFgRwr0RwKAIBsIPYQWwiERSOCGsABaRSAsnhHsrgEER3OZYQ1gBLCLRcCwhrAAWkWhpC+GTQw/h3gxgUAQfxWYz6JOWyOh+GSEdn5xg48Qor2knIrErNTGeiQOzyUwJ7ZwzJDeVfpnJCmARiYq0pHgumjIg5ONPGdmX1MS4CM6oezoztlPb4ubOVzazak9tSMc7PX6++eCnHKxzRHhmIiJwqMHJFQ+voD7E1Wy2lDfyo+fXB91iWUQkXIF1gK98eGXIX/PEp3t5ZuU+GhzuCM6sa4rgI2pb3Ny1fDPLu1kHuDOt6wivUAiLSEQdanBy1aMr2V3V9TrAnfnPjipufeHzO8uJiFglEMCXPbSClm7WAe7M797cwbJV+3slhBXBHHsAByiERSSSjjWAAxTCIhIp4QRwQG+FcMxHcLgBHKAQFpFICDeAAxTCImI1KwI4oDdCOKYjuM7u5lf/2hpSAC84eVjQVSMCIVzVpG8yIhK+2hZ3SAGcnhTPolOHB1014j87qvjJixuot/fO/Xcicnw5UGsPKYBH5qfzzWmFQcf73Zs7+OfagzQ5o7O1e0xHcEpCHJcXDSIhrvvvHPdePoUfnj06pOXTzpvYP+h4IiKhiDMMvjFtYLfHBJZB+95Zo4Iun2Yz4OpZQ0iMj+lTv4hYJCslgWlDcro9ZlR+Os8smMWdF44Puo5wTmoCp43OIy0x3sppdimmz4TJCXFMHpTN0htmdRmugXWA05Lig64jvOCUYdxy+kiyUxMjOW0RiRFZqQlcPWsIPzlnTKfvt18HONg6wjYDHr22iBNH5JIapW8wInJ8y01P4t7Lp3DKqL6dvj/qyDrA/TKTyUpJ6HZDjZzUBF66eQ5Dc9OwhbtPfIhiOoKh+xDuuBFGdxtqKIBFJBK6CuHONsLoKoQVwCISKV2FcPsADuhqZ7neCGBQBAOdh3BXO8F1FsIKYBGJpI4h3N1OcB1DWAEsIpHWMYQ7C+CAjiHcWwEMYJimGdU/0ApFRUVmcXGx5eM6PT42HKjnUKOTM8d2vxWy32+yt6aF5RvKmT9nqAJYRCKuwe7h+ZIDnDKyb9CtkO1uLyt31wAogEUkKmqaXdz7Tim3nDGy0wBur97u5qlP93Lh5AERDWDDMEpM0yzq9D1F8NHsLi8un5+cEKLW7zept7vpk54UkbmIiHRU2+IiIzmehLjgW402HllqKDNFP6SLSHTU290hXxisbXaRnZoY0SvA3UWwbodox+vzs6/WzrbyRhweb9DjDzU6eXd7JY2O6CzlISKxrdnpYcXuWirqnQS7gOH2+thd1cLuqhbc3vDW7xQRCUVdi5vn1xygOoT1yBsdHt7dXsmhRmcUZtY5RfARXp+f0spmLntoBdc+vpq1++q7DeHyI2sC/+TFjby0tkwhLCIR1ez08M62Sr6zbC3ffGgFB2rtXYaw2+tjS3kjVzy8kiseXsmW8kaFsIhEVF2Lm1+/vo173tjOt5eWdBvCjQ4PL60t4ycvbmTu4hWU1/fORmOKYI4O4GaXF6/f5LpuQjgQwGVHdof75atbFcIiEjGBAP7Bc+sBqGpydRnC7QPY5fXj8voVwiISUYEAfrGkDIDVe+u6DOFAAP/y1a0AlNU5ei2EYz6COwZw2+tdhHDHAA5QCItIJHQM4IDOQrhjAAcohEUkUjoGcEBnIdwxgAN6K4RjOoK7CuC299uFsMvj6zKAAxTCImKlrgI4oH0Ie7z+TgM4QCEsIlbrKoAD2odwk7PzAA7ojRCO6Qhudnn541s7Og3ggEAIP7fmQLcBHPDXd0vx+j//DUhEpKd8JvzmjW3dHhMI4eeLD3QZwAEur59fv74Nh0fnKBEJX1Wzi1fWH+z2mNV767h5aQmPfrSnywAOKKtz8PyaAzQ7gy9OYIWYXyKtutnFLcvWsvKz2rDHyk5N4KVFcxjWN/oLPovI8Wl/jZ1LH/qUyqbgT1sHM6Ewk8fnzyA/o/v1O0VEQuHweFm/v55rH1+Nxxd+T14zazA/OmdMSMvUhkpLpHWjb3oS982bxonD+4Q1jgJYRCJhcG4qLy6aQ35GeOuRK4BFxGopCfFMGZzNkutntu24e6wiEcDBxHwEQ/ghrAAWkUgKN4QVwCISKVaEcG8EMCiC2xxrCCuARSQajjWEFcAiEmnhhHBvBTAogo/SNz2J++dNY2JhZkjHJ8Xb+OfNCmARiY7Buam8dPMcMpLiQzp+RF4aT8yfqQAWkYgLhPDj82eE/DXfmFrYawEMiuDPcXn91LaEtsSZx+enosGJy6flhkQk8txeH9XNrm5XgGivweHB4fYG3WJZRMQKHq/JzsNNIR+/r7YFn7/3zk+K4HYC6wAfDHGNOr9JtzvLiYhYpf1GGG5faBFc3ewOusWyiIgVAhth/N9r3S/r2F7JvvqgWyxHkiL4iGAbYXQl2BbLIiLh6monuFB0t8WyiIgVutoJLhTdbbEcaYpgjj2AAxTCIhIp4QRwgEJYRCIlnAAO6K0QjvkIDjeAAxTCImI1KwI4QCEsIlazIoADeiOEYzqCGxwefvzChqABnJ2awMvfOYlZQZZP8/pNbnhqDW6vvsGISPg8PpP5T6wJGsATCjN59bsnB10+rarJxc3PrKWpm63iRURCVV7vCCmAr541mMfnFwVdPm313joWf7Cb5iido2I6grNSEvjTZZMZ1Cely2MC6wBPKszi/nnTug3heJvB49fNIDFey6WJSPgS4gyeun4GSfFdn6oD6wBPLMzixUVzyOsmhPMyknjwqulkJidEYroiEmMGZKdw14Xjuz3mmlmD+fE5Y5gzIjfoOsKzhvdh4akjSA9xGchwxXQEQ+v/wOdumt1pCHfcCCOwjnBnIRxvM1hy/UymDskmJSE6//NE5PiWGB/HCQWZPLfwxE5DuONGGINzU3mpixDOy0jipUVzGJybGvF5i0hsyExJ4BvTCrsM4fYbYSQH2VBj1vA+3H/lNPqGuUV8T8R8BEPnIdzVTnCdhbACWEQipasQ7monuM5CWAEsIpHSVQh3thNcVzvL9UYAgyK4TfsQDrYVcvsQVgCLSKR1DOFgWyG3D2EFsIhEWscQ7m4r5I4h3FsBDGBE+ilhwzDOBf4KxAGPmqb5206OmQvcBZjABtM053U3ZlFRkVlcXByB2bbe5O3w+BiWG3wr5OpmF+X1Dkb1S1cAi0jEub0+dlU20zcjKaStkPfX2AEUwCISFY0OD1srGhnTPyPoVsgOj5fSw80MyEqJaAAbhlFimmZRp+9FMoINw4gDdgJnA2XAGuBK0zS3tjtmFPA8cIZpmnWGYeSbplnZ3biRjGAA0zQxjNAebuvJsSIi4dI5R0S+yL5oDdVdBEf6doiZwC7TND8zTdMN/AO4uMMxNwL3m6ZZBxAsgKOhJ/9D9M1IRKJJ5xwR+SL7MjXUMUWwYRjdL5j7X4XAgXa/LzvyWnujgdGGYXxiGMbKI7dPiIiIiIhETNAINgzjjna/PsEwjJ1AiWEYew3DmGXBHOKBUcBXgCuBRwzDyO5kHjcZhlFsGEZxVVWVBX+siIiIiMSqUK4Ef6Pdr/8AfN80zWHAXOAvQb72IDCo3e8HHnmtvTJguWmaHtM099B6D/GojgOZpvmwaZpFpmkW5eXlhTBtEREREZHO9fR2iAGmab4BYJrmaqDrrdZarQFGGYYxzDCMROAKYHmHY16m9SowhmH0pfX2iM96OC8RERERkZCFsq7XcMMwlgMGMNAwjFTTNO1H3ut2703TNL2GYdwC/JvWJdIeN01zi2EYdwPFpmkuP/LeVw3D2Ar4gJ+YpllzrH8hEREREZFgQongjqs52AAMw+gHPBjsi03TfB14vcNrd7b7tQn86Mh/IiIiIiIRFzSCTdP8oIvXDwP3B35vGMbfTdP8roVzExERERGJCCvXCT7JwrFERERERCIm0ptliIiIiIh84SiCRURERCTmWBnB2stTRERERL4UQo5gwzAmBjnkr2HORUREREQkKnpyJfgBwzBWG4bxbcMwsjq+aZrmk9ZNS0REREQkckKOYNM0TwGuonUb5BLDMJYZhnF2xGYmIiIiIhIhPbon2DTNUuAO4GfAacDfDMPYbhjGNyIxORERERGRSOjJPcGTDMP4C7ANOAO40DTNcUd+/ZcIzU9ERERExHKhbJsc8HfgUeB/TNN0BF40TbPcMIw7LJ+ZiIiIiEiE9CSCLwAcpmn6AAzDsAHJpmnaTdN8OiKzExERERGJgJ7cE/wOkNLu96lHXhMRERER+VLpSQQnm6bZHPjNkV+nWj8lEREREZHI6kkEtxiGMS3wG8MwpgOObo4XEREREflC6sk9wT8AXjAMo5zWLZL7A5dHZFYiIiIiIhEUcgSbprnGMIyxwJgjL+0wTdMTmWmJiIiIiEROT64EA8wAhh75ummGYWCa5hLLZyUiIiIiEkEhR7BhGE8DI4D1gO/IyyagCBYRERHpBR6Ph7KyMpxOZ29PpVclJyczcOBAEhISQv6anlwJLgJOME3T7PHMRERERMRyZWVlZGRkMHToUAzD6O3p9ArTNKmpqaGsrIxhw4aF/HU9WR1iM60Pw4mIiIjIF4DT6SQ3NzdmAxjAMAxyc3N7fDW8J1eC+wJbDcNYDbgCL5qmeVGP/kQRERERsUwsB3DAsfwb9CSC7+rx6CIiIiJy3Kqvr2fZsmV8+9vf7u2p9FjIt0OYpvkBsBdIOPLrNcDaCM1LRERERL7g6uvreeCBB3p7kwbCPwAAIABJREFUGsck5Ag2DONG4EVg8ZGXCoGXIzEpEREREfniu+2229i9ezdTpkzhJz/5CX/4wx+YMWMGkyZN4he/+AUAe/fuZezYscyfP5/Ro0dz1VVX8c4773DSSScxatQoVq9eDcBdd93FNddcw+zZsxk1ahSPPPIIABUVFZx66qlMmTKFCRMm8NFHH1ky9548GPcd4CSgEcA0zVIg35JZiIiIiMiXzm9/+1tGjBjB+vXrOfvssyktLWX16tWsX7+ekpISPvzwQwB27drFj3/8Y7Zv38727dtZtmwZH3/8MX/84x+555572sbbuHEj7733HitWrODuu++mvLycZcuWcc4557B+/Xo2bNjAlClTLJl7T+4Jdpmm6Q7ceGwYRjyt6wSLiIiISIx76623eOutt5g6dSoAzc3NlJaWMnjwYIYNG8bEiRMBGD9+PGeeeSaGYTBx4kT27t3bNsbFF19MSkoKKSkpnH766axevZoZM2Zw/fXX4/F4uOSSSyyL4J5cCf7AMIz/AVIMwzgbeAF41ZJZiIiIiMiXmmma3H777axfv57169eza9cubrjhBgCSkpLajrPZbG2/t9lseL3etvc6rvJgGAannnoqH374IYWFhcyfP58lS6zZp60nEXwbUAVsAhYCr5um+b+WzEJEREREvnQyMjJoamoC4JxzzuHxxx+nubkZgIMHD1JZWdmj8V555RWcTic1NTW8//77zJgxg3379tGvXz9uvPFGFixYwNq11qzL0JPbIb5rmuZfgUcCLxiG8f0jr4mIiIhIjMnNzeWkk05iwoQJnHfeecybN4/Zs2cDkJ6eztKlS4mLiwt5vEmTJnH66adTXV3Nz3/+cwYMGMBTTz3FH/7wBxISEkhPT7fsSrAR6i7IhmGsNU1zWofX1pmmOdWSmfRAUVGRWVxcHO0/VkREROQLZdu2bYwbN663p2GJu+66i/T0dG699dZj+vrO/i0MwygxTbOos+ODXgk2DONKYB4wzDCM5e3eygBqj2mWIiIiIiK9KJTbIT4FKmjdNvlP7V5vAjZGYlIiIiIiElvuuuuuqP55QSPYNM19wD5gduSnIyIiIiISeT3ZMe4bhmGUGobRYBhGo2EYTYZhNEZyciIiIiIikdCT1SF+D1xomua2SE1GRERERCQaerJO8GEF8P9v787D7KzL+4+/71kyk2QmbEkAE1YBISAgjII0IEFAlhYEXMCtSvzx+1WkWEoBrVqXWkXRemljK0qL2rpWaqkQwEqCoIIOi0RAbARkqSQBA2SSzGSW+/fHnGBIJsmczHnOLM/7dV25cp7l3HMPz8U3n3nme76PJEmSJoJqQnBnRHwrIs6pTI04MyLOLKwzSZIkjXnnnnsuM2fO5KCDDhrtVqpSTQieBqwBTgT+pPLnj4toSpIkSePD29/+dm644YbRbqNqw54TnJnvKLIRSZIkFWvhwoUsWLCAZcuWsfPOO3P++edz8sknj6jmMcccwyOPPFKbBuuomtUh9ouIH0bELyvbB0fE+4trTZIkSbWycOFCPvaxj/Hkk0+SmTz55JN87GMfY+HChaPd2qioZjrEl4D3Ar0AmXkvcHYRTUmSJKm2FixYQHd39wv2dXd3s2DBglHqaHRVE4KnZObPNtrXV8tmJEmSVIxly5ZVtX+iqyYEPxURLwYSICJex+DjlCVJkjTG7bzzzlXtn+iqCcHnA18E9o+IJ4D3AH9WSFeSJEmqqfPPP5/W1tYX7GttbeX8888fUd1zzjmHV77ylTz44IPMnj2bq666akT16qWa1SEeAo6PiKlAQ2auKq4tSZIk1dL6VSBqvTrEN77xjVq0V3fDDsERcSHwL8Aq4EsRcRhwWWbeVFRzkiRJqp2TTz55xKF3oqhmOsS5mfkcgw/L2Al4K/CJQrqSJEmSClRNCI7K36cAX83M+zbYJ0mSJI0b1YTgOyPiJgZD8I0R0Q4MFNOWJEmSVJxhzwkG5gOHAg9l5pqI2AnwUcqSJEkad7YagiNi/8z8FYMBGGDvCGdBSJIkafwazp3gi4DzgE8PcSyB42rakSRJksaFxx57jLe97W0sW7aMiOC8887jwgsvHO22hmWrITgzz6v8Pa/4diRJkjReNDU18elPf5rDDjuMVatWcfjhh3PCCScwZ86c0W5tq4b9wbiIeH3lw3BExPsj4pqIeFlxrUmSJKlWent7ueCCC7jgggtYs2bN8697e3u3ueauu+7KYYcdBkB7ezsHHHAATzzxRK1aLlQ1q0N8IDNXRcRc4HjgKuCfimlLkiRJtXTRRRdx1113cdddd3HKKac8//qiiy6qSf1HHnmEu+++myOOOKIm9YpWTQjur/x9KnBlZl4HTKp9S5IkSSpKT08PXV1d9PT01KxmV1cXZ511Fp/97GeZNm1azeoWqZoQ/EREfBF4I3B9RLRU+X5JkiSNkssvv5zm5uYX7GtubuaTn/zkiOr29vZy1lln8eY3v5kzzzxzRLXqqZoQ+wbgRuA1mfkMsCPwV4V0JUmSpJq69NJLN5n/29vbyyWXXLLNNTOT+fPnc8ABB9RsWkW9DDsEZ+Ya4D+B1RGxO9AM/KqoxiRJklR7LS0ttLW10dLSMuJaP/7xj/na177GzTffzKGHHsqhhx7K9ddfX4MuizfsJ8ZFxAXA3wDL+MPjkhM4uIC+JEmSVEOf+cxnnr9be/nll3PppZc+v39bzZ07l8ysSX/1Vs1jky8EXpKZTxfVjCRJkorR3NzM5z//+ee3N3xdRtXMCX4MeLaoRiRJkqR6qeZO8EPA4oi4Dnh+TY3M3PZ76JIkSdIoqCYEP1r5MwnXB5YkSdI4NuwQnJkfBoiItsp2V1FNSZIkSUUa9pzgiDgoIu4G7gPui4g7I+LA4lqTJEmSilHNdIgrgYsycxFARBwLfAk4qoC+JEmSNE7sueeetLe309jYSFNTE52dnaPd0lZVE4Knrg/AAJm5OCKmFtCTJEmSxplFixYxffr00W5j2KpaHSIiPgB8rbL9FgZXjJAkSdIYd8wxx7BmzZpN9k+ZMoUf/ehHo9DR6KpmneBzgRnANcB3gemVfZIkSRrjhgrAW9pfjYjgxBNP5PDDD+fKK68ccb16qGZ1iJXAnxfYiyRJksah2267jVmzZrF8+XJOOOEE9t9/f4455pjRbmuLqlkd4gcRsf0G2ztExI3FtCVJkqTxYtasWQDMnDmTM844g5/97Gej3NHWVTMdYnpmPrN+o3JneGbtW5IkSdJ4sXr1alatWvX865tuuomDDjpolLvaumo+GDcQEbtn5qMAEbEHkMW0JUmSpPFg2bJlnHHGGQD09fXxpje9iZNOOmmUu9q6akLwXwO3RcQtQABHA+cV0pUkSZJqasqUKZtdHWIk9t57b37xi1+MqMZoqOaDcTdExGHAkZVd78nMp9Yfj4gDM/O+WjcoSZKkkSvjMmhbUs2dYCqh9/ubOfw14LARdyRJkiQVrJoPxm1NDLkz4qSIeDAilkbEZZt9c8RZEZER0VHDniRJkqRN1DIEb/IhuYhoBBYAJwNzgHMiYs4Q57UDFwJ31LAfSZKkCS/TdQq25b9BLUPwUF4BLM3MhzJzHfBN4PQhzvsocDnQXXA/kiRJE0ZraytPP/10qYNwZvL000/T2tpa1fuqmhO8FeuG2DcLeGyD7ceBIzY8ofJhu90y87qI+KvNFY+I86isRrH77ruPvFtJkqRxbvbs2Tz++OOsWLFitFsZVa2trcyePbuq91QVgiPiYGDPDd+XmddU/j5yM2/bUr0G4DPA27d2bmZeCVwJ0NHRUd4fdyRJkiqam5vZa6+9RruNcWnYITgi/hk4GLgPGKjsTuCaLbztCWC3DbZnV/at1w4cBCyOCIBdgGsj4rTM7Bxub9vqqVU9dPX0FVK7raWJ6e0thdSWVA4rV68rdIzaYeqkQmpLKoeixqh6jU/V3Ak+MjM3+VDbVvwc2Dci9mIw/J4NvGn9wcx8Fpi+fjsiFgMX1yMAA3T19HHsFYsLqb344mMNwZJGpKunj6M/uaiQ2rdeMs8QLGlEihqj6jU+VfPBuJ8OtbLDlmRmH/Bu4EbgAeDbmXlfRHwkIk6rppYkSZJUK9XcCf4qg0H4SaCHwXWBMzMP3tKbMvN64PqN9n1wM+ceW0U/kiRJ0japJgRfBbwVWMIf5gRLkiRJ4041IXhFZl5bWCeSJElSnVQTgu+OiK8D/8XgdAjgD0ukSZIkSeNFNSF4MoPh98QN9m1tiTRJkiRpzBl2CM7MdxTZiCRJklQv1TwsoxWYDxwIPP9w5sw8t4C+JEmSpMJUs07w1xh8ottrgFsYfPrbqiKakiRJkopUTQjeJzM/AKzOzK8ApwJHFNOWJEmSVJxqQnBv5e9nIuIgYDtgZu1bkiRJkopVzeoQV0bEDsAHgGuBNmDIJ79JkiRJY1k1q0N8ufLyFmDvYtqRJEmSijfs6RARsXNEXBURCyvbcyJifnGtSZIkScWoZk7w1cCNwIsq278G3lPrhiRJkqSiVROCp2fmt4EBgMzsA/oL6UqSJEkqUDUheHVE7MTgo5KJiCOBZwvpSpIkSSpQNatDXMTgqhB7R8SPgRnA6wrpSpIkSSpQNSH4fuA/gDUMPinuewzOC5YkSZLGlWqmQ3wV2B/4O+DzwH4MPkpZkiRJGlequRN8UGbO2WB7UUTcX+uGJEmSpKJVE4LviogjM/N2gIg4Augspq36mNrSyKKLjy2stiSNxOTmRhYXNEZNbnaMkjQyRY1R9RqfthqCI2IJgytCNAM/iYhHK9t7AL8qtr1idfcOMO+KxYXUvvWSeYXUlVQea3v7OdYxStIYVdQYVa/xaTh3gv+48C4kSZKkOtpqCM7M39ajEUmSJKleqlkdQpIkSZoQDMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqncjM0e6hah0dHdnZ2TniOitXr6Orp68GHW2qraWJHaZOKqS2pHJwjJI0lhU1RtVyfIqIOzOzY6hjTTX5CuNU38AAfQPF/BDQNzBQSF1J5eEYJWksK2qMqtf4VOoQ3NXTz7wrFhdSe9HFxzKjvZDSkkrCMUrSWFbUGFWv8ck5wZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQiM0e7h6p1dHRkZ2fniOusWNVNV09/DTraVFtLIzPaWwupLakcHKMkjWVFjVG1HJ8i4s7M7BjqWFNNvsI41d07wLwrFhdS+9ZL5hVSV1J5OEZJGsuKGqPqNT45HUKSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqFh+CIOCkiHoyIpRFx2RDHL4qI+yPi3oj4YUTsUXRPkiRJKrdCQ3BENAILgJOBOcA5ETFno9PuBjoy82Dg34FPFtmTJEmSVPSd4FcASzPzocxcB3wTOH3DEzJzUWauqWzeDswuuCdJkiSVXNEheBbw2Abbj1f2bc58YOFQByLivIjojIjOFStW1LBFSZIklc2Y+WBcRLwF6AA+NdTxzLwyMzsys2PGjBn1bU6SJEkTSlPB9Z8Adttge3Zl3wtExPHAXwOvysyegnuSJElSyRV9J/jnwL4RsVdETALOBq7d8ISIeBnwReC0zFxecD+SJElSsSE4M/uAdwM3Ag8A387M+yLiIxFxWuW0TwFtwHci4p6IuHYz5SRJkqSaKHo6BJl5PXD9Rvs+uMHr44vuQZIkSdrQmPlgnCRJklQvkZmj3UPVOjo6srOzc8R1nlrVQ1dPXw062lRbSxPT21sKqS2pHByjJI1lRY1RtRyfIuLOzOwY6ljh0yHGsrW9/Rx7xeJCat96ybxC6koqD8coSWNZUWNUvcYnp0NIkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSicwc7R6q1tHRkZ2dnSOus3L1Orp6+mrQ0abaWprYYeqkQmpLKgfHKEljWVFjVC3Hp4i4MzM7hjrmnWBJkiSVTtNoNzCaunr6OPqTiwqpfesl87zLImlEHKMkjWVFjVH1Gp+8EyxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkonMnO0e6haR0dHdnZ2jrjOilXddPX016CjTbW1NDKjvbWQ2pLKwTFK0lhW1BhVy/EpIu7MzI6hjjXV5CuMU6t7+pl3xeJCai+++FhmtBdSWlJJOEZJGsuKGqPqNT45HUKSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIXgjR+01jfl/tPvz222T4fsXHMUd7zuOWy4+lpPnzHzBsY+efsBotCmppD54ykvYpe0P20ftNY1Ff/kq7njfcdx44dwXHDvj4F044+Bd6t+kpNL6xBkHvmD7Xa/ak59eOo873nscX5/f8YJjHz39ANom17O7F4rMHL2vvo06Ojqys7NzxHVWrOqmq6f/+e1WoKG5kSRpbW5gdU8/3b0DPPRUF8+s6aWluYF9ZrSx3eRmGhuC7VuCVb3Bdq0NPPHsuhfUbmtpZEZ764h7lFReG49Ru7Y38VxP0taUrOqDvv7kue4+li7voru3n/bWZvaZOZXJzY1MaW5goB/6Ahqzn1W9L6ztGCVppDYeo7ZvbaShsZEpTbBidS/9A/B0Vw8PP7Wa/kxmtrey+45TaGoMZrQ1s6p7gL6BAdb2Drygbi3Hp4i4MzM7hjrWVJOvME519fQz74rFwOAdk8tOPZDmxmT1uuRLt/6G73Q+xnPdfZu8ryFg3ktmcv68fXjRdq08+1wfk5uCIz+x6PlzFl18LDPa6/WdSJqINhyjbrxwLk+tCZoagodWruMLi5dy033L6BvY9EbGlEmNnHnYLN45d2+mTmqgPxpZ+Ivf8skfLH3+HMcoSSO14Rh11/tfTUSytqePnz/8HF9Y/BvuenTlkO/bZVorf3rUHpx+6CzaWxoBOP6zN9O1dvB4vcYnp0MwGIDfd+qBJHDN3b/j+M/cwlW3PTxkAAYYSPjhr5Zz5j/+hA9//37WNTaw09Rmbr9sXn0bl1QKN144l712mkxjQ/CpGx/kjz9/G9cveXLIAAywZl0//3r7oxz/mVv4+s8eIzN588v34JIT9qlz55LK4K73v5oAVq7p5//9212886udmw3AAE8+183lNzzIKZ+7ldsf/j0k/Pd7jqv71IjSh+D1d4AHAv76P5bwt9c9QE/fwNbfWLHwl09y1hd+wuPP9BiEJdXc+gC8rKuPs6+8ne/e9cSw39s3kPz9f/8PF37zHroTg7Ckmrvr/a8Gkt88tYZTPncb9zz2zLDf+8yaXv7PV+/k6p8+AtQ/CJd6TvDvnlo9OAc4k49edz/XLXlym2vtMq2Va951FC39A/Q2Bmv7kr2mTx1xj5LKq7unh6fW9NPYEJxz5e088vSaba519D7T+dTrDyYi+O7Pf8vJh8x2jJI0Iiu7umlpbuDRld28dsGP6e4d/k3EjV160kt43WGz6c9kbe9AzcanLc0JLvWd4MZJjbQ0wZ2PPTOiAAyDt/Y/8l/3sa6xgYaGBnYYxU87SpoYVvdCU8Bnf/A/IwrAALcufYofPrCc5gZ4wxF71qZBSaW2oquX57r7effX7x5RAAa44qZf89TqdTQ3wJTm+sTTUofgBmBNb/K+a5bUpN4N9y3jiWfWsl1LsHJtTUpKKrEWBnhmbR/f6nysJvU+et39dPcl/f0j+8dKkgB2376V65c8ydLlXSOu1T+QXPrde+npS6a2RA2627pSh+DtpzTR+cjveXZt79ZPHqZ/WLSUlWv9B0bSyK0dgC/+6Dc1q9fdO8CN9z3JtNbGmtWUVF5Pr+3lqtserlm9ex9/lue6+1i3rn/rJ9dA4SE4Ik6KiAcjYmlEXDbE8ZaI+Fbl+B0RsWfRPa23vGsd3/hZbe6wrPejX6+gbxzOs5Y09qwbgOtHOFVrY9/pfJynVg+98o0kVWNVdx9PPFPbX31/587HmDalpaY1N6fQEBwRjcAC4GRgDnBORMzZ6LT5wMrM3Af4e+DyInva0EDCkieerXnNZ9b0MqWmVSWV0dp1/VWtVjMcv162ioaoz68aJU1sW1oGbVvd/eizLHtu3dZPrIGi7wS/AliamQ9l5jrgm8DpG51zOvCVyut/B14dUZ8Run8g6eqp/R2RB59cxY7bTap5XUnl8tjvR/ZhuKH0DSTdffX5VaOkie2XNb6RCLB0xSrqNam06BA8C9hwvsHjlX1DnpOZfcCzwE4bF4qI8yKiMyI6V6xYUZPmBgqattDd10+dcrykCaynoLA6HpfGlDS2DAwM1Pw3VQDr+gaoV4QaNx+My8wrM7MjMztmzJhRk5pNDcV8+9tNbqZ/wA/HSRqZaa3NhdQtauyTVB4NDQ1Mm1z7Maq9pbluP6gXPRI+Aey2wfbsyr4hz4mIJmA74OmC+wIggJnttZ98vd/O7fzvc7VbcUJSOb2ogAXHp0xqpKnR31RJGrmOPXasec05L5pGc+PEWCf458C+EbFXREwCzgau3eica4E/rbx+HXBz1ulHgNbm4PA9dqhpzSmTGpk6yeWHJI1cc0Ow09Tafr7g0N22p8EMLKkGDpo1reY1X/ninZjRVp/PVRUagitzfN8N3Ag8AHw7M++LiI9ExGmV064CdoqIpcBFwCbLqBVlcnMwf+5eNa155mGz6vakE0kT23aTm3jTEbvXtOY75+5lCJZUE82NDbxst+1rVq+xITj1pbvy6MrumtXcksLTWmZen5n7ZeaLM/NjlX0fzMxrK6+7M/P1mblPZr4iMx8quqf1nuse4EXbt7Lfzm01qdfUELxz7t4M9Cdt3gyWNEKr1w3wxpfvRmuNfrCevcNk9t91GoOTwSRpZGZMbeIvTtivZvVOfekuTGoMWpt8YlzhIoLJzY187uyX0ViDWyN/ccK+TG1poC8CVyCSVAuTmxv4wKkbL6++bT539svYrrWpJrUkaXlXH/vt3MZrDtx5xLV2mNLMZScfwLPdq2mq0/IQpQ7Ba3sHWNc3wI5TmvnwaSP7R2buPjtx1mG7MZDBV378G+pzI1/SRNa7rp++AXj1ATM5aYT/yFx0wr7sun0rXT39HPnxm2vUoaQy22FKA80D8KE/OZC9pk/d5jrNjcE/veVwprU0stPkNrp667PCVqlDMMARH7+ZBI4/YGc+cvqB23RHeN5LZnDF6w+lJeArP/4NX7jlkZr3Kal8eoEPfW8JEcGHTzuI0w/ZteoaEfCXJ+7HGzt2o4HgiI//sPaNSiqlZav6eLyrmx0nN/C1+a9g/13aq64xZVIj//L2l7Pn9Cn09A5w+N/Vb4wqfQiGwSAcwElzdub7F8xln5nDmyPc1tLEp99wCH935ktpDviSAVhSjS28fzkf+t4SCHjvKQfwj285jO2GuTbn7jtO4T/edRSvP3w2GIAlFeD0BT/hV8vXsNPkBq5+x8v581fvQ9Mwbyi+8sU7ccOFR3Pgru00EXUNwABODqs44uM3c8d7j2OXaS189dxX8PjKNXz51oe587creXr1H55h3drcwJxdt+ONL5/N0fvOYEpzAz39yVUGYEkFWXj/cmAJH3rtSznqxTuw8MKj+fkjv+frdzzKkieeZc26P3wIYfspzbxstx2YP3dP9p7RRntLI2vWDRiAJRXm9AU/4T/PP4rpba285YjdeUPHblx7z//y/Xt/x6+XraJv4A8r387afjKvfPGOzJ+7N9tNboKBAQYGqHsABkPwCxzx8Zu5/b3HEcDU5uBvX3sQPX0DZCa9A0lDwKTGBiDZYcok1vYMztdzCoSkoq0Pwh9+7UtpDDh2vxl0VNY57+1P+jNpaggaG4LmhqCru5cI6FrXzyudAyypYOuD8G47TqUx+nj7UXvwJ4fsSkPE849XXv8QjKktjTyy/FlmtG1HNDSMSgAGiPH4DPmOjo7s7OwccZ0Vq7rp6ilmGYe2lkZmtLcWUltSOThGSRrLihqjajk+RcSdmdkx1LFS3wme0d7KjOrncEtSXThGSRrLxvsY5QfjJEmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlMy4flhERK4DfjsKXng48NQpfV8Xyuk5cXtuJy2s7MXldJ67RurZ7ZOaMoQ6MyxA8WiKic3NPHdH45XWduLy2E5fXdmLyuk5cY/HaOh1CkiRJpWMIliRJUukYgqtz5Wg3oEJ4XScur+3E5bWdmLyuE9eYu7bOCZYkSVLpeCdYkiRJpWMIliSZiB53AAAFfklEQVRJUukYgjcSEf8cEcsj4pebOR4R8bmIWBoR90bEYfXuUdUbxnV9c+V6LomIn0TEIfXuUdtma9d2g/NeHhF9EfG6evWmkRnOtY2IYyPinoi4LyJuqWd/2nbDGJO3i4j/iohfVK7tO+rdo6oXEbtFxKKIuL9y3S4c4pwxk6MMwZu6GjhpC8dPBvat/DkP+Mc69KSRu5otX9eHgVdl5kuBjzIGJ/Brs65my9eWiGgELgduqkdDqpmr2cK1jYjtgS8Ap2XmgcDr69SXRu5qtvz/7fnA/Zl5CHAs8OmImFSHvjQyfcBfZuYc4Ejg/IiYs9E5YyZHGYI3kpk/An6/hVNOB76ag24Hto+IXevTnbbV1q5rZv4kM1dWNm8HZtelMY3YMP6fBbgA+C6wvPiOVCvDuLZvAq7JzEcr53t9x4lhXNsE2iMigLbKuX316E3bLjN/l5l3VV6vAh4AZm102pjJUYbg6s0CHttg+3E2vcAa3+YDC0e7CdVGRMwCzsDf2kxE+wE7RMTiiLgzIt422g2pZv4BOAD4X2AJcGFmDoxuS6pGROwJvAy4Y6NDYyZHNY3GF5XGqoiYx2AInjvavahmPgtcmpkDgzeVNIE0AYcDrwYmAz+NiNsz89ej25Zq4DXAPcBxwIuBH0TErZn53Oi2peGIiDYGf/v2nrF8zQzB1XsC2G2D7dmVfRrnIuJg4MvAyZn59Gj3o5rpAL5ZCcDTgVMioi8zvze6bakGHgeezszVwOqI+BFwCGAIHv/eAXwiBx9msDQiHgb2B342um1payKimcEA/G+Zec0Qp4yZHOV0iOpdC7yt8unGI4FnM/N3o92URiYidgeuAd7qXaSJJTP3ysw9M3NP4N+BdxmAJ4z/BOZGRFNETAGOYHAOosa/Rxm8w09E7Ay8BHhoVDvSVlXmcF8FPJCZn9nMaWMmR3kneCMR8Q0GP4k6PSIeB/4GaAbIzH8CrgdOAZYCaxj8aVVj3DCu6weBnYAvVO4Y9mVmx+h0q2oM49pqnNratc3MByLiBuBeYAD4cmZucak8jQ3D+P/2o8DVEbEECAanND01Su1q+P4IeCuwJCLuqex7H7A7jL0c5WOTJUmSVDpOh5AkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlaZRFRFcBNQ+NiFM22P5QRFxc668jSeOVIViSJqZDGVyLU5I0BEOwJI0hEfFXEfHziLg3Ij5c2bdnRDwQEV+KiPsi4qaImFw59vLKufdExKci4pcRMQn4CPDGyv43VsrPiYjFEfFQRPx55f1TI+K6iPhF5b1vHLIxSZpgDMGSNEZExInAvsArGLyTe3hEHFM5vC+wIDMPBJ4Bzqrs/xfg/2bmoUA/QGauY/ApiN/KzEMz81uVc/cHXlOp/zcR0QycBPxvZh6SmQcBNxT9fUrSWGAIlqSx48TKn7uBuxgMrftWjj2cmesfQ3onsGdEbA+0Z+ZPK/u/vpX612VmT+Xxs8uBnYElwAkRcXlEHJ2Zz9bw+5GkMcsQLEljRwAfr9y9PTQz98nMqyrHejY4rx9o2ob6m9TIzF8DhzEYhv82Ij64LY1L0nhjCJakseNG4NyIaAOIiFkRMXNzJ2fmM8CqiDiisuvsDQ6vAtq39gUj4kXAmsz8V+BTDAZiSZrwtuVOgiSpAJl5U0QcAPw0IgC6gLdQmeu7GfOBL0XEAHALsH46wyLgsoi4B/j4Ft7/UuBTlff3An82su9CksaHyMzR7kGStI0ioi0zuyqvLwN2zcwLR7ktSRrzvBMsSePbqRHxXgbH898Cbx/ddiRpfPBOsCRJkkrHD8ZJkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdP4/fxiOzfXSeTkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5icVd3/8feZme0tmy3Z9N572DSCdAREQKSGorTQUR8UlcdHAf2JKCiKBRClE7pSFKnSJJBkk2xCei+7m2R73+nn98dmwybZmr1nFjOf13VxsTv3mbMnm1z3fObMOd9jrLWIiIiIiMQSV28PQEREREQk2hSCRURERCTmKASLiIiISMxRCBYRERGRmKMQLCIiIiIxx9PbAzgc2dnZdtiwYb09DBERERH5Alu2bFm5tTanrWv/lSF42LBhFBQU9PYwREREROQLzBizo71rWg4hIiIiIjFHIVhEREREYo5CsIiIiIjEHIVgEREREYk5CsEiIiIiEnMUgkVEREQk5igEi4iIiEjM+a+sExwt9d4Atd4AYQvBsMVlwONyEe9xkZ2a0NvDE5EYV1nvwxsMEwxbwtbicRkMkJboIT0pvreHJyIxLBwOU17vJxi2BEJhADxuFwbomxxHYnzvR9DeH8EX0J6aJkprfTyyaBsF26soqmrafy09ycOUgX24aNZgZgzJJDslnvg4dy+OVkRiSTAYprTex9qSWp76dAcri6qpagzsv94/I5GjhmRyxbxhDMhMon9GUi+OVkRiTV1TgDpfkLfX7uXVlSWsLamlKRACwGVgeHYqx4zK4htzh5GW5CE3LbHXxmqstb32ww9Xfn6+jcSJcbVeP6W1Pr7zXCGri2s7bd8nOY5fnDOZ/GGZ5PTiX6KIxIayOh/rdtfy3RdWUlbn67T96NxUfnfRdAZkJNInRTPDIhJZe2u9/H1FMfe9vRFfMNxp+5PG5XLn2RPJTU2I2ISiMWaZtTa/zWsKwc0q6n28t6GU2/72GYFQ934nZ0zO4/YzJ5KbriAsIpFRWuvlvnc28sySXd16nttl+NFXxnPWtAFaxiUiEVNS3cT1Ty1jZVFNt56XnuThkW/OZEL/dJITnF+g0FEI1sY4mmeA39tQyvdeWNXtAAzwz8/28MO/fUZprTcCoxORWFda6+Wu19d1OwADhMKWn/5jLX9fUUxlQ+ezxyIi3bWnpolvPrKk2wEYoLYpyCV/WcyGvXUEuzB77CSFYGBvjY/b/vZZj/r49/pSXltZQp030HljEZEuagoE+XBTGS8XlvSon7teX0dxq/0NIiJOKKvzctc/17OptP6w+/AFwyx4ooCy+ui+UY/5ELynponvPFd4WDPAB/vlGxuoavA7MCoRkWaVDQF+8sqaHvdjLdz8zAr21CgIi4hztpQ18Oqqnr1JByiv9/PrtzdSFcVPrGI+BO+u8bKmpPNNcF3hD4V55OPtNPg0GywiPecLhHhpWRGN/pAj/W2vaGTj3sOfrRERaW1vrZdfv7XBsf5eXlFMoz96SyJiOgTXNvl55D/bHO3zxWVF1DQFHe1TRGJTRYOfJz/d4WifD3+0lfIuVJYQEemMLxBi6fYqx/oLhi3/Wr3bsf46E9EQbIx5xBhTaoxZ3c51Y4y53xiz2RizyhgzI5LjOVidL+joXx5AvS9Ik0OzNiIS24KhcJdKoXXHip3V+EPR3XwiIkemtbud+SS9tf9sLqeqMTpLSyM9E/wYcFoH108HRu/77xrggQiP5wDWwp4IVHTYuLfO8T5FJPaU1Dh/f6r3BfFHeQe2iByZlm6vdLzPtSW1NPqi84l6REOwtfZDoKPf0NnAE7bZp0AfY0z/SI6pNSc2w7UlWu9gROTIVh2he0kwrBAsIj0TDoepbnR+D1StN4AxxvF+29Lba4IHAq0LXxbte+wQxphrjDEFxpiCsrIyR364K0K/43hPb/9aReRIkOCJzAlKrii9wIjIkcvlckUk78S7XUTrHLf/mrRmrf2ztTbfWpufk5PjSJ9xbhcp8c6/yIzpl+Z4nyISewb3TXK8T7fLkBCh40lFJLZMGpDheJ8jc1JxRymd9nYILgYGt/p+0L7HosLjMkwc6OxfoDGQlRLvaJ8iEpuS4z3EO/xqMConFc0Di4gTpg/p43if0wb3ISdKR7z3dgh+FfjGvioRc4Aaa23UamPkpidyYf7gzht2w7yR2RH7CFNEYktSvJsvT+znaJ/nHjWIfmnReYERkSNbZnI8eemJjvZ5fv4g3FGaCo50ibRngE+AscaYImPMVcaY64wx1+1r8jqwFdgMPAzcEMnxtOXoUVmkJXgc6++mE0eRrRcYEXFAZnI81x030rH+Ejwuvjqlf9ReYETkyJadlsAV84Y51t+E/un0jeKn6ZGuDjHfWtvfWhtnrR1krf2rtfZBa+2D+65ba+2N1tqR1trJ1tqCSI6nLZnJ8fz07ImO9HXC2BxG5KQ40peICEC/9ES+Nm2AI3394PRxpCc696ZfRGJbnNvF2dMGMiwrucd9uQz86rwp5GU4vxei3Z8ZtZ/0BZUY52beqGxOGpfbo36yU+P52dcmkZvm7McCIhLbctIS+MFp4xjYp2cvDDOHZXLG5P6kJsY5NDIREcjLSOSPl8wgoYeVIm46cXSP73PdFfMhGJrXBv/i65OZNzLrsJ6fnRrPs9fMZUCGArCIOK9/nyQWLph92PeY6YP78If5M+jn8No9ERGA4VkpPHrFzMMOwt+cO5TL5gwhM8qFBRSC98lNT+Q3F07jllPG4OlGAeHjxuTw8o3zGJGdjMulX6eIRMbQrBReuv5ovjIpr8vPcRm49tgRPHjZUfTTm3QRiZDkBA9TB2bwj5uPYXz/rpeJTUvwcP9F07jxxFHk9MIn6cZGqyKxg/Lz821BQWSWD9c2Baho8PPwh1v424pictISGJ+XTkqCh0AozLbyBjburSN/WF9uPmEUo3JTydXsiohESVmdl12VTdz/7038Z3M5o3JSGZmTSrzHRaM/xIY9teyp9XLG5P5cd9xIslMToj67IiKxa2+tl8VbK3jwg61sK29gwoB0BvZJwmUM1U1+1pTUEgpbLpk9hItmDiErNZ7ECNYuN8Yss9bmt3lNIbhtZXU+mgIhNpfWs2xHJRX1fhLj3EwZlMHkgRmkJnjIy0iM2tF+IiKt7a5uosEfZG1JLYW7qmn0h8hIiiN/WCZj+6WRGOfWG3QR6RWBUJiyOh9VjX5W7Kxmw546QuEweRmJzBqexeDMJFITPGQkR/4NekchWNuED1LTFGBrWT2/fGM9n26tbLfd4L5J3HjCKE4Z34+sKBV1FhGpaPDx0aZy7n9nE1vLGw65/tCHzf+fMaQPt546jvH90+gThRcaERFrLWV1Pp5duotHP95GVWOgjVab8LgMp07M45Yvj6F/eiLJDpaq7Q7NBLdSVufj7n+t46XlXT+0bky/VB645CgG900iXodkiEiEhEJhimu83Pj0cj4rruny806bmMedZ0/UpjgRiah6b5B1u2u54enllNX7uvQct8vwnZNHc8nsoRGrD9zRTLB2cu2zt9bLxQ9/2q0ADLBxbz1n/P4j1u6uIxAKRWh0IhLLgqEwm8rqOeN3H3UrAAO8sWYP5z24iJLqpgiNTkRiXb03yLvr93LBnz/pcgAGCIUtv35rIz94cRWVDV1/nlMUgoGKeh8LnihgU2n9YT3fGwgz/8+fUlLtdXhkIiJQWufjgoc+oc4XPKzn76ps4rK/Lqa8Gy9OIiJdEQ5b1pTU8J3nCjncxQVvr9vLr97YQE1TW8snIifmQ3BTIMjLhcWsKure7Mqh/YT49rMrqNCLjIg4qLLBzw9eWkVt0+EF4BZbyhp47ONtNBxmkBYRaUt5vY8bFy4/7ADc4tmlu1i3u5ZoLtON+RBc2xTkV29scKSvwl01rOrmR5UiIh3ZXt7AR5vKHenrT+9voTrKMy0icuTyB8M8+ekOyuv9jvR364srHeurK2I6BIfDlrfW7MEXDDvW5+/e2dQr61pE5MhT2xTg/n9vcqy/sIUXC3YRCDl3zxOR2FXd6OfJT3c41t+uyiaKqhod668zMR2Cq5sC3d4I15nCXdV4A3qBEZGeawqE+HBjmaN9vlxYQnWbZYtERLqntM7n+P3kxWVFBMPRyVExHYKDoTDrdtc63m9ZnWaCRaTn6rwBwg4vj9te0UDI6U5FJCYt21HleJ+Fu6qpidIb9ZgOwb5g2NGlEC22lh1elQkRkdaKqpwva2Zt84ZgEZGeWlvi/D6oHRWNUVuyFdMhOFKzIUHNsoiIA4KhyNxLovRJo4gcway1Eck7obB1/BOw9sR0CI5zm4j02yc5LiL9ikhsidQJSp4I3ftEJLbkpCU43mfflHjCUUrBMR2CwxaG9E12vN9I9CkisSczAiG4T3IcLqMQLCI9N21wH8f7nDQwnXhPdOJpTIdgj9swZ0SWo31mpcRj0AuMiPScPxhiaJazb6pnD++rO5SI9JgxhmHZKbgcvqHMGZEVtXtUTIfgsLV8ffpAR/u8cOZgjNGaYBHpuSZ/iPmzhjja54UzhxCK4olMInLkqvcGOW5MrmP9Jca5yB+aSYS2QxwipkOwDUNlo595o5yZDU5L8PDlCf2Ic7sd6U9EYltqYhz5QzPJTnVmWcSUQRk0+IJ43DF96xcRB1hrSU/ycPWXhuPUCqtL5wxla3kDiXFaDhFxyfFuGnxB/u8rE0iJ73lwvevrk3ljzZ6IbbgTkdiSFOfm3rfWc+dZk3rcV7zbxU++OoGnF+/AaiZYRHrIGENSnIcVO6v45txhPe5vWFYyJ43rx6DMZNBMcOQ1+EOM65+GywW/uXAanh4sbLl41hAGZSZx4rh+KpEmIo6wWDKSEuiXnsDNJ4467H5cBn570TQ27a1jzogs4jUTLCIOKKvzEQiHOXFcLnNHHv6n6hlJcfzqvKn85aOtNPqDUVuyFdN3QpeB6sYAt/3tM95as4cHLj2q2+XNjIHrjxvJ7BF9ufSvi8lOjWdzaV2ERiwisWRvrZfrjxvB9ooG+mck8r0vj8XdzTfrqQkefnfRdJZsq2R4TiqnTOhHoz8UoRGLSCx5a90ejh6ZzV2vr+M7J4/mq1P6d7uPoVnJPHbFTH71xnq+MXcoD76/JWqnWsZ0CA7ve6exfGc1Ly0v5tGPt/Ho5TP5yuS8Lu12HNMvlSeunIUx8D/PFdLgC/H04p0kxXsiPHIRiQWVDQHSk+L46T/W8r9/X01ZvY+FV89m8sCMTp9rDJw4Lpcnr5rFK4XFPLZoOz95ZTW+QFgb40Skx6y1lNX6uOPVNdx+5gTiXIavTunPby+cRr/0zusHJ3hcXDlvGL8+fyoAZ08bQMGOKpbtdP4o5vbEdFrzuF28tKx4//eLtlRw2V+XcO1xI1jwpRG8t6GUZTuqWFtSS503SJzbxajcVKYMyuDUiXlUNfq587W1bC79/JjkF5bt4qKZg3vjjyMiR5i89AT+sWo3tU3Nxxw/vmg7760v5eYTRzEwM4k31+xl5a5qNu2twxcMk5LgYXz/NGYMyeTk8f0o2FHF5Y8upaYpAMDGvfWU1fvISYvMIRwiEjuMMcS7XWwpbSAjKZ7b/raKlUU1zB2RxS++PgVvIMQ76/byWVENOysbCVtL35R4Jg3MYM6ILI4aksmrK0u48M+fkuBx8dw1c/jRy6uJc0Vvftb8N26QyM/PtwUFBT3up6iykQv//CnF1U2HXItzG740OoepgzIY1z+dlHgPwXCYbeUNfFZcw4cbyyiv97fZ7zu3HMuo3LQej09EYtvOygYueuhTSmq8h1zLSIrj+LE5TB6YwYicVOLdLpoCQTbsqWdVUTUfbCzDFzz0fOQTxubyi69PIi8jKRp/BBE5gi1cvIPKhgA7Kht4oaDogGtDs5KZNzKbSQMzGJSZhDFQ0xhgTUkty3dWsWR7Ja0jaP+MRO6fP51fvL6Ov3xzpmMnZhpjlllr89u6FtMzwUCbARggELL8e30p/15f2u0+t5U3KASLSM9Z2gzAADVNAV4pLOGVwpJudblsR2XU1tuJyJFtxpBM9tR6ufetDYdc21HRyI6KnV3ua3eNl5dXFHPlvGEkqURa5EVqXVxlQ9szxCIi3bG3zud4n7XeoCrYiIgjEuLc/PnDrY7190JBEZMH9aHBH3Ssz47EdAiOlGideS0iR7ZIvaEOhA5dJiEi0h3WWkLhMIu2VDjWpz8U5oMNZbiNZoIjzuNykRTn/OluI3JSHe9TRGJPXA9ql3fEoAN9RKRnjDFs2ON8SdgPNpURCEWnjGNMrwl2u2DCgHSW7Ti0HEdyvJuTx/dj6uAMxvRLI87twlooqmrks+Ia/r2+lKKqttcTZzm0mFtEYtugvsmO9+kykBCl9XYicmRbVVTjeJ9rimvxh6KzZCumQ3C/9EQunDn4gBCcmRzHt04azaSBGfzrs928UljChj3N5YeMgaF9k5kyqA8//uoEXMZw/7ub+Kz4838Es4f3JTUhpn+tIuKQ1AQPHpdxdA3v8OxUzQOLSI9Zaymvd37fQnWTP2qnWsZ0WjPGcNzoHJLi3DQFQpwyoR83HD+S376ziTtfW3tIe2the0Uj2ysaeXVlCYMyk7jjrIls2FPHfW9vJBi2fOuk0fRJ1kywiPRcYpybE8fl8tbavYdc65eewMnj+zFpYAbDslIwBoIhy6bSOlYV1fDuur3Ueg/dXHLO9IHkpnZeyF5EpCMtdYKdFs06wTEdggEyU+K546wJrC6uZdbwvlz6l8U0dPFI0aKqJq5+vIBLZw/hj5fMYOGnO5jQPz3CIxaRWNE3JZ7rjx95QAge0y+Vb580hqR4N/9cVcJfPtrGtvJ6whbi3S7G5KUyY0gmD38jny1l9dz3zibK9lWZ8LgM50wfQFwE9kKISOyZPKgPzyzd1ea18f3TOGZUDpMHptMvPRGABn+ItfvqBH+4sazNT7mGZafgcUfn86qYD8HxHhcnj+9HWmIcNy1czuF86vjU4p3U+0Lcfe4UMrUeWEQc1D8jkS9P6Mfb6/Zy/XEjmTMiiztfW8uWsvpD2vpDYVYX17K6uJYnPtnBrOF9efDSo3h80XZeXVnCt08eTVK8ArCIOGP6kD6HPHbiuFyu/tJwSqqbeHvtXv6xqoTd++qdpyV4mDgwnTkjsvjWiaN4e10pD3+4FX+rijUzhvahT1J0slRMnxgH0BQIUlLl5Yzff4Q30LOyQb88dzJfntiPzGR91CgiPVfd6OfZxTv56rQBrNhZzdqSWh78cAvduW0neFz89OxJNPgDfHlCHquKajhuTA4p2rsgIj20u7qJM//wH8rr/aQnerjjrIl4AyHueXMDVY2BDp/rdhnOnTGIC/IHccdra1hdXAvAKzfOY+KAdDwOLbXo6MS4mN4i3BQIUlzVxA9eWtXjAAxw52trKa31UdWowzJEpOfCFoZmp1BZ7+Oz4hoe+KB7ARjAFwzzg5dWkZWSQGmtlzpvAH8bxymLiHSf5aKZQ+ibEs9fvjmTVwtL+N+/r+40AAOEwpbnC3Zx08IV/N8ZEzhmVDYjc5qXQngD0SmRFtsh2BeiujFAQRsl0g5Hoz/ES8uLCYf1AiMiPecyUNPoZ0t5Y49PZfru8ysJhC25aYk60EdEHJGblsglc4bw0GVHcfe/1vH+xrJu97Gn1svVjxdw04mj+P386Qzrm0xqYlwERnuomL4TGpfh2XYWdB+u5wt24Q/+9y0xEZEvnrCFCQMzuPO1NT3uKxi23P7KGpLj3QesvxMROVxVTQFW7armHytLWL6z+rD7qfcF+e7zK0mIc1NS4yUUpaPdYzoE+4IhPt3q3HF/ANWNAXz6qFFEHNAnKY7lO6qo7sJHi12xfk8dHreLTJVxFBEHNPmD5KYn8vgnO3rcV3F1E88s3kmdN0ij/9DyjpEQ0yE4FKbdU996Ymsbu7ZFRLprT62Xv/xnm6N9PvD+ZsrrvI72KSKxKd7t4r63NzrW35Of7qBfRiLJ8dHZuBvTITgYoY8EKxucmbURkdgWClvH36gv2V5JIEpHkorIkc0XCvPR5nLn+guGeX99KXXe6OSomA7BLhOZYsweleEUEQeU1jl/JGltU9DRY5hFJHZtLWvodsWazry3oTRqm3djOgS7XYbEOOd/BcOyUxzvU0RiT1VDZMotamOciDhhybZKx/tcU1JLvU9rgqPAMqF/huO9pkeptIeIHNlcEbpDR+dAUhE5kllr2Vvr/P6CqkY/YVWHiDy3y3DapDxH+5w5LDNq72BE5MiWl57keJ/GoDrBItJjxhjHTnVrzeNyqURaNPiDlvyhmY4uibhszlBKtfNaRByQHO/G7XJ23nZEdkrUZllE5MhlrWV0bqrj/Q7LTiZCW7YOEdMh2O0yPLNkB985eYwj/c0clonLZchOTXCkPxGJbW4XHD82x9E+T5vUn+R47d4VkZ4xxjBlUB/H+50ysA8JcdG5R8V0CLbWsqWsgeHZKcwcltmjvtITPdx2+njueHUNGVoTLCIOSPC4uXjWEMf6c7sMp07shyaCRcQJfZLi6Jvi7OE7p0/Ow+EPwNoV0yG4eU1wf27722f84LRxTB54eJvk0hI8PHDpUdz71gaGZaVQ59WaYBHpObuv9tAJY3Md6e/aY0ewp8ZLnFtb40Sk59xuw0UzBzvW3/DsFBLj3CRGqdZsTIdgfzBM/tBMGv1Brn9qOT86Y3y3Z12mDsrgsStn8af3N7NoSwWXzR1Kab3WBItIz4Vs85v1b500iqwezrZM6J/O3JFZ5KYn6mh3EXGELxDi5An9yEtPdKS/H50xHhfosIxoiPO4mtcEnzSGsnofl/11MbnpCTx99WxOmdCvw+n4cXlp3HXOZG46cRQ3PL2MjzdXMHNYJm6XITfVmX8MIhLb9tR42V3j5bWVJfzp0hlkJh/eUqtRuan8/JxJfFZUw8srivHrxDgR6SFrLQXbK1m1q5qfnzOpx0sYLp41hJKqJkrrfFFbshWdw5m/oBI9braUNXDKhDzyh2ZSsKOK376zibz0RObPGsx1x42kssHH2pJaar1B4t0uRuWmMiQrmV2VjTz5yQ5W7KoGmpdE3Hb6eK55soBXbzqml/9kInIkqGr084vX1/H4lbP47TsbeeTymdz9r/Us7kaB+rOnDeCyOUP57TsbueqYEXzz0SV8Y+7QCI5aRGKBMYYNe+o5Z8ZA3l2/l1+dN4UfvPTZYZU3O31SHieNb1729dAHW5k+ZJrTw21TTIfg5Hg3X58xiB/+7TMe/kY+t7+6mtXFteyp9XLfO5u4751NZCbHMS4vndRED4FgmH9+tpudlY0H9JO6b03wr9/ewNCsFMdLGolIbPK4DLXeIHe+tpbbvjKO7z6/kltOGcMF+YN5bNF2PiuuafN5xsCXRmVzxbzhbCqt58evrOGucyZxw9PLsZaolR8SkSPb+AHp/Owfa/nWSaN5b30pf/1mPj/6+2qKq5u69Px4t4tvnTSaETkpvL+hlLyMJBoDQeIiUH+4LTEdghsDIWYOy6TBF+S6p5bxh/nT+fuKYp5dumt/m6rGAJ9srWi3j8kDM7j9zAn89p1NfLy5gt/Pn058lP7yROTINqBP82EZhbuq+eW/NvDrC6byi3+tp9Ef5NI5QxmVk8quqiY27a3DFwyTmuBhXP80+qUlsmR7JT95dTXTB2fys7MncvMzK9hd48WY5qoTIiI9NX1wH/7v5dW8v6GMqYP7cM+bG7jvwml8urWCZ5bsZHdN23ukEjwuzpw6gPmzhvDs0p2sLqnh/KMGcd1Ty7ho5pCoVdmK6RCcmRyPtZbvnTqWn/9zHZf+dTE3nTiap66azaOLtvHe+tJ216WM6ZfKN+cOIzc9kZsWrmBPrZf8oZnkD8sk0+FyISISm9KT4nC7DKGwZfnOKq5+vIA7z56INxDisUXbWV1cy6DMJEblpBLvcdHgD7Jw8U7KG3wcMyqbO8+axJayei75y+L9m+GGZ6VEbZZFRI5sGclxZCbH8eSnO7h0zlBuPXUs332+kDF5afzsa5NIS/CwqbSenZWNhMKWrJR4JgxIJznewxurd3PtEwV8c94wRuWmcsPTywmELGdO7Y83GCI1CidbmpYSPP9N8vPzbUFBgWP9ldZ6uf7p5SzbUQVA/4xE5s8awrxR2ZTX+1i3u5Y6b5A4t2FUbipDs1IormriyU937H9OaoKHf37rGIZmpTg2LhGJbbVNAf7nuULeXV96wOOTB2Zw6ZyhjMxJYWdlI5tL6/EFw6QkuBmXl05eeiJLt1fy9OKdhyzfuvXUsVx73Ag8LgVhEekZbyDIgx9s5bfvbAJg4oB0bj9zIp9sreCZxTspr/cxKjeVgZlJuIyhutHPut11BEJhvjqlPxfPHsrzBbt4bt8n8MOyknn2mjnkZTh3ZLwxZpm1Nr/NawrB4A2EqGr0c/XjBawpqT3gWlZKPGPz0khN8BAIWbaV17OjspHWv7bUBA/PLJjN0Kxk0pM0CywizincVc3X/vhxu9cH901iZHbzTHCjP8SGvXWU1fnabOt2GT76/gn7l1mIiPTUnpomzv7jx+ytbb7vuAycMC6X+bOGkJrgYdPe5pngsLX0TYlnQv90UhKaZ4JfXF5EbdPnZyu8cN1cZgzug9vBT6sUgjvgDYTYXFpHIGQJhS0vLCva/46kKyYNTOeOMydSUe/D7TLkD+tLn2QFYRFxRmmdlx+8uIr3NpT1uK9vnzSKK+cNJ0P3KBFxQEW9j9+9u5GTxudxxaNLDllC6nEZRvdLZUCfJNzGUN0UYF1JLXW+Qw8Vu3TOEIZlpXDiuFyGZaXgcqjIQEchOKY/D2sJwI3+EFc8tpSLH17MoMwknrhyFieMze2w5t3o3FR+dvYk/ufkMdz8zAqufWo5u6qaKNheSXWjP3p/CBE5YtU0BXilsIQfnj7usGsEtxiXl8bxY3NZtrOKRr9OtRSRnqtpCvDyihJS4t385oJph+SmYNiybncd764r5a21e1myrbLNAHzqxH5cd+xInl68gw82ltEQpXtUTM8E1zT52VbeyOWPLqG68fPTSQb2SWL+rCEcPTKL0jofa3fX7FsT3FwneHh2CiXVTW8mMEgAACAASURBVDz5yQ4K9q0JbnHHWRP4yqT+5Dp0eoqIxK7KBj9PfbKdiQPTSU2I49qnlh1wr+qqkTkp/Pr8qQRClg83lXLVMSP0iZWI9FggFGZvrZc/vreZOLeLE8bm8qO/f0ZJO1UhDhbnNtx04mjG5aXxu3c2cv/8GeSmx5Oe6Nz9qaOZ4JiuDgGG37y14ZAXleLqJu59awMA2anxHDM6m++fOo5XCot58P0tbKtooL33Dve+uZGvTRsY6YGLSAxI9LgY2z+dBU8sY8aQTB69fCb/75/r9m/I7YqvTunPFfOGc/OzK6is9/P8dXNJTYjxW7+IOKLBF+Sv/9nGM0ual5Eu31nF7+ZP5+PN5TyzZOf+dcIHS/C4+Mrk/lwyewgvLS/ivrc3AnDtkwU8ffUcojWPGNMzwQBldV6ueqyAVe0UnR+UmcTv50/nR39fzXe/PIaXlhfx+md72mybmuDhhevmMjo3FY9KEIlID9V5Axx/z/tUNDQvscpJTeDOsydS5w3y+KLtrN1d2+5zjx6ZxZXHDGdnRSO/enM93kBzibSpgzJ48qrZpCdFpw6niBy5Nuyp5fTffXTAWmC3y3DSuFwumjWEpDg3G/fWUVLdhLWQnuRhwoAM0hI9vLlmDy8uKzpkIvL640Zw44mjHXuzro1xHQiHLXtqvVz75LJDTl9qCcDfe2ElW8oaSPC4+NMlM9oMwqkJHp6+ejYjcpJJc3AaX0RiVzhs2VbewHkPLqKq1QvF1EEZXDZ3KMOyUiiubmJLWT113iBZKfGMzEmlX3oiy3dW8dSnO9he8XmJtFG5qTx11SxHyw+JSOxq9AVZtKWCa54saPNchTi34fYzJ9I/I5E1JbWcMC6Xa54oaPcQjbOnDeD2MyfS18HzFrQxrh3hsGV7RQPf+Oti7jhrIpMHZuy/dnAABvAFw9zw9HLOnTGIr0zO2982NcHDQ5cdxa/f2sDba0up93Z/zZ6IyMG8gRAV9T4euiz/gI1xK4tq+N4Lq/jDvzczsE8SW0rr2VPjZVt5A4P7JvH9l1bx//657pAAfO95U6n3BQmGwr3xxxGRI0xygofpQ/rwu4umt1lM4IbjRxEIhbnq8QJ+8/ZG7nljPfeeP7XNWd6vTMrjf78y3tEA3JmYDsF1viB3vLaGzWUNXPfksv1B+OAAPCgziTe/cyynTco7JAi3BOCHPtjCh5vK+ckrawi2d8yciEg3hKzl+qeX88s31h8ShI8bk8PVXxrBNx9ZQq03yPe+PJbCXdVc99Ry7jlvCqNyU/e3HZWbyj3nTeGmZ5Zzy/MrafSHeuOPIyJHmOpGPw+8v4WCHVXcc97UA4Lwt08aTZ/kOO58be3+xz7cVM5DH2zhocuOOiAInz4pj3OPGsTljy5hTxc31TkhpkNwRlIc954/lUkD0ymr9+0Pwn84KADff9F0bnm+kPOPGnRIEF64YPb+AJwS7+b5a7XpRESckRLv4flr57KlrP6AIHzcmBwWfGkE1z5ZwIyhmVx33EhuXLice8+fSoLHxc3PrNgfhFsC8M3PrCDB4+LP38jXemARccTeWi+PfLyNxxdtZ1Vxzf4gfHAAvvGEUSxcMJuUePchQfj0SXmcd9Qgbnh6Oet21/H4om3Ut1FGLRJifk0wNBejv/KxpawurqVvSjzJ8W6Kqpr2B+Dvv7SKzaX1+9cEv7CsiDdW7yHB42JYVgob9taREu/mheuOZkw/bYoTEee0rAs+98FFjMxJ5SdfnUCdN3hAAL72yWXU+4IHfIrlC4b5/fzpAPsD8NML5pCn8o0i4pAGX5BFW8q59sllhC188+hhXJg/iMXbKvcH4JtPHEV2agLvrS/l6n1v3hv8IY4dnc33Th1LWZ2PG55eji8Y5qyp/bnjrElRWxOsEMznm+MWPPH5sckHB+AWBwdhgJR4N08vmM3InBRtihMRxzX6guyobGT+w5+SlZLAnpqmQwJwi9ZBuOXx1AQPj185i7z0RL1JFxFHVdT7+HhLBd95dgVhC5MHZuwvNNASgG9/dQ3AAZ9iNfhDjO2XxvaKBnzBMKdPyuOOsybSz+E36toY14Fw2LKjsvnAjDvPmsjEAentBmD4fHNcy9KIlHg3D12Wz31vb+Ld9WXaFCcijmr0B/l0WwU/eXk1D112FBUNvnYDMEBRVRM3P7Ni/+aT1AQP954/laseW8rmsnptihMRx1Q3+nnggy2s2FnFr86bgsvQbgAG+GBjGQ9/tJWHLssnJd7Nhr11+IJhTpuUx/n5g7nysaXsrY3emuCYngluCcDnPrCIygY/OWkJPHDJDDwuw/dePDQAt9YyI5ydmsBv3t7IBxvLAPjtRdM4eVwuqYlacyciPdPoD/Lp1gqufry5/FD+0Ez+76sTaPAF2wzArbXMCEPzcoiiqibSEjy8cP1cRuVo2ZaI9Nz6fXWCrYUr5g1j4oB0vv/iKm484cAAfOupYzluTA4XPPQJjf7QATPCXxqTwwX5g7n+qWX4guEjq06wMeY04HeAG/iLtfbug64PAR4H+uxr80Nr7esd9encsckBblq4nI82le9/LCslnqR9a4JbDOyTxPPXzuXuN9bx2srd+x9P8LgYnp3C+j11+x9LiXfz8Q9P1JGkItJj9d4gx97zHpX7DssAGJmTyp6aJhpaVXg4fkwOd587mYsfXszW8ob9j/dLTwA44NSmKYMyeEqHZYiIAxp8Qf6zuZzrnlq2PwifO2MQy3ZU7Q/APzhtLBfPHkJyvIeNe+s4/8HPg/Atp4yhosG/PwCfMbk/P/vaRPqmJDg2xl4LwcYYN7AROAUoApYC8621a1u1+TOwwlr7gDFmAvC6tXZYR/06uSa4tM7LFY8u3b8W+GAtAXhgZhKVDT5uf3XNAUG4teR4Ny9cN5cx/dKI0yyLiPRQqGVT3AOLqGlqe6nV8WNy+PUFU8lKbV4rfHAQbm1EdgoLF8zWYRki4piDg/DUQRmsLGpeEtESgDOSmicGA6HwAUF4XF4a28obIhaAoXfXBM8CNltrt1pr/cCzwNkHtbFA+r6vM4CSCI/pALlpiTx6xUwmDkg/5FrrAAzQNyWBO8+ayJlT+x/SVgFYRJzmdhmGZ6fw0vVHk9HGzG3rAAyQl5HEwgWzGZGdckhbBWARiYSUBA/HjMrmwUuPwhjaDcAAcW4XY/ql8cJ1c0mOd7N+T11EA3BnIp3WBgK7Wn1ftO+x1u4ALjXGFAGvAze31ZEx5hpjTIExpqCsrMzRQbYVhA8OwC3aCsIKwCISKe0F4YMDcIu2grACsIhE0sFBuK0A3OLgINxbARgivxziPOA0a+3V+76/DJhtrb2pVZtb9o3j18aYucBfgUnW2na3MDtdIq1Fy9KI6sZAmwG4tZalEe+uK1UAFpGIa700YvrgPm0G4NZalkYACsAiEhUNviB7a71kpca3GYBbC4TCFFc3kZ7oiWgA7s01wXOBO6y1p+77/jYAa+0vWrVZQ3NQ3rXv+63AHGttaXv9RioEQ3MQDoYsA/p0/oJR2eCjzhtkQJ8kBWARibhQ2FJc1URKgrvDANxiT03zBl8FYBGJVR2F4Eif77sUGG2MGQ4UAxcBFx/UZidwEvCYMWY8kAg4u96hG3LTul6kuW9KQq9M34tIbHK7DEOykrvcXuFXRKR9EZ2+tNYGgZuAN4F1wPPW2jXGmJ8aY87a1+y7wAJjzErgGeBy+99YvFhERERE/mtEeiaYfTV/Xz/osZ+0+notMC/S4xARERERaaGFrCIiIiIScxSCRURERCTmKASLiIiISMxRCBYRERGRmKMQLCIiIiIxRyFYRERERGKOQrCIiIiIxByFYBERERGJOQrBIiIiIhJzFIJFREREJOYoBIuIiIhIzFEIFhEREZGYoxAsIiIiIjFHIVhEREREYo5CsIiIiIjEHIVgEREREYk5CsEiIiIiEnMUgkVEREQk5igEi4iIiEjMUQgWEREREUc0+oNdbtvg63rbSFAIFhEREZEeq2zw8/BHWymr83XatqbJz9+WF1FU2RiFkbVNIVhEREREeqSywc8dr67mvrc3cc2TBR0G4ZomP88s3sWPX1nD+Q990mtBWCFYRERERA5bSwB+deVuAFbsrG43CLcE4LvfWA/A7hpvrwVhhWAREREROSwHB+AWbQXhgwNwi94KwgrBIiIiItJt7QXgFq2DcG1ToM0A3KI3grBCsIiIiIh0W0W9jzdW7+2wzYqd1Sx4Yil/fG9zuwG4xe4aL38vLKbOG3BymO1SCBYRERGRbhuSlczTC2YT7+44ThbuquGhD7d22t/VxwznsjlDSUuMc2qIHVIIFhEREZFuS/C4mTIoo0tBuDNXHzOcm04cRZ/keIdG1zmFYBERERE5LE4E4d4IwKAQLCIiIiI90JMg3FsBGBSCD9HoD1LT1LUF2cFQmOpGf4RHJCLyuepGP/5gqEtt67yBqG0wEZHY1hKE3/3ucYzITum0fbzbxdNXz+61AAwKwQdo9Af5dGsFrxYWU9tJEA6Gwmwuq+e372yiqkFBWEQir7qx+UjSdbvrOg3C9d4A764v5d31pdT7FIRFJPKqGwP86o31/PqCqR0G4Xi3i99fPJ3XP9tNSXUTwVA4iqP8nKdXfuoXUEsAvvrxAsIWwhbOmT6Q9KRDdyi2BODzH/iEOl+QRn+Q204fT2ZK77yTEZEjX3Wjnz++t4WHP9rKX/+zjeeumcv4/mnEe9yHtK33BnhnfSnfebYQgN9eNI2Tx+eSmhCdHdciEnv21nq57sllrNhVTWFRNfdfNJ3vPr+SreUNB7RrHYBfKSzh1cISnr9uLqNzU/H0cHNdd2kmmEMDMMDtr67h7ysOnRE+OAADPF9QxC/+tU4zwiISEa0DMIA3EObCP3/S5ozwwQEY4DvPFvLOOs0Ii0hktA7AALsqm/jWsysOmRE+OAAD1PmCXPDgJ2wqrY/6jHDMh+C2AnCLg4NwWwG4hYKwiETCwQG4RVtBuK0A3EJBWEQi4eAA3OLgINxWAG7RW0HYWGs7b/UFk5+fbwsKCnrcT0cBuLU7z5rIuTMGUlTd1GYAbu2C/EFaGiEijmgvALeWGOfiuWvmMio3lbfX7W0zALempREi4pT2AnBrg/smcf9F06luDPByYfEhAbi1tASP40sjjDHLrLX5bV2L6TXBvmCY99aXdRiAoXlG+LPiat5cvbfDAAxQsL2KYGcdioh0QShsWbSlvMM2LTPCX5s2kGeX7uq0z3fW7uW40TmQ4NQoRSRW1XmDh6z5PdiuyiZufmYFY/ul8e760o778wVZur2SfumJ9I3CZGJMzwQDVDX4uefNDSxcsrPHfY3ITmHhgtnkZSQ5MDIRESir83L5o0tZU1Lb477OmNyfn31tIn1TlIBFpOfqvAF2VDRyyV8Wd7m8bEd+9JXxnD1tALnpiQ6MrllHM8ExvyY4MyWeW08dy8WzhvSoHwVgEYmEnLREHrtiJhMHpPeoHwVgEXFaWmIcQ7OSefrq2WS0UU2rOyIRgDsT8yEYeh6EFYBFJJJ6GoQVgEUkUpwIwr0RgEEheL/DDcIKwCISDYcbhBWARSTSehKEeysAg0LwATJT4vnB6eOYNyqrS+2T4ty8cN1cBWARiYqctESeumo2mclde5GZMiiDn58zSQFYRCKuJQgvXDC7y89Z8KXhnDtjYK8EYFAIPkAoFGZ3TROrdtV0qX1TIMQ/Vu3u9IhlEREn1PsCfLCpjKrGrt1zNu6tY0dFY6dHLIuIOCEYsjy+aHuX27+xZg/eYO8cmQwKwfuFQmE2tXMQRkfaO1lORMRJ9b4A76xr+yCM9nR0spyIiJOqGvz84l/reL6gqMvP2VXZxIV//oSS6qYIjqx9CsEcfgBuoSAsIpF0OAG4hYKwiETa4QTgFr0ZhGM+BPc0ALdQEBaRSOhJAG6hICwikdKTANyit4JwTIfg7gRgYzrvT0FYRJzUnQDc2T1KQVhEnNadANzZPao3gnBMh+A6X5BfvbG+0wA8IjuFgh+d3KXyab95e6OOTRYRR4TDcNc/13Xa7ozJ/Vnx41M6LZ/mDYS587W1NAV6byOKiBw5yup9/G15caftfn7OJN695bhOy6ftqmzi2aW7qPce/ifz3RHTIbhPcjy/Om8qs4ZlttumpQ5wVmpCp3WEM5LieOn6uT0+NUVEBCAt0cML180lJ639EmctdYD7JMd3Wkd44oB0Hrpshu5RIuKIwX2TePzKWXhc7U/z3nXOJM6cMoChWSmdZqSLZw3hiqOHkZroicRwDxHTIRggOzWBP116VJtB+OCDMDo6UKMlAA/PTsXdwT8GEZGuMsYwpG8yL7YThA8+CKOjAzUmDkjnsStmkpPWO/U4ReTIkxTnYcbQPu0G4bvOmcRXpwwgPSkOt8swPDu13SB88awh3HrqWDJT4qMxdEAhGGg7CLd3ElxbQVgBWEQipb0g3N5JcG0FYQVgEYmU9oJw6wDcor0g3BsBGMBY+9+3fjU/P98WFBQ43m95vY9bX1hJgy/E/fOndXgSXFWDn9+8vZGVRdX85oKpCsAiElHWWnZWNvLtZwsZlpXMT86c0OFJcGV13v0b6n570TQFYBGJqKZAkOU7qvn5P9dx6ZwhhwTg1kJhy7byem55fiVTB/XhllPGRCwAG2OWWWvz27ymEHygvbVegiHLwMzOj0Iuq/PiDYTpl55AvMcdkfGIiLQIh8MUV3tJiHOR24VQu7umeZd1fx3tLiJRUNvkp84XIsHjIju14+Pa/cEQe2t9Xb6fHa6OQrCWQ7RSXufjhqeXcclfPmV3JyU6qhr83PvmBs64/yO2VzQSCmm3tYhETvNMcBPn/OljfvLKGiobfB22L631csWjS7ni0aWU1nqjNEoRiVWN/iCFu2o49lfv8fqq3R2Wiw2FwmyvaOSM+z/i3jc3UNngj+JIP6cQvE95nY9rnypg2Y5qtlc0Mv/h9oNwVYOfu/+1jucKiqj1BjnvgUVsKW9QEBaRiLDWsqOikfMeXER5vZ83Vu/hf/++ut0gXFrr5RuPLGH9njrW76njG48sURAWkYhp9Acp2F7FFY8tJRS2/OTVNbzczrkJoVCYLeUNnPfAImq9QZ4vKOLuf63rlSCsEMyBAbhFe0G4dQBuoSAsIpFycABu0V4Qbh2AWygIi0ikHByAW7QVhA8OwC16KwjHfAhuKwC3ODgItxWAWygIi4jT2gvALQ4Owm0F4BYKwiLitPYCcIvWQbi9ANyiN4JwTIfgmkY/t764ss0A3KIlCJfV+doNwC1agnBbf7kiIt1V7wty/oOftBmAW3wehP3tBuAW6/fUce2Ty6jR0e4i4oBdlU3tBuAWP3l1DX9fUcy2isZOM9LzBUU8+vE26js5ydcpMV0dorN3JYejrbp4IiKHo94X5IMNpdz0zAqcuFUnxbl5/tq5jOufSpxbFW1EpGeqGvzc8+YGFi7Z6Uh/Q7OSeXbBHPr3ca6ijapDtMPtdjEyO4UXrz+adAeO6FMAFhEnpSZ4OG5sLn+YPx3TwzLkCsAi4rSOTtLtrkgE4M7EdAgG54KwArCIRIITQVgBWEQixYkg3BsBGBSCgZ4HYQVgEYmkngRhBWARibSeBOHeCsBwGCHYGDPKGHOuMWZCJAbUWw43CCsAi0g0HE4QVgAWkWg5nCDcmwEYuhCCjTHvGWOy9319GfA6cDrwnDHm5giPL6rcbhf90hOZNDCjS+2T4tx8eWKeArCIREVqgoe5I7Pp08V7zqjcVAb3TVIAFpGoSE/0cNncoV1uf+rEPNISey9DdWUmOMdaW77v628Bc621VwOzgQURG1kvqGrwc9c/17JoS0WX2jcFQpz3wKJOj1gWEXFCaa2Xix/+lKrGrpU4+6y4hh/+7bNOj1gWEemplopbFz70SZef8+cPt/LS8qIOj1iOpK6E4IAxZuC+r+uBhn1f+4AjZnqho4MwOtLZEcsiIk7o6CCMjnR2xLKISE/1pOTs7fvqCPdGEO5KCP4f4C1jzE+BNcC/jTG3A28Aj0ZycNFyuAG4hYKwiETS4QbgFgrCIhIpTpy50FtBuNMQbK19Hzga2A0EgGWAF7jZWntvREcXBT0NwC0UhEUkEnoagFsoCIuI05w8dKw3gnCXqkNYa2ustQ9Ya//HWnuztfaX1tr1rdsYY34fmSFGTlWjn3veXN+lADx/1pBOq0Zsr2jkon1HLIuI9FRlg69LATgpzs1lc4Z2WjXijdV7+NHfV1PV2P4xzCIiXbWzqqlLAXhI32ROm5jXaX+3v7qGf6zaTZ03OkHYyTrB8xzsKyoSPC5OnZSH29XxK8dd50zi/84Y36XyafNGZuPppD8Rka5wGcMJY3M6bNNSBu22r4zj952UTzMGzpjSnziXSsSLSM+lJXoYm5fWYZuhWck8d80c7j53cqfl09ITPeQPzSQ5LjpbzmL6Tpgc72HmsL48cnl+u0G4pQ5wSoKn0zrCF88awq2njiUzJT6SwxaRGNEnOZ5rjxvJ9ceNaPN66zrAyfEejh+b224QNgZ+P386x4/NJdWBY+JFRLJTE3jg0qOYOSyzzeut6wD3Se64jnB6oocXrzuakTkpuN3RiacxHYKh4yB88EEYHR2ooQAsIpHQXhBu6yCM1IS2g/ABAThBAVhEnNNeEG7rIIz2DtTojQAMzobg/9o1AG0F4fZOgmsrCCsAi0gkHRyEOzoJ7uAgrAAsIpF2cBDu6CS4g4NwbwVgAGOt7VpDYyZbaz/r4Prl1trH2nj8NOB3NNcU/ou19u422lwA3AFYYKW19uKOxpKfn28LCgq6NO7uaPQHWbq9kpLqJs6Y3PFRyC07Ip8v2MWNx49SABaRiKtu9PPox9s5eXy/To9CrvcFeX9DKYACsIhERXm9j5//cx3fP3Vsp0chVzX4+dP7Wzj/qEERDcDGmGXW2vw2r3UjBH8EJACPAU9ba2u68Bw3sBE4BSgClgLzrbVrW7UZDTwPnGitrTLG5FprSzvqN1IhGJqDcDBku3QUcigUpt4XJCNZAVhEoqOm0U9ygrtLRyHX79uxrTXAIhIttU2BLmUoaL6fpSZ4IjoD3FEI7vJPtdZ+CbgEGAwsM8YsNMac0snTZgGbrbVbrbV+4Fng7IPaLAD+aK2t2vdzOgzAkZYc7+nyX57b7VIAFpGoykiO71IAhubwqwAsItHU1QwFzfezaC+BaK1bP9lauwn4P+AHwHHA/caY9caYr7fzlIHArlbfF+17rLUxwBhjzMfGmE/3LZ84hDHmGmNMgTGmoKysrDvDFhERERE5QJdDsDFmijHmPmAdcCJwprV2/L6v7+vBGDzAaOB4YD7wsDGmz8GNrLV/ttbmW2vzc3I6rpspIiIiItKR7swE/x5YDky11t5orV0OYK0toXl2uC3FNC+faDFo32OtFQGvWmsD1tptNK8hHt2NcYmIiIiIdEt3QvAZwEJrbROAMcZljEkGsNY+2c5zlgKjjTHDjTHxwEXAqwe1eZnmWWCMMdk0L4/Y2o1xiYiIiIh0S3dC8DtA63oXyfsea5e1NgjcBLxJ8zKK5621a4wxPzXGnLWv2ZtAhTFmLfAecKu1tqIb4xIRERER6ZbubBtOtNbWt3xjra1vmQnuiLX2deD1gx77SauvLXDLvv9ERERERCKuOzPBDcaYGS3fGGOOApqcH5KIiIiISGR1Zyb4O8ALxpgSmo9IzgMujMioREREREQiqMsh2Fq71BgzDhi776EN1tpAZIYlIiIiIhI53T1KaCYwbN/zZhhjsNY+4fioREREREQiqMsh2BjzJDASKARC+x62gEKwiIiISC8IBAIUFRXh9Xp7eyi9KjExkUGDBhEX1/Vjm7szE5wPTNhXzUFEREREellRURFpaWkMGzYMY0xvD6dXWGupqKigqKiI4cOHd/l53akOsZrmzXAiIiIi8gXg9XrJysqK2QAMYIwhKyur27Ph3ZkJzgbWGmOWAL6WB621Z7X/FBERERGJpFgOwC0O53fQnRB8R7d7FxEREZEjVnV1NQsXLuSGG27o7aF0W5eXQ1hrPwC2A3H7vl4KLI/QuERERETkC666upo//elPvT2Mw9LlEGyMWQC8CDy076GBwMuRGJSIiIiIfPH98Ic/ZMuWLUybNo1bb72Ve+65h5kzZzJlyhRuv/12ALZv3864ceO4/PLLGTNmDJdccgnvvPMO8+bNY/To0SxZsgSAO+64g8suu4y5c+cyevRoHn74YQB2797Nsccey7Rp05g0aRIfffSRI2Pvzsa4G4F5QC2AtXYTkOvIKERERETkv87dd9/NyJEjKSws5JRTTmHTpk0sWbKEwsJCli1bxocffgjA5s2b+e53v8v69etZv349Cxcu5D//+Q/33nsvd9111/7+Vq1axb///W8++eQTfvrTn1JSUsLChQs59dRTKSwsZOXKlUybNs2RsXdnTbDPWutvWXhsjPHQXCdYRERERGLcW2+9xVtvvcX06dMBqK+vZ9OmTQwZMoThw4czefJkACZOnMhJJ52EMYbJkyezffv2/X2cffbZJCUlkZSUxAknnMCSJUuYOXMmV155JYFAgK997WuOheDuzAR/YIz5XyDJGHMK8ALwmiOj+AIpr/ext7ZrJTaqGvzsrm4iFNZ7ARGJPGstu2uaqGzwdd4YKK3zUloX2wX0RSR6rLXcdtttFBYWUlhYyObNm7nqqqsASEhI2N/O5XLt/97lchEMBvdfO7jKgzGGY489lg8//JCBAwdy+eWX88QTzpzT1p0Q/EOgDPgMuBZ43Vr7I0dG8QVRXu/jhqeWMf/Pn7KnpqnDtlUNfn791gZO+91HbCtvUBAWkYiy1rKrspGz/vAxt7+6ptMgXFrn5YpHl3LFo0sVhEUkYtLS0qirqwPg1FNP5ZFHHqG+vh6A4uJiSktLu9XfK6+8gtfrpaKigvfff5+ZM2eyY8cO+vXrUSir7AAAIABJREFUx4IFC7j66qtZvtyZugzdCcE3W2sfttaeb609z1r7sDHm246M4gugJQAv2V7F1vIGLn54cbtBuCUAP7V4JzVNAc59YJGCsIhETEsAPvfBTyir8/Hayt0dBuGWALympJY1JbUKwiISMVlZWcybN49Jkybx9ttvc/HFFzN37lwmT57Meeedtz8gd9WUKVM44YQTmDNnDj/+8Y8ZMGAA77//PlOnTmX69Ok899xzfPvbzsRP09VTkI0xy621Mw56bIW1drojI+mG/Px8W1BQ4Fh/rQNwayOyU1i4YDZ5GUn7H2sdgFvLSIrjpeuPZnh2Cm6XilaLiDMODsCtnTm1P3eeNZG+KZ9/zNg6ALc2cUA6j14xk9y0xKiMW0SiY926dYwfP763h+GIO+64g9TUVL73ve8d1vPb+l0YY5ZZa/Pbat/pTLAxZr4x5jVguDHm1Vb/vQdUHtYov0DaC8DAITPC7QVgQDPCIuK4jgIwcMiMcHsBGNCMsIjIQTqdCTbGDAWGA7+geV1wizpglbU22OYTI8ipmeDqRj+3PF/Iv9eXddhuRHYKL15/NL9pJwC3lpEUx3vfO56+KfE9Hp+IxLbapgAn/+YDStsIwK2dObU/Pzt7Epf8ZXGbAbi1GUMyefSKmWQkxTk5VBHpJUfSTHBPdXcmuNMSadbaHcAOYK4jI/wCSU3w8P3TxrF0WxV1vvaz/NbyBo76f2/TlZUjt5wyBo+WQ4iIA1wG/veM8Xzn2cIO2722cjf/WLW703tUYpyL28+cQFJcd7aDiIgcmbpzYtzXjTGbjDE1xphaY0ydMabjKYcvOI/bxaicVF64fi5pCR2/H+hKAL7zrImcM30g6ZphEREHpCbGcfK4XH57Uec1MbsSgJ+7Zi7j+6cR73E7NEKR/9/evcdHVd/5H39/ZjJJCAkXISAFFBRRLipCFHXRgooVtVpvlba2tdIfu1tqcVlbtVvbWmut2lof7dJtadm1utu1N7d1FdS2Al5RI1opoi5VK9BylUsu5DKZz++PTGgIIclkzplJcl7PxyMP5lzmkw+cB4c333zne4DeK5PhgDslXeTuA919gLuXufuAsBrLlUyCcEcIwADCkEkQPhQCMAAcLJMQvNXd14fWSR5lG4QJwADClE0QJgADQPsyCcGVZvaz9GoRl7Z8hdZZjnU3CBOAAeRCd4IwARhALlxzzTUaNmyYJk+enO9WMpJJCB4gqVbSuZI+mP66MIym8qUgHtOIgf10wuiBXTq/XyKuC08YQQAGkBOlxQm9/5jyLq8+M354mY4cUkIABhCqq6++Wo8++mi+28hYl0Owu3+qna9rwmwu13bVNOiuR1/XMxt2dun8fY1NuuIHz3X6iGUACMK2qjpdtfR5vVfT0KXzX920Rzf/5o+dPmIZQHQsX75cF154oU4++WRdeOGFWr58edY1zzzzTB122GEBdJdbmawOMd7Mfm9mf0xvn2BmXwqvtdzq6EEYHensEcsAEISOHoTRkc4esQwgOpYvX67bbrtNW7Zskbtry5Ytuu222wIJwr1RJtMhfiTpJkmNkuTur0qaG0ZTudbdANyCIAwgTN0NwC0IwgAkafHixaqrO/CpkXV1dVq8eHGeOsqvTEJwibu/0GZfzp8WF7RsA3ALgjCAMGQbgFsQhAFs3bo1o/19XSYheIeZHS3JJcnMLpf011C6ypHdtQ36zu/e7FIAvnzaSJV2smpESxDe3skjTgGgK3bW1HcpABcnYpp78uhO67UE4V21XZtTDKBvGT58eEb7+7pMQvACST+UdJyZbZZ0naR/DKWrHCksiGnmseXq7CnHt1w0SV/94CT98h9O6zQIVxw5mMcmAwhE3EynHT2kw3NalkG7+cKJXVo+7ewJw5XgHgVE0oIFC1RcXHzAvuLiYi1YsCCruh/5yEd02mmn6Y033tCoUaO0dOnSrOrlinlXngfc+g1m/SXF3L0qnJY6V1FR4ZWVlYHUqm1IavVbO/Xpn1Qq1c4fRet1gJNNKW3YVq3Lf/CcqusPngny4WmjdNP5EzS4i8sXAUBndtc26F9XbNCPn3r7oGNt1wGurmvU717fpuseeKXdWvfMnaJzjhum0mKWdQT6ivXr12vChAldPn/58uVavHixtm7dquHDh2vBggWaM2dOiB3mTnt/Fmb2krtXtHd+JqtDLDSzlrWCv2Nma8zs3Ky67QFKCgt06lFD9ONPVhw0Itz2QRgF8ZjGDSttd0SYAAwgDINKCvXZWeP06TPGHrC/vQdhdPRADQIwAEmaM2eOHn74Yb344ot6+OGH+0wA7o5MpkNc4+571fywjCGSPi7pm6F0lWPtBeFDPQmuvSBMAAYQprZBuKMnwbUXhAnAAHCwrj8fWGoZJz1f0n3uvs7M+szEstZBeNN7+/ShDh6F3DoIP/DCu1p4zngCMIBQtQThwnhMH5h0eIePQm4bhAnAAHCwTELwS2b2uKSxkm4yszJJqXDayo+WINx4pHf6KOSWIHzd7PEaVEIABhC+QSWF+vszj1K/wninj0JuCcItrwEAB8okBM+TNEXSW+5ea2ZDJH0qnLbyp6Sw638kBfEYARhATg3M4J5D+AWAQ+s08ZnZce7+upoDsCQd1YdmQQAAACCCujLsuUjSfEnfbueYSzor0I4AAADQK2zcuFGf+MQntHXrVpmZ5s+fr4ULF+a7rS7pNAS7+/z0r7PCbwcAAAC9RUFBgb797W9r6tSpqqqq0rRp0zR79mxNnDgx3611KpN1gq9IfxhOZvYlM3vQzE4KrzUAAAAEpbGxUddee62uvfZa1dbW7n/d2NjY7ZojRozQ1KlTJUllZWWaMGGCNm/eHFTLocpkneCb3b3KzGZIOkfSUkk/CKctAAAABGnRokVas2aN1qxZo/PPP3//60WLFgVS/5133tHLL7+s6dOnB1IvbJmE4Kb0rxdIWuLuj0hiaQQAAIBepL6+XtXV1aqvrw+sZnV1tS677DLdc889GjBgQGB1w5RJCN5sZj+UdKWkZWZWlOH7AQAAkCd33HGHEokDl05MJBK68847s6rb2Nioyy67TB/72Md06aWXZlUrlzIJsR+W9JikD7j7bkmHSfp8KF0BAAAgUDfccMNB838bGxv1hS98ods13V3z5s3ThAkTAptWkStdDsHuXivpN5JqzOwISQlJr4fVGAAAAIJXVFSk0tJSFRUVZV3rmWee0f33368nnnhCU6ZM0ZQpU7Rs2bIAugxflx+PZmbXSvqKpK362+OSXdIJIfQFAACAAN199937R2vvuOMO3XDDDfv3d9eMGTPk7oH0l2uZPDZ5oaRj3X1nWM0AAAAgHIlEQt/73vf2b7d+HUWZzAneKGlPWI0AAAAAuZLJSPBbklaa2SOS9q+p4e7dH0MHAAAA8iCTEPxu+qtQrA8MAACAXqzLIdjdb5EkMytNb1eH1RQAAAAQpi7PCTazyWb2sqR1ktaZ2UtmNim81gAAAIBwZDIdYomkRe6+QpLMbKakH0k6PYS+AAAA0EuMGTNGZWVlisfjKigoUGVlZb5b6lQmIbh/SwCWJHdfaWb9Q+gJAAAAvcyKFSs0dOjQfLfRZRmtDmFmN0u6P719lZpXjAAAAEAPd+aZZ6q2tvag/SUlJXryySfz0FF+ZbJO8DWSyiU9KOlXkoam9wEAAKCHay8Ad7Q/E2amc889V9OmTdOSJUuyrpcLmawOsUvS50LsBQAAAL3Q008/rZEjR2rbtm2aPXu2jjvuOJ155pn5bqtDmawO8VszG9Rqe7CZPRZOWwAAAOgtRo4cKUkaNmyYLrnkEr3wwgt57qhzmUyHGOruu1s20iPDw4JvCQAAAL1FTU2Nqqqq9r9+/PHHNXny5Dx31blMPhiXMrMj3P1dSTKzIyV5OG0BAACgN9i6dasuueQSSVIymdRHP/pRnXfeeXnuqnOZhOB/kfS0ma2SZJLOkDQ/lK4AAAAQqJKSkkOuDpGNo446Sn/4wx+yqpEPmXww7lEzmyrp1PSu69x9R8txM5vk7uuCbhAAAADZi+IyaB3JZCRY6dD78CEO3y9patYdAQAAACHL5INxnbEAawEAAAChCTIE8yE5AACAHHMngnXnzyDIEAwAAIAcKi4u1s6dOyMdhN1dO3fuVHFxcUbvy2hOcCcaAqwFAACATowaNUqbNm3S9u3b891KXhUXF2vUqFEZvSejEGxmJ0ga0/p97v5g+tdTD/E2AAAAhCCRSGjs2LH5bqNX6nIINrN/l3SCpHWSUundLunBEPoCAAAAQpPJSPCp7j4xtE4AAACAHMnkg3HPmRkhGAAAAL1eJiPB96k5CG+RVK/mdYHd3U8IpTMAAAAgJJmMBC+V9HFJ50n6oKQL0792yMzOM7M3zGyDmd3YwXmXmZmbWUUGPQEAAAAZy2QkeLu7P5RJcTOLS1osabakTZJeNLOH3P21NueVSVoo6flM6gMAAADdkUkIftnMfirpf9U8HULS35ZIO4RTJG1w97ckycwekHSxpNfanHerpDskfT6DfgAAAIBuyWQ6RD81h99z1TwNomVKREdGStrYantTet9+ZjZV0mh3f6SjQmY238wqzawy6gtCAwAAIDtdHgl2908F/c3NLCbpbklXd+H7L5G0RJIqKiqi+2xAAAAAZC2Th2UUS5onaZKk/Q9ndvdrOnjbZkmjW22PSu9rUSZpsqSVZiZJh0t6yMwucvfKrvYGAAAAZCKT6RD3qzmkfkDSKjUH2qpO3vOipGPMbKyZFUqaK2n/h+vcfY+7D3X3Me4+RtJqSQRgAAAAhCqTEDzO3W+WVOPuP5F0gaTpHb3B3ZOSPivpMUnrJf3c3deZ2dfM7KLuNg0AAABkI5PVIRrTv+42s8mStkga1tmb3H2ZpGVt9n35EOfOzKAfAAAAoFsyCcFLzGywpJvVPKWhVFK7YRYAAADoyTJZHeLH6ZerJB0VTjsAAABA+Lo8J9jMhpvZUjNbnt6eaGbzwmsNAAAACEcmH4y7V80fcHtfevtNSdcF3RAAAAAQtkxC8FB3/7mklLR/5YemULoCAAAAQpRJCK4xsyGSXJLM7FRJe0LpCgAAAAhRJqtDLFLzqhBHmdkzksolXR5KVwAAAECIMgnBr0n6H0m1an5S3K/VPC8YAAAA6FUymQ5xn6TjJH1D0vckjVfzo5QBAACAXiWTkeDJ7j6x1fYKM3st6IYAAACAsGUyErwm/WE4SZKZTZdUGXxLAAAAQLg6HQk2s7VqXhEiIelZM3s3vX2kpNfDbQ8AAAAIXlemQ1wYehcAAABADnUagt39z7loBAAAAMiVTOYEAwAAAH0CIRgAAACRQwgGAABA5BCCAQAAEDmEYAAAAEQOIRgAAACRQwgGAABA5BCCAQAAEDmEYAAAAEQOIRgAAACRQwgGAABA5BCCAQAAEDmEYAAAAEQOIRgAAACRQwgGAABA5BCCAQAAEDmEYAAAAEQOIRgAAACRQwgGAABA5BCCAQAAEDmEYAAAAEQOIRgAAACRQwgGAABA5BCCAQAAEDmEYAAAAEROQb4byKddNQ2qrk+GUru0qECD+xeGUhtANOyoqg/1HjW0rCiU2gCiIax7VK7uT5EOwdX1SZ1x54pQaj/1hVmEYABZqa5Paua3VoZSe+X1MwnBALIS1j0qV/cnpkMAAAAgcgjBAAAAiBxCMAAAACKHEAwAAIDIIQQDAAAgcgjBAAAAiBxCMAAAACKHEAwAAIDIIQQDAAAgcgjBAAAAiBxCMAAAACKHEAwAAIDIIQQDAAAgcgjBAAAAiBxCMAAAACKHEAwAAIDIIQQDAAAgcgjBAAAAiBxCMAAAACKnIN8N5FMibnpg/qmh1QYAAEDPFOkQXJ9Mae6S1aHUXvX5maHUBRAdpUUFWnn9zNBqA0A2wrpH5er+FOm7oHvvrA0gGoaWFWloWVG+2wCAdvX2exRzggEAABA5hGAAAABEDiEYAAAAkUMIBgAAQOQQggEAABA5hGAAAABEDiEYAAAAkUMIBgAAQOQQggEAABA5hGAAAABETugh2MzOM7M3zGyDmd3YzvFFZvaamb1qZr83syPD7gkAAADRFmoINrO4pMWS5kiaKOkjZjaxzWkvS6pw9xMk/VLSnWH2BAAAAIQ9EnyKpA3u/pa7N0h6QNLFrU9w9xXuXpveXC1pVMg9AQAAIOLCDsEjJW1stb0pve9Q5kla3t4BM5tvZpVmVrl9+/YAWwQAAEDU9JgPxpnZVZIqJN3V3nF3X+LuFe5eUV5entvmAAAA0KcUhFx/s6TRrbZHpfcdwMzOkfQvkt7v7vUh9wQAAICIC3sk+EVJx5jZWDMrlDRX0kOtTzCzkyT9UNJF7r4t5H4AAACAcEOwuyclfVbSY5LWS/q5u68zs6+Z2UXp0+6SVCrpF2b2ipk9dIhyAAAAQCDCng4hd18maVmbfV9u9fqcsHsAAAAAWgs9BPdkxYmYHph/ami1ASAb26vqVF3fFErt0qK4ysuKQ6kNIBrCukfl6v4U6RBcl0xp7pLVodRe+fmZodQFEB3V9U2a9a2VodRecf1MlZeFUhpARIR1j8rV/Snaw5XeS2sDAAAgK9EOwQAAAIgkQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAipyDfDeRTSWFcv1v0/tBqA0A2+iViemD+qaHVBoBshHWPytX9KdIhuKahSefcvSqU2iuunxlKXQDRUZ9Mae6S1aHUXvX5maHUBRAdYd2jcnV/YigAAHqolPfO2gCiIaz7SK7uT4RgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOYRgAAAARA4hGAAAAJFDCAYAAEDkEIIBAAAQOebu+e4hYxUVFV5ZWZl1nW1Vdaqpbwqgo4P1L4prWFlxKLUBRMO2vXXaW5cMpfaA4gING8A9CkD3hXWPCvL+ZGYvuXtFe8cKAvkOvVR9Y0qzvrUylNpPfWFWKHUBREd9MqVz7l4VSm3uUQCyFdY9Klf3J6ZDAAAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwW2cPnaA5v3dEfu3S/tJD197up7/4lladf1MzZk47IBjt148IR9tAoioL59/rA4v/dv26WMHaMU/v1/Pf/EsPbZwxgHHLjnhcF1ywuG5bxJAZH3zkkkHbH/m/WP03A2z9PxNZ+mn8yoOOHbrxRNU2i+X3R3I3D1/372bKioqvLKyMus626rqVFPftH+7WFIsEZfLVZyIqaa+SXWNKb21o1q7axtVlIhpXHmpBvZLKB4zDSoyVTWaBhbHtHlPwwG1+xfFNaysOOseAURX23vUiLIC7a13lRa4qpJSssm1ty6pDduqVdfYpLLihMYN669+ibhKEjGlmqSkSXFvUlXjgbW5RwHIVtt71KDiuGLxuEoKpO01jWpKSTur6/X2jho1uWtYWbGOOKxEBXFTeWlCVXUpJVMp7WtMHVA3yPuTmb3k7hXtHSsI5Dv0UjX1TZr1rZWSmkdMbrxgkhJxV02D60dP/Um/qNyovXXJg94XM2nWscO0YNY4vW9gsfbsTapfgenUb67Yf86K62dKZTn6jQDok1rfox5bOEM7ak0FMdNbuxr0/ZUb9Pi6rUqmDh7IKCmM69KpI/XpGUepf2FMTRbX8j/8WXf+dsP+c7hHAchW63vUmi+dLTPXvvqkXnx7r76/8k9a8+6udt93+IBiffL0I3XxlJEqK4pLks655wlV72s+nqv7E9Mh1ByAv3jBJLmkB1/+q865e5WWPv12uwFYklIu/f71bbr0357VLQ+/poZ4TEP6J7T6xlm5bRxAJDy2cIbGDumneMx012Nv6MLvPa1la7e0G4AlqbahSf+5+l2dc/cq/fSFjXJ3fezkI/WF2eNy3DmAKFjzpbNlknbVNukf/muNPn1f5SEDsCRt2VunOx59Q+d/9ymtfvs9yaXfXXdWzqdGRD4Et4wAp0z6l/9Zq68/sl71yVTnb0xb/sctuuz7z2rT7nqCMIDAtQTgrdVJzV2yWr9as7nL702mXN/53f9p4QOvqM5FEAYQuDVfOluS6087anX+d5/WKxt3d/m9u2sb9f/ue0n3PveOpNwH4UjPCf7rjprmOcDuuvWR1/TI2i3drnX4gGI9+JnTVdSUUmPctC/pGju0f9Y9Aoiuuvp67ahtUjxm+siS1XpnZ223a50xbqjuuuIEmZl+9eKfNefEUdyjAGRlV3WdihIxvburTh9a/IzqGrs+iNjWDecdq8unjlKTu/Y1pgK7P3U0JzjSI8HxwriKCqSXNu7OKgBLzUP7X/vfdWqIxxSLxTQ4j592BNA31DRKBSbd89v/yyoAS9JTG3bo9+u3KRGTPjx9TDANAoi07dWN2lvXpM/+9OWsArAkfevxN7WjpkGJmFSSyE08jXQIjkmqbXR98cG1gdR7dN1Wbd69TwOLTLv2BVISQIQVKaXd+5L6WeXGQOrd+shrqku6mpqy+8cKACTpiEHFWrZ2izZsq866VlPKdcOvXlV90tW/yALornORDsGDSgpU+c572rOvsfOTu+hfV2zQrn38AwMge/tS0g+f/FNg9eoaU3ps3RYNKI4HVhNAdO3c16ilT78dWL1XN+3R3rqkGhqaOj85AKGHYDM7z8zeMLMNZnZjO8eLzOxn6ePPm9mYsHtqsa26Qf/9QjAjLC2efHO7kr1wnjWAnqchJS3LcqpWW7+o3KQdNe2vfAMAmaiqS2rz7mB/9P2LlzZqQElRoDUPJdQQbGZxSYslzZE0UdJHzGxim9PmSdrl7uMkfUfSHWH21FrKpbWb9wRec3dto0oCrQogivY1NGW0Wk1XvLm1SjHLzY8aAfRtHS2D1l0vv7tHW/c2dH5iAMIeCT5F0gZ3f8vdGyQ9IOniNudcLOkn6de/lHS2WW7u0E0pV3V98CMib2yp0mEDCwOvCyBaNr6X3Yfh2pNMueqSuflRI4C+7Y8BDyRK0obtVcrVpNKwQ/BISa3nG2xK72v3HHdPStojaUjbQmY238wqzaxy+/btgTSXCmnaQl2ySTnK8QD6sPqQwmpvXBoTQM+SSqUC/0mVJDUkU8pVhOo1H4xz9yXuXuHuFeXl5YHULIiF89sf2C+hphQfjgOQnQHFiVDqhnXvAxAdsVhMA/oFf48qK0rk7D/qYd8JN0sa3Wp7VHpfu+eYWYGkgZJ2htyXJMkkDSsLfvL1+OFl+sve4FacABBN7wthwfGSwrgK4vykCkD2Ko48LPCaE983QIl431gn+EVJx5jZWDMrlDRX0kNtznlI0ifTry+X9ITn6L8AxQnTtCMHB1qzpDCu/oUsPwQge4mYaUj/YD9fMGX0IMXIwAACMHnkgMBrnnb0EJWX5uZzVaGG4PQc389KekzSekk/d/d1ZvY1M7sofdpSSUPMbIOkRZIOWkYtLP0SpnkzxgZa89KpI3P2pBMAfdvAfgX66PQjAq356RljCcEAApGIx3TS6EGB1YvHTBccP0Lv7qoLrGZHQk9r7r7M3ce7+9Huflt635fd/aH06zp3v8Ldx7n7Ke7+Vtg9tdhbl9L7BhVr/PDSQOoVxEyfnnGUUk2uUgaDAWSppiGlK08ereKA/mM9anA/HTdigJongwFAdsr7F+ifZo8PrN4Fxx+uwripuIAnxoXOzNQvEdd3556keABDI/80+xj1L4opaSZWIAIQhH6JmG6+oO3y6t3z3bknaWBxQSC1AGBbdVLjh5fqA5OGZ11rcElCN86ZoD11NSrI0fIQkQ7B+xpTakimdFhJQrdclN0/MjPGDdFlU0cr5aafPPMn5WYgH0Bf1tjQpGRKOnvCMJ2X5T8yi2YfoxGDilVd36RTb38ioA4BRNngkpgSKemrH5yksUP7d7tOIm76wVXTNKAoriH9SlXdmJsVtiIdgiVp+u1PyCWdM2G4vnbxpG6NCM86tlzfumKKikz6yTN/0vdXvRN4nwCip1HSV3+9VmamWy6arItPHJFxDTPpn88drysrRism0/Tbfx98owAiaWtVUpuq63RYv5jun3eKjju8LOMaJYVx/cfVJ2vM0BLVN6Y07Ru5u0dFPgRLzUHYJJ03cbgevnaGxg3r2hzh0qICffvDJ+oblx6vhEk/IgADCNjy17bpq79eK5l00/kT9G9XTdXALq7NecRhJfqfz5yuK6aNkgjAAEJw8eJn9fq2Wg3pF9O9nzpZnzt7nAq6OKB42tFD9OjCMzRpRJkKZDkNwJLE5LC06bc/oedvOkuHDyjSfdecok27avXjp97WS3/epZ01f3uGdXEipokjBurKk0fpjGPKVZKIqb7JtZQADCAky1/bJmmtvvqh43X60YO1fOEZevGd9/TT59/V2s17VNvwtw8hDCpJ6KTRgzVvxhgdVV6qsqK4ahtSBGAAobl48bP6zYLTNbS0WFdNP0Ifrhith175ix5+9a96c2uVkqm/rXw7clA/nXb0YZo34ygN7FcgpVJKpZTzACwRgg8w/fYntPqms2SS+idMX//QZNUnU3J3NaZcMZMK4zFJrsElhdpX3zxfjykQAMLWEoRv+dDxips0c3y5KtLrnDc2uZrcVRAzxWOmRMxUXdcoM6m6oUmnMQcYQMhagvDow/orbkkH2Tr/AAAGuElEQVRdffqR+uCJIxQz2/945ZaHYPQviuudbXtUXjpQFovlJQBLkvXGZ8hXVFR4ZWVl1nW2V9Wpuj6cZRxKi+IqLysOpTaAaOAeBaAnC+seFeT9ycxecveK9o5FeiS4vKxY5ZnP4QaAnOAeBaAn6+33KD4YBwAAgMghBAMAACByCMEAAACIHEIwAAAAIocQDAAAgMghBAMAACByCMEAAACInF75sAwz2y7pz3n41kMl7cjD90W4uK59F9e27+La9k1c174rX9f2SHcvb+9ArwzB+WJmlYd66gh6L65r38W17bu4tn0T17Xv6onXlukQAAAAiBxCMAAAACKHEJyZJfluAKHguvZdXNu+i2vbN3Fd+64ed22ZEwwAAIDIYSQYAAAAkUMIBgAAQOQQgtsws383s21m9sdDHDcz+66ZbTCzV81saq57ROa6cF0/lr6ea83sWTM7Mdc9ons6u7atzjvZzJJmdnmuekN2unJtzWymmb1iZuvMbFUu+0P3deGePNDM/tfM/pC+tp/KdY/InJmNNrMVZvZa+rotbOecHpOjCMEHu1fSeR0cnyPpmPTXfEn/loOekL171fF1fVvS+939eEm3qgdO4Mch3auOr63MLC7pDkmP56IhBOZedXBtzWyQpO9LusjdJ0m6Ikd9IXv3quO/twskvebuJ0qaKenbZlaYg76QnaSkf3b3iZJOlbTAzCa2OafH5ChCcBvu/qSk9zo45WJJ93mz1ZIGmdmI3HSH7ursurr7s+6+K725WtKonDSGrHXh76wkXSvpV5K2hd8RgtKFa/tRSQ+6+7vp87m+vUQXrq1LKjMzk1SaPjeZi97Qfe7+V3dfk35dJWm9pJFtTusxOYoQnLmRkja22t6kgy8werd5kpbnuwkEw8xGSrpE/NSmLxovabCZrTSzl8zsE/luCIH5V0kTJP1F0lpJC909ld+WkAkzGyPpJEnPtznUY3JUQT6+KdBTmdksNYfgGfnuBYG5R9IN7p5qHlRCH1IgaZqksyX1k/Scma129zfz2xYC8AFJr0g6S9LRkn5rZk+5+978toWuMLNSNf/07bqefM0IwZnbLGl0q+1R6X3o5czsBEk/ljTH3Xfmux8EpkLSA+kAPFTS+WaWdPdf57ctBGCTpJ3uXiOpxsyelHSiJEJw7/cpSd/05ocZbDCztyUdJ+mF/LaFzphZQs0B+L/c/cF2TukxOYrpEJl7SNIn0p9uPFXSHnf/a76bQnbM7AhJD0r6OKNIfYu7j3X3Me4+RtIvJX2GANxn/EbSDDMrMLMSSdPVPAcRvd+7ah7hl5kNl3SspLfy2hE6lZ7DvVTSene/+xCn9ZgcxUhwG2b232r+JOpQM9sk6SuSEpLk7j+QtEzS+ZI2SKpV8/9W0cN14bp+WdIQSd9Pjxgm3b0iP90iE124tuilOru27r7ezB6V9KqklKQfu3uHS+WhZ+jC39tbJd1rZmslmZqnNO3IU7vour+T9HFJa83slfS+L0o6Qup5OYrHJgMAACBymA4BAACAyCEEAwAAIHIIwQAAAIgcQjAAAAAihxAMAACAyCEEA0CemVl1CDWnmNn5rba/ambXB/19AKC3IgQDQN80Rc1rcQIA2kEIBoAexMw+b2YvmtmrZnZLet8YM1tvZj8ys3Vm9riZ9UsfOzl97itmdpeZ/dHMCiV9TdKV6f1XpstPNLOVZvaWmX0u/f7+ZvaImf0h/d4r220MAPoYQjAA9BBmdq6kYySdouaR3Glmdmb68DGSFrv7JEm7JV2W3v8fkv7e3adIapIkd29Q81MQf+buU9z9Z+lzj5P0gXT9r5hZQtJ5kv7i7ie6+2RJj4b9+wSAnoAQDAA9x7npr5clrVFzaD0mfextd295DOlLksaY2SBJZe7+XHr/Tzup/4i716cfP7tN0nBJayXNNrM7zOwMd98T4O8HAHosQjAA9Bwm6fb06O0Udx/n7kvTx+pbndckqaAb9Q+q4e5vSpqq5jD8dTP7cncaB4DehhAMAD3HY5KuMbNSSTKzkWY27FAnu/tuSVVmNj29a26rw1WSyjr7hmb2Pkm17v6fku5ScyAGgD6vOyMJAIAQuPvjZjZB0nNmJknVkq5Seq7vIcyT9CMzS0laJallOsMKSTea2SuSbu/g/cdLuiv9/kZJ/5jd7wIAegdz93z3AADoJjMrdffq9OsbJY1w94V5bgsAejxGggGgd7vAzG5S8/38z5Kuzm87ANA7MBIMAACAyOGDcQAAAIgcQjAAAAAihxAMAACAyCEEAwAAIHIIwQAAAIic/w9/q5mZRxuQWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3Sb1f0/8PfVtix5z9iZzt4kziJA2HuXFcIoZYXVL7/SltKW2RZaWkahQCAUUiCEsgm7hDACmXZ2Ymcnju14D0nWlu7vj0TBsbVsPZIher/O4RCkq+uLc86jt67u8/kIKSWIiIiIiJKJqq8XQERERESUaAzBRERERJR0GIKJiIiIKOkwBBMRERFR0mEIJiIiIqKko+nrBfRGTk6OHDRoUF8vg4iIiIh+xMrLy5uklLnBnvtJhuBBgwahrKysr5dBRERERD9iQoh9oZ7jcQgiIiIiSjoMwURERESUdBiCiYiIiCjpMAQTERERUdJhCCYiIiKipMMQTERERERJhyGYiIiIiJLOT7JOcKLYnB5YnB74JeD1S6gEoFGpoNOokGPS9/XyiCjJtdhccHr98Pol/FJCoxIQAMwGDdJSdH29PCJKYn6/H002N7x+CY/PDwDQqFUQALKMWhh0fR9B+34FP0J17Q40WFx4afkelO1tRXWr4/BzaSkajC/KwBVT+2PSgEzkpOqg06r7cLVElEy8Xj8abC5srbXgtZX7sKG6Da12z+HnC9MNmDwgE9fNHIR+mSkoTE/pw9USUbKxOjywurz4Yms9Fm+oxdZaCxweHwBAJYDBOSYcNzQb18wYBHOKBnlmQ5+tVUgp++yH91ZpaamMR8c4i9ONBosLd/53PTbXWCKOzzBq8chF41A6KBO5ffiXSETJodHqQsUBC+56awMara6I44flmfDPK45Bv3QDMlK5M0xE8VVvceK9dTV44ovtcHn9EcefMjIPD14wBnkmfdw2FIUQ5VLK0qDPMQQf1Gxz4attDbjn3U3w+Hr2OzlnXAHuP28M8tIYhIkoPhosTjyxZDsWrd7fo9epVQJ/OHsUzp/Yj8e4iChuatscuOW1cmyobu/R69JSNHjp2ikYXZgGo175AwrhQjBvjMPBHeCvtjXg129t7HEABoCPN9Xhd+9uQoPFGYfVEVGya7A48fAnFT0OwADg80s89NFWvLeuBi0dkXePiYh6qq7dgWtfWt3jAAwAFocXc15chW31Vnij2D1WEkMwgPp2F+55d1NMcyytbMCHG2phdXoiDyYiipLD48W3Oxrx/vramOZ5+JMK1HS6v4GISAmNVice/rgSOxpsvZ7D5fXjxlfK0GhL7Af1pA/Bde0O3Pnf9b3aAe7qb59tQ2uHW4FVEREd1NLhwX0fbIl5HimBOxatQ107gzARKWdXYwcWb4ztQzoANNnceOyL7WhN4DdWSR+CD7Q7saU28k1w0XD7/Hjp+73ocHE3mIhi5/L48E55NexunyLz7W22Y3t973driIg6q7c48dj/tik23/vramB3J+5IRFKHYIvDjZe+26PonG+XV6Pd4VV0TiJKTs0dbry6cp+ic85fthtNUVSWICKKxOXxYc3eVsXm8/olPt18QLH5IolrCBZCvCSEaBBCbA7xvBBCPCWE2CmE2CiEmBTP9XRldXkV/csDAJvLC4dCuzZElNy8Pn9UpdB6Yl1VG9y+xN58QkRHp60HlPkmvbPvdjah1Z6Yo6Xx3gleAODMMM+fBWDYoX9uAvBcnNdzBCmBujhUdNheb1V8TiJKPrXtyl+fbC4v3Am+A5uIjk5r9rYoPufWWgvsrsR8ox7XECyl/BZAuN/QBQBekQetBJAhhCiM55o6U+JmuGAS9QmGiI5ubXG6lnj9DMFEFBu/3482u/L3QFmcHgghFJ83mL4+E1wEoHPhy+pDj3UjhLhJCFEmhChrbGxU5Ier4vQ71mn6+tdKREcDvSY+HZRUCXqDIaKjl0qlikve0alVSFQft59MWpNSviClLJVSlubm5ioyp1atQqpO+TeZ4flmxeckouTTPytF8TnVKgF9nNqTElFyGdsvXfE5S3JNUCconfZ1CK4B0L/TfxcfeiwhNCqBMUXK/gUKAWSn6hSdk4iSk1GngU7hd4OhuSZwH5iIlHDMgAzF55zYPwO5CWrx3tcheDGAaw5ViZgOoF1KmbDaGHlpBlxe2j/ywB6YWZITt68wiSi5pOjUOH1MvqJz/mxyMfLNiXmDIaKjW6ZRh4I0g6JzXlpaDHWCtoLjXSJtEYAVAEYIIaqFENcLIeYKIeYeGvIJgN0AdgKYD+DWeK4nmGOHZsOs1yg23+0nD0UO32CISAGZRh3mzipRbD69RoVzxxcm7A2GiI5uOWY9rps5SLH5RhemISuB36bHuzrEbClloZRSK6UsllL+W0o5T0o579DzUkp5m5SyREo5TkpZFs/1BJNp1OGhC8YoMtdJI3IxJDdVkbmIiAAgP82ACyf2U2Suu88aiTSDch/6iSi5adUqXDCxCIOyjTHPpRLAo5eMR0G68vdChPyZCftJP1IGrRozh+bglJF5Mc2TY9LhTxeORZ5Z2a8FiCi55Zr1uPvMkSjKiO2NYcqgTJwzrhAmg1ahlRERAQXpBjwzZxL0MVaKuP3kYTFf53oq6UMwcPBs8CMXj8PMkuxevT7HpMMbN81Av3QGYCJSXmFGCl6/cVqvrzHH9M/Av2ZPQr7CZ/eIiABgcHYqXr5uSq+D8LUzBuLq6QOQmeDCAgzBh+SlGfD45RPxq9OGQ9ODAsKzhufi/dtmYkiOESoVf51EFB8Ds1Pxzi3H4uyxBVG/RiWAm08YgnlXT0Y+P6QTUZwY9RpMKErHR3cch1GF0ZeJNes1eOqKibjt5KHI7YNv0oVMVEViBZWWlsqysvgcH7Y4PGjucGP+t7vw7roa5Jr1GFWQhlS9Bh6fH3uaOrC93orSQVm446ShGJpnQh53V4goQRqtTuxvceCppTvw3c4mDM01oSTXBJ1GBbvbh211FtRZnDhnXCHmzipBjkmf8N0VIkpe9RYnVu1uxrxvdmNPUwdG90tDUUYKVEKgzeHGlloLfH6JOdMG4IopA5Bt0sEQx9rlQohyKWVp0OcYgoNrtLrg8Piws8GG8n0taLa5YdCqMb44HeOK0mHSa1CQbkhYaz8ios4OtDnQ4fZia60F6/e3we72IT1Fi9JBmRiRb4ZBq+YHdCLqEx6fH41WF1rtbqyrasO2Oit8fj8K0g2YOjgb/TNTYNJrkG6M/wf0cCGYtwl30e7wYHejDX/7rBIrd7eEHNc/KwW3nTQUp43KR3aCijoTETXbXPh2RyOe/nIndjd1dHv++W8P/nvSgAz8+vQRGN0vDRkJeKMhIpJSosHqwhurq7Bg+V602j1BRu2ARiVw+pgC/Oq04eiXboBRwVK1PcGd4E4arS789dMKvLM2+qZ1w/NNeG7OZPTPSoGOTTKIKE58Pj+q2xy4/fV12FTTHvXrzhiTjwcvGKt4QXsios5sTi+21Lbj9tfXodHmiuo1apXA/50yDHOmDYjbhmK4nWDeyXVIvcWJK+ev7FEABoDt9Tac8/QybD1ghcfni9PqiCiZeX1+bG+w4dynvutRAAaAz7fU49J5y1HT6ojT6ogo2dmcXnxRUY8r5q+MOgADgM8v8fgX2/HbtzeiqQevUwpDMA5+vXjjK2XY0WDr1eudHj9mv7AStW1OhVdGRATUWZy4/IUVsLq8vXr9/hYHrnlpFRosvEYRkbL8folNNe341Zvr0dvDBV9WNuDRzyrRbncru7gIkj4EOzxevLeuBhure7a70n0eH/5v0To098EnGSI6ejXbXPjdOxthcfQuAAfsauzAguV70dHLIE1EFEyD1YU7Fq3tdQAOeLOsGlsPWJDIY7pJH4ItDi/+/vk2ReZaX90ec5gmIupsd1MHvtvZrMhc877ZhZaOxO60ENHRy+3147WV+9BkU+a68tt3NqLBmrjNxKQOwX6/xOdb6uDy+hWb859f7kBLB3eDiSh27XY3/rV0p2Lz+SXwdvl+eHzKXfOIKHk1d7jw2qp9is23v8WB6la7YvNFktQhuM3hwbs9vBEukvX72+D08A2GiGLX4fZh2Y5GRedcvOEAj20RkSKarC60BS2D1nvvlFfD609MjkrqEOz2+lFxwKL4vLz5hIiUYHV64Vf4eNze5g74lJ6UiJJS2b5WxefcUN2OZoWOV0SS1CHY5fUpehQiIFgBeyKinqptU76smZSIy3WPiJJPPDYS9zXb4fUl5oN6UofgeG2GcJeFiJQQr2vJT7BHEhH9yPj9/rhco3x+CZVQfNqgkjoEa9Xx+S1nGLVxmZeIkktWanzaHWvidO0jouShUqmQn658J8qsVF3cNim7SuoQ7JfAgCyj4vPGY04iSj6ZcQjBGUYtVIIhmIhiN7E4Q/E5xxalQaNWfNqgkjoEa9UC04dkKzpndqoOAnyDIaLYub0+DMxW9kP1tMFZvEIRUcyklBiQZVT86MK0wdlQi8TE06QOwX4pcfExRYrOefmU/hCCB+6IKHZ2lxezpw5QdM7LpwyAl4eCiUgB+5rtmDU8T7H5DFoVJvbPgMvrU2zOcJI6BEMCLXY3Zg5VZjfYrNfg9NH5UCXoEwwRHd1MBi1KB2Yix6TMsYjxxenocHmhVfMaRUSxEUKgzeHGDccPhlInrK6aPhCr9jRDJOjIVlJfCY06Ndrsbvz69BFI1cV+AOWP547GZ1vqwPcXIlJCql6Df/yvEg+ePzbmuXRqFe47dzQWrtrH4xBEpIgR+WZ8v7MJ184YFPNcg7KNOGVkPuraHTDpNbEvLgrJHdeEwLiidKzZ24J5V0+GJoaDLVdPH4CxRWkYV5SBFF1i/vKI6Ohm0KiQkaJHVUsHbplV0ut5VAJ45Gfj8MqKfThheC5yzXoFV0lEySrbpMe7a2tw8sg8zCjp/bfq6SlaPHrJBPzx/c04Z3wRQ3AiGLVqOD1+nDg8Dx9tqMVzV03ucXkzIYBbZpWgdFAWyve2Ynh+KiTP2xGRAtKNOtx6Ygke+2I7zptQiHvOGgl1Dz+sm/QavHB1Kcx6DT7dfADnT+jH4xBEpIhUvRqXTynGfR9sxt8vGY+zxxX0eI6B2Ua8NXcG/rflAFQCyE/TQ5WgQsHipxjYSktLZVlZWczzNFqdcHn9+L9F61Fe1YpjS7LxmzNGYP6y3fhsc13EOnXD802499zRWLGrGfO+2QWdRoUv/t8sCAEUZ7JMGhHFptHqhNvrx9YDVnxV2QCtRoWzxxbgzx9XYFNNe9jXCgGcNCIPd5w8FM98tRPHD8tFQboBI/JNyDbpYTawnjkRxcbn86Om3YlGqxN/+6wS5084uIv7yKcVqLe4wr5Wr1FhzrQBOGNMAf7ycQV+d/ZIZBt1yDHrkW1S7tsqIUS5lLI06HPJHYIdqGt34bx/fX/4MZNeg5tnDcFxQ3Pw1bYGlO9rxdZaC6zOgzeTDM0zYXxxOs4YU4BWuxtPL92JnQ22w6+/+YQhmD2lPwblmmJeHxElt0aLCyt3N0GrUWPua+UADtYhv+PkoSjKTMHnW+qxYX8bdtRb4fL6karXYFShGZMGZOLUUfko29eKZ77aiXaHB2qVwIe3z0SzzY3RhWnI5pEIIoqRxeFGq92D57/djddXVQEAZgzJxo0nDIHT48OSinpsqm5HVYsdfimRlarD2KJ0TB+SjckDMrF4Qy1eXbkPPr9EYboBb9w0HUadGrlm5ZpwMASH0Ghx4eFPK/Deuppuz2nVAscPy8WE4nSMLExDqk4Dr9+PPU0d2FTTjm+3N6LJ5u72urQUDT6+43j0Z8MMIorRnqYOWBweXP3SKlgc3iOeS0/R4sQRuRhXlI4huSbo1Co4PF5sq7NhY3UbvtneCJfXf8Rrhueb8NAFYzEwy4jCjJRE/q8Q0VGoweLEjgYb5ry4qttzA7ONmFmSg7FF6SjOTIEQQLvdgy21FqytasXqvS3dWrhfOXUAbj2pRNFv08OF4KS+g8vp9WH1npagz3l8EksrG7C0sqFHc1ocXrh9/sgDiYgi0KkFvt7e2C0AA0C7w4MP1tfig/W1Uc+3vd4Gi8MDlocgIiW4fX4889XOoM/ta7ZjX3NVj+Z7u7wa1x83GE6PDwZt/NvGJfXdEUIANW0OxefdUW+LPIiIKAKX14//ru7Zm0gki1bvhy/SDQ9ERFFwe/1YvqtZufl8fny9rQFOD5tlxJ3XF583gpaO8IfBiYiiIQHUtjsVnbN8X/evIImIekpKico6q+LzLt/dDBdDcPzFqyEJyw8RkRIarcp/oLY4vdwJJiJFrKtqVXzOLTUWeBJ0jUrqM8EatQopWjUcQT5xGHVqnDoqHxP6p2N4vhlatQpSAtWtdmyqacfSygZUtwY/SjE0j5UhiCh2Vmf3s8ABBWkGnDIqD2OL0jEoOxVCHPx2a0eDFZtq2rFkaz0sIV7PEExESmjp6F4gIFZtDnfCbltI7hAsBEb3S0P5vh8+yWQatfjlKcMwtigdn246gA/W12Jb3cHyQ0IAA7OMGF+cgXvPHQ2VEHjqyx3d6nXmKFjfjoiSl07d/a1geL4Jd546HAatGh9trMWLy3ZjT1MH/PJgVZvh+QdLpM2/phS7GjvwxJLt3XaU4/UtGBElDyFE2G++Rxem4bhhORhXlI68QyUZ7W4fth6woHxfK77d3ghvkA/kWpUKIkEXqaQOwblmHS6eVHQ4BJ82Oh+3nliCJ5fswIMfbu02Xkpgb7Mde5vtWLyhFsWZKXjg/DHYVmfFE19sh9cvMW1wFvQaHocgoth1LhMkBHDriUMxbXAWHvxwC3Y1dnQb7/FJbKm1YEutBa+u3Iepg7Mw76rJ+M/yvVi84WAVCZUAjGztTkQKGFuUDqzZf8Rjp4zKw/XHDUZNqwNfbK3H4vW1qLMcvLfBpNdgTL80TB+SjTtOHoovKxsw/9vdR5RzHJybmrAcldRpTaVS4aQReUjRqnH19IE4f0I/XPXiKnyzvTGq11e3OnDDf8pwoM2BZ+ZMgk6twm0nlSAvTbkiz0SUvEwGDTQqAZUAHrt0Anx+P659eXXQABzM6j0tuHL+SswcmoNbTywBAAzOMfW49TIRUTDHDMg4/Oc0gwZPXD4RJ4/Iw60L1+I3b2/E/7bWHw7AAGBzebFqTwv++eUOXDJvBeotTiy8YRrGFaUfHjOxfwYyjbqErD/ptwMyUrR45spjYHN58X9vrIvYKjmY11ZVwebyYd7VkzGiIE35RRJRUjLq1DhlZB6ml2Rj/f42vLJiX4/ncHn9uPudjfjLhWNxxZT+GJyTiiwjWyYTUexyTXrkmHTwS2DeVZPxzFc7o95I9Pkl3iqrxrLtTXjyion419Kd+G5nEy4t7Q9Vgj6oJ30INuo1GJJnwplPfturABzw/voanDA8B5l8cyEihZgNWvzmzJHYWN27ANzZ/Yu34PUbp2FQdirUrGBDRArIStXh+uMGY2L/TPz10wqsrWrr8Rx1Fidu+E8ZXry2FEadGgUJ/DY96a+ETTYnfvPmBjg9sXd5++P7m9FoVf5OSSJKXql6ddB7FHrK65e474MtCqyIiOigNocHZ48rxOL1Nb0KwAE2lxd3vbkB9547GnZ34so4JnUIdni8qGt3Yc0+Zerc2d0+vLZyH9ocDMJEFDu/X+KzzXVod3gUma+yzor9IUo7EhH1lMPtRU2bA4u63BzXGzVtDrz0/R4caHPA4Q5dHlJJSR2CnR4/Fizfq+ici9ZUwe5KTKcTIjq61VmceHHZHkXnfO7rnWiyKduFjoiSk0mvxXNf7VJsvtdXVWFgdipMhsQcLU3yEOzDyt3K9bwGgDa754hSH0REveXzS9S0Kbtzu3pvC9xeNssgoth1uLz4bleTYvO5vH58ta0R3gTlqKQOwX6/DNn1LRZ7Gm2Kz0lEyScubZMdbJtMRMrY0WCDVPhysrSyHu1OZY6ARZLcIThO7wOt9sT85RHR0a3VHp/7Czw+fltFRLFbs7dF8Tm31FrgUzpZh5DUITheWIieiJSgidO1RMW+yUQUIykl6i3K31/QZvcACfqyKqlDsEYlYNAq/ysYkpuq+JxElHz6ZaQoPqcQgI6t3YkoRkIIaONQczxeH/6DSeoroVolMLowPfLAHkpUuz8iOrqlpWgVf0MYkpMKnZo7wUQUu7FFymeogTnGhH2jntQhWEDi7HEFis45ZVCmovMRUfLSqgROHJGr6JwXTyqCUadWdE4iSk4T+2coPucxAzLj8i19MEkdgl0+iUkK/7Kvnj4QVS0dis1HRMnL5fPjqukDFZtPrRI4aUQeOtysZU5Escs06pCdquy33xdM6AeDVqPonKEkdQj2+CReWbEPd546XJH5pgzKhEolsK/Zrsh8RJTcPD6JA+1OnDQiT5H5bj5hCD5YX8M6wUSkiJYOFy6f0l+x+YbkpMLt9cPGEmnxJwC8v74Gg3NSYz7GkGbQ4J6zRuGBxVugicNBcSJKPvUWJx7+uAK/PGVozLstowvTMH1INl5YtgdeP0ukEVHsPttSh5NG5qEgzaDIfH84ZxSe/3Y37An6tiqp05pOI6DXqHDPu5tw95kjMa6XB7zNeg2eu2oy/vG/bWiyuTEsz6TwSokoGTXbXLC6vHjww6147qrJyOplEB6aZ8JfLhqL3769EVICbtYJJqIYSSlR1+7EQx9uxcMXj4v5ZrYrpw7A1gMWrNrTnKgKackdglVCYEy/NLR0uHHLa2vxh3NG4cqpA3o0x4TidCz4xVQ8+/VOLN91sAVzjkkfj+USUZLRqA5eotfvb8Mjn1Tg39eWYtrgrB7NceHEIjxy8Tjc/vo61B2q6akCq0MQUew0KhU21bRjaUU9Hv3Z+F4H4bPHFeDkUXl46ssd0KhUkGyWEX8mvRoXTiwCADTaXLj636uQl6bHwhum4bTR+Qj3dzmywIyHLxqH208eilsXluP7nQcD8OSBmQmtcUdER6/+WcbDf163vw3X/6cMV00fiMcum4DxxaG/uRICmDU8Fwuum4JRhWZc9eIq1LQ5Dj+XqDuviejoJYTAsPyD33y/tqoKa6ta8dK1pSjOjL6+uU6twm/OGIFzx/fDbQvXwuOTGJRjTNhOcGJuv/uRMuq0OHV0Pv7ySQVcXj88Poknl+xAQZoBs6f2x9xZJWjpcGFrrQUWpxc6tQpD80wYkG3E/hY7Xl2xD+v2tx0x520nlSDNkNS/ViJSiNmggVol4DvU472lw407Fq3DmH5puGr6QNx3rgn7Wx3YUW+Fy+uHSa/ByEIz8s0GrN7Tgj++vxnVrY4j5hySk5qwNxgiOrodM+CH+6kWrqrCuqo2PH7ZRKza04xFq6pQ2x68o5xBq8J54/th9tQBWLSmCn//fNvh58YXpcOcoBwlErXlrKTS0lJZVlYW8zw+v0STzYlPNtXhwQ+3Bh2TadRiZEEaTAYNPF4/djd1oKolePWH0oGZeHr2MTAZNDAbtDGvj4iSW6PFibvf3YSllQ0hxxRnpqAk1wSdRoUOlxfb661osrlDjr/z1GGYO2tIwkoQEdHRa3+LHRc88z1aOn645qgEcOKIPMyeOgBpBg12NthQ1WKHT0pkp+owujANBp0an22uwzvl1bA4vUfMuejGaZg6OAtqlTLfWAkhyqWUpcGeS+qroM3pwW/f3oiHLhiLjzceQNm+1m5jWu0erNjdHHEus16Df1w6Abe9vhb/vnZKPJZLREnGqFPjlhNLwobg6lZHt93eUNQqgYuPKYLbK8HP6UQUq1S9GpeX9sdz3+w6/JhfAksrG7C0sgFqlcDQXBOKMlOgEsD6qjb8a+nOkLXKB+ekol9GimIBOJKkPhiWbtThH5dOxDvl+/H0lcdgTL+0Xs1j0muw8MZpqGruwMMXj0vYNj4RHd1SdBoUZ6TgJIW6xt16YglStGqkpTABE1Hs1CqBiycVIT8teEEAn19iW70VSysbsKSiAWX7WsM267n33FEJ7WiZ1CEYALJSdThvQhF+uWgdnr96MuZM61l1iHFF6Vh8+0x8sukADlicKEw3sE4wESnC4fFhR70VD54/BpnG2ILryAIzLp1cjEabCx6WSCMiBdS1O2HUqfHIxePCFhOIxhVT+qN/lhHfbm+CzeWN/AIFJHVa8/kl9jZ14JJ5K7BmbyvOe/o73DxrCBbfPhMnj8wL+xc6LM+Exy6bgBeumYzH/rcd877Zjbvf2YQvttTDmqBOJ0R0dPNLiV+9tQHPfrUTr984vddBuCQ3FS9cU4r/e2Mdfv/eZjjYNpmIFJBj0mPxhlpkp+rxt5+N73UQPmNMAWZPHYDVu5sxoyQbJn1ivlFP6u/tbU4PHvpoC9odHug1Kjx22UQ8/Ekl6tsduOv0Ebj/vNGoaXNgXVUb2uxu6DQqjO2XjmH5Znh8fry6ch+e+GI7np59DLbVW7GzwYYHPtyKU0bl9/X/GhEdBVJ1Grx58wz87LnlyDbp8MHtM3HXmxuwZm/3+xdCuXBiP9x95kjc/c4m2Fw+vHbDNB6HICJFNNlc+Pvn23DVdCfOGVeIl34+Bb9/d1PIqhBdadUCd5w8DNOHZKHV7saDH1agps2JW08ampAgnNTVIQCg0erCLa+V49aThuLNsv34bHPdEc8PzU3FyaPykGnUwe31o2xfK77f1YTOXUeLM1Pw9OxjcP/iLXj0Z+MxNM/EIxFEpAi/X6K61Y4WuwdPf7kd95w9CpV1Vjz39S5sqbUEfY0QwLEl2bjzlGEQQuDfy/bg+uMHY0CWEXkKtTclIrK7vVixqxmvrNiHu88cCbvbC7VK4NvtjVi0ev/hBj1d6TUqnDO+EHOmDUSjzYl+6SnYWN2O8n2tuPfc0b3ujhlMuOoQSR+CAaDe4sQDi7fg0y4BuCeKM1Ow8IZpKMpIYQAmIkXVtTsw58VV2NXYAQC4eFIRfjFzMIw6NXY02LCpph1Otw/mFA2O6Z+JgdlG1LU78dSXO/D9oU6WJw7PxWOXTUA2O1oSkYJsTg92NXbgyvkrMSgnFQ+cPwa1bQ5kGrXQadTYXm9FVYsdfr9EVqoeY/qlwWzQoKrFjiG5JryxugpvrNmPO08dhjnTBmnX7p4AACAASURBVCDXrOwHdYbgMJptLty/eAs+2ngg5rmKM1Pwxo3TUdypyxMRUSzq2p2Y8+LKwwG4q2NLsjFlUBZStGpYnR58s70Rm0PsEJ80Ihf/uJRBmIiU4fH5saPehkvnLT9c9UGtEjh5ZB6umNIfqToNGm0u2N0Hb3TTqlXINemh16rx+ZY6vF1ejXbHD/dR/e7MkZg9rT/SU7gTHJJSIbjZ5sKfP6nAe2trIo69/rjBeHdtNVrt4W96K8pIwXu3HsuvHIkoZq0dblwyb3nIABxg0mswZ9oAzF+2G/4Il/RTRuXhsUsnIMOo3JsMESWn3Y02nPf0dyHLnmlUAsPzzZg8MBNDclLx2ZY6VBywdGuQ0dn9543GJZOLFWs6Fi4EJ/X39kIA540vhFYd/nbGB88fgzPHFmD+NaUR784+UaF6nkREPr8f544vDDvGpNfgjZum4/aTh+LZOZPD3p2tEsClk/srvEoiSlapeg0m9s8I+bzXL+H2+XHLiSU4f2I/jCwwhw3AmUYtjhuagxRNYmoFJ3UIzkrVY0JxBuZdNTlkEH7w/DFosrlw6bwVePiTSjx/deggPGfaANxx8lDuAhORItQqFQbnmHDLrJKgz5v0Gjx/9WQ8tWQ7nvt6F1bsbsLfL50QNAirBPD3Syegrj267nJERJHYXV7cccowHFuSHfT5oXkm/P2S8fjt2xvw6GeVmDQwM2Q/hkyjFs9fXYqKAxY4vIkp45jUIRgAsk16TOwfPAgHAvDTS3cCANZWteKvnwYPwoEAXJCekrC1E9HRLTNVh+lDsjCiwNwtCAcC8LxvduF/FQ149utd+M/yfdiwv61bEA4EYIvDg/Mm9ONRCCJSRHFWCtIMGvwySBAOBOA7Fq3Ddzub8d+yavzqzQ2YOjirWxAOBOB9zTbMGp6r2FGISJI+BAPBg3DXABwQLAgzABNRvBSkp3QLwp0D8LIdTUeMf2XFkUG4cwA+f0I/3hRHRIrRqtUYlm/qFoQ7B+Dq1h++ffL5Zbcg3DkAnz66AOkJ/JCe1DfGddVsc2FLrQV17Q7sb3V0C8CdTRqQifvOG4UlFQ24atoABmAiiqu6dgdW7m5BbZsDUwZn4akvd3QLwJ1dM2Mgpg3OAgA0WF0MwEQUNx6fDzvqbbC7fXh/XQ0un9Iftyxce0QA7kytEnjy8onYXm/FKSPzsKPBGrcAHO7GuKTuGNeVQatGqk6NHLMe1gh9q82Gg7+6yQMzoUvQAW4iSl4F6SmYMSQbm2vbAcjD16BQslJ1SNWrIYTA1EFZDMBEFDeBHeFGqxunjymAgIBBGzobaVQCKVo1jumfAb1WlfAd4MPrSPhP/JHqcHmxfFcTbn61HH4J3HnqMNx77ij86aOKbmNnDc/FjccPwZz5q9Dh9uHiY/rhj+eOUbTDCRFRZ612N+Z9swsvL98LvUaFZ+ZMAgB8sql7k587Tx2G9BQtfv7ywW/M/nHpeJwxpiBh5+yIKPm02b24ZWE5NuxvR3FmCp664hj89p2N2NlgO2KcXqPCv66chPfX1+CjjQeQqlPjrbkzYNRroE1wszGeCUb3AAwATy7ZAavTi3vPHXXE2EAAvvnVssN18d5dV4s/f7QFLR3uRC+diJJAq92Np5bswMvL9wIAXF4/blu4FhdPKsbZ4wqOGBsIwA9+uPXwY79+ayM+31IHqzN8nXMiot5otLpwwytrsGF/OwCgutWBX76xDo/+bDyG5pkOjwsE4A8OBWAA6HD7cOm8FdhRb4XH50/ouuMegoUQZwohtgkhdgohfhfk+QFCiK+EEOuEEBuFEGfHe02dBQvAAV2DcLAAHMAgTETx0DUABwQLwsECcACDMBHFQ9cAHNA1CAcLwAF9FYTjemOcEEINYDuA0wBUA1gDYLaUcmunMS8AWCelfE4IMRrAJ1LKQeHmVerGuHABuLM7Tx2GEQVmmPXaoAG4Mx6NICKlhArAnQWORjg9PjRaXUEDcGc8GkFESgkVgDsLHI2wubx4s2x/twDcWeBoxLB8s2JHI/ryxripAHZKKXcfWsgbAC4A0PkqLQGkHfpzOoDaOK/pMLfXj+93NkVsM/rkkh04b3whllY2hA3AALCxxpLw7XwiOjr5/RLlVa1hxwR2hM8aW4j310duAf/9zmacMjJfqSUSURLrcHlR1WwPO6a61YHbX1+LkjxT2Io2wMEd4co6K/pnGRNyPjjeP6EIwP5O/1196LHOHgBwlRCiGsAnAO4INpEQ4iYhRJkQoqyxsVGRxamEwKmj8nFZaeQ2oh9uPBAxAAfq4qVoedSaiGJn1GnwrysnYVxRethxLq8/qgB89rgC/PqMEUiLUFmCiCgaWalavPKLaSE76QbUtjsjBmAAuP+80Zg5NCepmmXMBrBASlkM4GwArwohuq1LSvmClLJUSlmam5uryA9ON2oxvMCMs8YWRBWEwwkEYKNOjRQd32CIKHY+vx/XL1iDB84fEzEIR3L2uAJcPKkYv1y0NuIHeiKiaNS2O3H/4i1BO+n21L3njkK7w4OXvtsDW4QytUqJdwiuAdA5XRYfeqyz6wG8CQBSyhUADABy4ryuw/LMBowpSospCHcOwENyTQkv8UFER6cUnQbPXjUJv35rfUxBOBCAH/1sG565chLSUngemIhi1z/TiBuPH9ytk25P3XvuKFidXmyvs+LmWSUw6ROzmRjvtLYGwDAhxGAhhA7AFQAWdxlTBeAUABBCjMLBEKzMeYcoxRKEGYCJKF7UKoEhOSa8cE1pr4Nw5wD8yi+msLslESkmVa/BCcNzYwrCnQPwny8al9DCAnFNbFJKL4DbAXwOoALAm1LKLUKIh4QQ5x8adheAG4UQGwAsAvBz2Qe9nANB+Iop/TFzaHZUr0nRqvHva0sZgIkobroG4X9eMTHqN4kJxem48fghDMBEFDedg/ATS7bjhWuCFmII6hczB0GrVvVJAAYS0DFOSvkJDt7w1vmx+zr9eSuAmfFeRzSyjDo0WlxYX9UW1XiHx4fPt9TjstJiBmAiiptAEH7lF1OxpKIh6nrklXVWtNk9eO36KchLYwAmovgIBOERBWY8/sX2qF/3v631eP7qyTh/Qj9k9EHbZCa3Q7w+P7bX23DZ8yt6dNPIw59U4O3yalgcLEBPRPFjd3uxak9LxDrAnbm8fsx9rRzVrU64PLwZjojix+X1419Ld4atA9xVdasDN79ajo4E3QjXFUMwfgjAl85b3qu7pv/8cQXeLNvPIExEcWF1evC/LfX49Vsbe/xal9eP2fNXYkuthUGYiOKipcONP3+0Fe+ui1yqsavqVgcuf2ElalrD1xuOh6QPwbEG4AAGYSKKh0AAvuutDb2eg0GYiOIllgAc0FdBOKlDcE8CsEpEno9BmIiU1JMAHOkaxSBMRErrSQCOdI3qiyCc1CHY5vLi8S+2R9UJrvyPp+GaGQMjzvnMVzvZNpmIFOGXwKOfV0Ycd+HEflh33+kYXxy5s9wjn1bA6eU1iohi12Rz4cONtRHHPXrJeCy968SI5dOqWx14q7waVmdiNhOTOgRnGHX468/GYUZJ6JJoQ/NMeO36achM1eH/nTY8bBDONGrxzi3HIrMP7nAkoqNPeooWb889Fvlp+pBjLpzYD/edNwbpKVr8+9rSsEF4fHE6np0zCelslkFEChiQZcSr10+DVh16m/fRS8bjrLEFGJBlPJSRQl9/rp4xENfOGJRUbZP7VI5Jj6dnHxM0CAcCcEG6AQCQaQwdhAMBeFB2KlTRnJ0gIopC/yxjyCAcCMCB2pq5ZkPIIDy+OB3/vrYUuWZD3NdMRMnBoFVjYv+MkEE4EIDNBi1UKoFB2akhg/DVMwbiV6cOR+bR0izjpyJYEO4agAOCBWEGYCKKp2BBuGsADggWhBmAiSheQgXhzgE4IFQQ7osADDAEH9Y5CIcKwAGdgzADMBElQucgHCoAB3QOwgzARBRvBq0aw/JMeO6qydCqBe4/bzROHJ4b9FiDSiWQY9bh1eunIdOoxWWlxbh1VknCAzAAiD7oUByz0tJSWVZWFpe5m2wu+PwS+WmR3zBa7W64PH7kmfUMwESUEHXtTug0qqjaizZanQDAAExEcdXS4cLv39sMo06NO04ehg/W1+DLinq89PMp3a4/7Q43Xlm+D19ta8RfLhqLnQ02PPxJBf578wwMyDIqvjYhRLmUMmgvZ4ZgIiIiIuqVQAD+bHMdAGBQthF7mw+WORtXlHZEEA4E4McOtVYuzkxBXbsTXr9EnlmPt285VvEgHC4E8zgEEREREfVY1wAM4HAABoBNNRb8YsEaNFqdsDg8RwRg4GBJNK//4GZsg9WFS55bjqoW1gkmIiIioh+xlg43vqpsCDtmU40F1y1YgyeWbD8iAAfTYHXh4421rBNMRERERD9e/TONWHTTdOg14ePk5hoLXv5+b8T55s4agtlTB7BOMBERERH9eOm1aowpTIsqCEcyd9YQzJ1VgowENhxjCCYiIiKiXlEiCPdFAAYYgomIiIgoBrEE4b4KwABDMBERERHFSK9VY2y/dLx2/bSoX3Pl1AF9FoABhmAiIiIiUoDD48WK3c1Rj99Y0wa3zx/HFYXHEExEREREMQk0wng8Qhm0zjbXWHD9gjVoONTdMtEYgomIiIio17p2guuJTX0YhBmCiYiIiKhXYgnAAX0VhBmCiYiIiKjHlAjAAX0RhBmCiYiIiKjHDrQ7owrAc2cNwZs3Ry6ftqnGgvnf7oHN5VVqiWExBBMRERFRjxVlpODxyyaEHXPLoTrAE/tnRqwjfNKIXMydNQQmvUbppQbFEExEREREPWY2aHHa6PyQQfiWWUNw86E6wDqNKmxDjZNG5OIfl05Atkkf72UfxhBMRERERL0SKgh3DsABoTrL9UUABhiCiYiIiCgGXYNwsAAc0DUI91UABgAhpUz4D41VaWmpLCsr6+tlEBEREdEhVqcH+5rtKM5MidgK2eXxYV+LHdmpurgGYCFEuZSyNNhziTl5TERERERHNbNBi7FF6VGN1WvVGJ5vjvOKwuNxiC7sbi/aHZ6oxnp9frTZ3XFeERHRD9rsbri9vqjGWp0eWJ3RXc+IiJINQ3AndrcXK3c3Y/H6GlgiBGGvz4+djTY8uWQHWjsYhIko/trsbsxfthsVB6wRg7DN6cGXlQ34srIBNheDMBFRVzwOcUggAN/wnzL4JeCXwEXHFCEtRdttbCAAX/rcClhdXtjdXtxz1ihkpoY//0JE1Fttdjee+WoX5i/bjX9/twf/vWkGRhWaodOou421OT1YUtmAO99YDwB48oqJOHVUHkz67tczIqJkxZ1gdA/AAHD/4i14b133HeGuARgA3iyrxiOfVnBHmIjionMABgCnx4/LX1gRdEe4awAGgDvfWI8lFdwRJiLqLOlDcLAAHNA1CAcLwAEMwkQUD10DcECwIBwsAAcwCBMRHSmpQ3C4ABwQCMI2pydkAA5gECYiJYUKwAGdg3CHyxsyAAcwCBMR/SCpzwS7vH58VdkYMgAH3L94CzbVtOHzzfUhA3BA2d5WeCNNSEQUBZ9fYvmuprBjAkH4wolFeGPN/ohzLtlaj1nDcoHE16UnIvpRSeqd4EyjDr86bTiunDog4ti3y2siBuAhOal4/cZpyDXz3YWIYpdt0mPBdVMwpl9a2HFOjz+qAHzOuEI8dMEY3sRLRIQkD8EAkJmqw2/OGBFVEA4nEIAL0lMUWhkREZBrNkQVhCM5Z1wh/nThGGSl8kM6ERHAEAwg9iDMAExE8RRrEGYAJiLqjiH4kN4GYQZgIkqE3gZhBmAiouAYgjvJTNXh7rNGYubQ7KjGp2jVeGvuDAZgIkqIXLMBr10/DZnG6JpejC9Ox18uGssATEQUBENwJz6fHwfaHdi4vz2q8Q6PDx9tPBCxxTIRkRJsLg++2dGIVnt015zt9Vbsa7ZHbLFMRJSMGIIP8fn82BGhDnAwoTrLEREpyebyYElF+DrAXYXrLEdElOwYgtH7ABzAIExE8dSbABzAIExEFFzSh+BYA3AAgzARxUMsATiAQZiIqLukDsE9CcBCRJ6PQZiIlNSTABzpGsUgTER0pKQOwVaXF49+VhlVJ7iyP5waVfm0x7/YzrbJRKQIvx94+OOKiOPOGVeIdfeeFlVnuQc/3AqHx6/UEomIfrKSOgRnGHV49JIJmDooM+SYQB3gbJM+Yh3h9BQt3rllBtJToitfREQUjtmgwVtzZ4RtxR6oA5xh1EWsIzymXxqev3oSr1FEREjyEAwAOSY9nr1qctAg3LURRriGGoEAPDjHBLUqirMTREQRCCEwIMuIt0ME4a6NMMI11BjTLw0LrpuCXLMh7usmIvopSPoQDAQPwqE6wQULwgzARBQvoYJwqE5wwYIwAzARUXdCyp/e+dXS0lJZVlam+LxNNhce+GAzvH7ggfNHh+0E19rhxj+/3IF6ixN3nT6cAZiI4kpKiaoWOx75pBJmgxr3nD0qbCe4RqsT932wBQDw0AVjGICJKCkJIcqllKVBn2MIPlJduxM+v0RRZuRWyA0WJ1xeP3JNOhh0mrish4gowOfzobbdBb1Ghby0yKH2QJsDAFCYwdbuRBR/7XY3bC4f9FoVckzh27W7PT7UW13Qa1XIi+OH9HAhmMchOqlvd+LWheWY8+JKVLfaw45ttDrxt88qcc5Ty7Cn2Q63hyWHiCh+/H4/9rY4cNGz3+MP729Cg9UZdvyBNgeuW7AG1y1YczgMExHFS7vdjbJ9rTjh71/hg3U1aLK5Qo51e3zY1dSBc55ahr9+UhnxehYvDMGH1Lc7ccvCcqytasPeZjuuenFVyCDcaHXir59W4p21NbA4vbj8+RXY1dTBIExEceH3+7Gn2Y7Ln1+BJpsbX2xtwB/eCx2EAwG4ss6KyjorgzARxVUgAN/0ajl8fok/fVwRMggHAvDlz6+AxenFu+tq+iwIMwTjyAAcECoIdw7AAQzCRBQvXQNwQKgg3DkABzAIE1G8dA3AAcGCcNcAHNBXQTjpQ3CwABzQNQgHC8ABDMJEpLRQATigaxAOFoADGISJSGmhAnBA5yAcKgAH9EUQTuoQ3GJz4e53NgYNwAGBINwQJgAHBIKwzc0QTESxs7l8uOL5lUEDcEAgCDfbXCEDcEBlnRW3LlyLNnvo+YiIolXb7gwZgAP+9HEF3l9Xc/gDfbAAHPDuuhos+H4vWjsSc41K6uoQkT6V9MYD54/GueP7RbwrkogokpYON77d3oj/9+Z6KHGpTtGq8fqN0zCy0IwULSvaEFFsGq1OPPrZNrxVXq3IfAOzjVh4wzQUZxoVmQ9gdYiQdFo1SnJS8d+bZyDNEPsbAgMwESkpK1WHE4bn4onLJkLEWIacAZiIlJZrNuC3Z47ApZOLY54rHgE4kqQOwYByQZgBmIjiQYkgzABMRPGiRBDuiwAMMAQDiD0IMwATUTzFEoQZgIko3mIJwn0VgIEoQrAQIiMRC+lrvQ3CDMBElAi9CcIMwESUKL0Jwn0ZgIHodoKbhBBLhBDXH+2BWKdVIz/NgDFF6VGNT9Gqcfa4QgZgIkqIrFQdjhuWg4wUbVTjh+aZMDDbyABMRAmRbtDi2mMHRT3+lJF5MOn77voUTQiuAPAkgJMB7BJCfCCEuEIIcdQ1o2+0OvGXj7dixa7mqMY7PD5cNm9FxBbLRERKONDmwFUvrkKr3RPV+E017bj7nY191pKUiJJHoOLWlfNXRv2al77fi7fKq8O2WI6naEKwR0r5kZRyDoBiAAsBXAagWgjxelxXl0DhGmGEE6nFMhGREsI1wggnUotlIqJYxVJy9i8fV+C9EC2W4y2aEHz49JmU0iGlfFNKeTGAIQA+j9vKEqi3ATiAQZiI4qm3ATiAQZiI4kWJngt9FYSjCcELgz0opWyXUv5H4fUkXKwBOIBBmIjiIdYAHMAgTERKU7LpWF8E4YghWEr5j2gmEkI8HftyEivQ6SSaAHx5aXHEqhF7m+2Y8+Iq1Fv4JkNEsWuyRm6FDBy8SffKqf0jVo34YmsD/vjeZjRZ++b8HREdXapaHVEF4AFZRpw2Oi/ifH/5uAIfbzyA5gQFYSXrBM9UcK6E0KlVOHNsAdSq8O8cD5w/Gr8/Z3RU5dOmDMpChOmIiKIiIXHc0JywYwJl0H531ig8HqF8mhDAWeMKoeJFiogUYDZoMCzfHHbMwGwjXr9xGv568fiI5dPSDBpMGZQFc4IqRiR1s4x0ow6lAzPxwtWTQwbhQB3g9BRtxDrCl0wuxt1njkCu2RDPZRNRksg1G3DzrCG44bjBQZ/vXAc4LUWLWcNzQwZhIYDHL5uIWcNzkZWqi/PKiSgZ5KcZ8OycSZg8MDPo853rAGeb9GHrCKcZNHjjphkYmpsKnVYdz2UfltQhGAgfhLs2wgjXUIMBmIjiIVQQDtYIIytVFzQIMwATUbyECsLBGmGEaqjRFwEYUDYE/2S/XwsWhEN1ggsWhBmAiSieugbhcJ3gugZhBmAiireuQThcJ7iuQbivAjAACClldAOFGCel3BTm+Z9LKRcEefxMAP8EoAbwopTyr0HGXAbgAQASwAYp5ZXh1lJaWirLysqiWndPtNvdKK9qRU2rA2dF6AQXuCPy7bL9mHtiCQMwEcVdo9WJV1bswymj8jCiIHwr5JYON5btaAQAHD+MAZiI4q/ecrDi1l2nD4/YCrnR6sS8b3bjksnFKMmJXwAWQpRLKUuDPdeTk8fPCiH0ABYAWCilbO/8ZIgArAbwDIDTAFQDWCOEWCyl3NppzDAA9wCYKaVsFUJEvn0wTrQaFXJMepj0Gug14TfJ1WoVjDo1ThtdAI0q6U+VEFECaNUqzCzJhlmvgSbCzW16jQrFmSmH/0xEFG8alcDsqQOgi+Kao1GpcNqofBi16ogFCuIl6hAspTz+UGD9BYByIcRqAC9LKb8I87KpAHZKKXcDgBDiDQAXANjaacyNAJ6RUrYe+jkNPfx/UITd7UXZ3lZct2ANfH6Jhy8ai/Mm9IPZoO021ueX2NVowyXPLYfF6cWcqQPw6zNGIJM7LUQUJ212N174djee/XoXUrRqvDl3BkYWmKBVd9896XB58fW2Bty+aB0A4F+zj8GJI/KQmqA7roko+TTZXLj1tXKs3tuKQdlGLLppOgrTU4KObe1w4x+fb8PC1VVIM2jw9i3HoiQnFWp1Yj+w9+inSSl3APgjgLsBzALwlBCiUghxcYiXFAHY3+m/qw891tlwAMOFEN8LIVYeOj7RjRDiJiFEmRCirLGxsSfLjqhrAAaA37+3GR9uqIXV6TlibNcADAALV1fhH59vQ2uHW9F1EREBRwZgAHB4fLhs3gpU1tng8fmOGNs5AEsJSAncvmgdvt7WgA5XbMXsiYiC6RyAgYN9E2a/sBIH2h3dxnYOwABgcXpxyXPLsaupAz6fP6HrjjoECyHGCyGeAFAB4GQA50kpRx368xMxrEEDYBiAEwHMBjBfCJHRdZCU8gUpZamUsjQ3NzeGH3ekYAE4oGsQDhaAAxiEiSgeugbggGBBuGsADmAQJqJ46RqAA4IF4a4BOKCvgnBPdoKfBrAWwAQp5W1SyrUAIKWsxcHd4WBqAPTv9N/Fhx7rrBrAYimlR0q5B8B2HAzFcRcuAAcEgnCHyxsyAAcwCBORkkIF4IDOQbjDHTwABzAIE5HSQgXggM5BuM0ePAAH9EUQ7skBsXMAOKSUPgAQQqgAGKSUdinlqyFeswbAMCHEYBwMv1cA6Fr54X0c3AF+WQiRg4PHI3b3YF295vL68dnmAyEDcMDv39uMTTUWfLyxNmJrwO92NeFO/3All0lESconJZZWhr9NIhCEL5lcjNdW7QsagAOkBD7ceADHluQgNXTxGyKiqFgcnoht3fc223HFCysxqjANn22uCz+f8+DmZGG6AeYEnA/uyU9YAqDzCWfjocdCklJ6AdwO4HMcPEbxppRyixDiISHE+YeGfQ6gWQixFcBXAH4jpWzuwbp6LdOow2/OGInLSsO38QOARaurIgbggdlGvHHjdOSa+e5CRLHLTtXjlV9MxciC8G1JHR4fXl0ZPgADwBljCvDwRWN5Ey8RKWJglhFvzz02ZCfdgH3N9ogBGAAeOG8Mzh1fGLQoQTz0pE7weinlxEiPJYLSdYJbO9x45NMKvFlW3es5AgG4MCP4nZBERL3VYHHimpdWR9xxCeeMMQV45OKxyOIWMBEpyOfzY1djBy6ZF/q4aDQeOG8MLp5UhLQUZQNwuDrBPdkJ7hBCTOo06WQA3W/7+wnKTNXhnrNGRbUjHAwDMBHFU16aIaod4VAYgIkoXtRqFUpyU6PaEQ4lXgE4kp6E4DsBvCWEWCaE+A7Af3HwqMNRobdBmAGYiBKht0GYAZiI4i2WINxXARjoQQiWUq4BMBLALQDmAhglpSyP18L6QmaqDn84ZxRmlGRHNT5Fq8bbc49lACaihMhLM2DhDdOQaYzuzWJcUTr+9rNxDMBEFHeBIPzGTTOifs2Nxw/GJZOL+yQAAz1slgFgCoDxACYBmC2EuEb5JfUdn1+i3uLCltr2yINx8GaUJRV13RpqEBHFQ4fLi1V7WtDmiO6as7PBhv2tjm4NNYiI4sHi9OL1VfuiHv/F1vo+zVA9uTHuVQAlANYDCFxRpZTyl3FaW0hK3xgHdGqEMW85LI6eHex+5OKxOHd88BbLRERK6HB58c32Rtz2+tqIVSA6i9RimYh+2jweD6qrq+F0Ovt0HX6/hMXpgc3Vsw/dGpVArlkPtUrE9PMNBgOKi4uh1R6ZxcLdGNeTgxulAEbLaFPzT0gsARgA7nl3MwAwCBNRXPQ2AAM/1BFmECY6OlVXV8NsNmPQoEEQIrYg2Vtenx/1Fid8HW6k9uL1Wo0Kg3NM0Gl6VxtYSonm5mZUV1dj8ODBUb+uJz9tM4CCHq/sRy7WABxwz7ubjcpTAAAAIABJREFU8dHGWh6NICJFxRKAA4K1WCaio4PT6UR2dnafB+DmGLrlurx+7Gmywe3tXac4IQSys7N7vBvekxCcA2CrEOJzIcTiwD89+mk/MkoF4AAGYSJSkhIBOIBBmOjo9VMOwAFKBOGe6kkIfgDAhQAeBvBYp39+smxODx7+pCJiAB6YbcSaP5waVfm0Rz6phNd31J0YIaI+4JMS93+wJapOcGvvPS2qznL3vb8Zdnfv3mSIiDrz+iX21jbiv/95Mey4fhkpGJ5vjnju1+X1o6XDBZ8/MTmqJyXSvgGwF4D20J/XAFgbp3UlRLpRh79fMgGTBmSEHNO5FXKkOsJpBg3evqX3xaKJiDoz6zV4a+4MZIdpc/xDHWBdxDrCIwvMeP7qyUjvo3JERHR00alVSNe48d9XXgo5pl9GCjKNWug1KpTkmsIG4UyjDjmm2G+Si1bUIVgIcSOAtwE8f+ihIgDvx2NRiZRr1uP5q0uDBuGujTDCNdQIBOCSnFSo1b072E1E1JkQAgOzjXjnlmODBuGujTDCNdQYWWDGK7+Yirw0Q9zXTUTJQaUS+NN996Kmag8uO+N4PP7ne7Fg3lO48pyTcclpM/HqM39HplGL/VVVGDVqFObeeD0unDUFv//lTVi57Gtce9EZOO/4ydi0rhyZRh3mP/k3XPfzazFjxgwMGzYM8+fPBwAcOHAAJ5xwAiZOnIixY8di2bJlyqy/B2NvAzATgAUApJQ7AOQpsoo+FiwIh+oEFywIMwATUbyECsKhOsEFC8IMwEQUL3/7219RUlKCNeVrMeP4k1G1ZzcWfvQlvltVhq0b1+P7774DAOzcuRN33XUXKisrULt3Fz794G0sePcz/OqPf8Irzz2JwnQDVCqBjRs3YunSpVixYgUeeugh1NbW4vXXX8cZZ5yB9evXY8OGDZg4caIia+9JYnNJKQ+ffBZCaAAcNYdfOwfhSK2QOwdhBmAiireuQThSK+TOQZgBmIgSIVWnwZY1y7Di26WYc86JOP2EGdi2bRt27NgBABg8eDDGjRsHtVqNsWPH4PyzzoBGrcLkYyagrnY/NIcy1AUXXICUlBTk5OTgpJNOwurVqzFlyhS8/PLLeOCBB7Bp0yaYzT1rHx9KTw6vfiOE+D2AFCHEaQBuBfChIqv4kQgEYZ/fj4L08K2QA0H4/04ZjoI0PQMwEcVVIAgvvuM4pGhVEVshB4Jw4M9ERPGkUgloVMDv77kHc+feDLXqh1y0d+9e6PX6TmNVMBkNGJZnRpUjBT7vDwUKulZ5EELghBNOwLfffouPP/4YP//5z/GrX/0K11wTe9PiniS33wFoBLAJwM0APpFS/iHmFfzI5Jr1EQNwQGaqDkWZKQzARJQQQggUZaREDMABeWkGBmAiiiuz2Qyr1QoAOPPMM/HKfxbAYbcDAGpqatDQ0BD0dUII6DSqwzvAAR988AGcTieam5vx9ddf///27jzMzrK+//j7O0tmkkzCEpIICauAECJLGAQUKCggi4KAC+BSBeX3a5FiKQq2YlFrLaDUnza2grSI1rVSS4UAVhZFRBkCEgGxkR0lC4YkkzCTWb6/P+YEQwjJnMx5zizP+3VdueY8y7nPd/JcueeTe+7nfjjggAN4/PHHmT59Oh/4wAd4//vfz/z5tVmXoZqR4HMy8/8BV67zDZxb2SdJkqSSmTJlCq973euYPXs2xx57LKeffjoHH3wwAG1tbXz961+nsYonVe69994cccQRLF26lIsuuojtttuOr371q1x22WU0NzfT1tbGNddcU5PaY7BPQY6I+Zk5Z71992bmfjWppArt7e3Z0dFR74+VJEkaUR566CH23HPP4S6jJi6++GLa2to4//zzN+v9G/q7iIh7MrN9Q+dvciQ4Ik4DTgd2Xu8JcZOAP2xWlZIkSdIwGsx0iDuB3zPw2OR1nxC3Eri/iKIkSZJULhdffHFdP2+TITgzHwceBw4uvhxJkiSpeNU8Me7kiPjfiFgeESsiYmVErCiyOEmSJKkI1awOcSnw5sx8qKhiJEmSpHqoZoHbRQZgSZIkjQXVhOCOiPh2RJxWmRpxckScXFhlkiRJGvHOOOMMpk2bxuzZs4e7lKpUE4InA6uBo4E3V/68qYiiJEmSNDq8973v5cYbbxzuMqo26DnBmfm+IguRJElSsebNm8fcuXNZtGgR06dP5+yzz+bYY48dUpuHHXYYjz32WG0KrKNqVofYPSJ+FBG/qmzvHREfK640SZIk1cq8efP49Kc/zTPPPENm8swzz/DpT3+aefPmDXdpw6Ka6RBXAh8FegAy837g1CKKkiRJUm3NnTuXrq6uF+3r6upi7ty5w1TR8KomBE/IzF+st6+3lsVIkiSpGIsWLapq/1hXTQheGhGvBBIgIt7KwOOUJUmSNMJNnz69qv1jXTUh+Gzgy8AeEfE08CHgzwqpSpIkSTV19tln09ra+qJ9ra2tnH322UNq97TTTuPggw/m4YcfZubMmVx11VVDaq9eqlkd4hHgyIiYCDRk5sriypIkSVItrV0FotarQ3zzm9+sRXl1N+gQHBHnAv8GrASujIg5wIWZeXNRxUmSJKl2jj322CGH3rGimukQZ2TmCgYeljEFeDfwD4VUJUmSJBWomhAcla/HAddk5gPr7JMkSZJGjWpC8D0RcTMDIfimiJgE9BdTliRJklScQc8JBs4E9gUeyczVETEF8FHKkiRJGnU2GYIjYo/M/DUDARhglwhnQUiSJGn0GsxI8HnAWcDnNnAsgdfXtCJJkiSNCk8++STvec97WLRoERHBWWedxbnnnjvcZQ3KJkNwZp5V+XpE8eVIkiRptGhqauJzn/scc+bMYeXKley///4cddRRzJo1a7hL26RB3xgXEW+r3AxHRHwsIq6NiP2KK02SJEm10tPTwznnnMM555zD6tWrX3jd09Oz2W1uu+22zJkzB4BJkyax55578vTTT9eq5EJVszrERZm5MiIOAY4ErgL+pZiyJEmSVEvnnXce8+fPZ/78+Rx33HEvvD7vvPNq0v5jjz3Gvffey4EHHliT9opWTQjuq3w9HrgiM68HxtW+JEmSJBWlu7ubzs5Ouru7a9ZmZ2cnp5xyCp///OeZPHlyzdotUjUh+OmI+DLwDuCGiGip8v2SJEkaJpdccgnNzc0v2tfc3Myll146pHZ7eno45ZRTeOc738nJJ588pLbqqZoQ+3bgJuCNmfkcsDXw4UKqkiRJUk1dcMEFL5n/29PTw0c+8pHNbjMzOfPMM9lzzz1rNq2iXgYdgjNzNfBfwKqI2AFoBn5dVGGSJEmqvZaWFtra2mhpaRlyWz/96U/52te+xi233MK+++7Lvvvuyw033FCDKos36CfGRcQ5wN8Ci/jj45IT2LuAuiRJklRDl19++QujtZdccgkXXHDBC/s31yGHHEJm1qS+eqvmscnnAq/KzGeLKkaSJEnFaG5u5otf/OIL2+u+LqNq5gQ/CSwvqhBJkiSpXqoZCX4EuC0irgdeWFMjMzd/DF2SJEkaBtWE4Ccqf8bh+sCSJEkaxQYdgjPzEwAR0VbZ7iyqKEmSJKlIg54THBGzI+Je4AHggYi4JyL2Kq40SZIkqRjVTIe4AjgvM28FiIjDgSuB1xZQlyRJkkaJnXbaiUmTJtHY2EhTUxMdHR3DXdImVROCJ64NwACZeVtETCygJkmSJI0yt956K9tss81wlzFoVa0OEREXAV+rbL+LgRUjJEmSNMIddthhrF69+iX7J0yYwI9//ONhqGh4VbNO8BnAVOBa4HvANpV9kiRJGuE2FIA3tr8aEcHRRx/N/vvvzxVXXDHk9uqhmtUhlgF/UWAtkiRJGoXuuOMOZsyYweLFiznqqKPYY489OOyww4a7rI2qZnWIH0bElutsbxURNxVTliRJkkaLGTNmADBt2jROOukkfvGLXwxzRZtWzXSIbTLzubUblZHhabUvSZIkSaPFqlWrWLly5Quvb775ZmbPnj3MVW1aNTfG9UfEDpn5BEBE7AhkMWVJkiRpNFi0aBEnnXQSAL29vZx++ukcc8wxw1zVplUTgv8GuCMibgcCOBQ4q5CqJEmSVFMTJkx42dUhhmKXXXbhl7/85ZDaGA7V3Bh3Y0TMAQ6q7PpQZi5dezwi9srMB2pdoCRJkoaujMugbUw1I8FUQu8PXubw14A5Q65IkiRJKlg1N8ZtStSwLUmSJKkwtQzB3iQnSZJUZ5lGsM35O6hlCJYkSVIdtba28uyzz5Y6CGcmzz77LK2trVW9r6o5wZuwpoZtSZIkaRNmzpzJU089xZIlS4a7lGHV2trKzJkzq3pPVSE4IvYGdlr3fZl5beXrQS/zNkmSJBWgubmZnXfeebjLGJUGHYIj4l+BvYEHgP7K7gSuLaAuSZIkqTDVjAQflJmzCqtEkiRJqpNqboz7WUQYgiVJkjTqVTMSfA0DQfgZoJuBdYEzM/cupDJJkiSpINWMBF8FvBs4Bngz8KbK142KiGMi4uGIWBgRF27kvFMiIiOivYqaJEmSpKpVMxK8JDOvq6bxiGgE5gJHAU8Bd0fEdZn54HrnTQLOBX5eTfuSJEnS5qgmBN8bEd8A/puB6RDAH5dIexmvARZm5iMAEfEt4ETgwfXO+xRwCfDhKuqRJEmSNks10yHGMxB+j2ZgGsTaKREbMwN4cp3tpyr7XhARc4DtM/P6jTUUEWdFREdEdJR9QWhJkiQNzaBHgjPzfbX+8IhoAC4H3juIz78CuAKgvb29vM8GlCRJ0pBV87CMVuBMYC/ghYczZ+YZG3nb08D262zPrOxbaxIwG7gtIgBeAVwXESdkZsdga9tcy1atobO7t5C221qa2GriuELallQO9lGSRrKi+qh69U/VzAn+GvBr4I3AJ4F3Ag9t4j13A7tFxM4MhN9TgdPXHszM5cA2a7cj4jbg/HoEYIDO7l4OvfTWQtr+yUeO8AeMpCGxj5I0khXVR9Wrf6pmTvCumXkRsCozvwocDxy4sTdkZi/wQeAmBgLzdzLzgYj4ZEScsLlFS5IkSUNRzUhwT+XrcxExG3gGmLapN2XmDcAN6+37+Muce3gV9UiSJEmbpZoQfEVEbAVcBFwHtAEbDLOSJEnSSFbN6hBfqby8HdilmHIkSZKk4g16TnBETI+IqyJiXmV7VkScWVxpkiRJUjGquTHuagZucNuusv0b4EO1LkiSJEkqWjUheJvM/A7QDy+s/NBXSFWSJElSgaoJwasiYgqQABFxELC8kKokSZKkAlWzOsR5DKwKsUtE/BSYCry1kKokSZKkAlUTgh8E/hNYDawEvs/AvGBJkiRpVKlmOsQ1wB7A3wNfBHZn4FHKkiRJ0qhSzUjw7Myctc72rRHxYK0LkiRJkopWzUjw/MrNcABExIFAR+1LkiRJkoq1yZHgiFjAwIoQzcCdEfFEZXtH4NfFlidJkiTV3mCmQ7yp8CokSZKkOtpkCM7Mx+tRiCRJklQv1cwJliRJksYEQ7AkSZJKxxAsSZKk0jEES5IkqXQiM4e7hqq1t7dnR8fQlyhetmoNnd29Najopdpamthq4rhC2pZUDvZRkkayovqoWvZPEXFPZrZv6Fg1T4wbc7aaOM4fApJGLPsoSSPZaO+jnA4hSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSqdpuEuYDgtW7WGzu7eQtpua2liq4njCmlbUjnYR0lScUodgju7ezn00lsLafsnHznCHzCShsQ+SpKK43QISZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpNA13AcOppbmB/znvTwprW5KGwj5K0ki2ZGUXnd19NW+3raWRqZNaa97u+kodgld393Hk5bcX0vZt5x8OkwppWlJJ2EdJGsk6u/s44rO31bzdW88/nKl16J8cCpAkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklU7hITgijomIhyNiYURcuIHj50XEgxFxf0T8KCJ2LLomSZIklVuhITgiGoG5wLHALOC0iJi13mn3Au2ZuTfwH8ClRdYkSZIkFT0S/BpgYWY+kplrgG8BJ657QmbempmrK5t3ATMLrkmSJEklV3QIngE8uc72U5V9L+dMYN6GDkTEWRHREREdS5YsqWGJkiRJKpsRc2NcRLwLaAcu29DxzLwiM9szs33q1Kn1LU6SJEljSlPB7T8NbL/O9szKvheJiCOBvwH+JDO7C65JkiRJJVf0SPDdwG4RsXNEjANOBa5b94SI2A/4MnBCZi4uuB5JkiSp2BCcmb3AB4GbgIeA72TmAxHxyYg4oXLaZUAb8N2IuC8irnuZ5iRJkqSaKHo6BJl5A3DDevs+vs7rI4uuQZIkSVpX4SF4JGttbuBbZx1UWNuSNBT2UZJGsvEF9VHj69Q/lToEd/X2c+oVdxXS9m0fPryQdiWVh32UpJGsqD6qXv1TqYcCMkdn25LKwT5K0khWVD9Sr/6p1CFYkiRJ5WQIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUumUOgTHKG1bUjnYR0kayYrqR+rVP0Vm1umjaqe9vT07OjqG3M7iFV2s6OqtQUUvNbm1iWmTWwtpW1I52EdJGsmK6qNq2T9FxD2Z2b6hY001+YRRatWaPo68/PZC2r71/MMLaVdSedhHSRrJiuqj6tU/lXo6hCRJksrJECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKp3IzOGuoWrt7e3Z0dEx5HaWrOyis7uvBhW9VFtLI1MntRbStqRysI+SNJIV1UfVsn+KiHsys31Dx5pq8gmj1NRJrUydNNxVSNKG2UdJGslGex/ldAhJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpdM03AUMpyUru+js7nthuxVoaG4kSVqbG1jV3UdXTz+PLO3kudU9tDQ3sOvUNrYY30xjQ7BlS7CyJ9iitYGnl695UdttLY1MndRa5+9I0liyfh+17aQmVnQnbU3Jyl7o7UtWdPWycHEnXT19TGptZtdpExnf3MiE5gb6+6A3oDH7WNnz4rbtoyQN1fp91JatjTQ0NjKhCZas6qGvH57t7ObRpavoy2TapFZ22HoCTY3B1LZmVnb109vfz/M9/S9qt179U6lDcGd3H0d89jYATtr7FVx4/F40Nyar1iRX/uS3fLfjSVZ09b7kfQ0BR7xqGmcfsSvbbdHK8hW9jG8KDvqHW18459bzD2fqpHp9J5LGonX7qJvOPYSlq4OmhuCRZWv40m0LufmBRfT250veN2FcIyfPmcH7D9mFieMa6ItG5v3ycS794cIXzrGPkjRU6/ZR8z/2BiKS57t7ufvRFXzptt8y/4llG3zfKya38qev3ZET953BpJZGAI78/C10Pj9wvF79k9MhGAjAf338XiRw7b2/58jLb+eqOx7dYAAG6E/40a8Xc/I/38knfvAgaxobmDKxmbsuPKK+hUsqhZvOPYSdp4ynsSG47KaHedMX7+CGBc9sMAADrF7Tx9fveoIjL7+db/ziSTKTdx6wIx85atc6Vy6pDOZ/7A0EsGx1H//33+fz/ms6XjYAAzyzootLbnyY477wE+569A+Q8D8fej1t4+tXMxiCXxgB7g/4m/9cwN9d/xDdvf2bfmPFvF89wylfupOnnus2CEuqubUBeFFnL6decRffm//0oN/b25/84//8L+d+6z66EoOwpJqb/7E3AMlvl67muC/cwX1PPjfo9z63uocPXHMPV//sMaD+QTgyNzySMJK1t7dnR0fHkNv5/dJVA3OAM/nU9Q9y/YJnNrutV0xu5do/fy0tff30NAbP9yY7bzNxyDVKKq+u7m6Wru6jsSE47Yq7eOzZ1Zvd1qG7bsNlb9ubiOB7dz/OsfvMtI+SNCTLOrtoaW7giWVdvGXuT+nqGfwg4vouOOZVvHXOTPoyeb6nv2b9U0Tck5ntGzpW6pHgxnGNtDTBPU8+N6QADAND+5/87wdY09hAQ0MDW9V5SF/S2LOqB5oCPv/D/x1SAAb4ycKl/OihxTQ3wNsP3Kk2BUoqtSWdPazo6uOD37h3SAEY4LM3/4alq9bQ3AATmusTT0sdghuA1T3JX1+7oCbt3fjAIp5+7nm2aAmWPV+TJiWVWAv9PPd8L9/ueLIm7X3q+gfp6k36+ob2w0qSAHbYspUbFjzDwsWdQ26rrz+54Hv3092bTGyJGlS3aaUOwVtOaKLjsT+w/PmeTZ88SP9060KWPe8PGElD93w/fPnHv61Ze109/dz0wDNMbm2sWZuSyuvZ53u46o5Ha9be/U8tZ0VXL2vW9G365BooPARHxDER8XBELIyICzdwvCUivl05/vOI2KnomtZa3LmGb/6iNiMsa/34N0voHYXzrCWNPGv64YYhTtVa33c7nmLpqg2vfCNJ1VjZ1cvTz9X2V9/fvedJJk9oqWmbL6fQEBwRjcBc4FhgFnBaRMxa77QzgWWZuSvwj8AlRda0rv6EBU8vr3mbz63uYUJNW5VURs+v6atqtZrB+M2ilTREfX7VKGls29gyaJvr3ieWs2jFmk2fWANFjwS/BliYmY9k5hrgW8CJ651zIvDVyuv/AN4QUZ8euq8/6eyu/YjIw8+sZOstxtW8XUnl8uQfhnYz3Ib09iddvfX5VaOkse1XNR5IBFi4ZCX1mlRadAieAaw73+Cpyr4NnpOZvcByYMr6DUXEWRHREREdS5YsqUlx/QVNW+jq7aNOOV7SGNZdUFgdjUtjShpZ+vv7a/6bKoA1vf3UK0KNmhvjMvOKzGzPzPapU6fWpM2mhmK+/S3GN9PX781xkoZmcmtzIe0W1fdJKo+GhgYmj699HzWppblu/1Evuid8Gth+ne2ZlX0bPCcimoAtgGcLrguAAKZNqv3k692nT+J3K2q34oSkctqugAXHJ4xrpKnR31RJGrr2HbeueZuztptMc+PYWCf4bmC3iNg5IsYBpwLXrXfOdcCfVl6/Fbgl6/RfgNbmYP8dt6ppmxPGNTJxnMsPSRq65oZgysTa3l+w7/Zb0mAGllQDs2dMrnmbB79yClPb6nNfVaEhuDLH94PATcBDwHcy84GI+GREnFA57SpgSkQsBM4DXrKMWlHGNwdnHrJzTds8ec6Muj3pRNLYtsX4Jk4/cIeatvn+Q3Y2BEuqiebGBvbbfsuatdfYEBz/6m15YllXzdrcmMLTWmbekJm7Z+YrM/PTlX0fz8zrKq+7MvNtmblrZr4mMx8puqa1VnT1s92Wrew+va0m7TU1BO8/ZBf6+5I2B4MlDdGqNf2844Dtaa3Rf6xnbjWePbadzMBkMEkamqkTm/jLo3avWXvHv/oVjGsMWpt8YlzhIoLxzY184dT9aKzB0MhfHrUbE1sa6I3AFYgk1cL45gYuOn795dU3zxdO3Y8tWptq0pYkLe7sZffpbbxxr+lDbmurCc1ceOyeLO9aRVOdlocodQh+vqefNb39bD2hmU+cMLQfMofsOoVT5mxPfwZf/elvqc9AvqSxrGdNH7398IY9p3HMEH/InHfUbmy7ZSud3X0c9JlbalShpDLbakIDzf1w8Zv3YudtJm52O82Nwb+8a38mtzQyZXwbnT31WWGr1CEY4MDP3EICR+45nU+euNdmjQgf8aqpfPZt+9IS8NWf/pYv3f5YzeuUVD49wMXfX0BE8IkTZnPiPttW3UYE/NXRu/OO9u1pIDjwMz+qfaGSSmnRyl6e6uxi6/ENfO3M17DHKyZV3caEcY3823sPYKdtJtDd08/+f1+/Pqr0IRgGgnAAx8yazg/OOYRdpw1ujnBbSxOfe/s+/P3Jr6Y54EoDsKQam/fgYi7+/gII+Ohxe/LP75rDFoNcm3OHrSfwn3/+Wt62/0wwAEsqwIlz7+TXi1czZXwDV7/vAP7iDbvSNMgBxYNfOYUbzz2UvbadRBNR1wAM4OSwigM/cws//+jrecXkFq454zU8tWw1X/nJo9zz+DKeXfXHZ1i3Njcwa9steMcBMzl0t6lMaG6guy+5ygAsqSDzHlwMLODit7ya175yK+adeyh3P/YHvvHzJ1jw9HJWr/njTQhbTmhmv+234sxDdmKXqW1Mamlk9Zp+A7Ckwpw4907+6+zXsk1bK+86cAfe3r491933O35w/+/5zaKV9Pb/ceXbGVuO5+BXbs2Zh+zCFuOboL+f/n7qHoDBEPwiB37mFu766OsJYGJz8HdvmU13bz+ZSU9/0hAwrrEBSLaaMI7nuwfm6zkFQlLR1gbhT7zl1TTzmhcDAAAGzklEQVQGHL77VNor65z39CV9mTQ1BI0NQXND0NnVQwR0runjYOcASyrY2iC8/dYTaYxe3vvaHXnzPtvSEPHC45XXPgRjYksjjy1eztS2LYiGhmEJwAAxGp8h397enh0dHUNuZ8nKLjq7i1nGoa2lkamTWgtpW1I52EdJGsmK6qNq2T9FxD2Z2b6hY6UeCZ46qZWp1c/hlqS6sI+SNJKN9j7KG+MkSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaUzKh+WERFLgMeH4aO3AZYOw+eqWF7XsctrO3Z5bccmr+vYNVzXdsfMnLqhA6MyBA+XiOh4uaeOaPTyuo5dXtuxy2s7Nnldx66ReG2dDiFJkqTSMQRLkiSpdAzB1bliuAtQIbyuY5fXduzy2o5NXtexa8RdW+cES5IkqXQcCZYkSVLpGIIlSZJUOobg9UTEv0bE4oj41cscj4j4QkQsjIj7I2JOvWtU9QZxXd9ZuZ4LIuLOiNin3jVq82zq2q5z3gER0RsRb61XbRqawVzbiDg8Iu6LiAci4vZ61qfNN4g+eYuI+O+I+GXl2r6v3jWqehGxfUTcGhEPVq7buRs4Z8TkKEPwS10NHLOR48cCu1X+nAX8cx1q0tBdzcav66PAn2Tmq4FPMQIn8OtlXc3Gry0R0QhcAtxcj4JUM1ezkWsbEVsCXwJOyMy9gLfVqS4N3dVs/N/t2cCDmbkPcDjwuYgYV4e6NDS9wF9l5izgIODsiJi13jkjJkcZgteTmT8G/rCRU04ErskBdwFbRsS29alOm2tT1zUz78zMZZXNu4CZdSlMQzaIf7MA5wDfAxYXX5FqZRDX9nTg2sx8onK+13eUGMS1TWBSRATQVjm3tx61afNl5u8zc37l9UrgIWDGeqeNmBxlCK7eDODJdbaf4qUXWKPbmcC84S5CtRERM4CT8Lc2Y9HuwFYRcVtE3BMR7xnuglQz/wTsCfwOWACcm5n9w1uSqhEROwH7AT9f79CIyVFNw/Gh0kgVEUcwEIIPGe5aVDOfBy7IzP6BQSWNIU3A/sAbgPHAzyLirsz8zfCWpRp4I3Af8HrglcAPI+InmblieMvSYEREGwO/ffvQSL5mhuDqPQ1sv872zMo+jXIRsTfwFeDYzHx2uOtRzbQD36oE4G2A4yKiNzO/P7xlqQaeAp7NzFXAqoj4MbAPYAge/d4H/EMOPMxgYUQ8CuwB/GJ4y9KmREQzAwH43zPz2g2cMmJylNMhqncd8J7K3Y0HAcsz8/fDXZSGJiJ2AK4F3u0o0tiSmTtn5k6ZuRPwH8CfG4DHjP8CDomIpoiYABzIwBxEjX5PMDDCT0RMB14FPDKsFWmTKnO4rwIeyszLX+a0EZOjHAleT0R8k4E7UbeJiKeAvwWaATLzX4AbgOOAhcBqBv63qhFuENf148AU4EuVEcPezGwfnmpVjUFcW41Sm7q2mflQRNwI3A/0A1/JzI0ulaeRYRD/bj8FXB0RC4BgYErT0mEqV4P3OuDdwIKIuK+y76+BHWDk5SgfmyxJkqTScTqEJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEnDLCI6C2hz34g4bp3tiyPi/Fp/jiSNVoZgSRqb9mVgLU5J0gYYgiVpBImID0fE3RFxf0R8orJvp4h4KCKujIgHIuLmiBhfOXZA5dz7IuKyiPhVRIwDPgm8o7L/HZXmZ0XEbRHxSET8ReX9EyPi+oj4ZeW979hgYZI0xhiCJWmEiIijgd2A1zAwkrt/RBxWObwbMDcz9wKeA06p7P834P9k5r5AH0BmrmHgKYjfzsx9M/PblXP3AN5Yaf9vI6IZOAb4XWbuk5mzgRuL/j4laSQwBEvSyHF05c+9wHwGQutulWOPZubax5DeA+wUEVsCkzLzZ5X939hE+9dnZnfl8bOLgenAAuCoiLgkIg7NzOU1/H4kacQyBEvSyBHAZyqjt/tm5q6ZeVXlWPc65/UBTZvR/kvayMzfAHMYCMN/FxEf35zCJWm0MQRL0shxE3BGRLQBRMSMiJj2cidn5nPAyog4sLLr1HUOrwQmbeoDI2I7YHVmfh24jIFALElj3uaMJEiSCpCZN0fEnsDPIgKgE3gXlbm+L+NM4MqI6AduB9ZOZ7gVuDAi7gM+s5H3vxq4rPL+HuDPhvZdSNLoEJk53DVIkjZTRLRlZmfl9YXAtpl57jCXJUkjniPBkjS6HR8RH2WgP38ceO/wliNJo4MjwZIkSSodb4yTJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6fx/ITdvxN6zWU4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5iU1d3/8feZsr2xC0tv0pXuAiJ2Y33UWGJDNNiNxphYomm/mDyJ0RhjmibWxIbdJJpgb8SIIB2R3jvb++y08/sDhmeBLTM798wK83ldFxc799xz9rBc172fOXPu79dYaxERERERSSWuzp6AiIiIiEiyKQSLiIiISMpRCBYRERGRlKMQLCIiIiIpRyFYRERERFKOp7Mn0BFdu3a1AwYM6OxpiIiIiMhX2Pz588ustd1aeu6gDMEDBgxg3rx5nT0NEREREfkKM8ZsbO05bYcQERERkZSjECwiIiIiKUchWERERERSjkKwiIiIiKQchWARERERSTkKwSIiIiKSchSCRURERCTlHJR1gpPFFwjRFAiS5nFjDGANwXCYMJCX4e3s6YlIiqvzBbCA1+UCY7EWAsEwXo+LzDRd3kWk81hrqW4MkOY2uIwBA9ZCUyhEtteL19P567C6Su6nrNaH22Vo8IcIhS0rdtQyb0MllQ1+0j0uRvbJZ2yfAmozAuRleqhpDNItN500j7uzpy4ih7hQKMzOWh+56R5qfEHq/SGWbKli8eZqfIEQeZkexvcr5IheeXjdfnLSPTQFwxTnZXT21EUkBdQ1BSmva6Ig07v763o/8zZWsnpnLeEwFOelM3FgIQO7ZuNxGVyA1+2iS056p8xXIbiZ0hofwbBldWkdv31nFZ9vqDzwpDm7/+rTJZOrjxnI6SN7UN0YID8TBWERSZhQKExFvR+XMfx76Q7+8vFaNpQ3HHDeE2wAYEyffL77taEM65FLaXUj3fIzkzxjEUkl9U1BfIEgXreLRz5ex4zPN1HVEGjxXLfLcPLwYm49dSgFmV4q65vokp38IGystUn/pvEqKSmxTrdNrqzz4QtZfvnv5fxryfaoXzeoWw4PXTaOrtle8jLTFIRFxHGhUJhqXxOVDSG+8/xClm2rifq1Jw0r5n/PG0l2mpuCrLQEzlJEUlV9U5Aan581u+r53ouLKKvzR/U6l4FvHT+Iyyf3J83tojABK8LGmPnW2pIWv7/j3+0gVFXvozFoufyJuTEFYIC1pXWc+9B/WV/WSHVjE/5gKEGzFJFUFAqFqWxsYluVn3P/9N+YAjDAByt3cfEjs6n1Bamsb0rQLEUkVdXtCcCzVpVxxZNzow7AAGELD320ljtfXUogbKlqSO41KuVDcFltE01BuP6Z+azZVdehMXyBMFc8OZcaX5iyOgVhEXFGKBSmtLaRBn+YqY99Rm1TsEPjbKls5JtPzqUpGKa0xufwLEUkVdU1BanbswJ812tL6ejmgo9XlXLfWyvwBcJU1CUvCKd0CK5uDOALBnl1wRaWbq2Oa6zGQIjvvbgIY3bfVCciEq/GQJgwLu58dSk1vo4F4Ih1ZfU88cl6AqEwNY0t79MTEYlFeY2PsDV878VFHQ7AEa8t2MrqXXVU1jdR18E3/LFK6RCcl+HBGBe/e2+1I+Mt2VLN4s3VZHiNI+OJSGrzGMum8gZmry13ZLwnPllP0Fqy03VPtIjELz/by1OfbohpC0RbfvDaUjLSvOQk6RqV0iG4KRDizaXb8YfCjo3554/WUFGfnHcwInJoq/KFePijNY6NF7bwwtzNNCRplUVEDm0N/jAvfL7ZsfG2VDayrarRsfHak9IhuKzezxuLtzk65uIt1QTDzoVqEUldobDlkzVljo45c+l2qrQdQkQcsKvGR7XD15NXF2xJ2hv1lA7BBsOKHbWOj7urRndgi0j8anwBwg5XsdxY0bC7A6aISJw+39hCP4U4LdlSTUWDM9sr2pPSITgQCtMUdH7Vdm1pveNjikjq2ZqAjwWthaaAPq0SkfhYa1m90/mFxE0VBzYBSpSUDsGJahNiEzayiKSSRDUz0hVKROJlrSXk9EdV7N4GZkjOx1UpHYLT3In5IRfnZiRkXBFJLUUJaiPqTdC1T0RSh8vlomeB8+3YC7PTSNZb9ZQOwWEL/QqzHB93YNdsx8cUkdSz+5eBswqyvLhdCsEiEr8j+3VxfMyRvfPI9LodH7clKR2C0z0upgwucnTMrjlpxF0xWkQE8IfCDChy9o36pIFF2g8hInGz1tKnSyZOv6c+elARoSRdo1I6BPsCIb559ABHx7x8cn8qG5NzV6OIHNrqfQGumjLQ0TGnHz2AkN6oi4gD1pbWceLwYsfGy/C6GN+/EH8wOZ13UzoEez0u6nxBjh3S1ZHx8jI8fG14d7yulP6xiohDcjK8HD+sG91ynNkbPKZPPj3zM7QdQkTiZoyhzhfk2ycOdqzs4hWTBxBysIFZe1I6rYXDlt+9t4pbTxnqSIu+n5x1OPe/s1ItSUXEETkZHp6bs5Gfff2IuMdK97j4yVmH89YXO8j0pPSlX0QcMrJ3PrNWlXKlA5+qD+yazYnDiqnxBUn3JucaleJXQsPnGyr5w/trePDiMXHdMT3tqP74AmE+WllKVYO6MYmIAyw88ckG1pfVc+MJgzo8jMvAvReM5unZG3l5/uak7bcTkUObPxTmDx+s4YRhxXHdY9Uly8uvvzGaH/9jKW8v20FehtfBWbYupUNw2FqagmE+XLmLmUt38OdpR9IlK7YfvMvAjScM4sj+Xbj7jWUAbCxXswwRiV+DP0QobLn/7ZX0zM/kztOH4YlxK0Nuuoc/XDqOBRsreX3xNtaV1eveXRFxxJLNVYTClpueW8BNJw7mrNE9Yx5jQFEWj15Rwq9mrmBtaT2Lt1RRp7bJyfX3hVt54j/reXL6BM4e3TOqux1H9MzlmasnEQpbbn1p0d6i0fr9IiJOaN4x7if//IKtVT6eu3YSY/sWtPtaY+CUw7vz9NUTeXX+Vp75bCOwu3iNL0k3nYjIoe2LbTUA1DYFufpv85gwoJA/XDKWXvnt90vI8Lq45tiB/Or80dz16lIWbNrdgnljWQPBJH1cldKbV73ufd8DzF5XzrTH53DdcYfx6reO5uNVpczfWMny7TXUNAZJ87gYXJzDyN75nH5ED0rrmvh///zigDbJRQmo7SkiqWf/bkzPfraRj1ft4qYTB3Pn6cN558sdLN5czZpdtfgCYXIyPAzvkcu4fl04eXgxc9dX8M2/zqWmcd9VFa0Ei0i8rLUEmt3E1hgI8dPXlzFxYCE/P3ckobDlvS93snRrNRvLGwhbS1F2GiN753PUYUWM7VvA3xduZdoTc/a51gUT0IWuNSkdgi2WfoVZ+/SprveHePC91fzpwzVMGdSVcf0KuHRiP3LSPQRCYdaX1bN0azW3vLCQ8vqWS6H1L1KzDBGJX0EL27M2VzRy16tLycv0cPyQbpx2RHduPHEQaW4XDf4QK3fWsnRLFY//Zx1NwZbvsvaoY5yIxMkYQ/e8A1d8566vYO76CvoWZnL0oK5MO6o/vQsycbsMlQ1+lm2rYebS7fz8X1+2OG5BlpckdU1O7RCc7nZxzJAiZsxpOOC5QMjy0apSPlpVGtOYXXPS1JJURBzRLbf10mg1jUHeWLKdN5Zsj2nMvEwPaW7thBOR+E0cWMjDH61t8bnNFY28WLGZFz/fHNOYR/TKc6RiVzRS+koYCFm+Mb6vo2NeVNLXsXp5IpLaDNCnS6ajY04YUOjoeCKSugZ1y3E88xw3tBtZaQrBCecPhVlXVscxg51rlnHq4d2pqleJNBGJn8tluHiCs2/UL5nQVzfviogjqhr9TBnkTIaC3fXMS/p3oaYxOTkqpUMwwC/+vZzbTh1Kdpr7gOc8LsOInrmcN643047qz8UT+jJpYGGry/Q/Putwfvf+ataWqUSaiMRvXWk9UwZ1bXFvcEeM6JlLKLy79JqISLw+WLGL6447zLHxLirpy8yl26lXibTEC4UtVQ2BPc0yxu7dyzuydx73XTCa5687iksn9iPD66Ky3o8/GObYId14aOo4nr5qImeO6rG3/ei0Sf3wB3c3y2jwJ+c/T0QObbW+AA+8u5L/d9bhcY/lcRnuPucIfvHvLwmFk9eWVEQOTdZaNpY3sHBzFZc48IlV74JMzh7Ti6dmb0jap1UpfWNcpOj8hyt30SXby6OXl1DZ4MfjMjz6n3V8sbWm1dd2y0nn0kl9+ebkASzbVkNhdhq3vbwYIGl7WUTk0JbpdfPfNeV8bUR3rpjcn6dnb+zwWD875wheW7CVLZWNuHTjgog4INPr5k8frObpqyaxamctCzZVdWicnHQPD1w0hrtfX4bLuLBJquOY0ivBaR4XeRm7A+uCjZUU56Xz5tIdfOeFRW0GYIDSuib+8P4abn9lMWP65vPhil1769wN6Z6T8LmLyKGvb2EWAP/7ry8Z27eAG08YdMBNKHmZHsb1LWDSwEJG9c4n07vv1q50j4tff2M0W6saefHzzXjdhgzvgdu/RERiYYzhiF55BEKWm2Ys4K4zRnD80G4xj9MjL4PHv1nCnz5Yw5fbaxjaPSdpb9RTesnSGMPoPgVsKK/nwYvH8q1nF+xTMzgamysaufTROfzh0nEEw5a3ktjzWkQObRleN5leN42BELe9vJhvHT+Ip6+ayKOz1nHskG6M61dAdWOANTvraAqGyE73MLR7LhleNx+t3MXqnbXccMJgnvp0A68v3gbA8B55amspIo4Ys6d7ZUW9n2ue+py7zzmC047ozq/fXklVw+6b2/IyPPTM310nuKrBz7ZqHwBul+GC8X24qKQPd7+xbO/i49i+XcjJSE48TekQ3C03nelTBpDucfGD15bGHIAj/KEwt7ywkKevnkhBlpfsdK2yiEj8stLcnD2mFy/N24y18PTsjYzomcsNxw/i4Q/XcM/M5S2+zus2nD6yB7d8bSgfrypl5tL/qyU8dWI/ejlcdk1EUlNuuof+RVlsLG+gxhfk1pcWc/KIYv525QTcxmCMoayuqVnHuHT6F2VhDGSnufn7om1c9vicfRr7nDOm197tqomW0iEYYHSffP763w2s2FEb1zhNwTB3v76Mx64oIT9TbZNFJH4et4trjh3Iy/M3M6x7Lr86fxR/+nAN7y/f1ebrAiHLG4u3868l25k2qT/PXD2Jm59fgC8Q5tihXalpDJCXqU+sRCQ+GV4X048ewM/e2N39rUdeBheX9GVdaT3PzN7Iws0t7xEuzk3n0on9OHl4MYs2VfHJmjIASvp3IT/TQyhJn1alfAgOBC2PzVrnyFjLt9eydEs13XPT8Xq0Giwi8fG4ICfdzfdPG8bEgUXc8Ox8dtY0Rf16a+GZzzayaHMVf5l2JDtrfWR63UnrxiQih7bMNA9HDyriiF559MjP4FvHD+Ln//qSJVuq23zdrtomfv/+av726Qb+39mHc9LwYu57azk/+p8RpCfxGpXSN8ZVN/j5x6KtBMPOveX404drKK/3OzaeiKSuQMhy+RNz+frY3nx7xoKYAnBzS7dWc8/MFYzpU8A1T82jNkk1OEXk0Jab4aUwO40HLxrLtEn9mfbEnHYDcHPVjQFue2kxWyobeOn6oynKTqN7XkYCZ7yvlA7B/lCYt77Y4eiYy7bVEEjWOr6IHNKMMfzh0nHcM3M52/fcTNJRCzZV8s+FW3ngojFkpaX0pV9EHBIIhahpDBLG8q3n5uMLdKwG+ZP/3cDsdeVUNwSobkjeQmJKXwnDFlbGuRe4JWV1HVutERFpLifdg8HwryXb2z85Cr9/fw2ZaW68bm3XEpH4bSxvZGeNj5ueW9DhABxx/9srqfOHeGvZDmp9apuccIFQGH/I+c5JG8s7VmVCRKS5Ol+AP3+0xrHx/KEwby7dsbemuYhIPLrlpPHF1mrWltbHPVYobLln5nKmDOqqPcFJkaDfA+EkdToRkUNbw55VESe98PkmKpP4caOIHLr8IcvfPt3g2HhLt1bTGAhhktQsI6VDsMftOqD7khOKc9OdH1REUk69P+j4PQZrS+u1Eiwijmje/MIpr8zfQjhJ16iUDsFul2FAUbbj40ZanYqIxGNzRaPjY4bCFl8g5Pi4IpJ6YqkEEa3PN1RS3ag9wQnnccGUwUWOjlmcm560TicicmhLxD0LAEFVsBERByzYVOn4mGtKawkk6Nq3v5QOwcGQZdqk/o6OedUxA9GWYBFxQl5GYrq6edx6oy4i8bE2MZ8q+YNhkrVjK6VDcGQx5KThxY6MV5Dl5cRhxZSqRJqIOCAR9xfkpnv0aZWIxM0YQ5esNMfHzc3wkrDKBftJ6RBsreXRWeu4+aTB5GXGX47j7rOP4N43l5OboZakIhI/t8vQPc/ZIDy+f5ek3XktIoe2CQMLHR/z8J55ZHiTU8s8pUNwKGz5ZE0Zv3lnJX+4ZBzpno7/OK499jDK6pr4cGWp9tuJiCPcLsPFE/o6OubFE/qihWARccJh3ZwvLjBxYGGyFoJTOwQD7Kpt4r9rynnx8808dkUJ3WL8+NHjMtx+6jAO65bNL2cuB2BDefxFo0VENlc0cOKwYscKxx/WNZt0jwtfMDk3nYjIoctay85qH+P7FTg2pttlOGZwV+r9QcfGbEtKh+DmTS3e/GIHD767ir9MO5KLSvrijeLGkfH9uvDcNZPYWePjB68t3XtDXK0vOf95InJoq20K8vBHa/nhmcPjHstl4H/PHck9M5cnrQaniBzaZq8r55pjD3NsvP8Z1ZNZq0shSZ9WpXQIdrv2/ecv3FzF1Mc+o0uWl5eun8wPzhjOaUd0p29hJgVZXrrlpjN5UBHXHXcYL153FBeM781tLy/mmc827jNOsvayiMihLdPr5t0vd+Jxuzh/fO+4xvr+6cP5YMUu1pbW49Z+CBGJkzGGqoYA5XV+Tjuie9zjdcnycuWUATz72cZkZWBS+g4ur9uQk+6hrun/Vm6bgmEembWOx/6zjpIBhYzuk8+ph/cgJ8NDIBhmXVk9X2yt5pqn5lHb1PKK7+DinGT9E0TkENarIBOAH/19KX+aOp5Mr5vn5myKaQyPy3DXGcMJhi1PfLIej8vojbqIOGJM3wJ+9voynr56Eqt21rG+rGPbQb1uw/0XjuHXb62kd0EWmd7kxNOUDsEuA6N65zN7XfkBz4UtzF1fwdz1FTGNaQzkZSamtqeIpJZMr5t0j4umYJibnlvA7acN45HLj+Sn/1zGjpr2W5Ue3jOPn559OG8s3saze8Lz0O65qmUuIo4Y3Tufen+I7724iN9fMpYf/n0py7fXxjRGdpqbBy8ey7+XbGf2unKuPfYwMrzJ2aiQ0iE4w+vhvHG9WwzBHXX80G6kqRC9iDggK83F/4zqyWsLtxIMW+59cwXj+hZw7wWjqPMF+efibSzeXMWu2v+rTd6vMItx/Qo4f1xvanxBbn9l8T7tl6dO6ut42TURSU0FWV56F2SyqaKBm55bwL0XjOazdeU8OmsdwSjuPZgyuIjbTx3GH95fw4crdwFw4ZF9yEzTSnDC5WR4OGZIV/IzvY71qb7xhMHkJOk/T0QObS7j4sKSvry2cOveYws3VzH9r58zqFs2px7eg3PH9qZrbhrW7v4kaktlI0u3VHPHK0v2CccAGV4XY/p2odYX1CdWIhI3fyjMtccO5O43vmRbtY9v/nUu0yb15+UbJjNrdRnvLNvBqp21BJqVju3TJZPJhxVx/vg+rC+r58q/fU5Vw+4MNqp3PrVNAeqago5VxWlLyqe17DQ3954/im89tyDusU4/ogd9umSSkab9diISP5cL8rM8fOPIPrwyf8s+z60trefPH6+NabzbTxtGboabLF2jRMQBLmM46rAiBnXLYW1pHdbCM59tZMbcTZw4rBsXlvRlWPdcIv15XMawtaqRBRsrueHZ+fssQLpdhl+cO5L8TA8mSVu2UjoEVzX4ueu1JXx9TG/OGt2Tfy3Z3uGxeuRlcOspQ7n4kdn846YpFOXo40YRiY8/GOatpTv49omD+XxDBRvLGzo81pTBRZw8vDvPzN7Ad04aQn4C2p2KSGrJTvNQVtvE7y8Zyzf+8im+wO4a5KGw5b3lu3hv+a6ox7r91KHkZHjI8nrITlLn3ZQukZad7uamE4bwo79/wfSjB3Dy8OIOjdM9L50np5dwy4sLuWRiPzzaEywiDnAZQ4/8DP6+cCtPTp9A/6KsDo0zaWAh954/mvvfWsFpR/QgXdUhRMQBXbLT6F+UjQv425UTyezgteWG4w/jzFE9yU3zUJyf4ewk25DSIdjrdjO8Zw5PXTWR65+Zz9XHDOTusw8nzR39j+WMkT2Yce1R3PbyYs4a3YtpR/UjP1MrLCISv7xML2eN7kX3vHReX7SNp66ayHnjoq8X7HEZvn3iYO7/xmh+NXM506cMYHSfApVIExHHdMlOo2dBJrkZHl791mTG9smP+rUFWV4emjqOiyf0JdPjTmoABjD2IKyVU1JSYufNm+fYeIFQiNU762n0BynI8tIYCPPK/C28tmALNS10f3MZOGFYMZcf1Z+BXbOpbwqwYmctXxvRXQFYRBxX0xjgk9WlDOmeS2MgRE1jkOfmbOTdL3e2eAd2Vpqbc8f25sKSPmSlubEWGgNBRvTMVwAWkYSoqGui2hegsj7A5soGnvp0Iws2VbZ4bve8dC4/qj/HD+1GboaH7DQP3fISE4CNMfOttSUtPqcQvFtZrY/NlY08+O4q5m6o4OwxvTh7dC/SvS42VzRQ6wvidbvoX5RFmsfF3PUVzJiziWDI8sjlR1KU46VPl2x1YhIRx1lr2VjRwHdfWMSvzh/Ft2cs4IxRPTl2cFeCYcvG8nqagmGy0z30L8wiGLa8+cUOlm+r4cdnjeCemcv509TxdE/QLxkRSW2NgSALNlbxt/+u5/LJA/jlv5cz7aj+DOuRS11TkG1VjYTDli7ZafTIz6Cy3s/L87fQLSeN8f27sGBjFXecNowu2c4vJCoEt6O8rolNFQ08+O4qZq0u2+c5Y3aX88hN9+IPhdlc0UBTMLzPOd1y0nnk8iPpmpNG7y5ZCsIi4hhrLZsrGvjOC4v46dmHc9tLi1nXrCtTmttF38Is0j0u6v1BNlc00Hxx+JjBXbnxxEE8+O4qHrpsPMW5CsIi4pxIAH7yk3VMnzKQ65+ZT4M/tPf53HQPPQsycLsMlfWBAxr93HjCIHrkZ7Bie21CgrBCcBvaCsCxUBAWEae1F4CjpSAsIonQXgCOViKDcFshOKVvjKtq8LNlzxaIeAIwQGldE9c/M5+yOj+1Pmcab4hIaqv1BeMOwACfrCnj4Q/X8r1ThnLri4sdaw4kIqltc0Vj3AEY4OGP1rKj2sfwnrn89dMN1LVwP1YipHQIthb+8vHadgOwy8B3vzak3VajkSAcDB18q+si8tXjdsGDF4+JKwBHRILwfReMItOb0pd+EXFIcW461x8/KK4AHPHwR2vZVeNj6sS+5KhOcOJlp7u54fhBZLTxC8Fl4HcXjyPD6+aRy49sNwhfPrk/Xo+2QohI/PxBy9V/m9duAM5N93D1MQNpbxfWJ2vK+PE/voj7l5WICEB5nZ/pf/283WvK4OIczhnTq93x/vThWmYu3Z60T9RTOgSnedz0L8rk6asmtRiEIwF43sYK7n1zBT987Qsevbyk1SD8nZOHcPGEviqTJiKOcLkM549vuy5wbrqHR644kv5FWfzmwjFtBmGXgWlH9SfNk9KXfhFxSFa6m3H9Cto8Z0hxDr+9aAxTJ/Zj2lH92zy3S5aXow4rIllLiSl9Jaxq8PPnj9fx+H/W8fgVE/YJws0D8NOzN3L6Ed1ZX1bPD15b2mIQ/s5Jg+mRl870J+dSWuvb/1uJiMQsGAozsGs2N54wqMXnIwH40Y/XMWddOQs3VbUahF0GfnPhGCrq/TQFwgeeICISozSXi9tPHcaUwUUtPj+kOIcHLhpDj9wMhvfM5azRPVsNwl2yvDx6RQlZaZ4Od56LVUqHYI/Lxeje+by7fCdPz96wNwjvH4DvOG0Y9184hpeun9xiEP7OSYPpkZ/Bj/7xBYd1y8HtSukfq4g4xGUMn64pp2d+5gFBuHkAvvHEQdx3wWhG9MxtMQhHAvDCTVUEQmFVrxERRxTlptOvS1aLQbh5AC7Oz6AgK41h3VsOwpEA3C0nnb5dMnHH0Lk3HilfIq2uKcjHK3fx7ecXcsqI7txw/GE0BkK8vWzn3gA87aj+5Gd6CYRCrNhex0WPzGZg12zuu2AUO2p8lNY28aN/fMGZI3vyv+eOpDABxZ5FJDVV1vv5zdsrGd4zj+3VjazYUcv60jp+ef6ovQE40gq5pjHAv5ZsY/n2Wsb1K+CpTzcA8M2jB7BwUxUjeuZy1uhe5GV6O/cfJSKHlPLaJjZVNvCbd1bSMy+DxVuq9wnAzVXW+1m5s5Z/LdlOeV0TX26r5jcXjU1YAFad4HZEgvBzczbxwEVjdneB+3gtPQsy9wbgiEgQvum5+bx0w2QaA2Hmritn1uoyBWARSYhIEL5oQh/yM9PI8Lp58N0VXHBk370BOCIShF3GcOyQrgD8Z3UZYWsVgEUkYcprm2jwBwmELRkeNx6XOSAAR1TW+ymvb8JlDFlpbvyBML0TtAKsEByFhqYg1b4A1zw1j+rGADOumUTX3DSy0g78hREIhaioD/Cz15fx8apSnr/uKPp1yaJAAVhEEqTW52dblY+LH/2M0b3zuf/CMeRnevcJwBH1TQGqGoJc8eQcAJ6+ahIFWR6y0xWARSQxqur9fLqunG/PWMD3ThnKpRP70jWn5RDs84dYvauWSx79jOOHduPuc46gOEFt3dUsIwqRALxsWw1bKhuZ+vgcympbLtERCcAzv9hBvT/EpY9+xubKBuqTVNxZRFJLIBBiW1UTFz/6GVUNAWatLuOOl1tvelHVuDsAry2tZ21pPVc8OYeqRl2fRCQxmgfgsIUH3lnF83M3U1Z3YKGA5gG43h9i5hc7uPv1ZeyqSX5RAYVgYHt1494AHLE7CH/GpvKGfc7dWePbG4Aj6v0hLnn0M9aV1SkIi4ijAoEQ68obuPjR2VQ1/F/ojQThnfv94tha1YTfDPwAACAASURBVMgVT+wOwBFrS+u54ok5bK1qTNq8RSQ17B+AI1oKwvsH4IjOCsIJD8HGmNONMSuNMWuMMXe18Hw/Y8yHxpiFxpglxpgzEz2n5loKwBH7B+GWAnCEgrCIOK21AByxfxBuKQBHKAiLiNNaC8ARzYNwawE4ojOCcEJDsDHGDTwEnAEcDlxqjDl8v9N+DLxkrR0HXAI8nMg5NVde38T3X1nSYgCOiAThrZUNrQbgiHp/iEsfm4M/pBqcIhK/xlCYSx/7rMUAHBEJwjuqfa0G4Ii1pfV869n5VDX4EzFdEUkx26t9rQbgiAfeWcWMOZtZvauu1QAcMfOLHTzxyfqkXaMSvRI8EVhjrV1nrfUDLwBf3+8cC+Tt+Tof2JbgOe2Vl+bh/511OF2y2r5ZZEtlI1Pu+7DNABzxk7NGEAorBItI/ALBML88d2S77ZBnrS7jqF+932YABshJ93DPeaNIV8c4EXFA19w0LmunCxzAb99dxdl/+qTNAAy72ytfcfQACrKSU2gg0VfC3sDmZo+37DnW3N3ANGPMFmAmcHNLAxljrjPGzDPGzCstLXVkcl6vmwGFWbx0/eR2g3A07rtgFCcPL6ZrbmLucBSR1FKUk87EgYU8NHV8u0G4PTnpHl647igGdcsmM83jzARFJKV1y83gOycN5vLJ7Qfh9gwuzuGpqybSuyDTgZlF56uwHHAp8DdrbR/gTOAZY8wB87LWPmqtLbHWlnTr1s2xb+5UEFYAFpFEcCIIKwCLSKI4EYQ7IwBD4kPwVqBvs8d99hxr7mrgJQBr7WwgA+ia4HntI94grAAsIokUTxBWABaRRIsnCHdWAIbEh+DPgSHGmIHGmDR23/j2+n7nbAJOBjDGjGB3CHZmv0MMmgfhghiCsAKwiCRDR4JwdppbAVhEkqIjQXhQt84LwJDgEGytDQLfBt4GlrO7CsQyY8zPjTHn7DntNuBaY8xi4Hlguu2kNnZer5vC7DSGds+N6vwMr4vjhnRTABaRpCjKSWd8/y5Rtz4e0DWbHvkZCsAikhS5GV7OH7f/rV+tmzyokExv5+3MVdvkZtqqA9yaPl0ymXHtUfQrzHJ8PiIizbVVB7g1xw3pyv0XjqF7glqSiohA640w2nPbqW23WI6X2iZHoSMBGPbUEX7sMzZVNLR/sohIB3UkAEPrneVERJzS0QAMbbdYTjSFYDoegCMUhEUkkToagCMUhEUkUeIJwBGdFYRTPgTHG4AjFIRFJBHiDcARCsIi4jQnAnBEZwThlA7Bu2p9/Grm8qgC8PSjB0TVWW7qY58lte+1iBy6yuuaogrAOekerj5mYFSd5e58ZQlltU0OzlJEUtXmyoaoAvCgbjmcPaZnu+M98M4q/rFwG+V1yblGpXQITnO7uODIPnjdbf/muO+CUXz3a0N4MYo6wicOK3