|
| 1 | +format_version: 0.5.0 |
| 2 | + |
| 3 | +name: UNet 2D Nuclei Broad |
| 4 | +description: A 2d U-Net trained on the nuclei broad dataset. |
| 5 | +authors: |
| 6 | +- name: "Constantin Pape;@bioimage-io" |
| 7 | + affiliation: "EMBL Heidelberg" |
| 8 | + orcid: "0000-0001-6562-7187" |
| 9 | +- name: "Fynn Beuttenmueller" |
| 10 | + affiliation: "EMBL Heidelberg" |
| 11 | + orcid: "0000-0002-8567-6389" |
| 12 | +maintainers: |
| 13 | +- name: "Constantin Pape" |
| 14 | + github_user: constantinpape |
| 15 | + |
| 16 | + |
| 17 | +# we allow for multiple citations. Each citation contains TEXT, DOI and URL. One of DOI or URL needs to be given. |
| 18 | +cite: |
| 19 | +- text: "Ronneberger, Olaf et al. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015." |
| 20 | + doi: https://doi.org/10.1007/978-3-319-24574-4_28 |
| 21 | +- text: "2018 Data Science Bowl" |
| 22 | + url: https://www.kaggle.com/c/data-science-bowl-2018 |
| 23 | + |
| 24 | +git_repo: https://github.com/bioimage-io/spec-bioimage-io/tree/main/example_specs/models/unet2d_nuclei_broad |
| 25 | +tags: [unet2d, pytorch, nucleus, segmentation, dsb2018] |
| 26 | +license: MIT |
| 27 | + |
| 28 | +documentation: README.md # may also be a url |
| 29 | +covers: [cover0.png] |
| 30 | +attachments: {} |
| 31 | +timestamp: 2019-12-11T12:22:32Z # ISO 8601 |
| 32 | + |
| 33 | +inputs: |
| 34 | +- name: raw |
| 35 | + description: raw input |
| 36 | + shape: [1, 1, 512, 512] |
| 37 | + axes: |
| 38 | + - role: batch |
| 39 | + - role: channel |
| 40 | + - role: y |
| 41 | + - role: x |
| 42 | + data_type: float32 |
| 43 | + data_range: [-.inf, .inf] |
| 44 | + test_tensor: test_input.npy |
| 45 | + sample_tensor: test_input.npy |
| 46 | + preprocessing: # list of preprocessing steps |
| 47 | + - name: zero_mean_unit_variance # name of preprocessing step |
| 48 | + kwargs: |
| 49 | + mode: per_sample # mode in [fixed, per_dataset, per_sample] |
| 50 | + axes: yx # subset of axes to normalize jointly, batch ('b') is not a valid axis key here! |
| 51 | + |
| 52 | +outputs: |
| 53 | +- name: probability |
| 54 | + description: probability in [0,1] |
| 55 | + axes: bcyx |
| 56 | + data_type: float32 |
| 57 | + data_range: [-.inf, .inf] |
| 58 | + halo: [0, 0, 32, 32] |
| 59 | + test_tensor: test_output.npy |
| 60 | + sample_tensor: test_output.npy |
| 61 | + shape: |
| 62 | + reference_tensor: raw |
| 63 | + scale: [1.0, 1.0, 1.0, 1.0] |
| 64 | + offset: [0.0, 0.0, 0.0, 0.0] |
| 65 | + |
| 66 | +weights: |
| 67 | + pytorch_state_dict: |
| 68 | + authors: |
| 69 | + - name: "Constantin Pape;@bioimage-io" |
| 70 | + affiliation: "EMBL Heidelberg" |
| 71 | + orcid: "0000-0001-6562-7187" |
| 72 | + sha256: e4d3885bccbe41cbf6c1d825f3cd2b707c7021ead5593156007e407a16b27cf2 |
| 73 | + source: https://zenodo.org/record/3446812/files/unet2d_weights.torch |
| 74 | + architecture: unet2d.py:UNet2d |
| 75 | + architecture_sha256: cf42a6d86adeb4eb6e8e37b539a20e5413866b183bed88f4e2e26ad1639761ed |
| 76 | + kwargs: {input_channels: 1, output_channels: 1} |
| 77 | + dependencies: conda:environment.yaml |
| 78 | + onnx: |
| 79 | + sha256: f1f086d5e340f9d4d7001a1b62a2b835f9b87a2fb5452c4fe7d8cc821bdf539c |
| 80 | + source: weights.onnx |
| 81 | + opset_version: 12 |
| 82 | + parent: https://zenodo.org/record/3446812/files/unet2d_weights.torch |
| 83 | + torchscript: |
| 84 | + sha256: 62fa1c39923bee7d58a192277e0dd58f2da9ee810662addadd0f44a3784d9210 |
| 85 | + source: weights.pt |
| 86 | + parent: https://zenodo.org/record/3446812/files/unet2d_weights.torch |
| 87 | + |
| 88 | +type: model |
| 89 | +version: 0.1.3 |
| 90 | +download_url: https://example.com # note: not recommended for model RDFs |
| 91 | + |
| 92 | +training_data: |
| 93 | + id: ilastik/covid_if_training_data # note: not the real training data |
0 commit comments