|
1 | | -import sys |
2 | | -from pathlib import Path |
3 | | -from typing import List, Optional, Union |
4 | | - |
5 | | -import fire |
6 | | - |
7 | | -from bioimageio.core import __version__, test_description |
8 | | -from bioimageio.spec import save_bioimageio_package |
9 | | -from bioimageio.spec.collection import CollectionDescr |
10 | | -from bioimageio.spec.dataset import DatasetDescr |
11 | | -from bioimageio.spec.model import ModelDescr |
12 | | -from bioimageio.spec.model.v0_5 import WeightsFormat |
13 | | -from bioimageio.spec.notebook import NotebookDescr |
14 | | - |
15 | | - |
16 | | -class Bioimageio: |
17 | | - def package( |
18 | | - self, |
19 | | - source: str, |
20 | | - path: Path = Path("bioimageio-package.zip"), |
21 | | - weight_format: Optional[WeightsFormat] = None, |
22 | | - ): |
23 | | - """Package a bioimageio resource as a zip file |
24 | | -
|
25 | | - Args: |
26 | | - source: RDF source e.g. `bioimageio.yaml` or `http://example.com/rdf.yaml` |
27 | | - path: output path |
28 | | - weight-format: include only this single weight-format |
29 | | - """ |
30 | | - _ = save_bioimageio_package( |
31 | | - source, |
32 | | - output_path=path, |
33 | | - weights_priority_order=None if weight_format is None else (weight_format,), |
34 | | - ) |
35 | | - |
36 | | - def test( |
37 | | - self, |
38 | | - source: str, |
39 | | - weight_format: Optional[WeightsFormat] = None, |
40 | | - *, |
41 | | - devices: Optional[Union[str, List[str]]] = None, |
42 | | - decimal: int = 4, |
43 | | - ): |
44 | | - """test a bioimageio resource |
45 | | -
|
46 | | - Args: |
47 | | - source: Path or URL to the bioimageio resource description file |
48 | | - (bioimageio.yaml or rdf.yaml) or to a zipped resource |
49 | | - weight_format: (model only) The weight format to use |
50 | | - devices: Device(s) to use for testing |
51 | | - decimal: Precision for numerical comparisons |
52 | | - """ |
53 | | - summary = test_description( |
54 | | - source, |
55 | | - weight_format=None if weight_format is None else weight_format, |
56 | | - devices=[devices] if isinstance(devices, str) else devices, |
57 | | - decimal=decimal, |
58 | | - ) |
59 | | - print(f"\ntesting model {source}...") |
60 | | - print(summary.format()) |
61 | | - sys.exit(0 if summary.status == "passed" else 1) |
62 | | - |
63 | | - |
64 | | -Bioimageio.__doc__ = f""" |
65 | | -work with resources shared on bioimage.io |
66 | | -
|
67 | | -library versions: |
68 | | - bioimageio.core {__version__} |
69 | | - bioimageio.spec {__version__} |
70 | | -
|
71 | | -spec format versions: |
72 | | - model RDF {ModelDescr.implemented_format_version} |
73 | | - dataset RDF {DatasetDescr.implemented_format_version} |
74 | | - notebook RDF {NotebookDescr.implemented_format_version} |
75 | | - collection RDF {CollectionDescr.implemented_format_version} |
76 | | -
|
77 | | -""" |
78 | | - |
79 | | -# TODO: add predict commands |
80 | | -# @app.command() |
81 | | -# def predict_image( |
82 | | -# model_rdf: Annotated[ |
83 | | -# Path, typer.Argument(help="Path to the model resource description file (rdf.yaml) or zipped model.") |
84 | | -# ], |
85 | | -# inputs: Annotated[List[Path], typer.Option(help="Path(s) to the model input(s).")], |
86 | | -# outputs: Annotated[List[Path], typer.Option(help="Path(s) for saveing the model output(s).")], |
87 | | -# # NOTE: typer currently doesn't support union types, so we only support boolean here |
88 | | -# # padding: Optional[Union[str, bool]] = typer.Argument( |
89 | | -# # None, help="Padding to apply in each dimension passed as json encoded string." |
