|
| 1 | +// Copyright (c) 2020-2021 The Bitcoin Core developers |
| 2 | +// Distributed under the MIT software license, see the accompanying |
| 3 | +// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
| 4 | + |
| 5 | +#include <crypto/chacha20.h> |
| 6 | +#include <test/fuzz/FuzzedDataProvider.h> |
| 7 | +#include <test/fuzz/fuzz.h> |
| 8 | +#include <test/fuzz/util.h> |
| 9 | + |
| 10 | +#include <cstdint> |
| 11 | +#include <vector> |
| 12 | + |
| 13 | +/* |
| 14 | +From https://cr.yp.to/chacha.html |
| 15 | +chacha-merged.c version 20080118 |
| 16 | +D. J. Bernstein |
| 17 | +Public domain. |
| 18 | +*/ |
| 19 | + |
| 20 | +typedef unsigned int u32; |
| 21 | +typedef unsigned char u8; |
| 22 | + |
| 23 | +#define U8C(v) (v##U) |
| 24 | +#define U32C(v) (v##U) |
| 25 | + |
| 26 | +#define U8V(v) ((u8)(v)&U8C(0xFF)) |
| 27 | +#define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF)) |
| 28 | + |
| 29 | +#define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n)))) |
| 30 | + |
| 31 | +#define U8TO32_LITTLE(p) \ |
| 32 | + (((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \ |
| 33 | + ((u32)((p)[3]) << 24)) |
| 34 | + |
| 35 | +#define U32TO8_LITTLE(p, v) \ |
| 36 | + do { \ |
| 37 | + (p)[0] = U8V((v)); \ |
| 38 | + (p)[1] = U8V((v) >> 8); \ |
| 39 | + (p)[2] = U8V((v) >> 16); \ |
| 40 | + (p)[3] = U8V((v) >> 24); \ |
| 41 | + } while (0) |
| 42 | + |
| 43 | +/* ------------------------------------------------------------------------- */ |
| 44 | +/* Data structures */ |
| 45 | + |
| 46 | +typedef struct |
| 47 | +{ |
| 48 | + u32 input[16]; |
| 49 | +} ECRYPT_ctx; |
| 50 | + |
| 51 | +/* ------------------------------------------------------------------------- */ |
| 52 | +/* Mandatory functions */ |
| 53 | + |
| 54 | +void ECRYPT_keysetup( |
| 55 | + ECRYPT_ctx* ctx, |
| 56 | + const u8* key, |
| 57 | + u32 keysize, /* Key size in bits. */ |
| 58 | + u32 ivsize); /* IV size in bits. */ |
| 59 | + |
| 60 | +void ECRYPT_ivsetup( |
| 61 | + ECRYPT_ctx* ctx, |
| 62 | + const u8* iv); |
| 63 | + |
| 64 | +void ECRYPT_encrypt_bytes( |
| 65 | + ECRYPT_ctx* ctx, |
| 66 | + const u8* plaintext, |
| 67 | + u8* ciphertext, |
| 68 | + u32 msglen); /* Message length in bytes. */ |
| 69 | + |
| 70 | +/* ------------------------------------------------------------------------- */ |
| 71 | + |
| 72 | +/* Optional features */ |
| 73 | + |
| 74 | +void ECRYPT_keystream_bytes( |
| 75 | + ECRYPT_ctx* ctx, |
| 76 | + u8* keystream, |
| 77 | + u32 length); /* Length of keystream in bytes. */ |
| 78 | + |
| 79 | +/* ------------------------------------------------------------------------- */ |
| 80 | + |
| 81 | +#define ROTATE(v, c) (ROTL32(v, c)) |
| 82 | +#define XOR(v, w) ((v) ^ (w)) |
| 83 | +#define PLUS(v, w) (U32V((v) + (w))) |
| 84 | +#define PLUSONE(v) (PLUS((v), 1)) |
| 85 | + |
| 86 | +#define QUARTERROUND(a, b, c, d) \ |
| 87 | + a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \ |
| 88 | + c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \ |
| 89 | + a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \ |
| 90 | + c = PLUS(c, d); b = ROTATE(XOR(b, c), 7); |
| 91 | + |
| 92 | +static const char sigma[] = "expand 32-byte k"; |
| 93 | +static const char tau[] = "expand 16-byte k"; |
| 94 | + |
| 95 | +void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits) |
| 96 | +{ |
| 97 | + const char* constants; |
| 98 | + |
| 99 | + x->input[4] = U8TO32_LITTLE(k + 0); |
