Skip to content

Commit 6f51244

Browse files
FynnBectr26
authored andcommitted
update nuclei broad example
1 parent 7aa639c commit 6f51244

File tree

1 file changed

+93
-0
lines changed

1 file changed

+93
-0
lines changed
Lines changed: 93 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,93 @@
1+
format_version: 0.5.0
2+
3+
name: UNet 2D Nuclei Broad
4+
description: A 2d U-Net trained on the nuclei broad dataset.
5+
authors:
6+
- name: "Constantin Pape;@bioimage-io"
7+
affiliation: "EMBL Heidelberg"
8+
orcid: "0000-0001-6562-7187"
9+
- name: "Fynn Beuttenmueller"
10+
affiliation: "EMBL Heidelberg"
11+
orcid: "0000-0002-8567-6389"
12+
maintainers:
13+
- name: "Constantin Pape"
14+
github_user: constantinpape
15+
16+
17+
# we allow for multiple citations. Each citation contains TEXT, DOI and URL. One of DOI or URL needs to be given.
18+
cite:
19+
- text: "Ronneberger, Olaf et al. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015."
20+
doi: https://doi.org/10.1007/978-3-319-24574-4_28
21+
- text: "2018 Data Science Bowl"
22+
url: https://www.kaggle.com/c/data-science-bowl-2018
23+
24+
git_repo: https://github.com/bioimage-io/spec-bioimage-io/tree/main/example_specs/models/unet2d_nuclei_broad
25+
tags: [unet2d, pytorch, nucleus, segmentation, dsb2018]
26+
license: MIT
27+
28+
documentation: README.md # may also be a url
29+
covers: [cover0.png]
30+
attachments: {}
31+
timestamp: 2019-12-11T12:22:32Z # ISO 8601
32+
33+
inputs:
34+
- name: raw
35+
description: raw input
36+
shape: [1, 1, 512, 512]
37+
axes:
38+
- role: batch
39+
- role: channel
40+
- role: y
41+
- role: x
42+
data_type: float32
43+
data_range: [-.inf, .inf]
44+
test_tensor: test_input.npy
45+
sample_tensor: test_input.npy
46+
preprocessing: # list of preprocessing steps
47+
- name: zero_mean_unit_variance # name of preprocessing step
48+
kwargs:
49+
mode: per_sample # mode in [fixed, per_dataset, per_sample]
50+
axes: yx # subset of axes to normalize jointly, batch ('b') is not a valid axis key here!
51+
52+
outputs:
53+
- name: probability
54+
description: probability in [0,1]
55+
axes: bcyx
56+
data_type: float32
57+
data_range: [-.inf, .inf]
58+
halo: [0, 0, 32, 32]
59+
test_tensor: test_output.npy
60+
sample_tensor: test_output.npy
61+
shape:
62+
reference_tensor: raw
63+
scale: [1.0, 1.0, 1.0, 1.0]
64+
offset: [0.0, 0.0, 0.0, 0.0]
65+
66+
weights:
67+
pytorch_state_dict:
68+
authors:
69+
- name: "Constantin Pape;@bioimage-io"
70+
affiliation: "EMBL Heidelberg"
71+
orcid: "0000-0001-6562-7187"
72+
sha256: e4d3885bccbe41cbf6c1d825f3cd2b707c7021ead5593156007e407a16b27cf2
73+
source: https://zenodo.org/record/3446812/files/unet2d_weights.torch
74+
architecture: unet2d.py:UNet2d
75+
architecture_sha256: cf42a6d86adeb4eb6e8e37b539a20e5413866b183bed88f4e2e26ad1639761ed
76+
kwargs: {input_channels: 1, output_channels: 1}
77+
dependencies: conda:environment.yaml
78+
onnx:
79+
sha256: f1f086d5e340f9d4d7001a1b62a2b835f9b87a2fb5452c4fe7d8cc821bdf539c
80+
source: weights.onnx
81+
opset_version: 12
82+
parent: https://zenodo.org/record/3446812/files/unet2d_weights.torch
83+
torchscript:
84+
sha256: 62fa1c39923bee7d58a192277e0dd58f2da9ee810662addadd0f44a3784d9210
85+
source: weights.pt
86+
parent: https://zenodo.org/record/3446812/files/unet2d_weights.torch
87+
88+
type: model
89+
version: 0.1.3
90+
download_url: https://example.com # note: not recommended for model RDFs
91+
92+
training_data:
93+
id: ilastik/covid_if_training_data # note: not the real training data

0 commit comments

Comments
 (0)