90 | | -# # ), |
91 | | -# # tiling: Optional[Union[str, bool]] = typer.Argument( |
92 | | -# # None, help="Padding to apply in each dimension passed as json encoded string." |
93 | | -# # ), |
94 | | -# padding: Annotated[ |
95 | | -# Optional[bool], typer.Option(help="Whether to pad the image to a size suited for the model.") |
96 | | -# ] = None, |
97 | | -# tiling: Annotated[Optional[bool], typer.Option(help="Whether to run prediction in tiling mode.")] = None, |
98 | | -# weight_format: Annotated[Optional[WeightsFormatEnum], typer.Option(help="The weight format to use.")] = None, |
99 | | -# devices: Annotated[Optional[List[str]], typer.Option(help="Devices for running the model.")] = None, |
100 | | -# ): |
101 | | -# if isinstance(padding, str): |
102 | | -# padding = json.loads(padding.replace("'", '"')) |
103 | | -# assert isinstance(padding, dict) |
104 | | -# if isinstance(tiling, str): |
105 | | -# tiling = json.loads(tiling.replace("'", '"')) |
106 | | -# assert isinstance(tiling, dict) |
107 | | - |
108 | | -# # this is a weird typer bug: default devices are empty tuple although they should be None |
109 | | -# if devices is None or len(devices) == 0: |
110 | | -# devices = None |
111 | | - |
112 | | -# prediction.predict_image( |
113 | | -# model_rdf, inputs, outputs, padding, tiling, None if weight_format is None else weight_format.value, devices |
114 | | -# ) |
115 | | - |
116 | | - |
117 | | -# predict_image.__doc__ = prediction.predict_image.__doc__ |
118 | | - |
119 | | - |
120 | | -# @app.command() |
121 | | -# def predict_images( |
122 | | -# model_rdf: Annotated[ |
123 | | -# Path, typer.Argument(help="Path to the model resource description file (rdf.yaml) or zipped model.") |
124 | | -# ], |
125 | | -# input_pattern: Annotated[str, typer.Argument(help="Glob pattern for the input images.")], |
126 | | -# output_folder: Annotated[str, typer.Argument(help="Folder to save the outputs.")], |
127 | | -# output_extension: Annotated[Optional[str], typer.Argument(help="Optional output extension.")] = None, |
128 | | -# # NOTE: typer currently doesn't support union types, so we only support boolean here |
129 | | -# # padding: Optional[Union[str, bool]] = typer.Argument( |
130 | | -# # None, help="Padding to apply in each dimension passed as json encoded string." |
131 | | -# # ), |
132 | | -# # tiling: Optional[Union[str, bool]] = typer.Argument( |
133 | | -# # None, help="Padding to apply in each dimension passed as json encoded string." |
134 | | -# # ), |
135 | | -# padding: Annotated[ |
136 | | -# Optional[bool], typer.Option(help="Whether to pad the image to a size suited for the model.") |
137 | | -# ] = None, |
138 | | -# tiling: Annotated[Optional[bool], typer.Option(help="Whether to run prediction in tiling mode.")] = None, |
139 | | -# weight_format: Annotated[Optional[WeightsFormatEnum], typer.Option(help="The weight format to use.")] = None, |
140 | | -# devices: Annotated[Optional[List[str]], typer.Option(help="Devices for running the model.")] = None, |
141 | | -# ): |
142 | | -# input_files = glob(input_pattern) |
143 | | -# input_names = [os.path.split(infile)[1] for infile in input_files] |
144 | | -# output_files = [os.path.join(output_folder, fname) for fname in input_names] |
145 | | -# if output_extension is not None: |
146 | | -# output_files = [f"{os.path.splitext(outfile)[0]}{output_extension}" for outfile in output_files] |
147 | | - |
148 | | -# if isinstance(padding, str): |
149 | | -# padding = json.loads(padding.replace("'", '"')) |
