Skip to content

Commit a7c25e2

Browse files
committed
remove other unused PredictionPipeline properties
1 parent 951a6be commit a7c25e2

File tree

1 file changed

+0
-82
lines changed

1 file changed

+0
-82
lines changed

bioimageio/core/prediction_pipeline/_prediction_pipeline.py

Lines changed: 0 additions & 82 deletions
Original file line numberDiff line numberDiff line change
@@ -61,63 +61,20 @@ def output_specs(self) -> List[OutputTensor]:
6161
"""
6262
...
6363

64-
# todo: replace all uses of properties below with 'input_specs' and 'output_specs'
65-
@property
66-
@abc.abstractmethod
67-
def input_shape(self) -> List[List[Tuple[str, int]]]:
68-
"""
69-
Named input dimensions
70-
"""
71-
...
72-
73-
@property
74-
@abc.abstractmethod
75-
def output_axes(self) -> List[Tuple[str, ...]]:
76-
"""
77-
Output axes of this pipeline
78-
Note: one character axes names
79-
"""
80-
...
81-
82-
@property
83-
@abc.abstractmethod
84-
def output_shape(self) -> List[Union[List[Tuple[str, float]], NamedImplicitOutputShape]]:
85-
"""
86-
Named output dimensions. Either explicitly defined or implicitly in relation to an input
87-
"""
88-
...
89-
90-
@property
91-
@abc.abstractmethod
92-
def halo(self) -> List[List[Tuple[str, int]]]:
93-
"""
94-
Size of output borders that have unreliable data due to artifacts (after application of postprocessing)
95-
"""
96-
...
97-
9864

9965
class _PredictionPipelineImpl(PredictionPipeline):
10066
def __init__(
10167
self,
10268
*,
10369
name: str,
10470
bioimageio_model: Model,
105-
input_axes: Sequence[str],
106-
input_shape: Sequence[List[Tuple[str, int]]],
107-
output_axes: Sequence[str],
108-
output_shape: Sequence[Union[List[Tuple[str, int]], NamedImplicitOutputShape]],
109-
halo: Sequence[List[Tuple[str, int]]],
11071
preprocessing: Sequence[Transform],
11172
model: ModelAdapter,
11273
postprocessing: Sequence[Transform],
11374
) -> None:
11475
self._name = name
11576
self._input_specs = bioimageio_model.inputs
11677
self._output_specs = bioimageio_model.outputs
117-
self._input_shape = input_shape
118-
self._output_axes = [tuple(axes) for axes in output_axes]
119-
self._output_shape = output_shape
120-
self._halo = halo
12178
self._preprocessing = preprocessing
12279
self._model: ModelAdapter = model
12380
self._postprocessing = postprocessing
@@ -134,22 +91,6 @@ def input_specs(self):
13491
def output_specs(self):
13592
return self._output_specs
13693

137-
@property
138-
def input_shape(self):
139-
return self._input_shape
140-
141-
@property
142-
def output_axes(self):
143-
return self._output_axes
144-
145-
@property
146-
def output_shape(self):
147-
return self._output_shape
148-
149-
@property
150-
def halo(self):
151-
return self._halo
152-
15394
def predict(self, *input_tensors: xr.DataArray) -> List[xr.DataArray]:
15495
"""Predict input_tensor with the model without applying pre/postprocessing."""
15596
return self._model.forward(*input_tensors)
@@ -216,7 +157,6 @@ def create_prediction_pipeline(
216157
bioimageio_model=bioimageio_model, devices=devices, weight_format=weight_format
217158
)
218159

219-
input_axes: List[str] = []
220160
named_input_shape: List[List[Tuple[str, int]]] = []
221161
preprocessing: List[Transform] = []
222162
for ipt in bioimageio_model.inputs:
@@ -227,42 +167,20 @@ def create_prediction_pipeline(
227167
except AttributeError:
228168
input_shape = ipt.shape
229169

230-
input_axes.append(ipt.axes)
231170
named_input_shape.append(list(zip(ipt.axes, input_shape)))
232171
preprocessing_spec = [] if ipt.preprocessing is missing else ipt.preprocessing.copy()
233172
preprocessing.append(make_preprocessing(preprocessing_spec))
234173

235-
output_axes: List[str] = []
236-
named_output_shape: List[Union[List[Tuple[str, int]], NamedImplicitOutputShape]] = []
237174
named_halo: List[List[Tuple[str, int]]] = []
238175
postprocessing: List[Transform] = []
239176
for out in bioimageio_model.outputs:
240-
output_axes.append(out.axes)
241-
if isinstance(out.shape, list): # explict output shape
242-
named_output_shape.append(list(zip(out.axes, out.shape)))
243-
elif isinstance(out.shape, ImplicitOutputShape):
244-
named_output_shape.append(
245-
NamedImplicitOutputShape(
246-
reference_input=out.shape.reference_tensor,
247-
scale=list(zip(out.axes, out.shape.scale)),
248-
offset=list(zip(out.axes, out.shape.offset)),
249-
)
250-
)
251-
else:
252-
raise TypeError(f"Unexpected type for output shape: {type(out.shape)}")
253-
254177
named_halo.append(list(zip(out.axes, out.halo or [0 for _ in out.axes])))
255178
postprocessing_spec = [] if out.postprocessing is missing else out.postprocessing.copy()
256179
postprocessing.append(make_postprocessing(postprocessing_spec))
257180

258181
return _PredictionPipelineImpl(
259182
name=bioimageio_model.name,
260183
bioimageio_model=bioimageio_model,
261-
input_axes=input_axes,
262-
input_shape=named_input_shape,
263-
output_axes=output_axes,
264-
output_shape=named_output_shape,
265-
halo=named_halo,
266184
preprocessing=preprocessing,
267185
model=model_adapter,
268186
postprocessing=postprocessing,

0 commit comments

Comments
 (0)