@@ -57,11 +57,10 @@ def test_predict_image_with_weight_format(unet2d_fixed_shape_or_not, tmpdir):
5757 assert_array_almost_equal (res , exp , decimal = 4 )
5858
5959
60- def test_predict_image_with_padding (unet2d_fixed_shape_or_not , tmp_path ):
61- any_model = unet2d_fixed_shape_or_not # todo: replace 'unet2d_fixed_shape_or_not' with 'any_model'
60+ def _test_predict_with_padding (model , tmp_path ):
6261 from bioimageio .core .prediction import predict_image
6362
64- spec = load_resource_description (any_model )
63+ spec = load_resource_description (model )
6564 assert isinstance (spec , Model )
6665 image = np .load (str (spec .test_inputs [0 ]))[0 , 0 ]
6766 original_shape = image .shape
@@ -79,24 +78,35 @@ def check_result():
7978 assert res .shape == image .shape
8079
8180 # test with dynamic padding
82- predict_image (any_model , in_path , out_path , padding = {"x" : 8 , "y" : 8 , "mode" : "dynamic" })
81+ predict_image (model , in_path , out_path , padding = {"x" : 8 , "y" : 8 , "mode" : "dynamic" })
8382 check_result ()
8483
8584 # test with fixed padding
8685 predict_image (
87- any_model , in_path , out_path , padding = {"x" : original_shape [0 ], "y" : original_shape [1 ], "mode" : "fixed" }
86+ model , in_path , out_path , padding = {"x" : original_shape [0 ], "y" : original_shape [1 ], "mode" : "fixed" }
8887 )
8988 check_result ()
9089
9190 # test with automated padding
92- predict_image (any_model , in_path , out_path , padding = True )
91+ predict_image (model , in_path , out_path , padding = True )
9392 check_result ()
9493
9594
96- def test_predict_image_with_tiling (unet2d_nuclei_broad_model , tmp_path ):
95+ # prediction with padding with the parameters above may not be suted for any model
96+ # so we only run it for the pytorch unet2d here
97+ def test_predict_image_with_padding (unet2d_fixed_shape_or_not , tmp_path ):
98+ _test_predict_with_padding (unet2d_fixed_shape_or_not , tmp_path )
99+
100+
101+ # TODO need stardist model
102+ # def test_predict_image_with_padding_channel_last(stardist_model, tmp_path):
103+ # _test_predict_with_padding(stardist_model, tmp_path)
104+
105+
106+ def _test_predict_image_with_tiling (model , tmp_path ):
97107 from bioimageio .core .prediction import predict_image
98108
99- spec = load_resource_description (unet2d_nuclei_broad_model )
109+ spec = load_resource_description (model )
100110 assert isinstance (spec , Model )
101111 inputs = spec .test_inputs
102112 assert len (inputs ) == 1
@@ -114,14 +124,23 @@ def check_result():
114124
115125 # with tiling config
116126 tiling = {"halo" : {"x" : 32 , "y" : 32 }, "tile" : {"x" : 256 , "y" : 256 }}
117- predict_image (unet2d_nuclei_broad_model , inputs , [out_path ], tiling = tiling )
127+ predict_image (model , inputs , [out_path ], tiling = tiling )
118128 check_result ()
119129
120130 # with tiling determined from spec
121- predict_image (unet2d_nuclei_broad_model , inputs , [out_path ], tiling = True )
131+ predict_image (model , inputs , [out_path ], tiling = True )
122132 check_result ()
123133
124134
135+ def test_predict_image_with_tiling (unet2d_nuclei_broad_model , tmp_path ):
136+ _test_predict_image_with_tiling (unet2d_nuclei_broad_model , tmp_path )
137+
138+
139+ # TODO need stardist model
140+ # def test_predict_image_with_tiling_channel_last(stardist_model, tmp_path):
141+ # _test_predict_image_with_tiling(stardist_model, tmp_path)
142+
143+
125144def test_predict_images (unet2d_nuclei_broad_model , tmp_path ):
126145 from bioimageio .core .prediction import predict_images
127146
0 commit comments