ZyiiKSwkJhy5mj2v7FEakDfMvJQ9otn+YycPGEvpg4u8+JiADkZXoZ07egzXMGF+fw9NUTufvsI7i8nRbLBVlejhvajfyM+Lv4RiOlQ3BBVhqjeufz5PQJrQbhSB3ggqw0BhZmtRmELz+qPzefNJhi3YUtIg4ozsvYe11pSfNGGHmZXia1UUfYZeChqeOZOLCQopz0BM9cRFJB97wMfnfxWI4eVNTi880bYRTlpPOdkwe3GoQLsry8dP1kDivKxuNJTjxN6RAMbQfh/RtheL3uVoOwArCIJEJrQbilTnCFOektBmEFYBFJlOJWgnBLneC65Wa0GIQ7IwCDQjDQchBurRNcS0FYAVhEEmn/INxWK+T9g7ACsIgk2v5BuK1WyPsH4c4KwKBmGfuoavCzdGs126saOamdVsiBQIj1FQ38Y+FWph89QAFYRBJuV42Pl+Zt5oRhxe22Qq6oa2LO+goABWARSbhAKExFvZ/fv7eKm04cTNfsdNLT3K2ev7O6kadmb+TrY3vRqyCD3Iy0hMyrrWYZCsH7qaxvwh8M0z2//T7WgUCIysaAArCIJM3Oah95GW4y09u/caR0T6WabrpGiUgCBUJhVu+s5baXFvPoFSX87I1lTDuqP5MGFpHZQhDeWtnAtMfm8tg3j+SNxVvJSPMwdVI/8jOdD8LqGBelQCjMtiofK3fW0eAPtnv+zrom3lu+k+rGQBJmJyKprtYXYPa6cnbW+mlvAcMfDLOxooGNFQ34g+EkzVBEUk0kAF/2+BxuP20YL8/fzHXHDeKOV5YwZ305jfuVT9ta2cBFj3zGFVP689GqUo4f1p3XFmxlxpxNVDf6kzr31j9LSzGBUJhVO2q58JHZNAXD/HX6BEoGdCGrlY8bt1Q2cNFfZrOt2kddU4iLJ/QlPzM5JT1EJPXU+gK8+cUOvv/KErrmpPHKDUfTvygL00K9M38wzJItVVz2+BwAnrtmEqP7FJCW5P12InJoax6Af3PhGF6Zv4U3v9jBf1aV8dDU8dw0YwH3f2P03hXhSAC+5tiBVDUE+P37q+mVn8Gfpo7nzleXACRsRbgluiKybwBu8IcIhS1X/u1z5m2obHFFuHkABrhn5nJe/HyzVoRFJCGaB2CAsjo/3/jLp2wsbzhgRbh5AG4KhmkKhrns8Tks2VKlFWERcdSm8oYDAjDAws1V/Grmch6aOn7vivD2qsYDAjDAtmof356xgPsuGM1rC7by2oKt1PqSk6dSfk/w/gG4ObfLHLAivH8Abu6HZ47QirCIOGr/ANzc/ivC+wfg5tI9Lq0Ii4ijyuuaWFdax5P/3bA3ADc3rm8BPzhzBDc+Nx9fIMxtpw7dJwA31ys/g4cuG0/XnHR6F2Tiaq8FZpS0J7gVbQVgYJ8VYV8g1GYABq0Ii4iz2grAsO+KsD8YajUAA1oRFhHHGWN4ds6mFgMw/N+K8MOXHckPzxzeagCG3SvCNz23AGNwLAC3J6VDcH1TkN+/v7rFABwRCcLPzdnYZgCO+MvHawmG9QtGROIXtvDgu6vaPCcShGfM2dRqAI5oCob59dsraAy0fs0TEYlWeV0Tby5tOQBHRILwqp11rQbgiG3VPl5bsEXbIdri5HaI8rombnlhIZ+sKY97rMLsNF791tH0L8xK2rsYETm0ba5o4MK/zGZHTdtvwKMxtm8+j10xgW65qhksIvHzBXZ/AjXt8bn4Q/EvAF559AC+c/IQumQ7d2OctkO0oSgnnd9fMo5jBrfc9zpaCsAikgh9C7N4+YbJ9Iiz1q8CsIg4LcPrZnSfAp69ZiJp7vgiZSICcHtSPgRD/EFYAVhEEineIKwALCKJ4kQQ7owADArBe3U0CCsAi0gydDQIKwCLSKJFgvBTV8UehK+Y3J9vnzQ46QEYFIL3UZSTzu8vHceYvvlRnZ/ucfGaArCIJEnfwixe+dZk8jKi63M0uDiHx7+pACwiiVde18Tby3bwu0vGRv2ac8b0YtLAQr7YWn1AZ7lkUAjej88fZldNU1TnBkJhNlU04AvqTmsRSTx/MMyOal/U1R0q6v3U+YLttlgWEYlHpBNc/6Islm+vifp1myoa6Jabwe2ttFhONIXgZrZWNnLRI7PZ3k4ZtIiwpc3OciIiTmneCCMQii7UVtS33llORMQJ+7dC/uMHa6J+7aIWOsslMwgrBO8RCcBbqxpjel17LZZFROLVVie49rTVYllEJB5bW2mFHIuWWiw3NCUnTykE0/EAHKEgLCKJEk8AjlAQFpFEcBn47teGdDgAR+ztLDd1PDnpHnWMS5Z4A3CEgrCIOM2JAByhICwiTstK81DR4I8rAEcs3FzFPW8up19hFhletwOza19Kh+DqxgB3vLK43QBcmJ3Gv79zTLvl00Jhy3XPzIt6v56ISFsCoTBXPzWv3QA8tm8+b91ybLvl08rq/Nw0YwG1SfqoUUQObdurGvnVzBXtnnfl0QN4JoryaQs3VfHYf9ZTp+0QiZef6eWBC8cwoCir1XMidYBH9Mhrt45wmtvF01dNJN2T0j9WEXFImsfw7NWTyGxjVSRSB3h4z7x26wj3yMvgL9OOJC/Dm4jpikiK6VWQyT3njWzznCunDOCWrw1h4sDCdhtqHD2oiBuOP4yc9OjKQMYr5dNaz4JMnr/2qBaD8P6NMNpqqJHmdvHsNRMZ3acgacv4InJo87rdDO+Zw0vXT24xCO/fCKOthho98jJ4+YbJ9C1s/U2/iEgs8jK9nDW6V6tB+MopA7jl5CEUZKWR3k5nuaMHFfHHS8dRlJO8uuYpH4Kh5SDcWie4loKwArCIJEprQbi1TnAtBWEFYBFJlNaCcPMAHNFai+XOCMCgELxX8yDcXivk5kFYAVhEEm3/INxeK+TmQVgBWEQSbf8g3FIAjtg/CHdWAAYwB+NdwiUlJXbevHkJGXt7VSO+YDiqVsjldU3sqPExqFuOArCIJFwgFGJtaT1F2elRtULeXNEAoAAsIklR0xhg9a46BnXLbjEAN+cLhFhbWkePvIyEBmBjzHxrbUlLzyVn5/FBJDvdTVaaO6oadVlpHvp3yVQAFpGk8Lrd9MrPwB1lDc28TF3iRSR58jK9jOiRQ7qn/VyU4XXTv0smrnYqRiSStkM0U93oZ8aczdwzczmV9f42z230h5izvpyrn55HWW1TkmYoIqmsvK6JW15YxPvLd1HXFGjz3KoGPw9/uJaHP1xLVUPb1zMRESdsrWzk/D/PZk1pPaFQ26Udy2qbuPrpecxZV9Fp/RUUgveobvTz/JzN3PvWCl6ct4V732w9CO8NwE/NY876Sm54dr6CsIgkVHldE7e/vJgPV5Zyy4uL+KCNIFzV4OfPH63lkVnreGTWOv78kYKwiCRWpPnYih21fOPPn7YZhMtqm7jh2fnMWV/JNZ0YhBWC2TcAR7QWhJsH4FB4937qeRsVhEUkcZoHYABraTUINw/AEQrCIpJI+3ffrW0KthqEIwF43sZKYHejsc4KwikfglsKwBH7B+GWAnCEgrCIJML+ATiipSDcUgCOUBAWkUTYPwBHtBSE9w/AEZ0VhFM6BFc3tB6AIyJBuKYx0GoAjpi3sZLrn9UeYRFxRmsBOKJ5EK71BVoNwBGRIFypICwiDmgtAEc0D8LldS0H4Ih9gnCS2ian9K3DxhhyM9r/Ebw4bwtfbq/ly+01rQbgiKw0Dya6G7dFRNpkjCEzre27rCNBeHTvfBZvqW53zLxML7pEiYgT3C5I87S9nlrbFOSCP39K97wM1pbWtXmuyxB1hS4npPRKcF6ml7PH9OKX57bd9xpg6dbqdgPwsUO68ruLx3ZKwWcROfQUZqfxi3NHceaoHm2eZy1RBeA7ThvGtEn9263fKSISjR75mTx/7SQGds1u87y6pmC7AdjrNjx79STG9E1e87GUDsEQWxBuiwKwiCRCtEG4PZEAnJ/ldWhmIiLRB+G2dEYABoVgIP4grAAsIokUbxBWABaRRIonCHdWAAaF4L06GoQVgEUkGToahBWARSQZOhKEOzMAg0LwPvIyvZwzthenHF4c1fmZXjd/mXakArCIJEVhdhr3f2MMRdnR7emdMKALV0xWABaR5OiRn8lTV02M+vybTxrSaQEYFIL30egPMX9jJR+saLkc0QHnB0L8/I1l7bZYFhFxQlWDnz+8v5ryKK858zZW8uGK9lssi4g4oay2iVtfXBT1+Y/NWseG8vZbLCeKQvAebTXCaEt7LZZFRJzQViOM1rTVWU5ExEmtNcJoS21TkAv/PJvVpXWdEoQVgul4AI5QEBaRROpIAI5QEBaRROtIAI7ozCCc8iE43gAcoSAsIokQTwCOUBAWkUSJJwBHdFYQTukQHEsALs5t/+Y3BWERcVIsAbh7XtvXKAVhEXFatAHY6zbt3tDbGUE4pUOwLxjivS93RtUJ7r1bj+cXUZRPm7uhkmAcK8oiIhFhC/9ZXdbueXecNoz3bzuBM0e231nurWU7CAR1jRKR+NU1BVm1q7bNcyJl0N685dh2y6fVNgVZtKmKhkDIyWm2KqVDcJesNG47dRiXTujb6jmROsB5mV7OGdOrzSA8sGs2z187iW5RrBqLiLSnMDuNv105gRE9c1s9J1IHOCfdwy/OG9VmED5zZA9+ce4oukRZYk1EpC19C7N49Yajycv0tPh88zrAxXkZ7dYR/t+vj+TMUT3JzUhOWceUDsEAXbLT+P7pw1sMwvs3wmgrCEcCcI/8zITPWURSR3FeBk9dObHFILx/I4zC7LRWg/CZI3vwi/NGUagALCIOcbsMh3XLaTEIt9QIo62GGv/79ZF8fWwv8jKTV9c85UMwtByEW+sE11IQVgAWkURqKQi31gmupSCsACwiidJSEG6rE1xLQbgzAjCAsfbg2xtWUlJi582b5/i4lfV+fv3WCrZUNbbbCrmmMcDri7fxxCfrFYBFJCl21fj45l/nctboXu22Qq6o9/Pjvy8FUAAWkYQLhS3rSuu49LHPeGjq+HY7we2obuTSx+Zw1ZSBCQ3Axpj51tqSFp9TCN5XZb0fi6Uwu/19vTWNAcLWUpClXy4ikhyV9X5cxkTVCrliT6UaBWARSYZQ2NIYCOFxmahaIVc17L6eJXIFuK0Q3PJO5hQWyw0jyV62FxGJ5Rql8CsiyeR2GXLSo4+Wnb2IqD3BIiIiIpJyFIJFREREJOUoBIuIiIhIylEIFhEREZGUoxAsIiIiIilHIVhEREREUo5CsIiIiIikHIVgEREREUk5CsEiIiIiknIUgkVEREQk5SgEi4iIiEjKUQgWERERkZSjECwiIiIiKUchWERERERSjkKwiIiIiKQchWARERERSTkKwSIiIiKSchSCRURERCTlKASLiIiISMpRCBYRERGRlKMQLCIiIiIpJ+Eh2BhzujFmpTFmjTHmrlbOucgY86UxZpkxZkai5yQiIiIiqc2TyMGNMW7gIeAUYAvwuTHmdWvtl83OGQL8AJhira00xhQnck4iIiIiIlGtBBtjPM2+zjHGlBhjCqN46URgjbV2nbXWD7wAfH2/c64FHrLWVgJYa3dFN3URERERkY5pNwQbY6YDO40xq4wxZwBLgPuAxcaYS9t5eW9gc7PHW/Yca24oMNQY819jzGfGmNNbmcd1xph5xph5paWl7U1bRERERKRV0WyHuA0YBuQCi4Fx1tq1xpjuwLvA8w7MYQhwAtAHmGWMGWWtrWp+krX2UeBRgJKSEhvn9xQRERGRFBbNdoiQtbbMWrseqLPWrgWw1u6M4rVbgb7NHvfZc6y5LcDr1trAnu+xit2hWEREREQkIaIJwZuMMb8yxvwJWGGMecAYM8UY81Ngezuv/RwYYowZaIxJAy4BXt/vnH+wexUYY0xXdm+PWBfLP0JEREREJBbRhOBpQA27V2zPAT5ldzWHYmB6Wy+01gaBbwNvA8uBl6y1y4wxPzfGnLPntLeBcmPMl8CHwB3W2vIO/FtERERERKJirHVme60x5o/W2psdGawdJSUldt68ecn4ViIiIiJykDLGzLfWlrT0nJPNMqY4OJaIiIiISMKobbKIiIiIpByFYBERERFJOU6GYOPgWCIiIiIiCRN1CDbGjGrnlN/HORcRERERkaSIZSX4YWPMXGPMjcaY/P2ftNb+zblpiYiIiIgkTtQh2Fp7LHAZuzvAzTfGzDDGnJKwmYmIiIiIJEhMe4KttauBHwN3AscDfzDGrDDGnJ+IyYmIiIiIJEIse4JHG2MeZHfnt5OAs621I/Z8/WCC5iciIiIi4jhPDOf+EXgc+KG1tjFy0Fq7zRjzY8dnJiIiIiKSILGE4P8BGq21IQBjjAvIsNY2WGufScjsREREREQSIJY9we8Bmc0eZ+05JiIiIiJyUIklBGdYa+siD/Z8neX8lEREREREEiuWEFxvjBkfeWCMORJobON8EREREZGvpFj2BH8XeNkYs43dLZJ7ABcnZFYiIiIiIgkUdQi21n5ujBkODNtzaKW1NpCYaYmIiIiIJE4sK8EAE4ABe1433hiDtfZpx2clIiIiIpJAUYdgY8wzwCBgERDac9gCCsEiIiIinSAQCLBlyxZ8Pl9nT6VTZWRk0KdPH7xeb9SviWUluAQ43FprY56ZiIiIiDhuy5Yt5ObmMmDAAIwxnT2dTmGtpby8nC1btjBw4MCoXxdLdYgv2H0znIiIiIh8Bfh8PoqKilI2AAMYYygqKop5NTyWleCuwJfGmLlAU+SgtfacmL6jiIiIiDgmlQNwREd+BrGE4LtjHl1EREREDllVVVXMmDGDG2+8sbOnErOot0NYaz8GNgDePV9/DixI0LxERERE5CuuqqqKhx9+uLOn0SFRh2BjzLXAK8Ajew71Bv6RiEmJiIiIyFffXXfdxdq1axk7dix33HEH999/PxMmTGD06NH89Kc/BWDDhg0MHz6c6dOnM3ToUC677DLee+89pkyZwpAhQ5g7dy4Ad999N5dffjmTJ09myJAhPPbYYwBs376d4447jrFjxzJy5Ej+85//ODL3WG6MuwmYAtQAWGtXA8WOzEJEREREDjr33nsvgwYNYtGiRZxyyimsXr2auXPnsmjRIubPn8+sWbMAWLNmDbfddhsrVqxgxYoVzJgxg08++YTf/OY33HPPPXvHW7JkCR988AGzZ8/m5z//Odu2bWPGjBmcdtppLFq0iMWLFzN27FhH5h7LnuAma60/svHYGONhd51gEREREUlx77zzDu+88w7jxo0DoK6ujtWrV9OvXz8GDhzIqFGjADjiiCM4+eSTMcYwatQoNmzYsHeMr3/962RmZpKZmcmJJ57I3LlzmTBhAldddRWBQIBzzz3XsRAcy0rwx8aYHwKZxphTgJeBNxyZhYiIiIgc1Ky1/OAHP2DRokUsWrSINWvWcPXVVwOQnp6+9zyXy7X3scvlIhgM7n1u/yoPxhiOO+44Zs2aRe/evZk+fTpPP+1Mn7ZYQvBdQCmwFLgemGmt/ZEjsxARERGRg05ubi61tbUAnHbaaTz55JPU1dUBsHXrVnbt2hXTeP/85z/x+XyUl5fz0UcfMWHCBDZu3Ej37t259tprueaaa1iwwJm6DLFsh7jZWvt74LHIAWPMLXuOiYiIiEiKKSoqYsqUKYwcOZIzzjiDqVOnMnnyZABycnJ49tlncbvdUY83evRoTjzxRMrKyvjJT35Cr169eOqpp7j//vvxer3k5OQ4thJsou2CbIxZYK0dv9+xhdbacY7MJAYlJSV23rx5yf62IiIiIl8py5cvZ8SIEZ09DUfcfffd5OTkcPvtt3fo9S39LIwx8621JS2d3+5KsDHmUmAqMNAY83qzp3KBig7NUkRERESkE0WzHeJTYDu72yY/0Ox4LbAkEZMSERERkdRy9913J/X7tRuCrbUbgY3A5MRPR0REREQk8WLpGHe+MWa1MabaGFNjjKk1xtQkcnIiIiIiIokQS3WIXwNnW2uXJ2oyIiIiIiLJEEud4J0KwCIiIiJyKIglBM8zxrxojLl0z9aI840x5ydsZiIiIiLylXfVVVdRXFzMyJEjO3sqMYklBOcBDcCpwNl7/pyViEmJiIiIyMFh+vTpvPXWW509jZhFvSfYWntlIiciIiIiIon15ptv8tBDD7Fz5066d+/OTTfdxBlnnBHXmMcddxwbNmxwZoJJFEt1iKHGmPeNMV/seTzaGPPjxE1NRERERJzy5ptv8stf/pIdO3ZgrWXHjh388pe/5M033+zsqXWKWLZDPAb8AAgAWGuXAJckYlIiIiIi4qyHHnoIn8+3zzGfz8dDDz3USTPqXLGE4Cxr7dz9jgWdnIyIiIiIJMbOnTtjOn6oiyUElxljBgEWwBjzDXa3UxYRERGRr7ju3bvHdPxQF0sIvgl4BBhujNkKfBf4VkJmJSIiIiKOuummm8jIyNjnWEZGBjfddFNc41566aVMnjyZlStX0qdPH5544om4xkuWWKpDrAO+ZozJBlzW2trETUtEREREnBSpAuF0dYjnn3/eieklXdQh2BhzC/BXoBZ4zBgzHrjLWvtOoiYnIiIiIs4544wz4g69h4pYtkNcZa2tYXezjCLgcuDehMxKRERERCSBYgnBZs/fZwJPW2uXNTsmIiIiInLQiCUEzzfGvMPuEPy2MSYXCCdmWiIiIiIiiRP1nmDgamAssM5a22CMKQLUSllEREREDjrthmBjzHBr7Qp2B2CAw4zRLggREREROXhFsxJ8K3Ad8EALz1ngJEdnJCIiIiIHhc2bN3PFFVewc+dOjDFcd9113HLLLZ09rai0G4Kttdft+fvExE9HRERERA4WHo+HBx54gPHjx1NbW8uRRx7JKaecwuGHH97ZU2tX1DfGGWMu3HMzHMaYHxtjXjPGjEvc1ERERETEKYFAgJtvvpmbb76ZhoaGvV8HAoEOj9mzZ0/Gjx8PQG5uLiNGjGDr1q1OTTmhYqkO8RNrba0x5hjga8ATwF8SMy0RERERcdKtt97KggULWLBgAWeeeeber2+99VZHxt+wYQMLFy5k0qRJjoyXaLGE4NCev/8HeNRa+28gzfkpiYiIiEiiNDU1UVdXR1NTk2Nj1tXVccEFF/C73/2OvLw8x8ZNpFhC8FZjzCPAxcBMY0x6jK8XERERkU5y33334fV69znm9Xr59a9/Hde4gUCACy64gMsuu4zzzz8/rrGSKZYQexHwNnCatbYKKATuSMisRERERMRRd9555wH7fwOBAN///vc7PKa1lquvvpoRI0Y4tq0iWaIOwdbaBuCfQL0xph/gBVYkamIiIiIi4rz09HRycnJIT0+Pe6z//ve/PPPMM3zwwQeMHTuWsWPHMnPmTAdmmXhRd4wzxtwM/BTYyf+1S7bA6ATMS0REREQc9Nvf/nbvau19993HnXfeufd4Rx1zzDFYax2ZX7LF0jb5FmCYtbY8UZMRERERkcTwer388Y9/3Pu4+depKJY9wZuB6kRNREREREQkWWJZCV4HfGSM+Tewt6aGtbbja+giIiIiIp0glhC8JQmbPAAAHcFJREFUac+fNFQfWEREREQOYlGHYGvtzwCMMTl7HtclalIiIiIiIokU9Z5gY8xIY8xCYBmwzBgz3xhzROKmJiIiIiKSGLFsh3gUuNVa+yGAMeYE4DHg6ATMS0REREQOEgMGDCA3Nxe3243H42HevHmdPaV2xRKCsyMBGMBa+5ExJjsBcxIRERGRg8yHH35I165dO3saUYupOoQx5ifAM3seT2N3xQgRERER+Yo77rjjaGhoOOB4VlYWs2bN6oQZda5Y6gRfBXQDXgNeBbruOSYiIiIiX3EtBeC2jsfCGMOpp57KkUceyaOPPhr3eMkQS3WISuA7CZyLiIiIiByEPvnkE3r37s2uXbs45ZRTGD58OMcdd1xnT6tNsVSHeNcYU9DscRdjzNuJmZaIiIiIHCx69+4NQHFxMeeddx5z587t5Bm1L5btEF2ttVWRB3tWhoudn5KIiIiIHCzq6+upra3d+/U777zDyJEjO3lW7YvlxriwMaaftXYTgDGmP2ATMy0RERERORjs3LmT8847D4BgMMjUqVM5/fTTO3lW7YslBP8I+MQY8zFggGOB6xIyKxERERFxVFZWVqvVIeJx2GGHsXjx4rjG6Ayx3Bj3ljFmPHDUnkPftdaWRZ43xhxhrV3m9ARFREREJH6pWAatLbGsBLMn9P6rlaefAcbHPSMRERERkQSL5ca49pgWDxpzuvn/7d15mJ11fffx9/ecmcwkmckCGRZJgCighFUcFml4TMCFpQXXiq1ttfj4PI/a0lpa0bZWpU+pQm0vW7RFadG21pVaKiC2miCKUAakRKDSCApBIYshZJLMer79Y040JJNlMuc+s9zv13XlYu7lfM93uK/88pnf/M59R3wvIlZHxOW7fXHEayIiI6K7gT1JkiRJu2hkCN7lQ3IRUQWuAc4DlgBviIglo5zXCVwK3NXAfiRJkqa9TO9TsD//DxoZgkdzGrA6Mx/JzAHgM8BFo5x3BfBBoK/gfiRJkqaN9vZ2NmzYUOognJls2LCB9vb2Mb1uTGuC92JglH2HAY/vsL0GOH3HE+oftluUmTdFxO/urnhEvJX63SgOP/zw8XcrSZI0xS1cuJA1a9awbt26iW5lQrW3t7Nw4cIxvWZMITgiTgSO3PF1mXlD/b9n7OZle6pXAT4MvGlv52bmtcC1AN3d3eX9cUeSJKmutbWVxYsXT3QbU9I+h+CI+FvgROABoFbfncANe3jZE8CiHbYX1vdt1wkcD6yMCIBDgBsj4sLM7NnX3iRJkqSxGMtM8BmZucuH2vbibuDoiFjMSPi9GPil7QczcxOwYPt2RKwELjMAS5IkqUhj+WDct0e7s8OeZOYQ8A7gVuAh4HOZ+UBEfCAiLhxLLUmSJKlRxjIT/ClGgvCTQD8j9wXOzDxxTy/KzJuBm3fa997dnLtsDP1IkiRJ+2UsIfg64FeAVfxsTbAkSZI05YwlBK/LzBsL60SSJElqkrGE4O9ExKeBf2VkOQTws1ukSZIkSVPFWELwTEbC78t32Le3W6RJkiRJk84+h+DMfHORjUiSJEnNMpaHZbQDlwDHAT99OHNm/noBfUmSJEmFGct9gv+ekSe6vQK4jZGnv20uoilJkiSpSGMJwUdl5h8CWzLzk8AFwOnFtCVJkiQVZywheLD+36cj4nhgLnBQ41uSJEmSijWWu0NcGxHzgT8EbgQ6gFGf/CZJkiRNZmO5O8Qn6l/eBjy3mHYkSZKk4u3zcoiIODgirouIW+rbSyLikuJakyRJkooxljXB1wO3As+pbz8M/FajG5IkSZKKNpYQvCAzPwfUADJzCBgupCtJkiSpQGMJwVsi4kBGHpVMRJwBbCqkK0mSJKlAY7k7xDsZuSvEcyPiW0AX8NpCupIkSZIKNJYQ/CDwz8BWRp4U9yVG1gVLkiRJU8pYlkN8CngB8CfAXwLHMPIoZUmSJGlKGctM8PGZuWSH7RUR8WCjG5IkSZKKNpYQfG9EnJGZdwJExOlATzFtNce6zX309hdzg4uOtipdne2F1JZUDo5RkiazosaoZo1Pew3BEbGKkTtCtAJ3RMRj9e0jgP8qtr1i9fYPs/zqlYXUXnHZMro6CyktqSQcoyRNZkWNUc0an/ZlJvjnC+9CkiRJaqK9huDM/GEzGpEkSZKaZSx3h5AkSZKmBUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSicyc6J7GLPu7u7s6ekZd511m/vo7R9uQEe76mir0tXZXkhtSeXgGCVpMitqjGrk+BQR92Rm92jHWhryDlNUS6VCS6VWWG1JGo8giAJrS9J4FJWjmpWhSh2Ce/uHOOtDKwqpffvvLWf+7BmF1JZUDr39Qyy7emUhtVdetowFnW2F1JZUDkXlqGZlKKcrJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6URmTnQPY9bd3Z09PT3jrrNucx+9/cMN6GhXHW1VujrbC6ktqRzWb+6nt3+okNodbS0s6GwrpLakcti4ZaCQMaqjrYX5s2c0pFZE3JOZ3aMda2nIO0xRW/qHWX71ykJqr7xsGV2dhZSWVBILOtsMqpImrfmzZzQsrE4El0NIkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkqn8BAcEedGxPciYnVEXD7K8XdGxIMRcX9EfC0ijii6J0mSJJVboSE4IqrANcB5wBLgDRGxZKfTvgN0Z+aJwBeADxXZkyRJklT0TPBpwOrMfCQzB4DPABfteEJmrsjMrfXNO4GFBfckSZKkkis6BB8GPL7D9pr6vt25BLhltAMR8daI6ImInnXr1jWwRUmSJJXNpPlgXES8EegGrhrteGZem5ndmdnd1dXV3OYkSZI0rbQUXP8JYNEO2wvr+54lIl4K/D7wkszsL7gnSZIklVzRM8F3A0dHxOKImAFcDNy44wkR8ULgb4ALM3Ntwf1IkiRJxYbgzBwC3gHcCjwEfC4zH4iID0TEhfXTrgI6gM9HxH0RceNuykmSJEkNUfRyCDLzZuDmnfa9d4evX1p0D5IkSdKOJs0H4yRJkqRmKXwmeDKb3VZlxWXLCqstSeOxbnMfvf3DhdTuaKvS1dleSG1J5VDUGNWs8anUIXhL/zDLr15ZSO2Vly2jq7OQ0pJKorfAMWqFY5SkcSpqjGrW+ORyCEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJVOZOZE9zBm3d3d2dPTM+466zb30ds/3ICOdtXRVqWrs72Q2pLKwTFK0mRW1BjVyPEpIu7JzO7RjrU05B2mqC39wyy/emUhtVdetoyuzkJKSyoJxyhJk1lvQWPUiiaNTy6HkCRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpROZOdE9jFl3d3f29PSMu876zf309g81oKNddbS1sKCzrZDaksrBMUrSZLZucx+9/cMNr9vRVqWrs70htSLinszsHu1YS0PeYYqqVoJqJQqrLUnj4RglaTJrqVRoqdQKqdsMpQ7Bvf1DnPWhFYXUvv33ljN/9oxCaksqB8coSZNZUWNUs8Yn1wRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHELyTMxfP4ZKfO/yn2x0z4cu/cSZ3vedsbrtsGectOehZx6646NiJaFNSSb33/OdzSMfPts9cPIcVv/MS7nrP2dx66dJnHXvViYfwqhMPaX6TkkrrT1913LO23/aSI/n2u5Zz17vP5tOXdD/r2BUXHUvHzGZ292yRmRP37vupu7s7e3p6xl1n3eY+evuHf7rdDlRaqyRJe2uFLf3D9A3WeGR9L09vHaSttcJRXR3MndlKtRLMaws2DwZz2ys8sWngWbU72qp0dbaPu0dJ5bXzGHVoZwvP9CcdLcnmIRgaTp7pG2L12l76BofpbG/lqINmM7O1yqzWCrVhGAqo5jCbB59d2zFK0njtPEbNa69SqVaZ1QLrtgwyXIMNvf08un4Lw5kc1NnO4QfMoqUadHW0srmvxlCtxrbB2rPqNnJ8ioh7MrN7tGMtDXmHKaq3f5jlV68ERmZMLr/gOFqryZaB5OO3f5/P9zzOM31Du7yuErD8+Qfx9uVH8Zy57Wx6ZoiZLcEZf7rip+esuGwZXZ3N+k4kTUc7jlG3XrqU9VuDlkrwyMYBPrpyNV994CmGartOZMyaUeXVpxzGW5Y+l9kzKgxHlVv+84d86N9W//QcxyhJ47XjGHXvH5xDRLKtf4i7H32Gj678Pvc+tnHU1x0yp51fO/MILjr5MDrbqgC89C++Tu+2kePNGp9cDsFIAH7PBceRwA3f+TEv/fBtXPfNR0cNwAC1hK/911pe/bE7eP+XH2SgWuHA2a3cefny5jYuqRRuvXQpiw+cSbUSXHXr9/j5v/wmN696ctQADLB1YJh/uPMxXvrh2/j0fzxOZvLLpx7B773sqCZ3LqkM7v2Dcwhg49Zh/u8/3stbPtWz2wAM8OQzfXzwK9/j/I/czp2P/gQS/v23zm760ojSh+DtM8C1gN//51X88U0P0T9U2/sL62757pO85qN3sObpfoOwpIbbHoCf6h3i4mvv5Iv3PrHPrx2qJX/+7//NpZ+5j77EICyp4e79g3OA5Pvrt3L+R77JfY8/vc+vfXrrIP/7U/dw/bd/ADQ/CJd6TfCP128ZWQOcyRU3PchNq57c71qHzGnnhredSdtwjcFqsG0oWbxg9rh7lFReff39rN86TLUSvOHaO/nBhq37XeusoxZw1etOJCL44t0/5LyTFjpGSRqXjb19tLVWeGxjH6+85lv0De77JOLO3nXu83ntKQsZzmTbYK1h49Oe1gSXeia4OqNKWwvc8/jT4wrAMDK1/4F/fYCBaoVKpcL8Cfy0o6TpYcsgtAT8xb/997gCMMDtq9fztYfW0lqBXzz9yMY0KKnU1vUO8kzfMO/49HfGFYABrv7qw6zfMkBrBWa1NieeljoEV4Ctg8l7bljVkHpfeeApnnh6G3Pbgo3bGlJSUom1UePpbUN8tufxhtS74qYH6RtKhofH94+VJAEcPq+dm1c9yeq1veOuNVxL3vXF++kfSma3RQO627tSh+B5s1ro+cFP2LRtcO8n76O/WrGajdv8B0bS+G2rwd984/sNq9c3WOPWB55kTnu1YTUlldeGbYNc981HG1bv/jWbeKZviIGB4b2f3ACFh+CIODcivhcRqyPi8lGOt0XEZ+vH74qII4vuabu1vQP80380ZoZlu288vI6hKbjOWtLkM1CDm8e5VGtnn+9Zw/oto9/5RpLGYnPfEE883dhffX/+nseZM6utoTV3p9AQHBFV4BrgPGAJ8IaIWLLTaZcAGzPzKODPgQ8W2dOOagmrntjU8JpPbx1kVkOrSiqjbQPDY7pbzb54+KnNVKI5v2qUNL3t6TZo++s7j23iqWcG9n5iAxQ9E3wasDozH8nMAeAzwEU7nXMR8Mn6118Azolozgg9XEt6+xs/I/K9JzdzwNwZDa8rqVwe/8n4Pgw3mqFa0jfUnF81SprevtvgiUSA1es206xFpUWH4MOAHdcbrKnvG/WczBwCNgEH7lwoIt4aET0R0bNu3bqGNFcraNlC39AwTcrxkqax/oLC6lS8NaakyaVWqzX8N1UAA0M1mhWhpswH4zLz2szszszurq6uhtRsqRTz7c+d2cpwzQ/HSRqfOe2thdQtauyTVB6VSoU5Mxs/RnW2tTbtB/WiR8IngEU7bC+s7xv1nIhoAeYCGwruC4AADups/OLrYw7u5EfPNO6OE5LK6TkF3HB81owqLVV/UyVp/LqPOKDhNZc8Zw6t1elxn+C7gaMjYnFEzAAuBm7c6ZwbgV+rf/1a4OvZpB8B2luDFx0xv6E1Z82oMnuGtx+SNH6tleDA2Y39fMHJi+ZRMQNLaoDjD5vT8Jovft6BdHU053NVhYbg+hrfdwC3Ag8Bn8vMByLiAxFxYf2064ADI2I18E5gl9uoFWVma3DJ0sUNrfnqUw5r2pNOJE1vc2e28EunH97Qmm9ZutgQLKkhWqsVXrhoXsPqVSvBBSccymMb+xpWc08KT2uZeXNmHpOZz8vM/1/f997MvLH+dV9mvi4zj8rM0zLzkaJ72u6ZvhrPmdfOMQd3NKReSyV4y9LnUhtOOpwMljROWwZqvP7URbQ36AfrhfNn8oJD5zCyGEySxqdrdgu//bJjGlbvghMOYUY1aG/xiXGFiwhmtlb5yMUvpNqAqZHfftnRzG6rMBSBdyCS1AgzWyv84QU73159/3zk4hcyt72lIbUkaW3vEMcc3MErjjt43LXmz2rl8vOOZVPfFlqadHuIUofgbYM1BoZqHDCrlfdfOL5/ZJYedSCvOWURtQw++a3v05yJfEnT2eDAMEM1OOfYgzh3nP/IvPNlR3PovHZ6+4c548qvN6hDSWU2f1aF1hq87xeOY/GC2ftdp7Ua/PUbX8SctioHzuygd7A5d9gqdQgGOP3Kr5PAS489mA9cdNx+zQgvf34XV7/uZNoCPvmt7/PR237Q8D4llc8g8L4vrSIieP+Fx3PRSYeOuUYE/M7Lj+H13YuoEJx+5dca36ikUnpq8xBrevs4YGaFv7/kNF5wSOeYa8yaUeXv3nQqRy6YRf9gjRf9SfPGqNKHYBgJwgGcu+RgvvwbSznqoH1bI9zR1sKf/eJJ/MmrT6A14OMGYEkNdsuDa3nfl1ZBwLvPP5aPvfEU5u7jvTkPP2AW//y2M3ndixaCAVhSAS665g7+a+1WDpxZ4fo3n8pvnnMULfs4ofji5x3IVy49i+MO7aSFaGoABnBxWN3pV36du959NofMaeNTv34aazZu5RO3P8o9P9zIhi0/e4Z1e2uFJYfO5fWnLuSso7uY1Vqhfzi5zgAsqSC3PLgWWMX7XnkCZz5vPrdcehZ3/+AnfPqux1j1xCa2DvzsQwjzZrXywkXzuWTpkTy3q4POtipbB2oGYEmFueiaO/iXt5/Jgo523nj64fxi9yJuvO9HfPn+H/PwU5sZqv3szreHzZvJi593AJcsfS5zZ7ZArUatRtMDMBiCn+X0K7/One8+mwBmtwZ//Mrj6R+qkZkM1pJKwIxqBUjmz5rBtv6R9XougZBUtO1B+P2vPIFqwLJjuuiu3+d8cDgZzqSlElQrQWsl6O0bJAJ6B4Z5sWuAJRVsexBedMBsqjHEm848gl846VAqET99vPL2h2DMbqvyg7Wb6OqYS1QqExKAAWIqPkO+u7s7e3p6xl1n3eY+evuLuY1DR1uVrs72QmpLKgfHKEmTWVFjVCPHp4i4JzO7RztW6pngrs52usa+hluSmsIxStJkNtXHKD8YJ0mSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqnSn5sIyIWAf8cALeegGwfgLeV8Xyuk5fXtvpy2s7PXldp6+JurZHZGbXaAemZAieKBHRs7unjmjq8rpOX17b6ctrOz15XaevyXhtXQ4hSZKk0jEES5IkqXQMwWNz7UQ3oEJ4Xacvr+305bWdnryu09eku7auCZYkSVLpOBMsSZKk0jEES5IkqXQMwTuJiL+NiLUR8d3dHI+I+EhErI6I+yPilGb3qLHbh+v6y/XruSoi7oiIk5rdo/bP3q7tDuedGhFDEfHaZvWm8dmXaxsRyyLivoh4ICJua2Z/2n/7MCbPjYh/jYj/rF/bNze7R41dRCyKiBUR8WD9ul06yjmTJkcZgnd1PXDuHo6fBxxd//NW4GNN6Enjdz17vq6PAi/JzBOAK5iEC/i1W9ez52tLRFSBDwJfbUZDapjr2cO1jYh5wEeBCzPzOOB1TepL43c9e/57+3bgwcw8CVgG/FlEzGhCXxqfIeB3MnMJcAbw9ohYstM5kyZHGYJ3kpnfAH6yh1MuAj6VI+4E5kXEoc3pTvtrb9c1M+/IzI31zTuBhU1pTOO2D39nAX4D+CKwtviO1Cj7cG1/CbghMx+rn+/1nSL24dom0BkRAXTUzx1qRm/af5n548y8t/71ZuAh4LCdTps0OcoQPHaHAY/vsL2GXS+wprZLgFsmugk1RkQcBrwKf2szHR0DzI+IlRFxT0T86kQ3pIb5K+BY4EfAKuDSzKxNbEsai4g4EnghcNdOhyZNjmqZiDeVJquIWM5ICF460b2oYf4CeFdm1kYmlTSNtAAvAs4BZgLfjog7M/PhiW1LDfAK4D7gbOB5wL9FxO2Z+czEtqV9EREdjPz27bcm8zUzBI/dE8CiHbYX1vdpiouIE4FPAOdl5oaJ7kcN0w18ph6AFwDnR8RQZn5pYttSA6wBNmTmFmBLRHwDOAkwBE99bwb+NEceZrA6Ih4FXgD8x8S2pb2JiFZGAvA/ZuYNo5wyaXKUyyHG7kbgV+ufbjwD2JSZP57opjQ+EXE4cAPwK84iTS+ZuTgzj8zMI4EvAG8zAE8b/wIsjYiWiJgFnM7IGkRNfY8xMsNPRBwMPB94ZEI70l7V13BfBzyUmR/ezWmTJkc5E7yTiPgnRj6JuiAi1gB/BLQCZOZfAzcD5wOrga2M/LSqSW4frut7gQOBj9ZnDIcys3tiutVY7MO11RS1t2ubmQ9FxFeA+4Ea8InM3OOt8jQ57MPf2yuA6yNiFRCMLGlaP0Htat/9HPArwKqIuK++7z3A4TD5cpSPTZYkSVLpuBxCkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIlqQJFhG9BdQ8OSLO32H7fRFxWaPfR5KmKkOwJE1PJzNyL05J0igMwZI0iUTE70bE3RFxf0S8v77vyIh4KCI+HhEPRMRXI2Jm/dip9XPvi4irIuK7ETED+ADw+vr+19fLL4mIlRHxSET8Zv31syPipoj4z/prXz9qY5I0zRiCJWmSiIiXA0cDpzEyk/uiiPhf9cNHA9dk5nHA08Br6vv/Dvg/mXkyMAyQmQOMPAXxs5l5cmZ+tn7uC4BX1Ov/UUS0AucCP8rMkzLzeOArRX+fkjQZGIIlafJ4ef3Pd4B7GQmtR9ePPZqZ2x9Deg9wZETMAzoz89v1/Z/eS/2bMrO//vjZtcDBwCrgZRHxwYg4KzM3NfD7kaRJyxAsSZNHAFfWZ29PzsyjMvO6+rH+Hc4bBlr2o/4uNTLzYeAURsLwH0fEe/encUmaagzBkjR53Ar8ekR0AETEYRFx0O5Ozsyngc0RcXp918U7HN4MdO7tDSPiOcDWzPwH4CpGArEkTXv7M5MgSSpAZn41Io4Fvh0RAL3AG6mv9d2NS4CPR0QNuA3YvpxhBXB5RNwHXLmH158AXFV//SDw/8b3XUjS1BCZOdE9SJL2U0R0ZGZv/evLgUMz89IJbkuSJj1ngiVparsgIt7NyHj+Q+BNE9uOJE0NzgRLkiSpdPxgnCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrnfwAzjn4tWgV4SgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hUVf4/8PeZmkwmvUJCCr2EHppYsIt93bWAoCyKDcvuuu7qruuy/tR1dXVXd62IFcGCvSDqWhCQktBL6AGSkF4m09v5/ZEM3xBSJpl7J8q8X8/jI7lz55MDeZ6b95x77vkIKSWIiIiIiCKJprcHQEREREQUbgzBRERERBRxGIKJiIiIKOIwBBMRERFRxGEIJiIiIqKIo+vtAfRESkqKzM3N7e1hEBEREdFPWFFRUY2UMrW9136WITg3NxeFhYW9PQwiIiIi+gkTQhzq6DUuhyAiIiKiiMMQTEREREQRhyGYiIiIiCIOQzARERERRRyGYCIiIiKKOAzBRERERBRxGIKJiIiIKOL8LPcJDhenx4cmpwc+P+D1+yGEgF4jEGXQIi5K39vDI6IIZ3V6YPf44PVJ+KWEViOg0wiYjTpEG3h5J6LeI6VEo8MDt9cPj88PCUCv1UCrEYiP0kOv6/15WF4l21FrdaHS4sSiVQex7mAdSusdx16Li9ZhVGYCrpuSgzH9EpAcY4BW2/s/SCKKDH6/RI3NhV3lFryyugRbShtQb/cce71PfBQKchNx46n9kZkYjRSzsRdHS0SRxuHxwuLw4pviKiwrKsXOcgscHh8AQCOAvBQzpg1OwewpuUgw6ZFgMvTaWIWUste+eU8VFBRINTrGOTxeVDQ6ccfSTdheZuny/ASTHv+8cjQKchJ79YdIRJGh0eHBzvJG3PnWZlQ3ubo8f1CaGf+dOQ5ZidGIMXLOg4jUVWt14aPN5fjHF8Vwef1dnn/e8HT87bIRSDMbVZtQFEIUSSkL2n2NIbhZk9ODb4qr8Pt3t8Dj696/yaWj++KvlwxHMmdciEgldTY3/vXVHryxtsMOoO3SagQWXDICl47pi/hoLuMiInVUWpy46fVCbClt7Nb74qJ1eP3XEzG8bzwMKiyR6CwE8z4+mmeAvymuwl1vbe52AAaAj7eU4773t6HO5lZhdEQU6eptbjzy+a5uB2AA8Pkl/vLRdny4qQxWp1eF0RFRpKtucmHWS+u6HYABwOLw4uoX16K4wgK/P7wTswzBAI42OPH7d7eEVOPLnZX4dEs5nC3rXoiIlODx+fDD3mosKyoNqc6CT3bgcJ1doVERETVrtLvxyOc7sbfK2uMaLq8fc1/dgBpr18u8lBTxIbjW6sIdSzf1aAa4rYc+2xX2HyARndxqrR7c+/62kOtICdz2ZhFqglhLTEQUrL1VVnywqTzkOjVWN578ag+sTk/XJysk4kNweaMTO8q7fgguGG6fH6+tKYHLy9lgIgqd1+fHh5vKYHcrc00pqbWHNFtDRNRavd2Nf3xRrFi9ZUWlsLrCt2wrokOww+3FSz8cULTm0vVH0GgP36cYIjp51dvdWLT6oKI1n/1uHywOXqOIKHQ2lxcbSuoVq+f1S3y5o1Kxel1RNQQLIV4WQlQJIbZ38LoQQjwthNgnhNgqhBin5njaanJ5se5AnaI1rS6vYrM2RBTZ3F4Z1FZo3bHpcAOfXSAiReypbFK85je7q2AL02yw2jPBrwK4oJPXpwMY1PLfTQCeU3k8x/H5JSosTsXr7q/m7UYiCl1Fo6Prk7rJ6vIGtX8nEVFXlJ5IBICd5RbY3CdBCJZSrgTQ2b/QZQBel83WAkgQQvRRc0yteRV4GK49DVwOQUQKsKi0pZk3zNsQEdHJR0qpymYAFqcHCNMlqrfXBGcCONLq69KWYycQQtwkhCgUQhRWV1cr8s01QihSpy01Nnsmosij16lzjdKoU5aIIogQAlE6reJ1DSp1jmvPzyatSSlflFIWSCkLUlNTFamp1wrEGJT/AQ5IjVG8JhFFnsyEaMVrajUCUXrlr3tEFHnGZCcoXnNAqhn6MAXh3g7BZQD6tfo6q+VYWBh0GozIjFe0phBAUoxB0ZpEFJliDDrFZ0UGppqh5VQwESlgdJbyIXh8TmLYWrz3dgj+GMB1LbtETAbQKKU8Gq5vnmAyYPbkHEVrnjowBdEGnaI1iSgyxRh1uCA/XdGaMyZmI8nED+pEFLrEGD0y4qIUrXllQT9owvRBXe0t0pYC+BHAECFEqRDiBiHELUKIW1pO+RzAAQD7ACwEcJua42nPpLwkxBqVC613nTMobJ9giOjkFmPU4bYzBypWz6jT4IL8jLD9giGik1tSjBE3n9FfsXrD+8QhxRy+D+lq7w4xQ0rZR0qpl1JmSSkXSSmfl1I+3/K6lFLOl1IOkFKOlFIWqjme9iTGGPD3X45UpNY5w9IwINWsSC0iIgDoEx+NX47LUqTWXy4ejkQTP6QTkTK0GoGLR/VFbrIp5FoaATx51Wgkm40KjCzI7xm27/QTpddqMHVACs4bHtotxxSzAf/v8nwk8jYjESkoPlqPP14wJOSH5CblJeLC/AwY+VAcESkoNdaIF2aPhzHEnbF+d+5g9EsKPUx3R8SHYKBlNviKkThtUEqP3p9iNuDdW05RfF0MEREApMVF4e2bJqNvfM+uMeOyE/DMzPFICuMMCxFFjrwUMxbfMKnHQfjGU/Mwa3IOYhRcnhoMhuAWyWYj/n31GNw7fSh03Vgvd9aQVHxyx6nITTZBqLTvMBFRVpIJH86fiktGBd9PSCOAO84aiBevK0BKLAMwEanDoNNgVFY8lt91Gob1iQ36fbFGHZ67dhxuP2sgEnrhTrqQ8ufXOaigoEAWFqqzfNjh9qG6yYWFPxzAu0VHMCorHtMGpyE+Wg+X14/NR+rx9a5KjOmXiN+cMxiD0sxI5JZoRBQmDXY3DtfasWT9IcSbDDhnaBqyEk3QaACvD9hb1YTvd1dBCIFZk3OQHhcV9tkVIopctVYXNpTU4en/7UNFoxMXjMzA4PRYaIVAtdWJL3dWosriwpxTcnFVQT8kmw2q7gsshCiSUha0+xpDcPsqLU64vH7sqWhC0aF61NvdMOq1GJkZh1FZCTAbdciIM0Kj4WQ6EYWPlBJWlxcNdg8cbh+2lzdiW2kjHB4f4qL0GJuTgGEZcdBrBWKj9IjjbjVEFGZOjxd1Ng/qbG5sPFSPPZVN8EuJtLgoTMxNQk6yCdF6bViWaHUWgjk90EaN1YWD1TY88dVurD1Q1+F5/ZKiMe+0/jh/RAbSuRaYiMLA6vSgyeXFD3tq8Pz3+3GgxnbiST80/29cdsKxu1UJMXpE63m5JyJ1+f1+VDa5sGTdYSxeewj1dk+75+k0AucOT8dvzx2M9Fgj4ntpUwHOBLdS0ejAo8uL8eHm8qDfMzjdjP/OHId+CVGINnLGhYjU0ehwo9bqxl1vbca2ssag33fu8DT87dJ8xEfrEMNrFBGppM7mRnGFBXct3Yxqqyuo92g1AvPPHIBZk3KQptKEYmczwbyX36K8wYHZi9Z3KwADwJ5KKy797yrsONoEh8er0uiIKJI12F04UufAZf9d3a0ADABf7azC1S/+iDqbBw4Xr1FEpLw6mxvfFFfi2pfWBR2AAcDnl3j6f/vwx/e3osriVHGE7WMIRvP631sWF2FvlbVH73d6/Ji9aD2ONoT/B0hEJzevzw+L04uZL61FUw9D7JE6B+a8sh4NzvZvTRIR9ZTX68fOcgvuWbYVPV1c8G1xNR5bsRvVTeHNUREfgi1ON97fWIqtpd2bXWnL4fHht29vRkUjgzARKae6yYV739sGiyO0Wdz91Ta8srqkV2ZbiOjkVWV14Tdvb+pxAA5YVlSK3RVN8Pv9ygwsCBEfgq1OH/799V5Fam0pbcTW0gZFahER+Xx+HKqzY83+WkXqvfTDATi9PkVqERE53F688eMh1FjditS774NtqLAEv5wiVBEdgn0+P5ZvPwqXV7lPHc9+tx9HGx2K1SOiyFVjdeO57/YrVs8vgXc2HEETl0UQkQLq7R4s3XBYsXpH6hwoawhfhoroEFzZ5MInW44qWnPzkQZ4fT+/HTeI6KfH65f4YW+1ojU/21aBhg62LSIi6o7qJpfi15P3ikrhDtMdq4gOwRLArqMWxetWhXlhNxGdnJqcHvgV/kxdUmsDO7wTkRIKD3XcT6GntpU1oropPEsiIjoEe7x+RZdCBBysbmcDeyKibjpSr/xtQSmbd7QhIgrV7oomxWseqrUjXPfTIzoEq4WLIYhICeo1M+JViohC4/f74VP6VhWa9w7WhOl2VUSHYJ1WnX/k5Jjeaf9HRCeXFLNRlbp6bURf+olIARqNBukqdHlLijHAH6ZuxhF9JZQSyE4yKV43S4WaRBR5UmKV/0CdYNJDq+GiYCIK3Zh+CYrXzM+Mg16lScq2IjoE67QCk/snK1ozOcYQ8obRREQA4PVJ5CQr+6F6Ul5S2G41EtHJS0qJ7CQTlP5MPSkvOWx3qyI6BPv8Er8Ym6lozasn9EO9LXwbPRPRyavB7saMidmK1rx6Qja8KqzjI6LIIoTAoVo7zhicpljNKL0GY/olhG2r2YgOwQatBofqbJg6UJnZ4FijDucNT4fZqFekHhFFNpvbh4KcRKSYlVkWMSorHjaXV8UH7ogokri8Ptx4Wp5i2y7OmpyDdQdroeNMsPr0Og1WbK/A788bghiDNuR69188HE/9bx+SFfqFRUSRLTMhGv/4ohh/uzQ/5FoGrQYPXDwcf/98F6L0oV/viIgGZ8Ri9b4aXD8lN+RauckmnD00HdVNLiREh2cyMaJDcKLJgAtH9sHaA7V4fvZ46EJY2DJ7cjbyM+Pg9Phg1Ef0PysRKSTGqMPmIw1IjzPijrMG9riORgD/vmYM9lY2wWTU8cE4IlJEUowB728sw3kj0nHqwJQe14mP1uPf14zF/R9uxy/HZ0ETpmtURKc1h9uHsf0SMCkvGZ9uKcdzs8YjwdS9Tx9CALeeMQAFuUlYf6AOvzt3MB+MIyJFCADzzxyIklob+sRH4ffnDel2gDUbdXjqmrFYf7AOealmXDclB9H8oE5ECojSaTBrUjYMWg1+d95gTM/P6HaNnGQTFl1fAA0khqSbkWgK3930iL4SWl0e1FhdeOizXXi7sBSvrD6IV+ZMwIUjM4J62nFwuhmvz50IIYDfvr0Z/1hRjGSzAVanV/3BE9FJz+eXuGJsJh78dCf+9MF2VFtdWHLjJIzMjO/yvUIAZw1Nwxs3TMRHm8vw6poSPPDRdpwxOBU2ly8Moyeik53V5cP5IzPwTuERzHppHaYOTMG/rx6D9Liu9zg36jSYOzUXj/1yFO57fxtuXrwR9144DFtLG8Iw8ma6sH2nnyApJTx+iY2H6wEAa/bXYvai9bj5jP6Yd1p/fLu7CkWH6rGz3IImpxd6rQYD08wYlRWP80dkoN7uxt8+2Yl9VVYAza1Il6w7jMvH9O3NvxYRnSSsLi++Ka6CxdH8wfq1NSX4trgKd5w1EJmJ0VixoxJbjjRgb2UTXF4/Yow6DOsTi3HZiThnWDoKD9Vjzisb0OjwAAD2VFpRUmPD4IzY3vxrEdFJ4kidHW6fH+8UlgIA7v9wO6b0T8bfrxgFp8eHr3dVYltpIw7X2eGXEkkxBuRnxmNy/2SMz07Ex1vKMfOldcc6zy1cuR/D+8TB5vIixqh+RBU/x6eECwoKZGFhYch1KhqdeHR5MT7cXHbCa3qtwGmDUjE6Kx5D+8QhxqCD1+/HwRobtpU1YuWeatRY3Se8Ly5ah/duOQWD0vlLhohCs6/KiusWrUN5o/OE1+Kj9Zg2JBUjM+PRP9UMg1YDh8eL3RVWbC1twPd7quHy+k9435lD0vDQ5SOQmcimPkQUmpV7qvH89/uxZn/tCa/lJJswdUAK8jPjkZUYDSGARrsHO8ot2Hi4HutL6k5YPmrQavDuLVPQJyEKabHKdKMTQhRJKQvaey2iZ4I9Pj82lNR18JrEN8VV+Ka4qls1LQ5v2Nr9EdHJTSPQbgAGgEaHBx9tLsdHm8u7VbPoUB14hSKiUEkpkRprbDcAA8ChWjsO1R7uVk23z4+1B2pxVUE/JYbYpYheEywEUNbgULzu4Tq74jWJKPLU2k682xQqi9N77NYjEVFPCSGwv9qqeN31JXXw+MLz3EJEh2C1OpLU2z2q1CWiyNKo0rUkXN2YiOjktrW0UfGaO8oscLNjnPqU6nDSVij7DRMRBei06lxL1Lr2EVHk8Pv9qLW6FK/b4HBDG6aLVESHYJ1GIFqFzkk5yTGK1ySiyJMRp8yDIa1pRPPDJ0REodBoNNCrcC3RazRha+0e0VdCIQSG941TvG4K2yYTkQKiDFrF7yzlpZj58C4RKWKEChkqLzUGgh3j1Gc2anHxqD6K1pyUl6TKJyMiijw6jcCZQ9MUrXnRqIyw7L9JRCe/sdmJitccnZWAVHPXzTaUENFpLTZKj2mDUxVdEvHrqbkwG5VfYkFEkceo02DmxGzF6uk0AucOzwA3hyAiJSTFGBS/+/2r8VnQhWkyMaJDsBAC5igd7j5vsCL1pvRPxpD0WMRFczkEEYUuSq+Fzy9x7vB0RerdOm0Aqi1OJJn0itQjosiWHGPAdVNyFKs3INWM1NjwzAIDEd4sAwCi9VqcOigFU/on48cDtccdP3tYGkb3S8CQ9FgYdRpING/+vK2sEd8WVx23x3BctA5/vmgYzFER/09KRArxS4mUWANumzYAmw83oDqEJ7HzM+NQkJuIvOQYOL1+xHDZFhGFqMHhwRXjsvDW+iMdNvbpjn/8ciT8fgmXxwujXv08FdFXQYfHi0O1Nug1An+6cBjG9ktAgkmPBy4ejjdumIj0uCh8tvUo5r1eiKtfXIsZC9fixZX7YXV6seDS4Xhx9njkZ8YhLlqHF2cXwGTQorzegXq78hvcE1HkcXv9sLt8+HRLOZ6dNa7Htx2HZsTiwUvzseuoBUcbnXC4w7MRPRGd3JqcXjz99V78d+Y4aEN8mG3u1FzY3F78r7gKNld4rlEiXNtQKKmgoEAWFhaGXKfW5kJRST3+9P42LLy+OcQCwN+XF+O73dVdvj87yYT/d/kI9Es0weby4eHPd6Jfkgn3nDcEaSpsbUREkaXO5sYNr27AA5cMx7++3IPfnTcYj3+5G6v3td+mtD1XFmThyvH98My3ezF3ah7eWn8Ej/xyJBJNXLZFRKFxe3zYV21DcYUFZqMOt725Ed4ePHRw+dhM3HnWQHyzuwqXj8lEioIPxgkhiqSUBe29FtH37jVC4JviKtTY3Fi+7SimDkrBbYs3whbkLMnhOjuuf3kDbjwtD2cNSUPRoXqUNzghuBM9ESkgKcaA52ePx4Of7MAd5wzC3e9uwR8uGIobTs3Dm2sPIzXWiJGZ8eifaoYQgMfnx57KJmw90gif9GPu1P7YdKQeD36yAw9elo+l6w/j4SsYgIlIGQa9FgNTm3sj7DzaiPduPQV3vrUJh2rtQb3fqNPgTxcOw5T+SfhudxUuG91X0QDclYieCQaAepsbH24qQ9/EaNy6uKjHT01fPSELZwxOxdh+ieiTEK3I2IiIAKDS4sTDn+7Eb84ZhCaXD1aXF0adBsuKSrHxcD32V9vg80sYdRoMyYjFpLwkXD42ExWNTmQlmiClxCurD+KP04chKYYBmIiUU2N14bOtZSjIScbCHw7g7vOG4H/FlVi06iCO1DnafY/JoMUV4zJx46n98f3uarh8PozLTkS8SY/+KeaQl1a01tlMcMSHYIfHiyqLC+f/eyWcHn9Itf519WicNSQN8ZxlISIFNTrcsDp9KK6wwKjT4m+f7MDeKmuX75vSPxn3XDAELo8P/ZJMSDQZuEcwESmmxurC7Us2Yu2BOtxwai6uGJuFa19ai2smZuPaSTnQagQsDg80GoHmuNn8YT3GqMOafTV46LNdmHd6f4zOSsDVL65FXLQO7916iqJBmMshOuDweHG0wYn73t8acgAGgD9/sB2f3HEq/BJI5GwLESmgwe7GznILtFqBjYcb8Nx3+4K+Y/XjgVrMXLgWD12eD41GoMriwpCMWAZhIlKExeHBjjILAGDRqhIYtRp8cvup8Elg11ELPthUhm1ljSitb54RjovWIb9vPM4YnIoLR/bBS9dPgEEjMP0/q1rqebHuQB0y4qIQG6X+Vo4RvTuEy+2H3e3DuoP1itSzu334aFMZfn5z60T0U9Rgd+PLHRUwR+mwfFsFnvk2+AAc4PT4cc+yrdhfZUO0QYPCknrYXF51BkxEESUnyYR3b52CWKMOOUkmzD4lF5uONOCK59bgpjeKsHx7xbEADDSH3DX7a/H35cU485/f4d2iI0gwG/C7cwcBAP5y8TBcOrpvWAIwEOHLIZweHx74aDveKSxVYFTNEkx6rPjN6Ujn7hBEFKI6mxu1Vhd2HrXgrrc2h1RLpxF4++Yp0AggNyWGD8cRkSJ8Pj9Kau2IMerw5w+24X/FVd16f9/4KLz86wnweP3ISY5BXLSyAbiz5RARPRPc6PBgzf7gtxoKRoPdw1kWIlJEQrQeWo3Ago93hFzL65f4y4fbkWQyMAATkWK0Wg3MUTrMX7Kx2wEYAMobnbjyuR9h0GkUD8BdiegQ7PX5j5umV8rBGpviNYko8jQ6PfhiRwXq7R5F6u08asGhOjtsLmXqERFVWhx45tt9KDrU86WlTS4vbnitEEcblc9knYnoEOzxqbMUpLqp561NiYgC7C4vlqw7rGjN138sgZV3q4hIAfU2FyoaXXj9x0Mh1yqtd2DhygOosoTefjlYER2C1aJRcH87Iopcbp9U/G7V+pI61SYAiCiy2N0+PPnlbsXqvbnuMNw+P+ptbsVqdiaiQ7BeKxClV/6fYGCqWfGaRBR5aqzK31WyOLzw9bQrEBFRK1ICK/fVKFbP5fXjhz3VYdtmNqJDsEYAw/vEKV43NTZ8Lf+I6OTVYFdnNoQzwUSkhL1VVii9ydg3u6vRqNK1r62IDsF6jQYXjuyjaM2CnERF6xFR5NJp1blEC67YIiIFbCipU7zm9rJG2Nw+xeu2J6JDsNsvMS47UdElEbOn5KC83q5YPSKKXH1U2G9cCMCoi+hLPxEpwO/3o1KFh9jqwzQLDER4CPb4/Fi87hB+c/ZgRepNyE2ETqPBYRW2XSOiyBOl10Kr8IO2/VNiuCaYiEKm0Wig0ygfI3UaDfxhauQW0SFYAHh/YxkGpMWEvIwh1qjDfdOHYcHHO1S7hUlEkcXp8eGMwamK1jx/RAaMvEYRUYiklBiYrvxGALkpJsVrdiSir4RRei2MOg3++N423HfhMIzo27OH5MxGHZ6bNR5PfLUb1VYXBqTGKDxSIopEUToNrp2UrVg9rUbg3OHp8CtWkYgilRACozLjFa87MjMeJoNW8brtiegQrNdqMKJvHOpsbtyyuAgPXDwc10zo160aIzPj8eqvJ+CFlfuxel9zC+YUM3eHIKLQGQ1a1FhdmDZEmdngeafl4Ye9NeBW5kSkhESTAYkmZVsdT8/vg3BdoiI6BJsMWvxibCaA5i5vsxatQ9+EaLxxw0ScNTSt018Ug9PNeOjyfNx1ziDcsXQTftjbvE/e+JxExdfwEVFk0gmB7/fU4K6zB4X8i2ZoRixOHZgKr88ftlkWIjq56XUCV3dz8rAzuckmmAxaGML08K4uLN/lJ8ru8WFCbhKMOg1cXj88Poknv9qDPvFRmDExG7efORDVVhd2llvQ5PRAr9VgYJoZeSkxKK134I21h07olX39lFzoud6OiBSQGheFG0/Lw//7dCeenzUetywuQr3d0+06A1Jj8PcrRuKOpZvw1k2TERcdno3oiejkZjLocN7wDHywqQyVltCb+/z5ouGIjdIhxqjs7HJHIjoEJ5oMkFLi7vOG4JHPdx07frTRiSe/2oMnv9qD5BgDhvaJhdmog9sr8eXOSpTU2trdHHp8TiIm5CYiKUydTojo5JeXHIMEkwGPr9iNV+ZMwMOf78KGkvqu39ji0tF9cf0pubhj6SZcOT4LSSZen4hIGUkxBnxTXIWHfzESN71eiFA2nrlmQj9UNDowtl+CcgPsgpBh2oZCSQUFBbKwsFCxelUWJ25dvBFFh4P/xdKW2ajDp3ecitwUPhRHRMoqb3Dgoqd/gFYj8OBl+bC6vHhtTQl2lFvaPV8I4JQByZg7NQ8ltTY8vmI3cpNjsPiGSUhhR0siUlBFowNv/HgIOSkxuPe9rT0KwuePSMc1E7IRG6XD+JxECAU7+gghiqSUBe2+Fukh2O+XOFxnR73djfs/3N7hL5XOxBi0eH72ePj9EuNyEhEbFZ5pfCI6+dldXhypt8Pjk5i1aB0a7B6MyorH7Mk56J9qRkmNDXurmuDy+hFj1GFoRiwyE6KxoaQeS9YdQkmtHQNSY/DynAkAgMyEaG7jSESKaLC78W7hEeSlmvHDnmpMG5KGP3+wDeWNwTXR0GsFbj9rEIZmxGLV3moMzYjD2cPSkRGvXKOgzkJwRC+H8PslDtba8Mvn1sCg1eA/M8diWVEp3i0sDbrGiL5x+NulI/Cfb/bh+z3VeOLK0ThvRDqDMBGFzO7yYm+VFXurmvD2+iN4Zc4EPPTZLhQdqsc9y7YCAHKSTeifYoZBp4HD7cW7hUeOW5t38ag++PXUPNz0eiEeuGQEfH6J7CQTgzARhazS4sRjK3Zj6bzJGJOdgH99tRtPzRiL1ftqsHT94Q7XCRt1Glw4sg+unZSN9zaWYmd5I+6/aDiue3kdSuvtmH/WIJiN6kfUiJ4JbrC7cefSTVjZsrODQavBnWcPwqiseLy8+iC+31Pd7tpfABiYZsZ1U3KQlWjC/a0+9ZiNOvzwhzORyHXBRBSiepsL3xRX455lW+CXQKrZiL9dNgJNzublEDuPdnzn6pQByZh7ah4O19rx2IpiOD1+xBi0WDRnAob3ieXDcUQUMrvLi/JGJ15edRA6rcC0IWl44MPtGN43DtdMzEa0Xos9lU04XGeHX0okxRgwom88YqN0WLGjAh9tKsOsyTkY2icOT329F09cNRp94qOQoOCzC1wO0QGLw4Mj9Xbc+0SIAVgAACAASURBVN42bCtrPHY8KzEaMyZmY0r/ZFQ3ubC/xooGmwcGvQYDUmOQmWBCpcWJN9YewvqDdcfeZzbq8OJ14zG8T5yiP0AiikxNTg+mPf4dam3u446PzorH7Ck5yE2OQUmtDQeqbfD6JIx6DYakx6JvQjQ2Hq7H4rXNyyHavveNGyYhLpp3q4goNA12N57+3168vLoEAJCfGYe/XjICq/Y2zwTX290YnN68REsIgUaHGzvLLXB5/Zie3wezJjfPBC9dfwQAMCDVjDdvnBS25RARHYIBoMbqxNEGJ/70wfbjgjDQHIZfmD0eZoMOb64/jItH9YFGAM99tx+fbas47lyzUYcXZ49HRnwUbzUSkSL8fomDNTb88vk1aGhnazQhgKsKsjDnlDwsKyrFtZOycd/727Cu1Yfz1tT4BUNEkWt3hQXTn/rhuIfhtBqBs4emHZsJ3l3ZhPIGB6QE4qJ0GN43DnHReqzYUYFlRaUnXNtuPaO/osshGIK7UNPkxNHG44NwVmI0nrl2HPRC4I63NmN/tRVGnQbPzxqHuGg9Fq06iM9bgvD/BWAjspNiGICJSDF2lxeH6+245sW1J/yymDYkFTed3h/zXiuEze1rvm7NHIffvbMF+6utx507INWM1+ZOQEZcFK9RRKQIu8uLVftqcMvionZ3hdBrBf56yXD0TTBhR1kjpg1Jw02vb8DRDtYKXzKqD/52Wb6iW812FoIj/kro90vYXD5ICTzyi3yMzIxvNwADgMvrxy2LN8Li8OCGU/Nw4ciMYwE4xqhDeYMTTo+vl/9GRHSysLu8+PFALe7/YDtevn4CElp1jWsbgAGgtN6B+Us24smrRmNAqvnYuQNSzXjyqtGY++oG7K2ywuvzh/3vQkQnH7fPD7fXj8d+NardLru3ThsArx+Y++oGPPHVHvzzy914/MoxiGmna+UF+Rm4ZmI23N7wXZ8iOgT7/RIltTZc/uxq3PBaIXxS4pFf5OPZdgJwQNsgvHTeZJijdHjiy92YtWg9vt5VBauz+x2diIja8kmJe5ZtReGhejz8+a5jQfjMNgH4zCGpWPenszEgNeaEIBwIwPOXbMSeSiv++N5W2N38sE5Eoau0OHHnW5uwvcxyQhC+8+yBSIoxYsHHO/DHC4bg8ztPQ2FJHRb+cAAvzC44LghfkJ+BK8dnYe6rG/DamoOwurxhGX9Eh+AmlxcLPtmBersH1VYXvt5VhbhoHWKNOuyssBwLwJkJ0Vh971m4dHQfAM1B+M11h5FiNsIcpYXL6zu2Bu/PH2yDN5SWKURELWIMOrx78xTER+ux+UgDbG4v3rl5ChZcOgLvFh45FoD/eeVopMdF4c0bJx8LwkWH6rDwuvFYeN14FJbUobTegQGpMXhxdgEfiiMiRWQlmvD8rPF4/ceS44Jw6wB87/ShmDkpG4PSzXj3llNOCMKBAHzbmxtx/oh0zDt9QFi2RwO4JhhVTU7MfXUDJuQmYUTfODy6vBhRei1+NT4LsVE6vLyqBO/cPBmZiSbU2dxY8PF2NDq8mHdaf9yxdCPSYqMwKN2My8Zk4g/LtuDNGydhUHos9FxzR0QKCDwct7uyCSv3VGNDST3qbS48duVo7Cq3YOakbCSb/68LXEWjE8u3HwUAPP/9fgDALWcMgJQSF47sy4fiiEhRNpcXq1vWBV83JRdXFmRhQ0n9sQA8Y2I/xLdsyejx+bG30oorn1+Dgtwk3H3eYFQ3uY4F4AWXKrseGOCDcV2qsjixel8N7n53y3ELu397zmBcNSELfeKjjx2rt7mxr6oJc17ZcGwdHtC8If1904ciLS6KAZiIFFVvc+Pf/9uL19aUHDtm1Gnw5o2TMDIzHkb9/91WtDq9WL796LFmGgGP/2oULsjPYCMfIlJc6yCcnxmPraWNJwTggNZBOCvRhJJam2oBGOjlB+OEEBcIIXYLIfYJIe5t5/VsIcS3QohNQoitQogL1R5TazaXF1tKG04IwADwr6/34LOtR9HoaF7j6/H5cbTReUIABoBPtx7FE1/uQZMzPOtYiCgy1Lfsw9k6AAPNy7KufWkdtpdb4Gp5INfq9OKLHScGYAC4Z9lWrNhRgSY+s0BECosx6jB1YAqenzUe28s6DsAAoNdqji2NKK23qxqAu6LqTLAQQgtgD4BzAZQC2ABghpRyZ6tzXgSwSUr5nBBiOIDPpZS5ndVVaibY5vJizf4a3PxG+1t7BNx/0TBcM6EfDtc5cOXza04IwK1dMTYT9188vFd+mER0cqm3u/H013vxSpsA3JpRp8GSeZMxJN2ML3ZU4PfvnhiAW/vnlaNw/gjOCBOR8mwuL6qbXEiM0bcbgFvz+Pwob3AgNkqvambqbCZY7ZXHEwHsk1IeaBnIWwAuA7Cz1TkSQFzLn+MBlKs8pmPcPj/W7K/tNAADwEOf7cK2skZ8vbOy0wAMAFvLGuHzc/shIgqd3y9RdLi+03NcXj9mLlyLi0b1wfsby7qsuXpfLc4emq7UEImIjokx6hAT5ENteq0GOckxKo+oc2ovh8gEcKTV16Utx1pbAGCWEKIUwOcA7mivkBDiJiFEoRCisLq6WpHBJZoMuPPsQbhuSk6X5360ubzLADwwzYzFN05CaiwfPCGi0CWbjVh0fQFGZcV3ep7L6w8qAF8+pi/+cvFwJPJOFRHRT2KLtBkAXpVSZgG4EMAbQogTxiWlfFFKWSClLEhNTVXsmyeaDPjtuYODCsKdCQTgjDgGYCJSTmpsVFBBuCuXj+mLBy4ZwaVaREQt1A7BZQD6tfo6q+VYazcAeAcApJQ/AogCkKLyuI4TahBmACYiNYUahBmAiYhOpHYI3gBgkBAiTwhhAHANgI/bnHMYwNkAIIQYhuYQrMx6h27oaRBmACaicOhpEGYAJiJqn6ohWErpBXA7gBUAdgF4R0q5QwjxoBDi0pbT7gYwTwixBcBSAHNkL21enGgy4PfnDcGpA5ODOj9ar8W7N09hACaisEiNjcLrcycGHWhHZ8Xjb5cxABMRtUf1vnRSys/R/MBb62MPtPrzTgBT1R5HMLw+P0rrHdh0uCGo8x0eH97bWIqrCvqxDSkRqa7J6cH/dlWhzuYO6vziiibsr7JhRF/tcQ01iIjop/Fg3E+C1+fHnpYOJl3tAtHaQ5/twjuFR2BxcAN6IlJPk9ODL3dU4u53twT9HpfXjxkL12JHq4YaRETUjCEYPQ/AAQzCRKSmngTgAAZhIqL2RXwIDjUABzAIE5EaQgnAAQzCREQniugQ3J0ArBFd12MQJiIldScAd3WNYhAmIjpeRIdgq8uLJ7/aE1QnuKL7zw1q+7Rnvt0Hj49tk4kodH4JPLaiuMvzLh/TF5seOC+oznJ/X74LTi+vUUREER2CE0wGPPrLkZgyoOMt0QammbH4hklIjOl6H+FEkx7v3XoKEk3cjoiIQhcfrceyW05Bepyxw3MC+wDHR+u73Ed4VFY8nr12HOK5mw0RUWSHYABIMRvxnxlj2w3CgQCcEd+8D3BnDTUCATg3OQaaYNZOEBEFoV+SqcMg3LYRRmcNNUZlxWPR9QVIjeW+5kREAEMwgPaDcNsAHNBeEGYAJiI1tReEO+oE114QZgAmIjqR6KXmbCEpKCiQhYWFitetsbrw1Fd7oNEI3Dpt4AkBuLV6uxsvfL8fkBJXTchmACYi1R2ps+P1NQfh8wO3nz2o005w1U1OPPX1HgDAXecMZgAmoogkhCiSUha0+xpD8PEqGh3w+iWyEk1dnltlccLp8SHZbECMkWvsiEhdHo8PRy0uGPUapAfRrr28wQEA6JsQrfbQiIhQa3XB5vIiSq9FWhfXKIfbi+omF4x6bVDXs57qLARzOUQrFY0O3PxGEWYsXIsjdfZOz62yOPHQZ7tw0dOrUFJrh8PtDdMoiSgSeTw+HKq34/JnV+Pe97ei0uLs9PzyBgeuf3k9rn95/bEwTESkllqrC4WH6jHtn9/hvY2lqOrkGuVwe3GgxoaLnl6Fhz/b1eX1TC0MwS0CAXhLaSOO1Dkw86WOg3AgAH+8pRxNLi+ueWEtDtTYGISJSBWBAHzVC2tRZ3Pj2+LqToNwIADvrbJib5WVQZiIVBUIwLcuLoJfAv/4YneHQTgQgK95YS2aXF58vKW814IwQzCOD8ABHQXh1gE4gEGYiNTSNgAHdBSEWwfgAAZhIlJL2wAc0F4QbhuAA3orCEd8CG4vAAe0DcLtBeAABmEiUlpHATigbRBuLwAHMAgTkdI6CsABrYNwRwE4oDeCcESH4FqrC39YtrXdABwQCMIVjR0H4IBAEHZ42I2JiELn8PpxzYvtB+CAQBCubnJ2GIAD9lZZcdubG9Fg77geEVGwqppcHQbggH98sRvLNpbiYI29wwAc8PGWcry86iBqbS4VRnuiiN4dwuXxoaTWhqteWItGh0eBkQEPX56P80akczsiIgpZTZMLaw/W4o6lm6DEpdpk0OKtmyZjYKoZJqMu9IJEFNGqLE786+s9WLr+iCL1+qfE4I0bJiIziB26gsXdITpg1GuRmxyDd26erEgbUQZgIlJSSqwRk/OS8Z8ZYyFC3IacAZiIlJYWF4XfnDMYMyb2C7lW/5QYvK5wAO5KRIdgQLkgzABMRGpQIggzABORGupsbvz98x24/ayBIQXhQAB+/vt9XW5Rq6SID8FA6EGYAZiI1BRKEGYAJiK11NpcWL69Cuc/ubLHQTgQgB9dvguL1x5p3n7WqcwS1a4wBLfoaRBmACaicOhJEGYAJiI15STFYMm8SfD4ZY+CcOsA/OnWCtx8en9cOykbsVHh6cLLENyKUa9FitmIYX1igzo/Sq/B2cMYgIkoPFJijZiUl4SEID+o56XEIDMhmgGYiFRh0GkwMjPhWBBes7cG10zIDvr9pw1KgQCOBeBbpw1Agsmg3oDbiOjdIdrqbB/gjvRLisaSGyejX1L4FnITUWTqbB/gjpw5NBWPXjEK6XH8sE5E6nB7/ai2ONDg9Ha5DVpbf7hgCC4Z1RexUTpVAjB3hwhCTwIw0HFnOSIiJfUkAAMdd5YjIlKKz+/vUQAGgMe+2I1PtpbD7Q1/jwWGYPQ8AAcwCBORmnoagAMYhIlILV11ggvGYy0NNarYNjm8Qg3AAQzCRKSGUANwAIMwESlNiQAc0BtBOKJDcJXFiUe/KA4qAM+alN3lrhGBIMxfMkSkhBqrK6gAbDJocf0puV3uGvFtcTX+9ME21DSFpyUpEZ3cyhqcQQXgvJQYXJif0WW9x77YjU+3HkV1mHJURIdgvU6Dy0b3hU7T+W+Ohy/Pxz3nDwlq+7RTBzY/6UhEFCq/X+KcYWmdnhPYBu135w7qcvs0IYBfjM1UeJREFKlio3QY3jeu03MCrZAfuGREl9unxUfrccrAZMQp0MU3GBEdghNNBozul4BF1xd0GIQD+wDHmwxd7iM8Y2I//PacwUjjU9hEpIC0uCj8emoebj2jf7uvt94HOD7a0Ok+wkIA/5kxFpPzkpESa1R55EQUCdLjovD0jLGYlJfU7uut9wE+54nvOt1HOD5aj7dvnoy85BgY9Vo1h31MRIdgAEjoJAi3bYTRWUMNBmAiUkNHQbi9RhgdNdRgACYiNTTaPfi2uApPXTPmhCDcthGG1e3rsKFGfLQeb980GTvLG9EYpm5xAEMwgPaDcEed4NoLwgzARKSmtkG4s05wbYMwAzARqeWoxYF739+GOa+sPy4Itw3A807Lw9IOOssFAvCqfdX43TtbsXDlQVhDfMguWGyW0UqD3Y0tRxpQ1uDAucM77wTn8vhQUmvDe0VluPG0PAZgIlJdlcWJJesP46yhaV22Qq5pcmHtwVoAYAAmIlU0OT34YnsF7lm2FUMzzHj11xPx5Fd7cOfZg45rhXzrtAEwGXTYWtaAaxeug14jsOJ3p+P1NYfwi7GZWLWvGg99Voxpg1PxxFWjkWxW7nrVWbMMhuA26m0ueHwyqFDr8vjQ6PQgjW2TiShMqixOmI26oFohVzc1P2HN1u5EpJa2QfiVORPx8Oc7222F7Pb6jwvCn955Gr7eVaFaAAYYgomIiIhIJa2DcEDbABzQOgi7WrrEqRWAAbZNJiIiIiKVxEbpcUF+Bh7/1SgAHQdgADDoNBiVmYA3502CUadRNQB3pev7aUREREREnQgE4cEZschJMrUbgAMCQfij26ci1WzslQAMMAQTERERkQJio/QYnZUQ1LkGnQZDMzpvtKE2LocgIiIioojDEExEREREEYchmIiIiIgiDkMwEREREUUchmAiIiIiijgMwUREREQUcRiCiYiIiCjiMAQTERERUcRhCCYiIiKiiMMQTEREREQRhyGYiIiIiCIOQzARERERRRyGYCIiIiKKOAzBRERERBRxGIKJiIiIKOIwBBMRERFRxGEIbqOmyYWKRmdQ59bb3Cird8Dn86s8KiIiQEqJ8gYH6myuoM6vsjhRZQnuekZEFCq724ujDQ5YHJ4uz/X5/Cird6DO5g7DyNrHENxKTZMLNy8uxDUv/oijDY5Oz623ufHo8l2Y/tRK7K+xMQgTkaqklDhUa8el/12FP32wvcsgXGVx4rqX1+O6l9czCBOR6uxuLwpL6nHqY9/iw01lnQZhn8+P/TU2TH9qJR5dvqvXgjBDcItAAC461ICSWjtmLFzbYRAOBOC3C0thcXrxq+fWMAgTkWoCAfhXz69BjdWNL7ZXdBqEAwG4uKIJxRVNDMJEpKpAAP71qxvg80s88PGODoNwIAD/6rk1sDi9eKewtNeCMEMwjg/AAR0F4dYBOIBBmIjU0jYAB3QUhFsH4AAGYSJSS9sAHNBeEG4bgAN6KwhHfAhuLwAHtA3C7QXgAAZhIlJaRwE4oG0Qbi8ABzAIE5HSOgrAAa2DcEcBOKA3gnBEh+BGuxv3LNvSbgAOCATh6iZXhwE4IBCE2/vhEhF1l9XlxZXP/9huAA74vyDs7jAABxRXNOHmN4rQGMRDK0REXTlS5+gwAAc88PEOfLCpDAdr7V1mpHcKS/HK6oOwusKTo4SUHQ/8p6qgoEAWFhaGXKerTyU98cgv8nHxqL6Ii9YrUo+IIpfV5cX3u6tw+9JNUOJSHa3X4p2bp2BoHzP0Wm3oBYkootXb3Hh8xW4sWX9YkXo5ySa8NW8y+iREK1IPAIQQRVLKgvZei+iZYK1WgwEpMVh26ymIi9KFXI8BmIiUZDbqcMaQNPx3xlgIEVotBmAiUlpijAH3nD8EMydmh1xLjQDclYgOwYByQZgBmIjUoEQQZgAmIrUoEYR7IwADDMEAQg/CDMBEpKZQgjADMBGpLZQg3FsBGOhGCBZCpAohxgohRgkhzGoOqjf0NAgzABNROPQkCDMAE1G49CQI92YABoIIwUKI4UKIrwH8CGAdgIUAtgkhXhVCxKs9wHDSajVIj4tCfmZwf61ovRbnjchgACaisDAbdZgyIAUJQV5zBqaZ0S8pmgGYiMIiLkqH2VNygj7//BEZiI3qvQwVzEzwywDmSykHAjgVQLGUMg/AagCL1BxcuNXb3Hjks51Ys782qPMdHh9+9dyaLlssExEpocrixMyFa1FvD26Ls21ljbj3/W1dtlgmIgpVYMetq1/4Mej3vLjyAN7bWNppi2U1BROCo6WUuwFASrkewMiWPy8EMELFsYVVZ40wOtNVi2UiIiV01gijM121WCYiClUoW87+tWUf4d4IwsGE4P1CiL8IIaYKIZ4AsBkAhBD6IN//k9fTABzAIExEauppAA5gECYitSjRc6G3gnAwIXYugFgA9wFwArir5bgJwPUqjStsQg3AAQzCRKSGUANwAIMwESlNyaZjvRGEuwzBUsoGKeUfpJQXSyn/LKVsajneKKVcGzhPCPEfNQeqhnq7G4+vKA4qAM+YmN3lrhEltXZc09JimYgoVHU2V1ABOFqvxezJOV3uGvHF9gr8+YPtqLd33IaZiChYh+sdQQXg7CQTLhiR0WW9v368A59uPYomZ3iCsJLLGaYqWCssjDoNzs/PgFbT+W+OR36Rj/svGhbU9mlTB6RA10U9IqJgaITAmUNSOz0nsA3afRcOxX+62D5NCOCiUX2g15wUK9mIqJfFRukwJCO203Nykk14+6bJePSXI7vcPi0uSoeCnESY9OHZ0Sair4Qmgw4TcpPw8pyCDoNwYB/gGKOuy32EZ07Mxj3nD0FijEHNYRNRhEgwGXDzGQNw6xn923299T7AJoMO04akdRiEhQD+M2Mspg1Jg1mBNvFERClmI56bNR4TchPbfb31PsAJps73EY6L0mHZLadgQGoMtNrwxNOIDsFA50G4bSOMzhpqMAATkRo6CsLtNcIwG9sPwscFYCMDMBEpp6Mg3F4jjI4aavRGAAaUDcE/2zUA7QXhjjrBtReEGYCJSE1tg3BnneDaBmEGYCJSW9sg3FknuLZBuLcCMAAIKWVwJwoxUkq5rZPX50gpX23n+AUAngKgBfCSlPLRds65CsACABLAFinlzM7GUlBQIAsLC4Mad3fY3V5sKKlDeYMDF43svBVy4InIdwqPYP60gQzARKS6Brsbr6wuwTnD0rtshWx1efHd7ioAYAAmorCosbrw8Ge78Ifzh3TZCrne5saz3+3HleOzVA3AQogiKWVBu691IwT/AMAI4FUAb0opG4N4jxbAHgDnAigFsAHADCnlzlbnDALwDoCzpJT1Qog0KWVVZ3XVCsFAcxD2+mRQrZB9Pj+sLi/iTQzARBQejXY3TEZtUK2QrS1PbHMNMBGFi8XhCSpDAc3XM7NRp+oMcGchOOjvKqU8DcC1APoBKBJCLBFCnNvF2yYC2CelPCCldAN4C8Blbc6ZB+AZKWV9y/fpNACrzWTQBf3D02o1DMBEFFbxJkNQARhoDr8MwEQUTsFmKKD5ehbuJRCtdes7Syn3ArgfwB8BnAHgaSFEsRDiig7ekgngSKuvS1uOtTYYwGAhxGohxNqW5RMnEELcJIQoFEIUVldXd2fYRERERETHCToECyFGCSH+BWAXgLMAXCKlHNby53+FMAYdgEEApgGYAWChECKh7UlSyhellAVSyoLU1M73zSQiIiIi6kx3ZoL/A2AjgNFSyvlSyo0AIKUsR/PscHvK0Lx8IiCr5VhrpQA+llJ6pJQH0byGeFA3xkVERERE1C3dCcEXAVgipXQAgBBCI4QwAYCU8o0O3rMBwCAhRJ4QwgDgGgAftznnQzTPAkMIkYLm5REHujEuIiIiIqJu6U4I/hpA6/0uTC3HOiSl9AK4HcAKNC+jeEdKuUMI8aAQ4tKW01YAqBVC7ATwLYB7pJS13RgXEREREVG3dOex4SgppTXwhZTSGpgJ7oyU8nMAn7c59kCrP0sAv2v5j4iIiIhIdd2ZCbYJIcYFvhBCjAfgUH5IRERERETq6s5M8G8AvCuEKEdzi+QMAFerMioiIiIiIhUFHYKllBuEEEMBDGk5tFtK6VFnWERERERE6uluK6EJAHJb3jdOCAEp5euKj4qIiIiISEVBh2AhxBsABgDYDMDXclgCYAgmIiIi6gUejwelpaVwOp29PZReFRUVhaysLOj1wbdt7s5McAGA4S27ORARERFRLystLUVsbCxyc3MhhOjt4fQKKSVqa2tRWlqKvLy8oN/Xnd0htqP5YTgiIiIi+glwOp1ITk6O2AAMAEIIJCcnd3s2vDszwSkAdgoh1gNwBQ5KKS/t+C1EREREpKZIDsABPfk36E4IXtDt6kRERER00mpoaMCSJUtw22239fZQui3o5RBSyu8BlADQt/x5A4CNKo2LiIiIiH7iGhoa8Oyzz/b2MHok6BAshJgHYBmAF1oOZQL4UI1BEREREdFP37333ov9+/djzJgxuOeee/D4449jwoQJGDVqFP76178CAEpKSjB06FDMmTMHgwcPxrXXXouvv/4aU6dOxaBBg7B+/XoAwIIFCzB79mxMmTIFgwYNwsKFCwEAR48exemnn44xY8YgPz8fP/zwgyJj786DcfMBTAVgAQAp5V4AaYqMgoiIiIh+dh599FEMGDAAmzdvxrnnnou9e/di/fr12Lx5M4qKirBy5UoAwL59+3D33XejuLgYxcXFWLJkCVatWoV//vOfeOSRR47V27p1K7755hv8+OOPePDBB1FeXo4lS5bg/PPPx+bNm7FlyxaMGTNGkbF3Z02wS0rpDiw8FkLo0LxPMBERERFFuC+//BJffvklxo4dCwCwWq3Yu3cvsrOzkZeXh5EjRwIARowYgbPPPhtCCIwcORIlJSXHalx22WWIjo5GdHQ0zjzzTKxfvx4TJkzA3Llz4fF4cPnllysWgrszE/y9EOJPAKKFEOcCeBfAJ4qMgoiIiIh+1qSUuO+++7B582Zs3rwZ+/btww033AAAMBqNx87TaDTHvtZoNPB6vcdea7vLgxACp59+OlauXInMzEzMmTMHr7+uTJ+27oTgewFUA9gG4GYAn0sp/6zIKIiIiIjoZyc2NhZNTU0AgPPPPx8vv/wyrFYrAKCsrAxVVVXdqvfRRx/B6XSitrYW3333HSZMmIBDhw4hPT0d8+bNw4033oiNG5XZl6E7yyHukFI+BWBh4IAQ4q6WY0REREQUYZKTkzF16lTk5+dj+vTpmDlzJqZMmQIAMJvNWLx4MbRabdD1Ro0ahTPPPBM1NTX4y1/+gr59++K1117D448/Dr1eD7PZrNhMsAi2C7IQYqOUclybY5uklGMVGUk3FBQUyMLCwnB/WyIiIqKflF27dmHYsGG9PQxFLFiwAGazGb///e979P72/i2EEEVSyoL2zu9yJlgIMQPATAB5QoiPW70UC6CuR6MkIiIiIupFwSyHWAPgKJrbJj/R6ngTgK1qDIqIiIiIIsuCBQvC+v26DMFSykMADgGYov5wiIiIiIjU152OcVcIIfYKIRqFEBYhRJMQwqLm4IiIiIiI1NCd3SEerZyv3gAAIABJREFUA3CJlHKXWoMhIiIiIgqH7uwTXMkATEREREQng+6E4EIhxNtCiBktSyOuEEJcodrIiIiIiOgnb+7cuUhLS0N+fn5vD6VbuhOC4wDYAZwH4JKW/y5WY1BERERE9PMwZ84cfPHFF709jG4Lek2wlPLXag6EiIiIiNS1fPlyPPPMM6isrER6ejrmz5+P6dOnh1Tz9NNPR0lJiTIDDKPu7A4xWAjxPyHE9pavRwkh7ldvaERERESklOXLl+Phhx9GRUUFpJSoqKjAww8/jOXLl/f20HpFd5ZDLARwHwAPAEgptwK4Ro1BEREREZGynnnmGTidzuOOOZ1OPPPMM700ot7VnRBsklKub3PMq+RgiIiIiEgdlZWV3Tp+sutOCK4RQgwAIAFACPErNLdTJiIiIqKfuPT09G4dP9l1JwTPB/ACgKFCiDIAvwFwqyqjIiIiIiJFzZ8/H1FRUccdi4qKwvz580OqO2PGDEyZMgW7d+9GVlYWFi1aFFK9cOnO7hAHAJwjhIgBoJFSNqk3LCIiIiJSUmAXCKV3h1i6dKkSwwu7oEOwEOIuAK8AaAKwUAgxDsC9Usov1RocERERESln+vTpIYfek0V3lkPMlVJa0NwsIxnAbACPqjIqIiIiIiIVdScEi5b/XwjgdSnljlbHThoOtxdNTk9Q5/r8Eo0Ot8ojIiL6P40ONzw+f1Dn2lxe2FzcxIeIwsfnD+76BABevx9SShVH07nuhOAiIcSXaA7BK4QQsQCC/5v+DDg8Xmw63IAVOyq6DMI+v8TBGite+P4A6u0MwkSkvka7G2+uPYy9lU1dBmGby4tV+2qwal8NgzARhYXH9//bu/Mwuao6/+Ofb1VX752kk3RCSEIWEjQJOw0BJjAgQTYFARF00NGBYXCUQSMKuIPzGwZBxp8zuCA4CLihgKIswZGwr52AxCTAhLAkEbKRpZd0dVfVd/7oqtB0eqnqqlvV3ff9ep5+uqrurVPf5j6cfPr0ueek9Ob2dnUmBo6HiWRKm5vjiidKF4SznhMs6TxJB0pa4+5tZjZO0ojZSnlnZ0LPvb5Nn/jJM0qkXHLphH33UF1lbLdzMwH4zB88qe07O9UST+jzx++j+uryElQOIAy2t3XoJ4+/pv//p//V9UtW69cXHqHZE+sUi+4+lpEJwBfetlSS9MNzD9GCWeNVU5FLlw8A2etMprT27Ta1xBNqjSc1c3yNYmW9j7UmkiltaI5rS0tcW1o7tHdDrSrKIjIr7gSDAUeCzey96YcHpr/PTN8UN025hegha7cALOmS37ygxX/ZfUS4ZwCWpFuefF3/8ceXGREGEIjuAViSWjuSOuuHT/Y6Itw9ALtL7tKFty1lRBhAYLoHYEmKJ5Jas7m11xHh7gFY6spVr2xqKcmIcDbTIRalv3+nl69rA6qraHoLwBk9g3BvATiDIAwgCD0DcEZvQbhnAM4gCAMIyprXXtdRf3uMjv+bRp1+3BH62U0/lNR7EO4ZgDNKFYQHDMHufkH6+7G9fL0v+BKD018AzsgE4dZ4os8AnEEQBlBIfQXgjO5BuK2j9wCcQRAGUGidyZQ2tnTq81/5lu568Cnd9rsH9Muf3qhXXn5R0ruDcF8BOKMUQTjrG+PM7Kz0zXAys6+a2Z1mdlBwpQWvvTOlu55b32cAzrjkNy/o2/e/2G8Azljy0kYlkqW70xHAyJF06d7l/e9OnwnC1y5+qc8AnOEu3bF0nTqyXF0CwMjS2dmpiy66SBdddJHa2tp2Pe7szG5VrJ5SKVddfYPm7HeAJKmmtk4zZ+2jjW+9029lgvBft+3sMwBnJFOulnhCqaEWgiV9zd2bzWyBpIWSbpL0w2DKKo766nJdfvIcnXHQ5AHP/emTrw8YgKeOrdKvLjhCDXUVhSoRQIiNrSnXbefP1+wJtf2e19qR1E8ef63fACxJC+dM0FVn7MdNvEBILVq0SMuWLdOyZct08skn73q8aNGigd/ci/KyiGZOqFU0fUPb+rVv6MUVL2i/gw5513nxRFLbBshQkjRpdJXqq2OKRnKJp4OXy6ck099PkXSDu98jadj3pGNryvXVD8zNKgj3JxOA9xxTVaDKAECaOKoyqyA8kIVzJujqM/fXuFp+SQfCLh6Pq6WlRfF4/yOzAzEzVaaDcLytVV/4p0/oi9+8SrV1o3Jua9LoKo2tKV4AlnILwevN7EeSzpZ0r5lV5Pj+ISvfIEwABhCkfIMwARiAJF199dWKxd699GssFtO3v/3tQbdpZop6Ul/+7Kf0gdPP0sKTPphzG6UIwFJuIfYjkhZLOsHdt0kaK+mLgVRVAoMNwgRgAMUw2CBMAAaQcemll+42/7ezs1Nf+tKXBt2mu+v888/X3DlzdMVXL9s1NSJbpQrAUg4h2N3bJP1OUquZ7SUpJunFoAorhbE15frGqfN0+MyxWZ1fGYvojguPJAADKIqJoyr1iwsO15jq3Tfx6c28PUfp2rMOIAADeJeKigrV1taqoiL/vuHxxx/XrbfeqiVLluiIQw/RR08+Wo8++EBW7x1fW1GyACzlsNmFmV0k6RuSNuid7ZJd0v4B1FUSyZRrc3Ncq95szur89s6UHnl5U587ywFAIbXGE1r2+tYBb9LNeC19R3ZNRVmvO8sBCJfrrrtu101wV199tS699NJdrw/WggULdi1pNtAyaD01tyfUUFuhUnVPlu1abGa2WtJ8d98SbEkDa2xs9KampoK2mUy5XtvcqjN+8ETW/8BkXPvh/QnCAALVGk/o8fQ6wAOs6vguNeXRfrdYBjC8rVq1SnPmzCl1GTkH4IyKsmi/Wyznorf/Fma21N0bezs/l09cK2l7HrUNWfkEYKnvLZYBoBAGG4Cl/rdYBoBCGGwAlvrfYjlouYTgNZIeMrPLzWxR5iuowool3wCcQRAGEIR8AvCuNgjCAAKSTwDOKFUQziUEvyHpj+paG7iu29ewVagAnEEQBlBIhQjAu9oiCAMosEIE4IxSBOFcVoe4wt2vkPQdSd/p9nzYamnv1JV/WJHVTnBPX35cVsunXfH7lWybDKAgUu768l3LBwzAC+dM0LNfWZjVznJfvusv2tmR7Pc8AMhGIuV6O4sAPGl0lWZPrBtw+bR4IqktrXEl8/2tP0tZh2Az29fMnpO0QtIKM1tqZvOCKy14o6vLde1ZB+qAqaP7PCezDvDE0ZUDriNcW1GmX3/6CNVVZr3oBgD0qaa8TLf/0xGq72dJtMw6wA11FQOuIzx7Qq1+9PFDNKqKm3gB5C8WjWjauBr1F20z6wBX9thiuTf11eUaX1uhaCS3tYYHK5fpEDdIWuTu09x9mqQvSPpxMGUVT0NdhW78xKG9BuGeG2H0t6FGbUWZfvPpIzSroVZl3IENoAAiEdP0cTW649NH9hqEe26E0d+GGrMn1Oq28+dr4qjKwOsGEA7RiKmmokzTxtXopCP215kLj9RHTjhKHz35WEnv3gij+xbLvQXh+upyTRpdWdQMlcsn1bj7kswTd39IUk3BKyqB3oJwXzvB9RaECcAAgtJXEO5rJ7jegjABGEBQMkG4LBLRTbf/XrcvflS/uHdJrzvB9RWESxGApRw2y5C0xsy+JunW9PNz1bVixIiQCcLn3/Ks3m7t6Hcr5EwQlqQHVm4gAAMIVPcgfOYPntAh0+r73Qo5E4TPvfFpSSIAA5AkHX300Wpra9vt9erqaj3yyCODbjcaMZlJU+ur1SJpj362Qu4ehNdsbNGoqlhJArCU22YZ9ZKukLRAXTvFPSrpCnffGlx5vQtis4yMTc1xJZIpTcpiK+S3WzvUGk+U7OIBCJdUyvXX7TtVFYtmtRXyhh3tkkQABkawXDbLaGzsdc8ISVK+uWrGjBmqr6+XZLrggn/UhRde2O/57q7OZEoRs4JlqFw3y8h6JDgddv8lv/KGvoa67PfRHltTrrE15QFWAwDviERMU+qrsz6f8AugWB577DFNnjxZGzdu1PHHH6+5c+fq6KOP7vN8M1N5WbSIFe4ul9Uh/mhmY7o9rzezxcGUBQAAgOFi8uSue6UmTJig008/Xc8880yJKxpYLuPP4919W+ZJemR4QuFLAgAAwHDR2tqq5ubmXY8feOAB7bvvviWuamC53BiXMrO93P0NSTKzaeqaGwwAAICQ2rBhg04//XRJUiKR0Mc+9jGdeOKJJa5qYLmE4K9IeszMHpZkko6SdEEgVQEAAKCgqqur+1wdIh8zZ87Un//857zaKIVcboy738wOlnR4+qXPufvmzHEzm+fuKwpdIAAAAPKXzzJoI1FO+/umQ+8f+jh8q6SD864IAAAACFghF7ctzkbPAAAAQJ4KGYK5SQ4AAKDIst34bCQbzH8DtjkDAAAYpiorK7Vly5ZQB2F315YtW1RZmdsGQTnNCR5ARwHbAgAAwACmTJmidevWadOmTaUupaQqKys1ZcqUnN6TUwg2s/0lTe/+Pne/M/398D7eBgAAgADEYjHNmDGj1GUMS1mHYDP7iaT9Ja2QlEq/7JLuDKAuAAAAIDC5jAQf7u5zA6sEAAAAKJJcbox70swIwQAAABj2chkJvkVdQfgtSXF1rQvs7r5/IJUBAAAAAcllJPgmSR+XdKKkD0r6QPp7v8zsRDN7ycxWm9ll/Zx3ppm5mTXmUBMAAACQs1xGgje5+925NG5mUUnXSzpe0jpJz5rZ3e6+ssd5dZIulvR0Lu0DAAAAg5FLCH7OzH4u6ffqmg4h6Z0l0vpwmKTV7r5Gkszsl5JOk7Syx3nfknS1pC/mUA8AAAAwKLlMh6hSV/h9v7qmQWSmRPRnsqS13Z6vS7+2i5kdLGmqu9/TX0NmdoGZNZlZU9gXhAYAAEB+sh4JdvdPFfrDzSwi6TpJn8zi82+QdIMkNTY2hndvQAAAAOQtl80yKiWdJ2mepF2bM7v7P/TztvWSpnZ7PiX9WkadpH0lPWRmkrSHpLvN7FR3b8q2NgAAACAXuUyHuFVdIfUESQ+rK9A2D/CeZyXNNrMZZlYu6RxJu26uc/ft7j7e3ae7+3RJT0kiAAMAACBQuYTgWe7+NUmt7v5TSadImt/fG9w9IemzkhZLWiXpdndfYWZXmtmpgy0aAAAAyEcuq0N0pr9vM7N9Jb0lacJAb3L3eyXd2+O1r/dx7jE51AMAAAAMSi4h+AYzq5f0NXVNaaiV1GuYBQAAAIayXFaHuDH98GFJM4MpBwAAAAhe1nOCzWyimd1kZveln881s/OCKw0AAAAIRi43xt2srhvc9kw/f1nS5wpdEAAAABC0XELweHe/XVJK2rXyQzKQqgAAAIAA5RKCW81snCSXJDM7XNL2QKoCAAAAApTL6hCL1LUqxEwze1xSg6QPB1IVAAAAEKBcQvBKSXdJalPXTnG/Vde8YAAAAGBYyWU6xC2S3ivp3yT9p6R91LWVMgAAADCs5DISvK+7z+32fImZrSx0QQAAAEDQchkJXpa+GU6SZGbzJTUVviQAAAAgWAOOBJvZcnWtCBGT9ISZvZF+Pk3Si8GWBwAAABReNtMhPhB4FQAAAEARDRiC3f31YhQCAAAAFEsuc4IBAACAEYEQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNApK3UBpbSpuV0t8WQgbddWRNVQVxlI2wDCgT4KwFAWVB9VrP4p1CG4JZ7Usdc+FEjbSy45Rg11gTQNICToowAMZUH1UcXqn5gOAQAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIHUIwAAAAQocQDAAAgNAhBAMAACB0CMEAAAAIncBDsJmdaGYvmdlqM7usl+OLzGylmb1gZn8ys2lB1wQAAIBwCzQEm1lU0vWSTpI0V9JHzWxuj9Oek9To7vtL+o2kbwdZEwAAABD0SPBhkla7+xp375D0S0mndT/B3Ze4e1v66VOSpgRcEwAAAEIu6BA8WdLabs/XpV/ry3mS7uvtgJldYGZNZta0adOmApYIAACAsBkyN8aZ2bmSGiVd09txd7/B3RvdvbGhoaG4xQEAAGBEKQu4/fWSpnZ7PiX92ruY2UJJX5H0t+4eD7gmAAAAhFzQI8HPSpptZjPMrFzSOZLu7n6CmR0k6UeSTnX3jQHXAwAAAAQbgt09IemzkhZLWiXpdndfYWZXmtmp6dOukVQr6ddm9ryZ3d1HcwAAAEBBBD0dQu5+r6R7e7z29W6PFwZdAwAAANCduXupa8hZY2OjNzU15d3Oxh3t2tGeKEBFuxtVWaYJoyoDaRtAOGxsbldrPBlI2zUVUU2oo48CMHhB9VGF7J/MbKm7N/Z2LPCR4KGsrSOphdc9HEjbD11yTCDtAgiP1nhSx177UCBtL7nkGKkukKYBhERQfVSx+qchs0RaKQQ5Bj78xtcBAADCI9QhGAAAAOFECAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOoRgAAAAhA4hGAAAAKFDCAYAAEDoEIIBAAAQOubupa4hZ42Njd7U1JR3Oxt3tGtHe6IAFe1uVGWZJoyqDKRtAOGwsbldrfFkIG3XVEQ1oY4+CsDgBdVHFbJ/MrOl7t7Y27GygnzCMNXakdTC6x4OpO0llxwTSLsAwqM1ntSx1z4USNtLLjlGqgukaQAhEVQfVaz+iekQAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAEKHEAwAAIDQIQQDAAAgdMzdS11DzhobG72pqSnvdjY1t6slnixARburrYiqoa4ykLYBhAN9FIChLKg+qpD9k5ktdffG3o6VFeQThqmGuko11JW6CgDoHX0UgKFsuPdRTIcAAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGAABA6BCCAQAAEDplpS6glDY1t6slntz1vFJSJBaVy1UZi6g1nlR7Z0prNrdoW1unKmIRzWqo1eiqmKIR05gKU3OnaXRlROu3d7yr7dqKqBrqKov8EwEYSXr2UZPqyrQj7qotczUnpETStaM9odUbW9TemVRdZUyzJtSoKhZVdSyiVFJKmBT1pJo73902fRSAfPXso8ZURhWJRlVdJm1q7VQyJW1pievVza1KumtCXaX2GlutsqipoTam5vaUEqmUdnam3tVusfqnUIfglnhSx177kCTp9P330GWnzFMs6mrtcP340Vf066a12tGe2O19EZOOfc8EfebYWdpzdKW270ioqsx0+L8v2XXOkkuOUUNdsX4SACNR9z5q8cULtLnNVBYxrdnaoe8/tFoPrNigRMp3e191eVRnHDxZ5y+YqZryiJIW1X1/fl3f/uPqXefQRwHIV/c+atlXj5OZa2c8oWdf3aHvP/SKlr2xtdf37TGqUn9/5DSdduBk1VVEJUkLv/ugWnZ2HS9W/8R0CHUF4C+fMk8u6c7n3tTC6x7WTY+92msAlqSUS396caPO+METuuIPK9URjWhcTUxPXXZscQsHEAqLL16gGeOqFI2Yrln8kj7wn4/p3uVv9RqAJamtI6nbnnpDC697WD9/Zq3cXX936DR96fhZRa4cQBgs++pxMklb25K68GfLdP4tTX0GYEl6a0e7rr7/JZ38vUf11KtvSy79z+fep9qq4tUsEYJ3jQCnTPrKXcv1r/esUjyRGviNaff95S2d+f0ntG5bnCAMoOAyAXhDS0Ln3PCU7li2Puv3JlKu//if/9XFv3xe7S6CMICCW/bV4yS5XtncppO/95ieX7st6/dua+vUP96yVDc/+Zqk4gdhc+99JGEoa2xs9KamprzbeXNza9ccYHd9656Vumf5W4Nua49Rlbrzn49URTKlzqhpZ8I1Y3xN3jUCCK/2eFyb25KKRkwfveEpvbalbdBtHTVrvK45a3+Zme549nWddMAU+igAedna0q6KWERvbG3Xh65/XO2d2Q8i9nTpie/Rhw+eoqS7dnamCtY/mdlSd2/s7VioR4Kj5VFVlElL127LKwBLXUP7V/5+hTqiEUUiEdUXeUgfwMjT2imVmfTdP/5vXgFYkh5dvVl/WrVRsYj0kfnTC1MggFDb1NKpHe1Jffbnz+UVgCXp2gde1ubWDsUiUnWsOPE01CE4Iqmt0/XlO5cXpL37V2zQ+m07NbrCtHVnQZoEEGIVSmnbzoR+1bS2IO19656Vak+4ksn8/rECAEnaa0yl7l3+llZvbMm7rWTKdekdLyiecNVUWAGqG1ioQ/CY6jI1vfa2tu/sHPjkLP3XktXaupN/YADkb2dK+tEjrxSsvfbOlBaveEujKqMFaxNAeG3Z2ambHnu1YO29sG67drQn1NGRHPjkAgg8BJvZiWb2kpmtNrPLejleYWa/Sh9/2symB11TxsaWDv3imcKMsGQ88vImJYbhPGsAQ09HSro3z6laPf26aZ02t/a+8g0A5KK5PaH12wr7p+9fL12rUdUVBW2zL4GGYDOLSrpe0kmS5kr6qJnN7XHaeZK2uvssSf8h6eoga+ou5dLy9dsL3ua2tk5VF7RVAGG0syOZ02o12Xh5Q7MiVpw/NQIY2fpbBm2wnntjuzbs6Bj4xAIIeiT4MEmr3X2Nu3dI+qWk03qcc5qkn6Yf/0bScWbF6aGTKVdLvPAjIi+91ayxo8sL3i6AcFn7dn43w/UmkXK1J4rzp0YAI9tfCjyQKEmrNzWrWJNKgw7BkyV1n2+wLv1ar+e4e0LSdknjejZkZheYWZOZNW3atKkgxaUCmrbQnkiqSDkewAgWDyisDselMQEMLalUquB/qZKkjkRKxYpQw+bGOHe/wd0b3b2xoaGhIG2WRYL58UdXxZRMcXMcgPyMqowF0m5QfR+A8IhEIhpVVfg+qq4iVrRf1IPuCddLmtrt+ZT0a72eY2ZlkkZL2hJwXZIkkzShrvCTr/eZWKe/7ijcihMAwmnPABYcry6PqizKX6oA5K9x2tiCtzl3z1GKRUfGOsHPSpptZjPMrFzSOZLu7nHO3ZL+Pv34w5Ie9CL9ClAZMx0yrb6gbVaXR1VTzvJDAPIXi5jG1RT2/oIDp45RhAwMoAD2nTyq4G0esfc4NdQW576qQENweo7vZyUtlrRK0u3uvsLMrjSzU9On3SRpnJmtlrRI0m7LqAWlKmY6b8GMgrZ5xsGTi7bTCYCRbXRVmT42f6+Ctnn+ghmEYAAFEYtGdNDUMQVrLxoxnbLfJL2xtb1gbfYn8LTm7ve6+z7uvre7/7/0a19397vTj9vd/Sx3n+Xuh7n7mqBrytjRntKeYyq1z8TagrRXFjGdv2CmUklXLYPBAPLU2pHS2YdOVWWBfrGeUl+l904apa7JYACQn4aaMn3++H0K1t4p++2h8qipsowd4wJnZqqKRfW9cw5StABDI58/frZqKiJKmIkViAAUQlUsoq+d0nN59cH53jkHaXRlWUHaAoCNLQntM7FWJ8ybmHdb9dUxXXbSHG1vb1VZkZaHCHUI3tmZUkcipbHVMV1xan7/yCyYNU5nHjxVKTf99PFXVJyBfAAjWWdHUomUdNycCToxz39kFh0/W5PGVKolntThVz1YoAoBhFl9dUSxlPTND87TjPE1g24nFjX98NxDNKoiqnFVtWrpLM4KW6EOwZI0/6oH5ZIWzpmoK0+bN6gR4WPf06BrzzpQFSb99PFX9P2HXyt4nQDCp1PSN3+7XGamK07dV6cdMCnnNsykL7x/H53dOFURmeZf9afCFwoglDY0J7SupV1jqyK69bzD9N496nJuo7o8qv/+5KGaPr5a8c6UDvm34vVRoQ/BUlcQNkknzp2oP1y0QLMmZDdHuLaiTN/5yAH6tzP2U8ykHxOAARTYfSs36pu/XS6ZdPnJc/SDcw/W6CzX5txrbLXu+ucjddYhUyQCMIAAnHb9E3pxY5vGVUV086cO1b8cN0tlWQ4oHrH3ON1/8VGaN6lOZbKiBmBJYnJY2vyrHtTTl79Pe4yq0C3/cJjWbW3TjY++qqWvb9WW1nf2sK6MRTR30midfegUHTW7QdWxiOJJ100EYAABuW/lRknL9c0P7acj967XfRcfpWdfe1s/f/oNLV+/XW0d79yEMKY6poOm1uu8BdM1s6FWdRVRtXWkCMAAAnPa9U/od585UuNrK3Xu/L30kcapuvv5v+oPL7yplzc0K5F6Z+XbyWOqdMTeY3XegpkaXVUmpVJKpVT0ACwRgt9l/lUP6qnL3yeTVBMz/euH9lU8kZK7qzPliphUHo1IctVXl2tnvGu+HlMgAAQtE4Sv+NB+ipp0zD4Nakyvc96ZdCXdVRYxRSOmWMTqAi/zAAAG0ElEQVTU0t4pM6mlI6kjmAMMIGCZIDx1bI2iltAnj5ymDx4wSRGzXdsrZzbBqKmI6rWN29VQO1oWiZQkAEuSDcc95BsbG72pqSnvdjY1t6slHswyDrUVUTXUVQbSNoBwoI8CMJQF1UcVsn8ys6Xu3tjbsVCPBDfUVaoh9zncAFAU9FEAhrLh3kdxYxwAAABChxAMAACA0CEEAwAAIHQIwQAAAAgdQjAAAABChxAMAACA0CEEAwAAIHSG5WYZZrZJ0usl+OjxkjaX4HMRLK7ryMW1Hbm4tiMT13XkKtW1nebuDb0dGJYhuFTMrKmvXUcwfHFdRy6u7cjFtR2ZuK4j11C8tkyHAAAAQOgQggEAABA6hODc3FDqAhAIruvIxbUdubi2IxPXdeQacteWOcEAAAAIHUaCAQAAEDqEYAAAAIQOIbgHM/uJmW00s7/0cdzM7HtmttrMXjCzg4tdI3KXxXX9u/T1XG5mT5jZAcWuEYMz0LXtdt6hZpYwsw8XqzbkJ5tra2bHmNnzZrbCzB4uZn0YvCz65NFm9nsz+3P62n6q2DUid2Y21cyWmNnK9HW7uJdzhkyOIgTv7mZJJ/Zz/CRJs9NfF0j6QRFqQv5uVv/X9VVJf+vu+0n6lobgBH706Wb1f21lZlFJV0t6oBgFoWBuVj/X1szGSPq+pFPdfZ6ks4pUF/J3s/r///Yzkla6+wGSjpH0HTMrL0JdyE9C0hfcfa6kwyV9xszm9jhnyOQoQnAP7v6IpLf7OeU0Sbd4l6ckjTGzScWpDoM10HV19yfcfWv66VOSphSlMOQti/9nJekiSXdI2hh8RSiULK7txyTd6e5vpM/n+g4TWVxbl1RnZiapNn1uohi1YfDc/U13X5Z+3CxplaTJPU4bMjmKEJy7yZLWdnu+TrtfYAxv50m6r9RFoDDMbLKk08VfbUaifSTVm9lDZrbUzD5R6oJQMP8laY6kv0paLulid0+VtiTkwsymSzpI0tM9Dg2ZHFVWig8FhiozO1ZdIXhBqWtBwXxX0qXunuoaVMIIUibpEEnHSaqS9KSZPeXuL5e2LBTACZKel/Q+SXtL+qOZPeruO0pbFrJhZrXq+uvb54byNSME5269pKndnk9Jv4Zhzsz2l3SjpJPcfUup60HBNEr6ZToAj5d0spkl3P23pS0LBbBO0hZ3b5XUamaPSDpAEiF4+PuUpH/3rs0MVpvZq5LeK+mZ0paFgZhZTF0B+GfufmcvpwyZHMV0iNzdLekT6bsbD5e03d3fLHVRyI+Z7SXpTkkfZxRpZHH3Ge4+3d2nS/qNpH8mAI8Yv5O0wMzKzKxa0nx1zUHE8PeGukb4ZWYTJb1H0pqSVoQBpedw3yRplbtf18dpQyZHMRLcg5n9Ql13oo43s3WSviEpJknu/kNJ90o6WdJqSW3q+m0VQ1wW1/XrksZJ+n56xDDh7o2lqRa5yOLaYpga6Nq6+yozu1/SC5JSkm50936XysPQkMX/t9+SdLOZLZdk6prStLlE5SJ7fyPp45KWm9nz6de+LGkvaejlKLZNBgAAQOgwHQIAAAChQwgGAABA6BCCAQAAEDqEYAAAAIQOIRgAAAChQwgGgBIzs5YA2jzQzE7u9vybZnZJoT8HAIYrQjAAjEwHqmstTgBALwjBADCEmNkXzexZM3vBzK5IvzbdzFaZ2Y/NbIWZPWBmVeljh6bPfd7MrjGzv5hZuaQrJZ2dfv3sdPNzzewhM1tjZv+Sfn+Nmd1jZn9Ov/fsXgsDgBGGEAwAQ4SZvV/SbEmHqWsk9xAzOzp9eLak6919nqRtks5Mv/7fkv7J3Q+UlJQkd+9Q1y6Iv3L3A939V+lz3yvphHT73zCzmKQTJf3V3Q9w930l3R/0zwkAQwEhGACGjvenv56TtExdoXV2+tir7p7ZhnSppOlmNkZSnbs/mX795wO0f4+7x9Pbz26UNFHScknHm9nVZnaUu28v4M8DAEMWIRgAhg6TdFV69PZAd5/l7jelj8W7nZeUVDaI9ndrw91flnSwusLwv5rZ1wdTOAAMN4RgABg6Fkv6BzOrlSQzm2xmE/o62d23SWo2s/npl87pdrhZUt1AH2hme0pqc/fbJF2jrkAMACPeYEYSAAABcPcHzGyOpCfNTJJaJJ2r9FzfPpwn6cdmlpL0sKTMdIYlki4zs+clXdXP+/eTdE36/Z2SPp3fTwEAw4O5e6lrAAAMkpnVuntL+vFlkia5+8UlLgsAhjxGggFgeDvFzC5XV3/+uqRPlrYcABgeGAkGAABA6HBjHAAAAEKHEAwAAIDQIQQDAAAgdAjBAAAACB1CMAAAAELn/wDUPq8Kag8mcgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ min_lengths\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3jV5f3/8ed9dnbIJBBGWLKXICKKWrWKdVVbt3XgaB1frbVV21pHx6/LttZqax114upQ66jUvUBE9pQhmwxCdnL25/dHOGkI2TnnJHBej+viusg5n887dyKevHKf+37fxrIsREREREQSia23ByAiIiIiEm8KwSIiIiKScBSCRURERCThKASLiIiISMJRCBYRERGRhOPo7QF0R05OjjV06NDeHoaIiIiI9GGff/75Hsuyclt77qAMwUOHDmXx4sW9PQwRERER6cOMMVvbek7LIUREREQk4SgEi4iIiEjCUQgWERERkYRzUK4JFhHpSwKBADt27MDr9fb2UHqVx+OhsLAQp9PZ20MREemQQrCISA/t2LGDtLQ0hg4dijGmt4fTKyzLory8nB07dlBUVNTbwxER6ZCWQ4iI9JDX6yU7OzthAzCAMYbs7OyEnw0XkYOHQrCISBQkcgCO0PdARA4mWg4hIiIiIlFXVe+nxhfEZgwWgAUOmyE/w9PbQwMUgkVEDnqVlZXMmzePa6+9treHIiIJrsEfpKI+wKqdVfxz6U5W7qhiZ2UDAOkeB+MGZHDsYbmcNrEAj8NGTlrvBWKFYBGRg1xlZSUPPvigQrCI9KqS6gYWbNrL3f9eTUV94IDnq71BFmwuZ8Hmcn775nrOnVbI/50wkv4ZSb0wWq0JFhE56N12221s2rSJyZMn8/3vf5/f/OY3TJ8+nYkTJ3LnnXcCsGXLFkaPHs1ll13GqFGjuOiii3jrrbeYNWsWI0eOZNGiRQDcddddXHLJJcycOZORI0fy8MMPA7B7925mz57N5MmTGT9+PB9++GGvfb0i0vcUV3m57R8ruen5Za0G4JaCYYt5i7bz9Qc/Ye3uahr8wTiMcn8KwSIiB7lf/vKXDB8+nGXLlnHSSSexYcMGFi1axLJly/j888/54IMPANi4cSPf+973WLduHevWrWPevHl89NFH/Pa3v+UXv/hFU70VK1bwzjvvsGDBAu655x527drFvHnzOPnkk1m2bBnLly9n8uTJvfXlikgfU1Lt5dpnlvDu+rIu37u7yss3/7KArXvrYzCy9mk5hIjIIWT+/PnMnz+fKVOmAFBbW8uGDRsYPHgwRUVFTJgwAYBx48ZxwgknYIxhwoQJbNmypanGmWeeSVJSEklJSRx//PEsWrSI6dOnc8UVVxAIBDjrrLMUgkUEgLIaL396ZwNLtlV0u0atL8iVTyzmxW/PpCCOSyM0EywicgixLIvbb7+dZcuWsWzZMjZu3MjcuXMBcLvdTdfZbLamj202G8Hg/96KbNnqzBjD7Nmz+eCDDxg4cCCXXXYZTz75ZBy+GhHp63ZVenlq4bYe19lR0cDDH2xmb60vCqPqHIVgEZGDXFpaGjU1NQCcfPLJPPbYY9TW1gKwc+dOSktLu1Tv5Zdfxuv1Ul5eznvvvcf06dPZunUr+fn5XHXVVVx55ZUsWbIk6l+HiBxcSqq93Dt/fdTqPfPpNrzBcNTqdUTLIUREDnLZ2dnMmjWL8ePHM2fOHC688EJmzpwJQGpqKk8//TR2u73T9SZOnMjxxx/Pnj17uOOOOxgwYABPPPEEv/nNb3A6naSmpmomWETwB8N8uHFP1Or5gmHeWVfKxUcOiVrN9hjLsmJX3JjHgNOAUsuyxrfyvAHuA04F6oHLLMvqcHph2rRp1uLFi6M9XBGRblm7di1jxozp7WFExV133UVqaiq33HJLt+4/lL4XItK+t9eWMPeJ6Oaxk8bm8+tzJtAvxd3xxZ1gjPncsqxprT0X6+UQjwOntPP8HGDkvj9XA3+O8XhEREREJAoWfbk36jVX7ayi1heKet3WxHQ5hGVZHxhjhrZzyZnAk1bjdPRCY0ymMabAsqzdsRyXiIi07q677urtIYjIQSAcDrMnBpvYKur92Fpszo2V3t4YNxDY3uzjHfseO4Ax5mpjzGJjzOKysq73oRMRERGR6LDZbDhs0Y+RDpsNi9gt1W2ut0Nwp1mW9VfLsqZZljUtNze3t4cjIiIiktAOK0iLes2hOcnEZx6490PwTmBQs48L9z0mIiIiIn3YtCH9ol5z0sBMclNdUa/bmt4Owa8A3zKNjgSqtB5YREREpO/LSXWTlRLdwHrO4YW4nPHp4BvTEGyMeRZYABxmjNlhjJlrjPm2Mebb+y55HdgMbAQeBq6N5XhERA5VV1xxBXl5eYwff0A3ShGRmOiX7OSiGYOjVq8oJ4X8DE/U6nUkpiHYsqwLLMsqsCzLaVlWoWVZj1qW9RfLsv6y73nLsqzrLMsablnWBMuy1PxXRKQbLrvsMv7zn//09jBEJIEkuRxccMRg8tOj09P3V+dMZGBmUlRqdUZvL4cQEUk4b7zxBqeddhrTp0/ntNNO44033uhxzdmzZ5OVlRWF0YmIdF5+mos/XTAVWw93s1185GCGZidHZ1CdpBAsIhJHb7zxBj//+c8pLi7GsiyKi4v5+c9/HpUgLCISb3a7nWG5Kdx/wZRuB+FTx/fnhq+MJC89fkshQCFYRCSuHnjgAbxe736Peb1eHnjggV4akYhIz2SnujlyWDZ///ZRXVrO4LLbuH3OaO48Yxz5cQ7AEOMT40REZH8lJSVdelxE5GCQneomO9XNP74zk5eW7eLxj7dQXO1t9Vq3w8YZkwZw7fHD6ZfsIjM5Pi3RWlIIFhGJo/z8fIqLi1t9XETkYNc/I4krZg3l9EkDqPMFWb2zij21fmxY2J2GyQP7kZvmJtllp19KdDbUdZeWQ4iIxNF1112Hx7P/234ej4frrruuR3UvuOACZs6cyfr16yksLOTRRx/tUT0Rke5yOew4bYYUl4NJgzKZMjiTCYMymVmUQ25a4+tfbwdg0ExwpwRCYfzBMHabweO09/ZwROQgNmfOHKBxbXBJSQn5+flcd911TY9317PPPhuN4YmI9EhxVQNltX4een8Tb68tpSEQ2u95m4EJAzO4evYwpg7uR0EcW6K1pBDchj01Pirq/WworWVPrY9Q2MIA6UlOinKSGZiZTL9kF06HJtNFpGvmzJnT49ArItKXeL1Byr0B7vn3at5c3fYeh7AFy3dUcd28pQzOSub+C6aQn+6mf0b8w7BCcAsVdX7W7K6ivNbPgMwkbMDAzCQcNkPYAn8wTI03xLqSGvbW+jhqRA65qW6M6WGDPBEREZGDkM8XZGtlAxc+vJDyOn+n79u2t56zHvyYn545jpPG9I/raXGgELyfkiovy3ZUku5xMDgrmX4pLmp9QZZuq2RvnR+P08b4ARkU5aZgAMJhtuypp7zWz9CcZJLidNa1iIiISF9RXOvjvL8uoLI+0OV7LQt+/NJqkl0OvnJYHpkp8esUodS2T3GVl7IaLwMyPfiDYX47fz0fbyrHslq/fmh2Mt8+djgzh6dS1RDgi5JaRuWlkuTSt1REREQSQ3FVAzc+t6xbAbi52/+5kv/cNDuuIVgLWoG9dT5qvH6yUlw8uWAr5/x5AR9tbDsAA2wpr+e2f67kmqc+J8lpx2UzlNb44jdoERERkV728cZylm2v7HEdXzDMj/61kt1VDVEYVeckfAiu8wWpqA+Q7HYy94nFvLh4R5fuX1dcw5kPfIw3GMayLPbWKQiLiIjIoW9nRQMPvrcxavU+2VROgz/U8YVRkvAhuNYbIMlp5/pnlrCuuKZbNer9IS5+5FMsDHW++P3HExGJ2L59O8cffzxjx45l3Lhx3Hfffb09JBE5xDUEgmwqq4tqzX983rXJyJ5I6BAcCoWxLHhjVTFLeziVX+cPcfPzy7DbDJX1nd8ZKSISDQ6Hg3vvvZc1a9awcOFCHnjgAdasWdPbwxKRQ9jy7VVRr/n5tgp2VcZnSURCh+AaX5Aw8Ov/rItKvaXbK1lXXE0o3M5iYhFJaIFAgBtuuIEbbriB+vr6pr8HAj3bVFJQUMDUqVMBSEtLY8yYMezcuTMaQxYRadXSbRVRr7m+uIZQe5uyoiixWxlYFm+vLcEXDEet5J/e2ciDF02NWj2Rrqqo9+MPNp5yGApb2G0Gt8OG02GjX3L8dt1K626++WaWLFkCwKmnntoUfm+++Wbuv//+qHyOLVu2sHTpUmbMmBGVeiIiLQWDYeoD0V8C2hAIxW2GNqFDsDcY5p9LojtTsmRbJYGQZoIlvsJhiz11PraX1xMMW2SluHDYDeEwWFj4vCH21voxNsOQrGSyU93YbTrgpTf5fD58vsaNtG63O2p1a2trOeecc/jDH/5Aenp61OqKiDTncNhIiUFb2GSXg3ilqIQOwaGwxZrd1VGvu6fWx6Cs5KjXFWlNVb2fkmovToeNWn+QJz7ZyvLtlfud2pOV4mJiYQaXzhxKvT9EeXEVBZnJZGpmOO5+9atfceqppzYFYACn08mvf/3rHtcOBAKcc845XHTRRZx99tk9rici0p6pgzN5auHWqNY8rH9a3CZpEjoEB8JWVJdCRGwqq2XK4H5RryvSUkWdn12VDdT7Q3z3hWXsqGh9M8HeOj/vrS/jvfVlFGR4+P25kwlbDYStxoAs8XPrrbcesP43EAjwgx/8oEfLISzLYu7cuYwZM4abb765p8MUEenQxMLMqNecPjSLgoykqNdtTUJvjIvVumt/DIK1SEuV9X4qGwK8tmI333xoQZsBuKXdVV7Of3gh/1q6kxpvQN1Meonb7SY1NTVqSyE+/vhjnnrqKd555x0mT57M5MmTef3116NSW0SkNR6XjcPy06Ja8+wpA6Narz0JPRPsjNF0e3aqZtYktkKhMFX1AeZ9upWHP/yyWzUe+ehL/KEwc48uItXtwGFP6N+J4+Z3v/td00ztr371K2699damx3vi6KOPxorTjmoREYCBmcnccMIIrp+3NCr1jhuVi8dhj0qtzkjoEGwBg7KS2L43uv3oinJSo1pPpKVqX4Avy+u6HYAjnlywlWNH5ZLmcWpZRJw4nc79lj1EqyOEiEhvmDYkixlFWXz65d4e1Ul22bnnrHH0z/REaWQdS+ipH5fdcGRRdlRrZqW4SHbG77cYSTyWZVHvC3PLi8ujUu+WF5fjDYQIq7+1iIh0Uf8MD7/95iRyU7u/tMsYuPebk8hIiu/cbEKHYKfdxgVHDI5qzfOmDcLtTOhvq8RYnS/IJ5v2sKc2Omt5K+oDvLOulHp/MCr1REQksfRPc/LcNUfSP73rs7h2m+F3505i6pB+ZCRFr11kZyR0WgtZYbJTXcwcFp3Z4FS3g7OnDlT/VYmpqoYAj3+yJao1n/hkC1UNPTuxTEREEpPT6WR4bir/uvYozp7a+Y1tI/NSee2Go5k1PIf8bgTonkroEOwLWLgdhh99bQzJrp4vYfjRqWNIT3KwdW9tFEYn0ra1Ue5vvaG0Nm7NyUVE5NBUkJnED04ezX+/O5sLjhhEv2TnAde4HTaOGp7NE1dM58krjmB0QTp5vRCAIdE3xhnYVeklP93DvedO4vp5Swl1c13kedMHMb4wHSxw2RP62yoxVu8PEYvluzVeLYcQEZHua/AHCYbDzF9TzNyji7ju+BGEwxb1/hAhyyLJacftsBEMW3y6uZwMT+PpprlpCsFx57IZ5i3azs0njaR/mocHL5rK9/++nOqGzocBY2Du0UWcNCaf7BQ3f3hrA9cePyKGo5ZE1xCDs9oBrQk+BAwdOpS0tDTsdjsOh4PFixf39pBEJEGUVntZsq2CH/x9BdXeIL9584um5zwO8DgcVLYy2XLJkYO5/isje2U5REKH4BSPg5PG5HHf2xu59thhhKwwT15+BH9+fxPz15R0eJjG8NxUfnLaGOoDIYZkJ7OuuIo6fwiXQ2uCJXacMern61Kf4EPCu+++S05OTm8PQ0QSSGm1l1eW7+Jnr6094LmxBWnMGpGD0274ck89b6wq3u/5pxZuY11xDX+6cGrcg3BCh+BUt5OR+Wnc/e815Ke7OX1iAW6nnZPH9eea2cN5a20Jn2+tYO3uaqq9QVx2GyPyUhk/MINTJ/THHwyTkexkaHIKm0trufaZZTx95QzcChMSQ6nu2Pxvm5F04Notib7Zs2dTX19/wOPJycl88MEHvTAiEZHu8/qDLNtRuV8Avmb2MM6fPgiH3UZpjZfNZXWELItpQ7L4wSmjcdgMq3dVccsLy6n1h/hsSwU/eXkVd585jv7p8TkyGRI8BFfU+Qlb8LOvj+eKxxezu8rL3FlDmTq4H8FQmMFZyRT2S+Lq2cNIcTsIhMIUV3lp8AdJcTkYkeehtiHAxxvLuefV1XxjaiEZHgc2o5lgia28NDelNb6o1euX7AT9s42L1gJwe493hTGGr371qxhjuOaaa7j66qt7XFNEpD3ldQG+/+IKAE4YnctPz5rAyp2V3PT8MpbvqGr1ntw0N9+aOYQ3bz6Wj74o5dZ/ruLN1SWcM7WQrMNcuOJ0alxCh+DGTmYWBRke5h5dxKMffcnHG/bwg1NGU5iZxKRBGbjsNjxOO2Gr8frCfskEQiEq64Ns21vPn9/bxIcb9jCmII2LjhxCvT9EUIcOSAyFwhanTxrAox/17LS45k6fNIBAMBy1etI7PvroIwYOHEhpaSknnXQSo0ePZvbs2b09LBE5RNV4/Tzy0WaqGgLcd95kxhdmcM1Tn7NyZ+vhN6Ksxse987/gkQ+/5JfnTOCd7x3LKX94n5+8vJp/XHsUAzPjMxuc0CHYZQO3w47dZjh5XD6BUJgnF2zlpueXkZPq4rSJA5hYmMHAfklYVuNEWbU3yOpdVfx3TQmrdzW2qRo3IJ3/d/YE0jwOdlc1EAgrTEjs1PuDfG1CAY9/sqXb3Uyasxk4c/JA6rQxrs8Lhy2C+15fwlbj6YHGmKZ3nwYObOzPmZeXx9e//nUWLVqkECwiMVPtDfH3xTv40wVTyEt387U/fog30PkMVNUQ4DtPL+GqY4p4+3vHcdy977FlT51CcDy4XE7SQ2GqfTA4K5nZo3I5oiiLO19ezZ5af4cHEththquOKeKE0XnkpLqprPczqF8yya6E/rZKjKW4HfxjyVauPLqIhz7Y3ON6lx01lP+uKea86dE9PVGiJxQOEwpb1PlCWIDL0WzfgWVhWWEqq2sxVpi87H74GuqZP38+P/nJT3ptzCJy6Cup8nLqhP4Mz0vlrAc+xtfNdxQf/vBLMpKc/P3qo3j2s21MHZxJUhyyVELv4LLbDCEMtb4Af31/M2U1PlJcDh665HDuOmMcYwvSae3wt7w0N3OPLuLFa2YytiAdC/jB31c0bVhK82iDkcSO027j74u3c8zIXMYNSO9RrVH5qXx1XH+eXrgNtyOhXw76rEAoTK0vSCDUOAtcXuvjy7I6NpfVNv3ZWl7Pxi07OOXE4zl86mSOmHEEp8w5lVNOOaW3hy8ih7AlW/Zy04mjuH7ekm4H4Ijf/fcL3E47+eluyuv8URph+xJ6yrKizs+m0jpeXr6TpxduA+D4w/L4vxNGkJHk4KrZRQzITAKrsTer027D5bCxt86/b1OdxaayOm5+YTnBsMUVTyzmD+dNxmm3kZ0a3/OvJXG4bIYTxuTzvReX8eeLDueH/1rJuuKaLtcZmZfKr86ZyHXPLOG4w3Jx2rUzLh6Sk5Pb7A7RUiAYxhsMEQhZbN9bR7iNvo1hyyJ7wCDmvfEBTrut8XWLxgAdq5Z6IiJThmby2srdbCqr63GtsAU/+MdyHrhwahRG1jkJHYLDlsVrK3c1BWCAd9eX8v4XpRw7Ko+zpw7EZgyBUBi3w9Z0SpfHYWNdcQ0/f20tNb7/raPcWFrLTc8v45krZ8T7S5EE4nHbufKYYfxz6U6ufWYJ910wmVeW7eKZT7d1fPM+504bxDcOL+T6eUvZVeXlodnDSHbGZzduoutsG7RAKEwgFGZPrZ8ab6DT9QOhMFvL68hJdWPf91aWgrCIRFs4HCY/PYnHPloWtZqrdlZT7w+RlRKfd9QTOgQHQ2EOH5LFkwu27ncMbdhqDMPvri8FINllZ2ReKlv31lNZ3/4Po9H902I5ZBG8/hDpHjunjM/nP6tKuPiRT7nu+BE8e9WRzPt0K/9ZXUwgdOCModNu+OrY/lw4YzBLtlVw8SOf4g+FOWF0Hv1SXDQEQqRoKU+fEAqHCYbClFR79/tFuyv21Da20OuX7MJus9S6UUSiymazUeMNsqvKG9W6Ly7ezs0njYpqzbYkdAgGQ26qi19/YyI/+PsK2tpoX+8PtdnrrrnTJxbwrZlDoztEkRZCFpRU+7jja2NZ9GUFe+v8/OGtDWSnbOXcaYN4+soZhMIWm0rrqPcHSXLZGZ6bitNu4731pdz43FL21Daut8pIcnL3GeMoq/E1vYUu3RPp1BANobBFjTd4QAC2GUOq20GSy47bYcMYQ9iy8AZCNPhD+zbO/e+FbE+tjxS3A4fdYIvDchero2M2ReSQsmRrRdRrLtteSbU3QGocJmUSOgR7XHbsdsOMomzuPXcy33thWZtBuCOnTSzg1jmjqfUGmt6CFImVAf2SCIfDzLtyBuf+dQHVDUHK6/z8+f1N/Pn9TbgdNoZmp+Bx2vAGwmwprztg00Ka28G8qxqX7hRkxP/M9kOJx+OhvLyc7OzsHgfhUDhM2IKSZoehOO02ctPcJDnt1HgD1PmC7K0LE7Ys7MbgcdpJdTvon+6hxhekrMbXtH54V2UDw3JSIMarXSzLory8HI9H/5ZEEsWqXW1PEKZ7HBw+JIsJhekMzEzGZqCyIcDqndUs2VbBtr2tHxC0sbS221msqxI6BGckORmclcItLy5nRF5qhzPCbTltYgFnTRnIN/+8gKevmkGm3lKWGMpP91Ba7cVmt+G0h3np2lnc8OzSpr7VAL5gmPUlbW+WG1OQxv0XTAXLwumwYYC8OJ/ZfigpLCxkx44dlJWV9bhWKGxR6wtS422cBU5x2UlxO1izPdDh7msDJLkaA3F1QwDvvuvrS51NPdFjyePxUFhYGNPPISJ9QzgcbvU1aXhuKlfPHkZRTjJVDQFSXHY8TgdgEQhZjMxN4azJA7DZDM98uo03Vxfvd78/FI7bAabmYHz7atq0adbixYt7XGdPrY8f/nMl89eUAHD5rKGMG5DepSAcCcDXPdPYHiQrxcX8784mR90hJMZKq71YQHWDH5fDzscb9/Dge5vYUdHQ5j0DMjx8+7jhHDsqF38gRHqyE4NRAO5DdlTUc9r9H1FZH+D2OaNxO+38v9fXdqn9UGayk998YyLz15Tw4uIdHFGUxR/Om6wlLyISVXf/ezV/+3gL0Nh29tvHDufEMXnYjCHN4+CDL8pYtGUv2/bWY1mNexQmD87kuFG5ZCa7KN237+GOl1ZRuu/dr9w0N//6zlEUZh3YMac7jDGfW5Y1rbXnEnom2GBxxawiPtywh4ZAiL99vIUnLp/OCWPy+e++YNyeJKedO08fy8l/+LDpB9RFMwZH5RQvkY7k7ZsRzkhyUV7nZ3BWMk9cPp16f4gl2ypZuq2Cen+IJKedyYMzOXxwP1I8DnZX1lPvD5Gd4mqqI32HLxCmsj7A9V8ZQSBk8f/eWN3lGpX1jacw3Xf+FKobgrz/RWmb7dVERLpr+tAs/vbxFtwOG/dfMIWcVBdJTjt3v7qGBZvKW73no417+NM7Gynsl8QtXx3F+IEZ/O3y6dz03DI2lNYyriAdtzM+HW0Sum+OMYa0pMbDMZKcdm46cSSbyuo6FYChsXfwLS+u4I/nTyHFZef6r4zgyGHZMR61yP9EAmxhvyTeW1/Griove2r9FGR4+MbhhVx61BDOnVZIYWYSe+r87K708u76Mgr7Je13v/QdJdVeJhZmMHlQJr+dv77bdYJhi++9uIxrZg8jze1stWOIiEhPRA5s+sO5kxmZn8onm8o57f6P2gzAze2oaOCm55dz1yuryUhy8sBFUynI8DBzeDa5afH52ZTQyyEaAkFqGgKU1fqxG8Mnm8q559U1Xa5z7Khcbp8zmsr6AEW5KbgcNvolu3o8PpHOKK328uyibfz+rQ0A5Ka6GT8wg1H5qXicdnzBEBtKa1m5o6rp7aZrjxvOZUcNVQjug/67poT0JAc3PbeM3VFoPTRtSD8unDGYiYWZjMhLjcIIRUQa7a5s4J9Ld3DahAE89OEm5n26vVt1huWk8MQVR7C7soEB/ZIo7BedpRCg5RBtSnI6aPCH8DhsfL61slsBGOD9L8qw2+DnZ03AgAKwxE3LAAxQVuvbr891ax58bxOAgnAf1D/dzWdbKqISgAEWb63g/04YqRMBRSTqCjKT+PqUQv67tqTbARhg8546bnxuGX88fzJJjvgtUkjo5RBVDX7WF9ewYPNefvCPFT2q9c66Mn70r5XsrGxgT010G0eLtKa1ANwVD763icc/2UJptf699iUZSc4unf7XGc9/th1XHH+wiEhiqPUF8QVC/OK1tT2utWRbBe+uL43rwT4J/aroDYTZWl7Pj19a1eG1o/un0VF3oXfWl3H/2xvQ0juJtZYBONll7/RMn8NmSHE1No1VEO6bNpXVRrXegs3lBPXCJCJR1uALcv+7G7vUvaY99/73C+oDoajU6oyEDsFYsLOy7XZSEadNLOCPF0zhV+dM7DAIl9X6OQiXWctBpGUAzk5x8dTcGfzl4sNxt5jtG9yixYzLbuPBi6by9JUzyN3Xxk9BuG8pr/NHvebeOv9+J8mJiESDPxTmtRW7o1avsj7Ayp1VBOIUhBM7BBs4ang2Vx0zrM1LTptYwKUzh+Ky2+if4Wk3CE8YmMHPzhrfYVAW6QljYMn2SqAxAP/lksP52atr+MeSHTx40dSmIHzZUUN57f+O5qpjioDGAPynC6fw6ord/OTl1fzlksObgvCKHZXE8R0oacfeGIRggEBQIVhEomvb3vqozQJHvL6ymDp/fEJwQm+Mczls2GyG4w7LBeDhDzfv93wkADtsBpfDhsNmmoLwrf/Y/0CNSAB22o1CsHlKCOoAACAASURBVMSUzRh+dfZEfv76Gr41cyi/eG0tS7dXsnTfnoQHL5rKgk3lXHF0EcYYLp9VhN1mmDq4H6+u2M0ry3cBcNcrjUH4sY82c8dp43AoBfcJ8VwPJyLSXZZlsejLvVGvu2pnFTW+AJkpsW8ykNAzwYbGb4B9XxBuPiPcPADb7f87ytTeLAhHwm7zAOywGxz2hP62Soxlp7pxGIsfnTq2KQBHvL6ymJeW7uSqY4ZhtxlS3Q7sNsNlRxXxxqripgAMsHJnFXe9spo7ThuLw1j00ymHfUL/GHXriFfzeRFJDJZlsb2dE0q7q7jaG7fJgISeCU51O0hPcrKrooEkt6NpRnh3VUNTAA5bFpc++hk13iCWBT88dQzjB6Y3BeFnPt3G3WeMw2k32G2GVTuqOXGsjiaV2Kmu9+MLWVw/b8l+ATji3yt2Y1lw65zR1HqD+AJhfvfWF7y0dOcB167cWcVVT37OXy6eSnW9n3S19+t1qR4HxhDVvQWDspK0V0FEospmO/h/sT74v4IecNhtDM9NZUC/JBr2zfIeOyqHbzULwJc/8RnVDcGmHyC/eH0tq3ZWN80I//qciU0BePXOak4cm096krN3vzA5pAUti+vnLW01AEe8unI3v3pjHRjaDMARK3dW8e2nl6Alo32DzRiOivLJk3PGFeBSn2ARibKWm6+joSDDQ+N79bGX0CEYDgzCDrsNp33/ANxSUxA2jcsfGgNwlQKwxEUgFOa86YM6vO7Vlbs56pdvtxuAI755eCGBKG9ukO5x2OGaY4dHrZ4x8M1phWjno4hE24yirKjXnDAwg6w4rAcGhWCgMQjnpLpJ9Tip9QXxB8NtBuCIX7y+llW7qrGAxVsqmDY0i+R9vVdFYslubMwakc0vz57Q4bXt/RuOuPuMcRw/OhebdnT2CVbYoignhelD+0Wl3oVHDCbV7dCLvYhE3aCsZDxR3m9w2qQBJMUpT+l1ESir8XHtM0twOWxkJDn5zjNLOhUefvH6Wt5aU8zM4dnc/MJyNpTWEgxpNk1iy8Li3vlfUJDh6VQQbs/dZ4xjeG4Kv3xjPaiPbJ9gGcNTC7Zy+5wxTYeadNegrCTOnDyQD74oI6xFwSISZaluB2dMGhi1elkpLsYVpEetXkcSPgSX1fi4ft4SbvjKSO57awOBUJgxBWmdujfJaeeksf25+YXl3H7qGO54aZWCsMRFVqqLS//2WY+CcCQAX/zoori99SQdC4Ysnv50K/e9vYEHL5pKkrN7QTg/3c19503hh/9aydOfbiMQVggWkehKT3Jy/fHDu/061dJtp4ymXxx/HiV0CK5qCPDjf63ghq+M5LGPvuScwwv515KdfLyxvFP3NwRCXPXkYu48fSw/fXVNUxCu9XU8iyzSXWELTpswgMuOGsqlf/uMAZldD8L3nDGOkXmpXPzoIi6cMZivTxmIMlLf4A2EqPeHeP+LMp5cuJXHr5jOiLzULtWYOSybhy4+nB+/tIqNpbWsK66O0WhFJNHlpLm58/SxPa5z5LAsjjssF0+UAnVnJHQITnM7uOuM8U0B+L31pbz4+Y4u1dhUVsctLy5vCsK/OHsCTq2tlBiyGfjrB5uYMjiTq44pwmYznDK+f6eD0pDsZM6YPABjLC47aiizhmfz4HsbdchLH9H8KPe315Zy699XcNfp4/jByYft2zXdtsPy0/j1NyZy/hGDuPzxz1izuzH8BkIWfm18FJEYSHY5OGFMHnOPLup2jVH5qfz+vMnkxahPeluMdRCuE5s2bZq1ePHiHteprPdzx0urOGV8QbcCcHPDc1P47Tcncfe/1/DIpdPI0cEDEkOlNV5+9uoabjpxFA6b4XdvbehUF4iIr00o4NY5o7HCYX795nruPH1c3F98pHVvri7mmqc+3+8xY+Aro/O44IjBeBx2Vu2sYkNpDb5gmBS3g9H90xg3IIOdlQ08tWArS7ZVHFD3rZtnMyKvc0u9RES6qqzGy6srdvP/Xl+HvwvLQk8ck8fPzhpP/4zYnLFgjPncsqxprT6XyCHYHwxRUu3jj29v6FEAjhiem8JfLj6c/HQ36UlaYymxVVLtxRcIdTkAR0SCsNthI18BuM9YsGkPFzz8aZvPJ7vsjC1IZ1huKi6HjQZ/kPUlNXxRXNvuD553bzmOopyUWAxZRASAGm+AshofP3ttLe+tL213md2IvFRuPWU0kwozYjoJ014ITugT4+p8IR75cHOnAvA5Uwfy5uqSdtf7biqr49tPf85zV8+M5jBFDlBa4913Elz3AjDAayt3A40ny5VWezUT3EcMyGx/NqTeH2Lx1goWbz1wtrctboct6m2MRERaSvM4SfM4+fU5E2kIhPj0y3IWbt7Ltr31hMIW2SkuDh/Sj2NG5tAvxUVBjGZ/OyuhQ7DbaePYUbk8tXBru7+t3HX6OL5x+ECumj2Mb/x5QbtBeOrgfji0uFJiqKzGh9ff9lHIXdE8CJfVeMlNUxDubR6nnYwkJ1UNgajVnFiYEdfNJiKS2HLSGpeEDspK5rQJBVR7g1hYeBx2MpL7zjvlCT01kOxycOTwbB751rQ2NwXddfo4zp46kFSPkxG5qfz9OzNJdbf+u8M3Dy/kh6eOiWt7D0k8YcvqdAA+ekROh9e8tu+IZXWH6Buykl1cOGNwVGteecww+vWhHzwikjg8Lgd56R7y05P6VACGBA/B0H4QjgTgyFHIDrutzSCsACzxlNbGL2LN3XPmOO49d1Kn2qeleRL6TaE+xemwcdGMwTjt0XlHKTfVzZTBmVGpJSJyKEn4EAytB+GWATiitSCsACzxZAOuPW44lxw5pM1r7jlzHMNyUpjxi7c7PFDj/OmDuPGEkRit4ukzclJd3D5nTFRq/fGCyeSqW42IyAEUgvdpHoTvOaP1ABzRPAhfOnOIArDElWXgpeU7uWTmkFaDcCQAX/zoIvqne9o9We786YO48phh/H3JdpSB+w6P08FZUwZyzMiOl7O056pjihg7IAOj33BERA6gENxMJAifOaXtABwRCcLfPWmUArDEld0YPt5Qzmn3f3RAEG4egC+cMZh/XHsUl84c2moQjgTg0/74IR9vKMemoNSnZKW4+P15kzn+sNxu3X/l0UVce9wIMjp4LRMRSVQJ3SdY5GC0p8ZLrS/Ej/+1ikVb9/LqDUfz1IKtjMxP3S8AzxqezW3/XMnPzhrPkq2VPLFgC09cPp3dVV6Wba9sCsCTBmXyq3Mmkuq2k6PuEH3O3jo/76wt4ccvr8Ib6LgBfU6qi/svmMLYARkKwCKS8NrrE6yZYJGDjMNu4wd/X871J4zgiCFZnHb/R1w0YzBDs/cPwP9aupMFt53AGyt3M3VIZtOMcF66mytmFTUF4O99dRS3vLAch10vB31RVoqLMyYP5L1bjuenZ45jVH7qAZt4nXbDlEGZPHjRVF7/v2OYUZStACwi0gHNBIschHZXNXDDvCXccvJo/vT2Rj7atAdgvwD8869PID/dQ2m1l5+8vIo5EwqaZoQBZhRl8b2vjuKXb6zjTxdO7fCQBul94bDF3no/oZBFfSBE2LJw2Awepx2n3ZCVog1wIiLN6cQ4kUNMQUYS9184tSkIAwzOST4gAAPkpXu458zxTUEYhrKuuFoB+CBSUt2Aw2YjO9VNTgedHoqrGgDo38snMYmI9HV6/1PkIBUJwr99cx03nDCCo1oJwBGRIPzGyt1MGZzJLScfpgB8kCip9vLAu5tYX1JDea2vw2vfWlvKf9eUUFrtjdMIRUQOTpoJFjmIRYLw1U8uJjfNzf87e+IBATgiEoTveGkV2yvqeeTS6QrAfVxJtZc/vPUFzy7aznOLtvP4FdM5DMhuZTa4pNrLf9eU8OOXVjU9dvK4/uS18e9BRCTRaU2wyCGguMqLMbQZgJsrrfYStqB/hsJRX9Y8AEe47LbGIJyftl8Qbi0AA/z0zHEKwiKS0Hq1O4Qx5hRjzHpjzEZjzG2tPD/YGPOuMWapMWaFMebUWI9J5FDTP8PTqQAMjTPCCsB9W2sBGMAfCnPZY5/ttzSirQAMcMfLq3lzdbGWRoiItCKmIdgYYwceAOYAY4ELjDFjW1z2Y+AFy7KmAOcDD8ZyTCIifVlbATiieRCurPe3GYAjIkG4REFYRGQ/sV4TfASw0bKszQDGmOeAM4E1za6xgPR9f88AdsV4TCIifZYB1u6uafeaSBA+eVw+/16xu8Oai7dW8NVx/aM0QhGRQ0Osl0MMBJpPZ+zY91hzdwEXG2N2AK8DN7RWyBhztTFmsTFmcVlZWSzGKiLS6xx2+MvFU5k8KLPd6/yhcKcC8BmTBvDDU8dg16nYIiL76Qst0i4AHrcsqxA4FXjKGHPAuCzL+qtlWdMsy5qWm5sb90GKiMSDZRl+8+b6TgXhjpwxaQA/+toY7nllFcYoBYuINBfrELwTGNTs48J9jzU3F3gBwLKsBYAHyInxuERE+qTsVDffPWlUj4NwJADf+fJKfnLG+FbbqomIJLJYh+DPgJHGmCJjjIvGjW+vtLhmG3ACgDFmDI0hWOsdRCRhFfZL7lEQbh6A7z7zwMNTREQkxiHYsqwgcD3wJrCWxi4Qq40x9xhjzth32feAq4wxy4Fngcusg7F5sYhIFEWC8L3z1/O3y6aTneLq1H2TCjO4+4xxCsAiIh3QYRkiIn1YSVUDb60t5UfttEFrzmW38cQV0xmVm0q2ArCIJLhePSxDRES6p6Ta26UADI1dIy597DO+KKttOlBDREQOpBAsItIHlVR7eWtNSZcCcERTEG52spyIiOxPIVhEpI/pSQCOUBAWEWmfQrCISB/SlQDssLXf+1dBWESkbQrBIiJ9iNth44F3N3Z43RmTBrDkjpM6dbLcvfO/0GEZIiItKASLiPQhLrvh2auPpCCj7c4OkT7At/9zZYd9hCcVZvCnC6fg1qu9iMh+9LIoItKHhCz4z6rdPNdGEG5+EMbtp45u90CNSYUZPHTJ4Tz47kaCB183TBGRmFIIFhHpQzxOO8eOyuP1FQcG4ZYnwbV3slwkAN87fz1XHzucjOTOHbYhIpIoFIJFRPoQp93G8LxUjh+9fxBu6yjk1oJw8wB844mjKOyX3MtflYhI3+Po7QGIiMj+IkEY4PUVu/nnd47CZjNtHoXcMggDCsAiIh1QCBYR6YPqfUEykpwcPzqPX72xlnpfiHu+PoFgKEwwFMZht+13rcHiuyeN4s5XVmFZFj85bTxYFvW+IMluvdSLiLSkV0YRkT6mqt5PaY2PDzaUsWNvPTecOAq33cZljy3iDxdMJlzppSDTg8Nuo94XZFdVA7sqvTz84WZ+/vXxYMEP/7WSuUcX0RAIMTAzWUFYRKQFvSqKiPQhzQPwT19dC0BxtY8VOyrZWenlvIcW8vw1R7K70kt2mqspAM994jMCIYsbn12KMTaWbKvgk03lPHrpNAAFYRGRFrQxTkSkD/EGw/sFYIA3VhWzs9ILQFVDgPMeWkhdIEhxlXe/AAywdHsVS7ZVABAMW8x9YjG7Kr00BELx/2JERPowhWARkT7EZbfx+Cdb2r0mEoRfXbF7vwDcmmDY4qEPNqMD40RE9qcQLCLSh9ht8KcLpjIoK6nd66oaAvzuv1+0G4ABpg3px21zRmNDKVhEYqu81sfG0hpKq70dXlvnC7CprJaSTlwbKwrBIiJ9SCBksX1vPX88f0qHQbgj04b049ZTRuMLhnE4FIJFJHbKa318vHEPJ/3+A575dFu7QbjOF2BjaR2n3/8Rd7y0qteCsEKwiEgfkp3qZubwbHZWNDQF4YwkJ3Zb50JsktNOktPeFIAxMKYgjVS3M8YjF5FEFQnANz6/DMuC+97e0GYQjgTgCx5eSL0/xPw1Jb0WhLVVWESkj4kE4QWbyvnLxYdjtxnWF9dw8wvLCYXbXv6Q7nHw0CXTSHLZCYctQpalACwiMdUyAEfc9/YGAC6aMZi8fQf8tAzAEfPXlADw07PGH3AYUCxpJlhEpA/KTnUza0Q2yS4733l6CQs3l/O7cye1OSMcCcD3v7OB37y5jrx0twKwiMRUWwE4ovmMcFsBOKI3ZoQVgkVE+qiGQJgrHl/Ml3vqeHbR9jaDcPMA/Mmmcj7eWM6t/1iBNxDupZGLSCIoqfa2GYAj7nt7A08t3MoXJbVtBuCI+WtKeOTDL9lb54vBaA+kECwi0gftqmzgokc+5cs9dU2PtRaEWwbgiI83lnPjc0vZUxufHyYiknhyUt1cdtTQDq+7/52NfP3BT9oNwACj8lO5fNZQslLcURph+xSCRUT6mNYCcETzIJyZ7Gw1AEcoCItILOWle/jOscO5fNbQHtcalZ/K45cfwYDMnnXF6QqFYBGRPmRvna/NABwRCcL/uXF2mwE44uON5dz8wnIq6v2xGK6IJDCvP0h5nZ8rjy7qURCOBOAVOyo71WM4WhSCRUT6kFDY4txphR1e9+yi7Zz4u/fbDcAAdpvhsqOGQPtnaoiIdNmOSi/nPbSA43/7LnO7GYQjAfjOl1fx7aeX8MaqYspq4hOEFYJFRPqQJKeD9CQnN54wssNra33Bdp+32wy/O3cSq3ZWY9O5ySISZWluB6Py0/CH4Cu/fZerjy1i0Q9P4MxJBR3em+qy88H3j+P5q47kzpdX8d+1paR7HBxRlEWaOz4dfBWCRUT6EF8wyIjcVHJT3Z0Kwm2JBOD1xTWcNDafkKVOESISXfkZHh64cCrThvRjRF4axrLx6zfX8/1TRrcbhFNddubffCxPLthKcY2PmSOySfc4eP6amRRlJ+NxxScE67AMEZE+JGzB6p1VHFaQDsCNJ4xsajrfWS0D8IaSGvLS4rPbWkQSS36Gh79cNJWQBTc8t5RFX+7l860VPDX3CABeXr57v+sjAfj+dzbw7KLtvPD5dp6/eian3lRAZrIzbgEYNBMsItKn5KZ5OH3yANbvrqYoN6XLM8ItA/D2vfXMGpFDdqpCsIjERoj/BWCAL/fUccmjiw6YEW4ZgAGqG4Kc99cFVDQEMHFetqUQLCLSxzQPwiPyU/nmtEKyU1ydundSYSbDc1MVgEUkLkqqvdzw7P8CcETLINxaAI6IBOHNe+rwBdrvJRxNxmrvmI8+atq0adbixYt7exgiIjG1p8ZLZUOAu/+9hg837On0fZcdNYQLjxhCdqpLAVhEYqatANxcUU4KT809Aqfdxh/e+uKAANxcepKD56+eybCcFNxOe1TGaIz53LKsaa09pzXBIiJ9lDGmywEY4PFPtmKM4f96sLFORKQjNd4ga3dVt3vNl3vquPiRTxndP43/rC5p99rqhiALN5fTL8VJf2fsD83QcggRkT6ovNbHTc8v63IAjvjbx1v449sbdEiGiMRMdqqD5685ssOWZlvK6zsMwAC3zRnNnPH9yU7q3PKvnlIIFhHpY3oagCMUhEUklvoleyjIdHcqCHfktjmjOWvyALKTXTijtBSiIwrBIiJ9SGcDsN1mmD0yp8N6TUG4TkFYRKLP6wtTkOHqURCOBOA6X5DaOG6MUwgWEelDjDFkddAJwm4zPHrpNB64aCo/PHV0hzX7p3uw6cA4EYmyHRX1XPjop3y6uaLbQTgSgAOhMJc+9hkrtldSUeeL0Yj3pxAsItKHZKW4uPP0cZw5eUCrz0cC8IyibNI8Ts6bPrjdIHz7nNGcf8QgMpLjs8ZORBKHZcH3TjqMhV9WcM6fFzIg080zV83o9P2XHjWEbxw+kBc/285VT37OHy+cgsNmCMepcZlCsIhIH9NWEG4egJNcjWvmMpLaDsJNAThOm0xEJLF4nDZW7ari8U+2UFrto8Fv8eyibZ2+/4Mv9uANhNlYVsu64hp++M+VDMtNjVtrR4VgEZE+qGUQbi0AR7QWhBWARSTWymp8PPTB5qaDMP7YykEY7Wl5oMa64hoe+3gLe+O0HEJ9gkVE+qhIELYZOHPywFYDcEQkCEPjW5QKwCISa3lpHv547mQOL8pq9SS4zogE4afmHsH4gRmcMXkgWSnxmQnWiXEiIn1cRb0fj8PeZgBurqohAJalNcAiEhel1V5+38FJcJ0ROVmusF9ylEbWqL0T47QcQkSkj+uX7OpUAIbGGWEFYBGJh2gFYPjfjPCOivoojKxzFIJFREREpMvK6/y8sHhHh9fdNmc0b9x4TIft077cU8fTC7dSrhZpIiIiItJX5ad7+PNFU7G304j8tjmjOWlsPku27uW5DvoInzl5AJfPKiI7TmuCFYJFREREpMuyUlxMG5rVZhCOBOAT7n2fH720ut0gfObkAfzw1DHkp3viMXRAIVhEREREuqmtINw8AEfc8fKaVoNwbwRgUAgWERERkR4Ihy0O65/aFIRbC8ARLYPwmZMHcNucjo9/jwW1SBMRERGRbtlT4+OjjXv47gvLeO6qIxmQmYQ/FG41ADf30zPHcuyoPJx2G3Pu+5BpQ/vx869PiPpscHst0hSCRURERKTLmgfgSJy8ZvYwHvpgc6fuv/CIwby+cjeVDQEAThyTF/UgrD7BIiIiIhJVpTXe/QIw0GoAPnFMHvecMQ7TYu/cvEXbmgIwwFtrS3nkwy/jdmyyQrCIiIiIdFlOqpsrZhW1e82JY/L4xdcn8LWJBfz+3MkHBOHmRvdP4/JZQ+N2bLJCsIiIiIh0WV66h2tmD2Pu0a0H4UgAzkv3kJ3q5ugROW0G4dH903jssukMyEyK8aj/RyFYRERERLqlrSDcPABH5KS1HoR7IwCDQrCIiIiI9EDLINxaAI5oGYR7KwCDukOIiIiISBSUVnv5cOMejhmR02oAbm5PjY9l2ysZOyA9pgG4ve4QbR/gLCIifUJJdQMep52MJFcnrvUCxP3kJRGRvHQPp47vT5Kr43iZk+Zm5rAsUjzOOIysdVoOISLSh5VWe3nw3U2s2VVNVYO/3WvLary8taaE+auLKd0XhkVE4qkzATiiNwMwdGEm2BiTDwzc9+FOy7JKYjMkERGBxgD8+7e+4NlF23l20XaeuGI6YwektzojXFbjZf7qEn700qqmx04e17/DtyRFRBJVhzPBxpjJxpiFwHvAr/f9ed8Ys9AYMzXG4xMRSUjNAzCAPxTm0sc+a3VGuLUAfMfLq3lTM8IiIm3qzHKIx4EbLcsaY1nWifv+jAZuAv4W09GJiCSglgE4orUg3FoAjlAQFhFpW2dCcIplWZ+2fNCyrIVASvSHJCKSuNoKwBHNg3BFvb/NAByhICwi0rrOrAl+wxjzGvAkEHlVHgR8C/hPrAYmIpKQDKzdXdPuJZEgfMr4/ryyfFeHJRdvreDkcf2jNUIRkUNCp/oEG2PmAGfSbGMc8IplWa/HcGxtUp9gETmUFVd5ueapxSzfUdXjWmdMGsCPvzZGG+REJCH1uE+wZVlvAG908Enutyzrhm6MT0REmumf4eGhS6b1OAgrAIuItC2ah2XMimKtuKio81PrC8akdqrbQb+Ujhvbi4i0pqdBWAFYRKR9CX1inD8UZmdlQ0xqF+Voz6CI9Ex3g7ACsIhIxxI6BDf4Q5z/14Uxqf3eLcfFpK6IJJb+GR4ev+IITrz3fcrr2j8xDmBSYQZ3nzFO70SJiHQgmiHYRLFWXHicNp67+siY1RYR6alIH+DOBGCAdcU1rC+pYUxBWqsny4mISKOuHJs8wbKsle1ccl8UxhNXDYFwzGaC39VMsIj0UHsHYbTFFwxz6WOLeOKKIxSERUTa0ZXpygeNMYuMMdcaYzJaPmlZ1uPRG5aISGLrTgCOiAThtbtrDjhiWUREGnU6BFuWdQxwEY0HZXxujJlnjDkpZiMTEUlQPQnAEQrCIiLt69LCVcuyNgA/Bm4FjgX+aIxZZ4w5OxaDExFJNF0JwHZb+1sxFIRFRNrW6RBsjJlojPk9sBb4CnC6ZVlj9v399zEan4hIQnHabfzp3Y0dXnfGpAEsueMkJhUesDptP75gmN++uZ5QOFojFBE5NHRlJvh+YAkwybKs6yzLWgJgWdYuGmeHRUSkhzKTXTx39ZEUZLTd4/eMSQP40dfGkJHk5KFLprUbhCcWZvCnC6eQpZZpIiL76UoI/howz7KsBgBjjM0YkwxgWdZTsRiciEgiGpKd0mYQjgTg/H0HYUQO1GgtCE8szOCvlxxO/4ykmI9ZRORg05UQ/BbQ/JU0ed9jIiISZa0F4ZYBOKK1IKwALCLSvq6EYI9lWbWRD/b9PTn6QxIREdg/CLcVgCOaB2EFYBGRjnXlxLg6Y8zUyFpgY8zhQENHNxljTqHxIA078IhlWb9s5ZpzgbsAC1huWdaFXRiXiMgha0h2Cv/8zlHYbKbNABwRCcJgKQCLiHSgKyH4JuBFY8wuGo9I7g+c194Nxhg78ABwErAD+MwY84plWWuaXTMSuB2YZVlWhTEmr4tfg4jIIa0gs/OBtn87G+pEROR/Oh2CLcv6zBgzGjhs30PrLcsKdHDbEcBGy7I2AxhjngPOBNY0u+Yq4AHLsir2fZ7Szo5JRERERKQ7ujITDDAdGLrvvqnGGCzLerKd6wcC25t9vAOY0eKaUQDGmI9pXDJxl2VZ/2lZyBhzNXA1wODBg7s4bBERERGR/+l0CDbGPAUMB5YBoX0PW0B7IbizYxgJHAcUAh8YYyZYllXZ/CLLsv4K/BVg2rRpVg8/p4iIiIgksK7MBE8DxlqW1ZUAuhMY1Ozjwn2PNbcD+HTf0oovjTFf0BiKP+vC5xERERER6bSutEhbReNmuK74DBhpjCkyxriA84FXWlzzEo2zwBhjcmhcHrG5i59HRERERKTTujITnAOsMcYsAnyRBy3LOqOtGyzLChpjrgfepHG972OWZa02xtwDLLYs65V9z33VGLOGxmUW37csq7wbX4uIiIiISKd0JQTf1Z1PYFnW68DrLR77SbO/W8DN+/6IiIiIiMRcV1qkvW+MGQKMtCzrLWNMMo2zuyISR3tqfNT6dpGvtAAAGhRJREFUgjGpnep2kJPmjkltERGRvqQr3SGuorFFWRaNXSIGAn8BTojN0GLPmIOztiS2YDhMcbU3JrWHZuskdBERSQxdWQ5xHY2HX3wKYFnWhoP9dLcu9bnoQ7UlsXXm+Nye1BYREUkEXQnBPsuy/GbfFKcxxkFjn+CDVpLTxnNXHxmz2iKxUOcLcfxv34tJ7XdvOQ7SYlJaRESkT+lKCH7fGPNDIMkYcxJwLfDv2AwrPhoCYc7/68KY1H73luNiUldEREREeq4rIfg2YC6wErgGeN2yrIdjMqo4SXHZeevmY2NWW0RERET6pq6E4Bssy7oPaAq+xpgb9z12UApbFntqfR1f2A2pboVgERERkb6qKyH4UqBl4L2slccOGloOISIiIpKYOgzBxpgLgAuBImNM8yOP04C9sRqYiIiIiEisdGYm+BNgN43HJt/b7PEaYEUsBiUiIiIiEksdhmDLsrYCW4GZsR+OiIiIiEjsdbqZrTHmbGPMBmNMlTGm2hhTY4ypjuXgRERERERioSsb434NnG5Z1tpYDUZEREREJB66cqxZiQKwiIiIiBwKujITvNgY8zzwEvD/27v3KDvr+t7j7y8zyUzITOSSISog4WZpihRoRKiXM+FwVNQFPasexVatSE0vQrE6uuhptau3s+qRymlPXUq4CkdFD3LaeCnoshOxKJoALq5BOQG5HAkBC2YCGUjyPX/sZ8gYMped7Gf27Pm9X2vNmnku+/d813r288xnfvPbv+f5yXUz87qWVyVJkiTVqJkQvAh4Gnj9uHUJGIIlSZLUUaYdgjPz7DoLaYeFPTU+NtknxkmSJM1a0w7BEfFy4NPAksw8NiKOA87IzL+urbqazdtnH3q6mxkW3VzbkiRJmp2aGQ5xCfBh4GKAzLw9Ij4PdGwI3n/hfPZfOL/dZUiSJGmGNdNduW9m/mCXddtaWYwkSZI0E5oJwY9HxJE0PgxHRLyVxuOUJUmSpI7SzHCI9wOrgGMi4hHgfuCdtVQlSZIk1aiZ2SE2AKdFxEJgn8zcXF9ZkiRJUn2mPRwiIs6PiLG5gi+KiFsj4vVTvU6SJEmabZoZDvHezPz7iHgDcCDwLuBq4Bu1VCZptxb2dDE8NFhb25IklaCZEBzV9zcBV2XmXRERk71AUuttGd3OigvX1NL28NAg9NfStCRJs0ozs0PcEhHfoBGCb4iIfmBHPWVJkiRJ9WmmJ/gc4HhgQ2Y+HREHAnPuUcqSJEma+6YMwRFxTGaupxGAAY5wFIQkSZI62XR6gj8IrAT+bjfbEji1pRVJkiRJNZsyBGfmyur7ivrLkSRJkurXzDzB/6X6MBwR8WcRcV1EnFBfaZIkSVI9mpkd4qOZuTkiXgOcBlwGfKaesiRJkqT6NDM7xPbq+5uBVZn5tYj46xpqkqRiPb55lJHRbbW03dfTzeL+nlralqRO00wIfiQiLgb+E/DxiOihuZ5kSdIURka3MVjTw1DWDA0agiWp0kyIfRtwA/CGzHwSOAD4cC1VSZpQnRMUOvlh+2WHti1JnWbaPcHVAzL+GVgSES+rVq+vpyxJE+nr6WbN0GBtbau9Fszbh2tWnlxb25Kkhmn/xouI84A/Bzay83HJCRxXQ12SJrC4v8d/ac9hzzy3g7NW3VxL28M1/fEkSWOeGBnlwL7p/Y56bPNWDljQTXd3ezpgmjnq+cAvZeYTdRUjSaWzJ1hSp9r486185tv/l5WvPYKX7Ldgyn2vWfsgb37FS1l6QG9bgnAzd8SHgKfqKkSSJEmdaePPt/KRa2/nipse4Owr1/LTJ5+ZdN9LbtzARd/8MW+/+Hs88LOtbNtWz6w4k2kmdm8A1kTE14DRsZWZ+cmWVyVJhXI4hKROMxaAv/2jTQCsf3QzZ1+5live88oX9AiPBeBL/+1+AJ7Y8ixvv/h7fPH3TpnxHuFmeoIfBL4JzAf6x31JkiSpQLsG4DFjQXh8j/CuAXjMWBCe6R7hZmaH+AuAiOirlkfqKkqSJEmz20QBeMz4HuF5XfvsNgCPaUeP8LR7giPi2Ii4DbgLuCsibomIX6mvNEmSJM1WTz39HD+4/2eT7rP+0c2854q1/O2/3DNhAB7zxJZn+cbdj/Kzp2emN7iZ4RCrgA9m5mGZeRjwIeCSesqSJEnSbPbiRb18/n2vYsG8rkn3u3fjZq699ZEp23v/4JH85omHcNCi3laVOKlmQvDCzBweW8jMNcDCllckSZKkWW/RvvM4cnHftILwVN4/eCTv/vWlLJmhAAzNheANEfHRiFhaff0ZjRkjJEmSVKBWBOF2BGBoLgS/FxgArgO+DCyu1kmSJKlQexOE2xWAobnZIf4d+KMaa5EkSVIHWrTvPI4c6OPqc07irZ/53rRe846TDuXsVx/O4v7pPWa51ZqZHeKbEbHfuOX9I+KGesqSJElSJ3nmue1cf+ej097/1p88ybPbd9RY0eSaGQ6xODOfHFuoeoYPan1JkiRJ6iQTPQhjMvdu3Mx7r1zL/5vkEct1aiYE74iIl40tRMRhQLa+JEmSJHWKPQnAY9Y/2r4g3EwI/lPg3yLi6oj4X8CNwJ/UU5YkSZJmu70JwGPaFYSnHYIz83rgROCLwDXAr2Xm82OCfXqcJElSOVoRgMe0Iwg30xNMZj6emV+tvh7fZfPVLaxLkiRJs9gTI6NcdtPUAfjcFUfy5T84Zcrp09Y/upkrbnqAJ7aMtqrESTUVgqcQLWxLkiRJs9iBffO56G3HE5MkwHNPPYp3nbKUow/qn3Ie4dN++SB+97WHc+DCmZkyrZUh2A/JSZIkFWLJogWccuQBEwbhc089inedfBhLFvWyaMHkD9Q47ZcP4m/+8ytm7WOTJUmSpOdNFITHB+AxEz1Zrh0BGFobgp9tYVuSJEnqALsG4d0F4DG7BuF2BWBo4rHJABFxHLB0/Osy87rq+8ktrUySJEkdYSwIX3/+a9lv3/mThtqxIPyV815Df293WwIwNBGCI+Jy4DjgLmDsGXcJXFdDXZJUpMk+YDKb25akJYsWsGTRgmntu2jfeSzad17NFU2umZ7gkzNzWW2VSJLo7d6Ha1bW84+13m4/BiJJY5oJwd+LiGWZeXdt1UhS4Z55bgdnrbq5lraHhwZraVeSOlEzIfgqGkH4UWCUxrzAmZnH1VKZJEmSVJNmQvBlwLuAO9g5JliSJEnqOM2E4E2Zubq2SiRJkqQZ0kwIvi0iPg98hcZwCGDnFGmSJElSp2gmBC+gEX5fP26dU6RJkiSp40w7BGfm2XUWIkmSJM2UZh6W0QucA/wK8PyjPTLzvTXUJUmSJNWmmZnTrwZeDLwB+DZwCLC5jqIkSZKkOjUTgo/KzI8CWzLzs8CbgVfVU5YkSZJUn2ZC8HPV9ycj4ljgRcBBrS9JkiRJqlczs0Osioj9gY8Cq4E+4GO1VCVJhVowbx+uWXlybW1LkhqamR3i0urHbwNH1FOOJJWtp7uLg/dbUFvbkqSGZmaHWAL8N+ClmXl6RCwDTsnMy2qrTpIKs//C+ey/cH67y5CkOa+Z/41dCdwAvLRa/hHwgVYXJEmSJNWtmRC8ODO/BOwAyMxtwPapXhQRb4yIeyPivoi4YJL9fjMiMiKWN1GTJEmS1LRmQvCWiDiQxqOSiYiTgacme0FEdAGfAk4HlgHvqIZR7LpfP3A+8P0m6pEkSZL2SDMh+IM0ZoU4IiJuAq4CzpviNScB92Xmhsx8FrgGOHM3+/0V8HFgaxP1SJIkSXukmRB8N/B/gLXARuASGuOCJ3Mw8NC45Yerdc+LiBOBQzPza03UIkmSJO2xZkLwVcAxNGaI+J/Ay2k8SnmPRcQ+wCeBD01j35URsS4i1m3atGlvDitJkqTCNfOwjGMzc/x43uGIuHuK1zwCHDpu+ZBq3Zh+4FhgTUQAvBhYHRFnZOa68Q1l5ipgFcDy5cuzibolSZKkX9BMT/Ct1YfhAIiIVwHrJtkfGkMnjo6IwyNiPnAWjXHFAGTmU5m5ODOXZuZS4GbgBQFYkiRJaqUpe4Ij4g4aM0LMA74bEQ9Wy4cB6yd7bWZui4hzacwv3AVcnpl3RcRfAusyc/Vkr5ckSdLstGnzVkZGp5wtt2l9PV0M9Pe2vN1dTWc4xFv25gCZ+XXg67us+9gE+w7uzbEkSZI0M+oamzpTY16nDMGZ+ZOZKESSJEmdY8vodlZcuKbl7Q4PDTY+NVazZsYES5IkSXOCIViSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTidLe7AEmSJHWehT1dDA8N1tLuTDAES5IkqWlbRrez4sI1LW93eGgQ+lve7As4HEKSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTjd7S6gnTZt3srI6PZa2u7r6WKgv7eWtlU237eSJO29okPwyOh2Vly4ppa2h4cGGeivpWkVzvetJGk26OvpYnhosJZ2Z0LRIViSJEl7ZqC/t6M7ThwTLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUHEOwJEmSimMIliRJUnG6211AO/X1dDE8NFhb21IdfN9KkrT3ig7BI6PbWXHhmlraHh4aZKC/lqZVuK3P7ajtffudj6yopV1JkmYbh0NIkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4tQegiPijRFxb0TcFxEX7Gb7ByPi7oi4PSK+FRGH1V2TJEmSylZrCI6ILuBTwOnAMuAdEbFsl91uA5Zn5nHAtcB/r7MmSZIkqe6e4JOA+zJzQ2Y+C1wDnDl+h8wczsynq8WbgUNqrkmSJEmFqzsEHww8NG754WrdRM4B/mV3GyJiZUSsi4h1mzZtamGJkiRJKs2s+WBcRLwTWA58YnfbM3NVZi7PzOUDAwMzW5wkSZLmlO6a238EOHTc8iHVul8QEacBfwr8h8wcrbkmSZIkFa7unuC1wNERcXhEzAfOAlaP3yEiTgAuBs7IzMdqrkeSJEmqNwRn5jbgXOAG4B7gS5l5V0T8ZUScUe32CaAP+N8R8cOIWD1Bc5IkSVJL1D0cgsz8OvD1XdZ9bNzPp9VdgyRJkjTerPlgnCRJkjRTau8Jns36eroYHhqsrW2pDr3z9qntfds7z7+L223T5q2MjG6vpe2+ni4G+ntraVtSeeq6X83UvaroELxldDsrLlxTS9trhgYZ6K+laRXO9+3cNlLj+R32/EpqobruVzN1r7LbR5IkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUHEOwJEmSimMIliRJUnEMwZIkSSqOIViSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOJEZra7hqYtX748161bt9ftPL55lJHRbS2o6IX6erpZ3N9TS9sqm+/buW3T5q2MjG6vpe2+ni4G+ntraVtSeeq6X7XyXhURt2Tm8t1t627JETrU4v4ef+Gr4yRJXX+61teyJEmzS9EhWOpEI6PbWXHhmlraHh4aZKC/lqY1TZ5fSZ2irvvVTN2rHBMsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUHEOwJEmSimMIliRJUnEMwZIkSSqOIViSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScSIz211D05YvX57r1q1rdxlSW2zavJWR0e21tN3X08VAf28tbWt6PL+SOkVd96tW3qsi4pbMXL67bd0tOYKkGTPQ38tAf7urUF08v5I6xcjodlZcuKbl7Q4PDc7IfdDhEJIkSSqOIViSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTidLe7AEmSJHWevp4uhocGa2l3JhiCJUmS1LSB/l4G+ttdxZ5zOIQkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4kRmtruGpkXEJuAnNR5iMfB4je2rvTy/c5fndm7z/M5tnt+5rV3n97DMHNjdho4MwXWLiHWZubzddagent+5y3M7t3l+5zbP79w2G8+vwyEkSZJUHEOwJEmSimMI3r1V7S5AtfL8zl2e27nN8zu3eX7ntll3fh0TLEmSpOLYEyxJkqTiGIIlSZJUHEPwOBHxxoi4NyLui4gL2l2P9k5EHBoRwxFxd0TcFRHnV+sPiIhvRsSPq+/7t7tW7bmI6IqI2yLiq9Xy4RHx/eo6/mJEzG93jdozEbFfRFwbEesj4p6IOMXrd+6IiD+u7s13RsQXIqLX67dzRcTlEfFYRNw5bt1ur9do+IfqPN8eESe2o2ZDcCUiuoBPAacDy4B3RMSy9lalvbQN+FBmLgNOBt5fndMLgG9l5tHAt6plda7zgXvGLX8cuCgzjwL+HTinLVWpFf4euD4zjwF+lcZ59vqdAyLiYOCPgOWZeSzQBZyF128nuxJ44y7rJrpeTweOrr5WAp+eoRp/gSF4p5OA+zJzQ2Y+C1wDnNnmmrQXMvOnmXlr9fNmGr9AD6ZxXj9b7fZZ4DfaU6H2VkQcArwZuLRaDuBU4NpqF89vh4qIFwGvAy4DyMxnM/NJvH7nkm5gQUR0A/sCP8Xrt2Nl5o3Az3ZZPdH1eiZwVTbcDOwXES+ZmUp3MgTvdDDw0Ljlh6t1mgMiYilwAvB9YElm/rTa9CiwpE1lae/9D+AjwI5q+UDgyczcVi17HXeuw4FNwBXVcJdLI2IhXr9zQmY+AlwIPEgj/D4F3ILX71wz0fU6KzKXIVhzXkT0AV8GPpCZPx+/LRtzBDpPYAeKiLcAj2XmLe2uRbXoBk4EPp2ZJwBb2GXog9dv56rGhp5J44+dlwILeeG/0jWHzMbr1RC80yPAoeOWD6nWqYNFxDwaAfhzmXldtXrj2L9dqu+Ptas+7ZVXA2dExAM0hi+dSmMM6X7Vv1fB67iTPQw8nJnfr5avpRGKvX7nhtOA+zNzU2Y+B1xH45r2+p1bJrpeZ0XmMgTvtBY4uvpk6nwaA/RXt7km7YVqfOhlwD2Z+clxm1YDv1P9/DvAP890bdp7mfknmXlIZi6lcb3+a2b+NjAMvLXazfPboTLzUeChiPilatV/BO7G63eueBA4OSL2re7VY+fX63dumeh6XQ28u5ol4mTgqXHDJmaMT4wbJyLeRGOMYRdweWb+TZtL0l6IiNcA3wHuYOeY0f9KY1zwl4CXAT8B3paZuw7mVweJiEFgKDPfEhFH0OgZPgC4DXhnZo62sz7tmYg4nsaHHucDG4CzaXTeeP3OARHxF8DbaczkcxvwuzTGhXr9dqCI+AIwCCwGNgJ/DvwTu7leqz98/pHGEJingbMzc92M12wIliRJUmkcDiFJkqTiGIIlSZJUHEOwJEmSimMIliRJUnEMwZIkSSqOIViSJEnFMQRLUhtExBkRccHUe77gdUsj4s4a6hmMiF8ft3xlRLx1stdIUifrnnoXSVKrZeZqZtdTKQeBEeC7ba5DkmaEPcGS1GJVb+36qjf1RxHxuYg4LSJuiogfR8RJEfGeiPjHav8rI+IfIuK7EbFhuj2wEdEVEZ+IiLURcXtE/F61fjAi1kTEtVUdn6ue0EREvKlad0t1zK9GxFLg94E/jogfRsRrq0O8bteaIuIlEXFjtd+d4/aVpI5iCJakehwF/B1wTPX1W8BrgCEaj+/e1Uuq7W8B/naaxzgHeCozXwm8EnhfRBxebTsB+ACwDDgCeHVE9AIXA6dn5q8BAwCZ+QDwGeCizDw+M78zSU2/BdyQmccDvwr8cJq1StKs4nAISarH/Zl5B0BE3AV8KzMzIu4Alu5m/3/KzB3A3RGxZJrHeD1w3Lie4xcBRwPPAj/IzIer4/+wOuYIsCEz76/2/wKwcpL2d1fTWuDyiJhXbTcES+pI9gRLUj1Gx/28Y9zyDnbfATF+/5jmMQI4r+q9PT4zD8/Mb+ymve0THHMqL6gpM28EXgc8AlwZEe/eg3Ylqe0MwZLUuW4A/qDqlSUiXh4RCyfZ/17giGoMMMDbx23bDPRPdcCIOAzYmJmXAJcCJ+5B3ZLUdg6HkKTOdSmNYQ63Vh982wT8xkQ7Z+YzEfGHwPURsYXG0IYxXwGujYgzgfMmOeYg8OGIeI7G8Ap7giV1pMjMdtcgSZohEdGXmSNVaP4U8OPMvKjddUnSTHM4hCSV5X3VB+XuovFBuovbXI8ktYU9wZI0C0XEK4Crd1k9mpmvakc9kjTXGIIlSZJUHIdDSJIkqTiGYEmSJBXHECxJkqTiGIIlSZJUnP8PMtuHHMye+8wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5iU5fn28e8zZWe2s30Xlt57FxDF3ghW1GDBBmJLTDQxJvnFHpNYYjR2rFjAGlvU146N3kF6WTrb++705/1j2c0C22BnZhfn/BxHjrA7z9zelGP2nHuu57oM0zQREREREYkklrbegIiIiIhIuCkEi4iIiEjEUQgWERERkYijECwiIiIiEUchWEREREQijq2tN3AkUlNTzW7durX1NkRERESkHVu6dGmBaZppDT12VIbgbt26sWTJkrbehoiIiIi0Y4ZhbG/sMZVDiIiIiEjEUQgWERERkYijECwiIiIiEeeorAkWEWlPvF4vu3btwuVytfVW2pTT6SQ7Oxu73d7WWxERaZZCsIhIK+3atYv4+Hi6deuGYRhtvZ02YZomhYWF7Nq1i+7du7f1dkREmqVyCBGRVnK5XKSkpERsAAYwDIOUlJSIPw0XkaOHQrCISBBEcgCupT8DETmaqBxCRERERIKutMpDuduHxTAwAUywWQwyEp1tvTVAIVhE5KhXUlLC7NmzufHGG9t6KyIS4ao9PoqrvKzZXcp/lu9m9a5SdpdUA5DgtDGwYyIn9E1j0pAsnDYLqfFtF4gVgkVEjnIlJSU89dRTCsEi0qZyy6qZv6WIez76ieIq7yGPl7l8zN9ayPythTz82QYuHpXNzaf0JjMxug12q5pgEZGj3h//+Ee2bNnCsGHDuO2223jooYcYPXo0Q4YM4a677gIgJyeHfv36cdVVV9GnTx8uu+wyvvzyS8aPH0/v3r1ZtGgRAHfffTdTp05l3Lhx9O7dm+eeew6AvXv3MmHCBIYNG8agQYP4/vvv2+z3KyLtz75SF398dzW/fXNFgwH4YL6AyexFOzn/qXms21tGtccXhl0eSCFYROQo949//IOePXuyYsUKTjvtNDZt2sSiRYtYsWIFS5cu5bvvvgNg8+bN/O53v2P9+vWsX7+e2bNn88MPP/Dwww/zt7/9rW69VatW8fXXXzN//nzuvfde9uzZw+zZsznjjDNYsWIFK1euZNiwYW312xWRdia3zMWNry/jmw35h/3cvaUuLnpmPtuLqkKws6apHEJE5Gfk888/5/PPP2f48OEAVFRUsGnTJrp06UL37t0ZPHgwAAMHDuSUU07BMAwGDx5MTk5O3Rrnnnsu0dHRREdHc9JJJ7Fo0SJGjx7NNddcg9fr5bzzzlMIFhEA8stdPPH1JpbtKD7iNSrcPqbPWsLb148jK4ylEToJFhH5GTFNkz/96U+sWLGCFStWsHnzZqZNmwaAw+Gou85isdR9bbFY8Pn+91Hkwa3ODMNgwoQJfPfdd3Tq1ImrrrqKV155JQy/GxFp7/aUuHh1wY5Wr7OruJrnvttKUYU7CLtqGYVgEZGjXHx8POXl5QCcccYZvPjii1RUVACwe/du8vLyDmu9Dz74AJfLRWFhIXPnzmX06NFs376djIwMrr32WqZPn86yZcuC/vsQkaNLbpmLf36+IWjrvb5wBy5fIGjrNUflECIiR7mUlBTGjx/PoEGDOOuss7j00ksZN24cAHFxcbz22mtYrdYWrzdkyBBOOukkCgoKuOOOO+jYsSOzZs3ioYcewm63ExcXp5NgEcHjC/D95oKgref2Bfh6fR6Xj+0atDWbYpimGbrFDeNFYBKQZ5rmoAYeN4DHgIlAFXCVaZrNHi+MGjXKXLJkSbC3KyJyRNatW0f//v3behtBcffddxMXF8fvf//7I3r+z+nPQkSa9tW6XKbNCm4eO21ABg9OHkxSrKP5i1vAMIylpmmOauixUJdDvAyc2cTjZwG99/9vBvB0iPcjIiIiIkGwaFtR0Ndcs7uUCrc/6Os2JKTlEKZpfmcYRrcmLjkXeMWsOY5eYBhGB8MwskzT3BvKfYmISMPuvvvutt6CiBwFAoEABSG4ia24yoPloJtzQ6Wtb4zrBOys9/Wu/d87hGEYMwzDWGIYxpL8/MPvQyciIiIiwWGxWLBZgh8jbRYLJqEr1a2vrUNwi5mmOdM0zVGmaY5KS0tr6+2IiIiIRLS+WfFBX7NbagzhOQdu+xC8G+hc7+vs/d8TERERkXZsVNekoK85tFMH0uKigr5uQ9o6BH8IXGHUGAuUqh5YREREpP1LjXOQHBvcwDp5ZDZR9vB08A1pCDYMYw4wH+hrGMYuwzCmGYZxvWEY1++/5BNgK7AZeA64MZT7ERH5ubrmmmtIT09n0KBDulGKiIREUoydy8Z0Cdp63VNjyUh0Bm295oQ0BJumeYlpmlmmadpN08w2TfMF0zSfMU3zmf2Pm6Zp3mSaZk/TNAebpqnmvyIiR+Cqq67i//2//9fW2xCRCBIdZeOSY7qQkRCcnr4PTB5Cpw7RQVmrJdq6HEJEJOJ8+umnTJo0idGjRzNp0iQ+/fTTVq85YcIEkpOTg7A7EZGWy4iP4olLRmBp5d1sl4/tQreUmOBsqoUUgkVEwujTTz/l/vvvZ9++fZimyb59+7j//vuDEoRFRMLNarXSIy2Wxy8ZfsRBeOKgTH59cm/SE8JXCgEKwSIiYfXkk0/icrkO+J7L5eLJJ59sox2JiLROSpyDsT1SeOf6Yw+rnCHKauFPZ/XjrnMGkhHmAAwhnhgnIiIHys3NPazvi4gcDVLiHKTEOXj3hnG8v2IPL/+Yw74yV4PXOmwWzhnakRtP6klSTBQdYsLTEu1gCsEiImGUkZHBvn37Gvy+iMjRLjMxmmvGd+PsoR2pdPv4aXcpG3Mr8AdMMhIdjOySRFq8g5goK0mxwbmh7kgpBIuIhNFNN93E/ffff0BJhNPp5KabbmrVupdccglz586loKCA7Oxs7rnnHqZNm9ba7YqIHLYom7WuLKJPRvCnygWLQrCISBidddZZQE1tcG5uLhkZGdx000113z9Sc+bMCcb2RESCpsLlpbjKi8UwMAwIBEwcditp8W17AlxLIVhEJMzOOuusVodeEZH2qNrjp7jKw9b8Cv6zbDerdpeys6iKgGmSFBPFoE6JnNQ3jVP6ZxBls5Aa13aBWCG4CbuKqzAMg2qPj2qPH7vVQqzDhgEkxUQR69Qfn4iIiAjAvtJqVu8u5S/vryG3zH3I43nlbr5en8fX6/P468fruGJcV6Yd14PMME6Jq08p7iBut48il5d5mwt5ad421u4pI2AeeE1WopPzh3diyjFdiImytum7GBEREZG2llvm4t6P1vLJmkNv/G2I2xfgue+38dlPubx41Wg6JjqJcYQ3lioE17OvtJpNeRXc8uYKqjx+Tu2fwQXDs+mdEYfdWtNSeVdxFat3l/Hhyj08+91WfnVSLy45pkubvYsRERERaUu5ZS5++8YK5m8tPOzn7iiqYvLT83jn+nH0DvNNdArB++WWuXjhh228s3QXN5/Sm0GdEvn8p328v2I3G/aV4/YFMAzomhzD0OwO3HX2AAAe/3ozX63P5bmpo8gK47xrERERkbaWW+biue+2HlEArlVa7WX6K0t4c8ZYMhPDl6UUgqn5C5w1L4ecwipeumo0//pyI/d8tPaQ60wTcgqryCms4oOVe8hOiua+cwexbm8ZM15dynNXjiKzDSaeiIiIiLSFggo3L/y4rdXrbC+s4uUfc7h2Qg9SwlRmqrHJwM6iKspdPi4c0YnLnl/ItxsLWvS8XcXVXP3yYvLK3fz65F48/91W8hqZjiIiEko7d+7kpJNOYsCAAQwcOJDHHnusrbckIj9z+8qqefizjZhm89e2xMvzc3D7AsFZrAUiPgTvKanmveW7Oa53Kje8voxKj/+w13h5Xg5frM1lQMcEiqs8IdiliEjTbDYb//znP1m7di0LFizgySefZO3aQz/REhEJFp/P5NuNeUFbz+UN8O3G/KCt15yIL4fIKazksjFduODpeYd0gTgcby/dxZgeyfywqYCUWAep7aQRtESW4ioPVW4fO4urWbGzhLJqL/FOG8M6d6BLcgwxUTaSYttmRrvU8Hq93HrrrQA88MAD3H777QA88sgj2O32I143KyuLrKwsAOLj4+nfvz+7d+9mwIABrd+0iEgDNuVVtCo7NWTuhjzOGJhBchhGKkd0CM4rcxEImNz1wU+4vK0/fr/zg594/6bxuP3hO8oXASip8rAht5x/fr6RRduKAHDaLTjtVtzeANXemk84RnZN4ven96FfVgJJMQrDbeHWW29l2bJlAEycOBGv11v3/ccffzwo/42cnByWL1/OmDFjgrKeiEhDFm478pvhGrNmdxmVbj/JsUFf+hARHYJ9gQBJMVEs3l4clPWqPH4+WrmHi0ZmB2U9kZbILXNx1wc/8eW6XE4fmMGTl44gPcFBtcdPlcdPtL1myEt+hZuPV+3lihcXcUKfNP563mC19mtDbrcbt7ummbzDEbwTj4qKCiZPnsyjjz5KQkJC0NYVEakvEAiQX37oQIzWKqr0YDGMoK/bkIgOwVbD4OV5OUFd89UF27l4lEKwhMeu4ip++ewCjumezDvXj+OLdXn89eO17C099AbNjAQHFwzP5q3rxjF74Q7Of+pH3rpuHJ2TY9pg55HrgQceYOLEiXUBGMBut/Pggw+2em2v18vkyZO57LLLuOCCC1q9nohIYywWC1ZL8MOq1WJgEuQai0ZE9I1xPtNsVV+7hpRUefH6w/OXJ5Etv9zN9FlLuGPSAPplxvPLmQt48pvNDQZggNwyN09/u4UpMxfQPTWWe88dyPRZS8grV0eTcLr99tvrSiBqeb1e/vCHP7RqXdM0mTZtGv3796+rORYRCaU+IRhu0TUlfAczEX0SbJo1bc6CbVtBJT3S4oK+rkitcpeX57/fyp1nD+DZb7fW3U3rtFs4vncagzsl0jsjjmi7FZc3wOa8ClbvLuH7TQVUefw8+NkGju2Zwr3nDuSZuZv57al9SYg+8puy5PA5HA7sdvshgfhI/fjjj7z66qsMHjyYYcOGAfC3v/2NiRMnBmV9EZGDje6WHPQ1B3dKJCUuPPesRHQI9oXoxDYUNTIi9RVWehjauUNdAE6JjeLGk3oyNLsDX63LY/6WQl6el0OVx0e03UrfzHiGZnfg2uN7sHp3KU99s4V5W2o+Bbl6fDcKKtwKwWHyyCOPNNodojWOO+44zGA16xQRaYG0eAcdYuyUVAXnzTzA5JHZRNvDE08jOgSHSihqZERqubx+Fm0tpMzl49uN+fxicBbTjuvOo19u5L7/rmvg+gALthaxYGsRz363lfG9Unhm6khmzcvhw5V7OL53KkUVHrISo4mOsrbB7yiy2O32A7pABKsjhIhIuMU7rFwyugtPf7slKOt1To6mYxjHJkd0TbDdauC0B/+PoFe6SiEkdMpcXvpmJvDw5xu48cSenNg3jcueX8h3m1o26fDHzYVc+twCxvZI4ben9ubRLzfRLyuBclfw3smLiMjPX3x0FFPHdSU1SOULfz9/MBnx4ftUMqJDMMCArMSgrxmumdcSmQwTvtmQx4UjsslKjOa2d1bV9QFuKbcvwJ/fW02C086lY7rw+drcEO1WRER+zlKi7Tw6ZTit7Wp24chsemfEYbOFr0ghokOw3Wpw1qDMoK45ulsSgWCPTxGpp9LrZ3FOEROHZHHXh2tatdZ9H6/l5H7pLNteTJXHF6QdiohIpHA4bPRJj+OhyUOOOAif1C+N287oS0ZC+EohIMJDsMsbYGTXpKCWREwd25Ut+RVBW0/kYBYDph3XgzveX9PqcZWmCX95fw03nNgTUC27iIgcvvQEJ8f3TuX16WNIi2/5p+FWi8FvTunNPy4YQkZC+Ic3RXQI9psmr8zfzm9P7ROU9UZ3S8JiGOq7KiHl95tUuLxsya8MynrbC6soqHDjD2jct4iIHJlYp43BWfF8eNN4fn1yL5JjG68TtlkMJg7O5NPfHM9lY7q0upTiSEV0dwibxcL7K3bz7OCRjO6WxOKcIx+fnOC08aez+jPj1SXcc86gIO5S5FCzF+0I6nqvLdjB0AsHB3VNCb9u3boRHx+P1WrFZrOxZMmStt6SiESACreXFTtKmDZrCamxNt66fjxTjulCSaWHpTuK2ZRbgT8QICPByTHdk+mSHIPVMJj53RZenLedy8Z04ben9iYtPrynwREdgg0D0uMd/Ok/q5k5dST3fLSW1btLD3udeIeNpy8fycOfb6CgwkOfDHWHkNCx2yws3X7kb9gasnJXCQ6b2qP9HHzzzTekpqa29TZEJILkFFRxzctL8PgD7C71MP6BbwAY3jmBOyYN5BeDs7AYUObyMevHbbw4b/sBz3994Q6SYqKYdlx3kpo4QQ62iA7BTruF0d2S+Hj1Pm54bRmPXzqcD1fsOaxTtqHZidx59kAe+WID87YUEhNlJSYqov9YJcQ8vkDQR3P7A+Zhd5iQIzNhwgSqqqoO+X5MTAzfffddG+xIROTI7St1cdPsZXj8h5bULd9ZxgVPz2/ROk/O3cyZgzLDGoIjuiY4Nc7JNcd1ByC/ws3UFxaSnuDg9eljOG1ABk3NvOiXGc/fzh/Mr07uxY2vL+XHzTXTtyaP6ESsBg5ICFV5QhNWK9zqDhEODQXgpr5/OAzD4PTTT2fkyJHMnDmz1euJiDTF6w/w/ordbC9s/euXacJt76xkb2l1EHbWMhF/ZJmVGE3fjHg25Jbj9Zs8+uUmMhOcXHJMZ64/oSdFlW7W7i2n3OUlymqhZ3ocXZNj2FFUxavzt7N8Z0ndWnarwbTjetAhjO9iJPKEaiChpa3uTJCg+eGHH+jUqRN5eXmcdtpp9OvXjwkTJrT1tkTkZyq/3M1LP24L2nrr9pZTuH+CaThEdAiucHuxWeCxKcP4xeM/4N/fb2pfmYt/fbmJf325iaQYO/0yE4hz2vD6Avx31V52FDX8jueWU/sQF2WlqNJNcqwGZkhoRIeo3CbeGdEvBz8LnTp1AiA9PZ3zzz+fRYsWKQSLSMiUVHnILXM3+rjFAuN7ptI/Kx67xcLeMhdfrs2lzNX4J4/vLN1F/8x4rNbQFytE9E89tzfAnlIXWQlO7jt3IH9+79DBA8VVXuZvLWx2reN7pXLBiGxW7SllYMfgT6ETqWUxICHaRll18MoXYqKsOgk+ylVWVhIIBIiPj6eyspLPP/+cO++8s623JSI/Yw3dpG2xwLXH9WDyyGwsBmzKrWBzfgWBgMnorslcM747cU4by7YX8/dP1pFf4Tng+St2lpBf4SYzDKfBER2CwcQ04ZRHvuOLWybw1/MGcdeHP9WdCLfUqf3Tuf/8wfxq9lJOG5DJwBCMYhapZbMYnNY/g3eX7Q7amqf2zyAMb7olhHJzczn//PMB8Pl8XHrppZx55pltvCsR+Tn7aU/ZAV+f3C+du88ZyNwNeVz7ypJGa4Vjo6xMHpnN29cfy9yNedz94dq6x7bmVxx2DjtSER2CrRYLT3y9mZ5psRgGnNAnlY9vPo6b5yxnY27zU9/iHTbuO28QY3okU+nxMHFQFo99vZnJI7LDsHuJVIYBF47sHNQQfPHozthCVWwsB4iJiWm0O0Rr9OjRg5UrV7ZqDRGRlgoEAnjrdYT42/mDGNQpkSteWEhOMzfKVXr8vDJ/O28u3slfftGf//eb45n89HwqPb4Gu0yESkSHYNOEP57Vj3injRtfX86yHcX84Yw+vHz1aPaUuHju+20s215MfsX/6l1ioqwMyEpgyjFdOLZnCkUVbsb9/WsSom28NWMcpw3IVJiQkLIABeVuzh6SxUer9rZ6vTMHZVJS5cEktvWbk2apDZqI/BwYhkGHGDsAf79gMGnxDi54ah6+gInTZuHmU3szrkcKybFReP0BTBOibBaqPH625Jfzz882sq2wijs++InJIzrx0a/HM/Gx70lw2gnPOXCEh2C71TggAAM8+NlGHvxsI9cd3527JvWnth2r1x/AYhjYrAamabKjqIpj//F13Vpl1T4unjmft2aMIzE6ov9YJcRsVivpCVFcPb47C7cVkVfe+E0JzUmNi2LG8T2o9viIsurNm4iItIxhGIzqlkxuqZu+GfFc/Ox8wOTxS4YxtHMHPli+hz/9ZzWb8g4sb8hKdDKuZwqPXzoCTJOb31zBu8t20yEmimenjuSleTlEhak+zzDNcOXt4Bk1apQZjHGghRVufvfWSuZuzG/yOrvV4I5JA3jhh23N9sJLiLbxze9OJCVO3SEkNHJLq/H6TR76bAOXj+vKDa8tpeCgGwtaIjk2imcuH8nrC3K47cx+2K0GGQnhaUvzc7Nu3Tr69euHEeE3F5qmyfr16+nfv39bb0VEwmB7YSVWi8Evn11AVqKTRy4eyltLdvH0t1taVNc7rkcKf79gMB+s2M2jX23inevHUVLlZXyvVJz24MxcMAxjqWmaoxp6LKJvhbFaTP5wZj8SmmgNZbcavHTVaI7plsxr08bQNaXpur3fntIHX5CneYnUF+e0EzBNfn1Kb/7+8Tqev2IUx3RPPqw1RnRJ4oUrR/HQZ+u58aTemAGTeIc+wThSTqeTwsJCwnWoEDBNvL7A/umBgbD9d5timiaFhYU4nc623oqIhEmC08p7y3bTNSWGRy4eyvRXlvDEN5vxB0wcNgsjuyZx1bHd+L9f9OeOSf359cm9OLlfOin75ynM31rIxH9/z/AuSfz1vEHc/u5q+mUmBC0ANyeif+q5fVDu8vDGjLFMmbngkL51tQHY6w9w5mPfc9HIbF6bNobLX1jY4InwnZMGcGKftLDVskhkiomyUmm34vV7uenkXsx4dSl3nj2AC0Z04qUfctiQW97oc3ulx3H1sd1IjoviuleXct95g7BZwGG34rRH9MtBq2RnZ7Nr1y7y85v+VKk1AgETE3D7/Lh9AXx+E9M0MQwDu9WC027BbrVgMWizE2mn00l2tm4MFokU1V6TT1fv5dkrRjF1/w1xnTpEc9X4bozoksTinCLW7C5l2Y5i/AGTlNgoBnVKZOrYrrh9AWbNz2H+lkKueXkxr0w7hhP7pFJQ4aZTUng+lYzocoiiSjdfr8+j2uNjZNfkA4Jw/QB89cv/+29dNDKbm0/pfUgQvnPSAI7vncqDn63n/vMHkx6v0xAJnbIqN7tKXPj8JpUeHzfNXk731FguH9uV7KRoNuwrZ/2+cqo9PqLtVvpkxtMvM4G9pdW8vnAHG3PLefyS4SQ47dgsBtlJThJjVMLTHnn9AfLL3Tz65SY+WLEbt6/xO6cTom1cOa4bl4/tSkaCXoNEJLTW7C7FHzB54ptNfLkuj8vHdGXS0Cz+/dUmftzc9IyFLskx3HhST+xWC/d+tBbDgI9+dRyzF+3gd6f1wRakuuCmyiEiOgQDFFa6+WZ9HjYL9MlIYMrMBVR7/Q0G4FoHB+E7Jw3glH7p/PWTtdx/3mDS9cNHQqzS5aW42sum3AriHFYyE6N57KuNfLBiD6ZZc+LbJyMeh92C2xtgc14FG3PLMQyYNCSLW0/ry56SKqo8fvpkxJMYbSfOaW/r35YcpLTKw6rdpdw8ZznFVd4WP69rSgzPTh1Jt5TYsH2sKCKRZ+76XDAMps9awsMXDSWnsJInvt6M7zD6/B7fO5VbT+vDzW8sZ1h2B64Y15XOyTFBG5ahENwIj8/P3pJqou02yj0+Vu4opl9WAsVVXjw+f4MBuFZtEF64tZChnTuwraCSodmJlFR7yUxwkhgT1er9iTSkyu2juMqNx2cSZbOwYmcJ2UnRVHv9dOwQw7zNBczbUsiGfeVUeWtOgvtmxDOuZwrH9U5lX4kLu81gV1E1I7sl4fYFiLJY6BAbRazqgtuN0ioP87YUctPsZRxJ3/iYKCtvzhhLn4w4HCp1EZEQ2LCvnNvfXcXUsV1ZnFPEG4t3HtE6PdNiefiioVz36hLevv5YrBaD7KTW9U6v1VQIjuhXRrfPT8A02Ffu4qbZy9hZVM1dk/qTmejkhteXN/nct5fuAuCSYzpz2r++w2YxePqyEURHWUlSAJYQcvv87Cl1c/VLi3l0yjD6ZSbg8vrZU1KJYRjEOmxcMKITidE1pQ6+gEm5y0tptZe9JS72lFbTMy2WgR0T2Jhbwc1zljPzilFEO23qFNyO7Cl18as5y48oAANUefxMfXERH//6eDolRfRLvYiEQCAQIMpm0DUlhqIqzxEHYIAt+ZX89eN13H3OID5ZvZdLj+kSxJ02LqK7Q/gD4PL56wIwgM8EX4AWDbwwDIOACYnRdnwBkxteX0aVx69hGRJSNquF295eSYXbx42vLWPhtkL8AZNjuiVjAHtLq9leWElRpYdyt4/iKi85BVXsK3WBAaO7JYNpsHh7Cde9upQyl4/fv70Su/7dthv7Sqv51ezlrR4dWlLl5e6P1pBX5grSzkREahiGwcZ95VwxrhsPf7ah1est3V7MnpJqPN4AVV5/EHbYvIgOwYZhcO9/19YF4Dsm9afS7eO7jfk8NmV4XZhNjLYz6+rRjO6WVPfci0d15vjeqfzz843MnDqyLgjf/MZyrAoTEkI2q8FLV48mM8GJxx/gz++t4aHPN7CvzEW1x8+E3qmc0CedPhnxdOoQTe/0OE7om8aEPmm4vH5yy9w88uVGbn93FW5fgLR4B7OuPgab/tm2G0u3F7Mlv/nR7S3xxdq8w6onFhFpCcOo+aTxtQXbm7xh93A88c1mxvZMwR+mVrMR/RlZwDT5yy/6c92rS7l6fDfKXT4e/XJT3eOPTRnOnR+s4anLR/D899v4/Rl9eej/baBHWhzH907lljdX4AuY+D4PMHPqSG58fRn3nTeo1ac3Ik3x+0zsFgtzZozhkpkL2Vfm4vtNBXy/qYDR3ZKYNKQjfTLisVhqRoMbRs3/b8wt55PVe1mwtahurbR4B29cOxa7BdTeun3YV1rNM99uDeqaL/ywjTsm9SdeNz+KSJAEAgF6pMbxyeqVQVuzpMrLrpJquqWGpzgvokOwBbAYBq9OO4YPV+w9IADX1vz+58Zjuf3dVSzYWsSibbctuOUAACAASURBVEW8OWMMWwuquHnO8rq7HxfnFPPw5xt494Zj2VVUdVh3RYocLr9pUu72Em23HhCEoebf4uKc4hatUxuAwaTKZ5Kof7ftgs9vsnp3aVDX/HZjHjdX91IIFpGgsVgs5Ja7gnYKXOvbDfkc3ys1qGs2JqLLIaKjrMQ6rHy5No9/fbnxkMffXrqLJ7/ZzNSx3bBZDM4YmMnmvMoDAnCtxTnF3P7uKrqmxuC0RfQfq4SYL2Dyj083sH5fOQYwZ8YYMg+zLV/9AJxTWMVfP1qLVyG4XSiqOvwR2M3JLXNzFDYCEpF2btWu4L5hh5rewx5/cIN1YyI6rRVXefhszT7u/2Rdo9e8tWQXczfk8c714zi+dyq/3V8C0ZCF24r4/durqAryuyKR+mxWCzef3IsN+8r503tr8PoDzJkxpm4MZXM6xNiZc+1YPD4/d3+0lmXbi7nltD7YrSoKbg/yy90hWdej1yURCSLTNNlRdOj03NbaV+bCHqRBGc2J6HKImnrJ5n/wv710F5vzKli9u7TZUgfDAEMnLhJSJgu3FfGv/eU7n67exzlDOxJo4VFf7WXfbsyrqyW22yz0So8L1YalHdDLkogEUyjHs4frSCaiT4JtVoMJvdO49bQ+zV67fGdJswF4TPdk7j57ICH8dyGC12+yOKfm5razh2QxaWhHLp65oMUdAEqrvfzy2fmc0j+TySM6ArAkp0jlEO1EqMYdO1SmJSJB1ist+IcnWYlOLGEKUhH9qmizWHj8681ER1lbFISbMqZ7Mrec1odfz1mORS3SJIRsFoObTurFbaf34ben9WHKzAWH/RF6YaWHKTMXcP0Jvbj9jD7cclof9bduJ+JCMLUvM8GJqbNgEQmyY3okB33NIdkdSIgOz028ER2CO8REcc+5A1iSU9yqIFwbgO94fw0vXjWa1DhHkHcq8j82i0GnDg4mDsk6ogBcqzYInzYwi+wODoXgdqLa62dY5w5BXfOEvmlhO1kRkcjRKTE66J8ynT+8I1Fh+uQqokMw1LQjuua4bizYWnhEQbh+AH7gwiG4vH68/vBMOpHIZLWAy2dy8bNHHoBrFVZ6+OWz8yl3mwrB7YQ/YHL52OCODL1gRCf1LxeRoEuItnPBiE5BWy85Nop+WQlBW685ER2CS6u83PLWCq56cTFXjqsJwsM6d+CU/ukten603cq/LxnOPR/+xAOTh/B/763m3Cd/pNKtECyh4wvAlS8ubjYAp8U7eOHKUc22Tyus9HDli4vwKSO1C/FOGymxDvpmxAdlvTMHZbJhb7ne5IhI0EVHWbnppF5E261BWe8vv+hPUkzLOh0FQ0SH4IRoG/efN5iYKCvXvbqU357am0qPj2835Lfo+dVePw9/toFnrxjFnR+uYf2+ch68cAi2MLX2kMhkBuDRKcMOeNE5b1gnju2ZUvd1bR/gzATHIX2Ex3RP5sKR2XVfO2wWHp0yDJ9Pb97aA5vF4LGvNnHveQNbHVyTY6O4bkIP5m7M070KIhIS6fFO7j9/UKvXGdsjmRP7poetPRpEeAg2DIOuKTG8e8OxTBndmZyCKn49+9BBGE15e+kunvh6Ezec0IsnLhnOiX3TQ3Jji0gtnxkg1mFlzoyxRNutXHJMZ07tn86vTu7F8b1TSYt38NZ1NX2AP1mTi8cX4I3rxpKZ4GRcjxRuOa0Px/VKZerYrjhsFuZcO5Z4h1Vjk9sJu9XCKf3TeXPxTv558VCsRxhe4x02nrx0BPf9dx1XjOsW2S/2IhIyUTYLJ/dL57oJPY54jd7pcfx7ynCSW9jvPlgiPq0ZhkF6goMT+6YxbdaSIxp5/NaSXdgsBree3lcBWELOH4DE6ChW7sjj7evGsrWwkt+8uYJou5XnrhxFUrSdLbnlJMRE8eQ3mxnfMwWPP8DLV4+mzOVl+qwlVLh9/POioVw8Kpuf9pRxUt90VDLafkwcnMWkf/+Aw2bhmctH8qf/rKKgouWT5HqmxfH3Cwbz2FcbySt30TkpWifBIhIyHWKiuOHEnmQnRXPff9cd1sS30wdk8NfzB5EeH5r2kE2J+MOBaq+PpduLjzgA15q9aCePfbGR4hCMPBWpL2CavPjDNpbvLGFncTW3vLkSf8Ckwu3j2llLKHV5mbVgB9sLq/jx9pPIr3Dz7LdbKXf7mD5rCWUuHwETfvf2SnIKq/hpTxnPfLelxcM2JLT8AROrYXDX2QOYs2gnz367hZlTR3HZmC7N1t0lx0bxm1N6c885A/nDOyuZt6WQRy4eSpTVSkDvckQkhDrERHHRqGw+v2UCJ/dLo7n33T3TYnnxqtE8eOGQNgnAAIZ5FP7gGzVqlLlkyZJWr1Pt9bEkp5irX1rcbABOiY2isLL5gDt1TBduPaNvWAu7JbLklbn4dM1ekmKiuOWtlYfc9R/nsDHzipE8PXcL0XYr5S4fvzm1NzNeqQnA9VkMePiioVS4fZwxMDNkgxqk5XYWV+L3mxRXeXn5xxw+WLkHp93CRSM7c+6wjuQUVrJiZymb88pxewPEOmz0y4pnRJck4p023lq8k49X7yVgwm1n9GV8zxTSEhw4bFa1bxSRsCir9lLh9rFoWxE/bC4gp6CSgGmSHBvFuJ6pjO+VQmqsg9T40L8mGYax1DTNUQ0+FskhuLjKwz8+Xc+bi3c2ed2Y7sk8fNFQ3lu+m0e+2NjktV2Sa2qM08LwFyuRqaDcxZo9ZUybtaTRtle1QfiHTQVM6JPWYACuZTFg5tRRDOvcISwvSNK0vLJqCiu9+P0mVV4fby3eyTvLdtc93iM1lkGdEumZHofDaqHS42NjbjmrdpWyt9QF1Ixv//3pfRnUMYGk2ChioqwkRkfpdUlEws7rC1Dp8WFScyN2TFR4y0YVghthmib7ylz8/ZP1fLhyT4PX1PYBnvHqEn59cm+qPf5Gg3CX5BhmXT2ajERn2P+SJXKUVXu58Jl5bMytaPK6OIeN35zam8e/2tRoAK7VIzWW928aH7YpPdK44koP32/Kp29GPNVeP3tKqwmYcNcHP7Xo06geqbH89bxB5Fe4yUxw4rBb2ZZfwcTBWTiC1MZIRORo0VQIjuia4DKXjz++u4qzh2ZxztCOhzxefxDG69PGNjlQo0tyDI9NGcaNs5fh8bW8IFzkcNksBi9cOZqeabFNXlfh9nH/x+uaDcBdU2J4+erR2Ky6cao9SIqNIjk2Cm8ggN1qIc5hx+c3eeLS4Tx80VDG90ohwXngm+y0OAenD8jguStG8pdJ/XF5/ThsFuxWC6VVXkZ0TVIAFhE5SESH4MRoOw9dOJR/f7XpkCB8wCS4yUO468Of6gZqHByEawPwn/+zmgcmDyEmSj9sJHQMA1xePy9dfUyzQbg5XVNiePWaY3D5AnD0fSj0s9U/K4Gn527Bb5rERFnxBQJE2614fH5OG5DBo1OG8+Z1Y3ljxljevG4s9503kLE9kimt9pHgtFPh8RETZcMw4JsNebpHQUSkAREdggGibAYPHhSEDw7A//f+apbtKOa6V5ceEoTrB+A/TexPWpyDKJtCsISO3WrBZjFweXytCsK1Abja68dqgD1Ms9qleSlxDn5/Rj/+8v6amoEZJnj9Jh5fgA7RUcTvPwkOmCYGBkkxUcQ6bFR7fFgtBtWeAFE2C396bzU3nNhTZS4iIg2I6J96JVUe7vxgLde8vJh7zhlUF4RvPf3AALx+Xzk3ntizbrJc/SD80lWj+fN/VvPHs/rx6oLtnP/UPAoqmh5nK9IaNquFzskx2K0WXB4fr1xz+EG4a0oMr08fQ7XXj81i0CUlNqxTeqR5HaLt3HZGX65+eTHegEmZy4tpmqTERWGakFvqYndxNQUVbiwWg7R4B15/ALc3wK7iKn41exn/njKclBjdnyAi0pCI/qkXHWXlinFdKar0cNPsZdxzziD+9cVG/vD2qgMC8OOXDOdXJ/fi3RuOPSQIX/zsfP54Vj9eW7iDL9bmcv7wjq0edSrSnNogHO+0sW5vGY9cPIysxJa1N0uLd/DYlOGs3lVKvNOuANwOlVR52JhXzocrdvPYlOE8/tUm7vvvWnwmRNutlFZ7Ka2qaUFUVOmm2uMnzmGnsNLLr+Ys4+v1eTw7dRQPfLqO7cUufL6m68JFRCJRRHeHAHD7/KzeVcplzy8kOTaKJy8dgWHAn9/7XwCuHYVsmibbC6uY/PQ8qjx+np06kninjafmbuGLtbnccEIPrjuhJx1UfydhkF/mYv7WQuYs2slvTu1dNwmuOTFRVp67YhTPfLuFc4Z25MQ+aaSpP3C7UVLlYUNuOVe8sAi3L8CgTgncdfZAPv8plzeX7KCs2keHGDs9UmOJslmo8vjZnFdBlcdPVqKTq47tRu+MeP7y3mr2lLpIjYvizevG0TXJic2mU2ERiSxqkdaM+kE4MdpOrMNGTmHlAQG41sFBuHdGHKt2lSoAS1gdHICb6gPckDiHjWenjlQQbocq3D7G/+NrSqu9dd+Lslo4Z1hHLhyZTWGFh1W7StiUV4HL6yfeaaNfZgJDO3fANE1mL9rBV+vyDlhzYMcEZl87lkTVBotIhFEIboH6QdjjDzQYgGvVD8KFlR4FYAmr1gbgWgrC7VNptZsteVVc9vxCqr3+Qx7PTHAyaUgW107oTrTdRqXbx98/Xc93m/IpqfIecn1GgoM3Zoyje2rrOomIiByNFIJbqDYI55a5OKGRAFyrNgh/vHoPl43pqgAsYVNS5eEfn67jvOHZRxyAa9UG4f+u3MMfzuqnVlrtRFNBeHCnRGZeMZKsxOi67+UUVDJl5gL2lbkOuFYBWEQinULwYXB7/XgDZpMBuJZpmpS7fGo/JGFVWe1lZ2k1Fz8zv1UBuFacw8ab142lW3IMsU79W24vGgrCDQXgWgcHYQVgERFNjDssDru1RQEYwDAMBWAJP4vBtS04Ae6WEsOnvzm+RZPlps9aUjOFQ9qNxGgHXVKcvD59DNF2a10Adtgb/ntKiYvijRljyUxw7g/AY0mN08m+iEhjFIJFjjJOe01/6qZucuqWEsOca8fSPyuB16ePpUcTp4EJThuzrjkGp4ZltCv7Squ56qUl7Cyq4u3rxzFz6khufWMFr83fQV75gWUPeWUu/vjuKl5fuJ03ZtRMkpu9cAe3v7OKvINKJEREpIb65YgcZawWg+6pcbx7wzgmPz3/gC4C8L8AnNWh5iPzzEQns68dy6XPLWBrQeUB1yY4bbxzw7H0TI3Fql7B7ca+0mqmv7KENbvL+M2bK/i/iX35Yl0ei7YVM39bEQBTjulCeryTvDIX93z0Ex+v3gdAtaemdOK1hTvq1rv7nIGk66ZHEZED6KeeyFGofhCufyJ8cACuVRuE658IKwC3T/nlrroAXGtAViJDOnWo+/qRLzbxxqIdVLh8BwRgqKkbHpqdWPf1J2v2cfeHP+lEWETCotzlafG1JVUtvzYU9JNP5Ch1cBBuLADXqh+EFYDbL9OEkV2T677+4KbxlLl8XD62K9ce373u+498sYnT//XtAQH4kV8OpU9mPD3T43nsl8Pqvn9C3zSVfItIyOWVuXhz8S5yW/CmO6/MxVfr8thVXBWGnTVM3SFEjnL+gElOYSUxdmujAbi+faUuKtxeuqcoALdXeWUunpy7hQuGd2JbQQW3vLWSjHgnb8wYy+sLt/Pc99sOec4jvxxK95RYLn1uIQCvTx/DzqIqXD4/p/RLJzVe5RAiEjp5ZS4e/GwD7yzdxdgeyTw2ZTgZjZRh5ZW5+GTNXu7+cC1dU2J4ffoYspNiQrIvtUgT+ZkzTRPjMI76Dvd6Cb+8MhfzthRwy1sribZbqfb6Gw3C9QOwP1Dzmm61GLw+fQzdUqJJjlMAFpHQqR+AazUWhOsH4FqhDMJt2iLNMIwzDcPYYBjGZsMw/tjA410Mw/jGMIzlhmGsMgxjYqj3JPJzc7iBVgG4fSuscDNvSyG3vLWSrAQnb18/jgcmDyG33MWUmQu4bMz/SiPqB2DDgOevHMULV43CMOCy5xeSU1hNRXXb1t2JyM9XQwEYYMHWIn7zxvIDSiMaCsAA2wtreqKHuzQipCfBhmFYgY3AacAuYDFwiWmaa+tdMxNYbprm04ZhDAA+MU2zW1Pr6iRYRH6uCivcfL+pgFveWkFWgpOnLx/Jbe+s5NT+GXRLjeX2d1fVnQhXun14/IG6ADxz6khmzc/BNOHqY7tz7atLMM2a0og+6bHERatvsIgET2MBuL7aE2GrAf9dfWgAri8UJ8JteRJ8DLDZNM2tpml6gDeAcw+6xgQS9v86EdgT4j2JiLRbdquF+z9Zd0AA3phbwVNzt5BTUHnAifDq3aWHBOAv1ubx5bo8Xpq3jeem1pwI3/fftfiOvso3EWnnCis9vLd8d5PX1J4Iv7ZwR5MBGGpOhGcv3EFhhTuY22xUqE+CLwTONE1z+v6vpwJjTNP8Vb1rsoDPgSQgFjjVNM2lDaw1A5gB0KVLl5Hbt28P2b5FRNqKy+Mjt9xNWbWX371dE4Dru/HEnnUnwqYJMVHWAwJwfaf2T+f6E3rSqUM0HZw2ojUWW0SCqKjSzfIdJcx4dWnd/QitccHwTtx+Vr9Gb6g7Eu19bPIlwMumaWYDE4FXDcM4ZF+mac40TXOUaZqj0tLSwr5JEZFwcPsDVHv9DQZg4IAT4TiHrdEADPDlujye+XYLeeVuXH4dBYtIcCXHOhjepQMzp47EamndvSahCMDNCXUI3g10rvd19v7v1TcNeAvANM35gBNIDfG+RETaJa/f5OY5yxsMwLVqg/AXt0xoNADX+nJdHk9+s5nAUdgJSETav2AE4bYIwBD6ELwY6G0YRnfDMKKAKcCHB12zAzgFwDCM/tSE4PwQ70tEpF3yB0xO6pve7HVPzd3CLx7/ockADGAYcOagzKB8VCki0pDWBOG2CsAQ4hBsmqYP+BXwGbAOeMs0zZ8Mw7jXMIxz9l/2O+BawzBWAnOAq8yjsXmxiEgQGMCxvVKYXm86XGOKKptufWYY8PcLBpMcG6WTYBEJqdog/PRlI1r8nLMGZ/LHNgrAALZQ/wdM0/wE+OSg791Z79drgfGh3oeIyNHABLqnxNZ9/XwD0+FaojYAZ8Y76ZjoxEC9oUUktHx+k10l1S2+vqDcTVu+PW8PN8aJiMh+GQlOHHYr3VNiOb53aotOhA9WF4ATnHTs4KRDTBQZiZoaJyKhUzsI496Pmm6DVt/inOJDBmqEk0KwiEg7k5HgJM5ho29G/GEH4fonwH0z48lKjCa9jT5qFJHI0NgkuJZoaLJcuCgEi4i0M5VuL9uLqjj78R/pmhzLdRN6khLbsmlvI7okcWzPFOKjbZz/5DwKm6kbFhFpjdYE4FptFYQVgkVE2pFKt5eNuRVc+txCKj0+9pRW83/vrW5xmF26vZi3Fu9kS35l3WS5nILKEO9aRCJRMAJwrbYIwgrBIiLtiInB1S8vrhuF/PKPOXy+Nvew1njimwNHLN80exml1d4Q7VhEIlV+hbtFAfj84Z3495RhzbZPW7C1iJnfbaG48mcwNjlURo0aZS5ZsqSttyEiEnTFVR625lXg8gWYNe/wA3B9N57Ykz4ZcQzJ7kBGfBSxzpaVVIiItERemYu3l+7ioc82NHrN5BGduP3MfthtFpZtL25yxPLwzh14+vIRZCZGB22P7X1ssoiI7OfzB4hx2FodgKFmoMbmvAqKKj1UeQNB2qGISI30BCcXjczmtjP6Nvh4bQBOT3CSFBPV5ECNUATg5igEi4i0IwET/vXFxmYDsGHAqK5Jza73xDdbmLshDw2ME5FQaCwI1w/AtRqbLNcWARgUgkVE2p3mprvVtkG76+wBLWqfppHJIhJKBwfhhgJwrYODcFsFYAjDxDgREWk5iwHXndCTgAlfr8875PH6gzC6pdYM1IDGJ8tNO64743qm0sz9KCIirVIbhAdkJTCwY0KT/clrg/Cca8fSJTm6TQIwKASLiLQrafFOAgGTG07sCRwYhOsH4EGdEol32hmQlVD3+MFBeNpx3TmhTxr9s+JJi9fADBEJrdraX7ut+UKD5FgHwzrbiLJZw7CzhikEi4i0M2nxTkw4IAjXnwQ3ICuB1DhH3bX9TGB/xUNtEK4NwH0zFYBFJHw8/kCLQjCA2+tv0xCsmmARkXYkEDDZVlDJDa8tIyvByQ0n9uSU/ul1ATg+2sYf3llFYUVNH819pS6mz1pMl+RYju9VM2K5NgB3To5m2suL2Vda3ca/KxGJBHllLj5cuadFAy8Kyl18v7mQ3SVt9/qkECwi0o5Uenxc9Ox8lu8s4aqXFtUE4RN6khHvID7axuSn5zN3Yz6/e2sluaUuLnt+Aat3l3HOkz/QJTmW8T1TmdA7lc7J0ZzzxI+s2VPGjFeXUqZhGSISQnllLp74ZjN/+s9q/vDuqiaDcEG5i6/X53Hj68u48sVFbRaEFYJFRNoRq8Xg4YuGYDFgc34lV720iM7JMSRE25n89Py66+ZuzGfM379iS37NSORyl49znvyBrikxdEmJ4ZwnfqTc5SPOYeOByUOIiWq7jxxF5OetNgC/Mn87AN9uyG80CNcG4D+8uxqAzXkVbRaENTFORKSdqfL4WLC1kOmzlhAwwWmz4PK1bNhFbSmeLwBxDhtvXz+O3ulx2Kw68xCR4Ds4ANd3Qt80Hpw8hIz9nSIODsD19UqPY9Y1x9CpQ3A7RWhinIjIUSQmysbYHik8f+UoLAYtDsBQE34VgEUkHJoKwHDgiXBBhbvRAAxtcyKsV0YRkXbo4CB8OBSARSQcCio8vLag4QBc69sN+fzhnZX8Z9nuRgNwrc15FbwyL4eiSncwt9kovTqKiLRTRxKEFYBFJFwyEhw8cemIZl+fvt1YwN8+WdfsehMHZXLNcd1JjnUEaYdN0yukiEg7FhNlY3CnDiRE21t0fZfkGDITnArAIhJyKXEORnVNalEQbs7EQZncdfbAuvrhcNCrpIhIO7av1MWUmfMpqWpZi7O1e8u45c0VdX2ERURCJa/MRX6FiyHZia0KwhMHZXLn2QPx+gPkhrGvuUKwiEg7tW9/H+DaNmgtVdtHWEFYRELJ6w9QXOll9e5SMhMcPHHp8MMOwhMHZXLH2QN49tvNbC+qwhcwVRMsIhLJjjQA11IQFpFQ8/gClLt93DxnORc8PZ+MBCeP/nJYi59/av907jh7AOc8/gMvzdvO+yt2k1fuxmK0sraihRSCRUTamdYG4FoKwiISSh6/yc1zluP118yciLZbqXD7Wvx8l9ePgVE3zOftJbuYuyEPa2sLjFtIIVhEpB0prvS0KADHOWxcP6FHsx89zt2Yz+/fXklJlSeIuxQRgbR4B+cM7QjAJzcfx5rdpfz5vTUtfv4Pmwu5/T+rePO6Y+maHE12UjQXj+pCvLNlNwK3libGiYi0I6XVXl5bsJ2HPtvQ6DW1bdC6pcQyf2tB3WS5hlgMeO6KUYzrkUKMwxaiXYtIpCqq9FBS5WFJTlGzfYAbc0LfNB64YAgETDKTNDFORCQiJUbbuXxsV247o2+Dj9fvAxwdZW2yj7ACsIiEWiAQaFUAhpqBGrf/ZxWGNTxlELUUgkVE2pnGgnBDgzAaG6ihACwioVZQ7mpyFPLhqD9iOVwUgkVE2qGDg3BTk+AODsIKwCISDrnl7hYF4LMGZfKPCwY3P1luQz4zv9sathZpenUUEWmnaoNwlM3Ccb1SmxyFXD8ImyYKwCIScqlxDm48sSdPzd3S6DUTB2Vy1zkDwTR5/JLh/HrO8kbvYRjYMYHpx2tssoiIUBOEfzmqc5MBuFZMlI2x3VMYqwAsImFQWOGmc3IM1x7fo8HHzxyUyYWjOnP3h2v49Kd9LNlezIMXDmnwRHhgxwTuPXcQby3epWEZIiJSIyHa3mwArhXjsBGrACwiYZAa5yDGbqVHWuwhQfjMQZlcPKozN7y2lE/X5HL3h2t56cccftpTdkgQrg3AcxZtZ8oxnXUSLCIiIiLtl8fvZ0z35EOCcP0A7PYFDnjOwUG4fgC+7fR+uD2+sJ0Eq0+wiIiIiBy2nIJK8svdOO0WtuZXUuX1E2WzkBQT1WAAru/q8d0Y2yOF1DgHcxZt53en92Xu+jyyk2MY2DEhaKfBTfUJ1mdmIiIiInLYAqbJta8uoaTKywc3jSenoJIftxTywYrdTQZgqDkRzi1zERNl5Xen92XyU/PYU+riwQuHMDQ7MSz7VzmEiIiIiBy2eKeNbskxAJz75I90TY1hTI/kZgNwrUqP/4AAHBtlZVDHBGKiwnNGqxAsIiIiIoctLd7Jc1eOYtj+k1urAYHG+p81pF5JbmyUlbevH0efjPgW3wjcWqoJFhEREZEjll/uorDCw7p9Zdz61koOJ1qe2j+d+84bRJnLQ8/U4AfgpmqCdRIsIiIiIkfMwDiiAAzw5bo87nh/DR2iHWE7Aa6lECwiIiIiR6Sg3M33m/OPKADX+nJdHv/33mpyy1zB3VwzFIJFRERE5LAFIwDXaosgrBAsIiIiIoctr9zVogB82oB07j13IEYD45Lr+3JdHs99t1Vjk0VERESk/UqNczD9uO5NXnP6gAz+et5gJg3J4tGLhzUZhPtlxjPtuO4amywiIiIi7Vd6gpNrj+/Btcc3HIRPH5DBfecNIiPBSXKsg+N6pzYahPtlxvPSVaPJ6hAd4l3/j0KwiIiIiByRxoJw/QBcKyWu4SDcFgEYFIJFREREpBUODsINBeBaBwfhtgrAoGEZIiIiIhIEeWUuftxSwLE9UxsMwPUVVrhZsbOEAVkJIQ3ATQ3LCM9wZhERERH5WUtPcHLmwCyio6zNXpsS52BczxRiotouiqocQkRERESCoiUBuFZbBmBQCBYRERGRCKQQLCIiIiIRRyFYRERERCJOq0KwYRhxwdqIiIiIiEi4tPYkeG1QdiEiIiIiEkbN3pZnGMatjT0E6CRYExu15wAAHVlJREFURERERI46LTkJ/huQBMQf9L+4Fj5fRERERKRdaUmDtmXA+6ZpLj34AcMwpgd/SyIiIiIiodWSEHw1UNjIYw2OoRMRERERac+aLWcwTXODaZoFjTyWW/trwzAeD+bGRERERERCJZg1veODuJaIiIiISMjoxjYRERERiTgKwSIiIiIScYIZgo0griUiIiIiEjItDsGGYQxu5pLHWrkXEREREZGwOJyT4KcMw1hkGMaNhmEkHvygaZovB29bIiIiIiKh0+IQbJrm8cBlQGdgqWEYsw3DOC1kOxMRERERCZHDqgk2TXMT8BfgduAE4N+GYaw3DOOCUGxORERERCQUDqcmeIhhGP8C1gEnA2ebptl//6//FaL9iYiIiIgEXUvGJtd6HHge+LNpmtW13zRNc49hGH8J+s5ERERERELkcELwL4Bq0zT9AIZhWACnaZpVpmm+GpLdiYiIiIiEwP9v7+6j7KrKPI9/n1SSSkgKiaRAJRBAQTraNMYS4/hWOKigDvTMoCJjt60McXrUxsbowra1p53VM62iTvfI6iaoo7CUqDSjUWnxZRJ0VDDhpYHwokwEE1ol2gFTwVSSyjN/3FNShqpUXXJ33br3fD9r1ao65+6775N16tz7y6599mlmTvA3gfljtg+p9kmSJEkdpZkQPC8zh0Y3qp8PaX1JkiRJUlnNhOCdEbF8dCMing38+gDtJUmSpBmpmTnBbwe+EBH/TOMWyU8CXlukKkmSJKmgKYfgzNwQEScBT6923ZOZe8qUNT1+sWOYoeG9Rfpe2DubxX29RfqWJEnSwWlmJBjgOcCx1fOWRwSZeUXLq5omQ8N7GbxkfZG+168aNARLkiTNUFMOwRFxJfBU4FZgpNqdQMeG4EN6e1i3arBY35IkSZqZmhkJHgCWZWaWKma67Rwe4bRCI8HrVg1CX5GuJUmSdJCaWR3iDhoXw0mSJEkdrZmR4MXAnRHxA2B4dGdmntXyqqbJ/DmzWLNyRbG+JUmSNDM1E4L/S6ki2uXXe/Zx7uobivRdaq6xJEmSDl4zS6RdHxFLgRMy85sRcQjg1V+SJEnqOFP+m31EXABcDVxW7ToK+OIUnndGRNwTEfdGxMUTtHlNRNwZEZsi4rNTrUmSJEl6PJqZDvEW4FTgRoDM/FFEHHGgJ0RED3Ap8FJgK7AhItZm5p1j2pwAvBt4fmZun6xPSZIkzUwjIyP09ExtokAzbUto5uqt4czcPboREbNprBN8IKcC92bm5uq5a4Cz92tzAXBpZm4HyMwHm6hJkiRJM8CDv9rFjfdt58Ff7Zq07fZHdnPbA7/iZw9P3raUZkLw9RHxZ8D8iHgp8AXgy5M85yhgy5jtrdW+sU4EToyI70bEDRFxxngdRcTKiNgYERu3bdvWRNmSJEkq6cFf7eJL//QA511+Ix/95g8PGIS3P7Kb27c+zGsu+z5vu+rmtgXhZkLwxcA24HbgzcC1mfmeFtQwGzgBGAReB1weEYft3ygzV2fmQGYO9Pf3t+BlJUmSdLBGA/BfffVuAK76wZYJg/BoAD7/0xvYM5JsuG9724JwMyH4bZl5eWa+OjPPyczLI+LCSZ7zAHD0mO0l1b6xtgJrM3NPZv4Y+CGNUCxJkqQZbP8APGq8ILx/AB7VriDcTAh+wzj7/miS52wAToiI4yJiLnAusHa/Nl+kMQpMRCymMT1icxN1SZIkaZpNFIBHjQ3CD00QgEe1IwhPujpERLwOOA84LiLGBtg+4F8O9NzM3BsRbwWuo7Gm8Cczc1NEvB/YmJlrq8deFhF3AiPAOzPzl4/vnyNJkqTpsG1oeMIAPOqqH2xh377kJb9zJG/97M3jBuBRG+7bzuXf+X+89bSnsWhBb6vLfYypLJH2PeCnNG6b/OEx+3cAt0325My8Frh2v33vG/NzAhdVX5Im8YsdwwwN7y3S98Le2SzuK//GI0nqfP19vbz7zJP47/944CD8uY1b+dzGrZP2N7B0ERe88KnTEoBhCiE4M+8H7geeV74cSZMZGt7L4CXri/S9ftWgIViSNCVH9M3j3y5vLPo1WRCezMDSRXzsvOU86QnzWlHalEz5ZhkR8e+ADwBHAFF9ZWYeWqg2SeOYN2cWa1auKNa3JElT1Yog3I4ADM3dMe6DwL/JzLtKFSNJkqTOcjBBuF0BGJoLwT83AEvtN7x3H+euvqFI39e/c7BIv5Kk7jYahDOTv/7aPVN6zvJjDmtbAIbmQvDGiPgcjSXNhkd3ZuY1La9K0oT2TXaz8hnatySpu83pmcWJT5r6LNmjFs1nVhtn4TUTgg8FHgFeNmZfAoZgSZKkGhu9Ecabr9w45ed8+Z9+yoK5s7nopSdyxKEzeDpEZr6xZCGSJEnqPBPdCW4q1mzYAtCWIDzlQeiIODEivhURd1TbJ0fEn5crTZIkSTPZwQTgUWs2bOEj3/jtWyxPh2ZmYlwOvBvYA5CZt9G4DXLHmhWd2bckSVK7tSIAj2pHEG4mBB+SmT/Yb1+Z21ZNEy8wkiRJenx+9vCuKQXgZy9dxB+/+KmT9rdmwxau+P79/HJoeNK2rdDMhXG/iIin0rgYjog4h8btlDvW/II3HZjvTQckSVIXO3zBXF7xu0/mS7f+84RtBpYu4tLzltPTA4cdMueA6wgvWTSf1zznaA5fOENumzzGW4DVwEkR8QDwY+D1RaqaJrv2lFtvdf2qwSL9SpIkzQRHHDqP97zidwDGDcKjAfjIah3gA91QY8mi+Xz2ghUc88RDClb825pZHWIzcHpELABmZeaOcmVJkiRpppsoCO8fgGHiO8u1IwBDc6tDXBgRo2sFfzQibo6Il032vJksCl68VrJvSZKkmWI0CJ99ylOA8QPwb9pWQfjdZ54EtC8AQ3PTId6UmX8TES8HDgf+ALgS+HqRyqbBrIJJtWTfkiRJM8loED7xyD7OWb5k3AD8m7ZVED50/hye/7TFbQnA0FwIHk11rwCuyMxNESY9SZIkNYLw61ccwxPmz528bd88Xv6MI3nigum5CG48zSxhcFNEfJ1GCL4uIvqAfWXKkiRJUqeZSgAe1c4ADM2NBJ8PnAJszsxHIuJwoKNvpbywdzbfeddpxfqWJEnSzDRpUouIkzLzbhoBGOD4bpkFsWjBXBYtmPr/WCRJktQdpjJceRGwEvjwOI8l8JKWViRJkiQVNmkIzsyV1fcy8wYkSZKkadbMOsGvri6GIyL+PCKuiYhnlStNkiRJKqOZ1SHem5k7IuIFwOnAJ4C/L1OWJEmSVE4zIXik+v5KYHVmfhXwqjJJkiR1nGbW8XogIi4DXgp8ICJ6aS5ES2qB+XNmsWblimJ9S5JUB82E4NcAZwCXZOZDEfFk4J1lypI0kV/v2ce5q28o0ve6VYNF+pUkaaaZcgiubpDxJeDIiDim2n13mbIkTWTB3B6+edGLi/UtSVIdTDkER8TbgL8Afs6jt0tO4OQCdUmawM7dI5z+keuL9O1IsCSpLpqZDnEh8PTM/GWpYiSp7rbv3M3Q8N4ifS/sne1dMiWp0kwI3gI8XKoQSRLs2beP4b37Jm/4OPTOKdOvJHWiZkLwZmB9RHwVGB7dmZkfaXlVklRTO4cLT3fpK9K1JHWcZkLwT6qvubg+sCRJkjpYM6tD/CVARCystodKFSVJkiSVNOWV8SPimRFxC7AJ2BQRN0XEM8qVJkmSJJXRzO2hVgMXZebSzFwKvAO4vExZkiRJUjnNhOAFmbludCMz1wMLWl6RJEmSVFhTq0NExHuBK6vt19NYMUKSJEnqKM2MBL8J6AeuAf4BWFztkyRJkjpKM6tDbAf+pGAtkiRJ0rSYcgiOiG8Ar87Mh6rtRcCazHx5qeIkqW7mz5nFmpUrivUtSWpo5h1x8WgAht+MDB/R+pIkSZKkspq5MG5fRByTmT8BiIilQJYpS5Lqadas4MhD5xXrW5LU0EwIfg/wfyPieiCAFwIri1QlaUL+uby77Rwe4bRL1hfpe92qQegr0rUkdZxmLoz7WkQsB0Y/fd+emb8YfTwinpGZm1pdoKTfNnvWLJ5UaKRw9ixDsCSpHpoZCaYKvV+Z4OErgeUHXZGkA1rc18vivt52lyFJUkdr5bCPk80kSZLUEVoZgr1ITpIkSR3BCYCSJEmqnVaG4N0t7EuSJEkqpqkL4yLiZODYsc/LzGuq72XWbJIkSZJarJnbJn8SOBnYBOyrdidwTYG6JEmSpGKaGQlekZnLilUiSZIkTZNm5gR/PyIMwZIkSep4zYwEX0EjCP8MGKaxLnBm5slFKpMkSZIKaSYEfwL4A+B2Hp0TLEmSJHWcZkLwtsxcW6wSSZIkaZo0E4JviYjPAl+mMR0CeHSJNEmSJKlTNBOC59MIvy8bs88l0iRJktRxphyCM/ONJQuRJEmSpkszN8uYB5wPPAOYN7o/M99UoC5JkiSpmGbWCb4SeBLwcuB6YAmwo0RRkiRJUknNhOCnZeZ7gZ2Z+WnglcBzy5QlSZIkldNMCN5TfX8oIp4JPAE4ovUlSZIkSWU1szrE6ohYBLwXWAssBN5XpCpJkiSpoGZWh/h49eP1wPFlypGkelvY28O6VYPF+pYkNTSzOsSRwH8DnpKZZ0bEMuB5mfmJYtVJUs30982jv6/dVUhS92tmTvCngOuAp1TbPwTe3uqCJEmSpNKaCcGLM/PzwD6AzNwLjBSpSpIkSSqomRC8MyIOp3GrZCJiBfBwkaokSZKkgppZHeIiGqtCHB8R3wX6gXOKVCVJkiQV1EwIvhP438AjNO4U90Ua84IlSZKkjtLMdIgrgJNorBDxP4ETadxKWZIkSeoozYwEPzMzl43ZXhcRd7a6IEmSJKm0ZkaCb64uhgMgIp4LbGx9SZIkSVJZk44ER8TtNFaEmAN8LyJ+Um0vBe4uW54kSZLUelOZDvGq4lVIkiRJ02jSEJyZ909HIZIkSdJ0aWZOsCRJktQVDMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqneIhOCLOiIh7IuLeiLj4AO3+fURkRAyUrkmSJEn1VjQER0QPcClwJrAMeF1ELBunXR9wIXBjyXokSZIkKD8SfCpwb2ZuzszdwBrg7HHa/VfgA8CuwvVIkiRJxUPwUcCWMdtbq32/ERHLgaMz86sH6igiVkbExojYuG3bttZXKkmSpNpo64VxETEL+AjwjsnaZubqzBzIzIH+/v7yxUmSJKlrlQ7BDwBHj9leUu0b1Qc8E1gfEfcBK4C1XhwnSZKkkkqH4A3ACRFxXETMBc4F1o4+mJkPZ+bizDw2M48FbgDOysyNheuSJElSjRUNwZm5F3grcB1wF/D5zNwUEe+PiLNKvrYkSZI0kdmlXyAzrwWu3W/f+yZoO1i6HkmSJB28bTt2MTQ80vJ+F/b20N83r+X97q94CJYkSVL3GRoe4bRL1re833WrBunva3m3j+FtkyVJklQ7hmBJkiTVjiFYkiRJtWMIliRJUu0YgiVJklQ7rg4hSZKkpi3o7WHdqsEi/U4HQ7AkSZKatrPgEmm4RJokSZLUeoZgSZIk1Y4hWJIkSbVjCJYkSVLtGIIlSZJUO4ZgSZIk1Y4hWJIkSbVjCJYkSVLtGIIlSZJUO4ZgSZIk1Y4hWJIkSbVjCJYkSVLtGIIlSZJUO4ZgSZIk1Y4hWJIkSbVjCJYkSVLtGIIlSZJUO4ZgSZIk1Y4hWJIkSbVjCJYkSVLtGIIlSZJUO7PbXYAkSZI6z8LeHtatGizS73QwBEuSJKlp/X3z6O9rdxWPn9MhJEmSVDuGYEmSJNWOIViSJEm1YwiWJElS7RiCJUmSVDuGYEmSJNWOIViSJEm1YwiWJElS7RiCJUmSVDuGYEmSJNWOIViSJEm1YwiWJElS7RiCJUmSVDuGYEmSJNXO7HYX0E7bduxiaHikSN8Le3vo75tXpG/Vm7+33W37zt0MDe8t0vfC3tksWjC3SN+S6qfU59F0fRbVOgQPDY9w2iXri/S9btUg/X1FulbN+Xvb3YaG9/LCD64r0vd33nWaIVhSy5T6PJquzyKnQ0iSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2IjPbXUPTBgYGcuPGjQfdz7YduxgaHmlBRY+1sLeH/r55RfpWvfl7292279zN0PDeIn0v7J3NogVzi/QtqX5KfR618rMoIm7KzIHxHpvdklfoUP198+jva3cVkvSovfv2sXdfmcGJvfv2FelXUj11eo6qdQiWOtHQ8AinXbK+SN/rVg129BtaN/D4StL0cE6wJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2iofgiDgjIu6JiHsj4uJxHr8oIu6MiNsi4lsRsbR0TZIkSaq3oiE4InqAS4EzgWXA6yJi2X7NbgEGMvNk4GrggyVrkiRJkkqPBJ8K3JuZmzNzN7AGOHtsg8xcl5mPVJs3AEsK1yRJkqSaKx2CjwK2jNneWu2byPnAP473QESsjIiNEbFx27ZtLSxRkiRJdTNjLoyLiNcDA8CHxns8M1dn5kBmDvT3909vcZIkSeoqswv3/wBw9JjtJdW+3xIRpwPvAV6cmcOFa5IkSVLNlR4J3gCcEBHHRcRc4Fxg7dgGEfEs4DLgrMx8sHA9kiRJUtkQnJl7gbcC1wF3AZ/PzE0R8f6IOKtq9iFgIfCFiLg1ItZO0J0kSZLUEqWnQ5CZ1wLX7rfvfWN+Pr10DZIkSdJYM+bCOEmSJGm6FB8JltRaC3t7WLdqsFjfai+PryRNj1qH4G07djE0PFKk74W9PfT3zSvStyRJUruVylHTlaFqHYKHhkc47ZL1Rfpet2qQ/r4iXavm/L3tbh5fSZ2i1PvVdL1XOSdYkiRJtWMIliRJUu0YgiVJklQ7hmBJkiTVjiFYkiRJtWMIliRJUu0YgiVJklQ7hmBJkiTVjiFYkiRJtWMIliRJUu0YgiVJklQ7hmBJkiTVjiFYkiRJtWMIliRJUu0YgiVJklQ7hmBJkiTVjiFYkiRJtWMIliRJUu0YgiVJklQ7hmBJkiTVjiFYkiRJtROZ2e4amjYwMJAbN2486H627djF0PBICyp6rIW9PfT3zSvSt+rN39vu5vGV1ClKvV+18r0qIm7KzIHxHpvdkleQNG36++bR39fuKlSKx1eSpketQ/DQ8AinXbK+SN/rVg36QSZJkrpWqRw1XRnKOcGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqHUOwJEmSascQLEmSpNoxBEuSJKl2DMGSJEmqndntLqCdFvb2sG7VYLG+JUmSulWpHDVdGarWIbi/bx79fe2uQpIkqfN0eo5yOoQkSZJqxxAsSZKk2jEES5IkqXYMwZIkSaodQ7AkSZJqxxAsSZKk2jEES5IkqXYiM9tdQ9MiYhtwf8GXWAz8omD/ai+Pb/fy2HY3j2938/h2t3Yd36WZ2T/eAx0ZgkuLiI2ZOdDuOlSGx7d7eWy7m8e3u3l8u9tMPL5Oh5AkSVLtGIIlSZJUO4bg8a1udwEqyuPbvTy23c3j2908vt1txh1f5wRLkiSpdhwJliRJUu0YgiVJklQ7huAxIuKMiLgnIu6NiIvbXY8OTkQcHRHrIuLOiNgUERdW+58YEd+IiB9V3xe1u1Y9fhHRExG3RMRXqu3jIuLG6jz+XETMbXeNenwi4rCIuDoi7o6IuyLieZ6/3SMi/rR6b74jIq6KiHmev50rIj4ZEQ9GxB1j9o17vkbD31bH+baIWN6Omg3BlYjoAS4FzgSWAa+LiGXtrUoHaS/wjsxcBqwA3lId04uBb2XmCcC3qm11rguBu8ZsfwD4aGY+DdgOnN+WqtQKfwN8LTNPAn6PxnH2/O0CEXEU8CfAQGY+E+gBzsXzt5N9Cjhjv30Tna9nAidUXyuBv5umGn+LIfhRpwL3ZubmzNwNrAHObnNNOgiZ+dPMvLn6eQeND9CjaBzXT1fNPg38fnsq1MGKiCXAK4GPV9sBvAS4umri8e1QEfEE4EXAJwAyc3dmPoTnbzeZDcyPiNnAIcBP8fztWJn5beBf9ts90fl6NnBFNtwAHBYRT56eSh9lCH7UUcCWMdtbq33qAhFxLPAs4EbgyMz8afXQz4Aj21SWDt7/AN4F7Ku2Dwceysy91bbncec6DtgG/K9qusvHI2IBnr9dITMfAC4BfkIj/D4M3ITnb7eZ6HydEZnLEKyuFxELgX8A3p6Zvxr7WDbWCHSdwA4UEa8CHszMm9pdi4qYDSwH/i4znwXsZL+pD56/nauaG3o2jf/sPAVYwGP/lK4uMhPPV0Pwox4Ajh6zvaTapw4WEXNoBODPZOY11e6fj/7Zpfr+YLvq00F5PnBWRNxHY/rSS2jMIT2s+vMqeB53sq3A1sy8sdq+mkYo9vztDqcDP87MbZm5B7iGxjnt+dtdJjpfZ0TmMgQ/agNwQnVl6lwaE/TXtrkmHYRqfugngLsy8yNjHloLvKH6+Q3Al6a7Nh28zHx3Zi7JzGNpnK//JzP/A7AOOKdq5vHtUJn5M2BLRDy92vWvgTvx/O0WPwFWRMQh1Xv16PH1/O0uE52va4E/rFaJWAE8PGbaxLTxjnFjRMQraMwx7AE+mZl/1eaSdBAi4gXAd4DbeXTO6J/RmBf8eeAY4H7gNZm5/2R+dZCIGARWZearIuJ4GiPDTwRuAV6fmcPtrE+PT0ScQuOix7nAZuCNNAZvPH+7QET8JfBaGiv53AL8RxrzQj1/O1BEXAUMAouBnwN/AXyRcc7X6j8+H6MxBeYR4I2ZuXHaazYES5IkqW6cDiFJkqTaMQRLkiSpdgzBkiRJqh1DsCRJkmrHECxJkqTaMQRLkiSpdgzBktQGEXFWRFw8ecvHPO/YiLijQD2DEfGvxmx/KiLOOdBzJKmTzZ68iSSp1TJzLTPrrpSDwBDwvTbXIUnTwpFgSWqxarT27mo09YcR8ZmIOD0ivhsRP4qIUyPijyLiY1X7T0XE30bE9yJi81RHYCOiJyI+FBEbIuK2iHhztX8wItZHxNVVHZ+p7tBERLyi2ndT9ZpfiYhjgf8E/GlE3BoRL6xe4kX71xQRT46Ib1ft7hjTVpI6iiFYksp4GvBh4KTq6zzgBcAqGrfv3t+Tq8dfBfz1FF/jfODhzHwO8Bzggog4rnrsWcDbgWXA8cDzI2IecBlwZmY+G+gHyMz7gL8HPpqZp2Tmdw5Q03nAdZl5CvB7wK1TrFWSZhSnQ0hSGT/OzNsBImIT8K3MzIi4HTh2nPZfzMx9wJ0RceQUX+NlwMljRo6fAJwA7AZ+kJlbq9e/tXrNIWBzZv64an8VsPIA/Y9X0wbgkxExp3rcECypIzkSLEllDI/5ed+Y7X2MPwAxtn1M8TUCeFs1entKZh6XmV8fp7+RCV5zMo+pKTO/DbwIeAD4VET84ePoV5LazhAsSZ3rOuCPq1FZIuLEiFhwgPb3AMdXc4ABXjvmsR1A32QvGBFLgZ9n5uXAx4Hlj6NuSWo7p0NIUuf6OI1pDjdXF75tA35/osaZ+euI+M/A1yJiJ42pDaO+DFwdEWcDbzvAaw4C74yIPTSmVzgSLKkjRWa2uwZJ0jSJiIWZOVSF5kuBH2XmR9tdlyRNN6dDSFK9XFBdKLeJxoV0l7W5HklqC0eCJWkGiojfBa7cb/dwZj63HfVIUrcxBEuSJKl2nA4hSZKk2jEES5IkqXYMwZIkSaodQ7AkSZJq5/8DTg1rcxhBIdQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hc1b3u8e+art7de8W4YSNjYyCYmgQSOgYCIUCwgXBCThJyLgk5IYHc3ISEJKRQTA29BEI5cIBwKKHYBhtsjI2NGy5ykaxeRpq27h/y+Ahb3bNHI+b9PA+PrZm9l5Yks/XOnrV+P2OtRUREREQknbj6egIiIiIiIsmmECwiIiIiaUchWERERETSjkKwiIiIiKQdhWARERERSTuevp5AbxQXF9tRo0b19TREREREJIUtX758j7W2pL3n+mUIHjVqFMuWLevraYiIiIhICjPGbOnoOS2HEBEREZG0oxAsIiIiImlHIVhERERE0o5CsIiIiIikHYVgEREREUk7CsEiIiIiknYUgkVEREQk7fTLOsEiIulkd10z2X43WX5vl8dW1DcDUJITcHpaIiKdqm0KUd8SwWUMFsCCx2UYmJca1yeFYBGRFFZe18wjS7dy/CEDGDcgq9MgvKe+haWbq4jFLEeNK6Yo25/EmYqIQDAUobopzMdltTz9YRmrttdSVhMEIDfgYfKQPI6dWMLXpg0m4HFR3Icv2I21ts8+eW+VlpZadYwTkS+68rpm7ntnM7e/uYlMn5tHF8zpMAjvqW9hyeZKvvvohwDcet5hCsIiklS764Is3ljFL55fTXVTuNNjPS7D/NJhXHPCeAblZTg2J2PMcmttaXvPaU2wiEgKahuAAZpCUS64awkbyhtpbPn8L5e2AdhasBa+9/gK3tmwh8qGlr6YvoikmV21zVz31Cr+/fEVXQZggEjM8sh72zjztnf5ZGcdwVAkCbP8PIVgEZEUs38AjmsvCO8fgOMUhEUkWXbXNfOdhz/g9XUVPT53Z20z596xmC1VTQ7MrHMKwSIiKaSjABzXNgjXBkPtBuC4tkF4j4KwiDigor6Zv7y2ng+2Vvd6jIaWCJf/bRk7a4MJnFnXFIJFRFKIy2X4n7XlnR4TD8K3vPJphwE4zlp4duWOTo8REemtHTXNPLhk60GPs706yF3/2kRVEl+wKwSLiKSQ4mw/9196BBMGZnd6XFMoygOLt3QZbo87pIRfnTmVkhxtkBORxNpd18wtr6xL2HgPL91KcySWsPG6ohAsIpJihuRndCsId+W4Q0r49VnTGJibGjU5ReSLJRSJ8daGPQkbryUS47Uu3glLJEdDsDHmXmNMuTHm4w6eN8aYPxljNhhjPjLGzHRyPiIi/cXBBmEFYBFx2qe76xO+1OrNTyuobkzOkgin7wTfD3ylk+e/Cozf+99C4HaH5yMi0m/0NggrAItIMry3uSrhY35cVktDSzTh47bH0RBsrf0X0Nl36HTgAdtqCZBvjBns5JxERPqTIfkZPHz5HAoyu26ZDDB5SC6/O2e6ArCIOCoWizlSdaa6KYTLmISP256+XhM8FNjW5uPtex87gDFmoTFmmTFmWUVFz+vQiYj0R62tkCupCXZdfB5g855GtlcHD2ioISKSSC6XC48r8THS43JhSU45m74Owd1mrV1krS211paWlJT09XRERBzXUSOMznTWWU5EJJEmDs5J+JijijNJzn3gvg/BZcDwNh8P2/uYiEha600AjlMQFpFkKB1ZkPAxpw/NpyTbl/Bx29PXIfg54OK9VSLmALXW2p19PCcRkT51MAE4TkFYRJxWnO2nMCuxgfXsw4fh83oSOmZHnC6R9iiwGJhojNlujPm2MeZKY8yVew95EdgEbADuAr7j5HxERFJdIgJwnIKwiDipINPLhbNHJGy80cVZDMxL3qZep6tDXGCtHWyt9Vprh1lr77HW3mGtvWPv89Zae7W1dqy1dqq1dpmT8xERSXU+j4ufP7e6ywA8b2IJ719/Yrc6y93w3GrCUfVNFpHEyvB5uOCIEQzMTUxHyt+cPY2h+RkJGas7+no5hIiItJHhcfHYwiM7fYtx3sQSfnP2NEpyum6xPH5ANrddOJP8zOSssROR9DIwx8dfLpiJ6yB3s100ZwSjijITM6luUggWEUkhXq+bkQUZPHFF+0E4HoDjdYA7a6gxfkA2f7vsCIYk8c6KiKQXt9vNmJIs/nzBjF4H4VOmDOK7x49nQJLrmysEi4ikmI6C8P4BOK69IKwALCLJUpTtZ86YIv5+5dweLWfwuV38+KuHcMNpk/ukwY+xiW76nASlpaV22TItHxaRL7ZwOMqW6iDz71zMtGF57QbgtnbUBLnkvvewFgVgEekTu2qDPLNiB/e/8xm76prbPcbvcXHa9CF857ixFGT6HF2uZYxZbq0tbfc5hWARkdQVDkfZWdeC3+vq1p2SHTVBAAVgEekzoUiUioYQjS0RVpfVsqchhAuL22s4bGgBJTl+Mn1uCrISs6GuM52F4OQUYuvn9tS3EIpGcRlDcZYfj0erSEQkObxeNyN6sFlE4VdE+prP4ybgdoHPw/Th+VQ1hohZS16Gl2y/F2NISgDuikJwO1rCUfY0hthV28zb6ytYub2WumAYn8fFhIE5HDm2iKlD8wh4XRSmwA9RREREJBXsqg1S0RDizjc38j+flBMMRz/3vMvA1KF5LPzSGGaOKGBwH75w13KI/eyqbeafa3Zx2xsb2Vnb/loWgIDXxZkzhvLd48dTlOXD73U7Mh8RERGRVBcORylvDHHj86t5efXubp0zojCTP18wgyF5AUoc2hinNcHdEIlEKKtt4buPfshH22u7fV5Bppdbz5/BpME5lOQkf2ejiIiISF8Kh6NsqmziG3ctobIx1KNzjYGbTp/MyYcOcqREWmchWItb99pS3czZt7/bowAMUN0U5lv3vce7GyqpqO/4zrGIiIjIF9GOumbOW7S4xwEYwFr46TOreXvDHuqCPT//YCgE07oE4lv3vseeht59862F7z+xgh01CsEiIiKSPnbVBvneYyuoaQof1Dg/fnoVlY0HN0ZPpX0ILq9r5q+vr2d7dfCgxolZ+O6jH7Kz9uDGEREREekv3tlQyYptNQc9TkskxvX/WMWuJOaotA/BzZEYDy/dmpCxtlY18ea6ioSMJSIiIpLKdlQHue2NDQkb792NlTSFol0fmCBpHYKDoQhPLttGLIF7Axf9axNl1U2JG1BEREQkBTWFI2ysaEzomE8t357Q8TqT1iG4sjHEP9d0r4xHd23a00gkkalaREREJAWt3NazYgLdsXxrddKWRKR1swwDrC9vSPi4ZdVBRhZlJXxcka5Ya6lqDBGJWYKhKJGYxe2CTJ8Hj8tQmOXDGNPX0xQRkS+AD7dWJ3zMdbvqk3YzMa1DcChqiTrwjd5a1cTchI8q0rFINEZlY4iPttdQ2RhiaF4GPq8LLGAgHGmmrKaJgkwf04fnU5jlw+tO6zeCRETkIEQiMZrCiV+/GwxHSdatmrQOwU59k7UYQpKpuinEul31uAyEojEiUUtzJNoagvdqjkSJRC2hSJQtlY1s2F3PoUPyKMjy9eHMRUSkv/J4XGT5Eh8jM32epOWotA7BXrfBZUjoxjiAIX3YB1vSS1VjCx9sqcHndWForVn92tpyVm6r+VzR8sIsH9OG5XH2zGGEIjEisRjLt1Yzc3g+hdn+vvsCRESk35o5Ip8Hl2xJ6JgTB+Uk7Z3KtA7BMQtjS7ITvi54RGFmQscTaU91Y4iN5Q1EYjFcUcPPnv24w3rXVY0h3lhXwRvrKhicF+DG06cQicbYuKcRTOtaYRERkZ6YNiw/4WPOGlXIQAfaJ7cnrRcFZvk9nHjowISOObwwA59bG4/EWeFojJ21QSIxy/ItNVx2//vdbviys7aZBQ8sY+nmKqIxy67aIKFI8uoyiojIF0PA52LiwJyEjnnWjKEJHa8zaR2CXcA5M4cldMxL5o4iy+dO6Jgi+6sNhgjHLK+s2c1db23q1Rj3v/sZz6/cQTgaoy6Y3FaVIiLS/w3Nz+S7J4xL2HjzJpQQ8CYvQ6V1CG6ORFm5vYYzDkvMq45BuQGmDc2nMYndTiT9xGKWYDjG9uog973z2UGN9fDSrWytaiIYjjlSKUVERL7YSkcWMnt04UGPk+lzc+MZkxmUl5ylEJDmITgSs/zmpbV888iRDMg5+M1BvzxzCjf+1xrqgpEEzE6kfXXBEC3hGDc8+3FCxvvZs6sJRWLUBkNdHywiItLGoLwAvzt3OiUHscnaGLjl3OkUZXgTOLOupXUIjsUsu+ta+Plzq/nzBTPIDfR+n+D1p05i+WfVrCqrZd3uugTOUuTzwlHLe5ur2NOQmNBa3RTmrQ17dCdYRER6ZUien8eumMOgXmxoc7sMv58/nVmjCsjKSO4m7bQOwVHb+kt/VVktf3j1U+65ZBZjS7J7NEaWz83N50yjKRTl9jc3Amg5hDiqJRrj4aWJLUnz8JIttIRjCR1TRETSg9vtZmxJNv/4zlzOmtn9JabjB2TzwneP5kvjSyjOSd4yiLi0LpHmbtM+dsmmKn705Ep+ecZUlm6u5IHFW6jtZLOQ22U4+dCBLDhmDHf+ayMvr96977lsf1p/WyUJPtmZ2Hcb1pc3ONc9RkRE0sLg/Az+z1cO4apjx3LvO5t56eNdVDd9Pkv5PS4OH1nAFceOYcKAHAb3YW+FtE5rLpehINO77wf0WWUTF9+7lNOmD+X2i2ZSXtfC8i3VfLKzjvrmCF6PYVxJDlOH5TJzRAGvryvnsr+9T81+P+BElwsRaSsYiia8wQtAQ7PWsouIyMEZmBsgN+DhhydN5JrjxpGd4cHjal14YK2lqSVCKGbJ9nnIzezbGvVpHYK9LsNhw1vDbFzMwjMrynhmRRkjizKZPiyf4w8ZQHbAQzgaY3NFI8+t2MH/e3EtkXaSiM/tIucg1haLdKXZgV7tAE1axpOSQpEo26qDZPs93Sogv726CYBhBWraIyLJFQ5H2dMYIhyN4XYbqhpDvLJmN+t21xOzrQF51qgCRhVnUdscpq45TKbP02edS9M6rfk8bi45auTnQnBbWyqb2FLZxHMruz/mV6cOwqtmGeIgj0PtJD36d5tyQpEoGysaOW/RYg4dnMut58/oNAhvr27ioruXYoGHL5+tICwiSVNR30woEsMYwxPLtvHQ0q0HvFMe53YZTpo0gO+fNAELhOts0rrEtZXWG+MKsnyMK8lhSIJq0hkDVx07FrdLYUKck+lQM5acQHJL00jn2gbgumCEJZuq+N5jH7K7rrnd4+MB+LO9L94vvHvpvrvCIiJOqqhvpiUS47PKJk77y9v85fWNHQZggGjM8tLq3Zzyp7d5Ytl2rLXs6eDa5qS0DsG1wTCZPhd/PP+whIx38ZxRZAc8+N3qGCfOSkRd67YKMr3aF5dC9g/AcR0F4bYBOE5BWESSIRyOEo7GWLyxkovuWdqj8p3RmOXPr23gJ//4mChQnuQgnNYhOC/Di8u0dnq78ktjDmqsSYNzuOLYMXhcBlC9VXGO3+Pi69OHJHTMr08fgt+T1peDlNFRAI7bPwi3F4DjFIRFxGnBSITNe5r4j6c+wvYy/ry2tpxbXllHzFqi0eTtT0nr33qVDS1c89hKwjHL+UeM4LKjRvVqnMlDcrnr4lK8bjjvjiWEVG5VHBSz8LVpgxO27MZl4IzDhmJ7e/WShGqJxLjw7qWddp6MB+FtVR0H4LgtlU1c9dAH1DapI6CIJFZjS5jGlhjfe+zDXgfguCeWbWdDRSNNoeRVKkrrEOxxGa776iFcdPcSfB4X5x4+nPsvnUVRVvdKdrhdhu8eP447LjocjzH84vk1XPal0USiSsHiHI+B7VVNXH706ISMd8ncUZRVN2kte4oIR2P87tzpB/w8jIGjxxVz0+lTeGzhHL5/0gTKaoL85pxpPPTt2fzklElMGZp7wHi5AQ83nzNNd/pFJOEisRgPLd2SsA6m1z31EfUtyctQaX1V9HvdZPnc3HvJEZxz+ztk+t0UZHp55uqjuPnsaRw6OJf2csGAHD9XfGkMr/7gWI6bWILHbbjphTXMGl3EkaMLFSbEUcYYDhmcyzHjS5g85MDQ0xMTBmZz8uRBjB+Ug9E/25RQmOXnsOF53HVx6b5ryVemDOKpK1s7MXndhlAk9rlVVy2RKFk+N9+ZN45HFsxmxvB8oDUAP37FkYwuyiTgS+tiQCLigMaWGA8t2Zqw8bZXB9lRG6QlnJy7wWl9VQyGory8ehdfmlDCPZccwdf/8jY3fO1QjhwbYEhBgN+cM5XcgJfmcJSmUBSf20WW30MoGqOirhkbi5HhdXPSLW/yo68ewuxRhazYXsNxEwf29ZcmX2BZAQ/1LRHe2VDBTadP4Sf/WMXaXfU9Hmf8gGx+c/Y0Xlq1i/mzhpGpTocpIx6E771kFnXBEF63i0gsRnM4xrMrylhVVvu5us75mV5mDC/gnMOHEYnGuPbLE1m7s46544oVgEXEMRUNLZ121+2Npz/YzqEDJ0ESChal9ZXRYjlkUC43v7SW//jKITy+8EjOW7SY5lCE35w1jeEFmRhjCIZjBEMRQi4XmX4PmV43mT4PCx9czoaKRn5x+mRmjypk8aZKNlU0MG/CgL7+0uQLLNPnwe0ynD1zGD966iN+cfpknluxg4eXdv/V+PzS4Zxz+DBuen4Nvzl3Gh6Xi2y/SqSlksIsP5MG5fDR9lpqm8Nc9/RyMrxuTpg0kLNmDmNkUSYGiFrLhvIGPtpey4//8RH5GT5+ecYURhRlMiDHrwAsIo75YEt1wsdcua2WmuYImUko25nWV8dI1NLYEuHiI0dx80trueG0yTx39VE8tmwb33/yo33HDS/IYHhhJvXNYVaV1e17fMbwfP5x1VwG5Pp59ZPdbCxv4MyZQ1UbQhxV3RjC5zJEXIZfnjGFqx5czlmHD+PRBXN4ZOkWXlq9i3D0wH+FXrfh5EMH8Y3ZI/hgazU/eOJD7rioFBetnQ6rGkMUdnM9vDivqjHE9uogz64o49PdDfz6rGn4PC6eX7GDO9/cyObKRqxt3dswYWAOM0fks+ibpXxW2ciP/r6S+aXDyc3w4nW7yM3QCxwRSaxYLMYnO+u6PrCHtlQ2EUvSRu20DsFuFxwyOJenPtjOVfPGEgxFqG6KMKowi+/MG8ttb2wEYFt1kG3Vwc+dO2N4PtefOom3NlRw5oyhTB6Sx4CcAJGIxaGGXiIAhKIx/vr6Br5z3Hiaw1H+etHh/PHVT3lw8Rbmlw7noctnE41ZNpa37rLN8LkZW5KN1+3ijXXlfO+xD5kyNI/bLyoFAwGvmz+9tp7vnzShr7802as5HGVnbZBFb21i3IBszps1nJ89u5pNexoPODYSs6zZWceanXU8tHQrpSMLuO3Cw3loyRbeWr+HwkwfOQEPRou+RSTBorHEh1UnxuxIWodgg+Gnz3zM8MIMcgMeqpoiXHzPe4RjMW46fcrngnBbM4bn85NTJ3HFg8upbAxR3xzh4iNHsqehhSseWsbr1x7XB1+NpAtj4MtTBvPm+nKmDc0DazivdDjnHj6cu97axO1vbsTvcTGqKIuA10VzOMZnlY20RGLMGJ7PjadPwet2tdZacxneWFfOKVMHo24ZqaMuGOa9TVV8ZfIgPt1dzzfvfa/b5YeWbanmG3ct4ZdnTGFrVRM7aoIUZfsozEpsgxURkZLsxF9XCrN8B11urbvSOgQXZPn49VlTaWgJ7wvAob3lzf7z2Y/bDcLxAHzl3gAMcNdbmwG4+MiR/P2quXjcShPiHL/bzcrtNfzulU+ZPbqQ60+dhM/tIhiJctHsEVx/yiTKaoKsL6+nsSVCps/D+AHZDC3IZFtVE9ZafG6DBX7935/wzoZKrjl+HNOG5/X1lyZAKBKjNhjG4zGs2l7LPe9s7vEYLZEYP/r7R/zm7Kks2VTFiKJMhWARSSiXy8WMkQUJH3fK0Fx8nuTkqLR+476qKURTKExN8PMBGMDa1iA8JD+D78wbC7QfgOPuemszDyzegt/jIhhOXrcTST/haIwPt9YAsHRzFVc+uJwYEItZAl43UWuJRGMUZ/sZXpBJSbafSMwSjVkCXhfWtlbX+s4jH/DOhkoAVmyraXcdsSRfQ3OYZVuqKc7y9yoAt3X9Pz7m5MkD2bynkboE7+AWEZkwMKfdUrIH4+hxxWQlaUNvWodgYzngDnBbbYPwL8+Y0mEAjosHYe2MEycZA1cfN455E0sA2FHbzGX3v8+Ty7bjdhlC4SiRmN33dlKM1jVWoXAUt8vF0x+Wcen977N97zr3o8cV8+8nTkjvi0EKaQpHmT4sj+ueXnXQY0ViluueWkW235vULkwikh78HhfzJiauIlbA62Lu2GKyk1AZAtJ8OUQkZnl4yZZ2A3BcPAh/+6jR/OGfn3YYgONe+GgnC44Zk+ipiuzjcbvwuA3XHD8egDfWVbT++WkFb3xaQabPzaGDc5kwMIcMn5vmcJT15Q2sLqulMfT5dymOHlfMD06agMeNmrykCJeBxZsqE1Z7c93ueiLRmF6bi0jC+T2GK48dw+vryhOyjveiOSPJ8rsPfqBuSusQbIBrvzyRlkiMV9bs7vA4a+Hut7t+W3JIXoB7LpmlMCGOstZSkOWjurHlgCAM0BSKsmxLNcu6qN/YNgAXZPpQTEoN4ajl3rc/S+iY97y9mRvPmJzQMUVEirIDVDWGuWTuKO5757ODGmtUUSZnzhiK35O8EJzW74B63C5C4SjXnzqJkw89uC5v8QBckOlNankPST8uY/j+YyuIxsDjhmuOH79vaUR3tQ3AMWu45rEVuE1aXw5SSllNsOuDeuD9z6qStttaRNJLQZaPM2cMZe7Yol6PkZ/p5Zb50xmQ46cgifXq0/q3nssFO+taCIYiBxWE2wbgbZVNuHQnWByUm+Hlj+cfRll1kJKcAB43/OxrhzK2JKtb548ozOSmM6bgcUNJdoCdNUFuPX+GGiqkiD31LQkfs645ohfnIuKI4mw/A3MC/PDkiZwydVCPzx9ZlMndF5eSG/BQlOSGTWkdgsMRy7rd9Ty5vKzXQbhtAP5kRx23vrZev2zEcTkBDxMG5fD62nIyvB42VjSwuZ1GCu3ZVt3EJzvryPR5+ecnuxk3MJu8QFqvjEopVU2d7zvorXAnex9ERA5Gjt/NkLwAp0wdzJ/OP4zBeYEuz/F7XHz76NH89pzpZPs9FGX7cbmSG0vT+jeftZY5owt5bV0FTy4v4xtHDOeGrx9KdVOI9z/ruh92wOvioctnk+P38HFZLXe/s5kff3VSer+yEMfVBkOU17Xw9vo9bN7TSG6Gl2se/ZDuvvayFq5+5AP+MH86WyqbaApFOXFS6+7evEy1Te5rLoc6uxl1QxERB0Rjls+qmti8p5FJg3L5tLyeX505lZZIjFc/2c2q7bVsrWpthVyY5WPK0DzmjClkxvAC1u2qY3BegDc/LWfKkDzcLkNeRvJ+D6V1CI4B//iwjCH5GQzJC+ByGYLhGBsrundHrTkcY+X2Gg4dnEtVMMQ1x4/nhmc/5raLDnd24pLWWsJR3tobgGePLuxRAI6zFr7/xEp+P386H5fV8eon5Zw1Y6gzE5YeGZKfkfAxjQG/Vy/PRSTxappa2FHTzL89+iHWws++PomTJg3io+01TBiYzaxRBQzMDeAyhtpgiN11Lfg9LvIzvYwuzuLM295hT0OIc0uHcfnRY8jxe5O2rDStr4ouAxcfOQq3yzBrdAHhqOW8OxdT1UUZtLZ+8MRKVpXVMWVIHlsqG7n1ghl40vq7Kk5zu1xEYrHWAPxYzwNwnLWt/36nDM3F4zKqapIisv0ePAn+WYwpzlL9chFJuFAkRmVjmB//Y9W+zbc3Pv8Jx9z8Ou99VsUhg3I5fGQhI4syGV6YwdSh+Rw2PJ9I1HLW7e9w/l1L2dPQmrmeXLadbVVN1DQlfl9ER9L6TnBJTgCXaeakSQNoCse4YNGSLusA789a+NHfV/Lbc6YzfXg+XpehKLvrtTAivZXhczOmJJuFDyzrMgB7XIZIJwfFg/Bt35hJwJu8sjTSMY/bMG9iCa9+Up6wMU+dOhiv2rmLSILVBcM8vXw7Fe1s6P3bu1v427tbejTeTS+s4f5Lj6AwO1Ez7Fxa37OMRmM0R2K9DsBx8SC8qqyO2mBY7UnFUaFIjN+9vK7LAHzM+GLeve74LsunWQu3/PNTIto4lRJcwCVzRydsPI/L8LXpQ/AlsfamiKSHpnCEx5dtS9h4Wyqb2FETTNrvo7QOwU3hCE0t0YMKwHHxIPxRWR3N4WjXJ4j0kttl+O050xg/oOOXyseMb60DHInZLusIjy3J4vfzp6u0X6owhsH5gX2bFQ/WFceOJdvnprFFbZNFJLEq6luobkrsjb//WrmDhpbk3ExM6xAcjsIvnl/TZQAenBfgXz+a12X5NGvhhmc/xutO62+rOMzlMnjchlvmT98XhP/jyxP5xhEjgP8NwG4XhCJR3K7PN9Q4t3QYP/7qIUBrAP7DeYfhdbkUglNEbVOYcCTKD06aSHH2we2Snjwkl1OnDuKjsjpUHEJEEu2DLTUJH/OjsloaWpJzMzGt01phlo/fnjuNSYNzOjxmcF6AxxbOYURRFr88Y0qnQTjD6+bhBbMJ+NL62yoOC0di5AS8eFytQfi350wjHLPMGl3Iz742aV8ALskJ4HW7GZAb2BeE//PUQzh2fAkNLRF+P3/6vgCck+EhpHcwUkJZTZAFDyynINPD7Rcd3uvi8eMHZPPrs6aSl+Hjmsc+pCWi5S4ikjjWWtaXNyR83C2VTUl7zZ72aW1wXgb3XjKr3SAcD8Aji1o7cQ3IDXQYhDO8bh5dOJuJg3LI8Kb1fkNxWEskxsNLtmAtDMjxU90U5g///JRrn1zJiKIsBub6iVnDix/tJMPn5pXVu4lZGJznZ9zAHP798RX8+bUN7KxtZmCOnxiWB979jFBU5QNSQTgaY1t1kNvf3ERBppd7vlXKkWN61o70zBlDufmcaRRk+fj+Ex8SisSIqYmPiCSQtZZoLPEvriMOjNmRtA/B0H4Q3j8Ax7UXhBidQzIAACAASURBVBWAJZkM0BiKku338PSHZfzqxU+A1oLlVzy4nI/L6ohGY9z0widcct973PDcakLhGGt3NfDt+5ftqxbx25fX8dj728gJeKhviejd8hSRv7dhyQOLt/DI0q3kZXpZ8KXR/OG8w5g+LK/D84yBeRNKuP/SWZwwaQAl2X5+/PQq3tvc2vjHq9qNIpJALpeLAbmJr4ZVmOnDoZ5BB1Bi2ysehC+7/31qmsLtBuC4eBAGeGv9HgVgSaoBuQGuPm4cT32wnZtfWve556Ixy1UPf8DtF87k8YVzOG/REh6+/AiawhEWPLD8gHJpf3h1PQD/fuIERy5m0nMlOf+7/OHedz7j/c+qufX8w9hY0cBlR41meGEm26qbWF/eQEs4RrbfzSGDcynJ9rOhooEMr5vCLB9n3/Euu+tayxblZXjxJOu3ioikjTljCrn9jY0JHXPK0Dyy/cnJU0ptbcSDcDgSY0QHATguHoTrmyMMKQgoAEvSlNc1txuA49oG4feuP4HVZbXtBuC4eBC+4IgRCsIpwONyMbwwg21VQQBWldVy/C1v8q25I7lg1ghcLkPA42ZQrp9YzOJ1u/C5XRRk+Rhvsrn9jQ28subzNYaPGF2oZigiknBjS7Ixhn2NMhLhhEkDyU1S62Qlt/0Mzut+y9IBuQEG5Do4GZF2GGN4d8OeTo+JB+GzZgzlHx+WddowA+DdjZVcOGdkIqcpveTzGC6cPZJf//fazz0eLzzv87g4bkIJpaMLCHg8VDeFef6jnby7sbLDMS+aMxKX7gSLSIIFPC6OnVDCG+sqEjKe3+PimPHFCRmrOxSCRfqZkhw/t8w/jB8+sYK3N3QcfKIxy5PLt3c53uzRhfzpghkUZ/sTOU3ppeZQlBMnDWTRvza128I9FInx8prdvLxmd7fGmzwkl+EFGcQSeatGRAQozglw7ckTefPTioTcDb70qFFk+ZLX2Ec7JUT6IQ/wu3MP4+hxPasasL/Zowu59fzDUC+xFGIM2X43N542+aCH8roNN54+BbcxqhMsIo4YkhfgsqNGHfQ4wwszuGTuaPIyk7MUAhSCRfqd8vpmrntmFd+8Zwm3zO99EG4NwDO49L73+OFTH1Fe15zgmUpvBLxunly2jVHFWVx+TO/bJxsDvzxjKgWZXv62+DMCXr3UEZHEK8z2s/BLY5k9uqDXY+QGPNz7rVkMykvuvhSFYJF+xloYV5LNt48ZQ1NLuFd3hOMBuCUS5tvHjGF8ScctmCW5CjN9NIVjRGKW4ycO4N9PHE9P97RleN3ccu50RhRmsHJbDbPHFFGQxLsrIpJeBuYG+NMFM7vsrNueYQUZ/P2quYwszHRgZp1TCBbpZwbmBrjkqNEcPqKAl9eUc9HdS/jTBTMZXdx5RZO44YUZ3H7R4Vxy31KeXbGTw4bns+BLY1QZIkV4PS4unD2CC+9eQkmOn0MG5fDw5XM67WzZ1jHji3l4wWyKs/1EopZfvbiWGSPyHZ61iKS7gbkB/u+ZU7j9wpndavnudRsuO2oUf79yLhMG5uDrg3ertDFOpJ+paQpR3xzmf9aW8+v/XsvDlx/Bym3VbKtq6tb5ZdVB3t9cxS9Om8J5i5YAcOrUwfg9rn2NGqRvFWf7+OFJEzn1z29z98WHk+13870TxpPl9/Diqp18tL2W9bsbCEVjZPrcHDIolxkj8vnKlEHsqA6SH/CydmcdP/nHxzy6YDYl2vQoIklQkhPghEMGMH340Xy6u56nlm9nVVktW6uaiFkozPIxZUguxx0ygJMnDyLL5+7T3zsKwSL9TEskyquf/G8ADkVindYB3l/MwlUPL+f2Cw/f11AD4LxZI5yctvRAwOvhjBlDeX1dORff+z5fnz6Y750wnppgiEMH5zJzRAGD8gJ43S6aw1F21jYTi1myfG7GDsjm+0+sYOX2WhYcM5pDh+RhVB5NRJLE53UzJD+DIfkZzBpVQE1TuLVEo4FYzBLwuilKkRfmxvbDsjmlpaV22bJlfT0NkT6xp6GFax79kKuPG9vjANyWy8DtFx5OfqaXW/75KbddOFNl0lLMnoYWrn1y5b4anLNGFXDJ3FGMKsoiO+AhZls3wNU0hllfXs9tr29gc2XrOwKXHz2aq48bR0GW7u6LSPoyxiy31pa2+5xCsEj/U1HXzMc7Ou8E1x3xIHzYiHwGak1wyqmob6Y5HOPNTyv45QtraA7HujynONvHzWdPY2RRJgVZPgqz9MJGRNJXZyFYyyFE+pnqphY+3lHXrQDsMq3LHzqyb2nERYdTOrIgZd6iktZSeLtrW/jPZ1YxvDCTRy6fw4rtNTz23lY2lDd87ufqdRumDMnjoiNHMiw/g9+9so6h+Rl8c28XQAVhEZEDKQSL9DMu4+JXL37SZQCeM6aQO79ZytUPL++0s1zMwq//ey3PXn1UoqcqvdQ2AK/YXsuK7bX816qdHDu+hF+dOZWSHD/RmMXS+kLHZQyf7m7gr69vYMW2GgDepxpAQVhEpAMqkSbSz+RleLn/0lmdlkSbM6a1DnBehpdb5h/GUWM7riM8ojCTBy87gtwMrxPTlR6qbgx9LgDHWQtvfFrBOXcs5oWPdrK7rplBuQEqG0L88dX1LHhg2b4AHPfMih08uGQLmysaqWk6sAWziEg6UwgW6YeGFmTy0LePaDcIxwNwfI3vwNwAvz+v/SA8ojCTRy6fzbA+KFIu7YvE7AEBeH83v7yOD7fWUNUY4uGlW/nHh2UdHvvMih08tGTLQa0dFxH5IlIIFumn2gvC+wfguPaCsAJwarJYJg3J7fK4m19exzfuXtJpAI6bMaKAfrgHWkTEUQrBIv1Y2yDcUQCOaxuEFYBTl8fl4ozDhnLerOFdHrutKtjlMT89dRLjB2bj8+hyLyLSluMl0owxXwFuBdzA3dbaX+/3/Ajgb0D+3mOus9a+2NmYKpEm8nk7aoK4XaZbZc521zUTiVmG5mckYWbSG+V1zWze08jTH5bx+Pvbej3OT0+dxKGDcxk/IJsSlcATkTTUZyXSjDFu4K/AScB24H1jzHPW2jVtDvsp8IS19nZjzKHAi8AoJ+cl8kUzpAeBVvWAU1tFfTMb9zSQ5fNw5oyhAL0Kwj89dRITBmaT6XOzoaIRl8uoBJ6ISBtOvz92BLDBWrvJWhsCHgNO3+8YC8QXwOUBOxyek4hIyrIWXl1Tzrl3LKahOcKZM4by+MI5nDRpQLfOv/rYMTy+cDYTBmazobyRM29/l7KaJqKxrhttiIikE6dD8FCg7S2M7Xsfa+vnwEXGmO203gX+bnsDGWMWGmOWGWOWVVRUODFXEZE+53Eb3tmwh5ZIjB8+uZIxxRm4XIZfnD6FLx86qNNzf3jieM6YOYzCLD/jSrK46YU1+0K11+NO0lcgItI/pMJOiQuA+621w4BTgAeNMQfMy1q7yFpbaq0tLSkpSfokRUSSoTDLzwOXHcH0YXn8178dxfryJi68aynfuvc9bjjt0A6D8A9PHM9Xpg7mvEVLmH/nYhpDMZ67ei5fPnQgvzprKgWZviR/JSIiqc3pEFwGtN3iPGzvY219G3gCwFq7GAgAxQ7PS0QkZQ3IDXDPt0rZWh3k0vveJxSNsb68ocMg3DYAVzWGqG4KM//OxQS8Hn577lQKsxSARUT253QIfh8Yb4wZbYzxAecDz+13zFbgBABjzCRaQ7DWO4hI2qpsbGbd7oZ9ATiuvSC8fwCOiwfh3XUhGprVLU5EZH/JKJF2CvBHWsuf3Wut/b/GmBuBZdba5/ZWhLgLyKZ1k9x/WGtf6WxMlUgTkS+qysZm1u48MAC3NX5ANn+77AhWl9Uwqjj7gADcVkGmlyeuOJLBeX6yA7ojLCLppbMSaY6HYCcoBIvIF1VDc4Sjb36NmqZwp8eNH5DNz0+bzHcf/bDDABw3eUguj1w+mzytCxaRNNNZCE6FjXEiIrJXOBbhgcuOIMvXeTWH9eUNXHj30i4D8JC8ALdfOBOXMYmcpohIv6cQLCKSQmzMUJzt49GFc7oMwl0ZkhfgsYVziFlLJNb/3vUTEXGSQrCISAopzPbjMa6DDsLxABy1luyAlwJViBAR+RyFYBGRFFLZ0MLW6kbC0Vivg3DbAGyMYXdtkIaWztcYi4ikG4VgEZEUs6miiXPuWMzuupZ9Qdjv6d7lemCuf18A3lTRyOl/eYeaYIRwRMshRETaUggWEUkhPo+L3768jor6EAseWEYsZsn0efC6u3e59nvceNwu6oNhvvPwB9QGw/z25XW4XdoYJyLSlkKwiEgKyfZ7eOLKIynK8vGtOSNpjsSYf+diGloi3Tp/a1UT37r3PYpzAsybMICJA3O485uHk5vhdXjmIiL9i+oEi4ikGGstexpaqA2GmX9nx40wOhNvqJHhNRRkBRyYpYhI6lOdYBGRfiQSiVEbjPQ6AMP/tlgOhvvfjQ4RkWRQCBYRSSHhcJQt1UHm37m41wE4Lh6Ed9QEEzQ7EZEvDoVgEZEUEozEOH9R1wF4SF6AW86d3q3Oclc9tJyapoML1CIiXalsbKaivoXyuuYuj21ujrCzNsjubhzrFIVgEZEUEo7G+MVpk+msmEO8DvDXpg7uso5wps/NjadPwdfN6hIiIr1R2djM2p0NHPXr13htbXmnQbi5OcK22iCn/ult/vLahj4LwroqioikkKJsP3PGFPHnC2a0G4TjAXhEURZ+n5txJdkdBuFMn5tHF8xh/IBsMv2eJMxeRNJRPABfet/7hKIxrnt6VYdBOB6Az1vUuufhwSVb+iwIKwSLiKSYomw/h48sOCAIxwNwQeb/tkDO9HsYVhA4IAjHA/CIwoACsIg4Zv8AHNdeEN4/AMf1VRBWCBYRSTFbKhs587Z3GZyXsS8ID8lrDbr3vrOZ65/5mIr61l8Wu2qbufS+ZazbWbcvCMcD8Ibyei65bxm7avtuzZ2IfHF1FIDj2gbhjgJwXF8EYdUJFhFJITVNIb5661vs3Btcn75qLpWNISYMzOa+dzZz/7tbADht+hBuOmMKF9+zlJXbawH47dlTmTg4F2thQ3k9P3zyIwBKRxZw18WlFGT52v+kIiK9sHZXHaf9+Z12A3Bb/++sqcweU8g5t3e96feaE8bxzTmjKMnxJ2SOndUJVggWEUkhlQ0tvPTxLq5/5uN9j91/aSmvrS3ngcVbP3esx2WIxD5/Db/p9MkYY/jp3vN9bhd/u2wWU4flke1X1zgRSZzddc3c+PxqXli1q8tj3S5DNNZ55oy/4zWyKCtRU1QIFhHpT9oLwr2hACwiTutJEO6MEwEY1DFORKRfKcr285Upg/i/Z0zp9RgKwCKSDANzA/zs65M5deqgXo/hVADuikKwiEgKOpggrAAsIsl0MEG4rwIwKASLiKSs3gRhBWAR6Qu9CcJ9GYBBIVhEJKUVZfs5ZdpgirpZ2WHS4BwOGZSrACwiSRWJxMjyubjmhAndPudr04aQG/BQ1dDi4Mw6phAsIpLCWusAv09lF2WF4lZur+WG51bvqyMsIuK0SCRGYzjErroQF9y1pNvnLXprEy+v3k0oGuuTIKwQLCKSonbVNnPlQ8tZsa2mR+c9t3IHN/3XJwrCIuK4eACuqI8w/86u6wDv77qnV/HGuoo+CcIKwSIiKai3AThOQVhEnHawATiur4KwQrCISIo52AAcpyAsIk5KRACO64sgrBAsIpJCKuq7F4B9bhenTR/S5XjPrdzBL19QEBaRxKts6F4AHpwXYO7Yoi7Hu+7pVfxr/Z4u2zAnikKwiEiKmTQ4p9Pn42XQbjp9crfKp5WOLMRlTKKmJyICQIbPzZD8QKfHDMkL8NjCOdx6/owuy6dl+txMHJhDhteTyGl2SCFYRCSFlOQE+MFJE7jgiOHtPt+2DnBepq/LOsI3nT6FU6YOoijb79SURSRNDc7L4K6LS5kyNLfd5+N1gJ9bWcZpf3m70zrCmT43jy6Yw6iiLPIyk1PiUSFYRCTF7B+EvzplEKOKMttthLF/Q43SkQXMGlUAKACLiPM6CsJtA/Atr6xnZ20zZ/z1nXaDcF8EYABjrU3aJ0uU0tJSu2zZsr6ehoiIoyrqm3ljXQU5AS8Dc/2AZfzAnHYbYVQ2tLDss2pyM1qfqwuGKR1VoAAsIkmxszbIggeW8XFZ3QEBuK3BeQGeufoobnx+NS+s2uV4ADbGLLfWlrb3XHIWXYiISI9l+T0U5/i5/G/LGFaQwSML5nTYCS4/w8vI4kzm37EYgCeuOJL8DHWNE5HkiN8RvuHZ1Vx/6qR2AzCw747wM1cfRZbPw4VzRib9DnCc7gSLiKSgplCE9z+r4rL7lxGNtV6nRxZl8tiCOQzOz/jcsdFojI17Gjnn9nepa44AkBvw8Pcr5zK2JAu3WyvfRMRZVQ3NuFwQjRkefW8Lv2snALc1OC/As1cfhcdAFEtJTkanx/dWZ3eCdWUUEUkx7QVggC2VTZx/1xJ21gT3PdZeAAaoa45wzh3vsrGikWiSyg2JSHqqamimJRKjoTlGbTDEvIkDcXWRMC+cPYLGUIRQzFLZ2EJFfbDzExygECwikkI6CsBxbYNwNNZ+AI5TEBYRp8UDcDQGZTVNtEQsNU0hnrv66A6D8LUnT+CEQwbQ0BJla1WQ/Ax/nwRhhWARkRQSs/D9x1e2G4Dj4kH49XUVHQbguLrmCD98ciWNoagT0xWRNLZ/AC6raebUP73Fsi3VHQbheACubgpzwaIl/O3dz/osCCsEi4ikkAyvm8cXziE3o/N9y1sqm7j8b8s6DcAAo4oyWfTNw/dVjRARSZRQ1H4uAF/75EpiFv746vp2g3DbALzwweU0tER4YdXOA4JwVaPaJouIpB23yzCmJJunrpzbZRDuyqiiTB5tZyOdiEgiGA4MwHFtg/DzVx/NDV879IAAHLd/EE5Wf0uFYBGRFJOIIKwALCJOC4aj7QbguHgQrm4KccTownYDcFw8CJfXt7Q7lhMUgkVEUtDBBGEFYBFJhuZwrMMAHPfHV9fz/mfVNLREOgzAcS+s2slLH+/C73U7MNsDKQSLiKSotkE409e9XwpD8zMUgEUkKQbmBbhozsguj7v1f9Zz3qIlnQZggDHFWVx85Eiy/cnp5aYQLCKSyqzFtv7RzcP7XwMkEemfCjJ9fP+kCVx8ZNdBuCtjirN4ZMFsBuUl7wW8QrCISIpq2wgjGO5eibMdtc0HNNQQEXFKIoJwXwRgUAgWEUlJHXWC6472OsuJiDilINPHvx03rldBeExxFg9dnvwADArBIiIp52ACcJyCsIgkS2VDCyu31XDJUaO4aM6Ibp83pjiLB789mwff/Yzddc0OzrB9CsEiIikkEQE4TkFYRJxW2dDC8i3V+LwuQuEop0wZ3O1z544tYkdtkIuOHMnvX16X9CCsECwikkKC4Rjn3bm4W53g7r2ktFud5RY8uIy6YDiR0xQR2ReA/V4XA3L8VDW21gHuroeWbuWdDXvYvKeRa04cn/QgrBAsIpJC3G748wUz8Lg67pkUrwM8b8KALusI5wY8/H7+YWR1s8SaiEh3lde37AvA1Y0dN8LoTLyhRjwIP7zkMyrVNllEJP1keD0cPqqA+y+d1W4QbtsIw9VFQ43cgIe/XzWXscVZuN263ItIYpXkeA8qAMe1DcIXzh5JUZY/wTNtn66KIiIppqMg3F4nuI46yykAi4jTGptjBx2A4+JB+LPKJsrrk7MkQldGEZEUtH8Q7qwV8v5BWAFYRJIhHLPdCsCji7P4+rSuN8z98dX1rN1VT8CTnOtWcvrSiYhIj8WD8MOXz2ZEYWanrZDbBmELCsAi4rj8TC9Th+axeFNlh8fEG2EEvG4Ksnw8sHhLh8fmZXiZO7aILL/XiekeQFdIEZEUluH1MHNkfqcBOC4ehMcoAItIEhRn+/nzN2Zw5Jiidp9v2wkuv4vOcnkZXv5+5ZGMKcnG3cnG4ETSVVJEJMV53d2v7OB2GTwKwCKSJB0F4fZaIXfUYrkvAjAoBIuIiIjIQdg/CLcXgOP2D8J9FYBBa4JFRERE5CDFg/BvX1rH908a324AjosH4Wy/hzNnDO2TAAxgrLVJ/6QHq7S01C5btqyvpyEiIiIibdQFw+RmdG9jW20wRLbf62gANsYst9aWtvec7gSLiIiISEJ0NwAD5GX4HJxJ17pcE2yMmWqMWWKM2WaMWWSMKWjz3HvOTk9EREREJPG6szHuduDnwFTgU+BtY8zYvc8lp5CbiIiIiEgCdWc5RI619qW9f/+dMWY58JIx5ptA/1tQLCIiIiJpr1trgo0xedbaWgBr7evGmLOBp4BCJycnIiIiIuKE7iyH+A0wqe0D1tqPgBOAp52YlIiIiIiIk7oMwdbaR6y1S9p5fKu1dkH8Y2PMnxM9ORERERERJySyY9xRCRxLRERERMQxapssIiIiImlHIVhERERE0k4iQ3Dymz6LiIiIiPRCt0OwMWZqF4fcepBzERERERFJip7cCb7NGPOeMeY7xpi8/Z+01t6fuGmJiIiIiDin2yHYWnsMcCEwHFhujHnEGHOSYzMTEREREXFIj9YEW2vXAz8F/g9wLPAnY8xaY8xZTkxORERERMQJPVkTPM0Y8wfgE+B44OvW2kl7//4Hh+YnIiIiIpJwnh4c+2fgbuAn1tpg/EFr7Q5jzE8TPrMk2FPfQkNLxJGxs/0einP8jowtIiIiIgenJyH4VCBorY0CGGNcQMBa22StfdCR2TmsoSXCvN+94cjYb1w7TyFYREREJEX1JAS/CpwINOz9OBN4BZib6Ekli+2nY0t60zsYIiIiB68nIThgrY0HYKy1DcaYTAfmJCKd0DsYIiIiB68n1SEajTEz4x8YYw4Hgp0cHz/uK8aYdcaYDcaY6zo4Zr4xZo0xZrUx5pEezEkk7egdDBERkYPXkzvB/w48aYzZQWuL5EHAeZ2dYIxxA38FTgK2A+8bY56z1q5pc8x44MfAUdbaamPMgB5+DSJpJcPr4rGFcxwbW0REJB10OwRba983xhwCTNz70DprbbiL044ANlhrNwEYYx4DTgfWtDlmAfBXa2313s9T3t05iaSjYDjG+YuWODL269fOc2RcERGRVNOTO8EAs4BRe8+baYzBWvtAJ8cPBba1+Xg7MHu/YyYAGGPeAdzAz621L+0/kDFmIbAQYMSIET2cdvuy/G7Hfuln+d2OjCtiTP8cW0REJJV0OwQbYx4ExgIrgOjehy3QWQju7hzGA/OAYcC/jDFTrbU1bQ+y1i4CFgGUlpYmZOliY0uU4xzaYPT6tfMgx5GhRUREROQg9eROcClwqLW2JwG0DBje5uNhex9razuwdO/Sis3GmE9pDcXv9+DziKSNHv0fmEJji4iIpJKe7IL5mNbNcD3xPjDeGDPaGOMDzgee2++YZ2i9C4wxppjW5RGbevh5RERERES6rSd3gouBNcaY94CW+IPW2tM6OsFaGzHG/BvwMq3rfe+11q42xtwILLPWPrf3uZONMWtoXWbxI2ttZS++FhERERGRbulJCP55bz6BtfZF4MX9HvtZm79b4Ad7/xMRERERcVxPSqS9aYwZCYy31r66t1ucSiCIiIiISL/T7TXBxpgFwN+BO/c+NJTW9bwiIiIiIv1KTzbGXQ0cBdQBWGvXA+ruJiIiIiL9Tk9CcIu1NhT/wBjjobVOsIiIiIhIv9KTEPymMeYnQIYx5iTgSeB5Z6YlIiIiIuKcnoTg64AKYBVwBfCitfZ6R2YlIiIiIuKgnpRI+6619lbgrvgDxpjv7X1MRERERKTf6Mmd4G+189glCZqHiIiIiEjSdHkn2BhzAfANYLQxpm3L4xygyqmJiYiIiIg4pTvLId4FdtLaNvmWNo/XAx85MSkRERERESd1GYKttVuALcCRzk9HRERERMR5PekYd5YxZr0xptYYU2eMqTfG1Dk5ORERERERJ/SkOsTNwNettZ84NRkRERERkWToSXWI3QrAIiIiIvJF0JM7wcuMMY8DzwAt8QettU8nfFYiIiIiIg7qSQjOBZqAk9s8ZgGFYJEkyvC6eGzhHMfGFhERSQfdDsHW2kudnEhfyPK7ef3aeY6NLeKE5kiM8xctcWTsN340z5FxRUREUk23Q7AxZgJwOzDQWjvFGDMNOM1a+0vHZuewxpYox/3uDUfGfv3aea3tREQSLOBx7k5wwKM7wSIikh56shziLuBHwJ0A1tqPjDGPAP02BIv0R8Gwc3eCnXpnRLqvujFEQ0vEkbGz/R4KsnyOjC0i0t/0JARnWmvfM8a0fcyZK3WSmK4PScmxReSLq6ElwjE3v+7I2G/9x3EKwSIie/UkBO8xxoyldTMcxphzaG2n3G9l+NzObTDyaU2wOMPl4CssJ8eW7vE5uNzFp+UuIiL79CQEXw0sAg4xxpQBm4GLHJlVkvjcLobmZzg2togTsnwe3nBqQ6evJ5cEcUJzOOrYcpc3tfFRRGSfnlSH2AScaIzJAlzW2nrnppUcBVk+vTUo/U5xjp/iHH9fT0McErP9c2wRkf6m27crjTHfM8bEawX/wRjzgTHm5K7OExERERFJNT15z/4ya20drc0yioBvAr92ZFYiIiIiIg7qSQiOb5k5BXjAWrsaFUEQERERkX6oJyF4uTHmFVpD8MvGmBwg5sy0RERERESc05Ot4N8GDgM2WWubjDFFwBeulbKIiIiIfPF1GYKNMYdYa9fSGoABxuzXMENEREREpF/pzp3gHwALgVvaec4Cxyd0RiIiIiIiDusyBFtrF+798zjnpyMiIiIi4rye1Ak+d+9mOIwxPzXGPG2MmeHc1EREREREnNGT6hD/aa2tN8YcDZwI3APc4cy0RERERESc05MQHN3756nAImvtC4B6DouIiIhIv9OTEFxmjLkTOA940Rjj7+H5IiIiIiIpoSchdj7wMvBla20NUAj8yJFZiYiIiIg4qNsh2FrbBDwLJHPFQAAAGhJJREFUNBpjRgBeYK1TExMRERERcUq3O8YZY74L3ADs5n/bJVtgmgPzEhERERFxTE/aJn8PmGitrXRqMiIiIiIiydCTNcHbgFqnJiIiIiIikiw9uRO8CXjDGPMC0BJ/0Fr7+4TPSkRERETEQT0JwVv3/udD9YFFREREpB/rdgi21v4CwBiTvffjBqcmJSKSrjK8Lh5bOMexsUVEpFW3r4jGmCnGmA+B1cBqY8xyY8xk56YmIiIiIuKMniyHWAT8wFr7OoAxZh5wFzDXgXmJiKSlYDjG+YuWODL269fOc2RcEZH+qCfvjWXFAzCAtfYNICvhMxIRERERcViPqkMYY/4TeHDvxxfRWjFCRERERKRf6cmd4P/f3r1H2VWWeR7/PlSKKkiVSifFLVETNDSEkA4hETJoptLKJTSLi/SaFmi7EZS50LY2RMBhqYyzcAnEqG1jj9yGi4Lt0ExLO9xaSQzgJQQIKLcmYpBELiEDTip2FZXkmT/OSShCbqfq7Do5tb+ftbKq9j77PPtZ2bV3/fLm3fucBXQBtwH/CIytrpMkSZKaSi1Ph3gV+OsCe5EkSZKGRS1Ph/iXiHjHgOW9IuLuYtqSJEmSilPLdIixmfnapoXqyPDe9W9JkiRJKlYtIXhjRLxr00JEvBvI+rckSZIkFauWp0NcDNwfET8GAvgAcE4hXUmSJEkFquXGuLsiYjqw6fM8P52Zr2x6PSIOyczH692gJEmSVG+1jARTDb0/2MbLNwHTh9yRJJVYRHPWlqRmU8uc4B3x8ipJkqSmUM8Q7E1ykjREWeCVtMjaktRsapoOIUkq1h6tu/Hdc47c8YaDrC1JqqhnCH69jrUkqZT+rX8jH7nqZ4XUXjivu5C6ktSMagrBETEVmDDwfZl5W/VrMUMXklQiHW0thYXVjraWQupKUjPa6RAcEdcBU4HHgY3V1QncVkBfklRKXZ3tdHU2ugtJGvlqGQk+MjMnF9aJJEmSNExquUvipxFhCJYkSVLTq2Uk+EYqQfhFoI/Kc4EzM6cW0pkkSZJUkFpC8LXAR4Ff8MacYEmSJKnp1BKCV2fm7YV1IkmSJA2TWkLwIxFxM/DPVKZDAG88Ik2SJElqFrWE4D2ohN9jBqzzEWmSJElqOjsdgjPzY0U2IkmSJA2XWj4sox04GzgEaN+0PjPPKqAvSZIkqTC1PCf4JmBf4Fjgx8B4YG0RTUmSJElFqiUEvzczPwesy8wbgD8BjiimLUmSJKk4tYTg/urX1yJiCvB2YO/6tyRJkiQVq5anQ1wVEXsBnwNuBzqAzxfSlSRJklSgWp4OcU312x8DBxTTjiRJkprB6rW99PRtqHvdjrYWujrbd7zhENXydIh9gC8B+2fm3IiYDMzKzGsL606SJEm7pJ6+DcyZv6judRfO66ars+5l36KWOcHXA3cD+1eX/xX4dL0bkiRJkopWSwgem5nfAzYCZOZ6YIdj4BFxXEQ8HRHLI+Ki7Wx3akRkRMyooSdJkiSpZrWE4HURMYbKRyUTEUcCv9veGyKiBbgSmAtMBk6rTqPYcrtO4FPAz2voR5IkSRqUWkLweVSeCnFARDwA3Ah8cgfveR+wPDOfzczXge8CJ21lu/8OXAb01tCPJEmSNCi1hOAngP8NPAi8BFxNZV7w9owDnh+wvLK6brOImA68MzP/Tw29SJIkSYNWSwi+ETiIyhMivgEcSOWjlActInYDFgDn78S250TE0ohYunr16qHsVpIkSSVXy4dlTMnMgfN5F0bEEzt4zyrgnQOWx1fXbdIJTAEWRQTAvsDtEXFiZi4dWCgzrwKuApgxY0bW0LckSZL0JrWMBD9cvRkOgIg4Ali6ne2hMnViUkRMjIjdgY9QmVcMQGb+LjPHZuaEzJwA/Ax4SwCWJEmS6mmHI8ER8QsqT4RoBX4SEb+pLr8beGp7783M9RHxV1SeL9wCXJeZj0fEF4GlmXn79t4vSZIkFWFnpkOcMJQdZOYdwB1brPv8NrbtHsq+JEmSpJ2xwxCcmc8NRyOSJEnScKllTrAkSZI0IhiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6ezMxyZLkiRJbzK6rYWF87oLqTscDMGSJEmq2bq+DcyZv6judRfO64bOupd9C6dDSJIkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0vHGOEmSJNWs2Z8O4UiwJEmSahZNVndLjgRLkiSpZl2d7XQNw6PMiuJIsCRJkkqn1CPBr657nZ6+9YXU7mgbxV6jdy+ktsrtlbV9hf7cju1sK6S2JEm7klKH4J6+9Xzg8oWF1L7vgjmGYBWip2893QV8Qg/AonndhmBJUik4HUKSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJXOqEY30EjtrbuxcF53YbWlIoxuayns53Z0W0shdbXzVq/tpadvQyG1O9pa6OpsL6S2pPIp6no1XNeqUofgnr4NzJm/qJDaC+d109VZSGmVnD+3I5vHV1KzKOp6NVzXKocrJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqRmY3uoWYzZszIpUuXDrnO6rW99PRtqENHb9XR1kJXZ3shtVVu/tyObB5fSc2iqOtVPa9VEfFQZs7Y2muj6rKHJtXV2U5XZ6O7kGrjz+3I5vGV1Cx6+jYwZ/6iutddOK97WK6DToeQJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJVO4SE4Io6LiKcjYnlEXLSV18+LiCci4rGI+FFEvLvoniRJklRuhYbgiGgBrgTmApOB0yJi8habPQLMyMypwK3A5UX2JEmSJBU9Evw+YHlmPpuZrwPfBU4auEFmLszM31cXfwaML7gnSZIklVzRIXgc8PyA5ZXVddtyNnDn1l6IiHMiYmlELF29enUdW5QkSVLZ7DI3xkXEnwMzgCu29npmXpWZMzJzRldX1/A2J0mSpBFlVMH1VwHvHLA8vrruTSLiQ8DFwL/PzL6Ce5IkSVLJFT0S/CAwKSImRsTuwEeA2wduEBGHAd8CTszMlwvuR5IkSSo2BGfmeuCvgLuBJ4HvZebjEfHFiDixutkVQAfwvyJiWUTcvo1ykiRJUl0UPR2CzLwDuGOLdZ8f8P2Hiu5BkiRJGmiXuTFOkiRJGi6FjwRLqq9X171OT9/6Qmp3tI1ir9G7F1JbO2f12l56+jYUUrujrYWuzvZCaksqn462FhbO6y6k7nAwBEtNpqdvPR+4fGEhte+7YI4huMF6+jYwZ/6iQmovnNdNV2chpSWVUFdne1NfU5wOIUmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHZ8TLEmS1KT6+/tZuXIlvb29jW6lodrb2xk/fjytra07/R5DsCRJUpNauXIlnZ2dTJgwgYhodDsNkZmsWbOGlStXMnHixJ1+n9MhJEmSmlRvby9jxowpbQAGiAjGjBlT82i4IViSJKmJlTkAbzKYvwNDsCRJkkrHECxJkqRBee211/jmN7/Z6DYGxRAsSZKkQTEES5IkqXQuuugifvWrXzFt2jQ+85nPcMUVVzBz5kymTp3KF77wBQBWrFjBQQcdxJlnnsmBBx7IGWecwQ9/+EOOOuooJk2axJIlSwC45JJL+OhHP8qsWbOYNGkSV199NQAvvPACs2fPZtq0aUyZMoX77ruvLr0bgiVJkjQoX/7yl3nPe97DsmXLOProo3nmmWdYsmQJy5Yt46GHHmLx4sUALF++nPPPP5+nnnqKp556iptvvpn777+f+fPn86UvfWlzvccee4x7772Xn/70p3zxi1/kt7/9LTfffDPHHnssy5Yt49FHH2XatGl16d3nBEuSJGnI7rnnHu655x4OO+wwAHp6enjmmWd417vexcSJEzn00EMBOOSQQ/jgBz9IRHDooYeyYsWKzTVOOukk9thjD/bYYw/mzJnDkiVLmDlzJmeddRb9/f2cfPLJdQvBjgRLkiRpyDKTz372syxbtoxly5axfPlyzj77bADa2to2b7fbbrttXt5tt91Yv3795te2fNRZRDB79mwWL17MuHHjOPPMM7nxxhvr0q8hWJIkSYPS2dnJ2rVrATj22GO57rrr6OnpAWDVqlW8/PLLNdX7/ve/T29vL2vWrGHRokXMnDmT5557jn322YdPfOITfPzjH+fhhx+uS+9Oh5AkSdKgjBkzhqOOOoopU6Ywd+5cTj/9dGbNmgVAR0cH3/72t2lpadnpelOnTmXOnDm88sorfO5zn2P//ffnhhtu4IorrqC1tZWOjo66jQRHZtal0HCaMWNGLl26tNFtSA3x6rrX6elbv+MNB6GjbRR7jd69kNraOavX9tLTt6GQ2h1tLXR1thdSW1JjPPnkkxx88MGNbqMuLrnkEjo6Opg3b96g3r+1v4uIeCgzZ2xt+1KPBPvLRs1ow8Zkw8Zi/vFaVF3tvCAo6gNQi6ssSc2n1CG4p28Dc+YvKqT2wnnddHUWUlol19O3nu6Cfm4XzetmbGfbjjdUYTy+ksrqkksuGdb9eWOcJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSBu2ss85i7733ZsqUKY1upSaGYEmSpJK48847OeGEE5g5cyYnnHACd95555Brnnnmmdx111116G54lfoRaZIkSWVx5513cumll9Lb2wvAiy++yKWXXgrA3LlzB1139uzZrFixoh4tDitHgiVJkkrgyiuv3ByAN+nt7eXKK69sUEeNZQiWJEkqgZdeeqmm9SOdIViSJKkE9tlnn5rWj3SGYEmSpBI499xzaW9vf9O69vZ2zj333AZ11FiGYEmSpBKYO3cuF198Mfvuuy8Rwb777svFF188pJviAE477TRmzZrF008/zfjx47n22mvr1HGxfDqEJElSScydO3fIoXdLt9xyS13rDRdHgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJg/L8888zZ84cJk+ezCGHHMLXv/71Rre000r9nOCOthYWzusurLZUhI62USwq7Oe21JeEXcLoAq9Lo70uSaXW39/PeeedB8Bll13GhRdeCMCCBQtobW0dVM1Ro0bxla98henTp7N27VoOP/xwjj76aCZPnly3votS6t94XZ3tdHU2ugupNmM72xjb2dboNlSQ3v6NzJm/qJDa910wp5C6kprDeeedx8MPPwzA8ccfT39//+b13/jGNwZVc7/99mO//fYDoLOzk4MPPphVq1YZgiVJkrRr6evro6+vD4C2tvoNqqxYsYJHHnmEI444om41i+ScYEmSpBK47LLL3jLtobW1lcsvv3zItXt6ejj11FP52te+xtve9rYh1xsOhmBJkqQSuPDCCzdPgdikv7+fCy64YEh1+/v7OfXUUznjjDP48Ic/PKRaw8npEJIkSSXS1tZGa2vrWwLxYGQmZ599NgcffPDmm+6ahSPBkiRJJbBgwQKmT5/O9OnTueOOOzZ/v2DBgkHXfOCBB7jpppu49957mTZtGtOmTeOOO+6oY9fFcSRYkiSpBFpbW9/0FIjBPhFioPe///1k5pDrNIIjwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKx0ekSZIkaUgmTJhAZ2cnLS0tjBo1iqVLlza6pR0yBEuSJJXA7Nmz+f3vf/+W9XvuuSeLFy8ecv2FCxcyduzYIdcZLk6HkCRJKoGtBeDtrR/pDMGSJEkakojgmGOO4fDDD+eqq65qdDs7xekQkiRJGpL777+fcePG8fLLL3P00Udz0EEHMXv27Ea3tV2OBEuSJGlIxo0bB8Dee+/NKaecwpIlSxrc0Y4ZgiVJkjRo69atY+3atZu/v+eee5gyZUqDu9oxp0NIkiSVwJ577rnNp0MMxUsvvcQpp5wCwPr16zn99NM57rjjhlRzOBiCJUmSSqAej0HbmgMOOIBHH320kNpFMgRL0i6ko20U910wp7DakqQKr4iStAvZa/Tu7DV690a3IUkjnjfGSZIkNbHMbHQLDTeYvwNDsCRJUpNqb29nzZo1pQ7CmcmaNWtob2+v6X1Oh5AkSWpS48ePZ+XKlaxevbrRrTRUe3s748ePr+k9hmBJkqQm1draysSJExvdRlNyOoQkSZJKxxAsSZKk0jEES5IkqXSiGe8mjIjVwHMF7mIs8EqB9dVYHt+Ry2M7snl8RzaP78jWqOP77szs2toLTRmCixYRSzNzRqP7UDE8viOXx3Zk8/iObB7fkW1XPL5Oh5AkSVLpGIIlSZJUOobgrbuq0Q2oUB7fkctjO7J5fEc2j+/ItssdX+cES5IkqXQcCZYkSVLpGIIlSZJUOobgASLiuIh4OiKWR8RFje5HQxMR74yIhRHxREQ8HhGfqq7/g4j4l4h4pvp1r0b3qsGLiJaIeCQiflBdnhgRP6+ex/8QEbs3ukcNTkS8IyJujYinIuLJiJjl+TtyRMTfVK/Nv4yIWyKi3fO3eUXEdRHxckT8csC6rZ6vUfG31eP8WERMb0TPhuCqiGgBrgTmApOB0yJicmO70hCtB87PzMnAkcC51WN6EfCjzJwE/Ki6rOb1KeDJAcuXAV/NzPcCrwJnN6Qr1cPXgbsy8yDgj6gcZ8/fESAixgF/DczIzClAC/ARPH+b2fXAcVus29b5OheYVP1zDvD3w9TjmxiC3/A+YHlmPpuZrwPfBU5qcE8agsx8ITMfrn6/lsov0HFUjusN1c1uAE5uTIcaqogYD/wJcE11OYA/Bm6tbuLxbVIR8XZgNnAtQGa+npmv4fk7kowC9oiIUcCewAt4/jatzFwM/N8tVm/rfD0JuDErfga8IyL2G55O32AIfsM44PkByyur6zQCRMQE4DDg58A+mflC9aUXgX0a1JaG7mvABcDG6vIY4LXMXF9d9jxuXhOB1cD/rE53uSYiRuP5OyJk5ipgPvAbKuH3d8BDeP6ONNs6X3eJzGUI1ogXER3APwKfzsz/N/C1rDwj0OcENqGIOAF4OTMfanQvKsQoYDrw95l5GLCOLaY+eP42r+rc0JOo/GNnf2A0b/2vdI0gu+L5agh+wyrgnQOWx1fXqYlFRCuVAPydzLytuvqlTf/tUv36cqP605AcBZwYESuoTF/6YypzSN9R/e9V8DxuZiuBlZn58+ryrVRCsefvyPAh4NeZuToz+4HbqJzTnr8jy7bO110icxmC3/AgMKl6Z+ruVCbo397gnjQE1fmh1wJPZuaCAS/dDvxl9fu/BL4/3L1p6DLzs5k5PjMnUDlf783MM4CFwJ9WN/P4NqnMfBF4PiL+sLrqg8ATeP6OFL8BjoyIPavX6k3H1/N3ZNnW+Xo78BfVp0QcCfxuwLSJYeMnxg0QEcdTmWPYAlyXmZc2uCUNQUS8H7gP+AVvzBn9r1TmBX8PeBfwHPAfMnPLyfxqIhHRDczLzBMi4gAqI8N/ADwC/Hlm9jWyPw1OREyjctPj7sCzwMeoDN54/o4AEfHfgD+j8iSfR4CPU5kX6vnbhCLiFqAbGAu8BHwB+Ce2cr5W/+Hzd1SmwPwe+FhmLh32ng3BkiRJKhunQ0iSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJDVARJwYERfteMu3vG9CRPyygH66I+LfDVi+PiL+dHvvkaRmNmrHm0iS6i0zb2fX+lTKbqAH+EmD+5CkYeFIsCTVWXW09qnqaOq/RsR3IuJDEfFARDwTEe+LiDMj4u+q218fEX8bET+JiGd3dgQ2Iloi4oqIeDAiHouI/1hd3x0RiyLi1mof36l+QhMRcXx13UPVff4gIiYA/wn4m4hYFhEfqO5i9pY9RcR+EbG4ut0vB2wrSU3FECxJxXgv8BXgoOqf04H3A/OofHz3lvarvn4C8OWd3MfZwO8ycyYwE/hEREysvnYY8GlgMnAAcFREtAPfAuZm5uFAF0BmrgD+B/DVzJyWmfdtp6fTgbszcxrwR8CynexVknYpToeQpGL8OjN/ARARjwM/ysyMiF8AE7ay/T9l5kbgiYjYZyf3cQwwdcDI8duBScDrwJLMXFnd/7LqPnuAZzPz19XtbwHO2U79rfX0IHBdRLRWXzcES2pKjgRLUjH6Bny/ccDyRrY+ADFw+9jJfQTwyero7bTMnJiZ92yl3oZt7HNH3tJTZi4GZgOrgOsj4i8GUVeSGs4QLEnN627gP1dHZYmIAyNi9Ha2fxo4oDoHGODPBry2Fujc0Q4j4t3AS5l5NXANMH0QfUtSwzkdQpKa1zVUpjk8XL3xbTVw8rY2zsx/i4j/AtwVEeuoTG3Y5J+BWyPiJOCT29lnN/CZiOinMr3CkWBJTSkys9E9SJKGSUR0ZGZPNTRfCTyTmV9tdF+SNNycDiFJ5fKJ6o1yj1O5ke5bDe5HkhrCkWBJ2gVFxKHATVus7svMIxrRjySNNIZgSZIklY7TISRJklQ6hmBJkiSVjiFYkiRJpWMIliRJUun8f8II2+9TIpAiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5jcVaH/8feZsrO9l5RNIyQkkIRUSECCiHQuHSQQFOmCXLmgFMsV9aJSvFdEuoK0gAhKUdoPAWkJ6YX0Qspukk22ZNvM7LTz+yOZuEm2ZmdmZ5nP63l8nuzMd07OEp/Z937n+z3HWGsREREREUkljt6egIiIiIhIoimCRURERCTlKIJFREREJOUogkVEREQk5SiCRURERCTluHp7AgejuLjYDh06tLenISIiIiJJbMGCBdXW2pK2nuuTETx06FDmz5/f29MQERERkSRmjNnU3nO6HEJEREREUo4iWERERERSjiJYRERERFJOn7wmWEQkmQSDQSoqKvD7/b09lV6Vnp5OeXk5bre7t6ciItIpRbCISA9VVFSQk5PD0KFDMcb09nR6hbWWmpoaKioqGDZsWG9PR0SkU7ocQkSkh/x+P0VFRSkbwADGGIqKilL+bLiI9B2KYBGRGEjlAI7SfwMR6Ut0OYSIiIiIxFydt4XmljAOY7AAFhwO6J+X0dtTAxTBIiJ93q5du5g1axbXX399b09FRFJckz9Igz/E55X1/HVRJcsq6qnc5QMgN93FEQPyOP6wEs4c1x+300FZbnqvzVURLCLSx+3atYuHHnpIESwivWp7g48562v52evLqfMGD3i+wR9i9oYaZm+o4b63V3PR5HL+88QR9OulM8O6JlhEpI+7/fbbWb9+PePHj+cHP/gB9957L1OmTGHcuHH89Kc/BWDjxo2MGjWKyy+/nJEjR3LppZfy7rvvcuyxxzJixAjmzp0LwJ133slll13GtGnTGDFiBI8//jgA27ZtY/r06YwfP54xY8bw0Ucf9dr3KyLJZ3u9nzteXsZNf17cZgDvLxSxzJq7hXMf+pSV2xpo9AUSMMt9KYJFRPq4X//61wwfPpzFixdz0kknsXbtWubOncvixYtZsGABH374IQDr1q3jlltuYdWqVaxatYpZs2bx8ccfc9999/HLX/5y73hLly7lvffeY/bs2fz85z9n69atzJo1i1NOOYXFixezZMkSxo8f31vfrogkmaoGP9c/t5D3V+/s9mu31fu58JHZVNYnfmUZXQ4hIvIl8s477/DOO+8wYcIEAJqamli7di2DBw9m2LBhjB07FoAjjjiCE088EWMMY8eOZePGjXvHOPvss8nIyCAjI4MTTjiBuXPnMmXKFK644gqCwSDnnHOOIlhEgN0B/Pv31rJwc91Bj9HUEuKqp+bzl+umJfSmOZ0JFhH5ErHWcscdd7B48WIWL17MunXruPLKKwHweDx7j3M4HHu/djgchEKhvc/tv9SZMYbp06fz4YcfMnDgQC6//HKefvrpBHw3IpLsttf7eWbO5h6PU1Hn4/EPN7CzMXFnhBXBIiJ9XE5ODo2NjQCccsopPPHEEzQ1NQFQWVnJjh07ujXeq6++it/vp6amhg8++IApU6awadMmysrKuPrqq7nqqqtYuHBhzL8PEelbttf7+c07q2M23nOfbSYYtjEbrzO6HEJEpI8rKiri2GOPZcyYMZx22mlccsklTJs2DYDs7GyeffZZnE5nl8cbN24cJ5xwAtXV1fzkJz9hwIABPPXUU9x777243W6ys7N1JlhECIYjfLSuOmbjtYQivLdqBzOnDonZmB0x1savuI0xTwBnAjustWPaeN4A9wOnA17gcmttp6cXJk+ebOfPnx/r6YqIHJSVK1cyevTo3p5GTNx5551kZ2fz/e9//6Be/2X6byEiHfvnyiqufCq2PXbS4WX8+rwxFGXHZv1gY8wCa+3ktp6L9+UQfwJO7eD504ARe/53DfBwnOcjIiIiIjEw94vamI/5eWU93kAk5uO2Ja6XQ1hrPzTGDO3gkLOBp+3u09FzjDH5xpj+1tpt8ZyXiIi07c477+ztKYhIHxCJRKhuaon5uHXeAI79bs6Nl96+MW4gsKXV1xV7HjuAMeYaY8x8Y8z8nTu7vw6diIiIiMSGw+HA5Yh9RrocDiyJuTmutyO4y6y1j1lrJ1trJ5eUlPT2dERERERS2mH9c2I+5tDizJiP2Z7ejuBKYFCrr8v3PCYiIiIiSWzykIKYj3nkwHxKstJiPm5bejuCXwO+aXabCtTremARERGR5Fec7aEwxsF6/qRyPGmJWcE3rhFsjHkemA0cZoypMMZcaYy5zhhz3Z5D3gA2AOuAx4Hr4zkfEZEvqyuuuILS0lLGjDlgNUoRkbjITXdz6dGDYzbesOIsyvJiszRaV8Q1gq21M6y1/a21bmttubX2j9baR6y1j+x53lprb7DWDrfWjrXWavFfEZGDcPnll/PWW2/19jREJIVkp7uYcdRgynI9nR/cBXefP46B+RkxGasrevtyCBGRlPPmm29y5plnMmXKFM4880zefPPNHo85ffp0CgsLYzA7EZGuK8128/sZE3H0cFWzmVMHM6QocQEMimARkYR68803ueuuu9i+fTvWWrZv385dd90VkxAWEUk0l8vF0OIsHpgx4aBD+PQx/bjxayMoy1UEi4h8aT344IP4/f59HvP7/Tz44IO9NCMRkZ4pyfEwZVghL113TLcuZ0hzOrjjtFH89KwjKMtN3LXAUYm5/U5ERACoqqrq1uMiIn1BaU46pTnpvPydabyyeCt/+mQj2xv8bR7rcTk468gBXH/CcHIz3BRlxeaa4u5SBIuIJFBZWRnbt29v83ERkb6uX14G3z5mKP9x5ACaW0Isr6xnTVUT4YilLM/DpMEFlOR4SHc7KcrunfiNUgSLiCTQDTfcwF133bXPJRHp6enccMMNPRp3xowZfPDBB1RXV1NeXs7PfvYzrrzyyp5OV0Sk2zxu597LIkaWxX5XuVhRBIuIJNBpp50G7L42uKqqirKyMm644Ya9jx+s559/PhbTExFJGYpgEZEEO+2003ocvSIi0jOKYBERERGJqco6H6FIhC21XtbtaCJioTTHw6j+OWS4nRRmpZGRoO2R26MI7oJIxBKKRHA4DC6HVpUTERERacv2eh+frq/h0X9tYHVVY5vH5Ge6mTFlEDOnDqEgM41MT+/kqCK4HTVNLTS1hFhaUc+cDTXUeQOkOZ1MGJzP5KG772wszEpTFIuIiEjKa/QF2Vrv4z+fX9xu/Ebt8gZ5+F8beHr2Jn5xzhiOPbRY6wQng7rmAEsr67nnrVUs39pwwPOvLK4EoDg7jauOO4TzJ5ZTktO7S3yIiIiI9JZ6X4BlFfVc+dR8WkKRLr+uORDm5heXMPPowfzniSMoTXAI6zRmK1UNfn7w0hK+9cTcNgO4teqmAL9+cxXnPvQJK7Y24A+GEzRLERERkeSxpdbHFX/qXgC39uxnm3lmziaqG1tiPLOOKYL32LbLx4WPzObdlTu69bqKOh/nPPgJizbX0RJSCItI79iyZQsnnHAChx9+OEcccQT3339/b09JRFLAtnofN8xaSCB8cAEc9fv317Gtvu0d5uJFEQxUN7XwrSfnsrnWe1CvD4QjfOuJeVTU+mI8MxGRrnG5XPzmN79hxYoVzJkzhwcffJAVK1b09rRE5EssEArz6uKtbKo5uH5qzVq49eUlVO7q+VhdlfIR7A2EeO6zzaypaurROIFwhBtmLaS6KbGn8kWkbwkGg9x4443ceOONeL3evX8OBoM9Grd///5MnDgRgJycHEaPHk1lZWUspiwi0qadjQGe/OSLmI23clsju7w9ey/sjpSP4F3eIA/8c21Mxlq1vZF5X9TGZCwR+XK6+eabWbhwIQsXLuT000/f++ebb745Zn/Hxo0bWbRoEUcffXTMxhQR2V+9L0BVQ2xP/r00v4LQQV5b3F0pHcHhiOUfy7YRitiYjfn799dRo7PBItKJlpYWmpqaaGmJ7ftFU1MT559/Pr/97W/Jzc2N6dgiIq0t2FQX8zEXbdnFjgR1VEpH8C5vgFcXx/bjwuVbG/AGdIOciLTt7rvvxu127/OY2+3mnnvu6fHYwWCQ888/n0svvZTzzjuvx+OJiHSks5W0DsaGnU1EbOxOTnYkpSO4JRRhzfaeXQvclh0Nib27UUT6jttuu+2A63+DwSC33nprj8a11nLllVcyevTomF5aISLSlkgkQrCHK0K0JRCOYGI+attSOoKD4UiPl/Roy8YY3CUpIl9uHo+H7OxsPJ7YbLbzySef8Mwzz/Dee+8xfvx4xo8fzxtvvBGTsUVE9udwOMjPdHd+YDflprtJzHngFN8xLl5n2xN1Gl9E+p7//d//3Xum9u677+a2227b+3hPfOUrX8HqvUdEEmjK0EL++PHGmI55+IBcMtzOmI7ZnpSOYJfTYEzsY1jbKItIe9xuNw888MDer1v/WUSkLzm8f+xvvj3u0GKKshPTUSkdwdbC0KIsvqhujum4A/IzYjqeSFdt3eUjGI6wpqqR7fV+IhYcBvrlpTOyLAe306H/f4qISEy4nQ6mDC1g3sbYrBLhchhOHdM/JmN1RUpfE+xyGI4ZXhTTMUtzPERiuOSaSFdsr/fz6dpqVm5rIGItw4qzKS/IpCgrjYH5GQwrzsJaWLmtgQ/X7GR7gremFBGRL5/++Rl8/+TDYjbeuRMG4nEn6ra4FD8THIxEOHv8QJ77bHPMxpxx1GB2eQMxG0+kM5W7fGyqbqIsP4M/fbKR772wmKaW0AHHZaU5OWf8QL79lWF8Ud1EOBJhYEFmL8xYRES+LIYWZ3H2kQN4dcnWHo1Tku3hv04aSXF2eoxm1rmUjmCHMaze3sCJo0v558odPR6vINPN8SNLcDoS91uMpLaKumYiFmZvqOWhD9bTL8/Dbacdxuh+uRRne/Ze817TFGB1VQOPfriB5+dt5rrjhzPjqMFsqW1mUGFWb38bIiLSR5XlpnPH6aNYtb2R1VWNBzWGx+XgsW9OoiwnLcaz61hKR7AB3l1ZxU1fH8m8jbU0+A48e9YdP/2PI7j3ndX86ryxsZmgSAeqGn2A4aYXFmGt5ZXrj8HldPDneVt4cV4Fa6oaaQlFSHM6GFGWzcQhBTx06USshTtfW87H66p56NKJ7GjwUZqr64RFROTg9MvL4MlvT+H65xayeMuubr02L8PNHy+fzPDiLJzOxKwKEZXSEexyGk4+vB/3vr2a3108gWufWUDLQe5Xfc30Q9jR2IIBnDoRLHFW1eAjGLbc9MJiLpo8iElDCrjt5aUs3Hzgm08gHGH51gaWb23gmdmbOLI8j3suGMeyinq+O2sRD14yge31PvrlKYT7uqFDh5KTk4PT6cTlcjF//vzenpKIpIgB+Rk8OnMSry/dyr1vr+5ST518eBk//Y8jKMpyk56W+CRN6RvjHBimDCtkaUU9L8zbwuPfnExpN5c3czkMt55yGEOLsvjVmyv59jFDCYZ1Y5zEV8TC60u2csvJI7HAGb/7uM0AbsuSinrOfOBjvMEwPzpjNC8trND6sl8i77//PosXL1YAi0jCleWlc9Gkct7//lf5n7PHcNSwQrLS/n121+kwHFaWwxXHDuW9W47n52ePYWBBRq8EMKT4meAIu5ePuvXUw/jvV5ezvd7PwzMn8eL8LfxtYWWnu8lNGlLAracexutLtnHP26uZPqKY/vkZeFwp/buFxNkub4BgOMKw4ixWbW/kZ6+v6PYYwbDlv19dzg9PH8WYAXkEwpbaphYKE7Q2YyqbPn06Xu+Bu0pmZmby4Ycf9sKMRERiJzczjdxMmHFUOSeOLiViIRyJYAGXw4HFUpSVRkYvhW9rvT+DXuRxGT7asosxA/I4fmQJ/1qzk0sen8O3jhnKn6+dyryNdSzYVMfKbQ00+oO4nQ4OLc1m7MA8vja6lHVVTdzy4hIq6nwUZqXxg1NH0egPUpSd2Au7JbVErGXxll0MLszkO88t7NFYv3xjFS9dN43FW+o4bkRJjGYoHWkrgDt6vDuMMZx88skYY7j22mu55pprejymiMjBcDqd9E/ydelTOoJDEcuI0hx8wTDf+/oI/MEwn31Ry2MfbuAPH21g0pACxpXnc9LhpWR5XITClg3VzXxeWc+sP82ncc8yVIVZaTwycyJYy7KKekaU5fTydyZfZt6WMEcOzOeyJ+bGZLfD772wmFlXH403EEYLRfRtH3/8MQMHDmTHjh2cdNJJjBo1iunTp/f2tEREklJKR7Db6aQ4J41fvL6C6796KN/7+gg+XLOTxz/6gnDEMm9jXae7oBwzvIgfnHIYzS0h/jxvC/910kjSXbozTuIn3e1g/qY6Ntf2/Mwh7F5neElFPcccUhiT8aT3DBw4EIDS0lLOPfdc5s6dqwgWEWlHSl+8mpfhxuNycNtpo7jt5aVkuJ0MyM/ghWumct7EgR1e2ztlaAEPzJjAN6cNwRcI87dFlRw9rBCnAY87pX+3kDjzByM8/tEXMR3zDx9twBc8uJVRJDk0NzfT2Ni498/vvPMOY8aM6eVZiYgkr5SvteLsdKz1c/PJI7n8ybn895lHsK3ex4jSbJ6+4iiCYcvaHY00+EOkOQ2HlmZTkJnGmh2N7GjwM7Y8n5+9vpwRZdl8ZUQJxTke3M6U/t1C4swYw5JursPYmc8r69EeL31bVVUV5557LgChUIhLLrmEU089tZdnJSKSvFI+ggGy05yMKM3mF2eP4daXlzK6Xy4zpw0BA+t3NlHvDRKKWEJh+GJnM45Sw5DCLP48bwu/fmsVF0ws5/Jjh+JyGAWwxJ0/GCYUie2SZhELzS3hmI4pbcvMzGx3dYieOOSQQ1iyZEmPxhARSSUpH8G+liAbarxc/OgcjhtZzKyrpnLv26u55cUlpDkdHNYvh1H9c8j2uAiGLQs31/HgB+up9wXpl5vO72dMZHOdlzMf+Jg7ThvNGeP6U5abuH2vJfV4gz3b2bA9TS3xGVf2pWXQRESSQ0pHcOsAbmwJ8cay7cz9opb/+vpIbvr6CF5fupUFm+r428LKvWfeygsymDa8iLOOHECG28kD761j4ebdN8/9/O+712tVCEs8OU18rltw6noIERFJISkdwd5ghN+8s3rvUmcA1U0BfvTK5+R4XJwyph8zjhrMiNJsCrM8NLUE2VLrY1llPfe9vZoN1c0HjPnbf67h7PEDEvltSIrJjNMC4znpKf120GPWWkycfkHpK7TzoIj0JSn9U8/tdHDT10dS7wuxYNO+S6E1toR4aUEFLy2o6PJ4uRkuHr9sMm5nav8glPgyBgoy3dR5gzEbM8fjwpHiAdcT6enp1NTUUFRUlLIhbK2lpqaG9HR9CiYi/xYIRahrDmCxZKY5yc1Ing3FUjqCATxOBz86fTR3vbHygBDujmgAB8MRAiEtNSXx43IYTjmiHy/M2xKzMU8+ogzt9n3wysvLqaioYOfOnb09lV6Vnp5OeXl5b09DRHrZjkY/wVCExVvqmb2hhk01zUSspTAzjSlDC5k6vIjsNBcDCnp3R7mUjuA0pwMLuJ2mRyG8N4BDEZqDIfSBoMSTwxjOn1ge0wi+cPIgHFrZ5KC53W6GDRvW29MQEelVdd4ADb4g9769mrc+397mSkavL90GwJiBudx26ihGluZQltc7nyCl9E89bzDE60u30hKK7A3hSUMKujVG6wBu8AepbgzgdKT0f1aJM6fDsLGmiQsnxeaM2znjB1JR58VJan6MLyIiPVdV7+ftz7dzym8/5O9Lt3W6lOfnlQ1c9se5/OIfK9he70/QLPeV0rXmMHDJUYP5e6sQ/vEZozliQG6XXu9xOfjDN/8dwHXeIOPK87TpgMRVaW46JTnpXDRlEOU9/Cipf146l00bQn6Gu9d+ExcRkb6tqt7PM3M2cftfl+Hv5u6jf1+6jSufmsf2el+cZte+lL4cwmkchCNhrjruEP7w0QbOn1hOYVYa9b6u3XAUDEfwByNkuh1sqv13AIciuiZY4scXCDGiLIef/O1zfnfxBG6YtZBtB/FbdFmuh99fMpHfv7eWu84di7clRKYnpd8SRESkmxp8QT7dUMPv31+3z+PHDC/igonlHFKSTV6mCwP4gxEq6nx8vK6ap+dsJJpLy7c2cOtLS7nngiPpl8ATMqYvLmkzefJkO3/+/JiMtcsboMEXIs1l8AbC3PWPFfhDET5ZV9Ppa/vlpnPM8ELOnzSIfrke/MEwBVlp9M/LSNk7xCX+mvwhfvXmCi49egi3vLiEX543lvvfXcsHa7p+U9ZxI4q5+aSR/PiVz7n7/HH8ed5mbjttNNmK4D4hHInQ5A8RtrtvlMxJd+k9R0R6xZZaL6f+9kOaA7t3Hf32MUOYOW0o23b5+NuiSpZU1LOl1kvEWgoy0xgzMI+vHVbK8YeVsHhzHbe8tHTvggK//cZ4vj66lOx0d8zmZ4xZYK2d3OZzqR7BAE3+ILu8QX72+nKuPX443kCYp2Zv5J8rd7T7mn656Tx06US21vv4vLKe6SNLGF6SRWlOun4YSVwFg2GqmwOs3NZArTfIz19fzo/PPJxMt5MnPtm4d/OWtowflM+3jx1KKGz5+d9XcPupo+if72FkWS5FWWl43M4EfifSHb5AmAZ/kGWV9Xy0ZicrtjXQEoqQ5XExflA+x48s4ZDiLAqy0rR9u4gkRJ03wH1vrea5uZspzk7jj9+awo5GPz95ZTnbGzr+hNLjcnD5MUOZOXUIP31tOe+t2kFJtodXv3ssA/Jjt2pERxGs0z6wTwBf9+wCmlvCPHrZJIA2QzgawD96ZRmrtjfyy3PH8uGes3Bup4PCLE9C5y+ppSkY5vt/WcIn62v4wzcn8avzxvL9vyxlcGEmM6cO4cdnjGZTrZc12xvxBsNkuB2MLMthSFEWq7c38Oi/NrChuolfnzeO/Ew3lz85j6OGFvDoZZMVwUkoErHsbGrhwffW8eKCLfiDEdJdDiYOKSAvw80ub5BHP1zPwx+sJz/TzbXTh3Ph5HKKs/U+JCLx5QuE+euiSgbmp/PCNdO4+61V/H3P6g+daQlFePTDDby1fDt/+OZk+ud6eG7uFtZUNcY0gjuS8hFcUevdJ4CrmwIAXPvMgjZDuHUAr9zWCMAP/7ZsnxAe1Q+FsMRNIBRh+sgSPllfw1VPL+CO00bx5veO487XlvOTVz8Hdm/vPaI0h4w0B/5ghH8s28aW2t03HXzl0GIevPQ43lu5g5v+vBiA40aWEAzrWvZk4w2EWF7ZwHXPLqAg080DMyYwsiwHXzDMFzub8QXD5KS7GVacidNhmL+xll+9sZqXFmzh8W9OZnBhJi6dFRaROKms8xG2lllXT+WOl5fx8frqbo+xqcbLhY/O5i/XTWNrfQuvLd7KlCEFZMXwkoj2pPTlELXNAe57ZxXnTSjfJ4CjMtxOHr1sEi/O38x5Ewfx/NzNfOf44fsEcJQx8Mtzx7Kltplrpg8nPzN5dkSRL5edjX4Wbt7FmqpGfvPOGgAOKcni7vPGUpTt4dXFlczbWMeaqka8gTAZbicj++UweUgB54wfyC5vgDv+tow1VU0AfO/EERwxIJfxg/MpzdEKEcnCFwwxZ30t33thEQ/PnERBZhqPfrieN5dtJ9DGLyw5HhfnTyrnW8cMZeGmOn729+W8eO00RpTm4NSSNSISBw++v47DyrKZt7GORz/c0KOxhhZl8syVR3P10/N4/JtTGFSYGZM56prgdtR7A1Q3BfjGY7MPCOCoDLeTWVcfDUBJjoern55/QABHGbP7ou5jDimiJFcxIfHTVggD5Ge6uPIrh3DkwDzK8tJxOR2EwpYdDX6WVdbzh4++oNb77/+vK4CT19qqRn722nJ+fcE4fv/eui5vjuJ2Gm76+khOH9uf659dwJNXHEU/vR+JSBz87t01nDi6jDN//zGxyMkbThjOqLIcJgwpoLxAEdym2J0JbuHG5xd1uhJEhtvJ/37jSH73z7XtBnBUZpqTT27/GgU6Eyxx1l4Id5UCOHlVN7bwyzdXctOJI7j8yXlsqG7u9hjHDC/ingvG8fAH6/jBKaP06ZSIxFQkEmHltkb+9/+t4Z+r2l9IoDvS3Q7evfl4DDAwARGc0heLOYzhh6ePZlS/nA6P8wXDfOfZhZ0GcIbbySMzJxKTX4dEOlGSk86EQfmMLMvhV+eNpX8X11YszfFw1zlH7A7gQQrgZLSkso6bTxp50AEM8On6Gn7012Vcfswwatr5pEtE5GA5HA7yMty8vzo2AQy71xGevb6GjLTE3KSd0hGc4XaQlebi1+eP6zSEOx9rdwA7HUYNLAnR4A3QEoowaXAeUw8p5LHLJnW6g1z/vHT+8K3JTBtezIQh+bQEwzR0cXMYSYza5hby0t08/MH6gw7gqH+trWb+xjq21HnxBcMxmqGIyG4bqpvpZHfkbnt3ZVXCdt5N6Qiu94f4bEMNBnoUwtEADoYt63c2EwyrgiW+GrwB6v0h3l2xjXp/mAsens1/vbiEB2ZMaDeE++el8+AlE7n1paWc//Cn7PIG+dfqHdR5AwrhJBIIR8j2uHnus80xGe/nf1/B8JJs/RuLSMx99kXnG4t11+eVDXgDiVmtKKUj2ADeYJg7X1t+0CHcOoAXbq7j7eXb0V4ZEk+tA3j6YWVc9MhsapoDrNvRxA9eWtpmCEcD+Id/2722dZ03yEWPzOboQ4v5SCGcVCIR+MNHPbvLujVfMMx7q3aQ5tQbk4jETiQSYXt9xxtiHIza5gCJul8tpSO4JCed08f046zxA/YJ4eElWV16vdtp9gngJRW7uOf8cboBReLLGN5bsX2fAI5qK4T3D+Co1iH88dod+uUtSUSs5fUuLjbfVX+et4WmFl0OISKx43A4cMThugWnw5Coz9NTOoIByvIyOH1MP84eP4AH/rmWoqw0dp8j7posj4s6b2BvAJfkpJPmSvn/rBJHTmM57rDSAwI4qnUITx5S0GYAR0VD+KhDiiFhbzvSkZZQhJZQbD8KXFPVGJcfViKSuqy1HFqaHfNxhxTFZlWIrlCtAcXZaZx8eD/uOH001zwzn/U7m7r0uv9K9KwAACAASURBVGDYctkf5zKoMJO7zxtHusuhAJa4i2C4/Ml5bQZwVDSE7zzriHYDOKrOG+Rbf5yL0dtBUqis88V8zFDE0qIb40QkhowxTBxcEPNxxw7MI9uj1SESIhwOs7nOz86mFr77fOfLoO3PFwzz7SfnsanWy8rtjVQ3tsRppiK7tYTC/ObCI8nqZAmZdTuaOPOBjzsMYNizDvZF4/ErkpJCW7vBxUKs7+AWESnN8ZCXEdvtjU8f25/MtPhvmQwpHsHRAG7wBbn9r0u7HcBRvmCYq56ajzGGVdsbFMISV07jIDfTxZ++fVSnIdyZDLeTJy+fQnFOmrbWTRKZcVofU/++IhJrWWlOLpxcHrPxBhVmMCA/I2Gfqqd0BDe0hPAFwj0K4KjWIezSXdgSRwVZaeSnp/U4hFsHcLbHRUGWbuhMBvHYvCTD7cSlCBaRGMvyuLhgYjnF2bH5+fGj0w+nMDMxZ4EhxSMYa/jlGyu7tBPcfRd2vnyaLxjm6qd7vp2zSGfK8tJ7FML7B3C/vI432ZDEMQYKY/wLyfhB+brtUURiLiPNRUGmm/85Z2yPVxg6d8JA+uV5yMlwxWZyXZDSEewwcNupo/asCNG26DrAbqej03WEjYGfnHk4gZCurZT4K8tLJ69VCHf1Y/R0t2NvAGcpgJOO22G4cFLsPl4EuHByOR6XzgSLSOwVZHkoyHTz87PGHHQIf/WwEmYePZjBhVm4nYm5KQ5SPII9bifGWB69bFKbIdx6I4xGf6jDDTWMgbvOGUNhlps0V+L+ASV11XsDbN3lpSA9jUGFGRR0cX3qvAw3Q4ozyUt3U1HrZZe3/VUmJPGMMZw2ph+eGF0TNyAvnYH5GQRivOyaiAhAmsvByH45FGWn8cjMSZRke7r8WqfD8J3jh3P1cYcwqDAz5p+CdSalIzhiLRFrCYUjB4Tw/jvB3f/u2nZ3losGcF6Gm7yMNBK00YmksHpvgM+3NvDIv9YTspbLn5xH5a6uLa1V1dDCZX+cSyAc4alPN7F4yy6FcBJxOQyffVHL9085LCbj/c+5Y1m7o4l0d0q/3YtIHBVkpnHM8CICwTCPXDaJ644/pMOgdTl2/7I/6+qjGZCfzojSbEpzY38/RGdMorami6XJkyfb+fN7fu1tnTfAvW+tojkQZsaUQbicDq59ZgHeQHifAF5asYuHZk7ilYWV/G1RJXeedQQWuP3lpayuatwbwC2hCL9/by1/vvYYSnK6/puQSHdEA/ipT7/gzrPGcMWf5nW6DFpbDi3N5qlvT+FXb6zigsnljB+Ur90Ok8D2ej9rqhpp9If426IK3l2546DH+s7xw8lIc3DKEf3Iz3RTlqtLX0QkfnzBMNt2+Xhz2TbGDcrHWlixrYEttV7CEUthVhpjBubRLzedBZvqGFmWzbjy/LjemG2MWWCtndzmc6kcwQB1zQF+/eZK/KHI3hD2BsIEQpG9AfzbiydQnO2hwRfklUX7hvCWWi8Ow94Afu6qqfTP1w8aiZ8GX5C731rJDSeMOOgAjoqG8CP/2sCtpx5GTnri7sqVtlXV+6j3h/i/d9cwY8pgnp+7mTc/397tcb5z/HCGFmexqaaZi6cMItPtpLgXzrSISOqp9wVo9IeY90Utm2q8hK3FsHtf0uJsD5OHFlCWk05Rdhqmp3fUdUIR3InWIXzx5HIaW8Is3rJrnwCO2j+EN9U0E4pYBbAk1NZdvh4HcNShpdk8dcUUBuYnbqtKaV+TP0hVgx9fMMK1T8/neyeNxAC/+McKGnyhTl9fXpDBL84ew+Itu3h3RRW/On8sOR4XJdkesmO8qL2ISGcCoTDNLWEskOYyZHsS+z6kCO6CaAh7A2FKc9NZvb3hgACOah3Cp4/rz/OfbVIAS8Ls8ga45PHPWLGtocPjMtxObjzxUB58bx3NgY5XLBlRms1frpumyyGSQCgcobopQJM/SJ03yLXPLmBceR43nHAoK7c18MqirSzfWk9Lqxvdcjwuxg/O58JJ5eRluLnn7dW0hCK7dxb0OMl0OxlQoF9yRCT1KIK7KBrClbt87QZwVDSEn/jkC56/WgEsiVPT1MKcDbXc+PzCdrfCzXA7mXX10RxWlsO6nU3MeGxOuyFsDPzfReM5bkQxRd24q1fip67Jz7aGFhpbQnhcDn71xio++6KWSUMKOHVMP0b3y8XtMli7+9/P2xJmWWU9ry3ZyrodTZw9fgDfmjYUt9NBYZab9DQnRVn6txWR1KMI7oa65gARa7sUAw2+IBFrdfZMEq6jEI4G8MiybLI8bpr9IdZXtx3CCuDkFAyH2VTj5YvqJnLS3TT4QjS2hPjTJxtZVlnf5muMga8cWswVxw6juqmFQ8uyiYQtpbkeBhVmJfg7EBFJDh1FcOK25egjunOHYq6ur5Ne4nAYRpRm8cCMCdz4/KK9IRwN4Ay3g/CeT8sjWNxOw/PXTN0nhHcH8JGMGZCLI843Jkj3uJ27z9wGw5ZNNV5KctLYUuvlW9OGMLQ4iy11PtZWNdISipDtcTGqfw5lOeksq6xne72P8sJMwmFLmsuh7bBFRNqhhSNF+pg6b4D/fWcNJ//2I/rlpfPAjAk4zL8D+IuaZk69/2NeW1JJoz/IG8u2cdr9H7NyawPPXzOVrDTn3gAeVpzN1//vQ+5+axV1zVorOJkUZKVRlptObrqTvIw0AqEIgwoz2V7vZ+suH05jyHA7iVjLpppm6rwBBhdm0uAPMrQoi3AkwpDCzITfhCIi0lfocgiRPmZHg5973l7NSwsqAHj5O9OoavDTPy+DL2qaufnPS/YeO214EbPX1+z9+u7zxjJ6QC4bq5sZUpTF2Q9+AsDZ4wfwo9NH98pi5dKxem+AjdXNWAPZHhfvrdpBc0sIt9OBwxjCEUsoYinKTuP4kSVsq/dTlJ3GgLwMsjz6sE9EUpuuCRb5EqltDrByWwN/mV/BK4srAZh19VFU1vn4wUvLOn39L88dw/CSbL7x2BwAzhzXn0uOGsyo/rkJ37JSuiYSsVQ3t7B+exM7vS0UZXkoykrD6TAEwhGqG1uo8wYYWpRFeUEmxdqsR0QEUASLfKn4giHqmoNsqG7mpVYhfDDOHNefGUcNZlhxFvkZbjJ15jDpNfqD+AJhghFLJGJxOQ0uhyHL4yIzTf9+IiKtdRTBuiZYpI8JhS3XPbuAdJeDCyaXc874gQc1TjSA0927twuPdP4SSQI56W5Kc9MZmJ/BoMJM+udlUJKTrgAWEekmRbBIH+MycOdZR/Cfzy866BBuHcD/+fwi/vs/DsdB3/tUSERE5GApgkX6mAyPm9Fl2fz+0ol7Q/imr4/g0NLsLr1+SFEmt506am8A//biCRzRP4dMrSIgIiIpRJ+fifRBrUN44aY6sj0u1u1o6tJrN9V4eW/VDsAqgEVEJGXpTLBIH5XhcTOsKJNsj4vb/9r5qhCt/fS15YBheEmWAlhERFKSIlikj2r0B/l/K6u6HcBRP31tOf9Yuo0GXzDGMxMREUl+imCRPqjRH+TNz7dxaxfWBe7IT15dzquLKxXCSa7O29LlYxu9ARq92v1PRKQzimCRPqY7AZyf2fmlDgrh5Fbd6GfeF3Vsqmnu9NgmX5ANNV7W1zTTpH9PEZEOKYJF+phQ2PLneRWdHnfmuP68fdP0Li2f9vKCCkIRLZGWbKob/czeUMu1zy7g4sfmdBjCTb4g66ubmfH4HGY89hnrqpsUwiIiHVAEi/Qxbqfhx2eMZuLggnaPia4D3BwIdbqO8JHledx59hF4nCYe05WDFA3g/3xhEdbCtnp/uyHcOoC9gTC+YFghLCLSibhHsDHmVGPMamPMOmPM7W08P9gY874xZpExZqkx5vR4z0mkL3M6DMXZae2GcOuNMK57puOd5Y4sz+POs46gMDMNp0MRnCxaB3C2x8V7txzPfReMazOE9w/gF6+dxkvXTVUIi4h0Iq4RbIxxAg8CpwGHAzOMMYfvd9iPgRettROAi4GH4jknkb7OH4zw6zdX43QceEZ4/53gTj2iHze2s7NcNIAdxvDrt1bhC2rj5GSwfwC//t2vcP8/15KX6eY3Fx65Twi3BML7BPBfvzONeRtrmb2hlr9df4xCWESkA/E+E3wUsM5au8FaGwBeAM7e7xgL5O75cx6wNc5zEunTLJYTR5dy68tL9gnh/QP4txdP4Lrjh/PgpRMPCOHWAXz7X5dy/MhSrNU1wckgzeXk56+v2BvA972zmlcXb+W6ZxeSm+HaJ4RfW7p1nwCevaGWe99ezW/eWcPH66r3hvCdr60gpH9fEZF9mHj+4DPGXACcaq29as/XlwFHW2u/2+qY/sA7QAGQBXzdWrugjbGuAa4BGDx48KRNmzbFbd4iya62uYUPVu/k0Q/Xc8/5R2KtpTkQbnMrZF9LkJVVTdzw3EIemDEBfyhCbroLa+H2vy7l8mOGcdLoUgqzPb39bQnQ7A+yvd6P0+XgvrdX8/el2/Y+53QYHpk5kQZfiFv+smTv460DuLVbTh7JCYeVUpCVxsD8jIR9DyIiycIYs8BaO7mt55LhxrgZwJ+steXA6cAzxpgD5mWtfcxaO9laO7mkpCThkxRJJoVZHr56WAnXTh/OrS8vwWEg3XVgAMO/t1iOnhH2uBxgrQI4SWWlu8nJcB8QwADhiN3njDC0H8AAv3lnDe+v3oHHpeu9RUT254rz+JXAoFZfl+95rLUrgVMBrLWzjTHpQDGwI85zE+nToiEM8N3nFxEIWR64ZN8Ajmodwtc/uwCP28n1Xz1UAZyEdjT4+fnfVxwQwFHREH5k5kRm3/E1/rqwss0AjvrNO2sAuHjKIEpy0uMyZxGRvijeETwPGGGMGcbu+L0YuGS/YzYDJwJ/MsaMBtKBnXGel8iXQjSEHcYwsCCjzQCOiobwQzMnsX5HEyeOUgAnq7rmjnd8i4bwVw4t5l9rOn+73NHQgi4JFhHZV1wvh7DWhoDvAm8DK9m9CsRyY8zPjTFn7TnsFuBqY8wS4Hngcqs7dES6rDDLw/SRxR0GcFSGx82osmwFcBLzuBzcfcE4jh1e1OFx4YjtUgDPnDqYbx87lDRXMlz9JiKSPOJ6Y1y8TJ482c6fP7+3pyEiEhdV9T6CEcttLy3lk/U1Bz3OzKmDueLYYeRluCnSLz0ikoKS/cY4ERFppSwvA7fDdOmMcHsUwCIiHVMEi4gkoWyPC7AHFcLRAM5McyqARUTaoQgWEUkyTb4g63Y2c/VTC9jVHOShmZMoykrr0msnDi7gpq+PZGdjC998Yu4+WyyLiMi/KYJFRJJIky+4dyvkldsbiWB5ds4majpZMSJqScUuFm/exfYGH2uqmvZusSwiIvtSBIuIJBNj+NaTc/duhfzR2uoO1wHeXzhiufbZBWSm/XuL5eufW0i9t2sRLSKSKrQ6hIhIEtnZ4GfNjiYy3U4+3VDTrQBuLbrFsi8QZnT/XPrlpZGTruuDRSS1aHUIEZE+oiQ3nUNLs3sUwPDvDTUy01wUZrkVwCIi+1EEi4gkkerGFl5aUNGlAN69gkT7opdGLNpcT70vGKspioh8KSiCRUSSiDHw0oKKTo+bOXUws+/4Wpd2lnvq042EwpFYTVFE5EtBESwikkQy3E6eumIKw4qz2j0mug5wkz/Y6TrC0w4p4tfnj8Xt1Nu9iEhrelcUEUkiHpcDA+2GcDSAczPc9M/P7HBnuWmHFHHvheNwOQy5Ge4EzF5EpO9QBIuIJBGn08GAvIw2Q7h1ABfv2QmuvS2WowHsdhjK8jIS/W2IiCQ9RbCISJJpK4TbCuCo/UNYASwi0jmtEywikqTC4Qhbd/lwuxx4A+E2A7i1qnofwcju93SXw9BPASwiKa6jdYI7Xl9HRER6TTBiaWwJYf3QEop0uCRaJGIJhC11vgAGyM9wE4lYHA6TuAmLiPQhimARkSTkD4ZZVlHPpX/4jENLs6nY5aUsJ51nrzqastz0fY6NRCybar2c//CnZKY5AWhuCfHyd45haFGWQlhEpA26JlhEJMm0DuBAOMKKbQ00+EKs3dHEzD98RlWDf++xrQO4tjlARZ2Pijofdd4g5z/8KRtrmolE+t5lbyIi8aYIFhFJIvsH8P5ah/D+Abw/hbCISPsUwSIiSSQUsVz9zPw2AzgqGsLzNta2G8BRdd4gNz6/iKaWUDymKyLSZymCRUSSiMflYNZVR5O159re9qzd0cQ3HpvTYQADDMhL57HLJmmzDBGR/SiCRUSSiNvpYERZDn+5blqnIdyZAXnp/OW6aQwsyIzR7EREvjwUwSIiSSYWIawAFhHpmCJYRCQJ9SSEFcAiIp1TBIuIJKnWIexxde3tuizXowAWEekCRbCISBJzGkNGmgu3s2tv1x6XE1cXjxURSWV6pxQRSVKt1wHu6hJnm2u9B2yoISIiB1IEi4gkoc42wuhIWzvLiYjIvhTBIiJJpicBHKUQFhHpmCJYRCSJxCKAoxTCIpJI4XCYJn+I5pZgl46v8wbY2dh770+KYBGRJNIcCHHhI50H8IC8dO6/eHyXdpa75un5NPi69kNJRORghMNhNtf6OOOBj1hT1dRpCG+r93HZHz/jk3U1vRbCimARkSTiMIa7zh2LMe0fE10H+Iyx/fnLddPI7CCEM9Oc/PK8sWT0cPc5EZH2RAP4osfmsKnGyyWPf9ZhCG+r93HVU/P5vLKB/3pxca+FsCJYRCSJZHlcfOXQYh6ZOanNEG69EYZrzzrCL7UTwplpTv5y3TRGluV0eYk1EZHuaB3AOxtb+OD7x5Ob7mg3hKMBvHxrA69/dxqnHF7WayGsd0URkSTTXgi3tROcu50QVgCLSLztH8Cz7/gam2t9vHbj9DZDuHUAv3fLdFpCcOdZR/RaCOudUUQkCe0fwh1thbx/CCuARSQRttT59wngVxZV8s0n5nLv26sPCOGqBv8+AbypxsfFj83h+ucW7RPCnyYwhF0J+VtERKTboiH8xLemMLIsu8OtkFuHcMSiABaRuEtzOSjKSuO17x7LK4squfut1QC8tKACgNdunM5ZD3zIjMfnUJztoaLOtzeAr356PqGIZeHmOq5/bhEPXTqBNKdhQEEG6V3cJr6njLU2IX9RLE2ePNnOnz+/t6chIpIQLcEwHnfXbmwLhiMACmARSYiqeh9/bRXArV0wqZwfnHIYZz3wIVWNwQMCuLWJgwt46NIJZKc5yc5Ii9n8jDELrLWT23pOZ4JFRJJcVwMYFL8ikjhVDf52Axj2PSPsD4TYUO1tM4CBVmeEJ5KdEddp76V3SxERERHptuqmlnYDOOqlBRXc+9YqPt/a2G4ARy3cXMfjH62ntrkl1lNtkyJYRCTJ+QKhLh8bDIZpCYbjOBsRkd2KstL48RmjOz3upYWV3DBrYYcBDHDUsEKuPu4Q0pyJWddcESwiksR2eQMsrainss7X6bHBYJgvar1srPEqhEUk7jwuJ2eO69+lEO7MUcMK+d3F43EC2emJuVpXESwikqR2eQMsq6xn5h8/45tPfNZhCEcD+KJHZ3PRo7MVwiISdwVZaTEJ4dYBXJKXoAuCUQSLiCSlaABf8ad5BMOW9Tub2w3h1gG8yxuk3hdUCItIQvQ0hKMB7MAmNIBBESwiknT2D+CotkJ4/wCOUgiLSKL4Q2HW7WjizHH9+eHpo7r8uklDCvjdxeNp9Aaobg4esMVyvCmCRUSSSHsBHNU6hEOhSJsBHKUQFpF4i26FfMWfdu/fMKw4q8uv7ZeXjsMYfvzK55z/8Ox9tlhOBEWwiEgScTkc3Pj8ojYDOCoawh+vr243gKPqfUFufnEx/mAkHtMVkRQWDeDlWxt466avsHJbI995dmGXX/+Ppdu45+3V/O7SSftssZyoEFYEi4gkEacDnr3yaLI9Hd8dvX5nM5c/Oa/DAAYoL8jg4ZmTyMt0x3KaIiL4AmG21/s73AmuMy8tqODet1fz2o3TyU13sH5nM80tifnk6qC2TTbGFFpra+Mwny7Rtski8mXmC4RYv7OZix+bQ1NL19cI3l95QQazrp7K4MLMGM5ORGS3cDhMTVOA5ds63wijM9Etlh0GSnLSYzbHjrZN7vRMsDHmWGPMSmPMcmPM0caY/wfMM8ZsMcZMi9ksRUQEgIw0F8NLsnjhmqmdnhFujwJYROKtzhuKSQDDv88IH8S52YPWlcsh/g+4CLgK+AfwM2vtcOBs4L44zk1EJGX1JIQVwCKSCDubWroUwFOGFvDdrx3a6XgvLajgqU83Ut2UPNsmu621y6y1s4Gd1tqPAay1C4HELugmIpJCWodwurtrt3D0y01XAItIQhRmpXH2+AEdHnPUsEIemDGBy6YO6XQd4UGFGXzjqMHkpCXmlrWunF5oPZM79nsuLYZzERGR/biMIc3lwGlM1453GlyOrh0rItITDmO49dTd6wK/vLDygOdb7wTndjk4Y2x/AP7nHysPOHZQYQbPXTWVTLcDp9MZ13lHdSW1f2KMyQSw1r4SfdAYMxx4Ol4TExFJda03wmgOdO1u6Yo6H5f98TMqd7W/xbKISCyU5Hj2hvD5Ewfu89z+WyHnZ6aR7nZyxtgDd5ZrHcD5mWm4nIk5E9zp32Ktfc1a623j8fXW2nuiXxtjHoj15EREUlV7O8F1xfqdzXxTISwiCdBWCO8fwFEFWQeGcG8FMBzkEmltDmTMQmvtxJgM1gktkSYiX2Y9CeDWhpdk8fSVRzMwX7dviEh87WxsIWItryyq5OzxAw4I4NbqmgP4g2E+WlvN1OFFcQ3gHi2RJiIiiROrAAadERaRxImeEb5g0sAOAxj+fUZ4+sjiXjkDHKUIFhFJIv5whBmPzenSTnD3Xzy+SzvLfefZBezyBmI5TRGRA5TkeHA5nR0GcFQ0hHsrgCG2EazbkUVEeigQinDXuWPoaIGH6DrAp43p1+k6wllpTu46Zwwel855iEj85WV0fYv23gxg6EYEG2PGdnLI/T2ci4hIyivK9jBlaCEPXTqxzRBuvRFGmsvZ4YYaWWlOXrhmKoeWZpORdnA7z4mIfFl1J78fMsbMNcZcb4zJ2/9Ja+2fYjctEZHU1V4It7UTXHs7yymARUQ61uUIttYeB1wKDAIWGGNmGWNOitvMRERS2P4h3NFWyPuHsAJYRKRz3V4izRjjBM4Bfgc0sPta4B9aa/8a++m1TUukiUiqqGlqYUlFPYeWZne6FbIvEGL9zmastQpgERE6XiKty++QxphxwLeBM4D/B/yHtXahMWYAMBtIWASLiKSKomwPk4bkk5fR+S710TPC0T+LiEj7uvMu+QDwB3af9d276KS1dqsx5scxn5mIiAB0KYCjFL8iIl3TnXfLMwCftTYMYIxxAOnWWq+19pm4zE5EREREJA66szrEu0Dr1Y8z9zwmIiIiItKndCeC0621TdEv9vy547s0RERERESSUHciuNkYMzH6hTFmEqAN6UVERESkz+nONcE3AX8xxmxl97Jo/YBvxGVWIiIiIiJx1OUIttbOM8aMAg7b89Bqa20wPtMSEREREYmf7q6lMwUYuud1E40xWGufjvmsRERERETiqDubZTwDDAcWA+E9D1tAESwiIiIifUp3zgRPBg633d1nWUREREQkyXRndYjP2X0znIiIiIhIn9adM8HFwApjzFygJfqgtfasmM9KRERERCSOuhPBd8ZrEiIiIiIiidSdJdL+ZYwZAoyw1r5rjMkEnPGbmoiIiIhIfHT5mmBjzNXAS8Cjex4aCLwSj0mJiIiIiMRTdy6HuAE4CvgMwFq71hhTGpdZJUhdc4CmllBcxs72uCjISovL2CIiIiLSM92J4BZrbcAYA4AxxsXudYL7rEA4QuUuX1zGHlacFZdxRURERKTnuhPB/zLG/BDIMMacBFwPvB6faSVGPJc81nLKEi/VjS1x/QSjOMcTl7FFRESSSXci+HbgSmAZcC3whrX28bjMKkF8wQgXPzYnLmO///2vxmVckaaWEF+974O4jP3B97+qCBYRkZTQnQi+0Vp7P7A3fI0x39vzmIiIiIhIn9GdHeO+1cZjl8doHiLSRfG80EYX8YiISKro9EywMWYGcAkwzBjzWquncoDaeE1MRERERCReunI5xKfANnZvm/ybVo83AkvjMSkRERERkXjqNIKttZuATcC0+E9HRERERCT+urNj3HnGmLXGmHpjTIMxptEY0xDPyYmIiIiIxEN3Voe4B/gPa+3KeE1GRERERCQRurM6RNXBBLAx5lRjzGpjzDpjzO3tHHORMWaFMWa5MWZWd/8OEREREZHu6M6Z4PnGmD8DrwAt0QettX9t7wXGGCfwIHASUAHMM8a8Zq1d0eqYEcAdwLHW2jpjTGk3vwcRERERSQLhcBin0xnzY+OhOxGcC3iBk1s9ZoF2Ixg4Clhnrd0AYIx5ATgbWNHqmKuBB621dQDW2h3dmJOIiIiIJIEdDX421XgZXJRJWW56h8fWewNsqvVSmpNOv7yOj42XLkewtfbbBzH+QGBLq68rgKP3O2YkgDHmE8AJ3GmtfWv/gYwx1wDXAAwePPggpiIiIiIi8bCjwc8bn2/jztdWcNnUIXz3a4e2G8L13gCfb23g20/OY+KQfH77jQm9EsLdWR1ipDHmn8aYz/d8Pc4Y8+MYzMEFjAC+CswAHjfG5O9/kLX2MWvtZGvt5JKSkhj8tSIiIiLSU60DGOCZOZv4/XvrqGrwH3Bs6wAOhCPM2VDLTX9exPb6A4+Nt+7cGPc4u6/dDQJYa5cCF3fymkpgUKuvy/c81loF8Jq1Nmit/QJYw+4oFhEREZEktn8AR7UVwvsHcFRvhXB3IjjTWjt3v8dCnbxmHjDCGDPMGJPG7mh+bb9jXmH3WWCMMcXsvjxiQzfmJSIiIiIJ1l4AR7UO4YZ2AjiqN0K4OxFcbYwZzu6b4TDGXMDu7ZTbZa0NAd8F3gZWAi9aa5cbY35ujDlrLT4DewAAGj9JREFUz2FvAzXGmBXA+8APrLU13fw+RERERCSBdja1tBvAUc/M2cQD/1zL/M272g3gqDkbann8o/XUNbe0e0wsdWd1iBuAx4BRxphK4AtgZmcvsta+Abyx32P/3erPFrh5z/9EREREpA8oyfbw/ZMP4753Vnd43LOfbebZzzZ3Ot6EQflcfdwhFGR5YjXFDnVndYgNwNeNMVmAw1rbGL9piUh7MtwOXrhmatzGFhER6YrS3HQumlwO0GkId2bCoHwenjmRfnkZsZhal3Q5go0x3wOeBBrZvYLDROB2a+078ZqciBzIF4xw8WNz4jL2+9//alzGFRGRL6dYhHBvBDB073KIK6y19xtjTgGKgMv+f3t3H1xXfd95/P1FsiSwBDZYODwYDAGSMYQAVYjzLKc0hYSFzDQbSJaGJrR0+5CGUifDbjfJpDvd2TYUttkyTShQCEOhWZZNaEKhgbUTmhSCCUzA5AGWZ0rA0ACWwQLb3/3jHgXFSLIuvkf3Xv3erxmNdB7u73zHR+fq49/9nfMDLgcMwdIcsidYktRJdiYItysAQ3MhOKrv7wW+XN3gFjO9QFLr2RMsSeo0E0F4WybnffMns3rNG/ffo20BGJp7OsTtEfFPNELwDRExBEx/i18XqDPC+98DSZJUkv7eXThq2SvmO5vWQUsW0tPGwNRMT/AZwFHA/Zn5fETsBbyaqZQ7xkBvfR8rD/T6sbIkSSrDxEQYv3nZulm/5qt3/itDAwtmnGK5TjsMwRHx+sz8EY0ADHDwfBkF4cfKkiRJO2e6meBm4/JbHgJoSxCeTU/w2cCZwF9MsS2Bd7e0IkmSJHWFnQnAE9oVhHcYgjPzzOr7qvrLkSRJUjdoRQCe0I4gPOuBqxHx76ub4YiI/xIR10TE0fWVJkmSpE71+HObZxWAj1q2iDPeftAO27v8loe44taHeGpsbqZNbuburU9n5saIeDtwHHAx8MV6ypIkSVIn23O3Pn5lxd4z7nP0skV88bRj+J13vZbV73ndjPvuu8cAv3bM/iwZnJtpk5sJwVur7+8DLszMbwB9rS9JkiRJnW7v3Qf47L87nPe94TVTbp88EcaSoX4+OLL/tEF43z0GuPLMlRy418I6S/4FzYTgxyLiS8ApwHUR0d/k6ztOnc+4mB/Pz5AkSZredEF4qpngJibU2D4ItyMAQ3PPCf4gcDxwbmY+ExH7AJ+sp6y5Mdjfy9qaHmU22N/MP60kSVJ3mgjCAN+466czToW8/RTL7QrA0EQIribI+BqwNCIOqFb/qJ6y5saSoX6WDM3NuBNJkqT5aiIIH7Z0iFPetGzGqZAngvDuu/byrsOG2xKAoYkQHBEfBz4LPMHL0yUncGQNdUmSJKmL7L37AKe/dTmLdtvxLWN77z7AiW/Yhz3n6Ca4qTTzmf0ngNdl5tN1FSNJkqTuNZsAPKGdARiau7HtEeDZugqRJEmS5kozPcH3A2sj4hvAz59inJnntbwqSZIkqUbNhOCHq68+fD6wJEmSulgzT4f4HEBEDFbLY3UVJUmSJNVp1mOCI+KIiLgDWA+sj4jbI+Lw+kqTJEmS6tHMjXEXAmdn5oGZeSDwR8Df1FOWJEmSVJ9mQvDCzFwzsZCZa4H2PN1YKljUOCd3nW1LktRJmno6RER8Gri8Wj6NxhMjJM2hhX09rKlpuu+FfT21tCtJUqdpJgR/DPgccA2NmeJurtZJmkPDQwMMD7W7CkmSulszT4f4GfAHNdYiSZIkzYlmng7xzYhYNGl5cUTcUE9ZkiRJUn2auTFuSWY+M7FQ9Qzv3fqSJEmSpHo1E4K3RcQBEwsRcSCNscGSJElSV2nmxrg/Bv45Ir4FBPAO4MxaqpIkSZJq1MyNcddHxDHAymrVWZn51MT2iDg8M9e3ukBJkiSp1ZrpCaYKvV+fZvPlwDE7XZEkSZJUs2bGBO+Ic01JkiSpK7QyBHuTnCRJkrpCK0OwJEmS1BVaGYJfbGFbkiRJUm2aujEuIo4Elk9+XWZeU31fOc3LJEmSpI4y6xAcEZcARwLrgW3V6gSuqaEuSZIkqTbN9ASvzMwVtVUiSZIkzZFmxgT/S0QYgiVJktT1mukJ/jKNIPxTYJzGc4EzM4+spTJJkiSpJs2E4IuBXwfu4uUxwZIkSVLXaSYEb8jMa2urRJLEzza9yNj4llraHuzvZfHCvlralqRu00wIviMi/g74BxrDIYCXH5EmSdp5L23bxviWej5s61/gh3iS6vPkc5vZuHkLgwO9LN19YMZ9N77wEhvGxlnYv+N969JMCN6VRvh9z6R1PiJNklpo0/hWjjvvW7W0vWb1KAzV0rSkwj353Ga+9+C/8fEr7+CsXz6UU489YNpwu/GFl3jg6U2ceuEtvPPQJXzu5CPaEoRnHYIz86N1FiJJgoV9Pdx49rtqa1uSWm1yAM6E82+8F2DKIDw5AD//4lauX/8EQFuCcDOTZQwAZwCHAz+vMjM/VkNdklSk51+qryd47SdHa2lXUrm2D8ATpgrC2wfgCe0Kws08J/hy4DXArwLfAvYHNtZRlCSVavIfkW5qW1J5pgvAE86/8V6u+t7DPPHc5mkD8ITr1z/BZ792N088t3kOKm9oJgQfkpmfBjZl5mXA+4A311OWJEmSOtlTY+PTBuAJ5994L39368Pc/9T0AXjC9euf4JJ/foCnx8an3aeVmgnBL1Xfn4mII4A9gL1bX5IkSZI63V6D/XzkLct3uN9f3nQvJ1/wnRkDMMChew9y+luXs9dgf4sqnFkzT4e4MCIWA58GrgUGgc/UUpUkSZI62tLdB/jd0dcCcNl3H9yptg7de5DLPnYs+y7atQWVzU4zT4e4qPrxW8DB9ZQjSZKkbtGKINyOAAxNDIeIiKURcXFE/GO1vCIizqivNEmSJHW6iSB8+luXN/3adgVgaG5M8KXADcC+1fJPgLNaXZAkSZK6y0QQ/shbDpz1aw5pYwCG5kLwksz8CrANIDO3ADOPcJYkSVIRFi7o4f1H7Tfr/d980J709TYTRVurmSNvioi9aEyVTESsBJ6tpSpJkiR1jY0vvMT9T2/itItvnfVrrrj1Ya645aE5fTbwZM08HeJsGk+FODgivgMMAx+opSpJkiR1hR1NhDGTmaZYrlszIfge4P8Az9OYKe6rNMYFS5IkqUA7E4AntCsINzMc4svA64H/BvxP4DAaUylLkiSpMK0IwBMmT7E8V5rpCT4iM1dMWl4TEfe0uiBJkiR1vsef2zyrAHzI3oMcvu/ufO3Of51xv/NvvJdd+3o4+aj95qRHuJkQ/P2IWJmZtwBExJuBdfWUJUmSpE62x64LOHrZIr7z/56edp+J5wD39ezCot36ZpxQY/FuC1j1ur1Z1N9MPH31djgcIiLuiogfAL8EfDciHoyIB4B/AUbqLlCSJEmdZ+nuA5x3ylG87bV7Tbl98kQYS4b6Z5xQY/FuC/jKb7+FAxbtSv8cheDZHOXE2quQJElS15kIwmf//Z2/0CM81Uxw002x3I4ADLPoCc7Mh2b6mosiJUmS1Jm27xGeaSrk7adYblcAhubGBEuSJEmvMBGEv3DTvfzeqkNmnAp5IggPDfRy8hv3bUsABkOwJEmSWmDp7gOc/SuHsddg/6z2/fWVB7Kov7ctARgMwZIkSWqR2QTgCXM9Q9z2DMGS1EF2XbALV525sra2JUkNviNKkiSpOEX3BD+1cZyx8S21tD3Y38uSodl/JCBJAC+8tI1TL7yllrbXrB6tpV1J6kZFh+Cx8S2Mnru2lrbXrh41BEuSJHUoh0NIkiSpOIZgSZIkFccQLEkdZJfozrYlqdsUPSZYkjrN7gMLuPlTq2ppe7BND6SXpE7kO6IkdZDFC/tYvLCv3WVI0rzncAhJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUnNpDcEQcHxE/joj7IuKcGfb7tYjIiBipuyZJkiSVrdYQHBE9wAXACcAK4EMRsWKK/YaATwC31lmPJEmSBPX3BB8L3JeZ92fmi8BVwMlT7PdfgT8DNtdcjyRJklR7CN4PeGTS8qPVup+LiGOAZZn5jZkaiogzI2JdRKzbsGFD6yuVJElSMXrbefCI2AU4D/iNHe2bmRcCFwKMjIxkK44/2N/L2tWjrWhqyrYlSZLUmepOao8ByyYt71+tmzAEHAGsjQiA1wDXRsRJmbmu5tpYMtTPkqH+ug8jSZKkDlN3CL4NODQiDqIRfk8FPjyxMTOfBZZMLEfEWmD1XARgSZIkvXobNm5mbHxry9sd7O9heGig5e1ur9YQnJlbIuL3gRuAHuCSzFwfEX8CrMvMa+s8/o78bNOLjI1vqaXtwf5eFi/sq6VtSZKkdhsb38qqc9e2vN01q0cZHmp5s69Q+8DVzLwOuG67dZ+ZZt/RuuuZbGx8C+/48zW1tH3zp1YZgiVJkjqUM8ZJkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVp/ZpkyVJkjT/LOzvYc3q0VranQuGYEmSJDVt0/hWVp27tuXtrlk9CkMtb/YVHA4hSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBWn6MkyBvt7uflTq2prW5IkSZ2p6KS2eGEfixf2tbsMSZIkzTGHQ0iSJKk4hmBJkiQVp+jhEBs2bmZsfGstbQ/29zA8NFBL25IkSdo5RYfgsfGtrDp3bS1tr1k9yvBQLU1LkiRpJzkcQpIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxin5OsCRJkl6dwf4e1qweraXduWAIliRJUtOGhwa6emIwh0NIkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4vS2u4B2GuzvYc3q0draliRJUmcqOgQPDw0wPNTuKiRJkjTXHA4hSZKk4hTdEyx1ow0bNzM2vrWWtgf7exgeGqilbc2O51dSt6jr/Wqu3qsMwVKXGRvfyqpz19bS9prVow4RajPPr6RuUdf71Vy9VzkcQpIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUHEOwJEmSimMIliRJUnEMwZIkSSqOIViSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOIYgiVJklScyMx219C0kZGRXLduXbvLkNpiw8bNjI1vraXtwf4ehocGamlbs+P5ldQt6nq/auV7VUTcnpkjU23rbckRJM2Z4aEBhofaXYXq4vmV1C26/f3K4RCSJEkqTtE9wX7sqG7k7+389tTGccbGt9TS9mB/L0uG+mtpW1J5umE4xEyKDsFj41tZde7aWtpes3q0qz8iUOfy93Z+GxvfwmhN53ft6lFDsKSWqevv0Vz9LXI4hCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUHEOwJEmSimMIliRJUnEMwZIkSSpO7SE4Io6PiB9HxH0Rcc4U28+OiHsi4gcRcVNEHFh3TZIkSSpbrSE4InqAC4ATgBXAhyJixXa73QGMZOaRwNXAn9dZkyRJklR3T/CxwH2ZeX9mvghcBZw8eYfMXJOZz1eLtwD711yTJEmSCld3CN4PeGTS8qPVuumcAfzjVBsi4syIWBcR6zZs2NDCEiVJklSajrkxLiJOA0aAz0+1PTMvzMyRzBwZHh6e2+IkSZI0r/TW3P5jwLJJy/tX635BRBwH/DHwrswcr7kmSZIkFa7unuDbgEMj4qCI6ANOBa6dvENEHA18CTgpM5+suR5JkiSp3hCcmVuA3wduAH4IfCUz10fEn0TESdVunwcGgf8VEXdGxLXTNCdJkiS1RN3DIcjM64Drtlv3mUk/H1d3DZIkSdJkkZntrqFpIyMjuW7dup1uZ8PGzYyNb21BRa802N/D8NBALW2rbP7ezm9PbRxnbHxLLW0P9veyZKi/lrYllaeuv0et/FsUEbdn5shU22rvCe5kw0MDDA+1uwqpOf7ezm9LhvoNqpK6Qrf/PeqYR6RJkiRJc6XonmBJ6jQOd5HULbphOMRMDMGS1EHGxrey6ty1tbS9ZvVoV390Kamz1PV+NVfvVQ6HkCRJUnEMwZIkSSqOIViSJEnFMQRLkiSpOIZgSZIkFccQLEmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEuSJKk4hmBJkiQVxxAsSZKk4hiCJUmSVBxDsCRJkopjCJYkSVJxDMGSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBWnt90FSJJeNtjfw5rVo7W1LUmtUtf71Vy9VxmCJamDDA8NMDzU7iokace6/f3K4RCSJEkqjiFYkiRJxTEES5IkqTiGYEmSJBXHECxJkqTiGIIlSZJUHEOwJEmSihOZ2e4amhYRG4CHajzEEuCpGttXe3l+5y/P7fzm+Z3fPL/zW7vO74GZOTzVhq4MwXWLiHWZOdLuOlQPz+/85bmd3zy/85vnd37rxPPrcAhJkiQVxxAsSZKk4hiCp3ZhuwtQrTy/85fndn7z/M5vnt/5rePOr2OCJUmSVBx7giVJklQcQ7AkSZKKYwieJCKOj4gfR8R9EXFOu+vRzomIZRGxJiLuiYj1EfGJav2eEfHNiLi3+r643bXq1YuInoi4IyK+Xi0fFBG3Vtfx30dEX7tr1KsTEYsi4uqI+FFE/DAi3uL1O39ExB9W7813R8SVETHg9du9IuKSiHgyIu6etG7K6zUavlCd5x9ExDHtqNkQXImIHuAC4ARgBfChiFjR3qq0k7YAf5SZK4CVwO9V5/Qc4KbMPBS4qVpW9/oE8MNJy38GnJ+ZhwA/A85oS1Vqhb8Ers/M1wNvpHGevX7ngYjYD/gDYCQzjwB6gFPx+u1mlwLHb7duuuv1BODQ6utM4K/nqMZfYAh+2bHAfZl5f2a+CFwFnNzmmrQTMvPxzPx+9fNGGn9A96NxXi+rdrsMeH97KtTOioj9gfcBF1XLAbwbuLraxfPbpSJiD+CdwMUAmfliZj6D1+980gvsGhG9wG7A43j9dq3M/Dbwb9utnu56PRn4cjbcAiyKiH3mptKXGYJfth/wyKTlR6t1mgciYjlwNHArsDQzH682/RRY2qaytPP+B/ApYFu1vBfwTGZuqZa9jrvXQcAG4G+r4S4XRcRCvH7nhcx8DDgXeJhG+H0WuB2v3/lmuuu1IzKXIVjzXkQMAv8bOCszn5u8LRvPCPQ5gV0oIk4EnszM29tdi2rRCxwD/HVmHg1sYruhD16/3asaG3oyjf/s7Ass5JUfpWse6cTr1RD8sseAZZOW96/WqYtFxAIaAfiKzLymWv3ExMcu1fcn21WfdsrbgJMi4kEaw5feTWMM6aLq41XwOu5mjwKPZuat1fLVNEKx1+/8cBzwQGZuyMyXgGtoXNNev/PLdNdrR2QuQ/DLbgMOre5M7aMxQP/aNteknVCND70Y+GFmnjdp07XA6dXPpwNfm+vatPMy8z9l5v6ZuZzG9fp/M/M/AGuAD1S7eX67VGb+FHgkIl5Xrfpl4B68fueLh4GVEbFb9V49cX69fueX6a7Xa4GPVE+JWAk8O2nYxJxxxrhJIuK9NMYY9gCXZOaftrkk7YSIeDtwM3AXL48Z/c80xgV/BTgAeAj4YGZuP5hfXSQiRoHVmXliRBxMo2d4T+AO4LTMHG9nfXp1IuIoGjc99gH3Ax+l0Xnj9TsPRMTngFNoPMnnDuA3aYwL9frtQhFxJTAKLAGeAD4LfJUprtfqPz5/RWMIzPPARzNz3ZzXbAiWJElSaRwOIUmSpOIYgiVJklQcQ7AkSZKKYwiWJElScQzBkiRJKo4hWJIkScUxBEtSG0TESRFxzo73fMXrlkfE3TXUMxoRb520fGlEfGCm10hSN+vd8S6SpFbLzGvprFkpR4Ex4LttrkOS5oQ9wZLUYlVv7Y+q3tSfRMQVEXFcRHwnIu6NiGMj4jci4q+q/S+NiC9ExHcj4v7Z9sBGRE9EfD4ibouIH0TEb1frRyNibURcXdVxRTVDExHx3mrd7dUxvx4Ry4H/CPxhRNwZEe+oDvHO7WuKiH0i4tvVfndP2leSuoohWJLqcQjwF8Drq68PA28HVtOYvnt7+1TbTwT++yyPcQbwbGa+CXgT8FsRcVC17WjgLGAFcDDwtogYAL4EnJCZvwQMA2Tmg8AXgfMz86jMvHmGmj4M3JCZRwFvBO6cZa2S1FEcDiFJ9XggM+8CiIj1wE2ZmRFxF7B8iv2/mpnbgHsiYuksj/Ee4MhJPcd7AIcCLwLfy8xHq+PfWR1zDLg/Mx+o9r8SOHOG9qeq6TbgkohYUG03BEvqSvYES1I9xif9vG3S8jam7oCYvH/M8hgBfLzqvT0qMw/KzH+aor2t0xxzR15RU2Z+G3gn8BhwaUR85FW0K0ltZwiWpO51A/A7Va8sEXFYRCycYf8fAwdXY4ABTpm0bSMwtKMDRsSBwBOZ+TfARcAxr6JuSWo7h0NIUve6iMYwh+9XN75tAN4/3c6Z+UJE/C5wfURsojG0YcI/AFdHxMnAx2c45ijwyYh4icbwCnuCJXWlyMx21yBJmiMRMZiZY1VovgC4NzPPb3ddkjTXHA4hSWX5repGufU0bqT7UpvrkaS2sCdYkjpQRLwBuHy71eOZ+eZ21CNJ840hWJIkScVxOIQkSZKKYwiWJElScQzBkiRJKo4hWJIkScX5/2mpeXwSvww3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hb1cHH8e+VZEne204cZ+9NEickYVN22VBGAzSsQHlpgdLSvm9boNDSQQcFyt57jzAKBcoMWc7eew873kO25nn/cBScxDORZCf+fZ6H54mtq5tjDPLXV+eeYxljEBERERHpSmwdPQARERERkVhTBIuIiIhIl6MIFhEREZEuRxEsIiIiIl2OIlhEREREuhxHRw/gQGRlZZk+ffp09DBEREREpBObN29eiTEmu6nHDskI7tOnD4WFhR09DBERERHpxCzL2tTcY5oOISIiIiJdjiJYRERERLocRbCIiIiIdDmKYBERERHpchTBIiIiItLlKIJFREREpMtRBIuIiIhIl3NIrhMsItKV7Kr2kuS2Ex/X+kt2ea0XgPREV7SHJSLSonKPl1pvEJtlYQAM2GzQPTW+o4cGKIJFRDq1kup6Xpi1mROH5DCoW1KLIVxe62PGulJCIcOxg7JJS3DGcKQiIlBd76e6PsDSbZW8tWAbS7ZWsq2iDoAUt4PheakcNzibM0d1J85uIzfF3WFjtYwxHfaXH6iCggKjHeNE5HBXUl3Pk99s5OEv15HgtPPytRObDeGGAC7hJy8vAOCfFx+hEBaRmNpZVcesdWX87r1llHv8LR7rsFlcVJDPT783kG5RvDJsWdY8Y0xBU49pTrCISCfUOIABPL4glz4+i9U7a6jzB/Y6tnEAGwPGwE2vLuSr1buo8Pg6Yvgi0sXsrKznf99cws2vLmw1gAECIcNLc7Zw3kPfsmJHFZV1sX+tUgSLiHQy+wZwWFMhvG8AhymERSRWiqrqueHF+Xy+ale7n7ujsp4fPDKTHZX1URhZyxTBIiKdSHMBHNY4hKvq/E0GcFjjEC5XCItIFBRV1fPgf9cwf3P5AZ+jxhvgmmcL2VFZF8GRtU4RLCLSmVgWn60savGQcAj/9T+rmg3gMGPg3UXbCYYOvfs/RKTz21lZz/OzNh/0ebaW1/H4V+vZVR27K8KKYBGRTiQrycUzV05gUG5Si8d5fEGem7mpxQAGOGFINn88byRZSVoyTUQia2dlPX/7z6qIne/F2ZvxB2P3C7siWESkk8lLi29TCLfmhCHZ/Pn8UeR04BJEInL48gdDfL22JGLn8wZC/HdlccTO15qoRrBlWU9ZllVsWdbSZh63LMu637KstZZlLbYsa2w0xyMicqg42BBWAItItK0uqm713aj2+nL1LkprYjMlItpXgp8BTmvh8dOBgbv/mQY8HOXxiIgcMg40hBXAIhILczaURfycS7dV4vGFIn7epkQ1go0xXwEt/Rs6B3jONJgFpFmW1T2aYxIROZTkpcXz4jUTSU+Ia9Pxw/NS+NsPRiuARSSqQqEQJTXeiJ+33OPDZlkRP29TOnpOcA9gS6OPt+7+3H4sy5pmWVahZVmFu3a1fx06EZFDUXmtj9kbSqmoa33xeYANJbVsKavbb0MNEZFIstlsOGyRz0iHzYYhNjfHdXQEt5kx5jFjTIExpiA7O7ujhyMiEnXNbYTRkpZ2lhMRiaTB3ZMjfs4+WQkRP2dzOjqCtwE9G32cv/tzIiJd2oEEcJhCWERioaB3esTPObpHGtmJzoiftykdHcHTgSt2rxIxEag0xuzo4DGJiHSogwngMIWwiERbVpKLjAgH6wXj8nE5HRE9Z3OivUTay8BMYLBlWVsty7rasqzrLcu6fvchHwLrgbXA48AN0RyPiEhnF4kADlMIi0g0pbjjmHJkr4idr29WIrmpsbupN9qrQ1xqjOlujIkzxuQbY540xjxijHlk9+PGGPM/xpj+xpiRxpjCaI5HRKSzs9ss7py+rNUAPn5wNnN/fVKbdpa7Y/oyvP7YLDkkIl1HktvBpRN6kZsSmR0p/3zBKHqkxUfkXG3R0dMhRESkkYQ4O69Mm9TiW4zHD87mLxeMIju59S2WB+Yk8dCUsaQlxGaOnYh0LTlJcTx46VhsB7mq2WUTe9E7M3YBDIpgEZFOxeGw0ScjgdeuazqEwwEcXge4pQ01BuYk8exVE8iL4ZUVEelaHA4HfbISeeDSMQccwmeM6MZPThxIbooiWESkS2suhPcN4LCmQlgBLCKxkp3sYnzfDN64fnK7pjM47Tb+9/Qh3HH2cHI7YIMfy0R60+cYKCgoMIWFmj4sIoe3QCDExjIPFz06k1H5qU0GcGPbK+qY+vQcjEEBLCIdYmdlHe8s3M4zMzays6q+yWNcDhtnj87jhhP6kxIfR2ZiZOYUN8WyrHnGmIImH1MEi4h0XoFAiO2V9bjjbG3aCnl7RR2AAlhEOozXH6Sk1ketN8CybZWsLqohGDLkproY1yud7GQX7jg7mUnRi9+wliI4NguxiYjIAXE4bKTEO7BZbZtsFx9nj9GGoyIiTXPF2fdMixiUG/ld5SJFc4LboN4fpMLjo6be39FDEZEuZle1l6lPz+H1eVuoqmv5Nai81sfvP1jO799fTlmtL0YjFBE5NOlKcDN2VNRRWeencFMZhRvLqawL4HTYGJGXwoS+GfTMSCA9IY74GO1qIiJdz65qL9c+N5eFWypZuKUSgB+M60lKfNx+x4YD+M353+08/5szh0V8NycRkcOFCm4fxVX1zN1Yxt8/Wc26XbXkpboZ3C2FJJcdX9DwwZId3PfZGhJddi6f2JvLJvYmN9mFzaaL6iISOY0DOOzu91cA+4dwUwH81oKGPyuERUSapghuZFt5Hb98YxGby+uYcmQvJvTNYEuZhxU7qqmq9+N02DhmYBYDc5MorfHxwqxNvDFvKw9PGceA3ERS3PpBIyIHr6kADts3hJsK4DCFsIhI8xTBu20p83D5k7O5ZEIvBucm88Q36/nTRyub3bq0T2YCV0zqw3XH9uNnry3kjrOGM653Ginx+kEjIgeutKb5AA4Lh/DFBb2aDeCwtxZsw7IaQjhdu8aJiOyhCKZhCsStry3i3h+M5qXZm/nTv1e2+pyNpR7uen85Q7ol85cLR/Pol+vonupWBIvIQbHZLEblp7UYwdAQws9+u4nNZZ5WzzmhbwaOg93TVETkMNPlJ7JWeHy8MW8Lvzp9CL99ZylvL2j+ikpTVu6sZurTc7hiUm+e/XYjRc0sDC0i0hbpCU5uOXkQV0zq3eqxbQngP18wkjNGdifZvf/NdCIiXVmXj+Bab4Ch3VO5+/3lrNxZfUDn8PiC3PDifC4s6MmiLRURHqGIdDXtCeGWKIBFRJrXpSPY7w+ybEcVS7dXsuAg47XWF+T37y/H5bBRrKvBInKQDjaEFcAiIi3r0nOCy+r8dE9x85OXFkTkfAu2VFBa6yNoQhE5n0h7GWMoq/URCBnqfEECIYPdBglOBw6bRUaiE6uNO49JxwuHMMBzMze1+XkKYBGR1nXpK8E2C2asLcUbiFy0vjBrEx6vIlhiKxAMUVRVz5wNpWwsrcXjDRAIGULGEAxBnS/IptJa5mwoo6iqHn9Q/40eKtITnPzytCFktnGJs/F90hXAIiJt0KUjuN4f4uNlOyN6zvmbK2hmVTWRqCj3+Fi5swpvIIgBAkGz5wqw3bKw2yAQChEINkSxNxBkxbZKyrWt7iGhvNbHHdOXUdrG79fcjeW8Vtj6FssiIl1dl54OYVmwfEdVxM9b7lFcSGyU1XoprvJisyyCIYMBVu+sJjUhjm4pbgxgAUXV9VR4/AzITiIUAput4XPGGDKSXB38VUhzymt9/OHDFbwxb2u7ntfcznIiIvKdLh3BwZCJ6FSIsC1lHsb3yYj4eUUaK6/1UV3fMO3BGMO64lpS3A7G98kgzmERH2ffc2xWkgt/MEhlnZ91u2rISnRB0FDjDYBlaTexTuhAAzhMISwi0rIuHcGhKM1bCETrxCK7+YMhquv9hAxsL68jPyOegblJ1PmCvDRnM/M3l7N6Zw2+YIg4u8Wg3GTG9Eznh0f2pHtqPDXeAJvLPAztnkKN10+Sy47TYW/9L5aYONgADlMIi4g0r0tHcJw9OnfJt/UGFpEDVV3vwxjYUVlHv5xEwOLmVxayZFslBX3SmdQvix9N6oM7zk69P8ja4hoWb6vknH/NYGj3FP72g9EMyE5iW0UdPdLiqan3k5GkCO4M2hPAg3OTWVXU8vrmCmERkaZ16Qg2xtAzI54tZXURPW9+ekJEzyfSWChkMFjU+gLkp8UzY10pf/loJT+a3IfbzxrGzHWlLNxSwcfLdlLnC+J22hicm8xR/bO47dTBfL2mhIsfnclNJw3ixCE5VNf7SXI5CIYMdm2t2+FCxrCtovXXpPAyaPd+vKrV5dM2lngIGr1DJSLSWJeOYLvNxsS+mWwpO7i3HBtrmFupHzYSPbVeP8GgIdkdx6crivhi1S6enjqex7/ewAP/XUuwiek4W8rq+HRFMX//BE4Z3o0np47ngf+upd4f5IyR3QmGDDVeP6nxehejo2UmuXjg0jH85OUFzFxX2uQxjdcBbm0d4csn9uZnpwwiPUHfWxGRxrr0EmnGGM4b2yOi57y4oCfV9VqaSKInaBr+xy2t9bKhpJaLCnpyxdNz+GDJjiYDuLGQgY+W7uSKJ+dw7hF5FFd7Ka6uRxeAO5es3SE8qX/mfo/tuxFGSzvLKYBFRJrXxSMYdlbWM6nf/j9oDkSSy8Gpw3N1NU2iyhcI4QsZ3lu0ndE90/jJy/Opqgu06xzV3gA3vbqQQbnJfLy0CF/Q4PVrA43OpKkQbm4nuKZCWAEsIp2Fxxegus5HIAorch0MyxyC88QKCgpMYWHhQZ+nqKqOez9ezZQjezHlidl4fMGDOt89543k6zW7+PX3h2pesERNpcfLwi2VxDsdTHliFv7ggf8/bLdZvHjNkdR6A4zrnU6agqnTKanx8pOXF3DuEXmt7gRX7vHxj09WYwwKYBHpMFUeHzW7dyqdub6M9btqCBlDZpKLI/tkMCo/FafDTrdUd9THYlnWPGNMQVOPdek5wcEQXFSQz0NfrONvF43mxpcWtPp2cnMuHt8Ty4KMBCe13vZdlRNpj2pvELvdxp3Tlx1UAEPDWtm/fWcpvzt7ODXegCK4E8pKcvHwlLHYbVarWyGHrwhjUACLSMzV+QKU1vp4+It1vL1gW5MXF5/fff/C5P6Z3HbqEHqku8lOjn4MN6VLT4fwB0OkJzjZWFLL5yt38dCUsaTEt+/3AsuCa47pyzEDsvjd9GVcdUxf1hbVRGnEIuCw2ajy+CO22+Ga4hpKarzEaWJwp+QPhiit9bX5napab4Ban34RF5HYKq6q58vVuzjjn1/z4uzNrb5mfbuulHMfmsH9n62hqKo+RqPcW5eOYLvN4t6PV3HfJUfw5vytvDhrE89eOYFTh+ditaEH+mcn8czU8cTH2fnpKwv4nxMGsHhrBT0y4qM/eOmyfMGGDTEi6cXZm6nvZHO1pCGA1xbXcN5DM7jplQWt/qDYWu7hsidmM+WJ2Wwt98RolCLS1RVX1TN90Xauf2E+VfXt+yX8+VmbufGl+R0Swl06gi0LarwB1hXX8Nszh/HVmhKueHIOR/RM483rJ3PD8f05sm8GKe6Gq8NOu41h3VO4qKAnz1w5nltOGsg9H67kgf+uZWK/TM4anccv3lhEht6GlGgyFnM3lkX0lPM2lUf0fHLwwgF88WMzqaoLMGt9WYshHA7gjaUeNpV6FMIiEhP1vgALt1bw+w9WHPA55m4s5/Z3l7KzKrL7NrSmS88JdtptXDA2n5++spDXrpvIHWcN4+73l/Pnj1bhctg4blA2xwzM5tpj+5HkcuAPhthQUsuSbZXc9sZiiqu9ABw3KJvfnzuCSx6byXGDcrBHaSc6EWiII2+Er9oGQlodojPZN4DDwiH8z0vGkJvy3Ry6xgEcFg7hF685UjfqikjUlNb6+cXri5t93G6HwTnJxNltbCr1UFHX9DKyHy8r4oKx+WQMduJ0xGYH0y4dwXabxeieaaQnxHHRo7N48NIxvHvj0dz8ykLW7arhP8uL+M/yomafn+i0c8dZwxjdM40LH/mWoiovf7lwNHarS19glyir8x/cKibN0TzSzqG5AA7bN4SbCuAwhbCIRFN1vY8nvllP5T5hO6lvBr8+cyhpCU58gRC7qr2EjCEtwUmy24HXH2L6om3887O1ez3v9neX8eYNk+mRFptppV06gtMTnHh8Qe44azg3v7qQG19ewHEDs3js8rEUVXt58psNzNtUToXnu2+uy2FjaPcULirI55iB2by/eDun3vc1AGeM7EZWkhOnQ1eCJXraMl/9QNiidWJpl3p/kClPzN4vgB02i5OH5XLq8G70SI9na7mHkhovdb4gf7lwNOt21TB90fb9dpnbVOrhxy/M54WrJ5CqqVoiEkFV9UHeKPxu191+WQk8NXUClXV+Hvp8HZ+tLN7vnUvLghF5qVx7TF9m/PIEnvl2I49/vQGAnVX1bCypVQTHgmVZxMfZ6Z+dyNmj85i+aDtfrinhe3//igl907n+uP786rQhOOwWgaDBZlnYbBa7quv5z/Ii/u/tpXvO1SMtnhtPGIjTZiMj0dWBX5Uc7pLd0fnfNjWh5eW3JDZCIcNffzCaa58r3LNk4w8K8pkyoRefrizmr/9ZxdbyvefNWRYMyknmBwX53HryIO77dA3frC0BIMXt4C8XjiI+LjZvL4pI11FUWU/17mVhf3HyQM4Zm8+d05fx6YriZp9jDCzZVslPX1lIfno8D1w6hu+P6s65//oWgHcXbmNsrzTindFP1C4dwQDJ7jji7F6mTu6DNxDk42UN0x/mbChnzoa2bciRnx7Pg5eOxemwSEvUlRaJLnecnWSXY88LTyTEx9lJUCR1CqkJTsb1SuPxKwr4+euL+PMFo1hdVM1Fj85iaPdkphzZi+F5qbgcNgwNAVxVF2DJtgpemLWJB/67ljvOGsZpI7rx909W8eI1E+mflYhT318RibDwTdr/d8Zgjh2Yw9kPzqCs1tfm528tr+P8h7/lzrOG8/HNx3LqfV+xeGslpbU+8hXB0ed02EhPiMMbDHLZxN5M6JvBvR+vor6NNwmdPTqPq47uS5wdEp0O3E7NB5boCr8t/taCbRE75/eG5mDXOsGdRmqCk4Jeabxzw1H84o1FxNltPH/1BDaW1vLW/G088N+1e63BmZYQx5ie6fzytCE4HTb+8tEqRuan8t6NR5Od5FIAi0hUrNtVw3EDszhlWHfO+deM/eYGt4UxcMf0ZfzlwlE8e+V4bnhxfhRG2rQuX2xFVXW8NGcz/oDBYbORm+zilWkTue7YfmQ0c1XXYbM4fUQ3nr96AqfsXlM4FDT8/ZNVVHj81Pl1g5FETzBk+NHk3hE955VH9SF0CG6hfjjzG8P/vb2Yc47I4wcF+Vz3wjx++eYSZm8o228R+gqPn89XFfPjF+fzu/eW89szh5KT7OLRr9bjidKNlCLStYVCIUIG/njBKG56ZcEBBXBjv31nKb0yEziyXyYWsbko06WvBO+srOPZbzfy8JfreXbmJh64dAxBAyYEfTIT+ftFo0l0OSiqrKeqPoDTYe25w3pTSS3BkCHObsOEDHd9uIK5G8tZsbOaJ64YT3xql/5XK1EUMpDgdHDaiFw+Wtr86iVt9b0hOaTGx3GAO4ZLFNT5grw9fxvXHtuPt+Zv492F2wEY2SOF204dTLfUeNxxdmwWhIzB4wuyscTDHdOXsLnMw+VPzeGWkwaRnx7Pkm2VTO6fpSv9IhJRNpuNSybkM2NtCYu2Vu73+PljevDDI3uRkejE6bBh0bAcZ019gMJNZdz1wXKCjX5H9wZC/N/bS/njuSMxMboo06VLzcKiT1Yi0HAlZerTc7nm6L7kpbkBg9NuIxQy+IMGm9Vwyd7nDxLvcmC3W/gCIfyBEFc/W0jp7jkwOcnuqN29LwJgsxqW5/vZyYOZs6G8XfOv9pUaH8dtpw0hwelAjdR5lNZ66Z7q5rW5W/hgyU7OGd2dW04ejMcX4LXCrczfXM6aohq8gSBJLgdDuqcwoW8GL0+bTDAU4pZXF/L3T1bzs5MHUe7xM7hbMjnJ7tb/YhGRduiWEs9try/Z63N3njWMk4blsrGklpdmb2bR1kq2lHkIGUN6opMReamcOCSbr35+IkVVdVzx5Bxqdr+7NXNdKUEMGfGxub/KilVtR1JBQYEpLGzbTWstKa6qo8YbZP7mcn7eaKHnjEQnFxXkc+KQXLz+IDsq6/EFQ9gsyExykZnoZHVRDS/M2sTyHVV7nnfS0BzuOmcEcTaL7BT9wJHo2FVVz2Nfr2fepnJuO20I054vbHI92dYkuxw8esU47vt0DUO7p3DjCf3JVih1OG8gyPuLtu+5KvLG9ZNIcjn4xRuLWbJt/6st+zp+cDZ3nTOCBZvLuemVhbx87ZEEQ4ajB2bHYPQi0pWsKarm5H98BUDP9Hiev/pIVhdX89t3llJU5W3xuS6Hjcsm9uaaY/ry8BdreW7mZgBuOL4/t502JGJjtCxrnjGmoKnHuvSVYGhY+iwYMtx59nDunL4MgLJaH498uZ5HvlxPgtPOoNzkPTvGrS+pZVf1/t/YEwbncPXRfSmv9ZKbqpCQ6DFAUVU98zdX8I9PVvP01Anc/u5Slm2vavW5YUO7J3P3OSP4x6ermbOhjIwEJ4fg78OHpUqPn+F5qVzw6Ay+/MXxfLxsJ3/+aNWe5dJa88WqXZx+31fcf+kY3rx+Eje9upAHfziW8lof6Vq9RkQiaNHWCgAG5ybx7FUTuOu95Xy4dGebnusNhHjymw18sryIp6YWkJ8ezz0frmLepnJ2VtbRLTX6awV36Rvj7DaLv/5nFb98cwlltV7uPHv4fsd4fEEWbqngm7UlzN5Q1mwAX3V0H65+tpDLn5oLMZrQLV2TZVlcPrEP3x/ZndkbyvjJS/O59ZTB/Ob7Q8lPb/lFIy/Vza9OH8IvTxvCza8uZMbaUk4Zlss1x/TF0jyeTsEAHy/byTs/Poo352/lng9XtjmAw2p9Qa55rpDiai93nT2c0hqvbnwUkYhbuLmCeKedZ6+awC2vLmpzADe2uczDBQ/P5ITBuVx2ZC9WFVUTiNFNKl36SrDNgquO6svXa0q4/7O1/PR7A/a6ItwW4QC+7vl5eHxBrj66b7t/YIm0R3ayC2MMUyf3AeCDJTu46pm5HD8om9vPHEa8087SbZWs3FlNnS+IO87O4G7JjOyRijcQ4uU5m/nzRysxBk4Zlsu0Y/vRMyOB7GRt8tIZeP1BMhLi2FHp5f59thRtD2PgplcW8u+bj+Gt+VsZ2j0lgqMUka4uEAjh8Qd547pJPPH1BmauL239Sc2orPNzzXOFvDJtIh8s2RGzS4ldek6wLxBi3a5qdlX7uO75edT5gzx75XhemL2ZT5a3ftd9fJydr247nlP+8RXlHj83njiAo/pnMrR7CmnanlSirLiqnk2lHp75diOri6qpqvdTVOUlwWlnWPcUBuUmE++0U+8Psqa4hmXbKqn1BclOdpGR4KR3ZsKeAM7VHPZOY2NJLU6HjbMf/IaSmgO/6TFsZI9UHpoyFpsFPXavbiMiEgkvzt7E6Pw0znrwm4hMqbvu2H6cOjyXnBT3ntW4DpbmBDcjFArhdthJcNp59PJxfLu2hJ1VXj5d0bZlp+r8QW5/dxl/u+gIFm+tYFzvdBJdDnyBtm20IXIw4uw28tLiuel7A/CHDF5/iBtfms/2ynoKN5VTuKl8v+fkprh4aMo4XA4bLodFotOB096lZ0V1Ou44i4+W7YxIAEPD9qTF1fX0iMH8OhHpWo4dmM3t7y6L2D0lz87cyBWT+uCwx+ZacJf+6VfrC/K795bzzLcb6ZeVyMj8VH711uJ2fTP/vXQnb83fyiXje1Je6+WKp2ZrPU6JuvJaH/d+vJKHv1iD3W5j6lNz+dVbi3nwh2PJa+bGzHAA/+adJVzx1Bwsy8aT32zgng9XUH4Qy6xJZPmD8PSMjRE952NfrdfSjSIScRbw5eriiJ2v3h/iqzW7YvbuZJeO4MwkF3+6YBQ/Pq4/C7ZUcOPLCw7ot5n3F+/g7vdXMKFvJq9d27CckUi0hAPY4wsy9ai+XPLoLHbVeFldVNNsCDcO4BU7qimr9XHRozO5eEIvLOCeD1cc1HrDEjkhY9hU6onoOWdvKMMfPPSmvolI57amuCbiGy19saqYCk9sfh516QgGcNgt1pfU8tNXDiyAwz5YsoO7319OWqITV5w9cgMU2YcvGGJkjxRuPHEAlz42m101361Y0lQI7xvAYWW1Pi55bBbXHNuPsb1S8Qc1jaczaGoFmoNV4fETPATv/xCRzm32hgO/Ga45S7dVUVPf/rXvD0SXjuCSai8z15W2KYB7ZrQ+n+6DJTv53XvLKK6qj9AIRfbntMOEfln7BXBY4xAe0zOtyQAOC4fw+L6ZOPW7W6dQGqUr8rpXQUQiKRQKReWX9rJaX8yW7OzSERwwhsKN5a0G8IlDcpj+P0fzp/NHtnrOaLw1INJYnN3OlU/PbTKAw8IhfPe5I5oN4LCyWh8/emoucXZN4+kMHFG6p0DrQItIJNlstqjcA2W3WRhiE1JdOoIdFlx/XD8un9ir2WNOHJLDnWcN55x/zaBbqrvFEB6Um8TTUyfoippElT8Y4p+XHEFCK/+hrS6q4cwHvmkxgAHccTbuu/gIvIHYvP0kLWttw5MDYVkQH9elX+5FJAoG5SZH/Jy9MxNitk5wl35VdNht3PvxSi6f2KfJEA4H8G/fWcwr0yayYHNFsyE8KDeJp340ntvfXUpIO8ZJVFlMX7SNRy8f12oIt8YdZ+ORy8bx4dId2Kwu/XLQaSS54oj0xZXeGQl6h0pEIm58n4yIn3Nkj1SykmKz10KX/qmXluDkN2cO4/7PVu8Xwo0D+JZTBnPOgzPITXE1GcLhAL5j+jJ+d/ZwspK085ZEj82C847I57MVRQcVwuEA/mLVLs49ogdaLrhz8AdDHDMwO6LnPHV4N/7KFZ0AACAASURBVJwOfYNFJLKyk12kJcRF9JwXjMvHFReb6Xld/lUxI9HFXeeO2CuE9w3gq58pZFeNl1+/s3S/EB6cm7wngO84ezj5GdqRSaLLabeRk+LivDEHHsKNA/i8MT3ISXHhsHX5l4NOYVuFh8tamKLVXjYLThvRLWZ3W4tI15Ea7+CH4yP3etUzI54eabHb2Ec/9YA6b5DLJ/Xhn5+t4vKJffjd2XsHcPhubWPYK4RzU9y8PO1I7pi+jFtOHkRJdX3M1raTrqs+EKLS4ycnee8Qjm/j0nwux94BnJ3soqrOj1dLpHUKXn+IqroARw/Iisj5rjyqL/9eujNGt5mISFeS6Irjskm9yY7QO+B/PG8kucmxmQoBimC2lnn44ZOzmfr0XC4Z35u/fbKKW16Zv18AhzUO4YVbKjj3gW+55eRB/Pz1RVz82CyWbqtUCEtUBUOGe/+zmv95aQE5yU4uGd+L7CQXmW2cQ5We4CQ3xc2lE3qSnezi5lcXcM+HKwhoM4VOITPZxV3vL+fnpwwiNf7g3mbsn53ESUNzefKbDbg0HUJEoiA32cl9lxxx0LtSXjgun0G5ydjtsVtdoEu/KpbV+rjtzcVsKvVQ5w8y7fl5TDmyN78+c/heAZwS7+CVaRMZ2ysd2DuEn7pqPD9/fRErd1bjDxquea5Qt8VJVMXZLUb0SGH+5nL+9skaUhPiuOW1hWwtr2vT83dW1fPTlxeQ7I7jwc/XMGdDOcPzUomL0V7t0rLMBCeVdX7u+fdKHrlsHCnuA5sb1ysjgb/+YBS3vbmI9ITI32wnIgJgt9sZnJvEvReOPuAQPnFIDr84dTA5MdouOcwyh+AuQgUFBaawsDAi59pc5uGHj8/aExAuh404u40ab8P8uZR4B69Nm0S/7ETKav3c8OJ85m8uBxqWHUqLj6Pc4wca1vd8/IoCjuiVSnqCbo6T6Kn0+Hh/yQ6OG5TNtc8VtroMWlMG5iTx1NTxfLGqmLNG55GWELu3oKR5W8o8XP3sXFYX1TCpXyY/P3Uwv3tvGYu3Vrb5HCcPy+XHx/Xn1tcXsaGklvPH9OC20wfTLSV2c+1EpGspqa5ndXENN72ysM2baNhtFjeeMIAfHtmL3CgFsGVZ84wxBU0+1tUjGPYP4bDGAex0NFye31lZv1cIhymAJdZ2VNZx1TNzDyiAwwbmJPHsVRPIi+GNCNKyBZvLWV9Sy62vLQKgW4qbu88dwc7Kep75diPrdtU0+9yxvdK55pi+VHh83PPhyj2/zL9zw2TSEpz0yUqMydcgIl1TMBikuNrHS3M28+LszZQ1swOmw2Zx6vBcbjppEFlJTjISo9dNiuA22DeEmwrgsH1DWAEssRaJAA5TCHcun60oIjU+jptf3XuKy4S+GVw+sTc5KS7WFtWwprgGbyBIosvB0G4p9M1KZNn2Kp6ftZHVRd+F8uT+mfxgXD6j8tPon5PUEV+SiHQxdb4AZbV+Kjw+FmyuYHVxNcGQITfFxYS+meSnx+OOs5GVFP3pD4rgNgqHcFW9v9kADguH8OKtFQpgiakKj48pT8xm2faqFo9zx9m44fgBPPLlOjy+YIvHDspN4rXrJmlKRCcwZ30pd763nNvPGsalj8/ab1t3u81iQHYS/XMScdrteHwBVhVVs6nUs9+5Epx2XrtuElc8NYe3b5hM70xdCRaRrqWlCI7NasSHiF4ZCbx07UTqfAH6ZjUfwADdUt08NGUsW8o9DMhJVABLzBjgumP7cdOrC/cLpDB3nI0XrjmSUNBwzMAspjwxu9kQtiy47rj+HIq/EB+OuqfFs3xHFZ+tKOaus4fz23eX7fV4MGRYVVTNqqKW3wVw2m38a8pY/v7Jaup8wTYvoSci0lV06dUhmtIrI4F+mS0HcFi3VDdj8nUFWGIvM8nFfRc3vSRNOIBnri3l9flb+WJlMS9ec2STG2pYFtx74WjyUt2gdU06BVecjYxEJ49/vZ6yWh9//cGodgdsdpKLJ6cW8Pb8bfx3ZTFH9EzTEmkiIvvQq2IT4trxA8fRhlgWiaRAMMTCLeU47Lb9QrhxAPfMSOCo/lkMzE1uMoTDAZwa72D2hjICIW2W0RmkJzj50aTeAPzj0zX8d2UxL117JN8bktPq8kNOu41LxvfkkcvH8Y9P1jB90XYArj+uH6ma6iIishfNCRY5xFR6fJR5fHyyvIge6QkEgiFufnUhLsfeAVy4sYwXZm/mooKeHDswizVF1Rw/JIcpT8ymzh/cE8Criqo5c1QeafFxmhPcSeyoqOP4v36BN9Dwi0lmopOrj+7LpP6ZzFxXyvzN5Q03xvlDDTfGdU+moHcGo/JT+ffSnTw3c+Oe5+alunn3xqPJTtY7ViLS9ejGOJHDSIXHx8qdVfiDhvmbyhmQm0woZOie5t4vgMP2DeGNpbUkuRws2lrJxL4ZOGwWg7ulkJ6oCO4MfIEQby/Yyi/fXLLX5512G+P7pjOyRyr9spNw2m14fEFWF1WzeGsFC7ZU7DdP/J3/mcwRPdNjOHoRkc5DN8aJHEb8gRBfrirh4S/X8dszh7K2qJr89Hi+WVNCn8zEvQK4f3Yi63bV8lrhFgCOHZjFZ8uLGNgtmUVbK8lJdnHZk3O4+ui+9NPyWZ2G02HjlGHd+HzVLj5aunPP533BEDPWljJjbWmbznPrKYPon63vq4hIUzQnWOQQY7fbWF9SC8Dd768gye1gW0X9fgF8w/H9effGo7n5pIEAvFa4ha/WlDCkewrrdtWQk+zi9t0rD2woqcGhfXU7lfREJ/ecN4KzR+cd0PNvPWUQl0/sTbI7LsIjExE5PCiCRQ4xGYlO/nj+CE4d3g1oCGG7zWL2htK9Anjasf1Icjm4cnIfbv7edyH85epdJDgdewL4xCHZ3Hvh6Kju2CMHJiPRxe/OGc5jV4wjJb5tb9zlp8fz7v8cxdTJfTTHW0SkBZoTLHII2lFRx5ZyD098vYH/LC/a67Fpx/ZjYt8MRvRIJSfFTXFVPYu3VrBwSwUPfr5ur2NPHJzNj48fQI+0ePLStWNcZxUIhiir9TFrfRnPfLuRZdsr99z4BpDscnBErzSuP64/g3KTyE6O/i5MIiKHAs0JFjmMVNb5ufKZuWwq9fDY5eMA9oTwtGP7MTAniWueK+So/lk8dNlYbntzMV+u3sUfzh3JjSf03xPCJw7O5qqj+zH16Tl0S43nrRsmkxqvt847I4fdRk6Km7OPyOOYQVn4AyG8gRAhY7DbLJwOG26HnRR9/0RE2kxXgkUOMRUeH7M3lPHjF+bhcth57PJxPD9rE32yEhmYk8Qv31xMaPf/1g6bRWD3B5YFfzh3JNsrPCzfXsVVR/fjuucL8fiDPHDpGI7un0WaVocQEZHDSEtXgjUnWOQQ5LJbPDRlHN5AkGnPz+Oyib0ZsE8AA3sCGMAY+PU7S+ieGs/Vx3wXwPdfMoYUtwOj++JERKQL0ZVgkUNMVZ2f9xdvJ95pJz7OwQ0vzsPAfuvDtiS889j9l4zBAkpqvJw/Nl9vp4uIyGFFV4JFDiMp8XGcOSqPOl+QOn+Ah6aM40Au4iqARUSkK1MEixyCmgrhti7za1kKYBERkahHsGVZp1mWtcqyrLWWZf2qicd7WZb1uWVZCyzLWmxZ1hnRHpPI4SAcwiZkGN8nnT6ZiW16Xs/0BCb3z8Tj8yuADxF1/kCbj/UHg/gCwSiORkTk8BDVCLYsyw78CzgdGAZcalnWsH0O+w3wmjFmDHAJ8FA0xyRyOEmJj+Pogdnc+vqiPbvItWZzmYebXlnAcYNzFcCHgBpvgOXbqthRUdfqsf5gkA0lHjaVeBTCIiKtiPaV4AnAWmPMemOMD3gFOGefYwyQsvvPqcD2KI9J5LBRXFXPbW8u5otVu9r1vG/WlnLrawsprqqP0sgkEmq8AVbtrCJooNzjazGE/cEgG0s8eHwBav0BNpcqhEVEWhLtCO4BbGn08dbdn2vsTuAyy7K2Ah8CP2nqRJZlTbMsq9CyrMJdu9r3A1/kcHSgARz2zdpSfqYQ7rTCAewPhPD4AgRCptkQ/i6Ag/iDBn/QKIRFRFrRGW6MuxR4xhiTD5wBPG9Z1n7jMsY8ZowpMMYUZGdnx3yQIp3JwQZwmEK4c2ocwJX1AaY9N49bX1vUZAg3DmBfMMR1z89j2nOF+AIKYRGRlkQ7grcBPRt9nL/7c41dDbwGYIyZCbiBrCiPS+SQtava26YAtllwzui8VleNCIfwrmpvBEcpB2rfAP7JSwvwBUOsKa7ZL4T9wdB+AVxW66Pc41cIi4i0ItoRPBcYaFlWX8uynDTc+DZ9n2M2A98DsCxrKA0RrPkOIs2wLDiiZ1qLx9gsuP/SMdxy8qA2LZ82Kj+Nhun50tF8gRCBoNkrgMP2DeEFm8v3C+CwxiFcHwhR71cEi4g0FtUINsYEgBuBj4EVNKwCscyyrLssyzp792G3AtdalrUIeBmYag7FbexEYsRuszhzVHduPmlgk4+HAxgDv3hjUavrCN9wfH8uGNsDh60zzI4SuwWVdf79AjiscQgHQ6bJAA7bE8JNnEdEpKuL+k89Y8yHxphBxpj+xpg/7P7c7caY6bv/vNwYc5QxZrQx5ghjzH+iPSaRQ5qBZ77ZyPGDc/YL4cYBXFLj46mp4/G0sKHGDcf354yR3Xn0y/Ux/AKkJXabjdveXNxiuIZDuMYbaDaAw8o9fn77zlI4oH0FRUQOX7r0I3KISU90cuupg3lj7pa9QnjfAD5/bA+S3XGcNSqvyRAOB/Bz327kf88YSnqiswO/KgkzxvD8VRNIdNpbPG5NcQ3XPtdyAAPkpbp5aMpYHC2fTkSky7EOxZkHBQUFprCwsKOHIdKhymt9/O3jVVw4vidfriqmf07SXgHceCOMqjo/7y3eToLTTnycg6XbKjltRDcFcCdUWx9gc3ktVXUBrnpmLrW+A5/Lm5fq5vEfFeC02+iW6ibZrc1RRKRrsSxrnjGmoKnHdCVY5BDV+Irw5P6ZBEOmyQCGhp3lwleEa71+ThiSrQDupIIYLntiDg9/sY4np45v9Ypwc/JS3Txy+ThueXUhP399EcHQoXfBQ0QkmhTBIoewcAi/vWA75bX+JgM4LBzC9YEQL8/ZogDupEzI8IfzRvDVml088sU6nr269akR+wpfAf7564vYVl7H788dgTtO8yFERBpTBIsc4tITnfzi1MEtBnBYOIR/rQDutFITnEzql8lDU8YSZ7dIcTl46dqJuBxte7nOTXHx0rUTcdptJDkdvDJtIgNzkxXBIiL7cHT0AETk4LUnaFsLZel44RDuk5lInT9EIBQizm7DG2h9qTOXw05VvR+HzeKflx5BTrIblwJYRGQ/uhIsItLJ+INBiqu9eAMh/MEQ1z43jxpvoE3P3Vzm2bOOcHV9oNXVI0REuipFsIhIJ+IPBvdshewPhpjWyjrATWlqi2UREdmbIlhEpBPx+kPU+Q88gMMah3BlnY+aen+ERyoicmhTBIuIdDL+wMEFcNh3IQyhQ3BNeBGRaFIEi4h0IiED173Qtp3g/nLBqDbtLPfrt5egBBaRaKv0+NhV7aWkur7VY/3+IDsq6yiqav3YaFEEi4h0IsFQiN+fO2LP9tZNCW+EsWxHVasbaiQ47dx97ggsWjihiMhBqvT4WLq9iqP+9F8+XVHcYgj7/UE2lnn4/v3f8OB/13ZYCCuCRUQ6EZtlMSg3mX9eMqbJEA4H8M9fX8Sz327kkS/W8dSVTYdwgtPOc1dNwOWwEdR0CBGJknAAX/n0XHzBEL96a0mzIRwO4Isfm0VZrY/nZ23qsBBWBIuIdCL+kOGP/17J0G7J/OPiI/YK4bxUN09dOZ4ab4Bd1V6uPqovy7ZXkux28MxVe+8sl+C088yV40l02Xnki3UEg4pgEYm8fQM4rKkQ3jeAwzoqhC1zCF4dKCgoMIWFhR09DBGRiKvw+Ciqqmfq03M5fUQ3RuencctrC+mW8t0V4EG5yfzq9CGkxcdRWuvjpy8vID3ByfXH9+fqZ+ZigKemjufRL9dTVuvl/kvHkOaOI1W7BIpIBDUXwI396fyRnDQ0h1R3XJMB3NjlE3tz44kDyE1xR2yMlmXNM8YUNPmYIlhEpPOo8Pg4/Z9fs6Oy4YrIVUf1oaBPBj3S4/nF64tYXVQDwDlH5HHXOSO44snZLNpaCcDxg7K5/vj+GAOPfbWez1cVA1DQO53HriggQxEsIhG0cmcVZz8wo9kADvvj+SM5sl8GFz48s9Wbfn/6vQFcMakPWUmuiIyxpQjWtskiIp2IPxjixhMG8Ot3lgLw1IyNVNT5WbK1kjXFNXuOe3fhdj5YvINA6LsLGV+s3oU/FMLC4pu1JQA47TZuPWUQdk1+E5EIS09wcvKwHD5YsrPF4/73rSXYbRbBUMsXXvNS3VwwNj9iAdwaRbCISCeSnezmlOG5AHtC+K3525o8NtDED5QZa0v3/Nlpt/HsVeMZlpdCaryuAotIZOWmuLn9rOEArYZwWwL45WkT6Z2ZGLHxtUbXBkREOplwCP/h3BEHfA4FsIjEQjiEzxrV/YDPkZfq5pUYBzAogkVEOqWDCWEFsIjESmlNPat2VnHe2B6cPqJbu5+fl+rmwR+O5Y15W2K+OoSmQ4iIdFJNTY1ojQJYRGKltKaeJduquPrZQhw2i4emjAXg30tbnhoRFg7gX765mDXFNeys8nLrKYMjujpES3QlWESkE8tOdnPGqO5ktnFlh6HdkxnSTQEsItG3q9rH1c8WEgwZvIEQj3+9nmuO6dfm558+sjtLtn130+9rhVt5fuYmSmq80RryXhTBIiKd2M7Keq58ei6lrSwrFLZoayV3TF9GcQdtQyoiXUey28E5R+QBMKZnGreeMphrn2v7ErZPfrOBkDH89HsDAOidmcA5R+ThsGKzzbvWCRYR6aR2VtZz/QvzWLilot3PPXt0Hr/5/lByYvS2ooh0PcVV9WworWXWuhImD8jmuufntboOcFPuOGsYwZBhfJ8MMhOd5GckRGyMLa0TrCvBIiKd0MEEMMD0Rdv5/QcrdEVYRKImPT6OgTmJfH9UjwMOYIDfvbec1Pg4clNcJLtjd7uaIlhEpJM52AAOUwiLSDSV1/soq/Vz0aOt7wTXml+8sZgvVu2iqt7Prhi9ZimCRUQ6keLqtgWw027j7NF5rZ5v+qLt/OFDhbCIRF5NfZCLHp3VagB3T3UzuX9mq+f71VtLmLm+jBCxmaqrJdJERDoT07DCQ0sRHF4GbWj3FI7sm9Hq8mkFvdMjPUoRERKcdvLS3C1GcHgZtFpfgNT4uBaXT0tw2hmcm0ySKzZ5qivBIiKdSE6Km1tOGsSlE3o2+XjjdYDTEpytbqhx9znDOW14N90gJyIR1y01nieuKGBEj5QmH2+8DvA1zxZy4bj8ZjfUSHDaefnaiQzISSTRFRfNYe+hCBYR6WRyUtzc3EQIN74CHF4HODvZzcnNhPDd5wzn1OHdyFYAi0iUhEN45D4hvO9GGN5AiBtenN9kCCc47bwyLbYBDIpgEZFOp6rOz4dLt3PjiQP2hHA4gOt8QYqrvQSDIQDq/AFW7ahmXO/0vUL47nOGM6FvBit3VuPxBTrk6xCRw5/XH6TaG+Cuc0bsuSK8bwDvObaJEE5w2nnksnHsqKijxhuM6dg1J1hEpBOpqvPzWuEWfv/BCv720Wo+/tmxOO02ThvRjZp6P9c+P58Ut4M3fjyZXhkJFG4oZ+ozcwmGDB/ddAx/OHcEIWOY0DeDU+/7GrvN4ump4ynok06CUy/5IhI5Xn+QDSW1XPTYTFyOhph99Mt1XH9c//0CeM9zdofwQ1PGkuhycPboPJ6esZHPVxVzx1nDOGNk95htm6zNMkREOpFyj4/z/jWDjaUeAJKcdj68+VhW7ajk2ufn7zkuxe3gqqP68sDnawmGvnsdf/8nR2NZ8P37v9nzuWMGZvHApWNIS9BWyiISOet21XDeQzOoqmt4tyk72cVfLhjFPR+u2CuAe2UkMDA3ic9WFO/5nMth494LR/H2gu18vuq7z//hvBGcNCSX3NTIhHBLm2UogkVEOpkdFXVc+visPSF8MCb3z+SBS8eQmeSKwMhERL6zo7KOG19awLxN5c0e0zszgfsvGYM3EOSVuVt4a/62Zo9NcTt44ZojyU9zk5EU/QjWnGARkU6me1o8L187kT6ZB7d1qAJYRKLJZsHtZw5jXDPLMIYDOCMxjry0eC4e35Pzx/Zo8tgUt4NHLy/A5bARryXSRES6roMNYQWwiERbbko8uamuJkO4cQDf8+FKznzga3KT3U2GcDiAMxLj6J7iJj5OESwi0qUdaAgrgEUkFrZX1LG2qIac5L1D+LsAdlJdF2D2+jKS3XG8PX8rPdMT9grhcACnJ8bhcthYX1JLdd3BbcHcVopgEZFOrHtaPK9eN4m0hLatnTmkWzIP/nCsAlhEos4CPltZzNXPziU72cntZw7j3CN6NLoCvIK/f7qa935yFG9eP5m89Hi+/8BXe64IXzGpd0MAJ8Tx0dKdXP/CfNISnfh3LwEZbYpgEZFOrM4fYE1RNdX1bVvrd3tFHSU1360jLCISLRV1fp75diPLd1RzzbOFZCc7uXh8/p4pEP9eupNPVxRz53vL+WjpTn711hLKawOc+9A35Ca7OWlobkMAL9vJfZ+uYeXOal6avRksKybjVwSLiHRSdf4A8zaWM/XpuXstg9aSqvoAFz78LetKahXCIhJV2Uku7rv4CCyLPSHcMz1hTwCHfbK8iNunLyO8IFmFJ8DZD35DXpp7TwADnDIsl6uP7ktGYmzeydISaSIinVDjAA60MYAbC2+o0T8rEbtd1ztEJDpKqr3MWFfCza8u5GCS8pRhudx97oiIb5ShJdJERA4hBxvAoCvCIhIbWckujuqfteeK8IGIVgC3RhEsItKJRCKAwxTCIhILBxPCHRXAoAgWEelUgkH4ycsLWg3gyf0z+eaXJ7S6fFpVfYCfvbaQWl8wksMUEdlLVrKLyf0zuffCUW1+znGDszssgEERLCLSqcTH2Xj1ukmkuJtfLD68DnB+ekKr6wj3zkzg8csLSIlv2xJrIiIHyiI2qzpEiiJYRKQTsdtt9M9K5I0fT24yhPfdCKOlDTV6ZybwyrUT6Z4WH/Vxi0jXVlLt5Zu1JfzijcVtfs6Xq3bx67eXUFRVH8WRNU8RLCLSyTQXws3tBNdUCCuARSRWwgF8y2vtXyHi0xXFHRbCimARkU5o3xBubSvkxiGsABaRWDmYAA7rqBDWOsEiIp1YMBhiS3kdyW5Hm7ZC3lFRB6AAFpGoi0QAN3bS0Bz+cN7IiN4op3WCRUQOUXa7jT5ZiW0KYGiIXwWwiMRCcXV9mwL4pKE53HX28FaXT/t0RTFPfL2Bslpv5AbZAkWwiIiIiLRbVpKLq47q2+IxJw3N4Z7zRvL9Ud35x0UtryM8pFsyVx7VJ2bbJiuCRURERKTdclLcXHdsP64+uukQDgdwToqbzCQXRw/IajaEh3RL5qmp48mL4TtZimAREREROSDNhXDjAA7LSm46hDsigEERLCIiIiIHYd8QbiqAw/YN4Y4KYNDqECIiIiISAcVV9Xy9toRjBmQ1GcCNlVR7WbilgmF5KVEN4JZWh2h+X04RERERkTbKSXFzxohuxDtbz8usZBeT+mWQ6O64Ld01HUJEREREIqItARzWkQEMBxjBlmWdHemBiIiIiIjESqu5blnW+ft+CviXZVkOAGPMW9EYmIiIiIhItLTlmvWrwMdAMQ0BDJAInAUYQBEsIiIiIoeUtkTwZOBPwFxjzMMAlmUdb4y5MqojExERERGJklbnBBtj5gInA07Lsj63LGsCDVeARUREREQOSW26hc8YEwL+aVnW68B90R2SiIiIiEh0tWt1CGPMdmPMRcaYfvs+ZlnWA5EbloiIiIhI9ERyneCjInguEREREZGo0WYZIiIiItLlKIJFREREpMuJZARbrR8iIiIiItLx2rzBs2VZI40xS1o45J8RGE9M7aqup8YbjMq5k1x2spPdUTm3iIiIiBycNkcw8JBlWS7gGeBFY0xl4weNMc9EcFwxUeMNcsJfv4jKuT//+fFkJ0fl1CIiIiJykNo8HcIYcwwwBegJzLMs6yXLsk6O2shERERERKKkvesErwF+A/wSOA6437KslZZlnR+NwYmIiIiIREObI9iyrFGWZf0DWAGcCJxljBm6+8//iNL4REREREQirj1zgh8AngD+zxhTF/6kMWa7ZVm/ifjIRERERESipD0R/H2gzhgTBLAsywa4jTEeY8zzURmdiIiIiEgUtGdO8KdAfKOPE3Z/TkRERETkkNKeCHYbY2rCH+z+c0LkhyQiIiIiEl3tieBay7LGhj+wLGscUNfC8eHjTrMsa5VlWWsty/pVM8dcZFnWcsuyllmW9VI7xiQiIiIi0m7tmRN8M/C6ZVnbadgiuRtwcUtPsCzLDvwLOBnYCsy1LGu6MWZ5o2MGAv8LHGWMKbcsK6edX4OIiIiIdLB6XwB/yBAIhkhPdLV6fFmtj0AwRE5Kx+yw257NMuYCQ4AfA9cDQ40x81p52gRgrTFmvTHGB7wCnLPPMdcC/zLGlO/+e4rbOiYRERER6Xj1vgDrSmo55i+fs2hrJeW13haP31Lm4dx/zeDN+VsprqqP0Sj31p4rwQDjgT67nzfWsiyMMc+1cHwPYEujj7cCR+5zzCAAy7JmAHbgTmPMR/ueyLKsacA0gF69erVz2CKHj/JaHzXeQFTOneRykJ7ojMq5RUTk8BQO4EsenUW1N8A1zxbyxI8KGJ2f2uQV4S1lHqY8MZvNZR7+/NEqAC4Ymx/zK8JtjmDLsp4H+gMLgeDuTxugpQhu6xgGAscD+cBXlmWNNMZUND7IGPMY8BhAQUGBOci/U+SQ5QuG2FbR6nT8A9I3KzEqSq6NbwAAIABJREFU5xURkcPTvgEMEAiZZkO4cQCHdVQIt+dKcAEwzBjTngDdBvRs9HH+7s81thWYbYzxAxssy1pNQxTPbcffI9Jl1PmCXPLYrKic+4ufHx+V84qIyOGnqQAOayqEmwrgsI4I4fZE8FIabobb0Y7nzAUGWpbVl4b4vQT44T7HvANcCjxtWVYWDdMj1rfj7xDpUtxxNl6ZNjFq5xYREWmLrRX1TQZwWOMQHpSb3GwAh/35o1W44+x8f2T3mIRweyI4C1huWdYcYM9sZ2PM2c09wRgTsCzrRuBjGub7PmWMWWZZ1l1AoTFm+u7HTrEsazkN0yx+YYwpPYCvRaRLsFkWWUmt33V7oOcWERFpiyS3g6F5KczZUNbsMYGQ4epnC0lyOais87d4vpR4B5P6ZZIaHxfpoTapPRF854H8BcaYD4EP9/nc7Y3+bICf7f5HRFpR6wty0t+/jMq5P9d0CBERaaNuKW7uv3QMP315QYshHAyZNgXwa9Mm0TcrEVecPdJDbVKbI9gY86VlWb2BgcaYT63/b+/+w+yoy7uPv+9slt0kuyCEGISABA1iCGlIEyRS042iGMojPtWqoCKCYJ9Sq2JALKVSe2EF0vhYi60gPIgKatFH0fKramKw/gghRBSBEhEkiBCiYDY0yya5+8c5G9aQH3t2d87Zs/N+XddeuzNn5j43mczhk9nvfCdiPJWru5LqaFyBwyHGORxCklSDgQbhXWlEAIbaZoc4g8oUZftQmSXiAOBfgVcV05qkHfnv3q2F3RjnlWBJUq2GEoQbFYChtscmnwUcA/wOIDPvB3y6myRJUsn1BeGjpu4z4H0aGYChthDcU33qGwARMZbKPMGSJEkquf32bOeSN8wc8PanvvxgDth7XEMCMNR2Y9x3I+KvgXER8WrgL4BvFNNWfUxoayns178T2hwuLUmSyuPh3zzNKVetGPD2n1r6c448cG9mHbjjJ8sVrZYQfB5wOvAT4N3AjZl5RSFd1cnGni0sWLyskNpLF3VBZyGlVXLeGCdJGml29SCMndm8NTnjmpVcccqchgThWkLwezLzE8C24BsR762uk1Qn3hgnSRpJBhOA+zQyCNdy2ecdO1h36jD1IWmAxhT4PIsia0uSRp+hBOA+fUF49cNP8duNPbvfYZjsNgRHxEkR8Q1gakTc0O9rKTC4CeEkDdrWAm9HLbK2JGl0GWgA3nPcWA7bb9djRPsH4d/UKQgPZDjE94FHqTw2+R/7rd8A3FVEU5IkSWp+e41r5UvvPpqJE9o469pVg36gRhF2eyU4Mx/KzGWZOS8zv9vva1Vmbq5Hk5IkSRpZDtxnPF9418s4aJ/xO3y9LwBPnTiBSZ1tu5xHeOyY2DYueJ86jQse8JjgiPjTiLg/Ip6KiN9FxIaI+F2RzUmSJGnk2lkQ7h+A++YB3tkDNfoH4JF6Y9wlwOsyc6/M3DMzOzNzz6IakyRJ0si3fRDeUQDus30QblQAhtpC8GOZeU9hnUiSJKkp9QXhIw7Ya6cBuE9fEH75iyY2LABDbfMEr4yILwFfA7bdtpeZXx32rurEJ8ZJkiQNjwP3Gc/nTz+K9taW3T4Keb892/nkSUcyJmhIAIbaQvCewNPAa/qtS6BpQ7BPjJMkSRo+e43fY8DbTuxoTPjtM+AQnJnvLLIRSZIkqV5qmR3i0Ij4dkT8tLo8MyL+prjWJEmSpGLUcmPcFcCHgF6AzLwLeEsRTUmSJElFqiUEj8/MFduta+qHZUST1pYkSdLQ1HJj3BMR8SIqN8MREW+k8jjlptXRNpZlBc0O0dFWyx+tJEmS6qmWpHYWcDlwWEQ8AvwCeFshXdXJvp1t7NvZ2DsTJUmSVH+1zA7xAHBsREwAxmTmhuLakiRJkopTy+wQ742IvrmCPx4RqyLiNbvbT5IkSRpparkx7rTM/B2Vh2VMBN4OfKyQriRJkqQC1RKC+yY8OB64JjPvxkkQJEmS1IRqCcF3RMStVELwLRHRCWwtpi1JkiSpOLXMDnE6MAt4IDOfjoiJgI9SliRJUtPZbQiOiMMy814qARjgkAhHQUiNMq51DF888+jCaquxntjQQ3dPMc8h6mgb67SQklQ1kCvBZwNnAv+4g9cSeOWwdiRplzb1buUtl/+wkNpFPTxGA9fds5muxcsKqb1sUZchWJKqdhuCM/PM6vcFxbcjaXd80uHolk1aW5KazYD/jxcRfwbcnJkbIuJvgNnA32fmnYV1J+k5fNKhJElDV8sAwAuqAfiPgGOBK4F/LaYtSZIkqTi1hOAt1e9/Alyemf8O7DH8LUmSJEnFqiUEPxIRnwbeDNwYEW017i9JkiSNCLWE2DcBtwDHZeaTwD7AOYV0JUmSJBVowDfGVR+Q8XVgckQcVF19bzFtSVI5OQ+0JNVHLbNDvAf4MPAYzz4uOYGZBfQlSaX03wXOA73UeaAlaZtaJgV9L/CSzFxfVDOSVHYT9mjhW2f/cWG1JUkVtYTgh4GnimpEkgQbn9nCsUu+W0htrwRL0rNqCcEPAMsi4t+Bnr6Vmblk2LuSJEmSClRLCP5l9WsPnB9YkiRJTayW2SH+DiAiOqrL3UU1JUll5ZhgSaqPWmaHmAF8jsr8wETEE8ApmXl3Qb1JUuk4JliS6qOW4RCXA2dn5lKAiOgCrgBeXkBfklRKzhMsSfVRSwie0BeAATJzWURMKKAnSSot5wmWpPqoaXaIiLiAypAIgLdRmTFCkiRJaiq1/G7sNGAS8FXgK8C+1XWSJElSU6lldojfAn9VYC+SJElSXQz4SnBE/EdEPK/f8t4RcUsxbUmSJEnFqWU4xL6Z+WTfQvXK8POHvyVJkiSpWLWE4K0RcVDfQkS8EMjhb0mSJEkqVi2zQ5wPfC8ivgsE8ArgzEK6kiRJkgpUy41xN0fEbKBvFvf3ZeYTfa9HxOE+PU6SJEnNoJYrwVRD7zd38vLngNlD7kiSJEkq2HA+QzOGsZYkSZJUmOEMwd4kJ0mSpKYwnCFYkiRJagrDGYKfGcZakiRJUmFqujEuImYCB/ffLzO/Wv1+9E52kyRJkkaUAYfgiLgKmAncDWytrk7gqwX0JUmSJBWmlivBR2fm9MI6kSRJkuqkljHBP4gIQ7AkSZKaXi1Xgq+hEoR/DfRQmRc4M3NmIZ1JkiRJBaklBF8JvB34Cc+OCZYkSZKaTi0heF1m3lBYJ5IkxhT47M0ia0tSs6klBN8ZEdcC36AyHAJ4doo0SdLQjYnikmqRtSWp2dQSgsdRCb+v6bfOKdIkaRh1tI3ltnMXFFZbklQx4E/EzHxnkY1IkmDvCXuw94Q9Gt2GJI16tTwsox04HTgcaO9bn5mnFdCXJEmSVJha5gn+HLAfcBzwXWAKsKGIpiRJkqQi1RKCX5yZFwAbM/OzwJ8ALyumLUmSJKk4tYTg3ur3JyNiBrAX8Pzhb0mSJEkqVi23Cl8eEXsDFwA3AB3A3xbSlSRJklSgWmaH+Ez1x+8ChxTTjiRJklS8AQ+HiIjJEXFlRNxUXZ4eEacX15okSZJUjFrGBF8N3ALsX13+L+B9w92QJEmSVLRaQvC+mfllYCtAZm4Gtuxup4h4bUTcFxFrIuK8XWz3hojIiJhTQ0+SJElSzWoJwRsjYiKVRyUTEUcDT+1qh4hoAS4DFgLTgZMiYvoOtusE3gv8qIZ+JEmSpEGpJQSfTWVWiEMi4j+Ba4D37Gafo4A1mflAZj4DfBE4cQfb/T1wMbCphn4kSZKkQaklBP8M+P/A7cBjwBVUxgXvygHAw/2W11bXbRMRs4EDM/Pfa+hFkiRJGrRaQvA1wGHAR4FPAodSeZTyoEXEGGAJ8IEBbHtmRKyMiJXr1q0byttKkiSp5Gp5WMaMzOw/nndpRPxsN/s8AhzYb3lKdV2fTmAGsCwiAPYDboiI12Xmyv6FMvNy4HKAOXPmZA19S5IkSb+nlhC8KiKOzswfAkTEy4CVu9nndmBaREylEn7fApzc92JmPgXs27ccEcuARdsHYEmSJI0s6zZsortntxOF1ayjrYVJne3DXnd7uw3BEfETKjNCtALfj4hfVpdfCNy7q30zc3NE/CWV+YVbgKsy8+6I+AiwMjNvGOp/gCRJkuqvqF/L1+vX/QO5EnzCUN4gM28Ebtxu3d/uZNuuobyXJEmS6mNjzxYWLF427HWXLuqqDJgt2G5DcGY+VHwbkiRJUv3UMjuEJEmSNCoYgiVJklQ6tcwOIUmSJAEwoa2lMn63gLr1YAiWJElSzZr9xjiHQ0iSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJKl0DMGSJEkqHUOwJEmSSmdsoxtopCc29NDds7mQ2h1tY9m3s62Q2pIkSRqaUofg7p7NdC1eVkjtZYu6DMGSJEkjlMMhJEmSVDqGYEmSJJWOIViSJEmlU+oxwZIkSRqcjrYWli7qKqRuPRiCJUmSVLNJne1M6mx0F4PncAhJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUukYgiVJklQ6hmBJkiSVjiFYkiRJpWMIliRJUumMbXQDjTShrYWli7oKqy1JkqSRqdQheFPvVhYsXlZI7dvOXVBIXUmSJA2dwyEkSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOoZgSZIklY4hWJIkSaVjCJYkSVLpGIIlSZJUOmMb3UAjtbeOYemirsJqS0X47cZn6O7ZXEjtjrax7D1hj0Jqa2DWbdhEd8+WQmp3tLUwqbO9kNqSyqeoz6t6fVaVOgRv7NnCgsXLCqm9bFEXkzoLKa2S6+7ZzCsuWVpI7dvOXWAIbrDuAj+Xlvq5JGkYFfV5Va/PKi9XSpIkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKp/AQHBGvjYj7ImJNRJy3g9fPjoifRcRdEfHtiHhh0T1JkiSp3AoNwRHRAlwGLASmAydFxPTtNrsTmJOZM4HrgUuK7EmSJEkq+krwUcCazHwgM58Bvgic2H+DzFyamU9XF38ITCm4J0mSJJVc0SH4AODhfstrq+t25nTgph29EBFnRsTKiFi5bt26YWxRkiRJZTNiboyLiLcBc4BLd/R6Zl6emXMyc86kSZPq25wkSZJGlbEF138EOLDf8pTqut8TEccC5wN/nJk9BfckSZKkkiv6SvDtwLSImBoRewBvAW7ov0FEHAl8GnhdZj5ecD+SJElSsSE4MzcDfwncAtwDfDkz746Ij0TE66qbXQp0AP8WEasj4oadlJMkSZKGRdHDIcjMG4Ebt1v3t/1+PrboHiRJkqT+RsyNcZIkSVK9RGY2uoeazZkzJ1euXDnkOus2bKK7Z8swdPRcHW0tTOpsL6S2ys2/t6Obx1dSsyjq82o4P6si4o7MnLOj1wofDjGSdfdsYcHiZYXUXrqoi0mdhZRWyfn3dnTz+EpqFpM625v6M8XhEJIkSSodQ7AkSZJKxxAsSZKk0jEES5IkqXQMwZIkSSodQ7AkSZJKxxAsSZKk0in1PMGSJEnNrLe3l7Vr17Jp06ZGt9JQ7e3tTJkyhdbW1gHvYwiWJElqUmvXrqWzs5ODDz6YiGh0Ow2Rmaxfv561a9cyderUAe/ncAhJkqQmtWnTJiZOnFjaAAwQEUycOLHmq+GGYEmSpCZW5gDcZzB/BoZgSZIklY4hWJIkSYPy5JNP8qlPfarRbQyKIViSJEmDYgiWJElS6Zx33nn8/Oc/Z9asWZxzzjlceumlzJ07l5kzZ/LhD38YgAcffJDDDjuMU089lUMPPZS3vvWtfOtb3+KYY45h2rRprFixAoALL7yQt7/97cybN49p06ZxxRVXAPDoo48yf/58Zs2axYwZM7jtttuGpXdDsCRJkgblYx/7GC960YtYvXo1r371q7n//vtZsWIFq1ev5o477mD58uUArFmzhg984APce++93HvvvVx77bV873vfY/HixXz0ox/dVu+uu+7iO9/5Dj/4wQ/4yEc+wq9+9SuuvfZajjvuOFavXs2Pf/xjZs2aNSy9O0+wJEmShuzWW2/l1ltv5cgjjwSgu7ub+++/n4MOOoipU6dyxBFHAHD44Yfzqle9iojgiCOO4MEHH9xW48QTT2TcuHGMGzeOBQsWsGLFCubOnctpp51Gb28vr3/964ctBHslWJIkSUOWmXzoQx9i9erVrF69mjVr1nD66acD0NbWtm27MWPGbFseM2YMmzdv3vba9lOdRQTz589n+fLlHHDAAZx66qlcc801w9KvIViSJEmD0tnZyYYNGwA47rjjuOqqq+ju7gbgkUce4fHHH6+p3te//nU2bdrE+vXrWbZsGXPnzuWhhx5i8uTJnHHGGbzrXe9i1apVw9K7wyEkSZI0KBMnTuSYY45hxowZLFy4kJNPPpl58+YB0NHRwec//3laWloGXG/mzJksWLCAJ554ggsuuID999+fz372s1x66aW0trbS0dExbFeCIzOHpVA9zZkzJ1euXDnkOus2bKK7Z8swdPRcHW0tTOpsL6S2ys2/t6Obx1dSLe655x5e+tKXNrqNYXHhhRfS0dHBokWLBrX/jv4sIuKOzJyzo+1LfSV4Umc7kzob3YVUG//eSpI0dKUOwZI00nT3bGHB4mWF1F66qMt/QEkasS688MK6vp83xkmSJKl0DMGSJEkqHUOwJEmSSscQLEmSpNIxBEuSJGnQTjvtNJ7//OczY8aMRrdSE0OwJElSSdx0002ccMIJzJ07lxNOOIGbbrppyDVPPfVUbr755mHorr6cIk2SJKkEbrrpJi666CI2bdoEwK9//WsuuugiABYuXDjouvPnz+fBBx8cjhbryivBkiRJJXDZZZdtC8B9Nm3axGWXXdagjhrLECxJklQCjz32WE3rRztDsCRJUglMnjy5pvWjnSFYkiSpBM466yza29t/b117eztnnXVWgzpqLEOwJElSCSxcuJDzzz+f/fbbj4hgv/324/zzzx/STXEAJ510EvPmzeO+++5jypQpXHnllcPUcbGcHUKSJKkkFi5cOOTQu73rrrtuWOvVi1eCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOIViSJEmD8vDDD7NgwQKmT5/O4Ycfzic+8YlGtzRgzhMsNZl1GzbR3bOlkNodbS1M6mzf/YYqTEdbC0sXdRVWW1J59fb2cvbZZwNw8cUX88EPfhCAJUuW0NraWnu9LVvZksE/XHwJRx45mw0bNjDvZUfxx12v5KXTpw+6zzFjgtaW4q/TGoKlJtPds4UFi5cVUnvpoi4mdRZSWgM0qbPdYyCpEGeffTarVq0C4Pjjj6e3t3fb+k9+8pM119u6NfndmA7G7z+N+x7bAMCUqS/mR3evYczEAwfd50smd0Id/s1uCJYkSSqRnp4eenp6AGhraxu2uo88/EvuvfsujjjyD4etZpEcEyxJklQCF1988XOGPbS2tnLJJZcMufbTG7v5wLtP4ZwL/4GOzj2HXK8eDMGSJEkl8MEPfnDbEIg+vb29nHvuuUOq29vby9lnvoPjX/9nHLvwfw2pVj05HEKSJKlE2traaG1tfU4gHozM5MJz3sMh0w7llDPPGobu6scrwZIkSSWwZMkSZs+ezezZs7nxxhu3/bxkyZJB17zz9h/yza98iRX/uZw3HfcK3nTcK7jtO7cOY9fF8UqwJElSCbS2tv7eLBCDmRFie7OPmsePH/7tkOs0gleCJUmSVDqGYEmSJJWOIViSJEmlYwiWJElS6RiCJUmSVDqGYEmSJJWOU6RJkiRpSBbOm8n4CR20tLTQ0jKW625c2uiWdssQLEmSVALz58/n6aeffs768ePHs3z58iHX/8yXv8He+0wccp16cTiEJElSCewoAO9q/WhnCJYkSdLQRPDnb/1T3nJ8F9d/4epGdzMgDoeQJEnSkFz9lZuY/IL9Wf/EOv785P/N1BdN4w+PPqbRbe2SV4IlSZI0JJNfsD8AE/edxCtfewI/Xb2qwR3tniFYkiRJg/b00xvZ2L1h288/WP4dXvySlza4q91zOIQkSVIJjB8/fqezQwzFb9at4/1nvA2AzVu2cPyJb+CYBccOqWY9GIIlSZJKYDimQduRKS88mH+79XuF1C6SIVhqMh1tLSxd1FVYbUmSBmLMmOAlkzsLqVsPhmCpyUzqbGfS8H/mSJJUk9aWMdDE1068MU6SJKmJZWajW2i4wfwZGIIlSZKaVHt7O+vXry91EM5M1q9fT3t7e037ORxCkiSpSU2ZMoW1a9eybt26RrfSUO3t7UyZMqWmfQzBkiRJTaq1tZWpU6c2uo2m5HAISZIklY4hWJIkSaVjCJYkSVLpRDPeTRgR64CHCnyLfYEnCqyvxvL4jl4e29HN4zu6eXxHt0Yd3xdm5qQdvdCUIbhoEbEyM+c0ug8Vw+M7enlsRzeP7+jm8R3dRuLxdTiEJEmSSscQLEmSpNIxBO/Y5Y1uQIXy+I5eHtvRzeM7unl8R7cRd3wdEyxJkqTS8UqwJEmSSscQLEmSpNIxBPcTEa+NiPsiYk1EnNfofjQ0EXFgRCyNiJ9FxN0R8d7q+n0i4j8i4v7q970b3asGLyJaIuLOiPhmdXlqRPyoeh5/KSL2aHSPGpyIeF5EXB8R90bEPRExz/N39IiI91c/m38aEddFRLvnb/OKiKsi4vGI+Gm/dTs8X6Pin6rH+a6ImN2Ing3BVRHRAlwGLASmAydFxPTGdqUh2gx8IDOnA0cDZ1WP6XnAtzNzGvDt6rKa13uBe/otXwx8PDNfDPwWOL0hXWk4fAK4OTMPA/6AynH2/B0FIuIA4K+AOZk5A2gB3oLnbzO7Gnjtdut2dr4uBKZVv84E/qVOPf4eQ/CzjgLWZOYDmfkM8EXgxAb3pCHIzEczc1X15w1U/gd6AJXj+tnqZp8FXt+YDjVUETEF+BPgM9XlAF4JXF/dxOPbpCJiL2A+cCVAZj6TmU/i+TuajAXGRcRYYDzwKJ6/TSszlwO/2W71zs7XE4FrsuKHwPMi4gX16fRZhuBnHQA83G95bXWdRoGIOBg4EvgRMDkzH62+9GtgcoPa0tD9X+BcYGt1eSLwZGZuri57HjevqcA64P9Vh7t8JiIm4Pk7KmTmI8Bi4JdUwu9TwB14/o42OztfR0TmMgRr1IuIDuArwPsy83f9X8vKHIHOE9iEIuIE4PHMvKPRvagQY4HZwL9k5pHARrYb+uD527yqY0NPpPKPnf2BCTz3V+kaRUbi+WoIftYjwIH9lqdU16mJRUQrlQD8hcz8anX1Y32/dql+f7xR/WlIjgFeFxEPUhm+9EoqY0ifV/31KngeN7O1wNrM/FF1+Xoqodjzd3Q4FvhFZq7LzF7gq1TOac/f0WVn5+uIyFyG4GfdDkyr3pm6B5UB+jc0uCcNQXV86JXAPZm5pN9LNwDvqP78DuDr9e5NQ5eZH8rMKZl5MJXz9TuZ+VZgKfDG6mYe3yaVmb8GHo6Il1RXvQr4GZ6/o8UvgaMjYnz1s7rv+Hr+ji47O19vAE6pzhJxNPBUv2ETdeMT4/qJiOOpjDFsAa7KzIsa3JKGICL+CLgN+AnPjhn9ayrjgr8MHAQ8BLwpM7cfzK8mEhFdwKLMPCEiDqFyZXgf4E7gbZnZ08j+NDgRMYvKTY97AA8A76Ry8cbzdxSIiL8D3kxlJp87gXdRGRfq+duEIuI6oAvYF3gM+DDwNXZwvlb/4fPPVIbAPA28MzNX1r1nQ7AkSZLKxuEQkiRJKh1DsCRJkkrHECxJkqTSMQRLkiSpdAzBkiRJKh1DsCRJkkrHECxJDRARr4uI83a/5XP2OzgiflpAP10R8fJ+y1dHxBt3tY8kNbOxu99EkjTcMvMGRtZTKbuAbuD7De5DkurCK8GSNMyqV2vvrV5N/a+I+EJEHBsR/xkR90fEURFxakT8c3X7qyPinyLi+xHxwECvwEZES0RcGhG3R8RdEfHu6vquiFgWEddX+/hC9QlNRMTx1XV3VN/zmxFxMPDnwPsjYnVEvKL6FvO37ykiXhARy6vb/bTftpLUVAzBklSMFwP/CBxW/ToZ+CNgEZXHd2/vBdXXTwA+NsD3OB14KjPnAnOBMyJiavW1I4H3AdOBQ4BjIqId+DSwMDP/EJgEkJkPAv8KfDwzZ2Xmbbvo6WTglsycBfwBsHqAvUrSiOJwCEkqxi8y8ycAEXE38O3MzIj4CXDwDrb/WmZuBX4WEZMH+B6vAWb2u3K8FzANeAZYkZlrq++/uvqe3cADmfmL6vbXAWfuov6OeroduCoiWquvG4IlNSWvBEtSMXr6/by13/JWdnwBov/2McD3COA91au3szJzambeuoN6W3bynrvznJ4yczkwH3gEuDoiThlEXUlqOEOwJDWvW4D/U70qS0QcGhETdrH9fcAh1THAAG/u99oGoHN3bxgRLwQey8wrgM8AswfRtyQ1nMMhJKl5fYbKMIdV1Rvf1gGv39nGmfnfEfEXwM0RsZHK0IY+3wCuj4gTgffs4j27gHMiopfK8AqvBEtqSpGZje5BklQnEdGRmd3V0HwZcH9mfrzRfUlSvTkcQpLK5YzqjXJ3U7mR7tMN7keSGsIrwZI0AkXEEcDntlvdk5kva0Q/kjTaGIIlSZJUOg6HkCRJUukYgiW0aKLYAAAAF0lEQVRJklQ6hmBJkiSVjiFYkiRJpfM/7V1HS4wXQP4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hb1eH/8c+RLFveSWzH2YsEsggZDhBGSiiUVaBA2aOMAi2U0i+lhQ5G6fiVUroYZZeWMkopBdpCmWEWSJwBISSQELJJ7DiOt2SN8/vDVlAcD8nWleTo/XoeHizp6viQBOft63vPMdZaAQAAAJnEleoJAAAAAMlGBAMAACDjEMEAAADIOEQwAAAAMg4RDAAAgIyTleoJ9EZpaakdM2ZMqqcBAACANLZo0aJt1tqyzl7rlxE8ZswYVVZWpnoaAAAASGPGmHVdvcblEAAAAMg4RDAAAAAyDhEMAACAjEMEAwAAIOMQwQAAAMg4RDAAAAAyDhEMAACAjNMv1wkGAABAeqtt9qvJH5LLGFlJspLLJQ0tzk311CQRwQAAAEiQBl9ADb6gPthUpyeXbNKyjXXatKNFklTkzdKUYcX6wj5l+vK0ofK4XSov8qZsrsZam7JP3lsVFRXW6R3jmvwB7WgOqjUU0sbaFjW3BuVxuTRsYK4Kc7KUk+VSaWHqfuMAAADSyZb6Fr3zyXb95F/LVdsc6PbYLJfRaRUj9O0vTtAQB88MG2MWWWsrOp2DY5+1n6pvaVVdS1AL1taoIMejQfnZag2G1dIaVihLqm8JqrrBr021Ldp3eLFKC3NS+l0MAABAqm2p8+kHTy7T/I+qYzo+GLZ6ZMEGzf+oWg+cP1vDBnhVnJvt8Cx3RQRH2VrXomWb61SSn6ON21v0eOWqnafwo+Vlu3XsvkM1tjRfn25r0szRAzVsQHpc3wIAAJBMW+t9uuzhxVq8vjbu935W59Opd72tJ745hwhOla31Pq3Y0qCq+lZ957H31OgPdnlsc2tITyzaqCcWbdQZs0dq2IBcWWs1fGBeEmcMAACQWlvrfbr9lVW9CuCIRn9QX/9zpf7+jTlJvWmOJdLU9hu4sbZFTy3ZrB/+c1m3AdzRYws36Lt/f0/bGltV1eBzcJYAAADpZUudTw+9s77P42ysbdG9r69RdRJbKuMj2NcaVG1Tq/62cIOeWrqpV2N8uq1JVz62RDWNrdpaTwgDAIA935Y6n2594aOEjffwu+sVCCVvwYaMj+AGf1BrtjXp8coNfRpnbU2z7nl9jZr9oQTNDAAAIH0FQmG9sXpbwsbzB8N6ZWVVwsbrCRHsC+qGp5cnZKx/Ltmkqgafaho5GwwAAPZsH29tUKJX2n3t4+qkdVRGR/D2Jr8+2FSn6kZ/wsZ84K21ag32v7WXAQAA4rHg0+0JH/ODTXVqbg0nfNzOZHQE+wJh/X3RxoSO+dKKrQqGiWAAALDnCofD2pbAk4gRtc2tchmT8HE7k9ERHLZW723ckdAxQ2Gr2ubWhI4JxCsYCmt7U6uqG/za3uRXIJSc76oBAJnB5XIpy5X4jMxyuWSVnJOJGb1OcChsVd8S+3JosVpd1ahpIwYkfFygOy2tIdX7Alq8rlavfVyt5Zvr1dwaUm62S5OHFukLe5epYswgFXmzlJud0f/rAwASYJ+hhQkfc0xp8vZcyOi/CZ26asEXYIUIJI+1VtUNft0+f7X+tnCDcrPd2nd4sfYfO0g5WS75g2GtrmrUdU8vV5M/qK/OaturvawgRy5Xcn7kBADY81SMHpjwMfcbPkBl+cnZOS6jI9jtUAAke9s/ZC5fIKSPtjTo4r9Uasaogbr73Fmy1mpLvU+twbCslYyRxpfl62sHjVaWy6XHFq7Xl//whu46d5YmDytSriejvwwAAHqptCBHg/Kztb0pcZeBnjJrhHKS9NPKjL4m2G2kEge+25gwuCDhYwIdtQZDWrK+Vlc9vlS3nrafjpoyWIGQldeTpUZ/SMs21WvB2u16f2Od6n1BeT1uBUJhHTFxsH53xgxd+49lWvhpLT+5AAD0SpHXo7MPGJWw8caW5qu82Juw8XqS0aeAsrNcmjlqgF5ckbiFmXOyXCrwZvQvK5Lkszqf7nl9jW49bT81+oKqawnq9y+v1rqa5i7fM3JQrs4/aIzKi7361Ven6c75qzVyUK7GlvKNGwAgPgXeLJ25/yg9XrlBW+v7vlLEzadM0/ABuQmYWWwy+kxwWaFXFx06LqFjnjh9mHKyMvqXFUlQ0+jXPa99ou8cMUHWSrc8/5F+8q8Puw1gSdqwvUU//fcK/eLZlbJWunzeeN33xqeqcWCZGwDAnm9wgUe3nzlTfb3C9JwDR2l0SfICWMrwCJak0YPyNGpQYu5EdBnpkrnjVFKQk5DxgK6s396sc+eMVmvQ6oIHF+q9jXVxvX/55nqd/+AC+YNhnTtntD7d1uTQTAEAe7KsrCyNKc3XbWfO6HUIHzt1iK44fILKi4jgpBo6IFe3nTlDiViX+Rtf2Iub4uC4el9AtU0Bha3RNx9epB3Ngd6N0xLUN/66SKGwVaM/qLoW1rcGAMSvrDBHs8cO0hPfOCiuyxmy3S794JiJuuGEKSovSt61wBEZH8GSNLTYq+8euXefxpgxcoC+NmeMygo5CwxnNfuDGjEwV394ZZW2NfYtXGubA/rNix9raLFXLa3cIAcA6J3BhV7NHD1Q//jmHF17zEQN6SZqc7JcOnXWCD3/f4fqqxUjUhLAUobfGBcxuMirU2eNVMha/fbFVXG/v2LMQN1+5oyk3tGIzGWtVYM/qP9+sCUh4728okqXHDpOBTl8OQAA9M2Q4lxdcNAYHb/fMDX5g1q+qU4fb21UKGxVXpyjWaMGqqwwR16PO+WXj/K3XrvyYq/OmD1KB+1Vqm8/ukSf1fl6fE+226XvHb2Pjp82TEMIYCSLMfrrO+sSOuRf3l6nHx03KaFjAgAyU47HvfOyiL3LE7+rXKIQwVHKi7wqL/LqH988SMs21uneN9Zo2aY6+YPhnccYI40pydepFSN04n7D5c12qSSfSyCQPKGQ1csrtiZ0zPkfVekHx0xM6JgAAKQzIrgTwwbkatiAXO07oljWSv5gSMGwlcsYeT0uWSuV5nuUm+NJ9VSRgQJhq3pfMKFjNreG1BoK93wgAAB7CCK4G8OSuGAzEKsmf2IDOKKupXerTAAA0B+xOgQASZJN9QQAAEgiIhjoZ/Ky3Y6MW8jqEACADEIEA/2M1+NWtjux/+u6XUb5RDAAIIMQwUA/k5/tVsWYgQkdc8bIAY6dYUbi+QIhbWv0q7rBr5pGvwLc1AgAcePUTwfBYFiBcFi52bH90rS0BmM+FkiE4rxsXT5vvP73SU3CxvzW4eM1II8tv9NZgy+gRn9QS9fvUFWDT1kul1wuo3DYKmytRgzM1eRhxSryepTLNzQA0CPqLUowGNba7c2qbwlo0pCCHpdA27yjRR9srtPs0QM1kLWCkUT7lBdqn/JCfbS1oc9j7VVWoKnDihMwKzghEAprW4Nfb6zapvHlBaptbtXyzQ1aXdUgfzCs/JwsTRxSqEKvR59ua9LmHS06dEKpygrZwAcAukMEt4sE8Ol3v62m1qAe/vqBmtxNCG/e0aLz/7RAq6oa9etT99Ph+5QRwkia0sIc3X7WDB3z+zcUDPd+XQeXke44a4ZKC/mzm44afAF99FmDstwuLVy3Xdc9/YFKC7N17NSh+tqcMfJkueRrDWnhulrd+K8PFLbSOQeM1siBedrREtCogXnK8XBWGAA6Y6ztfwsjVVRU2MrKyoSNFx3ANU2tkiSvx9VlCEcC+OOtjZLadpEjhJFsLYGgXvuoWt98eLF687+xMdLvT5+hIyYPVh6X9KSdJn9QH26uV01Tq2546gNdNHesjpxcrh1NAW1v9ivb7ZaMFA5LoXBY5cVeedwu/W3her28oko3nzJNA/I8GldWIE+Cb6QEgP7CGLPIWlvR2WsZ/5WxswCWJF8grLPve0cfbmlUi//zTQQ6BrAkWStd/ff39MpH1apt8id1/shcuZ4sHTKhTA+eP1sFca7skJ/t1r3nVujwSWUEcJraWu/T+u3NemLRBj1x2UGaMrRQobCVN9utqvpWPfvBZ3py8Sa9vHKr6n1BebPcCobC+tKUct33tdn65XMrVNPUqtqor2sAgM9l9JngrgI4WuSM8JRhRdre1LpbAEfjjDBSIRAKa1ujXzf960M9v3yLurs6whjpiInl+smJU1RWmC2Pmx+Vp6Ptja1aXd2oxeu260tTyuV2ufTGqmrd8/qnWr+9ucv3TR1epCu/OEGjB+UrN8elP76yWufMGauhxV4NzOfGRwCZp7szwRkdwdubWvXtR5fozdXbuj3O63Hplq/up9teWdVlAEfkZ7v15jWH8xcOkq6+pW31gP9+sEVvrNqmj7c2qLk1qFyPW3sPKdQh40t1zNShKvRmqSi3+5s+kVqfVDfqzVXVOnRCqUJh6duPLdGKz2K/CfILe5fpZ1+ZqiyX0T+XbNLx+w3TyEF5Ds4YANITEdyFhpaA6nwBXfyXyrj+gulKrsetRy4+QGNL81luCinV6A+qpTUoa9vO/uZmu1XQw2onSA87mlu1cG2Npg4rVlVDq8669x01tYbiHmf4gFw9/PUDlJft1pYdLZowpJDlHAFkHK4J7oKVVZYxuve8Ck0aWtinsSIBXOz1qD9+Y4E9S0FOlsoKvRpc5FVZoZcA7keaW0Pap7xQrSGrc+57t1cBLEmb2u9fCISt5DJq8vduHADYU2V0BEtSnS8gX2uoTyEcCWCvx6WWQFDGmATPEkCmyHJJLpdL1/zjfTX4g30aa21Ns+5/Y41KC3LUGiSCASBaRkdwMCz94j8rdMGfF6rRF+hVCEcH8B3zP9Hp97zbq+WqAECSrIzW1zTrnTXbEzLen/63Vq3BsLKzMvrLPQDsJqO/KhblZOlHX56sBl9QFz+0aGcIjx9cENP7PW6jR6MC+N/vf6brvjxZNDCA3gqHre589ZOEjWet9NjC9RI/oAKAXWR0BGdluTSuJF+PXzpHDb6gfvvSx3IZo3CMO3BZK4Ws1SdVjfr3+5/p5lOm6cjJ5RrEyhBIsq31Laqq98V0bHWDT1tjPBbJF7JW//uk+xVr4vXcB1vU0hpO6JgA0N9ldARLn4fw05cfrOuOm6Lz/7RAa7Y1xfTeYNjq7Pve1dABufrnZQcRwEiJqnqfbn/lEz2/fIuqe4jbbQ0+vbKySr976eOYoxnJ1eALdrvWc2+sq2kWtyoAwK5YL0dtIexxu7rdCKMrbTvLvatHvn6gcrP4WwbJVVXv022vrNZD76zb+dzRU4aorMi727HbGnx6eWWVrvnHsp3P/d8Re2twJ8cidTbVtjgyri/AjXEAEC3jzwRLnW+FHA9fIKyz7ntHKzpssQw4qbMAvu7p5fpvJ2eEOwvgRxds0G85I5x2wtxZCwBJkfER3NcAjiCEkUydBXBExxDuLIAjCOH0U1rgzJbr2e6M/3IPALvI6K+K25ta9b0n3usxgHM9bv3xnJk9Lp/mC4R1zv3vyh/iTA6c010AR0RCuK65tcsAjiCE00tZYeIjeGCeR24Xl2sBQLSMjuBst/STE6aqrJszL5F1gMeU5PW4jrAx0i9O2leBIHdhwzlWUoOv5582XPf0cn3r0SXdBnBEXXOApf3ShJE0tjQ/oWPOGVcityujv9wDwG4y+qtia8jKm2X06CUHdhrC0RthPLFoU7cbahgj/fa06Zo4pFCGMy5wkMft0rXHTNRXpg/r8dg3VvW81NaxU4fohuOnyOPmz206aPAFdNEhYxM65sVzx6k1xI1xABAtoyPYWqnBH5Tb2N1CuONOcPe/+ekuG2pEh3AkgPcuL1B2lks0MJzkcRu9u2abrjk6thDuzrFTh+i64yfrzVXb5OGa0bRQ0xzQvH3KEnZZxIyRA1SQk6VQotddA4B+LqP/1gtbq/vfXKtrnvxANhzeGcIdA/jf73+mr80Zs9vOcpOGFu4SwC9+uFXnPbBAAa4JhoOCIas/v7Nex/z+jT6FcCSAT7jtTf357bUK8uc2LQwt8uq2l1fp96dP7/NYOVku3Xrafvr+P97nmxwA6CCjvyrmZLl04n7DtHhdrX709PKdIdxxK+SbT5mmq760tx6/dI7qW3YN4fvPq9gZwL99aZUO32cwZ4LhKLfL6IYvT9HY0vxeh3B0AA8pztVPvzKVG6fSRI7HpRdWVCkYtvreUfv0ehy3y+jOs2fq5ZVb5c1yy8VuGQCwi4yO4KLcbO03coD+dP7snSEcDoXkcZtdAvjIyeUqzvVoXEm+/v6NXUN4SLF3ZwCfd+BoXfHF8SorZPMBOMfrcau0IFs3nvB5CP/kxKkaP7ggpvePLsnTL0+ZtjOAf/aVqSopyFZ2VkZ/OUgbOVkunTprhM57YIHmjBukn5wY//XaRd4sPXD+bO1obtXP/7NSZ+w/Utlc8w0AuzC2Hy7MXlFRYSsrKxM2Xn1LQO9t2KELHlyo/UYO0KD8bL344dadARy9FXIwGNaamiadetfbKsrN0qHjy/TIgvUEMJKmwRfQhQ9W6rrjJslKyst2a/H62phWgYi46cQpOmivEjX5QzKSfvKv5Xrwwv1V6PU4Nm/EpqU1qA21LTr+tjflD4Z1y1enafrIAfrBk8tUua622/e6jHTUlCH6wTET9djCDbrz1U80tNirh79+gMaVxfZNEgDsSYwxi6y1FZ2+RgS3iQ7hYNh2GsAR0SFc1xIggJFUzf6gVlU36oanl+uPZ8/U66uq4wrgiJtOnKIjJ5XrG39dpJ+cOFV7lxcoL5ud1NPBZzta9Mx7m/X/nlspSZo5aqCu//Ik5WVn6cklG7VoXa1WVTXKHwirICdLE4cW6sBxg3TctGHaVNui7z/xnjbtaFv3+YHzKzRtRLFKC/j6BCDzEMExioTwZ3U+HdFFAEdEQvifSzbpwoPHEMBImnA4rM07fHK7TK8DOCISwoGQ1bBir7K4JCIt1PsCWl/TpN+8uEqvrKza+fzQIq8uOHiMpgwvVllhjtwuo0AwrC11Pi3eUKv731irptbgzuMvnTtOJ80crvGlBfzeAshIRHAc6ltaFQhZlcSwdWkwGNYOX8CxbU6BrnS3FXK8bjpxio6eMkSDi/hGLp1srfdpU22L7n59jZ5fviXu9186d5zm7TNYew3O55t0ABmruwjmZ58dFOV2ffa3o6wsFwGMpIsngIu8War3Bbs95vqnl0uSjpkyRGWEcNooL/LKWqvTK0Zo3sQy/eI/K3r8vZSkYcVe/fQrUxUMhTW2jAAGgK7w8zGgn3G5XHpswYYejztu3yF6+wdfjGn5tMcrN8jNOrJpZWNts654ZLFGleSrrCBbf7pgtm48YYpmjBygnA6XNhTkZOng8SX63enT9etT91NxrkclBTn67uNLtLXel6L/AgBIb5wJBvqZHJfRH8+ZqW/8dbGWbtjR6THH7TtE1315sk6+8y09eMH+kqSnlm7u9Nipw4t073kVymGd4LSxsbZZ59z3rtbWNOuI37ymG0+YrL3LizQor0VnHjBSwwfkKcttZG3bjpUtrSFtqfOpIMetEYPydP8ba/Tnt9dJkq58bIl+f8YMlXOWHwB2wTXBQD/TGgzrk6oGDcjP1jc7CeFIAB9/25uqbmzVgFyPnrvyUN3835W7hXAkgLc3+bVXWaG8Hncy/1PQie1Nfp185/+0tqZ5l+ezXNK35k3Q4ZMGqzjXI38wrLC1chuj7CyXtjW06u+LNuixhbv/lODg8SX6wxkzYrrXAQD2JN1dE8zPP4F+xh8M6bJHluiKhxfrj+fM1PSRA3a+Fh3AQ4pz9cp3v9DlznKRAP7u4+/p0ocWs21ymghb6dSKkbs9HwxLv3t5lU64/S0df9ubCoWtRgzI04btzTr81td0yl3/6zSA3S6jCw4ay7bJANABXxWBfsbtMvrdGdO1uc63Swh3DOCffWWqgiG7y85ykRCODuBPqht1+1kzRSOlh9KCHJ0+e2SXWyYXebP0t0vnaK/SfBV4szRr9EDde+6sTre9druM7j5nlvYfO0hFuWyEAgDRuBwC6GfC4bA27fBpe1OrvvnXRRpW7NXtZ8+SZHcJYJeRbnjmQ914/GRZSTc+s1yfbmvSc1ceKpfL6P/+tlSfVDfqrnNmqaQgW8OKcllLNo1sa/Trbws36JbnP9r5XHQAZ0ddulLX3KpF62p18UOLFAq3fU0ngAGAyyGAPUpLIKyb/rVcbpfRH8+Zpc11Pp161/901O9e2yWAr3tqub7xhXG6/pnlMtLOM8JH/uY1nXbX/3YGsMft0k//9aH8oXCq/9MQpeMZ4a4CWJKK87J3OSNMAANAzzgTDPQzDS0BfbC5Tr998WNdf/wUhcJW3/zrIpUU5OwSwDeeMLntximXSzc8s1w3nTBl5xnhzXUtOwP4Z//+UJcfPl77jRhAMKWhbY1+/XPJJh0yvrTTAI4WOSMctiKAAUDsGAfsUZp8Aa3b3qza5oB+/9LnISxplwAelJ+jYQO82lLnU01T6y4hLLX9uPxn//5Ql80br0H5Ho0pzVdBDtGUjqrrfSrOzVK2p+dVLWua/FJYKilkJQgA4HIIYA+S7/Vo9KA8Dczz6Moj9t55acRuAVzsVZbbpWEDvCrJz9ZPTpii659p2x2OAO4/qht8em1VtdbX+hQKhbo9tqEloFVbG/VxVYPqWlqTNEMA6J/YLAPohyIhLDXryiP21g+fXCYr6acnTvk8gNtvcnO52kJYkn5ywhRd99QHMkb67pf2IYDTXHWDTy8s36ofPfWBSvKz9filczSmJFdu9+6XRDS0BLT8s3p97YEFkqQ/X7i/Jg0tVHEcW8EDQCbhcgigH4tcGrGjOaC8bPduARwtHA5r8462SyMafAENyCOA01l0AEd0FcLRAewPtt3gmJPlIoQBZLyUXg5hjDnaGPORMWa1MebaTl4fZYyZb4xZYox53xhzrNNzAvYUkTPCA/I83Qaw9PkZ4ZJ8DwGc5joLYEmqaWrVaXe/rbU1LTsvjegsgCXJHwzraw8s0IrPuDQCADrjaAQbY9yS7pB0jKTJks40xkzucNiPJT1urZ0h6QxJdzo5J2BPk+/1aExJXrcBHNEWwrkaRwCnra4COCI6hJv8nQdwBCEMAF1z+kzw/pJWW2vXWGtbJT0m6cQOx1hJRe0fF0va7PCcgD1OXo4n5o0uXC6X8gjgtOVxu3T7/NXdHhMJ4UcXbOgygCP8wbB+/fxHYhloANiV0xE8XFL0ZvYb25+LdqOkc4wxGyU9K+mKzgYyxlxijKk0xlRWV1c7MVcASLkBedl67JIDNbTY2+1xNU2t+tl/VnQbwJI0bUSxbj9rhgblc10wAERLhyXSzpT0oLV2hKRjJT1kjNltXtbae6y1FdbairKysqRPEgCSZXRJfkwh3JNpI4p1z7mzNKQ4N0EzA4A9h9MRvEnSyKjHI9qfi3aRpMclyVr7tiSvpFKH5wUAaa2vIUwAA0D3nI7ghZImGGPGGmOy1Xbj2zMdjlkv6YuSZIyZpLYI5noHABmvtyFMAANAzxyNYGttUNK3JD0vaYXaVoFYboy5yRhzQvth35V0sTHmPUmPSjrf9sfFiwHAAaNL8vW3S+eoyBvb3kZ7lRXo3vMqCGAA6IHjO8ZZa59V2w1v0c9dH/Xxh5IOdnoeANAfNbQE9Fldi1oC3W+ZHFHb3KpGX1Cl+aFOd5YDALRJhxvjAACdaGgJ6MMt9Trv/gUKhGL7Adn2TjbUAADsjggGgDQUHcA9LYPWUWc7ywEAdkUEA0Ca6UsARxDCANA9IhgA0kgiAjiCEAaArhHBAJBGjMvo0ocWxbQT3H++fUhMO8t9+7Elamxl32QAiEYEA0AaMbL60/mzlevpemWHyDrAU4YV97iO8JAir+44a6aKcz1OTBcA+i0iGADSSH6OR3uXF+iRiw/oNIQ7boTR3YYaQ4q8euySAzWmNN/xeQNAf0MEA0Ca6SqEu9oJrrMQJoABoHtEMACkoY4h3NNWyNEhTAADQM9Mf9yhuKKiwlZWVqZ6GgDguCZ/QOtqWjQo3xPTVsjrappkrQhgAJBkjFlkra3o7DXHt00GAPRefo5HowaGFYhxcYcB3AAHIIXqmlvl9biV083NvRE1jX65jDQwPycJM9sdl0MAQBrbWu/Tdx5/X2+s2qaaRn+3x1bV+3TXa5/ozlc/UVW9L0kzBIA2G7Y365z7F+jTmib5A92vTb6l3qcrHl2ipRvqVNvU/dc2pxDBAJCmttb79KN/LtNLK6p05d+W6q3VXYdwVb1Pf3rrU/3xtTW6+/U1uv/NTwlhAEmzYXuzzr7vXS3bVKfT736n2xDeUu/Ttx9dov99UqOL/1KZshAmggEgDUUHsCRZqy5DODqAIwhhAMkSCeD125slSXUtgS5DOBLACz7dLkkKhm3KQpgIBoA00zGAIzoL4c4COIIQBuC0jgEc0VkIdwzgiFSFMBEMAGmkqwCOiA7hHc2tXQZwRCSEtxLCABKsqwCOiA7h6gZ/pwEcER3C25MUwqwOAQD9TCSEZ40aqMp1tameDgB0qa4loNPuflvDinO1cktDqqezC84EA0AaKS/y6ucn7asjJg3u9jhrFVMAXzp3nC46ZKzKi3bfVhkA+mLkoDw9/PUDNGpQXrfH1bcEewzgLJfRvedVaPrIYg1K0pJpRDAApJlYQ7gnkQAeTAADcEisIdyd6ABO5prBRDAApKG+hvClc8fpQgIYQBL0JYRTFcASEQwAaWl7k19/eHmVfvaVqXGH8KVzx+mcA0fr0QXrVdfS6tAMAeBzvQnhVAawRAQDQNrZ3uTXD//5gR5+d73Ouvcd/e706SrJz47pvbNGD9Q3DttLh906X797aZX+9NZaQhhAUowclKe/XLh/zMdfNm8vVYwZyLbJAIDPA/i/H2yR2y09eOH+umP+atU0xRayi9fX6o2Pq/WPSw+SpJ0hvKOZEAbgrC31Pn3/H+/HfPyD/1urTbUtPW6x7BQiGADSiLVSMBSW2y3N/+5hevTd9d2uA9zZ+6/821Kt396spy5rC+HWYEepjsMAACAASURBVNip6QKApK43wuhOfUtQp93ztj7d1vUWy04y1tqkf9K+qqiosJWVlameBgA4oqbRL18gpL++sy6uAI5mjPT706dr6vBiDcrP1oC82C6nAIB49SaAoxXlZunxS+ZobGm+cjzuhM7NGLPIWlvR2WucCQaANBMK2z4FsPT5GeEPNtUpFO5/JzsA9A99DWApdWeEiWAASCNV9b4et0KOGNTDzXLRWyxva0zONqQAMkesAex2GRXnero9JhUhTAQDQBpxuYxeXlnV43GXzh2n1793mL44seed5Z5+b7P64ZVvANJcoy+oFZvruz0my2V039cq9NyVh8a0s9zba2pU1xJI5DS7RAQDQBopLcjRgxfsr73LC7o8JrIO8Am3v6mfnzS12xCeN7FMvzhpX5UVpmYJIgB7rhEDvHrs0gNVmJPV6etZLqN7v1ah6SOKNWxAbo/rCF9z9D46bt+hSdvkhwgGgDQzbEBulyEcCeDDbp2vNduadepdb3cZwvMmlumXJ09TObvGAXCANztLe5XmdxrC0QEcWQe4uw01rjl6H50yc0RSd7kkggEgDXUWwtEBHGq/ZG5DbUunIUwAA0iGzkK4swCO6CyEUxHAEhEMAGmprrlVi9Zt3xnCnQVwRMcQnjexTP/vpH318WcNavIHU/MfACBjRIfwgDxPlwEcER3CqQpgiXWCASDt1DW36s9vr9NvXvxYR04arF+cPE2+QKjTAI42cmCu/v6NOZKkU+96W5t2tOiuc2bp4PGlyu/imj0ASBRfa1Bha+UPhmPaCrne55ev1ToawN2tE0wEA0AaiQ7giJEDc7W5vmW3AB6Q59GO5l3voh7QvgzRjva7q11GhDCApKhrblVryMrIqrSw+7ANBELa1twqlzGOXrbFZhkA0E+ErPTMe5t3eW5D7e4BfNlhe+mtaw7f7Ya4HS2BnQEsSWErPV65QYEQWycDcE5dc6s+2Fyvg3/5il5aUaVtDb4ujw0EQlq7vVnH/eFN3f7Kam2t7/pYJxHBAJBGBuVn6+GvH6Dxg7teIu2yw/bSJXPHKT8nS7/66rRul0g7fGKZbj5lGtsmA3BMJIAv+NNCtYbCuvbJZV2GcCSAT7/nHW1vatVD76xLWQgTwQCQZsqLvF2GcCSAI1FbUpDTZQgfPrFMt3x1P5UUsEYwAGd0DOCIzkK4YwBHpCqEiWAASEOdhXDHAI7oLIQJYABO6yqAI6JDuKsAjkhFCBPBAJCmokO4qwCOiA5hAhhAMnxW7+sygCOufXKZXlxRpQ11LV0GcMRD76zTw++u07ZGvxPT3Q2rQwBAmqtp9MvtMjFd11vT/pcHAQzAaVvrfbrpX8v1n2VbejzW7TIKhbtvzmHFXj16yYEaXZKfqCl2uzoE6+UAQJqLJ2iJXwDJUl7k1fXHT5GkHkM4FQHcEy6HAAAAQK9EQvi4fYf0eoxUBLBEBAMAAKAP+hLCqQpgiQgGAABAH/UmhFMZwBIRDAAAgAQoyfPo21/cO+bjvzxtmIrbt3pPBSIYAAAAfdK2DnCLzrz3nZjfc88ba/TfD7aomm2TAQAA0N8EAiGtq23RaXe/3e06wJ259sllenllVUpCmAgGAABAr/QlgCNSFcJEMAAAAOKWiACOSEUIE8EAAACI24YdsQXw0GKvDtqrpMfxrn1ymeZ/XJ20ECaCAQAAELe8bLeGDfB2e8ywYq8eu+RA/eGMGT0un5aX7dY+5YXKy3EncppdIoIBAAAQtyHFubrvvApNHV7U6evR6wCXFuZ0u45wXrZbj158oMYPzld+TnKWTSOCAQAA0CtdhXBnG2F0taFGKgJYIoIBAADQBx1DuLud4DqGcKoCWJKykvrZAAAAsMeJhPD1Ty/Xj46b1O1WyJEQzs/J0tkHjE5JAEuSsdYm/ZP2VUVFha2srEz1NAAAABClptGvkoKcmI6tqvcpP8ftaAAbYxZZays6e43LIQAAANBnVfU+vfZxtapiWOJsW4Nf72+sU11LMAkz6xwRDAAAgD6pqvfpntfX6KrH39OPnlrWbQhva/DrzdXbdPFDlbrwwYXavKMliTP9HBEMAACAXosE8H1vfipJevHDqi5DOBLA//f4UlkrrdzSkLIQJoIBAADQKx0DOKKzEO4YwBGpCmEiGAAAAHHrKoAjokO4prHzAI5IRQizRBoAAADitq3Rr/vf6jyAI178sErWLtPcCWW64V/LOw3giJVbGvSnt9bqm4eN06D82FaY6AvOBAMAACBugwu9+u1p02VM98e9tKJK1z/TfQBL0hGTBuvrh45NSgBLRDAAAAB6obQwR4eML40phHtyxKTB+vlJ+6q8yJuYycWACAYAAECvJCKEUxHAEhEMAACAPuhLCKcqgCUiGAAAAH1UWpijg8eX6JavTov5PV/YpyxlASwRwQAAAEgAoz5eGJxkRDAAAAD6JLIRxveeeD/m97z2UbV+9M9l2trNFstOIoIBAADQa13tBBeLl1ZUpSyEiWAAAAD0Sl8COCJVIUwEAwAAIG6JCOCIVIQwEQwAAIC4VTX4YgrgIyYN1k0nTIlpZ7n73vhU25v8iZtkN4hgAAAAxK20IEcXHjy222OOmDRYvzhpXx03bWiP6whPHFKoCw4ew7bJAAAASF+Di7y6dO44XXRI5yEcCeDBRV6VFHS/ocbEIYV64PzZGjYg1+FZf44IBgAAQK90FcLRARzR1c5yqQhgiQgGAABAH3QM4c4COKJjCKcqgCXJ2L7eztfTJzDmaEm/l+SWdJ+19pedHHOapBslWUnvWWvP6m7MiooKW1lZ6cBsAQAA0BtV9T69sXqbDh1f2mkAR9vW4NfSDTs0eViRowFsjFlkra3o7LUsxz5r2yd2S7pD0pGSNkpaaIx5xlr7YdQxEyT9QNLB1tpaY8xgJ+cEAACAxBtc5NWxU4coN7vnvCwtzNGccYOU7/UkYWadc/pyiP0lrbbWrrHWtkp6TNKJHY65WNId1tpaSbLWVjk8JwAAADgglgCOSGUAS72MYGPMoBgPHS5pQ9Tjje3PRdtb0t7GmLeMMe+0Xz4BAAAAOKbHCDbG/Djq48nGmI8lLTLGrDXGHJCAOWRJmiDpMElnSrrXGDOgk3lcYoypNMZUVldXJ+DTAgAAIFPFcib45KiPb5F0pbV2rKTTJP22h/dukjQy6vGI9ueibZT0jLU2YK39VNLHaoviXVhr77HWVlhrK8rKymKYNgAAANC5eC+HGGatfU6SrLULJPV0O99CSROMMWONMdmSzpD0TIdjnlLbWWAZY0rVdnnEmjjnBQAAAMQslquXxxljnpFkJI0wxuRZa5vbX+v2imZrbdAY8y1Jz6ttibQHrLXLjTE3Saq01j7T/tqXjDEfSgpJ+p61tqa3/0EAAABAT2KJ4I6rObgkyRhTLumPPb3ZWvuspGc7PHd91MdW0lXt/wAAAACO6zGCrbWvdfH8VrWtASxJMsbcZq29IoFzAwAAAByRyHWCD07gWAAAAIBjnN4sAwAAAEg7RDAAAAAyTiIj2CRwLAAAAMAxMUewMWbfHg75fR/nAgAAACRFPGeC7zTGLDDGXGaMKe74orX2wcRNCwAAAHBOzBFsrT1U0tlq2wZ5kTHmEWPMkY7NDAAAAHBIXNcEW2tXSfqxpGskfUHSH4wxK40xJzsxOQAAAMAJ8VwTPM0Y81tJKyQdLul4a+2k9o9/69D8AAAAgISLZdvkiNsk3Sfph9balsiT1trNxpgfJ3xmAAAAgEPiieDjJLVYa0OSZIxxSfJaa5uttQ85MjsAAADAAfFcE/ySpNyox3ntzwEAAAD9SjwR7LXWNkYetH+cl/gpAQAAAM6KJ4KbjDEzIw+MMbMktXRzPAAAAJCW4rkm+DuS/m6M2ay2LZKHSDrdkVkBAAAADoo5gq21C40xEyXt0/7UR9bagDPTAgAAAJwTz5lgSZotaUz7+2YaY2St/UvCZwUAAAA4KOYINsY8JGkvSUslhdqftpKIYAAAgBQIBALauHGjfD5fqqeSUl6vVyNGjJDH44n5PfGcCa6QNNlaa+OeGQAAABJu48aNKiws1JgxY2SMSfV0UsJaq5qaGm3cuFFjx46N+X3xrA7xgdpuhgMAAEAa8Pl8KikpydgAliRjjEpKSuI+Gx7PmeBSSR8aYxZI8keetNaeENdnBAAAQMJkcgBH9ObXIJ4IvjHu0QEAALDH2rFjhx555BFddtllqZ5K3GK+HMJa+5qktZI87R8vlLTYoXkBAAAgze3YsUN33nlnqqfRKzFHsDHmYklPSLq7/anhkp5yYlIAAABIf9dee60++eQTTZ8+Xd/73vd0yy23aPbs2Zo2bZpuuOEGSdLatWs1ceJEnX/++dp777119tln66WXXtLBBx+sCRMmaMGCBZKkG2+8Ueeee67mzJmjCRMm6N5775UkffbZZ5o7d66mT5+uqVOn6o033kjI3OO5Me5ySQdLqpcka+0qSYMTMgsAAAD0O7/85S+11157aenSpTryyCO1atUqLViwQEuXLtWiRYv0+uuvS5JWr16t7373u1q5cqVWrlypRx55RG+++aZ+/etf6xe/+MXO8d5//3298sorevvtt3XTTTdp8+bNeuSRR3TUUUdp6dKleu+99zR9+vSEzD2ea4L91trWyIXHxpgsta0TDAAAgAz3wgsv6IUXXtCMGTMkSY2NjVq1apVGjRqlsWPHat9995UkTZkyRV/84hdljNG+++6rtWvX7hzjxBNPVG5urnJzczVv3jwtWLBAs2fP1oUXXqhAIKCvfOUrCYvgeM4Ev2aM+aGkXGPMkZL+LulfCZkFAAAA+jVrrX7wgx9o6dKlWrp0qVavXq2LLrpIkpSTk7PzOJfLtfOxy+VSMBjc+VrHVR6MMZo7d65ef/11DR8+XOeff77+8pfE7NMWTwRfK6la0jJJl0p61lr7o4TMAgAAAP1OYWGhGhoaJElHHXWUHnjgATU2NkqSNm3apKqqqrjGe/rpp+Xz+VRTU6NXX31Vs2fP1rp161ReXq6LL75YX//617V4cWLWZYjncogrrLW/l3Rv5AljzJXtzwEAACDDlJSU6OCDD9bUqVN1zDHH6KyzztKcOXMkSQUFBfrrX/8qt9sd83jTpk3TvHnztG3bNl133XUaNmyY/vznP+uWW26Rx+NRQUFBws4Em1h3QTbGLLbWzuzw3BJr7YyEzCQOFRUVtrKyMtmfFgAAIK2sWLFCkyZNSvU0EuLGG29UQUGBrr766l69v7NfC2PMImttRWfH93gm2BhzpqSzJI01xjwT9VKhpO29miUAAACQQrFcDvE/SZ+pbdvkW6Oeb5D0vhOTAgAAQGa58cYbk/r5eoxga+06SeskzXF+OgAAAIDz4tkx7mRjzCpjTJ0xpt4Y02CMqXdycgAAAIAT4lkd4leSjrfWrnBqMgAAAEAyxLNO8FYCGAAAAHuCeCK40hjzN2PMme2XRpxsjDnZsZkBAAAg7V144YUaPHiwpk6dmuqpxCWeCC6S1CzpS5KOb//ny05MCgAAAP3D+eefr//+97+pnkbcYr4m2Fp7gZMTAQAAgLOee+453XHHHdq6davKy8t1+eWX65hjjunTmHPnztXatWsTM8Ekimd1iL2NMS8bYz5ofzzNGPNj56YGAACARHnuuef085//XFu2bJG1Vlu2bNHPf/5zPffcc6meWkrEcznEvZJ+ICkgSdba9yWd4cSkAAAAkFh33HGHfD7fLs/5fD7dcccdKZpRasUTwXnW2gUdngsmcjIAAABwxtatW+N6fk8XTwRvM8bsJclKkjHmq2rbThkAAABprry8PK7n93TxRPDlku6WNNEYs0nSdyR905FZAQAAIKEuv/xyeb3eXZ7zer26/PLL+zTumWeeqTlz5uijjz7SiBEjdP/99/dpvGSJZ3WINZKOMMbkS3JZaxucmxYAAAASKbIKRKJXh3j00UcTMb2kizmCjTFXSvqTpAZJ9xpjZkq61lr7glOTAwAAQOIcc8wxfY7ePUU8l0NcaK2tV9tmGSWSzpX0S0dmBQAAADgongg27f8+VtJfrLXLo54DAAAA+o14IniRMeYFtUXw88aYQklhZ6YFAAAAOCfma4IlXSRpuqQ11tpmY0yJJLZSBgAAQL/TYwQbYyZaa1eqLYAlaZwxXAUBAACA/iuWM8FXSbpE0q2dvGYlHZ7QGQEAAKBf2LBhg8477zxt3bpVxhhdcskluvLKK1M9rZj0GMHW2kva/z3P+ekAAACgv8jKytKtt96qmTNnqqGhQbNmzdKRRx6pyZMnp3pqPYr5xjhjzKntN8PJGPNjY8yTxpgZzk0NAAAAiRIIBHTFFVfoiiuuUHNz886PA4FAr8ccOnSoZs6cKUkqLCzUpEmTtGnTpkRN2VHxrA5xnbW2wRhziKQjJN0v6S5npgUAAIBEuuqqq7R48WItXrxYxx577M6Pr7rqqoSMv3btWi1ZskQHHHBAQsZzWjwRHGr/93GS7rHW/kdSduKnBAAAAKf4/X41NjbK7/cnbMzGxkadcsop+t3vfqeioqKEjeukeCJ4kzHmbkmnS3rWGJMT5/sBAACQIjfffLM8Hs8uz3k8Hv3qV7/q07iBQECnnHKKzj77bJ188sl9GiuZ4onY0yQ9L+koa+0OSYMkfc+RWQEAACChrrnmmt2u/w0EAvr+97/f6zGttbrooos0adKkhF1WkSwxR7C1tlnS05KajDGjJHkkrXRqYgAAAEi8nJwcFRQUKCcnp89jvfXWW3rooYf0yiuvaPr06Zo+fbqeffbZBMzSeTHvGGeMuULSDZK26vPtkq2kaQ7MCwAAAAn0m9/8ZufZ2ptvvlnXXHPNzud765BDDpG1NiHzS7Z4tk2+UtI+1toapyYDAAAAZ3g8Ht122207H0d/nIniuSZ4g6Q6pyYCAAAAJEs8Z4LXSHrVGPMfSTvX1LDW9v4cOgAAAJAC8UTw+vZ/ssX6wAAAAOjHYo5ga+1PJMkYU9D+uNGpSQEAAABOivmaYGPMVGPMEknLJS03xiwyxkxxbmoAAACAM+K5HOIeSVdZa+dLkjHmMEn3SjrIgXkBAACgnxgzZowKCwvldruVlZWlysrKVE+pR/FEcH4kgCXJWvuqMSbfgTkBAACgn5k/f75KS0tTPY2YxbU6hDHmOkkPtT8+R20rRgAAACDNzZ07V83Nzbs9n5eXp9dffz0FM0qteNYJvlBSmaQnJf1DUmn7cwAAAEhznQVwd8/HwxijL33pS5o1a5buueeePo+XDPGsDlEr6dsOzgUAAAD90Jtvvqnhw4erqqpKRx55pCZOnKi5c+emelrdimd1iBeNMQOiHg80xjzvzLQAAADQXwwfPlySNHjwYJ100klasGBBimfUs3guhyi11u6IPGg/Mzw48VMCAABAf9HU1KSGhoadH7/wwguaOnVqimfVs3hujAsbY0ZZa9dLkjFmtCTrzLQAAADQH2zdulUnnXSSJCkYDOqss87S0UcfneJZ9SyeCP6RpDeNMa9JMpIOlXSJI7MCAABAQuXl5XW5OkRfjBs3Tu+9916fxkiFeG6M+68xZqakA9uf+o61dlvkdWPMFGvt8kRPEAAAAH2XicugdSeeM8Fqj95/d/HyQ5Jm9nlGAAAAgMPiuTGuJ6bTJ4052hjzkTFmtTHm2i7fbMwpxhhrjKlI4JwAAACA3SQygne7Sc4Y45Z0h6RjJE2WdKYxZnInxxVKulLSuwmcDwAAwB7PWtYp6M2vQSIjuDP7S1ptrV1jrW2V9JikEzs57qeSbpbkc3g+AAAAewyv16uampqMDmFrrWpqauT1euN6X1zXBPegtZPnhkvaEPV4o6QDog9ov9lupLX2P8aY73U1uDHmErWvRjFq1Ki+zxYAAKCfGzFihDZu3Kjq6upUTyWlvF6vRowYEdd74opgY8w0SWOi32etfbL93wd28bbuxnNJ+o2k83s61lp7j6R7JKmioiJzv90BAABo5/F4NHbs2FRPo1+KOYKNMQ9ImiZpuaRw+9NW0pPdvG2TpJFRj0e0PxdRKGmqpFeNMZI0RNIzxpgTrLWVsc6tt2qbWtXoDzoydkFOlgbmZzsyNoA9V3WDT43+kCNjF+S4VVYY348LAWBPFc+Z4AOttbvd1NaDhZImGGPGqi1+z5B0VuRFa22dpNLIY2PMq5KuTkYAS1KjP6hDfzXfkbHf+P48IhhA3Br9Ic379auOjD3/6sNUVujI0ADQ78RzY9zbna3s0B1rbVDStyQ9L2mFpMettcuNMTcZY06IZywAAAAgUeI5E/wXtYXwFkl+ta0LbK2107p7k7X2WUnPdnju+i6OPSyO+QAAAAC9Ek8E3y/pXEnL9Pk1wQAAAEC/E08EV1trn3FsJgAAAECSxBPBS4wxj0j6l9ouh5D0+RJpAAAAQH8RTwTnqi1+vxT1XE9LpAEAAABpJ+YIttZe4OREAAAAgGSJZ7MMr6SLJE2RtHO1dWvthQ7MCwAAAHBMPOsEP6S2Hd2OkvSa2nZ/a3BiUgAAAICT4ong8dba6yQ1WWv/LOk4SQc4My0AAADAOfFEcKD93zuMMVMlFUsanPgpAQAAAM6KZ3WIe4wxAyVdJ+kZSQWSOt35DQAAAEhn8awOcV/7h69JGufMdAAAAADnxXw5hDGm3BhzvzHmufbHk40xFzk3NQAAAMAZ8VwT/KCk5yUNa3/8saTvJHpCAAAAgNPiieBSa+3jksKSZK0NSgo5MisAAADAQfFEcJMxpkRtWyXLGHOgpDpHZgUAAAA4KJ7VIa5S26oQ44wxb0kqk/RVR2YFAAAAOCieCP5Q0j8lNattp7in1HZdMAAAANCvxHM5xF8kTZT0C0m3SdpbbVspAwAAAP1KPGeCp1prJ0c9nm+M+TDREwIAAACcFk8ELzbGHGitfUeSjDEHSKp0ZlrJ4fW4NP/qwxwbGwDiVZDjduzrUkGO25FxAaA/6jGCjTHL1LYihEfS/4wx69sfj5a00tnpOavRH9K8X7/qyNjzrz5MZYWODA1gD1ZW6OVrBwAkQSxngr/s+CwAAACAJOoxgq2165IxEQAAACBZuHAVAAAAGYcIBgAAQMYhggEAAJBxiGAAAABkHCIYAAAAGYcIBgAAQMYhggEAAJBxiGAAAABkHCIYAAAAGYcIBgAAQMYhggEAAJBxiGAAAABkHCIYAAAAGYcIBgAAQMYhggEAAJBxiGAAAABkHCIYAAAAGYcIBgAAQMbJSvUEUqkgx635Vx/m2NgAAABITxkdwUB/VN3gU6M/5MjYBTlulRV6HRkbseH3FwCSI6MjuNEf0rxfv+rI2POvPkxlhY4MjQzHn9s9G7+/AJAcXBMMAACAjEMEAwAAIOMQwQAAAMg4RDAAAAAyDhEMAACAjEMEAwAAIOMQwQAAAMg4RDAAAAAyDhEMAACAjEMEAwAAIOMQwQAAAMg4RDAAAAAyDhEMAACAjEMEAwAAIOMQwQAAAMg4RDAAAAAyDhEMAACAjEMEAwAAIOMQwQAAAMg4RDAAAAAyjrHWpnoOcauoqLCVlZV9Hqe6wadGfygBM9pdQY5bZYVeR8ZGZuPP7Z6N318A/YVTX68S+bXKGLPIWlvR2WtZCfkM/VRZoVdlhameBRAf/tzu2fj9BdBfNPpDmvfrVxM+7vyrD0vK10EuhwAAAEDGIYIBAACQcYhgAAAAZBwiGAAAABmHCAYAAEDGIYIBAACQcYhgAAAAZBwiGAAAABmHCAYAAEDGIYIBAACQcYhgAAAAZBzHI9gYc7Qx5iNjzGpjzLWdvH6VMeZDY8z7xpiXjTGjnZ4TAAAAMpujEWyMcUu6Q9IxkiZLOtMYM7nDYUskVVhrp0l6QtKvnJwTAAAA4PSZ4P0lrbbWrrHWtkp6TNKJ0QdYa+dba5vbH74jaYTDcwIAAECGczqCh0vaEPV4Y/tzXblI0nOdvWCMucQYU2mMqayurk7gFAEAAJBp0ubGOGPMOZIqJN3S2evW2nustRXW2oqysrLkTg4AAAB7lCyHx98kaWTU4xHtz+3CGHOEpB9J+oK11u/wnAAAAJDhnD4TvFDSBGPMWGNMtqQzJD0TfYAxZoakuyWdYK2tcng+AAAAgLMRbK0NSvqWpOclrZD0uLV2uTHmJmPMCe2H3SKpQNLfjTFLjTHPdDEcAAAAkBBOXw4ha+2zkp7t8Nz1UR8f4fQcAAAAgGhpc2McAAAAkCyOnwkGAMSuusGnRn/IkbELctwqK/Q6MjaAzFOQ49b8qw9zZNxkIIIBII00+kOa9+tXHRl7/tWHqazQkaEBZKCyQm+//prC5RAAAADIOEQwAAAAMg4RDAAAgIxDBAMAACDjEMEAAADIOEQwAAAAMg4RDAAAgIxDBAMAACDjEMEAAADIOEQwAAAAMg4RDAAAgIxDBAMAACDjEMEAAADIOEQwAAAAMg4RDAAAgIxDBAMAACDjEMEAAADIOEQwAAAAMg4RDAAAgIxDBAMAACDjEMEAAADIOFmpngD+f3v3Hh9Veedx/PObM5MLJFwiAZGLgICKiogpYrWKYquuF7q1VWu72m6t3a7tql261r3a3XZv1WK7S21ddbVd10vtzdrd2q5CvaEFRBFKLQhyB6FgSEgyycz89o85QAgBIjkzk+R8368XL3LOPPPMA888J9955jnniLw72xpaaExnC1J3VXlAbXVFQeqWrqkqD5g3e0bB6hYRkTyFYJFepjGd5bw75hek7nmzZ1BbXZCqpYtqqyvUByIiRaDlECIiIiISOwrBIiIiIhI7CsEiIiIiEjsKwSIiIiISOwrBIiIiIhI7CsEiIiIiEjsKwSIiIiISOwrBIiIiIhI7CsEiIiIiEjsKwSIiIiISOwrBIiIiIhI7CsEiIiIiEjsKwSIiIiISOwrBIiIiIhI7CsEiIiIiEjsKwSIiIiISOwrBIiIiIhI7CsEiIiIivwSjbQAAFM9JREFUEjsKwSIiIiISOwrBIiIiIhI7yVI3QETenarygHmzZxSsbhERkThQCBbpZWqrK6itLnUrREQk7rY1tNCYzkZeb1V5QG11ReT1dqQQLCIiIiLvWmM6y3l3zI+83nmzZxRlskdrgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCQSx9dW7rddWQm3zBzPbRdNpG70wEOWLbZkSV+9xLY1tNCYzu63rzKVwMwYWBawvakNB3Y2tbKruY3yZEBtdTnJwOhXFkAmh6UCkglne2Nmv3qqygNqqyuK+K+RuOj4vq1MQCIZ4EC/ZIL6lgxZd3bsbqUxnaF/WZKjqsoIEsbAiiS7W7MkzHDP0tS2f91635Zex/4dVGlkPSCbzVGeTLC7NUtbztnekKalLUt1RYrB/VMkzBhcGdCYzoEZba1ZOnSv+ldEIlVVHjBv9oy920OrkrgFJHIZGtuctqzT0pZjW2OabM5538ShDKhMgcPRA8poSOdIZ7I0t+UOqLcYYh2CG9NZzrtjPgBjaip55DNnUhYYLRnnoYXreXDBWtbtaDrgedXlSS47dTh/fPY4qoGmnLNy6y5u+N4re8vMmz2D2uoi/UMkVtq/b688/Ri+8IETMJx0xvmvl9byyML1bGtIH/C8IVVlXFk3iqunjaJfKiBLwIMvrOSBBev2ltH7tvTa9+/tl53IhScPJ7AczW05vvPsan64ZCPvdPz0AhwzsIJrzjiWPzztGCpSYGUBf/HwEl5cs2NvGfWviESp/fHq+VvP5Z3mVhKW5O2GNHfPf5N5b7xNOrN/wDWDScMHcMM545g2pobKVH5RwvR/emZvmWIdq7Qcgn0BGGDB6h1cdNez/MPPVnQagAEa0hn++9fref+cX/Gt+asJEsZZ42u454+mFrPZEnNXnn4Mt33gBAB+8tpmZt75K/7tmVWdBmCA7Y2tfGv+m8y881c8/spG3OGW8ybwiTNHF7PZ0kW3X3YiV5w2HMN48MW1nH/nfO5/4a1OAzDApvoW7vjFG7x/zrP834rt5Ny566On8d6xNUVuuYjEzfO3nsugyhROwF/9aBmz5r7Az5dvOSAAA7jD8k27uOmRV/nIdxawensTjvPSbecXvd2xD8F7ArCZMeeXv+PG/17CrpbM4Z9IviMfXPAWH7v31+xsyioIS9HsCcBpjNnff42v/GwFrdkDDzadacs6//y/v+WmR5bQrCDcI+0JwI2tcP13FzJ3/pvkvGvPbWrNcusPlnL7E8txR0FYRArq+VvPZWB5ig0701z2b8/zzBtvd/m5G3Y286G7X+SpZVsBih6Ezb2LR9YepK6uzhctWtTtetZs3713Gn7uvFV876V1h3nGwR1X25+Hrj+DbM5ZvqmeCcMGMHZI/263UaSjLTt2Q5B/337x+0t5btX2I65r+rga7rpqCmbG3fNWct1Z4/S+LbGdu5toyRiGcf13F7Js464jruvSycP560tOJGHGzQ8v4atXTFb/ikhkdrekac3kqG/JMWvuC9Q3d/5NVVf864cnM/P4IbTloLktF9mxyswWu3tdZ4/Feia4MpWgLOGseruxWwEY4M1tu5nzy5UEZkweNZjq8ogaKdJBkApIJRI8tXxrtwIwwEurd/DT1zYRmHPj+RMiaqF0R1suQcLggRfXdCsAAzy5dDOL175D0vIzwiIiUdrS0EY6Czc9sqRbARjgb368jPqWLI3NrVQkLaIWHlqsQ3ACaMkaX3jstUjqe3TRen7f1Er/JBxkWaZIt2VzTnMmyz/+z4pI6vvaU7+jJeNku/p9uxRUMufsTme559nVkdR32w+X0pJ1sr3wWz8R6dnG1FTy7MrtvLahvtt1pTM5/vJHr9OvIrX3W/pCi3UIrq5M8ptNu3g7wsQ6d94qmjL6ZSOFU12e4Cevbur0hIMj0ZrN8f1FG6go0kFHDs2DBPc9t6bLa4APZ1dLhudXbSeVKM7MiojEx5Zdab49/83I6ntp9Q6a23K0tGQPXzgCBf+tZ2YXmdkbZrbKzL7UyePlZvZo+PjLZjam0G3ao745w3cXvBVpnb9YvpVMViFYCmdHU5ZHFnZv+U5Hjy5cf8A1s6U0Wtqy/OjVjZHW+dBLa2lpi+ZDk4jIHk2tWVZv3x1pnT9YvIHaQcW5nnlBQ7CZBcBc4GJgEvBRM5vUodingJ3uPh6YA/xLIdvUXibnkUzhd6yzvrkt3lPsUlAGrN/RHGmdW3a1kNPX5T1COpOjqTXaDyQrNjdgmggWkYi9tuGdyOtcvHYnW3YVZ01pobPaNGCVu69291bgEWBWhzKzgAfDnx8HZpoV53CdCwNr1N7Y0sDQAWWR1ysC0NjatUv4vVv1zRl9eOsBNuyM9gMO5Je8RLV8RkRkj1fXRR+C39jaENlysMMp9O+8EcD6dtsbwn2dlnH3DFAPHNWxIjO7wcwWmdmibdu2RdK4Qp0o0tSWJdD6OymQdIG+1k63ZalIFaRqeReaCvQhRyc+ikiUMpkcTW3RL6NracsW7ZurXjPx4+73uHudu9fV1tZGUmdQoP/lqvIkmZxmXaQwKlKFuad6ZVnAQW5GJkVUVV6Yu9nrg7mIRCmZTBTkeNWvLEmxVucVOgRvBEa12x4Z7uu0jJklgYHA7wvcLgASCaOmf/TLFk44upqtu5QmpDCqygsTggdoGrhHGDG4X+R1licTlCd7zZyHiPQSU0cPjrzOE46uJlmkD+2FPiouBCaY2VgzKwOuBp7oUOYJ4Lrw5w8Dz3iRbmOXCozTRg+KtM7yAn0yEtnDPX+HwiiNqqmMtD45cmWBMaAy2mPIySMGRlqfiAjA5JHRH1veM6aGodXFOa+qoCE4XOP7OeApYAXwmLsvN7O/N7PLw2L3AUeZ2SrgC8ABl1ErlKrygE++d0ykdV4yeThlgWZcpHCG9EtxzRmjI63zY2ccy8AKfXjrCfqXB3zk9FGHL/gufOK9Y7QmWEQiV54KOHF4dWT1mcGHpo5g886WyOo8lIKnNXf/H3ef6O7HuftXw31/6+5PhD+3uPtH3H28u09z92huk9QFDc0ZxtVWRTYLZgafPfc4yg2Kc4U7iaP61gwXnzw8sm8cKlMBl00+hmZdPaBHSGeca888llQQzdeBQ6rKqDt2MGVaDiEiERtaleLz50+IrL7zJg6lLGmU645xxWCUBcY3rz4tkjMRrz97LAMqkjTlHCvMsk0RwKhMJfjKB0+OpLbbLz9JV4XoYfqnAm65YGIkdX39yimUqX9FpAA21aeZOnoQZx53wEW93rX+ZQG3zzqJ+qY0xbp1U6xDcHMmR9Zh+MAKPnfe+G7VdcqIgXzq7HE48OTSTTTr5ltSIC2tWVqzzvRxNVxyytHdqusDk4Zx7sQhZHLGrd9fElELpVs8Sxa4YuoIpo+r6VZVfzR9NBOHVZHJGFfMXRBN+0REQsMGlJEKcnztiskMrS4/4nrMYM5VUxhQHjC4XznNRbrDZaxDMMCMOU9jZnxs+rH86YzjjqiOKaMGcc+1p9M/5Ty5dBNf+dlvI26lyD454Mb/WoSZ8TeXTuLSycOPqJ6LThrGP3zwZMzyAXj+yh3RNlSOSFMb3D1vJRVm3HXVFM46whmWa84YxefOm4BhfGjui2zcFf1NOEQk3jbXt7K9IUttdYpHPzOdEYPe/fLSZML4xlVTmDxyIOlMljP+aV4BWtq52Ifg5uYwCAPXTh/Nw58+o8ufZpIJ44sXHs+3P346/ZPw6GIFYCmORevq9wbhv77kRL559RSqu7hGuH9ZwJ1Xnsrtl58EoADcAz2wYB1z5q2k0ow7rzyVL19+UpcvcTa4X4r7rqvj8+G3WwrAIlJIF37jOd7a3szRA8p5/LNncmXdyC4/94Sjq/nZn53NmWNrMLyoARhAp4OzLwjPv2UmE4f248c3nsXitTu5//k1LNtUT1t2/7OqR9VUcsXUkVwxdSQVSSPrzmOvKABLce0JwnM/XsdZ44/iqVvO4ekVW3no5XX8rsNtJxMG44dW8dFpo7nwpKOpCBK0uSsA92APLFgHwGfPm8ClpwznghOH8tOlm3ls4XrW/H73fheTDxLGicOrue7MMZw1fggVgdGWUwAWkeK48BvP8dRN76MiFXDLBRP4zDnH8eCCt/jf17ewrTG9X9mKVIJpY2r4k3OPY8yQ/iQsR64EARgUgvfaE4Tn3Xw+QQKmHTuYqeE1hJvbcmSyORIJozIVAM6AihTpthzJIMFPXlmvACwlsScIf+vjdSQMLjllGDOOH4pZ/taTmawTJIx+ZQE5d6rLA1oyTkYBuFfYE4Q/N3MiQcK4um4kl5xyNGZGc2uWbM4JAqNfKsCBimSCbM5pzTlXzF2gACwiRbMnCNdUVVJGGzfPHM8N7xtHDqe5NYe7U5ZMUJZMEBhkszkqUwGtmdIEYAAr0n0pIlVXV+eLFi3qdj3bGlpoTBfmDLaq8oDaal0oTaKn923fpv4Vkd6iUMerKI9VZrbY3es6eyzWM8G11RXURneNZ5Gi0Pu2b1P/ikhv0duPV7E/MU5ERERE4kchWERERERiRyFYRERERGJHIVhEREREYkchWERERERiRyFYRERERGJHIVhEREREYqdX3izDzLYBawv4EkOA7QWsX0pL/dt3qW/7NvVv36b+7dtK1b/HunttZw/0yhBcaGa26GB3F5HeT/3bd6lv+zb1b9+m/u3bemL/ajmEiIiIiMSOQrCIiIiIxI5CcOfuKXUDpKDUv32X+rZvU//2berfvq3H9a/WBIuIiIhI7GgmWERERERiRyFYRERERGJHIbgdM7vIzN4ws1Vm9qVSt0e6x8xGmdk8M/uNmS03s5vC/TVm9kszWxn+PbjUbZUjZ2aBmS0xsyfD7bFm9nI4jh81s7JSt1GOjJkNMrPHzey3ZrbCzM7U+O07zOyW8Ni8zMweNrMKjd/ey8zuN7O3zWxZu32djlfL+2bYz0vNbGop2qwQHDKzAJgLXAxMAj5qZpNK2yrppgzw5+4+CZgO3Bj26ZeAp919AvB0uC29103Ainbb/wLMcffxwE7gUyVplUThG8DP3f0E4FTy/azx2weY2Qjgz4A6dz8ZCICr0fjtzR4ALuqw72Dj9WJgQvjnBuDuIrVxPwrB+0wDVrn7andvBR4BZpW4TdIN7r7Z3V8Jf24g/wt0BPl+fTAs9iDwwdK0ULrLzEYClwD3htsGnA88HhZR//ZSZjYQOAe4D8DdW939HTR++5IkUGlmSaAfsBmN317L3Z8FdnTYfbDxOgv4rue9BAwys+HFaek+CsH7jADWt9veEO6TPsDMxgCnAS8Dw9x9c/jQFmBYiZol3XcX8BdALtw+CnjH3TPhtsZx7zUW2Ab8Z7jc5V4z64/Gb5/g7huBO4B15MNvPbAYjd++5mDjtUdkLoVg6fPMrAr4AXCzu+9q/5jnrxGo6wT2QmZ2KfC2uy8udVukIJLAVOBudz8N2E2HpQ8av71XuDZ0FvkPO8cA/Tnwq3TpQ3rieFUI3mcjMKrd9shwn/RiZpYiH4Afcvcfhru37vnaJfz77VK1T7rlLOByM3uL/PKl88mvIR0Ufr0KGse92QZgg7u/HG4/Tj4Ua/z2DRcAa9x9m7u3AT8kP6Y1fvuWg43XHpG5FIL3WQhMCM9MLSO/QP+JErdJuiFcH3ofsMLdv97uoSeA68KfrwN+Uuy2Sfe5+23uPtLdx5Afr8+4+8eAecCHw2Lq317K3bcA683s+HDXTOA3aPz2FeuA6WbWLzxW7+lfjd++5WDj9Qng2vAqEdOB+nbLJopGd4xrx8z+gPwawwC4392/WuImSTeY2dnAc8Dr7Fsz+pfk1wU/BowG1gJXunvHxfzSi5jZDGC2u19qZuPIzwzXAEuAj7t7upTtkyNjZlPIn/RYBqwGPkl+8kbjtw8wsy8DV5G/ks8S4Hry60I1fnshM3sYmAEMAbYCfwf8mE7Ga/jB59/JL4FpAj7p7ouK3maFYBERERGJGy2HEBEREZHYUQgWERERkdhRCBYRERGR2FEIFhEREZHYUQgWERERkdhRCBYRERGR2FEIFhEpATO73My+dPiSBzxvjJktK0B7ZpjZe9ttP2BmHz7Uc0REerPk4YuIiEjU3P0JetZdKWcAjcCLJW6HiEhRaCZYRCRi4Wztb8PZ1N+Z2UNmdoGZvWBmK81smpl9wsz+PSz/gJl908xeNLPVXZ2BNbPAzL5mZgvNbKmZfSbcP8PM5pvZ42E7Hgrv0ISZ/UG4b3H4mk+a2RjgT4BbzOxVM3tf+BLndGyTmQ03s2fDcsvalRUR6VUUgkVECmM8cCdwQvjnGuBsYDb523d3NDx8/FLgn7v4Gp8C6t39PcB7gE+b2djwsdOAm4FJwDjgLDOrAL4DXOzupwO1AO7+FvBtYI67T3H35w7RpmuAp9x9CnAq8GoX2yoi0qNoOYSISGGscffXAcxsOfC0u7uZvQ6M6aT8j909B/zGzIZ18TU+AExuN3M8EJgAtAK/dvcN4eu/Gr5mI7Da3deE5R8GbjhE/Z21aSFwv5mlwscVgkWkV9JMsIhIYaTb/Zxrt52j8wmI9uWti69hwOfD2dsp7j7W3X/RSX3Zg7zm4RzQJnd/FjgH2Ag8YGbXHkG9IiIlpxAsItJ7PQV8NpyVxcwmmln/Q5R/AxgXrgEGuKrdYw1A9eFe0MyOBba6+38A9wJTj6DdIiIlp+UQIiK9173klzm8Ep74tg344MEKu3uzmf0p8HMz201+acMePwUeN7NZwOcP8ZozgC+aWRv55RWaCRaRXsncvdRtEBGRIjGzKndvDEPzXGClu88pdbtERIpNyyFEROLl0+GJcsvJn0j3nRK3R0SkJDQTLCLSA5nZKcD3OuxOu/sZpWiPiEhfoxAsIiIiIrGj5RAiIiIiEjsKwSIiIiISOwrBIiIiIhI7CsEiIiIiEjv/D/N2q2mMf6CuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXjU1fn+8feZZLJvkJCwQ1gFERHCJq5trdraat3XVlFxr6211i62tr/a1u7W2iqodUWlWqtWq9avVlzYwiYIsm8JkEDIPjPJLOf3RzI0xiwzyUwmYe7XdXGRmfnMySNqcnNyPs9jrLWIiIiIiMQTR6wLEBERERHpaQrBIiIiIhJ3FIJFREREJO4oBIuIiIhI3FEIFhEREZG4kxjrAroiLy/Pjhw5MtZliIiIiEgvtnLlyoPW2gFtvdYnQ/DIkSMpLi6OdRkiIiIi0osZY3a195qOQ4iIiIhI3FEIFhEREZG4oxAsIiIiInFHIVhERERE4o5CsIiIiIjEHYVgEREREYk7CsEiIiIiEnf6ZJ9gEREREendKl0N1Df4cRiDBbDgcMCg7NRYlwYoBIuIiIhIhNR5vNR4fKwvreYfq0tZV1JNaZUbgKyURI4enM3J4wdw1uRBOBMcFGSlxKxWY62N2SfvqqKiIquJcSIiIiK9x/4aN0u3HeKnr3xMpcvb4bWJDsOFRUP55ufHMjCKO8PGmJXW2qI2a4jaZxURERGRuLC/2sP3/7GOdzYdCOl6X8CycPke3tl0gEevnM7QnBQyU5OiXOWn6cY4EREREemyshoPNz69KuQA3NK+ag8XPLiE0mpPFCrrmEKwiIiIiHRJWY2HP7+9hVW7K7u8Rl2Dj2seL2ZftTuClXVOIVhEREREumR/tYcnl+7u9jollW4WLN7Ogdqe2xFWCBYRERGRsO2v9vC7NzdFbL2nl+3G6++5hg0KwSIiIiISNq8/wHtbD0ZsvQZfgLc/KY/Yep2Jagg2xjxqjCk3xqxv53VjjPmTMWarMeYjY8zUaNYjIiIiIpGxuayWSHfafXfzASrqeuZIRLR3gh8Dzujg9TOBsc2/5gF/jXI9IiIiIhIBy3ccivia60urcTUGIr5uW6Iagq21i4GO/oTOBp6wTZYCOcaYQdGsSURERES6JxAIcLCuIeLrVroacRgT8XXbEuszwUOAPS0elzQ/9xnGmHnGmGJjTPGBA+H3oRMRERGRyHA4HCQ6Ih8jEx0OLD1zc1ysQ3DIrLXzrbVF1tqiAQMGxLocERERkbg2flBmxNccmZcW8TXbE+sQXAoMa/F4aPNzIiIiItKLFY3oF/E1jx2Sw4D0nhmfHOsQ/DLw9eYuEbOAamvtvhjXJCIiIiKdyMtIpn+EA+t504aSnJQY0TXbE+0Wac8AS4DxxpgSY8zVxpjrjTHXN1/yGrAd2AosAG6MZj0iIiIiEhlZKU4umzk8YusV5qVTkJ0SsfU6E9Woba29pJPXLXBTNGsQERERkcjLSEnkkhnDWVS8h7Ka7neKuPe8yQzJSY1AZaGJ9XEIEREREemj8jOc/PmSqTi62dXs8lnDGZHbcwEYFIJFREREpIsSExMZmZfO/Zcc1+Ug/KVJA7nlc2MpyFIIFhEREZE+YkBmMtML+/P89ceHdZwhKcHB9888ip989WgKsnruLHBQz9x+JyIiIiJHrPzMFPIzU3jhhtn8c81eHvtgJ/trPJx97CCmjehPYoKhpNLFwmV7cHv9fPXYwdx46miyUp3kpifHpGbTdG9a31JUVGSLi4tjXYaIiIiItNLo9XOgroFGv2VreS1by+sIBCA/K5ljhmSTmeIkPclBTg+EX2PMSmttUVuvaSe4EzVuLx6vHwxgm8b5ZaclkhCFUYEiIiIifdn+ag9vf1LOgve2s+NgfZvXZCQncv60oVx9QiH90pxkpDh7uMomCsFtqHF7qfX42FftxgDZqU4SExwErKXW42NLuZ/cjCRy0pLIy4jNFr6IiIhIb1HlaqS0ys0tC1ezvZ3wG1TX4OOxD3fy7Ird/PisiXz+qIIe7Q8cpBDcgt8foKKugf21DWSnOlm6vYIPtlXwyb4aajw+khIcjM5PZ8qwHM6fNgxrG6lv8JGbkURGcmz+FiMiIiISS5WuRtbsrmLek8V4/aEfs/V4A/zgxfWcP62KO04fT34P3xynENzM7fWxr8qDM8HBgsXbeXXdPgKt/j26A37Wl9awvrSGp5buZlxBBr+94FjqGnwMzk6lXw/NuhYRERHpLXZXuLj2iWJ8rYNTiJ5fWUL/tCTmnVRIXmbPBWEdbAW8fj/7qzyU1Xg46/73eeWjzwbgtmwuq+PsBz7g9fX7qfF4qXI1Rr9YERERkV5iX7Wbmxau6nIADlrw/nb2VLojVFVoFIKBynove6s9XPHIcqrd3rDeay3c//ZW/vbBTmrcXnz+QJSqFBEREek9Ghp9vLCyhJIIhFdr4Y7nP6K0yhWBykIT9yG4ur4Rj9fPvG5s4wM89uFO1pVWU+vWbrCIiIgc+SpcXh7/cFfE1ttSXkdFXc/lqLgPwXVeHz98cR31jf5ur3XnC+twea12g0VEROSId6i+kQN1DRFd8/mVJXh9PZOj4joEN3j91Hl8vLe1IiLr1Tb4+MeqEuoafBFZT6Qr/H4/+6rclFS6KG3+fV+1G7+/+3/RExERCVq1qzLia67dU0V5hIN1e+K6O0R9Y2S38aHpWMS504aSkxbRZUU6tb/ajavRz/MrSyjeVcmm/bW4G/2kJDkYX5DJtBH9uKBoGGnOBAaFMdtdRESkLRv21UR8ze0H6umpacZxHYLdjQHe33owomtW1DfS4NWOm/ScWreXClcjP3xxHR+08VONRneAFTsrWbGzkgff3c7sUbn84txJ5KYnkZWqtn4iIhK+QCCANwrHP72BACbiq7Ytro9DWGD3ocjfhbizouNJKSKRcqDGwzubyjnjj4vbDMBtWbK9gjP++B5vbSynvMYT5QpFRORI5HA46B+F+QjZqc6Q2tRGQlzvBIcz1SQc5TU9c5ZF4ltFXQPvbCrnjhfWHX4u1ZnAiWPzOGZoNuMKMklJdODxBdhaXsdHJdW8t+UArkY/Db4Aty1ay8/PmcTpRxcwoAebk4uIyJFh+sj+LHhvR0TXPHpwNmlJCRFdsz1xHYKjtd1uTE9t5Es821/t4c5/NAXgvIwkbjxlDFOGZbPjYD1+a3GYpv8WE4whPzOZL04sYN5JhawrreGBd7ZyoLaBu15azzFDshWCRUQkbEcNyor4mieOzSM3Izni67YlrkOwM8GQnOigIcKtOArzdFecRNe+aje3PLOagIWzJg9i3omj2F3pImCb+iyu2VPFpv21uBr9pCYlML4gk2OH5TA8N40BGUk8/I0iHn1/By+t2cstz6zmuetmMShbN8uJiEjokhIMs0flsmR7ZLpsORMMX5w4MCJrhSKuQzDAhEFZrNlTFdE187WrJlG2YW8N2w/Wc/PnxjCrsD9+a3luxR7e2/LZGz0bfAGW7TjEsh2HmL94O8ePzuX208dz3tQhjMpL5w9vbWHNniqFYBERCcvA7FS+c/o4zv/rkoisd+G0YaQ4e+52tbgOwSlOB2dOGhjREDxlWA7OBB2HkOjZX+1m/uLtXD5rBCeMzmNPpYsfv/Qxbq+fFKeDE8cO4Jgh2YwtyCAlMYGG5jPB60qrWLz5IB9uq+CS+Uv5yVeOZmZhLnPneJn/7naOHZrDYLVOExGRMAzvl8b504by/MqSbq1TkJXMzZ8f02NHISDOQ7DfwhcmFvD7/2yO2JGIq+aMJCkxrptuSJT5LVS6Grl0xjCKd1Xy45c+Jjc9idtPH8eUYf34v41lLNlewWMf7sTV6CPVmcD4gZlMGZbDtSeOYl1pNX95Zxs/eHEdPz5rIudNG8qH2yp6rC+jiIgcOfKzUrj9i+PZuK+Gj/d2rW9wqjOBh79eRH5Gz7btNH3xG19RUZEtLi7u9jplNW4CAVhUvIc/vLWl2+sdOzSbP1w0hVQNI5Ao2lpex8G6BgxwyYKlnDFpINecMIo/vrWZxW0ch2htzphcbjttPI9/uJNXPtrL01fPJCnRQVaqk3EFmdH/BxARkSPO/mo3tz67hmU7DoX1vtz0JP521XRG5aaREYXe9caYldbaorZei+stywRj8AUsp08ayOSh2d1aK9WZwE/PnkSCo2lNkWjxBwLkpifxgxfXcf3Jozl1fD6XPbwspAAM8MHWCi57eCmzR+dy6+fH8v0X15GTloQvCk3PRUQkPgzMTuVPF0/h5+dMIj2EFmfGwNnHDuaVW05gQkFmVAJwpzXE807wvmo3Hq8fa8HV6Ofbz61hS3ld2OukOhP46+VTGZGbhg1AanKCbjKSqCmtdLF2TzUfbjvI+IFZ3PXS+i6v9eOzJrKn0sWUoTlMG9mPof3U2aQ3Kqv2kJbsIDOl828SZdVNA1AKsnWDroj0vEN1DXh8AZZsr+Cfq0tZV1pNlcsLQHKig/EDMzlhTB4XTR9GcqKD3LQknM7o9QXuaCc4rs8E52cks3jLAYbkpJLqdPDbC47lkfd38PLavSGvMa4gg5+fcwzpSQl4/ZZql5dhyQoSEj3GGN7csJ8Lpw/j8oeXdWut//fqBp6cO5NFxbspGtkvQhVKJJXVePj7yj2cPG4AI/PoMAiX13hYvaeSgIWiEf3Iz1IQFpGeU1bj4b63NnPT58Zy3tShnDgmj0Z/AGzTlF6Hw4C1DMhIosrt47EPd3LOlCEU5qZFNQi3J653ggH2VrnZdbCefulJ+AIB9ld7wBgeeW9Hh33vhvdP4/JZI5gyLJv05EQafQFSnQmU1Xg4eXx+RGoTaUtJpYvNZbXc8+onbDsQ/k8uWhuZm8bPzp5EYV46w/rrL3C9SVmNh6eX7eJP/7eV9KQEnp03i5F5aW0G4fIaD6t2V3Lj06sA+POlUxWERaTHlNV4+PZza/hwWwVj8jN4fO4MhrRzf1R5jYf7397Kk0t3kZPmZNG82VELwh3tBMd9CK7xNPKPVaUUjehHwMK+ag/90pLYV+1meP80dla42LC3hlqPF2eCgzH5GRw1MJP6Rh8+f4CctCSSEx0EAvDKR3u57qRRFOgohETRrop61uyp4tZn10Rszd9dcCzTRvRjZF56xNaU7mkZgIPaC8ItA3DwlgSHURAWkZ7RMgAHtReEWwbgoGgGYd0Y14GslCTOnDSI3/9nCz5/AAN4m38HyExJZMLATI4bnsPkodkUZDX1rzMYGn1N320s8PD7TX1bFYAl2vwByzPLd0d0zaeX7cYf0I1xvUVbARigvtHPxfOXsvOgi1pPI9B2AAYIWLh54SqKd1VSXuPpyfJFJI60FYChqZPRNx5dTmmV+/BzbQVggCqXlwvnL2FHhQuv198jdYNCMAAFWSn8/JxJ3PXSx+ypdH3qNZ8/gM8GsBb81tLo//TOeYMvwB3Pf8SVcwoZlKPdFok+Z4KDlbsqI7rm2pIqnOpv3Su0F4CDWgbhape3zQAcpCAsItHUXgAOahmED9Y1tBmAg2IRhOP6xriWBuek8sg3ivjla5+wcNluLps5gqH90jj8faXVELhGf4BFxXvYV+3hgUunMqxfCqlO/XFK9Hn9Abz+yB5j8gcsDV7tBPcGiQ7Dqx/tb/O19KQE5ozJY9KQbEqr3PgDlkZfgBtOGcNHJVUs3V7xmf82AhYWrdjDjJH9e6J8EYkjNR4vazuZuru1vI6vP7KMiYOzeGXtvg6vrXJ5WbzlADlpg8nvgRvl4v5McEvuBi+Vbi97Drn5/X82s2zHIYb1T2XCwCzSkxPx+QNsP1jP5rJaCrJSuObEQk6fOJBUZwI56T3f307i0/rSas66//2Ir/vPG49nynB1iOgNSqvcfP2R5YdvfByYlcKNp45mwqAs3tpQxtqSKraU1dHgC5CenMCEgVkcN6IfJ43NY/GWgyxYvJ26Bh8AJ43N4zcXHEuBzgWLSIS5G31sLa/j4vlLqW/s/u7td744jouKhkX0PgbdGBcCd4OXXYfcuBv9JDsdZKY4scDm/bWs2HmIKpeXJKeDyUOyOXZYDulJCSQ6DFvL63EmGgrz0hmQqW8yEn0b99Vw5n3vRXzdV26ewzFDcyK+rnRNMAhPHZHDRUXD+M0bm1hfWn14J3jUgHSSEx24Gv1s2l/LutJqlm2v4LSJA7nmxEJ+9+ZmHAYFYBGJqkgF4WgEYFAI7tThANw8OKPB58dhDM5EB+Py08lo1Y5ob6WbWo8XCxysb8TpMBiDgrD0iJJKFyfc+07E133vjlPVIq2X2Vft5vX1+3n0/Z1cc2Ihk4ZksfNgPf4AZKc5SXQYGn0BajxekhITGJmbxuLNB3huxR7+3zmTOGZItjpDiEjUdTcIRysAg7pDdKhlAIam8y37micueX0BNpfXU+1qPHx9ywDs9vpZu6cKay3Wwo6D9Ryo1c0nEl1JCQ6yUiN7/jwtKYEk3RjXq9S4vby+fj8b9tbw50unkJuRRMDClvI6XlxTyo9eXM+3n1vDz/61gdfXl7HnUNNNvSPz0vnr5VN57IMdbC6ro6EH77QWkfiUmpTImPwMnp03K6SRyS1FMwB3Jq7v5GodgKvdXq5/aiWNvgC/ueBYhuak4vUF2HawnnH5hhq371MB+PqnVlJW08D1J4/ilHEDAMOOg/UA2hGWqMlMcfKlSYN4dsWeiK15+qSBZCTH9ZeDXsVay+ayWnwBy5nHDMTrtzy1dBdLtx/6zLU1Hh/7qj28s6mc+/5vC2dOGsg1J47ils+N5aW1pYzITdMOv4hEXTAIP3XNTL72lw9Des/ls4Zz6Yzh5GYkR7m6tsX11o/LF8Drb7ojPhiAPd4AAQvf/ftaSpp723l9AdaX1rQZgAEefHc7/9184PCOcB88YSJ9SGpSAtecOCqia15/0mjSFYJ7jYN1DRTvqmTS4Cx2Vbi47OFlbQbg1vwBy78+2sc3Hl1OldvLOccN4ZnluzlU39ADVYtIvKv1+PjHqtKQr1+y7RAeX+w6E8V1CA52PWsZgINaB+EAts0AHNQyCItE24DMZM6dOiQia501edDhITDSO6wtqWLO6DyKd1Xy01c20BDmN4lqt5cbnl5FeU0DZx87mAM1CsEiEl3tDcLoyLYDnx2o0ZPiOgRb2/SjxNYBOKh1EG4vAAc9+O523t18IKo1iwBkpzq584yjyM/sXnjNy0jiR2dNJCdNLf56i4O1DQzJSaW81sPv3tzc5XX8Act3/r6WBl+Aancj9c0t00REIq0rATiorclyPSWuQ7Ax8OSSXW0G4KBgEF6yraLDABz0/MpSHA7T4TUikTAgM5nnrptNXkbXAmy/NCeLrptNQTeDtESYaZoK+IMX13V7KY83wN2vbKB/Rgpur0KwiERedwJwUKyCcFyHYIeBu86a0HxTW/sCFu5/e2unAXhARjJPXzsT0JEIiT5jDCNz03j55hOYWRjekItpI/rxr1tOYGRuOsboL229idcf4L0tBzv9ehOqVbsrOVDrwR/hKYMiIpEIwEGxCMJxHYJ9Abj3jU+44ZTRnQbhzgzISObRq6bzs1c+xlqFCukZxhgG56Ty18uLePDyaYwryOjw+jH5GTxw6XEs+Po0hvRL008teiGvP8BTEfiG0tKTS3cRUAYWkQg7WNfI08s6/3r17dPG8srNczptn7a1vI4nPtzZYzfzxvXt4HkZyfzoSxP50T/Xc8MpowH4bxfO9AYD8L3/3shPz55Ebroz0qWKdKh/ehJnTBrI9JH9qPX42LC3hhU7D1Hj8ZKR4mT6yH4cPTibzJRE8mLUikZCEwjAtgP1EV1z6fZD+HXTrohEWEFWMn++dCo3L1zV7l+0g32A05MSeXberA4Hanxp0kDmnlBI//Se+T6liXE0bee/uLqUs6cM5s4X1oUVhAdkJPPsvFnsr3YxMCeNwtw0HI643mCXXsRaq+MOfUzxzkOc/+CSiK/77ndPYURuesTXFZH4VlHXwLIdh9oMwq0HYdR7fGw/2PZkuS9NGshPvnp0xMe8a2JcJ/KzUjhr8mBq3V5+ce4xHDcsJ6T3JSc6eGbeTFyNPlKTneSmOxWAJSZcDb7DPa9baisA+/wBXOoU0Gsdqm/s/KIuaOu/DxGR7srNSGZmYX/+fOlUWp6wa2sSXHpKIqPyPjtZLloBuDNKbEBppZs6jxe/hfLahpAPZTf6A6wtqcbV6MfrC7D9oOtTI5ZFeoKr0UdJlYv91e5Og47PH2B/tZuSKpdaZvVSzoTofFnWTwREJFpaB+GORiG3DsKxCsAQ52eC4X8B2AIeX4DrniymvDa0A9m2uX1a6xHLo/MgW31XpQe4Gn3sq3az86Dr8BeQgdmpbQYpnz9AWbWbKreP3YdcJBgHA7NTNCmulxmYHZ1vBMmJ2vMQkegJBuG3bjuZjOTENgNwUDAI/+ubJ5KWlBCTAAxxvhNc7fbiavR9KgCH25aorRHLPt2GLT0gGIC3lNVz/VMruXTBUg7Ve9vcEQ4G4Eq3j0vmL+XmhavYuL+G/dUe7Qj3MhnJiUR603Z4/zSNcxeRqMvNSGbUgIwOA3BQekoihXnpMQvAEOchOHh2pasBOKh1EBaJtpYB+ManVxKwUN/obzMItw7AtQ0+Aha++cxqBeFeas7o3Iiu9+XJg0hK1HEIEZGW4joEW9v9ABwUDMKxmn8t8aOtABzUOgg3+vyfCcBBCsK9kzPBcP3JoyO2njHwtSlD8GlYhojIp8R3CAZ++drGkCbBvXzznJAmy/3wxfUkaACBRJG70d9mAA5qGYT3VXvaDMBBLYOwxur2Dl6fxWFgZmH/iKx35eyRlFS5cOrGOBGRT4nrEOx0wG8uOJbRA9rvnRkchPHLf3c+WS450cHjc2fg15lgiaLEBAd/fGtzhxPAgkH4zQ1l7QbgoICFP/xnC86Ejif5SM/YXenCmejgrrMmdjpdqTPD+6fx1SmDGdE/nbp2mtOLiMSruA7BHp/l169/wp8uPq7NINxyEtyPz5rII+/vaDcIJyc6+NuV01m4bJd2giWqslOdPHrldMbmdzwiub7Rzz2vbuwwAAOMykvnibkzyE7VpMPewN3op8bt48XVJTz8jSLSuhiEB2al8OdLj+PDbQd5dd1e1CVYROTT4joE909P4o4zjuIXr238TBBuPQp5fEEGPz9nUptBOBiAn1uxm0tmDicpSn0+RQCqXI3Uebw8NndGp0G4M6Py0nni6hnUN3ipitKQBgnPoOwUvvfCR1xYNIzHP9zJk1fPYFxBeP+eTxiTy4NXTOP3/9nMyePyuf/trWqRJiLSStx/VRySk8qvLzj2U0G4dQAOjkLOz0r5TBBuGYAvnTWCYwZnk6a+qxJFAQuf7K/l1mdX87cQdoTbMyovncfnzuD2RWtYv7eGADrG0xtkpzqpqG/knlc3MveEUXz/hXXcddZEfvjlCQzJSe3wvRMGZfKHC6dw3rRh3PH8Wr57+nhufXYNA7NTIt52TUSkr1Na439B+I6/r+W+i48D4FetAnBQMAj/6J/rueGU0XzrtHH87f3tCsDSYxIdhgfe2camslq++ewa/nbldK56bAVbyutCXiMYgL/z9zUs31HJgbpGTptYEMWqJVSJDsOsUbks3nKQBIeDe8+fzPee/4gh/dK4+6tHk56UwMZ9NXyyv5YGX4CM5ASOHpzNuIGZ7D7k4oklO0lLSuC3FxzLdxatZduBOq6aM5JUp858i4i0ZGwf7KBeVFRki4uLI75uaZWb2xetIWAtvzh38mcCcEvlNR5+9M/11DX4uPULYxWApUeV1Xi47OFlbC2v48rjR3DdyaM57y8fsrfa0+l78zOTefGmOTzx4U4eWrydwrx0nrl2JgOzO95llJ5R425k2Y5Krn2i6WvciNw07jlnEpvKannkvR0ccjUycVA2owekk5TowNXoZ3NZLZvLahk9IIMbThmNtXD3Kx9T5fIC8O9bT2TMgAycOhIhInHGGLPSWlvU1mtKbS0MyUnltxdOocHrZ2QHARj+tyN8oK6Bwtx0BWDpUdkpTv525XTuf3sLl80cTkVdI9Vub0jvrfX4OFDbwHnThlDpauTmU8eQnaKb4nqLrNQkxuRnUDSiH8W7KtlV4eKKR5dzyrh8fnr2JNKSEthcVsvHe2uocXvJTHFy2azhjM3PZM8hF499sJPVe6oOr3fJjGFkpyYqAIuItKKdYJE+xt3oZ9mOCl5aU8q3vzCOGk/7fYDbk5aUwMJrZ9E/zcmf397CaUcPZM7oPP1lrpeodDVQcsjNRfOX4mrV2izVmcDEwVmMGpBOcoIDl9fPpv1NO8HeVgMxhvZL5eFvFDEkJ5VM/UVHROJQRzvBCsEifUy128svXt3ANScW0uCzYQfgoGAQTkty8Oj7O/j+lyaqTVovsq/azeayWq5/chVub/g9fguyknno8mkMz02jf3pyFCoUEen9OgrB+vmYSB9jsNx06phuBWAAV/NADVdjgBtPGaMvBr1MXkYyQ3JSeXzuDMaE2QFk9qhcFny9iIHZKQrAIiLt0Pc9kT7GQJeOQLQlGIQrXaGdJ5ae40xwMCI3jYFZyfzy3GP47unjGZiV0uF7xhVkcO95k7nhlNEUZCbrZkcRkQ7oAKBIH2McDm58elVIk+D+cvlUblm4usP2aa5GPzc8tZI3bzs50qVKNzkTEhjefONttdvLr8+fjDGwvrSaLeV1NHgDpCcnMmFQJhMHZ1Ht8pKd6mRsQSb905NiXb6ISK+mnWCRPiYlwcEj3yiiX1r753eDfYD/vqKk04Ea2alO/nbVdJI16bDXystI5tTx+Rw1KJP8zGTG5Gcyo7A/J4zJo2hEDoW5TUN+po7ox8xRuQrAIiIh0E6wSB8TsJbMlAQWXTebCx9a8pmjDK0HYazeU9XuQI3sVCeLrptFVkoi/oBFt8X1XgkOQ35mCvmZKYwfmIU/EMAfaBqu4XBoHJyISLi09SPSxzT6A+yqcPP00p08N2/2p3aEWwdggFW7Kw9Plmu5I5yd6uS562axaMVudlS48AYCPf7PIl2X4HCQlOhQABYR6SKFYJE+xhjD7c+v5bElu3n0gx2Hg3DrAFyYl85LNwQX3VwAACAASURBVM1hTH7GZ4JwMAAvXLabRz7Yxe2L1uIwClMiIhI/dBxCpI9JdSbw2FUzOP+vH/Lsij0ALLpuNinOhE8F4D9fehz3vLqR+y6awq3PrTkchB+9cjruRj9PLdvFE0t2kZWayONzZ5DiTIjxP5mIiEjP0bAMkT7I5/Ozo8J1+EzwWccMYm+1h1W7/xeAb3hqFbsPuRjaL5WHLp/Grc+tYWt5HccOzWZEbhovr91HVmoif79uNoV56SQlKgSLiMiRRcMyRI4gfn+AbQfr+dkrH/P43Bn0S3Pyr3X72gzAACWVbq57aiX3XTSFMfkZrC2pPhyAn5g7k1+8tpFtB+rx+XUmWERE4odCsEgf4/YFuOaJYt7bWsFPX9lwOAi3DsAjc9N47rpZjB6Q/pkgHAzAv3xtI+9uPsjVj62gwacQLCIi8SPqxyGMMWcA9wEJwMPW2l+1en048DiQ03zNndba1zpaU8chJJ7VN/jYuK+Ga54opsrlZdqIfvz4rIkkOAw3Pv2/APynS44jKyWRWo+Pbz23hm0H6hnaL5UHL5+GP2D5xWsbWbbjEFmpiTz89SImDs4mI1m3CYiIyJGjo+MQUQ3BxpgEYDNwGlACrAAusdZuaHHNfGC1tfavxpiJwGvW2pEdrasQLPHM5wtQWuWmvLaBa59sCsJHD86i2u2lpNJ9OAAPyExmUHYqZTUeyms8h4Pw4OwUcjOSWVdaTVZqIguuKCI/M5mh/dNwamCGiIgcQWJ5JngGsNVau91a2wg8C5zd6hoLZDV/nA3sjXJNIn1aYqKDITmp5Gcms+CKInLSnHy8t6bNAAxQkJVCflYKf7xoCqMHpLO32qMALCIicS/a3/WGAHtaPC5pfq6lu4HLjTElwGvALVGuSaTPaysItxWAg1oHYQVgERGJd73hAOAlwGPW2t8ZY2YDTxpjJllrP3WXjjFmHjAPYPjw4TEoU6R3CQZhgIe/XkRSoqPNABxUkJUCwB8vmoLHFyAvPUkBWERE4la0Q3ApMKzF46HNz7V0NXAGgLV2iTEmBcgDylteZK2dD8yHpjPB0SpYpC/5XxC2JDkT2g3AQQVZKWDB7fUxpJ8CsIiIxK9ofwdcAYw1xhQaY5KAi4GXW12zG/g8gDFmApACHIhyXSJHjMREB8P6p3UagIMKslMYrh1gERGJc1H9Lmit9QE3A28AG4FF1tqPjTE/M8Z8tfmy7wDXGmPWAs8AV9q+OMZOJIYcjvD+Vw73ehERkSNN1M8EN/f8fa3Vcz9u8fEGYE606xARERERCdJ2kIiIiIjEHYVgEREREYk7CsEiIiIiEncUgkVEREQk7igEi4iIiEjcUQgWERERkbijECwiIiIicUchWERERETijkKwiIiIiMQdhWARERERiTsKwSIiIiISdxSCRURERCTuKASLiIiISNxRCBYRERGRuKMQLCIiIiJxRyFYREREROKOQrCIiIiIxB2FYBERERGJOwrBIiIiIhJ3FIJFRHq5Bp8/5Gt9/gA+fyCK1YiIHBkUgkVEejFXg4/l2w9RWuXu9FqfP8CW8jo2l9UpCIuIdEIhWESkl3I1+FiyvYJv/G05Fz20pMMgHAzAFzy4hAse/FBBWESkEwrBIiK9UDAAX/tEMQELJZXudoNwywBc1+CjvtGvICwi0gmFYBGRXqZ1AA5qKwi3DsBBCsIiIh1TCBYR6UXaC8BBLYOwP9B2AA5SEBYRaZ9CsIhIL+K3ljue/6jNABwUDMKvr9/fbgAOqm/0c+c/PsLVGHqHCRGReKAQLCLSi6QnJfL362fTL83Z4XUllW5uWri6wwAMMHpAOvOvKCIrteP1RETijUKwiEgv4nAYRuam88INx3cahDszekA6T18zi4HZKRGqTkTkyKEQLCLSy0QiCCsAi4h0TCFYRKQX6k4QVgAWEemcQrCISC/VMginJyWE9J5h/VMVgEUkZg7VN4R87YFaD35/7G7aVQgWEenFAtbS4Avgtx20i2jB67P4O2otISISJWU1Hh54Zxv7QhjzXl7j4dkVe9h5yB2zIKwQLCLSS7UchOHxhtbnd3+Nh4vmL6G0svNvQiIikVJW4+F7L3zEI+/vYO7jKzoMwuU1Hh5+fwe/e3MzFz+0NGZBWCFYRKQXam8SXChKKt0KwiLSY4IB+L+bDgCwcV9tu0E4GIDnL94OwIG6hpgFYYVgEZFepjsBOEhBWER6QusAHNRWEG4dgINiFYQVgkVEepFIBOAgBWERiab2AnBQyyB8sLahzQAcFIsgrBAsItKLeHwBLlmwNKRJcE9dM5OcECbLzXuymBq3N5JliohQ5fKydHtFh9ds3FfLVY+t4NdvfNJuAA46UNfAG+v3c8jVM1+vFIJFRHqRRIfhr5dNxZlg2r0m2Af4+FG5vHD98R0G4Zw0J3+6+DgykhOjUa6IxLEh2ck8fc0sUpwdx8lP9teyqLik0/WuP3kU500byoDMnmnxqBAsItKLpDgTOG54P56YO6PNINxyEIbDYSjMS283COekOXnh+uMpzEvH4Wg/VIuIdEVGahLj89NDCsKduf7kUVw1p5CCrJ7rca4QLCLSy7QXhNuaBNdeEFYAFpGeEIkgHIsADArBIiK9Uusg3NEo5NZBWAFYRHpSd4JwrAIwgLEhTiHqTYqKimxxcXGsyxARiTqP18/60mqG9kvrdBRyIGDZcbAeQAFYRHpcvbuRj/fXceFDS0K6/uLpw7j9i+PJy0yOWk3GmJXW2qK2XtOdEiIivViKM4Epw3JITOh8dyW4I2ybPxYR6Un13gD/2bA/5OvX7KnC6w9tGmY06DiEiEgvF0oADnI4DAkKwCLSw4KDMBa8tyPk93yyv/3Jcj1BIVhEREREuqy9SXCh6GjEcrQpBIuIiIhIl3QnAAfFKggrBIuIiIhI2CIRgINiEYQVgkVEREQkbAfrGljwXucB+PqTR7Houtmdtk/buK+WR97fwaH6hkiV2CGFYBEREREJW35mMr89/1hMB/fi3tDcB/jogRmd9hH+3FH5XHvSKPqnR69lWksKwSIiIiIStrzMFE4el9duEL7h5FFc2TwII72TgRqfOyqfX557jMYmi4iIiEjv114QbhmAg9qbLBeLAAyaGCciIiIi3XSw1sO7mw/ywqoSjh2a/ZkA3FKdu5FN5fX84c1NpDoT+HkUA3BHE+MUgkVERESk2w7WekhIcOD1BcjvJNR6Gr3UNvgJWKK6A9xRCNZxCBERERHpllp3IzsrXBz/y7dZur2CirqOOzzsq2ngy396n0fe30F5jaeHqvw0hWARERER6bJadyObyuq4/JFluL1+bn1uDR9sPdhuEN5xsI6LHlpKeW0D8xdv5+EYBWGFYBERERHpkpYB2OMNAGAt7QbhlgE4KFZBWCFYRERERMLWVgAOaisItxWAg2IRhBWCRURERCRse6sb2gzAQS2D8O5DrnYDcND8xdt5rngPB2t7Jggn9shnEREREZEjSk6akxPG5PHWxvJ2r7EWvvnsGpITHTT42g7LQQMyk/nyMYPol+aMdKlt0k6wiIiIiIStICuFe752DF+YkN/ptaEE4OfmzWJE/1QSEhIiVWKHFIJFREREpEvCCcLtiUUABoVgEREREemG7gThWAVg6EIINsaMMcacZ4yZGI2CRERERKRv6UoQjmUAhhBCsDHmHWNMXvPHVwCvAWcCzxljbolyfSIiIiLSBxRkpXDnmRNCvv78qUPJzUiKSQCG0HaCB1hrDzZ//E1gtrX2GmAmcG3UKhMRERGRPmPHwTouXbA05OsfXLyN/2460GMt0VoLJQR7jTFDmj+uA+qbP24AYhPdRURERKTX6GgQRnushW89t4YPtlXEJAiHEoK/DbxpjPkZ8DHwtjHmJ8DrwN+iWZyIiIiI9G5dCcBBsQzCnYZga+1/geOBfYAXWAl4gFustb+NanUiIiIi0mt1JwAHxSoIh9Qdwlpbba39q7X229baW6y191prP2l5jTHm/uiUKCIiIiK9zc6K+pAC8ICMZKaN6NfhNcEgvGT7IQ7U9EwQjmSf4DkRXEtEREREerGkBAc5nYw4HpCZzHPXzeKhy6d12j4tKcFBQVYyKc6eGWOhYRkiIiIiErbBOak8dtUMxhVktPl6yz7AeZnJHfYRTk508OTVM5gwMJPM1KRoln2YQrCIiIiIdEl7QbitQRjtDdSIRQCGyIZgE8G1RERERKQPaB2EO5oE1zoIxyoAQxgh2BhzTCeX3NfO+84wxmwyxmw1xtzZzjUXGmM2GGM+NsYsDLUmEREREYm9YBCeMya301HIwSD85WMGxiwAAxhrbWgXGvMekAw8Bjxtra0O4T0JwGbgNKAEWAFcYq3d0OKascAi4HPW2kpjTL61tryjdYuKimxxcXFIdYuIiIhIzzhU30B2SmJIo5AP1DaQkmiiGoCNMSuttUVtvRbyTrC19kTgMmAYsNIYs9AYc1onb5sBbLXWbrfWNgLPAme3uuZa4AFrbWXz5+kwAIuIiIhI79Q/PTmkAAxNxyZisQMcFNaZYGvtFuBHwPeAk4E/GWM+Mcac285bhgB7WjwuaX6upXHAOGPMB8aYpcaYM9payBgzzxhTbIwpPnDgQDhli4iIiIh8SjhngicbY/4AbAQ+B3zFWjuh+eM/dKOGRGAscApwCbDAGJPT+iJr7XxrbZG1tmjAgAHd+HQiIiIiEu/C2Qm+H1gFHGutvclauwrAWruXpt3htpTSdHwiaGjzcy2VAC9ba73W2h00nSEeG0ZdIiIiIiJhCScEfxlYaK11AxhjHMaYNABr7ZPtvGcFMNYYU2iMSQIuBl5udc0/adoFxhiTR9PxiO1h1CUiIiIiEpZwQvBbQGqLx2nNz7XLWusDbgbeoOkYxSJr7cfGmJ8ZY77afNkbQIUxZgPwDvBda21FGHWJiIiIiIQlMYxrU6y1dcEH1tq64E5wR6y1rwGvtXruxy0+tsBtzb9ERERERKIunJ3gemPM1OADY8w0wB35kkREREREoiucneBvAX83xuylaUTyQOCiqFQlIiIiIhJFIYdga+0KY8xRwPjmpzZZa73RKUtEREREJHrC2QkGmA6MbH7fVGMM1tonIl6ViIiIiEgUhRyCjTFPAqOBNYC/+WkLKASLiIiIxIDX66WkpASPxxPrUmIqJSWFoUOH4nQ6Q35PODvBRcDE5m4OIiIiIhJjJSUlZGZmMnLkSIwxsS4nJqy1VFRUUFJSQmFhYcjvC6c7xHqaboYTERERkV7A4/GQm5sbtwEYwBhDbm5u2Lvh4ewE5wEbjDHLgYbgk9bar7b/FhERERGJpngOwEFd+TMIJwTfHfbqIiIiInLEqqqqYuHChdx4442xLiVsIR+HsNa+C+wEnM0frwBWRakuEREREenlqqqq+Mtf/hLrMrok5BBsjLkWeB54qPmpIcA/o1GUiIiIiPR+d955J9u2bWPKlCl897vf5Te/+Q3Tp09n8uTJ/OQnPwFg586dHHXUUVx55ZWMGzeOyy67jLfeeos5c+YwduxYli9fDsDdd9/NFVdcwezZsxk7diwLFiwAYN++fZx00klMmTKFSZMm8d5770Wk9nBujLsJmAPUAFhrtwD5EalCRERERPqcX/3qV4wePZo1a9Zw2mmnsWXLFpYvX86aNWtYuXIlixcvBmDr1q185zvf4ZNPPuGTTz5h4cKFvP/++/z2t7/lF7/4xeH1PvroI95++22WLFnCz372M/bu3cvChQs5/fTTWbNmDWvXrmXKlCkRqT2cM8EN1trG4MFjY0wiTX2CRURERCTOvfnmm7z55pscd9xxANTV1bFlyxaGDx9OYWEhxxxzDABHH300n//85zHGcMwxx7Bz587Da5x99tmkpqaSmprKqaeeyvLly5k+fTpz587F6/VyzjnnRCwEh7MT/K4x5gdAqjHmNODvwCsRqUJERNpVXuPhQG1orX/KazyU1cR303wRiQ1rLd///vdZs2YNa9asYevWrVx99dUAJCcnH77O4XAcfuxwOPD5fIdfa93lwRjDSSedxOLFixkyZAhXXnklTzwRmTlt4YTgO4EDwDrgOuA1a+0PI1KFiIi0qaTSxYUPLeG+t7Z0GoTLazx867k13PrsagVhEekRmZmZ1NbWAnD66afz6KOPUldXB0BpaSnl5eVhrffSSy/h8XioqKjgv//9L9OnT2fXrl0UFBRw7bXXcs0117BqVWT6MoRzHOIWa+19wILgE8aYW5ufExGRCCupdHH5w8vYWeFiZ8VuAG79wlgGZKZ85tpgAP5wW0XTdc+u5r6Lj6Mg67PXiohESm5uLnPmzGHSpEmceeaZXHrppcyePRuAjIwMnnrqKRISEkJeb/LkyZx66qkcPHiQu+66i8GDB/P444/zm9/8BqfTSUZGRsR2gk2oU5CNMaustVNbPbfaWntcRCoJQ1FRkS0uLu7pTysi0mNaBuCWLp85/DNBuHUADpo1qr+CsMgRbuPGjUyYMCHWZUTE3XffTUZGBrfffnuX3t/Wn4UxZqW1tqit6zs9DmGMucQY8wpQaIx5ucWvd4BDXapSRETa1V4ABnhq2e5PHY1oLwADLN1+SEcjRETaEcpxiA+BfTSNTf5di+drgY+iUZSISLw6VN/QbgAOempZ09GIO8+c0G4ADlq6/RC3LVrDny4+jtyM5HavExGJtbvvvrtHP1+nIdhauwvYBcyOfjkiIvEtYOHC6cP49eubOrzuqWW7eXF1KfWN/g6vS3AYrjq+EGdCOPdBi4gc+cKZGHeuMWaLMabaGFNjjKk1xtREszgRkXiTl5HMhUXDuOOM8Z1eG0oAfujyacwo7E9WqjNSJYqIHBHC6Q7xa+Ar1tqN0SpGRET+F4SBTneE26MALCLSsXB+PlamACwi0jPC2RFuTQFYRKRz4YTgYmPMc83dIs4N/opaZSIica4rQVgBWER62ty5c8nPz2fSpEmxLiUs4YTgLMAFfBH4SvOvs6JRlIiINMnLSObymSPITU8K6fpjh2ZTNLKfArCI9Jgrr7yS119/PdZlhC3kM8HW2quiWYiIiHxWsA9wRX1jSNev2l3Fb9/Y1O5kORGJb//+97954IEHKCsro6CggJtuuokzzzyzW2uedNJJ7Ny5MzIF9qBwukOMM8b8nzFmffPjycaYH0WvNBGR+NbRIIyOtB6oISICTQH4nnvuYf/+/Vhr2b9/P/fccw///ve/Y11aTIRzHGIB8H3AC2Ct/Qi4OBpFiYjEu64G4CAFYRFp7YEHHsDj+fTXBI/HwwMPPBCjimIrnBCcZq1d3uo5XySLERGR7gfgIAVhEWmprKwsrOePdOGE4IPGmNGABTDGnE/TOGUREYmQUANwgsNwyrgBna4XDMLlCsIica+goCCs54904YTgm4CHgKOMMaXAt4AbolKViEi8MtC/k04QwTZo9108he+e3nn7tIHZqRhMpCoUkT7qpptuIiXl0zfMpqSkcNNNN3Vr3UsuuYTZs2ezadMmhg4dyiOPPNKt9XpKON0htgNfMMakAw5rbW30yhIRiU/5mSn8+CsTAfjXR5/9YVvrPsAXTW+aLPebN9qeLHf7F8dz8Yxh5GUkR69oEekTgl0gIt0d4plnnolEeT0u5BBsjLkV+BtQCywwxkwF7rTWvhmt4kRE4lF7QbitQRh5GcntBmEFYBFp7cwzz+x26D1ShHMcYq61toamYRm5wBXAr6JSlYhInAsG4bMmDwI6ngQXDMItj0YoAIuIdCzknWA4fKDsS8AT1tqPjTE6ZCYiEiXBIJzoMJw1eXCHo5Bb7ghbiwKwiEgnwgnBK40xbwKFwPeNMZlAIDpliYgINAXhH355AkkJjk5HIedlJHNh0TDAKgCLiHQinBB8NTAF2G6tdRljcgGNUhYRibJwxh8PyFT4FREJRach2BhzlLX2E5oCMMAonYIQERERkb4slJ3g24B5wO/aeM0Cn4toRSIiIiLSJ+zZs4evf/3rlJWVYYxh3rx53HrrrbEuKySdhmBr7bzm30+NfjkiIiIi0lckJibyu9/9jqlTp1JbW8u0adM47bTTmDhxYqxL61TILdKMMRc03wyHMeZHxph/GGOOi15pIiIiIhIpXq+XW265hVtuuQWXy3X4Y6/X2+U1Bw0axNSpUwHIzMxkwoQJlJaWRqrkqAqnT/Bd1tpaY8wJwBeAR4AHo1OWiIiIiETSbbfdxqpVq1i1ahVf+tKXDn982223RWT9nTt3snr1ambOnBmR9aItnBDsb/79y8B8a+2rQMcD7kVERESkV2loaKCuro6GhoaIrVlXV8d5553HH//4R7KysiK2bjSFE4JLjTEPARcBrxljksN8v4iIiIjEyL333ovT+el+406nk1//+tfdWtfr9XLeeedx2WWXce6553ZrrZ4UToi9EHgDON1aWwX0B74blapEREREJKK+973vfeb8r9fr5Y477ujymtZarr76aiZMmBCxYxU9JeQQbK11AS8B9caY4YAT+CRahYmIiIhI5CUnJ5ORkUFycveH63zwwQc8+eSTvP3220yZMoUpU6bw2muvRaDK6At5Ypwx5hbgJ0AZ/xuXbIHJUahLRERERCLo97///eHd2nvvvZfvfe97h5/vqhNOOAFrbUTq62nhjE2+FRhvra2IVjEiIiIiEh1Op5P777//8OOWH8ejcM4E7wGqo1WIiIiIiEhPCWcneDvwX2PMq8DhnhrW2q7voYuIiIiIxEA4IXh3868k1B9YRERERPqwkEOwtfanAMaYjObHddEqSkREREQkmkI+E2yMmWSMWQ18DHxsjFlpjDk6eqWJiIiIiERHOMch5gO3WWvfATDGnAIsAI6PQl0iIiIi0keMHDmSzMxMEhISSExMpLi4ONYldSqcEJweDMAA1tr/GmPSo1CTiIiIiPQx77zzDnl5ebEuI2RhdYcwxtwFPNn8+HKaOkaIiIiISC930kkn4XK5PvN8WloaixcvjkFFsRVOn+C5wADgH8ALQF7zcyIiIiLSy7UVgDt6PhzGGL74xS8ybdo05s+f3+31ekI43SEqgW9GsRYRERER6YPef/99hgwZQnl5OaeddhpHHXUUJ510UqzL6lA43SH+Y4zJafG4nzHmjeiUJSIiIiJ9xZAhQwDIz8/na1/7GsuXL49xRZ0L5zhEnrW2KvigeWc4P/IliYiIiEhfUV9fT21t7eGP33zzTSZNmhTjqjoXzo1xAWPMcGvtbgBjzAjARqcsEREREekLysrK+NrXvgaAz+fj0ksv5YwzzohxVZ0LJwT/EHjfGPMuYIATgXlRqUpEREREIiotLa3d7hDdMWrUKNauXdutNWIhnBvjXjfGTAVmNT/1LWvtweDrxpijrbUfR7pAEREREem+eGyD1pFwdoJpDr3/auflJ4Gp3a5IRERERCTKwrkxrjMmgmuJiIiIiERNJEOwbpITERER6WHWKoJ15c8gkiFYRERERHpQSkoKFRUVcR2ErbVUVFSQkpIS1vvCOhPcicYIriUiIiIinRg6dCglJSUcOHAg1qXEVEpKCkOHDg3rPWGFYGPMZGBky/dZa//R/Pusdt4mIiIiIlHgdDopLCyMdRl9Usgh2BjzKDAZ+BgIND9tgX9EoS4RERERkagJZyd4lrV2YtQqERERERHpIeHcGLfEGKMQLCIiIiJ9Xjg7wU/QFIT3Aw009QW21trJUalMRERERCRKwtkJfgS4AjgD+ApwVvPvHTLGnGGM2WSM2WqMubOD684zxlhjTFEYNYmIiIiIhC2cneAD1tqXw1ncGJMAPACcBpQAK4wxL1trN7S6LhO4FVgWzvoiIiIiIl0RTghebYxZCLxC03EI4H8t0toxA9hqrd0OYIx5Fjgb2NDquv8H3At8N4x6RERERES6JJzjEKk0hd8v0nQMIngkoiNDgD0tHpc0P3eYMWYqMMxa+2pHCxlj5hljio0xxfHeEFpEREREuifknWBr7VWR/uTGGAfwe+DKED7/fGA+QFFRUfzOBhQRERGRbgtnWEYKcDVwNHB4OLO1dm4HbysFhrV4PLT5uaBMYBLwX2MMwEDgZWPMV621xaHWJiIiIiISjnCOQzxJU0g9HXiXpkBb28l7VgBjjTGFxpgk4GLg8M111tpqa22etXaktXYksBRQABYRERGRqAonBI+x1t4F1FtrHwe+DMzs6A3WWh9wM/AGsBFYZK392BjzM2PMV7tatIiIiIhId4TTHcLb/HuVMWYSsB/I7+xN1trXgNdaPffjdq49JYx6RERERES6JJwQPN8Y0w+4i6YjDRlAm2FWRERERKQ3C6c7xMPNH74LjIpOOSIiIiIi0RfymWBjTIEx5hFjzL+bH080xlwdvdJERERERKIjnBvjHqPpBrfBzY83A9+KdEEiIiIiItEWTgjOs9YuAgJwuPODPypViYiIiIhEUTghuN4YkwtYAGPMLKA6KlWJiIiIiERRON0hbqOpK8QoY8wHwADg/KhUJSIiIiISReGE4A3Ai4CLpklx/6TpXLCIiIiISJ8SznGIJ4CjgF8A9wPjaBqlLCIiIiLSp4SzEzzJWjuxxeN3jDEbIl2QiIiIiEi0hbMTvKr5ZjgAjDEzgeLIlyQiIiIiEl2d7gQbY9bR1BHCCXxojNnd/HgE8El0yxMRERERibxQjkOcFfUqRERERER6UKch2Fq7qycKERERERHpKeGcCRYREREROSIoBIuIiIhI3FEIFhEREZG4oxAsIiIiInFHIVhERERE4o5CsIiIiIjEHYXg/9/enYfJVdf5Hn9/q6q3pDuBmAYCCYRAkDVCiBAEoVlGYUDwigIuI3pVHAcdhBtHnXHmMjN6ZwFEnYkoV72gw7CIG66omAgIaMIqiEgMS8KaCCTppNeq3/2jK9B0OhDSdarTfd6v58lDn1OnvvUNp8/J5/zqV3UkSZKUO4ZgSZIk5Y4hWJIkM9Gj7wAAGe1JREFUSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSblTGu0GRtPqdT109vRnUru1qcTUtqZMakuSJI22Veu66ewp17xua1OR9rbmmtcdKtchuLOnn44LF2dSe/GCDkOwJEkatzp7yhydQY5atKCD9raal92E0yEkSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLulEa7gdE0obHIz887KrPakiRJ41VrU5FFCzoyqVsPuQ7BG3rLHPfZX2ZSe3EGvxSSJEnbiva2ZtrbRruLred0CEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5k3kIjojjI+KBiFgWEZ8Y5vHzIuJ3EXFPRNwQEbtl3ZMkSZLyLdMQHBFFYCFwArAv8PaI2HfIZncC81JKc4BrgX/PsidJkiQp65HgQ4BlKaXlKaVe4CrglMEbpJQWpZQ2VBdvA6Zn3JMkSZJyLusQvAuwYtDyyuq6zXkf8OPhHoiIsyJiaUQsXbVqVQ1blCRJUt5sMx+Mi4h3AfOAC4Z7PKV0aUppXkppXnt7e32bkyRJ0rhSyrj+Y8CMQcvTq+teJCKOA/4OOCql1JNxT5IkScq5rEeClwCzI2L3iGgEzgCuG7xBRBwEfBk4OaX0dMb9SJIkSdmG4JRSP/Bh4HrgfuCalNJ9EfFPEXFydbMLgFbgmxFxV0Rct5lykiRJUk1kPR2ClNKPgB8NWfcPg34+LuseJEmSpMEyD8HbsoixWVv5tmpdN5095UxqtzYVaW9rzqS2toz7V5LqI9chuKlU4Kqz5mdWW8pCZ0+Zoy9cnEntRQs6aG/LpLS2kPtXkuoj1yG4q6/CGZfelkntRQs6MqkrSZKkkXO4UpIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLulEa7gdHU0lDgqrPmZ1Zbkl6pGKO1JeXPqnXddPaUa163talIe1tzzesOlesQ3N1f4YxLb8uk9uKPdWRSV5rYVGTRgo7Mamt0TWgs8vPzjsqstiTVSmdPmaMvXFzzuosWdNDeVvOym8h1CCaN0drKtfUZnXRg4MRDHU482rz1vWWO++wvM6md1cWTJI1FvmcvSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScqd0mg3IOmVmdhUZNGCjsxqS5KUB7kOwa1NJRZnFCZam3L9v1YZWt9T5ugLF2dSe9GCDmjLpLS2UGuGFzmtXuRIqqGszlf1OlflOqlNbWtialvTaLchSc9rb2um3QsRSWPAWD9fOSdYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIlsaBmVNaaGl58brTDt6ZT524N6cdvPOw20uSlGel0W5gNK1a101nT/lF61oaCkQEkxuLrN7QRwKe3dDL2q4+mkpF2tuaKBWDCY1F6K8QDUVKhcTqzv4X1WltKtLe1lzHv43yYmJTkUULOp5fbilAoVQkARNKBdZ091NOiWfW99LZ08/cXadw9jF7USwEk5tLrO8tU4ggpTIb+jatrdE19Ly0XUtQTkXK5QpNpQLre8v0VRKr1/XQ3VemrbmB7Sc2UIhg+5YinT0ViKCvt8yQ3et5SVJNDT1f7dBaIkWRQqWfzr5EXznR3VdhVWcP5Upi+wkNTGppgAQ7TWpkXU+Fnv4yXX2VF9Wt17kq1yG4s6fM0RcuBgZGxq764GE0FoPu/sQVS1Zw+a2P8OgzGzZ5XltTiTe9Zhr/84hZtAEbKokHn1rLWd+44/ltFi3ooL2tTn8R5cr6Qb+3px28M+e9YW+CRE9/4r9ue4Srlqxg1bqeTZ43tbWR0+bN4IxDZjChoUiZIpf/6kEuu/XR57dZtKAD/L0dVYPPS+e/aR/euP80ilGhq6/Cl29czrfvfIznhl69ADtPbuYdh+7G/zhoZ5obIBqL/M2Vd3LLQ888v43nJUm1NPh8dfPHj+K5rl4KUeLpdT1csviPLHrgaXr6XxxwI2DfaZM468hZHDJzCi0NA5MS5v/LL57fpl7nKqdD8EIABrh1+TMc/7kb+ecf3j9sAAZY19PPf/9mBX928S/54uLlFAvB4XtO4dK/mFvPtpVzpx28M598w94AfO/uJzj2ol/yH79YNmwABljd2csXF/+RYy/6Jdfe8RgpwblHz+Y9h+1az7a1hc5/0z6cetA0guDyWx7hmIsW87VfPTxsAAZ4fE03F/70Af7s4hv5+f2rqaTE595+EK/bfUqdO5eUNzd//Ci2a2kgUeTvvnMvpyz8FT+578lNAjBASnDf42s556q7eNuXb2X56g0kErd98pi69537ELwxAEcEF//sD5z933eytrv/5Z/IwI68/NaHeedXfsOzG8oGYdXNxgDcQ7Dgm3fz6R/eT29505PNcPrKiX/98e8556o76TIIb5M2BuDOXnj/15ewcPEfqaQte+6G3jIf/9Y9nH/dfaSEQVhSpm7++FFMbmpg5bM9vOk/buYXDzy9xc9d+WwXb7nkFq6/9ymAugfhSGkLz6zbkHnz5qWlS5eOuM5Dq9c/Pwy/cNEyvnHboy/zjM3bo30iV7z/UMqVxH2Pr2H2jpPYferEEfcoDfXkM+uhOPB7+7Fv3sNNy1Zvda35s6bwudMPJCK4ZNGDnHn4LH9vR9mz6zfQ3R8Ewfu/voR7H1u71bVOmjONT524D4UIPnrlnXzm1DnuX0k1s767h97+Cmu6K5yy8Fes6Rr+naot8e9vncOxr55KXwW6+io1O1dFxO0ppXnDPZbrkeCWhgKNhcSypztHFIAB/rhqPRf/7EGKEcyZsT1tTTVqUhqi2FCkoVDg+vueGlEABrht+TN8/+7HKUbi7GNm16hDjURfpUAh4LJbHhpRAAb4wT1PcPsjz1GKgRFhSaqlJ9f10VOGc666c0QBGODvv3sva7rLdHb10lyKGnX40nIdggtAdzk475q7a1Lv6qUr+NOGXiaWYDPTMqURK1cSXf1l/s+P7q9JvQuu/wPd/Ynylr7frkyVKon1PWUuvXF5Tep98tv30F1OlMfgu36Stm0zp7Rw44OruXvlmhHX6umv8Lff+S0Tmhuef5c+a7kOwW0tJX73+FqermFiXbhoGRv6/cdG2WlrKvC9ux4f9gMHW6O3XOGbS1fSXKeTjl5aKhb46k0PbfEc4Jeztrufm5etpqFQn5EVSfnx5NoevrT4jzWrd9vyZ+jqq9DdXX75jWsg83/1IuL4iHggIpZFxCeGebwpIq6uPv7riJiZdU8brenq5+u3PlzTmj+97yn6y4ZgZeeZDWWuWjKy6TtDXb1kxSbfma3R0d1X5jt3PVbTmlfc9gjdfbW5aJKkjTb0llm+en1Na37r9pW0b1ef7zPPNARHRBFYCJwA7Au8PSL2HbLZ+4BnU0p7AhcD/5ZlT4P1V1JNhvCH1lzT1ZfvIXZlKoAVz3TVtOaTa7up+Hb5NqGnv8KG3tpekNz/xDrCgWBJNXb3yudqXvP2R57lybX1mVOadVY7BFiWUlqeUuoFrgJOGbLNKcDl1Z+vBY6NqM/pulINrLX2wJPr2GFSY83rSgCdvVv2FX6v1Jqufi/etgErn63tBQ4MTHmp1fQZSdrorkdrH4IfeGpdzaaDvZys/83bBVgxaHlldd2w26SU+oE1wKuGFoqIsyJiaUQsXbVqVU2ay+qDIhv6yhSdf6eM9GT0tnZPX5nmhkxK6xXYkNFFjh98lFRL/f0VNvTVfhpdd1+5bu9cjZmBn5TSpSmleSmlee3t7TWpWczo/3JrU4n+iqMuykZzQzGTui2NRTZzMzLVUWtTNnez98JcUi2VSoVMzlcTGkvUa3Ze1iH4MWDGoOXp1XXDbhMRJWAy8KeM+wKgUAimTKz9tIW9d2rjqbWmCWWjtSmbEDzJYeBtwi7bT6h5zaZSgabSmBnzkDRGzN11+5rX3HunNkp1umjP+qy4BJgdEbtHRCNwBnDdkG2uA86s/vxW4BepTrexaygGB+26XU1rNmV0ZSRtlNLAHQpracaUlprW09ZrLAaTWmp7Dtl/l8k1rSdJAHOm1/7c8tqZU9ihrT6fq8o0BFfn+H4YuB64H7gmpXRfRPxTRJxc3eyrwKsiYhlwHrDJ16hlpbWpyHtfN7OmNU+cM43GoiMuys7UCQ2849Bda1rznYfuxuRmL962BRObirzt4Bkvv+Er8J7XzXROsKSaa2ooss+0tprVi4C3zN2FJ57trlnNl5J5Wksp/SiltFdKaY+U0meq6/4hpXRd9efulNLbUkp7ppQOSSnV5jZJW2BdVz+z2ltrNgoWAR86ag+aAurzDXfKozW9/Zyw/7SavePQ0lDkTXN2pstvD9gm9PQn3n3YbjQUa/N24NTWRubttj2NToeQVGM7tDbwkWNm16ze0XvtQGMpaPKOcfUQNBaDL5xxUE0+ifj+I3ZnUnOJDZVEZDNtUwKCloYCn37z/jWpdv7J+/mtENuYiQ1Fzj1ur5rU+uxpB9Lo/pWUgcfX9DB31+04bI9NvtTrFZvYWOT8U/ZjzYYe6nXrplyH4K7+CuUE0yY38+Gj9xxRrQN2mcz7jphFAn5wz+N0efMtZaS7t0xvOTF/1hROPGCnEdV6w747ctReU+mvBB//5p016lAjksqUgVPn7sL8WVNGVOov5u/KXju20t8fnLrw1tr0J0lVO05qpKFY4YJT57BDW9NW14mAi08/kElNRbaf0ERXne5wmesQDNBx8Q1EBO+cvxt/1bHHVtU4cMZ2XPrug5nYkPjBPY/z6R/+vsZdSi+oAGf/11Iigr8/aV9OmjNtq+ocv9+O/POb9ydiIAAvfvCZ2jaqrbKhDy5Z9CDNEXzu9AM5fCtHWN5x6Aw+fPRsguAtC2/hsbW1vwmHpHx7Yk0vq9eVaW9r4OoPzmeX7V759NJSIfj86QcyZ/pkevrLHPovizLodHi5D8FdXdUgDLx7/q5c+YFDt/hqplQIPvbGV/Oldx3MxBJcfbsBWPWx9NE1zwfhT524D18440DatnCO8MTGIhed9hrOP3k/AAPwNuiyWx/l4kUP0hLBRae9hn88eb8t/oqz7Sc08NUz5/GR6rtbBmBJWXrj52/i4dVd7DSpiWs/dBinzZu+xc/de6c2fvjXR3DY7lMIUl0DMIAfB+eFILz43GPZa4cJfPfsw7n9kWf52s0Pce/ja+grv/hT1TOmtHDq3OmcOnc6zaWgnBLX3GEAVn1tDMIL3zWPw/d8FdefeyQ33P8UV/z6Uf4w5LaThYA9d2jl7Yfsyhv324nmYoG+lAzA27DLbn0UgA8dPZuTDpjGcfvswPfveYJrlqzgoT+tf9GXyRcLwT7T2jjzsJkcvudUmotBX8UALKk+3vj5m7j+nNfT3FDk3ONm88Ej9+DyWx/mx799klWdPS/atrmhwCEzp/CXR+3BzKkTKUSFyigEYDAEP29jEF700WMoFuCQ3bZnbvU7hLv6KvSXKxQKQUtDEUhMam6gp69CqVjge3esMABrVGwMwl981zwKAScesCMdr96BiIFbT/aXE8VCMKGxSCUl2pqKdPcn+g3AY8LGIPzhY/eiWAjOmDedEw/YiYigq7dMuZIoFoMJDUUS0FwqUK4keiuJUxfeagCWVDcbg/CU1hYa6eOjx+7JWa+fRYVEV2+FlBKNpQKNpQLFgHK5QktDkd7+0QnAAFGn+1LU1Lx589LSpUtHXGfVum46e7L5BFtrU5H2Nr8oTbXn7+345v6VNFZkdb6q5bkqIm5PKc0b7rFcjwS3tzXTXrvveJbqwt/b8c39K2msGOvnq9x/ME6SJEn5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDtj8mYZEbEKeCTDl5gKrM6wvkaX+3f8ct+Ob+7f8c39O76N1v7dLaXUPtwDYzIEZy0ilm7u7iIa+9y/45f7dnxz/45v7t/xbVvcv06HkCRJUu4YgiVJkpQ7huDhXTraDShT7t/xy307vrl/xzf37/i2ze1f5wRLkiQpdxwJliRJUu4YgiVJkpQ7huBBIuL4iHggIpZFxCdGux+NTETMiIhFEfG7iLgvIs6prp8SET+LiAer/91+tHvV1ouIYkTcGRE/qC7vHhG/rh7HV0dE42j3qK0TEdtFxLUR8fuIuD8iDvP4HT8i4tzqufneiLgyIpo9fseuiPhaRDwdEfcOWjfs8RoDvlDdz/dExNzR6NkQXBURRWAhcAKwL/D2iNh3dLvSCPUD/yultC8wHzi7uk8/AdyQUpoN3FBd1th1DnD/oOV/Ay5OKe0JPAu8b1S6Ui18HvhJSmlv4DUM7GeP33EgInYB/hqYl1LaHygCZ+DxO5ZdBhw/ZN3mjtcTgNnVP2cBl9SpxxcxBL/gEGBZSml5SqkXuAo4ZZR70giklJ5IKd1R/XkdA/+A7sLAfr28utnlwJtHp0ONVERMB04EvlJdDuAY4NrqJu7fMSoiJgNHAl8FSCn1ppSew+N3PCkBLRFRAiYAT+DxO2allG4EnhmyenPH6ynA19OA24DtImJafTp9gSH4BbsAKwYtr6yu0zgQETOBg4BfAzumlJ6oPvQksOMotaWR+xzwN0Cluvwq4LmUUn912eN47NodWAX8v+p0l69ExEQ8fseFlNJjwIXAowyE3zXA7Xj8jjebO163icxlCNa4FxGtwLeAj6aU1g5+LA18R6DfEzgGRcRJwNMppdtHuxdlogTMBS5JKR0ErGfI1AeP37GrOjf0FAYudnYGJrLpW+kaR7bF49UQ/ILHgBmDlqdX12kMi4gGBgLwFSmlb1dXP7XxbZfqf58erf40IocDJ0fEwwxMXzqGgTmk21XfXgWP47FsJbAypfTr6vK1DIRij9/x4TjgoZTSqpRSH/BtBo5pj9/xZXPH6zaRuQzBL1gCzK5+MrWRgQn6141yTxqB6vzQrwL3p5Q+O+ih64Azqz+fCXyv3r1p5FJKn0wpTU8pzWTgeP1FSumdwCLgrdXN3L9jVErpSWBFRLy6uupY4Hd4/I4XjwLzI2JC9Vy9cf96/I4vmzterwPeXf2WiPnAmkHTJurGO8YNEhF/zsAcwyLwtZTSZ0a5JY1ARBwB3AT8lhfmjP4tA/OCrwF2BR4BTkspDZ3MrzEkIjqABSmlkyJiFgMjw1OAO4F3pZR6RrM/bZ2IOJCBDz02AsuB9zIweOPxOw5ExD8CpzPwTT53Au9nYF6ox+8YFBFXAh3AVOAp4H8D32WY47V64fOfDEyB2QC8N6W0tO49G4IlSZKUN06HkCRJUu4YgiVJkpQ7hmBJkiTljiFYkiRJuWMIliRJUu4YgiVJkpQ7hmBJGgURcXJEfOLlt9zkeTMj4t4M+umIiNcNWr4sIt76Us+RpLGs9PKbSJJqLaV0HdvWXSk7gE7gllHuQ5LqwpFgSaqx6mjt76ujqX+IiCsi4riI+FVEPBgRh0TEeyLiP6vbXxYRX4iIWyJi+ZaOwEZEMSIuiIglEXFPRHywur4jIhZHxLXVPq6o3qGJiPjz6rrbq6/5g4iYCfwlcG5E3BURr6++xJFDe4qIaRFxY3W7ewdtK0ljiiFYkrKxJ3ARsHf1zzuAI4AFDNy+e6hp1cdPAv51C1/jfcCalNJrgdcCH4iI3auPHQR8FNgXmAUcHhHNwJeBE1JKBwPtACmlh4EvARenlA5MKd30Ej29A7g+pXQg8Brgri3sVZK2KU6HkKRsPJRS+i1ARNwH3JBSShHxW2DmMNt/N6VUAX4XETtu4Wu8AZgzaOR4MjAb6AV+k1JaWX39u6qv2QksTyk9VN3+SuCsl6g/XE9LgK9FREP1cUOwpDHJkWBJykbPoJ8rg5YrDD8AMXj72MLXCOAj1dHbA1NKu6eUfjpMvfJmXvPlbNJTSulG4EjgMeCyiHj3VtSVpFFnCJakset64EPVUVkiYq+ImPgS2z8AzKrOAQY4fdBj64C2l3vBiNgNeCql9H+BrwBzt6JvSRp1ToeQpLHrKwxMc7ij+sG3VcCbN7dxSqkrIv4K+ElErGdgasNG3weujYhTgI+8xGt2AB+LiD4Gplc4EixpTIqU0mj3IEmqk4hoTSl1VkPzQuDBlNLFo92XJNWb0yEkKV8+UP2g3H0MfJDuy6PcjySNCkeCJWkbFBEHAN8YsronpXToaPQjSeONIViSJEm543QISZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO/8f1TV//Z0BRTMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXzcVb3/8feZPWvTLE2XdC+FlgKlTTc2QWVVQQVZRYFCC/aiXkRBr3q5/NQrinoVURZRoCxSQVkUBJWyF0paWrbS0r3plibNnsx+fn8kU9OQZSaZSSad1/Px4NHMd8735GNbk3dOz/dzjLVWAAAAQCZxDHYBAAAAwEAjBAMAACDjEIIBAACQcQjBAAAAyDiEYAAAAGQc12AX0BfFxcV2woQJg10GAAAA0tiqVauqrbUlXb03JEPwhAkTVFFRMdhlAAAAII0ZY7Z19x7bIQAAAJBxCMEAAADIOIRgAAAAZBxCMAAAADIOIRgAAAAZhxAMAACAjEMIBgAAQMYZkn2CAQAAkN5qWwJqDkTkMEZWkqzkcEijhmUNdmmSCMEAAABIkiZ/SA3+sN7dWa8/v7VT71TWa2ddqyQp3+fSkaOH6WOHl+jTR4+S2+lQab5v0Go11tpB++R9VV5ebjkxDgAAIH3saWjV65v263+eek+1LaEex7ocRueXl+mrnzhMI1O4MmyMWWWtLe+yhpR9VgAAAGSEPfV+ffvP72j5+n1xjQ9HrR5auUPL1+/T7y+bo7ICn/KyPCmu8mA8GAcAAIA+29vg11ceXB13AO5od71fX7hjhXbW+1NQWc8IwQAAAOiTvQ1+/fr5D7V6e22f52gKhHXlfRXaXd+axMp6RwgGAABAn+yp92vp69v7PU9lbavufmmz9jUO3IowIRgAAAAJ21Pv18+eW5+0+R58Y7tCkYFr2EAIBgAAQMJCkahe3lidtPkC4aie/6AqafP1JqUh2Bjze2NMlTHm3W7eN8aYXxljNhpj3jbGzEplPQAAAEiODXsblexOuy9u2KeapoHZEpHqleB7JZ3Rw/tnSjqs/b9Fkn6b4noAAACQBCu37E/6nO/urFdLMJr0ebuS0hBsrX1JUk+/Q+dIut+2eV1SgTFmVCprAgAAQP9Eo1FVNwWSPm9tS1AOY5I+b1cGe0/wGEk7OryubL/2EcaYRcaYCmNMxb59ifehAwAAQHI4HA65HMmPkS6HQ1YD83DcYIfguFlr77LWlltry0tKSga7HAAAgIx2+Ki8pM85oTg76XN2Z7BD8E5JYzu8Lmu/BgAAgDRWPn540uc8ZkyBSnIG5vjkwQ7BT0r6UnuXiPmS6q21uwe5JgAAAPSiONerwiQH1nNnl8nrcSV1zu6kukXaw5JWSDrcGFNpjFlojLnaGHN1+5CnJW2WtFHS3ZK+ksp6AAAAkBz5PrcumTcuafNNLM5R6TBf0ubrTUqjtrX2ol7et5KWpLIGAAAAJF+uz6WL5o7Tsood2tvQ/04Rt5x7tMYUZCWhsvgM9nYIAAAADFEjct369UWz5OhnV7Mvzh+n8UUDF4AlQjAAAAD6yOVyaUJxjm676Ng+B+GzZozUtR8/TKX5hGAAAAAMESV5Xs2ZWKhHrz4uoe0MHqdD3z7zCP332UeqNH/g9gLHDMzjdwAAADhkjcjzaUSeT49ds0CPr9mle1/dqj0Nfp1zzCjNHl8ol9OosrZFD72xQ62hiM4+ZrS+cspk5We5VZTjHZSaTduzaUNLeXm5raioGJDPta8xoGA4KodDslYykopyPfK4nAPy+QEAAIaSYCiifU0BBSNWG6satbGqSdGoNCLfq6PGDFOez60cj0MFAxB+jTGrrLXlXb3HSnAXqpsCaglG9PhblVqxab/W7WlQQ2tIHpdDk0tyNbOsQBfMGauSfK9GDRvY/SsAAADpak+9X89/UKW7X96sLdXNXY7J9bp03uwyLTxhooZnu5Xrcw9wlW1YCe6g7SeXoH709Pv657oqHT+lWMeMLdC0kXnK8boUikS1pbpZ7+6s10sbqlWQ7dbPzj9GY4dnafggLeUDAAAMtrqWoHbWterah97S5m7Cb2c+t0Pf//R0feKI0pT1B+5pJZgQ3K6hNaT3dtXrG8vW6uJ543XilCK1hqNyO4yGZbnlcjoUtVaN/rBaQxG5HNKuOr9uW75Rp08fqS8fN14leQO/qRsAAGAw1bYEtWZ7nRYtrVAokniuPG92mb51+uEakYKH4wjBvWgNhbVqa63ufHGTbjjjCEUl5We59dTaXVqxqUbrdjeowR+Wx+nQ5BE5mlk2XOeVlynH41Q4EtVTb+9Wkz+saz8xhSAMAAAyytoddTr3t68pHO17plx04iQtOmmiipOcowjBvdi+v0W/Wb5Rlx03QTlel378zDo98+4e9fZnObU0Vz897xg5HdKmfc1yGunU6SPldfPQHAAAOPTtrm/VF+5Yocra1n7NY4z052uO07Hjhiepsti83YfgjO8TvLfBrz+u3KYrT5yo2pagPn3bK/rbO70HYEnasLdJn/3Nq/r7e3s1c2yB/MGoapqDqS8aAABgkAWCYT22qrLfAVhq68D1rUff1s66liRUFp+MD8ENrSFdNGe89tT7dek9K1XfGkrofmulXz+/Ub97ebPmTirU65tqFAhFUlQtAABAeqhpCem+17Ylbb4Pq5pU0zRwi4kZHYKb/SE1tIYUldXipav6tZdl6evbtbayXvMnFaqa1WAAAHCI298c1L6mQFLnfHRVpULhaFLn7E5Gh+A6f0gjh/n0nb+8o+Zg/1dvv/Pnd2QlGQ29fdYAAACJWL2tNulzrt1Rp6okB+vuZHQI9jqNGgNhvbqxJinzNQbCWraqUh5XRv+2AgCADPD+7oakz7l5X7MGqmlDZqc1Y3Tvq1uTOuUDK7bJHxqYZXygO/UtQVU1+A/8V9cSHLAvKgCAQ180GlUokvy8E4pGZZI+a9cy+tjk1mBUr21KzipwTE1zUMEB2ssCdFTXElRja0hrKuvlD0U0PNsjr8uhYCSq2pag3E6Hjh1boPwstwqyPYNdLgBgCHM4HCrMSf73kmFZ7rg6dCVDRodgY9p6BCfbpn1NmlSSm/R5ga4Ew1FVN/r11o46leb79N6ueq3ZUacP9jSqNRiRz+3U4SPzNHNsgUYXZOmdnfU6ZmyBSvK88rroaQ0A6Js5Ewp198tbkjrnkaOHKdszMN+bMjoE9+Vov3hUN9IdAgOj0R/S+j2NcjiMHl65Q7vqWvTTLxyjC+eMldPhkMNIUStFo1b7W4K64dG3VZTn1chhWdpZ16ppo/KV73MP9v8MAMAQdMSo/KTPeeJhxSrK9SZ93q5kdAhO1Z4Tp2OgdrMgk7UEwvpwb5M2VzfrhQ+q9L+fP0rhaFR/Wb1TK7fu1/o9jWoJRpTlcerw0jzNmTBcd1w6W26XQ7c+84HmTS6Sy2F0+Mh85Xoz+ksBAKAPPE6jBZOKtGJzcraWup1Gp00fmZS54pHR3/ncTiOvy6FAkvfwTh6Rk9T5gK7sa/Tr3V31OnJ0vuZNPEL/9fg7eruyTleeOFlLTp6iEfk+uZ1G4YhVVaNf7+ys1/l3rtDhpXn64eeOUn1rUBXbalWY7VEu23cAAAkaOSxL3zh9qs777YqkzHf+7LHyuQeuZ0NGh2BJmjYqX2t21CV1zhF5vqTOB3S2vymoPQ0BnTilWOv2NOr7T7ynm86ersJsrx5fs1O/eWGT1u9tVEswrKz2PcGzxw3XI4sWqK41qGsfXq0rT5ykT04r1c7aVg3L9qTkAQcAwKFt3PBsnTe7TI+uquzXPKX5Xv3HJ6YM2FYIKcNDcK7Ppc8cMyqpIXjm2AI5DNshkFr1/qAKczxavb1O+5uD+vXFx+q/n3hPL31Y/ZGx/lBUr2/er9c379ftL2zS8VOK9MsLj9UL66u0YlONyicMV31rkBAMAEjYiHyfrj/tcK3b3aD3dvWtb3CW26nffalcI3IH9vtQRvcJzvW4dMaRI+VxJu+34ZqTJyvHm9G/rUixhtaQAqGIQlGrgiy3Rg3z6axfvtJlAO7KqxtrdOYvX9bwHI9GFfjUGoooEIqooTWU4soBAIeikcN8uufL5Zo3sTDhe4tyPHpk8XxNLMqW0zmwHYsyOq05nQ65XQ7956mHJWW+Y8qGacaYfBVkD9xSPjJPczCsYVkeba9p1v6WoP7j4bfUGkrs2O9AOKr/fGStdu5v1Z56vwqyPWoKhFNUMQDgUDdyWJZ+deFM/eCzM5QTR4szY6Rzjhmtp649QdNK85SbNfD/GmmG4ilS5eXltqKiIilzNfpDavCHdc0Dq/R2ZX2f58lyO/XXr56ggiyXinLZE4zUqW8JaltNsxwOh87+9Sv9aipujPT4V46XjVpNGpGj/EH4IgQAOHQ0teeqFZtr9PhbO/XOznrVtbT9S6PX5dDhI/N0wpRiXTBnrLLcTo3IT21mMsasstaWd/lepodgSapp8qs1FNXlf3hTH1Y1JXx/ltuppQvnqqwgSyMLspJWF9CVPfWtCoSjuuLeN7VpX3O/5xtflK37r5grt9Oh0fz9BQAkSVWDX8FIVLKSleRwGMlaleR65HEPzGNpPYXgjN4OEVOU65PX6dC9l8/RZ48dk9C9U0tz9fiS41Sc49GwHA4dQOq5nQ5trGpKSgCWpG01LVq3u0E+Fw90AgCSZ0S+T2XDs1VWmK2xhdkaU5ClMcOzBywA94YQ3K4k3yenw6HFJ03UssXztWBSUY/jxxZm6eZzjtTvvlyubI9TpfleZaXJHyoObf5QRHe/vDmpc9710ha1BJPbLxsAgHRGautg5DCfXE4jhwnoO2cdofwstzbsbdLqbbWqaw3K63Jqxph8zRgzTG6HQ/UtAXldTpWmeD8LcDCjVdtqkzrj2so60dkPAJBJCMGdFOd6VZzr1d4Gv4LhqApzXDppavGB9x3GyGGMsj1OTSweLoeDxXQMLH84olAkuXv5I1Gr5mBiHSYAABjKCMHdiK3uji3MHuRKgIO1pKiVWaOfPsFDxb7Gth/SY7I9Tg3PoTUjACSCENxJMBxROGKV7Y3vt6YpEFZunGOBZDAp2rfgZD9EWttb71dzKKy1O+oUCkdVkO2Ry2EUiETV0BpSjtelY8oKlOVxqngAjx0FgKGK9NZBMBzRut2N2tcY0HGTi3oNwjv2t+gf6/bq3FljNIz+qhggeb7U/N92WDZ/h9NRoz+kmuag3ttZrxH5Pn2wu1FvV9brw6pGBUJR5XhdOmJUno4dN1xjCrK0Y3+LyscPV3GuVx73wJ6+BABDCSG4XSwAX3DXCgXDUd15abmO7yEI79jfovPueE17GwJq8of15ePGE4QxIFxOh/KzXGpoTd62iGyPUx4nK8HppropoA92N8jndur+Fdv0xpb9HxnTGAhrT4NfL6zfp1/+c4POnDFK44tyVN0c1PjCbH64AYBu8FSXDg7A/lBUUSstXlqhVzfVdLn/smMAlqSf/2OD7nttm+pbgwNdOjJQntel06ePTOqcp00vVQ7betJKdWNAm/c1acPeJl189xtdBuDOolb62zu79aXfr9Tuer+27W9RM3u9AaBLGR+COwfgmO6CcOcAHEMQxkDJz3LryhMnJnXOq06apAJWDNNGNBpVTXNAr2/er5v/+n7biUsJqG8N6SsPrtb2mhbVtRKCAaArGR2CuwvAMR2DcGsw0m0AjiEIY6AU5nh1zjGjkzLXWTNGqiSPB6nSyf7moCprW/Xzf2zo8xyRqNU3/rRWNU1B7Wv0J7E6ADg0ZHQIbgqEdceLm7oMwDGxIHzPK5t7DMAxS1dsUzCc3B6uQGcleV7deOYRGtHP8Fqc69F3Pz1dI/I48CWdNPjD+s5f3un3PIFwVDc99b5a6AENAB+R0SHYYaT/+tQ0nXRYcY/jola69bkNvQbgklyv7l84V8YQgpF6owqy9NBV81Wc27dtDIU5Hj181XyNzGcVOJ1UNwX04oZ9vX69idfq7bXaVdequhb+hQoAOsroEByOSrc+u16LPza51yDcm5Jcr+64dLZ+9Ld1span7DEwRuZ79JevHK+5EwsTum/WuOH6y1eOU2m+h1MP04w/FNEDr29L6pxLX98mf4jVYADoKKMfBzdWuuKEibrt+Y1a/LHJkqSXPqxOeJ5YAP6/f2zQf546VXSawkCobwnq1U012rKvSb+44Bit3lanXz+/Uev3NnZ7z5QRuVpy8mTNm1Skp97eqZH5WTrpsGJOG0sj4YjVpn3NSZ1zxaYahaP8CxUAdJTRIdjpNCrN82rJKZN1+/JNfQrCnQNwSZ5HHvrTI8ViAXjllv06c8ZI7apt1axxBbrny+Xyh6N6d2edVm+vU3MgrGyPU8eOG66jxgxTltspp6Oty8kxZcP1z3V7JYkgnEaqm5KzDaKj2paQIoRgADhIRofggmyP9jcFNCrfdyAIL/n4FDX6w3prR12v93tdDv3uy+W69dn1BwJwltupHB+tppA6nQOwy2G0vbZVgXBUhdkehaJR7an369pTpqgg26361pAeXVWp1hG5CoUjqvOHtauuVRMKc/TJaaUE4TSzvzk1e3dDCbZZA4BDXUaHYEkqzPUeCMLXnzZVwYjVzrrWuO4NRqLatK9J3//MdPncDmW5nSrK9coY9kMgdaykzdVNBwLw1v0t+uaf1srnduquS2erMNujBZOL9N3H39Wx44arYut+ffWTh8llpDp/WIvuX6XmYFg//vzRmlzcFoRXb6/l722acDtTs0ebP18AOBhPxKgtCPvcTvncTl1535uqaozvnyOtla7/01ptqW6Wz0UAxsDwOB06YUrxQQE4aqWWYESLlq7S/pag3A6HvnLKZAXCkY8E4KZAWNZKN/75bW2qbpbLGC2YVJSy8IXEjBqWmnZ1Xhd/vgDQEV8V2zX4wzr/zhUJtyWKWunqB1ZpTWW9WunFiQHgD0cUidqDAnBM5yA8d2LRRwJwTMcgHI1aBegekBbyfG4l+2fpcYXZcvDzOQAchBCs7o9Cjld3RywDqbJjf+tHAnBMxyDs7CYAx8SC8ObqZvHYVHpwOqTjJxcldc5PHz1KHlb6AeAgGf9Vsb8BOIYgjIHidBjd+dKmLgNwTCwIv7mtttsAHGOtdOdLm+Wit19aiEatlpwyJWnzGSOdN7usx5MxASATZXQIrm8N6YbH3o7rJLhHr14Q18lyX334LQV5ChspNCzLo99/eY6mlub2OK4lGNFPn13fYwCWpMklObr/irkalkVXk3SwpyGgpkBY8xI8AKU7Vxw/UU+u2amoZa0fADrK6BDsdkg/Pe9oTS7pPkzE+gD/7LkNvZ4s53U5dO/lcxQhBCPFRhVk6b7L5/YahHszuSRHSxfO0+iCrCRVhv6qbgroxsfe0c3nHKlcb/8a+IwrzNbnjh2jXy/fxA/nANBJRofgQMTqlr+v161f6DoIdzwI4xunTdW9r23tNgh7XQ795pJZeuiN7XKy9w4DoL9BmACcnhzGqKY5qB/8bZ3+cPkcZffx9J1Rw3z67SWz9LU/vtV+WhzbXQCgo4xOa0bS4o9N0k+f/WgQ/shJcLkeLTllcpdBOBaAn1izU2fPHM0DRhgQgVBEzYGw/nBZ4kF4ckmO7rtirpoDIbWG2MOeTsYMb/uh5OUPq3X78o166Kp5Cf/5njilSHddOlvf+NPaA0cw+9wZ/eUeAD4io78qupxGRTleffvMIw4Kwl0dhZzncx04Wa5jEO4YgM+ZOUajhvkIwUi5QCiiDXubdMvfP1BzMKR7L5+r0XH2ly3N9+q+K+bKHwjr1mc3aP2eRoJwGsn3uQ60SHth/T599eE1+t6np+u/PzNdY3pZtZ82Kk+3XXSsPj97rC79/Up9sKdRkjS2MEtsCQaAg2X0iXG5XrdCoahK8nz69plH6H+f+UC3fuFoWSv9okMAznI7NTzHq9rm4EFHLC/+2GRd+4nDtHTF1gMBeFiWW7mejP5tRYrFAvCv/rVB137iMIXDUW1talZ9ayiu++tbQ9pS3azCbI++cspk/Wb5Jl1zymQdPjJPWW7+7g42R/vhJa9tqpEkbd/foi/9fqU+NrVEN509XblelzbsbdR7uxrkD0WV73NpxphhmjIiV9tqWnTPK1u0ptOx72ccOUo53r5tqwCAQ5WxQ3B5oLy83FZUVCRtvtqmgAIRq32Nfv3o6XWKRqUbzjziQADueBLc/qaAQpGodjf4dfvyTWryh3TliZMOBOCSPJ88nMyEFGryh/X9J9/RZcdN7PYgjN5ke5y6s/2I5XA0qvtf26r/+exR/X4QC/3X5A9qzY56ffGelV2+73M7NH1UviaV5MrjdKglGNGGvY3asLexfe/vwYyRln/jZI0uyOJrE4CMY4xZZa0t7/I9QnCbjkE4ErUqyv1oAI7pGIRDYascr5MAjAETCEZUWdeiQCjSpwAc0zEIe1wOjR2eLV8fH8JCcu2sbdXXH3lLb26t7fdcl84fpyWnTNHIYTwACSDz9BSCSWzthud65XUaleT6VJTr7TYAS1Jhrldup0Oj8n0qzvMQgDGgQtGoguFovwKw1NZHeHH7yXKhcFShKC200kWOx6GfnHe0cvr5Q8nYwixdffJk5bDCDwAfQWrrYHiuVx6XlO1xdBuAY2JBON9HAMbAq2vtXwCOORCE49xPjIFRkONVjsel+xfOVZa7b0G4NN+r+y6fqxyPS3k+d5IrBIChj+TWSWGuT0W5vh4D8L/HelWU6yUAY2AZo289tjauk+D+8Z8nxXWy3Lf+tFaOOP7OY+AMz/GoJNervyw5TlNGJNYibcGkIv3p6uOU73OpIJuTAAGgK6Q3YIjxOR36w2VzVJjTfbiJHYRxWGme7r18rg7rIUQNy3Lr3ivmysshL2nF7XQoy+2Syxj94bI5+u6npmlUL23wDi/N068vPlY/+OwMhcJRfrABgB7wYBwwBIXDUW3d36zz73xd+5uDB73X1Ulwu+pa9eXfr9SHVU0HjR2W5dafrl6gSUU5cvEvGmllT71f1zywSrUtQf3gs0fJ6zIqyvWqJRhRxdb9emdnvQLhqHK9Lh07rkDHjhsua6WmQEiVta266cn3dNLUEv3XWdM0Ij++HtIAcKihOwRwiGkJhlXfGlRTIKILOgThySU5un/hPHkc0vAcr1xOhyKRqGqagwpH7UFBOBaA87Ocyvd5lE1/67QRC8Bvtff7NUb6+BEjdPHcccrxOBWOWrmdRpKRlVUoYpXlcqiyzq/7V2zT6u3/7ipxzszRBGEAGaunEMx3PWCIaQmGtbuuVVtqWvSP9/boj4vm68K7XtfwbLfuvXyuvv3YO/rm6VMVjEQ1Ij9LVY1+1beE9MOn1+kPl83R5fe+qarGgJYtnq/7X92iE6aO0GGlORo1LIsgnAaqGg4OwJJkrfSvdVX617oqZXucmj4qX1NLc3V0WYHe3Lpf6/c2asOeJgUjH+3w8cSaXTKSvkMQBoCD8B0PGGJag2FtqWnR4qWrFIlaWSstWzxfXpdT1y1boze31mr19lo9fNU8haNWzYGILrzrdTX4w7r24dX6w2Vz1BKK6L5Xt+jBlTv00Js79JtLZqsgi9XgdHHEqLyDQnBHLcGI3q6s13WnTdX0UfkKR60eW72zx/lmjR+eijIBYEhjOwQwxDS0hnTub187aH/vWUeN1O66Vr21o/7AtVyvS9efPlU/f26DGvz/7iRx1JhhmlCcrafW7j5wbWJxjp5Ycrzys2illQ6qGvz6xT836OGVOz7ynsfp0L1XzNGRo/M1LMujqga/nnt/r777+LtdznXzOUfqjCNHsgoMICOxJxg4xOysbdWl97yhzdXN/Z5rfFG2Hlw4T2WF2UmoDMnSVRDuHIA7ju0qCBOAAWQ6TowDDjFjhmdp6cJ5mlSc0695CMDpa0S+T//5yam6aO5YSd0H4NjY06aX6gefnXHgGgEYAHrGBkBgiIoF4b6uCBOA018sCLudDp0xY2SXAbjj2NOml0qSotYSgAGgF6wEA0NYX1eECcBDy9Ufm6yJxTm9Hmjicjr0sanFOuXwEjkdHJQBAD0hBAND3Mh8rx64cp5GxrnqV5Ln1YNXztPIXk4fw+CravDrkYodOu7Hz+u0n7+kTdXN8ge7Pi57f3NQq7fV6uRbX9TJt76oVdtqVdMUGOCKAWDoIAQDQ1gkEtXexoDqWoJqCnQdjjprDoRV2xzU3vpWhbvoK4v0EAvAP3tugySpMRDWhXe+3mUQjgXgxQ+0tc2LRK2ueXA1QRgAepDyEGyMOcMYs94Ys9EYc2MX748zxiw3xrxljHnbGHNWqmsCDgUdA/CFd78edwhuCUZ00d1vaH9LiCCcpjoH4JiugnDnABxDEAaAnqU0BBtjnJJul3SmpOmSLjLGTO807LuSlllrj5V0oaTfpLIm4FDQOQA3tMYXgGOaAmGCcJrqLgDHdAzCDa1dB+AYgjAAdC/VK8FzJW201m621gYl/VHSOZ3GWEn57R8Pk7QrxTUBQ1p/A3AMQTg9OR1Gf+nlBLhYEP7NC5u6DcAxkajVA69vS3aZADDkpToEj5HU8cijyvZrHd0k6YvGmEpJT0u6NsU1AUOaPxxVXUuoXwE4pmMQbu3mgSsMrKJcr+5fOFcTe+n40RgI644XN/cYgCXp+MlF+ukXjlFRrjeZZQLAkJcOD8ZdJOlea22ZpLMkLTXGfKQuY8wiY0yFMaZi3759A14kkC6spMUPVPQagMcXZeupa0/otX1aUyCsxUtXyTjS4csBJKlseLaWxhGEe3P85CL9/IKZKqVfMAB8RKq/6+2UNLbD67L2ax0tlLRMkqy1KyT5JBV3nshae5e1ttxaW15SUpKicoH053U69LsvzdGwLHe3Y8YXZevBK+fpqDHDeu0jnO9z6Z7L5shDX9m00t8gTAAGgJ6lOgS/KekwY8xEY4xHbQ++PdlpzHZJn5AkY8w0tYVglnqBbrhdDk0qztGyxQu6DMKxAFw2vO0gjJ4O1Mj3ufTI4gWaXJwjj9uZ8tqRmL4GYQIwAPQupSHYWhuW9B+SnpW0Tm1dIN4zxtxsjDm7fdg3JF1ljFkr6WFJl1lre97kBmS47oJw5wAc01UQJgAPDYiNgNQAACAASURBVGXDs/XwVfNUkN39yn9H00bl6ZcXHUsABoBepHwToLX2aWvtVGvtZGvtD9uvfd9a+2T7x+9ba4+31h5jrZ1prX0u1TUBh4LOQbi7ABzTMQgTgIeO2uag3t3ZoIbWUFzjK/e3qqrB3+3JcgCANmYoLrqWl5fbioqKwS4DSAuhcFRbapqV7XF2G4A72lnbqsZASJOKCMDprrY5qFU99AHuTp7XpUcWz9ek4hz5PK4UVggA6c0Ys8paW97VezwODgxxbpdDU0py4grAUtuK8NQRuQTgNNfXACy1tU+74M7XtbmLI5YBAG0IwcAhwJFge7NEx2Ng9ScAxxCEAaBnfCcEgDSSjAAcQxAGgO4RggEgjbicRt967O1eA/Bxk4v06g2nxHWy3A2PvSN/mGOxAaAjQjAApBGP06GHrpyn/KzuH2g7bnKRfnHBTI2Jo4/whKJs/faLs1SQ7UlFuQAwZBGCASCNeN1OTSzO0bJFC7oMwrEAHOsD3NOBGhOKsvVAD23zACCTEYIBIM10F4Q7B+CYroIwARgAekYIBoA05HU7NbYw+0AQPm5ykX5+fvdHIZfm+w4E4VgALs33DnDVADB00EUdANJQcyCsVz6sVmVtix7/yvHK9jj1jWVv6ZbzjvnI6m4oEtWGPY2697UtWrpwriTptn99qEsXTNDhI3PldtITGgA6IwQDQJqJBeCrH1wla6XK2la9/OE+bdzXrPPvWKFlVy84EIRjAfgLd65QSzCiupa245X/sa5KT729W8sWLyAIA0AXODYZANJI5wDcldHDfFp29QKNzPdpfYcA3JVsj5MgDCBjcWwyAAwRUWv13cff7TYAS9Kuer/Ov2OF/vrO7h4DsCS1BCP67uPvqjVIn2AA6IgQDABpJMfj0rKrF6gop+e+vrvq/fr6H9f0GIAl6bARubrz0tnKz3Ins0wAGPIIwQCQRhwOo/GF2Xr0muN6DcK9OWxEbnuXiK47SgBAJiMEA0CaSUYQJgADQM8IwQCQhvoThAnAANA7QjAApKlYEH7smuOU642vo+W4wmwCMADEgRAMAGksYq2ag2GFIvF1d/CHInGPBYBMRggGgDQVikS1YW+jvnDHCgXC8QXbqsaAzr9jhSprW1JcHQAMbYRgAEhDHQNwb23QOov1ESYIA0D3CMEAkGb6E4BjCMIA0DNCMACkkWQE4BiCMAB0jxAMAGkkEI7qkt+9EddJcMsWx3ey3OKlq9TQGkpmmQAw5BGCASCNuJ1Gd19aLo+z+y/PsT7A5eOH99pHuDDHo19fPCvuFmsAkCkIwQCQRrwup44eO0wPXjmvyyDc8SCM3g7UKMzx6LFrjtP4wmw5HGYgygeAIYMQDABpprsg3NVJcN0FYQIwAPSMEAwAaahzEO7pKOTOQZgADAC9M9bawa4hYeXl5baiomKwywCAlAuEI1q3u1Gjhvl6PQo5GrXatr+tEwQBGAAkY8wqa215V+/xpAQApDGvy6mjRufL2cODcjGxFeHYxwCA7rEdAgDSXF1rSKE4j01uCoTUFKAdGgD0hhAMAGmsuimgJ9bs0qZ9TQpFeg7CDa1Brdpep4ptdWrwBweoQgAYmgjBAJCmqpsCerRih27+6/s6/64V2lTVfRCOBeCr7qvQovsrtGorQRgAekIIBoA0FAvAP/77eklSQ2u42yDcMQCHo1bhqNVVBGEA6BEhGADSTOcAHNNVEO4cgGMIwgDQM0IwAKSR7gJwTMcg3BQIdRmAYwjCANA9QjAApBGHkR5+c0ePY2JB+M4XNncbgGPCUau7X96sUHjo9YQHgFQiBANAGinM8erBK+dpfFF2j+MaWsO6bfnGHgOwJM2dWKhfXDBTRbneZJYJAEMeIRgA0kzZ8Oy4gnBv5k4s1G0XHdvrSXMAkIkIwQCQhvobhAnAANAzQjAApKm+BmECMAD0jhAMAGmsbHi2Hr5qvoZlueMaf3hpnm6/eBYBGAB6QQgGgDTW0BrU+r2NagqE4xq/u75VNU2BXo9YBoBMRwgGgDTV8SCMSC9dIA7c4+/+ZDkAwL8RggEgDXV3Elx89xKEAaA3hGAASDP9CcD/noMgDAA9IQQDQBpJRgD+91wEYQDoDiEYANKIMUbXPbImrpPgXvzmyXGdLHf9o2vVEueDdQCQKQjBAJBGvE6HHrxyvvJ9rm7HxPoAjy/K6bWP8LjCbN1xyWwNy/akolwAGLIIwQCQRjxup6aU5OiPixZ0GYQ7H4TR04Ea4wqz9dCV81RW2L/jlwHgUEQIBoA0010Q7u4kuK6CMAEYAHpGCAaANNQ5CPd2FHLHIEwABoDeGWv79/TxYCgvL7cVFRWDXQYApFwwFNH22lbl+VxxHYVcWdsiWRGAAQy42uaAZIzC4ahK4vh6ta/Rr6hVSo95N8asstaWd/UeK8EAkMY8bqemjMiN+5tE2fBsAjCAAVfbHNCmfc067n+f14rNNdrX4O9x/JbqJn3qV6/onle2aG8vY1OFEAwAAIA+iwXgL97zhlpDEX3tkTU9BuEt1U264M7XVdUY0F0vbR60IEwIBgAAQJ90DMD+UNuhPNaq2yDcMQDHDFYQJgQDAAAgYV0F4JiugnBXAThmMIIwIRgAAAAJq2oMdhmAYzoG4e37W7oNwDF3vbRZyyp2qKpxYIJw90cSAQAAAN0oyHbrhCnF+ue6qm7HWCt99Y9r5HU5FAh3HZZjSvK8+tRRozTc50x2qV1iJRgAAAAJK8336YefO0qfnDai17HxBOBHFs3X2AKv3G53skrsESEYAAAAfZJIEO7OYARgiRAMAACAfuhPEB6sACzFEYKNMQUDUQgAAACGpr4E4cEMwFJ8K8HVxph/GmMWEogBAADQldJ8n248c1rc48+bVaaiHM+gBGApvhC8TtL/Sfq4pE3GmCeMMRcaY7JSWxoAAACGii3VTbr47tfjHn/HS5v0woZ9qkrjY5ND1tq/WmsvkVQm6UFJ50uqNMY8lNLqAAAAkPZ6OgijO9ZKX2/vIzwYQTieEGxiH1hrW621y6y1n5c0SdKzKasMAAAAaa8vAThmMINwPCH4wa4uWmvrrbX3JbkeAAAADBH9CcAxgxWEew3B1tpb45nIGHNb/8sBAADAULC1pjmuAFyS69Xs8cN7HBMLwm9s2a899a3JLLNbyewTfHwS5wIAAEAa8zgdKsjuubNDSZ5Xjyyerzu/OLvX9mkep0Ol+V55XQNzjAWHZQAAACBhowuydO/lczW1NLfL9zv2AS7O8/bYR9jrcmjpwrk6bESuhud4U1n2AYRgAAAA9El3QbirgzC6O1BjMAKwlNwQbHofAgAAgENJ5yDc00lwnYPwYAVgKYEQbIw5qpchv+zmvjOMMeuNMRuNMTd2M+Z8Y8z7xpj36D0MAAAwtMSC8PFTino9CjkWhD911MhBC8CSZKy18Q005mVJXkn3SnrQWlsfxz1OSRsknSqpUtKbki6y1r7fYcxhkpZJ+ri1ttYYM8JaW9XTvOXl5baioiKuugEAAJB6dc1+RayR00RVkNPzwcL7GvyykoysSvJTdwixMWaVtba8q/fiXgm21p4o6RJJYyWtMsY8ZIw5tZfb5kraaK3dbK0NSvqjpHM6jblK0u3W2tr2z9NjAAYAAEB6qWrw6/pH39HsH/xTl9xTod09tDmravDrvhVbNfdH/9KnbntVW6qbBq7QDhLaE2yt/VDSdyXdIOljkn5ljPnAGPP5bm4ZI2lHh9eV7dc6mippqjHmVWPM68aYM7qayBizyBhTYYyp2LdvXyJlAwAAIEWqGvz6zl/e0T/Xta1jvrerQVfe13UQrmrw6/4VW/Xr5ZvaXjcGdMGdrw9KEE5kT/DRxphfSFon6eOSPmOtndb+8S/6UYNL0mGSTpZ0kaS7jTEFnQdZa++y1pZba8tLSkr68ekAAACQDJ0DcExXQbhzAD5wfZCCcCIrwbdJWi3pGGvtEmvtakmy1u5S2+pwV3aqbftETFn7tY4qJT1prQ1Za7eobQ/xYQnUBQAAgAHWXQCO6RiEqxu7DsAH5hqEIJxICP6UpIesta2SZIxxGGOyJclau7Sbe96UdJgxZqIxxiPpQklPdhrzuNpWgWWMKVbb9ojNCdQFAACAAVbbEtLLH1b3OCYWhH/xzw3dBuCYqsaAnlq7W9WN/mSW2a1EQvA/JXV8fC+7/Vq3rLVhSf8h6Vm1baNYZq19zxhzszHm7PZhz0qqMca8L2m5pG9aa2sSqAsAAAADbPQwr5YunNvrMcfv7WrQg2/s6HGMJC08YaIumDNWxXm+ZJXYo0RapK2x1s7s7dpAoEUaAADA4GtsDWrdnkZdes9KBcLRPs+z8ISJWnTSJJXmJzcAJ6VFmqRmY8ysDpPOltR9/wsAAAAc0vKyPJo2Mi+uFeHupCoA9yaRar8u6U/GmJeNMa9IekRtWx0AAACQofoThAcrAEuJHZbxpqQjJF0j6WpJ06y1q1JVGAAAAIaGWBC+7/K5cd9z3uwyXfOxwQnAUluP3kTMkTSh/b5ZxhhZa+9PelUAAAAYUlpDUb2yMf4DzdbtblAoGt+zaakQdwg2xiyVNFnSGkmR9stWEiEYAABgEIRCIVVWVsrvH5i2Yt2JRK2aA2EdkxfW3WePivu+DR98oJpcr5wO06/P7/P5VFZWJrfbHfc9iawEl0uabuNtJwEAAICUqqysVF5eniZMmCBj+hck+yoUiaqmKahoo/+gXrrx8rqdGl+UI08fH6yz1qqmpkaVlZWaOHFi3Pcl8tnelTQy4coAAACQEn6/X0VFRYMegKv6ccBFayiibTXNCvaxxZoxRkVFRQmvhieyElws6X1jzEpJgdhFa+3Z3d8CAACAVBrKATgmFoT7uiLcl9+DRELwTQnPDgAAgENSOBLVxsq9eubxP+mCL1/Z7bjiXK/yfS5trWlRtIddta2hiKqbAhqR55XL2betEYlIpEXai5K2SnK3f/ympNUpqgsAAABpzOV0KNf49cj993Q7pjjXq5I8r7I8Tk0szpGjhxXbPK9LJQMUgKXEukNcJWmRpEK1dYkYI+kOSZ9ITWkAAABIV26nQz/6n+9r5/atOv/0EzX/xJNVWFyi5556XMFgQJ8++xzd8qMfaOeO7TrjjDM0b948vfbaCk2dMVPnnH+xfvvz/9X+6mr96Fd36bj58/T7236qrVs2a+PGjaqurta3vvUtXXXVVdq9e7cuuOACNTQ0KBwO67e//a1OPPHEftefSNReIul4SQ2SZK39UNKIflcAAACAIeknt9yiSZMn67WVFZp/4inavmWzHvzrv/T8qyu1/t21WvHqK5KkjRs36vrrr9f7697Xrm0b9cwTj+reP/9d1333/+m+3/xCZYXZcjqM3n77bT3//PNasWKFbr75Zu3atUsPPfSQTj/9dK1Zs0Zr167VzJkzk1J7InuCA9baYGzjsTHGpbY+wQAAAMhQRlKez613V76sFS89r4vP+phcToeam5r04Ycfaty4cZo4caKOOuooSdKMI4/UKZ84VU6HQzOPPkq/v61S7vYtEOecc46ysrKUlZWlU045RStXrtScOXN0xRVXKBQK6bOf/WzSQnAiK8EvGmO+IynLGHOqpD9JeiopVQAAAGDIcjsdcjuMbrzxxrYV2zVrtHHjRi1cuFCS5PV6D4x1Op3KzfZpckmuRhfmKBIOH3ivc5cHY4xOOukkvfTSSxozZowuu+wy3X9/cs5pSyQE3yhpn6R3JC2W9LS19r+SUgUAAACGnLy8PDU2NkqSzjzzDD1w/30KtLZIknbu3Kmqqqou73M4HMryOA+sAMc88cQT8vv9qqmp0QsvvKA5c+Zo27ZtKi0t1VVXXaUrr7xSq1cnpy9DItshrrXW/lLS3bELxpivtV8DAABAhikqKtLxxx+vGTNm6Mwzz9TFF1+sBQsWSJJyc3P1wAMPyOl0xj3f0UcfrVNOOUXV1dX63ve+p9GjR+u+++7TT3/6U7ndbuXm5iZtJdjEewqyMWa1tXZWp2tvWWuPTUolCSgvL7cVFRUD/WkBAADSyrp16zRt2rTBLiMpbrrpJuXm5ur666/v0/1d/V4YY1ZZa8u7Gt/rSrAx5iJJF0uaaIx5ssNbeZL296lKAAAAYBDFsx3iNUm71XZs8s86XG+U9HYqigIAAEBmuemmmwb08/Uagq212yRtk7Qg9eUAAAAAqRd3dwhjzOeNMR8aY+qNMQ3GmEZjTEMqiwMAAABSIZHuED+R9Blr7bpUFQMAAAAMhET6BO8lAAMAAOBQkEgIrjDGPGKMuah9a8TnjTGfT1llAAAASHtXXHGFRowYoRkzZgx2KQlJJATnS2qRdJqkz7T/9+lUFAUAAICh4bLLLtPf//73wS4jYXHvCbbWXp7KQgAAAJBazzzzjG6//Xbt3btXpaWlWrJkic4888x+zXnSSSdp69atySlwACXSHWKqMeZfxph3218fbYz5bupKAwAAQLI888wz+uEPf6g9e/bIWqs9e/bohz/8oZ555pnBLm1QJLId4m5J35YUkiRr7duSLkxFUQAAAEiu22+/XX6//6Brfr9ft99++yBVNLgSCcHZ1tqVna6Fk1kMAAAAUmPv3r0JXT/UJRKCq40xkyVZSTLGnKe245QBAACQ5kpLSxO6fqhLJAQvkXSnpCOMMTslfV3SNSmpCgAAAEm1ZMkS+Xy+g675fD4tWbKkX/NedNFFWrBggdavX6+ysjLdc889/ZpvoCTSHWKzpE8aY3IkOay1jakrCwAAAMkU6wKR7O4QDz/8cDLKG3Bxh2BjzNck/UFSo6S7jTGzJN1orX0uVcUBAAAgec4888x+h95DRSLbIa6w1jao7bCMIkmXSvpxSqoCAAAAUiiREGzafz1L0v3W2vc6XAMAAACGjERC8CpjzHNqC8HPGmPyJEVTUxYAAACQOnHvCZa0UNJMSZuttS3GmCJJHKUMAACAIafXEGyMOcJa+4HaArAkTTKGXRAAAAAYuuJZCb5O0iJJP+viPSvp40mtCAAAAEPCjh079KUvfUl79+6VMUaLFi3S1772tcEuKy69hmBr7aL2X09JfTkAAAAYKlwul372s59p1qxZamxs1OzZs3Xqqadq+vTpg11ar+J+MM4Y84X2h+FkjPmuMebPxphjU1caAAAAkiUUCunaa6/Vtddeq5aWlgMfh0KhPs85atQozZo1S5KUl5enadOmaefOnckqOaUS6Q7xPWttozHmBEmflHSPpDtSUxYAAACS6brrrtPq1au1evVqnXXWWQc+vu6665Iy/9atW/XWW29p3rx5SZkv1RIJwZH2Xz8l6S5r7d8keZJfEgAAAFIlEAioqalJgUAgaXM2NTXp3HPP1f/93/8pPz8/afOmUiIheKcx5k5JF0h62hjjTfB+AAAADJJbbrlFbrf7oGtut1s/+clP+jVvKBTSueeeq0suuUSf//zn+zXXQEokxJ4v6VlJp1tr6yQVSvpmSqoCAABAUt1www0f2f8bCoX0rW99q89zWmu1cOFCTZs2LWnbKgZK3CHYWtsi6QlJzcaYcZLckj5IVWEAAABIPq/Xq9zcXHm93n7P9eqrr2rp0qV6/vnnNXPmTM2cOVNPP/10EqpMvbhPjDPGXCvpvyXt1b+PS7aSjk5BXQAAAEiin//85wdWa2+55RbdcMMNB6731QknnCBrbVLqG2iJHJv8NUmHW2trUlUMAAAAUsPtduu222478Lrjx5kokT3BOyTVp6oQAAAAYKAkshK8WdILxpi/STrQU8Na2/c1dAAAAGAQJBKCt7f/5xH9gQEAADCExR2CrbX/I0nGmNz2102pKgoAAABIpbj3BBtjZhhj3pL0nqT3jDGrjDFHpq40AAAAIDUS2Q5xl6TrrLXLJckYc7KkuyUdl4K6AAAAMERMmDBBeXl5cjqdcrlcqqioGOySepVICM6JBWBJsta+YIzJSUFNAAAAGGKWL1+u4uLiwS4jbgl1hzDGfE/S0vbXX1RbxwgAAACkuZNOOkktLS0fuZ6dna2XXnppECoaXIn0Cb5CUomkP0t6TFJx+zUAAACkua4CcE/XE2GM0WmnnabZs2frrrvu6vd8AyGR7hC1kr6awloAAAAwBL3yyisaM2aMqqqqdOqpp+qII47QSSedNNhl9SiR7hD/MMYUdHg93BjzbGrKAgAAwFAxZswYSdKIESP0uc99TitXrhzkinqXyHaIYmttXexF+8rwiOSXBAAAgKGiublZjY2NBz5+7rnnNGPGjEGuqneJPBgXNcaMs9ZulyRjzHhJNjVlAQAAYCjYu3evPve5z0mSwuGwLr74Yp1xxhmDXFXvEgnB/yXpFWPMi5KMpBMlLUpJVQAAAEiq7OzsbrtD9MekSZO0du3afs0xGBJ5MO7vxphZkua3X/q6tbY69r4x5khr7XvJLhAAAAD9l4lt0HqSyEqw2kPvX7t5e6mkWf2uCAAAAEixRB6M641J4lwAAABAyiQzBPOQHAAAwACzlgjWl9+DZIZgAAAADCCfz6eampqMDsLWWtXU1Mjn8yV0X0J7gnsRTOJcAAAA6EVZWZkqKyu1b9++wS5lUPl8PpWVlSV0T0Ih2BhztKQJHe+z1v65/df53dwGAACAFHC73Zo4ceJglzEkxR2CjTG/l3S0pPckRdsvW0l/TkFdAAAAQMokshI831o7PWWVAAAAAAMkkQfjVhhjCMEAAAAY8hJZCb5fbUF4j6SA2voCW2vt0SmpDAAAAEiRRFaC75F0qaQzJH1G0qfbf+2RMeYMY8x6Y8xGY8yNPYw71xhjjTHlCdQEAAAAJCyRleB91tonE5ncGOOUdLukUyVVSnrTGPOktfb9TuPyJH1N0huJzA8AAAD0RSIh+C1jzEOSnlLbdghJ/26R1o25kjZaazdLkjHmj5LOkfR+p3H/T9Itkr6ZQD0AAABAnySyHSJLbeH3NLVtg4htiejJGEk7OryubL92gDFmlqSx1tq/9TSRMWaRMabCGFOR6Q2hAQAA0D9xrwRbay9P9ic3xjgk/VzSZXF8/rsk3SVJ5eXlmXs2IAAAAPotkcMyfJIWSjpS0oHDma21V/Rw205JYzu8Lmu/FpMnaYakF4wxkjRS0pPGmLOttRXx1gYAAICBta/Rr6ZAJOnz5nqdKsnz9T6wnxLZE7xU0geSTpd0s6RLJK3r5Z43JR1mjJmotvB7oaSLY29aa+slFcdeG2NekHQ9ARgAACC9NQUiOuXWF5I+7/LrT1ZJXtKn/YhE9gRPsdZ+T1KztfY+SZ+SNK+nG6y1YUn/IelZtQXmZdba94wxNxtjzu5r0QAAAEB/JLISHGr/tc4YM0PSHkkjervJWvu0pKc7Xft+N2NPTqAeAAAAoE8SCcF3GWOGS/qepCcl5UrqMswCAAAA6SyR7hC/a//wRUmTUlMOAAAAkHpx7wk2xpQaY+4xxjzT/nq6MWZh6koDAAAAUiORB+PuVdsDbqPbX2+Q9PVkFwQAAACkWiIhuNhau0xSVDrQ+SH5zeEAAACAFEskBDcbY4okWUkyxsyXVJ+SqgAAAIAUSqQ7xHVq6woxyRjzqqQSSeelpCoAAAAghRIJwe9L+oukFkmNkh5X275gAAAAYEhJZDvE/ZKOkPQjSbdJmqq2o5QBAACAISWRleAZ1trpHV4vN8a8n+yCAAAAgFRLZCV4dfvDcJIkY8w8SRXJLwkAAABIrV5Xgo0x76itI4Rb0mvGmO3tr8dL+iC15QEAAADJF892iE+nvAoAAABgAPUagq212waiEAAAAGCgJLInGAAAADgkEIIBAACQcQjBAAAAyDiEYAAAAGScRA7LAAAAACRJuV6nll9/ckrmHQiEYAAAACSsJM+nkrzBrqLv2A4BAACAjEMIBgAAQMYhBAMAACDjEIIBAACQcQjBAAAAyDiEYAAAAGQcQjAAAAAyDiEYAAAAGYcQDAAAgIxDCAYAAEDGIQQDAAAg4xCCAQAAkHEIwQAAAMg4hGAAAABkHEIwAAAAMg4hGAAAABmHEAwAAICMQwgGAABAxiEEAwAAIOO4BrsAAImpbgyoKRBOydy5XpeK87wpmRsAgHRCCAaGmKZAWCff+kJK5n7h+pMJwQCAjMB2CAAAAGQcQjAAAAAyDiEYAAAAGYcQDAAAgIxDCAYAAEDGIQQDAAAg4xCCAQAAkHEIwQAAAMg4hGAAAABkHEIwAAAAMg4hGAAAABmHEAwAAICMQwgGAABAxiEEAwAAIOMQggEAAJBxCMEAAADIOIRgAAAAZBxCMAAAADIOIRgAAAAZxzXYBQymfY1+NQUiKZk71+tUSZ4vJXMjs2V7nVp+/ckpmxsAgEyQ0SG4KRDRKbe+kJK5l19/skryUjI1Mlxziv/eir+3AIAMwHYIAAAAZBxCMAAAADIOIRgAAAAZhxAMAACAjEMIBgAAQMYhBAMAACDjEIIBAACQcQjBAAAAyDiEYAAAAGQcQjAAAAAyDiEYAAAAGSflIdgYc4YxZr0xZqMx5sYu3r/OGPO+MeZtY8y/jDHjU10TAAAAMltKQ7Axxinpdun/t3fncVJVd97HP79aeoFuNmkQAQUEo6gI2EGMRnGZqONCJiZucTR5NGYymlHzmDGZ1cwks6mDyQwx+qiPJuOISjZiFpJRiBsaGlGEEAOC7GvAhqa7q7uqfvNHX6RpGmnpe6u6+n7frxcv+i516sCpe/p7T517LxcB44GrzWx8h90WA7XuPgGYDfxblHUSEREREYl6JHgKsNLdV7l7CzALmN5+B3ef5+6NweIrwIiI6yQiIiIiMRd1CB4OrGu3vD5YdzA3AD/vbIOZ3WRmdWZWt23bthCrKCIiIiJx02MujDOza4Fa4O7Otrv7g+5e6+61NTU1ha2ciIiIiPQqqYjL3wCMbLc8Ili3HzM7H/hr4Gx3z0RcJxERERGJuahHghcC48xstJmVAVcBcbz83QAAFt1JREFUc9rvYGaTgAeAy9x9a8T1ERERERGJNgS7exa4BZgLLAeecvdlZvYPZnZZsNvdQBXwtJm9bmZzDlKciIiIiEgoop4Ogbv/DPhZh3V/1+7n86Oug4iIiIhIe5GH4J6sb3mSeXdMi6xsEZEPatvuZhoyuUjKripPUlNdEUnZIhI/UfVXheqrYh2C92RynHPP/EjKnnfHNKiOpGiJOZ289W4NEfdLNeqXRCQkUfVXheqrYh2CRUqRTt5ERES6r8fcJ1hEREREpFAUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2UsWugIiIiIiUnr7lSebdMS2Scgsh1iE4qsbbW7ZIFKoi/NxW6XNbdOqXRKRU7MnkOOee+aGXO++OaVAderEHiHUIjqrxoHANKPFTU11BjT5bvZb6JRGRwtCcYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdc/di1+EDq62t9bq6um6Xs213Mw2ZXAg1OlBVeZKa6opIyhaR3kv9koiUiqj6qzD7KjNb5O61nW1LhfIOJaqmuoKa6mLXQkRkH/VLIlIqSr2/0nQIEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJHYVgEREREYkdhWARERERiR2FYBERERGJnVSxK1BM23Y305DJ7beuMp3AzOhflmR7YysO7GxsYVdTK+WpJDXV5aSSRp+yJGTzWDpJKuFsb8juV05VeZKa6ooC/mskLjp+bisTkEglcaBPKkF9c5acOzv2tNCQydK3LMURVWUkE0b/ihR7WnIkzHDP0di6f9n63BZfx/YdUGnkPEkul6c8lWBPS47WvLN9d4bm1hzVFWkG9k2TMGNgZZKGTB7MaG3J0aF51b4iEqqO/dWQqhRuSRL5LA2tTmvOaW7Ns60hQy7vDOyTpl9lGhyO7FfG7kyeTDZHU2t+v3IL1VfFOgQ3ZHKcc898AEYNqmTW50+nLGk0Z53HF67jsQVrWLuj8YDXVZenuPSUYfyfM8dQDTTmnRVbdnHT9157b595d0yjprpA/xCJlfaf2ytOPYovfex4DCeTdf7rlTXMWriObbszB7xucFUZV9SO5KopI+mTTpIjyWMvreDRBWvf20ef2+Jr3753XXoCF5w0jKTlaWrN88Dzq/jB4g282/HsBTiqfwXXnHYMfzLpKCrSYGVJ/vKJxby8esd7+6h9RSRM7furF+88m3ebWkhYiq27M9w//23mvbWVTHb/gGsG44f146azxjBl1CAq022TEqb+83Pv7VOovkrTIdgXgAEWrNrBhfc9zz/+dHmnARhgdybLf/9mHX8049d8e/4qkgnjjLGDePBPJxey2hJzV5x6FF/92PEA/PiNTZx376/5j+dWdhqAAbY3tPDt+W9z3r2/ZvZrG3CH288Zx2dOP7qQ1ZYuuuvSE7h80jAM47GX13DuvfN55KV3Og3AABvrm7nnl2/xRzOe53+Wbyfvzn1XT+IjowcVuOYiEjcv3nk2AyrTOEn++odLmT7zJX6xbPMBARjAHZZt3MWts17nUw8sYNX2Rhznla+eW/B6xz4E7w3AZsaMX/2em/97Mbuas4d+IW0N+diCd/j0Q79hZ2NOQVgKZm8AzmDc8fQbfP2ny2nJHdjZdKY15/zLz3/HrbMW06Qg3CPtDcANLXDjdxcyc/7b5L1rr21syXHn95dw15xluKMgLCKRevHOs+lfnmb9zgyX/seLPPfW1i6/dv3OJj5x/8vMXboFoOBB2Ny72LP2ILW1tV5XV9ftclZv3/PeMPzMeSv53itrD/GKgzu2pi+P33gaubyzbGM944b2Y/Tgvt2uo0hHm3fsgWTb5/bLTy/hhZXbD7usqWMGcd+VEzEz7p+3guvPGKPPbZHt3NNIc9YwjBu/u5ClG3YddlmXTBjG31x8AgkzbntiMd+4fILaV0RCs6c5Q0s2T31znukzX6K+qfNvqrri3z45gfM+NJjWPDS15kPrq8xskbvXdrYt1iPBlekEZQln5daGbgVggLe37WHGr1aQNGPCyIFUl4dUSZEOkukk6USCucu2dCsAA7yyagc/eWMjSXNuPndcSDWU7mjNJ0gYPPry6m4FYIBnlmxi0Zp3SVnbiLCISJg2724lk4NbZy3uVgAG+NsfLaW+OUdDUwsVKQuphu8v1iE4ATTnjC899UYo5T1Zt44/NLbQNwUHmZYp0m25vNOUzfFPP1seSnl3z/09zVkn19Xv2yVSqbyzJ5PjwedXhVLeV3+whOackyvBb/1EpGcbNaiS51ds54319d0uK5PN81c/fJM+Fen3vqWPWqxDcHVlit9u3MXWEBPrzHkraczql41Ep7o8wY9f39jpBQeHoyWX5+m69VQUqNOR9+fJBA+/sLrLc4APZVdzlhdXbiedKMzIiojEx+ZdGb4z/+3Qyntl1Q6aWvM0N+cOvXMIIv+tZ2YXmtlbZrbSzL7SyfZyM3sy2P6qmY2Kuk571Tdl+e6Cd0It85fLtpDNKQRLdHY05pi1sHvTdzp6cuG6A+6ZLcXR3Jrjh69vCLXMx19ZQ3NrOCdNIiJ7NbbkWLV9T6hlfn/RemoGFOZ+5pGGYDNLAjOBi4DxwNVmNr7DbjcAO919LDAD+Nco69ReNu+hDOF3LLO+qTXeQ+wSKQPW7WgKtczNu5rJ6+vyHiGTzdPYEu4JyfJNuzENBItIyN5Y/27oZS5as5PNuwozpzTqrDYFWOnuq9y9BZgFTO+wz3TgseDn2cB5ZoXprvNBYA3bW5t3M6RfWejligA0tHTtFn4fVH1TVidvPcD6neGe4EDblJewps+IiOz1+trwQ/BbW3aHNh3sUKL+nTccWNdueX2wrtN93D0L1ANHdCzIzG4yszozq9u2bVsolYvqQpHG1hxJzb+TiGQi+lo705qjIh1J0fIBNEZ0kqMLH0UkTNlsnsbW8KfRNbfmCvbNVckM/Lj7g+5e6+61NTU1oZSZjOh/uao8RTavUReJRkU6GUm5lWVJDvIwMimgqvJonmavE3MRCVMqlYikv+pTlqJQs/OiDsEbgJHtlkcE6zrdx8xSQH/gDxHXC4BEwhjUN/xpC8cfWc2WXUoTEo2q8mhCcD8NA/cIwwf2Cb3M8lSC8lTJjHmISImYfPTA0Ms8/shqUgU6aY+6V1wIjDOz0WZWBlwFzOmwzxzg+uDnTwLPeYEeY5dOGpOOHhBqmeURnRmJ7OXe9oTCMI0cVBlqeXL4ypJGv8pw+5CThvcPtTwREYAJI8LvWz48ahBDqgtzXVWkITiY43sLMBdYDjzl7svM7B/M7LJgt4eBI8xsJfAl4IDbqEWlqjzJZz8yKtQyL54wjLKkRlwkOoP7pLnmtKNDLfPTpx1D/wqdvPUEfcuTfOrUkYfe8QP4zEdGaU6wiISuPJ3khGHVoZVnBp+YPJxNO5tDK/P9RJ7W3P1n7n6cux/r7t8I1v2du88Jfm5290+5+1h3n+Lu4TwmqQt2N2UZU1MV2iiYGXzh7GMpNyjMHe4kjupbslx00rDQvnGoTCe5dMJRNOnuAT1CJutcd/oxpJPhfB04uKqM2mMGUqbpECISsiFVab547rjQyjvnuCGUpYxyPTGuEIyypPGtqyaFciXijWeOpl9Fisa8Y9FM2xQBjMp0gq9//KRQSrvrshN1V4gepm86ye3nHxdKWf9+xUTK1L4iEoGN9RkmHz2A04894KZeH1jfsiR3TT+R+sYMhXp0U6xDcFM2T85hWP8KbjlnbLfKOnl4f244cwwOPLNkI016+JZEpLklR0vOmTpmEBeffGS3yvrY+KGcfdxgsnnjzqcXh1RD6RbPkQMunzycqWMGdauoP516NMcNrSKbNS6fuSCc+omIBIb2KyOdzHP35RMYUl1+2OWYwYwrJ9KvPMnAPuU0FegJl7EOwQDTZjyLmfHpqcfw59OOPawyJo4cwIPXnUrftPPMko18/ae/C7mWIvvkgZv/qw4z428vGc8lE4YdVjkXnjiUf/z4SZi1BeD5K3aEW1E5LI2tcP+8FVSYcd+VEznjMEdYrjltJLecMw7D+MTMl9mwK/yHcIhIvG2qb2H77hw11Wme/PxUhg/44NNLUwnjm1dOZMKI/mSyOU7753kR1LRzsQ/BTU1BEAaum3o0T3zutC6fzaQSxpcv+BDfufZU+qbgyUUKwFIYdWvr3wvCf3PxCXzrqolUd3GOcN+yJPdecQp3XXYigAJwD/TogrXMmLeCSjPuveIUvnbZiV2+xdnAPmkevr6WLwbfbikAi0iULvjmC7yzvYkj+5Uz+wunc0XtiC6/9vgjq/npX5zJ6aMHYXhBAzCALgdnXxCef/t5HDekDz+6+QwWrdnJIy+uZunGelpz+19VPXJQJZdPHsHlk0dQkTJy7jz1mgKwFNbeIDzz2lrOGHsEc28/i2eXb+HxV9fy+w6PnUwYjB1SxdVTjuaCE4+kIpmg1V0BuAd7dMFaAL5wzjguOXkY558whJ8s2cRTC9ex+g979ruZfDJhnDCsmutPH8UZYwdTkTRa8wrAIlIYF3zzBebe+lEq0kluP38cnz/rWB5b8A4/f3Mz2xoy++1bkU4wZdQg/uzsYxk1uC8Jy5MvQgAGheD37A3C8247l2QCphwzkMnBPYSbWvNkc3kSCaMynQScfhVpMq15UskEP35tnQKwFMXeIPzta2tJGFx88lCmfWgIZm2PnszmnGTC6FOWJO9OdXmS5qyTVQAuCXuD8C3nHUcyYVxVO4KLTz4SM6OpJUcu7ySTRp90EgcqUglyeacl71w+c4ECsIgUzN4gPKiqkjJaue28sdz00THkcZpa8rg7ZakEZakESYNcLk9lOklLtjgBGMAK9FyKUNXW1npdXV23y9m2u5mGTDRXsFWVJ6mp1o3SJHz63PZual8RKRVR9Vdh9lVmtsjdazvbFuuR4JrqCmrCu8ezSEHoc9u7qX1FpFSUen8V+wvjRERERCR+FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2SvJhGWa2DVgT4VsMBrZHWL4Ul9q391Lb9m5q395N7du7Fat9j3H3ms42lGQIjpqZ1R3s6SJS+tS+vZfatndT+/Zuat/erSe2r6ZDiIiIiEjsKASLiIiISOwoBHfuwWJXQCKl9u291La9m9q3d1P79m49rn01J1hEREREYkcjwSIiIiISOwrBIiIiIhI7CsHtmNmFZvaWma00s68Uuz7SPWY20szmmdlvzWyZmd0arB9kZr8ysxXB3wOLXVc5fGaWNLPFZvZMsDzazF4NjuMnzays2HWUw2NmA8xstpn9zsyWm9npOn57DzO7Peibl5rZE2ZWoeO3dJnZI2a21cyWtlvX6fFqbb4VtPMSM5tcjDorBAfMLAnMBC4CxgNXm9n44tZKuikL/F93Hw9MBW4O2vQrwLPuPg54NliW0nUrsLzd8r8CM9x9LLATuKEotZIwfBP4hbsfD5xCWzvr+O0FzGw48BdArbufBCSBq9DxW8oeBS7ssO5gx+tFwLjgz03A/QWq434UgveZAqx091Xu3gLMAqYXuU7SDe6+yd1fC37eTdsv0OG0tetjwW6PAR8vTg2lu8xsBHAx8FCwbMC5wOxgF7VviTKz/sBZwMMA7t7i7u+i47c3SQGVZpYC+gCb0PFbstz9eWBHh9UHO16nA9/1Nq8AA8xsWGFquo9C8D7DgXXtltcH66QXMLNRwCTgVWCou28KNm0GhhapWtJ99wF/CeSD5SOAd909GyzrOC5do4FtwP8Pprs8ZGZ90fHbK7j7BuAeYC1t4bceWISO397mYMdrj8hcCsHS65lZFfB94DZ339V+m7fdI1D3CSxBZnYJsNXdFxW7LhKJFDAZuN/dJwF76DD1Qcdv6Qrmhk6n7WTnKKAvB36VLr1ITzxeFYL32QCMbLc8IlgnJczM0rQF4Mfd/QfB6i17v3YJ/t5arPpJt5wBXGZm79A2felc2uaQDgi+XgUdx6VsPbDe3V8NlmfTFop1/PYO5wOr3X2bu7cCP6DtmNbx27sc7HjtEZlLIXifhcC44MrUMtom6M8pcp2kG4L5oQ8Dy93939ttmgNcH/x8PfDjQtdNus/dv+ruI9x9FG3H63Pu/mlgHvDJYDe1b4ly983AOjP7ULDqPOC36PjtLdYCU82sT9BX721fHb+9y8GO1znAdcFdIqYC9e2mTRSMnhjXjpn9MW1zDJPAI+7+jSJXSbrBzM4EXgDeZN+c0b+ibV7wU8DRwBrgCnfvOJlfSoiZTQPucPdLzGwMbSPDg4DFwLXunilm/eTwmNlE2i56LANWAZ+lbfBGx28vYGZfA66k7U4+i4EbaZsXquO3BJnZE8A0YDCwBfh74Ed0crwGJz7/SdsUmEbgs+5eV/A6KwSLiIiISNxoOoSIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCISBGY2WVm9pVD73nA60aZ2dII6jPNzD7SbvlRM/vk+71GRKSUpQ69i4iIhM3d59Cznko5DWgAXi5yPURECkIjwSIiIQtGa38XjKb+3sweN7PzzewlM1thZlPM7DNm9p/B/o+a2bfM7GUzW9XVEVgzS5rZ3Wa20MyWmNnng/XTzGy+mc0O6vF48IQmzOyPg3WLgvd8xsxGAX8G3G5mr5vZR4O3OKtjncxsmJk9H+y3tN2+IiIlRSFYRCQaY4F7geODP9cAZwJ30Pb47o6GBdsvAf6li+9xA1Dv7h8GPgx8zsxGB9smAbcB44ExwBlmVgE8AFzk7qcCNQDu/g7wHWCGu0909xfep07XAHPdfSJwCvB6F+sqItKjaDqEiEg0Vrv7mwBmtgx41t3dzN4ERnWy/4/cPQ/81syGdvE9PgZMaDdy3B8YB7QAv3H39cH7vx68ZwOwyt1XB/s/Adz0PuV3VqeFwCNmlg62KwSLSEnSSLCISDQy7X7Ot1vO0/kARPv9rYvvYcAXg9Hbie4+2t1/2Ul5uYO856EcUCd3fx44C9gAPGpm1x1GuSIiRacQLCJSuuYCXwhGZTGz48ys7/vs/xYwJpgDDHBlu227gepDvaGZHQNscff/BzwETD6MeouIFJ2mQ4iIlK6HaJvm8Fpw4ds24OMH29ndm8zsz4FfmNke2qY27PUTYLaZTQe++D7vOQ34spm10ja9QiPBIlKSzN2LXQcRESkQM6ty94YgNM8EVrj7jGLXS0Sk0DQdQkQkXj4XXCi3jLYL6R4ocn1ERIpCI8EiIj2QmZ0MfK/D6oy7n1aM+oiI9DYKwSIiIiISO5oOISIiIiKxoxAsIiIiIrGjECwiIiIisaMQLCIiIiKx879y75ZghkXFTgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5icVd3/8c93e9+ULemkkF5I2VAMBCIdFaRIR+mIgCgC4k9R1EceETsPFooIwdBREEFQIXQIuymEEAIJpCfbku195/z+2J24SbbM7M49s8v9fl2XF5mZe04OCe6+c+fMOeacEwAAAOAncbGeAAAAABBtRDAAAAB8hwgGAACA7xDBAAAA8B0iGAAAAL6TEOsJ9EZOTo4bO3ZsrKcBAACAfqyoqKjMOZfb2WsDMoLHjh2rwsLCWE8DAAAA/ZiZberqNZZDAAAAwHeIYAAAAPgOEQwAAADfIYIBAADgO0QwAAAAfIcIBgAAgO8QwQAAAPCdAblPcLS0tARUUtMoSXKSTFLAOQ1JT1JaEr90AAAAAxUl14mdlfWqb27VI+9s0dsf79L7O6rU2BKQmTQ+J10HjRqksw8eo5GDUjVycGqspwvgU27b7nolxJvys1J6vHZHZb0kaXg2X5sAxEZra6t2VjWpsaVVHxbXaH1JtVqdU15mig4ala3s1CRlpMQrOzUppvMkgjuoa2xReW2Tvv/Ue3ppXel+rzsnbSit1YbSWj25YpvGDEnTL848SGOHpCk3hG9OABCuT8pqdNYf39K8AwbrlpOndxvCOyrrden9badp3vOVAkIYQNTtrKzXC+8X697XPtGm8rpOr0lPitfp80bp0sPHKTM1UYPTYhPD5pyLyU/cFwUFBS7SxyaX1zRq9bZKXb1khWoaWyRJE/MyNHv0IE0Znqn05AQ1tzhtLK/V6m2VWrm5Qk2tAUnSxQvG6oojJ4R0lwYAQhUM4JLqtmVZJ84Y1mUIBwN4zfYqSdL0EVmEMICoKatp1M7KBl29ZLk2dhG/+0pOiNPNn5umY6fne9ZQZlbknCvo9DUiWKqub9I7myp06f3vyMx0xrxROm3uSFU3tCghzpSWFK/4uDgFAk4NLa2qb2pRTkaK3vy4XPe9/onKapp0xrxRuuG4ycrPJoQB9N2+ARzUWQjvG8BBhDCAaCirbtSqrRW6YnGRWgLhd+Xpc0fq2ydMUZ4HIdxdBLMcQtKuumZ97S9FmpCboR9/cYYCgbZ1Ky5Qr0/K69Tcvh44+OG4vMxk5WQm6+Cxg7XwwFzd/drHerxoqw4dP0Qnzhim9OTEWP8rARjAugpgSXruvZ2StCeEuwpgSVqzvUqX3l9ICAPw1Nbddb0OYEl6Yvk2DU5L0mULxyk/K3pfq3y/RdqOynrd8Pi7KjhgiH5z1mwNz05RRV2TPimtUWNLQMVVDXp9Q5meXb1T/1lbok/KalXfHFBJVYM+LqvVoLQEffmwA3TTCVP0/afWqKKuOdb/SgAGsMr6Zp19V+cBHPTcezt1y9NrVFHX1GUAB63ZXqWr/rJCu+uavJguAJ/bWVmvq5as6HUAB937+ifatrshQrMKje/vBO+ubVJLa0A/+eJ0JSbEa1N5nYqrG3Xva59o6+76/a5/+cO2D8ylJcXrtDkjNSk/U63O6cjJOaprbtFf3t6sqz97IFuoAeiVppZWXX/cZN3w+LvdXvfcezv1zzU71dOKtuSEOH3npClKsAhOEgAk1TY267GirdpWsX8vhcs56cYn3tX9Fx0ctZ23fH0nuKquSQ++tUk/P2OWEuPjVFHXrF//+0P98O/vdxrAHdU1terBtzfr0vsLVVnXrKr6Fp1y0Ait3lah3bXccQHQO7mZKTpqcq5uP2NWj9eGEsAPXnqIpuRnKDPGWxEB+PSpqG/RA29sith460tqVF7b9d+CRZq/I7ihRTNGZCs9JVG765p12QOFWr65Iqwxymub9NUHi7R5V51aAk63fGG6GpoDHs0YgB+EE8JdIYABeG13bZNKayIbrY8VbVVTS3Q6ytcRbCYdMSlHu2ub9PWHV6i0mzV43Qk46aYnV6u8tkmZKYmsvUPMVNY3a0dFvd7dultL1xXrpQ+K9fK6Yq3auls7KupVyX+bA0ZfQpgABhANRZt2RXzMVVsqVFodnbXBvo7gODPFmenBtzdry66+rWdpDTj9vydXq7qhRSMHsU0aoquyrknrdlbpw+IqNbUGZGYqq2nSpl11KqluUpxMTa0BfVRSo7XbK1VBDA8IvQlhAhhAtKzdUR3xMT8prVW0Nu/19ae3khJM5bUtWvJ2ZNazbCyv0+sbynTSjOERGQ8IRUl1g3ZWNig+znT/G5v0z/d2dvop3YQ407HT8vW1RQdqy646NbUEPNmTEZGVm5mio6fma0h6knaF8HmDycMyNSGXAAbgrUAgoObWyC9baA4EFK3P8fr6TnAg4PTUyu3q464ee7n/jU1qaG6N3IBAN0qrGtTcEtCjhVv0ud++pmfe3dHlNjUtAafn3tupL9zxmh58a7OaWgO9XgKE6NlRWa8L7n07pACWpHe3Vup7f12tkqrobjUEwF/i4uI0JD3yf9gelJoU0S7rjq8juLHV6cUPiiM65obSmj3HKQNe2l3bqIaWgC7+c6EefGtzWO99pHCLLrzvHTU0t2p3FD+Ji/B0dxBGd55t30eYEAbgpYPHDYn4mNNHZik1MT7i43bG1xEsSR8V10R8zO0R2C8P6E5NQ7PqmgO6YnGR1hX3bk3W+pIaXXL/O6prDqi6gUNe+pveBnAQIQzAa5OHZUV8zMMPzFFOZnLEx+2MryO4udX1+YSTzmzpYY9hoK9qGlu05K1Nen9H7wIp6MPiGv359U9U29gSoZkhEvoawEGEMAAvJcXF6bAJQyM3Xnycjps+LGLj9cTXEezVwus4TmaChxpbWtXQHNDvX94QkfHuee0T1TW1spa9nyitbggpgJMT4nT63JE9jkcIA/DKsEEpuv64yREb78z5o5QUxYjydQQnxJsnwTpiUHSO+4M/1TW2aMmyzRH74IBz0gNvblI9d4P7BeekgrHdr7NLTojT4ksO1s2fnxbS9mlHTs6V8YdzAB4YOShFZxaM6vM4w7JSdNWiA5UbxV2LfB3BcSaNz82I+LijB6dFfEwgqLapVX9bsS2iYz61cpvquBPcL+RlpeiqoyboK58Z2+nrwQCeOixTg9KSetxH+LbTZ+roKXnKzWQ7PACRNyw7Vd86drJmjszu9RipifG65ysFGp4d3ZuIvo7g7NREHT0lL6JjjhqcqqQEX/+ywmPOSSUR3tpsd12zJ+vj0TtdhXDHAA7uA9zdgRrBAM4hgAF4KD87RXd/eZ4OGx/++uCcjCQ9esWhMbmB6OtaS09O1DkHj4nomJcvHK+8DDaph3e82smhso4dIvqTfUO4swAO6iyECWAA0TQsO1W/Ousg/e9pM5WZ3PNZbGbSqXNG6umrD9ek3AxlpyVGYZZ78/WJcZKUmtT24ZInlvf9r5fzMpN17LR8JSREZ387+JNXd2zZ37r/CYZwUnzbaX+dBXBQxxAOOEcAA4i6YdmpOmlmvo6clKu3PynXUyu2a/W2SpW3H/aTnBCnacOzdPjEHH2pYLSS4+OUnx27r1O+j+D8rFRdf9xkvfJhmUpr+vZXzL89Zw53geE5rzYRzwjhT+6IvrysFF16xDilJcb3eBRybmaKjpyUK0kEMICYyE5NVnaqdOqcUVowIWfPDRbnpLj2T+jmZSQpMUoHYnSH73qSctKT9MAlB+vMP7yp6l5+Qv6HJ0/T+Jx0xcfH/jcVn25pSQmKM0X8WMmMFL4c9Ff5WaF/WCQvip+sBoDu9PevR75eExyUmBivsUPT9OTXPqNxOelhvTc1MV6/OXu2TpoxvN//ZuPTwmnq8Mie0jMxL/K7pAAA0J8Rwe1SkxI0MT9TD112iK49eqKyergrFmfScdPy9fw3jtCiyblR3dcO/paWFK+LF4yL6JgXLRjHcggAgK/wXa+DHRX1Kq1p1HmHjNZZ80frvW2VevnDUq3ZXqXqhmYlxsfpwLwMHTJuiI6anKf4OFNVfbMq65s1NseUmRL9TzbCf8pqmnTwuCHKzUju8zp2SRqSnqSFk3K0o7JBg9JY0w4A8AciuF0wgG947F1V1DfpD+fP09wDBunIiTkqq21SwLVt55GVnKj4eOmjnTX67Uvr9caGMv3x/HmSpLE56YQwPFff3Kr7Xv9EvzzrIF1w77I+j/fzM2bp3lc/1udmjYjA7OCl8ppG1TW1akNpjVZtqVBdU6sGpSVq7pjBGj0kTenJCcpO5WsQAISCCNbeAbyjsl6ZKQn66oNF+sP58zQkPUkjs1OV0H4ARnFVg7aW1uvOl9Zr6YclOjA3Q1c8WEQII2oS4kxLlm3RybNH6vKF43XXKx/3eqwLPzNWWamJuu+NTTp1Tt+PvYQ3dtU2qWjTbv363x9qzfaqLq9bcOBQXX/cZI3PzSCGAaAHvl8T3DGAy2sb9cw1h+vRKw7T4PQkffXBIu2qbdK2ynq1tgbaAnj3fwP471cfrsWXHKJjp+XrivZrN5bVenaYASBpzx+yzr/nLZ06Z6SuXjShV+NcvnC8zj14jM69521JislG5eheIOC0bXe9rnywUJc9ULgngOPjTKMGp2p8TrqGdfg8wuvry3Xq797QLU+/p5LqhlhNGwAGBF/fCa6oa9KuuqY9AfzklZ/RLX9fo7KaJt3z5QJd+kDhnjvCza0BVda37BXAT6/crmfe3a4HLj5EktruCF8wT6MD0T37Gv5iajuYpaS6UZ+741X96Svz9fhX8/SNR1Zq6+76Ht8/IjtFvzp7tpqaAzrpt6+oJSANTktUfJx5P3mELBBw+qSsVqf/4Q1V1DVrUFqivjRvtBZNyVWcmUqqGtQScEpOiFNuZorqm1r0zOod+vuq7frriu16d2ul/nLpoRoWw43oAaA/8/WdYDPTrc+u3RPAP3rmfZ0+d7RuOnGKvvHISt3z5YI9d4Trmlr3C+D05ATdf/Eh+tajK/WNoyfp2Gn5uvLB5WrLFMAb6cnx+uKckZKkQEC68L53dP+bG/XAxQdr8SUH69hp+crNSN7rPTkZSTp6ap7+fNF8/eWyQ/Twsi264E/L1NJ+SNwps0cqPYk9rvuT4uoGfemPb6q2sUXfPHaS7rpgnsbnpKmxOaA4M6UkxisxPk6pSQkykxpbApo3ZrAeuuxQnTV/tDaU1urC+5apLAIfngSATyNzzpsjWL1UUFDgCgsL+zxORV2jdlY1KD0pUT/8+xqdOmeUlq4r0c6qBn31yAn61b8/1K/Pmq1LHyjUBzuqFRenvQI4JTFej7yzWT//0kH64dNr9IszZ2t3XZPGDk1XTmZyzxMAeqGxpVU7Kxu06OdL9zswY8GEobr48HEaNThNSQlxCgSc4uKkllanzbvq9MAbG/XyR2V7vcdMevFbR2p4dqpS+sEJPmj7W6rrH1ulD3ZW65dnztaOinqNGpKmv67YpqdXbVNV/f6H+gzLStEZBaN0zNQ8bdlVr5TEeH3zkZW6YuF4XXL4OKWxBR4AHzKzIudcQaev+TmCm1sC2lXXpO/+dfWeAH6saKsk6YiJOXuF8FcXF+m2M2btFcC3PrtWkjQhN31PCP/qrNnKyUhWJh9KgYeKq+r1wBubdOfSDX0e67IjxunSI8Yrn72u+41VWyp01ZLl+v35c9XQHNDza3bqT699EtIpgamJ8brxhMmakJuu5IR4Xb64SM9de4RGDGKZFgD/6S6Cfb0coqK+ea87wMEAlqRXPyrTH17eoG8eM0nfeGSlHrz0kE4DWJI2lNbq+sdW6QcnT9c3H1mphpbWWPzrwEfSkxJ0wWEHaFofT46blJ+hSw4frzSWQvQbVQ3N+t3SDbrjnDlyTrrl6TW659XQAlhq20Lvh39/X4vf2qzE+DjdeuoM/XXFNrW0BrydOAAMML6O4JQE000nTNkvgIM6hvDRv3y50wAOCobw7V86SMaaYHgsIyVRKYlxuvsrBZoyLLNXYxyYl6H7LjxYKYkc9NKf1De1asbITCUnxOs7T67udku07vzr/WLd89rHGj0kTSVVDaqoY9caAOjI1xHc6qR7X/uk0wAOCobwE1/9TJcBHLShtFZffbBITgNviQkGnkFpyUqJN/35ovm64NAxYb337PmjtfiSg5WSGKdBaaxf70/qGlt0/PRherxoS68DOOjZ1Tu1dke1zj14jFpCvZUMAD7h6whOio/Twkm56mlnqFc/KtM5d7/VbQAHzRkzWAlxvv5lRRQNzUxRXJzpogXj9Ny1R+jzs4YrMb7z/6AT4kwnzRymf3z9cF2xcLzizTQ0gwDub5paA2psDui+NzZGZLz/eeZ9xcfHaSB+/gMAvOTrjwunJSfosPFDdfeXC3TZA4XdrrnbUdnzxvNnzBul7540VYPTkyI4S6B7eZkpSk5oVml1g649+kDddOIUVde3aO3OKtU0tCg9OUFThmcqOzVRDU2tcs5pcHqSBqXx32l/lJmSoN/8Z70i1azVjS16Y0OZjp+eH5kBAeBTwve3LNOSEzRzZLb+cP68Hu8Id+f0uSP1reMmKZNtiBAD2amJOjAvU3lZqYqPM7UGAjpgSKqmj8jSAUPTFAg4xZspNytZE4dlEcD9WGtA+vuq7REd8/GirWpu5U4wAHTk+2IraT8KeUdlg27/0kG64bFVIX8KO+iU2SP0hYNGqLiyQc2tTiOyUpSQ4Ps/XyAGslMTlZ2aqOHZbIc1UDU0t6quKbI7zHywozqi4wHAp4GvS628plHbK+r1fy+t1w+fWaO5owfpt+fMCeuO8CmzR+g7J07RL/61Tlc8WKTymkZVN+2/kT0AhGJbRc9HX4erqTWgpha2SAOAjnwdwWZtu0MEj0J++J0tykxO0Gen5IX0/tTEeH33pKn65qOr9Pvz5u05YrmZ/TgB9FKjR7Ea4INxALAXXy+HCDin8w49QFceNUFPtR+E8WFJjf69tiSk99c3t+pbj63S1YsO1DceWal7vlygf72/M2IfaAHgP1kp3nxZjmfXGgDYi68jOCk+TmOGpOmBNzYqPTlBqUnx+sk/et4GraNXPyqTpD0ny91x9hwlcvgWgF4a5sF67uSEOCV1sXUeAPiVr28N1DW16oE3NyqtlwEc1PFkuWseXiGWBCPatu6u086q0NaSFlfWa+uuOrW2crx3f5ScEKes1Mjen5g5MltmRDAAdOTrCI4303HT8vsUwEHBEL75c9P6tNUaEK6tu+tU09iisurGHkO4uKpeJdUNqm1q0fbKRkK4H6ptbNbZ88M7AbAnFy0YF9HxAODTwNcRnJIUr3XFNSEF8LThWSGdLPerf32oeCoYUbJ1d53qm1qVkZygwWlJ3YZwcVW9SqoaNDg9WRnJCWpobiWE+6GNZXU6dc7ILk/+C1dORpJGDEpRHX9FBQB78XUEtwacymsae7zujHmj9PDlh+ruLxf0GMKVDc18MA5REQzglMR4XXjfO7rx8Xe7DOGOAfzdv76n8+9dpuTEeEK4H4qPNy1+c5OuP25yRMa7/YyDdOuza2XiD+cA0JGvI3hQWpIuOOwAXX/cpC6vCR6FnJWauOeI5a5CeM6YQbrrggLlZCZ7NGOgTccAvujP72h9SY1e31DeaQjvG8Avf1iqT8pq9ZU/EcL90ajBaVqybLMmD8vUgglD+zTWhZ8Zq4/LalS0abdS+MQuAOzF1xEsSdmpXYdwMIAHp7cdMZuWnNBlCAcDOJcAhsdqG1vU0Lx3AAftF8KV+wdw0L4h3NjCX2H0B+nJCUqIM339oRW69piJOuLA3oXwBYceoPljh+jWZz/Q+NwMOfH7CwAd+T6Cpc5DeN8ADuoshAlgRJOTU3LC/gEc1DGE5dRpAAd1DOEAkdQvJMWZjp6ap6qGFl16f6HOPfQA/eAL05Qc4lHsQ9KT9Lvz5mpcTrq+/vAKtQacvjh7pHL3+VoGAH5nbgAuYC0oKHCFhYURH7eyvkmL39ykjeV1nQZwR3WNLXrz43L9bukG/eH8eQQwoqayvlln/uFNrSuu7va6BROG6vfnz9M1D63oNIA7mpCbrie/tkDZqYmRnCp6adWWCp1y5+t7Hp8ye4Qu+sxYvbGhXE8s36aPy2r2+uxBQpxp2ogsnTV/tCbmZeoXL6zT25/s2vPa0huO0qjBadH+1wCAmDOzIudcQaevEcF7q6xrUsCp2wAOqmtsUXPAEQ6IqvKaRi3fvFtffXC5WgPd//83Ps56vCbOpDvOnaNDxg1RTkZKJKeKXtpZWa9bnl6jf64p3vNcnEmLpuTphOnDdMDQdDnXtsDBTHJOWrezWk+t3K7lm3fvNdb1x03WeYeMCelrGgB82nQXwb4+Ma4z2Wmhf6NIS+aXD9HnnNOowan6/XlzdeVfug/hUAN4/NB0djXpR4Zlp+r7X5iuos0VKq1u28Em4KT/rC3Rf0I81l1qOyTjjHmjCGAA6ARrgoEBxsy0u655Twj3dl/qYACPG5quXXVNbKHVz+RnJunhyw9VbkbvllpNGZapP14wT8OyubsPAJ0hgoEBZmhGsibnZ6qivi2E/3B++CEcZ9L/tQfw7romTc7PYmu/fiY+Pl5jh6Tqr1d9Rgsn5oT13nPmj9afLzpYIwalejQ7ABj4iGBgAAqGcKsL6KBR2WGFcFsAz1XBmCFyzhHA/Vh8fLxGDU7Tz86YpT9fNF8FBwzu8to4k46blq9nrjlc3zxuEneAAaAHLGoFBqihGclqCQRUUt2ouWMG64Ahafq4rLbH940cnKpDxg3Rjsp65WQkE8ADwLDsVA3LTtXk/Ew1B5y27KrT6m2Vqm9qVXZqomaPHqS8rGQlxccpL4v4BYBQEMHAAFVcVa/S6kYNSkvSdY+uCimAJWnLrnp9/aEV+tkZs1TWfmz4sGz+2nwgGN6+vGHMkDQtODC8JRIAgL2xHAIYgDoGcFcHYXRnr5PlatpOlgMAwE+IYGCAqaht6lMAB+0bwhV1TRGeKQAA/RcRDAwwrc71OYCDOoZwoIc9hQEA+DQhgoEBJuAUUgDHmXTq7JE97hoRDOFWTssAAPgIEQwMMM45zTtgULfXBA/CuP74SSEdqDHngMEKEMEAAB8hgoEB6KSZw3XdsRM7fa3jSXDFVY09nix39WcP1KmzR3JiHADAV4hgYIAxk0qrGzsN4Y4BXFHXpAl56XtOlusshIMBXFLdIKOBAQA+QgQDA0xuZooOzMvYL4T3DeBJw7KUnZq01xHLHUO4YwAfmJeh3EwOWQAA+AeHZQADUDBY15fU6KSZw2Uyjc9L3yuAczLaToIbmpGsyZLWFVfvCeH3tlfqlIMI4IFiR0W94uJM+SGcBrezskGSODYZQNRV1jepudXJOdfj95Xm5laV1TUp3ixmJ11yJxgYoDreET5mWr4OGJK2XwAHDc1I3nNHeOSgFJ00YzgBPEBsKq/V6b9/Q7c+u1bFVQ3dXruzskFXPlikKxYX7olhAIiGyvomrdlepQU/fVEvfVCi0uquvwY1N7dq0+56ff63r+mOF9erpIevbV4hgoEBLBjCZTWNqqxr7jSAg/4bwi0qq2kkgAeATeW1Oueut7S9skFPrdzebQgHA3jFlgqt2lpJCAOImmAAX/ind9TYEtCNT6zuMoSDAXzWH99UeW2TFr+1KWYhTAQDA1xuZoqmDMvU5GGZXQZw0NCMZE1uv5YA7t86BnBQVyHcMYCDCGEA0dAxgJtaA3ue7yyE9w3goFiFsOcRbGYnmNk6M1tvZjd18voYM3vJzFaY2btmdpLXcwI+bXIzU5QTYtTmZCQTwP1cZwEctG8IdxbAQYQwAC91FcBBHUO4qwAOikUIexrBZhYv6U5JJ0qaJukcM5u2z2Xfk/Soc26OpLMl/c7LOQFAf1ZR19RlAAcFQ7iqvrnLAA5atbVS1zy0XLs6+aYDAH2xo7KhywAOuvGJ1XrxgxJtrWzoMoCDFr+1SX95e7PKahq9mO5+vN4d4mBJ651zH0uSmT0s6RRJ73e4xknKav9xtqTtHs8JAPqtxpaArjzqQN381HvdXvfUyu36x7s71BLo/qS/pPg4ffPYSRyFAiDiBqcl6ZipeXr2vZ3dXvftJ1YrIc56/Ho1PDtFp80d2ePSvkjxejnESElbOjze2v5cR7dIOt/Mtkp6VtI1nQ1kZpebWaGZFZaWlnoxVwCIufysFB03PV8/PmVGj9eGEsB/vni+pg7L0uD0pEhNEQAktX29+sHJ03XSjGE9XhtKAD98+aE6YGh6pKbXo/7wwbhzJP3ZOTdK0kmSFpvZfvNyzt3lnCtwzhXk5uZGfZIAEC3hhHBXCGAA0RBOCHclFgEseR/B2ySN7vB4VPtzHV0i6VFJcs69KSlFUo7H8wKAfq0vIUwAA4imvoRwrAJY8j6C35E00czGmVmS2j749vQ+12yWdLQkmdlUtUUw6x0A+F5vQpgABhALvQnhWAaw5HEEO+daJF0t6XlJa9W2C8QaM/uRmZ3cftm3JF1mZqskPSTpQudc9wtHAMAn8rNS9PmDhmtoiEE7dXgmAQwgJoakJuraYyaFfP3JB41QdmqihzPqng3E3iwoKHCFhYWxngYAeK67fYC78sXZI/Sdk6YqP4v9oAFER0/7AHflZ6fP1KIpeZ7tX29mRc65gs5e6w8fjAMAdKI3ASxJf1u5Xf/bzRHLABBJvQ1gqfOT5aKFCAaAfqi3ARxECAOIhr4EcFCsQpgIBoB+pq8BHEQIA/BSJAI4KBYhTAQDQD9SUhVaACfFx+nzs4b3OF4whEsIYQARtqUitAAelpWiwyYM7XG8G59YrZc/LFNplL5eEcEA0I84SVOGZ3Z7TXAbtP/54gz9+JTpPY45Z8xgDcDPQAPo51KT4jUsu/sPtA3PTtEjVxyqO86e0+P2aamJ8ZqQm6605PhITrNLRDAA9CP5WSn65jGTdM7Bozt9PRjAU/IzNCgtScdPH9ZtCP/w5Ok6Yfow5ffwjQoAwjU8O1X3fKVA00dkdfH6f/cBzslM7nYf4dTEeC257BBNys9QenJ0tk0jggGgn8nrIoQ7BvCQjJQ913YVwgQwAFL9WYoAACAASURBVK91FcKdHYTR1YEasQhgiQgGgH5p3xDuLIA7XrtvCBPAAKJl3xDu7iS4fUM4VgEsSQlR/dkAACHLy0rRN46ZpIQ404kzh2tyJwHc8drjp7d9Uwk4EcAAoioYwjf/7T3d/Plp3R6FHAzhtKQEnXfomJgEsMSdYADot0qrG/XNR1bq8oXjVdfYor+t3K6q+uZOr91d26SfPb9Ocw8YrIPHDdZt//xAu/q4ZREAhGN4dqpuO31WtwEclJ+VohtPmByzAJa4EwwA/VJpdaMuX1yoFZsrdMTPlu712pfmjVZW6n+/aeyubdJPnl2rx4u26vGirXtd+73PT9OQ9KRoTBmAz5VUNejFdSVaNDmvx2PbS6sbVLR5tw4aNShmEcydYADoZzoG8L5+/MxaPVa0Zc8d4Y4BvK8nV2zT/zzzPneEAXiupKpBdy7doJueWK1vP/Fut4f0lFY3aOm6Ul354HJ95U/LtL2iPooz/S8iGAD6kfKargM4KBjCNQ0tXQZw0JMrtukn/3hfu+sIYQDeCAbw/W9slCQtXVfaZQgHA/iGx9+VJH1UUhOzECaCAaAfiTPTjJHZPV7342fW6qTfvtptAAcdPG6IEuIsEtMDgL3sG8BBnYXwvgEcFKsQJoIBoB8ZnJ6k646ZpAsOO6DHazfvquvxmttOn6mTZg5XZkps1twB+PTqKoCDOoZweU1jpwEcFIsQJoIBoJ8JJ4S7QwAD8FJZTZMeeHNjt9cEQ/hvK7Z1GcBBH5XU6P43NmpXbWPkJtkNIhgA+qG+hjABDMBreZnJuuOcObIeVlstXVeqH/9jbY/jnTA9XxcfPk5D0pMjNMPuEcEA0E/1NoQJYADRkJOZrEPHDQ0phHtywvR8/fCUGT1urRZJRDAA9GOD05N00wlTNDTEvX7njx1MAAOImkiEcCwCWCKCAaBf213bpB88vUblIe71+87G3XqscGuXJ8sBQKT1JYRjFcASEQwA/VZ3B2F050fPvK/HiwhhANETDOFfnTk75PccPSUvZgEsEcEA0C/1NoCDCGEA0ebk1NDcGvL1Ta0BD2fTMyIYAPqZvgZwECEMIFqCB2Hc9OTqkN/z6kdlPR6x7CUiGAD6kXACeFJ+Ro/XBEO4khAG4JGuToILRXdHLHuNCAaAfiTgnLbu7vkkuJ+eNlNPXPmZkLZP+6S0RoGAi8T0AGAvfQngoFiFMBEMAP3I0Ixk/d+5c3Xo+CFdXvPT02bqpFlt26D1tI/wBYeM0XXHT9bgELdYA4BQRSKAg2IRwkQwAPQzOd2EcDCAs9r3Ae7uQI09AZxGAAOIvNLqxpAC+ITp+br11BkhnSx39ysfc2wyAPhZZyG8bwAHdRbCBDAAr+VkJOvKI8d3e82JM4bph6fM0PHTh/W4j/D0EVm65IjoHZtszg28dWIFBQWusLAw1tMAAM+V1TTqmodW6JSDRnQawB3trm3SL//9oRRwBDCAqCipatB9r3+i37/88X6vnThjmG45efqefYDLqhv11ifluuahFdo3P6ePyNI9XynQ8OzUiM7PzIqccwWdvkYEA0D/VlHXpLg46zaAg3a3nyzHGmAA0dJZCO8bwEGdhbBXASx1H8EshwCAfm5QWlJIASy1xS8BDCCa8rJSdNGCcXuWRnQVwNL+Ryx7GcA94U4wAAAA+qykqkFvf7JLB48b0uNRyGXVjVqzvVKThmV6GsDd3QlO8OxnBQAAgG/kZaXos5NzlZLY80KDnMxkzRkzSPFRmFdXWA4BAACAPtteUa/LHyzS5l31am1t7fba4qoG3fTEaq3ZWa2quqYozXBvRDAAAAD6ZHtFvS68b5leX1+uM+96q9sQLq5q0HeeXK1n39upC+5dpg+KYxPCRDAAAAB6LRjAHxbXSGo7RKOrEA4G8IsflEiSGlsCMQthIhgAAAC9sm8AB3UWwvsGcFCsQpgIBgAAQNi6CuCgjiFcVt3YaQAHxSKE2R0CAAAAYWtqDaiirrnba0qrG3XmH9/S6CFpWr55d4/jFVc1alxOeiSn2SXuBAMAACBsY4em69ErDlNeZnK315XWNPYYwGbSb86arcMmDFVuZvd7DEcKEQwAAIBeGZsTWgh3JxjAnzkwRzkZvR8nXEQwAAAAeq0vIRyrAJaIYAAAAPRRb0I4lgEsEcEAAACIgLE56Vpy2aEhX3/lkRN05OTcmASwRAQDAAAgAoqrGnTrs2tDvv6xwq0qr2nq8YhlrxDBAAAA6JOuDsLoTmlNo87641va1M0Ry14iggEAANBrvQngoFiGMBEMAACAXulLAAfFKoSJYAAAAIQt1AA2k1ISu0/OWIQwEQwAAICwVdQ1640NZd1eE9wG7YVvHhnSyXLPvbdTu3s4ijlSiGAAAACEbVR2sh685JAu7/J23Ad4zJC0HvcRvmLheH1p3ijlcGwyAAAA+qv01CRNzc/oNIQ7OwijuwM1rlg4XpccPk55WdEJYIkIBgAAQC91FsLdnQTXWQjHIoAlIhgAAAB90DGEUxPjezwKuWMIxyqAJcmcc1H/SfuqoKDAFRYWxnoaAAAAaFdb36RmJ7UEXEhHIZdWN8g5eRrAZlbknCvo7LUEz35WAAAA+EZ6alJY1+dG6QNwXWE5BAAAAHyHCAYAAIDvEMEAAADwHSIYAAAAvkMEAwAAwHeIYAAAAPgOEQwAAADfIYIBAADgO0QwAAAAfIcIBgAAgO8QwQAAAPAdIhgAAAC+QwQDAADAd4hgAAAA+A4RDAAAAN8hggEAAOA7RDAAAAB8hwgGAACA7xDBAAAA8B0iGAAAAL5DBAMAAMB3PI9gMzvBzNaZ2Xozu6mLa840s/fNbI2ZLfF6TgAAAPC3BC8HN7N4SXdKOlbSVknvmNnTzrn3O1wzUdJ3JC1wzu02szwv5wQAAACEdCfYzBI6/DjDzArMbEgIbz1Y0nrn3MfOuSZJD0s6ZZ9rLpN0p3NutyQ550pCmzoAAADQOz1GsJldKKnYzD40sxMlvSvpNkmrzOycHt4+UtKWDo+3tj/X0SRJk8zsdTN7y8xO6GIel5tZoZkVlpaW9jRtAAAAoEuhLIf4lqTJkjIlrZI0xzm3wczyJf1L0kMRmMNESUdJGiXpFTOb6Zyr6HiRc+4uSXdJUkFBgevjzwkAAAAfC2U5RKtzrsw594mkGufcBklyzhWH8N5tkkZ3eDyq/bmOtkp62jnX3P5zfKi2KAYAAAA8EUoEbzaz/zWz/5P0gZn9wswWmNkPJO3o4b3vSJpoZuPMLEnS2ZKe3ueav6ntLrDMLEdtyyM+DudfAgAAAAhHKBF8vqQqtd2xPVnSG2rbzSFP0oXdvdE51yLpaknPS1or6VHn3Boz+5GZndx+2fOSys3sfUkvSbrBOVfei38XAAAAICTmXGSW15rZHc65ayIyWA8KCgpcYWFhNH4qAAAADFBmVuScK+jstUgelrEggmMBAAAAnuHYZAAAAPgOEQwAAADfiWQEWwTHAgAAADwTcgSb2cweLvlNH+cCAAAAREU4d4J/Z2bLzOxrZpa974vOuT9HbloAAACAd0KOYOfcEZLOU9sJcEVmtsTMjvVsZgAAAIBHwloT7Jz7SNL3JH1b0pGSfmtmH5jZaV5MDgAAAPBCOGuCZ5nZr9R28ttnJX3BOTe1/ce/8mh+AAAAQMQlhHHtHZLukfT/nHP1wSedc9vN7HsRnxkAAADgkXAi+HOS6p1zrZJkZnGSUpxzdc65xZ7MDgAAAPBAOGuC/y0ptcPjtPbnAAAAgAElnAhOcc7VBB+0/zgt8lMCAAAAvBVOBNea2dzgAzObJ6m+m+sBAACAfimcNcHfkPSYmW1X2xHJwySd5cmsAAAAAA+FHMHOuXfMbIqkye1PrXPONXszLQAAAMA74dwJlqT5ksa2v2+umck590DEZwUAAAB4KOQINrPFkiZIWimptf1pJ4kIBgAAiIHm5mZt3bpVDQ0NsZ5KTKWkpGjUqFFKTEwM+T3h3AkukDTNOefCnhkAAAAibuvWrcrMzNTYsWNlZrGeTkw451ReXq6tW7dq3LhxIb8vnN0h3lPbh+EAAADQDzQ0NGjo0KG+DWBJMjMNHTo07Lvh4dwJzpH0vpktk9QYfNI5d3JYPyMAAAAixs8BHNSbX4NwIviWsEcHAADAp1ZFRYWWLFmir33ta7GeSthCXg7hnHtZ0kZJie0/fkfSco/mBQAAgH6uoqJCv/vd72I9jV4JOYLN7DJJj0v6Y/tTIyX9zYtJAQAAoP+76aabtGHDBs2ePVs33HCDbr/9ds2fP1+zZs3SD37wA0nSxo0bNWXKFF144YWaNGmSzjvvPP373//WggULNHHiRC1btkySdMstt+iCCy7QYYcdpokTJ+ruu++WJO3YsUMLFy7U7NmzNWPGDL366qsRmXs4H4y7StICSVWS5Jz7SFJeRGYBAACAAeenP/2pJkyYoJUrV+rYY4/VRx99pGXLlmnlypUqKirSK6+8Iklav369vvWtb+mDDz7QBx98oCVLlui1117Tz3/+c9166617xnv33Xf14osv6s0339SPfvQjbd++XUuWLNHxxx+vlStXatWqVZo9e3ZE5h7OmuBG51xTcOGxmSWobZ9gAAAA+NwLL7ygF154QXPmzJEk1dTU6KOPPtKYMWM0btw4zZw5U5I0ffp0HX300TIzzZw5Uxs3btwzximnnKLU1FSlpqZq0aJFWrZsmebPn6+LL75Yzc3N+uIXvxixCA7nTvDLZvb/JKWa2bGSHpP094jMAgAAAAOac07f+c53tHLlSq1cuVLr16/XJZdcIklKTk7ec11cXNyex3FxcWppadnz2r67PJiZFi5cqFdeeUUjR47UhRdeqAceiMw5beFE8E2SSiWtlnSFpGedc9+NyCwAAAAw4GRmZqq6ulqSdPzxx+tPf/qTampqJEnbtm1TSUlJWOM99dRTamhoUHl5uZYuXar58+dr06ZNys/P12WXXaZLL71Uy5dHZl+GcJZDXOOc+42ku4NPmNm17c8BAADAZ4YOHaoFCxZoxowZOvHEE3XuuefqsMMOkyRlZGTowQcfVHx8fMjjzZo1S4sWLVJZWZluvvlmjRgxQvfff79uv/12JSYmKiMjI2J3gi3UU5DNbLlzbu4+z61wzs2JyEzCUFBQ4AoLC6P90wIAAPQra9eu1dSpU2M9jYi45ZZblJGRoeuvv75X7+/s18LMipxzBZ1d3+OdYDM7R9K5ksaZ2dMdXsqUtKtXswQAAABiKJTlEG9I2qG2Y5N/0eH5aknvejEpAAAA+Mstt9wS1Z+vxwh2zm2StEnSYd5PBwAAAPBeOCfGnWZmH5lZpZlVmVm1mVV5OTkAAADAC+HsDvEzSV9wzq31ajIAAABANISzT3AxAQwAAIBPg3AiuNDMHjGzc9qXRpxmZqd5NjMAAAD0exdffLHy8vI0Y8aMWE8lLOFEcJakOknHSfpC+/8+78WkAAAAMDBceOGF+uc//xnraYQt5DXBzrmLvJwIAAAAvPXcc8/pzjvvVHFxsfLz83XVVVfpxBNP7NOYCxcu1MaNGyMzwSgKZ3eISWb2HzN7r/3xLDP7nndTAwAAQKQ899xz+slPfqKdO3fKOaedO3fqJz/5iZ577rlYTy0mwlkOcbek70hqliTn3LuSzvZiUgAAAIisO++8Uw0NDXs919DQoDvvvDNGM4qtcCI4zTm3bJ/nWiI5GQAAAHijuLg4rOc/7cKJ4DIzmyDJSZKZnaG245QBAADQz+Xn54f1/KddOBF8laQ/SppiZtskfUPSlZ7MCgAAABF11VVXKSUlZa/nUlJSdNVVV/Vp3HPOOUeHHXaY1q1bp1GjRunee+/t03jREs7uEB9LOsbM0iXFOeeqvZsWAAAAIim4C0Skd4d46KGHIjG9qAs5gs3sWkn3SaqWdLeZzZV0k3PuBa8mBwAAgMg58cQT+xy9nxbhLIe42DlXpbbDMoZKukDSTz2ZFQAAAOChcCLY2v95kqQHnHNrOjwHAAAADBjhRHCRmb2gtgh+3swyJQW8mRYAAADgnZDXBEu6RNJsSR875+rMbKgkjlIGAADAgNNjBJvZFOfcB2oLYEkab8YqCAAAAAxcodwJvk7S5ZJ+0clrTtJnIzojAAAADAhbtmzRl7/8ZRUXF8vMdPnll+vaa6+N9bRC0mMEO+cub//nIu+nAwAAgIEiISFBv/jFLzR37lxVV1dr3rx5OvbYYzVt2rRYT61HIX8wzsy+1P5hOJnZ98zsSTOb493UAAAAECnNzc265pprdM0116iurm7Pj5ubm3s95vDhwzV37lxJUmZmpqZOnapt27ZFasqeCmd3iJudc9VmdrikYyTdK+kP3kwLAAAAkXTddddp+fLlWr58uU466aQ9P77uuusiMv7GjRu1YsUKHXLIIREZz2vhRHBr+z8/J+ku59w/JCVFfkoAAADwSmNjo2pqatTY2BixMWtqanT66afr17/+tbKysiI2rpfCieBtZvZHSWdJetbMksN8PwAAAGLktttuU2Ji4l7PJSYm6mc/+1mfxm1ubtbpp5+u8847T6eddlqfxoqmcCL2TEnPSzreOVchaYikGzyZFQAAACLq29/+9n7rf5ubm3XjjTf2ekznnC655BJNnTo1YssqoiXkCHbO1Ul6SlKtmY2RlCjpA68mBgAAgMhLTk5WRkaGkpOT+zzW66+/rsWLF+vFF1/U7NmzNXv2bD377LMRmKX3Qj4xzsyukfQDScX673HJTtIsD+YFAACACPrlL3+5527tbbfdpm9/+9t7nu+tww8/XM65iMwv2sI5NvlaSZOdc+VeTQYAAADeSExM1B133LHncccf+1E4a4K3SKr0aiIAAABAtIRzJ/hjSUvN7B+S9uyp4Zzr/T10AAAAIAbCieDN7f9LEvsDAwAAYAALOYKdcz+UJDPLaH9c49WkAAAAAC+FvCbYzGaY2QpJayStMbMiM5vu3dQAAAAAb4SzHOIuSdc5516SJDM7StLdkj7jwbwAAAAwQIwdO1aZmZmKj49XQkKCCgsLYz2lHoUTwenBAJYk59xSM0v3YE4AAAAYYF566SXl5OTEehohC2t3CDO7WdLi9sfnq23HCAAAAPRzCxcuVF1d3X7Pp6Wl6ZVXXonBjGIrnH2CL5aUK+lJSU9Iyml/DgAAAP1cZwHc3fPhMDMdd9xxmjdvnu66664+jxcN4ewOsVvS1z2cCwAAAAag1157TSNHjlRJSYmOPfZYTZkyRQsXLoz1tLoVzu4Q/zKzQR0eDzaz572ZFgAAAAaKkSNHSpLy8vJ06qmnatmyZTGeUc/CWQ6R45yrCD5ovzOcF/kpAQAAYKCora1VdXX1nh+/8MILmjFjRoxn1bNwPhgXMLMxzrnNkmRmB0hy3kwLAAAAA0FxcbFOPfVUSVJLS4vOPfdcnXDCCTGeVc/CieDvSnrNzF6WZJKOkHS5J7MCAABARKWlpXW5O0RfjB8/XqtWrerTGLEQzgfj/mlmcyUd2v7UN5xzZcHXzWy6c25NpCcIAACAvvPjNmjdCedOsNqj95kuXl4saW6fZwQAAAB4LJwPxvXEOn3S7AQzW2dm683spi7fbHa6mTkzK4jgnAAAAID9RDKC9/uQnJnFS7pT0omSpkk6x8ymdXJdpqRrJb0dwfkAAAB86jnHPgW9+TWIZAR35mBJ651zHzvnmiQ9LOmUTq77saTbJDV4PB8AAIBPjZSUFJWXl/s6hJ1zKi8vV0pKSljvC2tNcA+aOnlupKQtHR5vlXRIxwvaP2w32jn3DzO7oavBzexyte9GMWbMmL7PFgAAYIAbNWqUtm7dqtLS0lhPJaZSUlI0atSosN4TVgSb2SxJYzu+zzn3ZPs/D+3ibd2NFyfpl5Iu7Ola59xdku6SpIKCAv/+cQcAAKBdYmKixo0bF+tpDEghR7CZ/UnSLElrJAXan3aSnuzmbdskje7weFT7c0GZkmZIWmpmkjRM0tNmdrJzrjDUuQEAAADhCOdO8KHOuf0+1NaDdyRNNLNxaovfsyWdG3zROVcpKSf42MyWSrqeAAYAAICXwvlg3Jud7ezQHedci6SrJT0vaa2kR51za8zsR2Z2cjhjAQAAAJESzp3gB9QWwjslNaptX2DnnJvV3Zucc89Kenaf577fxbVHhTEfAAAAoFfCieB7JV0gabX+uyYYAAAAGHDCieBS59zTns0EAAAAiJJwIniFmS2R9He1LYeQ9N8t0gAAAICBIpwITlVb/B7X4bmetkgDAAAA+p2QI9g5d5GXEwEAAACiJZzDMlIkXSJpuqQ9hzM75y72YF4AAACAZ8LZJ3ix2k50O17Sy2o7/a3ai0kBAAAAXgongg90zt0sqdY5d7+kz0k6xJtpAQAAAN4JJ4Kb2/9ZYWYzJGVLyov8lAAAAABvhbM7xF1mNljSzZKelpQhqdOT3wAAAID+LJzdIe5p/+HLksZ7Mx0AAADAeyEvhzCzfDO718yea388zcwu8W5qAAAAgDfCWRP8Z0nPSxrR/vhDSd+I9IQAAAAAr4UTwTnOuUclBSTJOdciqdWTWQEAAAAeCieCa81sqNqOSpaZHSqp0pNZAQAAAB4KZ3eI69S2K8R4M3tdUq6kMzyZFQAAAOChcCL4fUl/lVSntpPi/qa2dcEAAADAgBLOcogHJE2RdKukOyRNUttRygAAAMCAEs6d4BnOuWkdHr9kZu9HekIAAACA18KJ4OVmdqhz7i1JMrNDJBV6M63oKK1uUE2jNxtcZCTHKzczxZOx4W9l1Y2qaWzxZOyM5ATlZCZ7MjZCw9clAIiOHiPYzFarbUeIRElvmNnm9scHSPrA2+l5q6axVYt+vtSTsV+6/ijlZnoyNHyuprFFR3n03+3S648igmOMr0sAEB2h3An+vOezAAAAAKKoxwh2zm2KxkQAAACAaAlndwgAAADgU4EIBgAAgO8QwQAAAPAdIhgAAAC+QwQDAADAd4hgAAAA+A4RDAAAAN8hggEAAOA7RDAAAAB8hwgGAACA7xDBAAAA8B0iGAAAAL5DBAMAAMB3iGAAAAD4DhEMAAAA3yGCAQAA4DtEMAAAAHyHCAYAAIDvEMEAAADwHXPOxXoOYSsoKHCFhYV9Hqe0ukE1ja0RmNH+MpLjlZuZ4snY8Df+u/104/cXACLHzIqccwWdvZYQ7cn0J7mZKcrNjPUsgPA0NAe06OdLPRn71RsXeTIuQlfT2OrZ7+9L1x/F1zwAaMdyCAAAAPgOEQwAAADfIYIBAADgO0QwAAAAfIcIBgAAgO8QwQAAAPAdIhgAAAC+QwQDAADAd4hgAAAA+A4RDAAAAN8hggEAAOA7RDAAAAB8hwgGAACA7xDBAAAA8B0iGAAAAL5DBAMAAMB3iGAAAAD4DhEMAAAA3yGCAQAA4DtEMAAAAHwnIdYTABCejOQEvXrjIs/GRmxlJMfrpeuP8mxsAEAbvuMBQD+SEBenhLiAZ2MDANoQwcAAU9PYoiN+9pInY7964yINTk/yZGyEht9fAIgObgsAAADAd4hgAAAA+A4RDAAAAN8hggEAAOA7RDAAAAB8hwgGAACA7xDBAAAA8B0iGAAAAL5DBAMAAMB3iGAAAAD4jucRbGYnmNk6M1tvZjd18vp1Zva+mb1rZv8xswO8nhMAAAD8zdMINrN4SXdKOlHSNEnnmNm0fS5bIanAOTdL0uOSfublnAAAAACv7wQfLGm9c+5j51yTpIclndLxAufcS865uvaHb0ka5fGcAAAA4HNeR/BISVs6PN7a/lxXLpH0XGcvmNnlZlZoZoWlpaURnCIAAAD8pt98MM7MzpdUIOn2zl53zt3lnCtwzhXk5uZGd3IAAAD4VEnwePxtkkZ3eDyq/bm9mNkxkr4r6UjnXKPHcwIAAIDPeX0n+B1JE81snJklSTpb0tMdLzCzOZL+KOlk51yJx/MBAAAAvI1g51yLpKslPS9praRHnXNrzOxHZnZy+2W3S8qQ9JiZrTSzp7sYDgAAAIgIr5dDyDn3rKRn93nu+x1+fIzXcwAAAAA66jcfjAMAAACixfM7wQAiKyUxTi9df5RnYyO2+P0FMFCUVjeoprE14uNmJMcrNzMl4uPuiwgGBpiaxlYt+vlST8Z+6fqjlJvpydAIUa2Hv79L+f0FEEFefT+K1vcibgsAAADAd4hgAAAA+A4RDAAAAN8hggEAAOA7RDAAAAB8hwgGAACA7xDBAAAA8B0iGAAAAL5DBAMAAMB3iGAAAAD4DhEMAAAA3yGCAQAA4DtEMAAAAHyHCAYAAIDvEMEAAADwHSIYAAAAvkMEAwAAwHeIYAAAAPgOEQwAAADfIYIBAADgO0QwAAAAfMecc7GeQ9gKCgpcYWFhrKcBxERpdYNqGls9GTsjOV65mSmejI3QlFU3qqaxxZOxM5ITlJOZ7MnYAPzHq+9HkfxeZGZFzrmCzl5LiMjPACBqGpoDWvTzpZ6M/eqNizwZF6HLyUwmVAEMCDWNrZ58P3rp+qOUmxnxYffDcggAAAD4DhEMAAAA3yGCAQAA4DtEMAAAAHyHCAYAAIDvEMEAAADwHSIYAAAAvkMEAwAAwHeIYAAAAPgOEQwAAADfIYIBAADgO0QwAAAAfIcIBgAAgO8QwQAAAPAdIhj4/+3de5xU5X3H8c9vzsxe2F0uKwsidwQvqIi4QQhG8ZKo9UIaEzXGaNIYczGpmpqYtGlr26RtmhhMWmJi1WpS6yXmZkwTkyrEGxpAFCHEgCB3EAIuLLs7uzPz6x9zgGVZZGXPzOzu+b5fL17sOfPMMw8885z9zjPPOUdERERiRyFYRERERGJHIVhEREREYkchWERERERiRyFYRERERGJHIVhEREREYidZ6gaIyNtTXZ7k6S+cVbC6RUREuqK6PGDuzTMLUm8xxPo33tZdLTSmswWpu7o8oK6moiB1S7wNqipjUFVZqZshF4MEGAAAFJlJREFUIiIxV1dTQV1NqVtx+GIdghvTWc76xryC1D335pm9+o0hIiIi0pdpTbCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CsIiIiIjEjkKwiIiIiMSOQrCIiIiIxI5CcAeVlTCmtnK/fe8+fjBfvvA4rp0x+oDyx9ZVHrBPRERERHq2ZKkbUErV5QFzb565377KVAIzY0BZwLamNhzY0dTKzuY2Th4xiKumjyUZGP3KAsjksFRAMuFsa8wcULdIIWzd1UJjOrt3uzIBiWSAA/2SCRpaMmTd2b67lcZ0hqqyJEdUlxEkjAEVSXa3ZkmY4Z6lqW3/uqvLA+pqKor7D5L9dOzfgZVG1gOy2RzlyQS7W7O05Zxtu9K0tGWpqUgxqCpFwoxBlQGN6RyY0daapUP3qn9FJFIdj1dDqpO4BSRyGRrbnLas09KWY2tjmmzOGdQvRf/KFDgc2b+MXekc6UyW5rbcfvUW61gV6xDcmM5y1jfmAfnZ3wc/MZ2ywGjJOPcvWMd989ewdnvTAc+rKU9y8cnD+IvTx1EDNOWcFVt2ct0PXtxbZu7NM6mrKdI/RGKl/fv2slOP4nPvOQ7DSWec/35+DQ8uWMfWXekDnje4uozL6kdyxdSR9EsFZAm479kV3Dt/7d4yet+WXvv+vfXi4znvxGEElqO5Lcf3nlrFjxdv4M2On16AowZUcOVpo/nzU46iIgVWFvCFBxbz3Orte8uof0UkSu2PV8/cciZvNreSsCRv7Epzx7zXmPvqG6Qz+wdcM5g4rD/XnTGOqWNqqUzlFyVM+5cn95Yp1rFKyyHYF4AB5q/azvm3P8U//WJ5pwEYYFc6w//8bh3vnv1bvjNvFUHCmDG+ljs/PKWYzZaYu+zUo/jSe44D4Gcvb+Kc237Lvz+5stMADLCtsZXvzHuNc277LY+8uAF3uOmsCXxk+qhiNlu66NaLj+fSU4ZhGPc9t4azb5vHPc++3mkABtjY0MI3fv0q7579FP+3fBs5d27/4Cm8c2xtkVsuInHzzC1nMrAyhRPwNz9Zyqw5z/KrZZsPCMAA7rBs405uePAlPvC9+aza1oTjPP+ls4ve7tiH4D0B2MyY/Zs/cv3/LGZnS+bQTyTfkffNf50P3fU7djRlFYSlaPYE4DTGzT98ma/8Yjmt2QMPNp1pyzr/+ss/cMODi2lWEO6R9gTgxla49vsLmDPvNXLetec2tWa55UdLuPXRZbijICwiBfXMLWcyoDzF+h1pLv73Z3jy1Te6/Nz1O5p53x3P8fjSLQBFD8Lm3sUjaw9SX1/vCxcu7HY9q7ft3jsNP2fuSn7w/NpDPOPgjq6r4v5rTyObc5ZtbGDC0P6MHVzV7TaKdLR5+24I8u/bz/9wCU+v3HbYdU0bV8vtl0/GzLhj7gqumTFO79sS27G7iZaMYRjXfn8BSzfsPOy6Lpo0jC9feDwJM258YDFfvXSS+ldEIrO7JU1rJkdDS45Zc56lobnzb6q64t/eP4lzjh1MWw6a23KRHavMbJG713f2WKxngitTCcoSzso3GrsVgAFe27qb2b9ZQWDGpJGDqCmPqJEiHQSpgFQiwePLtnQrAAM8v2o7P395I4E51589IaIWSne05RIkDO59bnW3AjDAY0s2sWjNmyQtPyMsIhKlzbvaSGfhhgcXdysAA/ztT5fS0JKlsbmViqRF1MK3FusQnABassbnHn45kvoeWriOPzW1UpWEgyzLFOm2bM5pzmT55/9dHkl9X3/8j7RknGxXv2+XgkrmnN3pLHc+tSqS+r704yW0ZJ1sL/zWT0R6tjG1lTy1Yhsvr2/odl3pTI6//skr9KtI7f2WvtBiHYJrKpP8fuNO3ogwsc6Zu5KmjH7ZSOHUlCf42UsbOz3h4HC0ZnP8cOF6Kop00JG35kGCu59e3eU1wIeysyXDMyu3kUoUZ2ZFROJj88403533WmT1Pb9qO81tOVpasocuHIGC/9Yzs/PN7FUzW2lmX+zk8XIzeyh8/AUzG1PoNu3R0Jzh+/Nfj7TOXy/bQiarECyFs70py4MLurd8p6OHFqzb71qPUjotbVl+8tKGSOu8//k1tLRF86FJRGSPptYsq7btjrTOHy1aT93A4lzPvKAh2MwCYA5wATAR+KCZTexQ7GPADncfD8wGvlbINrWXyXkkU/gd62xobov3FLsUlAHrtjdHWufmnS3k9HV5j5DO5GhqjfYDyfJNuzBNBItIxF5e/2bkdS5as4PNO4uzprTQWW0qsNLdV7l7K/AgMKtDmVnAfeHPjwDnmBXncJ0LA2vUXt28iyH9yyKvVwSgsbVrl/B7uxqaM/rw1gOs3xHtBxzIL3mJavmMiMgeL62NPgS/umVXZMvBDqXQv/OGA+vaba8P93Vaxt0zQANwRMeKzOw6M1toZgu3bt0aSeMKdaJIU1uWQOvvpEDSBfpaO92WpSJVkKrlbWgq0IccnfgoIlHKZHI0tUW/jK6lLVu0b656zcSPu9/p7vXuXl9XVxdJnUGB/pery5Nkcpp1kcKoSAUFqbeyLOAgNyOTIqouL8zd7PXBXESilEwmCnK86leWpFir8wodgjcAI9ttjwj3dVrGzJLAAOBPBW4XAImEUVsV/bKF446sYctOpQkpjOrywoTg/poG7hGGD+oXeZ3lyQTlyV4z5yEivcSUUYMir/O4I2tIFulDe6GPiguACWY21szKgCuARzuUeRS4Jvz5/cCTXqTb2KUC45RRAyOts7xAn4xE9nDP36EwSiNrKyOtTw5fWWD0r4z2GHLi8AGR1iciAjBpRPTHlneMqWVITXHOqypoCA7X+H4GeBxYDjzs7svM7B/N7JKw2N3AEWa2EvgccMBl1Aqlujzgo+8cE2mdF04aRlmgGRcpnMH9Ulx52qhI6/zQaaMZUKEPbz1BVXnAB04deeiCb8NH3jlGa4JFJHLlqYDjh9VEVp8ZvG/KcDbtaImszrdS8LTm7v/r7se4+9Hu/tVw39+5+6Phzy3u/gF3H+/uU909mtskdcGu5gzj6qojmwUzg0+deTTlBsW5wp3EUUNrhgtOHBbZNw6VqYCLJx1Fs64e0COkM87V00eTCqL5OnBwdRn1owdRpuUQIhKxIdUpPnv2hMjqO+uYIZQljXLdMa4YjLLA+PYVp0RyJuK1p4+lf0WSppxjhVm2KQIYlakEX3nviZHUduslJ+iqED1MVSrgpnOPiaSub142mTL1r4gUwMaGNFNGDWT60Qdc1OttqyoLuHXWCTQ0pSnWrZtiHYKbMzmyDsMGVPCZs8Z3q66Thg/gY6ePw4HHlmykWTffkgJpac3SmnWmjavlwpOO7FZd75k4lDOPGUwmZ9zyw8URtVC6xbNkgUunDGfauNpuVfXhaaM4Zmg1mYxx6Zz50bRPRCQ0tH8ZqSDH1y+dxJCa8sOuxwxmXz6Z/uUBg/qV01ykO1zGOgQDzJz9BGbGh6aN5tMzjz6sOiaPHMidV59KVcp5bMlGvvKLP0TcSpF9csD1/70QM+NvL5rIRZOGHVY9558wlH9674mY5QPwvBXbo22oHJamNrhj7goqzLj98snMOMwZlitPG8lnzpqAYbxvznNs2Bn9TThEJN42NbSybVeWupoUD31iGsMHvv3lpcmE8a3LJzNpxADSmSyn/cvcArS0c7EPwc3NYRAGrp42igc+flqXP80kE8bnzzuW7151KlVJeGiRArAUx8K1DXuD8JcvPJ5vXzGZmi6uEa4qC7jtspO59ZITABSAe6B7569l9twVVJpx22Un8w+XnNDlS5wN6pfi7mvq+Wz47ZYCsIgU0nnfeprXtzVzZP9yHvnUdC6rH9Hl5x53ZA2/+MvTmT62FsOLGoABdDo4+4LwvJvO4Zgh/fjp9TNYtGYH9zyzmqUbG2jL7n9W9cjaSi6dMoJLp4ygImlk3Xn4RQVgKa49QXjOVfXMGH8Ej990Bk8s38L9L6zljx1uO5kwGD+kmg9OHcV5JxxJRZCgzV0BuAe7d/5aAD511gQuOmkY5x4/hJ8v2cTDC9ax+k+797uYfJAwjh9WwzXTxzBj/GAqAqMtpwAsIsVx3ree5vEb3kVFKuCmcyfwiTOO5r75r/PLVzaztTG9X9mKVIKpY2r55JlHM2ZwFQnLkStBAAaF4L32BOG5N55NkICpowcxJbyGcHNbjkw2RyJhVKYCwOlfkSLdliMZJPjZi+sUgKUk9gTh71xVT8LgwpOGMvPYIZjlbz2ZyTpBwuhXFpBzp6Y8oCXjZBSAe4U9Qfgz5xxDkDCuqB/BhScdiZnR3Jolm3OCwOiXCnCgIpkgm3Nac86lc+YrAItI0ewJwrXVlZTRxo3njOe6d40jh9PcmsPdKUsmKEsmCAyy2RyVqYDWTGkCMIAV6b4Ukaqvr/eFCxd2u56tu1poTBfmDLbq8oC6Gl0oTaKn923fpv4Vkd6iUMerKI9VZrbI3es7eyzWM8F1NRXURXeNZ5Gi0Pu2b1P/ikhv0duPV7E/MU5ERERE4kchWERERERiRyFYRERERGJHIVhEREREYkchWERERERiRyFYRERERGJHIVhEREREYqdX3izDzLYCawr4EoOBbQWsX0pL/dt3qW/7NvVv36b+7dtK1b+j3b2uswd6ZQguNDNbeLC7i0jvp/7tu9S3fZv6t29T//ZtPbF/tRxCRERERGJHIVhEREREYkchuHN3lroBUlDq375Lfdu3qX/7NvVv39bj+ldrgkVEREQkdjQTLCIiIiKxoxAsIiIiIrGjENyOmZ1vZq+a2Uoz+2Kp2yPdY2YjzWyumf3ezJaZ2Q3h/loz+42ZrQj/HlTqtsrhM7PAzBab2WPh9lgzeyEcxw+ZWVmp2yiHx8wGmtkjZvYHM1tuZtM1fvsOM7spPDYvNbMHzKxC47f3MrN7zOwNM1vabl+n49Xyvh328xIzm1KKNisEh8wsAOYAFwATgQ+a2cTStkq6KQP8lbtPBKYB14d9+kXgCXefADwRbkvvdQOwvN3214DZ7j4e2AF8rCStkih8C/iVux8HnEy+nzV++wAzGw78JVDv7icCAXAFGr+92b3A+R32HWy8XgBMCP9cB9xRpDbuRyF4n6nASndf5e6twIPArBK3SbrB3Te5+4vhz7vI/wIdTr5f7wuL3Qe8tzQtlO4ysxHAhcBd4bYBZwOPhEXUv72UmQ0AzgDuBnD3Vnd/E43fviQJVJpZEugHbELjt9dy96eA7R12H2y8zgK+73nPAwPNbFhxWrqPQvA+w4F17bbXh/ukDzCzMcApwAvAUHffFD60GRhaomZJ990OfAHIhdtHAG+6eybc1jjuvcYCW4H/Cpe73GVmVWj89gnuvgH4BrCWfPhtABah8dvXHGy89ojMpRAsfZ6ZVQM/Am50953tH/P8NQJ1ncBeyMwuAt5w90WlbosURBKYAtzh7qcAu+mw9EHjt/cK14bOIv9h5yigigO/Spc+pCeOV4XgfTYAI9ttjwj3SS9mZinyAfh+d/9xuHvLnq9dwr/fKFX7pFtmAJeY2evkly+dTX4N6cDw61XQOO7N1gPr3f2FcPsR8qFY47dvOBdY7e5b3b0N+DH5Ma3x27ccbLz2iMylELzPAmBCeGZqGfkF+o+WuE3SDeH60LuB5e7+zXYPPQpcE/58DfCzYrdNus/dv+TuI9x9DPnx+qS7fwiYC7w/LKb+7aXcfTOwzsyODXedA/wejd++Yi0wzcz6hcfqPf2r8du3HGy8PgpcHV4lYhrQ0G7ZRNHojnHtmNmfkV9jGAD3uPtXS9wk6QYzOx14GniFfWtG/5r8uuCHgVHAGuAyd++4mF96ETObCdzs7heZ2TjyM8O1wGLgKndPl7J9cnjMbDL5kx7LgFXAR8lP3mj89gFm9g/A5eSv5LMYuJb8ulCN317IzB4AZgKDgS3A3wM/pZPxGn7w+Q/yS2CagI+6+8Kit1khWERERETiRsshRERERCR2FIJFREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHYUgkVEREQkdhSCRURKwMwuMbMvHrrkAc8bY2ZLC9CemWb2znbb95rZ+9/qOSIivVny0EVERCRq7v4oPeuulDOBRuC5ErdDRKQoNBMsIhKxcLb2D+Fs6h/N7H4zO9fMnjWzFWY21cw+Ymb/EZa/18y+bWbPmdmqrs7AmllgZl83swVmtsTMPhHun2lm88zskbAd94d3aMLM/izctyh8zcfMbAzwSeAmM3vJzN4VvsQZHdtkZsPM7Kmw3NJ2ZUVEehWFYBGRwhgP3AYcF/65EjgduJn87bs7GhY+fhHwr118jY8BDe7+DuAdwMfNbGz42CnAjcBEYBwww8wqgO8BF7j7qUAdgLu/DnwXmO3uk9396bdo05XA4+4+GTgZeKmLbRUR6VG0HEJEpDBWu/srAGa2DHjC3d3MXgHGdFL+p+6eA35vZkO7+BrvASa1mzkeAEwAWoHfufv68PVfCl+zEVjl7qvD8g8A171F/Z21aQFwj5mlwscVgkWkV9JMsIhIYaTb/Zxrt52j8wmI9uWti69hwGfD2dvJ7j7W3X/dSX3Zg7zmoRzQJnd/CjgD2ADca2ZXH0a9IiIlpxAsItJ7PQ58KpyVxcyOMbOqtyj/KjAuXAMMcHm7x3YBNYd6QTMbDWxx9/8E7gKmHEa7RURKTsshRER6r7vIL3N4MTzxbSvw3oMVdvdmM/s08Csz201+acMePwceMbNZwGff4jVnAp83szbyyys0EywivZK5e6nbICIiRWJm1e7eGIbmOcAKd59d6naJiBSblkOIiMTLx8MT5ZaRP5HueyVuj4hISWgmWESkBzKzk4AfdNiddvfTStEeEZG+RiFYRERERGJHyyFEREREJHYUgkVEREQkdhSCRURERCR2FIJFREREJHb+HzMsFZpq5GjMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHvCAYAAAC1/wKvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXjcVb3H8c+ZyWQme9skTVfaUgp0X0hbWrBeVHYEEZR9schauXpRBPSiyFWviKjorQIFBMoiyKKoIKgsZWkpaekCXWjpmnTJ0uzJTGY5949kSppmmWlmMpPO+/XQJ5nfnDn5NuVJPjk5v+8x1loBAAAAqcSR6AIAAACAvkYIBgAAQMohBAMAACDlEIIBAACQcgjBAAAASDlpiS7gUBQUFNjRo0cnugwAAAAksRUrVlRaaws7e65fhuDRo0erpKQk0WUAAAAgiRljtnf1HNshAAAAkHIIwQAAAEg5hGAAAACkHEIwAAAAUg4hGAAAACmHEAwAAICUQwgGAABAyumXfYIBAACQ3GqbWlTvC8hhjKwkWSnNYVSU50l0aZIIwQAAAIiR5paAqpv8+rCsVs9/UKa1pbUqq2mWJOV60jRxWJ4+e0yhzpoyVJ40hwpyEheIjbU2YR/8UBUXF1tOjAMAAEgee+uatfSTffrRXz9SdZO/27FpDqOvFo/Qf35+nIbkZcStJmPMCmttcac1xO2jAgAAICXsqfXqtufX6vWNFRGND4Ssnly+U69vrNDDV87U6PxMZaT3bSzlxjgAAAAcsr11Xt3wxMqIA3B7u2u9+sp9S7V9X1McKuseIRgAAACHpKLeq/97bZNW7qg+5DkafAF9/dES7a5tjmFlPSMEAwAA4JDsqvFq8bIdvZ6ntLpZi5Zs0b4GXwyqigwhGAAAAFHbW+fVPa9ujNl8T7y3Q95AKGbz9YQQDAAAgKi1BEJ6a3NlzObzBUJ6bUN5zObrSVxDsDHmYWNMuTHmwy6eN8aY3xhjNhtj1hhjZsSzHgAAAMTGx3vrFetOu29+XKHqxr7ZEhHvleBHJJ3WzfOnSxrX9ucaSb+Pcz0AAACIgeVb98V8zg/LatXgC8Z83s7ENQRba5dI6u4zdI6kx2yrZZIGGGOGxrMmAAAA9E4oFFJlHG5iq25qkcOYmM/bmUTvCR4uaWe7x6Vt1w5ijLnGGFNijCmpqIi+Dx0AAABiw+FwKM0R+xiZ5nDIqm9OM050CI6YtfYBa22xtba4sLAw0eUAAACktGOG5sR8ztEFmeqbdeDEh+AySSPbPR7Rdg0AAABJrHjUwJjPOXX4ABVmp8d83s4kOgS/KOnyti4Rx0uqtdbuTnBNAAAA6EFBtluDsmIbWM87boTSXWkxnbMr8W6R9pSkpZKOMcaUGmOuMsZcZ4y5rm3IS5K2SNosaZGkG+JZDwAAAGJjYKZLl8w+ImbzjSnIUlGeJ2bz9SSuUdtae1EPz1tJC+JZAwAAAGIvIz1NF806Qs+U7NTeut53irjrvCkaPiAjBpVFJtHbIQAAANBPFeWk6/8umiFHL+9mu/T4IzQ6PzM2RUWIEAwAAIBD4nQ6dWRhln570fRDDsJnTBqiGz83ToNz+24rhEQIBgAAQC/kZ7t1/JH5eva6uVFtZ0h3OnTb6cfqh2dPVFEfB2ApznuCDwe1zX75/EHJSLKS02GUl+mKS4NoAACA/ig/2638bLeeu36O/rxqlx55Z5v21Hn1o7MnaPaYfDkdRrtrm3X7n9dqT12Lzp46TDecNFYDM9M1ILNvWqJ1ZFrvTetfiouLbUlJSdzmr2v2q97r1+rSWjV4AyrITpcn3alA0Kqq0adg0GryiDzlZ7lVkOOOWx0AAAD9TUsgqIp6n1qCVpvL67W5vEGhkDQ4163Jw/OU43EpK92hAVnxz1DGmBXW2uLOnmMluJ1gsPUc7Pe3V2v4gAyt212nFduqtX5Pneqa/UpPc2hsYbamjMhTYY5bO/c1a3RBpobkeZTtdiW6fAAAgITaU+vVaxvKteitLdpa2djpmGx3ms4/boSuOnGMcjxprARHIx4rwc3+gLZWNKolaHX/m5/oHx/tUU+fmnGDs/WDL05QIGg1beQADYxxw2gAAID+oKrepz31Xt345Afa0kX47cjjcugHZ03Q544t0pA49QdmJbgH/mBQWysaVVbTrO/8aY1qm/3KSk/TNfPGaPoRAzU0zyOX06GQtdrX2KKP99brkXe36eO9Dbr84eW65jNHKseTpqNMdsJ+mgEAAEiEygaf1pbV6prFJfIHI19c9fpD+t4LH+r842r03VOP6fPuEIRgSVUNLdq5r1kLnlyp/Ox0/e6S2RoxMEN/W7Nb9735idbvrlOdN6B0p0NjB2dp+siBuvv8qXKnOfTzVzbq/iVbVOf16/I5o5XtTlOak5vmAABAaiirbtbVj5UoEDq03QXPrijVoMx0ff0zY/o0CKd8CK5pbFFVQ4v+65lVunLuKF0xd4x+/o8N+vva3er4b9kcCurDsjp9WFanxcu26+iibP3iK1N18ayRuu7xFZo2coAKstNVmNP3bT4AAAD62u7a1kXEQw3AYYve3qLTJw/p0xCc8kuWdb6AfvLSen3vjGP1hQlDdNZv39Zf1xwcgDvz8d4GnbPwHa0pq9Pf/3Oefv7yRtU2BxQIhuJfOAAAQAI1+/x6bkWpSqubez2XtdJ3n12jspqmGFQWmZQOwT5/UFUNPs0cPUhjCrJ16YPvqbbZH9Uc1kq/+fcmPbV8h/7wtZl6fmWpappb4lQxAABAcqhuDujRd7fHbL5N5Q2qaui7DJXSIbjO69c/1+3ReTOG65pe7GWRpEfe3aad1U3K8TjV7GclGAAAHN72NbaoosEX0zmfXVGqlkDf5KiUDsFef0hnTRmm77+wVo0twV7Pd+tza/XFqcPljcFcAAAAyWzl9uqYz7l6Z43K670xn7czKR2CHQ7J6XDorc1VMZmv3hfQCx+Uyaj/9V4GAACIxrrddTGfc0tFZD2GYyGlQ3C606FH390W0zkfeWebPOkp33QDCVZe51VZdZN21TSrrLpJ5XVehUJs0wEAxEYoFJI/Do0A/KGQTMxn7VxKpzVfIKS3N1fGdM6qxpY+28sCtFde51VTS0CrdtbIH7QamJkud5pDLcGQqpta5DRG00YOUJY7rc8bkgMADi8Oh0OD4nBSbl6GK6IOXbGQ0iFYknbsi30rjm1VTTqyMDvm8wKdaWoJqKrBp9WltRqS69GGPfVatbNGG/bUq7klKI/LqWOG5GjayAEaMShT63bXafLwAcrPdinL7Up0+QCAfmrm6EFa9NbWmM45cVieMlzOmM7ZlZQOwdEc7ReN8rq+2dANVDX4tLm8Qa40h/64fKfW7arT1z8zRgtOOkpFOR6lOY0CIauKep/Wltbq+sdXaFxRjr5zSoZKa5p0dFGOCrLdif5rAAD6oWOH5sZ8zs+MK1BBTt98X0rpEByvPSfG9NVuFqSymqYWba1s1PZ9TXrs3W264+yJGpSZrjVltdpd2yyvP6h0p0P+oFV1U4uK8tx6+trjVdMU0J0vfqQLZo2Uy2HkMNKgLIIwACA6LofRnCPztXRLbBoMuJxGp0wYEpO5IpHSIdjlNHKnOeSL8R7eMQWZMZ0P6My+xhat212nlkBICy+ZoTWltZKkjfu3Q9SpqSWojHSnjilq2w4xMFN767z6zUXT9frH5VpTVqtBWemEYABA1IYOyNC3Tz1a5/9+aUzm++pxI5We1nc9G1I6BEvS+KG5WrWzJqZzDs7hpiPEV3m9VxX1Pg0fkKFsd5qqGlv0TMlOvbXp4Bs9fYGQ3tu6T+9t3af7l2zR3LH5+s4px+iYohz5gyHtrfMpN8OlQv6/BQBEaeTATJ1/3Ag9u6K0V/MU5br1jc8fpcI+2gohpXiLtGx3mk6fFNtl92kjB8jlZDsE4qvBG1B1U4tyM1zasa9Jlyx6r9MA3Jl3P6nSRYuWaWtlkzJcTjX5A6r3BuJcMQDgcFSU69F3TjlGE4cd+v7gDJdTD15erMKsvr1ZO6VDcI7HpS9MKFK6M3afhivnjla2J+UX2BFHVQ0+VdR7dXRRjjbsrtfNz65Rsz+6Uwp9gZC+98JarS2r05j8bO2t86qqj07oAQAcXobkefTQFcWaPWZQ1K/Nz0rX09cer5GDMpSW1rf5KaVDsMNhlONO04KTxsZkvqkj8jRlRJ7yMmLfNw8I8wVCGjEwUxX1Pv3wxQ97Ndf//H2d9tZ7NbogU94AJx0CAA7NkLwM3XvhNP34S5OUld5zizNjpHOmDtNfbzxRxxRma0Bm39+bkvJLlrkZaTpt0hD9e0P5/huLDkWGy6kfnTNJAzPpu4r4Snca1XmD+t4La3vdUNxa6bbn1+oPV85ULr/BAAD0wpC8DJ01Zag+d+xgLd1SpT9/UKa1ZbWqafJLktxpDh0zJEcnHlWgC2aOlDvNoSF5GQmrN+W/63lcaSrMceun507Wfz29SpvKG6KeI8Pl1O8vnaHC7HQN5C57xFkwZLVhT70+idH56turmrS2tFazx0b/aywAANobkJmuAZnSeTNG6ISx+QqErNT6nxwOI2utCrLS5UlPfARNfAVJYFCWW8GQ1S++MlUPvb1VL67eFfFrjy7K1o+/NEkDMlwanEsARvwFrfTY0m0xnfPRpdtVPHpgTOcEAKS2RK7yRoIQ3Ka1PZTR2VOH6uxpw/TQW1u7bf48clCGLjt+tKaOzFNRrkdD8zxyOfvmmD+ktpC1WrG9OqZzri6tkWVLMAAghRCC2ynMcWvmmHyV7mvSRbNG6runHaOtlY1av7te9V6/XE6HjhqcrWOG5Ki5JSjJ6qjCbOVz7Cz6kNcfivmR38GQVWMLbdIAAKmDENxBXoZLecPzNHxghppagvIHQ3IYI18gKKfDqCDbrcE5buV4XCrITueIZPS5pjiF1QYfIRgAkDoIwR00NLfIFwgpP8ejAZnSsAHd72epbPCpgJVg9KE0R3x+8EpzpHTHRABAiuG7XjuNzS36uLxR72+v1r4GX4/jt1U26oUPyrS3rrkPqgNaZbnj87NrXgbt/QAAqYOV4DaNzS3aWN6oix9cppZASAsvmaHZowdpUBervNsqG/XV+5eqvN6nBm9AF88eqaLc5L4LEocHl9Oh3Iw01TXHbvtCVrpT6Wn8TAwASB1819OBAdjrDylkpQVPrNR72/Z1uiLcPgBL0r3/3qQn39vJijD6RLrD6IxJQ2M656kTh8hFcxMAQApJ+RDcMQCHdRWEOwbgMIIw+kqWx6X5J4yJ6ZxXzztSmelshwAApI6UDsFdBeCw9kG4rrmlywAcRhBGX8hIdyrH49SXZwyPyXxnTRmqPE9a3PYaI/bqmv0qr/eqvM6rinqvGunsAQBRS+nves1Bq0Vvbek0AIeFg/A3vzBOTyzb0WUADnvyvR269PgjYl0qcIDMdJe+c8oxemdzpfbW9XwTZ1cKs9267fRjlUkATnrVTS2qa/brxVW7tHRLlTaVN8gXCCo7PU3HDs3VvHGFOnVikXI8LmV7+PcEgJ4Y2w+PiSouLrYlJSW9nqeqwaeymmb94pWNWrKpstfzFWa7df9lx2l0foYGZXt6PR/QndqmFlU0tOjCB5aqsqEl6tcPykrX09ccr4JslwZm8f9rsvL5g9pT59Wtz63t9hRLSXI6jM6eMky3nH6sCnPccsapnR4A9BfGmBXW2uLOnkvp5QKnw8hhpJtOOVqSehWEwwE4I90hBwdooA/kZabL6w/q+evn6uZn1+i9rfsifm3xqIG656tT5U4zGpBJn+tkVdfs16vr9ur7L6yVLxBShsupuUfla/LwPI0tzFZ6mkNNLUF9vKdeq0trtHzrPr2wqkyvf1yuBy47TpOG5ykzPaW/zANAl1J6JVhqXQ3eVdOsoLX65asfH1IQbh+Acz0uDRuQwUly6BPWWlXUe9XgC2r97jr95t+btXFvfZfjxw3O1o2fO0qTRwxQpsuoMCdDDlYLk1K916/nVpTqjr+uU1GuW9d9dqwmD8/TaxvKtbq0Rpv2NsgXCCnbnaZjh+ZoxhEDNXdsvt7YWKEH39oibyCkx+bPUvGogXLT+gNAiupuJTilQ3BLIKiP99aruSUkt8uh0CEE4fYB2BijVTuqdfqkYcrL5E579J19jT7tqvbKlWbkMEbrdtfpgx01avAFlOV2avrIgZo4LFfWSr5AUMMHZmhQFivAycpaqxXbq3X+fUt13ozhunj2KP3i1Y1ataNGc8aGV4KzlJ7mVFNLQB/vrdfq0lqt3F6tUycO0ddOGK27X9molTuq9ep/fVZHDMpM9F8JABKCENyFfY0+fe/5D/X25ko9fEWxPOlOOYzR7X/+UB/srOnx9e40h569bo7SnEbGGN38pzXaXdusf3xzngpyCBjoe1UNPtX7Aqqq98kfDMkYycoozWGUn+1WjieNY777gfJ6r77427c1/4QxcruceuitLZp/4pj9K8FrSmu1qbz+05XgITma3rYS/PrGcv2ppFR3njNRr67bq60Vjbr/8uOUzw89AFIQe4K74DDS988cr++9sFbzHy3RXxbMlTFGpTWRtThrCYZUVuPV5OG5uu7xldpd26zH5s+SMf3vBwscHvKz3crPdmt0fpak1hVFtub0P0s2VugrxSPlD1pt3FujX184Xfe8ulE/+uu6g8bWNPlVWt2sf60vl9NhdObkofrdJTN0zysbddHsUapr3qXdNV5CMAB0kNJ9giWje17doOv/Y6z++8xj5XQ4dOEDy1TRQxu0MGulG55YobVldbrznAm679Lj9NOX1ksidCA5EID7n8oGn17bUK5pIwcozWk0dcQAXbxomd79pPvOEJIUDFm9uHqX5j/yvq44YYze3lyha+cdqSeXb6eXMAB0kNLbIaTWXx+/sbFcx40a1O1BGN1xGOl3l8zQyIGZynKnaVR+JuEDfarJF5ArzSGXs+efawPBkFoCIXoDJ6nS6iaV1TRr5fZqhax09ysbD2meNIfRby6arrU7azRheJ5mjh6oIXkZMa4WAJJbd9shUnwluPXXx70JwFLrgRo3PLFSO6ublONxEoDRp8I3Ru2oapQ/2PXBL1JrAN6xr0kb99azMpikvC0h7an1alxRziEHYEkKhKxuemaVTp44RAXZ6QqG+t+CBwDEU8qH4J6OQo5UOAi/v61a+xp6NxcQqaaWgDaXN8jrD6rRF+w2CAeCIe3c16QGn19ef1CbCMJJKWhDGjkoU7f/+cNez+X1h/TTl9YrELLqh7/0A4C4SukQvK+xRd97YW2PAbgw261nr5ujeeMKuh0XstJ/Pb2avqvoE+EA3NwSlFXrTXBdBeH2Adi07VlvCYQIwkkox+PSqh012l3rjcl8JdurJUn8ggoADpTSIdjpaO0OMbYwu8sx4T7A2W6nbjrl6G6DsDvNoYWXTFd/3GeN/qV9AJakvXU+NbQEJR0chNsHYMmowRfQrhqvrAjCycgXCOqJ93bEdM4/Lt8pfjYHgAOldAg2xsjlNPr1BVM7DcLtD8JwmtZDCLoKwu40h3536QwN5JAMxFnHAFxW06ybnlmlax4rUb3vwCDcEggeFICveWyFbn52tXbsayIIJyFrpU8qGmI659ItVQp0v10cAFJOSofgXI9LAzPccjkdBwXhjifB/eDFdfK2BDsNwu0DcKbLqcx07rpH/Hj9IfkCnwbg7/xptUJWamwJHhSEV++sOSgA1/sCClnplufWfBqEg3b/nEis6saWmM+5r7FFIX5DBQAHSOkQLEn+UOupWu2DcMcAfPOf1mjplirNf7TkoCDcPgA7jVFjS1BBvtkg3uyBATisYxAOhKw6BuCw9kFY4v/ZZFHT7I/LvIEg/8YA0F5Kh+DaZr++86fVuurREll9GoQfuPzAALy7tll/um6Oph8x4KAg/PhVs/cH4PuXbNElDy5XC793RJztqvUeFIDDDgzC6jQAh4WD8M59zcTgJMGNtQDQN1I6BDsd0l3nTZE7zaGrHwsHYaMM14EB+L5Lj9Ov/vmxrv+PsQcF4WxP2v4A/O/15Xr4ymKFyMCIozSH0e9e/6TTABwWDsKrd9Z2GYDDQlb63Rub5XKk9JeDpDEk1xOXed0u/n0BoL2U/qoYDEn3vLpRv/jK1P1BOBws2gfge//1sX74xQl69N1tnQRh7Q/ACy+ZoWfe3ymyBOIpN8OlR+bP1FGDu+5qIrUG4Z/9Y0O3AViSxhRkafFVs5WbwU2dySAz3RnzdmYjB2UoxGEZAHCAlI5reRku3Xr6sfrFK58G4a8/WqIbn1p1QAD+ny9N1tFFOfrpuZMPCsLfe+HD/QH4b6t36ZLjR3FjHOKqttmvzeUNuvfCaT0G4Z6MKcjS/100XR/vrVdtU+xvyMKhmXNkfkznO23iEHlYCQaAA6T8V8UheRm656tT9wfhjHSnqptaDgjAo/IzZYxRfrb7oCD8YVnt/gB86fGjNGXEAKWnpfynFXH247+t17WLV+jXFxx6EA4H4OufWKn/+ds6TlNIEh6XU5fPGRXTOc+cMlTW8u8LAO2R1nRwEL7/suKDAnBYxyD82FWzCMDoU06H9OAVxfK4nHrwrS165Gs9b43oaExBlhbPn6VH3t0mp8PoD1+bJf7XTQ7uNIcy09NUPGpgTOa7eNZIVTW0aFBWekzmA4DDhemPp5sVFxfbkpKSmM+7p7ZZ//X0KoWs1V3nTT0oALdX1eDT915Yq3pvQDedfDQBGH2qqsGnlkBINU0tMg4pK92lC+5fql0RHLU7OMetZ6+fqyavXyFJA7PSle5wKD/HHf/CEZGSbVVyGIcufeg9NbUcev/mEQMz9MuvTlNRrluj8rNiWCEA9A/GmBXW2uLOniO1tTMkL0O/umCafn5+9wFY+nRF+AdfnEAARp/Ly3CpuSWggA3JH7AqrW5SbYT9Zeu9gdbT5IIhBYIhNfkCyuWkw6RyZGG2Xv5wl35/yQxluJyHNEdRrlv3Xjhd72+tYhUYADpBcutgSF6GRuVndRuAw/Kz3Tp2SC4BGH0qEAxp574mNfoDkv30IIzGCFcMm/1BXbt4heq8rV0jGn0B7djXKH+Q3n7JYlCWW5fPGaOnS3ZG1AmkozlH5uv+S4/Tb1/bpK/OHKkcDz/kAEBHpDegn/H6g2psOTAA99QGraPGlg5B2BuU18+xyclkSJ5H184bqzv+8pF+dPZE3XzqMT32ED66KFt3nTdFF88+Qt99bo3uPGeSCnPi03cYAPo7enkB/UzrLn6jBp//kAJwWDgI33/ZccplpTDpuJwOTRiWo/+7eIaue3yFRuVn6ifnTlJ6mkMfltVqU3mDfP6QstxpGj80RxOG5Wp3jVeLl21XutPo0a/N0tABGYn+awBA0uLGOKCfaWj268Pddbr60ZJDDsDtZaU79cDlxZoyIo9fmyepygaf/rZ6l+57c4vqvH5NHJarIwuzle50qNkf1MY99dq4p16j8jP17VOO1qwx+ewDBgB1f2McIRjoZxp9AZ127xLt3Nfc7bgjC7L06wun6aZnVmtzeUO3Y4flefTPmz6rLDe/HEpWwZBVVaNP+xpatGJHtVZsr5bXH1Sux6XZRw7StBEDlONxqYAuHwCwHyEYOIyEQlZbKxt1/n3vqrqp844QRxZk6bcXTdePX1qv758xXt96elWXQTgvw6Vnr5ujIwuz5XRwoEJ/EQiFFApZpTkccvDvBgCdokUacBgJBEOSsXps/iwN7KS1WTgAX//ESi39pErXPd71yXJ5GS49Nn/Wp/Oi30hzOJSe5iQAA8AhIgQD/UxLyOrKP7yvH764To92CMLtA7DTYfTSf54od5qz0yCcl+HSo/Nn6ScvrdcVDy+XP9T/fiuUKiobfGqJsHtHTVOLappa4lwRAPR/hGCgn3FIWnR5sbZUNuiOdkG4YwB+dP4sFWSn65GvzTwoCIcD8E9fWq8Ne+r04BUzxXpicqps8Or5laXaVNHQYxCubfarZFu1lm/dRxAGgB6wJxjoZ0Ihq/IGr2qa/LrwgWU6siBbd5w9QQ5jdEO7AJyV7lR+tltV9T41+YO68g/vyxcI6r5Lj1MwZPWTtgD8x6vnaEBmmopyM9gTnGQqG7x6avlO3fPqx8pxp+mP1x6vcYXZSu/kFLnaZr/e37pP1z6+QpL0+0tmaNaYQRqQSZcIAKmLG+OAw0zHIDx8QIZqm/1yOR0HBOCw9kG4qSWg/Ox07djXRABOYu0DcFhXQbh9AA62bWtxOgxBGEDKS+iNccaY04wxG40xm40xt3by/BHGmNeNMR8YY9YYY86Id01Af+dwGA3O9mhApkt/vOZ4ldU0dxmAJSk/x61Ml1OPfG2mMtPTCMBJrrMALEn1voAuvH/ZAVsjOgvAUmtLteufWMnWCADoQlxXgo0xTkkfSzpZUqmk9yVdZK1d127MA5I+sNb+3hgzQdJL1trR3c3LSjDQKrwiXNcckMfl7DQAtxdeEW5sCSjXQwBORl0F4PbCK8JHDMrUe1sODsDtsSIMIJUlciV4lqTN1tot1toWSX+UdE6HMVZSbtv7eZJ2xbkm4LARXhHOcTuV6eo+AEutK8IZLofyCMBJyyGjF1aWdTsmvCK88PXN3QZgqXVF+PFl27sdAwCpKN4heLikne0el7Zda+8OSZcaY0olvSTpxjjXBBxWHA6jIXkZEZ8UVpDj0ZA8AnCyGpTt1uKrZmlMQVa34+p9Ad335pYew+0JY/N191em9vgDEgCkmmRokXaRpEestSMknSFpsTHmoLqMMdcYY0qMMSUVFRV9XiSQzIyJLtBGOx59a/jATD0eQRDuyQlj8/XLC6apKNcTo8oA4PAR7xBcJmlku8cj2q61d5WkZyTJWrtUkkdSQceJrLUPWGuLrbXFhYWFcSoXAJJDb4MwARgAuhfvEPy+pHHGmDHGmHRJF0p6scOYHZI+L0nGmPFqDcEs9QJIeYcahAnAANCzuIZga21A0jckvSJpvaRnrLUfGWPuNMac3Tbs25KuNsaslvSUpCttf2xeDABxMHxgpp66erYGtDseuzvjh+bo3oumE4ABoAdp8f4A1tqX1HrDW/trP2j3/jpJJ8S7DgDojw5ifEsAACAASURBVOqa/fqwrE51zf6Ixpfua1Z5nU+57rROT5YDALRKhhvjAACdqGv2a3nbQRiRdjir9wV0wf1Ltbmicf+BGgCAgxGCASAJtQ/A0fb4JQgDQM8IwQCQZHoTgMMIwgDQPUIwACSRWATgMIIwAHSNEAwAScQY6bvPrekxAM8dm693bjkpopPlbnlujZoIwQBwAEIwACQRT5pTT149W7kZXTfvmTs2X7+6YFpEfYRH52fq95fO0IDM9HiUCwD9FiEYAJKIK82hsQXZeubaOZ0G4XAADvcB7i4Ij87P1ONfn60RAzPjXjcA9DeEYABIMl0F4Y4BOKyzIEwABoDumf54OFtxcbEtKSlJdBkAEFf+QEifVDboLx+UaWdNs24/c0K3J8GVVTfpt69tkqzVNz5/NAEYQMozxqyw1hZ3+hwhGACSlz8QUlWjT8aYiI5C3lPbLEkakpcR79IA4AD1zX75Q1ahUEgFOd1/vQoGg6ps9MtIGhzHY967C8FshwCAJLa7zqvz71uqn/9jg8rrvN2O3VPr1YInP9ANT3ygPbXdjwWAWKpv9mvdnjrN+d9/a8mmSlXWd/01KBgMatu+Zp31m7f1+zc/6fFrW7wQggEgSe3Y16SLFy1TaXWznltZpru6CcKtAXilVmyv1sod1brhiZUEYQB9IhyAL39ouXyBkL79p9VdBuFwAL7w/mWqaPDpD+9sS1gQJgQDQBJqH4DDugrC7QNwGEEYQF/oGIAlyVp1GoQ7BuCwRAVhQjAAJJnOAnBYxyDcWQAOIwgDiKfOAnBYxyDcVQAOS0QQJgQDQBKpbmzpMgCHhYNwvdffZQAOW7mjWt/84wfa19gSj3IBpLBdtc2dBuCwcBB+c1OlSmu8XQbgsD+8s01Pvb9DlfVdj4mlro8kAgD0uZZgUFedOEY/+uu6bsc9t7JMf129Wy3Bzr/5hLmcRt/43FGyPRzDDADRGpCZrs8eXahX1+3tcoy10refWa10p6PHr1dFuW6dPXW4CnLcsS61U6wEA0ASKcrN0BmTh+iHX5zQ49hIAvDDV87UhCG5yu+jbyoAUkdRrkf/86VJOmVCUY9jIwnAf7xmTrfHwMcaIRgAkkijL6A1pbU6fVJkQbgr4QA8Oj9Te+q98vfwDQgADkU0QbjrOfo+AEtshwCApBKyVrc9v1aVDS1adtvnJKnHrREdhQPwqEGZ+szP39DUEXlafNVsuTJY9wAQe+EgLKnbrRGdvzYxAVhiJRgAkkpWepr+dN1cDcpK1/H/+1rUK8LtA/C8u9/QUYOz9cDlxcrNcMWxagCp7lBWhBMZgCVCMAAkFYfDaNSgTD13fWsQvvuVjTp3+nDlZ6VH9PpJw/I0aVieLnrgXR01OFtPfH12RMctA0BvFWS5dPOpx0Q8/tzpIzQwM3E/oLMdAgCSTDgIv/zNubLWoaseLVFVhC3OPthZox//fZ2eX/AZSSIAA+gT4T7AFy96L+LX3L/kE40bnK3PHl2ggpy+/1rFSjAAJCGHw8hapxY8+UG3fYA789zKMv38Hxtk4lQbALTX00EYXbFW+s6zq/Xmx50fsRxvhGAASELdnQQXia6OWAaAWDrUAByWyCBMCAaAJNPbABxGEAYQT70NwGGJCsKEYABIIuV1kQVgl9PotElDepwvvDViL0EYQIztqI4sAA/OcWv2mEHdjgkH4SWbKlXRR0GYEAwASaandkHhNmg/+/LkiNqnjR+WK2s5NhlAbHlcThXkdN+5pijXrWeunaOFl8zosX2aO82hUflZykjrm3hKCAaAJDI416PvnnqMzj9uRKfPt+8DPO3Of/bYR/j2s8brrCnDNCQvI14lA0hRQ/My9PCVMzV+aE6nzxfluvX0NXM0uiBLBdnubvsIe1wOPfH143XM4CxlZ0TWErK3CMEAkET8wZAqG1p0cydBuONBGJK6PVDj9rPG68zJQzkyGUDcdBWE2wfgT691fqBGIgKwRAgGgKTiC4R08YPL9OWFbx0QhDs7Ce6pq4/XwExXp0E4HICP/9/XdO3iFapr9ifqrwTgMNcxCHcWgMM6BuFEBWBJMv1xn1hxcbEtKSlJdBkAEHNef1Crd9bo0ofe0+Bsl55f8Bn9+p8f64wpQw8IwI9/fbYGZ7u1rapR5/3+XVU3+bXsts/p5Q/3KGTt/gA8MNOl566fq9H5WXI46BwMIH521zbrtufX6o4vTuw0ALe3t86r/31pvS6bMzquAdgYs8JaW9zpc4RgAEgunQVhnz94QAAe0nYSXChkDwjC797yOclYzf3Z6wRgAH2uqsGn/Gx3RGMr6r3KSHPEdQWYEAwA/Uz7IOwPtn6d7hiAwzoGYUkEYABQ9yGYPcEAkIQ8Lqemjhygx6+aLZfTdBmApdYjlkfnZ+m56+dqYKaLAAwAEWAlGACSmNcf1LrddRo2IKPTANxeeEVYEgEYANT9SnBaXxcDAIicx+XU1OF5cjp7/sVdeEU4/D4AoGuEYABIcpEE4DDCLwBEhj3BAAAASDmEYAAAAKQcQjAAAABSDiEYAAAAKYcQDAAAgJRDCAYAAEDKIQQDAAAg5RCCAQAAkHIIwQAAAEg5hGAAAACkHEIwAAAAUg4hGAAAACmHEAwAAICUQwgGAABAyiEEAwAAIOWkJboAAAAA9H/1zS0KWCkUssrPdvc4vqLeK2ulwbmePqjuYKwEAwAAoFfqm1u0cW+D5v7va3pnc6WqGnzdjt9a2aAzf/O2Hnx7q8rrvH1U5YEIwQAAADhk4QB86UPvqdkf1DefXtVtEN5a2aAL7l+m8nqfHliyJWFBmBAMAACAQ9I+AHv9IUmSteoyCLcPwGGJCsKEYAAAAEStswAc1lkQ7iwAhyUiCBOCAQAAELVdtb5OA3BY+yC8Y19TlwE47IElW/R0yU5V1vdNEKY7BAAAAKI2INOlE48q0L/Wl3c5xlrpP/+4Su40h3yBzsNyWGGOW2dOHqqBma5Yl9opVoIBAAAQtaJcj35y7mR9YfzgHsdGEoCfvuZ4jRqUIafTGasSu0UIBgAAwCGJJgh3JREBWCIEAwAAoBd6E4QTFYClKEKwMabQGDPdGDPFGJMdz6IAAADQfxxKEE5kAJYiCMHGmAnGmH9JWirpPUmLJK01xjxijMmLd4EAAABIfkW5Ht16+viIx58/Y4Tys9MTEoClyFaCH5a0wFp7lKQTJW2w1o6R9I6kh+JZHAAAAPqHrZUNunjRsojH37fkE72xsaLPWqJ1FEkIzrDWbpQka+1ySZPb3l8kaWIcawMAAEA/0N1BGF2xVvrW06v0zidVCQnCkYTgT4wxtxtjTjDG3CNplSQZY1wRvh4AAACHqUMJwGGJDMKRhNj5knIk3SbJK+mbbdczJV0Rp7oAAACQ5HoTgMMSFYR7DMHW2hpr7XettWdZa79vra1vu15rrd2/8cMY89t4FgoAAIDksa2qMaIAXJjt1nGjBnY7JhyEl27Zp4q6vgnCsdzOcEIM5wIAAEASS3c6NKCHI44Lc9x6+trjdf+lx/XYPi3d6VBRrlseV9/stmVPLwAAAKI2bECGHvnaLB1d1PnxEe37ABfkuLvtI+xOc2jxVbM0fkiOcjLS41n2foRgAAAAHJKugnBnB2F0daBGIgKwFNsQbGI4FwAAAPqBjkG4u5PgOgbhRAVgKbpjkyf3MOTeLl53mjFmozFmszHm1i7GfNUYs84Y85Ex5slIawIAAEDihYPwCUfl93gUcjgInzl5SMICsCQZa21kA415S5Jb0iOSnrDW1kbwGqekjyWdLKlU0vuSLrLWrms3ZpykZyR9zlpbbYwZbK0t727e4uJiW1JSElHdAAAA6Bv7Gn3K86RFdBRyRb1PnjQT1wBsjFlhrS3u7LmIV4KttZ+RdImkkZJWGGOeNMac3MPLZknabK3dYq1tkfRHSed0GHO1pIXW2uq2j9NtAAYAAEByGpTljigAS63bJhKxAhwW1Z5ga+0mSf8t6RZJn5X0G2PMBmPMl7t4yXBJO9s9Lm271t7Rko42xrxjjFlmjDmts4mMMdcYY0qMMSUVFRXRlA0AAAAcIJo9wVOMMb+StF7S5yR90Vo7vu39X/WihjRJ4yT9h6SLJC0yxgzoOMha+4C1tthaW1xYWNiLDwcAAIBUF81K8G8lrZQ01Vq7wFq7UpKstbvUujrcmTK1bp8IG9F2rb1SSS9aa/3W2q1q3UM8Loq6AAAAgKhEE4LPlPSktbZZkowxDmNMpiRZaxd38Zr3JY0zxowxxqRLulDSix3G/Fmtq8AyxhSodXvElijqAgAAAKISTQj+l6SMdo8z2651yVobkPQNSa+odRvFM9baj4wxdxpjzm4b9oqkKmPMOkmvS7rZWlsVRV0AAABAVNKiGOux1jaEH1hrG8Irwd2x1r4k6aUO137Q7n0r6aa2PwAAAEDcRbMS3GiMmRF+YIw5TlJz7EsCAAAA4iualeBvSfqTMWaXWo9IHiLpgrhUBQAAAMRRxCHYWvu+MeZYSce0XdporfXHpywAAAAgfqJZCZakmZJGt71uhjFG1trHYl4VAAAAEEcRh2BjzGJJYyWtkhRsu2wlJUUI9vv9Ki0tldfrTXQpCeXxeDRixAi5XK5ElwIAAJC0olkJLpY0oa2bQ9IpLS1VTk6ORo8eLWNMostJCGutqqqqVFpaqjFjxiS6HAAAgKQVTXeID9V6M1xS8nq9ys/PT9kALEnGGOXn56f8ajgAAEBPolkJLpC0zhizXJIvfNFae3bXL+lbqRyAw/gcAAAA9CyaEHxHvIo4HNTU1OjJJ5/UDTfckOhSAAAA0IOIt0NYa9+UtE2Sq+399yWtjFNd/U5NTY1+97vfJboMAAAARCDiEGyMuVrSs5Lub7s0XNKf41FUf3Trrbfqk08+0bRp03TzzTfr7rvv1syZMzVlyhT98Ic/lCRt27ZNxx57rK688kodffTRuuSSS/Svf/1LJ5xwgsaNG6fly5dLku644w5ddtllmjNnjsaNG6dFixZJknbv3q158+Zp2rRpmjRpkt56662E/X0BAAD6s2hujFsg6QRJdZJkrd0kaXA8iuqPfvazn2ns2LFatWqVTj75ZG3atEnLly/XqlWrtGLFCi1ZskSStHnzZn3729/Whg0btGHDBj355JN6++239Ytf/EI//elP98+3Zs0avfbaa1q6dKnuvPNO7dq1S08++aROPfVUrVq1SqtXr9a0adMS9dcFAADo16LZE+yz1raEb7wyxqSptU8wOnj11Vf16quvavr06ZKkhoYGbdq0SUcccYTGjBmjyZMnS5ImTpyoz3/+8zLGaPLkydq2bdv+Oc455xxlZGQoIyNDJ510kpYvX66ZM2dq/vz58vv9+tKXvkQIBgAAOETRrAS/aYz5nqQMY8zJkv4k6a/xKat/s9bqtttu06pVq7Rq1Spt3rxZV111lSTJ7XbvH+dwOPY/djgcCgQC+5/r2OXBGKN58+ZpyZIlGj58uK688ko99lhSnFMCAADQ70QTgm+VVCFpraRrJb1krf1+XKrqh3JyclRfXy9JOvXUU/Xwww+roaFBklRWVqby8vKo5vvLX/4ir9erqqoqvfHGG5o5c6a2b9+uoqIiXX311fr617+ulSu5LxEAAOBQRLMd4kZr7b2SFoUvGGO+2XYt5eXn5+uEE07QpEmTdPrpp+viiy/WnDlzJEnZ2dl6/PHH5XQ6I55vypQpOumkk1RZWanbb79dw4YN06OPPqq7775bLpdL2dnZrAQDAAAcIhPpKcjGmJXW2hkdrn1grZ0el8q6UVxcbEtKSg64tn79eo0fP76vS4mLO+64Q9nZ2frOd75zSK8/nD4XAAAAh8oYs8JaW9zZcz2uBBtjLpJ0saQxxpgX2z2VI2lfbEoEAAAA+k4k2yHelbRbrccm39Puer2kNfEoKtXdcccdiS4BAADgsNZjCLbWbpe0XdKc+JcDAAAAxF80J8Z92RizyRhTa4ypM8bUG2Pq4lkcAAAAEA/RdIf4uaQvWmvXx6sYAAAAoC9E0yd4LwEYAAAAh4NoQnCJMeZpY8xFbVsjvmyM+XLcKuuH5s+fr8GDB2vSpEmJLgUAAADdiCYE50pqknSKpC+2/TkrHkX1V1deeaX+8Y9/JLoMAAAA9CDiPcHW2q/Fs5C+9vLLL2vhwoXau3evioqKtGDBAp1++um9mnPevHnatm1bbAoEAABA3ETTHeJoY8y/jTEftj2eYoz57/iVFj8vv/yyfvKTn2jPnj2y1mrPnj36yU9+opdffjnRpQEAAKAPRLMdYpGk2yT5Jclau0bShfEoKt4WLlwor9d7wDWv16uFCxcmqCIAAAD0pWhCcKa1dnmHa4FYFtNX9u7dG9V1AAAAHF6iCcGVxpixkqwkGWPOV+txyv1OUVFRVNcBAABweIkmBC+QdL+kY40xZZK+Jen6uFQVZwsWLJDH4zngmsfj0YIFC3o170UXXaQ5c+Zo48aNGjFihB566KFezQcAAID4iKY7xBZJXzDGZElyWGvr41dWfIW7QMS6O8RTTz0Vi/IAAAAQZxGHYGPMNyX9QVK9pEXGmBmSbrXWvhqv4uLp9NNP73XoBQAAQP8UzXaI+dbaOrUelpEv6TJJP4tLVQAAAEAcRROCTdvbMyQ9Zq39qN01AAAApLiappaIx1Y1+OJYSc+iCcErjDGvqjUEv2KMyZEUik9ZAAAA6E/21nn10FtbtafW2+PY8jqv/rJql7ZVNvZBZZ2LJgRfJelWSTOttU2S0iUdVkcpAwAAIHp767z64V8+1G9f36xrF5d0G4TL67x6avkO3fm3dbrwgWXaVpWYINxjCDbGHNv27rS2t0e23RQ3SlHcWAcAAIDDTzgA/+Oj1kPHVpfWdhmEwwH4V//aJEnaU+fVhfcnJghHshJ8U9vbezr584s41dUv7dy5UyeddJImTJigiRMn6t577010SQAAAHHTMQCHdRaEOwbgsEQF4R5DsLX2mra3J3Xy53PxL7H/SEtL0z333KN169Zp2bJlWrhwodatW5fosgAAAGKuqwAc1j4IV9Z3HoDDEhGEI94TbIz5StvNcDLG/Lcx5nljzPT4lRY/fr9fN954o2688UY1NTXtf9/v9/dq3qFDh2rGjBmSpJycHI0fP15lZWWxKBkAACCp1DS16PWNFd2OWV1aq2sWl2jh6590GYDD9tR59ecPylRZ3zddI6K5Me52a229MeZESV+Q9JCk++JTVnzddNNNWrlypVauXKkzzjhj//s33XRTzy+O0LZt2/TBBx9o9uzZMZsTAAAgWQzJ8+jR+bPkTus+Tq4prdUf3t3W43xXzB2ti2cdoYIcd4wq7F40ITjY9vZMSQ9Ya/+u1g4R/ZbP51NDQ4N8vtj+xNHQ0KDzzjtPv/71r5WbmxvTuQEAAJJBXka6xg/NiSgI9+SKuaO14D/GanCuJ0bV9SyaisuMMfdLukDSS8YYd5SvTxp33XWXXC7XAddcLpd+/vOf93puv9+v8847T5dccom+/OUv93o+AACAZBWLIJyIACxFF2K/KukVSadaa2skDZJ0c1yqirNbbrnloP2/fr9f3/3ud3s1r7VWV111lcaPHx/TrRUAAADJqjdBOFEBWIoiBLcdkPEXSY3GmCMkuSRtiFdhfcHtdis7O1tud2z2nrzzzjtavHixXnvtNU2bNk3Tpk3TSy+9FJO5AQAAklU4CD90RXHEr/ny9OH6RoICsBTFYRfGmBsl/VDSXn16XLKVNCUOdcXVL3/5y/0rtXfddZduueWW/dd748QTT5S1ttf1AQAA9Dc+f0jvb6uOePym8gYFEpibTKShzRizWdJsa21VfEvqWXFxsS0pKTng2vr16zV+/PgEVZRc+FwAAIC+1NVBGD2ZOiJP9112nIbmZcSlLmPMCmttp8vT0Wzc2CmpNjYlAQAA4HBwqAFYau0jfN3iFdpd2xyHyroX8XYISVskvWGM+buk/T3FrLW920MAAACAfqk3ATgsHITjuSLcmWhWgndI+qdaewPntPsDAACAFBOLAByWiBXhiFeCrbU/kiRjTHbb44Z4FQUAAIDkVtngiygAXz5nlL4wvkhXP1YiXyDU5bjVpbV68K0t+sZJR2lgVvxPjYt4JdgYM8kY84GkjyR9ZIxZYYyZGL/SAAAAkKwKst368ZcmdTvmyrmj9Y2TjtK0kXk99hE+YWy+rpk3tk8CsBTddogHJN1krR1lrR0l6duSFsWnrP5r9OjRmjx5sqZNm6bi4sh75QEAAPQng3M9OmVCUZdB+Mq5o3VDWx/g3B4O1DhhbL5+ecE0FSXpsclZ1trXww+stW9Iyop5RYeB119/XatWrVLHNm4AAACHk66CcPsAHNbVyXKJCMBSlN0hjDG3S1rc9vhStXaM6HfmzZunpqamg65nZmZqyZIlCagIAACgfwoHYUn67z9/2GkADmsfhK94eLmKRw1MSACWogvB8yX9SNLzaj0p7q22a/1OZwG4u+vRMMbolFNOkTFG1157ra655ppezwkAAJDMwkF4wrBcjRiQ0e1RyOEg/Nz1c1WY405IAJai6w5RLek/41jLYeHtt9/W8OHDVV5erpNPPlnHHnus5s2bl+iyAAAA4mpwrqfb8NteXka68oanx7mi7kXTHeKfxpgB7R4PNMa8Ep+y+q/hw4dLkgYPHqxzzz1Xy5cvT3BFAAAA6CiaG+MKrLU14QdtK8ODY19S/9XY2Kj6+vr977/66quaNKn71iEAAADoe9HsCQ4ZY46w1u6QJGPMKLXuDUabvXv36txzz5UkBQIBXXzxxTrttNMSXBUAAAA6iiYEf1/S28aYNyUZSZ+R1C/v+srMzOyyO0RvHHnkkVq9enWv5gAAAED8RXNj3D+MMTMkHd926VvW2srw88aYidbaj2JdYDzQBg0AACC1RbMSrLbQ+7cunl4saUavKwIAAADiLJob43piYjgXAAAAEDexDMEJv0nO2oSXkHB8DgAAAHoWyxCcUB6PR1VVVSkdAq21qqqqkseTmJNXAAAA+ouo9gT3oCWGc0VtxIgRKi0tVUVFRSLLSDiPx6MRI0YkugwAAICkFlUINsZMkTS6/eustc+3vT2+i5f1CZfLpTFjxiSyBAAAAPQTEYdgY8zDkqZI+khSqO2ylfR8HOoCAAAA4iaaleDjrbUT4lYJAAAA0EeiuTFuqTGGEAwAAIB+L5qV4MfUGoT3SPKptS+wtdZOiUtlAAAAQJxEsxL8kKTLJJ0m6YuSzmp72y1jzGnGmI3GmM3GmFu7GXeeMcYaY4qjqAkAAACIWjQrwRXW2hejmdwY45S0UNLJkkolvW+MedFau67DuBxJ35T0XjTzAwAAAIcimhD8gTHmSUl/Vet2CEmftkjrwixJm621WyTJGPNHSedIWtdh3P9IukvSzVHUAwAAABySaLZDZKg1/J6i1m0Q4S0R3RkuaWe7x6Vt1/YzxsyQNNJa+/fuJjLGXGOMKTHGlKT6gRgAAADonYhXgq21X4v1BzfGOCT9UtKVEXz8ByQ9IEnFxcWpezYyAAAAei2awzI8kq6SNFGSJ3zdWju/m5eVSRrZ7vGItmthOZImSXrDGCNJQyS9aIw521pbEmltAAAAQDSi2Q6xWK0h9VRJb6o10Nb38Jr3JY0zxowxxqRLulDS/pvrrLW11toCa+1oa+1oScskEYABAAAQV9GE4KOstbdLarTWPirpTEmzu3uBtTYg6RuSXpG0XtIz1tqPjDF3GmPOPtSiAQAAgN6IpjuEv+1tjTFmkqQ9kgb39CJr7UuSXupw7QddjP2PKOoBAAAADkk0IfgBY8xASberdUtDtqROwywAAACQzKLpDvFg27tvSjoyPuUAAAAA8RfxnmBjTJEx5iFjzMttjycYY66KX2kAAABAfERzY9wjar3BbVjb448lfSvWBQEAAADxFk0ILrDWPiMpJO3v/BCMS1UAAABAHEUTghuNMfmSrCQZY46XVBuXqgAAAIA4iqY7xE1q7QpxpDHmHUmFks6PS1UAAABAHEUTgtdJekFSk1pPivuzWvcFAwAAAP1KNNshHpN0rKSfSvqtpKPVepQyAAAA0K9EsxI8yVo7od3j140x62JdEAAAABBv0awEr2y7GU6SZIyZLakk9iUBAAAA8dXjSrAxZq1aO0K4JL1rjNnR9niUpA3xLQ8AAACIvUi2Q5wV9yoAAACAPtRjCLbWbu+LQgAAAIC+Es2eYAAAAOCwQAgGAABAyiEEAwAAIOUQggEAAJByCMEAAABIOYRgAAAApBxCMAAAAFIOIRgAAAAphxAMAACAlEMIBgAAQMohBAMAACDlEIIBAACQcgjBAAAASDmEYAAAAKQcQjAAAABSDiEYAAAAKYcQDAAAgJRDCAYAAEDKIQQDAAAg5RCCAQAAkHIIwQAAAEg5hGAAAACkHEIwAAAAUg4hGAAAACmHEAwAAICUQwgGAABAyiEEAwAAIOUQggEAAJByCMEAAABIOYRgAAAApBxCMAAAAFIOIRgAAAAphxAMAACAlEMIBgAAQMohBAMAACDlEIIBAACQcgjBAAAASDmEYAAAAKQcQjAAAABSDiEYAAAAKYcQDAAAgJRDCAYAAEDKIQQDAAAg5RCCAQAAkHIIwQAAAEg5hGAAAACknLREF5BIFfVeNfiCcZk72+1UYY4nLnMjtfH/LQAAvZfSIbjBF9RJ/9/encfJVdb5Hv/8qnrL0gmJaSCQQAgEWSOEFoIwEJZRGBC8ooDLiF4Vx1EH8eI222Vm9M4iiDoTUa56QYdhETdc0cFEQECTEEAQkRiWhDUxIVuvVfXcP7oCTacDIV2nejmf9+uVV/os9asneeo8/a1TT51zyeJMai+6aAFtrZmUVs75upUkaeicDiFJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsYNyiwAAGC5JREFUsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyp3MQ3BEnBIRD0bEioj4xCDbPxIRv42IeyPi5ojYO+s2SZIkKd8yDcERUQQWAqcCBwFviYiDBuy2HGhPKc0FbgD+Lcs2SZIkSVmfCT4SWJFSWplS6gGuBc7sv0NKaVFKqaO6eCcwI+M2SZIkKeeyDsF7Aqv6La+urtuedwM/HmxDRJwfEUsjYumaNWtq2ERJkiTlzYj5YlxEvB1oBz4z2PaU0hUppfaUUntbW1t9GydJkqQxpSHj+o8DM/stz6iue4GIOBn4G+D4lFJ3xm2SJElSzmV9JngJMCci9omIJuBc4Mb+O0TE4cCXgTNSSs9k3B5JkiQp2xCcUioBHwRuAh4Ark8p3R8R/xgRZ1R3+wwwEfhmRNwdETdup5wkSZJUE1lPhyCl9CPgRwPW/X2/n0/Oug2SJElSf5mHYEm1NaGpyH9/5PjMamt4rdnUxebucia1JzYXaWttyaS2pPzJaryq11iV6xA8obnIoosWZFZbykJHT5mTP/uLTGovzuh40I7b3F3mhEsWZ1J70UULaGvNpLSkHMpqvKrXWJXrELwl4182+MtGkiRpRBox1wmWJEmS6sUQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3IqU03G142drb29PSpUuHXOeZTV1s6S7XoEXbmtBcZNfWlkxqK9/Wbupmc3cpk9oTmxuY1tqcSW3tGMclSaNFVuNVLceqiFiWUmofbFtDTZ5hlOrurXDCJYszqX3rx07IpK40rbXZoDqGbekuZzYuLbpoAbRmUlpSDmU1XtVrrHI6hCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyp1IKQ13G1629vb2tHTp0iHXWb+lh83dpRq0aFsTmxuYMqEpk9qSxq41m7rY3F3OpPbE5iJtrS2Z1JaUP1mNV7UcqyJiWUqpfbBtDTV5hlFqyoQmg6qkEaWttYW21uFuhSS9tNE+XjkdQpIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuNAx3A4bTmk1dbO4uv2DduMYCEcHkpiJrO3pJwPqOHjZ29tLcUKSttZmGYjC+qQilCtFYpKGQWLu59II6E5uLtLW21PFfo7wY+LodV4BCQ5EEjG8osKGrRDkl1m3pYXN3iQlNDbxiYhPFQjC5pYEtPWUKEaRUpqP3hbV93Q6/gf27y7ignIqUyxWaGwps6SnTW0ms3dRNV2+Z1pZGpkxopBDBlHFFNndXIILenjIDutf+lVRTA8erXSc2kKJIoVJic2+it5zo6q2wZnM35UpiyvhGJo1rhAS7T2piU3eF7lKZzt7KC+rWa6zKdQje3F3mhEsWAzBr6jiufd/RNBWDrlLi6iWruOqOR3lsXcc2j2ttbuD1r5rO/zx2Nq1ARyXx0NMbOf8bdz23z6KLFtDWWqd/iHKl/+v27CP24COvPYAg0V1K/Oedj3LtklWs2dS9zeOmTWzi7PaZnHvkTMY3FilT5KpfPsSVdzz23D6+bodf//69+PUH8rpDplOMCp29Fb58y0q+vfxxnh347gXYY3ILbz1qb/7H4XvQ0gjRVORj1yzn9ofXPbeP/SuplvqPV7d9/Hie7eyhEA08s6mbyxf/gUUPPkN36YUBNwIOmj6J84+bzZGzpjKusW9Swvx//vlz+9RrrHI6BM8HYIA7Vq7jlM/dwj/98IFBAzDApu4S//XrVfzpZb/gi4tXUiwEx+w3lSv+fF49m62cO/uIPfjkaw8A4Hv3PMlJl/6Cf//5ikEDMMDazT18cfEfOOnSX3DDXY+TElx4whzeefRe9Wy2dtDFrz+Qsw6fThBcdfujnHjpYr72y0cGDcAAT2zo4pKfPsifXnYL//3AWiop8bm3HM5r9pla55ZLypvbPn48u4xrJFHkb75zH2cu/CU/uf+pbQIwQEpw/xMbueDau3nzl+9g5doOEok7P3li3dud+xC8NQBHBJf97Pd84L+Ws7Gr9NIPpK8jr7rjEd72lV+zvqNsEFbdbA3A3QQXffMePvXDB+gpbzvYDKa3nPiXH/+OC65dTqdBeETaGoA398B7vr6EhYv/QCXt2GM7esp8/Fv3cvGN95MSBmFJmbrt48czubmR1eu7ef2/38bPH3xmhx+7en0nb7z8dm6672mAugfhSGkHR9YRpL29PS1dunTIdR5eu+W50/ALF63gG3c+9hKP2L592yZw9XuOolxJ3P/EBubsNol9pk0YchulgZ5atwWKfa/bj37zXm5dsXana82fPZXPnXMYEcHlix7ivGNm+7odZuu3dNBVCoLgPV9fwn2Pb9zpWqfPnc7fnnYghQg+fM1yPn3WXPtXUs1s6eqmp1RhQ1eFMxf+kg2dg39StSP+7U1zOemV0+itQGdvpWZjVUQsSym1D7Yt12eCxzUWaCokVjyzeUgBGOAPa7Zw2c8eohjB3JlTaG2uUSOlAYqNRRoLBW66/+khBWCAO1eu4/v3PEExEh84cU6NWqih6K0UKARcefvDQwrAAD+490mWPfosDdF3RliSaumpTb10l+GCa5cPKQAD/N1372NDV5nNnT20NESNWvjich2CC0BXOfjI9ffUpN51S1fxx44eJjTAdqZlSkNWriQ6S2X+z48eqEm9z9z0e7pKifKOft6uTDVUElu6y1xxy8qa1Pvkt++lq5woj8JP/SSNbLOmjuOWh9Zyz+oNQ67VXarw19/5DeNbGp/7lD5ruQ7BreMa+O0TG3mmhol14aIVdJT8ZaPstDYX+N7dTwz6hYOd0VOu8M2lq2mp06CjF5eKBb5668M7PAf4pWzsKnHbirU0FupzZkVSfjy1sZsvLf5DzerduXIdnb0VurrKL71zDWT+Wy8iTomIByNiRUR8YpDtzRFxXXX7ryJiVtZt2mpDZ4mv3/FITWv+9P6nKZUNwcrOuo4y1y4Z2vSdga5bsmqba2ZreHT1lvnO3Y/XtObVdz5KV29t3jRJ0lYdPWVWrt1S05rfWraatl3qcz3zTENwRBSBhcCpwEHAWyLioAG7vRtYn1LaD7gM+Ncs29RfqZJqcgp/YM0Nnb35PsWuTAWwal1nTWs+tbGLih+XjwjdpQodPbV9Q/LAk5sITwRLqrF7Vj9b85rLHl3PUxvrM6c066x2JLAipbQypdQDXAucOWCfM4Grqj/fAJwUUZ/hulINrLX24FOb2HVSU83rSgCbe3bsEn4v14bOkm/eRoDV62v7Bgf6przUavqMJG1192O1D8EPPr2pZtPBXkrWv/P2BFb1W15dXTfoPimlErABeMXAQhFxfkQsjYila9asqUnjsvqiSEdvmaLz75SR7ow+1u7uLdPSmElpvQwdGb3J8YuPkmqpVKrQ0Vv7aXRdveW6fXI1ak78pJSuSCm1p5Ta29raalKzmNH/8sTmBkoVz7ooGy2NxUzqjmsqsp2bkamOJjZnczd735hLqqWGhkIm49X4pgbqNTsv6xD8ODCz3/KM6rpB94mIBmAy8MeM2wVAoRBMnVD7aQsH7N7K0xtNE8rGxOZsQvAkTwOPCHtOGV/zms0NBZobRs05D0mjxLy9ptS85gG7t9JQpzftWY+KS4A5EbFPRDQB5wI3DtjnRuC86s9vAn6e6nQbu8ZicPheu9S0ZnNG74ykrVLqu0NhLc2cOq6m9bTzmorBpHG1HUMO2XNyTetJEsDcGbUfW149ayq7ttbne1WZhuDqHN8PAjcBDwDXp5Tuj4h/jIgzqrt9FXhFRKwAPgJscxm1rExsLvKu18yqac3T5k6nqegZF2Vn2vhG3nrUXjWt+baj9mZyi2/eRoIJzUXefMTMl97xZXjna2Y5J1hSzTU3FjlwemvN6kXAG+ftyZPru2pW88VkntZSSj9KKe2fUto3pfTp6rq/TyndWP25K6X05pTSfimlI1NKtblN0g7Y1FlidtvEmp0Fi4D3H78vzQH1ucKd8mhDT4lTD5les08cxjUWef3cPej06gEjQncp8Y6j96axWJuPA6dNbKJ97yk0OR1CUo3tOrGRD504p2b1Tth/V5oagmbvGFcPQVMx+MK5h9fkm4jvOXYfJrU00FFJRDbTNiUgGNdY4FNvOKQm1S4+42CvCjHCTGgscuHJ+9ek1mfPPowm+1dSBp7Y0M28vXbh6H23uajXyzahqcjFZx7Mho5u6nXrplyH4M5ShXKC6ZNb+OAJ+w2p1qF7Tubdx84mAT+49wk6vfmWMtLVU6annJg/eyqnHbr7kGq99qDdOH7/aZQqwce/ubxGLdSQpDJl4Kx5ezJ/9tQhlfrz+Xux/24TKZWCsxbeUZv2SVLVbpOaaCxW+MxZc9m1tXmn60TAZeccxqTmIlPGN9NZpztc5joEAyy47GYigrfN35u/XLDvTtU4bOYuXPGOI5jQmPjBvU/wqR/+rsatlJ5XAT7wn0uJCP7u9IM4fe70napzysG78U9vOISIvgC8+KF1tW2odkpHL1y+6CFaIvjcOYdxzE6eYXnrUTP54AlzCII3LrydxzfW/iYckvLtyQ09rN1Upq21keveN589d3n500sbCsHnzzmMuTMm010qc9Q/L8qgpYPLfQju7KwGYeAd8/fimvcetcPvZhoKwUdf90q+9PYjmNAA1y0zAKs+lj624bkg/LenHcgXzj2M1h2cIzyhqcilZ7+Ki884GMAAPAJdecdjXLboIcZFcOnZr+Ifzjh4hy9xNmV8I189r50PVT/dMgBLytLrPn8rj6ztZPdJzdzw/qM5u33GDj/2gN1b+eFfHcvR+0wlSHUNwAB+HZzng/DiC09i/13H890PHMOyR9fztdse5r4nNtBbfuG3qmdOHcdZ82Zw1rwZtDQE5ZS4/i4DsOpraxBe+PZ2jtnvFdx04XHc/MDTXP2rx/j9gNtOFgL223UibzlyL1538O60FAv0pmQAHsGuvOMxAN5/whxOP3Q6Jx+4K9+/90muX7KKh/+45QUXky8WggOnt3Le0bM4Zr9ptBSD3ooBWFJ9vO7zt3LTBX9CS2ORC0+ew/uO25er7niEH//mKdZs7n7Bvi2NBY6cNZW/OH5fZk2bQCEqVIYhAIMh+Dlbg/CiD59IsQBH7j2FedVrCHf2ViiVKxQKwbjGIpCY1NJId2+FhmKB7921ygCsYbE1CH/x7e0UAk47dDcWvHJXIvpuPVkqJ4qFYHxTkUpKtDYX6SolSgbgUWFrEP7gSftTLATnts/gtEN3JyLo7ClTriSKxWB8Y5EEtDQUKFcSPZXEWQvvMABLqputQXjqxHE00cuHT9qP8/9kNhUSnT0VUko0NRRoaihQDCiXK4xrLNJTGp4ADBB1ui9FTbW3t6elS5cOuc6aTV1s7s7mG2wTm4u0tXqhNNWer9uxzf6VNFpkNV7VcqyKiGUppfbBtuX6THBbawtttbvGs1QXvm7HNvtX0mgx2ser3H8xTpIkSfljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO6PyZhkRsQZ4NMOnmAaszbC+hpf9O3bZt2Ob/Tu22b9j23D1794ppbbBNozKEJy1iFi6vbuLaPSzf8cu+3Zss3/HNvt3bBuJ/et0CEmSJOWOIViSJEm5Ywge3BXD3QBlyv4du+zbsc3+Hdvs37FtxPWvc4IlSZKUO54JliRJUu4YgiVJkpQ7huB+IuKUiHgwIlZExCeGuz0amoiYGRGLIuK3EXF/RFxQXT81In4WEQ9V/54y3G3VzouIYkQsj4gfVJf3iYhfVY/j6yKiabjbqJ0TEbtExA0R8buIeCAijvb4HTsi4sLq2HxfRFwTES0ev6NXRHwtIp6JiPv6rRv0eI0+X6j2870RMW842mwIroqIIrAQOBU4CHhLRBw0vK3SEJWA/5VSOgiYD3yg2qefAG5OKc0Bbq4ua/S6AHig3/K/ApellPYD1gPvHpZWqRY+D/wkpXQA8Cr6+tnjdwyIiD2BvwLaU0qHAEXgXDx+R7MrgVMGrNve8XoqMKf653zg8jq18QUMwc87EliRUlqZUuoBrgXOHOY2aQhSSk+mlO6q/ryJvl+ge9LXr1dVd7sKeMPwtFBDFREzgNOAr1SXAzgRuKG6i/07SkXEZOA44KsAKaWelNKzePyOJQ3AuIhoAMYDT+LxO2qllG4B1g1Yvb3j9Uzg66nPncAuETG9Pi19niH4eXsCq/otr66u0xgQEbOAw4FfAbullJ6sbnoK2G2YmqWh+xzwMaBSXX4F8GxKqVRd9jgevfYB1gD/rzrd5SsRMQGP3zEhpfQ4cAnwGH3hdwOwDI/fsWZ7x+uIyFyGYI15ETER+Bbw4ZTSxv7bUt81Ar1O4CgUEacDz6SUlg13W5SJBmAecHlK6XBgCwOmPnj8jl7VuaFn0vdmZw9gAtt+lK4xZCQer4bg5z0OzOy3PKO6TqNYRDTSF4CvTil9u7r66a0fu1T/fma42qchOQY4IyIeoW/60on0zSHdpfrxKngcj2argdUppV9Vl2+gLxR7/I4NJwMPp5TWpJR6gW/Td0x7/I4t2zteR0TmMgQ/bwkwp/rN1Cb6JujfOMxt0hBU54d+FXggpfTZfptuBM6r/nwe8L16t01Dl1L6ZEppRkppFn3H689TSm8DFgFvqu5m/45SKaWngFUR8crqqpOA3+LxO1Y8BsyPiPHVsXpr/3r8ji3bO15vBN5RvUrEfGBDv2kTdeMd4/qJiD+jb45hEfhaSunTw9wkDUFEHAvcCvyG5+eM/jV984KvB/YCHgXOTikNnMyvUSQiFgAXpZROj4jZ9J0ZngosB96eUuoezvZp50TEYfR96bEJWAm8i76TNx6/Y0BE/ANwDn1X8lkOvIe+eaEev6NQRFwDLACmAU8D/xv4LoMcr9U3Pv9B3xSYDuBdKaWldW+zIViSJEl543QISZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO4ZgSZIk5Y4hWJIkSbljCJakYRARZ0TEJ156z20eNysi7sugPQsi4jX9lq+MiDe92GMkaTRreOldJEm1llK6kZF1V8oFwGbg9mFuhyTVhWeCJanGqmdrf1c9m/r7iLg6Ik6OiF9GxEMRcWREvDMi/qO6/5UR8YWIuD0iVu7oGdiIKEbEZyJiSUTcGxHvq65fEBGLI+KGajuurt6hiYj4s+q6ZdXn/EFEzAL+ArgwIu6OiD+pPsVxA9sUEdMj4pbqfvf121eSRhVDsCRlYz/gUuCA6p+3AscCF9F3++6Bple3nw78yw4+x7uBDSmlVwOvBt4bEftUtx0OfBg4CJgNHBMRLcCXgVNTSkcAbQAppUeALwGXpZQOSynd+iJteitwU0rpMOBVwN072FZJGlGcDiFJ2Xg4pfQbgIi4H7g5pZQi4jfArEH2/25KqQL8NiJ228HneC0wt9+Z48nAHKAH+HVKaXX1+e+uPudmYGVK6eHq/tcA579I/cHatAT4WkQ0VrcbgiWNSp4JlqRsdPf7udJvucLgJyD67x87+BwBfKh69vawlNI+KaWfDlKvvJ3nfCnbtCmldAtwHPA4cGVEvGMn6krSsDMES9LodRPw/upZWSJi/4iY8CL7PwjMrs4BBjin37ZNQOtLPWFE7A08nVL6v8BXgHk70W5JGnZOh5Ck0esr9E1zuKv6xbc1wBu2t3NKqTMi/hL4SURsoW9qw1bfB26IiDOBD73Icy4APhoRvfRNr/BMsKRRKVJKw90GSVKdRMTElNLmamheCDyUUrpsuNslSfXmdAhJypf3Vr8odz99X6T78jC3R5KGhWeCJWkEiohDgW8MWN2dUjpqONojSWONIViSJEm543QISZIk5Y4hWJIkSbljCJYkSVLuGIIlSZKUO/8fFc/C9UaOjoIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X_name------------------------------ beams\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXiU1cH38d+ZTPY9JGHfBVkUBIOAVotWq1attlWL+459Wn3aWltta/u0tfuib13aivuO2lpLXUsr4soSBGXfd0gIELJPZjJz3j+SoSFkmSFzzwTu7+e6uDSTe04O+M/Xw5lzjLVWAAAAgJt4Ej0BAAAAIN6IYAAAALgOEQwAAADXIYIBAADgOkQwAAAAXMeb6AkcjsLCQjtkyJBETwMAAAA92OLFi/dYa4va+94RGcFDhgxRaWlpoqcBAACAHswYs6Wj77EdAgAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrHJHnBAMAAKDnCgaD2l3jV8hKTaGQrJWSk4yspIKMZGWkJid6ikQwAAAAYmN/vV/1/qDmrCzX7E92auXOajUEgpIkj5GGFmbpM8f00tVThygzNUl9ctMTNlciGAAAAN1WVuXTK0t36N45a9XYFDrk+yErbaio1YaKWj350RZ9blSxfnrhWBVmpigtJf5JSgQDAACgW3bub9D/PLNYn2yvivg9/1m9W4u27NOj10zSqN7Zyk6P7xYJPhgHAACAw1ZW1aBrHlsYVQCHVTc06cpHFmhdRa0CLdsm4oUIBgAAwGEpr/bpl6+t1rrdtYc9RmNTSDOeKlVFnT+GM+saEQwAAIDDsmlPnWZ/urPb4+yp9eueOWu1p8YXg1lFhggGAABA1HZVNegP/1oTs/FeWbJDjU02ZuN1hQgGAABA1PxNIS3aXBmz8ZpCVq8v3xWz8briaAQbYx4zxuw2xizv4PvGGHOfMWa9MeZTY8xEJ+cDAACA2Fi1qzrmY36wfo/21jbGfNz2OL0S/ISkczr5/rmSRrT8miHpzw7PBwAAADGwaPO+mI+5cme1GvzxOSXC0Qi21r4rqbM/oQslPWWbzZeUZ4zp6+ScAAAA0D2hUEj76wMxH7faF5AxMR+2XYneE9xf0rZWX29vee0QxpgZxphSY0xpRUVFXCYHAACAQ3k8HqV4Y5+RKUkexeujcYmO4IhZa2daa0ustSVFRUWJng4AAICrje2XG/MxhxdlyeOSleAdkga2+npAy2sAAADowSYOyov5mCcMzFNxVlrMx21PoiN4tqSrW06JmCKpylobv7MxAAAAcFjyMlLUJye2wXpxyQB5Hdhm0R6nj0h7XtJHko41xmw3xtxgjPmaMeZrLY+8LmmjpPWSHpb0dSfnAwAAgNgozErRdacMidl4Y/rmKD8jJWbjdcXr5ODW2su6+L6V9A0n5wAAAIDYS/Em6cIT+un5hVu1eW99t8byGOm3F49Tv7z0GM0ugp8Zt58EAACAo0qf3HQ9eMVEpXZzC8MtZ4xQ39z47AUOI4IBAABw2AblZ+jx6yYddghfPXWwrpw8SL2yUmM8s84RwQAAADhs2enJOq5vjv5562c0um925O9L9eq+6Sfo69OGqzjGH7CLhKN7ggEAAHD0y8lIUU5Gih6/dpIWbtqnv8zbqJW7qtt9tiAzRVdMHqTpkwYpPyNZGamJyVEiGAAAADHRJzddXzyhv0qGFKgpGNKeGp8ag1ZGVjJGxdlpSvV6VJCZovSUxGYo2yEAAAAQU0aSx2OU7PVqb61f5TV+hUJSUst1cF4Tp2vhOsFKMAAAAGKirKpBq8tq9Kd3Nmjhpn3tPtM/L13XnjJE5x3fV4UZKUpJSYrzLJuZ5qN6jywlJSW2tLQ00dMAAACApJqGgPbW+XXbi5/o462VEb2nIDNFf7hkvEb3zVafXGfOBzbGLLbWlrT3PbZDAAAA4LBV1we0rqJW5933XsQBLEn76vy67olFembBVpVX+xycYfuI4AiFQqFETwEAAKDHKavx6YqHF6jOHzys9z/w9nr9Y+kO7alpjPHMOsee4A6UV/nkawpq1a5qlW6uVGW9X6lej47vn6cJg/KUk56s3tmpSkri/yMAAIA7lVX59I1nP1ZD4PACOOy3b67RZ0cWqTA7fhdmEMFt7KnxaW15rf4wZ60Wb2lvSX+bJKlfbppuOHWozh/XT70TcMAzAABAIvn9Qb25YpfW7a7t9lhNIas7/rZMD14xUf3znNkf3BYR3EpZVYPufnWlXltW1uWzO6t8uvvVVXpuwVY9ePlEDSpIV0ZqchxmCQAAkHgV9Y165L1NMRtv6bb9qvU1xWy8rvB3+S127m/QFY8sjCiAW9tQUacLH/xAy3ZWq6Ex4NDsAAAAepaahiZtr2yI6ZgvlW6L2+ewiGBJ5dU+3fRUqTZUHN5yfmNTSNc8tlA7q+O7oRsAACBRlmzb78iYu6ric1KE6yO4uiGgl0q3a8XO9u+3jpQvENI3Zy1RWZz+wwEAACTS8u1VMR9z3e4axesGC9dHcG1jk+77z7qYjLV8R7WWOvB/RQAAAD1JKBSSr6l7J0K0x98UUrxuVHZ1BAeDIb22bJf8wdjtPfnTO+tZDQYAAEc1Y4xy02N/IEB2arLitRTs6gjeXduoVz/ZGdMxP91epUAMoxoAAKCnMcbohIH5MR93dN9smTgtBbs6gkMhaXVZTczHTcTVfwAAAPFirdXw4syYjztxcL5SvfHJU1dHcCAYUmNT7FdtN1bUxXxMAACAnsJaq4qaRo0fkBuzMT1GmjaySL5u3j4XKVdfltHZlpNUr0enjSzS+AF5GtU3W1mpXvmbQtq8t07LdlRp3poK7e7gjutgKF6fawQAAEiMrXvrNeO0YfrGc0tiMt4Xju+rJdsqdeboPjEZryuujuDkpEP3nGSnevX104dr8tBe+veqcr23rkIz392gal+TUpI8Gl6cqXED8vTbi8ep1tek+99erzXlB2+pKMxOiddvAQAAIO6MMRpSlKleGSk6c3Sx/r1qd7fGy01P1vfOGaW/zFuvC8YlxWiWnXN1BFsrDe6VoS176yVJp44o1G1njdRf5m3Ub99aI9tmQdcfDGnVrhqt2lWjFxZt0zHFWfrx+WO0cPM+/WnueoUXgIcXZcX5dwIAABA/xhiN6p2tjzbu1denHaO15bXauq/+sMbyeox+d/E4vVS6TdNLBiktmQ/GOS4t2aOTh/eSJF1SMkBXThmsax5fqLdWlB0SwO1Zv7tW1zy+UL5AUPdNnyCvx6gwK0UpcdrQDQAAkChNIauZ727Ud176RH+cfoJGFEe/CJienKT7LpugOavK9cDc9crLTFZacnxWgl1dazZkdd0pQ3XWmN46Y1SxvvHsx6puaIpuDCs98t4mvbd+j+6+6Dhdc/IQpXnjdMozAABAgvgCQa3YWa1Ne+p06/NL9JMvjtVNpw5TkieyDjppaIGevXGyXlmyQy+Vbpe10uylO+XAmQXtcnUEy0g5aUn61pkj9J0XP1FTNz7Q9sKibTKSvloyUCFLBAMAgKPbsh3/vTZ5e2WDrnp0gULW6q9fm6pbzjhGI3tnHRLEvXNSdeEJ/fT0DSfp0pIBuumpUv1rZfmB73+0ca+qGgJxmb+r9wRLUkMgpF++tkr1/u4fx/Hz11bppKEFykyNzzI+AABAIoRCVh9v3X/wa1Z69P1NevLDzTprTG9de/IQDS/OOnAclzFGu2t8WrJ1v741a6n21vkPGXf1rhoF4rQU7OoItjLaVxfQBxv2xmS82sYmvVS6XdeeMiQm4wEAAPRMVjW+9ldsm0JWbywv0xvLy6Ietc7fpDhdGOfy7RDWatairTEd8oXSbfLHazMLAABAAng8HqU78AG2VG9SRIcTxIKrI9gftJq/MTarwGH76vxqiNNNJwAAAIkQCoU0fkBezMdtbx+xU1wdwUbStn0NMR93057amI8JAADQUxhjNH5g7CP4xMH5ykyJT566OoIDDl1vvLf20I3eAAAAR5O0ZI8G98qI6ZhfmThAtY3x+Rt1V0dwpKvtyUlGOWlepSVH9seV6uV0CAAAcHSrqG7QzacNi9l4k4bkqylkZeK0HcLVp0N4PUapXo8a2/kg28nDe+lLE/prSGGm/E0h1fublJLkUUaqV/vr/frPqt36x9Kd7e7/HVaUGY/pAwAAJIQxRqnJyTp5eKHG9svRip3V3RovJcmjX315nP6zqlyXlPSP0Sw75+oI9hij0X1ztHTbf8+5O3l4L9121kgt2bZfD727Uet3H7q/Nz8jWeeP66dnbpysf60o0yPvb1Kw1daKXpkpcZk/AABAouRlJOtHryzXfdMn6KIHP1BNY3S37rb24wtGa/GWfZo8rJeSDHuC4+IrE5v/byPJY/STL47VJSUDdeNTpfrFa6vaDWBJqqwP6On5W3TJXz5UU8jqmRsmq29umiRp4qA8heJ1tgcAAECCpCQZlQzJ1/MLt+j5GVOUk354a6t3njtKo/rkaOa7m5Sb7pWX0yGcl57s0Wkji5SRkqQ/Tj9Ba8tq9O0Xlmp/fWTX9YVvRvnJ7BX60xUT1T8vXV+fdozSHDg3DwAAoCcxxuic4/ro9WVlmremXK/deqpOPaYw4vf3yUnTCzOmaMqwAl38l4/0iy8dJ6/HIxunyzKMPQJXLUtKSmxpaWm3x9lRWa/VZdXKSk3W68vL9OSHmw97rJG9s/S7i8crPyNZxhgNLIjtpyUBAAB6kooan+obg9rf4FdTSPr166v0m4vHqbLerz/N3aB5ayvU1M5JXCOKs3TzZ4dr6rBeemjeeo3tn6fsVK8G9cpQr6wUpSQZ9cpKi8kcjTGLrbUl7X3P1XuCJWl03xxt3lvfrQCWpLXltfrbx9t1/SlD1eiPbCUZAADgSBUMWaWleJRvUvT1Zz/Wd88+Vq8s3aF/LNmpmz87THecO0oe0/wZLEmykkIhq/LqRt3/9lr985Od+taZI3TvnLW6auoQZaZ6FWgKKiMlPp+tcnUEJyd5VNvYpNte+CQm4z310RZdeEJ/9crgg3EAAODolpRk1BgI6ff/Wqu7LzpOd72yXEXZqfrll49XebVP985Zq2U7qrS9svlispw0r8b2z9XUYb1057mjNWdluW54YpF+e8l4vblsl449c6QCTSFlpMRnW6mrt0PsrvKpdGulvv7sx4d8zxhpwsA8jR+Yp2P7ZCsrxSt/MKQte+u1bEeV5m/cq3r/ocejnT+ur374hdHqm5fe7fkBAAD0ZP9ZWa68zBT9dPYKXXPyEPmDIf3urTXaV9f5xWFej9HFJw7QV04coF+8tkr/+7kRWrRpr2acNkz5makxmx/bIToQtCG9uGjbQa+lJHl01dTBOu/4vvpk+36Vbq7UvDUVqvYFlJLk0fDiLI0bkKf/mTZcK3dW66F5G7Szynfg/W+tKNMd54yK928FAAAgrvbWNqq6MaA3VuzSXeeP0Z/f2aC5a3ZH9N6mkNWsRds0b22F/t9XT9DjH2zSjNOGq94fVH6crltwdwSHpKXb/3tG8PH9c/XjC8bolSU7dNnD89u9RGNnlU/vrdujB+eu1+ShBfp/0yfo5Y+3a1ZLTAeCVvvr/XwwDgAAHNUam4LKSPHqyxMH6DdvrtbiLZVRj7GryqcbnyzVI9eUaM7KMp18TC/1z49PQ7n6iLSgtQeOQztrTG/dcc4o3frcEj27YGu7AdzWgk37dMUj8zWkMFN3X3icWvZ9a31F++cLAwAAHC321we0t9avVz/ZdVgBHFbT2KTvvPSJTh9VrF6Zqar2xeeAAVdHcPjUjinDCnTVlMG68alFKqv2df6mNgJBq1+/sVq7qhp0x9nN2yAa2tkrDAAAcDRJ8Xo0ID9dzy3c2u2xtlc26NVPd2lXlU+hdo5Vc4KrIzjJY5SV6tWd54zS/85aIl+g69XfjvzpnQ3qn5+uKcMKlJueHMNZAgAA9CyhkFVdY1CPvLcxZmO+sGib+uSmyR/B38bHgqsj2OsxuuOcY/WndzZEfEtcZ/5v9gp97+xROqY4KwazAwAA6Jk8HqO0ZI/eW78nZmM2NoX00Ya9UpxujHN1BKd6jcYNyNO/VpbHZLx9dX69t36PCmJ4tAcAAEBPY63Vhopaxfqk3QWb9ilex/e6OoKNjF5ZsiOmYz6/YGvclvEBAAASwRijpduqYj7u8h1VCgSJYMfV+YOat7YipmOWVfvkb+KDcQAA4OhlrdXe2saYj1tZ75eJ034IV0ewMdKmvXUxH3fT3vqYjwkAANBTGGOUnBT7jPR6PHJg2Ha5OoIDQRvzvSySVF4V3TFrAAAAR5rj+uXEfMwhhRkyhpVgxzn1R+xx9Z8qAABwgxMG5cd8zAkD85WTGp8LjV2da8lJRslJsU/hoYVxuvQaAAAgQXLSklWQmRLTMS8Y11dBToeIj5G9s2M+Zp/ctJiPCQAA0JPsrWvUNVMHx2y8oYWZKsxOVU1jU8zG7IyrI7gwK1VfOL5vTMcc3TdbXvZDAACAo1x2mlfnjeur3jmxuR/hx+ePkdcTr7MhXB7BqclJuuiEfvJ6YvfH/bXPDle/vPSYjQcAANDThEIheT0e/fK1VfrFl45Xd1Nq+qSBWrmrWnvq/EqOYZd1xtURLEkpXo9mnDYsJmON7J2lyUMLYjIWAABAT2WMUZUvoLfXVOjdtRX6zVfGHXYInz22jz4/to/++O91mr10pyzXJsdHUXaarp46WMcUZ3VrnJQkj+6/bIL65LIKDAAAjn6fbNsvSXrqoy36dHuVHrt2kvpF8bmo5CSj284aqS9N6K+vP7tY/mBIn27fr8ZAfG7edX0ES1Kf3HQ9fu0kDcg/vIBNTjJ6+OoTVZQd209IAgAA9FSrdlYf+Pen52/R795aoz9eNkHfPnOE+uR0HMOpXo++PLG/Zs2Yqp37G/S1ZxbL1xK+63fXKj5nQ0jxOYjtCNAry6sXb56q7//tU81btyfi9/XPS9eDl09Q/7x0FWRyKgQAAHCHxuDBK7YrdlZr+sz5OmNUsX7xpeOUmerV2vIabd1Xr1DIqiAzVWP75Sgrzas3l5fp+icWqaohcNAY/mAobh+MI4Il7avzq7ohoLlryvSbi8fpk+1VunfOWq0uq+nwPQWZKbpyymBddtJArdpRrcKsVFVU+1TUyf/5AAAAHA2MMSrIOPRvwIMhqzkryzVnZbm8HqORvbPVPz9dHtMcyTPf3aBqX8dHoGWnJcsTpw/GuT6CwwH88Hsb9eyCrfrpP1frsWtK9Og1Jar3B7V4a6UWb65Uta9JKUlGY/vlaNLQXuqbm6bGQJMueuA9ldcENKI4S49fO4kQBgAArnDS0AI98v6mDr/fFLJauataK3dVd/hMW2P75igtOSkW0+uSqyO4ss6vGt9/Azjs+idLJUn9clP1o/PH6NtnjpCMkUfSziqf7n97neauqThorHW7a3XdE4v0+LWTVFnXqPzM2JyZBwAA0BON6hP7C8dOG1mo1KT4fGTN1REcCIb0yHubDgrg1nZWNep/nl0iSTp/XF/NXb1bdf5gh+Ot212ra59YpGdumOzIfAEAAHqKJI/RxEH5+nhrZczG+9zo3moIBJWR6nyiuvp0iJQkj6YM69XluXbfO+dY/fyi4zRrxhRlpnS+RD+6b7a4MA4AABztUr0efevMETEb76IT+isUskpJ4rIMx+VlpuiU4b10/2UTOwzh751zrC4tGai8jBSN6J3daQhfML6vfnT+GBVnsycYAAAc3ay1Gtk7S+eP69vtsQoyU3TbWSMUp/6V5PIIljoP4XAAF2Y17+9NS07qMIQJYAAA4CaBkPTzV1fqh+eN1vCizMMeJznJaOZVJ+qD9RXaWdUYwxl2zvURLLUfwm0DOKy9ECaAAQCA2zSFQirdsl93/nWZnrphssb2y4l6jKxUr565YbJ2VNbrzpeXq6ohELdrk4218bqXI3ZKSkpsaWlpzMfdX+fXBxv2auu+Ol3STgC35gsEta68Rk/P36rbzx5JAAMAAFfZU9Oo8hqfbniiVMcUZep3l47XXxdv133/WadAsOu+/OzIQv3swuO0cONe3fHyMv2/r56gcQPyVJiZrKz02NzCa4xZbK0tafd7RPDBKuv8agqFVBRB1PoCQdX6AiokgAEAgMus312rO/72iX58/ljd/PRi5acn65FrS1TV0KR5a3frjeVlWr2rRv5WN8sN7pWhU4b30oUT+qtvTppmf7JD98xZp3u/eoKWbN2voYWZOn9cX/XqZCEyGkQwAAAAYsofCGrDnjrd9cqyAyG8u8anzJQkvfi1qdpYUaex/XJljOQxRsZIK3dWa3hRln78yjJ9tGmfJB0I4H556fryxP6d/k18tDqLYFefE9ye3dU+WVn1zknv8tn99X4FQzZm/7cCAABwpEhJTtLwwkz9/KLjddcry/T8TZOVnupVdb1fv35jta49ZagKMpOV02Zrwy3Pfaxff3mcUrwe1TY26eWPdzgSwF1hJbiV3TU+zV66U1v21uvWM45RcSfXH++v92vZjio9/O5G/e6S8erNVckAAMCF/IGgKusaVRcI6erHFuq+6RNUmJWivIxDA1iSKqob1BSSbniyVDeeOlQTB+cpKzXZkQDubCWY0yFahAP456+t0tPzt+j+t9drd7Wv3WfDAXz9E4v07ro9+taspSrv4FkAAICjWZJHqg2EdOlDH2l7ZYMuf2S+Kmr96uh6saaQdP2Ti7RyV7W+89InKt1cKSVgUZYI1sEBHNZRCLcO4PAnHz/auJcQBgAArhMMBrV5X4O++tBH2lPrlyT5AiFd8ch8rd5dp7oG/0HP79rfoOufXKRVu2okNbfvd//6qd5ZW6E9NfHtKMcj2BhzjjFmjTFmvTHmzna+P8gYM9cYs8QY86kx5gtOz6m19gI4rG0ItxfAYYQwAABwk/YCOKy9EG4bwGGJCmFHI9gYkyTpQUnnShoj6TJjzJg2j90l6UVr7QRJ0yX9yck5tVZe3XEAh4VDuLMADiOEAQCAW2ytbD+Aw1qHcHm1r90ADguH8Lvr9qgiTiHs9OkQJ0lab63dKEnGmFmSLpS0stUzVlL4ipFcSTsdntN/f7C18gVCXT739PwtWl1WraXb9nd5+LM/GErEthYAAIC4SktOUnF2WocRLDWH8OUPz1evzBTtrOo8blO9Hg3plal0b3x26zr9U/pL2tbq6+0tr7X2E0lXGmO2S3pd0q3tDWSMmWGMKTXGlFZUVMRkckkeo69M7K/bPz+yy2cXba7sMoBPHJyvBy+foGR2WgMAgKNc39x0PXpticb07fy65MamUJcBnJbs0XM3TtHI4syY3RbXlZ6Qa5dJesJaO0DSFyQ9bYw5ZF7W2pnW2hJrbUlRUVHMfvgDc9fr/HF9Iwrhzpw4OF8PXD5BP5u9Uk2sBAMAABeINIQ7k4gAlpyP4B2SBrb6ekDLa63dIOlFSbLWfiQpTVKhw/OSJBVlp+lbZ47QQ+9u7FYIhwP47tkrddcFYzgzGAAAuEZ3QjhRASw5H8GLJI0wxgw1xqSo+YNvs9s8s1XS5yTJGDNazREcm/0OESjKTtNtZ4087BBuG8D98rq+aQ4AAOBocjghnMgAlhyOYGttk6RbJL0laZWaT4FYYYz5mTHmiy2PfUfSTcaYTyQ9L+laG+dr7FqH8OWTB+mMUcURvS89OUlPXDdJv31jNQEMAABcrW9uuv585cSIn7/5s8M1sndWQgJY4trkg1TU+LS6rKbTY9DaumrKIN1y+jHqnUsAAwAA9+roHOCOpCV79OyNkzWqOEuZDoUw1yZHYH+9P+oAlqSn52/VA3M3dHjFMgAAwNEu2gCWwucIL9Dq3bWH3CwXD0SwOr8JLhIdXbEMAABwtDucAA5LZAi7PoK7G8BhhDAAAHCb7gRwWKJC2NURHE0A56YndzkeIQwAANwi0gBOS/aofxeHB7QO4do4hbCrI9gfDOlvi3dEdBPcu987PaLj0+au2R2r6QEAAPRYvqag9tR0HqzhY9Be/vrJEd0st21fvRqaQrGcZodcHcEpSR794AujdN7xfTp8JnwV8rWPLejyHOEB+el67qbJSo3TndcAAACJMig/XS/cPEVFWantfr/1OcC9c9I6PUfYGOkPl4zXKccUqig7PpeOubrWgiGrX72+Uj86f0y7IRwO4J+9ulKPXjup0ws1wgH8zEdbFAgdecfOAQAARCMpKUmDC9oP4fYuwujoQo1wAJ86In4BLLk8gntlperOL4zRj/6x/JAQbh3Ad503RgWZqR3eLNc6gC8uGai8tK73DwMAABzp2gvhzm6CaxvCiQpgicsyJEnl1T7d9coy3X3hcbr71ZUqq248KIBb3wRXUePTPXPW6ubThunVT3dp1qJtBwXwsF6Z8rIdAgAAuEgwGNSWfQ265vGF+uNXJ3R5FfKuqgbd+GSpbvjMUEcDuLPLMojgFq1D2Mjop6+uOCSAw3bX+HRvSwhnpyXroXkbCGAAAOBqwWBQDQEr2VBEVyFX1vvVFAw5ugLcWQR7HfupR5C6xibVNfr1swuP0x0vL5PfH9TvLh2vpmBIVQ1+5bb6DxkIBuULhPTNz43QH/+zTqt3Ves3Xxmv/HSvqhubVOBNzP3XAAAAiVTtC2pfnV+56V5ldfGsLxBUZZ1fWamJS1HXL1vWNTZpx/56bdzToMtmztcvLjpOv7t0vL41a6n+s3q3yqsbVdVyXl0gGNSuqkbV+gL64v3v6/pThuqBy0/Ukx9u0m/fWqtaX0D76uJ/7R8AAEAiVdb59cGGPTrz3nl6buFW7ant+M4EXyCoteU1Ov/+9/V/s1ck7H4FV68E1zY2aef+em3d16Cbn16sYMjqkj9/pNz0ZK0ur1Hplkr93wVjdMoxhfIYo8r6gGp9AU2fOV/VviZdcP/7GjcwVws3VR4Y89YzjpEkFWSyIgwAAI5+4QC+9fklsla6Z846SdLlkwepMOvgrQ7hAJ4+c77q/UG9sbxMkvTTL45VcU58Pxjn6pVgX6BJ21oFsCTtqvZpdfl/bz756T9X6oP1e7S/TQBLkq8pdFAAv7R4u+5/e72agvE55BkAACCR2gZw2D1z1r7cMGQAACAASURBVOm5BQevCLcN4LA3lpclZEXY1SvB1kpvLi87EMCS9KUJ/dQvJ00Pztt44LWf/nOlVu+q1hvLyw4EsCSN6ZutK6cM1g/+vvzAa4s279OR91FDAACA6HQUwGGtV4SzUpPbDeCwRKwIu3oluCg7Td8751h9ZWJ/SdJXSwbotrOO1UUTB+j75xx70LMvlG4/JIAfu3aSRvfN0ZPXTZIkDemVoWdunKzecV7OBwAAiLddVQ0dBnDYPXPW6en5W7WmrOMADntjeZkefX+T9tfH5/NVHJGm5rN/3169WycPL9QVjyxQtS+gF2+eqrmryvWrN9cc8nw4gP931lIt2Vqpx66dpGSP0YCCDA3Iz4jZvAAAAHqqihqfHpy7QU98uDkm4x1TnKWnrj+p3eNpD1dnR6S5eiU4rCg77UAAb91Xr/31AV360Ec6fXTvQ1aEWwfwwk37FAhaXf/EIgVCNqHHfAAAAMRTUXaavnH6cF178pADrw0vyoz4/YMKMuT1GEnOBHBXiGBJ2/bVHwjgsPZCuG0Ah4VDeNmOqrgt4QMAACRa6xC+5MQBmnl1iW47a2SX7ysZnK+HrjpRf5w+Qcf2yY57AEtsh2g3gFvLy0jWizdP1aqdVZo8rNchAdxacpLRY9dO0vH9c5WXwRFpAADAHSpqfPpkW5X+59nF+u7Zo+QLBHXPnLXtPlsyOF/fPedYzXhqsT4/pre+8/lj1Sc3/tcmu3oleF+dX3f87dMOA1j674rwwILMTgNYal4RvumpUhknJgsAANADNQSatK68Vl97ZrECQatfvr5KaclJ7a4Itw7gqoaAXlq8XQ+8vU6VCbhszNURXJCZol9/ZZwG5He+/L6/PqAv//nDTgNYkrweo79ceaJCR+DqOgAAQLQaAk1asmW/rn5soZpaHTnbXgi3DeCwZxZs1R/+tSbuIezqCJakvrmpeu6mKV2GcFe8HqNHrinRcf1ylZ+ZGqPZAQAA9EwdBXBY6xDuKIDDEhHCro7gQDCofXUBzV1d3q0QDgdwqtejmsaA6hr4cBwAADi6bdvX0GEAh/3y9VVK9Xr0w/NGdxjAYc8s2KonP9ys2lb3MjjJ1Wd6VTUE9JPZK/TG8jKtKavVczdN0eUPz9f2yoaIxwgHsNdjdNnDC1SUlarXv/kZRX5ACAAAwJGnKCtVX5rQXy8t3t7pc796Y7WMUaeXakjSgPx0XTppoLLS4pOnro5gjzG6cspgzV2zW88t3CpJ+uvXpqghENKZ985TsONLTSRJD1x2gk4a2kub99To0pkLJUlfmdi/y//IAAAAR7r0lCR988wRamwKafYnOzt9NpIAfuzaSUpPjt8mBVdvhyjITNWI3pl65OoSpSV7dM3UwXp//V69/PEOzb1tmpKSOn7vA5edoL556br71ZUaXJitfrlp+tppw3TFlMHKS0+O328CAAAgAbZV1uv8+97T+eP66ovj+x32OAPy03X/ZRP0P88s1kuLt2tvbWMMZ9kxV68ES1JxdvM+4Le/M00fbtij7/71U1krWUlzb5um0+9555AV4XAAX/HIAvkCIfmagvr7N05RsCmkwuxUpSR3Us8AAABHgdy0ZI3tl6tbnluiBy6fIEldrgi3FQ7g21/6RPvq/Dr92GLlpsVnMdHVK8FhHpmDAliSHnh7vV5cvP2QFeG2ASxJc1bu1l2vLJPX6yGAAQCAKxTnpOner56gSUPydctzS6JeEW4bwC/ePFVDe2XK641Pnro+gvfU+PTO2oqDAjisbQi3F8Bhc1bu1g9fWabd1b44zh4AACBxWofwEx9u1pVTBkf83jNH99aKndUJCWDJ5dcmV9T4NK+DAG7tljOO0XUnD9HmvXXtBnBrZ40p1i8uOl7FOc5c/wcAANDT7Klp1NbKel33+KJOj0Fr6wdfGKVzx/ZR39x0RwK4s2uTXb0nOBiS1pTVdPmJxQfeXq9Vu6r1wfo9nQawJO3c71Mnx+UBAAAcVYIhq6qGQNQBLEm/fH21slO9Om98P+XEcRVYcvl2iNx0r248dZhu/MzQLp/9z6rdXQbw2H45LZdmxGqGAAAAPVcwZLV5T52+/OcP1eAP6ttnjVReRmQfbLvx1KEaXpSp7/99uV77dKeqfdEFdHe5OoLTU7zKSfPqptMiC+HOhAM4zWuUn8lWCAAAcHRrG8APXjFBHiM9dNWJXYbwD88brQH5Gfr9JeObQ/jl+IewqyNYkmp8Tdq2t65bIRwOYFmpsYm9EAAA4Oi3bV/9QQH8z0926Q//WqvfvbnmoBAekJ+uz40uPvC+H543Wg3+oH4ye4VufX7JQSH85vIy1cYphF0dwWVVPj383kZd/NB8zVtVflghHA7gUEia+uu3df0TpSqr4oQIAABwdMtM9Wpk76wDARw+I7h0S+WBEB7TN1sv3jxVf7hkvC4+ccCBAL5nzlpJ0vbKhgMhfHz/XB3fP1dpcTpu1tURnOSRju2TLWOk7/19ueatKtc3Tj9Gnx1ZFNH705OT9OyNk2WtdMpv3pYk9c9Pk8c4OWsAAIDEK8pO1QOXT9Srn+465JKMcAg/du0k9ctLV15Gir539rFqCoYOBHBYOIQfuHyCRhRnyZvEOcGOK8pO07SRRfrdxeNkjJSR5tXGPbVasGlvRO9vCAT1yPub1BQMKSmJ49EAAIB77K726Vevr9I/lrZ/S1zplkrd8twSlVf5tKfWp78v2aHfvLmm3We3VzboikcWaGcc/zbd1ecEh+2p8Wl/Q0BVDYEuzwFuzy1nHKPpkwYqJclDAAMAAFdYXVatC+5/X4Fg5y154uB8nTSkQH+et6HLMW85/Rhdd8oQ9cpKjckcOzsn2NUrwWHpXs9hB7DUfI7wrEXbHJgZAABAz9Q7J02PXjNJyUmd7wNdvKUyogCePmmgrp46OGYB3BXXR3Bdg1+rd9cedgCHPfD2ej01fwvXJgMAAFfIz0jR8QNyIwrhrkyfNFC3nTUyrn+j7uoIjiaAUyO4xYQQBgAAbhKLEE5EAEsuj+D6ppBmvrsxopvgFv7gc7ohguPTXli4TcZwPAQAAHCH7oRwogJYcnkEF2Wn6WcXHqfPjijs8Jmx/XL06DUlys1I0c2nDes0hIuyUvXCzVNUkMG9yQAAwD3CIfzQVe1+Bq1dF4zvq9s+n5gAllwewVLzpu7fXjK+3RAOB3Cf3HRJUnFOWochHA7gwQXpSkqKzyHPAAAAPUUgGNLasuqIn99R2aDQ4X8cq9tcH8FS+yHcNoDD2gthAhgAALjZ7hqf/v7xDv26g3OA2/Px1v265bmPE3bTLhHconUIdxTAYa1DmAAGAABuFg7gX72xOur3Nl+okZgQ5rKMNsqrfbJW6pPb9f6U8CkQvTKTCWAAAOA63Qng1koG5+uByydG1F/R4LKMKPTOSYv4P0BxTpqKc9IIYAAA4DqxCmApMSvCRDAAAACiVlHTGFEAf7VkgB666sQuj08r3VKph9/boMq6xlhNsVNEMAAAAKJWlJWqH3xhVKfPTJ80UN/5/LGaPLSgy3OEJw3J102nDld+JtcmAwAAoIcqzknTRSf07zCEW1+EkdfFhRqThuTr/stivye4M0QwAAAADktHIdzeTXAd3SyXiACWiGAAAAB0Q9sQ7uwq5LYhnKgAljgiDQAAADGwu9qndbtrNaI4q8urkCvr/dq0p079ctMdDeDOjkjzOvZTAQAA4BrFOWlK9nqUldz10bH5GSkKFlh5PZ2fGOEktkMAAACg27ZX1uv6xxdp0756BQLBTp8tr/bpOy8s1afbq7S/3h+nGR4s4gg2xvQ2xkxs+dXbyUkBAADgyLG9sl5XPrJAS7bt11cf+qjTEC6v9unbLyzVvHV7dMOTixIWwl1GsDHmBGPMfEnvSPpty695xpj5xpiJDs8PAAAAPVg4gDfvrZckVdYHOgzhcAB/uGGvJCkQtAkL4UhWgp+Q9E1r7Whr7Zktv0ZJ+pakxx2dHQAAAHqstgEc1l4Itw3gsESFcCQRnGmtXdD2RWvtfEmZsZ8SAAAAerqOAjisdQhX1LQfwGGtQ7gyTiEcyekQbxhjXpP0lKRtLa8NlHS1pDedmhgAAAB6rpCVmkKdH7VbWR/QpQ99pP556Vqxs7rL8fxNIYW6GDNWIjon2BhzrqQLJfVveWmHpNnW2tcdnFuHOCcYAAAg8bburdflj8zX9sqGbo2T5DF66MoTNXFwvgoyU2I0uxicE2ytfUPSG138kPuttbcexvwAAABwBBrUK0PP3TilWyHsVAB3JZaXZZwSw7HiorLOr9rGJkfGzkr1Kj+O/yEBAAASoTshnKgAllx+Y5w/GNKO/d1bvu/I0EI+MwgAANzhcEI4kQEsuTyCG/xBTZ8535Gx37l9miPjAgAA9ESDemXo6RtO0um/nxfR81+fNlyThxUoOy3Z4Zm1L5YRnLjLnw9TWrJHs2ZMcWxsAAAAtyiv9umHf18e8fPPzN+iC8b3U1qSR8nJSQ7OrH0RR7Ax5nhr7bJOHvljDOYTVw2BkGMrwXNZCQYAAC7R0UUYnQmfI/zCzVM1tCAj7iEczXLln4wxC40xXzfG5Lb9prX2idhNCwAAAEeCwwngsM6uWHZaxBFsrT1V0hVqvihjsTHmOWPMWY7NDAAAAD1adwI4LFEhHNXGVWvtOkl3SbpD0mcl3WeMWW2M+bITkwMAAEDPFGkAe4yUndr5DtxEhHDEEWyMGWeMuVfSKklnSLrAWju65d/vdWh+AAAA6IGqGgL6ZNv+Tp9J8hjNvKpEb3zrVA3IT+/02cr6gOatqdB+XyCW0+xQNCvB90v6WNJ4a+03rLUfS5K1dqeaV4cBAADgEv1z0zVrxhRlprT/gbbW5wAPyG8+R7izEL7trBG68IR+KspOc2rKB4kmgs+T9Jy1tkGSjDEeY0yGJFlrn3ZicgAAAOiZMtO8GlaY1W4It3cRRvhCjfZC+LazRmj6pEEqzolPAEvRRfC/JbWedUbLawAAAHCh9kK4s5vg2gvhRASwFF0Ep1lra8NftPx7RuynBAAAgCNF6xDOSfN2eRVy6xBOVABL0UVwnTFmYvgLY8yJkrq8HNoYc44xZo0xZr0x5s4OnrnUGLPSGLPCGPNcFHMCAABAgoVD+IM7z+g0gMMG9crQP75xSsICWIru2uRvSXrJGLNTzVck95H01c7eYIxJkvSgpLMkbZe0yBgz21q7stUzIyR9X9Ip1tpKY0xxlL8HAAAAJFhmWjRZKfXKSnVoJpGJeLbW2kXGmFGSjm15aY21tqszLE6StN5au1GSjDGzJF0oaWWrZ26S9KC1trLl5+yOdE4AAADA4Ygu2aVJkoa0vG+iMUbW2qc6eb6/pG2tvt4uaXKbZ0ZKkjHmA0lJkn5irX2z7UDGmBmSZkjSoEGDopw2AAAA8F8RR7Ax5mlJwyUtlRS+ysNK6iyCI53DCEnTJA2Q9K4x5nhr7UGnL1trZ0qaKUklJSW2mz8TAAAALhbNSnCJpDHW2mgCdIekga2+HtDyWmvbJS1o2VqxyRizVs1RvCiKnwMAAABELJrTIZar+cNw0VgkaYQxZqgxJkXSdEmz2zzzippXgWWMKVTz9oiNUf4cAAAAIGLRrAQXSlppjFkoqTH8orX2ix29wVrbZIy5RdJbat7v+5i1doUx5meSSq21s1u+93ljzEo1b7P4rrV272H8XgAAAICIRBPBPzmcH2CtfV3S621e+3Grf7eSbmv5BQAAADgumiPS5hljBksaYa39tzEmQ82ruwAAAMARJeI9wcaYmyT9VdJDLS/1V/N+3iOWxxyZYwMAAKB7otkO8Q01X36xQJKsteuO9NvdUr0ezZoxxbGxAQAA0DNFE8GN1lq/Mc1LnMYYr5rPCT5i+ZpCmj5zviNjv/PdaY6MCwAAgO6LZrlynjHmB5LSjTFnSXpJ0j+dmVZ8RHXicQ8aGwAAAN0TTQTfKalC0jJJN0t63Vr7Q0dmBQAAADgomu0Qt1pr/yjp4fALxphvtrwGAAAAHDGiWQm+pp3Xro3RPAAAAIC46XIl2BhzmaTLJQ01xrS+8jhb0j6nJgYAAAA4JZLtEB9K2qXma5P/0Or1GkmfOjEpAAAAwEldRrC1doukLZKmOj8dAAAAwHnR3Bj3ZWPMOmNMlTGm2hhTY4ypdnJyAAAAgBOiOR3it5IusNaucmoyAAAAQDxEczpEOQEMAACAo0E0K8GlxpgXJL0iqTH8orX25ZjPCgAAAHBQNBGcI6le0udbvWYlEcEAAAA4okQcwdba65ycCAAAABAv0ZwOMdIY8x9jzPKWr8cZY+5ybmoAAACAM6L5YNzDkr4vKSBJ1tpPJU13YlIAAACAk6KJ4Axr7cI2rzXFcjIAAABAPEQTwXuMMcPV/GE4GWMuVvN1ygAAAMARJZrTIb4haaakUcaYHZI2SbrSkVkBAAAADormdIiNks40xmRK8lhra5ybFgAAAOCcaE6H+KYxJnxW8L3GmI+NMZ/v6n0AAABATxPNdojrrbV/NMacLamXpKskPS3pX47MLA4yU5M09/Zpjo0NAACAnimaCDYt//yCpKestSuMMaazN/R0dY1Bnf77dxwZe+7t06RsR4YGAABAN0VzOsRiY8y/1BzBbxljsiWFnJkWAAAA4JxoVoJvkHSCpI3W2npjTC9JXKUMAACAI06XEWyMGWWtXa3mAJakYUf4LggAAAC4XCQrwbdJmiHpD+18z0o6I6YzAgAAABzWZQRba2e0/PN056cDAAAAOC+ac4IvafkwnIwxdxljXjbGTHBuagAAAIAzojkd4kfW2hpjzGcknSnpUUl/cWZaAAAAgHOiOR0i2PLP8yTNtNa+Zoz5uQNzipvMlCT9+7bPOjY2AAAAeqZoIniHMeYhSWdJ+o0xJlXRrST3OHX+oM68Z54jYzt1Ex0AAAC6L5qIvVTSW5LOttbul1Qg6buOzAoAAABwUMQrwS0XZPxDUm9jzKCWl1c7M634SE/2aNaMKY6NDQAAgJ4p4gg2xtwq6f8kleu/1yVbSeMcmFdcNARCmj5zviNjsx0CAAC4zZ7aRhVmpUb0bHm1TxkpHmWnpTg8q/ZFsyf4m5KOtdbudWoy8cZKMAAAQGyUVfl096srdee5ozSwIKPTZ8urfbrv3+t02eRBGtxLCQnhaEptm6QqpyYCAACAI1NZlU9fe2axXlu2S5c9PF/b9tV3+Gx5tU+/en2Vnl24VdNnzteWvQ2q8fnjONtm0awEb5T0jjHmNUmN4RettffEfFZxwnYIAACA7gkH8NJt+yVJ2ysbdNnD8/X8TVMOWREOB/ArS3dKkmobmzR95nzNmjEl7ivC0awEb5U0R1KKpOxWvwAAAOBCbQM4LBzCrVeE2wZwWDiE470iHM3pED+VJGNMVsvXtU5NCgAAAD1bRwEc1npFOD05qd0ADjtoRbhAyk53fkU4mtMhjpP0tJrPB5YxZo+kq621KxyaGwAAAHqoOn+TNu+t6/SZcAgPL8rSvLUVnT5b29ikT7dXqTA7RdnpsZxp+6LZDjFT0m3W2sHW2sGSviPpYWemBQAAgJ5sQE6aXpgxVXkZyZ0+t72yocsAlqSfXThWnxtVrD45cShgRRfBmdbaueEvrLXvSMqM+YwAAADQ46WmejUkPz2iEO7Kzy4cq7PH9FHv3LQYza5r0UTwRmPMj4wxQ1p+3aXmEyMAAADgQrEI4UQEsBRdBF8vqUjSy5L+Jqmw5TUAAAC4VHdCOFEBLEV3OkSlpP91cC4AAAA4AqWmejW0IEPP3zRF5/7xvYjec+Nnhur8cX1VkBnZNcuxFvFKsDFmjjEmr9XX+caYt5yZFgAAAI4klb6AHpq3IeLn31xRptrGoIMz6lw02yEKrbUHDoJrWRkujv2UAAAAcCTp6CKMzmyvbNDlD8/X1k6uWHZSNBEcMsYMCn9hjBksycZ+SgAAADhSHE4AhyUyhKOJ4B9Ket8Y87Qx5hlJ70r6vjPTAgAAQE/XnQAOS1QIRxzB1to3JU2U9IKkWZJOtNYe2BNsjBkb++kBAACgJ4omgD2m8+8nIoSjWQmWtXaPtfbVll972nz76RjOCwAAAD1YZb1fry3b1eVzP7twrObc9tmIbpZ7cdE27altjNUUOxVVBHehi8YHAADA0aIwK1WPXjNJyUkdJ+DdF47VOWP7RHTF8vRJA3XV1MEqzIrPkWmxjGA+JAcAAOAShVmpGtMvp8MQvvvCsTp7bB8V56R1eaHG9EkD9e2zRqp3Ts+8NhkAAAA4oKMQbh3AYR2FcCICWIptBPtjOBYAAACOAG1DuL0ADmsbwokKYCmKa5MlyRgzTtKQ1u+z1r7c8s8pMZ0ZAAAAjgjhEH7/jjNkpHYDOCwcwq//76lK8piEBLAURQQbYx6TNE7SCkmhlpetpJcdmFdcGAc/yufk2AAAAD1NNB9oS031ql9qVGuxMRfNT59irR3j2EwSIM3r0awZzixgp3nZbg0AANBTRRPBHxljxlhrVzo2mzhrCIQ0feZ8R8aee/s0R8YFAABA90UTwU+pOYTLJDWq+Vxga60d58jMAAAAAIdEE8GPSrpK0jL9d08wAAAAcMSJJoIrrLWzHZsJAAAAECfRRPASY8xzkv6p5u0Qkv57RBoAAABwpIgmgtPVHL+fb/XaEX1EGgAAANwp4gi21l7n5EQAAACAeInmsow0STdIGivpwNUe1trrHZgXAAAA4JhobnR4WlIfSWdLmidpgKQaJyYFAAAAOCmaCD7GWvsjSXXW2iclnSdpsjPTAgAAAJwTTQQHWv653xhznKRcScWxnxIAAADgrGhOh5hpjMmX9CNJsyVlSfqxI7OKk/Rkj2bNmOLY2AAAAOiZojkd4pGWf50naZgz04mvVG+S+uelOzY2AAAAeqZoTofoLemXkvpZa881xoyRNNVa+6hjs3NYfmaK8jNTEj0NAAAAxFk0f2f/hKS3JPVr+XqtpG/FekIAAACA06KJ4EJr7YuSQpJkrW2SFOzqTcaYc4wxa4wx640xd3by3FeMMdYYUxLFnAAAAICoRRPBdcaYXmq+KlnGmCmSqjp7gzEmSdKDks6VNEbSZS3bKNo+ly3pm5IWRDEfAAAA4LBEE8G3qflUiGHGmA8kPSXp1i7ec5Kk9dbajdZav6RZki5s57m7Jf1Gki+K+QAAAACHJZoIXinp75IWSSqX9LCa9wV3pr+kba2+3t7y2gHGmImSBlprX4tiLgAAAMBhiyaCn5I0Ss0nRNwvaaSar1I+bMYYj6R7JH0ngmdnGGNKjTGlFRUV3fmxAAAAcLloLss4zlrbej/vXGPMyi7es0PSwFZfD2h5LSxb0nGS3jHGSFIfSbONMV+01pa2HshaO1PSTEkqKSmxUcwbAAAAOEg0K8Eft3wYTpJkjJksqbST56XmrRMjjDFDjTEpkqareV+xJMlaW2WtLbTWDrHWDpE0X9IhAQwAAADEUpcrwcaYZWo+ESJZ0ofGmK0tXw+WtLqz91prm4wxt6j5fOEkSY9Za1cYY34mqdRaO7uz9zutosan2sYuT3k7LFmpSSrKTnNkbAAAAHRPJNshzu/OD7DWvi7p9Tav/biDZ6d152dFy8k9FezXAAAA6Lm6jGBr7ZZ4TCQR6hqDOv337zgy9tzbpzXveAYAAECPE82eYAAAAOCoQAQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABchwgGAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOt5ETyCRMlOTNPf2aY6NDQAAgJ7J1RFc1xjU6b9/x5Gx594+Tcp2ZGgAAAB0E9shAAAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOkQwAAAAXIcIBgAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABcx5voCQAAAODIU1HjU21jMObjZqUmqSg7LebjtuXqCM5KTdLc26c5NjYAAMDRqrYxqNN//07Mx517+zQVZcd82EO4OoKLstPi8ocMAACAnoU9wQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABchwgGAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALiON9ETAAAAwJEnKzVJc2+f5si48UAEAwAAIGq1jUGd/vt3Yj7u3NunqSg75sMegu0QAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHUcj2BjzDnGmDXGmPXGmDvb+f5txpiVxphPjTH/McYMdnpOAAAAcDdHI9gYkyTpQUnnShoj6TJjzJg2jy2RVGKtHSfpr5L+f3t3H2RVfd9x/P1ld7ML2c1DERDZWDAlAVnMCmxSqt2wYxBxmPjUSSMkEwqa6QydtiEkaqmVOiUThFCto5maiA+x2MlTazoF3SRiUCcJQVyiBiyYYlxEQBoTVmc3i/31Dy50RRKBPZez3PN+zTD33HMv3/3cPbPMh7O/e+5N5cwkSZIklftM8AeB7Smln6eUfgP8K3BJ3yeklNallF4r3f0R0FjmTJIkSSq4cpfgUcALfe53lvb9NvOBtUd7ICI+HREbI2Lj3r17M4woSZKkohkwb4yLiE8AU4DlR3s8pXRHSmlKSmnKsGHDTm44SZIkVZTqMs/fCbynz/3G0r43iIiPAIuBpoXt+gAADkFJREFUD6eUesqcSZIkSQVX7jPBPwHGRsSYiHgb8HHgO32fEBHnAv8MfDSltKfMeSRJkqTyluCU0gHgL4CHgC3A11NKz0TEjRHx0dLTlgP1wDcioiMivvNbxkmSJEmZKPdyCFJKa4A1R+z7uz7bHyl3BkmSJKmvspdgSZIkVZ762irWLZpWlrknw4C5OoQkSZJ0sngmWJIkScetq+d12lY8kvncdYumMawh87Fv4plgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhVMx1gnt7e+ns7KS7uzvvKLmqq6ujsbGRmpqavKNIkiQNWBVTgjs7O2loaGD06NFERN5xcpFSYt++fXR2djJmzJi840iSJA1YFbMcoru7m6FDhxa2AANEBEOHDi382XBJkqS3UjElGCh0AT7E74EkSdJbq6gSLEmSJB0LS3BGXnnlFW6//fa8Y0iSJOkYWIIzYgmWJEk6dViCM3Lttdfy3HPP0dzczOc+9zmWL19OS0sL55xzDjfccAMAO3bsYNy4ccydO5f3ve99zJkzh+9973ucd955jB07lg0bNgCwZMkSPvnJTzJ16lTGjh3LV77yFQB27dpFa2srzc3NNDU18eijj+b2eiVJkk5lluCMfPGLX+S9730vHR0dTJ8+nW3btrFhwwY6Ojp44oknWL9+PQDbt2/ns5/9LFu3bmXr1q2sXr2axx57jBUrVvCFL3zh8Lyf/vSnPPzww/zwhz/kxhtv5MUXX2T16tXMmDGDjo4ONm/eTHNzc14vV5Ik6ZRWMdcJHkja29tpb2/n3HPPBaCrq4tt27Zx5plnMmbMGCZOnAjAhAkTuOCCC4gIJk6cyI4dOw7PuOSSSxg8eDCDBw+mra2NDRs20NLSwrx58+jt7eXSSy+1BEuSJJ0gzwSXQUqJ6667jo6ODjo6Oti+fTvz588HoLa29vDzBg0adPj+oEGDOHDgwOHHjrzUWUTQ2trK+vXrGTVqFHPnzuXee+89Ca9GkiSp8liCM9LQ0MD+/fsBmDFjBqtWraKrqwuAnTt3smfPnuOa98ADD9Dd3c2+fft45JFHaGlp4fnnn2fEiBFcffXVXHXVVWzatCnz1yFJklQELofIyNChQznvvPNoampi5syZzJ49m6lTpwJQX1/PfffdR1VV1THPO+ecc2hra+Pll1/m+uuv54wzzuCee+5h+fLl1NTUUF9f75lgSZKkExQppbwzHLcpU6akjRs3vmHfli1bGD9+fE6JsrVkyRLq6+tZtGjRCf39SvpeSJKkgWnv/m66el7PfG59bRXDGuoymRURT6SUphztMc8ES5Ik6bh19bxO24pHMp+7btE0hjVkPvZNLMED0JIlS/KOIEmSVNF8Y5wkSZIKxxIsSZKkwrEES5IkqXAswZIkSSocS3CG5s2bx/Dhw2lqaso7iiRJkn6HwpbgtWvXMmvWLFpaWpg1axZr167t98y5c+fy4IMPZpBOkiRJ5VTIS6StXbuWpUuX0t3dDcBLL73E0qVLAZg5c+YJz21tbWXHjh1ZRJQkSVIZFfJM8G233Xa4AB/S3d3NbbfdllMiSZIknUyFLMG7d+8+rv2SJEmqLIUswSNGjDiu/ZIkSaoshSzBCxYsoK6u7g376urqWLBgQU6JJEmSdDIVsgTPnDmTxYsXc/rppxMRnH766SxevLhfb4oDuPLKK5k6dSrPPvssjY2N3HnnnRklliRJUpYKeXUIOFiE+1t6j3T//fdnOk+SJEnlUcgzwZIkSSo2S7AkSZIKxxIsSZKkwrEES5IkqXAswZIkSSocS7AkSZIKxxKcoRdeeIG2tjbOPvtsJkyYwC233JJ3JEmSJB1FIa8T3Nvby8KFCwFYtmwZ11xzDQArV66kpqbmhOdWV1fzpS99iUmTJrF//34mT57M9OnTOfvsszPJLUmSNFDU11axbtG0ssw9GQpZghcuXMimTZsAuPjii+nt7T28/9Zbbz3huSNHjmTkyJEANDQ0MH78eHbu3GkJliRJFaer53XaVjyS+dx1i6YxrCHzsW9SyBJ8SE9PDz09PQDU1tZmOnvHjh08+eSTfOhDH8p0riRJkvqvkGuCly1b9qZlDzU1Ndx0002ZzO/q6uKKK67g5ptv5h3veEcmMyVJkpSdQpbga6655vASiEN6e3v5/Oc/3+/Zvb29XHHFFcyZM4fLL7+83/MkSZKUvUIvh6itraWmpuZNhfhEpZSYP38+48ePP/zGO0mSJA08hTwTvHLlSiZNmsSkSZNYs2bN4e2VK1f2a+7jjz/O1772NR5++GGam5tpbm5mzZo1GaWWJElSVgp5JrimpuYNV4HozxUh+jr//PNJKWUyS5IkSeVTyDPBkiRJKjZLsCRJkgrHEixJkqTCsQRLkiSpcCzBkiRJKhxLsCRJkgqnkJdIK6fRo0fT0NBAVVUV1dXVbNy4Me9IkiRJOkIhS3Brayuvvfbam/YPGTKE9evX93v+unXrOO200/o9R5IkSeVRyOUQRyvAv2u/JEmSKkshS3A5RQQXXnghkydP5o477sg7jiRJko6ikMshyumxxx5j1KhR7Nmzh+nTpzNu3DhaW1vzjiVJkqQ+PBOcsVGjRgEwfPhwLrvsMjZs2JBzIkmSJB3JEpyhV199lf379x/ebm9vp6mpKedUkiRJOlIhl0MMGTLkt14doj92797NZZddBsCBAweYPXs2F110Ub9mSpIkKXuFLMFZXAbtaM466yw2b95cltmSJEnKTiFLsCRJkvqnvraKdYumlWXuyWAJliRJ0nEb1lDHsIa8U5y4inpjXEop7wi583sgSZL01iqmBNfV1bFv375Cl8CUEvv27aOuri7vKJIkSQNaxSyHaGxspLOzk7179+YdJVd1dXU0NjbmHUOSJGlAq5gSXFNTw5gxY/KOIUmSpFNAxSyHkCRJko6VJViSJEmFYwmWJElS4cSpeDWFiNgLPJ/Dlz4NeDmHr6vy8rhWLo9t5fLYViaPa+XK69j+fkpp2NEeOCVLcF4iYmNKaUreOZQtj2vl8thWLo9tZfK4Vq6BeGxdDiFJkqTCsQRLkiSpcCzBx+eOvAOoLDyulctjW7k8tpXJ41q5BtyxdU2wJEmSCsczwZIkSSocS7AkSZIKxxJ8DCJiR0Q8FREdEbEx7zzKTkS8KyK+GRFbI2JLREzNO5P6LyLeX/p5PfTn1xHx13nnUv9FxGci4pmIeDoi7o+IurwzKRsR8Vel4/qMP6+ntohYFRF7IuLpPvt+LyK+GxHbSrfvzjMjWIKPR1tKqXmgXeNO/XYL8GBKaRzwAWBLznmUgZTSs6Wf12ZgMvAa8G85x1I/RcQo4C+BKSmlJqAK+Hi+qZSFiGgCrgY+yMF/i2dFxB/km0r9cDdw0RH7rgW+n1IaC3y/dD9XlmAVVkS8E2gF7gRIKf0mpfRKvqlUBhcAz6WU8viUSWWvGhgcEdXAEODFnPMoG+OBH6eUXkspHQB+AFyecyadoJTSeuB/jth9CXBPafse4NKTGuooLMHHJgHtEfFERHw67zDKzBhgL3BXRDwZEV+NiLfnHUqZ+zhwf94h1H8ppZ3ACuAXwC7gVyml9nxTKSNPA38cEUMjYghwMfCenDMpWyNSSrtK2y8BI/IMA5bgY3V+SmkSMBNYEBGteQdSJqqBScCXU0rnAq8yAH49o+xExNuAjwLfyDuL+q+0hvASDv4H9gzg7RHxiXxTKQsppS3AMqAdeBDoAF7PNZTKJh28Pm/u1+i1BB+D0tkHUkp7OLiu8IP5JlJGOoHOlNKPS/e/ycFSrMoxE9iUUtqddxBl4iPAf6eU9qaUeoFvA3+UcyZlJKV0Z0ppckqpFfgl8F95Z1KmdkfESIDS7Z6c81iC30pEvD0iGg5tAxdy8Nc2OsWllF4CXoiI95d2XQD8LMdIyt6VuBSikvwC+MOIGBIRwcGfWd/MWiEiYnjp9kwOrgdenW8iZew7wKdK258CHsgxC+Anxr2liDiL/39XeTWwOqW0NMdIylBENANfBd4G/Bz4s5TSL/NNpSyU/tP6C+CslNKv8s6jbETE3wN/ChwAngSuSin15JtKWYiIR4GhQC+wMKX0/Zwj6QRFxP3ANOA0YDdwA/DvwNeBM4HngY+llI5889xJZQmWJElS4bgcQpIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZakASIiRkeE1yGXpJPAEixJkqTCsQRL0sBSHRH/EhFbIuKbpU9HmxwRP4iIJyLioT4fPXp1RPwkIjZHxLciYkhp/90R8eWI+FFE/DwipkXEqtLMu0vPqSo97+mIeCoiPpPja5akk84SLEkDy/uB21NK44FfAwuAW4E/SSlNBlYBhz618tsppZaU0gc4+PHB8/vMeTcwFfgMBz+u9B+BCcDE0iclNgOjUkpNKaWJwF3lf2mSNHBU5x1AkvQGL6SUHi9t3wf8DdAEfDciAKqAXaXHmyLiH4B3AfXAQ33m/EdKKUXEU8DulNJTABHxDDAa+AFwVkTcCvwn0F7WVyVJA4wlWJIGliM/y34/8ExKaepRnns3cGlKaXNEzAWm9Xmsp3T7v322D92vTin9MiI+AMwA/hz4GDCv3+kl6RThcghJGljOjIhDhXc28CNg2KF9EVETERNKjzcAuyKiBphzPF8kIk4DBqWUvgX8LTApk/SSdIrwTLAkDSzPAgsiYhXwMw6uB34I+KeIeCcH/92+GXgGuB74MbC3dNtwHF9nFHBXRBw6GXJdNvEl6dQQKR35mzdJkiSpsrkcQpIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUOP8H7bnX4LxCuakAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXycVaH/8e+ZyWSyp22adN/3lba0pWylICKKgAoiIDtYFkW9iD+5V8XrcvXihoKorLIJCIpQhKsstuylTVu6r3RNtyTNvsxklvP7I5mSptmmmWeS9Pm8X6++6Mw8c3po//n06XnOMdZaAQAAAG7i6e4JAAAAAMlGBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4Dop3T2BY9G/f387cuTI7p4GAAAAerAVK1aUWmvzW/usV0bwyJEjVVhY2N3TAAAAQA9mjNnV1mcshwAAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOr1yn2AAAAD0XJFIRMXVDYpaKRyNylrJ5zWykvpl+JTh93X3FIlgAAAAJEZFXYPqGiJ6bcNBLVq9Txv2Vak+FJEkeYw0qn+WThubp6tOHqlMv1cDc9O7ba5EMAAAALrsQGVAL3y4V3e/tkXBcPSoz6NW+qikRh+V1Oix93fpExML9MMLp6h/ZqrSUpOfpEQwAAAAumRfRb1ufnKFVhdVdvo7b2wq1vJdZXr46jmaOCBb2enJXSLBg3EAAAA4Zgcq63X1I8viCuCYqvqwrnjoA20tqVGoadlEshDBAAAAOCYHqwL66cubtLW45pjHCIajWvh4oUpqGxI4s44RwQAAADgmO0prtWjNvi6PU1rToF+/tkWl1YEEzKpziGAAAADEbX9lvX716uaEjffCqr0Khm3CxusIEQwAAIC4NYSjWr6zPGHjhaNWr6zbn7DxOuJoBBtjHjHGFBtj1rXxuTHG3GOM2WaMWWOMmeXkfAAAAJAYG/dXJXzMd7eV6lBNMOHjtsbpO8GPSjq3nc8/LWlc04+Fkv7g8HwAAACQAMt3liV8zA37qlTfkJxdIhyNYGvtW5La+x26UNLjttFSSX2MMYOcnBMAAAC6JhqNqqIulPBxqwIhGZPwYVvV3WuCh0ja0+x1UdN7RzHGLDTGFBpjCktKSpIyOQAAABzN4/EoNSXxGZnq9ShZj8Z1dwR3mrX2AWvtbGvt7Pz8/O6eDgAAgKtNGZyb8DHH5GfJ45I7wXslDWv2emjTewAAAOjBZg3vk/AxZwzro4KstISP25rujuBFkq5q2iVinqRKa23y9sYAAADAMemTkaqBOYkN1otnD1WKA8ssWuP0FmlPS3pf0gRjTJEx5npjzE3GmJuaLnlF0nZJ2yQ9KOkWJ+cDAACAxOiflaprTx2ZsPEmD8pR34zUhI3XkRQnB7fWXtbB51bSV52cAwAAABIvNcWrC2cM1tPLdmvnoboujeUx0s8vnq7BfdITNLtO/JpJ+5UAAABwXBmYm677vjxL/i4uYfjaWeM0KDc5a4FjiGAAAAAcs+F9M/Sna+cccwhfdfIIXXHScOVl+RM8s/YRwQAAADhm2ek+TR2Uo5duPU2TBmV3/nv+FN1z6QzdsmCMChL8gF1nOLomGAAAAMe/nIxU5WSk6k/XzNGyHWX645vbtWF/VavX9stM1ZdPGq5L5wxX3wyfMvzdk6NEMAAAABJiYG66LpgxRLNH9lM4EtW+ioC2ldQoEo2qICdNEwZky5/iUb/MVKWndm+GEsEAAABIqNguD8PzMjVvTF43z6Z1RDAAAAAS7mBVQKFIVLKSleTxGFlr1T8zVWndfBdYIoIBAACQIBV1DapriOjdbaV68cN9WrevUhV1IUlSqtejCQOzddrY/rp07jD5UzwamJu8fYFbIoIBAADQZQcq6/X6hmL97P82qrYhctTnDZGo1u6t1Nq9lfrjWx/ps9MG6T8/M0l56T75u+HhOCIYAAAAXbK/sl7feOZDLdtR1qnrrZVeWrNf7350SI9eO0fD+6WrTwb7BAMAAKCXOFAZ0A2PFXY6gJsrq23QJfe/rz1l9QqHww7Mrm1EMAAAAI7JwaqAfvnqZq3f1/qewJ0RCEV1w+OFKqkNJXBmHSOCAQAAcEz2lNXpryuKujzOwaqg7n1jq0qqgwmYVecQwZ1QXhvUwap6lVQHFY5Eu3s6AAAA3W5fZb1+9eqWhI333IoiNYST11k8GNeKUCSqkuqg9lXUa8P+KtU3RBS1kpGVz+vRsLwMTR2cqyx/inLSfd09XQAAgKQLR6ze334oYeOFIlavbjiga08dlbAx20MEt3CwKqBlO8oUikQ1vF+GctNS1CfDJ6/xKGqtotYqLcWrbcU12nmoVp+YNEAF2X75vNxUBwAA7rFp/7GvA27L21tLdf70weqf7fxOEURwk2g0qqKKeq0tqlTfDJ9SvEYF2X4ZY7R6T7nK60Lyp3g1eXC2hvZNV30oomAoor3l9dpbXqdxBVnqm5ncrT0AAAC6S+HO8oSPuX5fpepDR+8x7AQiuMme8npV1IU0MCdN6ale3fvvbXptw0GFo7bV66cOydHNZ4xR/6xU1QZD2nigWpMGGvXNTE3yzAEAAJIrGo3qUG3iH2KrrA/JYxI+bKuIYEnFVQGFI1Z5Wal65J0d+tN7O2Vbb9/D1u2t0lefWqVZw/vqV5dMV2qKV6U1ASIYAAAc9zwejyNLQX2e5C0vdf1C1kM1QVUHQkrzeXTrU6v0yLsdB3BzK3eX68L73lU4YpXu86qkKnlbewAAAHSHaDSqKYNzEj7u6PxMmSTdCXZ9BDeEo0pN8er259Zo1Z6KYxqjqj6syx5aqoiV6kPJ3egZAAAg2TwejyYNSnwETxuSK3+KN+HjtsbVERwMReT1GL25pbjLW3xU1Yf1nb+tkcfjUWl1IEEzBAAA6Hmi0ai8HqP8BO/icM6UgWoI82Cc46oCIYUiUf3Py5ta/Xxo33TNGNZHEwfmKNPvVShitbO0Vmv3VmrD/ipFWjw0t3R7mbYV12j6kNxkTB8AAKDbrNtbqcvmDtM9b2xLyHjjCrJUHQgrEsey1K5w9Z3gVK/Rks0lR2zFYYx0wQmD9ecbTtJ3zp2o/ll+vb21RM8W7tHLa/YpEI7oohOH6q83nayvnTVWuS0Oy/jDko8USNLWHgAAAN3B4/HISDp1bH8N7Zve5fGMkb533iS9uv6AkrQk2N13gmuCET2/au/h1yPyMvSTz03Vil3l+tpTK1Ved/T63tVFlXp+5V6leIzOnTpQj147R/ct3qbXNxZLkj7YUZa0v8EAAAB0l1kj+uqOv63V7y6fqYv/8H6b28p2xo3zx2jnoVrlZ/uV5kvOPVpX3wmWGjdllqS5o/rpV188QT/+xwb95vWtrQZwc+Go1T/W7NeVDy/Tp6cO0jc+Me7wZ6U17BABAACOb1l+nz43c4g27KvSb740Qz7vsd3D/cKsIZozsq8mD87VedMGyZ9CBDsuFLEKhKKaOiRH3zpnvK5/rFBbDtbENUZNMKxvPbdauek+LZw/WpK0rTi+MQAAAHoTa60OVNVrypAc/dff1+nfm4v12HVzNbp/ZqfHSPd59YPzJ+vUsf1105Mr9MKqvUrxGlUHk7Os1NURbCX5Uzz64QVT9fWnV6my/ti3N/vxyxt00qh+mjokRw2RaOImCQAA0MMYY1QdCOue17dKkp5fuVfff2Gdfvy5qfr+Zye1G8PZ/hRddfIIPf2Vk7RiV7m+9exqhSJWzxUWyRhz1MYDTnH1mmCf1+irZ47VUx/s0sEuHnJhrfT9F9bpN5fOVHltQ4JmCAAA0PNYazW4T7re/ejjLWY/KqnVlx/6QPNG99NtnxyvAblp2lNWpz1ldYpYq36Zfo0fkCVrpRc/3KfLHvzgiM0JGiJRvbutVBedODQp/w+ujmBZaf74fH3+91sSMty+yoBW7S7X+dMHJWQ8AACAnigatdpe0vryz6Xby7R0e5kkaVi/dA3pky6PMaqsD2nrwZp2/8V82c4yfW7GYEfm3JKrIzjTn6LHl+6K65jkjvz5g906jwgGAADHMa/Xo7VFlR1et6esXnvK6js97vq9VQolaTmEq9cE1zaEtHhTcULH3F1Wp2iS/vAAAAC6g7VWJQ7shlVR3yCvSc5Owa6OYCOjj9q4ld8VO8vqEj4mAABAT2GMkc+b+Iz0eTzyeIhgx4UiVk7ctN1b3vnb/gAAAL3RpEE5CR9zVH5m0naHcHUEO/VbnKzj/gAAALrLpEHZCR9z2pBcpR7joRvxcnUEp3qNvA7cch/WLyPhYwIAAPQU1lr5U7zqn5Wa0HHPmTJAoSSdt+DqCI5aaWx+VsLHHdo3PeFjAgAA9BTWWu0ordWlc4cnbMwx+VlqCEeVrDPHXB3BmalefXJyQULHHNU/k+UQAADguObxeJSTlqL54/I1ODctIWN+77xJWr6zzJEH7lrj6giubYjoi7OHKZE7cSycP1oZfldvvwwAAFxgdH6W/uflDfrpF6Z1eXnplfNGaE1RhcYVZCs91ZugGbbP1REc+02+PEG38of2TdeCCfkKNDsCEAAA4HjkT/FocJ90/XPdAf3qiyco5RhD+IITBuv0cf31p3d3atbwvspJ9yV4pq1z9S1Ln6xSPB7dvGCMlmwu0d6Kj7c2M0Y6YWgfnTCsjyYOzFaWP0UNkah2ltZq7d5KLdtRprqGj2PXY6R7L5up/RUBjR+Q+HXGAAAAPYvVjWeM1sV/eF9RK/3p2jn67t/XaXdZnfplpmruqH6aNiS36dhkqaI+pPX7qrRyV7m2FtfIn+LRbZ8cr0G5abr16VW6ecEYZfq9qg6ElJ3mfAi7OoK9KR69sqpIJ43spwevOlFXPrxM1YGwrpg3XJ+dPliriyq0Yle5Hnq7VFWBkPwpHo3Jz9K0obn66pljtW5vpR54a7sOVAX00y9M08DcNH396VX67aUzlZWEPzwAAIDukulPUXZDVDcvGKN7/71NH+4p1/1XnqhQJKqaYFhvbCzWW1tKtLusTpGoVV5WqqYOztVNC8Zo4sBsZaam6Devb9XP/m+TJg3K1tkTB8gYk5QAllwewVWBiCpqG9QQierORRv15A0nqSEc1XMrinTZg0sVDB/9eGJReb3e3FKi3/17m04enaffXTZTVtKrGw5q68Ea3TR/TNI2eQYAAOguOempCoQiOmtigXaV1emSE4eqJhjWd/++VlsOHn0ib3F1UBv3V+u5FUXKTffpq2eO0TfOHqfqQEi3fmKcBuT4lZ+TmIfsOsNY2/uCbfbs2bawsLDL4+wtr1cwHNFVjyzTxIHZuv60Ubrt2dXaXxno9BipXo++c+4E+VI8+u+X1uv/vn66guGopg/t0+X5AQAA9HQHKwOysvr9ko/0+Pu74vrulME5+sMVs+RP8WhATuK3mDXGrLDWzm7tM1c/GOc10p7yOg3pk66rTh6pax9dHlcAS1JDJKofv7xRB6uC+vY5E/THN7cr3efq31YAAOAy/71ofdwBLEnr91Xpi398X8FQkjYHbsbVtWaN9Jfle3THpyfq68+sUqALfwD3Ld6mYX0zVFwVUJrP1atMAACASxyqDuovhbv1z/UHj3mMg1VBLXxihQ7EeSOyq1wdwZGo1clj+usPSz5SRV2oy+PduWi9vnXOBNUGwwmYHQAAQM9VVdegQ3UNuueNbV0ea9OBav1tZZFKa5IXwq6OYGulCQOy9eqGY//bS3NltQ16e1upyusaEjIeAABAT1XTENbdr21ROEEbAvxhyUcKhhp3lkgGV0dwikdatHpfQsd8+oPd6pPB9mgAAOD4FrXSawm6kShJNcGwlu8sb7xLmQSujuBwVHpvW2lCxzxQFVCKx9W/rQAAwAV2lNYm7C5wzKsbDiRtq1lX15rHSDsO1SZ83H1JXtgNAACQbMt2lCV8zLV7K1XNcgjnhaPWkTvuJVVEMAAAOH5Fo9G4t5XtjNLqBhmZhI/bGldHsFOMSc4fHgAAQHfweDyOpKrHSFYsh3BcisfI5038H+Gwfok/8QQAAKCnsNZqTH5mwscd2jcjWc/FuTuCI9Zq/IDshI/bNzM14WMCAAD0FMYYzRnZL+HjThuaqyy/N+HjtsbVEezzeHT2pAEJHXPSoOwunTwHAADQ01lrNTA3TVn+xJ6Se+GMwUrSagh3R3DEWp05IV8pnsQtibhy3gjVN3BiHAAAOH5Za+Ux0sUnDk3YmANz0jQyL1MNkeTcTHR1BMtKb24p0bWnjkrIcOMHZGlo3wzlZfoTMh4AAEDPZLSuqErXnzZKOemJuRv8g/MnKxSOqiHCg3GOS/EaFZXX6cyJ+RpbkNWlsXxeox9fOFU//+cmeRJ4ZxkAAKCn8XiMosYqaq3uumh6l8c7Z/IATRqUrZdW71NqSnLy1NURHLVWXz5phO7421r94uLpGtr32HZ1SPEY3f2lGXpq2W4tmJCfpN3tAAAAus+EATn69WtbNDY/S3d8euIxj3PiiL76wfmT9VFJrVJ9Hh6MSwaPMaoKhFWQ7dftz63RvZfN1Onj+sc1xuDcND1yzRwt2VyiV9cf1GemDZKXO8EAAOA4FlsTvOtQnVYXVWj+uP763eUzlR3ng3KXnzRMv710hsrrQvrP59fos9MHqyrAiXGOS/F4FIlGdef5k1VUXqdr/rRcn5sxRL/84nRN6GDrtL4ZPt10xmj95tKZuuufm/TXFUX6wfmT9f5HhxzZexgAAKCnMMZodVGF/uOT43TH39Zqy8Ea9U336R9fP01fmjNMab72E/OkUf303E0n64snDtWh6qBu/vMKzRudp7qGsKJJ2h0isfta9DJpqV4N75epP727Q7++5ATd+vQqfeu51Zo1vI9uPGO0hvRJ17p9ldqwr0rVgbB8Xo/GFmRp6pBcZaR69WzhHn35oaUKRay+MHOI0nxejR+QLS8RDAAAjnOHaho0bUgfnTWxQP/x7If68kkj9IWZg/XZaQP11TPHakdpjZbtKNP2klpFrVVeZqrmjsrTCcNyVVEXUlV9SKU1DfrRPzbIGOk7507S919cq598bmpS5u/qCM7ypyiQ4dNZEwv05tZS3XPZTP2/v67Ryt0VWrm7Qv4UjyYMzNbEgTka1i9DDeGoVuwq12Pv71RFXejwOFfOG6754/P1ztZSTR+aq/ystO77nwIAAEiCmcP76upHPtDTC0/WloPVenLpLi3eVKyrTxmpTL9PJdVBTRuSqzkj+8lICkWtquobtLu0TvXhqB57b6fe335IKR6jJ66fq39vOqABOWnK9vuSMn9XR7Ak9U33aWBumlI8Ri+t3qcnbzhJd7+6RW9vK1UwHNWaokqtKaps9btD+qTrhxdM0bbiGt3zxlb97xemKy+L0+IAAMDxLy8rVeV1If3iX5v05PUn6frHCrX5YLV++spG+VM8mjI4V9OG5mpIn3R5jFRRH9L6vVVaU1ShQ7UNkqSMVK8euPJEhSJRff/FDXry+rmK2OTsE+z6CPZ6PRrcJ11nTyrQ/607oBseK9Q3PjFOt35inF5Zu1+Fu8q05UDN4Y2bR+RlaNqQXJ0/fbC8XqN739iqcNTqp5+fpgE5fuWmE8EAAOD45zXSZXOH6/63tisQiurRa+foqWW79fslHykYjmrl7nKt3F3e5vdPHp2nuy6appW7yvXNZ1drSJ90DembIWuTs6zUWJuk1ccJNHv2bFtYWJjQMctqg1q2o0zhqNUPXlyvQCiiT04eqBOG5Wr8gOzDp8oVlddr7d5K/XtTsfZW1Osrp4/SmRMKNKxvhgYf4xZrAAAAvc3e8jpFrXTB795ReV1IqV7p6a+crAE5aXpx9V79Y81+bT1Yo3CzJ90G56bp5DF5uv60UcpMTdE3n/1Qq3ZXSJL+dM0cTRyUrew0X8KOYzbGrLDWzm71MyL4Y2W1DVq5u1w5aT5t2F+lZ5fv0aYDVUc9pViQ7df5JwzWedMGaXtpjeaPy1dBDuuAAQCAe1TWNaikukFFFY07bMVkpXr184una/zAHKX5PGoIN/5rus/rUSRqVV7boP9+ab1WN1tu+rkZg/X1T4xTlj8loU1FBMehIRzVoZqg3t5aImOMhvfLkJUUCEXk83rk83pUWhNUcVVA80bnaVCfdOWmJ2cBNwAAQE+x5WC1LvrDe3r1P+brtfUHdeei9cc0zilj8vTrS2boZ69s1Kj+mbrh9NHKSuNOcKucjOCYUCSq8toGBcNR7a2oV3UgJJ/Xo+H9MpTpT1FmqldZacQvAABwp/LaBtWHIrr/re3KSUvRhAHZ+v6L61TebAet9hgjXXPKSJ05oUC/fm2z7rv8RKWlGOVlJ+dOsOsfjGuLz+s5fDt+WL+Mbp4NAABAz9IQier+t7brsfd2SpJOHpOnR66Zoxc/3KfnVxa1efKbx0hnjC/QDaeP0jtbS3Xto8sViVpd86dleuy6uUmbP3eCAQAAELcN+yp13r3vqHlKpvk8Ov+Ewbpo1lDVBsNat69Kuw/VKhJt3FJt6pBcjczL0LvbDunpZbu1t6L+iDFvnD9aC+ePVl6WPyFzZDkEAAAAEupgVUDLd5Tp1mdWqbWczElP0Xc/M1lD+qZpy4FqzRudp28886G2Fte0Ot6npwzUDy6YrNy0FKUn6MCM9iK4/YOdXai4KqCDlYFOX1taE3R4RgAAAD1PTSCsCQOzdfclM2Ra2dr3ynkjFQxHdMVDy/Sjf2zUz/+5WXeeP1kZqd6jrv3UlAG684LJWr7jkKqCkSTMngg+QnFVQN99Ya0WPlGoA5X1HV77+NJd+uw972jnodokzRAAAKBnyPSn6NnCPVq7t1J3XTT9iBD+6pljNSDHrztf/HjHiCVbSvTw2zt0/5UnHhHCn5oyQF+aM1w3PFaomSP6KbOVSHYCEdwkFsCvbSjW6qJK3fjEijZDOBbAv/v3Nh2oCujS+5cSwgAAwFUq6hv00Ds79PA7O7T5QPXhEG4ZwN86Z7xeuvVUZaR6jwrhWADf/OQKrd9XpSfe36VWbys7gAjWkQEc01YINw/gGEIYAAC4zbC+Gfr95bNkjA6H8ItfPfWIAL79nPG66uSRmjgwR8/dePIRIfzUV+YdDuBgOKrPTBuoG88Yk7DT4jri+gfjWgvg5k4Ymqv7rzxRA3PTWw3g5gbmpOmZG+dpZF5mQuYGAADQk9UGw3prS4lueWqlrJVmDuujVXsaj0G+/ZzxuvLkkYcPFQtFotpyoFpfvP991TVENHlQjj4qqTkcwD/53DT1y0xN6Px4MK4NJdUB/fCl9W0GsPTxHeHK+lC7ASx9fEe4uKpzD9YBAAD0Zpn+FM0fn3/4jnBbASw1nsEwfmD24TvCG/ZXORrAHXF1BKeleHXlySPlT/n4t2F0/0zNGNbniOtWF1XqlJ+9cVQA983wacGE/CPe++z0Qc5NGAAAoIeJhfB9TSHcWgDHxEL4LzfOU0aqV5+ZNlA/vnBK0gNYcvmJcdnpPk0ZlKPHrpurqx9ZpmH9MnTPl2ZIRvrhSxv0wY6yw9fWNhy5XUffDJ8evnq20nxeFWSn6dnCPbrhtFFaOH/04ZPmAAAA3KAmGFZ5bYNeuOVU7TpUq7qGcKsRLElltQ3asK9KT31lnmoCYVXVh5XjD8nnS8zewJ3l+jXBklRdH9L20lqlphjlpPkUtVZ1DRHd+eL6I0I4JhbA+dlpikStagIhbSup1Slj8ghgAADgKgerAvqv59fqjU3FmjW8cU3w5EE5eujq2RqUm37UtY++u0N/eHO7Jg/K0fbSGmWn+fSXhfM0rI8/4SHcrWuCjTHnGmM2G2O2GWPuaOXz4caYxcaYVcaYNcaYzzg9p5ay030qyPYrJ82nA1UBVdSFlJGaoh9dOEUnjep3xLXNA3jnoVqFIlH5UowmD85Wdrqrb6wDAACXaR7AkrRyd4Wsldbvq9INjxVqf7NdtpoHsCRt2F+lQCiqkuqgvvTAUu2pCCoUCiVt7o5GsDHGK+k+SZ+WNFnSZcaYyS0u+56kZ621MyVdKun3Ts6pNQcr6xW1VgergrrnjW36f39bo8r6hqNCuGUAv7mlRJc9uFTBsJW1VkVldaoPhZM9fQAAgKRrGcAtNQ/h0prgEQHcUneEsNN3gudK2mat3W6tbZD0jKQLW1xjJeU0/TxX0j6H53SEg5X1CkcbA/i3b2zVm1tKtHF/tb791yND+FNTBh4VwA+9vUOlNQ267tHlCoatooQwAABwiYq6kN79qLTda9bvq9L1jxbqV69ubjOAY0qqg3p57X6VB46PY5OHSNrT7HVR03vN/bekK4wxRZJekXRrawMZYxYaYwqNMYUlJSUJmVx1fUiRFgEc0zKEv37WmKMCOKZlCDeEe986awAAgHgUZKfqyetPUpqv/ZzcsL9KTy/b0+41krRw/mhdMnuYCrKT83xVT9gi7TJJj1prh0r6jKQnjDFHzcta+4C1dra1dnZ+fv5RgxyLUNSqpKbhqACOaR7CfTJSWw3gmOYhrF74sCEAAEA8+mb6NSY/s1Mh3JGF80fr+tNGaUASNxhwOoL3ShrW7PXQpveau17Ss5JkrX1fUpqk/g7PS5JkJP1hybZWAzgmFsLGmDYDOCYWwqEoEQwAAI5/iQjh7ghgyfkIXi5pnDFmlDEmVY0Pvi1qcc1uSZ+QJGPMJDVGcGLWO3QgYqO6+pRRSvd5271u4/5qLfjFknYDOOZLs4cpQgQDAACX6EoId1cASw5HsLU2LOlrkv4laaMad4FYb4z5kTHmgqbLviXpK8aY1ZKelnSNTdLmxZGI5PMa/fGKWR2GcEMk2uF4tywYozkttlQDAAA43sVC+LHr5nb6O1+aPVQLTx/dLQEsJeHEOGvtK2p84K35e3c2+/kGSac6PY/WGKPD8fvHK2bppidXqj50bE8k3rJgjOaO6qdR/TMTOUUAAIBeoSFitbiN7dJas3ZvlULRjm8yOqUnPBjXbQpy0lSQ41e6z6tMf0qn7gi3pnkAp/m83fY3GgAAgO4QOwjjjx1sg9bchv1HH6iRTK6OYEnKz24M4Uz/sYVwLIDH5GcRwAAAwHVangQXj9ZOlksW10ew1BjC/TL9Gto3XWMKspbGq0AAACAASURBVDRnZN9OfS/d59VVJ4/Q5EE5Mkbqn+V3eKYAAAA9R1cCOKa7QpgIllRaE1RDOKqtxTV67L2demtr+6efxNSHIrr20eUqqQ7K2sbT59gZAgAAuEEiAjimO0LY9RFcWhNUfUPk8EEYD3ZiG7TmNu6v1u1/Xa3K+gZFCGEAAOASh2qCnQrghfNH6y8L53W4fdr6fVV6+O0dKqsNJmqK7XJ1BFfUNSjQLIA7sw9wa5qfLBexUl0wnOCZAgAA9Cz9s/z6xcXT273mxqZ9gMcPyOpwH+EFE/L1lfmj1S8zOctLXR3BoYjVrrK6LgVwTPMQDoaPbZs1AACA3qIgJ01njM9vM4RvnD9a1zUdhNHRgRoLJuTrroumH1fHJvdwVm91MoDPmTygUyfLffuva9SJczUAAAB6vbZCuHkAx7QVwt0RwJLLI9haacLAbBnT/nW3LBij608b1ant04b3y5A6GA8AAOB40TKEWwvgmJYh3F0BLEkmSScUJ9Ts2bNtYWFhl8cpqQ5o3d4q7a+s13dfWKfWfiti+wDPGNZH24prVBsMt3my3DmTB+iG00drRL8MDchlv2AAAOAOVfUh1QRCKq8PKS8zVX6fV30zUlu9NhCKqKI2qMpARH0yfPJ6jGPbzBpjVlhrZ7f2mavvBOdnp2na0BwNyk3X/3xu6lF3hGMBPGVwjvpkpGrcgOw2D9QggAEAgBtV1Ye0aPU+nXLXYu2rqNdpv/i3fvv6FpXXNRx1bSAU0eo9FTr9F0v0YVG5rnzoA3396VUqrUnOjhDNuTqCJal/Vush3DyA87MbozY33ddqCBPAAADAjWIB/L0X1ik/K1VjC7I0Y3AfPfrerqNCOBbAVzz8gUIRq6mDcnXK2Dy999Ghbglh10ewdHQItxbAMS1D+IITBhPAAADAdVoG8KJbT9OLH+7TvV+epdnDjwzhYIsAXnL7Ai3fVaZrTh2la04Z0S0hnJK0X6mHawxhKWqtCrL9rQZwTCyEtx6s1iWzhxLAAADAdfZV1B8RwD9+aYNeWXdAb24u0e+vmKVb/7xSj763S5J01sQBuv6x5YcD+KU1+/SrV7doUO52Pb1wniTp0fd26f43t+sbZ49Tlt/5RHX1g3GtKakOyNrGJx07UlkfUiRq1S+z9YXfAAAAx6uq+pBeWrNPZ00sOBzAMTOH9TkcwoW7Kw6/3zyAYwblpunphfP0+saDuvCEIcrPTtxDcjwYF4ecNJ/SUjr325Kb7pOX7dAAAIAL5aT7dPakAUcFsCSt2lOhW55ceXhphNR6AEvS/sqALntgqT45aUBCA7gjLIdoJhiKqLgqoLpQRNZIuent3+E9UFmnQzUhNYSjyu+G/e0AAAC6y8GqgH64aP1RARwTC+HfXzFLkYjV3z/ce1QAx+yvDOjSB5bqmYXzNCIv08lpH8ad4CbBUETF1UFZGXmNUUlVUJX1R2/tEXOgsk6RaOMa4oNVAZVUBZI4WwAAgO5VXteg1zcWt3vNqj0VuvnJlXrk3R1tBnDM/sqAnl+5N2kPxxHBah7AjX+gNcGwZNRmCMcCeG9FQJGoVSAcIYQBAICrDMpN06PXzVGqt/2c/HBPhR55d2eH4105b4S+fNJwxw7OaMn1EXxEANc26I7n1+jmP69UdaD1EG4ewA++vV2XPfiB6hqihDAAAHCV3PRUTRmc06kQ7siV80bo1rPGdmpjgkRxdQS3FsAb91drf2VAt7QI4dpg6KgAfm3DQdWHIrrxiRWEMAAAcJ1EhHB3BLDk9ggORyUdGcAxLUN4Z+nRARzTMoRbHr8MAABwvPKneDWiX8YxhfCV84brlgVj5OvkzlyJ5OoIjlirqkDoqACOaR7C4ahtNYBjmodwShf/SQAAAKA3iB2FvOCXS1QXDOvha1rdkrdVn585RDcvGKuzfv2mftPiiOVkcHWteYzRz17Z1GoAx8RCOMVr2gzgmPpQRDc9ucKJqQIAAPQogRZHIY8tyNbK3eWd/v5HJTUyRpoyMFuPvbcr6SHs6gjOSUvRTz43VXnNTnz7yYVT9NBVJx5x3f7KgM67552jAvjyucP10tdOPfzaGOmui6ZzJxgAABz39pTVHQ7g2EEYd7+2tdPfX1NUqZubHajx2Hu79Pj7O1UdCDk36WZcXWvGGI3Iy9Dfbj5FeZmp+tnnp+qEYX3k83r05PVz2/3u5XOH66YzxmjN3kq98a0zZIx0z6UzdebEgqScdw0AANCd8rL8+uz0wW2eBNcZHzbtI3zvl2fp3CkDdNGsocpO8zkw26MZa21SfqFEmj17ti0sLEzYeNZaldUEta/ptJJgOKqHrp6tFI/RFQ8vO+r6WABf/tBSFZXX6zvnTtCFM4YoJ91HAAMAANc4WBXQs4V7jimAm5sxrI/+eMUsDcxNT9DMGhljVlhrW12o7Oo7wTGBUORwANc2RBSOWt3wWKHCUXvUHeGWASxJd/1zsxZ9uFd1wXB3TB8AACDpihMUwFLjHeGbnlypA5XJ22bW9RFc3xDWtuKawwEc01oItxbAMf/7z816fmWRitkjGAAAuEBJTbBTAXzlvBF69NrOnSz34NsfqbyWY5Md11YAxzQP4ddvm99mAMcQwgAAwC3ys/z64QVT2r0mdhDGrOF9OtxH+JQxeVo4f4z6ZnJssuNqGyK6+7WtrQZwTCyEl2wuaTeAY/741nZ5PJyWAQAAjm8FOWn69NSBbYZw85Pgcjo4We6UMXm6+0szNIBjk5Ojf5ZfP/3CVM0d1a/d68JRq5+8vLHDAO6T4dOzN56stBQiGAAAHP/aCuHWjkJu64jl7ghgyeURXFHbIGOs7rl0Roch3JFYAPfNSFGk9224AQAAcExahnBrARzTMoS7K4AlydX7eUWtVVF5UC+v2ad7Lp2hrz/zoZbtKIt7nFgAL9teqilD+mh0/ywHZgsAANAzxUJ4yuAcDe+X0WoAx8RC+G+3nKKCbH+3BLDk8giWkR57b4cWrd6vpdsP6ZFr5sQdwrEAXrzxoH72z80amJOmRV87VVJyNnoGAADoCQpy0tqN3+Zy01M1bUhqxxc6yNXLITL9Kbpy3kilej3asL9a1z26XPdeNlNTh+R06vv+FI+eaxbAknThjMFKTXH1bysAAECP5+pa86d4NX1Yrv58w0lK9Xo0Y1hfBcNRldU0dOr7oUhUeyvqNWVIriTpxvmjdfOCMeqT0b1/swEAAED7ODZZUjAc0f7yenm8Hl3+YMfboDWX4jF66OrZGpDj16DcdAIYAACgh+DY5A74U7zHFMDSx/sIH6wKqjf+hQIAAMCNiGBJu8vqjimAY2IhvLqoMmlH/QEAAODYuT6CuxrAMYQwAABA7+HqCC6rbdAdf1vTqZPgnr/llE6dLHfTkyvkMZwYBwAA0JO5OoL7Zabqrouma3i/jDavie0DPH1wju65bGa7IezzGj141WyxMhgAAKBnc3UES9Kwfhn68w0ntRrCsQAe1S9DKSleDcxJazOEfV6jR66Zo2lDctkhAgAAoIdzfQRLrYdw8wD2+byH328thAlgAACA3oUIbtI8hNsK4JjmIUwAAwAA9D4cltHCnrI6BUIRjWwjgJs7UBXQ/op6jeqfSQADAAD0MO0dlpGS7Mn0dMP6ZSgSicjrbT+ApcY7wvmZvk5dCwAAgJ6D5RCtiCdqCWAAAIDehwgGAACA6xDBAAAAcB0iGAAAAK7TpQg2xmQlaiIAAABAsnT1TvCGhMwCAAAASKIOt0gzxtzW1keSuBMMAACAXqczd4J/KqmvpOwWP7I6+X0AAACgR+nMYRkrJb1grV3R8gNjzA2JnxIAAADgrM5E8LWSDrXxWavH0AEAAAA9WYfLGay1m621pW18djD2c2PMvYmcGAAAAOCURK7pPTWBYwEAAACO4cE2AAAAuA4RDAAAANdJZASbBI4FAAAAOKbTEWyMmdbBJb/t4lwAAACApIjnTvDvjTHLjDG3GGNyW35orX00cdMCAAAAnNPpCLbWni7py5KGSVphjHnKGPNJx2YGAAAAOCSuNcHW2q2SvifpO5LOkHSPMWaTMeYLTkwOAAAAcEI8a4KnG2PulrRR0lmSzrfWTmr6+d0OzQ8AAABIuM4cmxxzr6SHJP2XtbY+9qa1dp8x5nsJnxkAAADgkHgi+DxJ9dbaiCQZYzyS0qy1ddbaJxyZHQAAAOCAeNYEvy4pvdnrjKb3AAAAgF4lnghOs9bWxF40/Twj8VMCAAAAnBVPBNcaY2bFXhhjTpRU3871AAAAQI8Uz5rgb0p6zhizT41HJA+U9CVHZgUAAAA4qNMRbK1dboyZKGlC01ubrbUhZ6aVHKXVQdUEw46MneVPUf9svyNjAwAAoGviuRMsSXMkjWz63ixjjKy1jyd8VklSEwxrwS+XODL2ktsXEMEAAAA9VKcj2BjzhKQxkj6UFGl620rqtRGc4fdq8e0LHBsbAAAAPVM8d4JnS5psrbVOTSbZaoMRnenQneDFty+Qsh0ZGgAAAF0UTwSvU+PDcPsdmkvSpfs8embhPMfGBgAAQM8UTwT3l7TBGLNMUjD2prX2goTPKknqQ1Fd+sBSR8Z2apkFAAAAui6eCP5vpyYBAAAAJFM8W6S9aYwZIWmctfZ1Y0yGJJ7+AgAAQK/T6YWrxpivSPqrpPub3hoi6YVOfO9cY8xmY8w2Y8wdbVxziTFmgzFmvTHmqc7OCQAAADgW8SyH+KqkuZI+kCRr7VZjTEF7XzDGeCXdJ+mTkookLTfGLLLWbmh2zThJ/ynpVGtteUdjAgAAoGeqbwgrPbVzeVkbCCkzzefwjNoWzxYGQWttQ+yFMSZFjfsEt2eupG3W2u1N331G0oUtrvmKpPusteWSZK0tjmNOAAAA6AGKqwL6v3UHVFwV6PDa0uqg3t9epn0V9UmYWeviieA3jTH/JSndGPNJSc9JeqmD7wyRtKfZ66Km95obL2m8MeZdY8xSY8y5rQ1kjFlojCk0xhSWlJTEMW0AAAA4qbgqoAfe2q7bnl2t776wtt0QLq0O6p1tpfrKE4W67tHl3RbC8UTwHZJKJK2VdKOkV6y1303AHFIkjZO0QNJlkh40xvRpeZG19gFr7Wxr7ez8/PwE/LIAAADoqlgAP/TODknSaxuK2wzhWAD/x7Mfylpp04HqbgvheCL4Vmvtg9baL1prL7bWPmiM+UYH39kraViz10Ob3muuSNIia23IWrtD0hY1RjEAAAB6sJYBHNNaCLcM4JjuCuF4IvjqVt67poPvLJc0zhgzyhiTKulSSYtaXPOCGu8CyxjTX43LI7bHMS8AAAAkWVsBHNM8hA/VtB7AMd0Rwh0+vmeMuUzS5ZJGGWOaB2y2pLL2vmutDRtjvibpX2rcU/gRa+16Y8yPJBVaaxc1fXaOMWaDpIikb1trDx3b/w4AAACSobQmqIffbT2AY17bUCxr12r+uHz94KX1rQZwzKYD1frTuzt184LR6pfpT/Bsj9aZPSzek7Rfjccm/6rZ+9WS1nT0ZWvtK5JeafHenc1+biXd1vQDAAAAvUBBdpruvmRGm3d3Y17fWKzXN3a8+dfZkwp0w+mjkhLAUici2Fq7S9IuSSc7Px0AAAD0Bv2z/TptbP9OhXBHzp5UoP/5/DQNyElL3AQ7EM+JcV8wxmw1xlQaY6qMMdXGmConJwcAAICeq3kIG3NsY3RHAEvxnRj3c0nnW2s3OjWZZEv3efTMwnmOjQ0AAHC868od4e4KYCm+CD54PAWwJNWHorr0gaWOjL349gWOjAsAANDT9M/269SxefrFxdN1+3MdPjImSTpjQn63BbAUXwQXGmP+osYtzYKxN621zyd8VgAAAOhVjI5xPUQ3ieff7HMk1Uk6R9L5TT8+68SkAAAA0HvEDsL49l87dxdYkt7cXKLv/n2tDrZzxLKTOn0n2Fp7rZMTAQAAQO/T1klwndG4ddrablkWEc/uEOONMW8YY9Y1vZ5ujPmec1MDAABAT9aVAI55fWNxt9wRjmc5xIOS/lNSSJKstWvUeAwyAAAAXCYRARzTHSEcTwRnWGuXtXgvnMjJAAAAoHcorg50KoDPnlSgH10wpcN9hF/fWKyH3t6hstpg+xcmSDwRXGqMGSPJSpIx5mI1Hqfcax3rps7dPTYAAEB365/l13Wnjmr3mrMnFeinn5+m86YP6vBAjYkDs3XtqSOTdmxyPBH8VUn3S5pojNkr6ZuSbnZkVknS1Vv33TU2AABAdyvISdON80fr+tNaD+FYABfkpCkvq/2T5SYOzNYj18zR4D7pDs/6Y52OYGvtdmvt2ZLyJU201p5mrd3p2MwAAADQo7UVws0DOKatI5a7I4Cl+HaH+IYxJrZX8N3GmJXGmHOcmxoAAAB6upYh3FoAx7QM4e4KYCm+E+Ous9b+1hjzKUl5kq6U9ISkVx2ZGQAAAHqFWAhPHpyj08f2bzWAY2Ih/OCVszV5cE63BLAUXwTHblx/RtLj1tr1xvD4FwAAABpD+DNTByo9teO87J/t18mj+ykzzZeEmbUungfjVhhjXlVjBP/LGJMtKerMtAAAANDbdCaAY7ozgKX47gRfL2mGpO3W2jpjTJ4kjlIGAABAr9NhBBtjJlprN6kxgCVpNKsgAAAA0Jt15k7wbZIWSvpVK59ZSWcldEYAAACAwzqMYGvtwqb/nun8dAAAAADnxbNP8BebHoaTMeZ7xpjnjTEznZsaAAAA4Ix4dof4vrW22hhzmqSzJT0s6Y/OTAsAAABwTjwRHGn673mSHrDWviwpNfFTAgAAAJwVzxZpe40x90v6pKS7jDF+xRfRPU66z6NnFs5zbGwAAAD0TPFE8CWSzpX0S2tthTFmkKRvOzOt5PAYo/5ZfsfGBgAAQM/U6QhuOiDjRUkDjDHDm97e5My0kqO2IaKzf/2mI2Mvvn2BI+MCAACg6zodwcaYWyX9QNJBfXxcspU03YF5AQAAAI6JZznENyRNsNYecmoyyebkggUWQwAAAPRc8UTwHkmVTk2kO6Q5+GBcGg/GAQAA9FjxRPB2SUuMMS9LCsbetNb+OuGzSpL6UFSXPrDUkbFZEwwAANBzxRPBu5t+pIr9gQEAANCLxbM7xA8lyRiT1fS6xqlJAQAAAE7q9MJVY8xUY8wqSeslrTfGrDDGTHFuagAAAIAz4nl66wFJt1lrR1hrR0j6lqQHnZkWAAAA4Jx4IjjTWrs49sJau0RSZsJnBAAAADgsrt0hjDHfl/RE0+sr1LhjBAAAANCrxHMn+DpJ+ZKel/Q3Sf2b3gMAAAB6lXh2hyiX9HUH5wIAAAAkRacj2BjzmqQvWmsrml73lfSMtfZTTk3OaekOnhiXzolxAAAAPVY8pdY/FsDS4TvDBYmfEgAAAOCseB6Mixpjhltrd0uSMWaEJOvMtJLD4zEakJPm2NgAAADomeKJ4O9KescY86YkI+l0SQsdmVWS1AYjOvOXSxwZe/HtC6RsR4YGAABAF8XzYNw/jTGzJMUW0X7TWlsa+9wYM8Vauz7REwQAAAASLZ47wWqK3n+08fETkmZ1eUYAAACAwxK5hQGLYAEAANArJDKCe/VDcgAAAHAPNrMFAACA6yQyghsSOBYAAADgmLgejDPGTJc0svn3rLXPN/3XmaPXAAAAgASL59jkRyRNl7ReUrTpbSvpeQfmBQAAADgmnjvB86y1kx2bCQAAAJAk8awJft8YQwQDAACg14vnTvDjagzhA5KCatwX2FprpzsyMwAAAMAh8UTww5KulLRWH68JBgAAAHqdeCK4xFq7yLGZAAAAAEkSTwSvMsY8JeklNS6HkPTxFmkAAABAbxFPBKerMX7PafYeW6QBAACg1+l0BFtrr3VyIgAAAECyxHNYRpqk6yVNkZQWe99ae50D8wIAAAAcE88+wU9IGijpU5LelDRUUrUTkwIAAACcFE8Ej7XWfl9SrbX2MUnnSTrJmWkBAAAAzokngkNN/60wxkyVlCupIPFTAgAAAJwVz+4QDxhj+kr6vqRFkrIk3enIrAAAAAAHxbM7xENNP31T0mhnppNcWX6vFt++wLGxAQAA0DPFszvEAEk/lTTYWvtpY8xkSSdbax92bHYOy89OU352d88CAAAAyRbPmuBHJf1L0uCm11skfTPREwIAAACcFk8E97fWPispKknW2rCkiCOzAgAAABwUTwTXGmPy1HhUsowx8yRVOjIrAAAAwEHx7A5xmxp3hRhtjHlXUr6kix2ZFQAAAOCgeCJ4g6S/S6pT40lxL6hxXTAAAADQq8SzHOJxSRPVuEPEvZLGq/EoZQAAAKBXiedO8FRr7eRmrxcbYzYkekIAAACA0+K5E7yy6WE4SZIx5iRJhYmfEgAAAOCsDu8EG2PWqnFHCJ+k94wxu5tej5C0ydnpAQAAAInXmeUQn3V8FgAAAEASdRjB1tpdyZgIAAAAkCzxrAkGAAAAjgtEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHUcj2BjzLnGmM3GmG3GmDvaue4iY4w1xsx2ek4AAABwN0cj2BjjlXSfpE9LmizpMmPM5Fauy5b0DUkfODkfAAAAQHL+TvBcSdustduttQ2SnpF0YSvX/VjSXZICDs8HAAAAcDyCh0ja0+x1UdN7hxljZkkaZq19ub2BjDELjTGFxpjCkpKSxM8UAAAArtGtD8YZYzySfi3pWx1da619wFo721o7Oz8/3/nJAQAA4LjldATvlTSs2euhTe/FZEuaKmmJMWanpHmSFvFwHAAAAJzkdAQvlzTOGDPKGJMq6VJJi2IfWmsrrbX9rbUjrbUjJS2VdIG1ttDheQEAAMDFUpwc3FobNsZ8TdK/JHklPWKtXW+M+ZGkQmvtovZHcFZJdUA1wYgjY2f5vcrPTnNkbAAAAHSNoxEsSdbaVyS90uK9O9u4doHT82muJhjRmb9c4sjYi29foPxsR4YGAABAF3FiHAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALiO41uk9WSZfq8W377AsbEBAADQM7k6gmsd3idY7BMMAADQI7EcAgAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOkQwAAAAXIcIBgAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6Kd09ge6U5fdq8e0LHBsbAAAAPZOrIzg/O0352d09CwAAACQbyyEAAADgOkQwAAAAXIcIBgAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABchwgGAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1Urp7AgAAAOh9SqoDqglGEj5ult+r/Oy0hI/bEhEMAACAuNUEIzrzl0sSPu7i2xcoPzvhwx6F5RAAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOkQwAAAAXIcIBgAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABchwgGAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4Tkp3TwAAAAC9T5bfq8W3L3Bk3GQgggEAABC3/Ow05Wd39yyOHREMAACAuJVUB1QTjCR83Cy/V/nZaQkftyUiGAAAAHGrCUZ05i+XJHzcxbcvSModZh6MAwAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABchwgGAACA6xDBAAAAcJ3j5tjkUCikoqIiBQKB7p5Kt0pLS9PQoUPl8/m6eyoAAAA9luMRbIw5V9JvJXklPWSt/d8Wn98m6QZJYUklkq6z1u6K99cpKipSdna2Ro4cKWNMAmbe+1hrdejQIRUVFWnUqFHdPR0AAIAey9HlEMYYr6T7JH1a0mRJlxljJre4bJWk2dba6ZL+Kunnx/JrBQIB5eXluTaAJcn8//buPsiq+r7j+PsLu9kFd/NQHhTZGNGioIuuPGipdgfGIOIwPnZShWgoVtMZOrUhRKWUSp2SETHU1tFMNT5b7CQmrXYE3agY1IkSRPAhYNFkjSIuaDUBHDZL+usfe6ErYgT2XM5yz/s1w9xzf/fyu5+7Z3bns2d/95wI+vXrV/ij4ZIkSZ+m3GuCTwZeSyn9IqX0W+DfgXO6PiGltCyl9GHp7rNAw/6+WJEL8E5+DSRJkj5duUvwYODNLvffKo19kkuBpXt6ICIuj4iVEbFy8+bNGUaUJElS0fSYs0NExFeB0cDCPT2eUro1pTQ6pTR6wIABBzbcXvjggw+45ZZb8o4hSZKkvVDuErwB+GKX+w2lsY+IiC8Dc4CzU0rtZc5UFpZgSZKkg0e5S/DPgKERMSQiPgNcCDzU9QkRcRLwr3QW4E1lzlM2V199Na+//jpNTU1861vfYuHChYwZM4YTTjiBa665BoDW1laGDRvGtGnTOOaYY5g6dSqPPfYYp556KkOHDmXFihUAzJs3j4svvpixY8cydOhQbrvtNgA2btxIc3MzTU1NNDY28tRTT+X2fiVJkg5mZS3BKaUdwF8BjwJrge+nlF6JiGsj4uzS0xYCdcAPImJ1RDz0CdP1aNdddx1HH300q1evZsKECaxfv54VK1awevVqnn/+eZYvXw7Aa6+9xje/+U3WrVvHunXrWLx4MU8//TQ33HAD3/72t3fN9+KLL/LEE0/w05/+lGuvvZa3336bxYsXM3HiRFavXs2aNWtoamrK6+1KkiQd1Mp+nuCU0hJgyW5jf99l+8vlznCgtbS00NLSwkknnQTA1q1bWb9+PUcccQRDhgxhxIgRABx//PGcfvrpRAQjRoygFE5WjAAAC9ZJREFUtbV11xznnHMOffr0oU+fPowfP54VK1YwZswYpk+fTkdHB+eee64lWJIkaT9VzBXjepKUErNnz+brX//6R8ZbW1upqanZdb9Xr1677vfq1YsdO3bsemz3U51FBM3NzSxfvpyHH36YadOmMXPmTC655JIyvhNJkqQ9q6vpzbJZ48oy74FgCc5IfX09W7ZsAWDixInMnTuXqVOnUldXx4YNG/b5MsYPPvggs2fPZtu2bTz55JNcd911vPHGGzQ0NHDZZZfR3t7OqlWrLMGSJCkXA+prGVCfd4r9ZwnOSL9+/Tj11FNpbGxk0qRJTJkyhbFjxwJQV1fHfffdR+/ee/+bzQknnMD48eN59913mTt3Locffjh33303CxcupLq6mrq6Ou65555yvR1JkqTfa/OW7Wxt/13m89bV9GZAfW3m8+4uUkplf5GsjR49Oq1cufIjY2vXrmX48OE5JcrWvHnzqKurY9asWfv1/yvpayFJknqmX767jfE3PJn5vMtmjWNI/0MymSsink8pjd7TYz3mYhmSJEnSgeJyiB5o3rx5eUeQJEmqaB4JliRJUuFYgiVJklQ4lmBJkiQVjiVYkiRJhWMJztD06dMZOHAgjY2NeUeRJEnS71HYErx06VImT57MmDFjmDx5MkuXLu32nNOmTeORRx7JIJ0kSZLKqZCnSFu6dCnz589n+/btALzzzjvMnz8fgEmTJu33vM3NzbS2tmYRUZIkSWVUyCPBN998864CvNP27du5+eabc0okSZKkA6mQJbitrW2fxiVJklRZClmCDz300H0alyRJUmUpZAmeMWMGtbW1Hxmrra1lxowZOSWSJEnSgVTIEjxp0iTmzJnDYYcdRkRw2GGHMWfOnG59KA7goosuYuzYsbz66qs0NDRw++23Z5RYkiRJWSrk2SGgswh3t/Tu7v777890PkmSJJVHIY8ES5IkqdgswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAswZIkSSqcwp4irRzefPNNLrnkEtra2ogILr/8cq644oq8Y0mSJGWurqY3y2aNK8u8B0IhS3BHRwczZ84EYMGCBVx11VUALFq0iOrq6v2et6qqiu985zuMHDmSLVu2MGrUKCZMmMBxxx2XSW5JkiRlo5AleObMmaxatQqAs846i46Ojl3jN910037PO2jQIAYNGgRAfX09w4cPZ8OGDZZgSZJUcba2/47xNzyZ+bzLZo1jQH3m035MIUvwTu3t7bS3twNQU1OT6dytra288MILnHLKKZnOK0mSpO4r5AfjFixY8LFlD9XV1Vx//fWZzL9161YuuOACbrzxRj772c9mMqckSZKyU8gSfNVVV+1aArFTR0cHV155Zbfn7ujo4IILLmDq1Kmcf/753Z5PkiRJ2Sv0coiamhqqq6s/Voj3V0qJSy+9lOHDh+/64J0kSZJ6nkIeCV60aBEjR45k5MiRLFmyZNf2okWLujXvM888w7333ssTTzxBU1MTTU1NLFmyJKPUkiRJykohjwRXV1d/5CwQ3TkjRFennXYaKaVM5pIkSVL5FPJIsCRJkorNEixJkqTCsQRLkiSpcCzBkiRJKhxLsCRJkgrHEixJkqTCKeQp0srpyCOPpL6+nt69e1NVVcXKlSvzjiRJkqTdFLIENzc38+GHH35svG/fvixfvrzb8y9btoz+/ft3ex5JkiSVRyGXQ+ypAP++cUmSJFWWQpbgcooIzjjjDEaNGsWtt96adxxJkiTtQSGXQ5TT008/zeDBg9m0aRMTJkxg2LBhNDc35x1LkiRJXXgkOGODBw8GYODAgZx33nmsWLEi50SSJEnanSU4Q9u2bWPLli27tltaWmhsbMw5lSRJknZXyOUQffv2/cSzQ3RHW1sb5513HgA7duxgypQpnHnmmd2aU5IkSdkrZAnO4jRoe3LUUUexZs2asswtSZKk7BSyBEuSJKl76mp6s2zWuLLMeyBYgiVJkrTPBtTXMqA+7xT7r6I+GJdSyjtC7vwaSJIkfbqKKcG1tbW89957hS6BKSXee+89amtr844iSZLUo1XMcoiGhgbeeustNm/enHeUXNXW1tLQ0JB3DEmSpB6tYkpwdXU1Q4YMyTuGJEmSDgIVsxxCkiRJ2luWYEmSJBWOJViSJEmFEwfj2RQiYjPwRg4v3R94N4fXVXm5XyuX+7ZyuW8rk/u1cuW1b7+UUhqwpwcOyhKcl4hYmVIanXcOZcv9Wrnct5XLfVuZ3K+VqyfuW5dDSJIkqXAswZIkSSocS/C+uTXvACoL92vlct9WLvdtZXK/Vq4et29dEyxJkqTC8UiwJEmSCscSLEmSpMKxBO+FiGiNiJciYnVErMw7j7ITEZ+PiAciYl1ErI2IsXlnUvdFxLGl79ed/34TEX+Tdy51X0R8IyJeiYiXI+L+iKjNO5OyERFXlPbrK36/Htwi4o6I2BQRL3cZ+4OI+HFErC/dfiHPjGAJ3hfjU0pNPe0cd+q2fwYeSSkNA04E1uacRxlIKb1a+n5tAkYBHwL/kXMsdVNEDAb+GhidUmoEegMX5ptKWYiIRuAy4GQ6fxZPjog/zDeVuuEu4Mzdxq4GHk8pDQUeL93PlSVYhRURnwOagdsBUkq/TSl9kG8qlcHpwOsppTyuMqnsVQF9IqIK6Au8nXMeZWM48FxK6cOU0g7gJ8D5OWfSfkopLQf+Z7fhc4C7S9t3A+ce0FB7YAneOwloiYjnI+LyvMMoM0OAzcCdEfFCRHwvIg7JO5QydyFwf94h1H0ppQ3ADcCvgI3Ar1NKLfmmUkZeBv4kIvpFRF/gLOCLOWdStg5NKW0sbb8DHJpnGLAE763TUkojgUnAjIhozjuQMlEFjAS+m1I6CdhGD/jzjLITEZ8BzgZ+kHcWdV9pDeE5dP4CezhwSER8Nd9UykJKaS2wAGgBHgFWA7/LNZTKJnWenzf3c/RagvdC6egDKaVNdK4rPDnfRMrIW8BbKaXnSvcfoLMUq3JMAlallNryDqJMfBn4ZUppc0qpA/gR8Mc5Z1JGUkq3p5RGpZSagfeB/847kzLVFhGDAEq3m3LOYwn+NBFxSETU79wGzqDzzzY6yKWU3gHejIhjS0OnAz/PMZKydxEuhagkvwL+KCL6RkTQ+T3rh1krREQMLN0eQed64MX5JlLGHgK+Vtr+GvBgjlkArxj3qSLiKP7/U+VVwOKU0vwcIylDEdEEfA/4DPAL4M9TSu/nm0pZKP3S+ivgqJTSr/POo2xExD8AfwbsAF4A/iKl1J5vKmUhIp4C+gEdwMyU0uM5R9J+ioj7gXFAf6ANuAb4T+D7wBHAG8BXUkq7f3jugLIES5IkqXBcDiFJkqTCsQRLkiSpcCzBkiRJKhxLsCRJkgrHEixJkqTCsQRLUg8REUdGhOchl6QDwBIsSZKkwrEES1LPUhUR/xYRayPigdLV0UZFxE8i4vmIeLTLpUcvi4ifRcSaiPhhRPQtjd8VEd+NiGcj4hcRMS4i7ijNeVfpOb1Lz3s5Il6KiG/k+J4l6YCzBEtSz3IscEtKaTjwG2AGcBPwpymlUcAdwM6rVv4opTQmpXQinZcPvrTLPF8AxgLfoPNypf8EHA+MKF0psQkYnFJqTCmNAO4s/1uTpJ6jKu8AkqSPeDOl9Exp+z7gb4FG4McRAdAb2Fh6vDEi/hH4PFAHPNplnv9KKaWIeAloSym9BBARrwBHAj8BjoqIm4CHgZayvitJ6mEswZLUs+x+LfstwCsppbF7eO5dwLkppTURMQ0Y1+Wx9tLt/3bZ3nm/KqX0fkScCEwE/hL4CjC92+kl6SDhcghJ6lmOiIidhXcK8CwwYOdYRFRHxPGlx+uBjRFRDUzdlxeJiP5Ar5TSD4G/A0Zmkl6SDhIeCZaknuVVYEZE3AH8nM71wI8C/xIRn6Pz5/aNwCvAXOA5YHPptn4fXmcwcGdE7DwYMjub+JJ0cIiUdv/LmyRJklTZXA4hSZKkwrEES5IkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAswZIkSSqc/wNd0tkKwWo3UwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5icVaHH8d+ZnZ3tvaRteiUkISQbCEUJIAqI4gWlBwQkgFeuDRSv5XqxK4ioqIRyaWIUBKSEFg2gQEg2JJBeSS+bbG8zO+XcP3YnTpJtk513Npv3+3keHzIz75ycJP7xzZvznmOstQIAAADcxNPXEwAAAACSjQgGAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1vH09gSNRXFxsR4wY0dfTAAAAwFFs6dKl+621JR191i8jeMSIEaqoqOjraQAAAOAoZozZ2tlnLIcAAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4Dr9cp9gAAAAHH2qGgMqyk5TOBxWZUOrIlYKRSKyVkpNMbKSCjNTlZmWqn0NfmV6PcrK8PXJXIlgAAAA9Nru2hbtrfcrEIrotdV79dz7u7R6V71agmFJksdII4uzdfqYIl19ygh5U4wq6wIaUaQ+CWEiGAAAAL1S1dAiSVr0YbXufm29AqHIYddErLRpX6M27WvUI+9s1dkTSvW/Fx6vWn9IUvJDmAgGAADAEatq8CsQlm5+fKne31HX4+/9fW2llmyt1oPXzJCULim5IcyDcQAAADgiu2tb1BqxuuahxXEFcFR9S0hXPfCu9tYHVOMPqqml1YFZdowIBgAAQNx217YoEIroxy+u0YbKxiMeJxCKaM5jFfIYjzZUNaoxSSFMBAMAACBu3hRpd32Lnv9gd6/H2t/Yql++tl7Fmelq6WA9sROIYAAAAMQtFJZ++er6hI337LKdMsaoJCc9YWN2hQgGAABA3FrDES3ZUpOw8UIRq/kre39XuaccjWBjzEPGmEpjzMpOPjfGmF8bYzYaYz4wxkxzcj4AAABIjDW76xM+5lsb96uqMZDwcTvi9J3ghyWd28Xn50ka2/6/OZJ+7/B8AAAAkABLtlQnfMzVu+rV0hpO+LgdcTSCrbVvSurqd+hCSY/aNosk5RtjBjk5JwAAAPROJBJRbXMw4ePW+4MyJuHDdqiv1wQPkbQ95vWO9vcOY4yZY4ypMMZU7Nu3LymTAwAAwOE8Ho983sRnpC/FI5vwUTvW1xHcY9baudbacmtteUlJSV9PBwAAwNWOH5yX8DFHl2TL45I7wTslDY15Xdb+HgAAAI5i04blJ3zMqUPzVZrtji3SnpN0dfsuETMl1Vlrk7c3BgAAAI5IfqZPA3MTG6yfLS+T14FlFh1xeou0P0l6R9J4Y8wOY8z1xpibjDE3tV8yX9JmSRsl3S/pi07OBwAAAImRk+bVtaeNSNh4EwflKj8jNWHjdcfr5ODW2su7+dxK+k8n5wAAAIDE21XXok+fMFh/WrxNW6qaezWWx0g//+wUrd3dIJ/Xk5RT4/p6OQQAAAD6oUG56fIHw7r3ymlK6+UShi+dNVaZPo8mleVxbDIAAACOXrmZPhVl+ZSfkar/u3bGEYfw1acM1+UzhiorLVUDErzGuCtEMAAAAI5IbqZPOWleDS3I0PO3nK7jBuX0+Ls5aV7dc9lUzfnIKHk8JqkBLDm8JhgAAADHttxMnyTJH/TrwWtmqGJLtf7wxmat3l3f4fWFWT5defIwXTZjmPbWNyvV60l6AEtEMAAAAHopGsIhK509YYDKRxQqFI5of4NfgbCVkZWMUWlOutK8HhVk+tQQCGlIQVafBLBEBAMAACABoiEsSU2BoLIyU+X1eOQPhSVJHmNUkJmq1rCVLyX5yx8ORQQDAAAgIWqaWtXgD6olGNFrS3eqYmu1tlc3K2KlgkyfTijL09nHDdDwokxlpaco1+eV15vSJ3MlggEAANArzYGQ6v1BVTYE9L2/rdLy7bWHXfOhmvTethr939tbVJKTpq+cPVZnTihVmlcqys5I+pyJYAAAAByxpkBQDf6QHn1nq/7wxiZFbPff2dcQ0LefXanpwwt0z2VTVdvcqvyY5RTJwBZpAAAAOGIN/pB++vI6/e71ngVwrKVba3TZ3EVq8IdU19LqzAQ7QQQDAADgiOxr8Ou593fp2WU7j3iMHTUt+uIf31NLaziBM+seEQwAAIC4hUJh1ftDuvOV9b0ea8XOOr3wwW7tb/AnYGY9w5rgTlQ1BuQPhlXV1Kot+5vUEgzL6zEakp+pwQUZSvUYDcpP/iJuAACAo0F1c6vuWbBereFIQsb79d836PzJgxIyVk8QwYeoagyourlVFR9Wa3hRljweI1+KRykeI0kKhsLaW+/Xlv1NGpSXrjGl2RqYRwwDAAB3CYatXlq5J2Hj1ftDem9bjQbmpsnjcX6xAsshYuyt9+udTVVqagmprCBTA3LTVZqTpsw0r8JWSk3xqCSv7b2RxZkykt7fUaft1U0KBJO7jgUAAKAvbalqVjAc55Nw3Xh55R7V+YMJHbMz3Alut7fOr837m1Sak6bCHJ9eW7tXf1q8XdVNhz+pmJpidM7EAbrpjNHKy/SppiWoUDiisvxMpab2zYbPAAAAybT4w+qEj7liZ50a/WEVZCZ86MMQwZIq61q0tzGgAblpentTla7+v8XyBztf3xIMW81fsUfzV+zRZ6YO1tc/Pl7+YEj7m1pZJwwAAI55kUhEO2tbEj5uZX1AxiR82A65PoIb/UFVNbaqMMOnH81fE/falmeX71LF1ho9dv3Jag1HVFnnV2le356FDQAA4CTTRammp3r0qSmDdfrYYg3Oz1CkffNgj8eo0R/Ssu01eqpih3bVHb4TRLICWCKC1dwaVmaaV3e+tv6IF3fvqGnR7Aff1Z/nnKLGQFClIoIBAMCxyxijkcVZB72XmmJ086zROmNcqZ5/f5d+/vK6w+4W56Z7ddLIQv3vhZMUCIX1oxfXaHdMDA/Oz5BN7DLjTrk+gq2s1u1tOGyT5+Jsnz45ZbBOKMvTkIK2PxBjpPqWkFbtqtNrq/dq1a76A9fvqGnRT15ao298Yrz21ftVkksIAwCAY5O1VjNGFB54PbokSz+5aIqeXbZTF//+7U6/V+8PacGaSi1YU6nJQ/L068tP1OOLtupvy3dJkk4oy1NOenKer3J1BO9vCCgUlr751w8OvDc4L13fOHeCCrN8embZTt29YL22V//7bzH5mamaMiRP15w6QkMLMnXvwo3618b9kqQXPtit608fqSGsCwYAAMe4IfnpykhN0dDCDP30oin6yp+Xa1t1c4+/v2Jnna68/1399OLJys/06ZG3t+iCKYPlUXLWRLg6glOMtGx7jWqa27bi+Nz0Ml0yY6h+8MJqfbCjrsPv1DYH9eaG/Xpzw34VZKbqOxdM1PmTB+mOF1bJH4zo3oUb9YPPTErmLwMAACCprLVKT03R7JnDdN7kQfriH987aFlDT7WGI7r1yff168tOVF1zq8YPyFEwkpjDN7rj6n2C/aGwnnh3myTplrPGaOrQfF1x/6JOA/hQNc1Bff0v7+utjfs1d3a5MlJT9I+1lQpHkrSYBQAAoA94PB7ZiNU1p47QXa+uP6IAjopY6VtPr9AtZ49VqtcokqRFwa6O4IiVVuyo0yXlQzUwN13ffnblEW36/OKK3Xr47S26+9Kpiti2u8UAAADHslBEWr699sCy0N5oCIT0s5fWqrk1rOy01ATMrnuujuBQxCovM1WfnV6m7z+/qldj/WNtpTbva9Tnppdpw96GBM0QAADg6NQaDut3r29K2HivrdkrfzDMneBksFb65rkT9L/Pr0rIsX+/WrBBV5w8TCGWQwAAgGNcSzBy0E5ZvWWt9NLKPWoNsSbYcakpHuWkexP2B9gajuiZZTs1pjSr+4sBAAD6qUjEasXOnj1DFY8lW6q7PLU3kdy9O4RH+uvSHQkd8+n3duqGj4xK6JgAAABHmxXdbCQwtDBDk4fkaXB+hjzGqLY5qNW767RuT0On/wK/dndD0jYYcHUEhyJWS7bUdHnNkPwMjR+Yo+w0r1rDEW2tatKGvY2dLnloDIQUSNJtfAAAgL5h1RA4fCOA3AyvLikfqvMnDdLW6mat2FGrLfubFLFSYZZPF08r05SyfK3eVa9H39miDZWNB32/qTWkJG0T7O4ItlbaU3/4lh4jijJ15czhKh9eoG3VzVqzu171LSH5vB6dNrpY4wZkq6qpVX98d6ve2lh12Pc3VjZoTGl2Mn4JAAAAfSLTd/DJbp84foBuOmO0Hn1nqy6/f1GHNwWfWtr232nD8vWNcydoU2Wj7l6w/sC1ad6UZDWwuyP40Lu5aV6PvnbOOI0dkKMH/rlZP3pxTaffHVGUqdmnDNeNHx2tbz+74qBT5WqaWh2bMwAAQF/zeDw6cWiBHl/Udt7Cdz55nDJ9Xl31wLtqag13+/33ttXqhkcrdNG0IXr0+pP0xcffU1VTq8YNyFaKJzkZ7OoH42J/jwflpevxL5ysNbsbdN3DS/T2psPv8MbaUtWsH7ywRj+ev0Z3fW6qzj6u9MBn6b7knHkNAADQVyYPyZMkfeu8Car3B/Xfz6zoUQDHevq9nfrJ/LX6/VXTlZPm1UkjC+VLUgS7+k6w12OU6UtRVppX914xTd96eoXWxbnH79o9DbrmocX6w1XTFI5Yvb5un8aUsBQCAAAc2zJ9KbqkvEyFWT795KW1RzzO8u21+v3rm/TdT03UCWX5ys/yJXCWnXP3nWCP0aQhefrZxVN0xwur4w7gqJZgWDf/8T3dctZYDchNU15mcv7wAAAA+kq61+jGM0brjudX93qshesqlWKMCjK9amxJzsm7ro5grzH6+jnjtHJnnZZvr+3VWM2tYf3ghdX61aVT5UtJ1pJuAACAvuFNSdFj72xVQyCUkPF+9vJahSJSblZaQsbrjrsjOMVoaGGm7l24MSHjLd9eq6ZAWGleV/+2AgAAF2gOhvVkxfaEjVfZENDGQ7ZMc5Lra+3VVXsSuq/vvQs3qjnOReEAAAD9za7alrgfhOvO397fqSY/yyEc19Qa1rPLdyV0zGXbaxXmrAwAAHCMW7KlOuFjrthRp5pmIthxRtKa3fUJH7ey4fADOAAAAI4lm/c1JXzMnTUtSTsxztURHAxbR444duL/FAAAAEeLSCQi2/1l8Y9rk9bA7o5gJ/7wJCkccWpkAACAvufxeDQoLz3h45bkpClZGeXqCE51aCuz4hz2CQYAAMe2k0cWJnzMyUPylJ+ZmvBxO+LqCJaVhhZmJHzY0ZwYBwAAjnEji7PkTfARx584foDSU5OTp66O4Cxfik4dXZzQMQuzfErzpiR0TAAAgKONN8WjcycNTNh4OWleTR9RqJZAcraadXUER6zVtaeNSOiY15w6XJk+V/+2AgAAF6hpatX1p49M2N3gL3x0lCKRiBqTdN6Cq2stbCNK93p0yuiihIyXnebV+ZMGqZWNggEAwDEsErGykp5aukP/eeaYXo93/OBcTRmSp2eX75LPoWe2DuXqCDbGowf+9aG+8YnxyvT1fgnDtz95nO5ZsF6tYXaHAAAAx7Z1exr0x3e3acKgHJ0/+ciXRQzOS9cPPzNJ335mhZZuqVEoSdtDuDqC/cGI/rGmUvcu3Ki7LjmhV7fzL5sxVNZKL6zYo0CQY5MBAMCxy+Mx+mBHrSTpK/OW6z9OLNPnTx0hE2dKnVCWp3uvnKZv/vUD7arza9XueiI4WXbV+bVgTaX+sbZSv7tymnIzvHF93xhpzkdH6bQxxfre31ZKkjZUNjoxVQAAgKOCtVa1LW3HGwdCEd38+FLlpHv18Odn6PjBud1+vzDLp9vPnaAvnTVWNz2+VOv3trVTgz8oT7wlfYTiK75jTOzfNJ6s2KE9dX49cu1J+sMbm/Xq6j2y3fxFZExptr53wUQt3lKtL89bdmBz55qmVgdnDQAA0LeMMUqP2Q0rFLH6zT82atyAbN3wkVEqK8jUm+v3acXOOm2rblbEWhVm+TRpcJ5OHlWowiyfnnh3m3768tqDxvWleJTgXdc65eoIPvT3+J8b9mv5tlrdPGu0bvzoKC1Ys1fvbavR6t31avCH5EvxaExptiYNydP5kwaqwR/Sj15co3V7Gw4aJzXF9TfYAQDAMW7qsHw9sXjbQe+t39uo2576QHkZqSofUaDyEQW6cOpgeTxGtc2tWrWrXr9asEEf7m/qcMwxpdlJOzbZ1RGc6vUoIzVFLTFreBsCIf38lXVK83r00XElOm1Msa4/fZSy07wKhiP6cH+TVu6s021PfaDKhkCH444bkJOsXwIAAECfOKEsr9PP6lqC+vuaSv19TWVcY04bVqCc9OScGOfqCDayOn5wriq21hz2WSAU0Wur9+q11XvjHrcom2OTAQDAsS3T59WgvHTtrvMnbMyLpg1RMElbzbr63+1z0lP12ellCR3zlFFFSVvQDQAA0BestbLW6upThidszOMH5yrFY9TEYRnOa/AHdfrY4oTsERx186zRStIezwAAAH3CGKPtNS06YWi+RhVn9Xo8j2k7b+Fvy3YplcMynGet9NKK3freBRMTMt5pY4pUkpOmbTUtCRkPAADgaPX+9lp955mV+vFFk5Xm7V1S/ueZY/SPtZX6+9pKBYIsh3BcMGz1o/lrNX14gU4fU9yrsfIzU/Xj/5ismx5fqi2dPPEIAABwrPhwf5M272/SI29v0b1XTlN66pFl5dWnDNeI4iw9+K8PtaOm+fDtuxzi6giObgP8+YcX66cXT1b58IIjGic/M1V/umGm5r6xSVurmpN20gkAAEBfsNYe6KiXVu7RkxXb9dj1J/fooIyo3HSvfvHZKRpdkq3bnnxf1koRK6UkaaNgV+8O4U0xMkbaWePXlQ+8q8euO0lPvLtNc/+5WT3t2JNHFupnn52i+9/YpD8u3i5JKs1Jc3DWAAAAfcsYo7L8jAOvX1m1Vyt21OmOz0xSdVOrHntnq1bsrOvwuyXZabpkxlB97LhS3bNgg15fv+/AZ8U5PvYJTgorjSjK0of7m7S1qlln3fW6fnvFdL305Y/q969v1PwVe9TayTYd04bl64uzxmhYUaaue3iJNu/79xKI4UW9XyAOAABwNCsfcfC/oO+q8+sLj1To+MG5umrmcI0tzVZNc1Dbq5sVbj8xblhhpupbgnpq6Q597o1Nh/3r+eTBedwJToY0r0enjS46cGpJKCLd9PhSjSrJ0u2fmKCvnjNOtc1BrdhZp9rmoNK8Hk0cnKvB+emqawnqvjc266WVew4ac0BumtKOcE0MAABAf2CtVWlOurwec1jIrtpVr289vUKSVJCZqsH5GfIYo9qWVu2oaZHt4l/bz544oMvPE8nVEZzlS9GlM4bp8XcPPvJv874mzXl8qSSpMNOnsyaUqDDbp0Aoor8u3aG1hxyTHOvKk4cddJY2AADAsWjt3nqdM3HAYTcEY9U0B1XTHOzReFm+FA0vzOSwjGTISk9VboZX50wc0Ok11c2teuq9nZr75od65O2tXQZwYZZP508erNx0V//dAgAAHOOMMfqwskmfP21EwpYvfOEjozR/xW55krQcwtURLEmZqSn6ysfGKi+j9+dU/++nJyo33au0VO4EAwCAY9txg3M1f8Ue3fjRUb0ea/yAHE0fXqAP9zUpJy05NxNdH8EluekqzPLpN5ef2KuNnm8+Y7RGFGUlJKYBAACOduMH5ujRd7boxGH5Xf6rendKc9L0k4sm67+fWaHTxxUrFE7OomDXR7AkFWT6VJiVqgevmaGBuelxfTc1xej28yboI2OLNSAvnbvAAADAFdK8Hp04tED/9afluuKkYbr8pKFxjzFxUK7+cNV0ffdvK7W7zq+PTxyoDF9yWooIlpSemqLhRVnKz/Tqd1dO0xUnDevRXeGTRhbqj1+YqZHFmRo7IFulOfEFNAAAQH81MC9Dt31inFqCYd342FINyc/UA9eUa0xpdrffzc3w6qvnjNM3zh2v/5q3TKt21eszJw5Rpi8laTcUeYKrXU56qsYPzNW+hoBOHJavz04v07LtNVq6tUZrdjeowR9UaopHY0qzNXlInmaNL9XO2mblZ3g1tjRbBVm+vv4lAAAAJM2+hoCGF2XpgimD9MIHu3Xnq+t0/OBc/ddZY5Sf6dPr6yq1YmedtlU3KxJp20Bg0pBczRxVpKGFmZq3eLvufm29pLbPvnr2WNU2tSrTl6IMn/OJamyyNmNLoPLycltRUeHI2FWNAYUiVsFQREu2VKvBH1RORqrSvCkKR6zqWoLymLbDMnIyUpXt8yo3I1XGJOt8EwAAgL63q7ZFcx6r0E8vmqIvz1umTTEHhxVn+3TSyEJNHpKnIQf2CQ5q1a46vbe1VutidttKTTF6/PqT9eu/b9AtZ4/VhAHZys9KzOm7xpil1tryjj7jTnCMqsaAtlQ1KTXFo0F56fqPaWWqagzIHwzLGCMrKcUYlWT71BQIadXueg3ITVdja0iD8zIIYQAA4BrBcEQZqSkakJOm314xTbc++b5W7aqXJO1vbNX8FXs0f0XnewhLUnaaV7+94kQNzkvXySMLVN3UKpukg5OJ4HbRAH7oXx9qd71f3//U8ZKkkg7W+dY2t2rN7not3lKtvyzZoT/Mni5JhDAAAHCN4UVZ+u0V0/T1J9/X+r2N+tnFk7V8e61+u3Cjgj3Y4eGMccX66sfG6VcLNmjFzjr9+caZGpCbppz05CwxZTmEDg7gF9v/xjJteL6+/6njNSgv/aAQjg3gu1/bIEkakp+hP8yersKsVEIYAAC4wt56v2578n29uWG/JMkY6YqThumz08u0aHOVXlq5R2t3N6g15gS44UWZOnVUkS48cYg27G3Una+uU11L24lyRVk+/fnGUzS8IEOpCXo4rqvlEK6P4I4COOrQEO4ogKMIYQAA4Cbr9zbowt++pZZg+KD3PUY6Y1ypPjK2WBMG5ag4O02pKR5VNwW0ZX+z3ttWo+ff36V6f+iwMW8/d7wunl7W4b/EH4muItjVW6TVNrdqW3VzhwEsSe9trdX3n1+l3XV+1bcEOw1gSdpZ26KbHluq6qbWA3+jAQAAOFYNyU/Xn244WRmH3LWNWGnhukr98MXVqmsOqijLp5HFWSrOTtOdr67TH9/d1mEA33LWGF00LXEB3B1XR3DEWj36ztYOAzgqGsKNgVCnARy1s7ZFNz66VMGY2/4AAADHoqy0VI0dkN1hCHuMdO8V03TSyEIVZbft9DC8KEvz5szUoLzDI/eWs8Zo9szhKo3z0LLecHUES9Knpw6WL6Xr34b3ttbq3F+92WUAR31s4gD1wxUmAAAAcesohDsK4KiOQrgvAlhyeQRnpHpVmOnTb644sdsQ7ui2/aGumjlc508apNRuxgIAADhWxIZwdpq30wCOig3hvgpgKQkPxhljzpV0j6QUSQ9Ya396yOfDJD0iKb/9mtuttfO7GjORD8bta/Bre3Wz9jW26pYnlh30BGM8rpo5XBdMHqSRJVka0Ad/kAAAAH2pKRBUKCKFwpFOAzjW/saAIhHraAD32YNxxpgUSfdKOk/SREmXG2MmHnLZdyT9xVp7oqTLJP3OyTnF2t8Y0Ia9DWoKhJWX7u3RHeGOtN0BHigZaWdNi/bW+x2YLQAAwNErKy1VeRmpPQpgSSrOTuuTO8BRTv+7/UmSNlprN1trWyXNk3ThIddYSbntP86TtMvhOR0QiVhtr2nR7IcW64UPdisv3asXbjlN91w2tUffv2DKQL36lY/ok5MGqsEf0uwH39W9Czc6PGsAAAD0ltMRPETS9pjXO9rfi/V9SVcZY3ZImi/plo4GMsbMMcZUGGMq9u3bl5DJ+bweba9uliQ9sXibBudnKCJpYG665rafAteZC6YM1O3nHae1exo0qiRLd7ywSsGw1d56vzzsEQwAAHBUOxqe4Lpc0sPW2jJJ50t6zBhz2LystXOtteXW2vKSkpKE/MT5mT594SOj9KUzR+vFW05XczCsS+9bpKsfWqzcjNROQzgawFc/uFj/NW+5XltTqaduOlVnjC3WQ9fOUElOz/4ZAAAAAH3D6QjeKWlozOuy9vdiXS/pL5JkrX1HUrqkYofndUBbCI+U8Rhdet8i1bUEFQhFdE0nIRwbwJv3N0mSvvPsSv19baV+/rkpKk3SBs8AAAA4ck5H8BJJY40xI40xPrU9+PbcIddsk3S2JBljjlNbBCdmvUMPNDS3ak994EAAR3UUwh0FcNR3nl2p11ZX8lAcAABAP5CMLdLOl/QrtW1/9pC19kfGmDskVVhrn2vfLeJ+Sdlqe0juG9baV7saM1FbpNU3t2pXvf+wAI6V5vXoketOUnaaV/mZqR0GcKwffmaSzpk4gG3SAAAA+lhXW6Q5HsFOSFQEVzUG9NU/L9ebG/Z3eV2a16MfXHi8/vDG5i4DWJJy0rx64xtnqjDL1+v5AQAA4Mj12T7BRzuPkX7+2Sk6oSyvy+sCoYi+8dcVPQrgeTfOlNGRHbgBAACA5HB5BBvtb/DrvtnTuw3h7kQDOD/dq0iELdIAAACOZq6O4LxMnwblZ6qyvnchHBvA3pQUFbFFGgAAwFHN1RHc4A9qZ22L0n1e7alrOaIQjg3g5mBEW6uatK+BHSIAAACOZq6O4EAwrAZ/SJ/6zb/0wc769hAu14SBOT36vi/FcyCA99S36pL73tGCtZWK9L9nDQEAAFzF1RHsTfHoiXe3KhCK6Ht/W6W6lpDCkYhaguEefT9srRr8IRlj9IVHl6imOahnlu1Uioc1wQAAAEczV0dwfqZPd1w4SWdNKNEFUwZqdGm2Zj+4WFurmnv0/XDE6pqHFmtbTYt+dvEUleSk6a83naoitkcDAAA4qrl6n+Co+paAGvxhze7mIIzORA/UGF2SpeLsNBnDnWAAAIC+xj7B3WjwR444gKV/H7G8aV+TGv2hBM8OAAAAieb6CN5Z06LZD757xAEcFQ3hVbvr1dDJEcwAAAA4Org6gqubWnXbU+/36CS4R66b0aOT5a79vyUK98MlJgAAAL1RWefXpspG7a3vfqvYhpagNpVFvTkAACAASURBVO/r2bVOcXUEF2b59OOLJmtgbnqn10T3AT55ZGG3+wh7jPSry6YqzB5pAADARSrr/Fq8tVofu/sNzVu8rcu4bWgJ6sOqJl3wm3/p+8+t6rMQdnUES9KIoizNu3FmhyEcDeBRxVlKT/VqYF5GpyHsMdLvr5qu8uEFKsrmxDgAAOAO0QC+5U/LZK1094INnYZwNIAvm7tIza1hvbRyT5+FsOsjWOo4hGMDOMPnPfB+RyFMAAMAADc6NICjOgrhQwM4qq9CmAhuFxvCnQVwVGwIE8AAAMCNOgvgqNgQ7iyAo/oihNkn+BBbqprUFAh1GsCx9tS1aPP+Jo0fkEMAAwAAV1m9q06f/M2/OgzgWF8+e6zOmlCqy+/vOIBj3fjRUZrz0VEJ66qu9gkmgjsQCIaVlprSs2tbQ0rrJpYBAACONXvr/frd65v0yNtbEjLemNJsPXLdSRqSn5GQ8SQOy4hbTwNYEgEMAABcaUBuur44a7SuOXVEr8dyIoC7QwQDAADgiCQihPsigCUiGAAAAL3QmxDuqwCWiODDVDb4e/xk4v5Gv6oaAw7PCAAA4OgWDeGrTxne4+/0ZQBLRPBBKhv8+nB/k3bVtqiyrusQ3t/o17rdjaprCWpXbUuSZggAAHB0ykpN0X+cOKTH188cVag0b9+lKBHcLhrAf1myXXe+uk476joP4WgAr9hVpy88UqF9jQFCGAAAuFZDS1Cbq5p01QPv9vg7jy/apj8u2sqxyX0pNoD/+t5OvbWxSnd1EsKxAfzTl9Zq8/4mfXXeckIYAAC4UvQgjMvnLlJTN/sAH6qrI5ad5voIPjSAozoK4UMDOIoQBgAAbtSbAI7qqxB2dQTva/Br6/7mwwI4KjaE61uCHQZwVGwIVzXwsBwAADi2JSKAo/oihF0dwUbSM8t3dhjAUdEQrmlu7TSAo6IhHOqHp/ABAADEY0+9v0cBPKY0WxdOHdzteHcv2KC/Ld+ZtBB29XFnmWlenT2hVPMWb1Oki259a2OVLrnvHe2t7/4Ob/mIAvlSXP13CwAA4AK5GamaOjRfb22q6vSase3boPlSPMrP9HV5xHJBZqrOHF+q/LTk5Kmray3T59Upo4t0/9Xl8piur+1JAF9SXqZvnXecCrJ8CZohAADA0WlAbrp+eelUnTa6qMPPowE8OD9DxTlpXR6oUZCZqr/ceIqG5WcojQhOjnhCuCsEMAAAcJvOQjg2gGOv7SiE+yKAJSJYUu9DmAAGAABudWgIdxTAsdfGhnBfBbAkGdsPH+IqLy+3FRUVCR+3vqVVS7bU6IZHK7pcIxzrkvIy3fqJ8SrNSU/4fAAAAPqDmqZWtYYj+vXfN+iLZ45RXrpH2elpHV5b3xJUSzCsxxZt1adPGKxBeT7ldHJtbxljllpryzv6jDvB7QLBsJoCYY0fmK1vnz+hR9+ZMDBH371gomzEqqqxb047AQAA6EvVTa36wYur9d2nV+ir54zTqyt36dqHl2p/4+HPU9W3BPXU0h06755/avbJw9TSGtR597ylnTXJP2eBCFZbAFc3taqmuVWS0ZnjB+jaU4d3+Z2RRZl68Jpy7ahpViAUUTBECAMAAHepbmrVD19crRfe363PnTRUf1q8TROH5GtDZaNufvzgEI4G8B0vrNbNs0brpVV7FbFGaV6PLp37TtJD2PURHBvAeRmpqmpqVW1LULNnjug0hEcWZerxL5ysvQ0B1beEVNUYUGuYEAYAAO4RG8D3Xnminn9/t+56db1+8fI63Td7+kEh3OD/dwB/+5PHqaU1rO8/t0q3/GmZ7vzcCX0Swq6O4EMDeH9Tq746b7lueLRC1c2tHYZwbADf9eo6Xf3QYu1vChLCAADAVaoaA3pl5Z4DAfzc+7skSRVbaw4K4ZseW6oH/rn5oAD+5WvrJUk7aloOCuEnK7arwR9Myvxd/WDcnjq/qpsCBwXw5v1NkqSiLJ/umz1dhZk+PbZoi/7v7a2HBfBbG9s2h07zevTbK6apOCtVRdlpSvOmaEAeD8oBAIBjlz8Y1t56v+56df2BAI5VPrxAt507Xjc+tlS1zcHDAjhWWUGGHri6XIPy0pWXmbjdtrp6MM7VEVzT1Krm1tBhARwVG8JLt1Xr1NHFhwVwVGwIlxVkqiSXCAYAAMeuynq/fvLSGj2z7PAAjoqG8NrdDaprCXYYwFFlBRl64oaZGlaYmbA5sjtEJ4yRaluCHQawJFU1terGx5aqurlVxw/O6zSAJSkQiuhLT7ynqqagvBybDAAAjnHVza164YPdXV5TsbVGP395nbbXNHcZwFLb0oi/LNmuqg52lXCCq2vNGKMfvbimwwCOioZwQyDUaQBHBUIRfelP78n04uQ5AACA/mBAbroevGaGUlO6Dp+lW2v0wD8/7Ha8y2YM1dWnDFdRtjN7Bh/K1RGcl5Gqn108RQO7WbpQ1dSqS+9b1GUAS5LHSPdeMU0+r6t/WwEAgAsUZPo0uSyvRyHcnctmDNXXzhmn0iQuJ3V9rQ0tzNSTN53SbQh3x2Ok+68u1ymji5TpS+6xfwAAAH0hESHcFwEsEcGSeh/CBDAAAHCrgkyfJg7O1dzZ5XGH8CXlZfpqHwSwRAQfMLQwU3+5cWbcIewx0tzZ5Zo2rIAABgAArlPfEtRzy3fpxRW79ctLpvb4e5+cPEhnTijVl+ct0/6G5DwMF4sIbrezpkX3vblJf75xpgbk9mxBtjHSfbOnq7k1pPWVDWpoSc7mzgAAAEeD2KOQxw/M0eZ9jT3+7u66FhVm+bR2T4Nu/uPSpIcwEay2AP7WMx/oi7PGqLY5qEF5GT36ni/Fo9KcdE0anKfXVu3R6j31hDAAAHCF2ACOHoRx94INPf7+e9tqDz5iOckh7PoIjgbwT/5jsvY2BPTzV9Zq+fbaHn03EIrouoeXqLq5VVecNJwQBgAArrGrtqXDo5DjcegRy/e9uUmNgZADsz2cqyO4uqlVd7267kAAd7cPcEdiD9S44qThWrB6r8L98BQ+AACAeAzOz9Bfbz7liAM4KhrCj153km46Y7Sy05LzjJWrI7gwy6dvnjv+iAM46uAQHibOygAAAMc6fyisZdtqexXAURVba/TDF1YrFE7ejURXR3B1Y0B76nsXwFHREK5qapXlTjAAADjG7WsI6Icvrun2ukvLy3Tf7Ondbp+2eEuN5v5zk2qaODbZccYY/f71jT06Ce6b547v0clyNz62VMFIImcJAABw9CnJTtN/nz+hy2sumzFUX//4eJ08srDbAzVmjCjQDR8ZrYIsjk12XHZ6ir545hhlpKZ0ek30IIxrTxvZowM1rj19hHxeFkQAAIBjW2luuj4zdUinIRx7Elx+NyfLzRhRoN9cPk0D8zg2OSlSU1J03KAc/fnGmR2GcOxJcOmpKd2eLHfrJ8Zp9szhysvwOT11AACAPtdZCHd0FHJnRyz3RQBLLo9gqfMQ7uwo5M5CmAAGAABudGgIdxTAUYeGcF8FsCSZ/vgQV3l5ua2oqEjomMFwWGt2N+jS+xYpEAp3GMCxtlc363N/eEd76v0EMAAAcL3Ker82VDZqbGl2hwEcq6a5VR/ub9LgvAxHA9gYs9RaW97hZ0Twv0VDuKqxVSePKuw0gKO2VzfrH2v36jMnDiGAAQCA64XDYaWkdP6s1ZFee6S6iuDk7EbcT0SXRgRDttsAltqWRlw8vUzZaalJmB0AAMDRLZ6odTqAu0MEHyI1JUVdbBZxGAIYAACg/+n2wThjzGRjzCJjzHZjzFxjTEHMZ4udnR4AAACQeD3ZHeL3kr4vabKk9ZL+ZYwZ3f4Zt0EBAADQ7/RkOUSOtfbl9h/faYxZKullY8xsSf3vqToAAAC4Xo/WBBtj8qy1dZJkrV1ojLlY0l8lFTo5OQAAAMAJPVkO8TNJx8W+Ya39QNLZkp52YlIAAACAk7qNYGvtE9baRR28v81ae0P0tTHmN4meHAAAAOCERB6bfFoCxwIAAAAck8gIBgAAAPoFIhgAAACuk8gINgkcCwAAAHBMjyPYGDO5m0vu6eVcAAAAgKSI507w74wxi40xXzTG5B36obX24cRNCwAAAHBOjyPYWvsRSVdKGippqTHmCWPMOY7NDAAAAHBIXGuCrbUbJH1H0jclnSHp18aYtcaYi5yYHAAAAOCEeNYETzHG3C1pjaSzJH3KWntc+4/vdmh+AAAAQMJ547j2N5IekPTf1tqW6JvW2l3GmO8kfGZJsL8hoMZAyJGxs9O8Ks5Jc2RsAAAA9E48EfxJSS3W2rAkGWM8ktKttc3W2sccmZ3DGgMhzbrzdUfGfv3WWUQwAADAUSqeCF4g6WOSGttfZ0p6VdKpiZ5UsqSnejRvzkzHxgYAAMDRKZ4ITrfWRgNY1tpGY0ymA3NKmpZgRJfNXeTI2AtvneXIuAAAAOi9eG5XNhljpkVfGGOmS2rp4vrodecaY9YZYzYaY27v5JpLjDGrjTGrjDFPxDEnAAAAIG7x3An+iqQnjTG71HZE8kBJl3b1BWNMiqR7JZ0jaYekJcaY56y1q2OuGSvpW5JOs9bWGGNK4/w1HLEMB5dDZLAcAgAA4KjV4wi21i4xxkyQNL79rXXW2mA3XztJ0kZr7WZJMsbMk3ShpNUx19wg6V5rbU37z1PZ0zn1ViDk3HKIN26b5ci4AAAA6L147gRL0gxJI9q/N80YI2vto11cP0TS9pjXOySdfMg14yTJGPOWpBRJ37fWvnzoQMaYOZLmSNKwYcPinHbHIjYhwyR9bAAAAPROjyPYGPOYpNGSlksKt79tJXUVwT2dw1hJsySVSXrTGDPZWlsbe5G1dq6kuZJUXl5OYgIAAOCIxXMnuFzSRGttPAG6U9LQmNdl7e/F2iHp3falFR8aY9arLYqXxPHzAAAAAD0Wz9NbK9X2MFw8lkgaa4wZaYzxSbpM0nOHXPOs2u4CyxhTrLblEZvj/HkAAACAHovnTnCxpNXGmMWSAtE3rbWf7uwL1tqQMeZLkl5R23rfh6y1q4wxd0iqsNY+1/7Zx40xq9W2zOI2a23VEfxaAAAAgB6JJ4K/fyQ/gbV2vqT5h7z3vZgfW0lfa/8fAAAA4Lh4tkh7wxgzXNJYa+2C9tPiUpybGgAAAOCMHq8JNsbcIOkpSfe1vzVEbet5AQAAgH4lngfj/lPSaZLqJclau0FS0k53AwAAABIlnggOWGtboy+MMV617RMMAAAA9CvxRPAbxpj/lpRhjDlH0pOSnndmWgAAAIBz4ong2yXtk7RC0o2S5ltrv+3IrAAAAAAHxbNF2i3W2nsk3R99wxjz5fb3AAAAgH4jnjvB13Tw3ucTNA8AAAAgabq9E2yMuVzSFZJGGmNijzzOkVTt1MQAAAAAp/RkOcTbknar7djku2Leb5D0gROTAgAAAJzUbQRba7dK2irpFOenAwAAADgvnhPjLjLGbDDG1Blj6o0xDcaYeicnBwAAADghnt0hfi7pU9baNU5NBgAAAEiGeHaH2EsAAwAA4FgQz53gCmPMnyU9KykQfdNa+3TCZwUAAAA4KJ4IzpXULOnjMe9ZSf02gjNSPZo3Z6ZjYwMAAODo1OMIttZe6+REAAAAgGSJZ3eIccaYvxtjVra/nmKM+Y5zUwMAAACcEc+/2d8v6VuSgpJkrf1A0mVOTAoAAABwUjxrgjOttYuNMbHvhRI8n6RqCUZ02dxFjoy98NZZjowLAACA3osngvcbY0ar7WE4GWM+q7bjlPstHowDAABwp3gi+D8lzZU0wRizU9KHkq5yZFZJ4g85dyf49dtmOTIuAAAAei+e3SE2S/qYMSZLksda2+DctJLD2v45NgAAAHonnt0hvmyMie4VfLcx5j1jzMe7+x4AAABwtIln4ep11tp6tR2WUSRptqSfOjIrAAAAwEHxRHB0W4jzJT1qrV0V8x4AAADQb8QTwUuNMa+qLYJfMcbkSIo4My0AAADAOfHsDnG9pKmSNltrm40xRZI4ShkAAAD9TrcRbIyZYK1dq7YAlqRRhxyYAQAAAPQrPbkT/DVJcyTd1cFnVtJZCZ0RAAAA4LBuI9haO6f9v2c6Px0AAADAefHsE/y59ofhZIz5jjHmaWPMic5NDQAAAHBGPLtDfNda22CMOV3SxyQ9KOkPzkwLAAAAcE48ERxu/+8nJc211r4oyZf4KQEAAADOiieCdxpj7pN0qaT5xpi0OL8PAAAAHBXiidhLJL0i6RPW2lpJhZJuc2RWAAAAgIN6HMHW2mZJf5PUZIwZJilV0lqnJgYAAAA4pccnxhljbpH0P5L26t/HJVtJUxyYFwAAAOCYeI5N/rKk8dbaKqcmAwAAACRDPGuCt0uqc2oiAAAAQLLEcyd4s6TXjTEvSgpE37TW/jLhswIAAAAcFE8Eb2v/n0/sDwwAAIB+rMcRbK39X0kyxmS3v250alLJkpHq0bw5Mx0bGwAAAEenHpeaMWaSMWaZpFWSVhljlhpjjnduagAAAIAz4lkOMVfS16y1CyXJGDNL0v2STnVgXknREozosrmLHBl74a2zHBkXAAAAvRfPv9lnRQNYkqy1r0vKSviMAAAAAIfFtTuEMea7kh5rf32V2naMAAAAAPqVeO4EXyepRNLTkv4qqbj9PQAAAKBfiWd3iBpJ/+XgXAAAAICkiGd3iNeMMfkxrwuMMa84My0AAADAOfEshyi21tZGX7TfGS5N/JQAAAAAZ8UTwRFjzLDoC2PMcEk28VMCAAAAnBXP7hDflvQvY8wbkoykj0ia48isAAAAAAfF82Dcy8aYaZKi5wx/xVq7P/q5MeZ4a+2qRE8QAAAASLR47gSrPXpf6OTjxyRN6/WMksiY/jk2AAAAeieeNcHdIfsAAADQLyQygvvdQ3LWwRk7OTYAAAB6J67lEMeajFSP5s2Z2f2FRzg2AAAAjk6JjODWBI6VFC3BiC6bu8iRsRfeOsuRcQEAANB7cUWwMWaKpBGx37PWPt3+X2duqTooOy3FsVjNTktxZFwAAAD0Xo8j2BjzkKQpklZJirS/bSU97cC8kqIkJ10lOX09CwAAACRbPHeCZ1prJzo2EwAAACBJ4nl66x1jDBEMAACAfi+eO8GPqi2E90gKqG1fYGutneLIzAAAAACHxBPBD0qaLWmF/r0mGAAAAOh34ongfdba5xybCQAAAJAk8UTwMmPME5KeV9tyCEn/3iINAAAA6C/iieAMtcXvx2Pe69dbpAEAAMCdehzB1tprnZwIAAAAkCzxHJaRLul6ScdLSo++b629zoF5AQAAAI6JZ5/gxyQNlPQJSW9IKpPU4MSkAAAAACfFE8FjrLXfldRkrX1E0iclnezMtAAAAADnxBPBwfb/1hpjJknKk1Sa+CkBAAAAzopnd4i5xpgCSd+V9JykbEnfc2RWAAAAgIPi2R3igfYfviFplDPTSa59DX41BsKOjJ2dlqKSnPTuLwQAAEDSxbM7xABJP5Y02Fp7njFmoqRTrLUPOjY7hzUGwjrzztcdGXvhrbNUkuPI0AAAAOileNYEPyzpFUmD21+vl/SVRE8IAAAAcFo8EVxsrf2LpIgkWWtDkrpdS2CMOdcYs84Ys9EYc3sX111sjLHGmPI45gQAAADELZ4IbjLGFKntqGQZY2ZKquvqC8aYFEn3SjpP0kRJl7cvozj0uhxJX5b0bhzzAQAAAI5IPBH8NbXtCjHKGPOWpEcl3dLNd06StNFau9la2yppnqQLO7juB5J+Jskfx3wAAACAIxJPBK+W9IykJZL2SrpfbeuCuzJE0vaY1zva3zvAGDNN0lBr7YtxzAUAAAA4YvFE8KOSJqhth4jfSBqntqOUj5gxxiPpl5K+3oNr5xhjKowxFfv27evNTwsAAACXi+ewjEnW2tj1vAuNMau7+c5OSUNjXpe1vxeVI2mSpNeNMZI0UNJzxphPW2srYgey1s6VNFeSysvLbRzzBgAAAA4Sz53g99ofhpMkGWNOllTRxfVS29KJscaYkcYYn6TL1LauWJJkra2z1hZba0dYa0dIWiTpsAAGAAAAEqnbO8HGmBVq2xEiVdLbxpht7a+HS1rb1XettSFjzJfUtr9wiqSHrLWrjDF3SKqw1j7X1fcBAAAAJ/RkOcQFvfkJrLXzJc0/5L3vdXLtrN78XAAAAEBPdBvB1tqtyZgIAAAAkCzxrAkGAAAAjglEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOj05NvmYlZWWooW3znJsbAAAABydXB3BTYGwzrzzdUfGXnjrLCnHkaEBAADQSyyHAAAAgOsQwQAAAHAdIhgAAACu4+o1wTwYBwAA4E6uvhNs+unYAAAA6B1X3wkuyUlXCTs4AAAAuI6r7wQDAADAnYhgAAAAuI6rl0MAAADgyOxr8KsxEE74uNlpKSrJSU/4uIciggEAABC3RodO3l1466ykPLPFcggAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOkQwAAAAXIcIBgAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA6RDAAAABcx9vXEwAAAED/k52WooW3znJk3GQgggEAABC3xkBYZ975esLHXXjrLJXkJHzYw7AcAgAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHWIYAAAALgOEQwAAADXIYIBAADgOkQwAAAAXIcIBgAAgOsQwQAAAHAdIhgAAACuQwQDAADAdYhgAAAAuA4RDAAAANchggEAAOA63r6eAAAAAPqf7LQULbx1liPjJgMRDAAAgLg1BsI6887XEz7uwltnqSQn4cMehuUQAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DpEMAAAAFyHCAYAAIDrEMEAAABwHSIYAAAArkMEAwAAwHUcj2BjzLnGmHXGmI3GmNs7+PxrxpjVxpgPjDF/N8YMd3pOAAAAcDdHI9gYkyLpXknnSZoo6XJjzMRDLlsmqdxaO0XSU5J+7uScAAAAAKfvBJ8kaaO1drO1tlXSPEkXxl5grV1orW1uf7lIUpnDcwIAAIDLOR3BQyRtj3m9o/29zlwv6aWOPjDGzDHGVBhjKvbt25fAKQIAAMBtjpoH44wxV0kql/SLjj631s611pZba8tLSkqSOzkAAAAcU7wOj79T0tCY12Xt7x3EGPMxSd+WdIa1NuDwnAAAAOByTt8JXiJprDFmpDHGJ+kySc/FXmCMOVHSfZI+ba2tdHg+AAAAgLMRbK0NSfqSpFckrZH0F2vtKmPMHcaYT7df9gtJ2ZKeNMYsN8Y818lwAAAAQEI4vRxC1tr5kuYf8t73Yn78MafnAAAAAMRyPIIBAABw7MlOS9HCW2c5Mm4yHDW7QwAAAADJwp1gAAAAxK0xENaZd76e8HEX3jpLJTkJH/Yw3AkGAACA6xDBAAAAcB0iGAAAAK5DBAMAAMB1iGAAAAC4DhEMAAAA1yGCAQAA4DrHzD7BwWBQO3bskN/v7+up9Kn09HSVlZUpNTW1r6cCAABw1DpmInjHjh3KycnRiBEjZIzp6+n0CWutqqqqtGPHDo0cObKvpwMAAHDUOmaWQ/j9fhUVFbk2gCXJGKOioiLX3w0HAADozjETwZJcHcBR/B4AAAB075iKYAAAAKAniOAEqa2t1e9+97u+ngYAAAB6gAhOECIYAACg/yCCE+T222/Xpk2bNHXqVN122236xS9+oRkzZmjKlCn6n//5H0nSli1bNGHCBH3+85/XuHHjdOWVV2rBggU67bTT/r+9+4+xqszvOP7+MjPOgDPuWpEfDqWCJQoMOg6wdqqdOLGIGFJFmu2KNUtBmyYkbUUjtdSUmmJEkdUauomu+LOQ7Lrb2qagsxEVMK5TwMEfCxa6xR+IgNTuggY6uE//mAtFpCswZzjDPe9XQu65516e+dx5ciefOfPccxgxYgTt7e0AzJs3jxtvvJHm5mZGjBjBI488AsD27dtpaWmhsbGRhoYGVq9endvrlSRJOpVZgjNyzz33cN5559HR0cGECRPYvHkz7e3tdHR0sG7dOlatWgXAli1buPXWW9m0aRObNm1i6dKlrFmzhoULF3L33XcfGu+NN95g5cqVvPrqq9x11118+OGHLF26lIkTJ9LR0cGGDRtobGzM6+VKkiSd0srmPMG9SVtbG21tbVx88cUA7N27l82bNzN06FCGDRvGmDFjABg9ejRXXHEFEcGYMWPYunXroTGuueYa+vbtS9++fWltbaW9vZ3x48czY8YMOjs7ufbaay3BkiRJJ8gjwT0gpcQdd9xBR0cHHR0dbNmyhZkzZwJQXV196Hl9+vQ5dL9Pnz4cOHDg0GNHnuosImhpaWHVqlXU19czffp0nnzyyZPwaiRJksqPJTgjdXV17NmzB4CJEyeyZMkS9u7dC8C2bdvYuXPncY337LPPsm/fPnbv3s1LL73E+PHjeffddxk4cCA333wzN910E+vXr8/8dUiSJBWByyEyctZZZ3HppZfS0NDApEmTmDZtGs3NzQDU1tby9NNPU1FRcczjXXjhhbS2tvLxxx9z5513cs455/DEE09w3333UVVVRW1trUeCJUmSTlCklPLOcNzGjRuX1q5d+4V9GzduZOTIkTklyta8efOora3ltttuO6H/X07fC0mS1Dvt2rOPvfs/z3zc2uoKzq6ryWSsiFiXUhp3tMc8EixJkqTjtnf/57QufCnzcV+87XLOrst82C+xBPdC8+bNyzuCJElSWfODcZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAswRmaMWMGAwYMVV7ZBwAACgRJREFUoKGhIe8okiRJ+hUKW4JXrFjB5MmTGT9+PJMnT2bFihXdHnP69Ok899xzGaSTJElSTyrkKdJWrFjB/Pnz2bdvHwAfffQR8+fPB2DSpEknPG5LSwtbt27NIqIkSZJ6UCGPBC9evPhQAT5o3759LF68OKdEkiRJOpkKWYJ37NhxXPslSZJUXgpZggcOHHhc+yVJklReClmCZ82aRU1NzRf21dTUMGvWrJwSSZIk6WQqZAmeNGkSc+fOZdCgQUQEgwYNYu7cud36UBzA9ddfT3NzM++88w5Dhgzh0UcfzSixJEmSslTIs0NAVxHubuk90rJlyzIdT5IkST2jkEeCJUmSVGyWYEmSJBWOJViSJEmFYwmWJElS4ViCJUmSVDiWYEmSJBWOJThD77//Pq2trYwaNYrRo0fz4IMP5h1JkiRJR1HI8wR3dnYye/ZsABYsWMCcOXMAWLRoEVVVVSc8bmVlJffffz9NTU3s2bOHsWPHMmHCBEaNGpVJbkmSpN6itrqCF2+7vEfGPRkKWYJnz57N+vXrAbj66qvp7Ow8tP+hhx464XEHDx7M4MGDAairq2PkyJFs27bNEixJksrOvs5f0rrwpczHXX17a+ZjHk0hS/BB+/fvZ//+/QBUV1dnOvbWrVt5/fXXueSSSzIdV5IkSd1XyDXBCxYs+NKyh6qqKu69995Mxt+7dy9Tp07lgQce4IwzzshkTEmSJGWnkCV4zpw5h5ZAHNTZ2cntt9/e7bE7OzuZOnUqN9xwA9ddd123x5MkSVL2Cr0corq6mqqqqi8V4hOVUmLmzJmMHDny0AfvJEmS1PsU8kjwokWLaGpqoqmpieXLlx/aXrRoUbfGfeWVV3jqqadYuXIljY2NNDY2snz58oxSS5IkKSuFPBJcVVX1hbNAdOeMEIe77LLLSCllMpYkSZJ6TiGPBEuSJKnYLMGSJEkqHEuwJEmSCscSLEmSpMKxBEuSJKlwLMGSJEkqnEKeIq0nnXvuudTV1VFRUUFlZSVr167NO5IkSZKOUMgS3NLSwmefffal/f369WPVqlXdHv/FF1+kf//+3R5HkiRJPaOQyyGOVoB/1X5JkiSVl0KW4J4UEVx55ZWMHTuWhx9+OO84kiRJOopCLofoSWvWrKG+vp6dO3cyYcIELrjgAlpaWvKOJUmSpMN4JDhj9fX1AAwYMIApU6bQ3t6ecyJJkiQdyRKcoU8//ZQ9e/Yc2m5ra6OhoSHnVJIkSTpSIZdD9OvX7/89O0R37NixgylTpgBw4MABpk2bxlVXXdWtMSVJkpS9QpbgLE6DdjTDhw9nw4YNPTK2JEmSslPIEixJkqTuqa2uZPXtrT0y7slgCZYkSdJxO/P00zjz9NPyjnHCyuqDcSmlvCPkzu+BJEnSVyubElxTU8Pu3bsLXQJTSuzevZuampq8o0iSJPVqZbMcYsiQIXzwwQfs2rUr7yi5qqmpYciQIXnHkCRJ6tXKpgRXVVUxbNiwvGNIkiTpFFA2yyEkSZKkY2UJliRJUuFYgiVJklQ4cSqeTSEidgHv5vCl+wMf5/B11bOc1/Ll3JYv57Y8Oa/lK6+5/Y2U0tlHe+CULMF5iYi1KaVxeedQtpzX8uXcli/ntjw5r+WrN86tyyEkSZJUOJZgSZIkFY4l+Pg8nHcA9QjntXw5t+XLuS1Pzmv56nVz65pgSZIkFY5HgiVJklQ4lmBJkiQVjiX4GETE1oh4MyI6ImJt3nmUnYj4ekQ8ExGbImJjRDTnnUndFxHnl96vB//9IiL+PO9c6r6IuCUi3o6ItyJiWUTU5J1J2YiIPyvN69u+X09tEbEkInZGxFuH7fu1iPhxRGwu3Z6ZZ0awBB+P1pRSY287x5267UHguZTSBcBFwMac8ygDKaV3Su/XRmAs8BnwjznHUjdFRD3wp8C4lFIDUAF8K99UykJENAA3A9+g62fx5Ij4zXxTqRseB646Yt9fAC+klEYAL5Tu58oSrMKKiK8BLcCjACml/0kp/Xe+qdQDrgD+I6WUx1Umlb1KoG9EVAL9gA9zzqNsjAReSyl9llI6ALwMXJdzJp2glNIq4L+O2H0N8ERp+wng2pMa6igswccmAW0RsS4i/jjvMMrMMGAX8FhEvB4R34uI0/MOpcx9C1iWdwh1X0ppG7AQeA/YDvw8pdSWbypl5C3gdyLirIjoB1wN/HrOmZStgSml7aXtj4CBeYYBS/Cxuiyl1ARMAmZFREvegZSJSqAJ+G5K6WLgU3rBn2eUnYg4Dfg94Ad5Z1H3ldYQXkPXL7DnAKdHxB/mm0pZSCltBBYAbcBzQAfwea6h1GNS1/l5cz9HryX4GJSOPpBS2knXusJv5JtIGfkA+CCl9Frp/jN0lWKVj0nA+pTSjryDKBO/C/xnSmlXSqkT+BHw2zlnUkZSSo+mlMamlFqAT4B/zzuTMrUjIgYDlG535pzHEvxVIuL0iKg7uA1cSdefbXSKSyl9BLwfEeeXdl0B/DTHSMre9bgUopy8B/xWRPSLiKDrPeuHWctERAwo3Q6laz3w0nwTKWP/DHy7tP1t4NkcswBeMe4rRcRw/u9T5ZXA0pTS/BwjKUMR0Qh8DzgN+BnwRymlT/JNpSyUfml9DxieUvp53nmUjYj4G+APgAPA68BNKaX9+aZSFiJiNXAW0AnMTim9kHMknaCIWAZcDvQHdgB/DfwT8H1gKPAu8M2U0pEfnjupLMGSJEkqHJdDSJIkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAswZLUS0TEuRHhecgl6SSwBEuSJKlwLMGS1LtURsQ/RMTGiHimdHW0sRHxckSsi4jnD7v06M0R8W8RsSEifhgR/Ur7H4+I70bETyLiZxFxeUQsKY35eOk5FaXnvRURb0bELTm+Zkk66SzBktS7nA/8fUppJPALYBbwEPD7KaWxwBLg4FUrf5RSGp9SuoiuywfPPGycM4Fm4Ba6Llf6HWA0MKZ0pcRGoD6l1JBSGgM81vMvTZJ6j8q8A0iSvuD9lNIrpe2ngb8EGoAfRwRABbC99HhDRPwt8HWgFnj+sHH+JaWUIuJNYEdK6U2AiHgbOBd4GRgeEQ8B/wq09eirkqRexhIsSb3Lkdey3wO8nVJqPspzHweuTSltiIjpwOWHPba/dPvLw7YP3q9MKX0SERcBE4E/Ab4JzOh2ekk6RbgcQpJ6l6ERcbDwTgN+Apx9cF9EVEXE6NLjdcD2iKgCbjieLxIR/YE+KaUfAn8FNGWSXpJOER4JlqTe5R1gVkQsAX5K13rg54G/i4iv0fVz+wHgbeBO4DVgV+m27ji+Tj3wWEQcPBhyRzbxJenUECkd+Zc3SZIkqby5HEKSJEmFYwmWJElS4ViCJUmSVDiWYEmSJBWOJViSJEmFYwmWJElS4ViCJUmSVDj/C4Slf7YJOuzjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXicVd3/8c+ZNfvSJumSbnSFFkqXAEVAioqCICggIDsiiIKCioqPu8+j16OPuz9UdgUERGWpggIqFKilJV2gTVtK9yVtk2ZfJ7Oc3x/JlDTNMpPMPZNm3q/r6tXOzH1/823gj09Oz32+xlorAAAAIJ24Ut0AAAAAkGyEYAAAAKQdQjAAAADSDiEYAAAAaYcQDAAAgLTjSXUDg1FUVGSnTJmS6jYAAAAwjK1ateqgtba4t8+OyhA8ZcoUlZeXp7oNAAAADGPGmJ19fcZ2CAAAAKQdQjAAAADSDiEYAAAAaYcQDAAAgLRDCAYAAEDaIQQDAAAg7RCCAQAAkHaOynOCAQAAMHyFw2EdaArIWqNQJCJrJa/bKGKlwkyvcjK9qW6REAwAAIDEONgcUEcoohc3HNCSNyu1obJRbcGwJMllpGOKcnT69NG65tQpyvK7NS4/M2W9EoIBAAAwZPsb2vX02r362YubFQhFjvg8YqWt1c3aWt2s3y/fqfcfW6LvXjhHhRkeZWf6kt4vIRgAAABDUlnfps88skpv7mmI+Z5/barSGztrdf+1J2l6SY4Ks5IbhHkwDgAAAIO2v6FN1z6wMq4AHNXYFtJV963Q9oMtCgRCDnTXN0IwAAAABmV/Q7t+8OwmvVPVPOgagVBENz1Urpq2YAI7GxghGAAAAIOyo6ZFS96qHHKdg80d+umLm1XV2J6ArmJDCAYAAEDcKuvb9JMX3k5YvafX7FUwbBNWbyCEYAAAAMQtGI7ojR11CasXilg9t35fwuoNxNEQbIx5wBhTZYxZ38fnxhjzS2PMFmPMW8aYBU72AwAAgMTYuK8x4TWXbTmo6iRtiXB6Jfh3ks7p5/NzJc3o+nWTpN843A8AAAAS4I0dtQmvuaGyUe29nDHsBEdDsLX2FUn9fYculPSQ7fS6pAJjzDgnewIAAMDQRCIR1bcm/jSHxvagXCbhZXuV6j3BpZJ2d3u9p+u9IxhjbjLGlBtjyqurq5PSHAAAAI7kcrnk8yQ+RvrcLiXr0bhUh+CYWWvvsdaWWWvLiouLU90OAABAWpszPj/hNacV5yS8Zl9SHYL3SprY7fWErvcAAAAwjC2YVJDwmvMmFmhsbkbC6/Ym1SF4iaRruk6JWCSpwVqbvLMxAAAAMCj5WT6NzUtsYL2kbII8Dmyz6I3TR6Q9Jmm5pFnGmD3GmBuMMTcbY27uuuQ5SdskbZF0r6TPOtkPAAAAEqMo26frT5uSsHqzx+WpMMuXsHoD8ThZ3Fr7iQE+t5JucbIHAAAAJJ7f69aF88brsZW7tKOmdUi1XEb60SVzNb4gM0HdxfA1k/aVAAAAMKKMzc/UXVcukH+IWxhufd8MjUnw1oqBEIIBAAAwaOMLMvXg9ScNOghfc+pkXXnKJBXn+hPcWf8IwQAAABi0wiyfjh2bq79+7nQdNy435vty/R798vJ5+uziaUlfBZYc3hMMAACAkW9Utl+jsv168LqTtHJ7rX67dJs27Gvs41qfrjxlki4/aZLyMzzKyfQmudtOhGAAAAAkxNj8TF0wr1QLJ49SOBJRZX27tlQ3KxyJqCQvQ7PG5MrvcSk/06ecjNTGUEIwAAAAEqq0sPOUh0mjs7Vo2ugUd9M79gQDAAAg7RCCAQAAkHbYDgEAAICECXSEVNMaVFN7SG/tqdfmA82K2IhKcjNUNqVQY/MylOVzqzA7uUei9UQIBgAAQELsa2jTk6v36vf/2aGqpkCv1/jcLp03d6w+974ZKsz2JXVUcneEYAAAAAxJbXNA2w626HOPrdG+hvZ+r+0IR/TUmkr97a19+sLZM3XxggkpOSeYPcEAAAAYtNrmgJZtrdGldy8fMAB3Fwxb/egfb+vbz6xXVWPs9yUKK8F9CEUiqmvpUCAU0YHGgBrbgvJ5XCotyFSmz60cv0fZfr59AAAgfYXDYW2pbtZtj69RxA6uxj8qDmhUjk+3v3+mSpK4IkyK66EjFFZtS1DbDzZrfEGm3C6j0dk+5Wd65DJGXrdRezCsmuZ2edxujc3LUF6KJp0AAACkUlVTh259dPABOOrRFbt1wYmlGp3tldvtTkxzAyAEd1PX0qEDjW3Ky/QpFLb61jMVWr2zTk2B0KFrvG6jmWNydWnZRJ09e4yqm9rUHgqrJDf5e1kAAABSpbUjpMfe2N3nA3DxuvMvb+nRTy3S+K5BG05jT3CX2pYONbUH1RG2uuLe13X1Ayu1dHP1YQFY6ty/UlHZqG8vqdD7fvKyXt9Wp3DE6kBDW4o6BwAASL761qAeXr4jYfV21LTqQFPy9gYTgiXVt3aoPRjW8xsO6MK7lmlHTWtM97UHI/r60+v1lT+9KSuj2hRs6gYAAEiFmuaA6lqDCa355Oq96giGBr4wAdI+BIcjVm3BsP6xfr++/+xG2UHsaXl1S41ue3yNgtaqoS2x/zMAAAAMR2t31ye85prddTrY3JHwur1J+xDcGgiqtqVD//PshiHVWbG9Vn8s36P2YDhBnQEAAAxf6ysbE15zx8FWyZiE1+1N2ofg5kBIn39s6E81StIv/vWOWjtCampnNRgAAIxckUhEoXAk4XVDkYjsYP5ZfhDSOgS3BILaU9eurdUtCakXjljd9+p2dQQT/z8FAADAcOFyuTQ6x5/wuoVZvoQsTMYirUNwW0dYDyzbntCaf1m9RwEHfjICAAAYLqy1mjexIOF1jy/Nl8/NdgjHBUIRle+sS2jN9mBELYHkPNUIAACQCtZazSjJSfj23VOnjpbblZx4mtYhOGKl6gQd8NzdlqrmhNcEAAAYTqyszphelLB6fo9Lp04brTB7gp0XdmjTST3HpAEAgBHMGKMsn0c3njE1YTUvP3mS2oNheV1sh3CcUydw+Nxp/W0FAAAjnDFGbmNU1xrUladMGnK9CYWZOn/uOOVmeOUmBDvP7TLK9XsSXndaSXbCawIAAAwrRppSlKXz5o5T2eTCQZfJy/DoJ5eeqF01LcrJcCvD605gk31L6xBsjHTChPyE1nSZzuM9AAAARjJP15aIzfub9OVzZul9x5bEXWN8fobuvaZMf11bqWnFOTLWyOdJTjxN/DLoUcRtjC5eMEH/2VrT6+e5fo+OL83XrLG5yvZ7FAxHtLOmRev2NKiyob3Xe846tkSuJE06AQAASJVMn1sdYas54/P1700HdOe5x+qj80v13SUVqmnpf/Sx12102UkTdfOZ0/TYil269KSJGpPnVyRiZZKUo9I7BLuMTpiQr8Isr+pa332Y7T3TRuvqUycrx+/R2t312rivUY1VIfk8Lk0rztFH5o5XSV6GnlqzR0+u3qtA6N1zga9/zxR1hBidDAAARjafxyW3S8rxu3X1qVN0yx9WKy/Tq59fPk81zR16ccMBrdvboN11rbJWKsjy6vjx+Vo0dbROmz5a/1i/Xxf+v2W679oyFWR61dgW1Pj8jKT1b5I1mi6RysrKbHl5+ZDrHGhoV2N7UBWVjbr9j2tVlOPTdy84XrUtHbrvtW3aWdPa5705fo8uXjhBF5w4Xt9/dqNW76rTeSeM081nTlVhtk8TCrOG3B8AAMBw1RYI6vHyPTp79hjd8LtyvX2g6dBnM0pydPqMIh1fmq/SgkwZ6VDmWr2zTsu21hw6pcvvcenxmxZp6dtV+njZRJUmMEMZY1ZZa8t6/SytQ3Bjm17aVK0ZY3L0z41V+uDsMfrBcxv1xo7YB2gU5/j1g4tO0Ju763Tu8eNU1dSuGWNyCcEAAGBE21vXpgON7Xpo+Q49vbZySLWKc/x66rPvUWNbUDPG5sqboJO2+gvBaf1gXDgiTSvO0cTCLF1+0kTd/MiquAKwJFU3B3TzI6s0d0KBRud41dAWUks75wQDAICRLRiJKBAKDzkAS5156pf/fkcha2XDkYFvSIC0DsEdoYg8bqNgOKJrH1ipA42Dmx4Xjlh95g+rdbA5qPdMG6239jYkuFMAAIDhJRKO6Gf/fCdh9Z5cvVeFWT5VtyRnMTGtQ7Ax0uhsnx5YtkM7+tn/G4twxOrzj61RMBxRSW7yNnUDAAAkm7VWLrdLK7fXJqxmKGL1fMV+Zfs5J9hxmV63ZKQHl21PSL1tB1u0fFuNjhuXl5B6AAAAw5G1Vpv2NSa87rItNYeduuWktA7Bbrf01Oq9iiTw2cC7l25TMEl7WQAAAFLB5XKpPM7nqGJRUdmgDkKw89oCET1fcSChNd+palYokakaAABgmIlEIqpr7X8gxmA0tgflStLMsbQOwcZIm7udaZcolfW9T5MDAAAYCVwuV8KOMevO53ZJSk4KTusQHAxbR1Ztd9W2JLwmAADAcDJnfOKfgZpanCMHsnWv0joEO7VpIcKWYAAAMMItnFyY8JrzJhaoOMef8Lq9SesQ7HO7HNl3Mr6AI9IAAMDIVpDl05i8xAbWSxZOkDtJS8FpHYIl6ZiinITXnDw6O+E1AQAAhpPiXL+uP+2YhNU7dmyuRmf7ElZvIGkdgrP9Lp05syihNUsLMh3ZKA4AADCcVDcFdN4J4zRpVNaQaxkj/fDiuappCai1I5SA7gaW1mnNGJeuPnVyQmt+8vQpGpXpSWhNAACA4cZaq1+/tEV3XTG/61SHwfvs4mmqbmpXXUtQNkknzaZ1WsvyuNTidun8ueP0t7f2HfZZXqZH58wZp3kT83VMUY6M6Tywo7opoHV7G/TPjVXaWt182D3FuX59+PhxauoIKTPDm8S/CQAAQHJFrNVlJ03Uxn2NeuC6Mt3w+/JBTXu78pRJ+ui8Um0+0Cyv2yqSpBSc1iG4sSMkt5G+du5xWr61RjUtHSrO9etLH5ypyaOyteTNvXpw2Q5trW4+NFVuTJ5fJ04o0G3vn66CLJ9++a93VL6zc2LKzy6dJ783eefbAQAApMq4/Ex1hK1mjsnVnro2Lbn1NH3usTXafKB54JslZfvc+u+PHq95Ewv09r4mZXhdmjepULlJWkg0NllrzglUVlZmy8vLE1Jrx8EW/XbpVl21aLIeXLZdV5wyWT/8xyat3F474L0luX59+yNzdKCxXREb0YwxudpW3aIrT54onzetf74AAABpIBSOqLK+TV6PSwebAhqV7deK7TW6e+k2vd3HQLKCLK+uOHmSrjhlkqy1au0IKxyJqLQwW/mZiQ3AxphV1tqy3j5L66TW1NahR1fu0uNv7NYVp0zS2bPH6op7X495Kb+qKaBbHl2ty8om6gtnz9AHf/aK8jK9+uDsMSotTOtvLQAASAMet0tej0vbq1tU29Khutagdte26qeXnahMr1s1zQHVtnQoos6V37H5mfK6jFZsr9WL6w9o2pgcFeX45HG55DHJ/Zf0tH4wrr4tpJc2Vem7H5mj3XVt+swfVg1qL8sfy3fr+89u1J8/8x7tqWtT0IEpdAAAAMPNvoY27TjYokyfW6t21enaB1eqoS0otzGykhrbQ9pZ26adNa2qbupQOGJljJGR9IuXNuvHL7ytUMTKStpT36qW9uScDCGl+Uqwy0hZPrdOn1mkc3/+6pCeRvzrW/u0aNpofeeC2dpV06opnBUMAABGsH0NbdpW3SKf26X7X9uupraglt5xlpZtPahbHl2trdUtvd6Xl+HRxxdO1DO3nK4XKg7o0w+v0j1XL5TbZbSnvlUTCrKUneF8RE3rPcE7DraoPRjW155cpzW764dcz+9x6cUvvldvbKvTxWUThlwPAABguNpX36alm6tV09KhHL9HZVMK9fnH1vQZfnvK9Lr17Y/M1twJ+frGU+v15XNmqSQvQ4VZXo3KTswkuv72BKf1dgiPyygYjiQkAEtSIBTRYyt2a3ZpXkLqAQAADFctHSEdOy5P+RkeTRqVpY/etSzmACxJbcGw7nxynX73nx360cfnat2eem3a1yiTpFO20joEZ3hdenDZjoTW/MOKnQl/shEAAGC4yfS6Vb6jVsdPKNBND5crGB7c7oInyvfoT+V7NGtsnk6cWCCvJznxNK1DcCAU0evbahJas7E9pLZgOKE1AQAAhhtjjD40Z6xufXT1oANw1D2vblN+plcHGtqV6XUnqMP+pXUIjlipsqE94XW3VcV2SDQAAMDRKhSK6Jk392pPXduQa1krfeUvbyk/y6emto4EdDewtA7BYYeOMjvYkpz/eAAAACnjMvr9f3YmrNzmA81q7QgpGIn/uNrBSOsQ7BSPi7HJAABg5LLWqrEtqOqmQELr/nnVHvncbIdwnNdtHNl3Mr0kJ+E1AQAAhgtjjFbvrEt43Td316spkJyBGWkdgo2R5oxP/HFmRTmJOdsOAABgOLLWasO+xoTX3X4w9iPWhiqtQ7DX7dL5J45LaM1Tp46WdPQNIAEAAIiVtVbBcOL37naEI0k6JTjNQ3AgFNEJpQXK8iVuS8RViyZrR01rwuoBAAAMP0ajsn0Jr5qf6ZVD5xYcIa1DcDBs9cBr2/XlD81KSL33TButjnBEe+uHflQIAADA8GVVNmVUwqvOGZ8vH8MynOcy0rPr9qk416/Tpo8eUq2CLK++/KFZ+u5fK+TmdAgAADCCuVwuHTs2N+F1T59RpAwvIdhxbpdRts+t/3pqnW57/0wtnFw4qDr5mV7dfdVCff/ZjapvDWpaEadDAACAkS0csVo0NXGrwV630dmzx6iF0yGc55LR8aX5amwL6aaHy3X7B2bohtOPUTwLuScfM0oPXneSfvzC2yrfWSdjpNE5id8jAwAAMJy4jfTFs2cmrN4lCyaorrlDeRnehNXsT1qHYK/H6MJ54yVJ9a1BXffgG/K4jB67aZEuOHG8vO6+0/D8iQX62WXzdM2iybrxoXK9saPzrLzTpxcxLAMAAIxo1lpZY+QyRhcvKB1yvZJcvz571nR5XUZtoXACOhyYJylfZbiy0snHjFau36OmQEjhiNXdr2zTn1bt0aVlE/SHTy1SW0dIm/Y3qSkQktft0vTiHI3J82vzgWbd+8q2I87Iu+49U9gTDAAARjRjjHbXtmprdbNu/8BMbdrfpIrKwZ0bnOF16d5ryvTn8l0654TxCoWSczxEWodgr8cow+vS1z58nP7rqXWH3q9t6dBvl27Tb5duU5bPrZljcpXj9ygYjuiR13f2OSLwrFklGl+QIZchBAMAgJHNWul9x5bof57doLuvXqgv/HHtoX8Zj9WobJ/uv7ZMr2yu1gfmjNM/1u/Tp8+c5lDHh0vr7RAFWX4ZSceOy9X7jyvp9ZrWjrDW7q7Xa1sOasX22j4DcHGOX1/64Ex53S4VZiZnLwsAAECqTC3O1reeqdDn3zdDNz1Urv+9aK6+d+GcmOYvGCOdP3ecnrnlND25eo9CEau9dW0al5+pLF9y1mjTOgRLkt/jkt/t0i2Lp+v06UWDqlGc49dvrlogj1vKy/DK603c8A0AAIDhKByxCkes/rO1Rt88f7Y+/MtXFQpH9Pzt79UPL56r06aPVl7mu4HW6zY6vjRPN585Vf/+0pm68pRJ+tivl8ntcunc48fqC0+s0cLJhapp6X3BMdHSejuEJBXlZigckaqb23XzmVO1cHKh7nppi0IxjitZPKtYt39gpgIdIYUjbhVxMgQAAEgD2T6Pbj1rui6753V99ZxZ+uutp+v2P67V9/62UVcvmqRPv3eqSguy5HIZSVZGRgebA1q3t0EX/r9lkqQffOwETRyVpQvuWqZPnDRRuRkejc72J6X/tA/BkjQ626emQFDZfqtR2V498elT9adVu/X0mkq1BY98QtEY6bRpRbr61MnqCEUUCIXVFAhr+phcuVxpv7gOAADSQFGuX2FrddWiSfrhP97WvzZW6a4r52v93kb9dulWPfz6rl7vG53t03WnHaOPL5ygP5Xv1q2PrdGEwkzdvHiaxuZnJq1/Y22SBjQnUFlZmS0vL09ozY5gWLvrWlVR2Sifx6Vt1S2aN6lALmO0rbpZje0h+dwuTS3OVrbfo437GhWJSMeNy1VLIKS5EwtUlJOcn1wAAABSzVqrXbWt8nvc+uwfVmn1rnpJ0kULSnX9accox+/RgcZ2ba1uVjhiVZKboekl2TLG6OVNVfrJi2+rtSOiHL9Hf/7MqYpErCaNylZORuLWaI0xq6y1Zb19xkpwF5/XrWklucrJ8OqFigMqzvXL73Hr7f2NqmoKKByxapW0pSqimWPyNGlUljZUNmpcfoaKc3zK9PMwHAAASB+769p0yW+XK8Nt9KfPvEdffXKdlr5drSdX79WTq/dKkqYXZ+uECQVyG6myoV2vb69RJPJujbF5GfrdJ0/SCxX79bN/vqP/94n5OnNWsXKSkKsIwT2MycvQxQtK1dAWVEVlg2paArJWchkja62a20PaW9eq02cU64TSfI1m9RcAAKQhr8todLZPm/Y36WN3LdOTt5ym5Vtr9L2/bVB9a1CStKW6RVuqW4641+0yuvykibr1fdP10H926DdLt8nvcWlMXkbS+mc7xACCobBqWjo6f2oxUn6mR9ms+gIAgDS3q7ZFtS1B3fmXt7Rpf5NyfG4t+dzpqmkOaFdtm17YsF/r9jSosqFdkpTj9+j40jwtmjpaZ84sVrbfrV+/tEVPr90nv8el31y1UD630ZzxeSpM0MNx/W2HIAQDAAAgblWN7apv7VBrMHIoCEcdNy5Xp08v1gmleSrpWt1t7QhrQ2WjVu+q0yubqw+dxBUNwNZGNHt8vnL9HuVkJGbBkT3BAAAASKjq5oC+8dR6feeCOfrfi+ceFoQ37mvSxn1NA1R4NwCHIxG9tadB/9lao8+9b4bTrUtiWAYAAAAGYUxehs4/cZy+s6RCRtL/XjxXx47Njfn+ngF4xfZa3fTeaSrISs7MBUIwAAAA4laU49eF80oPBWGf2+hnl82L+f4b3ztVhVneQwH4V5+Yn9QH49gOAQAAgEGJBuEsn1sRK331z2/GfO/9r27X4pnF6ghHkh6AJVaCAQAAMARFOX6dNatEX/3LW6qobIz5vrZgWFffv1LnnTBOo7KTf/IWIRgAAACDVtXUrht+Xx5XAI5qC4Z12d2va9O+ZgXDYQe66xshuIf29pDqWttjvr6hLehgNwAAAMNXVVO7rn/wDVVUNirT69a3PzJbxbkDn/FrjPSFs2dqzvg8tQXDuvTu5UkPwoTgbgKBkHY3tGlrVavqWgIDXl9Z36ZlWw7qQGPsoRkAAGAk6BmA7756ofY1tOs3Vy44LAj7PS6Ny393v68x0vc/eoJcRvrehcenLAgTgrsEAiHtqm/TpXcv15X3rdCW6pZ+g3BlfZuueWClPvuH1Vr6dhVBGAAApJWWQFj7G9oPBeDfL9+he17Zpm8vqTgUhDO8Lv32qoW695oyHTs291AA3lHTop+8sFk3P7LqsCC8tbpJgWByBrkxMU6HB+C6rlnXfo9Lj3zqFE0vzj5idF80AG+paj703o8uPkFnzipJ+pONAAAAqbDjYLPqWjvU2hHRA8u2618bqw59Nmd8nr534RwFghE1B0IqLcxUMGy1p7ZVb+1t0D2vbDt0bXGuX7+9aqH217cpO8OjEyfkJ2VssuMrwcaYc4wxbxtjthhj7uzl80nGmJeMMWuMMW8ZYz7sdE/ddQ/ADe1BPXPLaXrpS2fK53Hpql5WhLsH4F9cPk9vfP0Dml6cra/8ZR0rwgAAIG1ket0aX5Clh5bvOCwAS1JFZaO+/UyFphRlq661Q996ar3G5mXonarmwwKwJFU3BXTzI6s0uzRPJ5bmyutxJ6V/R0OwMcYt6S5J50qaLekTxpjZPS77hqQnrLXzJV0u6ddO9tTdEQH4s6fpnxsP6Of/ekdLbjn9sCDcEggeEYB9bpc+/XC5fvfJkwnCAAAgvRijrz+1Ts9XHOj14/WVjbrxoXKdMaNYv75qoR5evkO/+Nc7vV5b3RTQpXe/rvq2sBQZGXuCT5a0xVq7zVrbIelxSRf2uMZKyuv6c76kSod7OqQ5FNb3/rbhUAB+YcMB/erfW/TM2kr9/F+bDwvCL1QcOCIA3/Loaq3eVa9b/rD6UBD+7l83yOdmqzUAABjZ6luDevWdg/1eU9EVhH/x78266+Wt/V5b3RTQ39btU1toBOwJNsZcIukca+2nul5fLekUa+2t3a4ZJ+kFSYWSsiV9wFq7qpdaN0m6SZImTZq0cOfOnQnpcV9Dm+pbg3pu3T796t9bDvvswnnjdfv7Z+qCu15TU3tIkg4LwJFu37oTJ+TrrisXdO57yc9QbmZy5l4DAACkQn1LQO9Uteiq+1coEIoMud6nTj9GN753akKfr0rpnuAYfELS76y1EyR9WNLDxpgj+rLW3mOtLbPWlhUXFyfsi3tdptcALOmwFeHcDE+fAViS3tzToFv+sFoFmT4CMAAAGPEKsv2aUZKtR244RX7P0CKlEwF4IE6H4L2SJnZ7PaHrve5ukPSEJFlrl0vKkFTkcF+SpKrGdv1++c5eA3BUNAi/fMfiPgNw1Jt7GvTph8t1oIE9wQAAYORLRBBORQCWnA/Bb0iaYYw5xhjjU+eDb0t6XLNL0vslyRhznDpDcLXDfR0Syzf8mbWVuur+Ff0G4KiCTK9kEtQcAADAMDeUIJyqACw5HIKttSFJt0p6XtJGdZ4CUWGM+Z4x5oKuy74k6UZjzJuSHpN0nU3S4cVet0vzJhbofz46Z8BrN+5rGjAAnzmjSN+/6AR5DCkYAACkj2gQ/v31J8d8zyULJ+jTZ6YmAEuSx+kvYK19TtJzPd77Vrc/b5B0mtN99KYw2xdtQv/z0Tn6xtMVg64VDcA+l0ujY5iZDQAAMJIEwlavvBP7P+Zv3Neo0EArjA4aDg/GpVRhtk+lhVmaNyG2FeHedA/AJflMjAMAAOnlQGO7HvrPDv16gGPQuquobNSnfl+ufQ1tDnbWt7QPwVJnEC7KzdDcQQThaACWtfJ72QYBAADSSzQAD3QOcG9SGYQJweochXzdgyu1p65NH5w9Vh84riSm+yJEkZkAACAASURBVDK9bt111UI1tgV17YNvaHPV4SOWAQAARrKhBOCoVAXhtA/B0VHIm/Y3KRSOaNXOOv17U9XAN0pqC4b19afWKdvnUVVT4NCIZYIwAAAY6RIRgKNSEYTTOgTXtnTojj+9eWgUsneAc4B788zaSv30n++OWL7m/pUynA4BAABGuIPNgZgC8A2nH6PHbhz4+LSKykbd9+o21SZpMdHx0yGGs1yf0fc/drw27WuSpLgDcNQzayslSUtuOV2bDzQomIDRgQAAAMNZcY5fP7z4BH31L+v6vCZ6DnCGx6WHbzhZV9+/ss8Ry2fOKNKN752mUdnJOWUrrVeCvV6vCjI7fw4YbACOik6Wmz9plIpTdN4dAABAspTkZeisWSX64cUn9Pp590EY+Vk+zSzJ0cM3nNzrivCZM4r0w4+fqLEjaGzysFbf2qHXt9XFFIDHx3D02TNrK/X95zaquomxyQAAYOTrKwj3NgmuINvfaxBORQCW0jwEd4Qiem3LwZgmwT132xkxHZ+2fm+jwqk79xkAACCpegbh/kYh9wzCqQrAkmSSNKE4ocrKymx5efmQ69S3dqi+Nai7X9mqx1bu7vWa6DnAWV63KuvbtHZPfZ+T5aYV5+h315+k/EyP8jJ9Q+4PAADgaFHV2K79je0ak5cx4Cjk+paA9jUGVJjtczQAG2NWWWvLevssrR+MK8jyKRSxuumMqZJ0RBB+dxKc0agc/6FTH3obsRwNwEZW2X5vcv4CAAAAw0RJXoZKYgy0Bdl+FSTpAbi+pPV2CEkqyvErN9Orm86Yqk+cPPHQ+90DcEl+pqS+Ryx3D8DjCrLkdnFEGgAAwHCW1ivBUUU5nT+JRFeEK+vajgjAUYXZ725z+J+PztGDy3YSgAEAACQFQmH5Pe6Yrm0PhpXhje1aJxCCu3QPwj6PS95eAnBU9yD8p5vHqTUQIgADAIC0Vtfaob+v26cPzRmr0Tn9b3Voag/qtXcOav6kAo3tI285Le23Q3QX3Rrhcbv6DMBR0a0RgWCEAAwAANJaXWuHfvbiZv3XU+v1pSfeVE1z31PfmtqD+vv6/frMH1brintXaH8SRyV3RwjuoSjHP+ATjVGF2T6NK8gkAAMAgLQVDcAPLd8pSXp5c3WfQTgagL/y57ckSdsOtqQsCBOCAQAAMCg9A3BUb0G4ZwCOSlUQJgQDAAAgbn0F4KjuQbi5jwAclYogTAgGAABA3Koa2/XI670H4KiXN1fri0+s1WNv7O4zAEdtO9iih5bvVHMglMg2+0QIBgAAQNwmjsrSfdeWaaBHo5ZuPqjvP7txwHoXzS/Vp86Yqhx/cg4vIwQDAAAgblk+jxZNHR1TEB7IRfNL9Y3zZ2tUt2NonUYIBgAAwKAkIginIgBLhGAAAAAMwVCCcKoCsEQIBgAAwBBFg/DdVy+M+Z7zThiXsgAsEYIBAACQAOGIVU1LR8zXN7R1yFrrYEf9IwQDAABgSKKDMO78y7qY73ltS42+8Me1/Y5YdhIhGAAAAIPW1yS4WLzyzsGUBWFCMAAAAAZlKAE4KlVBmBDcQ1Vju6oa22O+tjaOvS8AAAAjRSICcFQqgjAhuJuqxnb94O+b9PnH1+jAAEG4qrFdT6/dq4/9epn21LYmqUMAAIDhYW9dW0wB+GPzS/WrT8wf8Pi0V945qN8u3cbY5GSLBuCn1+zV69tqdVs/QTgagH/w3CbtrGnVlfevIAgDAIC0Mq4gU1/+0Kx+r7lofqm+ef5sfeC4kgHPET5xYr5uei9jk5OqewC+64p5+svNp/YZhLsH4E+fcYyWfnkxQRgAAKSd/Eyvrlo0uc8g3H0QRuYAAzVOnJiv+645ScW5foe7flfah+DuAfjeqxdo1tg8GWP0t1tPOyII9wzA1552jDbtb9Kyr55FEAYAAGmnryDc2yS4vibLpSIAS2kegqsa2/Wj598+FICPKc7RpXe/rivue12BcOSwINzYFjwiAF/34Erd/MgqLd9WcygIX3HfigH3EwMAAIwUPYNwf6OQewbhVAVgSTKpnNQxWGVlZba8vHzIdepaA1q7q0HhcFhTugJw9LSHDK9Lf/jUKfK7XTr//y1TUY5PB5s7DgvAmw80S5KMkf7vkrk6depo/erfW/TFs2eqJC9jyP0BAAAcLRragirfUav5kwoHHIXc2hHS+r0NOqYox9EAbIxZZa0t6/WzdA7BktTSHtC+xo7DAnBUzyDcWwCOigbh984oJgADAIC0FI5E5HbFttEgHI7I7XZ2U0J/ITitt0MEAiHtawz2GoAlqT0Y0ZX3rVAgHNHrX3tfnwFYkqyVvvznt/TKO9UxnzMMAAAwksQagCU5HoAHktYhuCUY1neWVPQ78CIahFdur+0zAEdZK337mQp5U/wfFQAAAP1L67SW4Xbp/y6Zq9nj8vq9rj0Y0ecfX9tvAJakLJ9bj964aMDDoAEAAEaipvbYJ+nWt6Z26m5ah+DMDI88Lun+a8sGDMIDyfK59diNizQmzycPK8EAACDNVDW264nyPdrfMPC20KrGdv17U5X21KXuaNm0TmvGGBXlZgw5CHcPwLkZPmUnadIJAADAcFDV2K7/e/5t/fffNuoLf1zbbxCuamzXc+v36YtPvKkr71uRsiCc1iFYejcIu83ggnA0AJcQgAEAQBqKBuA/rdojSVq+rabPIBwNwN9ZskGSOoeNpSgIp30IlqTqpoBe23pQ7cGQ7r+2TNNLcmK6z+s2euzGRSrK8erFDVVqDoQc7hQAAGD46BmAo3oLwj0DcFSqgnDah+DoKOQvPvGWXtpULSspEont7GRrpVAkolBY+tYzFYeNWAYAABjJ+grAUd2D8MGm3gNwVCqCcFqH4AMN7YeNQj7nhHG67sGV2nawJab7QxGrK+9boYMtgcNGLBOEAQDASFfT0qEn1+zt95rl22p0+x/X6JEVu/oMwFE7a1r16IpdqmkOJLLNPqV1CJaswhHb7yS4gXQfqPG3W09TOGKlo28IHwAAQFzG5Pl191UL5R7gbNjXt9Xq5/98Z8B6F80v1bXvmaLROc6NUe5uUGOTjTGjrLW1DvQTk0SOTW5sa1dzwA4qAHcXHbF8TFGWRmUzNhkAAIx8tS0Brd5Zr08/sqpzIXCQLppfqq+ee6zG5CU2Qw1pbLIx5jRjzEZjTIUx5hRjzIuS3jDG7DbGnJrQTlMgEQFYendFePvBNjW2JWcZHwAAIJVGZfu1YHJBTCvCfXEqAA8klu0QP5N0qaRPSXpW0nettdMkXSjpxw725rjaloC+/Oc3Y5oEd/dVC2KaLHf1/SsUsYyMAwAA6WEoQThVAViKLQR7rbXrrLXLJVVba1+TJGvtakmZjnbnsEy30X9feLyK+9l7Ej0HeOHkUQOeI2yM9L8XnaCOUMSJdgEAAIalaBC+64oFMd9z7gljdWeKArAUWwjufs3XenzmS2AvSef2eJTnd+mPn17UaxA+NAgjx6csv1tet3T/db0HYWOkX1w2TydNKZTPk+bPGwIAgLQTCltVNrTFfH1NU0BD2EY8ZLGktW8aY7IkyVr7dPRNY8w0SQ851Vgy+Dwu5WVl9BqEuwfgvCyfsnwejc7JkNd1ZBDuHoAzfR4VZB3VPxsAAADEJToI43t/7f8YtO5W7qgbcMSykwYMwdbaJdbaI04uttZutdb+KPraGPOrRDeXDL0F4Z4BODoK2RhzRBAmAAMAgHTW1yS4WPQ3YtlpgzoirddCxqy21sa+EWQIEnlEWlRHKKLG1nY1BiJqag8dEYC7s9aqprldwYi0aV+Tjh2bQwAGAABpZygBuLtTp47Wzy6bp7H5w+iItHQRXRHO8RkV53j6DMDS4SvCs8fnEoABAEDaSVQAllKzIkwI7sbncSk/K0P5Wf4+A3BUNAhnEYABAEAaqm4OxBSAPza/VL+8fN6Ax6ct31aje1/dqrqWo29s8og4HNfvdSvb743pWmOMcjNiuxYAAGAkKc71644Pzur3movml+rOc4/VGTOLBzxHeP7EAt14xlQVZidnbHLMIdgYc8IAl/xiiL0AAADgKFGSm6FLT5rQZxDuPgijMMvX70CN+RML9JurFmhsfvJGUMSzEvxrY8xKY8xnjTH5PT+01v4ucW0BAABguOsrCPc2Ca6vyXKpCMBSHCHYWnuGpCslTZS0yhjzqDHmbMc6AwAAwLDXMwj3Nwq5ZxBOVQCWBnFEmjHGLemjkn4pqVGde4H/y1r7ZOLb650TR6QBAABg8Kqa2rV+b6PmjM8bcBRybUtA7xxo1uTRWY4G4P6OSOv/CITDi8yVdL2k8yS9KOkj1trVxpjxkpZLSloIBgAAwPBSkpuhM6b75PUMvNFgVLZf8yd55PO4k9BZ72IOwZJ+Jek+da76HhoMba2tNMZ8I+GdAQAA4KgSSwCOSmUAluILwedJarPWhiXJGOOSlGGtbbXWPuxIdwAAAIAD4jkd4p+Sum/ayOp6DwAAADiqxBOCM6y1zdEXXX/OSnxLAAAAgLPiCcEtxpgF0RfGmIWS2vq5HgAAABiW4tkTfLukPxljKtV5LNpYSZc50hUAAADgoJhDsLX2DWPMsZKiI0HettYGnWkLAAAAcE48K8GSdJKkKV33LTDGyFr7UMK7AgAAABwUz7CMhyVNk7RWUrjrbSuJEAwAAICjSjwrwWWSZtt45ywDAAAAw0w8p0OsV+fDcAAAAMBRLZ6V4CJJG4wxKyUFom9aay9IeFcAAACAg+IJwd9xqgkAAAAgmeI5Im2pMWaypBnW2n8aY7IkuZ1rDQAAAHBGzHuCjTE3SvqzpLu73iqV9LQTTQEAAABOimc7xC2STpa0QpKste8YY0oc6SpJ6lo61BwIOVI7x+9RYbbPkdoAAAAYmnhCcMBa22GMkSQZYzzqPCf4qNURjmhvfZsjtY8pynakLgAAAIYuniPSlhpj/ktSpjHmbEl/kvRXZ9pKDiePPOY4ZQAAgOErnpXgOyXdIGmdpE9Les5ae68jXSVJWzCiy+953ZHaL92x2JG6AAAAGLp4QvDnrLW/kHQo+Bpjbut6DwAAADhqxLMd4tpe3rsuQX0AAAAASTPgSrAx5hOSrpB0jDFmSbePciXVOtUYAAAA4JRYtkP8R9I+dY5N/km395skveVEUwAAAICTBgzB1tqdknZKOtX5dgAAAADnxTMx7iJjzDvGmAZjTKMxpskY0+hkcwAAAIAT4jkd4keSPmKt3ehUMwAAAEAyxHM6xIHBBGBjzDnGmLeNMVuMMXf2cc2lxpgNxpgKY8yj8X4NAAAAIB7xrASXG2P+KOlpSYHom9baJ/u6wRjjlnSXpLMl7ZH0hjFmibV2Q7drZkj6mqTTrLV1xpiSOP8OAAAAGAbaO0LK8MUWL9s6QsqM8VonxLMSnCepVdIHJX2k69f5A9xzsqQt1tpt1toOSY9LurDHNTdKustaWydJ1tqqOHoCAADAMFDV2K4XN1bpQGP7gNcebApo5fZaVda3JaGz3sUcv6211w+ifqmk3d1e75F0So9rZkqSMWaZJLek71hr/9GzkDHmJkk3SdKkSZMG0QoAAACcUNXYrgeXbddvlm7TuceP1XcumKMxeRm9XnuwKaDXt9foc4+t0exxebr3mjKNL8hMcsfxnQ4x0xjzL2PM+q7Xc40x30hADx5JMyQtlvQJSfcaYwp6XmStvcdaW2atLSsuLk7AlwUAAMBQdQ/AkvT39fv1nSUVva4Idw/A1koVlY268aHylKwIx7Md4l517t0NSpK19i1Jlw9wz15JE7u9ntD1Xnd7JC2x1gattdslbVZnKAYAAMAw1jMAR/UWhHsG4KhUBeF4QnCWtXZlj/dCA9zzhqQZxphjjDE+dYbmJT2ueVqdq8AyxhSpc3vENgEAAGDY6isAR3UPwjXNvQfgqFQE4XgeyTtojJkmyUqSMeYSdY5T7pO1NmSMuVXS8+rc7/uAtbbCGPM9SeXW2iVdn33QGLNBUljSl621NYP4uwAAACBJDjYH+gzAUX9fv1/WWr13ZrG+/vT6XgNwVEVlox54bbs+e9Y0jcr2J7jbI8UTgm+RdI+kY40xeyVtl3TVQDdZa5+T9FyP977V7c9W0he7fgEAAOAoUJzr1/9dMldf/vNb/V73j4oD+kfFgQHrLZ5VrBvfOzUpAViKYztE1zFnH5BULOlYa+3p1todjnWWBMYcnbUBAABSrTg3Q4tnFev/Lpk75FqLZxXrhxfP7fNECSfEvBJsjLlN0oOSmtR5gsMCSXdaa19wqjmnZXhcevymRY7VBgAAGMm6B+GBVoT7kooALMW3HeKT1tpfGGM+JGm0pKslPSzpqA3BbcGILr/ndUdqv3THYkfqAgAADCdDCcKpCsBSfKdDRP+B/8OSHrLWVnR7DwAAAGkqGoT/96ITYr7n9OmjUxaApfhC8CpjzAvqDMHPG2NyJUWcaQsAAABHEyOjDK875uv9ntivdUI8IfgGSXdKOsla2yrJJ2kwo5SHDR6MAwAAGLroIIwvPLE25nv+tamqz8lyyTDgnmBjzLHW2k2S5nW9NdWMkITX31l1w7k2AADAcNHXJLhY/H39fknSdy6YMywfjPuipJsk/aSXz6yk9yW0IwAAABwVhhKAo1IVhAcMwdbam7p+P8v5dgAAAHA0SEQAjkpFEI55T7Ax5uNdD8PJGPMNY8yTxpj5zrUGAACA4aqqqT2mAHzmrGJ9/bzjBqz39/X79cBr21XbEkhQh/2L58G4b1prm4wxp0v6gKT7Jf3WmbYAAAAwnBXl+HXNqVP6vWbxrGL96OK5umh+6YCT5aaX5Oia90wZfmOTJYW7fj9P0j3W2mfVeUIEAAAA0kxJXoZuWTxN175nSq+fdx+EMTrH3++I5eklOfr9J09WaUGmgx0fLp4QvNcYc7ekyyQ9Z4zxx3k/AAAARpC+gnBvk+C6T5brLhUBWIovxF4q6XlJH7LW1ksaJenLjnQFAACAo0LPINzfKOSeQThVAViK7Yg0SZK1ttUY84ykMcaYSV1vb3KmLQAAABwtokH4uLG5OuvYkn5PeIgG4d9ctUBzJxSkJABLcYRgY8znJH1b0gG9Oy7ZSup/lzMAAABGvJK8DH3kxPHK9g8cL4tzM3TGtCLlZHqT0FnvYg7Bkm6TNMtaW+NUMwAAADh6xRKAo1IZgKX49gTvltTgVCMAAABAssSzErxN0svGmGclHTrF2Fr704R3BQAAADgonhC8q+uXT5wPDAAAgKNYPKdDfFeSjDE5Xa+bnWoKAAAAcFLMe4KNMccbY9ZIqpBUYYxZZYyZ41xrAAAAgDPieTDuHklftNZOttZOlvQlSfc60xYAAADgnHhCcLa19qXoC2vty5KyE95REhlzdNYGAADA0MR1OoQx5puSHu56fZU6T4w4amX73HrpjsWO1QYAAMDwFE8I/qSk70p6Up2T4l7teu+oVZyboeLcVHcBAACAZIvndIg6SZ93sBcAAAAgKeI5HeJFY0xBt9eFxpjnnWkLAAAAcE48D8YVWWvroy+6VoZLEt8SAAAA4Kx4QnDEGDMp+sIYM1mde4MBAACAo0o8D8Z9XdJrxpilkoykMyTd5EhXAAAAgIPieTDuH8aYBZIWdb11u7X2YPRzY8wca21FohsEAAAAEi2elWB1hd6/9fHxw5IWDLkjAAAAwGHx7AkeCDPSAAAAcFRIZAjmITkAAAAcFRIZggEAAICjQiJDcEcCawEAAACOievBOGPMXElTut9nrX2y6/dFfdwGAAAADCsxh2BjzAOS5kqqkBTpettKetKBvgAAAADHxLMSvMhaO9uxTgAAAIAkiWdP8HJjDCEYAAAAR714VoIfUmcQ3i8poM5zga21dq4jnQEAAAAOiScE3y/paknr9O6eYAAAAOCoE08IrrbWLnGskxSoa+lQcyDkSO0cv0eF2T5HagMAAAxH4XBYbrc74dc6IZ4QvMYY86ikv6pzO4Skd49IOxoFIxEFQs4savu9LJYDAID0caChXTtqWnRMUbZK8jL6vfZgU7v21LdrbF6Gxub3f61T4nkwLlOd4feDkj7S9et8J5pKGicHPTNEGgAApIkDDe16dt0+XXbP6/r5vzarqrG9z2sPNrVr0/4mffy3/9Ftj6/R/oa+r3VSzCvB1trrnWwkFVo6wvrAT5c6UvulOxY7UhcAAGA4iQbg7/1tgyTp0RW7JUm3v3/mESvC0QB8/e/eUDBstWJ7rW57fI1+cfn8pK8IxzMsI0PSDZLmSDrUpbX2kw70lRTGHJ21AQAAhoOeATiqtyDcMwBHpSoIx7Md4mFJYyV9SNJSSRMkNTnRVLJYB7csOFkbAAAg1foKwFGPrth9aGtETXOg1wAcFQ3CydwaEU8Inm6t/aakFmvt7yWdJ+kUZ9oCAADAcHawJdBnAI56dMVu/eyfm7VmV32fAThqxfZa3fvqVtW2BPq8JpHiCcHBrt/rjTHHS8qXVJL4lgAAADDcFeX49ZUPzRrwusdW7tanHirvNwBL0oJJhbrxjGkale1PVIv9iueItHuMMYWSvilpiaQcSd9ypCsAAAAMa2PyMnTxwgmSpB89//aQai2YVKhfX7kgqXuC4zkd4r6uPy6VNNWZdgAAAHC0SEQQTkUAluLYDmGMGWOMud8Y8/eu17ONMTc41xoAAACGu2gQjmVrRE+pCsBSfHuCfyfpeUnju15vlnR7ohsCAADA0SUahO/4YOxBeN7EgpQFYCm+EFxkrX1CUkSSrLUhSWFHugIAAMBRxes2Or40L+brJ4/OkiueJJpg8XzpFmPMaHUNBDbGLJLU4EhXAAAAOGrUtrRrQ2WjbnyoPOZ7nllbqZ//s/8Ry06K53SIL6rzVIipxphlkoolXeJIVwAAADgqdAbgvgdh9Ke/EctOiycEb5D0lKRWdU6Ke1qd+4IBAACQhoYSgKNSFYTj2Q7xkKRjJf1A0q8kzVTnKGUAAACkmUQE4KjuI5aTJZ6V4OOttbO7vX7JGNP/rDwAAACMSFVNHTEF4AWTCrRwcqHufXV7v9c9umK3inL8umbRFBXlOj81Lp6V4NVdD8NJkowxp0iKffczAAAARozCLJ/OOX5sv9d0ngO8UDe9d9qA5wiXFmTq4gUTkhKApRhWgo0x69R5IoRX0n+MMbu6Xk+WtMnZ9gAAADAcjcnL0DfO69wk8Nc39x3xec9BGP1NlistyNSjN56iyaOzHez4cLFshzjf8S4AAABw1OkrCPc2Ca6vEcupCMBSDCHYWrszGY0AAADg6NMzCPc3CrlnEE5VAJbiezAOAAAAOEI0CM8oydWlZRP7HYUcDcJ5mV6dMaMoJQFYIgQDAAAgAcbkZejqUyerMMsX07XnzBmbtIfgepPCic0AAAAYSWIJwFGpDMBSmq8EZ3pdevymRQNfOMjaAAAAGJ7SOgQDAABgcA42BdQcCCW8bo7fk5RV4rQOwW3BiC6/53VHar90x2JH6gIAAAwHzYGQFv/45YTXffmOxcNuYhwAAAAwIhCCAQAAkHYIwQAAAEg7aR2CXeborA0AAIChSesH4/IyvHr1K2c5UjvHn9bfWgAAgGEtrZNaYbZPhdmxH+oMAACAkSGtt0MAAAAgPRGCAQAAkHYIwQAAAEg7hGAAAACkHUIwAAAA0g4hGAAAAGmHEAwAAIC0QwgGAABA2iEEAwAAIO0QggEAAJB2CMEAAABIO46HYGPMOcaYt40xW4wxd/Zz3cXGGGuMKXO6JwAAAKQ3R0OwMcYt6S5J50qaLekTxpjZvVyXK+k2SSuc7AcAAACQnF8JPlnSFmvtNmtth6THJV3Yy3X/LemHktod7gcAAABwPASXStrd7fWervcOMcYskDTRWvtsf4WMMTcZY8qNMeXV1dWJ7xQAAABpw5PKL26McUn6qaTrBrrWWnuPpHskqayszDrbGQAAAPqT4/fo5TsWO1I3GZz+KnslTez2ekLXe1G5ko6X9LIxRpLGSlpijLnAWlvucG8AAAAYpKJcv4py/aluY9CcDsFvSJphjDlGneH3cklXRD+01jZIKoq+Nsa8LOmOZAXg6qZ2NQfCjtTO8btVnJvhSG0AAAAMjaMh2FobMsbcKul5SW5JD1hrK4wx35NUbq1d4uTXH0hzIKyzfvyyI7VfumOxinMdKQ0AAJBydS0dag6EEl43x+9RYbYv4XV7cnzThbX2OUnP9XjvW31cu9jpfgAAADB0zYGQzvjRSwmv++pXzkpKCGZiHAAAANIOIRgAAABphxAMAACAtEMIBgAAQNohBAMAACDtEIIBAACQdgjBAAAASDuEYAAAAKQdQjAAAADSDiEYAAAAacfxscnDWbbfrZfuWOxYbQAAAAxPaR2CWwJhnfXjlx2p/dIdi6VcR0oDAABgiNgOAQAAgLRDCAYAAEDaIQQDAAAg7RCCAQAAkHYIwQAAAEg7hGAAAACkHUIwAAAA0g4hGAAAAGknrYdlAAAAYHBy/B69+pWzHKmbDIRgAAAAxK0w26fCbF+q2xg0tkMAAAAg7RCCAQAAkHbYDgEAAIC4VTe1qzkQTnjdHL9bxbkZCa/bEyEYAAAAcWsOhHXWj19OeN2X7lis4tyElz0C2yEAAACQdgjBAID/397dB1lV33ccf3/d3exKdvNQBB/YEHCaichDlicjjW5gDMIaR0U7MUImIJRMZ+jUhmFUSqnaKRlRQ7UOOnWi0UShoyZVOwXdjMFQzRhCEBVjrZBiXKo8NUYeZjcL/fUPLhRXEh723D3LPe/XjHPPPff4u5/LmWU+nP3d35GkwrEES5IkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAKvU5wfW0Vq+aNL9vYkiRJ6p0KXYL7NdT1yGLMkiRJ6l2cDiFJkqTCsQRLkiSpcCzBkiRJKhxLsCRJkgrHEixJkqTCsQRLkiSpcCzBkiRJKhxLsCRJkgrHEixJkqTCZtiEYAAAD2tJREFUsQRLkiSpcCzBkiRJKpzqvANIkiTp5FNfW8WqeePLMm5PsARLkiTpuPVrqKNfQ94pTpzTISRJklQ4XgmWJEnScdu+q53dHfszH7e+top+DXWZj9uVJViSJEnHbXfHfibc8Vzm466aN75Hplk4HUKSJEmFYwmWJElS4ViCJUmSVDiWYEmSJBWOJViSJEmFYwmWJElS4ViCJUmSVDiWYEmSJBWOJViSJEmFYwmWJElS4ViCJUmSVDiWYEmSJBWOJViSJEmFU513gKx0dnbS1tZGe3t73lFyVVdXR2NjIzU1NXlHkSRJ6rUqpgS3tbXR0NDAoEGDiIi84+QipcTOnTtpa2tj8ODBeceRJEnqtSpmOkR7ezt9+/YtbAEGiAj69u1b+KvhkiRJR1MxJRgodAE+yD8DSZKko6uoEixJkiQdC0twRt577z3uueeevGNIkiTpGFiCM2IJliRJOnlUzOoQebvxxhvZtGkTTU1NTJw4kf79+/Poo4/S0dHBlClTuOWWW9i8eTOTJ0/m/PPP56c//Sljx47l2muv5aabbmLbtm088sgjnHfeedx8881s2rSJjRs3smPHDq6//npmz57NO++8w9VXX83777/Pvn37uPfee7nwwgvz/uiSJKmA6murWDVvfFnG7QmW4IzceuutbNiwgfXr19Pa2srjjz/OmjVrSClx2WWXsXr1agYOHMjGjRt57LHHeOCBBxg7dizLli3j+eef56mnnuJb3/oWTzzxBACvvPIKL774Inv27GHkyJF8+ctfZvny5UyaNIkFCxawf/9+9u7dm/OnliRJRdWvoY5+DXmnOHGW4DJobW2ltbWVkSNHArB7927efPNNBg4cyODBgxk+fDgAQ4cO5aKLLiIiGD58OJs3bz40xuWXX86pp57KqaeeyoQJE1izZg1jx45l5syZdHZ2csUVV9DU1JTHx5MkSTrpOSe4DFJKzJ8/n/Xr17N+/Xo2btzIrFmzAKitrT103CmnnHLo+SmnnMK+ffsOvdZ1qbOIoLm5mdWrVzNgwABmzJjB9773vR74NJIkSZXHK8EZaWhoYNeuXQBMmjSJhQsXMm3aNOrr69myZctx38b4ySefZP78+ezZs4fnnnuOW2+9lbfeeovGxkZmz55NR0cH69at4+tf/3o5Po4kSdIftH1XO7s79mc+bn1tFf0a6jIftytLcEb69u3LF77wBYYNG0ZLSwtTp05l3LhxANTX1/Pwww9TVXXsE71HjBjBhAkT2LFjBwsXLuSss87ioYce4vbbb6empob6+nqvBEuSpNzs7tjPhDuey3zcVfPG98hcY0twhpYtW/aB59ddd92HjtmwYcOh7QcffPDQ9qBBgz7w2ogRIz5UcqdPn8706dMzSitJklRczgmWJElS4XgluBe6+eab844gSZJU0bwSLEmSpMKxBEuSJKlwLMGSJEkqHEuwJEmSCscSnKGZM2fSv39/hg0blncUSZIk/QGFLcErV67k0ksvZezYsVx66aWsXLmy22POmDGDp59+OoN0kiRJKqdCLpG2cuVKFi1aRHt7OwDvvvsuixYtAqClpeWEx21ubmbz5s1ZRJQkSVIZFfJK8NKlSw8V4IPa29tZunRpTokkSZLUk8pegiNickS8EREbI+LGI7w+NyJ+GRGvRMSzEfHpcmfaunXrce2XJElSZSlrCY6IKmAp0AKcC1wTEed2OewlYExKaQTwOHBbOTMBnH766ce1X5IkSZWl3FeCzwM2ppR+lVL6HfDPwOWHH5BSWpVS2lt6+iLQWOZMzJkzh7q6ug/sq6urY86cOeV+a0mSJPUC5S7BA4C3D3veVtr3+8wCjrhMQ0R8IyLWRsTa7du3dytUS0sLCxYs4IwzziAiOOOMM1iwYEG3vhQHcM011zBu3DjeeOMNGhsbuf/++7s1niRJksqj16wOERFfA8YAXzzS6yml+4D7AMaMGZO6+34tLS3dLr1dLV++PNPxJEmSVB7lLsFbgE8d9ryxtO8DIuJLwALgiymljjJnkiRJUsGVezrEz4HPRMTgiPgI8FXgqcMPiIiRwD8Bl6WUtpU5jyRJklTeEpxS2gf8BfAM8DrwaErptYj4u4i4rHTY7UA98FhErI+Ip37PcJIkSVImyj4nOKW0AljRZd/fHrb9pXJnkCRJkg7Xa74YJ0mSpJNHfW0Vq+aNL8u4PcESLEmSpOPWr6GOfg15pzhxZb9tcpG8/fbbTJgwgXPPPZehQ4dy11135R1JkiRJR1DIK8GdnZ3MnTsXgMWLF3PDDTcAsGTJEmpqak543Orqar797W8zatQodu3axejRo5k4cSLnntv1TtGSJEknt+272tndsT/zcetrq+jXUHf0A7upkCV47ty5rFu3DoBLLrmEzs7OQ/vvvvvuEx73zDPP5MwzzwSgoaGBIUOGsGXLFkuwJEmqOLs79jPhjucyH3fVvPE9Ms2ikCX4oI6ODjo6Dtybo7a2NtOxN2/ezEsvvcTnP//5TMeVJElS9xVyTvDixYs/NO2hpqaG2267LZPxd+/ezVVXXcWdd97Jxz72sUzGlCRJUnYKWYJvuOGGQ1MgDurs7OT666/v9tidnZ1cddVVTJs2jSuvvLLb40mSJCl7hZ4OUVtbS01NzYcK8YlKKTFr1iyGDBly6It3kiRJ6n0KeSV4yZIljBo1ilGjRrFixYpD20uWLOnWuC+88ALf//73+fGPf0xTUxNNTU2sWLHi6P+jJEmSelQhrwTX1NR8YBWI7qwIcbgLLriAlFImY0mSJKl8CnklWJIkScVmCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhFHKJtHIaNGgQDQ0NVFVVUV1dzdq1a/OOJEmSpC4KWYKbm5vZu3fvh/b36dOH1atXd3v8VatWcdppp3V7HEmSJJVHIadDHKkA/6H9kiRJqiyFLMHlFBFcfPHFjB49mvvuuy/vOJIkSTqCQk6HKKfnn3+eAQMGsG3bNiZOnMg555xDc3Nz3rEkSZJ0GK8EZ2zAgAEA9O/fnylTprBmzZqcE0mSJKkrS3CG9uzZw65duw5tt7a2MmzYsJxTSZIkqatCTofo06fP710doju2bt3KlClTANi3bx9Tp05l8uTJ3RpTkiRJ2StkCc5iGbQjOfvss3n55ZfLMrYkSZKyU8gSLEmSpO6pr61i1bzxZRm3J1iCJUmSdNz6NdTRryHvFCeuor4Yl1LKO0Lu/DOQJEk6uoopwXV1dezcubPQJTClxM6dO6mrq8s7iiRJUq9WMdMhGhsbaWtrY/v27XlHyVVdXR2NjY15x5AkSerVKqYE19TUMHjw4LxjSJIk6SRQMdMhJEmSpGNlCZYkSVLhWIIlSZJUOHEyrqYQEduBt3J469OAHTm8r8rL81q5PLeVy3NbmTyvlSuvc/vplFK/I71wUpbgvETE2pTSmLxzKFue18rlua1cntvK5HmtXL3x3DodQpIkSYVjCZYkSVLhWIKPz315B1BZeF4rl+e2cnluK5PntXL1unPrnGBJkiQVjleCJUmSVDiWYEmSJBWOJfgYRMTmiHg1ItZHxNq88yg7EfGJiHg8Iv4jIl6PiHF5Z1L3RcRnSz+vB/97PyL+Ku9c6r6I+GZEvBYRGyJieUTU5Z1J2YiI60rn9TV/Xk9uEfFARGyLiA2H7fujiPhRRLxZevxknhnBEnw8JqSUmnrbGnfqtruAp1NK5wCfA17POY8ykFJ6o/Tz2gSMBvYC/5JzLHVTRAwA/hIYk1IaBlQBX803lbIQEcOA2cB5HPi7+NKI+ON8U6kbHgQmd9l3I/BsSukzwLOl57myBKuwIuLjQDNwP0BK6XcppffyTaUyuAjYlFLK4y6Tyl41cGpEVAN9gP/OOY+yMQT4WUppb0ppH/AT4MqcM+kEpZRWA//TZfflwEOl7YeAK3o01BFYgo9NAloj4hcR8Y28wygzg4HtwHcj4qWI+E5EfDTvUMrcV4HleYdQ96WUtgB3AL8G3gF+m1JqzTeVMrIBuDAi+kZEH+AS4FM5Z1K2Tk8pvVPafhc4Pc8wYAk+VheklEYBLcCciGjOO5AyUQ2MAu5NKY0E9tALfj2j7ETER4DLgMfyzqLuK80hvJwD/4A9C/hoRHwt31TKQkrpdWAx0Ao8DawH9ucaSmWTDqzPm/savZbgY1C6+kBKaRsH5hWel28iZaQNaEsp/az0/HEOlGJVjhZgXUppa95BlIkvAf+VUtqeUuoEfgj8Sc6ZlJGU0v0ppdEppWbgN8B/5p1JmdoaEWcClB635ZzHEnw0EfHRiGg4uA1czIFf2+gkl1J6F3g7Ij5b2nUR8MscIyl71+BUiErya+D8iOgTEcGBn1m/zFohIqJ/6XEgB+YDL8s3kTL2FDC9tD0deDLHLIB3jDuqiDib//9WeTWwLKW0KMdIylBENAHfAT4C/Aq4NqX0m3xTKQulf7T+Gjg7pfTbvPMoGxFxC3A1sA94CfizlFJHvqmUhYj4d6Av0AnMTSk9m3MknaCIWA6MB04DtgI3AU8AjwIDgbeAr6SUun55rkdZgiVJklQ4ToeQJElS4ViCJUmSVDiWYEmSJBWOJViSJEmFYwmWJElS4ViCJamXiIhBEeE65JLUAyzBkiRJKhxLsCT1LtUR8UhEvB4Rj5fujjY6In4SEb+IiGcOu/Xo7Ij4eUS8HBE/iIg+pf0PRsS9EfFiRPwqIsZHxAOlMR8sHVNVOm5DRLwaEd/M8TNLUo+zBEtS7/JZ4J6U0hDgfWAOcDfwpyml0cADwMG7Vv4wpTQ2pfQ5Dtw+eNZh43wSGAd8kwO3K/0HYCgwvHSnxCZgQEppWEppOPDd8n80Seo9qvMOIEn6gLdTSi+Uth8G/hoYBvwoIgCqgHdKrw+LiL8HPgHUA88cNs6/ppRSRLwKbE0pvQoQEa8Bg4CfAGdHxN3AvwGtZf1UktTLWIIlqXfpei/7XcBrKaVxRzj2QeCKlNLLETEDGH/Yax2lx/89bPvg8+qU0m8i4nPAJODPga8AM7udXpJOEk6HkKTeZWBEHCy8U4EXgX4H90VETUQMLb3eALwTETXAtON5k4g4DTglpfQD4G+AUZmkl6SThFeCJal3eQOYExEPAL/kwHzgZ4B/jIiPc+Dv7TuB14CFwM+A7aXHhuN4nwHAdyPi4MWQ+dnEl6STQ6TU9TdvkiRJUmVzOoQkSZIKxxIsSZKkwrEES5IkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXD+D1b+zaYrxixOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxU5dn/8e89M5ns+8IuO6gsIgQElxa1Wndr6wJWcavYRds+1vbX1ae1tn3s46Nt7aLgjnWvWrdqcd8ACSICYTVsYUvIvk4yM/fvj2RogGyTzJkE5vN+vXzBnDnnnivEP745uc91GWutAAAAgFji6usCAAAAgGgjBAMAACDmEIIBAAAQcwjBAAAAiDmEYAAAAMQcT18X0BM5OTl2xIgRfV0GAAAA+rEVK1bss9bmtvfeYRmCR4wYoYKCgr4uAwAAAP2YMWZbR++xHQIAAAAxhxAMAACAmEMIBgAAQMwhBAMAACDmEIIBAAAQcwjBAAAAiDmEYAAAAMScw7JPMAAAAPqf8jqfspLjFQgEtLfGJ2uN/MGgrJXi3EZBK2UmxiklMU77ahqV7HUrMT6uT2olBAMAAKDXdlc1yOOSdlU2aHHhXr24apcKd1WroTkgSXIZaWROik4ek615s0Yo0etSXZVPeelJfRKECcEAAADolZqGBhlJ//hkl+5evFE+f/CQc4JW+ry0Vp+X1uqRJdt0+tF5+tWFE9QU9Es+RT0IE4IBAADQY7WNjarxSd96bIVWFVd1+7o315do+bZyPXDVdI3KSZIU3SDMg3EAAADokd1VDarxWV314MdhBeCQ6ga/rrh/mbaVNchvg2rwNTtQZfsIwQAAAAjb7qoGSdJvX1mnTSW1PV7H5w9q/qIC1TQGtaW8VvVRCsKEYAAAAIQtPdGtrWV1eumz3b1ea19tk+5avFHZyQlqbGc/sRMIwQAAAAhbZX1Ad/17Y8TWe2HlTvkDUlZyfMTW7AwhGAAAAGFrDgS1fGtFxNbzB61eXdP7u8rd5WgINsY8aIwpMcas6eB9Y4z5kzFmszHmM2PMVCfrAQAAQGSs210d8TU/3LxPpdWNEV+3PU7fCX5Y0lmdvH+2pLGt/82X9DeH6wEAAEAELN9aHvE1C3dVHxl7gq2170nq7F/oQkmP2hZLJWUYYwY5WRMAAAB6JxgMqrI+8l0cqhub5TIRX7Zdfb0neIikHW1eF7ceO4QxZr4xpsAYU1BaWhqV4gAAAHAol8slryfyMdLrdslGfNX29XUI7jZr7QJrbb61Nj83N7evywEAAIhpEwanR3zN0bkpEV+zI30dgndKGtbm9dDWYwAAAOjHph6VEfE1pwzL0MDUhIiv256+DsEvSprX2iVipqQqa230emMAAACgR9KTvBqYFtnAenH+UHkc2GbRHqdbpD0haYmk8caYYmPMdcaYbxpjvtl6yquSiiRtlrRQ0redrAcAAACRkZXo0TUnjYjYescOSlNGYlzE1uuKx8nFrbVzu3jfSvqOkzUAAAAg8rZXNOiCKYP1xMfbtbWsvldruYz0+4sny0gqr/UpK8X5qXF9vR0CAAAAh6GhGYlKjnPrL1+fqvhebmG48bSxyk31Ks7jikoAlgjBAAAA6IHkhDi5XUYD0+L10DXTexyE580arq/PGCaXMcqN0kNxEiEYAAAAPZScEKcEj1vj85L10k0n65hBqd2+NjXeoz/OmaJvzR4tlyu6AVhyeE8wAAAAjmzJCS0Ps2UnGT109XR9vKVc975bpMLd1e2en5Xs1ddPOEpzph+lJK9L/qCNegCWCMEAAADopVAQdgWszpk4QNOGZykQDGpXZaM2l9YqEAwqLy1B4wekKt7jUnqiVw1N/j4LwBIhGAAAABHgjXMrqICag0ZDMhMlSUdlJ2vm6Ox2z28KBOXuw4257AkGAABArzQHgtq0t0Yn/c9bWlpUpoamgCSpvqlZe6oatLuqQRV1vv3n76xo0Pn3fKDHl21XVUNTn9TMnWAAAAD0WCgAX3zvEo0fkKIkr1slNY366PMyLS0q07ayegWtVVaSV/kjMnXK2Fwled0689g83fHaBknS5SccpfREb1TrJgQDAACgR0IB+NIFS3T7hRM1cWi6bn+5UO9v3qcBqQmaNDRdxw3LkMtIlfXNemnVbt39xiYNzUzUj886WpfkD9P1iwokRT8IE4K7yVorY0xflwEAANAvhALw5fcv07M3nKgPNu/Tpfcu0YXHD9F3Tx+rPdWNWl1cpe3l9QpaKSs5TvNmDdexg9O0cnulfv/6Bo3ITtLT82fp+099Kim6QZgQ3IGKuibVNfm1cU+Nlm0p175anxK9bh0/LFOTh6YrI8mr7GSvXC6CMQAAiD3by+p18b1L9Mw3Z+mpgh3aVlavh6+Zrsc/3qErHlimxuZgO1ftkCSdMDJLt553rFbvrNK1Dxfowavzdc3Dy5UQ59bF04YqtbXbhJOMtdbxD4m0/Px8W1BQ4MjaVQ1N2rCnVne8tl4rtlUoJ8WrU4/OU2ZSnHz+oJZvKVfh7hoNTk/Qt2aP1tmTBiknSuP9AAAA+ouyWp+WbSlTdYNfFfVNykmJ120vFarG5+/2GpdNH6avTBmi+9//XLeeN0EBazUiOzliNxmNMSustfntvkcI/o+Smkbd/vI6rdlVpZ+cdbTGDUxVRX2zVhdXqqK+WQlxLh0zKE3DMpNU1dCk+94r0oY9Nbr3imkanp0kr8cd8ZoAAAD6q+1l9Xp1zS41+a3uWryxR2tMG56pH315vHZW1OvsiYOUGB+5jQqdhWC2Q7TaU92oqx5Yph+cMV7fOXW0/vL2Zv3r8T1qDrT/Q8KUYRn69uzRGpGdrO89uVK//spETRqSThAGAAAxobqhSa+t3a281ATd/PSqHq+zYluF7v9gi748YYAqG5sjGoI7Q59gtdzOv/X51Vo4L18rtlfo7D++rxdX7e4wAEvSpzsqNX/RCv38n2v0169P00urdmpXVWMUqwYAAOg7db6Apo/I0i9fWtvrtRYX7pUxRjsrGiJQWffEfAhuaAro9bV7dOsFE/RfT6/Sfe8VKRjGDpGPt5TrK3/9UJflD9fLq3aqrNbX9UUAAACHuVqfX899slPVDd3fA9yZ/31tg1zG7B+04bSYD8HVjc2aPiJLP/7Haq3YVtGjNSrrmzX3/qU6/7ghWr+nOsIVAgAA9D9Ba/X8yp0RW29PdaNKa32q9TVHbM3OxHQIDgatdlXWa8W2Cn2weV+v1qqsb9ZPn1+tvLQEldf2zfg/AACAaAgGg9pX26TaMDpBdMfiwr0RXa8zMR2CKxualJuaoNteLozIeh9uLtPuykYFdfh13AAAAOgul8ulVTsqI77u6uIq+drtLxx5Md0dwuMyen/TPtW3s/ckJ8WrcycP1nFD0zUkM1HWSsZI1Q1+rd1VpcWFe7V216FbH/72zuf6/cWTo1E+AABAnwgGg9qyry7i6xZX1EtRmkMW0yG4psGvf6woPuDY4PQE/eiso5WV7NXzK3fq7jc2akf5f55UzEiK0+Qh6brqxBEalpmkv7y9+YCtFEuKyqJWPwAAQF9x4vfeQSu5THRScEyHYBlzwN3cS6YN1aXTh+nXLxfqs+Kqdi+prG/We5v26b1N+5SZFKefn3eszpk0SLe9vHb/eMCyuiYNy0qKypcAAAAQbS6XS0MzEzt8f1ROsk4ak6NJQ9M1JCNRLmNU2dCktbuq9cm2Ci0tKmu3G1dOqlfOxOtDxXQIbg4E1dDcshXiptPGaGBagi5fuLTT/sBtVdQ36wdPr9K5kwZpwZX5umHRCjU0B7Rpb42mDMtwsnQAAIA+NWNk1iHHThydrRu+MEo1jX79u3Cv/vbO59peXq+gtcpK8mrikHR9YWyufvjl8Xr5s9165KOt8rdJw5OHpCvVG514GtMhOPRPfmn+MA1MS9DPXljTo3VeWb1bDc0B3X3ZFH3zsRVqDkRnQzcAAEBfGZ6dLI/LyB+0Sva69fPzjpXX7dItz36m0ppD5yaU1TXp3Y2lendjqbxul+bMGKa/X3+Cbn1hrTbsrZEknTVxkFKTvFGpP6a7Q8S5jIZmJuriaUN7Pe3krfUlKiqt1SXThiorOTrfPAAAgL7idRmdOWGg0hPj9MDV0/XOhhL94JlV7QbggzUFgnp0yTb94OlV+vVXJuqEkVlKifdo2vDMKFTewlh7+LXzys/PtwUFBb1eZ0dFvQp3VetPb25qt9NDuLxul566YabSE+I0Ki+l1+sBAAD0VyVVDSqvb1ZZXZP+9OYmLdtS3qN10hI9un/edG3cW6PTj85VTmq84tzuiNRojFlhrc1v772YvhOcHOdSWoInIgFYavmp5vmVO5WSENO7TAAAQAxo9Ae1r9anN9ft7XEAllraz97yzCp9YVyOan0B1TYyNtlxASs9+fGOiK753Cc72RMMAACOaMGgbe3uYPTQR1t7vd728no98tFWFVe0PEQXDTEdghubg736yaU9tT7//o4TAAAARyarqoZm3f9+kSKVWR9bul0D0hLU5I/OzcSYDsGStKe6MeJrbtxbG/E1AQAA+pOEOJfe3VQasfV8/qCWFpXL5YrOsIyYDsH+9ro0R0BlfZMj6wIAAPQHxhgVldZF7C5wyNKiMkV80Q7EdAh26gcNryem/1kBAMARzhijVTsqI77ump1V3R5a1lsxndY8LqMkb2RacLQ1bkBqxNcEAADoL6y1Kq3tuh9wuMrrm9gOEQ1ul9HEIekRXdMYKTNKk04AAAD6gjFGce7Ix0iPy+XYb+oPFtMhOCHOrUvzh0Z0zZNG58gT+ZvLAAAA/cqxg9Iivubw7CRHwnV7YjoE1/kCmjkqW6nxkRtu8Z1Tx2hfDQ/GAQCAI9u0EZEfcXz8URlKT4qL+LrtiekQ3BQI6oWVO/WrCydEZL3Z43KVlRynNRGaQAcAANBf5abEKyPCgfWSacPkcXEn2HFGUl5KvGaMzNJp4/N6tVZOile//spERx60AwAA6G/SEjyaN2t4xNY7KitJuanxEVuvK5HbB3AYinMbnTQuV1c9sEwPXTNDjf8I6KPPyyRJ6YlxOnviQB03LEMjc5IltYTmfbVNWrOzSovX7dXmkpahGDkpXj1+/Uz94Y0NuvyEEZo8NLIP2wEAAPQ3xZWNunjqUD3x8Q6V1hzYKSJ/eKZOGZujCUPSldK67TQQtNq4t0afbKvQvwv3ynfQZLj/+dokrd9dJY/LKC8twfH6YzoEp8R79O7GUm0urdOcBUv0+PUztbhwj9ISvBqalagXP92lBz7YoqLSWoXmauSlxuu4YRm66bQxykzy6r1NJZo3a4TueXOT/vHJLpXX+fW7r07s2y8MAADAYZlJcfpkW4X+NGeKLr9/mayVzp88SPNOHKHCXdVaXLhXD364VVUNzZIkr9ulcQNTNGtUjh6/fqaWFZXpz29vVn1TQHOmD1MgYDU6N1XeuOi0h4jpEFzfFNATy3dIknZWNmrT3hp96ZiB+uEzq7R8W0W715TU+LS4cK8WF+5Vbmq8/u+S4xQMSm9taBkb+O7GEscm0QEAAPQXjc0BGWO0cW+N7rr0OCXEubWjvEFXP/ix6poCh5zfFAhqzc5qrdlZrfs/KNI5Ewfp7984Qa+t2a2Tx+QqO8UrfzAoRSlGxfSe4KC1Wl1cJUl64TsnyucP6st/eK/DAHyw0hqf5j34sf789ma9fNPJyk3xKmilyvpmJ8sGAADoc4Gglc8f1OLCvZo5KlsPf7hVv311XbsB+GDWSq+s3q3rHinQeZMHq6Lep7sWb9Se6kYlxUXnHm1Mh2B/0KrW59dDV+eruLxBNz6x8pD9Kd3x7Ipi3fZSoV74zkmSpA17aiJdKgAAQL/S6A9q0dIi3XnJcfrGIwVatqU87DXK65p0yX1LNDInRRMHpyovLUH1zV2H6EiI6RActNLpR+fqqOxk3fz0Ktle3H7/15o9emt9qR66eroa/dH55gEAAPQVI+n2Cyfrzn9v1NpetIdtbA7qG48W6LIZw/XO+tLIFdiFmA7BHpfRf58/UTc/9amaAuHfAT7Y7a8UakxeinJTGJsMAACOXNZa1fqaVdHQrGdXFPd6vb3VPt3z5iZ9cVxuRDJZd8R0CI53S5UNTVrVui+4t3z+oB75aKumHhX5CSoAAAD9hTFGWcnxuuvfGyO25jMripUU71ZzD7am9kRMh2CPx60HP9wS0TWfLtghn5/uEAAA4MgVDFoZIy0pKovYms0Bq8WFe5WeyNhkx9U1BfRxUfibuDtT3ehXY5Q2dAMAAPQNq/W7I98I4P1N+9TQje4SkRDTIVhW2lXVGPFlN5XQHQIAABy5XC6Xlm+N7I1ESVq7q0qNbIdwnlNDLcrrmhxZFwAAoD8IBoOO5J2qhma5ojMwLrZDsFP/xvEet0MrAwAA9D2Xy6U4d+RjZJzLFa2BcbEdgr0elxLjIh9Yxw5IifiaAAAA/YW1VscOSov4uqNykyO+ZkdiOgQHg1YTBkf+G5iZRJ9gAABw5DLGaOrwyLeEnTIsQxl0h3BefJxb504eFNE1Z43KVgPdIQAAwBEuIylOuanxEV3za9OGyhegO4Tj6nx+TR6aoSRv5LZEXDFzuD4vqY3YegAAAP1Rgselq04cHrH1xualKDPZq/TE6PxGPaZDsCQ98EGRfvjl8RFZ66Qx2fL5A6pr8kdkPQAAgP7K5w/qq8cP1dDMxF6vZYz0+4snKxiwaqRPsPO8HpdeX7tXuanxOnlMTq/WykiK0y1njtdtLxdqSEbv/2cAAADo79buqtZfLp+qOHfvem5df8ooJca5Vdfkl41Se4iYDsHWWo3OTdZPn1+t754+Vvk93OCdkRSn+66Ypt+8sk6V9c2EYAAAcMQzxmhweoJqfX4tnJff4yB8ybShuvrEEdq+r05ej0sBy7AMx8V5XDpzwkBVN/g1f1GBvvelsbru5JFhNWk+YWSWHrp6uv739Q0q2FahEdlJzhUMAADQT8S7jTKS4xQIWllr9cJ3TtLoMFqcJca59buvTtJ3Tx+rv761WeMHpSkj0auMpMg+bNeRmA7BDU0BnTd5kIyRKuubddWDH8vtMnpy/ixdcNxgeTtpAj31qAz94bIpumLmcF33SIEKtlVIkm74wiht3VcXrS8BAACgT2SnJsjrcikzKU5by+r16Edb9dh1J+h3F03SqJyOw3BqvEfXnTRC//6vLygryaufPr9al80YpgSvWzkR7jbRGU/UPqmf+vfaPZo7fZge/3iHglZa8F6Rnl1RrEumDdWib8yQrzmoDXtrVNPYrDi3S2PyUpSbEq8Ne2p077ufa/2emv1rDclI1NGD0rSJ7hAAAOAIV9XQrFXFVbrhsRWaf8oofXF8ns675wN99/Qxevia6QpYqai0VptLahUIWg1Ii9fEIelKjvdoR1m95i5YorMnDdZ1J4/U3IXL9KVj8vTTc45RXlpCVOo3Nlq7jyMoPz/fFhQU9HqdXZUNOvXOd/T0DbP0zcdWaHdV4yHnJMa5NW5AilISPGoOWG0prVNpre+Q84yRHv/GCbr9lXX6ry+N05eOHdDr+gAAAPqrdburdd49HygQbMmSM0Zm6cdnHa1XVu/WsyuKVdXQrHMnDdSMkVnyuFzaXl6vJ5dvU60vqNOOztO1J43UW+tL9MAHRWpdQt/64ijN/8JoZSZHpk2aMWaFtTa/vfdi+k6wx22UnezVT55brb9+faqueXi5KuubDzinoTmgVcVVXa7124sm6Y11JVq7q1qj86I38g8AAKAvZCd7dfHUIXqqoFiS9PGWcs1duFTnTBqkv10xVU3+oDbsqdH63TXyB60GpCfo9q9M1tDMRL27sVTff2ql9lb/58biiOwkfX3m8IgF4K7E9J7g1Pg4nTAqW4W7q3X7K+v00NXTdcyg1LDWSEvw6M9zj1dxRYMe+GCL0hI8SvbG9M8WAAAgBlQ3+nX9F0bp0vyh+4/5/EE9v3KnLl+4TIuWbNNFxw/R8JwkTR2eqXMmDlRjc0AX/fUj/eGNTYcE4EevnaFPt1eqprG5vY+LuJgOwYlet64/ZZQkacW2Ct30xEr9+Kyj9aOzxisnpfOfQrxuly46frAevXaGnv2kWH95e7Mk6esnHKXMpOj8BAMAANBXkr1u3fHqBl1/yoFBWJJOHJ2tX14wQbc886lmjMhWktetZ1YUa1B6gn51wYQDzg0F4N/+a53G5KWodx2Huy/mb1kOSI/XcUPTtaq4SsUVDbr64eU6e+JA3XXpFNU1+fXp9kqt3lmlmka/4twujR2QouOGpuuYQWl6bc0ezXvwY1U3tkyIi/e4dOWsEYrzxPTPFgAAIAYkeN361Vcm6LZ/rtUPzmqZvvt0QbFOHJ2tO742WT97/jN9/0vj9e2/f6KSmkb9/uLJenN9iU4/Ok+/umCC/vvFtQcE4B+cMV4p8W4lRuk36jH9YFzI1rI6nXnXe2oKHNiceVB6giYPzdAxg1KVHO9Rsz+oLWV1WrOzShv21OzfxB3yu69O0lenDlG8xx2x2gAAAPqjPZUNKq31qb45oPvf3aIfnT1e72/apzOOHXBAAN5T3dJ4wNU6GnntrmqdfnSeSmp8yh+eqd/+a52+cfIo1fv8SknwaPzANCXHRyYId/ZgHCFYUmNzQO9sKNE3H/ukx2ucf9wg/eqCCcpKjl5/OwAAgL5SXF6vufcvVXltk+67Ml+PfLhVl888Sg99WHRAAE5L9GhweqLW76k5IAhPHpKh1wt36xsnj9JtLxeqcFe1Fs7LV/7wDKUmOt8dgt/bS0qIc+vksTlacOU0xfdgK8Nl+cP0qwsmEoABAEDMcLuMjIzqmgK6YVGBrjpphN7bVHpAAE5PjNNz3zpRj18/U7NGZStopR89+5kmDE7T1rK6/QH4s9ZOXHFuI08nw8oiiTvBbfj8Ae2t9unmpz9VwdaKLs/PTYnXH+ZM0cQhaUqP0E8sAAAAh4udFfWau3CZtpfXK9nr1k/OOUZ/fmvz/gD8zDdnaXRuitwuo9Ian777xEotKSqTy0g//PJ4/WvNHn1WXCWPy+iha6Yrf0SmEuMityeY7RBhKq/zqbyuSQ99uFVLi8q1ZV/t/v2/eanxmjQ0XdecOFLjBqYoJzleLle0nmMEAADoHyrrmrSquFIZyV7d9PhKbS+v3/9eemKcHrgqX1vK6nTq+FylxMfp85Ja1TcF9H+LN2hpUfn+cz0uo79+fap2Vjbo3EmDIjoxjmEZYcpKjldWcrx+ef4EVTY0K2itAkErlzFyuaRkrydiG7YBAAAOR7urGnXNw8s1PDtZ98w9Xjc90RKEQwH4jtfWa/nWCt18xjidOj5PcxYskdtttPDKfN39xkYtLSrfH4AXF+7VMyuKtaeqUd+aPVoZUWg3y51gAAAAhK2kplF/fmuzHl2yTSNzkvWHy6boF/9co1vPO3Z/AG5PWqJHC6/M15/f2qQrZ43YH4DH5KXokWtnaEhGYsRq5ME4AAAARFRVQ7OumDlc82YN15Z9dfr+U5/qjq9N7jQAS1J1g1/XLyrQjaeNPSAAP3j1dC0tKovaxDh+pw8AAICwZSfH65f/XK0bTxsnSXp0yTad/cf3u3VtdYNfly1YKkn7A/DtL6/Vz8+boNSEOMdqbos7wQAAAAhbVrJXv7xwkv781kZdcULLHeFwHRyAj8pKcqDS9hGCAQAA0CO9CcKjc/suAEtRCMHGmLOMMRuMMZuNMT9u5/2jjDFvG2NWGmM+M8ac43RNnWnyB1Tn83frXGtt1PatAAAA9EehILx+d7UuOn5It6+bNTpLjU3+PgnAksMh2BjjlvQXSWdLOlbSXGPMsQed9nNJT1trj5c0R9JfnaypM03+gIpK61S4q6rLIGyt1e6qBn26o1KV9U1RqhAAAKD/SYpza2Rusq64f1m3r3ls6Xa9tnaPkrx9szHB6U+dIWmztbbIWtsk6UlJFx50jpWU1vr3dEm7HK6pXaEA7GsOyB+02rCnusMgHArAVfV+Ba1V4e5qgjAAAIhJjU0BbSqp0ZwFS1XXFAjr2rsWb9Ljy3ZoX22jQ9V1zOkQPETSjjavi1uPtfVLSVcYY4olvSrppvYWMsbMN8YUGGMKSktLI1rk/gDsD6oxEFRdU0DNgfaDcNsA3BwMam+1T/5AkCAMAABiTm8CcMhdizf2SRDuDw/GzZX0sLV2qKRzJC0yxhxSl7V2gbU231qbn5ubG7EPPyAA+wOa/+gKfefvn6i60X9IED44AH//yU/1o2c/08a9tQRhAAAQUyIRgEP6Igg7HYJ3ShrW5vXQ1mNtXSfpaUmy1i6RlCApx+G6JLUfgKsamuXzB3Xj4wcG4YYm/yEBuGhfnSTp9lfWEYQBAEBM2VFZ360APDo3RRdMHtzlenct3qjnP9mlslpfpErslNMheLmkscaYkcYYr1oefHvxoHO2Szpdkowxx6glBEd2v0MH6nwBBYIHBuCQg4Pwim0V7QbgkLZBuMkfjEb5AAAAfSYtIU5ThmV0es6YvBQ9fM10ff+MsV22T8tMitPs8blKPxKGZVhr/ZJulPS6pHVq6QKx1hhzmzHmgtbTfiDpemPMKklPSLraWmudrGt/fbLyBewhATikbRAOWNthAA65/ZV12lRSK2OcrhwAAKBvNQeDuuPiyTppdHa774/JS9FDV0/XbS+t1a3/XN1pH+HMpDg9OX+mahub1Rjo3daK7nJ8T7C19lVr7Thr7Whr7W9aj91qrX2x9e+F1tqTrLXHWWunWGv/7XRNIW5j9MfFG9sNwCGhILytrL7TABzyh8Wb5Hb1h63WAAAAzvG6XPrpc5/pf752aBAOBeBfv7xWt54/QX++fFqHAzVCAfixJVvlcrnkdUcnR8V0WnO7jH73tcmaMjS90/N8/qBu/efaLgNwarxHT94wUy1d3wAAAI5ceWkJuvOSKfrZ8wcG4bYB+BfnTdCwrCRlJLU/Wa5tAL44/ygdMyhVXo87KvWbKO08iKj8/HxbUFDQ63VqGpu1s7JBTf6gbn1hjT4trurxWqnxHj1w9XRJVmPzUpWZ7O11fQAAAP1dSXWjbnnmU/3mosn627uf61tfHH1AAG6rvK5Jv/znat142gMZ4vMAACAASURBVDi9uGqXzj9ukKMB2Bizwlqb3957MX0n2B+wuu2lQl378HLdev6ELu8IdyQUgP/05ibNe/Bj9gQDAICY0faO8JUzh3cYgKX/jFj+81sbderRuX1yBzgkpkNwZrJXv/vqJMW5XZq/qEC3XzQp7CCcGu/Rom+coD+9uUlLisr058unypCCAQBADAkF4Tv+tb7DABwSCsJ/X7a9zwKwFOPbIUK2ldXp1n+u0U/OOUap8R5d90iB1u+p6fI6r9ulf3xrlqysXvx0t2aOztb0EVlKT4xOaw8AAID+pKq+SelJ3dsSWlnfpCSv29EA3Nl2CI9jn3oYOSorSb/5ykTVNAZUVtekhubuteYIWKs91T6lJXj05QkDNSo3mQAMAABiVncDsCRlhHGuE2J6O4T0n1HINY2B/X2At5XVd+vaQNDu7yMctFbbyur2j1gGAABA/xXTITgUgDubBNeV9kYsE4QBAAD6t5gOwbU+v2obex6AQw4IwkErnz86k04AAADQMzEdggNBq+ag7VUADgkF4ZoGP90hAAAA+rmYDsHGGP3mlXXdmgS3cF5+tybL3fTEShGBAQBArCmpatTnJbXaW93Y5bk1Dc0qKu3euU6J6RDslvTbiyZpYFpCh+eEBmG8tGpXlwM1XEb609zjFTwM284BAAD0VElVoz7eVq4v3f2unvx4e6fhtqahWVvK6nTePR/oly+u7bMgHNMh2G+tmgIBPXh1frtBuO0kuBdX7dL8RQUdBmGXke6Ze7yGZyXKza1gAAAQI0IB+KYnVspa6e43NnUYhEMBeM6CpapvCuhfa/b0WRCO6RAcCFrd+fpG3fz0Kt135bQDgnDbALykqEz/76zx+yfLHRyEXUb605zjtbSoXHMXLlM32wwDAAAc1g4OwCHtBeGDA3BIXwXhmA7BSfFufefUMdpWVq//94/P9gfhgwPwfVdO05Uzh+vJ+TMPCcKhALxsS7kWLd2ma04eIRm2QwAAgCNbRwE4pG0Q7igAh/RFEI75sckNzX5t3FOrOQuWanh2ku669Dj5g1a/f23D/gDcdhTyttZvYHMgqPvn5StorZ5fuUuLlm7TLV8epznThyknpeM9xgAAAEeCwl1VOveeD9oNwG197/SxOu3oPM1d2H4AbuuGL4zS/C+MUnZKfERq7GxsckzfCZakxDiPxg1M0ZPzZ6rZH5Rk5HG5VNXQdEgAlqTh2cl6cv5MpSfGqSkQlNfjVmmtjwAMAABiSnZKvObNGtHleX98c5Mu/MuHXQbgMXkpmnfiiIgF4K7E/J3gkMZmv/bVNumah5arsqFZT86fqdxkr9I6mGu9p6pBP3thjT7YtE+PfeMEjcxOUk4qARgAAMSOvdWN+us7n+uRj7b2ap0xeSl65NoZGpKRGJnCWnEnuBvK65p1zUPLtamkVqU1Ps1ZsFTl9c3y+w8dgVxS3aifvbBGb64rkc8f1BX3L9P28npV1fv6oHIAAIC+MSAtQd+ePVpXnTiix2s4FYC7QgiWtKuyQVc9+LE2ldTuP1Za49Ml9y1RcaXvgCBcUt2onzy/Wm+uK9l/zOcPau7CZfq8tI4gDAAAYkpvgnBfBWCJENxuAA45OAi3F4BDCMIAACBWhYLwvFnDu31NXwZgKcZDcHldk3747Kp2A3BIKAhvKWvoMACH+PxBff3+j2UZnAwAAGJMcpxbFx0/pNvnzxyVpXhP30XRmA7BLmP147OOVm5q508hltb4dMbd73UagFvWk3594QT5g4ffw4YAAAA9VdPQrKKyOl1x/7JuX/PY0u36+9JtjE3uCyneOKUmeHTfldO6DMJdcRnpjq9N1tDMRO4DAwCAmBEahDF3wVLVddEG7WCdjVh2WkyHYI/HpfSkOGUmxvUqCIcC8LDMRI3ITo5afzsAAIC+1JsAHNJXQTimQ3BJdaN+9WKh7n+/SJmJPbsj3PYOcGNzUF+7d0mf3dYHAACIlkgE4JC+CMIxHYK9HpcunjZUT68o1v3vbwk7CJs2AdjXHNTVDy/X6cfksR0CAAAc8fZUN3YrAI/JS9GFUwZ3ud7db2zSPz/dGbUgHNMhOCPJq4lD0vXQ1dP19IpiPbpkmwanJ2pYZvdadcR7XJp6VKY8LqOrH16uebOG68ZTxygvjclxAADgyJaWGKcpwzI6PWdsXooevXaGfnHusV32Ec5MitOp4/OUEe+JYJUdY2yypMr6Jq3bVS0Z6f4PtnTZBaKt3NR4PXjVdL2/qUQXTxtGAAYAADFjb3Wjbn7qU334edkh741t7QM8uLUPcGcjljOT4vT0DbN0VEai4iMYghmb3IWMJK9G56WEHYCllvZp1z6yXOdMHqyspOj85AIAANAfDEhL0F2XTdFJo7MPOH5wAA6d++3Zo3XVrBEHnJuZFKenHAjAXSEEq/1RyOEorfHpknsPHbEMAABwJCut8Wnhu5sPCMJj81L08LUz9FbhXu2qbNh/bkVdk+59e4O+fep/gnAoANc0+lRUXi9/IBi12mP+1mVvA3BIaLLcMzfM0tAMyeOJ+X9aAABwBCut8Wn+ogKt3F6pon11uuuyKfrTm5v07VPH6MWVO3XH6xs09P0iPX3DLCV53frtq+v0zIpi/fOzEv3re6coNdGjC44brKp6ny65b5lS4j165puzNDYvRR638/dpY/pOcGmNT796aW23JsF9e/bobk2Wu+S+Japo4G4wAAA4stX5/CoqrZMkvbVhn37z0hrdfMY4ffT5Pt3x+gZJUnFFgy69b4l+8MwqPbOiWJJUXteks//4vq6cOVxuY3XJfS1T5mp9fq3eWaXG5t61W+uumA7BktXlJwzvdG51qA/wzFHZ3WqfdtHxQ8TUZAAAcKQblpWk5751otIT45SRGKefnDtBTxXs0CljcjRpSNr+84orGg654fjMN2fprfUlivN4NHfGMEnS7746UWdNHKiUhLio1B/T3SFqGpu1ZV+dymqb9M3HVsjnP3AfSttBGBlJXiV4jCoa/Lph0QqV1vgOWe/6U0bp1PG5GjsgRbmpdIkAAABHtkDQauu+OiV53brjtfV64dNdyh+eqT9ffryuf7RAq3dWH3LNmz/4ot4o3Kvf/Wu9hmYm6vHrZ2p3Vb2OGZSutAgHYLpDdCA1IU6D0hKUnezVvVdMO+COcNsA3OQP6uw/vt/pQI1QAB6dRwAGAACxwe0ySknw7A/AklSwrUI3Pr5SC+flH3BHWDowAEstd4kvX7hUg9KTIh6AuxLTIXhPVaOeLNihz3ZWHhCEDw7AVz20XCeMzOpwslwoAOekxuumxz/RnirGJgMAgCNfSXWjfvfquv0BOKS9IHxwAA4JBeHt5fVRq1uK8e4QRlKy16Ofv7BWt39lgiYPydC9V0xTWZ1PQzL+E4DnzRqu/zpjnNburNI1Dy+XJH3jlJG678pp+mDTPuUPz1ROarzOu+cDTR+eKcPcZAAAcIQrqW7Ub9sJwCFtg7DPH9Rra/YcEoBDQkH48etn6qisJCfL3i+m7wQPSE/QeZMH6dbzjtXPX1irz3ZWKivZq4FpCQcE4BtPHaPMg0Ysh+4ITxqafkAAvuuyKRrA1DgAAHCEK69v0iurd3d6TsG2Cn3n8ZV68uMdHQbgkOKKBj29fIfKag997soJMR2CJSkv7cAgvHJ7pWp9/gMCcGgUckY7QTg9wUMABgAAMWdAWoIeuGq64tyd/wp8xbYK/e3dz7tcb870YZo3a7iyUzrvxBUpMd0doq2S6ka9/Nlu3fZyoSQdEoDbqqxv0prWrRHNAauTRmcTgAEAQMypqG/S6uIqXfdISybqqTnTh+nmM8a1m7t6o7PuEDG9J7it0B1hSdpaVtdhAJYOvCO88P0t+v3FkwnAAAAg9tiW0ccPXDW9x0F4zvRh+u7pY+WP8qAF7gQfpKS6UdZaDUhP7PLcyvom+YNWOVG6bQ8AANBfVNQ17R+F/Oi10yWZsINwKACfede7ykj26ukbZmlwRtcZrLvoExyGvLSEbgVgqeWOMAEYAADEotJan55fuVOSNO/B5ZKs7ruy3bzZrvOPG6TvtQbg2qbA/gfjahv9DlV8IEIwAAAAwjYsK1GPXjtDHlfLg3FDMpO0Yc+hE+I6srOiQTLSyNxkSdIVJxylq04coZSE6OzWZTsEAAAAeqSh2a+V2yo1ID2h3UEYXckfnql7Lj9ez39SrLkzhisz2RvR+tgOAQAAgIhLjPNoTF5KjwKw1NJH+KbHV+qrU4dFPAB3hRAMAACAHimpadTzK3f2KACHtEyW+0R7qhojWFnXCMEAAAAIW0lNo57/pHcBOKQvgjAhGAAAAGErrfF1KwBflj9U9105rcvJcgXbKrTw/c9VUcfYZAAAAPRTuSnx+uk5R3d6zpzpw/SDM8frhJFZXY5Ynj4iU9efMlqZydFpP0sIBgAAQNjy0hL0lSlDOgzCbUchZyR5NWloeodBePqITN0zd6oGpkdvAi8hGAAAAD3SURBuG4BDMjsIwn0RgCVCMAAAAHrh4CDcXgAOOTgI91UAlhiWAQAAgAgoqW7UppJajc1LaTcAt1VR36Qt++o0OD3R0QDc2bCM6MylAwAAwBEtLy1B2clxcrvdXZ6bmeRV2hB3t851CtshAAAAEBHhhNq+DMBSD0OwMeaCSBcCAAAAREuX2yGMMV89+JCkvxhjPJJkrX3OicIAAAAAp3RnT/BTkl6XVKKWACxJyZLOl2QlEYIBAABwWOlOCD5R0v9IWm6t/ZskGWNmW2uvcbQyAAAAwCFd7gm21i6XdIYkrzHmbWPMDLXcAQYAAAAOS91qkWatDUr6ozHmGUl/cLYkAAAAwFlhdYew1u6y1l5qrR118HvGmHsiVxYAAADgnEj2CT4pgmsBAAAAjmFYBgAAAGIOIRgAAAAxJ5Ih2HR9CgAAAND3utUdQpKMMZOstas7OeWPEagnqkprGlXrCziydkq8W7mpCY6sDQAAgN7pdgiW9FdjTLykhyX93Vpb1fZNa+3DEawrKmp9AZ165zuOrP32LbOVm+rI0gAAAOilbm+HsNaeIunrkoZJWmGMedwYc4ZjlQEAAAAOCbdP8CZJP5f0/yR9UdKfjDHrjTFfdaI4AAAAwAndDsHGmMnGmLslrZN0mqTzrbXHtP79bofqAwAAACIunD3B90i6X9JPrbUNoYPW2l3GmJ9HvDIAAADAIeGE4HMlNVhrA5JkjHFJSrDW1ltrFzlSHQAAAOCAcPYEvyEpsc3rpNZjAAAAwGElnBCcYK2tDb1o/XtS5EsCAAAAnBVOCK4zxkwNvTDGTJPU0Mn5ofPOMsZsMMZsNsb8uINzLjXGFBpj1hpjHg+jJgAAACBs4ewJ/r6kZ4wxu9QyInmgpMs6u8AY45b0F0lnSCqWtNwY86K1trDNOWMl/UTSSdbaCmNMXphfAwAAAPpYTUOzmoNWwWBQOV1MzQ0EAtpX1ywjKS+tbybshjMsY7mkoyV9S9I3JR1jrV3RxWUzJG221hZZa5skPSnpwoPOuV7SX6y1Fa2fU9LdmgAAAND3ahqaVbinWrN+96be3bhP+2oaOzw3EAhoa3mDzv3T+/rbu5+rpLrjc50U1rAMSdMlTZY0VdJcY8y8Ls4fImlHm9fFrcfaGidpnDHmQ2PMUmPMWe0tZIyZb4wpMMYUlJaWhlk2AAAAnBAKwPMe+Fg+f1C3PLuqwyAcCsCX3bdE+2qb9NCHW/ssCIczLGORpDslnayWMDxdUn4EavBIGitptqS5khYaYzIOPslau8Bam2+tzc/NzY3AxwIAAKA3Dg7AkmSt2g3CBwfgkL4KwuHsCc6XdKy11oZxzU5Jw9q8Htp6rK1iScustc2SthhjNqolFC8P43MAAAAQRe0F4JBQEL7z4uP0xXE5ykyKazcAhzz04VZJ0re+ODpqe4TD2Q6xRi0Pw4VjuaSxxpiRxhivpDmSXjzonBfUchdYxpgctWyPKArzcwAAABBFu6oa2g3AIaEg/M7GUhVXNnYYgEMe+nCrnli+XftqfE6VfIBw7gTnSCo0xnwsaX911toLOrrAWus3xtwo6XVJbkkPWmvXGmNuk1RgrX2x9b0zjTGFkgKSfmitLevB1wIAAIAoyUjyavb4XL2+dm+H51gr3fLMZ4pzGzUHOt9MMCAtXhccN0Q5qfGRLrVd4YTgX/bkA6y1r0p69aBjt7b5u5V0c+t/AAAAOAwMSEvQbRdOlKROg7CkbgXgJ+fP0sic5IjV15Vuh2Br7bvGmOGSxlpr3zDGJKnl7i4AAABiUDhBuOM1oh+ApfC6Q1wv6VlJ97UeGqKW/bwAAACIUaEg/OUJA3pwbd8EYCm8B+O+I+kkSdWSZK3dJInpbgAAADGuJ0G4LwOwFF4I9rVOfZMkGWM8ksJplwYAAIAjVE5ynG45c3y3z79oyhBlJsU5WFHnwnkw7l1jzE8lJRpjzpD0bUkvOVNWdCTHu/X2LbMdWxsAACAWhAZhzF24tNvX3Pd+kcYMSNHscbnKSY1Ob+C2wgnBP5Z0naTVkm6Q9Kq1dqEjVUVJMGi116HpJCOykxxZFwAAoD/paBJcV6yVfvjsZ/rfiyf3SRAOJwTfZK39o6T9wdcY873WY4elhuag5izo/k8s4XDqDjMAAEB/0dMAHNKXQTicPcFXtXPs6gjV0Sdc5vBcGwAAoK/1NgCHhILwOxtLta/Gmd/Qt6fLEGyMmWuMeUnSSGPMi23+e1tSufMlOifo4GN9Tq4NAADQ17ZXdC8AD0iL1wkjszo9JxSE39u0T6VRCsLd2Q7xkaTdahmb/H9tjtdI+syJogAAANC/JcS5lZea0GkIHpiWoCfnz1RKvEc/e2F1pwM14j0ujchOVqInnI0KPddlCLbWbpO0TdIs58sBAADA4WBQeqIeuDpf1z1coMLd1Ye8HwrAI1r7AHc2WS4hzqXHvzFT4/KSlZLodbbwVuFMjPuqMWaTMabKGFNtjKkxxhz6FQMAACAmhILwsYPSDjh+cACWOh6o0RcBWArvwbjfS7rAWpturU2z1qZaa9O6vAoAAABHrIODcHsBOOTgINxXAVgKr0XaXmvtOscqAQAAwGEpFIR/+twa/ff5x7YbgENCQTjJ69aVM0f0SQCWwgvBBcaYpyS9IMkXOmitfS7iVQEAAOCwMig9UXdeMlnZKfFdnjsgLUE/OfsYJcW5+iQAS+GF4DRJ9ZLObHPMSiIEAwAAoFsBOCQvLfqjktvqdgi21l7jZCEAAABAtITTHWKcMeZNY8ya1teTjTE/d640AAAAwBnhdIdYKOknkpolyVr7maQ5ThQFAAAAOCmcEJxkrf34oGP+SBYDAAAAREM4IXifMWa0Wh6GkzHmYrWMUwYAAAAOK+F0h/iOpAWSjjbG7JS0RdIVjlQFAAAAOCic7hBFkr5kjEmW5LLW1jhXFgAAAOCccLpDfM8YE+oVfLcx5hNjzJldXQcAAAD0N+HsCb7WWlutlmEZ2ZKulPQ/jlQFAAAAOCicEGxa/zxH0qPW2rVtjgEAAACHjXBC8ApjzL/VEoJfN8akSgo6UxYAAADgnHC6Q1wnaYqkImttvTEmW9JhPUo5Mc6lJ+fPdGxtAAAA9E9dhmBjzNHW2vVqCcCSNMqYI2MXRGNzUHMWLHVk7Xdume3IugAAAOi97twJvlnSfEn/1857VtJpEa0oiuxhujYAAAB6p8sQbK2d3/rnqc6XE13JXrfeuPmLjq0NAACA/qnbe4KNMZdIes1aW2OM+bmkqZJ+ba1d6Vh1DqtrCuhLd73ryNpvsx0CAACg3wrn6a1ftAbgkyV9SdIDku51piwAAADAOeGE4EDrn+dKWmCtfUWSN/IlAQAAAM4KJwTvNMbcJ+kySa8aY+LDvB4AAADoF8IJsZdKel3Sl621lZKyJP3QkaoAAAAAB3X7wbjWARn/lDTAGHNU6+H1zpQVHQzLAAAAiE3hdIe4SdJ/S9qr/4xLtpImO1BXVDQ4OCyD7hAAAAD9Vzhjk78naby1tsypYqKNPsEAAACxKZwQvENSlVOF9AX6BAMAAMSmcEJwkaR3jDGvSPKFDlpr74p4VQAAAICDwgnB21v/84r+wAAAADiMhdMd4leSZIxJaX1d61RR0cKeYAAAgNgUTneIiZIWqaU/sIwx+yTNs9audag2x7EnGAAAIDaFsx1igaSbrbVvS5IxZrakhZJOdKCuqKBPMAAAQGwKJwQnhwKwJFlr3zHGJDtQU9TQJxgAACA2hdUdwhjzC7VsiZCkK9TSMQIAAAA4rITzO/trJeVKek7SPyTltB4DAAAADivhdIeokPRdB2sBAAAAoqLbd4KNMYuNMRltXmcaY153piwAAADAOeFsh8ix1laGXrTeGc6LfEkAAACAs8IJwUFjzFGhF8aY4ZJs5EsCAAAAnBVOd4ifSfrAGPOuJCPpFEnzHakKAAAAcFA4D8a9ZoyZKik0XeL71tp9ofeNMRMO5+lxAAAAiB3h3AlWa+h9uYO3F0ma2uuKAAAAAIdFcravieBaAAAAgGMiGYJ5SA4AAACHhUiGYAAAAOCwEMkQ3BTBtQAAAADHhPVgnDFmsqQRba+z1j7X+ufMDi4DAAAA+pVuh2BjzIOSJktaKynYethKes6BugAAAADHhHMneKa19ljHKgEAAACiJJw9wUuMMYRgAAAAHPbCuRP8qFqC8B5JPrX0BbbW2smOVAYAAAA4JJwQ/ICkKyWt1n/2BB/WXA6O93BybQAAAPROOCG41Fr7omOV9AGXcS6pOrk2AAAAeiecELzSGPO4pJfUsh1C0n9apAEAAACHi3BCcKJawu+ZbY4d1i3SUuI9ev9Hpzq2NgAAAPqnbic1a+01ThbSFzKTvcpM9vZ1GQAAAIiycIZlJEi6TtIESQmh49baax2oCwAAAHBMOH2CF0kaKOnLkt6VNFRSjRNFAQAAAE4KJwSPsdb+QlKdtfYRSedKOsGZsgAAAADnhBOCm1v/rDTGTJSULikv8iUBAAAAzgqnhcECY0ympF9IelFSiqRbHakKAAAAcFA43SHub/3ru5JGOVMOAAAA4Lxub4cwxgwwxjxgjPlX6+tjjTHXOVcaAAAA4Ixw9gQ/LOl1SYNbX2+U9P1IFwQAAAA4LZwQnGOtfVpSUJKstX5Jga4uMsacZYzZYIzZbIz5cSfnfc0YY40x+WHUBAAAAIQtnBBcZ4zJVsuoZBljZkqq6uwCY4xb0l8knS3pWElzjTHHtnNeqqTvSVoWRj0AAABAj4QTgm9WS1eIUcaYDyU9KummLq6ZIWmztbbIWtsk6UlJF7Zz3q8l3SGpMYx6AAAAgB4JJwQXSnpe0nJJeyUtVMu+4M4MkbSjzevi1mP7GWOmShpmrX0ljFoAAACAHgsnBD8q6WhJv5V0j6Rxahml3GPGGJekuyT9oBvnzjfGFBhjCkpLS3vzsQAAAIhx4QzLmGitbbuf921jTGEX1+yUNKzN66Gtx0JSJU2U9I4xRpIGSnrRGHOBtbag7ULW2gWSFkhSfn6+DaNuAAAA4ADhhOBPjDEzrbVLJckYc4Kkgi6uWS5prDFmpFrC7xxJl4fetNZWScoJvTbGvCPploMDMAAAAPqX0ppG1fq6bBQWtpR4t3JTEyK+7sG6DMHGmNVq6QgRJ+kjY8z21tfDJa3v7Fprrd8Yc6Na+gu7JT1orV1rjLlNUoG19sXefgG94dQ3T4reNxAAAKAv1PoCOvXOdyK+7tu3zFZuasSXPUR37gSf15sPsNa+KunVg47d2sG5s3vzWeFy6psnRe8bCAAAgPB1GYKttduiUQgAAAAQLeF0hwAAAACOCIRgAAAAxJxwukMccZLj3Xr7ltmOrQ0AAID+KaZDcJ3DD8aJB+MAAAD6JbZDAAAAIOYQggEAABBzCMEAAACIOYRgAAAAxBxCMAAAAGIOIRgAAAAxhxAMAACAmEMIBgAAQMwhBAMAACDmEIIBAAAQcwjBAAAAiDmEYAAAAMQcQjAAAABiDiEYAAAAMcfT1wUAAADg8JMS79bbt8x2ZN1oIAQDAAAgbEZGxqF1o4EQDAAAgLDV+vyafec7EV/3nVtmKyc1PuLrHow9wQAAAIg5hGAAAADEHEIwAAAAYk5M7wl26qnG0NoAAADon2I6BOemJig3ta+rAAAAQLSxHQIAAAAxhxAMAACAmEMIBgAAQMwhBAMAACDmEIIBAAAQcwjBAAAAiDmEYAAAAMQcQjAAAABiDiEYAAAAMYcQDAAAgJhDCAYAAEDMIQQDAAAg5hCCAQAAEHMIwQAAAIg5hGAAAADEHE9fFwAAAIDDT3K8W2/fMtuRdaOBEAwAAICwNTYHdeqd70R83fd/dGrE12wP2yEAAAAQcwjBAAAAiDmEYAAAAMQcQvD/b+/ug6yq7zuOv7/sbljIbh6KgMjGgCkJDwtZeUhKtVt2DCIOE586aYRkQkEznaHTNoRELbVSp2SCINU6mKmJRBOLncSkNZ2CkigEdZIQxMWHgAVTjIsISGPC6uxmsb/+wYWuQCKw53KWe96vGeaee+7lu5+7Z5b5cPZ3z5UkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUONV5B5AkSdKZp7amD+sWTCnL3NPBEixJkqST1t75Ji3L1mc+d92CKQysz3zsMVwOIUmSpMKxBEuSJKlwLMGSJEkqHEuwJEmSCscSLEmSpMKxBEuSJKlwLMGSJEkqHEuwJEmSCscSLEmSpMKxBEuSJKlwLMGSJEkqnLKX4Ii4JCKej4gdEXH9cR6fHxE/i4inI+KRiHh/uTNJkiSp2MpagiOiClgBTAdGA1dHxOijnvYUMDGlNA54ALilX9k7VwAADshJREFUnJkkSZKkcp8J/giwI6X085TSb4B/BS7r/oSU0rqU0huluz8GGsqcSZIkSQVX7hI8FHip2/220r7fZi6w5ngPRMRnI2JTRGzat29fhhElSZJUNL3mjXER8SlgIrD0eI+nlO5KKU1MKU0cOHDg6Q0nSZKkilJd5vm7gPd1u99Q2vcWEfExYCHwxymlzjJnkiRJUsGV+0zwT4ERETE8It4BfBL4XvcnRMT5wD8DH08p7S1zHkmSJKm8JTildBD4C+BhYCvwrZTScxFxc0R8vPS0pUAd8O2IaI2I7/2WcZIkSVImyr0cgpTSamD1Ufv+rtv2x8qdQZIkSequ7CVYkiRJlaeubxXrFkwpy9zToddcHUKSJEk6XTwTLEmSpJPW3vkmLcvWZz533YIpDKzPfOwxPBMsSZKkwrEES5IkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAswZIkSSqcirlOcFdXF21tbXR0dOQdJVe1tbU0NDRQU1OTdxRJkqReq2JKcFtbG/X19QwbNoyIyDtOLlJK7N+/n7a2NoYPH553HEmSpF6rYpZDdHR0MGDAgMIWYICIYMCAAYU/Gy5JkvR2KqYEA4UuwIf5PZAkSXp7FVWCJUmSpBNhCc7Ia6+9xp133pl3DEmSJJ0AS3BGLMGSJElnDktwRq6//npeeOEFmpqa+MIXvsDSpUuZNGkS48aN46abbgJg586djBw5ktmzZ/PBD36QWbNm8YMf/IALLriAESNGsHHjRgAWLVrEpz/9aSZPnsyIESP46le/CsDu3btpbm6mqamJxsZGHnvssdxeryRJ0pnMEpyRL3/5y3zgAx+gtbWVqVOnsn37djZu3EhraytPPvkkGzZsAGDHjh18/vOfZ9u2bWzbto1Vq1bx+OOPs2zZMr70pS8dmff000/z6KOP8qMf/Yibb76Zl19+mVWrVjFt2jRaW1vZsmULTU1Neb1cSZKkM1rFXCe4N1m7di1r167l/PPPB6C9vZ3t27dz7rnnMnz4cMaOHQvAmDFjuOiii4gIxo4dy86dO4/MuOyyy+jXrx/9+vWjpaWFjRs3MmnSJObMmUNXVxeXX365JViSJOkUeSa4DFJK3HDDDbS2ttLa2sqOHTuYO3cuAH379j3yvD59+hy536dPHw4ePHjksaMvdRYRNDc3s2HDBoYOHcrs2bP5xje+cRpejSRJUuWxBGekvr6eAwcOADBt2jRWrlxJe3s7ALt27WLv3r0nNe/BBx+ko6OD/fv3s379eiZNmsSLL77I4MGDufbaa7nmmmvYvHlz5q9DkiSpCFwOkZEBAwZwwQUX0NjYyPTp05k5cyaTJ08GoK6ujvvuu4+qqqoTnjdu3DhaWlp49dVXufHGGznnnHO49957Wbp0KTU1NdTV1XkmWJIk6RRFSinvDCdt4sSJadOmTW/Zt3XrVkaNGpVTomwtWrSIuro6FixYcEp/v5K+F5IkqXfad6CD9s43M59b17eKgfW1mcyKiCdTShOP95hngiVJknTS2jvfpGXZ+sznrlswhYH1mY89hiW4F1q0aFHeESRJkiqab4yTJElS4ViCJUmSVDiWYEmSJBWOJViSJEmFYwnO0Jw5cxg0aBCNjY15R5EkSdLvUNgSvGbNGmbMmMGkSZOYMWMGa9as6fHM2bNn89BDD2WQTpIkSeVUyEukrVmzhsWLF9PR0QHAK6+8wuLFiwGYPn36Kc9tbm5m586dWUSUJElSGRXyTPCKFSuOFODDOjo6WLFiRU6JJEmSdDoVsgTv2bPnpPZLkiSpshSyBA8ePPik9kuSJKmyFLIEz5s3j9ra2rfsq62tZd68eTklkiRJ0ulUyBI8ffp0Fi5cyNlnn01EcPbZZ7Nw4cIevSkO4Oqrr2by5Mk8//zzNDQ0cPfdd2eUWJIkSVkq5NUh4FAR7mnpPdr999+f6TxJkiSVRyHPBEuSJKnYLMGSJEkqHEuwJEmSCscSLEmSpMKxBEuSJKlwLMGSJEkqHEtwhl566SVaWloYPXo0Y8aM4fbbb887kiRJko6jkNcJ7urqYv78+QAsWbKE6667DoDly5dTU1NzynOrq6u59dZbGT9+PAcOHGDChAlMnTqV0aNHZ5JbkiSpt6jrW8W6BVPKMvd0KGQJnj9/Pps3bwbg0ksvpaur68j+O+6445TnDhkyhCFDhgBQX1/PqFGj2LVrlyVYkiRVnPbON2lZtj7zuesWTGFgfeZjj1HIEnxYZ2cnnZ2dAPTt2zfT2Tt37uSpp57iox/9aKZzJUmS1HOFXBO8ZMmSY5Y91NTUcMstt2Qyv729nauuuorbbruNd73rXZnMlCRJUnYKWYKvu+66I0sgDuvq6uKLX/xij2d3dXVx1VVXMWvWLK688soez5MkSVL2Cr0com/fvtTU1BxTiE9VSom5c+cyatSoI2+8kyRJUu9TyDPBy5cvZ/z48YwfP57Vq1cf2V6+fHmP5j7xxBN885vf5NFHH6WpqYmmpiZWr16dUWpJkiRlpZBngmtqat5yFYieXBGiuwsvvJCUUiazJEmSVD6FPBMsSZKkYrMES5IkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAKeYm0cho2bBj19fVUVVVRXV3Npk2b8o4kSZKkoxSyBDc3N/PGG28cs79///5s2LChx/PXrVvHWWed1eM5kiRJKo9CLoc4XgH+XfslSZJUWQpZgsspIrj44ouZMGECd911V95xJEmSdByFXA5RTo8//jhDhw5l7969TJ06lZEjR9Lc3Jx3LEmSJHXjmeCMDR06FIBBgwZxxRVXsHHjxpwTSZIk6WiW4Ay9/vrrHDhw4Mj22rVraWxszDmVJEmSjlbI5RD9+/f/rVeH6Ik9e/ZwxRVXAHDw4EFmzpzJJZdc0qOZkiRJyl4hS3AWl0E7nvPOO48tW7aUZbYkSZKyU8gSLEmSpJ6p61vFugVTyjL3dLAES5Ik6aQNrK9lYH3eKU5dRb0xLqWUd4Tc+T2QJEl6exVTgmtra9m/f3+hS2BKif3791NbW5t3FEmSpF6tYpZDNDQ00NbWxr59+/KOkqva2loaGhryjiFJktSrVUwJrqmpYfjw4XnHkCRJ0hmgYpZDSJIkSSfKEixJkqTCsQRLkiSpcOJMvJpCROwDXszhS58FvJrD11V5eVwrl8e2cnlsK5PHtXLldWzfn1IaeLwHzsgSnJeI2JRSmph3DmXL41q5PLaVy2NbmTyulas3HluXQ0iSJKlwLMGSJEkqHEvwybkr7wAqC49r5fLYVi6PbWXyuFauXndsXRMsSZKkwvFMsCRJkgrHEixJkqTCsQSfgIjYGRHPRERrRGzKO4+yExHviYgHImJbRGyNiMl5Z1LPRcSHSj+vh//8OiL+Ou9c6rmI+FxEPBcRz0bE/RFRm3cmZSMi/qp0XJ/z5/XMFhErI2JvRDzbbd/vRcT3I2J76fa9eWYES/DJaEkpNfW2a9ypx24HHkopjQQ+DGzNOY8ykFJ6vvTz2gRMAN4A/i3nWOqhiBgK/CUwMaXUCFQBn8w3lbIQEY3AtcBHOPRv8YyI+P18U6kH7gEuOWrf9cAjKaURwCOl+7myBKuwIuLdQDNwN0BK6TcppdfyTaUyuAh4IaWUx6dMKnvVQL+IqAb6Ay/nnEfZGAX8JKX0RkrpIPBD4MqcM+kUpZQ2AP9z1O7LgHtL2/cCl5/WUMdhCT4xCVgbEU9GxGfzDqPMDAf2AV+PiKci4msR8c68QylznwTuzzuEei6ltAtYBvwC2A38KqW0Nt9UysizwB9FxICI6A9cCrwv50zK1uCU0u7S9ivA4DzDgCX4RF2YUhoPTAfmRURz3oGUiWpgPPCVlNL5wOv0gl/PKDsR8Q7g48C3886iniutIbyMQ/+BPQd4Z0R8Kt9UykJKaSuwBFgLPAS0Am/mGkplkw5dnzf3a/Ragk9A6ewDKaW9HFpX+JF8EykjbUBbSuknpfsPcKgUq3JMBzanlPbkHUSZ+Bjw3ymlfSmlLuC7wB/mnEkZSSndnVKakFJqBn4J/FfemZSpPRExBKB0uzfnPJbgtxMR74yI+sPbwMUc+rWNznAppVeAlyLiQ6VdFwE/yzGSsnc1LoWoJL8A/iAi+kdEcOhn1jezVoiIGFS6PZdD64FX5ZtIGfse8JnS9meAB3PMAviJcW8rIs7j/99VXg2sSiktzjGSMhQRTcDXgHcAPwf+LKX0y3xTKQul/7T+AjgvpfSrvPMoGxHx98CfAgeBp4BrUkqd+aZSFiLiMWAA0AXMTyk9knMknaKIuB+YApwF7AFuAv4d+BZwLvAi8ImU0tFvnjutLMGSJEkqHJdDSJIkqXAswZIkSSocS7AkSZIKxxIsSZKkwrEES5IkqXAswZLUS0TEsIjwOuSSdBpYgiVJklQ4lmBJ6l2qI+JfImJrRDxQ+nS0CRHxw4h4MiIe7vbRo9dGxE8jYktEfCci+pf23xMRX4mIH0fEzyNiSkSsLM28p/ScqtLzno2IZyLiczm+Zkk67SzBktS7fAi4M6U0Cvg1MA+4A/iTlNIEYCVw+FMrv5tSmpRS+jCHPj54brc57wUmA5/j0MeV/iMwBhhb+qTEJmBoSqkxpTQW+Hr5X5ok9R7VeQeQJL3FSymlJ0rb9wF/AzQC348IgCpgd+nxxoj4B+A9QB3wcLc5/5FSShHxDLAnpfQMQEQ8BwwDfgicFxF3AP8JrC3rq5KkXsYSLEm9y9GfZX8AeC6lNPk4z70HuDyltCUiZgNTuj3WWbr9327bh+9Xp5R+GREfBqYBfw58ApjT4/SSdIZwOYQk9S7nRsThwjsT+DEw8PC+iKiJiDGlx+uB3RFRA8w6mS8SEWcBfVJK3wH+FhifSXpJOkN4JliSepfngXkRsRL4GYfWAz8M/FNEvJtD/27fBjwH3Aj8BNhXuq0/ia8zFPh6RBw+GXJDNvEl6cwQKR39mzdJkiSpsrkcQpIkSYVjCZYkSVLhWIIlSZJUOJZgSZIkFY4lWJIkSYVjCZYkSVLhWIIlSZJUOP8HJXRuVjIZu0gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXhV1b3/8c8348kMhDDPgjKLGKZqEeo8VKq2zrZecbitettSOk/qrW2tU63V1qm3SotD+7NKW6eq4FQRw6QyCVjmIQESkpA5Z/3+SIIBMp1k73MS9vv1PD45e5+9v+cbz4PPh+Xaa5lzTgAAAECQxMW6AQAAACDaCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwEmLdQHv07NnTDRkyJNZtAAAAoBNbunTpHudcTlPvdckQPGTIEOXl5cW6DQAAAHRiZra5ufeYDgEAAIDAIQQDAAAgcAjBAAAACJwuOSe4KdXV1dq2bZsqKipi3UpMhUIhDRgwQImJibFuBQAAoNM6akLwtm3blJGRoSFDhsjMYt1OTDjntHfvXm3btk1Dhw6NdTsAAACd1lEzHaKiokLZ2dmBDcCSZGbKzs4O/Gg4AABAa46aECwp0AG4Af8OAAAAWnfUTIcAAABA51BbW6vdJZVyzlQTDss5KTHeFHZS95REpafE/tklQrBHioqKNH/+fH3ta1+LdSsAAAAxsae0UlU1Yf1r9W4tWLlDq3cUq7y6VpIUZ9LQnuk6eXi2vjxtiFKT49U3KyVmvRKCPVJUVKQHH3yQEAwAAAJp1/4KPbdiu+7918eqrAkf8X7YSRsLSrWxoFSPv7tZp47spVtnjVG3UILSU5Ki3u9RNSc4lr73ve9p48aNmjBhgr797W/rzjvv1KRJkzR+/Hj99Kc/lSRt2rRJI0eO1NVXX61jjz1WV1xxhV599VWddNJJGjFihJYsWSJJuuWWW3TVVVdp2rRpGjFihB555BFJ0s6dOzV9+nRNmDBBY8eO1VtvvRWz3xcAAKDBjqJy3TAvT798cW2TAbgpr63N1zm/eUtrdpdqX1mVzx0eiRDskV/+8pc65phjtGLFCp1++ulav369lixZohUrVmjp0qV68803JUkbNmzQt771La1du1Zr167V/Pnz9fbbb+uuu+7Sz3/+84P1PvjgA73++ut69913ddttt2nHjh2aP3++zjzzTK1YsUIrV67UhAkTYvXrAgAASJJ27S/XV/6wRCu37Y/43uLyGl356HvatOeAKitrfOiueUyH8MErr7yiV155RSeccIIkqbS0VOvXr9egQYM0dOhQjRs3TpI0ZswYnXrqqTIzjRs3Tps2bTpYY9asWUpJSVFKSopmzpypJUuWaNKkSbrmmmtUXV2tL3zhC4RgAAAQU7v2V+jn/1yr9fml7a5RWRPW9U/kacFNJ6tfcvSiKSPBPnDO6fvf/75WrFihFStWaMOGDZo9e7YkKTk5+eB1cXFxB4/j4uJUU/Pp34AOX+rMzDR9+nS9+eab6t+/v66++mo98cQTUfhtAAAAmrZp7wEt+GBHh+vsKa3SPf/6WPnF0dvrgBDskYyMDJWUlEiSzjzzTP3hD39QaWnd34q2b9+u/Pz8iOo9//zzqqio0N69e7Vo0SJNmjRJmzdvVu/evXXdddfp2muv1bJlyzz/PQAAANpiR1G57n5lnWf1nlu+XdW1zrN6rWE6hEeys7N10kknaezYsTr77LN1+eWXa9q0aZKk9PR0/elPf1J8fHyb640fP14zZ87Unj179OMf/1j9+vXT448/rjvvvFOJiYlKT09nJBgAAMRMdW1Y728q9KxeTdjppY92avZnh3lWsyXmXPQSt1dyc3NdXl7eIefWrFmjUaNGxagjb91yyy1KT0/X3Llz23X/0fTvAgAAdE6vrNql6+ct9bTmjONydOdF45WTGfKknpktdc7lNvUe0yEAAAAQMS9HgRus3lGsytq2LbHWUUyH6IRuueWWWLcAAADQrHA4rH0HKj2vW1xRrbjDFgfwCyPBAAAAiEhcXJySEryPkUnxcQpHaaouIRgAAAARCYfDGtknw/O6x+Ske16zOYRgAAAARGxMvyzPa44bkKWUxLavptURhGAAAABEpGE6RB+PVnFocNbYPqqqqfW0ZnMIwR665ppr1KtXL40dOzbWrQAAAPiqpiasy6cM8qze6L6ZqqoJKzGBkeAu5+qrr9ZLL70U6zYAAAB8l52RrElDemhIdmqHa8WZ9INzRmlPaaV6pid70F0bPjMqn9IJvfjiizrvvPM0adIknXfeeXrxxRc7XHP69Onq0aOHB90BAAB0bskJcXpyyRb9/MJxSu7gShFfPeUYvb2hQNOG9fSou9YFMgS/+OKLuv3227Vr1y4557Rr1y7dfvvtngRhAACAIMgIJejiSQNVWR3Ww1ed2O4gfOWUQbp40kAdqKxRfBSTaSBD8AMPPKCKiopDzlVUVOiBBx6IUUcAAABdy/7yag3NTtXu4go9nbdVT8yerFF9275sWkZygn5x4TiN6pupH/7tQ/33Kcdo894DPnZ8qEDuGLd79+6IzgMAAOBQpRU1qnXSbf9YrbKqWn2wbb/+d9ZY7dxfoT8t3qzVO4ubvK9HWpIuzh2gs8b00f0LN+i1NfmSpDfX79Hkwd1VUV2rUBSWSQtkCO7du7d27drV5HkAAAC0LiUpQfe/vkFlVXVLmm0rLNd//fF9HT8gS9ecPESDs9O0t7RKW/aVKRx26pGepCHZaSqrqtGzy7br4ocWq6o2fLDeXS+v09M3TFVJeTUh2C833nijbr/99kOmRIRCId14440dqnvZZZdp0aJF2rNnjwYMGKBbb71Vs2fP7mi7AAAAnYpzTrVhpwUrtx/x3spt+7XyLx9IknLSk9WvW0jxcabCsmpt2ntAze2KvPdAldbvLtXkodFZZCCQIfjss8+WVDc3ePfu3erdu7duvPHGg+fb68knn/SiPQAAgE7NOadtheWqqA63eF1BaaUKSivbXPflVbt14uDuHW2vTQIZgqW6INzR0AsAABBUy7YUel7zw+37VVnTcrD2SiBXhwAAAED7xcXFacu+Ms/r7txfrjjzvGyTCMEAAACIiGtuYm8XQggGAABARMxMgz3YLvlwvTPrHqKLBkIwAAAAIubHKg7jBmSpR1qS53WbQggGAABAxAZ2T1WSx/scnzeur5IS/F8jWCIEe2rr1q2aOXOmRo8erTFjxui+++6LdUsAAAC+6JaaqM8f38+zepkpCTp+YDfP6rWGEOyhhIQE3X333Vq9erUWL16sBx54QKtXr451WwAAAJ5LTUrQ/5w6XMkJ3sTJ75w5Ut1TozMVQgpoCK6urtbNN9+sm2++WWVlZQdfV1dXd6hu3759NXHiRElSRkaGRo0ape3bj9xJBQAA4GjQJzOkH507qsN1ThjYTeeM7askjwJ1WwRys4w5c+Zo2bJlkqRzzjnnYPidM2eO7r//fk8+Y9OmTVq+fLmmTJniST0AAIDOJjkxXmeM6aO1u0r05/e2HDxvJg3JTtO4/lnq3y1FZtL+8mqt2lGsNTuLD9kQY3B2qn57+UT1SI/eKLAU0BDcoLKyUpWVdVv5JScne1a3tLRUF110kX79618rMzPTs7oAAACdSX5xhXbvr9C54/uqT1ZIf3xnky7OHagzxvTWhvxSfbBtv9bsLFbYOXVPS9K54/vqB+eM0saCUj3x7ib1SE3SD84dpeKKaiUWm3plhqLWeyBD8B133KFzzjnnYACWpMTERP3qV7/qcO3q6mpddNFFuuKKK3ThhRd2uB4AAEBntLe0QvvLq/Xaut06c3QfnT22jz4/vp/u+dfHuvihd1Vde+SGGs+v2CFJGj8gSz88Z5QGZ6cpIU761cvrdO1nh6km7NSvW0pU+g/knODvfve7R8z/ra6u1ne+850O1XXOafbs2Ro1apTmzJnToVoAAACdWXlVWAcqa3T6qD5KjI/Tsi1FOvu+t7Rg5Y4mA3BjH2zbrysfW6K7X1mnsJO+c+Zxev8/+1Qbdtp3oLLFe70SyBDcIDk5Wenp6Z5NhXjnnXc0b948vf7665owYYImTJigF154wZPaAAAAnUl8vGl3SYXSkuL19w926jt//UDl1bUR1XhuxQ599c/LFHbSKcf2VHVtWKHE6KwTHMjpEPfcc8/Bkdo77rhD3/3udw+e74iTTz75qNhLGwAAoDU14bAmDOymdzfu029eW9/uOh9s268f/O0j/e+ssSoqq1RNlB6QC2QITkxMPGQVCK9WhAAAAAgKF3aqdGH96LmPOlzrjY8LtHxLoT4zvIeqGq0c4adAT4cAAABA5JxzSklK0ENvfKLSyhpPav7shTWqrIne/1EnBAMAACBiVTVh/W25d5uCFZRUakN+adQ2zCAEAwAAICJmph1FFSqriuxBuNb8feUO1YSjMxpMCAYAAEDElmza53nND7bt14FKb4N1cwjBAAAAiEg4HNamPQc8r7ujqFxmnpdtUiBXh/DTkCFDlJGRofj4eCUkJCgvLy/WLQEAAHjOj0kLYSdFKQMTgv2wcOFC9ezZM9ZtAAAA+CIuLk79uoU8r9srM9mXcN2UQIbg6dOnq6ys7IjzqampevPNN2PQEQAAQNcyZWi2pA2e1hzXP0sZydGJp4GcE9xUAG7pfCTMTGeccYZOPPFEPfzwwx2uBwAA0BkNzk5VYry3kxfOGtNHNeHobJYRyJFgP7399tvq37+/8vPzdfrpp2vkyJGaPn16rNsCAADwjHNO+w5U6awxffT3D3Z6UjMzlKAJg7qpvJod47qk/v37S5J69eqlCy64QEuWLIlxRwAAAN5yzunt9Xv09dOO9Ww0+OZTR+id9QVyUZoUTAj20IEDB1RSUnLw9SuvvKKxY8fGuCsAAABvxcXFaVCPVC3bsk9zzziuw/XG9s/UGaN766VV+UqMi876EIRgD+3evVsnn3yyjj/+eE2ePFnnnnuuzjrrrFi3BQAA4LnR/TL1nb9+qFNH9dIXJvRrd50B3VP04OUTddP85Zp2TA+lJMV72GXzAjknODU1tdnVITpi2LBhWrlyZYdqAAAAdAVJCXGaMrSHLnjw33r+xpPUNyuk37/5SUTTGSYO6q5fX3q8fvr8aq3dVax7L5mgrNQk/5puJJAhmGXQAAAAOiYhzvS1GcfoK//3vs667y09cPkJeu5rJ+knz3+kldv2t3hvTkayvnHqCE0Z1kPXP75Ua3eX6Eu5A5SaFK+SimplhBL979/3TwAAAMBRqW9WSLMm9NPzK3bouieWasZxObpt1liFEuP08qpdWra5SFv2lanWOWWnJWn8gG46dVQvDeiWon98uFOn3VM3MJmTkaxrThqqcNippjY6T8YdVSHYOSeL1obTnZSL1iOVAAAg0FIS4xV20vXTh+nj3SVas7NEi9YVaNG6AvXNDOmiEwfoqmmDlZ2WJDNTWVWN1u0q0W9eW6/3NxUerJOcEKd7Lz6+7jpJ3dOYDhGRUCikvXv3Kjs7O7BB2DmnvXv3KhTyfhtDAACAxrJSk1RZXa7uqUm646LxuvXvq7V0c1243Vlcod8ubH03ue6pibrv0hPUIzVJ5VW1yslI9rvtg46aEDxgwABt27ZNBQUFsW4lpkKhkAYMGBDrNgAAwFFu1/5yXffEUqUkxemeiyfoG6eN0Kodxbrv1fUqr65t9f6zxvbRf08/RnFx0vubC3XHS2v15HVTNTwnXWkh/yPqUROCExMTNXTo0Fi3AQAAEAhlVbXaXlSufQeqdOOfl+k3l52g4vJqzZs9WR9u369XVu/Wqu37VVxRI0lKjDcd2ztDU4dl65xxfbV1X5l6pCXqmbyt+u3CjZKktbuK1TcrFJUQbF1xDmlubq7Ly8uLdRsAAACBVVBSrv3lNbr4ocXad6BKcXHSXV88XrlDumvFliKVVNSoX7cUpdav+1vrnLYXlqu6NqyJg7qrsias/3lquTbvrVu29hcXjNNnR2QrKzXJs9UhzGypcy63qfeOmpFgAAAARE9NWFq/u0TP3DD1YBCe88xKJcRJ3zhthD5/fH/Fx5kqq8NyckqKj9fA7qlau7NYs594X9sLKw7W+sUF4zRxcDdV1TqFw9Hpnx3jAAAAELGS8hp9/amVevnDnXrmhqnqUb+qQ3xcnCYPzdbqHcU6+Y6FemvDHh2orNUFD76jn/1jjcb0z1Jq4qfjsL+4YJwmDMzSmb9+S//4YKfiopROCcEAAACIWHJinH57+Qm67/WNB4Nw36yQ5s2erL2lVfrqn5fp1vPHaFjPNCXEmx666kTlbd6nWxes1uPXTNaxvdMPBuCzf/O2Lp88SJ8d0TNqq3wRggEAABCxjFCCstOSDgnC/5pzyiEBeGjPNK3ZWayf/XONkhLiDgbhnz7/kZ6+YZqObxSAP398X/XvlqL05OjM1uXBOAAAAERszc5izXt3s86f0FfF5TW6af5yJcWbSqtqDwnAW/aV6aThPfXUki2ae+ZxqqoJ64Z5S1VZXavSqtqDAbi0okZLtxTqps+N8CwIt/RgHCPBAAAAiFhKYryG5aRpwYqdykxJ0G8vP0HVYXdIAN5aWK7zxvdVz/QkXTVtiO56ed3BEeHkxPhDAvC8xZs1a0J/1dRG58k4RoIBAAAQsT2llVq3q1hrdpbok4IDumTSAPXvlqrdxRV6e8MebS0s17nj+mh4rwwlJ8Tpk4JSFZRWad67m/TtM49TTkayKmtq9fGuUs1bvFnfOP1Y9c9KUe8s73a+ZSQYAAAAnuqZnqzj+mRqVN8MTRzUTb0zU3TPv9apW1qiMkIJBwNwTkayMlMSNbRnmnLSk3T1tCHKTk/WvHc3q7LGqbyqxpcA3BrWCQYAAEC79ExPVnyfTA3vlaFvPr1C/964V0s2FerxayYpPSleWanJB6/NSk3S0J5S36yQHli0UU+8u1nzl2zR0zdMU6+MJHVrdG00MBIMAACAdqsKu4MBWJI25JfqK394X6VVR87trawJHwzAklRYVq1LHnpX+SVVqq6ujWrfvodgMzvLzNaZ2QYz+14T7w8ys4VmttzMPjCzc/zuCQAAAB23u7jikADcoC4IL9H2ovKD5/KLK/TbhRsOBuAGDUH4P/vKohqEfQ3BZhYv6QFJZ0saLekyMxt92GU/kvSMc+4ESZdKetDPngAAANBxzQXgBo2D8J7SyiYDcINYBGG/5wRPlrTBOfeJJJnZU5JmSVrd6BonKbP+dZakHT73BAAAgA7aX16tlVuLWrxmQ36pvvzYEo3pl6kFK1uOeIVl1XpjXYG6n9BPOYnxXrbaJL+nQ/SXtLXR8bb6c43dIulKM9sm6QVJNzdVyMyuN7M8M8srKCjwo1cAAAC0Uf+sFD11/VSlJbUcWDcWlLYagCVpzukjNGtCP+VkRGeFiM7wYNxlkv7onBsg6RxJ88zsiL6ccw8753Kdc7k5OTlRbxIAAACfSgslaFjP9DYF4dbMOX2ELp00SL0yo7dEmt8heLukgY2OB9Sfa2y2pGckyTn3rqSQpJ4+9wUAAIAO8iIIxyIAS/6H4PcljTCzoWaWpLoH3xYcds0WSadKkpmNUl0IZr4DAABAF9CRIByrACz5HIKdczWSbpL0sqQ1qlsFYpWZ3WZm59df9i1J15nZSklPSrradcW9nAEAAAIqLZSgY3LS9edrp7T5niunDtIVUwbHJABLUdgxzjn3guoeeGt87ieNXq+WdJLffQAAAMA/pZU1enb54bNem/fuxn366owjN9SIls7wYBwAAAC6sOY2wmjJxoIjN9SIJkIwAAAA2q09AbhBUzvLRQshGAAAAO3SkQDcIFZBmBAMAACAiHkRgBvEIggTggEAABCxPaVV+tPi1gPwN08fob/fdFKry6dtyC/VE//epH0HKr1qsUWEYAAAAESsd2ayfnv5RMVZ89d864xjddmkQTomp/V1hM8Z20fXnDxUPdKSfej2SIRgAAAARCw7PVlThvZoNgh/64xjdUnuQPXKDCk1ueUNNc4Z20c/PX+Meh9F2yYDAADgKNVcEG4cgBs0t7NcLAKwRAgGAABABxwehJsKwA0OD8KxCsCSZF1xh+Lc3FyXl5cX6zYAAABQb29ppfaXVys9OaHVrZAPVNQov7RSqUnxvgZgM1vqnMtt6j3ft00GAADA0S8rFK/05HhV1NS2em1aKEG9zamksvVr/cJ0CAAAAHRITU2NNhdW6NR73tSG/DLtL295mbOdReX64u8X6631BdpdXBGlLg9FCAYAAEC7NQTgSx56V9sKy3XFo4tbDMI7i8p1zePva/XOYn37rx/ELAgTggEAANAujQPwntIqSVJFdbjZINwQgNfsLJEkOaeYBWFCMAAAACLWVABu0FQQPjwAN4hVECYEAwAAIGJbi5oOwA0aB+HdxRVNBuAGDUH4nQ17tGt/dIIwq0MAAAAgYqHEePXKCDUbgqW6IHz5I4uVnZakHa2E2+SEOA3JTlMo0etOm8ZIMAAAACLWNytFj12dq9F9M1u8rrIm3GoADiXGaf61UzWsV6q6pUZn4wxCMAAAANqlrUG4JYcE4JRkD7trGSEYAAAA7dYnM9TuIHwwAPeMbgCWCMEAAABoJ+ectuwr04MLN0QchBsCcHl1jd7euFellTU+dnokQjAAAAAi1hCAv/j7dzVv8Ra9sa5Av7tyYpvvv+GUYzQoO0VXPLpENz+5XIvW5Uc1CBOCAQAAELGtheX64u/fVUFJpS6Y0E+nHJuj//7T0jbf/9AbG7V5b5mevHaKnJNufnK53vy4QAcqq33s+lOEYAAAAEQslBCn7LQkXTChn75z1sgW1wFuSt06wu8pKTFOT147RckJcerfLUWJ8dGJp+aci8oHeSk3N9fl5eXFug0AAIBAKyqrUHmVizgANxZKjNOfr52i/t1S1CMtSUkJ8Z71Z2ZLnXO5Tb3HSDAAAADapaMBWPp0RHh7UbnKq5kTDAAAgE5sZ1F5mwJwKLFumkNLGoLwhvwDKiqr9LLNZhGCAQAAELGKmlrtKWl+y2Tp02XQnv3aZ9q0s9zWfWUqrw572WazCMEAAACI2MBuIT19w1TlpDe9yUXjdYB/8c/VLa4jbCbd/aXjNe2YbPXNannU2CuEYAAAAEQsISFBg7o3HYQbB+ArHl2i51bu1B0vrGkyCDcE4JOGZ6t3ZnQCsEQIBgAAQDs1FYQPD8ANmgrCsQrAEiEYAAAAHVBYXqPV24v01A1TNbBHSpMBuEHjIDymX6bu/tLxmjCwm3YXV6qqpjaqfSdE9dMAAABw1CgoqdDV//e+Vu0o1m3nj9ar35yuvM2FTQbgBs+t3ClJ+ssNU1VQXKFT7n5DKYnxevqGqRrZJ8PTdYJbwkgwAAAAItY4AEvS2P5Z2lpYof7dUg+5LjkhTv2yQoecO2l4T+0qrlRSYoJy0pNUXl2rSx5arLW7SqI2IkwIBgAAQMTKq2q1u7hCkvTsV6dpR1GFTr/3DT2/YrsWfXuGpLr5wc/cME3P33SyRvbJkCTdedE4Hdc3U+fd/7Zu+8dqLbjp5INBeNPeMlXVRmc3Y7ZNBgAAQMScc9q8t0xFZVXaVlium59aroZY+c3TRugLJ/RXUVm1RvWtm+KQX1yhpZsL1b97ii59eLHKqupGfM8e20c/OW+0lm/dp+kjeik9lOhZjy1tm8ycYAAAAETMzJSeHK+PdhwagCXp3lfXS5Iumzzo4Bzf9OSEIwKwJL340S5J0i3nj/E0ALeGEAwAAICI7Smp1OL/7NPNTx4agBscDMJTBik9KUEbCkqPCMANGgfh3pmhI973AyEYAAAAEcsvqWg2ADe499X1CjvpcyN76bJHmg7ADV78aJcG9UjVDacMU4+0pneh8xIPxgEAACBiPdOT9eVpQ1q97r7X1mvWA++0GIAlaXivdH35M0OiEoAlQjAAAADaoVdmSDfOOEZf+cyQDtca3itdj18zWf27sW0yAAAAOjkvgnAsArBECAYAAEAHdCQIxyoAS4RgAAAAdFBDEP7ytMFtvieWAVgiBAMAAMAD6ckJuuCE/m2+fuqwHgolxC6KEoIBAADQIWWVNdpQUKorH32vzff8afEW/WnxZuXXb70cbYRgAAAAtFtDAL7s4cU60MoyaIe799X1enLJlpgEYUIwAAAA2qUjAbhBrIIwIRgAAAAR8yIAN4hFECYEAwAAIGLbi8rbFICH90rXrAn9Wq1376vr9dyK7SooiU4QTojKpwAAAOCokpmSqAkDu+mdjXubvWZE/TJoSfFx6paapMf/vanZa7unJmrmcb3ULZToQ7dHYiQYAAAAEeudGdI9l0zQScdkN/l+QwDu1y1FPTOSW9xQo3tqop65YZqG9EhVYmK8j11/ihAMAACAdmkuCDcOwA2a21kuFgFYIgQDAACgAw4Pwk0F4AaHB+FYBWCJOcEAAADooIYg/JvX1uvGmcObDMANGoJwRihBs47vF5MALBGCAQAA4IHemSHNOf1YZacnt3ptr8yQrpo6WD1SEmMSgCWmQwAAAMAD+cUVejpvq3bvb32Js/ySCr2+Nl87Syqj0FnTCMEAAADokPziCv38hTX61UvrdOP8ZS0G4fySCv1t2XZ9/9kPdfkji7VlX1kUO/0UIRgAAADt1hCAn1uxQ5KUt7mw2SDcEIB/8eJaSdK2wvKYBWFCMAAAANrl8ADcoKkgfHgAbhCrIEwIBgAAQMSaC8ANGgfhPaVNB+AGsQjChGAAAABEbF9Zlf754c4Wr8nbXKivzV+mx97a1GwAbrCtsFzPvL9Ve0uj87AcIRgAAAAR650Z0mNfmaTEeGvxuqWbC/W7Nza2Wu/SSQP15WmD27TEmhcIwQAAAIhY99QkjRuQ1aYg3JpLJw3UnNOPVa/MkEfdtY4QDAAAgHbxIgjHIgBLhGAAAAB0QEeCcKwCsEQIBgAAQAc1BOGHrspt8z2fP76v5pwRmwAsEYIBAADggerasD7eVdzm67cXlisc9rGhVhCCAQAA0CENG2H88qV1bb5n2ZYi3TR/mXa1sMWynwjBAAAAaLfmdoJri7zNhTELwoRgAAAAtEtHAnCDWAVhQjAAAAAi5kUAbhCLIEwIBoz/SaEAABzdSURBVAAAQMQKSirbFIAvyR2gh646sdXl0/I2F+qRtzaq8ADbJgMAAKCTyklP1g/OGdniNZdOGqhvnXGcpgzt0eo6wpOGdNd1nz1G3dPYNhkAAACdVK/MkL4woX+zQbjxRhjdWtlQY9KQ7rr/sonqk8W2yQAAAOjkmgvCTe0E19zOcrEIwBIhGAAAAB1weBBuaSvkw4NwrAKwJJlzzt8PMDtL0n2S4iU96pz7ZRPXXCzpFklO0krn3OUt1czNzXV5eXk+dAsAAID2yC+u0Pr8Uo3old7qVsiFZVX6z54D6peV4msANrOlzrkm93JO8O1T6z44XtIDkk6XtE3S+2a2wDm3utE1IyR9X9JJzrlCM+vlZ08AAADwXq/MkLLTEhUfH9/qtd1Tk5TZP75N1/rF7+kQkyVtcM594pyrkvSUpFmHXXOdpAecc4WS5JzL97knAAAA+CCSUBvLACy1MwSbWY82Xtpf0tZGx9vqzzV2rKRjzewdM1tcP30CAAAA8E2rIdjMftTo9Wgz+1jSUjPbZGZTPOghQdIISTMkXSbpETPr1kQf15tZnpnlFRQUePCxAAAACKq2jARf2Oj1nZK+7pwbKuliSfe2cu92SQMbHQ+oP9fYNkkLnHPVzrn/SPpYdaH4EM65h51zuc653JycnDa0DQAAADQt0ukQ/ZxzL0qSc26JpJRWrn9f0ggzG2pmSZIulbTgsGueU90osMysp+qmR3wSYV8AAABAm7VldYhhZrZAkkkaYGapzrmy+vcSW7rROVdjZjdJell1S6T9wTm3ysxuk5TnnFtQ/94ZZrZaUq2kbzvn9rb3FwIAAABa05YQfPhqDnGSZGa9Jf2utZudcy9IeuGwcz9p9NpJmlP/DwAAAOC7VkOwc+6NZs7vVt0awJIkM7vfOXezh70BAAAAvvByneCTPKwFAAAA+MbvzTIAAACATocQDAAAgMDxMgSbh7UAAAAA37Q5BJvZuFYuua+DvQAAAABREclI8INmtsTMvmZmWYe/6Zz7o3dtAQAAAP5pcwh2zn1W0hWq2wZ5qZnNN7PTfesMAAAA8ElEc4Kdc+sl/UjSdyWdIuk3ZrbWzC70ozkAAADAD5HMCR5vZvdKWiPpc5I+75wbVf/6Xp/6AwAAADzXlm2TG9wv6VFJP3DOlTecdM7tMLMfed4ZAAAA4JNIQvC5ksqdc7WSZGZxkkLOuTLn3DxfugMAAAB8EMmc4FclpTQ6Tq0/BwAAAHQpkYTgkHOutOGg/nWq9y0BAAAA/ookBB8ws4kNB2Z2oqTyFq4HAAAAOqVI5gR/Q9JfzGyH6rZI7iPpEl+6AgAAAHzU5hDsnHvfzEZKOq7+1DrnXLU/bQEAAAD+iWQkWJImSRpSf99EM5Nz7gnPuwIAAAB81OYQbGbzJB0jaYWk2vrTThIhGAAAAF1KJCPBuZJGO+ecX80AAAAA0RDJ6hAfqe5hOAAAAKBLi2QkuKek1Wa2RFJlw0nn3PmedwUAAAD4KJIQfItfTQAAAADRFMkSaW+Y2WBJI5xzr5pZqqR4/1oDAAAA/NHmOcFmdp2kv0p6qP5Uf0nP+dEUAAAA4KdIHoy7UdJJkoolyTm3XlIvP5oCAAAA/BRJCK50zlU1HJhZgurWCQYAAAC6lEhC8Btm9gNJKWZ2uqS/SPq7P20BAAAA/okkBH9PUoGkDyXdIOkF59wPfekKAAAA8FEkS6Td7Jy7T9IjDSfM7Ov15wAAAIAuI5KR4K80ce5qj/oAAAAAoqbVkWAzu0zS5ZKGmtmCRm9lSNrnV2MAAACAX9oyHeLfknaqbtvkuxudL5H0gR9NAQAAAH5qNQQ75zZL2ixpmv/tAAAAAP6LZMe4C81svZntN7NiMysxs2I/mwMAAAD8EMnqEL+S9Hnn3Bq/mgEAAACiIZLVIXYTgAEAAHA0iGQkOM/Mnpb0nKTKhpPOuWc97woAAADwUSQhOFNSmaQzGp1zkgjBAAAA6FLaHIKdc//lZyMAAABAtESyOsSxZvaamX1UfzzezH7kX2sAAACAPyJ5MO4RSd+XVC1JzrkPJF3qR1MAAACAnyIJwanOuSWHnavxshkAAAAgGiIJwXvM7BjVPQwnM/ui6rZTBgAAALqUSFaHuFHSw5JGmtl2Sf+RdKUvXQEAAAA+imR1iE8knWZmaZLinHMl/rUFAAAA+CeS1SG+bmYNawXfa2bLzOyM1u4DAAAAOptI5gRf45wrVt1mGdmSrpL0S1+6AgAAAHwUSQi2+p/nSHrCObeq0TkAAACgy4gkBC81s1dUF4JfNrMMSWF/2gIAAAD8E8nqELMlTZD0iXOuzMyyJbGVMgAAALqcVkOwmY10zq1VXQCWpGFmzIIAAABA19WWkeA5kq6XdHcT7zlJn/O0IwAAAMBnrYZg59z19T9n+t8OAAAA4L9I1gn+Uv3DcDKzH5nZs2Z2gn+tAQAAAP6IZHWIHzvnSszsZEmnSXpM0u/9aQsAAADwTyQhuLb+57mSHnbO/VNSkvctAQAAAP6KJARvN7OHJF0i6QUzS47wfgAAAKBTiCTEXizpZUlnOueKJPWQ9G1fugIAAAB81OYQ7Jwrk/S8pANmNkhSoqS1fjUGAAAA+KXNO8aZ2c2Sfipptz7dLtlJGu9DXwAAAIBvItk2+euSjnPO7fWrGQAAACAaIpkTvFXSfr8aAQAAAKIlkpHgTyQtMrN/SqpsOOmcu8fzrgAAAAAfRRKCt9T/kyTWBwYAAEAX1uYQ7Jy7VZLMLL3+uNSvpgAAAAA/tXlOsJmNNbPlklZJWmVmS81sjH+tAQAAAP6I5MG4hyXNcc4Nds4NlvQtSY/40xYAAADgn0hCcJpzbmHDgXNukaQ0zzsCAAAAfBbR6hBm9mNJ8+qPr1TdihEAAABAlxLJSPA1knIkPSvp/0nqWX8OAAAA6FIiWR2iUNL/+NgLAAAAEBWRrA7xLzPr1ui4u5m97E9bAAAAgH8imQ7R0zlX1HBQPzLcy/uWAAAAAH9FEoLDZjao4cDMBkty3rcEAAAA+CuS1SF+KOltM3tDkkn6rKTrfekKAAAA8FEkD8a9ZGYTJU2tP/UN59yehvfNbIxzbpXXDQIAAABei2QkWPWh9x/NvD1P0sQOdwQAAAD4LJI5wa2xJk+anWVm68xsg5l9r9mbzS4yM2dmuR72BAAAABzByxB8xENyZhYv6QFJZ0saLekyMxvdxHUZkr4u6T0P+wEAAACa5GUIbspkSRucc58456okPSVpVhPX/a+kOyRV+NwPAAAA4GkIrmriXH9JWxsdb6s/d1D9w3YDnXP/bKm4mV1vZnlmlldQUNDhZgEAABBcET0YZ2bjJQ1pfJ9z7tn6n1Obua2lenGS7pF0dWvXOucelvSwJOXm5rI+MQAAANqtzSHYzP4gabykVZLC9aedpGdbuG27pIGNjgfUn2uQIWmspEVmJkl9JC0ws/Odc3lt7Q0AAADRVVBSodLKWs/rpifHKycj5Hndw0UyEjzVOXfEQ22teF/SCDMbqrrwe6mkyxvedM7tl9Sz4djMFkmaSwAGAADo3EorazXzrkWe1104d4ZyMjwve4RI5gS/29TKDi1xztVIuknSy5LWSHrGObfKzG4zs/MjqQUAAAB4JZKR4CdUF4R3SapU3brAzjk3vqWbnHMvSHrhsHM/aebaGRH0AwAAALRLJCH4MUlXSfpQn84JBgAAALqcSEJwgXNugW+dAAAAAFESSQhebmbzJf1dddMhJH26RBoAAADQVUQSglNUF37PaHSutSXSAAAAgE6nzSHYOfdffjYCAAAAREskm2WEJM2WNEbSwRWMnXPX+NAXAAAA4JtI1gmep7od3c6U9Ibqdn8r8aMpAAAAwE+RhODhzrkfSzrgnHtc0rmSpvjTFgAAAOCfSEJwdf3PIjMbKylLUi/vWwIAAAD8FcnqEA+bWXdJP5a0QFK6pCZ3fgMAAAA6s0hWh3i0/uUbkob50w4AAADgvzZPhzCz3mb2mJm9WH882sxm+9caAAAA4I9I5gT/UdLLkvrVH38s6RteNwQAAAD4LZIQ3NM594yksCQ552ok1frSFQAAAOCjSELwATPLVt1WyTKzqZL2+9IVAAAA4KNIVoeYo7pVIYaZ2TuSciR90ZeuAAAAAB9FEoJXS/qbpDLV7RT3nOrmBQMAAABdSiTTIZ6QNFLSzyXdL+lY1W2lDAAAAHQpkYwEj3XOjW50vNDMVnvdEAAAAOC3SELwMjOb6pxbLElmNkVSnj9tAQAAoDNLT47XwrkzfKkbDa2GYDP7UHUrQiRK+reZbak/Hixprb/tAQAAoDMqrazVzLsWeV534dwZysnwvOwR2jISfJ7vXQAAAABR1GoIds5tjkYjAAAAQLREsjoEAAAAcFQgBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwEmLdAAAAALqe9OR4LZw7w5e60cBIMAAAAAKHkWAAAABErLSyVjPvWuR53YVzZygnw/OyR2AkGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABE5CrBsAAABA15OeHK+Fc2f4UjcaCMEAAACIWGllrWbetcjzugvnzlBOhudlj8B0CAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4Pgegs3sLDNbZ2YbzOx7Tbw/x8xWm9kHZvaamQ32uycAAAAEm68h2MziJT0g6WxJoyVdZmajD7tsuaRc59x4SX+V9Cs/ewIAAAD8HgmeLGmDc+4T51yVpKckzWp8gXNuoXOurP5wsaQBPvcEAACAgPM7BPeXtLXR8bb6c82ZLenFpt4ws+vNLM/M8goKCjxsEQAAAEHTaR6MM7MrJeVKurOp951zDzvncp1zuTk5OdFtDgAAAEeVBJ/rb5c0sNHxgPpzhzCz0yT9UNIpzrlKn3sCAABAwPk9Evy+pBFmNtTMkiRdKmlB4wvM7ARJD0k63zmX73M/AAAAgL8h2DlXI+kmSS9LWiPpGefcKjO7zczOr7/sTknpkv5iZivMbEEz5QAAAABP+D0dQs65FyS9cNi5nzR6fZrfPQAAAACNdZoH4wAAAIBo8X0kGAAAAEef9OR4LZw7w5e60UAIBgAAQMRKK2s1865FntddOHeGcjI8L3sEpkMAAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDASYh1AwAAAOh60pPjtXDuDF/qRgMjwQAAAAgcRoIBAAAQsdLKWs28a5HndRfOnaGcDM/LHoGRYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDgJsW4AAAAAXU96crwWzp3hS91oIAQDAAAgYqWVtZp51yLP6y6cO0M5GZ6XPQLTIQAAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4CbFuIJYKSipUWll78DgkKS4xXk5OKYlxKq2sVUV1WJ/sKVVRWbWSE+M0PCddWSmJio8zdUs2lVSbuoXitG1/1SG105PjlZMRivJvBAAAEB3pyfFaOHeGL3WjIdAhuLSyVjPvWiRJevzKCRo5MFuJ8U4HqpweeWuj/pK3VcUVNUfcF2fSzON66caZw9UvK6Si4hoNyErSiB+/cvCahXNnKCcjWr8JAABAdOVkhLp01mE6hOoC8OiB2XKSnl2+U6fd84Yee/s/TQZgSQo76bW1+brwd//Wrf9Yrar4un+N6//3jCh2DQAAgPYKfAhuGAEOm/TDv32on/1zjSprwm2+/8WPdumiB/+tbUWVkgjCAAAAXUGgQ3BI0siB2XLO6ba/r9Jra/PbVWdXcYUue+Q9FRyoUXFxFUEYAACgkwt0CI5PildygrR0a5H++eGuDtXaVVyh2/6+SlXxcSosr1WvFI+aBAAAgOcCHYLjJJVVO/3g2Q89qffSqt3aXlSurGRTfrknJQEAAOCDQIfgbqkJytu0T/vLqz2r+duFG1RY3vY5xQAAAIg+30OwmZ1lZuvMbIOZfa+J95PN7On6998zsyF+99Qgv7RKTy7Z6mnNNz8uUI1zntYEAACAt3wNwWYWL+kBSWdLGi3pMjMbfdhlsyUVOueGS7pX0h1+9tRY2Ekfbt/vec2ismqleloVAAAAXvJ7JHiypA3OuU+cc1WSnpI067BrZkl6vP71XyWdambmc1+SpNqwU2ll02sBd8S6XSXqkZXkeV0AAAB4w+8Q3F9S4/kG2+rPNXmNc65G0n5J2YcXMrPrzSzPzPIKCgo8aS7s07SFippaRSnHAwAAoB26zINxzrmHnXO5zrncnJwcT2omxPnz62elJCoc5uE4AACAzsrvELxd0sBGxwPqzzV5jZklSMqStNfnviRJJqlXRrLndY/tnaHtxd6tOAEAAABv+R2C35c0wsyGmlmSpEslLTjsmgWSvlL/+ouSXncuOssrhBJNJw7u7mnN1KR4pSXFe1oTAAAA3vI1BNfP8b1J0suS1kh6xjm3ysxuM7Pz6y97TFK2mW2QNEfSEcuo+SU90TT75KGe1rxwYn+lJXWZWSYAAACBlOD3BzjnXpD0wmHnftLodYWkL/ndR1MKK8Lq1y2kY3un6+PdpR2ulxBnuvbkYaqtcerGYDAAAECnFeghSzNTz9QE/ebSExQf1/HVHL55+gilJcepxkwVtR40CAAAAF8EOgSXV4dVWF6rHqmJuvX8w/fwiMzJw7N10cSBCjtTcUmZKjzqEQAAAN4LdAiWpCm/eF1O0mmjeuu2WWPaNSI887gc3fWlCUo2qbikTKff/673jQIAAMAzgQ/BUl0QNklnje6tf9x8sob3Sm/TfenJCbr74uP18wvHKdGkPQRgAACALsH3B+O6iim/eF3vff9zOiY7pCeumaxthWV69K3/aOnmQu09UHXwulBinEb3zdIlkwbosyNylJoYp8pap30EYAAAgC6DENzIlF+8rsXf/5xM0vH90vWzL4xVZU1YzjlVh53iTEqKj5Pk1DsjWfvLalQTZgoEAABAV2NR2pfCU7m5uS4vL6/DdQpKKlRa6c8yDunJ8crJCPlSGwAAAK0zs6XOudym3gv0SHBORkg5GbHuAgAAANHGg3EAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMDpkptlmFmBpM0x+OiekvbE4HPhL77Xoxff7dGL7/boxPd69IrVdzvYOZfT1BtdMgTHipnlNbfrCLouvtejF9/t0Yvv9ujE93r06ozfLdMhAAAAEDiEYAAAAAQOITgyD8e6AfiC7/XoxXd79OK7PTrxvR69Ot13y5xgAAAABA4jwQAAAAgcQjAAAAAChxDcBma2ycw+NLMVZpYX637gHTPrZmZ/NbO1ZrbGzKbFuid0nJkdV//nteGfYjP7Rqz7QseZ2TfNbJWZfWRmT5pZKNY9wRtm9vX673UVf167NjP7g5nlm9lHjc71MLN/mdn6+p/dY9mjRAiOxEzn3ITOtsYdOuw+SS8550ZKOl7Smhj3Aw8459bV/3mdIOlESWWS/hbjttBBZtZf0v9IynXOjZUUL+nS2HYFL5jZWEnXSZqsuv8Wn2dmw2PbFTrgj5LOOuzc9yS95pwbIem1+uOYIgQjsMwsS9J0SY9JknOuyjlXFNuu4INTJW10zsVil0l4L0FSipklSEqVtCPG/cAboyS955wrc87VSHpD0oUx7gnt5Jx7U9K+w07PkvR4/evHJX0hqk01gRDcNk7SK2a21Myuj3Uz8MxQSQWS/s/MlpvZo2aWFuum4LlLJT0Z6ybQcc657ZLukrRF0k5J+51zr8S2K3jkI0mfNbNsM0uVdI6kgTHuCd7q7ZzbWf96l6TesWxGIgS31cnOuYmSzpZ0o5lNj3VD8ESCpImSfuecO0HSAXWC/z0D75hZkqTzJf0l1r2g4+rnEM5S3V9g+0lKM7MrY9sVvOCcWyPpDkmvSHpJ0gpJtTFtCr5xdevzxnyNXkJwG9SPPsg5l6+6eYWTY9sRPLJN0jbn3Hv1x39VXSjG0eNsScucc7tj3Qg8cZqk/zjnCpxz1ZKelfSZGPcEjzjnHnPOneicmy6pUNLHse4JntptZn0lqf5nfoz7IQS3xszSzCyj4bWkM1T3v23QxTnndknaambH1Z86VdLqGLYE710mpkIcTbZImmpmqWZmqvszy8OsRwkz61X/c5Dq5gPPj21H8NgCSV+pf/0VSc/HsBdJ7BjXKjMbpk+fKk+QNN85d3sMW4KHzGyCpEclJUn6RNL/b+/+QesqwziOf38mWcSgYpwCoWQRSUrE4NAtm6uDRKhL6x8oZKqbRRHBXWmg3dIMiiBGCsUhlQ5BhBYRKTEWF8F2KKVDUaeg+Djcc+EaXFJvck88389yzj3vyznPWS6/e+5773O6qh6MtioNQ/Oh9TYwW1W/jroeDUeS94FXgD+B74E3qmp3tFVpGJJ8DTwF/AG8VVXXRlySHlKST4ElYAq4B7wHXAY+A2aAX4Dlqtr747lDZQiWJElS57gcQpIkSZ1jCJYkSVLnGIIlSZLUOYZgSZIkdY4hWJIkSZ1jCJaklkhyLIn/Qy5Jh8AQLEmSpM4xBEtSu4wn+STJrSSfN93RFpNsJfkuyeZA69E3k3yb5GaSjSSPNsfXk1xMcj3Jz0mWkqw151xv5ow1835Isp3k7AjvWZIOnSFYktrlGeBCVT0L/AasAKvAy1W1CKwB/a6VX1TVC1W1QK998OsD53kSOAGcpdeu9ENgDjjedEp8DpiuqvmqOg5cOvhbk6T2GB91AZKkf7hTVd80+x8D54B54KskAGPA3WZ8PskHwBPAY8DmwHmuVFUl2QbuVdU2QJId4BiwBcwmWQW+BK4e6F1JUssYgiWpXfb2sv8d2KmqE/8ydx14qapuJjkFLA2M7Tbbvwb2+6/Hq+pBkgXgReAMsAy89p+rl6QjwuUQktQuM0n6gfckcB14un8syUSSuWZ8EribZAJ4dT8XSTIFPFJVG8A7wPNDqV6SjgifBEtSu/wErCRZA36ktx54Ezif5HF679sfATvAu8AN4H6zndzHdaaBS0n6D0PeHk75knQ0pGrvN2+SJEnS/5vLISRJktQ5hmBJkiR1jiFYkiRJnWMIliRJUucYgiVJktQ5hmBJkiR1jiFYkiRJnfM3kWpiA6BI1cgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5RV1fn/8c9zp92plGGoA4KKICAiDKKRqGiMJZZYEmtiQUm+URNjNJpfYjR+Y2JN0a9J1NgTNZqYBCO2KNaoMDSVoiJShjrAML3f/ftj5pJhmHaZc+6d4bxfa7GYc84+z33Gu1zr43affcw5JwAAACBIQoluAAAAAIg3QjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAic5EQ3sCcGDBjgRo4cmeg2AAAA0IMtWLBgq3Mur61rvTIEjxw5UoWFhYluAwAAAD2Yma1p7xrLIQAAABA4hGAAAAAEDiEYAAAAgdMr1wS3pb6+XkVFRaqpqUl0KwkVDoeVn5+vlJSURLcCAADQY+01IbioqEjZ2dkaOXKkzCzR7SSEc07btm1TUVGRRo0aleh2AAAAeqy9ZjlETU2NcnNzAxuAJcnMlJubG/jZcAAAgM7sNSFYUqADcBT/DAAAADq31yyHAAAAQM/Q2NiozeW1cs7UEInIOSklyRRxUr/0FGWlJ/7ZJUKwR3bs2KEnnnhC3/nOdxLdCgAAQEJsrahVXUNEryzbrNlLNmjZhjJV1zdKkkImjRqQpen75+qbh49URlqShvRJT1ivhGCP7NixQ7/73e8IwQAAIJA2ldboH4vX69evfKLahshu1yNO+qy4Qp8VV+jRd9fo2LED9bPTxqtfOFmZ6alx73evWhOcSNdff70+++wzTZo0Sddee63uuOMOTZ06VRMnTtSNN94oSVq9erXGjh2riy66SAcccIDOP/98/fvf/9YRRxyh0aNHa968eZKkm266Sd/4xjd0+OGHa/To0XrggQckSRs3btSRRx6pSZMmacKECXrrrbcS9vsCAABEbdhRrW89XqhbX1jRZgBuy6srtuiku9/Sss0VKqmq87nD3RGCPXLrrbdqv/320+LFi3Xcccfp008/1bx587R48WItWLBAb775piRp5cqV+sEPfqAVK1ZoxYoVeuKJJ/T222/rzjvv1C9+8Yud9T744AO99tprevfdd3XzzTdrw4YNeuKJJ3T88cdr8eLFWrJkiSZNmpSoXxcAAECStKm0Whc+NE9LikpjvresukEX/PF9fb61UrW1DT501z6WQ/jg5Zdf1ssvv6xDDjlEklRRUaFPP/1UI0aM0KhRo3TQQQdJksaPH69jjz1WZqaDDjpIq1ev3lnjtNNOU3p6utLT0zVjxgzNmzdPU6dO1SWXXKL6+np99atfJQQDAICE2lRao188v0KfbqnY4xq1DRHNeqxQs6+YrqFp8YumzAT7wDmnH/3oR1q8eLEWL16slStXaubMmZKktLS0neNCodDO41AopIaG//4XUOutzsxMRx55pN58800NGzZMF110kR577LE4/DYAAABtW72tUrM/2NDtOlsr6vSrVz7RlrL4veuAEOyR7OxslZeXS5KOP/54PfTQQ6qoaPqvovXr12vLli0x1fvnP/+pmpoabdu2Ta+//rqmTp2qNWvWaNCgQbrssst06aWXauHChZ7/HgAAAF2xYUe17nr5Y8/q/WPRetU3Os/qdYblEB7Jzc3VEUccoQkTJujEE0/Ueeedp8MPP1ySlJWVpT/96U9KSkrqcr2JEydqxowZ2rp1q2644QYNHTpUjz76qO644w6lpKQoKyuLmWAAAJAw9Y0RzV9d4lm9hojTnI826rIv7utZzY6Yc/4lbjN7SNLJkrY45ya0cd0k/VbSSZKqJF3knOt0erOgoMAVFhbucm758uU68MADPek70W666SZlZWXpmmuu2aP796Z/FgAAoGd68aON+vafvP2/0kePydMdZ05UXk7Yk3pmtsA5V9DWNb+XQzwi6YQOrp8oaXTzn1mSfu9zPwAAAPDA/NXbPa+5bEOZarq4xVp3+bocwjn3ppmN7GDIaZIec03T0e+ZWV8zG+Kc2+hnXz3dTTfdlOgWAAAA2hWJRLSjqt7zumU19QpZ5+O8kOgH44ZJWtfiuKj53G7MbJaZFZpZYXFxcVyaAwAAwO5CoZBSk72PkalJIcXr0bhEh+Auc87d75wrcM4V5OXlJbodAACAQBs/tI/nNffLy/K8ZnsSHYLXSxre4ji/+RwAAAB6sMkj+npec9Lwvhqc7c1DcZ1JdAieLemb1uQwSaVBXw8MAADQG/TJSNVgj3ZxiDqrIF/JPiyzaIuvn2JmT0p6V9IYMysys5lm9m0z+3bzkDmSVklaKekBSd/xsx+/XXLJJRo4cKAmTNhtNzgAAIC9yoDMVF18xEjP6o0bkqN+Game1euMryHYOXeuc26Icy7FOZfvnHvQOfcH59wfmq8759zlzrn9nHMHOecKO6vZk1100UV68cUXE90GAACA79JSknTapKEamZvR7Vohk24/a6KG9k33oLMufmbcPqmHeeGFF3TyySdr6tSpOvnkk/XCCy90u+aRRx6p/v37e9AdAABAzze4T7ruPX+y0rq5hOGKY0ZrkMdLKzoTyBD8wgsv6JZbbtGmTZvknNOmTZt0yy23eBKEAQAAgmRo33Q9fPHUPQ7C3zx8H50/bYTystM87qxjgQzB9957r2pqanY5V1NTo3vvvTdBHQEAAPRO/TJSNXZwtp67croOHJLd5fuy05J19zmT9J2j94v7LLDk8xvjeqrNmzfHdB4AAADt65+Zpv6ZaXr4oqma9/l2/eGNVdpRVadvfmGkDhySoyQzFVfU6JnCIq3YVK7zp43QOVNHqE84WVnpKQnpOZAheNCgQdq0aVOb5wEAALBnBvdJ15fGDdKUffqrpKpOC9eU6JWlmxRxTgNzwrpixv4akZuhtKSQ8hIw+9tSIEPw5ZdfrltuuWWXJRHhcFiXX355t+qee+65ev3117V161bl5+frZz/7mWbOnNnddgEAAHq8xsZGbamo0xPvr9Wf3lujkqr6Nsclh0zHjRuk7x93gAZkpqp/VnzXAu/sIyGfmmAnnniipKa1wZs3b9agQYN0+eWX7zy/p5588kkv2gMAAOhVistr9OmWCn3vycUqrqjtcGxDxOmFjzbp5WWbdfmM/XT+tH1YExxPJ554YrdDLwAAQNAVl9fojY+Lde3fPpBzXb+vMeJ096sr9eH6Ut16xkS2SAMAAEDvUF/fqI83VcQcgFuau6JYd7z0sTaX1XQ+2EOEYAAAAOyR4so6XfWXRXscgKP+uqBIn24uV2NjozeNdQEhGAAAADGrrK3Xn95do60VdZ7U+9HfP9SmMm9qdQUhGAAAADErrW7QE/PXelZv3fZqbSit9qxeZwjBAAAAiFlxea12tLMN2p76+8Ii1dY3eFqzPYRgD61bt04zZszQuHHjNH78eP32t79NdEsAAAC+WLi2xPOaS4pKVezR8orOBHaLND8kJyfrrrvu0uTJk1VeXq4pU6bouOOO07hx4xLdGgAAgKdWbCzzvOaabVUyM8/rtiWQM8H19fW68sordeWVV6qqqmrnz/X13ZvSHzJkiCZPnixJys7O1oEHHqj169d70TIAAECPEYlE1BDp5pYQbWiMOMUnAgd0Jvjqq6/WwoULJUknnXTSzvB79dVX65577vHkM1avXq1FixZp2rRpntQDAADoKcxMednev+64f2aqGn0I120JZAiOqq2tVW1t06v90tK8+yIrKip05pln6je/+Y1ycnI8qwsAANATOOc0aXhfz+tOGJaj1GSWQ/jmtttuU0pKyi7nUlJSdPvtt3e7dn19vc4880ydf/75OuOMM7pdDwAAoKcxM40ckKmQx3n1sH1zlRSneBrIEHzdddfttv63vr5eP/zhD7tV1zmnmTNn6sADD9TVV1/drVoAAAA9WXl1vY46YKBn9cIpIRXs0081cXprXCBDcFRaWpqysrI8Wwrxzjvv6PHHH9drr72mSZMmadKkSZozZ44ntQEAAHqSjLQkXfrFUfJqM4cLDttHq4orlZEan9W6gVwT/Ktf/WrnTO1tt92m6667buf57pg+fbpcd1+eDQAA0MOZmbLDqZq7olgXHj5Sj/xndbfqjczN0LFjByk5ZAqnxGeONpAhOCUlZZddILzaEQIAACAIIpGIUpNMDZGIjhk7UB9vLte7n23bo1p90lN0+1kH6743PtMNJ49TdV1DXGaDA70cAgAAALELhUJavLZEZ0werl/MWa6rvjRaJ08cEnOdfXIz9MjFU3X7iyt0xTH7q6Exoqq6iA8d744QDAAAgJhEIhFlhVNUVdugG08Zp5SQ6eSJQ/SbsydpUE7nz1qlJYd0yREjddfXDpYknTZpqLaU1SglOeT5jhPtCeRyCAAAAOy5UCik4f0zdMM/PtL1Jx6oHz37gZYUlerwfXP1yzMmqqa+Uf9evlkfFpVq7fYqRZxT/8xUTRjWR4ftm6spI/pp9pINOvv+95SWHNJfZh2mm2Yv0+1nTVRGalJcfgdCMAAAAGLWGHE6dFSuHv7P51pSVCpJenfVNr27apv2yc3QEfsN0MVHjFJ+v3SZSaVV9Vq6oUz/XrZZv5izXNG9BKrqGjXr8QW6+9xD9OYnW3TapGFx6Z8QDAAAgJg457R2e5UmDMvRnS9/vNv1NduqtGbb2i7X21hao38sWq8JQ3PUEInPmmBCsMdGjhyp7OxsJSUlKTk5WYWFhYluCQAAwHNm0n1vrPKs3jOFRfr6tw9XXWN8tpslBPtg7ty5GjBgQKLbAAAA8IVzTgOzw/rPHm6L1pa6xojeW7VNZ0xmOYRvjjzySFVVVe12PiMjQ2+++WYCOgIAAOg9QqGQPiuu8LzuvNXbddqkoZ7XbUsgt0hrKwB3dD4WZqYvf/nLmjJliu6///5u1wMAAOiJPmx+GM5LS9eXqSHCcohe6e2339awYcO0ZcsWHXfccRo7dqyOPPLIRLcFAADgGeectlbUel53R3WdUpLiM0cbyJlgPw0b1rSOZeDAgTr99NM1b968BHcEAADgLTNTqg9hNSUUUpzelcFMsJcqKysViUSUnZ2tyspKvfzyy/rpT3+a6LYAAAA8d1B+Hz05f12b1w4ckq3p++fpoGE5GpQTliRV1jVq2YYyLVxbojc/KW5z2cPIAZlKTopPDCYEe2jz5s06/fTTJUkNDQ0677zzdMIJJyS4KwAAAO8dMqLfbueOGTtQl35xlDbsqNYryzbrXx9s0MbSGklSdlqyxg/L0WH75uq7x+yvV5Zv0QNvrlJd43/3BZ68T1/1TU+NS/+BDMEZGRnt7g7RHfvuu6+WLFnSrRoAAAC9QZ/0FA3IStXWijrlhJN106njVVPfqMv/vFAlVfW7jS+vbdB7q7brvVXbdc9rK3Xm5Hw9cdk03fTcUn20vkySdObkfNU3Niot5H9EDWQIZhs0AACA7klPDumiL4zUQ++s1h8umKLfzV2p1z8p7tK9jRGnpwvX6c1PivWbcybp/15bqY2l1crNTFV1XaPSUgjBAAAA6IFqGiM66aAhmrZvrn45Z7kWrt0Rc41NZTW69NFC/fHCAuWEk5WcZEoKsTtEzJyLz75yPRn/DAAAQDw41/TnuSUb9igAR1XUNugHTy9RRmqyVhdXSopPltlrQnA4HNa2bdsCHQKdc9q2bZvC4XCiWwEAAHu5qroGbSmv0WPvrul2rfU7qvXg259rcN90NUQ6H++FvWY5RH5+voqKilRc3LW1KHurcDis/Pz8RLcBAAD2cqlJIf3u9c88q/d04TpddMTIuE1o7jUhOCUlRaNGjUp0GwAAAHs955waIk5vr9zqWc3ahoje/KRYp00a6lnNjuw1yyEAAAAQH2amjzeVy+tJ23dWblV9Y3zWQxCCAQAAEBPnnBauLfG87tINZapv5ME4AAAA9FDbK+s8r1lSVSdTfF6bTAgGAABATJxzSknyPkYmh0JybJEGAACAnsjMNG5Ijud1Rw7IUFJ8JoIJwQAAAIiNmWnSiL6e1z1keF+lJCd5XrcthGAAAADELDstWf0zUz2tefohw+Qcu0MAAACgB3LOyUy68AsjPas5akCmkpNCCqcwEwwAAIAeyMwkmY4dO1CDc8Ke1LzlqxOUlhxSRU2jJ/U6QwgGAABATJxzemflVn24fofu/PrBCnXzYbYLDx+pz4orVFpdr0icXptMCAYAAEDMPlpfpknD++mdlcX6zdmTlLSHSfiUiUN09Jg8jR2crTtf+kRin2AAAAD0RGam/QZm6vq/faCjDhioeZ9v1yMXT9WwvuldrpGaFNKPThyrEw8aonc+LdbCtSWqqm+Q2CcYAAAAPdUhI/pqSVGpnv9gow7bL1e3vrBCvzl7kn54/BgN6dP+OuG05JC+XpCvp2YdppXFFXrhw42afkCe7nz5E00c1iduD8Ylx+VTAAAAsFfJy0pTv4wUPf7eGjlJP/7Kgbr66cU6YHC2/verE5SdlqxVxZVau71SjREpNytVYwdnKz01WS9+tFGzHivUt47aT/n90/WtxxeovtHplIOHKj0lPnO0hGAAAADELDMtWWdPHa4/vLFKf3pvjRatLdGvvj5JC9aU6Cd//0hbK2q1/8AsDeuXrpCZFq0r0T2vrVR9Y0SnTRqqBy4s0FPz1+mWOcslSSNzMzSkb7oy0lLi0r+5OD2B56WCggJXWFiY6DYAAAACq74xotVbK3XBg+9rc1mtJClk0oyxA3XuoSOUlZasNdsqtWZblRoiTnnZaTpgYNbOmeC/LixSWXXDznoPXVSgSfl91D/Lmy3XJMnMFjjnCtq8RggGAABArLZV1Kqksk5rS6p06aOFirSKlMkh0+hBWRraN11JZtpRXa/lG8pUXtuwW61zpg7XhV8Yqey0JA3tm6FQd/dca9ZRCObBOAAAAMSspKpem0urld8vXbeeOXG3vYIbIk7LN5br1eVb9PKyzZr3+fY2A/Dx4wfp/GkjlJmapHc+26bymvq49E8IBgAAQMwy05KUn5upZRvKNKJfuh68cKqGdrArRGspSabvH3eAZk4fpcq6BpmZjhozkJdlAAAAoOcySQ+8tUpX/WWJ5ny0SVlpybr3/Mm66kujNSgnrd370pJDOv2QYXryssM0dlCWtlfW66KH5+uih+epoTGitGS2SAMAAEAPVVJVryfeXytJeuzdNVq4tkQ3njJeo3IzdcdZByslKaRPNpdr7fYqRZxT/8xUjR/aRznhpgfmkkKm1z8p1pPz1kmSPiuu1OPvrtH/HL2fMuLQPzPBAAAAiNnQPmHde97knWuBP1pfpnPuf0/Pf7hRDREnkzSkT1jjh+Zo3JAc7ZeXpZSQyUlavqlcFz8yf2cAlqSvHDREM6ePUt+M1Lj0TwgGAABAzOoaIxo/NGeXINwYcXp52WZd8sh8LVpXouH90vXiR5v06oot2lFVp/6Zqbr44fn641ufa0fVfx+A+8pBQ3TDyeMUiWP/hGAAAADErLYhovveXKW6xsguQViSrj1+jKaN6q8T735bLy/brBc/2qT/9/eP9K8PNujJy6YpK+2/K3K/ctAQXXv8GM16fL7KqutVVl0Xl/4JwQAAAIhZRU2Dnpy3Vt97avEuQfja48fo8H3764zfvyup6fhv//MFZaYm6fdvrNKcDzfuDMLRAHzK/72tD4rK9OzCIoVC8YmnhGAAAADEbHj/DP3hgikKmXYG4dd+cPQuAfiHJ4xRVlqy7nn1Uz0289BdgvBzV07fGYDLaxp0ysQhmnXkfrvMEvuJN8YBAABgj2yrqNW81dt1+Z8XKuKk0w8Zpr8vWi+pKQBnpibrxtlLJUlHHZCn7x67v7754DxV1jXq+HGD9J9V23YG4J+cPE6Dcrx7ZbLEG+MAAADgsR1Vdfr9659p3ufbdc95hyhkajcAS9IbnxTr7ldX7pwRfmnZ5p0B+Kwp+brkkfnaXFYTt/4JwQAAAIjZxtIaPfjO53r4ndUqXF2yMwi3DsDfOXo//WnmNGWkJu0WhKMBeNbjC7R0Q5kefudzVbTxamU/+B6CzewEM/vYzFaa2fVtXB9hZnPNbJGZfWBmJ/ndEwAAALonPTmk286cKDPtDMJzvvfFXQLw5TP211Fj8jQoJ033f2PKLkH4mW8fvjMA1zZEdPz4QTp54lA1NMZnozRf1wSbWZKkTyQdJ6lI0nxJ5zrnlrUYc7+kRc6535vZOElznHMjO6rLmmAAAIDEKqms0+dbK7SyuFLX/e0DOScdnN9HS4pKJTUH4AMGaN8BmcoKp2jd9iptLqvRrMcXqKquUWMHZ+vzrZU7A/CsI/fV8P4ZGpjt3brgRK4JPlTSSufcKudcnaSnJJ3WaoyTlNP8cx9JG3zuCQAAAN3ULzNVowZkaf+8zJ0zwm0F4AHZYYVTkjS8f4YG5YR3zgiv2FTuawDujN8heJikdS2Oi5rPtXSTpAvMrEjSHElXtlXIzGaZWaGZFRYXF/vRKwAAAGLQVhBuHYCj2grCiQrAkhSfjdg6dq6kR5xzd5nZ4ZIeN7MJzrldFoQ45+6XdL/UtBwiAX0CAACglX6ZqZKyJEn/vPwI1dQ37haAo6JBWJKevOwwNUQiCQnAkv8heL2k4S2O85vPtTRT0gmS5Jx718zCkgZI2uJzbwAAAPBANAhX1jYonBJqMwBHRYPwtvJapaSEEhKAJf+XQ8yXNNrMRplZqqRzJM1uNWatpGMlycwOlBSWxHoHAACAXqRfZqry+2d0GICjwilJGpagGeAoX0Owc65B0hWSXpK0XNLTzrmlZnazmZ3aPOwHki4zsyWSnpR0keuNr7EDAABAr+H7mmDn3Bw1PfDW8txPW/y8TNIRfvcBAAAARPHGOAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAA4ImquoYuj62s7fpYPxCCAQAA0G3bK+v0wFurVFxe2+nY0uo6PbuwSEXbq+LQWdsIwQAAAOiW7ZV1umn2R/r1K59q1uOFHQbh0uo6Pfn+Ot3wz6X62n3vJiwIE4IBAACwx6IBePaSjZKkRWt3tBuEowH41hdXSJI2ltYkLAgTggEAALBHWgfgqLaCcOsAHJWoIEwIBgAAQMzaC8BRLYNwWXV9mwE4KhFBmBAMAACAmG2rqNWLH23ucMyitTt02WPzde/cle0G4KiNpTX6++L1Kq+p97LNdhGCAQAAELMRuRn682XTlJrUcZxcvK5U9725qtN6l04fpW8cto+ywyletdghQjAAAABilpacpIn5fboUhDtz6fRRuuKY/dU3I9Wj7jpHCAYAAMAe8SIIJyIAS4RgAAAAdEN3gnCiArBECAYAAEA3RYPwqz84SvsOyOx0fGpSSH++dJoun7FfQgKwRAgGAACAB0oq63T7iyt019cP7jAIpyaFdM95h2jOhxu1obRG1XUNcezyvwjBAAAA6JZNpdX6nz8t1HMfbNR3n1rUbhBuGYD//P5anXPfe/p8a1VCgjAhGAAAAHssGoAXrdshSVq3vbrNINwyAP9z8QZJUnltg86+792EBGFCMAAAAPZI6wAc1ToItxWAoxIVhM05F7cP80pBQYErLCxMdBsAAACB1V4Abml4/3Tdfc4h2lFVr38sXr9bAG4pOy1Zf/nW4Ro1IEPpqcme9GhmC5xzBW1d8+YTAAAAECgVtY1atbWywzHrtlfryicXacygbL26YkuHY8trG1S4ZrvyslI9C8EdYTkEAAAAYpaXlao/XzpNfdI7fs1xUUl1pwFYkn580oH68vhByssJe9VihwjBAAAAiFmfjFQN75fepSDcmR+fdKBOmTREg3PSPequc4RgAAAA7BEvgnAiArBECAYAAEA3dCcIJyoAS4RgAAAAdFOfjFSN6J+uJy6b1uV7LvviKJ0+eVhCArBECAYAAIAHauojeujt1V0e/+LSTaqua/SvoU4QggEAANAtW8pqdOsLK/S3hUVdvmfd9mqd98f3tG57lY+dtY8QDAAAgD0WDcDPLlof872JDMKEYAAAAOyR7gTgqEQFYUIwAAAAYhZLADbr+HoigjAhGAAAADHbVlmn2Us2dDruxlPG6eWrjux0+7R126v11Ly12lZR61WLHSIEAwAAIGaDc9L0xwsLlBxqf5r3plPH6SsHDdGI/hn6y7cO6zAInzUlXxd+YaRys9L8aHc3hGAAAADErF9mmg7O79NuEL7p1HE6acIQDcwJKy0lSaNyM9sNwmdNydcPjx+jgTnheLQuiRAMAACAPdReEG4ZgKPaC8KJCMCSZM65uH6gFwoKClxhYWGi2wAAAICkkspaLSkq1dufFiu/f8ZuAbil2vpGfb6tUk/NW6tGJ105Y3/fArCZLXDOFbR1LdmXTwQAAEBg9MtM04ShORo9MFvJSdZhqE1LSdLwvmHNnL6vUpNDcZ8BjmI5BAAAALple/NM8JF3zNVzSzZoS1lNu2Nr6hq0tqRGX7n7Ld32wgpt7mCsnwjBAAAA2GPbK2u1aO0OzXp8gRojTj9/frlmtxOEa+oa9Pm2Kp1937sqq2nQs4vWJywIE4IBAACwR1oH4Ki2gnDrAByVqCDMmmAAAADErL0AHPXz55dLkk49eKhywsltBuCo6FvnrjtxrAbFaY0wIRgAAAAx21xW224Ajvr588vlJB05Oq/dABz17KL1GtwnrJnTR8XlhRkshwAAAEDMcjNTdcYhwzodd8vzy3X8b97sMABL0j65GTpv2gjeGAcAAICea2BOWNceP0Zfm5Lf7Vr75Gboz5dOU36/DA866xpCMAAAAPaIF0E4EQFYIgQDAACgG7oThBMVgKU9CMFmtr+ZnWlm4/xoCAAAAL3LngThRAZgqQsh2MzmmtmA5p+/IWmOpBMl/cXMrvS5PwAAAPQCOeFkXfiFkV0ef+zYgcpITdxGZV355Dzn3OFN1bAAAB60SURBVNbmn78r6XDn3DYzy5D0nqR7fOsOAAAAPV70RRjnPfBel+956J3VGtI3rNMOHqaBcdobuKWuLIeoN7Po/hcVkiqbf66VlORLVwAAAOgV2nsTXFfc8vwK/XPJ+jZfsey3rswEf1/Sy2b2N0lLJb1mZi9Jmi7pYT+bAwAAQM/VnQAcdcvzKyQp7jPCnc4EO+del/QFSRsl1UtaIKlG0pXOuTt97Q4AAAA9khcBOCoRM8JdWo3snCuV9PuOxpjZPc45HpQDAAAIgKIdNV0KwCP6Z2jM4Cy9smxLh+NueX6FUpOSdNKEwcqLw4ywl4/kHeFhLQAAAPRgWWnJGj0oWwvWlLQ7JroNWjglSX3TV+iZBUXtjs0JJ2vqyP7KDsdnxwhelgEAAICYDe4T1r3nTdaUffq1eb3lPsADstI63Ec4J5ysp2Ydrn0HZCgcp23TCMEAAADYI+0F4bZehNHeCzUSEYAlb0OweVgLAAAAvUDrINzRm+BaB+FEBWAphhBsZgd1MuS37dx3gpl9bGYrzez6dsZ83cyWmdlSM3uiqz0BAAAg8aJB+KuThnX6KuRoEL74iJEJC8CSZM65rg00e0tSmqRHJP25eceIzu5JkvSJpOMkFUmaL+lc59yyFmNGS3pa0jHOuRIzG+ic6/DxwYKCAldYWNilvgEAABAf2ypqlZuV1qWxW8pqlBNO9jUAm9kC51xBW9e6PBPsnPuipPMlDZe0wMyeMLPjOrntUEkrnXOrnHN1kp6SdFqrMZdJutc5V9L8OR3vnwEAAIAeqasBWGqaEU7EDHBUTGuCnXOfSvqJpOskHSXpbjNbYWZntHPLMEnrWhwXNZ9r6QBJB5jZO2b2npmd0FYhM5tlZoVmVlhcXBxL2wAAAMAuYlkTPNHMfi1puaRjJJ3inDuw+edfd6OHZEmjJR0t6VxJD5hZ39aDnHP3O+cKnHMFeXl53fg4AAAABF0sM8H3SFoo6WDn3OXOuYWS5JzboKbZ4basV9Pyiaj85nMtFUma7Zyrd859rqY1xKNj6AsAAACISSwh+CuSnnDOVUuSmYXMLEOSnHOPt3PPfEmjzWyUmaVKOkfS7FZj/qGmWWCZ2QA1LY9YFUNfAAAAQExiCcH/lpTe4jij+Vy7nHMNkq6Q9JKallE87ZxbamY3m9mpzcNekrTNzJZJmivpWufcthj6AgAAAGISyyN5YedcRfTAOVcRnQnuiHNujqQ5rc79tMXPTtLVzX8AAAAA38UyE1xpZpOjB2Y2RVK19y0BAAAA/oplJvgqSc+Y2QY1vSJ5sKSzfekKAAAA8FGXQ7Bzbr6ZjZU0pvnUx865en/aAgAAAPwT62s6pkoa2XzfZDOTc+4xz7sCAAAAfNTlEGxmj0vaT9JiSY3Np50kQjAAAAB6lVhmggskjWvezQEAAADotWLZHeIjNT0MBwAAAPRqscwED5C0zMzmSaqNnnTOndr+LQAAAEDPE0sIvsmvJgAAAIB4imWLtDfMbB9Jo51z/25+W1ySf60BAAAA/ujymmAzu0zSXyXd13xqmKR/+NEUAAAA4KdYHoy7XNIRksokyTn3qaSBfjQFAAAA+CmWEFzrnKuLHphZspr2CQYAAAB6lVhC8Btm9v8kpZvZcZKekfScP20BAACgNymvrtem0mptq6jtdGx9Q0TrS6pVXF4Th87aFksIvl5SsaQPJX1L0hzn3I996QoAAAC9Rnl1vRauLdH02+bqXx9s7DAI1zdEtGprpU66+y3d/uLHCQvCsWyRdqVz7reSHoieMLPvNZ8DAABAAEUD8MxHC9UQcbpx9lJJ0skThyg3K22XsdEA/PX73lVpdb2eWVAkSfrhCWOUlx2Oa9+xzARf2Ma5izzqAwAAAL1M6wAcdePspbvNCLcOwFHPLChKyIxwpzPBZnaupPMkjTKz2S0uZUva7ldjAAAA6LnaC8BRLWeEc8IpbQbgqETMCHdlOcR/JG1U02uT72pxvlzSB340BQAAgJ5t/Y7qdgNw1I2zl8rJafr+ee0G4KhnFhRpYHZYl35xlPplpvrR8i46DcHOuTWS1kg63PduAAAA0CvkZqXq1IOH6tlF6zscd9PsZTKTXCcb6w7vn65zDh0elwAsxfbGuDPM7FMzKzWzMjMrN7MyP5sDAABAz5SXHdaPThqrMw4Z1unYrgTgJy49TMP7Z3jUXedi2R3idkmnOOeW+9UMAAAAeo9oEJbU6YxwexIRgKXYdofYTAAGAABAS7HMCLeWqAAsxTYTXGhmf5H0D0k797twzj3reVcAAADoNfZkRjiRAViKbSY4R1KVpC9LOqX5z8l+NAUAAIDepW9Gqi794qguj//yuMHKDscyH+utLn+yc+5iPxsBAABA7xR9Eca5D7zf5XsefPtzDe+frpMnDtWAVm+Wi4dYdoc4wMxeNbOPmo8nmtlP/GsNAAAAPV17b4LriptmL9O/PtigrS3eLBcvsSyHeEDSjyTVS5Jz7gNJ5/jRFAAAAHq+7gTgqEQF4VhCcIZzbl6rcw1eNgMAAIDewYsAHJWIIBxLCN5qZvtJcpJkZmep6XXKAAAACJi1JVVdCsD5/dI1Y0xep/Vumr1MLy/dpO1xCsKxhODLJd0naayZrZd0laT/8aUrAAAA9GiZqcnad0Bmh2OG90/Xk5cdpju/dnCn+whnpSVrYn5fZabFZ8eILodg59wq59yXJOVJGuucm+6cW+1bZwAAAOixBvcJ6/cXTNEhw/u2eb3lPsC5WWkdvlAjKy1ZT806TKMHZiktJcnPtneKZXeI75lZdK/gX5vZQjP7sn+tAQAAoCdrLwi39SKM9t4sl4gALMW2HOIS51yZml6WkSvpG5Ju9aUrAAAA9Aqtg3BHb4JrHYQTFYCl2F6bbM1/nyTpMefcUjOzjm4AAADA3i8ahH/+/DJdd8LYDl+FHA3CGWlJOmfqiIQEYEky51zXBpo9LGmYpFGSDpaUJOl159wU/9prW0FBgSssLIz3xwIAAKAD2ytr1T+za29/Ky6vUU44xdcAbGYLnHMFbV2LZSZ4pqRJklY556rMLFcSr1IGAACAJHU5AEtNM8KJ1GkINrOxzrkVagrAkrQvqyAAAADQm3VlJvhqSbMk3dXGNSfpGE87AgAAAHzWaQh2zs1q/nuG/+0AAAAA/otln+CvmVl2888/MbNnzewQ/1oDAAAA/BHLPsE3OOfKzWy6pC9JelDSH/xpCwAAAPBPLCG4sfnvr0i63zn3vKRU71sCAAAA/BVLCF5vZvdJOlvSHDNLi/F+AAAAoEeIJcR+XdJLko53zu2Q1F/Stb50BQAAAPioyyHYOVcl6Z+SKs1shKQUSSv8agwAAADwS5ffGGdmV0q6UdJmSZHm007SRB/6AgAAAHwTy2uTvydpjHNum1/NAAAAAPEQy5rgdZJK/WoEAAAAiJdYZoJXSXrdzJ6XVBs96Zz7leddAQAAAD6KJQSvbf6TKvYHBgAAQC/W5RDsnPuZJJlZVvNxhV9NAQAAAH7q8ppgM5tgZoskLZW01MwWmNl4/1oDAAAA/BHLg3H3S7raObePc24fST+Q9IA/bQEAAAD+iSUEZzrn5kYPnHOvS8r0vCMAAADAZzHtDmFmN0h6vPn4AjXtGAEAAAD0KrHMBF8iKU/Ss5L+JmlA8zkAAACgV4lld4gSSd/1sRcAAAAgLmLZHeIVM+vb4rifmb3kT1sAAACAf2JZDjHAObcjetA8MzzQ+5YAAAAAf8USgiNmNiJ6YGb7SHLetwQAAAD4K5bdIX4s6W0ze0OSSfqipFm+dAUAAAD4KJYH4140s8mSDms+dZVzbmv0upmNd84t9bpBAAAAwGuxzASrOfT+q53Lj0ua3O2OAAAAAJ/Fsia4M+ZhLQAAAMA3XoZgHpIDAABAr+BlCAYAAAB6BS9DcJ2HtQAAAADfxPRgnJlNlDSy5X3OuWeb/z6sndsAAACAHqXLIdjMHpI0UdJSSZHm007Ssz70BQAAAPgmlpngw5xz43zrBAAAAIiTWNYEv2tmhGAAAAD0erHMBD+mpiC8SVKtmvYFds65ib50BgAAAPgklpngByV9Q9IJkk6RdHLz3x0ysxPM7GMzW2lm13cw7kwzc2ZWEENPAAAAQMximQkuds7NjqW4mSVJulfScZKKJM03s9nOuWWtxmVL+p6k92OpDwAAAOyJWELwIjN7QtJzaloOIem/W6S141BJK51zqyTJzJ6SdJqkZa3G/a+k2yRdG0M/AAAAwB6JZTlEuprC75fVtAwiuiSiI8MkrWtxXNR8biczmyxpuHPu+Y4KmdksMys0s8Li4uIY2gYAAAB21eWZYOfcxV5/uJmFJP1K0kVd+Pz7Jd0vSQUFBc7rXgAAABAcsbwsIyxppqTxksLR8865Szq4bb2k4S2O85vPRWVLmiDpdTOTpMGSZpvZqc65wq72BgAAAMQiluUQj6sppB4v6Q01BdryTu6ZL2m0mY0ys1RJ50ja+XCdc67UOTfAOTfSOTdS0nuSCMAAAADwVSwheH/n3A2SKp1zj0r6iqRpHd3gnGuQdIWklyQtl/S0c26pmd1sZqfuadMAAABAd8SyO0R98987zGyCpE2SBnZ2k3NujqQ5rc79tJ2xR8fQDwAAALBHYgnB95tZP0k3qGlJQ5akNsMsAAAA0JPFsjvEH5t/fEPSvv60AwAAAPivy2uCzWyQmT1oZi80H48zs5n+tQYAAAD4I5YH4x5R0wNuQ5uPP5F0ldcNAQAAAH6LJQQPcM49LSki7dz5odGXrgAAAAAfxRKCK80sV5KTJDM7TFKpL10BAAAAPopld4ir1bQrxL5m9o6kPEln+dIVAAAA4KNYQvAySX+XVKWmN8X9Q03rggEAAIBeJZblEI9JGivpF5LukXSAml6lDAAAAPQqscwET3DOjWtxPNfMlnndEAAAAOC3WGaCFzY/DCdJMrNpkgq9bwkAAADwV6czwWb2oZp2hEiR9B8zW9t8vI+kFf62BwAAAHivK8shTva9CwAAACCOOg3Bzrk18WgEAAAAiJdY1gQDAAAAewVCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACJzkRDcAAACA3qe4vEYVtY2e181KS1Jedtjzuq0RggEAABCzitpGzbjzdc/rzr3maOVle152NyyHAAAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgZOc6AYAAADQ+2SmJunfVx/lS914IAQDAAAgZlV1jfrSr97wvO7r1xztec22sBwCAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOD4HoLN7AQz+9jMVprZ9W1cv9rMlpnZB2b2qpnt43dPAAAACDZfQ7CZJUm6V9KJksZJOtfMxrUatkhSgXNuoqS/Srrdz54AAAAAv2eCD5W00jm3yjlXJ+kpSae1HOCcm+ucq2o+fE9Svs89AQAAIOD8DsHDJK1rcVzUfK49MyW90NYFM5tlZoVmVlhcXOxhiwAAAAiaHvNgnJldIKlA0h1tXXfO3e+cK3DOFeTl5cW3OQAAAOxVkn2uv17S8BbH+c3ndmFmX5L0Y0lHOedqfe4JAAAAAef3TPB8SaPNbJSZpUo6R9LslgPM7BBJ90k61Tm3xed+AAAAAH9DsHOuQdIVkl6StFzS0865pWZ2s5md2jzsDklZkp4xs8VmNrudcgAAAIAn/F4OIefcHElzWp37aYufv+R3DwAAAEBLvodgAAAA7H0y0pI095qjfakbD4RgAAAAxKyytlEz7nzd87pzrzlayva87G56zBZpAAAAQLwQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAEDiEYAAAAgUMIBgAAQOAQggEAABA4hGAAAAAETnKiGwAAAEDvk54S0lOzDvOlbjwQggEAABCz2oaIzrn/Pc/rvnHt0Z7XbAvLIQAAABCziOtddVsjBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMBJTnQDAAAA6H0y05I095qjfakbD4RgAAAAxKyytlEz7nzd87pzrzlayva87G5YDgEAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcJIT3UAiFZfXqKK2cedxWFIoJUlOTukpIVXUNqqmPqJVWyu0o6peaSkh7Z+XpT7pKUoKmfqmmcrrTX3DIRWV1u1SOystSXnZ4Tj/RgAAAOiKQIfgitpGzbjzdUnSoxdM0tjhuUpJcqqsc3rgrc/0TOE6ldU07HZfyKQZYwbq8hn7a2ifsHaUNSi/T6pG3/DyzjFzrzlaednx+k0AAADiKystSXOvOdqXuvEQ6BAc9egFkzRueK4aJT27aKPueOlj1TZE2h0fcdKrK7bo1RVbdOKEwfrJyeMkSZ/+75d3CcIAAAB7q7zscK+e8Av8muDoDHDEpB///UP9/PnlHQbg1l74aJPO/N1/VLSjVlJTEAYAAEDPFugQHJY0dniunHO6+bmlenXFlj2qs6msRuc+8L6KKxtUVlZHEAYAAOjhAh2Ck1KTlJYsLVi3Q89/uKlbtTaV1ejm55aqLimkkupGDUz3qEkAAAB4LtAhOCSpqt7p/z37oSf1Xly6Wet3VKtPmmlLtSclAQAA4INAh+C+GckqXL1dpdX1ntX8v7krVVLd9TXFAAAAiD/fQ7CZnWBmH5vZSjO7vo3raWb2l+br75vZSL97itpSUacn563ztOabnxSrwTlPawIAAMBbvoZgM0uSdK+kEyWNk3SumY1rNWympBLn3P6Sfi3pNj97ainipA/Xl3pec0dVvTI8rQoAAAAv+T0TfKiklc65Vc65OklPSTqt1ZjTJD3a/PNfJR1rZuZzX5KkxohTRe3uL8Poro83lat/n1TP6wIAAMAbfofgYZJarjcoaj7X5hjnXIOkUkm5rQuZ2SwzKzSzwuLiYk+ai/i0bKGmoVFxyvEAAADYA73mwTjn3P3OuQLnXEFeXp4nNZND/vz6fdJTFInwcBwAAEBP5XcIXi9peIvj/OZzbY4xs2RJfSRt87kvSZJJGpid5nndAwZla32ZdztOAAAAwFt+h+D5kkab2SgzS5V0jqTZrcbMlnRh889nSXrNufhsrxBOMU3Zp5+nNTNSk5SZmuRpTQAAAHjL1xDcvMb3CkkvSVou6Wnn3FIzu9nMTm0e9qCkXDNbKelqSbtto+aXrBTTzOmjPK15xuRhykztNatMAAAAAinZ7w9wzs2RNKfVuZ+2+LlG0tf87qMtJTURDe0b1gGDsvTJ5opu10sOmS6dvq8aG5z6MhkMAADQYwV6ytLMNCAjWXefc4iSQt3fzeH7x41WZlpIDWaqafSgQQAAAPgi0CG4uj6ikupG9c9I0c9Obf0Oj9hM3z9XZ04erogzlZVXqcajHgEAAOC9QIdgSZr2y9fkJH3pwEG6+bTxezQjPGNMnu782iSlmVRWXqXj7nnX+0YBAADgmcCHYKkpCJukE8YN0r+unK79B2Z16b6stGTd9fWD9YszDlKKSVsJwAAAAL2C7w/G9RbTfvma3v/RMdovN6zHLjlURSVV+uNbn2vBmhJtq6zbOS6cEtK4IX109tR8fXF0njJSQqptdNpOAAYAAOg1CMEtTPvla3rvR8fIJB08NEs//+oE1TZE5JxTfcQpZFJqUkiS06DsNJVWNaghwhIIAACA3sbi9F4KTxUUFLjCwsJu1ykur1FFrT/bOGSlJSkvO+xLbQAAAHTOzBY45wrauhbomeC87LDyshPdBQAAAOKNB+MAAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIHTK1+WYWbFktYk4KMHSNqagM+Fv/he9158t3svvtu9E9/r3itR3+0+zrm8ti70yhCcKGZW2N5bR9B78b3uvfhu9158t3snvte9V0/8blkOAQAAgMAhBAMAACBwCMGxuT/RDcAXfK97L77bvRff7d6J73Xv1eO+W9YEAwAAIHCYCQYAAEDgEIIBAAAQOITgLjCz1Wb2oZktNrPCRPcD75hZXzP7q5mtMLPlZnZ4ontC95nZmOZ/X6N/yszsqkT3he4zs++b2VIz+8jMnjSzcKJ7gjfM7HvN3+tS/n3t3czsITPbYmYftTjX38xeMbNPm//ul8geJUJwLGY45yb1tD3u0G2/lfSic26spIMlLU9wP/CAc+7j5n9fJ0maIqlK0t8T3Ba6ycyGSfqupALn3ARJSZLOSWxX8IKZ/f/27i3UiiqO4/j3l8egY2KhJSWJSSGioilJRolgVEakRNgV7GYEPtlTRRFBPQRBkZAvXo5QCqXShSBP+GARKGEm3ijISC09CplFgWn9ethz6HQQvJzxrO3Zv8/LrFkzzP7Nw97898yaWROBhcB0Gr/Fd0u6rmyq6IMO4M5efc8CG21fD2ys1otKERwtS9IwYCawHMD2X7Z/LZsqzoPZwPe2S8wyGfVrAy6R1Aa0Az8XzhP1GA9ssf2n7ZPAJuDewpniHNn+HPilV/dcYFXVXgXM69dQp5Ai+MwY6JS0VdJTpcNEba4FjgArJW2TtEzSkNKhonYPAGtKh4i+s/0T8DqwDzgIHLPdWTZV1GQncKuk4ZLagbuAawpninqNtH2wah8CRpYMAymCz9QttqcCc4BFkmaWDhS1aAOmAktt3wD8QRPcnon6SLoYuAd4v3SW6LtqDOFcGn9grwaGSHqkbKqog+09wGtAJ/Ap8A3wd9FQcd648X7e4u/oTRF8BqqrD9g+TGNc4fSyiaImB4ADtrdU62tpFMUxcMwBvrbdVTpI1OI24AfbR2yfANYDNxfOFDWxvdz2NNszgaPAd6UzRa26JF0FUC0PF86TIvh0JA2RNLS7DdxO47ZNXOBsHwL2SxpXdc0GdheMFPV7kAyFGEj2ATdJapckGt/ZPMw6QEi6slqOpjEeeHXZRFGzj4AFVXsB8GHBLEBmjDstSWP576nyNmC17VcLRooaSZoCLAMuBvYCj9k+WjZV1KH607oPGGv7WOk8UQ9JLwP3AyeBbcCTto+XTRV1kPQFMBw4ATxje2PhSHGOJK0BZgEjgC7gJeAD4D1gNPAjMN9274fn+lWK4IiIiIhoORkOEREREREtJ0VwRERERLScFMERERER0XJSBEdEREREy0kRHBEREREtJ0VwRESTkDRGUt5DHhHRD1IER0RERETLSREcEdFc2iS9K2mPpLXV7GjTJG2StFXShh5Tjy6U9JWk7ZLWSWqv+jskLZW0WdJeSbMkraiO2VHtM6jab6ekHZIWFzzniIh+lyI4IqK5jAPetj0e+A1YBCwB7rM9DVgBdM9aud72jbYn05g++Ikex7kcmAEspjFd6RvABGBSNVPiFGCU7Ym2JwErz/+pRUQ0j7bSASIi4n/22/6yar8DPA9MBD6TBDAIOFhtnyjpFeAy4FJgQ4/jfGzbknYAXbZ3AEjaBYwBNgFjJS0BPgE6z+tZRUQ0mRTBERHNpfdc9r8Du2zPOMW+HcA829slPQrM6rHteLX8p0e7e73N9lFJk4E7gKeB+cDjfU4fEXGByHCIiIjmMlpSd8H7ELAZuKK7T9JgSROq7UOBg5IGAw+fzYdIGgFcZHsd8AIwtZb0EREXiFwJjohoLt8CiyStAHbTGA+8AXhL0jAav9tvAruAF4EtwJFqOfQsPmcUsFJS98WQ5+qJHxFxYZDd+85bRERERMTAluEQEREREdFyUgRHRERERMtJERwRERERLSdFcERERES0nBTBEREREdFyUgRHRERERMtJERwRERERLedfIDITifYTq4UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeZyVZf3/8ffnzL6yDAPIDKuiiIgIg0gaimYumZpagVqZKFrqtzL7avWr1G+2uVV+/VZolrlbWVHuC+YODIgLm6CyzMDAMCyzntnO9ftj5tAIs52Z+z5nhvv1fDx8MOe+r/M5n+E87PH26rqvy5xzAgAAAIIklOgGAAAAgHgjBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMBJTnQDPTFkyBA3ZsyYRLcBAACAPmzZsmU7nHP57d3rlyF4zJgxKi4uTnQbAAAA6MPMbGNH91gOAQAAgMAhBAMAACBwCMEAAAAInH65Jrg9jY2NKikpUTgcTnQrCZWenq7CwkKlpKQkuhUAAIA+64AJwSUlJcrJydGYMWNkZoluJyGcc6qoqFBJSYnGjh2b6HYAAAD6rANmOUQ4HFZeXl5gA7AkmZny8vICPxsOAADQlQMmBEsKdACO4u8AAACgawfMcggAAAD0Dc3NzdpWVS/nTE2RiJyTUpJMEScNykhRdkbin10iBHtk9+7deuihh/T1r3890a0AAAAkxI7qejU0RfTcqm1a+PYWrdpSqbrGZklSyKSxQ7J1/CF5+vLMMcpMS9JBAzIS1ish2CO7d+/W//3f/xGCAQBAIJXtCevvK0p1x3Pvq74pst/9iJM+KK/WB+XVuu+NjTp5wlDdePYRGpSerKyM1Lj3e0CtCU6k66+/Xh988IGmTJmi73znO7rllls0ffp0TZ48WT/60Y8kSRs2bNCECRN08cUX69BDD9WFF16o559/Xscdd5zGjx+vJUuWSJJuuOEGfelLX9LMmTM1fvx43X333ZKkrVu3atasWZoyZYomTZqkV155JWG/LwAAQNSW3XW6/P5i/eypNe0G4Pa8sGa7zvj1K1q1rVq7aht87nB/hGCP/OxnP9PBBx+sFStW6JRTTtG6deu0ZMkSrVixQsuWLdPLL78sSVq/fr2+/e1va82aNVqzZo0eeughvfrqq7r11lv1k5/8ZG+9d955Ry+++KLeeOMN3XTTTdqyZYseeughnXrqqVqxYoXefvttTZkyJVG/LgAAgCSpbE+dvnLvEr1dsifm91bWNemiexbrox01qq9v8qG7jrEcwgfPPvusnn32WR199NGSpOrqaq1bt06jRo3S2LFjdeSRR0qSjjjiCJ188skyMx155JHasGHD3hpnn322MjIylJGRodmzZ2vJkiWaPn26LrnkEjU2Nuqcc84hBAMAgIQq2xPWT55Yo3Xbq3tco74povl/KtbCq47XiLT4RVNmgn3gnNN3v/tdrVixQitWrND69es1b948SVJaWtrecaFQaO/rUCikpqb//BfQvludmZlmzZqll19+WQUFBbr44ov1pz/9KQ6/DQAAQPs2VNRo4Ttbel1nR3WDbn/ufW2vjN9ZB4Rgj+Tk5KiqqkqSdOqpp+ree+9VdXXLfxWVlpZq+/btMdX7xz/+oXA4rIqKCr300kuaPn26Nm7cqGHDhumyyy7TpZdequXLl3v+ewAAAHTHlt11uu3ZtZ7V+/tbpWpsdp7V6wrLITySl5en4447TpMmTdLpp5+uCy64QDNnzpQkZWdn64EHHlBSUlK3602ePFmzZ8/Wjh079IMf/EAjRozQfffdp1tuuUUpKSnKzs5mJhgAACRMY3NESzfs8qxeU8Tpyfe26rJPjvOsZmfMOf8St5ndK+lMSdudc5PauW+SfiXpDEm1ki52znU5vVlUVOSKi4s/dm316tU6/PDDPek70W644QZlZ2fr2muv7dH7D6S/CwAA0Dc9/d5WXfGAt/+v9ImH5euW8yYrPzfdk3pmtsw5V9TePb+XQ/xR0mmd3D9d0vjWf+ZL+o3P/QAAAMADSzfs9Lzmqi2VCndzi7Xe8nU5hHPuZTMb08mQsyX9ybVMR79pZgPN7CDn3FY/++rrbrjhhkS3AAAA0KFIJKLdtY2e160MNypkXY/zQqIfjCuQtLnN65LWa/sxs/lmVmxmxeXl5XFpDgAAAPsLhUJKTfY+RqYmhRSvR+MSHYK7zTm3wDlX5Jwrys/PT3Q7AAAAgXbEiAGe1zw4P9vzmh1JdAgulTSyzevC1msAAADow6aOGuh5zSkjB2p4jjcPxXUl0SF4oaQvW4tjJe0J+npgAACA/mBAZqqGe7SLQ9T5RYVK9mGZRXt8/RQze1jSG5IOM7MSM5tnZleY2RWtQ56U9KGk9ZLulvR1P/vx2yWXXKKhQ4dq0qT9doMDAAA4oAzJStVXjxvjWb2JB+VqUGaqZ/W64msIds7Ndc4d5JxLcc4VOud+75z7rXPut633nXPuSufcwc65I51zxV3V7MsuvvhiPf3004luAwAAwHdpKUk6e8oIjcnL7HWtkEm/OH+yRgzM8KCzbn5m3D6pj3nqqad05plnavr06TrzzDP11FNP9brmrFmzNHjwYA+6AwAA6PuGD8jQXRdOVVovlzBcddJ4DfN4aUVXAhmCn3rqKd18880qKyuTc05lZWW6+eabPQnCAAAAQTJiYIb+8NXpPQ7CX545WhfOGKX8nDSPO+tcIEPwXXfdpXA4/LFr4XBYd911V4I6AgAA6J8GZaZqwvAc/fPq43X4QTndfl9OWrJ+PWeKvn7iwXGfBZZ8PjGur9q2bVtM1wEAANCxwVlpGpyVpj9cPF1LPtqp3/77Q+2ubdCXPzFGhx+UqyQzlVeH9efiEq0pq9KFM0ZpzvRRGpCerOyMlIT0HMgQPGzYMJWVlbV7HQAAAD0zfECGPjVxmKaNHqxdtQ1avnGXnltZpohzGpqbrqtmH6JReZlKSwopPwGzv20FMgRfeeWVuvnmmz+2JCI9PV1XXnllr+rOnTtXL730knbs2KHCwkLdeOONmjdvXm/bBQAA6POam5u1vbpBDy3epAfe3KhdtY3tjksOmU6ZOEzfOuVQDclK1eDs+K4F3ttHQj41wU4//XRJLWuDt23bpmHDhunKK6/ce72nHn74YS/aAwAA6FfKq8Jat71a33h4hcqr6zsd2xRxeuq9Mj27apuunH2wLpwxmjXB8XT66af3OvQCAAAEXXlVWP9eW67v/PUdOdf99zVHnH79wnq9W7pHPzt3MlukAQAAoH9obGzW2rLqmANwW4vWlOuWZ9ZqW2Wdt811gRAMAACAHimvadA3H32rxwE46i/LSrRuW7Wam5u9aawbCMEAAACIWU19o+5/Y6N2VDd4Uu+7f3tXZZXe1OoOQjAAAABitqeuSQ8v3eRZvc0767RlT/yWRBCCAQAAELPyqnrt7mAbtJ7667IS1Tc2eVqzI4RgD23evFmzZ8/WxIkTdcQRR+hXv/pVolsCAADwRfHGnZ7XfLd0j8o9Wl7RlcBukeaH5ORk3XbbbZo6daqqqqo0bdo0nXLKKZo4cWKiWwMAAPDU2rIqz2turKj1vGZHAjkT3NjYqKuvvlpXX321amtr9/7c2Ni7Kf2DDjpIU6dOlSTl5OTo8MMPV2lpqRctAwAA9BmRSETNkV5uCdGO5ohTyMzzuu0J5EzwNddco+XLl0uSzjjjjL3h95prrtGdd97pyWds2LBBb731lmbMmOFJPQAAgL7CzHw53GJwVqoivd1vrZsCGYKj6uvrVV/fcrRfWpp351ZXV1frvPPO0y9/+Uvl5uZ6VhcAAKCvmDJyoOc1JxXkKjkpPjPBgVwO8fOf/1wpKSkfu5aSkqJf/OIXva7d2Nio8847TxdeeKHOPffcXtcDAADoa5xzGjU4UyGP8+qMsXlKtvjE00CG4Ouuu26/9b+NjY367//+717Vdc5p3rx5Ovzww3XNNdf0qhYAAEBftrGiViccOtSzeukpIU0ZOVDhpvicGhfIEByVlpam7Oxsz5ZCvPbaa7r//vv14osvasqUKZoyZYqefPJJT2oDAAD0FaFQSNX1jbr0k2Pl1XNsFx07Wos/qlB8FkMEdE3w7bffvnem9uc//7muu+66vdd74/jjj5eL02JuAACARDpseK6efHervjJzjP74+oZe1RqTl6mTJwzTMyu3Kjcjpes3eCCQITglJeVju0B4tSMEAABAUAzKStXjy0v1i/Mna+22Kr3xQUWP6gzISNEvzj9K3338Xd3xxaOUkZLkcaftC/RyCAAAAPRMZkpIFx07Wj/8x3u65fzJOuPI4THXGJ2XqT9fMVPPrtyqkLVskZacFJ94GsiZYAAAAPROckg6b1qBZh48WNc8tkJnHVWgT08crp8+tVrbKus7fW9ackgXzhilU48Yrmsfe1vXnzFBn582UlmpSapraFZGqv+zwYRgAAAAxKy6PqKqcJMeX16qJR/t0pKPdmnmuDz99NzJCjc26/nV2/RuyR5t2lmriHManJWqSQUDdOy4PE0bNUgL396iC+5ZrOaI07cfe1t//donVNcYUVOkkRAMAACAvsc5p6SQqaq+UQ8u3rT3+hsfVuiNDys0Oi9Txx08RF89bqwKB2XITNpT26iVWyr1/Kpt+smTq9V2L4Gte8L6zUvrddGM0RqVlxmX34EQDAAAgJjVNTbrtmffb/fexopabazY1O69jjy6tESXzzpYdY3Nykj1P6ISgj02ZswY5eTkKCkpScnJySouLk50SwAAAJ4yM5mk13u4I0R7Gpojen7NNp0zpcCzmp0hBPtg0aJFGjJkSKLbAAAA8EUkEtGasirP676ybofOmBT7LhM9EcgQPGvWLNXW1u53PTMzUy+//HICOgIAAOg/zEzFG3Z5XndlaaXqm+Jz8Fgg9wluLwB3dj0WZqZPf/rTmjZtmhYsWNDregAAAH2Nc04VNZ1vg9YTu+saPDuGuSuBnAn206uvvqqCggJt375dp5xyiiZMmKBZs2Ylui0AAADPhEIhpXRyqMXEg3J1/PghOrJggIbmpEmSahuatWprpZZt3KWX3y9XU2T/Gd+UUPzmZwnBHisoaFnMPXToUH3uc5/TkiVLCMEAAOCAc/hBOftdO/nwoZp3/FiV7qrTc6u2aeGKLSqrDEuSstOSdcSIXB07Lk9Xn3SIXlizXXe//KHqmyJ73z82P0tJofhMBROCPVRTU6NIJKKcnBzV1NTo2Wef1Q9/+MNEtwUAAOC5qaMG7/05Nz1ZN549SbX1Tfr6g8u1u7Zxv/HV9U1a/NFOLf5op/530XqdO7VAD146Qzf+c5XeLd0jSZpcOFD52Wlx6Z8Q7KFt27bpc5/7nCSpqalJF1xwgU477bQEdwUAAOC9vOxUDclOVcRJv71omu5atF7/fr+8W+9tjjj9ubhEr7y/Q7+cM0X/++J6vbp+hz4/rVDJnSyz8FIgQ3BmZmaHu0P0xrhx4/T222/3qgYAAEB/kJeVqkuOG6OjRw3Wz55areWbdsdco6wyrEvvK9Y9XylSZmrS3vXD8RDIEMw2aAAAAL1T19ikc44u1J0vrOtRAI6qrm/Stx97W4/MP1ZpySE1R1xc1gUHcos0AAAA9E64MaLNu2r18NLNva5VurtO9772kRqaI6qpb/Kgu64dUCHYufhsrtyX8XcAAADioTnidOcL6z2r99DiTaptaFZqUnx2hzhgQnB6eroqKioCHQKdc6qoqFB6enqiWwEAAAe4huaIXvtgh2f16psi+vf75R/bMs1PB8ya4MLCQpWUlKi8vHtPJR6o0tPTVVhYmOg2AADAAW7N1ip5Pff42vodOn3ScA3wtmy7DpgQnJKSorFjxya6DQAAgANeJBLR8k27PK+7ckulGpvj8//qHzDLIQAAABAfZqadNQ2e191d26g4HRhHCAYAAEBszMyXQy2SQ6Z4Pd1FCAYAAEDMjjgo1/Oao4dkKi05yfO67SEEAwAAIGZTRw/yvObRIwcpPZUt0gAAANBHDc5KVV5Wqqc1z59WqEiEB+MAAADQB0UiEe2oCuviT4zxrOa4IVkKmamhkRAMAACAPigUCump98p08uHDNDzXm0O6fnbekbr12bUKx+mwDEIwAAAAYhKJRLS9ql7X/fUd/WrOFCX1cl+ziz8xRss27tLijypkbJEGAACAvsjMlBwK6d3SPfrn21t059yjexyEzz5qhE44NF+3P/e+kkPxi6aEYAAAAMTEzDThoBxJ0gOLN+m19Tv0wLxjVDgoo9s1UpNC+sFnDtepk4brigeWqbHZacyQzLjtE3zAHJsMAACA+JnWZou0Bxdv0lubduuOL0zRW5t26Y+vb9CWPeF235eeEtI5Uwo055hRenDxRv3PE6v33juqYKAGpMcnnhKCAQAAELO8rDQNzkrde3zyqq2V+uKCN3TiYUN149mTlJuerI07a7WpolbNkYiG5KTp0KE5Sk0J6en3yvTl3y9WZbjpYzXPm1aorDRCMAAAAPqozJSQLpwxSne+uH7vtYiTXlyzXS+u2a6kkOmQ/GwVDMpQyKSlG3bp9q3vq6ahud16Y4dkaWhumqrqmzQww9v9h9tDCAYAAEDsTJozfZQeK96sbZX1+91ujjit3ValtduqulXup+ceqezUpLgEYIkH4wAAANADtQ3NSk82/XrO0erlDmm68JhRKhiYodrGiGrqm7p+gwcIwQAAAOiRh5Zs0tCc1F4F4dMnDdfXZh+s19eXqzpOAVgiBAMAAKAHKsNNuuP5dfrD6xt16LBsPXbFTI0Y0P3T41KSTN89fYKuP32CNuyo1g/+sUp/W16qxmZOjAMAAEAfddCAdP32omnaWFGrpoiUlZqsx66YqetOO6zTo5TTkkM6b2qBnv7GLM0YO1h76hq1oaJOZxw5XF89fowGZsZnTTAPxgEAACBmAzNTdcyYQRqWm67P//Z1jRmSpRvOOkLTRg3UqUcMV0NzRCtLK7Vue5WaI05Dc9M1bdQgDclOVXlVveoam/XI0s16ZOlmffNT4/XdMw7X0JzuzyT3ljkXr3M5vFNUVOSKi4sT3QYAAEBg1YSb9OGOas1Z8Obebc+SQqaTJgzVnOkjlZ2arIbmZoVCJskUcRElh0JKCoX0zMoy/WVZifbUNe6td80p4zVn+igN7WQWOVZmtsw5V9TePWaCAQAAELMte+o+FoCllm3Rnlu1Tc+t2qbkkOnQYTmaNnqQRudl6rlV27R6a+V+B2RE3f7cOmWkJOuco0coPw4zwqwJBgAAQMxyM1I0ZeTADu83RZwamiP62okH6+wpI3TY8JwOA7AkDcpM0QmH5SszJcmPdvdDCAYAAEDM6hoaddsXjtJxB+e1e/+Qodm675JjdM8rH+qWZ9bo8lnj9OWZo9sdOygzRY9ePlOVdQ0KN7E7BAAAAPqoYQMytKumod0gHA3AP/7XKt372gY9VlyqT93xcrtBOBqAK6rDGp2XpbzstLj0TwgGAABAzDJSkjUmP2u/INw2AD/1Xtne8XUNzfsF4bYB+JChOXFZCxzFg3EAAADokWgQ3lBeo9u+cJR+/eJ6XTX7EP3PPgE4KhqEn//WLOWmp+isKSMSEoAlQjAAAAB6IRqEq2sb9V8nHaIkM+VldXzgRWZqkkJm+uL0QiWFpPzsHA3Kim8AlgjBAAAA6KU9tY2af/8yvVOyR4WDMvTQpTMkSQ8s3vSxcXnZqfrXVcfrp0+u0cJ3tigrNUkPzz9WqUnJykqPbyxlTTAAAAB6rGxP3d4ALEklu+p0wT2LNX/WOF00Y9TecfsGYEmqaWjW3AVv6oMd1arpZPs0P/gegs3sNDNba2brzez6du6PMrNFZvaWmb1jZmf43RMAAAB6b98AHLVvEG4vAEclKgj7emyymSVJel/SKZJKJC2VNNc5t6rNmAWS3nLO/cbMJkp60jk3prO6HJsMAACQWB0F4LaiSyPSU5L043+t3i8AtxVdGnHwkGzPlkYk8tjkYyStd8592NrII5LOlrSqzRgnKbf15wGSOv7bAQAAQJ9Q29CszTtrOx1TsqvlaOWDh2brlXU7Oh1b09CsVVsqNTw3PS7rg/1eDlEgaXOb1yWt19q6QdJFZlYi6UlJV7dXyMzmm1mxmRWXl5f70SsAAAC6aXBWyx6/gzJTOh23ZU+4ywAsSTefM0mzD8tXdlp8HpDrCw/GzZX0R+dcoaQzJN1vZvv15Zxb4Jwrcs4V5efnx71JAAAA/MeW3WE9v6qsW0G4KzefM0lTRw/SPa9uUEPzgXFscqmkkW1eF7Zea2uepMckyTn3hqR0SUN87gsAAAC9MGJghgoHZfY6CEcD8B3Pva/LPjlWAzM73mPYS36H4KWSxpvZWDNLlTRH0sJ9xmySdLIkmdnhagnBrHcAAADowwZmpmrWofm9CsJtA/CPz5mkobnxOzTD1xDsnGuSdJWkZyStlvSYc26lmd1kZme1Dvu2pMvM7G1JD0u62Pm5ZQUAAAA80TYIv/nBDj102bHdfu9lnxynEw7LT0gAlnzeIs0vbJEGAADQd+yubVB9U0Q3d7ENWlvR7dMGZqQo16clEJ1tkdYXHowDAABAP9bQFNHNT3Q/AEv/OVBjd118T4qLIgQDAACgx7ZXhvXjJ1Zr4duxH/XQEoTf1KaKzvcb9gMhGAAAAD3SmwAclaggTAgGAABAzGIJwCHr/H4igjAhGAAAADHbWdOgp97b2uW4H58zSc9dc0KX26eV7KrTn5dt1o7qeq9a7BQhGAAAADEbPiBd9148XSlJHU/z3nzOJJ16xDCNGpjR5T7Cc48ZqYtmjNaQ7DQ/2t0PIRgAAAAxG5iZqiMLBnQYhG8+Z5I+fcQw5eekKyUlSWMHZ3YYhOceM1LfPPlQDRtwgByWAQAAgANXR0G4bQCO6igIJyIAS4RgAAAA9MLAzFRNHJ67NwjffM4kfWrixwNwVEpKkkYMSNsbhOceM1LfOHl83AOwRAgGAABAL+ysqdf3//Gempsjeu26kzR19CBdet9SlVeF9xu7p65Bf3hto55fVaYn/uuTunL2Ifrigje1aWf89wnm2GQAAAD0yM6aen3vb+/p6ffKJEnnHl2gx98qlSQdWdAyOxydEd5T16A/vb5Rtz33viTpM0cO17/Xlqu6oVlDc9L0l699QqMGZ3raH8cmAwAAwFP7BmBJewOwJL1bWqlL/tgyI1xZ1/ixACxJT7xbpuqGZknS9qp6nf+b1+M6I0wIBgAAQMx21jRo0ZrtnY55t7RSX/3jUt3x/PsfC8Dt2V5Vryfe2aKqcKOXbXaIEAwAAICYjRyUqYfnH6u05M7j5HullfrDaxu6rHfFCeM095hRyknv/FANrxCCAQAAELO0lCQdcVBut4JwV644YZyuOOFgDcxM9ai7rhGCAQAA0CNeBOFEBGCJEAwAAIBe6E0QTlQAlgjBAAAA6KW0lCRNGjFAD8yb0e33XHDMqIQFYIkQDAAAAA/UNTbpjQ8ruj3+ndLdamiO+NhR5wjBAAAA6JXoQRi3d7ENWlvvlVZq3h+Xans7J8vFAyEYAAAAPbbvSXCxeDeBQZgQDAAAgB7pTQCOSlQQJgQDAAAgZl4E4KhEBGFCMAAAAGK2dU+4WwH4ihPG6bHLu94+7d3SSt398keqrm/yqsVOEYIBAAAQs4KBGbr9C0d1OuZrrfsATxk5qMt9hGcflq8rThin7LRkr1ttFyEYAAAAMctJT9EpE4d1GIS/dsI4Xd66D3BqcqjTAzVmH5avWz9/lPKy0/xuey9CMAAAAHqkoyDcNgBHdXSyXCICsEQIBgAAQC/sG4TbC8BR+wbhRAVgSTLnXNw/tLeKiopccXFxotsAAABAq6pwozZW1KpwUEaXRyHXNzZr485a5WWl+hqAzWyZc66ovXvxWXkMAACAA1pOeoomFQzo1ti0lCQdOizH5446x3IIAAAAeGJnTX23x5ZXhVXf2OxjN50jBAMAAKDXyvaE9aN/rFTJztoux5ZXhfWrF9Zp3fbqhAVhQjAAAAB6pWxPWF97YJn++c5Wzb3nzU6DcHlVWD99co0eeHOT5i54U+vLExOECcEAAADosWgAfmvzbknS5p11HQbhaAB+/K1SSVJVfZPm/C4xQZgQDAAAgB7ZNwBHtReE9w3AUYkKwoRgAAAAxKyjABzVNghXVNe3G4CjEhGE2SINAAAAMaupb9KHO2o6HbN5Z53m3P2mxg/N1qK15Z2Orapv0lubduug3HSlpSR52Wq7mAkGAABAzEYNztSjlx+rARkpnY4r2VXXZQCWpB99dqJOmzRcg+N0ehwhGAAAADFLSQ7p4CHZ3QrCXfnRZyfqs0eN0JA4Hp9MCAYAAECPeBGEExGAJUIwAAAAeqE3QThRAVgiBAMAAKCXUpJDOjg/Ww9fNqPb75l33Fh97uiChARgiRAMAAAAD+yubdA9r3zU7fHPri5TVbjJx446RwgGAABAr3R0EEZnNu+s0wX3vKnNnRyx7CdCMAAAAHqsJwE4KpFBmBAMAACAHulNAI5KVBAmBAMAACBmsQRgs87vJyIIE4IBAAAQsx3VDVr49pYux/3osxP17Ldmdbl92uaddXpkyWbtqmnwqsVOEYIBAAAQs4KB6brnK0VKDnU8zXvDWS37AI8ZnNXlPsLnTyvUV44brUFZqX60ux9CMAAAAGKWm5GqqaMGdhiEbzhros6c3HIQRlcHapw/rVD/fdphGpqTHo/WJRGCAQAA0EMdBeG2ATiqoyCciAAsSeaci+sHeqGoqMgVFxcnug0AAABIqqxr0PJNu1VeFVZNQ/N+AbitxqaIPthRraUfVWjjzjrNnzXOtwBsZsucc0Xt3Uv25RMBAAAQGLkZqZo0Ilf1TTlKTrJOj0JOSQ6pcEC6sg4bptTkUNxngKNYDgEAAIBe2VEV1tslezTrlkX659tbtK0y3OHYmroGbd4d1md+/Yp+/tSaTsf6iRAMAACAHosG4Pn3L1NzxOnHT6zuMAjX1DVo0+6wvvi7N1QZbtLjb5UmLAgTggEAANAj+wbgqPaC8L4BOCpRQZg1wQAAAIhZRwE46sdPrJYkffaoEcpOCbUbgKOip85dd/oEDcuNz4FbaRUAAB9nSURBVBphQjAAAABiVl7d0GEAjvrxE6vlJM0an99hAI56/K1SDR+QrkuOH9vpg3VeYTkEAAAAYpaXlapzjy7octzNT6zWqb98udMALEmj8zJ1wYxRcQnAEiEYAAAAPTA0N13fOfUwfX5aYa9rjc7L1IOXzlDhoEwPOuseQjAAAAB6xIsgnIgALBGCAQAA0Au9CcKJCsBSN0KwmQ2MRyMAAADon3oShBMZgKXuzQTvMLPnzWwegRgAAADtyUoN6SufGNPt8SdPGKrMlMRtVNadELxa0i8lnSTpAzP7h5nNMbMMf1sDAABAf1BT16BNu8K64O43u/2ee1/boL++tblPH5vc6Jz7l3PuQkmFkh6U9AVJJWb2kK/dAQAAoE/r6CS47rj5iTVa+HZpQoJwd+agLfqDc65O0mOSHjOzAZLO8asxAAAA9G29CcBRNz+xRpJ01lEFcTstTupeCH6wvYvOuT2S7vO2HQAAAPQHXgTgqEQE4S6XQzjnbu1OITO7s/ftAAAAoD/YWtXQrQA8anCmTpk4tMt6Nz+xRk+/V6Zte+KzNMLLR/KO87AWAAAA+rDstGSNH5ajZRt3dTgmug1aekqSBmas0Z+XlXQ4Njc9WdPHDFZ2anyOseCwDAAAAMRs+IB03XXBVE0bPajd+233AR6SndbpPsK56cl6ZP5MjR6UrqyMVD/b3osQDAAAgB7pKAi3dxBGRwdqJCIAS96GYOt6CAAAAA4k+wbhzk6C2zcIJyoASzGEYDM7soshv+rgfaeZ2VozW29m13cw5gtmtsrMVrL3MAAAQP8SDcLnTCno8ijkaBD+6nFjEhaAJcmcc90baPaKpDRJf5T0YOsWaV29J0nS+5JOkVQiaamkuc65VW3GjFfL3sMnOed2mdlQ59z2zuoWFRW54uLibvUNAAAA/+2oCqvZSSkh0+DstE7Hbq8MqzESUZKZBmakKD3Vn+OTzWyZc66ovXvd/kTn3CdbA+slkpaZ2RJJf3DOPdfJ246RtN4592FrI49IOlvSqjZjLpN0l3NuV+vndBqAAQAA0Lds2xPWlQ8tV/HGXRqTl6kHOpkN3l4Z1q3PrtVjxSXKTU/Wo5fP1Ni8TN+CcEdiWhPsnFsn6f9Juk7SCZJ+bWZrzOzcDt5SIGlzm9clrdfaOlTSoWb2mpm9aWantVfIzOabWbGZFZeXl8fSNgAAAHzSNgBL0oaKWl10z2KV7Krdb2zbACxJleEmffF3b+ijilqFG3p34EasYlkTPNnM7pC0WtJJkj7rnDu89ec7etFDsqTxkk6UNFfS3WY2cN9BzrkFzrki51xRfn5+Lz4OAAAAXtg3AEe1F4T3DcBRiQrCscwE3ylpuaSjnHNXOueWS5JzbotaZofbUyppZJvXha3X2iqRtNA51+ic+0gta4jHx9AXAAAA4qyjABzVNgjvqK5vNwBHJSIIx7L44jOS6pxzzZJkZiFJ6c65Wufc/R28Z6mk8WY2Vi3hd46kC/YZ83e1zAD/wcyGqGV5xIcx9AUAAIA4q6pv1Pvbqjods6GiVhfes1iHDsvWc6s6f+yrMtykJR/t1JCs1LisD45lJvh5SRltXme2XuuQc65J0lWSnlHLMorHnHMrzewmMzurddgzkirMbJWkRZK+45yriKEvAAAAxFnhwAw9Mn+mctM7D6wbK2q7DMCS9L0zJui0ScOVn5vuVYudimWLtBXOuSldXYsHtkgDAABIvHBDkz7cUas5C95QZbjnyxi+d8YEnT2lQMM8DsCdbZEWy0xwjZlNbVN0mqS63jYHAACA/ik9NVnjhmR2a0a4I34F4K7EEoK/KenPZvaKmb0q6VG1LHUAAABAQPUmCCcqAEsxhGDn3FJJEyR9TdIVkg53zi3zqzEAAAD0D9Eg/OBlx3b7PV/9xBidP7UwIQFYivGwDEnTJU2WNFXSXDP7svctAQAAoL+pDDfpgTc2dHv8orXbVdvY7Fs/XYnlsIz7Jd0q6Xi1hOHpktpdaAwAAIDg2F4Z1m3PrtWjHewD3J7OTpaLh1gWbhRJmui6u50EAAAADng9CcBR0SD8wKUzVDgo04fuOhbLcoj3JA33qxEAAAD0L70JwFGJmhGOJQQPkbTKzJ4xs4XRf/xqDAAAAH2XFwE4KhFBOJblEDf41QQAAAD6l4qaBv1leWmX4753xgSdcOhQff63r3d6oMaGilo98OZGXfbJccrLTvOy1XbFskXavyVtkJTS+vNSSct96gsAAAB92PDcdP3uomlKClmHY77/mQk6Z0qBRg/O0KOXd76P8DlHF+iS48bGJQBLse0OcZmkv0j6XeulAkl/96MpAAAA9G2DslI1bfSgDoPw9z8zQWcfVaChuelKT03W2LzMDoPwOUcX6HunT9DQOO4ZHMua4CslHSepUpKcc+skDfWjKQAAAPR9HQXhtgE4qqMgnIgALMUWguudcw3RF2aWLInt0gAAAAJs3yDcXgCO2jcIJyoAS5J1d9tfM/uFpN2Svizpaklfl7TKOfd9/9prX1FRkSsuLo73xwIAAKADu2oaVNPQpNSkUJehNtzQpPLqBqUldz22N8xsmXOu3cPdYtkd4npJ8yS9K+lySU865+72oD8AAAD0c4OyUjUoK7VbY9NTkzVycCwx1HuxfPrVzrlfSdobfM3sG63XAAAAgH4jljXBX2nn2sUe9QEAAADETZczwWY2V9IFksbuc0JcjqSdfjUGAAAA+KU7yyFel7RVLccm39bmepWkd/xoCgAAAPBTlyHYObdR0kZJM/1vBwAAAPBfLCfGnWtm68xsj5lVmlmVmVX62RwAAADgh1h2h/iFpM8651b71QwAAAAQD7HsDrGNAAwAAIADQSwzwcVm9qikv0uqj150zj3ueVcAAACAj2IJwbmSaiV9us01J4kQDAAAgH6l2yHYOfdVPxsBAAAA4iWW3SEONbMXzOy91teTzez/+dcaAAAA4I9YHoy7W9J3JTVKknPuHUlz/GgKAAAA8FMsITjTObdkn2tNXjYDAAAAxEMsIXiHmR2slofhZGbnq+U4ZQAAAKBfiWV3iCslLZA0wcxKJX0k6SJfugIAAAB8FMvuEB9K+pSZZUkKOeeq/GsLAAAA8E8su0N8w8yiewXfYWbLzezTXb0PAAAA6GtiWRN8iXOuUi2HZeRJ+pKkn/nSFQAAAOCjWEKwtf55hqQ/OedWtrkGAAAA9BuxhOBlZvasWkLwM2aWIyniT1sAAACAf2LZHWKepCmSPnTO1ZpZniSOUgYAAEC/02UINrMJzrk1agnAkjTOjFUQAAAA6L+6MxN8jaT5km5r556TdJKnHQEAAAA+6zIEO+fmt/452/92AAAAAP/Fsk/w51sfhpOZ/T8ze9zMjvavNQAAAMAfsewO8QPnXJWZHS/pU5J+L+m3/rQFAAAA+CeWENzc+udnJC1wzj0hKdX7lgAAAAB/xRKCS83sd5K+KOlJM0uL8f0AAABAnxBLiP2CpGckneqc2y1psKTv+NIVAAAA4KNuh2DnXK2kf0iqMbNRklIkrfGrMQAAAMAv3T4xzsyulvQjSdv0n+OSnaTJPvQFAAAA+CaWY5O/Iekw51yFX80AAAAA8RDLmuDNkvb41QgAAAAQL7HMBH8o6SUze0JSffSic+52z7sCAAAAfBRLCN7U+k+q2B8YAAAA/Vi3Q7Bz7kZJMrPs1tfVfjUFAAAA+Knba4LNbJKZvSVppaSVZrbMzI7wrzUAAADAH7E8GLdA0jXOudHOudGSvi3pbn/aAgAAAPwTSwjOcs4tir5wzr0kKcvzjgAAAACfxbQ7hJn9QNL9ra8vUsuOEQAAAEC/EstM8CWS8iU9Lumvkoa0XgMAAAD6lVh2h9gl6b987AUAAACIi1h2h3jOzAa2eT3IzJ7xpy0AAADAP7EshxjinNsdfdE6MzzU+5YAAAAAf8USgiNmNir6wsxGS3LetwQAAAD4K5bdIb4v6VUz+7ckk/RJSfN96QoAAADwUSwPxj1tZlMlHdt66ZvOuR3R+2Z2hHNupdcNAgAAAF6LZSZYraH3Xx3cvl/S1F53BAAAAPgsljXBXTEPawEAAAC+8TIE85AcAAAA+gUvQzAAAADQL3gZghs8rAUAAAD4JqYH48xssqQxbd/nnHu89c9jO3gbAAAA0Kd0OwSb2b2SJktaKSnSetlJetyHvgAAAADfxDITfKxzbqJvnQAAAABxEsua4DfMjBAMAACAfi+WmeA/qSUIl0mqV8u+wM45N9mXzgAAAACfxDIT/HtJX5J0mqTPSjqz9c9OmdlpZrbWzNab2fWdjDvPzJyZFcXQEwAAABCzWGaCy51zC2MpbmZJku6SdIqkEklLzWyhc27VPuNyJH1D0uJY6gMAAAA9EUsIfsvMHpL0T7Ush5D0ny3SOnCMpPXOuQ8lycwekXS2pFX7jPsfST+X9J0Y+gEAAAB6JJblEBlqCb+fVssyiOiSiM4USNrc5nVJ67W9zGyqpJHOuSc6K2Rm882s2MyKy8vLY2gbAAAA+LhuzwQ7577q9YebWUjS7ZIu7sbnL5C0QJKKioqc170AAAAgOGI5LCNd0jxJR0hKj153zl3SydtKJY1s87qw9VpUjqRJkl4yM0kaLmmhmZ3lnCvubm8AAACIr/KqsKrrmz2vm52WpPyc9K4H9lIsa4Lvl7RG0qmSbpJ0oaTVXbxnqaTxZjZWLeF3jqQLojedc3skDYm+NrOXJF1LAAYAAOjbquubNfvWlzyvu+jaE5Wf43nZ/cSyJvgQ59wPJNU45+6T9BlJMzp7g3OuSdJVkp5RS2B+zDm30sxuMrOzeto0AAAA0BuxzAQ3tv6528wmSSqTNLSrNznnnpT05D7XftjB2BNj6AcAAADokVhC8AIzGyTpB5IWSsqW1G6YBQAAAPqyWHaHuKf1x39LGudPOwAAAID/ur0m2MyGmdnvzeyp1tcTzWyef60BAAAA/ojlwbg/quUBtxGtr9+X9E2vGwIAAAD8FksIHuKce0xSRNq784P3m8MBAAAAPoslBNeYWZ4kJ0lmdqykPb50BQAAAPgolt0hrlHLrhDjzOw1SfmSzvelKwAAAMBHsYTgVZL+JqlWUpWkv6tlXTAAAADQr8SyHOJPkiZI+omkOyUdqpajlAEAAIB+JZaZ4EnOuYltXi8ys1VeNwQAAAD4LZaZ4OWtD8NJksxshqRi71sCAAAA/NXlTLCZvauWHSFSJL1uZptaX4+WtMbf9gAAAADvdWc5xJm+dwEAAADEUZch2Dm3MR6NAAAAAPESy5pgAAAA4IBACAYAAEDgEIIBAAAQOIRgAAAABE4sh2UAAAAAkqTstCQtuvZEX+rGAyEYAAAAMcvPSVd+TqK76DmWQwAAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAic50Q0AAACg/9lRVa/q+ibP62anJWtITprndfdFCAYAAEDMquubdOKtL3le96VrT4xLCGY5BAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcJIT3QAAAAD6n8y0JC269kRf6sYDIRgAAAAxq6lv1uxbX/K87qJrT5RyPC+7H5ZDAAAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAACx/cQbGanmdlaM1tvZte3c/8aM1tlZu+Y2QtmNtrvngAAABBsvoZgM0uSdJek0yVNlDTXzCbuM+wtSUXOucmS/iLpF372BAAAAPg9E3yMpPXOuQ+dcw2SHpF0dtsBzrlFzrna1pdvSir0uScAAAAEnN8huEDS5javS1qvdWSepKfau2Fm882s2MyKy8vLPWwRAAAAQdNnHowzs4skFUm6pb37zrkFzrki51xRfn5+fJsDAADAASXZ5/qlkka2eV3Yeu1jzOxTkr4v6QTnXL3PPQEAACDg/J4JXippvJmNNbNUSXMkLWw7wMyOlvQ7SWc557b73A8AAADgbwh2zjVJukrSM5JWS3rMObfSzG4ys7Nah90iKVvSn81shZkt7KAcAAAA4Am/l0PIOfekpCf3ufbDNj9/yu8eAAAAgLZ8D8EAAAA48GSkhPTI/GN9qRsPhGAAAADELNwU0ZwFb3pe96XvnOh5zfb0mS3SAAAA0H8417/q7osQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAIHEIwAAAAAocQDAAAgMAhBAMAACBwCMEAAAAInORENwAAAID+JystSYuuPdGXuvFACAYAAEDMauqbNfvWlzyvu+jaE6Ucz8vuh+UQAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDAIQQDAAAgcJIT3QAAAAD6n+y0JC269kRf6sYDIRgAAAAxy89JV35OorvoOZZDAAAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAic5EQ3kEjlVWFV1zfvfZ0uKZSSJCenjJSQquubFW6M6MMd1dpd26i0lJAOyc/WgIwUJYVMA9NMVY2mgekhlexp+Fjt7LQk5eekx/k3AgAAQHcEOgRX1zdr9q0vSZLuu2iKJozMU0qSU02D092vfKA/F29WZbhpv/eFTJp92FBdOfsQjRiQrt2VTSockKrxP3h275hF156o/Jx4/SYAAACIBcsh1BKAJ47Mk5P0+Ftb9anb/63fv/pRuwFYkiJOemHNdp37m9d1479WqSGp5a9x3f98Oo5dAwAAoKcCH4KjM8ARk77/t3f14ydWq74p0u33P/Vemc77v9dVsrteEkEYAACgPwh0CE6XNGFknpxzuumfK/XCmu09qlNWGdbcuxervKZJlZUNBGEAAIA+LtAhOCk1SWnJ0rLNu/XEu2W9qlVWGdZN/1yphqSQdtU1a2iGR00CAADAc4EOwSFJtY1O33v8XU/qPb1ym0p312lAmml7nSclAQAA4INAh+CBmckq3rBTe+oaPav5v4vWa1dd99cUAwAAIP58D8FmdpqZrTWz9WZ2fTv308zs0db7i81sjN89RW2vbtDDSzZ7WvPl98vV5JynNQEAAOAtX0OwmSVJukvS6ZImSpprZhP3GTZP0i7n3CGS7pD0cz97aivipHdL93hec3dtozI9rQoAAAAv+T0TfIyk9c65D51zDZIekXT2PmPOlnRf689/kXSymZnPfUmSmiNO1fXt7wXcG2vLqjR4QKrndQEAAOANv0NwgaS26w1KWq+1O8Y51yRpj6S8fQuZ2XwzKzaz4vLyck+ai/i0bCHc1Kw45XgAAAD0QL95MM45t8A5V+ScK8rPz/ekZnLIn19/QEaKIhEejgMAAOir/A7BpZJGtnld2Hqt3TFmlixpgKQKn/uSJJmkoTlpntc9dFiOSiu923ECAAAA3vI7BC+VNN7MxppZqqQ5khbuM2ahpK+0/ny+pBedi8/2CukppmmjB3laMzM1SVmpSZ7WBAAAgLd8DcGta3yvkvSMpNWSHnPOrTSzm8zsrNZhv5eUZ2brJV0jab9t1PySnWKad/xYT2ueO7VAWan9ZpUJAABAICX7/QHOuSclPbnPtR+2+Tks6fN+99GeXeGIRgxM16HDsvX+tupe10sOmS49fpyam5wGMhkMAADQZwV6ytLMNCQzWb+ec7SSQr3fzeFbp4xXVlpITWYKN3vQIAAAAHwR6BBc1xjRrrpmDc5M0Y1n7XuGR2yOPyRP500dqYgzVVbVKuxRjwAAAPBeoEOwJM346Ytykj51+DDddPYRPZoRnn1Yvm79/BSlmVRZVatT7nzD+0YBAADgmcCHYKklCJuk0yYO07+uPl6HDM3u1vuy05J12xeO0k/OPVIpJu0gAAMAAPQLvj8Y11/M+OmLWvzdk3RwXrr+dMkxKtlVq3te+UjLNu5SRU3D3nHpKSFNPGiAvji9UJ8cn6/MlJDqm512EoABAAD6DUJwGzN++qLe/O5JMklHjcjWj8+ZpPqmiJxzaow4hUxKTQpJchqWk6Y9tU1qirAEAgAAoL+xOJ1L4amioiJXXFzc6zrlVWFV1/uzjUN2WpLyc9J9qQ0AAICumdky51xRe/cCPROcn5Ou/JxEdwEAAIB448E4AAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDg9MvDMsysXNLGBHz0EEk7EvC58Bff64GL7/bAxXd7YOJ7PXAl6rsd7ZzLb+9GvwzBiWJmxR2dOoL+i+/1wMV3e+Diuz0w8b0euPrid8tyCAAAAAQOIRgAAACBQwiOzYJENwBf8L0euPhuD1x8twcmvtcDV5/7blkTDAAAgMBhJhgAAACBQwgGAABA4BCCu8HMNpjZu2a2wsyKE90PvGNmA83sL2a2xsxWm9nMRPeE3jOzw1r/fY3+U2lm30x0X+g9M/uWma00s/fM7GEzS090T/CGmX2j9Xtdyb+v/ZuZ3Wtm283svTbXBpvZc2a2rvXPQYnsUSIEx2K2c25KX9vjDr32K0lPO+cmSDpK0uoE9wMPOOfWtv77OkXSNEm1kv6W4LbQS2ZWIOm/JBU55yZJSpI0J7FdwQtmNknSZZKOUcv/Fp9pZocktiv0wh8lnbbPteslveCcGy/phdbXCUUIRmCZ2QBJsyT9XpKccw3Oud2J7Qr/v727CZWqjsM4/n3qGqRJhZaUJOZGJEVTiooKwShqURJhr2DvBK5qVxQR1CIIioLamC9QCZXSC0EaLSwCJcxETQoyUktNSCoKopdfizmXbhJoefSMzvezOf855zDznMW9PDPnP/M/AuYBX1ZVF6tMqn1DwMlJhoDRwLcd51E7pgHrq+qXqvodWAtc33Em/U9V9QHw/QG7rwOWN+PlwPyjGupfWIIPTQFrkmxIcm/XYdSac4F9wNIkG5MsTjKm61Bq3U3Aiq5D6PBV1TfAU8AOYDfwQ1Wt6TaVWrIFuCzJuCSjgWuAczrOpHZNqKrdzXgPMKHLMGAJPlSXVtVs4GpgUZLLuw6kVgwBs4EXqup84Gf64PaM2pPkJOBa4LWus+jwNXMIr6P3BvZsYEyS27pNpTZU1TbgSWAN8C7wKfBHp6F0xFTv93k7/41eS/AhaD59oKq+ozev8MJuE6klu4BdVbW+efw6vVKs48fVwCdVtbfrIGrFFcBXVbWvqn4DVgGXdJxJLamqF6tqTlVdDuwHvug6k1q1N8lZAM32u47zWIIPJsmYJGOHx8CV9G7b6BhXVXuAnUmmNrvmAZ91GEntuxmnQhxPdgAXJRmdJPT+Zv0y63EiyZnNdhK9+cCvdJtILXsLWNiMFwJvdpgFcMW4g0oyhb+/VT4EvFJVT3QYSS1KMgtYDJwEbAfuqKr93aZSG5o3rTuAKVX1Q9d51I4kjwE3Ar8DG4G7q+rXblOpDUk+BMYBvwEPVNX7HUfS/5RkBTAXGA/sBR4F3gBeBSYBXwMLqurAL88dVZZgSZIkDRynQ0iSJGngWIIlSZI0cCzBkiRJGjiWYEmSJA0cS7AkSZIGjiVYkvpEkslJ/B1ySToKLMGSJEkaOJZgSeovQ0leTrItyevN6mhzkqxNsiHJ6hFLj96T5OMkm5KsTDK62b8syQtJ1iXZnmRukiXNcy5rzjmxOW9Lks1J7u/wmiXpqLMES1J/mQo8X1XTgB+BRcBzwA1VNQdYAgyvWrmqqi6oqpn0lg++a8TznA5cDNxPb7nSp4HzgBnNSomzgIlVNb2qZgBLj/ylSVL/GOo6gCTpH3ZW1UfN+CXgIWA68F4SgBOB3c3x6UkeB04DTgFWj3iet6uqkmwG9lbVZoAkW4HJwFpgSpLngHeANUf0qiSpz1iCJam/HLiW/U/A1qq6+F/OXQbMr6pNSW4H5o449muz/XPEePjxUFXtTzITuAq4D1gA3HnY6SXpGOF0CEnqL5OSDBfeW4B1wBnD+5KMSnJec3wssDvJKODW//IiScYDJ1TVSuBhYHYr6SXpGOEnwZLUXz4HFiVZAnxGbz7wauDZJKfS+7/9DLAVeARYD+xrtmP/w+tMBJYmGf4w5MF24kvSsSFVB955kyRJko5vToeQJEnSwLEES5IkaeBYgiVJkjRwLMGSJEkaOJZgSZIkDRxLsCRJkgaOJViSJEkD5y808niayRi6qgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeZSdVZm//euuOZV5FhJCAglDCCGEMAkiEVHxR4PiBIiKROluQe1GusVuR7ptmxYcGsFXcEZRUdFGBUFlEhFCwhzCEIZMJKESMlUqNe/3j6rCIqkkdVLnqZPkuT5rseo8w7nPXTkrrC+b/ewdKSUkSZKkPCkrdQOSJElSfzMES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3KkodQM7Y9SoUWnixImlbkOSJEm7sPnz569OKY3u6dpuGYInTpzIvHnzSt2GJEmSdmERsXhb15wOIUmSpNwxBEuSJCl3DMGSJEnKnd1yTnBPWlpaWLZsGY2NjaVupaRqamoYP348lZWVpW5FkiRpl7XHhOBly5YxePBgJk6cSESUup2SSCmxZs0ali1bxqRJk0rdjiRJ0i5rj5kO0djYyMiRI3MbgAEigpEjR+Z+NFySJGlH9pgQDOQ6AHfxz0CSJGnH9qgQLEmSpNJra2ujbt1mmltbaW9vp729nda2NtY3bKahqaXU7QF70JzgUlu3bh3XX389H/nIR0rdiiRJUr9bvbGJ1vZ2BlaVs6GxlTWbmvnNgpU8s2oj7e0wZkg1R00awaRRA9nQ2MqAKmhpCUYNqSlJv4bgIlm3bh1XX321IViSJOXOuoYmBlTC+kb45p3Pcf0DS1jX0POIb3lZcNJBY7joTQcworaStQ2NDK/t/yDsdIgiueSSS3j22WeZMWMG//Iv/8KXv/xljjzySKZPn87nPvc5AF544QUOOuggzj33XA444ADe+9738sc//pHjjjuOKVOmMHfuXAA+//nP8773vY9jjz2WKVOmcO211wKwYsUKTjjhBGbMmMG0adP485//XLLfV5IkCWB9QxNNLe08uHQDp33jHq6+69ltBmCAtvbEbU+s4q1f/zM/uHcxzS2JNfX9/1C/IbhI/vu//5v999+fhx9+mJNPPplnnnmGuXPn8vDDDzN//nzuvvtuABYtWsQnPvEJnnzySZ588kmuv/567rnnHi6//HL+67/+65V6jz76KLfffjt//etfufTSS3nxxRe5/vrrefOb38zDDz/MI488wowZM0r160qSJLF6YxONLe3c+XQd7//uXFbXN/f6ve0JrrrzWf71l4/R2g7rNzdl2OnWnA6Rgdtuu43bbruNww8/HID6+nqeeeYZJkyYwKRJkzj00EMBOOSQQzjppJOICA499FBeeOGFV2qcfvrpDBgwgAEDBjB79mzmzp3LkUceyXnnnUdLSwtve9vbDMGSJKlkVm9sorYS5i+t55IbHyOlnatz19N1XPb7J/nXNx9IY0sjY/tpjrAjwRlIKfGpT32Khx9+mIcffphFixYxZ84cAKqrq1+5r6ys7JXjsrIyWltbX7m25VJnEcEJJ5zA3Xffzbhx4zj33HP54Q9/2A+/jSRJ0taa29pY19jOP//s4Z0OwF1ufHA5z7xUz5Dq4OVN/TMibAguksGDB7Nx40YA3vzmN/Pd736X+vp6AJYvX85LL71UUL3/+7//o7GxkTVr1nDnnXdy5JFHsnjxYsaOHcuHP/xhPvShD/Hggw8W/feQJEnqjUHV5fzg3hcKmgKxPZ+68TFebmhnxMDqHd9cBE6HKJKRI0dy3HHHMW3aNE455RTOPvtsjj32WAAGDRrEj370I8rLy3tdb/r06cyePZvVq1fzmc98hr333psf/OAHfPnLX6ayspJBgwY5EixJkkqmvqmdnz6wtGj1lq3dzIvrNjNu+ICi1dyeSH0dvy6BWbNmpXnz5r3q3MKFCzn44INL1FFxff7zn2fQoEFcfPHFO/X+PenPQpIk7ZoeXrKWt119b1FrnnnkPnz21IOpra4sSr2ImJ9SmtXTNadDSJIkqWAPLF5b9JqPLlvPmk39s6Oc0yF2QZ///OdL3YIkSdI2tbe388yqjUWvu+TlBrZYGyAzjgRLkiSpYG3txZ9S29aeCPonBRuCJUmSVJCysjL2Glb8B9hGDKwC+ud5NUOwJEmSCpJS4ogJw4ted9q4IdRU9k88NQRLkiSpICklxg8fQFmRZy68dv+RtLc7HWK3c9555zFmzBimTZtW6lYkSZIy9WxdPbMPGlO0ejWVZczcdwRNbW1Fq7k9huAiOvfcc/n9739f6jYkSZIyVVZWRn1jKxfOnly01Rzef+xE2trai1OsF3Ibgm+55RZOPfVUjjzySE499VRuueWWPtc84YQTGDFiRBG6kyRJ2rVNGzeUu5+u44OvndjnWpNGDWT2gWPY0NhKZbnTITJzyy238MUvfpGVK1eSUmLlypV88YtfLEoQliRJyoPmtnb+9/ZFnHjgGI6bPHKn6wyvreR/3jmdT//6MW5dsJKB1eVF7HLbchmCr7rqKhobG191rrGxkauuuqpEHUmSJO1eHlm6jrb2xAU/fpALZk/m1Ol7FVxj4sharnn/LL5085M8W7eJR5atY8Pm1gy63VouQ/CqVasKOi9JkqS/SSmx4MUNAGxsamXO9+dx5MQR/O+ZM9h7aM0O319TWcaHXjeJL50xnUt++RgPLunYgnnx6gYy2IOjR7ncNnns2LGsXLmyx/OSJEnavpQSLd0eYtvc0sbnblrAUZNGcOnbptHWnvjjE6t4bPl6Fq9poD0lRg6sYtq4oRyz30hm7DOMXz20nHO+c/+rdp5r7ccd43IZgi+44AK++MUvvmpKRE1NDRdccEGf6p511lnceeedrF69mvHjx/OFL3yBOXPm9LVdSZKkXUpZWRkjB1VvdX7u8y8z9/mX2WfEAF67/yjOOWZfxg0bQHlZsLahmQUvbuDmx1Zw6W+f6LHusNpKUj/tGJfLEHzKKacAHXODV61axdixY7ngggteOb+zfvKTnxSjPUmSpF3eURNHcM3dz/V4benLm/nZy0v52QNLC6p5yN5DqK3qnwfjchmCoSMI9zX0SpIk5dWBrxlMBKQiDty+/oDRDK7un3iaywfjJEmStPPa2xNt7e0ct/+ootWsrijjDQeNYc2m5qLV3B5DsCRJkgpSVhbc8VQdF7/5gKLVPPuoCTyxYgOtbf0zJ9gQLEmSpIK0t7fz2PL1bGxs5b1HT+hzvXHDBjDndZP4118+Qj8tDmEIliRJUmEiggGV5fz9dfP4h9fvz8wJw3a61qDqCq79wCz+++YnaW8P+mlxCEOwJEmSChMRTB8/jIbmdj7wvbl84+yZvP6A0QXXec2QGn7+D8fy+8de5LePreCAsYMoK+ufoWBDcBEtXbqU2bNnM3XqVA455BC+/vWvl7olSZKkTBy+T8fo7+mH7c3tC1/iklMO4ivvPoxhtZWv3DOkpoIDxw5m6l5DXrWTXHlZcNaR+/DzfziWPyxYwbH7j6a2qpyZE4YzfED/rA6R2yXSslBRUcEVV1zBzJkz2bhxI0cccQQnn3wyU6dOLXVrkiRJRTWwupy3zdibiaMG8vGfPsy+I2u59n1H8JsLj2d9QzNEsLq+qduOcdXsO7KWCBhRW0V7Slxx65P8+pEVnDKtnk+dcjDH7j8Cwh3jMtPS0sJFF10EwGWXXcYnP/lJAL7yla9QWVm5vbdu11577cVee+0FwODBgzn44INZvny5IViSJO1xhlRX8LGTpnDGN+/ltMP25tzXTmTlhiZW12/gur8u5qGl63p835jB1Zx11ARmHziaU6bvxbGTR/Pvv3qMU6fvxZABlbS0tjOgKvv+IxVzheN+MmvWrDRv3rxXnVu4cCEHH3xwr97/0Y9+lAcffBCAyspKWlpaAJg5cyZXXnllUXp84YUXOOGEE3j88ccZMmRIUWr2ViF/FpIkSTtjXUMT37zzOVZtaOLMo/ahoiy49LdP8Oiy9b16/9ABlXz276YybEAlm5vb+NItC/nFP76WvYYOKFqPETE/pTSrp2u5nhPc1NREfX09TU1NRa1bX1/PO97xDr72ta/1ewCWJEnqD/WNbcx9/mXOO34iDc1tnPOd+3sdgAHWb27hEzc8wl8WrWbMkGpOnzGORavqWbupuLlsW3IZgi+77LKtpj1UVlbyP//zP32u3dLSwjve8Q7e+973csYZZ/S5niRJ0q5ozaZmPnfaVJpa2/nIj+fT2NK+U3W++5cXuPfZNZw6fS/mLX6ZwTU7PzW1ELkMwZ/85CdfmQLRpaWlhX/913/tU92UEnPmzOHggw9+Zc6xJEnSnuilDY3UVJRzyS8f3ekA3OXK2xdR39TGUZNGsLrebZMzV11dzaBBg6iuri5Kvb/85S9cd9113H777cyYMYMZM2Zw8803F6W2JEnSrmTS6IHc8dRLPFu3qc+12toT//HbJxg7pIbyfkqnuVwd4itf+co2V4foi+OPP57d8UFDSZKkQqSUqCgr47q/Li5aza5tmEcPKs7g5I7kMgRXVla+ahWIYq0IIUmSlAcRwYbGFl5c31jUujc98iIXzp5c1JrbkuvpEJIkSdo5j2xjHeC+1VxPU2vf5hf3liFYkiRJBUkpsXDFhqLXXVS3kf6aWWoIliRJUsGyGLFtbm0n0T8p2BAsSZKkgkQEw2qLv7fx4JpKouhVe2YIliRJUkHa2to5atKIotedutcQBlb3z7oNuVwdIksTJ05k8ODBlJeXU1FRwbx580rdkiRJUlGVl5dxwNhBRa/7uimj+m25WUNwBu644w5GjRpV6jYkSZIykVKibmMTMycM48ElxVklorwseP0Bo6lvamP4wKKU3K5chuATTjiBhoaGrc7X1tZy9913l6AjSZKk3UdKibueruNjJ03h3O89UJSapx22F39YuIrTD9u7KPV2JJdzgnsKwNs7X4iI4E1vehNHHHEE11xzTZ/rSZIk7WrKyspYu6mZ5es289ZDX9PnesNrK5lz/H784N4X+mltiJyOBGfpnnvuYdy4cbz00kucfPLJHHTQQZxwwgmlbkuSJKmopo0byhd/t5Aff/hoFq7YyPOrN+1Uncry4OtnHs4Xf7eQccNqKYv+WR8ilyPBWRo3bhwAY8aM4e1vfztz584tcUeSJEnFd/iE4WxqbuNjP3mYr71nBgfvNbjgGgOryvnWOUfwq4eW89fn1nD4hKGMHFiZQbdbMwQX0aZNm9i4ceMrr2+77TamTZtW4q4kSZKKb0hNJeOGDWDJyw3844/m86lTDuZjJ02moqx3I7nHTx7Jjz90NNfdt4RfPbQcgHcdsQ8t/bNrstMhimnVqlW8/e1vB6C1tZWzzz6bt7zlLSXuSpIkqfiqK4M5x0/i0t8+wYvrG/nA9+ZyztH78vN/OJa/LFrDLY+v4OlVG2lp+9ss3/HDB/Da/UdyxuHjeW71Js79/gOsa2gB4NBxQxlYXUFrW/+k4FyG4Nra2m2uDtEX++23H4888kifakiSJO0OWtoSpxz6Gn58/xKerasnJbjuvsVcP3cJsw8czbtm7cOBYwfTNcW3LILl6zbz4OK1/P2P5rN+c8srtcrLgi+/czq1VeVUlfXPRIVchmCXQZMkSeqb9pSoLAuueu/hvO2qv9DYOY+hrT3xx4Uv8ceFL/W61kUnH8CI2ioamlopj6Bvw5K945xgSZIkFayyvIwX1jQworaSH805mgGV5TtV5+9P2I93zhzH+sZmIoJhA6uK3GnP9qgQ3F/b7O3K/DOQJEn9YczgGiaOGsgLaxqYMKKW333seA4bP7TX7x9WW8k17z+Cc4+byIbGFgZUVjB+RH+MAXfYY6ZD1NTUsGbNGkaOHEn00/pyu5qUEmvWrKGmpqbUrUiSpBwYM7gjc7S0tjO0ppxvnnMET7y4gavvfJYHl6zt8T1jh1Rz7msncvqMcQyoKKc9tfd7AIY9KASPHz+eZcuWUVdXV+pWSqqmpobx48eXug1JkpQTVeVlrFi3mZrKcjY1tfGXRau5/F3TqSwvY3V9E8+v3kRbe2LM4Gr2HTmQ8rLgkaVrufbuRZx73H4sX7uZyWMG9Xvfe0wIrqysZNKkSaVuQ5IkKTfWNTSzeM0mqivK2NzSzjnfuZ+G5ja+d+8LAEwePZDjp4yisryM3z26gjuffvVg5dDaak49dC8WvVQPwJgh/fd/s/eYECxJkqT+0z0AN7Ymzr72Phqa2151z6K6TSyq2/Z2yl/74zMAJQnChmBJkiQVbO2m5u0G4N7qHoSXvNxAeVkwclB1MVvtkSFYkiRJBauuLGN9Y2ufAnCXriB82mF7U1XRP4uX7VFLpEmSJKl/1De19SoATx4ziLfN2HuH9b72x2f448JVNLe6bbIkSZJ2UUMHVDJzwjDuWbRmm/dMGTOI733wSNrbE8Nqq/h+5wNzPRleW8mJB46hxpFgSZIk7bJS4rJ3TOf4ySN7vNwVgDc3t7JqQyMfOHZfzn3txB7vHV5byc/OP5aqiqC5vX9Ggg3BkiRJKlx0rBDRUxDuHoBrqyqYNHoQdfVNPQbhrgBMJBpb2qku75946nQISZIkFWzskAEArN7YxGXvmM4nf/korxlSwyPL1r8qAI8b3rETXHtKvLB6Ex84dl8AVm1o5IkX13Pt+4+ESLQnmDB8ALXVlf3SvyFYkiRJO6V7EL7i3TPY1NTKwKpyNjS2vCoAw9+2WH5h9SY++ob9Wb+5IyRvbm6mqa1/AzA4HUKSJEl9MHbIAEYPrmb+4rW88St3ccP8ZQypqXpVAO4yZnANB4wZyIvrGvm7K+/h0t8soLaqqt8DMBiCJUmS1Ad1GxqZt3gdF17/IO0JrrjtaW6Yv5RV6xu3unfj5maWrm3kzGvuY1NzGzc/vpIv/GYBG5v6ts7wzjAES5IkaafUbWjkgcVrXwnAXXoKwhs3N/PCmoZXAnCXmx9fyRduWsCqDVuH5ixlHoIj4i0R8VRELIqIS3q4PiEi7oiIhyLi0Yh4a9Y9SZIkqW+2FYC7dA/C2wrAXUoRhDMNwRFRDlwFnAJMBc6KiKlb3PZp4IaU0uHAmcDVWfYkSZKkvqurb95mAO5yxW1P89N5S7YbgLvc/PhKvnvP86ypb8qg261lPRJ8FLAopfRcSqkZ+Clw+hb3JGBI5+uhwIsZ9yRJkqQ+Gjmoivceve8O7/vqH57h777xl+0GYOjYXvn9r53IyEHVxWpxu7IOweOApd2Ol3We6+7zwDkRsQy4GfhoT4Ui4vyImBcR8+rq6rLoVZIkSb00dkgNF75hMu87ZsdBeEcmjxnED847inHDBhShs97ZFR6MOwv4fkppPPBW4LqI2KqvlNI1KaVZKaVZo0eP7vcmJUmS9GrFCMKlCMCQfQheDuzT7Xh857nu5gA3AKSU/grUAKMy7kuSJElF0JcgXKoADNmH4AeAKRExKSKq6Hjw7aYt7lkCnAQQEQfTEYKd7yBJkrSb2JkgvP/o0gVgyDgEp5RagQuBW4GFdKwCsSAiLo2I0zpv+wTw4Yh4BPgJcG5KaTvPGUqSJGlXU1tZzhkzt3z0a9uO3X8ENRWlm5lbkfUHpJRupuOBt+7nPtvt9RPAcVn3IUmSpGx0rQN8zrfv7/V7fnTfEsYOqeHdR+zD2KE1GXbXs13hwThJkiTtpna0Ecb2bG+L5awZgiVJkrRT+hKAu5QqCBuCJUmSVLBiBOAupQjChmBJkiQVbMWGpl4F4P1HD+LvDttrh/WuuO1pfvPoi6xcv7lYLW5X5g/GSZIkac8zdEAlh+0zjHufXbPNe7rWAa6uKGPYgCquu2/xNu8dVlvJCVNGM7ymMot2t+JIsCRJkgo2dkgNX33PDF67/8ger3ffCGPUoOrtriM8rLaSG84/ln2HD6C6un/GaA3BkiRJ2inbCsI97QS3rQ01ShGAwRAsSZKkPtgyCG9vK+Qtg3CpAjA4J1iSJEl9NGJgFV99zwy+/senuWD2ZEbVVm3z3rFDarhw9v4Mqang9BnjGDesut8DMDgSLEmSpD5oaWvnmVUb+dptT3HRmw7ggRde5q/Pr2HzNlaNWL62gXO/M5f3H7svlRWJH963hPWbm/u5a0OwJEmSdlJXAP77H87nYycfwI/vW8LR+43kG3cs4v4egvDytQ28+1v3cfX7juDWJ1ZRFuWsWL+Z6+/v/yDsdAhJkiQVrHsAvuEfj+U/f7uQ3z22gjufquPqc2by0Z88BMDRk0YyoKr8lQD8ozlHcfPjK/nyrU+x99AafnL+MXznnue4/v4lnH30BIYO2PZUimJyJFiSJEkFW7KmYasADPDQ0nV85EcPcuVZh78yIrxi3eatAjDAi+sbOeua+5hz/H6sWL+ZGx9czsbGln7pP1JK/fJBxTRr1qw0b968UrchSZKUW2vqm2hpa+c/ugXg7g7fZxhXnzOTC69/kKdW1vObC497VQDurmtEuLaqnJEDqykri6L0GBHzU0qzerrmSLAkSZIK1tqethmA4W8jwt84eya3fPz4bQZg+NuIcENzW9EC8I4YgiVJklSwtQ3N/OGJVdu9pysI//DexdsMwF1eXN/ILx9cxur6pmK2uU2GYEmSJBVsryE1fO+DR1JVvv04+dDSdVx7z/M7rHfO0RN479H7MmpQdbFa3C5DsCRJkgo2tLaKaXsP6VUQ3pFzjp7AR0+awtghNUXqbscMwZIkSdopxQjCpQjAYAiWJElSH/QlCJcqAIMhWJIkSX1U39RKIvHtD/S4GlmP3jZjbz4yezJPrtiwzS2Ws2QIliRJ0k7r2glu3NABPLJsXa/f98KaBiLgym1ssZw1Q7AkSZJ2ypZbIV9x29O9fu/DPews159B2BAsSZKkgi3fxlbIhehpi+WGptYMut2aIViSJEkFKwu4/sNH73QA7tI9CI8cWOWOcZIkSdp1lUfw20dX9CkAd+kKwqMHV1NTWV6E7nbMECxJkqSC1dU39SoAn3P0BL57bi93lvvzc6zd5LbJkiRJ2kWNHlTN50+but173nfMvnzspCnMmjBsh+sIH7PfCM4/YX+GD3TbZEmSJO2ixgyp4a3T9tpmEH7fMfvy0TdMZsyQGobsYEONY/YbwdfPPNxtkyVJkrTr21YQ7h6Au2xrZ7lSBGAwBEuSJKkPtgzCPQXgLlsG4VIFYIBIKfX7h/bVrFmz0rx580rdhiRJkjq9tKGRxWsa2HdkbY8BuLv1Dc0sfrmBsUNqMg3AETE/pdTjXs4VmX2qJEmScmPMkBqGDignpR2v8zu0torJ5dDcUrrBWKdDSJIkqc+WvLyJ06/6K8+t3kRj8/Z3fVu5vpEPfG8ecxevZU19/yyJtiVDsCRJkvpkycubOOua+3ly5Ube8637thuEV65v5CM/fpAHXljLP/74QeaXKAgbgiVJkrTTugLw8nWbAdjY1LrNINwVgB9cshaAtvZUsiBsCJYkSdJO2TIAd+kpCG8ZgLuUKggbgiVJklSwbQXgLt2D8Esbew7AXUoRhF0dQpIkSQUri6CqYvvjqRubWnn3t+5j7JAanq2r30E9qK0qp6xsx6tLFIMjwZIkSSrY+OG1XDfnKCaNGrjd++qbWncYgCvLg++deyTTxg1leG1VMdvcJkOwJEmSdkpvg/D2dA/Aw/opAIMhWJIkSX3QlyBcqgAMhmBJkiT10c4E4VIGYDAES5IkqQjGD6/lex88stf3/+OJkzlsn2ElCcBgCJYkSVIRrFzfyEU/e6TX93/vnudZ8nLDDrdYzoohWJIkSX2yrY0wtmdjUytnfus+nt3OFstZMgRLkiRpp+1MAO5SyiBsCJYkSdJO6UsA7lKqIGwIliRJUsF6G4Ary4ORA7f/8FspgrAhWJIkSQXb1NTKorqN272naxm0337s+B0un7axqZUHF69lQ6MhWJIkSbuo8cMH8LPzj2XIgIoer3cF4EPHDWWvoQN2uI7wZ0+dypsPeQ1jhtRk1fKrGIIlSZJUsOrKcvYbNbDHINw9AA/tXAd4extqfPbUqZw6fa9+C8BgCJYkSdJO6ikI9xSAu/QUhEsRgMEQLEmSpD7oHoRHDaraZgDu0j0IlyoAA0RKqd8/tK9mzZqV5s2bV+o2JEmS1KmppY2WtkRbe/s2A3B3azc109LWnmkAjoj5KaVZPV3reSazJEmSVIDqynKqK3t///AdLJuWNadDSJIkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcyD8ER8ZaIeCoiFkXEJdu4590R8URELIiI67PuSZIkSflWkWXxiCgHrgJOBpYBD0TETSmlJ7rdMwX4FHBcSmltRIzJsidJkiSpVyPBEVHR7fWgiJgVESN68dajgEUppedSSs3AT4HTt7jnw8BVKaW1ACmll3rXuiRJkrRzdhiCI+JcYFVEPB0RpwCPApcBj0TEWTt4+zhgabfjZZ3nujsAOCAi/hIR90XEW7bRx/kRMS8i5tXV1e2obUmSJGmbejMd4hPAgcBg4BHg8JTSsxExFvgD8JMi9DAFOBEYD9wdEYemlNZ1vymldA1wDcCsWbNSHz9TkiRJOdab6RBtKaXVKaXngfqU0rMAKaVVvXjvcmCfbsfjO891twy4KaXU0vkZT9MRiiVJkqRM9CYEL4mIL0XEN4AnI+KKiDguIj4HrNjBex8ApkTEpIioAs4Ebtrinl/TMQpMRIyiY3rEc4X8EpIkSVIhehOCzwE20DFiexpwLx2rOYwBzt3eG1NKrcCFwK3AQuCGlNKCiLg0Ik7rvO1WYE1EPAHcAfxLSmnNTvwukiRJUq9ESsWZXhsRV6aUPlqUYjswa9asNG/evP74KEmSJO2mImJ+SmlWT9eKuVnGcUWsJUmSJGXGbZMlSZKUO4ZgSZIk5U4xQ3AUsZYkSZKUmV6H4Ig4dAe3fL2PvUiSJEn9opCR4KsjYm5EfCQihm55MaX0/V8rPxsAABliSURBVOK1JUmSJGWn1yE4pfQ64L107AA3PyKuj4iTM+tMkiRJykhBc4JTSs8AnwY+Cbwe+N+IeDIizsiiOUmSJCkLhcwJnh4RX6Vj57c3AH+XUjq48/VXM+pPkiRJKrqKAu69Evg28G8ppc1dJ1NKL0bEp4vemSRJkpSRQkLw/wM2p5TaACKiDKhJKTWklK7LpDtJkiQpA4XMCf4jMKDbcW3nOUmSJGm3UkgIrkkp1XcddL6uLX5LkiRJUrYKCcGbImJm10FEHAFs3s79kiRJ0i6pkDnB/wT8PCJepGOL5NcA78mkK0mSJClDvQ7BKaUHIuIg4MDOU0+llFqyaUuSJEnKTiEjwQBHAhM73zczIkgp/bDoXUmSJEkZ6nUIjojrgP2Bh4G2ztMJMARLkiRpt1LISPAsYGpKKWXVjCRJktQfClkd4nE6HoaTJEmSdmuFjASPAp6IiLlAU9fJlNJpRe9KkiRJylAhIfjzWTUhSZIk9adClki7KyL2BaaklP4YEbVAeXatSZIkSdno9ZzgiPgw8AvgW52nxgG/zqIpSZIkKUuFPBh3AXAcsAEgpfQMMCaLpiRJkqQsFRKCm1JKzV0HEVFBxzrBkiRJ0m6lkBB8V0T8GzAgIk4Gfg78Jpu2JEmSpOwUEoIvAeqAx4C/B25OKf17Jl1JkiRJGSpkibSPppS+DlzbdSIiPt55TpIkSdptFDIS/IEezp1bpD4kSZKkfrPDkeCIOAs4G5gUETd1uzQYeDmrxiRJkqSs9GY6xL3ACjq2Tb6i2/mNwKNZNCVJkiRlaYchOKW0GFgMHJt9O5IkSVL2Ctkx7oyIeCYi1kfEhojYGBEbsmxOkiRJykIhq0P8D/B3KaWFWTUjSZIk9YdCVodYZQCWJEnSnqCQkeB5EfEz4NdAU9fJlNKNRe9KkiRJylAhIXgI0AC8qdu5BBiCJUmStFvpdQhOKX0wy0YkSZKk/lLI6hAHRMSfIuLxzuPpEfHp7FqTJEmSslHIg3HXAp8CWgBSSo8CZ2bRlCRJkpSlQkJwbUpp7hbnWovZjCRJktQfCgnBqyNifzoehiMi3knHdsqSJEnSbqWQ1SEuAK4BDoqI5cDzwDmZdCVJkiRlqJDVIZ4D3hgRA4GylNLG7NqSJEmSslPI6hAfj4iutYK/GhEPRsSbdvQ+SZIkaVdTyJzg81JKG+jYLGMk8D7gvzPpSpIkScpQISE4On++FfhhSmlBt3OSJEnSbqOQEDw/Im6jIwTfGhGDgfZs2pIkSZKyU8jqEHOAGcBzKaWGiBgJuJWyJEmSdjs7DMERcVBK6Uk6AjDAfhHOgpAkSdLuqzcjwRcB5wNX9HAtAW8oakeSJElSxnYYglNK53f+nJ19O5IkSVL2Clkn+F2dD8MREZ+OiBsj4vDsWpMkSZKyUcjqEJ9JKW2MiOOBNwLfAf6/bNqSJEmSslNICG7r/Pn/gGtSSr8DqorfkiRJkpStQkLw8oj4FvAe4OaIqC7w/ZIkSdIuoZAQ+27gVuDNKaV1wAjgXzLpSpIkScpQr0NwSqkB+D9gU0RMACqBJ7NqTJIkScpKr3eMi4iPAp8DVvG37ZITMD2DviRJkqTMFLJt8seBA1NKa7JqRpIkSeoPhcwJXgqsz6oRSZIkqb8UMhL8HHBnRPwOaOo6mVL6StG7kiRJkjJUSAhe0vlPFa4PLEmSpN1Yr0NwSukLABExqPO4PqumJEmSpCz1ek5wREyLiIeABcCCiJgfEYdk15okSZKUjUIejLsGuCiltG9KaV/gE8C12bQlSZIkZaeQEDwwpXRH10FK6U5gYNE7kiRJkjJW0OoQEfEZ4LrO43PoWDFCkiRJ2q0UMhJ8HjAauBH4JTCq85wkSZK0WylkdYi1wMcy7EWSJEnqF4WsDvGHiBjW7Xh4RNyaTVuSJElSdgqZDjEqpbSu66BzZHhM8VuSJEmSslVICG6PiAldBxGxL5CK35IkSZKUrUJWh/h34J6IuAsI4HXA+Zl0JUmSJGWokAfjfh8RM4FjOk/9U0ppddf1iDgkpbSg2A1KkiRJxVbISDCdofe327h8HTCzzx1JkiRJGStkTvCORI8nI94SEU9FxKKIuGSbb454R0SkiJhVxJ4kSZKkrRQzBG/1kFxElANXAacAU4GzImJqD/cNBj4O3F/EfiRJkqQeFTME9+QoYFFK6bmUUjPwU+D0Hu77D+AyoDHjfiRJkqSihuDmHs6NA5Z2O17Wee4VnQ/b7ZNS+t32ikfE+RExLyLm1dXV9blZSZIk5VdBD8ZFxHRgYvf3pZRu7Px5zDbetr16ZcBXgHN3dG9K6RrgGoBZs2a5PrEkSZJ2Wq9DcER8F5gOLADaO08n4MbtvG05sE+34/Gd57oMBqYBd0YEwGuAmyLitJTSvN72JkmSJBWikJHgY1JKWz3UtgMPAFMiYhId4fdM4Oyuiyml9cCoruOIuBO42AAsSZKkLBUyJ/ivPa3ssD0ppVbgQuBWYCFwQ0ppQURcGhGnFVJLkiRJKpZCRoJ/SEcQXgk00bEucEopTd/em1JKNwM3b3Hus9u498QC+pEkSZJ2SiEh+DvA+4DH+NucYEmSJGm3U0gIrksp3ZRZJ5IkSVI/KSQEPxQR1wO/oWM6BPC3JdIkSZKk3UUhIXgAHeH3Td3O7WiJNEmSJGmX0+sQnFL6YJaNSJIkSf2lkM0yaoA5wCFATdf5lNJ5GfQlSZIkZaaQdYKvo2NHtzcDd9Gx+9vGLJqSJEmSslRICJ6cUvoMsCml9APg/wFHZ9OWJEmSlJ1CQnBL5891ETENGAqMKX5LkiRJUrYKWR3imogYDnwGuAkYBPS485skSZK0KytkdYhvd768C9gvm3YkSZKk7PV6OkREjI2I70TELZ3HUyNiTnatSZIkSdkoZE7w94Fbgb07j58G/qnYDUmSJElZKyQEj0op3QC0A6SUWoG2TLqSJEmSMlRICN4UESPp2CqZiDgGWJ9JV5IkSVKGClkd4iI6VoXYLyL+AowG3plJV5IkSVKGCgnBTwC/Ahro2Cnu13TMC5YkSZJ2K4VMh/ghcBDwX8CVwAF0bKUsSZIk7VYKGQmellKa2u34joh4otgNSZIkSVkrJAQ/GBHHpJTuA4iIo4F52bQlSZKkXVndxkbqm4q/UNig6nJGD64pet0t7TAER8RjdKwIUQncGxFLOo/3BZ7Mtj1JkiTtiuqb2ph9+Z1Fr3vHxScyenDRy26lNyPBp2behSRJktSPdhiCU0qL+6MRSZIkqb8UsjqEJEmStEcwBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3KkrdgCRJknY/g6rLuePiEzOp2x8cCZYkSVLuOBIsSZKkgtU3tTH78juLXveOi09k9OCil92KI8GSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3DMGSJEnKHUOwJEmScscQLEmSpNwxBEuSJCl3KkrdgCRJknY/g6rLuePiEzOp2x8MwZIkSSrYpqY2Zl9+Z9Hr3nnxiYweXPSyW3E6hCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdwzBkiRJyh1DsCRJknLHECxJkqTcMQRLkiQpdzIPwRHxloh4KiIWRcQlPVy/KCKeiIhHI+JPEbFv1j1JkiQp3zINwRFRDlwFnAJMBc6KiKlb3PYQMCulNB34BfA/WfYkSZIkZT0SfBSwKKX0XEqpGfgpcHr3G1JKd6SUGjoP7wPGZ9yTJEmSci7rEDwOWNrteFnnuW2ZA9zS04WIOD8i5kXEvLq6uiK2KEmSpLzZZR6Mi4hzgFnAl3u6nlK6JqU0K6U0a/To0f3bnCRJkvYoFRnXXw7s0+14fOe5V4mINwL/Drw+pdSUcU+SJEnKuaxHgh8ApkTEpIioAs4Ebup+Q0QcDnwLOC2l9FLG/UiSJEnZhuCUUitwIXArsBC4IaW0ICIujYjTOm/7MjAI+HlEPBwRN22jnCRJklQUWU+HIKV0M3DzFuc+2+31G7PuQZIkSepul3kwTpIkSeovmY8ES5Ikac8zsLqcOy4+MZO6/cEQLEmSpILVN7Ux+/I7i173jotPZPTgopfditMhJEmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDuGYEmSJOWOIViSJEm5YwiWJElS7hiCJUmSlDsVpW5AkiRJu59B1eXccfGJmdTtD4ZgSZIkFay+qY3Zl99Z9Lp3XHwiowcXvexWnA4hSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyp6LUDUiSJGn3M6i6nDsuPjGTuv3BkWBJkiTljiPBkiRJKlh9UxuzL7+z6HXvuPhERg8uetmtOBIsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyp6LUDZRS3cZG6pvaXjmuAcoqy0kkBlSWUd/URmNLO8+trmddQwvVlWVMHj2IoQMqKS8LhlUHG1uCYTVlLFvf/Krag6rLGT24pp9/I0mSpP4xqLqcOy4+MZO6/SHXIbi+qY3Zl98JwA/OmcFB+4yksjyxqTlx7Z+f5efzlrKhsXWr95UFzD5wDBfMnszeQ2tYt6GV8UOrmPKZ2165546LT2T04P76TSRJkvrX6ME1u3XWcToEHQF46j4jScCND63gjV+5i+/c83yPARigPcGfnnyJM755L1/47RM0l3f8MT7zH2/qx64lSZK0s3IfgrtGgNsD/v1Xj/Gfv1tIU2t7r99/y+MrecfV97JsXRNgEJYkSdod5DoE1wAH7TOSlBKX/mYBf3rypZ2qs3JDI2ddez91m1rZsKHZICxJkrSLy3UILq8qp7oC5i9dx+8eW9mnWis3NHLpbxbQXF7G2s1tjBlQpCYlSZJUdLkOwWVAQ0vi3258rCj1fr9gFcvXbWZodfDS5qKUlCRJUgZyHYKH1VYw74WXWb+5pWg1v3HHItZu7v2cYkmSJPW/zENwRLwlIp6KiEURcUkP16sj4med1++PiIlZ99TlpfpmfjJ3aVFr3v10Ha0pFbWmJEmSiivTEBwR5cBVwCnAVOCsiJi6xW1zgLUppcnAV4HLsuypu/YEjy1fX/Sa6xpaqC1qVUmSJBVT1iPBRwGLUkrPpZSagZ8Cp29xz+nADzpf/wI4KSIi474AaGtP1Df1vBZwXzy1ciMjhlYVva4kSZKKI+sQPA7oPt9gWee5Hu9JKbUC64GRWxaKiPMjYl5EzKurqytKc+0ZTVtobG2jn3K8JEmSdsJu82BcSumalNKslNKs0aNHF6VmRVk2v/7QAZW0t/twnCRJ0q4q6xC8HNin2/H4znM93hMRFcBQYE3GfQEQwJjB1UWve8DYwSzfULwVJyRJklRcWYfgB4ApETEpIqqAM4GbtrjnJuADna/fCdyeUv8sr1BTGRyx7/Ci1qytKmdgVXlRa0qSJKm4Mg3BnXN8LwRuBRYCN6SUFkTEpRFxWudt3wFGRsQi4CJgq2XUsjKoMphz/KSi1jxj5jgGVu02s0wkSZJyqSLrD0gp3QzcvMW5z3Z73Qi8K+s+erK2sZ29h9VwwNhBPL2qvs/1KsqCDx2/H22tiWEOBkuSJO2ycj1kGRGMqq3gf888nPKyvq/m8M8nT2FgdRmtETS2FaFBSZIkZSLXIXhzSztrN7cxoraSL5y25R4ehTl+8kjeMXMf2lOwYWMDjUXqUZIkScWX6xAMcPSXbicBbzx4LJeefshOjQjPPnA0l79rBtUBGzY2cPKVfy1+o5IkSSqa3Idg6AjCAbxl6lh++9HjmTxmUK/eN6i6givefRj/dcahVAasNgBLkiTtFjJ/MG53cfSXbuf+T72B/UfW8MPzjmLZ2ga+/efnmb94LWs2Nb9yX01lGVP3Gsp7jhzP66aMprayjKa2xMsGYEmSpN2GIbibo790O/d96g0EcNjeg/jPt02jqbWdlBIt7YmygKryMiAxdnA16xtaaW13CoQkSdLuJvppX4qimjVrVpo3b16f69RtbKS+KZtlHAZVlzN6cE0mtSVJkrRjETE/pTSrp2u5HgkePbiG0YNL3YUkSZL6mw/GSZIkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyZ7fcLCMi6oDFJfjoUcDqEnyusuX3uufyu91z+d3umfxe91yl+m73TSmN7unCbhmCSyUi5m1r1xHtvvxe91x+t3suv9s9k9/rnmtX/G6dDiFJkqTcMQRLkiQpdwzBhbmm1A0oE36vey6/2z2X3+2eye91z7XLfbfOCZYkSVLuOBIsSZKk3DEES5IkKXcMwb0QES9ExGMR8XBEzCt1PyqeiBgWEb+IiCcjYmFEHFvqntR3EXFg59/Xrn82RMQ/lbov9V1E/HNELIiIxyPiJxFRU+qeVBwR8fHO73WBf193bxHx3Yh4KSIe73ZuRET8ISKe6fw5vJQ9giG4ELNTSjN2tTXu1GdfB36fUjoIOAxYWOJ+VAQppac6/77OAI4AGoBflbgt9VFEjAM+BsxKKU0DyoEzS9uViiEipgEfBo6i49/Fp0bE5NJ2pT74PvCWLc5dAvwppTQF+FPncUkZgpVbETEUOAH4DkBKqTmltK60XSkDJwHPppRKscukiq8CGBARFUAt8GKJ+1FxHAzcn1JqSCm1AncBZ5S4J+2klNLdwMtbnD4d+EHn6x8Ab+vXpnpgCO6dBNwWEfMj4vxSN6OimQTUAd+LiIci4tsRMbDUTanozgR+Uuom1HcppeXA5cASYAWwPqV0W2m7UpE8DrwuIkZGRC3wVmCfEvek4hqbUlrR+XolMLaUzYAhuLeOTynNBE4BLoiIE0rdkIqiApgJfDOldDiwiV3gf8+oeCKiCjgN+Hmpe1Hfdc4hPJ2O/4DdGxgYEeeUtisVQ0ppIXAZcBvwe+BhoK2kTSkzqWN93pKv0WsI7oXO0QdSSi/RMa/wqNJ2pCJZBixLKd3fefwLOkKx9hynAA+mlFaVuhEVxRuB51NKdSmlFuBG4LUl7klFklL6TkrpiJTSCcBa4OlS96SiWhURewF0/nypxP0YgnckIgZGxOCu18Cb6PjfNtrNpZRWAksj4sDOUycBT5SwJRXfWTgVYk+yBDgmImojIuj4O+vDrHuIiBjT+XMCHfOBry9tRyqym4APdL7+APB/JewFcMe4HYqI/fjbU+UVwPUppS+WsCUVUUTMAL4NVAHPAR9MKa0tbVcqhs7/aF0C7JdSWl/qflQcEfEF4D1AK/AQ8KGUUlNpu1IxRMSfgZFAC3BRSulPJW5JOykifgKcCIwCVgGfA34N3ABMABYD704pbfnwXL8yBEuSJCl3nA4hSZKk3DEES5IkKXcMwZIkScodQ7AkSZJyxxAsSZKk3DEES9IuIiImRoTrkEtSPzAES5IkKXcMwZK0a6mIiB9HxMKI+EXn7mhHRMRdETE/Im7ttvXohyPigYh4JCJ+GRG1nee/HxHfjIj7IuK5iDgxIr7bWfP7nfeUd973eEQ8FhH/XMLfWZL6nSFYknYtBwJXp5QOBjYAFwBXAu9MKR0BfBfo2rXyxpTSkSmlw+jYPnhOtzrDgWOBf6Zju9KvAocAh3bulDgDGJdSmpZSOhT4Xva/miTtOipK3YAk6VWWppT+0vn6R8C/AdOAP0QEQDmwovP6tIj4T2AYMAi4tVud36SUUkQ8BqxKKT0GEBELgInAXcB+EXEl8Dvgtkx/K0naxRiCJWnXsuVe9huBBSmlY3u49/vA21JKj0TEucCJ3a41df5s7/a667gipbQ2Ig4D3gz8A/Bu4Lw+dy9JuwmnQ0jSrmVCRHQF3rOB+4DRXeciojIiDum8PhhYERGVwHsL+ZCIGAWUpZR+CXwamFmU7iVpN+FIsCTtWp4CLoiI7wJP0DEf+FbgfyNiKB3/3v4asAD4DHA/UPf/t2vHNgDCMBQF7QEyAZMyDaOGBho6JBry75qUSflk5zrHi3u2qjq6+x6G7N88H+Afes7n5g0AANbmOwQAAHFEMAAAcUQwAABxRDAAAHFEMAAAcUQwAABxRDAAAHFOtTjlmAfWpjYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAHuCAYAAAB+o9EKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXRdVd3/8c83uUlu0iQd0nRKOkJLJ0pp05Y+QKVAZQZlEMogSAVU4KciKjzqI6CogCM8qICgghZB5dEqLZOUSaAlpS3QiZbS0nRMp8zz3b8/kltDm+km59yb9Lxfa3U199x9vveb3sVaH7f77G3OOQEAAABBkpToBgAAAIB4IwQDAAAgcAjBAAAACBxCMAAAAAKHEAwAAIDACSW6gc7o37+/GzFiRKLbAAAAQDe2bNmy3c653Jbe65EheMSIESosLEx0GwAAAOjGzGxza++xHAIAAACBQwgGAABA4BCCAQAAEDg9ck1wS+rq6lRUVKTq6upEt5JQ4XBY+fn5SklJSXQrAAAA3dZhE4KLioqUlZWlESNGyMwS3U5COOe0Z88eFRUVaeTIkYluBwAAoNs6bJZDVFdXKycnJ7ABWJLMTDk5OYGfDQcAAGjPYROCJQU6AEfxbwAAANC+w2Y5BAAAALqHhoYG7SqrVcRJ9ZGInJNSkk1OUr+MFGWkJf7ZJUKwR/bv36/58+frS1/6UqJbAQAASIj9lbWqrG3Q86t3asHKbVq9rVRVdQ2SpCSTRvbP1AlH5uizM0eoV1qyBvVOT1ivhGCP7N+/X7/85S8JwQAAIJB2lFTrbyu26mfPv6+a+sgh70ec9EFxuT4oLtfv39isU8YO0O3nTVD/XqkKp8Y/kh5Wa4IT6ZZbbtEHH3ygyZMn6+tf/7ruueceTZs2TZMmTdJ3v/tdSdKmTZs0duxYXXXVVRozZowuu+wyvfDCCzr++OM1evRoLV26VJJ022236YorrtDMmTM1evRoPfTQQ5Kk7du3a9asWZo8ebImTpyoV199NWG/LwAAQNS2/VW67rFC/WjR2hYDcEv+tXaXzrz3Vb27rVRlVXU+d3goQrBHfvSjH+mII47QihUrNGfOHK1fv15Lly7VihUrtGzZMr3yyiuSpA0bNuhrX/ua1q5dq7Vr12r+/Pl67bXX9OMf/1g/+MEPDtR755139OKLL+qNN97QHXfcoW3btmn+/Pk67bTTtGLFCq1cuVKTJ09O1K8LAAAgSdpRUqUrH1mqlUUlMd9bWlWvy3+zROuLy1XXtGwiXlgO4YPnnntOzz33nI499lhJUnl5udavX69hw4Zp5MiROvrooyVJEyZM0CmnnCIz09FHH61NmzYdqHHeeecpPT1d6enpmj17tpYuXapp06bp6quvVl1dnT71qU8RggEAQELtLK3WD55eq/W7yjtdo6Y+omsfLdSCG07QkD7xWyPMTLAPnHO69dZbtWLFCq1YsUIbNmzQvHnzJElpaWkHxiUlJR14nZSUpPr6+gPvHbzVmZlp1qxZeuWVV5SXl6errrpKjz76aBx+GwAAgJZ9uLtCC97Z1uU6u8tr9dPn39fusviddUAI9khWVpbKysokSaeddpoeeeQRlZc3/q+irVu3ateuXTHV+/vf/67q6mrt2bNHL730kqZNm6bNmzdr4MCBuuaaa/T5z39eb7/9tue/BwAAQEdsL6nST55b51m9vy3fqpp651m99rAcwiM5OTk6/vjjNXHiRJ1xxhm69NJLNXPmTElSZmam/vCHPyg5ObnD9SZNmqTZs2dr9+7d+s53vqMhQ4bo97//ve655x6lpKQoMzOTmWAAAJAwtfURvbVpn2f16iNOC9/brmtOHOVZzbaYc/4lbjN7RNLZknY55ya28L5J+oWkMyVVSrrKOdfu9GZBQYErLCz82LU1a9Zo3LhxnvSdaLfddpsyMzN18803d+r+w+nfAgAAdE/PvLddX/iDt/+v9ElH5eonFx2jnMy09gd3gJktc84VtPSe38shfifp9DbeP0PS6KY/10r6lc/9AAAAwANvbdrrec3V20pVVRufXSJ8XQ7hnHvFzEa0MeQ8SY+6xunoN82sj5kNds5t97Ov7u62225LdAsAAACtikQi2l/p/d6+pdV1OmhvAN8k+sG4PElbmr0uarp2CDO71swKzaywuLg4Ls0BAADgUElJSUoNeR8jU5OTFK9H4xIdgjvMOfegc67AOVeQm5ub6HYAAAACbcKQ3p7XPCI3U0kBmQneKmlos9f5TdcAAADQjU0Z1sfzmpOH9tGAzLDndVuS6BC8QNJnrdFxkkqCvh4YAACgJ+iTkapB2d4G1gsL8hXyYZlFS3z9FDN7XNIbko4ysyIzm2dmXzCzLzQNWShpo6QNkh6S9CU/+/Hb1VdfrQEDBmjixEN2gwMAADis9M9M1eeOH+FZvfGDs9U3I9Wzeu3xNQQ75+Y65wY751Kcc/nOuYedc792zv266X3nnLveOXeEc+5o51xhezW7s6uuukrPPPNMotsAAADwXWooWedNHqIRORldrpVk0t0XTtKQPukedNbBz4zbJ3UzixYt0tlnn61p06bp7LPP1qJFi7pcc9asWerXr58H3QEAAHR/g3qn6/7Lpiiti0sYbjh5tAb3js9a4KhAhuBFixbpzjvv1I4dO+Sc044dO3TnnXd6EoQBAACCZFjfDP32c9M6HYQ/O3O4Lp8xzLNT4joqkCH4/vvvV3V19ceuVVdX6/77709QRwAAAD1TVnqKJg7O1j9uPEHjBmd1/L60kO69ZLK+dNIRGuDxA3Yd4euJcd3Vzp07Y7oOAACA1mVnpCo7I1W/vWqaln64V6+s362pQ3vr9KMHKyMtJJNU3xDRO0Ul+vuKbRrUO6wLpw5V34wUZaQlJo4GMgQPHDhQO3bsaPE6AAAAOqdfrzTNHpOrqcP7al9lnf6xcrve31mmiHMakB3W9BH9dP3JRyo12ZSZEkpYAJYCGoKvv/563XnnnR9bEhEOh3X99dd3qe7cuXP10ksvaffu3crPz9ftt9+uefPmdbVdAACAbq+qpkb7qyKav/Qj/eHNzdpXWdfiuFCSac74gfrqnDHqU9ug/llpSorXMXHN+4j7J3YDZ5xxhqTGtcE7d+7UwIEDdf311x+43lmPP/64F+0BAAD0KDtLqvTB7gp9+fEVKi6vaXNsfcRp0Xs79Nzqnbp+9hG6bMZw9c1IUWooOU7dNgpkCJYag3BXQy8AAEDQ7Syp0qvrd+vrf31HznX8voaI073/2qB3t5boR+dP0oCsJJnFb0Y4kLtDAAAAoOsqq2u1fldFzAG4ucVri3XPs+u0s7S6/cEeIgQDAACgU/ZXN+grTyzvdACO+suyIm3YVa6ampbXEfuBEAwAAICYlVbV6rE3Nmt3ea0n9W79v3e1u7Lek1odQQgGAABAzMprGvT4Wx95Vm/L3iptK6nyrF57CMEAAACIWXFZjfa3sg1aZ/11WZGqauMzG0wI9tCWLVs0e/ZsjR8/XhMmTNAvfvGLRLcEAADgi8LNez2v+e7WEu2u8GZ5RXsCu0WaH0KhkH7yk59oypQpKisr09SpUzVnzhyNHz8+0a0BAAB4xjmndTvKPK+7eU+l4rVJWiBnguvq6nTjjTfqxhtvVGVl5YGf6+q6NqU/ePBgTZkyRZKUlZWlcePGaevWrV60DAAA0G0459QQ6eKWEC1oiDglxWmv4EDOBN900016++23JUlnnnnmgfB700036b777vPkMzZt2qTly5drxowZntQDAADoLsxMA7PDntft1ytVka7ut9ZBgQzBUTU1NaqpaTzaLy0tzbO65eXluuCCC/Tzn/9c2dnZntUFAADoDsxMk4f28bzuxLxspSTHZyY4kMsh7rrrLqWkpHzsWkpKiu6+++4u166rq9MFF1ygyy67TOeff36X6wEAAHQ3kUhEw/plKMnjvDpjZI6SLT7xNJAh+Jvf/OYh63/r6ur0jW98o0t1nXOaN2+exo0bp5tuuqlLtQAAALorM9PmPZX6xJgBntUMpyRp8tA+qq5v8KxmWwIZgqPS0tKUmZnp2VKIf//733rsscf04osvavLkyZo8ebIWLlzoSW0AAIDuwsxUWlWrz584Ul49x3b5ccO15MM93hTrgECuCf7pT396YKb2rrvu0je/+c0D17vihBNOkIvTYm4AAIBEOnJglp5fvVNXzhyh372+qUu1RuRk6JSxA/XMe9uUlRafeBrIEJySkvKxXSC82hECAAAgKPpnpumpt7fqpxcfow27yvXaht2dqtM7PUU/v+RYfe3Jlfrh+UcrK5zS/k0eCPRyCAAAAHROekqSPjtzuFKTk3TTJ8fojImDYq4xPCdDD19ZoCQ5HTUwUwOz05Tk9dN2rQjkTDAAAAC67lPH5unnL7yvf76zXf995jidNmGQfrhojXaW1rR5X1ooSZfNGKbTJgzSrU+9q/Kaej153UylJpvKq+uUGYfZYEIwAAAAYlZdF9GWfZV6srBIkvTtv72nmaNy9MPzJ6m6rkEvrNmpd4tK9NHeSkWcU79eqZqY11vHjcrR1GF9tWDlNl36myUHTp578JWN+tLsI1ReU08IBgAAQPcTiURkJt334oaPXX9j4x69sXGPhudk6Pgj+utzx49Uft90mUkllXVata1UL6zeqR8sXKOD9xJ44q0tuur4EcrplRqX34EQDAAAgJiYmWrrI3r9g5a3NNu8p1Kb93wUU83ahoheWrtLF0zJ86LFdhGCPTZixAhlZWUpOTlZoVBIhYWFiW4JAADAU2amNTvKPK/7+sY9OnPSYHl/IPOhCME+WLx4sfr375/oNgAAAHwRiUS0/KN9ntddtbVU9Q3xOXMhkCF41qxZqqysPOR6RkaGXnnllQR0BAAA0LPsraj1vOb+qlrPTqBrTyD3CW4pALd1PRZmpk9+8pOaOnWqHnzwwS7XAwAA6G7MTCnJ3sfIlKT4RdNAzgT76bXXXlNeXp527dqlOXPmaOzYsZo1a1ai2wIAAPCMmWliXm/prS2e1h2Z20spcTosI5AzwX7Ky2t8onHAgAH69Kc/raVLlya4IwAAAO8dO8z7x9cmD+2jzLT4zNESgj1UUVGhsrKyAz8/99xzmjhxYoK7AgAA8F6/jFT1z/R2T9+LpuYrPZUQ3OPs3LlTJ5xwgo455hhNnz5dZ511lk4//fREtwUAAOC59JQkXX38SM/qHZGbqZzMNCXFaTlEINcEZ2RktLo7RFeMGjVKK1eu7FINAACAnqAhIn16Sp7+8OZmbSup7nK9H180SanJpqqaOqWncWyyL9gGDQAAoGv2V9UplGz65eVTdMGv3lBDpPP7+15z4ijlZKZpyYd7NX1kv7iEYJZDAAAAIGapoSSVVNWpT3qKHrxiqkKdXMZw4dQ8XTlzuIr2VGhQdljJcdoo+LAKwc7F54SR7ox/AwAAEA9mUpKZauudxg/J1uPXHqfhOR1fWpoWStJ3zxmvL58yRrX1DTIzmZlSQ/GJp4dNCA6Hw9qzZ0+gQ6BzTnv27FE4HE50KwAA4DA3ODuszLRkZYZDunH+cn3r/97VfXOP1ffPm6ih/dJbvS8jNVlXzhyhBTecoPe2luiMX7yq2ganrPSQjsjNVGbY/6UQ0mG0Jjg/P19FRUUqLi5OdCsJFQ6HlZ+fn+g2AADAYW5fVZ027KrQaxt2a92OMt127gSt2laqf3+wWz/89CQNyk5TdX1EoWSTnBRxTklNSx0eX7pZf1yyWZdMH6a1O8r0+UcL9di86dpVVq3McEjJcdgh4rAJwSkpKRo50rttOgAAANC68up69clI0d9XbNXDV03Tr176QM45ff7EUdpVVq0/Ltmsd7eWqGhflSQpOz2kiUN667hROfr0sfl6dtVOfe3JFbrnwmP0i3+t1/w3P9LscbkamB1Wdrr/s8HWE5cPFBQUuMLCwkS3AQAAEFg7S6t0y1/f1TWzRulXL32g8yYPUX3E6e5n1mlvRW2b94aSTBcV5Ov8Kfm6e9Fa3XzaUbrz6TX61RVTlR0OKcujJRFmtsw5V9BiD558AgAAAAKltt7pmKF99OKaXbrh5CP1wMsb9eLaXR26tz7i9PjSLXp5XbF+dvFk/XHJZn3r7HF6dX2xzp00xOfOGxGCAQAAELOt+ys1dVhfJSeb7n5mnZZt3hdzjW0l1fr87wv1mysLVLhpr/qkp0rx2SHt8NkdAgAAAPFTW++0o7RKT7+zvVMBOKqspl5f+/NKTRuRo4l5vVVaVedhl60jBAMAACAmzjkN6RPWwOx0/XHJR12uV7SvSv98Z5tKquoUSmKfYAAAAHRT1XUR/ebVjZ7Ve+KtLeqfmab6SMSzmm0hBAMAACBmqclJenXDbs/q1dRH9PoHu5UUhz2CJUIwAAAAOmFDcZm83ml3yYd7pTjt3ksIBgAAQEzMTCu2lHhe972tJaptYDkEAAAAuqFIJKI95TWe191XWRuvHdIIwQAAAIhdKNn7GBlKSpIZa4IBAADQDZmZJgzO9rzuiP4Zcl4vNG4FIRgAAAAxMTNNyOvted3JQ/soNcQ+wQAAAOimstJC6puR4mnNMyYOVpx2SCMEAwAAIHYpIdPc6cM8qzciJ0NpoSRmggEAANB9hUPJOnXcQA3MTvOk3rfPGq/MtGRZnPaHIAQDAAAgZn17pWjdjlLd+emju7yE4ZJpQ7W9pEp9M1KVGfZ2iUVrCMEAAACIWTglpNljB2j55n360QWTOh2ET5swUKdNGKRxg7M1IDvsbZNtIAQDAAAgZvsra7W3olYnjR2gVVtL9PCV0zSkd8dDbEqy6atzxuj8Kfl6dX2xBmSlaXdZrY8dfxwhGAAAADErr6lXWU29ssMhTRvZTz97fp1+MfdYfeXU0W2uE04LJenTx+bp8WuO046SKi1YsU3zThipytoGldXUqaKmPi79h+LyKQAAADjsmKTfv75ZoWTTN84Yp6/+aYXGD8nWD8+fpPSUZL2/s0wf7a1UxDn165WqCUN6Kysc0rOrduiLf1imeSeO0sj+vXTNo8v0owuOVmooSQ2RSFx6JwQDAACgU/62fJvmL/1IkvT2R/v080sma8mHe3XLX9/RvspajRmYpbw+6TIzrdleqode2aia+ojOnjRYD362QE8WbtGPFq2VJH31iZX61eVT4ta7xetoOi8VFBS4wsLCRLcBAAAQWGu3l+rMe19VpFmUTE4ynTJ2gC6ZPkwZqcnaWFyuLXsr1RCRcjJTddSgLPVKa5wJ/suyIu2vrPtYzS98YpRuOHm0MtO8mac1s2XOuYIW3yMEAwAAIFaVNfV6dcNuffEPyz4WhKNSkk0/+PTRyslM06qtJfrkhIG66pGl2l5a02K9cyYN1u3nTVS/Xqme9dhWCObBOAAAAMSsorZe1XUNuu/SY1vcHu2mOWNUUdugq3/3ln7y/Pv6wcK1+t/LpqhXavIhY8+ZNFiXzhimqrqGOHTeiBAMAACAmBWX1eqrT6zQWx/uOyQIf/P0o5SeGtJtC1bpq6eO1oIbjlfhpr26918b9Oi86R8LwudMGqwLpubrqt++pUdf36T9lfHZJo0QDAAAgJj1Tg/p3rnH6tE3Nn0sCDcPwDfNGa1zjhmivhkpmn/NcYcE4WgAvu6xZTpl7AB9duZwhZLjE08JwQAAAIhZn4xUjRuUrfuaBeFFX551IAB/7ZNjdM6kIcrJTNWg3unq1ytFj1/7nyD8ly/+14EAfOq4gbr1zHFKT0327KG49vBgHAAAADqloqZeZdV1ev2DPbr5zys1Ma+33ikq0Y0nH6lLpw9TdnqyeqU1PuhW1xDR/spabdpdqat+u1T5fTO0aU+FZo8doG+fNU6Zqcnq06v1QzY6I6EPxpnZ6Wa2zsw2mNktLbw/zMwWm9lyM3vHzM70uycAAAB0XVl1va59bJne3Vqiuy6YpPe2luiGk49U/8w0XfTAG9pT8Z/T3/ZV1Op7/1yj/128QQ9cUaCifZWaPXaAPlMwVOfe95o+2lel6tr4PRjn60ywmSVLel/SHElFkt6SNNc5t7rZmAclLXfO/crMxkta6Jwb0VZdZoIBAAASa0dJta59rFDvFJVIkj53/Aidf2y+3v5on767YJUkKb9vuuZfc5wyUpN1xz9Wa8HKbZKkT4zJ1U1zxmhPRa2++IdlqqmPqFdqsh6/9jiNGZClcAs7SHRGWzPBfi+6mC5pg3NuY1Mjf5J0nqTVzcY4SdlNP/eWtM3nngAAANBFlbX12rK38sDr3/57k97evE8rm0KxJBXtq9IlD7yhIwZk6tX1uw9cf/n9Yu0srdaHuytUU994THJFbYNWby9VXp90z0JwW/xeDpEnaUuz10VN15q7TdLlZlYkaaGkG1sqZGbXmlmhmRUWFxf70SsAAAA6aFjfDD153Uz1zUg5cK15AI7aVlL9sQActXZH2YEALEl3fmqi5owbqJxMb9cFt6Y77A4xV9LvnHP5ks6U9JiZHdKXc+5B51yBc64gNzc37k0CAADgP0KhJI3M6XVIEO6MOz81UadPHBS3ACz5H4K3Shra7HV+07Xm5kl6UpKcc29ICkvq73NfAAAA6CIvgnAiArDkfwh+S9JoMxtpZqmSLpG04KAxH0k6RZLMbJwaQzDrHQAAAHqArgThRAVgyecQ7Jyrl3SDpGclrZH0pHNulZndYWbnNg37mqRrzGylpMclXeV64ubFAAAAARUKJWlU/156/JrjOnzPNSeO0tmTBickAEv+7w4h59xCNT7w1vza/zT7ebWk4/3uAwAAAP7ZW1mrX770QYfHL3pvu66YOVy9M1J97Kp13eHBOAAAAPRgxWXV+t4/1xzYB7gjivZV6dKH3tRHzbZZiydCMAAAADqtMwE4KpFBmBAMAACATulKAI5KVBAmBAMAACBmsQTgJGv7/UQEYUIwAAAAYranvFaL3tve7rjvf2qinr/pE+1un1a0r0p/LtyivRU1XrXYJkIwAAAAYpbXN12PXDVNKcmtT/Pe+amJOmPiIA1v4Yjlg82dPlRXHDdc/XoF59hkAAAA9DBZ4RRNHtqn1SDc/CCM9g7UmDt9qL566hgNyA7Ho3VJhGAAAAB0UmtBuKWT4FoLwokIwJJkPfFwtoKCAldYWJjoNgAAACCprLpOK7bsV17vsN7YuLfNo5Dr6yP6cE+F6hoieun9XbpwylDfArCZLXPOFbT0HjPBAAAA6JKscIrGDspWKDlJp44f2OZRyKFQkgZmpykzLaQLfAzA7SEEAwAAoEuKy2r09kf7dNKPX9JTbxdpZ2l1q2NLq2q1ZV+Vzrr3Nd359Jo2x/qJEAwAAIBOiwbgL/5hmSJOuuuZda0G4WgAvuSBN1VWU68FK7clLAgTggEAANApBwfgqJaC8MEBOCpRQTgU108DAADAYaG1ABx11zPrJEnnT8lXekpSiwE4Knrq3LfOGqeBcVojTAgGAABAzHaX17QagKPuemadnKSTxgxoNQBHLVi5TYN7h3XNrFHq38aDdV5hOQQAAABi1q9Xqi6eNrTdcXc/s05n3vtqmwFYkkb176XPzhwelwAsEYIBAADQCQOzw/rKqWM0d3r7Qbg9o/r30qPzpiuvb4YHnXUMIRgAAAAx21tRq/teWNXlIBwNwB/trdCWvZUedtg2QjAAAABitqeiRn9+e5cu/vXrnQ7C0QC8fmepLn1oqRas3Kay6jofuj0UIRgAAAAxG96vl+ZfM0PbS2s6FYSbB+DP/W6Zrps1SpfNGKascIqPXf8HIRgAAAAxSw0l6ei8PgeCcJKL6JJpwzp8/4mj+yscSjoQgL940hHqk5HqY8cfxxZpAAAA6JRoEH7z1pO0raRWl/9mSYfv/f0bmzWwd1hv3nqywinJcQ3AEiEYAAAAXVBdV69tJbXt7gPckrubDtS44Nh8P1prE8shAAAA0CmtHYUci7ufWae/Li/SzpL4HptMCAYAAEDMvAjAUYkIwoRgAAAAxGxXWceWQIzs30tnThzUbr27n1mnp9/drp2lVV612CbWBAMAACBmWeGQxg/J1pIP97Y6ZlT/Xnps3nSlhZLUOyNFjy/d0urY3ukp+q8jc5SVxhZpAAAA6KYGZod179xjNWNkvxbfjwbg93eW6sJftb2PcO/0FD1x3XEa1jdDGWnxmaMlBAMAACBmJZV1en/7/haDcPMA/LnfLdOmvVWtHqjROz1FT1x7nHqHQyqv7dra4lgQggEAABCz7aVVuuK3y/TQyxs+FoQPDsDXnDhSj7dyslw0AGelJWvmjxbroVc+VHkXH7LrKNYEAwAAIGZ5fdJ1z4WT9PW/vCNJunfusfrJc+v05VNGHwjA0ZPgMlJD+uM1M3TZQ0t08a9f1xNf+C9lh1P06WPzlJWWrOPvfkknjcnVFz4xSplxWg5BCAYAAEDMssIpOr1p14doEP7GaUfp3a37WzwKeVJen48H4etmqr4hciAA/+QzxygnMy1u/ZtzLm4f5pWCggJXWFiY6DYAAAACr6y6Ts+8t+NAEJZ0SACOqq2P6J2t+3XZQ0tUUx+RJF8DsJktc84VtPQea4IBAADQadEZ4XsunCSp9QAsSamhpAMzwmmhpITMAEexHAIAAABdEg3CYwZlaXi/jBYDcFQ0CP/9huOVm5mWkAAsEYIBAADggaxwio7J79OhsamhJI0dlO1zR21jOQQAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAicUKIbAAAAQM+3t6JGVbURpSSbBmSH2xxbXVuv4vJapYaSNLCdsX5hJhgAAABdsreiRss/2q9Z9yzWgpXbtKu0utWx1bX1+nBPpc6691XdtWitdrYx1k+EYAAAAHRaNABf+9gyNUScvv/0mlaDcDQAX/zAGyqtrtdTy7cmLAgTggEAANApBwfgqJaC8MEBOCpRQZg1wQAAAIhZawE46vtPr5EknXvMEGWHQy0G4Kinlm+VJH3zjLFxWyNMCAYAAEDMdpbWtBqAo77/9Bo5SbNG57YagKOeWv5YV9YAAB9YSURBVL5Vg3qHNe+EkcrJTPOh449jOQQAAABiltMrVecfm9fuuDufXqPTfv5KmwFYkobnZOjSGcPiEoAlQjAAAAA6YUB2WF8/7ShdNDW/y7WG52Toj5+fofy+GR501jGEYAAAAHSKF0E4EQFYIgQDAACgC7oShBMVgKUYHowzs1xJ+ZIaJG10zpX71hUAAAB6jGgQlqQ/Lyvq0D2JDMBSB2aCzWy8mb0g6Q1JSyQ9JOldM/udmfX2u0EAAAB0f9nhkK78rxEdHn/K2AHKSE3cRmUdWQ7xiKTrnXNHSjpB0lrn3EhJ/5b0sJ/NAQAAoPuLHoRx6UNvdvieR/69SX99e0ubRyz7qSMhON05t06SnHNLJR3d9PNDkib42BsAAAC6udZOguuIO59eq7+v3JqQINyROegPzOw7kl6UdL6kFZJkZiniwToAAIDA6koAjrrz6bWSpPOOydOAOJ0WJ3UsxF4tKUvSrZKqJX256XqGpCt96gsAAADdmBcBOCoRM8LtzgQ75/ZL+kYL10skHVj4YWb3Oedu9LY9AAAAdEdF+6s7FICH9cvQUYMy9fzqXW2Ou/PptUpNTtaZEwcpNw4zwl4+kne8h7UAAADQjWWmhTR6YJaWbd7X6pjoNmjhlGT1SV/b5vZp2eGQpo3op6xwfHaMYE0vAAAAYjaod1j3XzpFU4f3bfH95vsA989Ma/NAjexwSH+6dqZG9c9QOE7bphGCAQAA0CmtBeGWDsJo7WS5RARgydsQbB7WAgAAQA9wcBBu6yS4g4NwogKwFEMINrOj2xnyi1buO93M1pnZBjO7pZUxnzGz1Wa2yszmd7QnAAAAJF40CH9qcl67RyFHg/Dnjh+RsAAsSeac69hAs1clpUn6naQ/Nu0O0d49yZLelzRHUpGktyTNdc6tbjZmtKQnJZ3snNtnZgOcc20+PlhQUOAKCws71DcAAADiY095jXIy0zo0dldptbLDIV8DsJktc84VtPReh2eCnXMnSrpM0lBJy8xsvpnNaee26ZI2OOc2OudqJf1J0nkHjblG0v3OuX1Nn9P2/hkAAADoljoagKXGGeFEzABHxbQm2Dm3XtK3JX1T0ick3Wtma83s/FZuyZO0pdnroqZrzY2RNMbM/m1mb5rZ6S0VMrNrzazQzAqLi4tjaRsAAAD4mFjWBE8ys59JWiPpZEnnOOfGNf38sy70EJI0WtJJkuZKesjM+hw8yDn3oHOuwDlXkJub24WPAwAAQNDFMhN8n6S3JR3jnLveOfe2JDnntqlxdrglW9W4fCIqv+lac0WSFjjn6pxzH6pxDfHoGPoCAAAAYhJLCD5L0nznXJUkmVmSmWVIknPusVbueUvSaDMbaWapki6RtOCgMX9T4yywzKy/GpdHbIyhLwAAACAmsYTgFySlN3ud0XStVc65ekk3SHpWjcsonnTOrTKzO8zs3KZhz0raY2arJS2W9HXn3J4Y+gIAAABiEssjeWHnXHn0hXOuPDoT3Bbn3EJJCw+69j/NfnaSbmr6AwAAAPgulpngCjObEn1hZlMlVXnfEgAAAOCvWGaCvyLpz2a2TY1HJA+SdLEvXQEAAAA+6nAIds69ZWZjJR3VdGmdc67On7YAAAAA/8R6TMc0SSOa7ptiZnLOPep5VwAAAICPOhyCzewxSUdIWiGpoemyk0QIBgAAQI8Sy0xwgaTxTbs5AAAAAD1WLLtDvKfGh+EAAACAHi2WmeD+klab2VJJNdGLzrlzW78FAAAA6H5iCcG3+dUEAAAAEE+xbJH2spkNlzTaOfdC02lxyf61BgAAAPijw2uCzewaSX+R9EDTpTxJf/OjKQAAAMBPsTwYd72k4yWVSpJzbr2kAX40BQAAAPgplhBc45yrjb4ws5Aa9wkGAAAAepRYQvDLZvbfktLNbI6kP0v6hz9tAQAAAP6JJQTfIqlY0ruSrpO00Dn3LV+6AgAAAHwUyxZpNzrnfiHpoegFM/ty0zUAAACgx4hlJvjKFq5d5VEfAAAAQNy0OxNsZnMlXSpppJktaPZWlqS9fjUGAAAA+KUjyyFel7Rdjccm/6TZ9TJJ7/jRFAAAAOCndkOwc26zpM2SZvrfDgAAAOC/WE6MO9/M1ptZiZmVmlmZmZX62RwAAADgh1h2h7hb0jnOuTV+NQMAAADEQyy7Q+wkAAMAAOBwEMtMcKGZPSHpb5Jqohedc0953hUAAADgo1hCcLakSkmfbHbNSSIEAwAAoEfpcAh2zn3Oz0YAAACAeIlld4gxZvYvM3uv6fUkM/u2f60BAAAA/ojlwbiHJN0qqU6SnHPvSLrEj6YAAAAAP8USgjOcc0sPulbvZTMAAABAPMQSgneb2RFqfBhOZnahGo9TBgAAAHqUWHaHuF7Sg5LGmtlWSR9KutyXrgAAAAAfxbI7xEZJp5pZL0lJzrky/9oCAAAA/BPL7hBfNrPoXsE/M7O3zeyT7d0HAAAAdDexrAm+2jlXqsbDMnIkXSHpR750BQAAAPgolhBsTX+fKelR59yqZtcAAAAQcHvKazo8dldptWrqGnzspm2xhOBlZvacGkPws2aWJSniT1sAAADoSXaWVuuuZ9Zq676qdsfuKq3Ww699qA/3VCQsCMcSgudJukXSNOdcpaRUSRylDAAAEHA7S6v1/x5fricLi3TFw0vaDMK7Sqv183+9rwde2aiLH3gzYUG43RBsZmObfpzc9PcoM5siabhi22INAAAAh5loAF7y4V5J0sbdFa0G4WgAnr9kiySppKouYUHYnHNtDzB70Dl3rZktbuFt55w72Z/WWldQUOAKCwvj/bEAAABo5uAA3Nyo/r302LwZyuubLunQANxc7/QUPXHdcRqZ00tpKcme9Wdmy5xzBS2+114I7o4IwQAAAInVVgCOigbhtJQk/fT5dS0G4Cg/gnBbIbjDyxnM7CJJzzjnyszs25KmSPqec265J10CAACgxyirrteqbaVtjokujRg7KEsL39vR5tiSqjr9e8Nu5WSkKtfD2eDWxPJg3HeaAvAJkk6V9LCkX/vTFgAAALqzvD5hPXHdccpMa3tOdePuinYDsCR947SjdM6kIcrNDnvVYptiCcHR1cpnSXrQOfe0GneIAAAAQMCkp4Y0qn+vDgXh9nzjtKN04dR8DYhTAJZiC8FbzewBSRdLWmhmaTHeDwAAgMOIF0E4EQFYii3EfkbSs5JOc87tl9RP0td96QoAAAA9QleCcKICsBRDCG46IOPvkirMbJikFElr/WoMAAAAPUM0CP/xmhkdvuezM4fr4mlDExKApRhCsJndKGmnpOclPd30558+9QUAAIAepKy6Xk+89VGHx7+2freq6yI+dtS2WJZDfFnSUc65Cc65o5v+TPKrMQAAAPQMbR2E0Zq2TpaLh1hC8BZJJX41AgAAgJ6nMwE4KpFBOJbVyxslvWRmT0uqiV50zv3U864AAADQ7XUlAEdFg3DzI5bjIZaZ4I/UuB44VVJWsz8AAAAIGC8CcFQiZoQ7PBPsnLtdkswss+l1uV9NAQAAoHvbU1GrPy1tPwB//bSjNPuoXH3mgTdVXlPf6riNuyv06BubdN0nRqlfrzQPO21ZLLtDTDSz5ZJWSVplZsvMbIJ/rQEAAKC7GpCVpl9dNlVJ1vqYb5x+lC6amq+RHdhH+JxjBuvqE0bGJQBLsS2HeFDSTc654c654ZK+Jukhf9oCAABAd5aTmaaCEX1bDcLfOP0oXTil8SCM9g7UOOeYwfr2WeM1sJsem9zLObc4+sI595KkXp53BAAAgB6htSDcPABHtRaEExGApdhC8EYz+46ZjWj682017hgBAACAgDo4CLcUgKMODsKJCsCSZM65jg006yvpdkknSHKSXpV0u3Nun3/ttaygoMAVFhbG+2MBAADQij3lNSqvqVd6SnK7RyFX1dZrV1mNwinJvgZgM1vmnCto6b1YdofYJ+n/edYVAAAADhs5mWnKyezYQ23pqSENz4nluArvxbI7xPNm1qfZ675m9qw/bQEAAAD+iWVNcH/n3P7oi6aZ4QHetwQAAAD4K5YQHDGzYdEXZjZcjWuDAQAAgB4llsUY35L0mpm9LMkknSjpWl+6AgAAAHwUy4Nxz5jZFEnHNV36inNud/R9M5vgnFvldYMAAACA12J6LK8p9P6zlbcfkzSlyx0BAAAAPotlTXB72jg5GgAAAOg+vAzBPCQHAACAHsHLEAwAAAD0CF6G4FoPawEAAAC+ienBODObJGlE8/ucc081/X1cK7cBAAAA3UqHQ7CZPSJpkqRVkiJNl52kp3zoCwAAAPBNLDPBxznnxvvWCQAAABAnsawJfsPMCMEAAADo8WKZCX5UjUF4h6QaNe4L7Jxzk3zpDAAAAPBJLDPBD0u6QtLpks6RdHbT320ys9PNbJ2ZbTCzW9oYd4GZOTMriKEnAAAAIGaxzAQXO+cWxFLczJIl3S9pjqQiSW+Z2QLn3OqDxmVJ+rKkJbHUBwAAADojlhC83MzmS/qHGpdDSPrPFmmtmC5pg3NuoySZ2Z8knSdp9UHjvifpLklfj6EfAAAAoFNiWQ6Rrsbw+0k1LoOILoloS56kLc1eFzVdO8DMpkga6px7uq1CZnatmRWaWWFxcXEMbQMAAAAf1+GZYOfc57z+cDNLkvRTSVd14PMflPSgJBUUFDivewEAAEBwxHJYRljSPEkTJIWj151zV7dx21ZJQ5u9zm+6FpUlaaKkl8xMkgZJWmBm5zrnCjvaGwAAABCLWJZDPKbGkHqapJfVGGjL2rnnLUmjzWykmaVKukTSgYfrnHMlzrn+zrkRzrkRkt6URAAGAACAr2IJwUc6574jqcI593tJZ0ma0dYNzrl6STdIelbSGklPOudWmdkdZnZuZ5sGAAAAuiKW3SHqmv7eb2YTJe2QNKC9m5xzCyUtPOja/7Qy9qQY+gEAAAA6JZYQ/KCZ9ZX0HTUuaciU1GKYBQAAALqzWHaH+E3Tjy9LGuVPOwAAAID/Orwm2MwGmtnDZrao6fV4M5vnX2sAAACAP2J5MO53anzAbUjT6/clfcXrhgAAAAC/xRKC+zvnnpQUkQ7s/NDgS1cAAACAj2IJwRVmliPJSZKZHSepxJeuAAAAAB/FsjvETWrcFWKUmf1bUq6kC33pCgAAAPBRLCF4taT/k1SpxpPi/qbGdcEAAABAjxLLcohHJY2V9ANJ90kao8ajlAEAAIAeJZaZ4InOufHNXi82s9VeNwQAAAD4LZaZ4LebHoaTJJnZDEmF3rcEAAAA+KvdmWAze1eNO0KkSHrdzD5qej1c0lp/2wMAAAC815HlEGf73gUAAAAQR+2GYOfc5ng0AgAAAMRLLGuCAQAAgMMCIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBE0p0AwAAAOh5isuqVV7T4HndzLRk5WaFPa97MEIwAAAAYlZe06DZP37J87qLbz5JuVmelz0EyyEAAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIHjewg2s9PNbJ2ZbTCzW1p4/yYzW21m75jZv8xsuN89AQAAINh8DcFmlizpfklnSBovaa6ZjT9o2HJJBc65SZL+IuluP3sCAAAA/J4Jni5pg3Nuo3OuVtKfJJ3XfIBzbrFzrrLp5ZuS8n3uCQAAAAHndwjOk7Sl2euipmutmSdpUUtvmNm1ZlZoZoXFxcUetggAAICg6TYPxpnZ5ZIKJN3T0vvOuQedcwXOuYLc3Nz4NgcAAIDDSsjn+lslDW32Or/p2seY2amSviXpE865Gp97AgAAQMD5PRP8lqTRZjbSzFIlXSJpQfMBZnaspAckneuc2+VzPwAAAIC/Idg5Vy/pBknPSloj6Unn3Cozu8PMzm0ado+kTEl/NrMVZraglXIAAACAJ/xeDiHn3EJJCw+69j/Nfj7V7x4AAACA5nwPwQAAADj89EpL1uKbT/KlbjwQggEAABCzipoGzf7xS57XXXzzSVKW52UP0W22SAMAAADihRAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAgcQjAAAAAChxAMAACAwCEEAwAAIHAIwQAAAAicUKIbAAAAQM/TKy1Zi28+yZe68UAIBgAAQMwqaho0+8cveV538c0nSVmelz0EyyEAAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDghBLdAAAAAHqezLRkLb75JF/qxgMhGAAAADHLzQorNyvRXXQeyyEAAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABA4hGAAAAIFDCAYAAEDgEIIBAAAQOIRgAAAABE4o0Q0kUnFZtcprGg68DktKSkmWk1N6SpLKaxpUXRfRxt3l2l9Zp7SUJB2Zm6ne6SlKTjL1STOV1Zn6hJNUVFL7sdqZacnKzQrH+TcCAABARwQ6BJfXNGj2j1+SJP3+8skaOzRHKclOFbVOD736gf5cuEWl1fWH3Jdk0uyjBuj62UdqSO+w9pfWK793qkZ/57kDYxbffJJys+L1mwAAACAWLIdQYwAePzRHTtJTy7fr1J++rIdf+7DFACxJESf9a+0unf+r13X7P1erNrnxn3H99z4Zx64BAADQWYEPwdEZ4IhJ3/q/d/X9p9eopj7S4fsXvbdDF/zydRXtr5FEEAYAAOgJAh2Cw5LGDs2Rc053/GOV/rV2V6fq7Cit1tyHlqi4ol6lpbUEYQAAgG4u0CE4OTVZaSFp2Zb9evrdHV2qtaO0Wnf8Y5Vqk5O0r6pBA9I9ahIAAACeC3QITpJUWef030+960m9Z1bt1Nb9VeqdZtpV5UlJAAAA+CDQIbhPRkiFm/aqpKrOs5r/u3iD9lV1fE0xAAAA4s/3EGxmp5vZOjPbYGa3tPB+mpk90fT+EjMb4XdPUbvKa/X40i2e1nzl/WLVO+dpTQAAAHjL1xBsZsmS7pd0hqTxkuaa2fiDhs2TtM85d6Skn0m6y8+emos46d2tJZ7X3F9ZpwxPqwIAAMBLfs8ET5e0wTm30TlXK+lPks47aMx5kn7f9PNfJJ1iZuZzX5KkhohTeU3LewF3xbodZerXO9XzugAAAPCG3yE4T1Lz9QZFTddaHOOcq5dUIinn4EJmdq2ZFZpZYXFxsSfNRXxatlBd36A45XgAAAB0Qo95MM4596BzrsA5V5Cbm+tJzVCSP79+7/QURSI8HAcAANBd+R2Ct0oa2ux1ftO1FseYWUhSb0l7fO5LkmSSBmSleV53zMAsbS31bscJAAAAeMvvEPyWpNFmNtLMUiVdImnBQWMWSLqy6ecLJb3oXHy2VwinmKYO7+tpzYzUZPVKTfa0JgAAALzlawhuWuN7g6RnJa2R9KRzbpWZ3WFm5zYNe1hSjpltkHSTpEO2UfNLZopp3gkjPa15/pQ89UrtMatMAAAAAink9wc45xZKWnjQtf9p9nO1pIv87qMl+6ojGtInrDEDM/X+zvIu1wslmT5/wig11Dv1YTIYAACg2wr0lKWZqX9GSPdecqySk7q+m8NX54xWr7Qk1ZupusGDBgEAAOCLQIfgqrqI9lU1qF9Gim4/9+AzPGJzwpE5umDKUEWcqbSsUtUe9QgAAADvBToES9KMH74oJ+nUcQN1x3kTOjUjPPuoXP34oslKM6m0rFJz7nvD+0YBAADgmcCHYKkxCJuk08cP1D9vPEFHDsjs0H2ZaSH95DPH6AfnH60Uk3YTgAEAAHoE3x+M6ylm/PBFLbn1ZB2RE9ajV09X0b5K/ebVD7Vs8z7tqag9MC6ckqTxg3vr4mn5OnF0rjJSklTT4LSXAAwAANBjEIKbmfHDF/XmrSfLJB0zJFPf/9RE1dRH5JxTXcQpyaTU5CRJTgOz0lRSWa/6CEsgAAAAehqL07kUniooKHCFhYVdrlNcVq3yGn+2cchMS1ZuVtiX2gAAAGifmS1zzhW09F6gZ4Jzs8LKzUp0FwAAAIg3HowDAABA4BCCAQAAEDiEYAAAAAQOIRgAAACBQwgGAABA4BCCAQAAEDiEYAAAAAROjzwsw8yKJW1OwEf3l7Q7AZ8Lf/G9Hr74bg9ffLeHJ77Xw1eivtvhzrnclt7okSE4UcyssLVTR9Bz8b0evvhuD198t4cnvtfDV3f8blkOAQAAgMAhBAMAACBwCMGxeTDRDcAXfK+HL77bwxff7eGJ7/Xw1e2+W9YEAwAAIHCYCQYAAEDgEIIBAAAQOITgDjCzTWb2rpmtMLPCRPcD75hZHzP7i5mtNbM1ZjYz0T2h68zsqKb/XqN/Ss3sK4nuC11nZl81s1Vm9p6ZPW5m4UT3BG+Y2ZebvtdV/Pfas5nZI2a2y8zea3atn5k9b2brm/7um8geJUJwLGY75yZ3tz3u0GW/kPSMc26spP/f3r2FWlHFcRz//vIopImFlpQkJkWIRzQtySgRjMqIlAizC9jNCITAniqKCOohCIqEfPEKpVBqN4I0fLAIlDATbxhkpJYehcwiwbR+Pew5dDoIXs4c19b9+7zMmjXD7N887M1/z6yZNRbYWThP1MD2rur7Og6YABwFPiwcK3pI0jDgGeBG2+1AH2BW2VRRB0ntwBxgIo3f4nskXVs2VfTAUuCubn3PAetsXwesq9aLShEcLUvSIGAysAjA9l+2fyubKnrBVOAH2yVmmYz6tQEXS2oD+gO/FM4T9RgFbLR91PYJYD1wX+FMcZZsfwn82q17OrCsai8DZpzTUCeRIvj0GFgraZOkp0qHidpcAxwClkjaLGmhpAGlQ0XtZgErSoeInrP9M/AGsAfYDxyxvbZsqqjJNuA2SYMl9QfuBq4unCnqNdT2/qp9ABhaMgykCD5dt9oeD0wD5kqaXDpQ1KINGA8ssH0D8CdNcHsm6iOpH3Av8EHpLNFz1RjC6TT+wF4FDJD0SNlUUQfbO4HXgbXA58B3wN9FQ0WvceP9vMXf0Zsi+DRUVx+wfZDGuMKJZRNFTfYB+2xvrNZX0iiK48IxDfjWdkfpIFGL24EfbR+yfRxYDdxSOFPUxPYi2xNsTwYOA9+XzhS16pB0JUC1PFg4T4rgU5E0QNLAzjZwB43bNnGes30A2Cvp+qprKrCjYKSo34NkKMSFZA9ws6T+kkTjO5uHWS8Qkq6olsNpjAdeXjZR1OwTYHbVng18XDALkBnjTknSSP57qrwNWG77tYKRokaSxgELgX7AbuAx24fLpoo6VH9a9wAjbR8pnSfqIekV4AHgBLAZeNL2sbKpog6SvgIGA8eBZ22vKxwpzpKkFcAUYAjQAbwMfAS8DwwHfgJm2u7+8Nw5lSI4IiIiIlpOhkNERERERMtJERwRERERLSdFcERERES0nBTBEREREdFyUgRHRERERMtJERwR0SQkjZCU95BHRJwDKYIjIiIiouWkCI6IaC5tkt6TtFPSymp2tAmS1kvaJGlNl6lH50j6RtIWSask9a/6l0paIGmDpN2SpkhaXB1zabVPn2q/bZK2SppX8JwjIs65FMEREc3leuAd26OA34G5wHzgftsTgMVA56yVq23fZHssjemDn+hynMuAScA8GtOVvgmMBsZUMyWOA4bZbrc9BljS+6cWEdE82koHiIiI/9lr++uq/S7wAtAOfCEJoA+wv9reLulV4FLgEmBNl+N8atuStgIdtrcCSNoOjADWAyMlzQc+A9b26llFRDSZFMEREc2l+1z2fwDbbU86yb5LgRm2t0h6FJjSZduxavlPl3bnepvtw5LGAncCTwMzgcd7nD4i4jyR4RAREc1luKTOgvchYANweWefpL6SRlfbBwL7JfUFHj6TD5E0BLjI9irgRWB8LekjIs4TuRIcEdFcdgFzJS0GdtAYD7wGeFvSIBq/228B24GXgI3AoWo58Aw+ZxiwRFLnxZDn64kfEXF+kN39zltERERExIUtwyEiIiIiouWkCI6IiIiIlpMiOCIiIiJaTorgiIiIiGg5KYIjIiIiouWkCI6IiIiIlpMiOCIiIiJazr/SPgNyocqTrgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for x_name in [\n", + " \"reps\",\n", + " \"lengths\",\n", + " \"min_lengths\",\n", + " \"beams\"]:\n", + " print('X_name------------------------------ {}'.format(x_name))\n", + " for i in range(max_beam):\n", + " fig,ax = plt.subplots(figsize=(11.7,8.27)) # forward = False\n", + " fig.set_figheight(8.27)\n", + " fig.set_figwidth(11.7)\n", + " sns.scatterplot(y='beam_consisentency_{}'.format(i), x=x_name,style = 'temps' ,data=df[df.names == model_selected],s=500)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion:\n", + " 1. On individual rank the temperature style plays an important role .\n", + " 2. On individual rank the min length impact is not so identifiable." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# When do we have agreement inside the beam ?