@@ -100,7 +100,7 @@ def test_zero_mean_unit_variance_fixed(tid: MemberId):
100100 ]
101101 ]
102102 ),
103- dims = ("b" , "c " , "x" ),
103+ dims = ("b" , "channel " , "x" ),
104104 )
105105 sample = Sample (members = {tid : Tensor .from_xarray (data )}, stat = {}, id = None )
106106 op (sample )
@@ -222,7 +222,7 @@ def test_combination_of_op_steps_with_dims_specified(tid: MemberId):
222222 ],
223223 ]
224224 ),
225- dims = ("c " , "x" , "y" ),
225+ dims = ("channel " , "x" , "y" ),
226226 )
227227
228228 op (sample )
@@ -337,7 +337,7 @@ def test_scale_range_axes(tid: MemberId):
337337 op = ScaleRange (tid , tid , lower_quantile , upper_quantile , eps = eps )
338338
339339 np_data = np .arange (18 ).reshape ((2 , 3 , 3 )).astype ("float32" )
340- data = Tensor .from_xarray (xr .DataArray (np_data , dims = ("c " , "x" , "y" )))
340+ data = Tensor .from_xarray (xr .DataArray (np_data , dims = ("channel " , "x" , "y" )))
341341 sample = Sample (members = {tid : data }, stat = {}, id = None )
342342
343343 p_low_direct = lower_quantile .compute (sample )
@@ -355,7 +355,7 @@ def test_scale_range_axes(tid: MemberId):
355355 np .testing .assert_allclose (p_up_expected .squeeze (), sample .stat [upper_quantile ])
356356
357357 exp_data = (np_data - p_low_expected ) / (p_up_expected - p_low_expected + eps )
358- expected = xr .DataArray (exp_data , dims = ("c " , "x" , "y" ))
358+ expected = xr .DataArray (exp_data , dims = ("channel " , "x" , "y" ))
359359
360360 op (sample )
361361 # NOTE xarray.testing.assert_allclose compares irrelavant properties here and fails although the result is correct
@@ -366,7 +366,7 @@ def test_sigmoid(tid: MemberId):
366366 from bioimageio .core .proc_ops import Sigmoid
367367
368368 shape = (3 , 32 , 32 )
369- axes = ("c " , "y" , "x" )
369+ axes = ("channel " , "y" , "x" )
370370 np_data = np .random .rand (* shape )
371371 data = xr .DataArray (np_data , dims = axes )
372372 sample = Sample (members = {tid : Tensor .from_xarray (data )}, stat = {}, id = None )
0 commit comments