150 | | -# assert isinstance(padding, dict) |
151 | | -# if isinstance(tiling, str): |
152 | | -# tiling = json.loads(tiling.replace("'", '"')) |
153 | | -# assert isinstance(tiling, dict) |
154 | | - |
155 | | -# # this is a weird typer bug: default devices are empty tuple although they should be None |
156 | | -# if len(devices) == 0: |
157 | | -# devices = None |
158 | | -# prediction.predict_images( |
159 | | -# model_rdf, |
160 | | -# input_files, |
161 | | -# output_files, |
162 | | -# padding=padding, |
163 | | -# tiling=tiling, |
164 | | -# weight_format=None if weight_format is None else weight_format.value, |
165 | | -# devices=devices, |
166 | | -# verbose=True, |
167 | | -# ) |
168 | | - |
169 | | - |
170 | | -# predict_images.__doc__ = prediction.predict_images.__doc__ |
171 | | - |
172 | | - |
173 | | -# if torch_converter is not None: |
174 | | - |
175 | | -# @app.command() |
176 | | -# def convert_torch_weights_to_onnx( |
177 | | -# model_rdf: Path = typer.Argument( |
178 | | -# ..., help="Path to the model resource description file (rdf.yaml) or zipped model." |
179 | | -# ), |
180 | | -# output_path: Path = typer.Argument(..., help="Where to save the onnx weights."), |
181 | | -# opset_version: Optional[int] = typer.Argument(12, help="Onnx opset version."), |
182 | | -# use_tracing: bool = typer.Option(True, help="Whether to use torch.jit tracing or scripting."), |
183 | | -# verbose: bool = typer.Option(True, help="Verbosity"), |
184 | | -# ): |
185 | | -# ret_code = torch_converter.convert_weights_to_onnx(model_rdf, output_path, opset_version, use_tracing, verbose) |
186 | | -# sys.exit(ret_code) |
187 | | - |
188 | | -# convert_torch_weights_to_onnx.__doc__ = torch_converter.convert_weights_to_onnx.__doc__ |
189 | | - |
190 | | -# @app.command() |
191 | | -# def convert_torch_weights_to_torchscript( |
192 | | -# model_rdf: Path = typer.Argument( |
193 | | -# ..., help="Path to the model resource description file (rdf.yaml) or zipped model." |
194 | | -# ), |
195 | | -# output_path: Path = typer.Argument(..., help="Where to save the torchscript weights."), |
196 | | -# use_tracing: bool = typer.Option(True, help="Whether to use torch.jit tracing or scripting."), |
197 | | -# ): |
198 | | -# torch_converter.convert_weights_to_torchscript(model_rdf, output_path, use_tracing) |
199 | | -# sys.exit(0) |
200 | | - |
201 | | -# convert_torch_weights_to_torchscript.__doc__ = torch_converter.convert_weights_to_torchscript.__doc__ |
202 | | - |
203 | | - |
204 | | -# if keras_converter is not None: |
205 | | - |
206 | | -# @app.command() |
207 | | -# def convert_keras_weights_to_tensorflow( |
208 | | -# model_rdf: Annotated[ |
209 | | -# Path, typer.Argument(help="Path to the model resource description file (rdf.yaml) or zipped model.") |
210 | | -# ], |
211 | | -# output_path: Annotated[Path, typer.Argument(help="Where to save the tensorflow weights.")], |
212 | | -# ): |
213 | | -# rd = load_description(model_rdf) |
214 | | -# ret_code = keras_converter.convert_weights_to_tensorflow_saved_model_bundle(rd, output_path) |
215 | | -# sys.exit(ret_code) |
216 | | - |
217 | | -# convert_keras_weights_to_tensorflow.__doc__ = ( |
218 | | -# keras_converter.convert_weights_to_tensorflow_saved_model_bundle.__doc__ |
219 | | -# ) |
220 | | - |
221 | | - |
222 | | -def main(): |
223 | | - fire.Fire(Bioimageio, name="bioimageio") |
224 | | - |
| 1 | +from bioimageio.core.commands import main |
225 | 2 |
|
226 | 3 | if __name__ == "__main__": |
227 | 4 | main() |
0 commit comments