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Correlation with bert score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/MRPC Negative.ipynb b/MRPC Negative.ipynb new file mode 100644 index 0000000..05a4414 --- /dev/null +++ b/MRPC Negative.ipynb @@ -0,0 +1,893 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import json\n", + "import matplotlib.pyplot as plt\n", + "from tqdm.notebook import tqdm\n", + "import logging\n", + "import transformers\n", + "from bert_score import score\n", + "import scipy" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Openinng outputs/T0_3B_generation_t1_rp1.5_lp1_ml30_nb10_10/mrpc-negative.json\n", + "Accuracy 0.6151960784313726\n", + "Consistency 0.9558823529411765\n" + ] + } + ], + "source": [ + "data_path ='outputs'\n", + "file_name = 'T0_3B_generation_t1_rp1.5_lp1_ml30_nb10_10'\n", + "file_path = os.path.join(data_path,file_name,'mrpc-negative.json')\n", + "print('Openinng',file_path)\n", + "if os.path.exists(file_path):\n", + " with open(file_path,'r') as file:\n", + " file = json.load(file)\n", + " print('Accuracy',file['accuracy'])\n", + " print('Consistency',1 - file['consistency'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Study of the uncertainty" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.32787883281707764, 0.6721211075782776] [0.3509794771671295, 0.6490204930305481]\n", + "[0.4285570979118347, 0.5714429616928101] [0.4165370464324951, 0.5834629535675049]\n", + "[0.6715832948684692, 0.3284166753292084] [0.6358197927474976, 0.36418023705482483]\n", + "[0.5882970094680786, 0.4117029905319214] [0.5672550201416016, 0.43274497985839844]\n", + "[0.5676711797714233, 0.4323287606239319] [0.5458579063415527, 0.45414209365844727]\n", + "[0.6119723320007324, 0.38802772760391235] [0.5975478291511536, 0.4024522006511688]\n", + "[0.5634849071502686, 0.43651506304740906] [0.5588682889938354, 0.44113171100616455]\n", + "[0.5393760800361633, 0.46062391996383667] [0.5389453172683716, 0.4610547125339508]\n", + "[0.6748654842376709, 0.3251345753669739] [0.681418776512146, 0.3185811936855316]\n", + "[0.5086709260940552, 0.4913291335105896] [0.4899972379207611, 0.5100026726722717]\n", + "[0.43567830324172974, 0.5643216967582703] [0.40939006209373474, 0.5906099677085876]\n", + "[0.22900334000587463, 0.7709965705871582] [0.2173764556646347, 0.7826235294342041]\n", + "[0.7572043538093567, 0.2427956461906433] [0.7324946522712708, 0.26750531792640686]\n", + "[0.4119524359703064, 0.5880475044250488] [0.4144965410232544, 0.5855034589767456]\n", + "[0.49353256821632385, 0.5064674615859985] [0.46585068106651306, 0.5341493487358093]\n", + "[0.5242766737937927, 0.4757232964038849] [0.4886989891529083, 0.5113010406494141]\n", + "[0.3810117244720459, 0.6189882755279541] [0.37589797377586365, 0.6241020560264587]\n", + "[0.6841733455657959, 0.3158266246318817] [0.6820569634437561, 0.3179430663585663]\n", + "[0.5658189058303833, 0.4341810345649719] [0.5702584385871887, 0.42974159121513367]\n", + "[0.7721875905990601, 0.22781240940093994] [0.7729312777519226, 0.2270687371492386]\n", + "[0.5146904587745667, 0.48530954122543335] [0.4815952777862549, 0.5184047818183899]\n", + "[0.6401227712631226, 0.35987716913223267] [0.643767237663269, 0.35623273253440857]\n", + "[0.406514048576355, 0.593485951423645] [0.41198208928108215, 0.588018000125885]\n", + "[0.24138984084129333, 0.758610188961029] [0.2126832902431488, 0.7873167395591736]\n", + "[0.5275328755378723, 0.47246718406677246] [0.5321478247642517, 0.4678521752357483]\n", + "[0.582898736000061, 0.41710129380226135] [0.577203094959259, 0.42279693484306335]\n", + "[0.46232128143310547, 0.5376786589622498] [0.44278520345687866, 0.5572147965431213]\n", + "[0.23392710089683533, 0.7660729289054871] [0.25011560320854187, 0.7498843669891357]\n", + "[0.34592217206954956, 0.6540778279304504] [0.34663113951683044, 0.6533688306808472]\n", + "[0.45795756578445435, 0.5420423746109009] [0.42205512523651123, 0.5779448747634888]\n", + "[0.5445407629013062, 0.45545923709869385] [0.5056722164154053, 0.4943277835845947]\n", + "[0.22283457219600677, 0.7771654725074768] [0.21269254386425018, 0.7873074412345886]\n", + "[0.41439053416252136, 0.585609495639801] [0.3704886734485626, 0.629511296749115]\n", + "[0.5878132581710815, 0.41218674182891846] [0.5735874176025391, 0.42641252279281616]\n", + "[0.436300665140152, 0.5636993050575256] [0.4340096116065979, 0.5659904479980469]\n", + "[0.2627568542957306, 0.7372431755065918] [0.2712026834487915, 0.7287973165512085]\n", + "[0.4691924452781677, 0.5308074951171875] [0.43959885835647583, 0.5604011416435242]\n", + "[0.5484023690223694, 0.4515976309776306] [0.5394618511199951, 0.4605381190776825]\n", + "[0.6247264742851257, 0.3752734959125519] [0.6223920583724976, 0.37760791182518005]\n", + "[0.17470048367977142, 0.8252995014190674] [0.19180326163768768, 0.8081967830657959]\n", + "[0.6272629499435425, 0.3727370798587799] [0.6052495837211609, 0.3947504162788391]\n", + "[0.5041264891624451, 0.4958735704421997] [0.48042723536491394, 0.5195727348327637]\n", + "[0.27225956320762634, 0.727740466594696] [0.257167786359787, 0.7428321838378906]\n", + "[0.4675501883029938, 0.5324498414993286] [0.444789856672287, 0.5552100539207458]\n", + "[0.6753465533256531, 0.3246534466743469] [0.6666629314422607, 0.33333703875541687]\n", + "[0.5643789172172546, 0.43562108278274536] [0.5455055832862854, 0.4544943571090698]\n", + "[0.43199601769447327, 0.5680040121078491] [0.4043181538581848, 0.5956817865371704]\n", + "[0.5808661580085754, 0.4191338121891022] [0.5741326808929443, 0.4258672893047333]\n", + "[0.2946650981903076, 0.7053349018096924] [0.2861934006214142, 0.7138065695762634]\n", + "[0.5379309058189392, 0.4620690941810608] [0.5493441224098206, 0.45065590739250183]\n", + "[0.5237438678741455, 0.4762561023235321] [0.5044816732406616, 0.4955183267593384]\n" + ] + } + ], + "source": [ + "for index, (pos,neg) in enumerate(zip(file['std answer'],file['neg answer'])):\n", + " print(pos,neg)\n", + " if index == 50:\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson\n", + "Pos (0.9999999999999999, 0.0)\n", + "Neg (1.0, 0.0)\n", + "Pos/Neg (-0.999999999999956, 0.0)\n", + "Neg/Pos (-0.999999999999956, 0.0)\n" + ] + } + ], + "source": [ + "print('Pearson')\n", + "x = [i[0] for i in file['std answer']]\n", + "y = [i[0] for i in file['std answer']]\n", + "print('Pos',scipy.stats.pearsonr(x, y))\n", + "\n", + "x = [i[1] for i in file['std answer']]\n", + "y = [i[1] for i in file['std answer']]\n", + "print('Neg',scipy.stats.pearsonr(x, y))\n", + "\n", + "x = [i[0] for i in file['std answer']]\n", + "y = [i[1] for i in file['std answer']]\n", + "print('Pos/Neg',scipy.stats.pearsonr(x, y))\n", + "\n", + "x = [i[1] for i in file['std answer']]\n", + "y = [i[0] for i in file['std answer']]\n", + "print('Neg/Pos',scipy.stats.pearsonr(x, y))" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Kendall\n", + "Pos KendalltauResult(correlation=0.9999999999999998, pvalue=0.0)\n", + "Neg KendalltauResult(correlation=0.9999999999999998, pvalue=0.0)\n", + "Pos/Neg KendalltauResult(correlation=-0.9999999999999998, pvalue=0.0)\n", + "Neg/Pos KendalltauResult(correlation=-0.9999999999999998, pvalue=0.0)\n" + ] + } + ], + "source": [ + "print('Kendall')\n", + "x = [i[0] for i in file['std answer']]\n", + "y = [i[0] for i in file['std answer']]\n", + "print('Pos',scipy.stats.kendalltau(x, y))\n", + "\n", + "x = [i[1] for i in file['std answer']]\n", + "y = [i[1] for i in file['std answer']]\n", + "print('Neg',scipy.stats.kendalltau(x, y))\n", + "\n", + "x = [i[0] for i in file['std answer']]\n", + "y = [i[1] for i in file['std answer']]\n", + "print('Pos/Neg',scipy.stats.kendalltau(x, y))\n", + "\n", + "x = [i[1] for i in file['std answer']]\n", + "y = [i[0] for i in file['std answer']]\n", + "print('Neg/Pos',scipy.stats.kendalltau(x, y))" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Spearmna\n", + "Pos SpearmanrResult(correlation=1.0, pvalue=0.0)\n", + "Neg SpearmanrResult(correlation=1.0, pvalue=0.0)\n", + "Pos/Neg SpearmanrResult(correlation=-1.0, pvalue=0.0)\n", + "Neg/Pos SpearmanrResult(correlation=-1.0, pvalue=0.0)\n" + ] + } + ], + "source": [ + "print('Spearmna')\n", + "x = [i[0] for i in file['std answer']]\n", + "y = [i[0] for i in file['std answer']]\n", + "print('Pos',scipy.stats.spearmanr(x, y))\n", + "\n", + "x = [i[1] for i in file['std answer']]\n", + "y = [i[1] for i in file['std answer']]\n", + "print('Neg',scipy.stats.spearmanr(x, y))\n", + "\n", + "x = [i[0] for i in file['std answer']]\n", + "y = [i[1] for i in file['std answer']]\n", + "print('Pos/Neg',scipy.stats.spearmanr(x, y))\n", + "\n", + "x = [i[1] for i in file['std answer']]\n", + "y = [i[0] for i in file['std answer']]\n", + "print('Neg/Pos',scipy.stats.spearmanr(x, y))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connsistency sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obtained consistency 0.9558823529411765\n" + ] + } + ], + "source": [ + "count = 0\n", + "inconsistent_index = []\n", + "assert len(file['std answer']) == len(file['neg answer'])\n", + "for index, (pos,neg) in enumerate(zip(file['std answer'],file['neg answer'])):\n", + " if pos.index(max(pos)) == neg.index(max(neg)):\n", + " count +=1 \n", + " else :\n", + " inconsistent_index.append(index)\n", + "print('Obtained consistency', count/len(file['std answer']))" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Neg prompt\n", + "Sentence 1: The results appear in the January issue of Cancer , an American Cancer Society journal , being published online today .\n", + "Sentence 2: The results appear in the January issue of Cancer , an American Cancer Society ( news - web sites ) journal , being published online Monday .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The results appear in the January issue of Cancer , an American Cancer Society journal , being published online today .\n", + "Sentence 2: The results appear in the January issue of Cancer , an American Cancer Society ( news - web sites ) journal , being published online Monday .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Unable to find a home for him , a judge told mental health authorities they needed to find supervised housing and treatment for DeVries somewhere in California .\n", + "Sentence 2: The judge had told the state Department of Mental Health to find supervised housing and treatment for DeVries somewhere in California .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Unable to find a home for him , a judge told mental health authorities they needed to find supervised housing and treatment for DeVries somewhere in California .\n", + "Sentence 2: The judge had told the state Department of Mental Health to find supervised housing and treatment for DeVries somewhere in California .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Friday , Stanford ( 47-15 ) blanked the Gamecocks 8-0 .\n", + "Sentence 2: Stanford ( 46-15 ) has a team full of such players this season .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Friday , Stanford ( 47-15 ) blanked the Gamecocks 8-0 .\n", + "Sentence 2: Stanford ( 46-15 ) has a team full of such players this season .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Authorities had no evidence to suggest the two incidents were connected .\n", + "Sentence 2: There was no immediate evidence that the two incidents were connected , police said .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Authorities had no evidence to suggest the two incidents were connected .\n", + "Sentence 2: There was no immediate evidence that the two incidents were connected , police said .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The charges allege that he was part of the conspiracy to kill and kidnap persons in a foreign country .\n", + "Sentence 2: The government now charges that Sattar conspired with Rahman to kill and kidnap individuals in foreign countries .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The charges allege that he was part of the conspiracy to kill and kidnap persons in a foreign country .\n", + "Sentence 2: The government now charges that Sattar conspired with Rahman to kill and kidnap individuals in foreign countries .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The agency charged that one WD Energy worker discussed false reporting with traders at two other energy companies .\n", + "Sentence 2: The agency found further that a WD Energy employee discussed false reporting with traders at two other energy companies , which the CFTC didn 't identify .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: The agency charged that one WD Energy worker discussed false reporting with traders at two other energy companies .\n", + "Sentence 2: The agency found further that a WD Energy employee discussed false reporting with traders at two other energy companies , which the CFTC didn 't identify .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: All patients developed some or all of the symptoms of E. coli food poisoning : bloody diarrhea , vomiting , abdominal cramping and nausea .\n", + "Sentence 2: Symptoms of the E. coli infection include bloody diarrhea , nausea , vomiting and abdominal cramping .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: All patients developed some or all of the symptoms of E. coli food poisoning : bloody diarrhea , vomiting , abdominal cramping and nausea .\n", + "Sentence 2: Symptoms of the E. coli infection include bloody diarrhea , nausea , vomiting and abdominal cramping .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: He said his hatred for such people grew from these discussions and had helped convince him violence was the answer .\n", + "Sentence 2: His hatred for these people had germinated from these discussions and helped cement his belief that violence was the panacea .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: He said his hatred for such people grew from these discussions and had helped convince him violence was the answer .\n", + "Sentence 2: His hatred for these people had germinated from these discussions and helped cement his belief that violence was the panacea .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Friday 's report raised new worries that a weak job market could shackle the budding economic recovery despite a slight improvement in the overall unemployment rate .\n", + "Sentence 2: U.S. companies slashed payrolls for a seventh straight month in August , raising new worries that a weak jobs market could shackle the budding economic recovery .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Friday 's report raised new worries that a weak job market could shackle the budding economic recovery despite a slight improvement in the overall unemployment rate .\n", + "Sentence 2: U.S. companies slashed payrolls for a seventh straight month in August , raising new worries that a weak jobs market could shackle the budding economic recovery .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: BREAST cancer cases in the UK have hit an all-time high with more than 40,000 women diagnosed with the disease each year , Cancer Re-search UK revealed yesterday .\n", + "Sentence 2: Cases of breast cancer in Britain have reached a record high , with the number of women diagnosed with the disease passing the 40,000 mark for the first time .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: BREAST cancer cases in the UK have hit an all-time high with more than 40,000 women diagnosed with the disease each year , Cancer Re-search UK revealed yesterday .\n", + "Sentence 2: Cases of breast cancer in Britain have reached a record high , with the number of women diagnosed with the disease passing the 40,000 mark for the first time .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Freddie also said Leland C. Brendsel will retire as chairman and chief executive and resign from the board .\n", + "Sentence 2: He replaces Leland Brendsel , 61 , who retired as chairman and chief executive .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Freddie also said Leland C. Brendsel will retire as chairman and chief executive and resign from the board .\n", + "Sentence 2: He replaces Leland Brendsel , 61 , who retired as chairman and chief executive .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Drax faced a financial crisis late last year after it lost its most lucrative sales contract , held with insolvent utility TXU Europe .\n", + "Sentence 2: Drax ’ s troubles began late last year when it lost its most lucrative sales contract , with the insolvent utility TXU Europe .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Drax faced a financial crisis late last year after it lost its most lucrative sales contract , held with insolvent utility TXU Europe .\n", + "Sentence 2: Drax ’ s troubles began late last year when it lost its most lucrative sales contract , with the insolvent utility TXU Europe .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Franklin County Judge-Executive Teresa Barton said a firefighter was struck by lightning and was taken to the Frankfort Regional Medical Center .\n", + "Sentence 2: A county firefighter , was struck by lightning and was in stable condition at Frankfort Regional Medical Center .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Franklin County Judge-Executive Teresa Barton said a firefighter was struck by lightning and was taken to the Frankfort Regional Medical Center .\n", + "Sentence 2: A county firefighter , was struck by lightning and was in stable condition at Frankfort Regional Medical Center .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: It also offers a built-in NAND flash boot loader so that high-density NAND flash memory can be used without having to install an additional support chip .\n", + "Sentence 2: The S3C2440 has a built-in NAND flash boot loader , for example , so that high-density NAND flash memory can be installed without an additional support chip .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: It also offers a built-in NAND flash boot loader so that high-density NAND flash memory can be used without having to install an additional support chip .\n", + "Sentence 2: The S3C2440 has a built-in NAND flash boot loader , for example , so that high-density NAND flash memory can be installed without an additional support chip .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: My decision today is not based on any one event . \"\n", + "Sentence 2: Governor Rowland said his decision was \" not based on any one event . \"\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: My decision today is not based on any one event . \"\n", + "Sentence 2: Governor Rowland said his decision was \" not based on any one event . \"\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Officials are also meeting with the International Organization for Epizootics ( OIE ) , which establishes animal-health standards for the world .\n", + "Sentence 2: Canadian officials were also expected to meet yesterday with the International Organization for Epizootics ( OIE ) , which establishes animal-health standards for the world .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Officials are also meeting with the International Organization for Epizootics ( OIE ) , which establishes animal-health standards for the world .\n", + "Sentence 2: Canadian officials were also expected to meet yesterday with the International Organization for Epizootics ( OIE ) , which establishes animal-health standards for the world .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: It 's happened five times in the last 11 years : A disaster puts this Southwestern town in the headlines during the summer tourist season .\n", + "Sentence 2: It 's happened five times in the last decade : A disaster puts this tourist town in the headlines during summer , its busiest season .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: It 's happened five times in the last 11 years : A disaster puts this Southwestern town in the headlines during the summer tourist season .\n", + "Sentence 2: It 's happened five times in the last decade : A disaster puts this tourist town in the headlines during summer , its busiest season .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Their contract will expire at 12 : 01 a.m. Wednesday instead of 12 : 01 a.m. Sunday , said Rian Wathen , organizing director for United Food and Commercial Workers Local 700 .\n", + "Sentence 2: \" It has outraged the membership , \" said Rian Wathen , organizing director of United Food and Commercial Workers Local 700 .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Their contract will expire at 12 : 01 a.m. Wednesday instead of 12 : 01 a.m. Sunday , said Rian Wathen , organizing director for United Food and Commercial Workers Local 700 .\n", + "Sentence 2: \" It has outraged the membership , \" said Rian Wathen , organizing director of United Food and Commercial Workers Local 700 .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n" + ] + } + ], + "source": [ + "for index_ in inconsistent_index:\n", + " print('Neg prompt')\n", + " print(file['neg prompt'][index_])\n", + " print('Answer', file['neg answer'][index_].index(max(file['neg answer'][index_])) )\n", + " print('Pos prompt')\n", + " print(file['std prompt'][index_])\n", + " print('Answer', file['std answer'][index_].index(max(file['std answer'][index_])) )\n", + " print('---------------------------------------')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## In connsistency sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Neg prompt\n", + "Sentence 1: He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .\n", + "Sentence 2: \" The foodservice pie business does not fit our long-term growth strategy .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .\n", + "Sentence 2: \" The foodservice pie business does not fit our long-term growth strategy .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .\n", + "Sentence 2: His wife said he was \" 100 percent behind George Bush \" and looked forward to using his years of training in the war .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .\n", + "Sentence 2: His wife said he was \" 100 percent behind George Bush \" and looked forward to using his years of training in the war .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .\n", + "Sentence 2: The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .\n", + "Sentence 2: The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The AFL-CIO is waiting until October to decide if it will endorse a candidate .\n", + "Sentence 2: The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: The AFL-CIO is waiting until October to decide if it will endorse a candidate .\n", + "Sentence 2: The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: No dates have been set for the civil or the criminal trial .\n", + "Sentence 2: No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: No dates have been set for the civil or the criminal trial .\n", + "Sentence 2: No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed .\n", + "Sentence 2: It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed .\n", + "Sentence 2: It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: While dioxin levels in the environment were up last year , they have dropped by 75 percent since the 1970s , said Caswell .\n", + "Sentence 2: The Institute said dioxin levels in the environment have fallen by as much as 76 percent since the 1970s .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: While dioxin levels in the environment were up last year , they have dropped by 75 percent since the 1970s , said Caswell .\n", + "Sentence 2: The Institute said dioxin levels in the environment have fallen by as much as 76 percent since the 1970s .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: This integrates with Rational PurifyPlus and allows developers to work in supported versions of Java , Visual C # and Visual Basic .NET.\n", + "Sentence 2: IBM said the Rational products were also integrated with Rational PurifyPlus , which allows developers to work in Java , Visual C # and VisualBasic .Net.\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: This integrates with Rational PurifyPlus and allows developers to work in supported versions of Java , Visual C # and Visual Basic .NET.\n", + "Sentence 2: IBM said the Rational products were also integrated with Rational PurifyPlus , which allows developers to work in Java , Visual C # and VisualBasic .Net.\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The top rate will go to 4.45 percent for all residents with taxable incomes above $ 500,000 .\n", + "Sentence 2: For residents with incomes above $ 500,000 , the income-tax rate will increase to 4.45 percent .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: The top rate will go to 4.45 percent for all residents with taxable incomes above $ 500,000 .\n", + "Sentence 2: For residents with incomes above $ 500,000 , the income-tax rate will increase to 4.45 percent .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The results appear in the January issue of Cancer , an American Cancer Society journal , being published online today .\n", + "Sentence 2: The results appear in the January issue of Cancer , an American Cancer Society ( news - web sites ) journal , being published online Monday .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The results appear in the January issue of Cancer , an American Cancer Society journal , being published online today .\n", + "Sentence 2: The results appear in the January issue of Cancer , an American Cancer Society ( news - web sites ) journal , being published online Monday .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The delegates said raising and distributing funds has been complicated by the U.S. crackdown on jihadi charitable foundations , bank accounts of terror-related organizations and money transfers .\n", + "Sentence 2: Bin Laden ’ s men pointed out that raising and distributing funds has been complicated by the U.S. crackdown on jihadi charitable foundations , bank accounts of terror-related organizations and money transfers .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The delegates said raising and distributing funds has been complicated by the U.S. crackdown on jihadi charitable foundations , bank accounts of terror-related organizations and money transfers .\n", + "Sentence 2: Bin Laden ’ s men pointed out that raising and distributing funds has been complicated by the U.S. crackdown on jihadi charitable foundations , bank accounts of terror-related organizations and money transfers .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: \" Sanitation is poor ... there could be typhoid and cholera , \" he said .\n", + "Sentence 2: \" Sanitation is poor , drinking water is generally left behind . . . there could be typhoid and cholera . \"\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: \" Sanitation is poor ... there could be typhoid and cholera , \" he said .\n", + "Sentence 2: \" Sanitation is poor , drinking water is generally left behind . . . there could be typhoid and cholera . \"\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The broader Standard & Poor 's 500 Index .SPX gave up 11.91 points , or 1.19 percent , at 986.60 .\n", + "Sentence 2: The technology-laced Nasdaq Composite Index was down 25.36 points , or 1.53 percent , at 1,628.26 .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: The broader Standard & Poor 's 500 Index .SPX gave up 11.91 points , or 1.19 percent , at 986.60 .\n", + "Sentence 2: The technology-laced Nasdaq Composite Index was down 25.36 points , or 1.53 percent , at 1,628.26 .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The only announced Republican to replace Davis is Rep. Darrell Issa of Vista , who has spent $ 1.71 million of his own money to force a recall .\n", + "Sentence 2: So far the only declared major party candidate is Rep. Darrell Issa , a Republican who has spent $ 1.5 million of his own money to fund the recall .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The only announced Republican to replace Davis is Rep. Darrell Issa of Vista , who has spent $ 1.71 million of his own money to force a recall .\n", + "Sentence 2: So far the only declared major party candidate is Rep. Darrell Issa , a Republican who has spent $ 1.5 million of his own money to fund the recall .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The decision to issue new guidance has been prompted by intelligence passed to Britain by the FBI in a secret briefing in late July .\n", + "Sentence 2: Scotland Yard 's decision to issue new guidance has been prompted by new intelligence passed to Britain by the FBI in late July .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The decision to issue new guidance has been prompted by intelligence passed to Britain by the FBI in a secret briefing in late July .\n", + "Sentence 2: Scotland Yard 's decision to issue new guidance has been prompted by new intelligence passed to Britain by the FBI in late July .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Unable to find a home for him , a judge told mental health authorities they needed to find supervised housing and treatment for DeVries somewhere in California .\n", + "Sentence 2: The judge had told the state Department of Mental Health to find supervised housing and treatment for DeVries somewhere in California .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Unable to find a home for him , a judge told mental health authorities they needed to find supervised housing and treatment for DeVries somewhere in California .\n", + "Sentence 2: The judge had told the state Department of Mental Health to find supervised housing and treatment for DeVries somewhere in California .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The decision came a year after Whipple ended federal oversight of the district 's racial balance , facilities , budget , and busing .\n", + "Sentence 2: The decision came a year after Whipple ended federal oversight of school busing as well as the district 's racial balance , facilities and budget .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The decision came a year after Whipple ended federal oversight of the district 's racial balance , facilities , budget , and busing .\n", + "Sentence 2: The decision came a year after Whipple ended federal oversight of school busing as well as the district 's racial balance , facilities and budget .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: In midafternoon trading , the Nasdaq composite index was up 8.34 , or 0.5 percent , to 1,790.47 .\n", + "Sentence 2: The Nasdaq Composite Index .IXIC dipped 8.59 points , or 0.48 percent , to 1,773.54 .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: In midafternoon trading , the Nasdaq composite index was up 8.34 , or 0.5 percent , to 1,790.47 .\n", + "Sentence 2: The Nasdaq Composite Index .IXIC dipped 8.59 points , or 0.48 percent , to 1,773.54 .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Morgan Stanley raised its rating on the beverage maker to \" overweight \" from \" equal-weight \" saying in part that pricing power with its bottlers should improve in 2004 .\n", + "Sentence 2: Morgan Stanley raised its rating on the company to \" overweight \" from \" equal-weight , \" saying the beverage maker 's pricing power with bottlers should improve in 2004 .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: Morgan Stanley raised its rating on the beverage maker to \" overweight \" from \" equal-weight \" saying in part that pricing power with its bottlers should improve in 2004 .\n", + "Sentence 2: Morgan Stanley raised its rating on the company to \" overweight \" from \" equal-weight , \" saying the beverage maker 's pricing power with bottlers should improve in 2004 .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The pound also made progress against the dollar , reached fresh three-year highs at $ 1.6789 .\n", + "Sentence 2: The British pound flexed its muscle against the dollar , last up 1 percent at $ 1.6672 .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: The pound also made progress against the dollar , reached fresh three-year highs at $ 1.6789 .\n", + "Sentence 2: The British pound flexed its muscle against the dollar , last up 1 percent at $ 1.6672 .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Friday , Stanford ( 47-15 ) blanked the Gamecocks 8-0 .\n", + "Sentence 2: Stanford ( 46-15 ) has a team full of such players this season .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Friday , Stanford ( 47-15 ) blanked the Gamecocks 8-0 .\n", + "Sentence 2: Stanford ( 46-15 ) has a team full of such players this season .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Last month Intel raised its revenue guidance for the quarter to between $ 7.6 billion and $ 7.8 billion .\n", + "Sentence 2: At the end of the second quarter , Intel initially predicted sales of between $ 6.9 billion and $ 7.5 billion .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: Last month Intel raised its revenue guidance for the quarter to between $ 7.6 billion and $ 7.8 billion .\n", + "Sentence 2: At the end of the second quarter , Intel initially predicted sales of between $ 6.9 billion and $ 7.5 billion .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The driver , Eugene Rogers , helped to remove children from the bus , Wood said .\n", + "Sentence 2: At the accident scene , the driver was \" covered in blood \" but helped to remove children , Wood said .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The driver , Eugene Rogers , helped to remove children from the bus , Wood said .\n", + "Sentence 2: At the accident scene , the driver was \" covered in blood \" but helped to remove children , Wood said .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: ONG KONG , July 9 Tens of thousands of demonstrators gathered tonight before the legislature building here to call for free elections and the resignation of Hong Kong 's leader .\n", + "Sentence 2: Tens of thousands of demonstrators gathered yesterday evening to stand before this city 's legislature building and call for free elections and the resignation of Hong Kong 's leader .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: ONG KONG , July 9 Tens of thousands of demonstrators gathered tonight before the legislature building here to call for free elections and the resignation of Hong Kong 's leader .\n", + "Sentence 2: Tens of thousands of demonstrators gathered yesterday evening to stand before this city 's legislature building and call for free elections and the resignation of Hong Kong 's leader .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Saddam loyalists have been blamed for sabotaging the nation 's infrastructure , as well as frequent attacks on U.S. soldiers .\n", + "Sentence 2: Hussein loyalists have been blamed for sabotaging the nation 's infrastructure and attacking US soldiers .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: Saddam loyalists have been blamed for sabotaging the nation 's infrastructure , as well as frequent attacks on U.S. soldiers .\n", + "Sentence 2: Hussein loyalists have been blamed for sabotaging the nation 's infrastructure and attacking US soldiers .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Its closest living relatives are a family frogs called sooglossidae that are found only in the Seychelles in the Indian Ocean .\n", + "Sentence 2: Its closest relative is found in the Seychelles Archipelago , near Madagascar in the Indian Ocean .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: Its closest living relatives are a family frogs called sooglossidae that are found only in the Seychelles in the Indian Ocean .\n", + "Sentence 2: Its closest relative is found in the Seychelles Archipelago , near Madagascar in the Indian Ocean .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: Cooley said he expects Muhammad will similarly be called as a witness at a pretrial hearing for Malvo .\n", + "Sentence 2: Lee Boyd Malvo will be called as a witness Wednesday in a pretrial hearing for fellow sniper suspect John Allen Muhammad .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: Cooley said he expects Muhammad will similarly be called as a witness at a pretrial hearing for Malvo .\n", + "Sentence 2: Lee Boyd Malvo will be called as a witness Wednesday in a pretrial hearing for fellow sniper suspect John Allen Muhammad .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: \" Instead of pursuing the most imminent and real threats - international terrorists , \" Graham said , \" this Bush administration chose to settle old scores . \"\n", + "Sentence 2: \" Instead of pursuing the most imminent and real threats - international terrorists - this Bush administration has chosen to settle old scores , \" Graham said .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: \" Instead of pursuing the most imminent and real threats - international terrorists , \" Graham said , \" this Bush administration chose to settle old scores . \"\n", + "Sentence 2: \" Instead of pursuing the most imminent and real threats - international terrorists - this Bush administration has chosen to settle old scores , \" Graham said .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: He said they lied on a sworn affidavit that requires them to list prior marriages .\n", + "Sentence 2: Morgenthau said the women , all U.S. citizens , lied on a sworn affidavit that requires them to list prior marriages .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: He said they lied on a sworn affidavit that requires them to list prior marriages .\n", + "Sentence 2: Morgenthau said the women , all U.S. citizens , lied on a sworn affidavit that requires them to list prior marriages .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: The association said 28.2 million DVDs were rented in the week that ended June 15 , compared with 27.3 million VHS cassettes .\n", + "Sentence 2: The Video Software Dealers Association said 28.2 million DVDs were rented out last week , compared to 27.3 million VHS cassettes .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 1\n", + "Pos prompt\n", + "Sentence 1: The association said 28.2 million DVDs were rented in the week that ended June 15 , compared with 27.3 million VHS cassettes .\n", + "Sentence 2: The Video Software Dealers Association said 28.2 million DVDs were rented out last week , compared to 27.3 million VHS cassettes .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 1\n", + "---------------------------------------\n", + "Neg prompt\n", + "Sentence 1: With these assets , Funny Cide has a solid chance to become the first Triple Crown winner since Affirmed in 1978 .\n", + "Sentence 2: Funny Cide is looking to become horse racing 's first Triple Crown winner in a generation .\n", + "Do Sentence 1 and Sentence 2 express a different meaning? Yes or No?\n", + "Answer 0\n", + "Pos prompt\n", + "Sentence 1: With these assets , Funny Cide has a solid chance to become the first Triple Crown winner since Affirmed in 1978 .\n", + "Sentence 2: Funny Cide is looking to become horse racing 's first Triple Crown winner in a generation .\n", + "Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?\n", + "Answer 0\n", + "---------------------------------------\n" + ] + } + ], + "source": [ + "for index_ in range(len(file['neg prompt'])):\n", + " if index not in inconsistent_index:\n", + " print('Neg prompt')\n", + " print(file['neg prompt'][index_])\n", + " print('Answer', file['neg answer'][index_].index(max(file['neg answer'][index_])) )\n", + " print('Pos prompt')\n", + " print(file['std prompt'][index_])\n", + " print('Answer', file['std answer'][index_].index(max(file['std answer'][index_])) )\n", + " print('---------------------------------------')\n", + " if index_ == 30:\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/What_Remains_To_Add.md b/What_Remains_To_Add.md new file mode 100644 index 0000000..67e4de6 --- /dev/null +++ b/What_Remains_To_Add.md @@ -0,0 +1,15 @@ +# Datasets: + + +WMT19 +IMDB +AGNES +RTE +MRPC + +# Models + +T0 (and its decendants) +XGLM and its descendants % https://huggingface.co/facebook/xglm-564M + + diff --git a/classification_experiement.sh b/classification_experiement.sh new file mode 100644 index 0000000..f755c7a --- /dev/null +++ b/classification_experiement.sh @@ -0,0 +1,21 @@ +export HF_DATASETS_CACHE="/gpfswork/rech/tts/unm25jp/datasets" +for dataset in "mnli" "rte" "mrpc" "wmt" "imdb" "emotion" "ag-news"; do + for exp in "two-sentences-classification" "single-sentence-classification"; do + for MODEL_NAME in t5-small t5-base t5-large t5-3b bigscience/T0_3B bigscience/T0pp bigscience/T0p bigscience/T0 gpt gpt2 distilgpt2 EleutherAI/gpt-neo-125M EleutherAI/gpt-neo-1.3B EleutherAI/gpt-j-6B EleutherAI/gpt-neo-2.7B; do + sbatch --job-name=${MODEL_NAME}${exp}${dataset} \ + --gres=gpu:1 \ + --account=six@gpu \ + --no-requeue \ + --cpus-per-task=10 \ + --hint=nomultithread \ + --time=5:00:00 \ + -C v100-32g \ + --output=jobinfo/${MODEL_NAME}${exp}${dataset}_%j.out \ + --error=jobinfo/${MODEL_NAME}${exp}${dataset}_%j.err \ + --qos=qos_gpu-t3 \ + --wrap="module purge; module load pytorch-gpu/py3/1.7.0 ; python evaluation/eval.py --model_name_or_path ${MODEL_NAME} --eval_tasks $exp --dataset_name $dataset --output_dir outputs --tag ${MODEL_NAME}${exp}${dataset}" + + done + + done +done diff --git a/evaluation/eval.py b/evaluation/eval.py index 38257b1..1029594 100644 --- a/evaluation/eval.py +++ b/evaluation/eval.py @@ -9,11 +9,9 @@ import sys -sys.path.append('/home/infres/pcolombo/evaluation-robustness-consistency/evaluation/') -sys.path.append('/home/infres/pcolombo/evaluation-robustness-consistency/') -sys.path.append('/gpfswork/rech/tts/unm25jp/evaluation-robustness-consistency/') -sys.path.append('/gpfswork/rech/tts/unm25jp/evaluation-robustness-consistency/evaluation/') - +sys.path.append(os.path.join(os.getcwd(), '/evaluation/')) +sys.path.append(os.path.join(os.getcwd(), '/single-sentence-classification/')) +sys.path.append(os.getcwd()) import evaluation.tasks # noqa: F401 from evaluation.tasks.auto_task import AutoTask from evaluation.utils.log import get_logger @@ -25,6 +23,9 @@ class EvaluationArguments: Arguments for any adjustable params in this evaluation script """ + dataset_name: str = field( + metadata={"help": "The model checkpoint that we want to evaluate, could be name or the path."} + ) model_name_or_path: str = field( metadata={"help": "The model checkpoint that we want to evaluate, could be name or the path."} ) @@ -41,6 +42,7 @@ class EvaluationArguments: data_dir: Optional[str] = field(default=None, metadata={"help": "Path to the local dataset folder"}) do_sample: Optional[bool] = field(default=False, metadata={"help": "Whether to use sampling instead of greedy."}) + use_multi_gpu: Optional[bool] = field(default=False, metadata={"help": "Whether to use multi gpus."}) early_stopping: Optional[bool] = field(default=False, metadata={"help": "Whether to stop when the correct number of sample"}) min_length: Optional[int] = field( @@ -98,7 +100,8 @@ def main(): tokenizer = AutoTokenizer.from_pretrained(eval_args.tokenizer_name or eval_args.model_name_or_path) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" - if "T0" in eval_args.model_name_or_path: # in ["bigscience/T0_3B", "bigscience/T0"]: + if ("t5" in eval_args.model_name_or_path.lower()) or "t0" in ( + eval_args.model_name_or_path.lower()): # in ["bigscience/T0_3B", "bigscience/T0"]: MODEL_TYPE = AutoModelForSeq2SeqLM else: MODEL_TYPE = AutoModelForCausalLM @@ -106,6 +109,8 @@ def main(): eval_args.model_name_or_path, pad_token_id=tokenizer.eos_token, ) + if eval_args.use_multi_gpu: + model.parallelize() model.config.pad_token_id = model.config.eos_token_id model.resize_token_embeddings(len(tokenizer)) model.to(device) @@ -128,7 +133,7 @@ def main(): data_dir=eval_args.data_dir, ) set_seed(train_args.seed) - task.evaluate() + task.evaluate(dataset_name=eval_args.dataset_name) task.save_metrics(output_dir, logger) diff --git a/evaluation/tasks/generation-consistency/__init__.py b/evaluation/tasks/generation-consistency/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/evaluation/tasks/generation-consistency/english.json b/evaluation/tasks/generation-consistency/english.json new file mode 100644 index 0000000..a593489 --- /dev/null +++ b/evaluation/tasks/generation-consistency/english.json @@ -0,0 +1,5 @@ +{ + "pair": "kk-en", + "stride": 512, + "batch_size": 8 +} \ No newline at end of file diff --git a/evaluation/tasks/generation-consistency/generation-consistency.py b/evaluation/tasks/generation-consistency/generation-consistency.py new file mode 100644 index 0000000..0a0f934 --- /dev/null +++ b/evaluation/tasks/generation-consistency/generation-consistency.py @@ -0,0 +1,280 @@ +# Module for any additional processing required for the WMT dataset +# HuggingFace dataset link: https://huggingface.co/datasets/wmt19 +import torch +from datasets import load_dataset +from torch.utils.data import DataLoader, Dataset +from tqdm import tqdm +from datasets import load_dataset +from jinja2 import Template +from torch.utils.data import Dataset +from tqdm import tqdm +import torch +import difflib +from evaluation.tasks.auto_task import AutoTask +from evaluation.utils.log import get_logger + +from evaluation.tasks.auto_task import AutoTask + +TEMPLATE_PARAPHRASE = Template( + """Sentence: {{sent1}} How would you rephrase the sentence with different words?""" +) + +TEMPLATE_CONFIRMATION = Template( + """Sentence 1: {{sent1}} Sentence 2: {{sent2}} Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?""" +) + +class MRPCDataset(Dataset): + def __init__(self, tokenizer): + super().__init__() + mrpc = load_dataset("glue", "mrpc", split="validation") + self.items = [] + self.labels2id = { + "Yes": 0, 'No': 1 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + + for sample in mrpc: + prompt = TEMPLATE_PARAPHRASE.render( + sent1=sample["sentence1"], + ) + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + { + "prompt": prompt, + "label": "Yes", + "sentence1": sample["sentence1"], + "sentence2": sample["sentence2"], + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class WMTEnglishDataset(Dataset): + def __init__(self, tokenizer, pair="kk-en"): + super().__init__() + + self.languages = ['cs-en', 'kk-en', 'fi-en'] # , 'gu-en','de-en', 'kk-en', 'lt-en', 'ru-en', 'zh-en', 'fr-en'] + self.filter = 150 + + assert "en" in pair, f"Expected `pair` to contain English, but got {pair} instead" + wmt_ds = dict() + for pair in self.languages: + print('Loading', pair) + wmt_ds[pair] = load_dataset("wmt19", pair, split="validation")["translation"] + + self.items = [] + self.labels2id = { + "Yes": 0, 'No': 1 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + for key, wmt in wmt_ds.items(): + key_1 = key.split('-')[0] + key_2 = key.split('-')[1] + for index, sample in enumerate(wmt): + if index == self.filter: + break + prompt = TEMPLATE_CONFIRMATION.render( + sent1=sample["text"], + ) + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + {"sentence1": sample[key_1], + "sentence2": sample[key_2], + "prompt": prompt, + "pair": key, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": "Yes", # TODO voir les details + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class GenerationTask(AutoTask): + @staticmethod + def get_display_name() -> str: + return "generation-consistency" + + def evaluate(self, dataset_name='wmt') -> None: + if dataset_name == "wmt": + dataset = WMTEnglishDataset(self.tokenizer) + elif dataset_name == "mrpc": + dataset = MRPCDataset(self.tokenizer) + else: + raise NotImplementedError + + is_first = True + LABELS_LIST = dict() + for k, v in dataset.labels2id.items(): + assert len(self.tokenizer.tokenize(k)) == 1, "Thinks of changing the label {}".format( + self.tokenizer.tokenize(k)) + LABELS_LIST[k] = self.tokenizer.vocab[self.tokenizer.tokenize(k)[0]] + + def get_classification_output(sample): + with torch.no_grad(): + if ('t5' in self.model.name_or_path.lower()) or ('t0' in self.model.name_or_path.lower()): + output = self.model(labels=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + + elif ('gpt' in self.model.name_or_path.lower()): + output = self.model(input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + else: + raise NotImplementedError + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in list(LABELS_LIST.values())])).tolist() + return sofmax_results + + def get_sequences(sample): # TODO adapt for nmt + with torch.no_grad(): + output = self.model.generate( + input_ids=sample["input_ids"].to(self.device), output_scores=True, + attention_mask=sample["attention_mask"].to(self.device), + max_length=min(sample["input_len"] * 2, 1024), + # hard-coded to 1024 since each model has diferent naming for max length + min_length=self.args.min_length, + do_sample=self.args.do_sample, # need to be set to true not to use greedy sampling + early_stopping=True, + # whether to stop when num_beams sentences are generated + num_beams=self.args.num_beams, + temperature=self.args.temperature, # lower than 1 conservative, greater than one diverse + top_k=self.args.top_k, num_return_sequences=self.args.num_beams, + # number of highest probability vocabulary tokens to keep for top-k-filtering + top_p=self.args.top_p, # + repetition_penalty=self.args.repetition_penalty, + length_penalty=self.args.length_penalty # 1 no penalty >1 foster long sentences + ) + # remove everything that follows a special symbol + if False: + outputs = [] + for untok_output in output: + stop_appening = False + start_appening = False + current_output = [] + for token in untok_output.tolist(): # skip two first token + if token not in self.tokenizer.all_special_ids: + start_appening = True + if not stop_appening and start_appening: + current_output.append(token) + else: + stop_appening = True if start_appening else False + outputs.append(current_output) + seq = [self.tokenizer.decode(torch.tensor(output), skip_special_tokens=False) for output in + outputs] + seq = self.tokenizer.batch_decode(output, skip_special_tokens=True) + logger.info( + " ************************** Raw sentences ************************** \n{}".format( + '\n'.join(seq))) + return seq + + logger = get_logger() + count = 0 + l_samples, l_samples_golden, l_confirmation_prompts, l_prompts = [], [], [], [] + l_y_label, l_stry_label, l_soft_labels, l_paraphrases = [], [], [], [] + for sample in tqdm(dataset, desc=f"Evaluating {self.get_display_name()}"): + count += 1 + if count == 4: + break + + paraphrases = get_sequences(sample) + + # Itterate throughs the paraphrases + confirmation_prompts, samples, samples_golden, y_predicted, = [], [], [], [] + y_label, stry_label, soft_labels, paraphrases_c, prompts = [], [], [], [], [] + for index, paraphrase in enumerate(paraphrases): + if index == 2: + break + + # use the output to confirm + prompt = TEMPLATE_CONFIRMATION.render( + sent1=sample["sentence1"], + sent2=paraphrase + ) + # Tokenize and construct this sample + inputs = self.tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + + sample_confirmation = { + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + soft_confirmations = get_classification_output(sample_confirmation) + if is_first: + is_first = False + log_msg = "Evaluation example for MRPC-Negative\nLabels\t{}\n".format(LABELS_LIST) + + log_msg += "\nprompt#1 (Standard):\n" + sample["prompt"] + log_msg += "\nmodel output:\n" + paraphrase + + log_msg += "\n\nprompt:\n" + sample_confirmation["prompt"] + log_msg += "\nsoft model output:\n" + str(soft_confirmations) + log_msg += "\ngolden:\n" + str(sample["label"]) + log_msg += "\ngolden:\n" + str(dataset.labels2id[sample["label"]]) + logger.info(log_msg) + + # log the prompts and the outputs + prompts.append(sample["prompt"]) + samples.append(sample["sentence1"]) + samples_golden.append(sample["sentence2"]) + + confirmation_prompts.append(prompt) + + paraphrases_c.append(sample["prompt"]) + + y_label.append(dataset.labels2id[sample["label"]]) + stry_label.append(sample["label"]) + soft_labels.append(soft_confirmations) + + l_paraphrases.append(paraphrases_c) + l_prompts.append(prompts) + l_samples.append(samples) + l_samples_golden.append(samples_golden) + l_confirmation_prompts.append(confirmation_prompts) + l_y_label.append(y_label) + l_stry_label.append(stry_label) + l_soft_labels.append(soft_labels) + + self.metrics = { + "l_prompts": l_prompts, + "l_samples": l_samples, + "l_paraphrases": l_paraphrases, + "l_samples_golden": l_samples_golden, + "l_confirmation_prompts": l_confirmation_prompts, + "l_y_label": l_y_label, + "l_stry_label": l_stry_label, + "l_soft_labels": l_soft_labels + } + logger.info("Metrics : {}".format(self.metrics)) diff --git a/evaluation/tasks/mrpc-confirmation/mrpc-confirmation.py b/evaluation/tasks/mrpc-confirmation/mrpc-confirmation.py new file mode 100644 index 0000000..0896ff2 --- /dev/null +++ b/evaluation/tasks/mrpc-confirmation/mrpc-confirmation.py @@ -0,0 +1,221 @@ +from datasets import load_dataset +from jinja2 import Template +from torch.utils.data import Dataset +from tqdm import tqdm +import torch +import difflib +from evaluation.tasks.auto_task import AutoTask +from evaluation.utils.log import get_logger + +TEMPLATE_PARAPHRASE = Template( + """Sentence: {{sent1}} + How would you rephrase the sentence with different words? + """ +) + +TEMPLATE_CONFIRMATION = Template( + """Sentence 1: {{sent1}} +Sentence 2: {{sent2}} +Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No? + """ +) + +LABELS_LIST = ['Yes', 'No'] # first index should be the positive one + + +class MRPCDataset(Dataset): + def __init__(self, tokenizer): + super().__init__() + mrpc = load_dataset("glue", "mrpc", split="validation") + self.items = [] + + for sample in mrpc: + # detokenize the text, since MRPC is tokenized + # with MosesDetokenizer('en') as detokenize: + # sample["sentence1"] = detokenize(sample["sentence1"].split()) + # print(sample["sentence1"]) + prompt = TEMPLATE_PARAPHRASE.render( + sent1=sample["sentence1"], + ) + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + { + "prompt": prompt, + "sentence1": sample["sentence1"], + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class MRPCNegativeTask(AutoTask): + @staticmethod + def get_display_name() -> str: + return "mrpc-confirmation" + + def evaluate(self) -> None: + dataset = MRPCDataset(self.tokenizer) + l_paraphrase_prompts, l_confirmation_prompts, l_paraphrase_prompt_answers, l_confirmation_prompt_answers = [], [], [], [] + + consistency = 0 + + is_first = True + + def extract_label_list_id(): + label_ids = [] + matched_labels = {} + for label in LABELS_LIST: + matched_label = difflib.get_close_matches(label, list(self.tokenizer.vocab.keys()))[ + 0] # take the most likely match + assert len(matched_label) > 0 + label_ids.append(self.tokenizer.vocab[matched_label]) + matched_labels[label] = matched_label + return label_ids, matched_labels + + label_ids, matched_labels = extract_label_list_id() + + logger = get_logger() + count = 0 + for sample in tqdm(dataset, desc=f"Evaluating {self.get_display_name()}"): + count += 1 + + def get_output(sample, pass_param=False, label_list_ids=None): + with torch.no_grad(): + if pass_param is True: + output = self.model.generate( + input_ids=sample["input_ids"].to(self.device), output_scores=True, + attention_mask=sample["attention_mask"].to(self.device), + max_length=min(sample["input_len"] * 2, 1024), + # hard-coded to 1024 since each model has diferent naming for max length + min_length=self.args.min_length, + do_sample=self.args.do_sample, # need to be set to true not to use greedy sampling + early_stopping=True, + # whether to stop when num_beams sentences are generated + num_beams=self.args.num_beams, + temperature=self.args.temperature, # lower than 1 conservative, greater than one diverse + top_k=self.args.top_k, num_return_sequences=self.args.num_beams, + # number of highest probability vocabulary tokens to keep for top-k-filtering + top_p=self.args.top_p, # + repetition_penalty=self.args.repetition_penalty, + length_penalty=self.args.length_penalty # 1 no penalty >1 foster long sentences + ) + # remove everything that follows a special symbol + if False: + outputs = [] + for untok_output in output: + stop_appening = False + start_appening = False + current_output = [] + for token in untok_output.tolist(): # skip two first token + if token not in self.tokenizer.all_special_ids: + start_appening = True + if not stop_appening and start_appening: + current_output.append(token) + else: + stop_appening = True if start_appening else False + outputs.append(current_output) + seq = [self.tokenizer.decode(torch.tensor(output), skip_special_tokens=False) for output in + outputs] + seq = self.tokenizer.batch_decode(output, skip_special_tokens=True) + logger.info( + " ************************** Raw sentences ************************** \n{}".format( + '\n'.join(seq))) + # input_seq = self.tokenizer.batch_decode(sample["input_ids"])[0] + # seq = [i.replace(input_seq, '') for i in seq] + # logger.info( + # " ************************** Processed sentences ************************** \n{}".format( + # '\n'.join(seq))) + return seq + else: + with torch.no_grad(): + if ('t5' in self.model.name_or_path.lower()) or ('t0' in self.model.name_or_path.lower()): + output = self.model(labels=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + + elif ('gpt' in self.model.name_or_path.lower()): + output = self.model(input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + else: + raise NotImplementedError + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in label_list_ids])).tolist() + return sofmax_results + + paraphrases = get_output(sample, True, None) + + # Itterate throughs the paraphrases + paraphrase_prompts = [] + confirmation_prompts = [] + paraphrase_prompt_answers = [] + confirmation_prompt_answers = [] + for paraphrase in paraphrases: + + # use the output to confirm + prompt = TEMPLATE_CONFIRMATION.render( + sent1=sample["sentence1"], + sent2=paraphrase + ) + # Tokenize and construct this sample + inputs = self.tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + + sample_confirmation = { + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + soft_confirmations = get_output(sample_confirmation, False, label_ids) + confirmation_output = LABELS_LIST[soft_confirmations.index(max(soft_confirmations))] + if is_first: + is_first = False + log_msg = "Evaluation example for MRPC-Negative\nLabels\t{}\n".format(LABELS_LIST) + + log_msg += "\nprompt#1 (Standard):\n" + sample["prompt"] + log_msg += "\nmodel output:\n" + paraphrase + + log_msg += "\n\nprompt#2 (Negative):\n" + sample_confirmation["prompt"] + log_msg += "\nsoft model output:\n" + str(soft_confirmations) + log_msg += "\npredicted model output:\n" + confirmation_output + logger.info(log_msg) + + consistency += int(confirmation_output == LABELS_LIST[0]) + + # log the prompts and the outputs + + paraphrase_prompts.append(sample["prompt"]) + confirmation_prompts.append(sample_confirmation["prompt"]) + + paraphrase_prompt_answers.append(paraphrase) + confirmation_prompt_answers.append(confirmation_output) + l_paraphrase_prompts.append(paraphrase_prompts) + l_confirmation_prompts.append(confirmation_prompts) + l_paraphrase_prompt_answers.append(paraphrase_prompt_answers) + l_confirmation_prompt_answers.append(confirmation_prompt_answers) + + self.metrics = { + "gloabal_consistency": consistency / (len(dataset) * max(1, self.args.num_beams)), + "para prompts": l_paraphrase_prompts, + "conf prompts": l_confirmation_prompts, + "para answers": l_paraphrase_prompt_answers, + "conf answers": l_confirmation_prompt_answers + } + logger.info("Metrics : {}".format(self.metrics)) diff --git a/evaluation/tasks/mrpc-negative/mrpc-negative.py b/evaluation/tasks/mrpc-negative/mrpc-negative.py new file mode 100644 index 0000000..477b507 --- /dev/null +++ b/evaluation/tasks/mrpc-negative/mrpc-negative.py @@ -0,0 +1,165 @@ +from datasets import load_dataset +from jinja2 import Template +from torch.utils.data import Dataset +from tqdm import tqdm +import torch +import difflib + +from evaluation.tasks.auto_task import AutoTask +from evaluation.utils.log import get_logger + +TEMPLATE_STD = Template( + """ +Sentence 1: {{sent1}} +Sentence 2: {{sent2}} +Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No? + """ +) + +TEMPLATE_NEG = Template( + """ +Sentence 1: {{sent1}} +Sentence 2: {{sent2}} +Do Sentence 1 and Sentence 2 express a different meaning? Yes or No? + """ +) + + +class MRPCDataset(Dataset): + def __init__(self, tokenizer, TEMPLATE): + super().__init__() + mrpc = load_dataset("glue", "mrpc", split="validation") + self.items = [] + + for sample in mrpc: + prompt = TEMPLATE.render( + sent1=sample["sentence1"], + sent2=sample["sentence2"], + ).strip() + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + { + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": ["Yes", "No"][1 - sample["label"]], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class MRPCNegativeTask(AutoTask): + @staticmethod + def get_display_name() -> str: + return "mrpc-negative" + + def evaluate(self) -> None: + dataset_std = MRPCDataset(self.tokenizer, TEMPLATE_STD) + dataset_neg = MRPCDataset(self.tokenizer, TEMPLATE_NEG) + + accuracy = 0 + consistency = 0 + std_prompt_answers = [] + neg_prompt_answers = [] + std_prompts = [] + neg_prompts = [] + gold_standard = [] + + is_first = True + + def extract_label_list_id(dataset): + labels = list(set([sample['label'] for sample in dataset])) + label_ids = [] + matched_labels = {} + for label in labels: + matched_label = difflib.get_close_matches(label, list(self.tokenizer.vocab.keys()))[ + 0] # take the most likely match + assert len(matched_label) > 0 + label_ids.append(self.tokenizer.vocab[matched_label]) + matched_labels[label] = matched_label + return label_ids, matched_labels, labels + + label_ids_std, matched_labels_std, labels_std = extract_label_list_id(dataset_std) + label_ids_neg, matched_labels_neg, labels_neg = extract_label_list_id(dataset_neg) + logger = get_logger() + logger.info("Labels for std are {}".format(matched_labels_std)) + logger.info("Labels for neg are {}".format(label_ids_neg)) + count = 0 + for sample_std, sample_neg in tqdm(zip(dataset_std, dataset_neg), desc=f"Evaluating {self.get_display_name()}"): + count += 1 + def get_output(sample, label_list_ids): + # unbatched function + with torch.no_grad(): + if ('t5' in self.model.name_or_path.lower()) or ('t0' in self.model.name_or_path.lower()): + output = self.model(labels=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + + elif ('gpt' in self.model.name_or_path.lower()): + output = self.model( + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + else: + raise NotImplementedError + + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in label_list_ids])).tolist() + return sofmax_results + + soft_predicted_answer_std = get_output(sample_std, label_ids_std) + soft_predicted_answer_neg = get_output(sample_neg, label_ids_neg) + predicted_answer_neg = labels_neg[soft_predicted_answer_neg.index(max(soft_predicted_answer_neg))] + predicted_answer_std = labels_std[soft_predicted_answer_std.index(max(soft_predicted_answer_std))] + + if is_first: + is_first = False + log_msg = "Evaluation example for MRPC-Negative Labels\tstd\t{}\tneg\t{}\n".format(label_ids_std, + label_ids_neg) + + log_msg += "\nprompt#1 (Standard):\n" + sample_std["prompt"] + log_msg += "\nmodel output:\n" + str(soft_predicted_answer_std) + log_msg += "\nsorft expected output:\n" + sample_std["label"] + log_msg += "\npred expected output:\n" + predicted_answer_std + + log_msg += "\n\nprompt#2 (Negative):\n" + sample_neg["prompt"] + log_msg += "\nsoft model output:\n" + str(soft_predicted_answer_neg) + log_msg += "\npred model output:\n" + predicted_answer_neg + logger.info(log_msg) + + # compute the performance and log the prompts and the outputs + + label = matched_labels_std[sample_std["label"]] + label_match = int(label == predicted_answer_std) + + accuracy += label_match + consistency += int(predicted_answer_std == predicted_answer_neg) + + std_prompts.append(sample_std["prompt"]) + neg_prompts.append(sample_neg["prompt"]) + + std_prompt_answers.append(soft_predicted_answer_std) + neg_prompt_answers.append(soft_predicted_answer_neg) + gold_standard.append(matched_labels_std[sample_std["label"]]) + self.metrics = { + "accuracy": accuracy / len(dataset_std), + "consistency": consistency / len(dataset_std), + "std prompt": std_prompts, + "neg prompt": neg_prompts, + "std answer": std_prompt_answers, + "neg answer": neg_prompt_answers, + "gold standard": gold_standard + } + logger.info("Metrics {}".format(self.metrics)) diff --git a/evaluation/tasks/mrpc_confirmation/mrpc_confirmation.py b/evaluation/tasks/mrpc_confirmation/mrpc_confirmation.py index 9881884..22417f7 100644 --- a/evaluation/tasks/mrpc_confirmation/mrpc_confirmation.py +++ b/evaluation/tasks/mrpc_confirmation/mrpc_confirmation.py @@ -3,22 +3,25 @@ from torch.utils.data import Dataset from tqdm import tqdm import torch - +import difflib from evaluation.tasks.auto_task import AutoTask from evaluation.utils.log import get_logger TEMPLATE_PARAPHRASE = Template( - """Paraphrase the following sentence: {{sent1}} + """Sentence: {{sent1}} + How would you rephrase the sentence with different words? """ ) TEMPLATE_CONFIRMATION = Template( """Sentence 1: {{sent1}} Sentence 2: {{sent2}} -Do these two sentences convey the same meaning? Yes or no? +Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No? """ ) +LABELS_LIST = ['Yes', 'No'] # first index should be the positive one + class MRPCDataset(Dataset): def __init__(self, tokenizer): @@ -65,78 +68,152 @@ def get_display_name() -> str: def evaluate(self) -> None: dataset = MRPCDataset(self.tokenizer) + l_paraphrase_prompts, l_confirmation_prompts, l_paraphrase_prompt_answers, l_confirmation_prompt_answers = [], [], [], [] - accuracy = 0 consistency = 0 - logs = [] - is_first = True + def extract_label_list_id(): + label_ids = [] + matched_labels = {} + for label in LABELS_LIST: + matched_label = difflib.get_close_matches(label, list(self.tokenizer.vocab.keys()))[ + 0] # take the most likely match + assert len(matched_label) > 0 + label_ids.append(self.tokenizer.vocab[matched_label]) + matched_labels[label] = matched_label + return label_ids, matched_labels + + label_ids, matched_labels = extract_label_list_id() + logger = get_logger() + count = 0 for sample in tqdm(dataset, desc=f"Evaluating {self.get_display_name()}"): - def get_output(sample, pass_param=False): + count += 1 + + def get_output(sample, pass_param=False, label_list_ids=None): with torch.no_grad(): if pass_param is True: output = self.model.generate( - input_ids=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), output_scores=True, attention_mask=sample["attention_mask"].to(self.device), max_length=min(sample["input_len"] * 2, 1024), # hard-coded to 1024 since each model has diferent naming for max length min_length=self.args.min_length, do_sample=self.args.do_sample, # need to be set to true not to use greedy sampling - early_stopping=self.args.early_stopping, + early_stopping=True, # whether to stop when num_beams sentences are generated num_beams=self.args.num_beams, temperature=self.args.temperature, # lower than 1 conservative, greater than one diverse - top_k=self.args.top_k, + top_k=self.args.top_k, num_return_sequences=self.args.num_beams, # number of highest probability vocabulary tokens to keep for top-k-filtering top_p=self.args.top_p, # repetition_penalty=self.args.repetition_penalty, length_penalty=self.args.length_penalty # 1 no penalty >1 foster long sentences ) + # remove everything that follows a special symbol + if False: + outputs = [] + for untok_output in output: + stop_appening = False + start_appening = False + current_output = [] + for token in untok_output.tolist(): # skip two first token + if token not in self.tokenizer.all_special_ids: + start_appening = True + if not stop_appening and start_appening: + current_output.append(token) + else: + stop_appening = True if start_appening else False + outputs.append(current_output) + seq = [self.tokenizer.decode(torch.tensor(output), skip_special_tokens=False) for output in + outputs] + seq = self.tokenizer.batch_decode(output, skip_special_tokens=True) + logger.info( + " ************************** Raw sentences ************************** \n{}".format( + '\n'.join(seq))) + # input_seq = self.tokenizer.batch_decode(sample["input_ids"])[0] + # seq = [i.replace(input_seq, '') for i in seq] + # logger.info( + # " ************************** Processed sentences ************************** \n{}".format( + # '\n'.join(seq))) + return seq else: - output = self.model.generate( - input_ids=sample["input_ids"].to(self.device), - attention_mask=sample["attention_mask"].to(self.device), - max_length=min(sample["input_len"] * 2, 1024)) - - decoded_output = self.tokenizer.decode(output[0], skip_special_tokens=True) - return decoded_output + with torch.no_grad(): + if ('t5' in self.model.name_or_path.lower()) or ('t0' in self.model.name_or_path.lower()): + output = self.model(labels=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + + elif ('gpt' in self.model.name_or_path.lower()): + output = self.model(input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + else: + raise NotImplementedError + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in label_list_ids])).tolist() + return sofmax_results + + paraphrases = get_output(sample, True, None) + + # Itterate throughs the paraphrases + paraphrase_prompts = [] + confirmation_prompts = [] + paraphrase_prompt_answers = [] + confirmation_prompt_answers = [] + for paraphrase in paraphrases: + + # use the output to confirm + prompt = TEMPLATE_CONFIRMATION.render( + sent1=sample["sentence1"], + sent2=paraphrase + ) + # Tokenize and construct this sample + inputs = self.tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + + sample_confirmation = { + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + soft_confirmations = get_output(sample_confirmation, False, label_ids) + confirmation_output = LABELS_LIST[soft_confirmations.index(max(soft_confirmations))] + if is_first: + is_first = False + log_msg = "Evaluation example for MRPC-Negative\nLabels\t{}\n".format(LABELS_LIST) + log_msg += "\nmodel output:\n" + paraphrase - paraphrase = get_output(sample, True) + log_msg += "\n\nprompt#2 (Negative):\n" + sample_confirmation["prompt"] + log_msg += "\nsoft model output:\n" + str(soft_confirmations) + log_msg += "\npredicted model output:\n" + confirmation_output + logger.info(log_msg) - # use the output to confirm - prompt = TEMPLATE_CONFIRMATION.render( - sent1=sample["sentence1"], - sent2=paraphrase - ) - # Tokenize and construct this sample - inputs = self.tokenizer( - prompt, - return_tensors="pt", - truncation=True, - ) + consistency += int(confirmation_output == LABELS_LIST[0]) - sample_confirmation = { - "prompt": prompt, - "input_ids": inputs["input_ids"], - "attention_mask": inputs["attention_mask"], - "input_len": inputs["attention_mask"].shape[1], - } - confirmation_output = get_output(sample_confirmation) + # log the prompts and the outputs - consistency += int(confirmation_output.lower() == "yes") + paraphrase_prompts.append(sample["prompt"]) + confirmation_prompts.append(sample_confirmation["prompt"]) - # log the prompts and the outputs - logs.append({ - "paraphrase prompt": sample["prompt"], - "paraphrase": paraphrase, - "confirmation promt": sample_confirmation["prompt"], - "confirmation answer": confirmation_output - }) + paraphrase_prompt_answers.append(paraphrase) + confirmation_prompt_answers.append(confirmation_output) + l_paraphrase_prompts.append(paraphrase_prompts) + l_confirmation_prompts.append(confirmation_prompts) + l_paraphrase_prompt_answers.append(paraphrase_prompt_answers) + l_confirmation_prompt_answers.append(confirmation_prompt_answers) self.metrics = { - "consistency": consistency / len(dataset) * 100, - "output log": logs + "gloabal_consistency": consistency / (len(dataset) * max(1, self.args.num_beams)), + "para prompts": l_paraphrase_prompts, + "conf prompts": l_confirmation_prompts, + "para answers": l_paraphrase_prompt_answers, + "conf answers": l_confirmation_prompt_answers } + logger.info("Metrics : {}".format(self.metrics)) diff --git a/evaluation/tasks/mrpc_negative/mrpc_negative.py b/evaluation/tasks/mrpc_negative/mrpc_negative.py index 40531d6..d8549a1 100644 --- a/evaluation/tasks/mrpc_negative/mrpc_negative.py +++ b/evaluation/tasks/mrpc_negative/mrpc_negative.py @@ -3,15 +3,17 @@ from torch.utils.data import Dataset from tqdm import tqdm import torch +import difflib from evaluation.tasks.auto_task import AutoTask from evaluation.utils.log import get_logger +import json TEMPLATE_STD = Template( """ Sentence 1: {{sent1}} Sentence 2: {{sent2}} -Do these two sentences express the same meaning? Yes or no? +Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No? """ ) @@ -19,7 +21,7 @@ """ Sentence 1: {{sent1}} Sentence 2: {{sent2}} -Do these two sentences express different meanings? Yes or no? +Do Sentence 1 and Sentence 2 express different meanings? Yes or No? """ ) @@ -58,54 +60,94 @@ def __len__(self): def __getitem__(self, index): return self.items[index] -def get_output(task, sample): +def get_output(task, sample, label_list_ids): + # unbatched function with torch.no_grad(): - output = task.model.generate( - input_ids=sample["input_ids"].to(task.device), - attention_mask=sample["attention_mask"].to(task.device), - max_length=min(sample["input_len"] * 2, 1024), - # hard-coded to 1024 since each model has diferent naming for max length - ) - decoded_output = task.tokenizer.decode(output[0], skip_special_tokens=True) - return decoded_output + if ('t5' in task.model.name_or_path.lower()) or ('t0' in task.model.name_or_path.lower()): + output = task.model(labels=sample["input_ids"].to(task.device), + input_ids=sample["input_ids"].to(task.device), + attention_mask=sample["attention_mask"].to(task.device)) + + elif ('gpt' in task.model.name_or_path.lower()): + output = task.model( + input_ids=sample["input_ids"].to(task.device), + attention_mask=sample["attention_mask"].to(task.device)) + else: + raise NotImplementedError + + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in label_list_ids])).tolist() + return sofmax_results + +def extract_label_list_id(task, dataset): + labels = list(set([sample['label'] for sample in dataset])) + label_ids = [] + matched_labels = {} + for label in labels: + matched_label = difflib.get_close_matches(label, list(task.tokenizer.vocab.keys()))[ + 0] # take the most likely match + assert len(matched_label) > 0 + label_ids.append(task.tokenizer.vocab[matched_label]) + matched_labels[label] = matched_label + return label_ids, matched_labels, labels class MRPCNegativeTask(AutoTask): + TEMPLATE_1 = TEMPLATE_STD + TEMPLATE_2 = TEMPLATE_NEG + + def is_consistent(self, answer_1, answer_2): + # negative prompt, so consistent if the answer is different + return answer_1 != answer_2 + @staticmethod def get_display_name() -> str: - return "mrpc-negative" + return "mrpc_negative" def evaluate(self) -> None: - dataset_std = MRPCDataset(self.tokenizer, TEMPLATE_STD) - dataset_neg = MRPCDataset(self.tokenizer, TEMPLATE_NEG) + dataset_std = MRPCDataset(self.tokenizer, self.TEMPLATE_1) + dataset_neg = MRPCDataset(self.tokenizer, self.TEMPLATE_2) accuracy = 0 consistency = 0 logs = [] + label_ids_std, matched_labels_std, labels_std = extract_label_list_id(self, dataset_std) + label_ids_neg, matched_labels_neg, labels_neg = extract_label_list_id(self, dataset_neg) + logger = get_logger() + + logger.info("Labels for std are {}".format(matched_labels_std)) + logger.info("Labels for neg are {}".format(label_ids_neg)) + count = 0 for sample_std, sample_neg in tqdm(zip(dataset_std, dataset_neg), desc=f"Evaluating {self.get_display_name()}"): - predicted_answer_std = get_output(self, sample_std) - predicted_answer_neg = get_output(self, sample_neg) + count += 1 + + soft_predicted_answer_std = get_output(self, sample_std, label_ids_std) + soft_predicted_answer_neg = get_output(self, sample_neg, label_ids_neg) - # compute the performance and log the prompts and the outputs - label = sample_std["label"] - label_match = int(label.lower().strip() == predicted_answer_std.lower().strip()) + predicted_answer_neg = labels_neg[soft_predicted_answer_neg.index(max(soft_predicted_answer_neg))] + predicted_answer_std = labels_std[soft_predicted_answer_std.index(max(soft_predicted_answer_std))] + label = matched_labels_std[sample_std["label"]] + label_match = int(label == predicted_answer_std) accuracy += label_match # consistent if their answers are different - consistency += int(predicted_answer_std.lower() != predicted_answer_neg.lower()) + consistency += int(self.is_consistent(predicted_answer_std,predicted_answer_neg)) logs.append({ - "standard prompt": sample_std["prompt"], - "standard answer": predicted_answer_std, - "negative prompt": sample_neg["prompt"], - "negative answer": predicted_answer_neg, - "gold label": sample_std["label"] + "prompt 1": sample_std["prompt"], + "prompt 1 answer": predicted_answer_std, + "prompt 2": sample_neg["prompt"], + "prompt 2 answer": predicted_answer_neg, + "gold label": sample_std["label"], + "is consistent?": int(self.is_consistent(predicted_answer_std,predicted_answer_neg)) }) if len(logs) == 1: - logger.info(logs[0]) + logger.info("Evaluation example:\n{}".format(json.dumps(logs[0], indent=4))) + # print(json.dumps(logs[0], indent=4)) self.metrics = { "0_accuracy": accuracy / len(dataset_std) * 100, diff --git a/evaluation/tasks/mrpc_swap/mrpc_swap.py b/evaluation/tasks/mrpc_swap/mrpc_swap.py index afdb21e..8b7e2eb 100644 --- a/evaluation/tasks/mrpc_swap/mrpc_swap.py +++ b/evaluation/tasks/mrpc_swap/mrpc_swap.py @@ -1,71 +1,31 @@ -from datasets import load_dataset from jinja2 import Template -from torch.utils.data import Dataset -from tqdm import tqdm -import torch - from evaluation.tasks.auto_task import AutoTask -from evaluation.utils.log import get_logger - -from evaluation.tasks.mrpc_negative.mrpc_negative import MRPCDataset, get_output +from evaluation.tasks.mrpc_negative.mrpc_negative import MRPCNegativeTask TEMPLATE_STD = Template( """ Sentence 1: {{sent1}} Sentence 2: {{sent2}} -Do these two sentences express the same meaning? Yes or no? +Do these two sentences express the same meaning? Yes or No? """ ) -TEMPLATE_NEG = Template( +TEMPLATE_SWP = Template( """ Sentence 1: {{sent2}} Sentence 2: {{sent1}} -Do these two sentences express the same meaning? Yes or no? +Do these two sentences express the same meaning? Yes or No? """ ) - - -class MRPCSwapTask(AutoTask): +class MRPCSwapTask(MRPCNegativeTask, AutoTask): + TEMPLATE_1 = TEMPLATE_STD + TEMPLATE_2 = TEMPLATE_SWP + + def is_consistent(self, answer_1, answer_2): + # swapping prompt, so consistent if the answer is the same + return answer_1 == answer_2 + @staticmethod def get_display_name() -> str: return "mrpc_swap" - - def evaluate(self) -> None: - dataset_std = MRPCDataset(self.tokenizer, TEMPLATE_STD) - dataset_neg = MRPCDataset(self.tokenizer, TEMPLATE_NEG) - - accuracy = 0 - consistency = 0 - logs = [] - - logger = get_logger() - for sample_std, sample_neg in tqdm(zip(dataset_std, dataset_neg), desc=f"Evaluating {self.get_display_name()}"): - predicted_answer_std = get_output(self, sample_std) - predicted_answer_neg = get_output(self, sample_neg) - - # compute the performance and log the prompts and the outputs - label = sample_std["label"] - label_match = int(label.lower().strip() == predicted_answer_std.lower().strip()) - - accuracy += label_match - # consistent if their answers are the same - consistency += int(predicted_answer_std.lower() == predicted_answer_neg.lower()) - - logs.append({ - "standard prompt": sample_std["prompt"], - "standard answer": predicted_answer_std, - "swap prompt": sample_neg["prompt"], - "swap answer": predicted_answer_neg, - "gold label": sample_std["label"] - }) - - if len(logs) == 1: - logger.info(logs[0]) - - self.metrics = { - "0_accuracy": accuracy / len(dataset_std) * 100, - "1_consistency": consistency / len(dataset_std) * 100, - "2_output log": logs, - } diff --git a/evaluation/tasks/single-sentence-classification/__init__.py b/evaluation/tasks/single-sentence-classification/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/evaluation/tasks/single-sentence-classification/english.json b/evaluation/tasks/single-sentence-classification/english.json new file mode 100644 index 0000000..0967ef4 --- /dev/null +++ b/evaluation/tasks/single-sentence-classification/english.json @@ -0,0 +1 @@ +{} diff --git a/evaluation/tasks/single-sentence-classification/single_sentence_classification.py b/evaluation/tasks/single-sentence-classification/single_sentence_classification.py new file mode 100644 index 0000000..a67cb85 --- /dev/null +++ b/evaluation/tasks/single-sentence-classification/single_sentence_classification.py @@ -0,0 +1,232 @@ +from datasets import load_dataset +from jinja2 import Template +from torch.utils.data import Dataset +from tqdm import tqdm +import torch +import difflib +from evaluation.tasks.auto_task import AutoTask +from evaluation.utils.log import get_logger + +from jinja2 import Template + +template_imdb = """Sentence 1: {{sent1}} """ + """Is Sentence 1 {} or {} ? """.format("'neg", "positive") +TEMPLATE_IMDB = Template(template_imdb) + +template_agnews = """Sentence 1: {{sent1}} """ + """ Is the theme of Sentence 1 {} or {} or {} or {} ? """.format( + "World", "Sports", "Business", "Tech") +TEMPLATE_AGNEWS = Template(template_agnews) + +template_emotion = """Sentence 1: {{sent1}} """ + """Is the emotion expressed in Sentence 1 {}, {}, {}, {}, {} or {} ? """.format( + "sadness", "joy", "love", "anger", "fear", "surprise") +TEMPLATE_EMOTION = Template(template_emotion) + + +# TODO: 1, 2 shotsx + +class AgNewsDataset(Dataset): + def __init__(self, tokenizer, seed, number_of_shots): + super().__init__() + dataset_agnew = load_dataset("ag_news", split="test") + self.items = [] + self.labels2id = { + "World": 0, 'Sports': 1, "Business": 2, 'Tech': 3 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + + for sample in dataset_agnew: + prompt = TEMPLATE_AGNEWS.render( + sent1=sample["text"], + ) + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + { + "prompt": prompt, + "sentence1": sample["text"], + "label": self.id2labels[sample["label"]], + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class IMDBDataset(Dataset): + def __init__(self, tokenizer, seed, number_of_shots): + super().__init__() + dataset_imdb = load_dataset("imdb", split="test") + self.items = [] + self.labels2id = {'neg': 0, 'positive': 1} + self.id2labels = {v: k for k, v in self.labels2id.items()} + + for sample in dataset_imdb: + prompt = TEMPLATE_IMDB.render( + sent1=sample["text"], + ) + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + { + "prompt": prompt, + "sentence1": sample["text"], + "label": self.id2labels[sample["label"]], + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class EmotionDataset(Dataset): + def __init__(self, tokenizer, seed, number_of_shots): + super().__init__() + dataset_emotion = load_dataset("emotion", split="test") + self.items = [] + self.labels2id = {"sadness": 0, "joy": 1, "love": 2, "anger": 3, "fear": 4, "surprise": 5} + self.id2labels = {v: k for k, v in self.labels2id.items()} + + for sample in dataset_emotion: + prompt = TEMPLATE_EMOTION.render( + sent1=sample["text"], + ) + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + { + "prompt": prompt, + "sentence1": sample["text"], + "label": self.id2labels[sample["label"]], + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class Classification_Task(AutoTask): + @staticmethod + def get_display_name() -> str: + return "single-sentence-classification" + + def evaluate(self, dataset_name='imdb', seed=42, number_of_shots=5) -> None: + if dataset_name == 'imdb': + dataset = IMDBDataset(self.tokenizer, seed=42, number_of_shots=5) + elif dataset_name == 'ag-news': + dataset = AgNewsDataset(self.tokenizer, seed=42, number_of_shots=5) + elif dataset_name == 'emotion': + dataset = EmotionDataset(self.tokenizer, seed=42, number_of_shots=5) + else: + raise NotImplementedError + LABELS_LIST = dict() + for k, v in dataset.labels2id.items(): + assert len(self.tokenizer.tokenize(k)) == 1, "Thinks of changing the label {}".format( + self.tokenizer.tokenize(k)) + LABELS_LIST[k] = self.tokenizer.vocab[self.tokenizer.tokenize(k)[0]] + + is_first = True + + logger = get_logger() + prompts, sentences, soft_labels, y_predicted, y_label, stry_label = [], [], [], [], [], [] + count = 0 + + def get_output(sample, label_list_ids): + with torch.no_grad(): + if ('t5' in self.model.name_or_path.lower()) or ('t0' in self.model.name_or_path.lower()): + output = self.model(labels=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + + elif ('gpt' in self.model.name_or_path.lower()): + output = self.model(input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + else: + raise NotImplementedError + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in list(label_list_ids.values())])).tolist() + return sofmax_results + + template = { + 'imdb': TEMPLATE_IMDB, 'emotion': TEMPLATE_EMOTION, 'ag-news': TEMPLATE_AGNEWS + } + for sample in tqdm(dataset, desc=f"Evaluating {self.get_display_name()}"): + count += 1 + if count == 7: + break + # use the output to confirm + prompt = template[dataset_name].render( + sent1=sample["sentence1"], + ) + # Tokenize and construct this sample + inputs = self.tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + + sample_confirmation = { + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + soft_confirmations = get_output(sample_confirmation, LABELS_LIST) + if is_first: + is_first = False + log_msg = "Evaluation example for MRPC-Negative\nLabels\t{}\n".format(LABELS_LIST) + + log_msg += "\n\nprompt:\n" + sample_confirmation["prompt"] + log_msg += "\nsoft model output:\n" + str(soft_confirmations) + log_msg += "\ngolden:\n" + str(sample["label"]) + log_msg += "\ngolden:\n" + str(dataset.labels2id[sample["label"]]) + logger.info(log_msg) + + # log the prompts and the outputs + + prompts.append(prompt) + sentences.append(sample["sentence1"]) + y_label.append(dataset.labels2id[sample["label"]]) + stry_label.append(sample["label"]) + soft_labels.append(soft_confirmations) + + self.metrics = { + "prompts": prompts, + "sentences": sentences, + "soft_labels": soft_labels, + "stry_label": stry_label, + "y_label": y_label, + } + logger.info("Metrics : {}".format(self.metrics)) diff --git a/evaluation/tasks/two-sentences-classification/__init__.py b/evaluation/tasks/two-sentences-classification/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/evaluation/tasks/two-sentences-classification/english.json b/evaluation/tasks/two-sentences-classification/english.json new file mode 100644 index 0000000..0967ef4 --- /dev/null +++ b/evaluation/tasks/two-sentences-classification/english.json @@ -0,0 +1 @@ +{} diff --git a/evaluation/tasks/two-sentences-classification/two_sentence_classification.py b/evaluation/tasks/two-sentences-classification/two_sentence_classification.py new file mode 100644 index 0000000..9e4da0e --- /dev/null +++ b/evaluation/tasks/two-sentences-classification/two_sentence_classification.py @@ -0,0 +1,313 @@ +from datasets import load_dataset +from jinja2 import Template +from torch.utils.data import Dataset +from tqdm import tqdm +import torch +import difflib +import random + +from evaluation.tasks.auto_task import AutoTask +from evaluation.utils.log import get_logger + +template_mnli = """Sentence 1: {{sent1}} Sentence 2: {{sent2}} Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?""" +TEMPLATE_MNLI = Template(template_mnli) + +template_rte = """Sentence 1: {{sent1}} Sentence 2: {{sent2}} Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?""" +TEMPLATE_RTE = Template(template_rte) + +template_mrpc = """Sentence 1: {{sent1}} Sentence 2: {{sent2}} Do Sentence 1 and Sentence 2 convey the same meaning? Yes or No?""" +TEMPLATE_MRPC = Template(template_mrpc) + +template_wmt = """Sentence 1: {{sent1}} Sentence 2: {{sent2}} Is Sentence 1 a valid translation of Sentence 2 ? Yes or No?""" +TEMPLATE_WMT = Template(template_wmt) + + +class WMTEnglishDataset(Dataset): + def __init__(self, tokenizer, pair="kk-en"): + super().__init__() + + self.languages = ['cs-en', 'kk-en', 'fi-en'] # , 'gu-en','de-en', 'kk-en', 'lt-en', 'ru-en', 'zh-en', 'fr-en'] + self.filter = 150 + + assert "en" in pair, f"Expected `pair` to contain English, but got {pair} instead" + wmt_ds = dict() + for pair in self.languages: + print('Loading', pair) + wmt_ds[pair] = load_dataset("wmt19", pair, split="validation")["translation"] + + self.items = [] + self.labels2id = { + "Yes": 0, 'No': 1 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + for key, wmt in wmt_ds.items(): + key_1 = key.split('-')[0] + key_2 = key.split('-')[1] + for index, sample in enumerate(wmt): + if index == self.filter: + break + prompt = TEMPLATE_WMT.render( + sent1=sample[key_1], + sent2=sample[key_2], + ).strip() + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + {"sentence1": sample[key_1], + "sentence2": sample[key_2], + "prompt": prompt, + "pair": key, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": "Yes", # TODO voir les details + } + ) + # select language + sentence + negative_language = random.choice(self.languages) + while negative_language == key: + negative_language = random.choice(self.languages) + key_s = negative_language.split('-')[0] + sentence = random.choice(wmt_ds[negative_language])[key_s] + self.items.append( + {"sentence1": sentence, + "sentence2": sample[key_2], + "prompt": prompt, + "pair": negative_language, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": "No", + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class MNLIDataset(Dataset): + def __init__(self, tokenizer): + super().__init__() + mnli_mismatched = load_dataset("glue", "mnli_mismatched", split="validation") + mnli_matched = load_dataset("glue", "mnli_matched", split="validation") + self.items = [] + self.labels2id = { + "Yes": 0, 'No': 1 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + for index, ds in enumerate([mnli_mismatched, mnli_matched]): + for sample in ds: + prompt = TEMPLATE_MNLI.render( + sent1=sample["premise"], + sent2=sample["hypothesis"], + ).strip() + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + {"sentence1": sample["premise"], + "sentence2": sample["hypothesis"], + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": ["Yes", "No"][index], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class RTEDataset(Dataset): + def __init__(self, tokenizer): + super().__init__() + rte = load_dataset("glue", "rte", split="validation") + self.items = [] + self.items = [] + self.labels2id = { + "Yes": 0, 'No': 1 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + + for sample in rte: + prompt = TEMPLATE_RTE.render( + sent1=sample["sentence1"], + sent2=sample["sentence2"], + ).strip() + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + {"sentence1": sample["sentence1"], + "sentence2": sample["sentence2"], + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": ["Yes", "No"][sample["label"]], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class MRPCDataset(Dataset): + def __init__(self, tokenizer): + super().__init__() + mrpc = load_dataset("glue", "mrpc", split="validation") + self.items = [] + self.labels2id = { + "Yes": 0, 'No': 1 + } + self.id2labels = {v: k for k, v in self.labels2id.items()} + for sample in mrpc: + prompt = TEMPLATE_MRPC.render( + sent1=sample["sentence1"], + sent2=sample["sentence2"], + ).strip() + + # Tokenize and construct this sample + inputs = tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + self.items.append( + {"sentence1": sample["sentence1"], + "sentence2": sample["sentence2"], + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + "label": ["Yes", "No"][sample["label"]], + } + ) + + def __len__(self): + return len(self.items) + + def __getitem__(self, index): + return self.items[index] + + +class TwoSentenceClassificationTask(AutoTask): + @staticmethod + def get_display_name() -> str: + return "two-sentences-classification" + + def evaluate(self, dataset_name='mnli', seed=42, number_of_shots=5) -> None: + if dataset_name == 'mnli': + dataset = MNLIDataset(self.tokenizer) + elif dataset_name == 'rte': + dataset = RTEDataset(self.tokenizer) + elif dataset_name == 'mrpc': + dataset = MRPCDataset(self.tokenizer) + elif dataset_name == 'wmt': + dataset = WMTEnglishDataset(self.tokenizer) + else: + raise NotImplementedError + + LABELS_LIST = dict() + for k, v in dataset.labels2id.items(): + assert len(self.tokenizer.tokenize(k)) == 1, "Thinks of changing the label {}".format( + self.tokenizer.tokenize(k)) + LABELS_LIST[k] = self.tokenizer.vocab[self.tokenizer.tokenize(k)[0]] + + is_first = True + + logger = get_logger() + prompts, sentences, soft_labels, y_predicted, y_label, stry_label = [], [], [], [], [], [] + count = 0 + + def get_output(sample, label_list_ids): + with torch.no_grad(): + if ('t5' in self.model.name_or_path.lower()) or ('t0' in self.model.name_or_path.lower()): + output = self.model(labels=sample["input_ids"].to(self.device), + input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + + elif ('gpt' in self.model.name_or_path.lower()): + output = self.model(input_ids=sample["input_ids"].to(self.device), + attention_mask=sample["attention_mask"].to(self.device)) + else: + raise NotImplementedError + logits = output['logits'] + sofmax_results = torch.nn.Softmax()( + torch.tensor([logits[:, -1, label_id] for label_id in list(label_list_ids.values())])).tolist() + return sofmax_results + + template = { + 'mnli': TEMPLATE_MNLI, 'rte': TEMPLATE_RTE, 'mrpc': TEMPLATE_MRPC, 'wmt': TEMPLATE_WMT + } + for sample in tqdm(dataset, desc=f"Evaluating {self.get_display_name()}"): + count += 1 + if count == 7: + break + # use the output to confirm + prompt = template[dataset_name].render( + sent1=sample["sentence1"], + sent2=sample["sentence2"] + ) + # Tokenize and construct this sample + inputs = self.tokenizer( + prompt, + return_tensors="pt", + truncation=True, + ) + + sample_confirmation = { + "prompt": prompt, + "input_ids": inputs["input_ids"], + "attention_mask": inputs["attention_mask"], + "input_len": inputs["attention_mask"].shape[1], + } + soft_confirmations = get_output(sample_confirmation, LABELS_LIST) + if is_first: + is_first = False + log_msg = "Evaluation example for MRPC-Negative\nLabels\t{}\n".format(LABELS_LIST) + + log_msg += "\n\nprompt:\n" + sample_confirmation["prompt"] + log_msg += "\nsoft model output:\n" + str(soft_confirmations) + log_msg += "\ngolden:\n" + str(sample["label"]) + log_msg += "\ngolden:\n" + str(dataset.labels2id[sample["label"]]) + logger.info(log_msg) + + # log the prompts and the outputs + + prompts.append(prompt) + sentences.append(sample["sentence1"]) + y_label.append(dataset.labels2id[sample["label"]]) + stry_label.append(sample["label"]) + soft_labels.append(soft_confirmations) + + self.metrics = { + "prompts": prompts, + "sentences": sentences, + "soft_labels": soft_labels, + "stry_label": stry_label, + "y_label": y_label, + } + logger.info("Metrics : {}".format(self.metrics)) diff --git a/experiments.sh b/experiments.sh deleted file mode 100644 index a16e879..0000000 --- a/experiments.sh +++ /dev/null @@ -1,25 +0,0 @@ -export HF_DATASETS_CACHE="/gpfswork/rech/tts/unm25jp/datasets" -for temperature in 0.5 1 1.5; do - for repetition_penalty in 0.5 1 1.5; do - for length_penalty in 0.5 1 1.5; do - for min_length in 20 100; do - for num_beams in 10 20; do - for top_k in 10; do - sbatch --job-name=T0_3B_generation_t${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k} \ - --gres=gpu:1 \ - --no-requeue \ - --cpus-per-task=10 \ - --hint=nomultithread \ - --time=5:00:00 \ - -C v100-32g \ - --output=jobinfo/T0_3B_generation_t${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k}_%j.out \ - --error=jobinfo/T0_3B_generation_t${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k}_%j.err \ - --qos=qos_gpu-t3 \ - --wrap="module purge; module load pytorch-gpu/py3/1.7.0 ; python evaluation/eval.py --min_length $min_length --num_beams $num_beams --top_k $top_k --temperature $temperature --repetition_penalty $repetition_penalty --length_penalty $length_penalty --model_name_or_path /gpfswork/rech/tts/unm25jp/transformers_models/T0_3B --eval_tasks mrpc-confirmation --output_dir outputs --tag T0_3B_generation_t${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k} --top_p=1" - - done - done - done - done - done -done diff --git a/generation_experiements.sh b/generation_experiements.sh new file mode 100644 index 0000000..0007767 --- /dev/null +++ b/generation_experiements.sh @@ -0,0 +1,28 @@ +export HF_DATASETS_CACHE="/gpfswork/rech/tts/unm25jp/datasets" +for MODEL_NAME in T0_3B T0pp T0p T0;do #t5-base gpt-neo-1.3B gpt2; do #gpt2 + for temperature in 5 2 1; do + for repetition_penalty in 1 1.5 2; do + for length_penalty in 1 1.5 2; do + for min_length in 1 30 50 100; do + for num_beams in 5 10; do + export top_k=$num_beams + sbatch --job-name=${MODEL_NAME}${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k} \ + --gres=gpu:1 \ + --account=six@gpu \ + --no-requeue \ + --cpus-per-task=10 \ + --hint=nomultithread \ + --time=5:00:00 \ + -C v100-32g \ + --output=jobinfo/${MODEL_NAME}${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k}_%j.out \ + --error=jobinfo/${MODEL_NAME}${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k}_%j.err \ + --qos=qos_gpu-t3 \ + --wrap="module purge; module load pytorch-gpu/py3/1.7.0 ; python evaluation/eval.py --do_sample --min_length $min_length --num_beams $num_beams --top_k $top_k --temperature $temperature --repetition_penalty $repetition_penalty --length_penalty $length_penalty --model_name_or_path /gpfswork/rech/tts/unm25jp/transformers_models/${MODEL_NAME} --eval_tasks mrpc-confirmation mrpc-negative --output_dir outputs --tag ${MODEL_NAME}_generation_t${temperature}_rp${repetition_penalty}_lp${length_penalty}_ml${min_length}_nb${num_beams}_${top_k} --top_p=${num_beams}" + + done + done + done + done + done + done +done diff --git a/get_models_jeanzay.py b/get_models_jeanzay.py new file mode 100644 index 0000000..ded7b88 --- /dev/null +++ b/get_models_jeanzay.py @@ -0,0 +1,24 @@ +from transformers import AutoTokenizer, AutoModel +from datasets import load_dataset + +load_dataset("imdb", split="test") +load_dataset("emotion", split="test") +load_dataset("ag_news", split="test") + +load_dataset("glue", "mnli_mismatched", split="validation") +load_dataset("glue", "mnli_matched", split="validation") +load_dataset("glue", "mrpc", split="validation") + +for pair in ['cs-en', 'kk-en', 'fi-en', 'gu-en', 'de-en', 'kk-en', 'lt-en', 'ru-en', 'zh-en', 'fr-en']: + print(pair) + load_dataset("wmt19", pair, split="validation")["translation"] + +load_dataset("glue", "rte", split="validation") + +for MODEL_NAME in ['t5-small', 't5-base', 't5-large', 't5-3b', 'bigscience/T0_3B', 'bigscience/T0pp', + 'bigscience/T0p', 'bigscience/T0 gpt', 'gpt2 distilgpt2', 'EleutherAI/gpt-neo-125M', + 'EleutherAI/gpt-neo-1.3B', 'EleutherAI/gpt-j-6B', 'EleutherAI/gpt-neo-2.7B']: + print(MODEL_NAME) + tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) + + model = AutoModel.from_pretrained(MODEL_NAME)