File tree Expand file tree Collapse file tree 2 files changed +10
-3
lines changed Expand file tree Collapse file tree 2 files changed +10
-3
lines changed Original file line number Diff line number Diff line change @@ -139,8 +139,15 @@ def any_model(request):
139139 return pytest .model_packages [request .param ]
140140
141141
142- # temporary fixture to test not with all, but only a manual selection of models
142+ #
143+ # temporary fixtures to test not with all, but only a manual selection of models
143144# (models/functionality should be improved to get rid of this specific model group)
145+ #
144146@pytest .fixture (params = [] if skip_torch else ["unet2d_nuclei_broad_model" , "unet2d_fixed_shape" ])
145147def unet2d_fixed_shape_or_not (request ):
146148 return pytest .model_packages [request .param ]
149+
150+
151+ @pytest .fixture (params = [] if skip_torch else ["unet2d_nuclei_broad_model" , "unet2d_multi_tensor" ])
152+ def unet2d_multi_tensor_or_not (request ):
153+ return pytest .model_packages [request .param ]
Original file line number Diff line number Diff line change 33
44
55# todo: test with 'any_torch_model'
6- def test_onnx_converter_from_torch ( unet2d_nuclei_broad , tmp_path ):
6+ def test_onnx_converter ( unet2d_multi_tensor_or_not , tmp_path ):
77 from bioimageio .core .weight_converter .torch .onnx import convert_weights_to_onnx
88
99 out_path = tmp_path / "weights.onnx"
10- ret_val = convert_weights_to_onnx (unet2d_nuclei_broad , out_path , test_decimal = 3 )
10+ ret_val = convert_weights_to_onnx (unet2d_multi_tensor_or_not , out_path , test_decimal = 3 )
1111 assert os .path .exists (out_path )
1212 if not pytest .skip_onnx :
1313 assert ret_val == 0 # check for correctness is done in converter and returns 0 if it passes
You can’t perform that action at this time.
0 commit comments