| 100 | + x->input[5] = U8TO32_LITTLE(k + 4); |
| 101 | + x->input[6] = U8TO32_LITTLE(k + 8); |
| 102 | + x->input[7] = U8TO32_LITTLE(k + 12); |
| 103 | + if (kbits == 256) { /* recommended */ |
| 104 | + k += 16; |
| 105 | + constants = sigma; |
| 106 | + } else { /* kbits == 128 */ |
| 107 | + constants = tau; |
| 108 | + } |
| 109 | + x->input[8] = U8TO32_LITTLE(k + 0); |
| 110 | + x->input[9] = U8TO32_LITTLE(k + 4); |
| 111 | + x->input[10] = U8TO32_LITTLE(k + 8); |
| 112 | + x->input[11] = U8TO32_LITTLE(k + 12); |
| 113 | + x->input[0] = U8TO32_LITTLE(constants + 0); |
| 114 | + x->input[1] = U8TO32_LITTLE(constants + 4); |
| 115 | + x->input[2] = U8TO32_LITTLE(constants + 8); |
| 116 | + x->input[3] = U8TO32_LITTLE(constants + 12); |
| 117 | +} |
| 118 | + |
| 119 | +void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv) |
| 120 | +{ |
| 121 | + x->input[12] = 0; |
| 122 | + x->input[13] = 0; |
| 123 | + x->input[14] = U8TO32_LITTLE(iv + 0); |
| 124 | + x->input[15] = U8TO32_LITTLE(iv + 4); |
| 125 | +} |
| 126 | + |
| 127 | +void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes) |
| 128 | +{ |
| 129 | + u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; |
| 130 | + u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; |
| 131 | + u8* ctarget = NULL; |
| 132 | + u8 tmp[64]; |
| 133 | + uint32_t i; |
| 134 | + |
| 135 | + if (!bytes) return; |
| 136 | + |
| 137 | + j0 = x->input[0]; |
| 138 | + j1 = x->input[1]; |
| 139 | + j2 = x->input[2]; |
| 140 | + j3 = x->input[3]; |
| 141 | + j4 = x->input[4]; |
| 142 | + j5 = x->input[5]; |
| 143 | + j6 = x->input[6]; |
| 144 | + j7 = x->input[7]; |
| 145 | + j8 = x->input[8]; |
| 146 | + j9 = x->input[9]; |
| 147 | + j10 = x->input[10]; |
| 148 | + j11 = x->input[11]; |
| 149 | + j12 = x->input[12]; |
| 150 | + j13 = x->input[13]; |
| 151 | + j14 = x->input[14]; |
| 152 | + j15 = x->input[15]; |
| 153 | + |
| 154 | + for (;;) { |
| 155 | + if (bytes < 64) { |
| 156 | + for (i = 0; i < bytes; ++i) |
| 157 | + tmp[i] = m[i]; |
| 158 | + m = tmp; |
| 159 | + ctarget = c; |
| 160 | + c = tmp; |
| 161 | + } |
| 162 | + x0 = j0; |
| 163 | + x1 = j1; |
| 164 | + x2 = j2; |
| 165 | + x3 = j3; |
| 166 | + x4 = j4; |
| 167 | + x5 = j5; |
| 168 | + x6 = j6; |
| 169 | + x7 = j7; |
| 170 | + x8 = j8; |
| 171 | + x9 = j9; |
| 172 | + x10 = j10; |
| 173 | + x11 = j11; |
| 174 | + x12 = j12; |
| 175 | + x13 = j13; |
| 176 | + x14 = j14; |
| 177 | + x15 = j15; |
| 178 | + for (i = 20; i > 0; i -= 2) { |
| 179 | + QUARTERROUND(x0, x4, x8, x12) |
| 180 | + QUARTERROUND(x1, x5, x9, x13) |
| 181 | + QUARTERROUND(x2, x6, x10, x14) |
| 182 | + QUARTERROUND(x3, x7, x11, x15) |
| 183 | + QUARTERROUND(x0, x5, x10, x15) |
| 184 | + QUARTERROUND(x1, x6, x11, x12) |
| 185 | + QUARTERROUND(x2, x7, x8, x13) |
| 186 | + QUARTERROUND(x3, x4, x9, x14) |
| 187 | + } |
| 188 | + x0 = PLUS(x0, j0); |
| 189 | + x1 = PLUS(x1, j1); |
| 190 | + x2 = PLUS(x2, j2); |
| 191 | + x3 = PLUS(x3, j3); |
| 192 | + x4 = PLUS(x4, j4); |
| 193 | + x5 = PLUS(x5, j5); |
| 194 | + x6 = PLUS(x6, j6); |
| 195 | + x7 = PLUS(x7, j7); |
| 196 | + x8 = PLUS(x8, j8); |
| 197 | + x9 = PLUS(x9, j9); |
| 198 | + x10 = PLUS(x10, j10); |
| 199 | + x11 = PLUS(x11, j11); |
| 200 | + x12 = PLUS(x12, j12); |
| 201 | + x13 = PLUS(x13, j13); |
| 202 | + x14 = PLUS(x14, j14); |
| 203 | + x15 = PLUS(x15, j15); |
| 204 | + |
| 205 | + x0 = XOR(x0, U8TO32_LITTLE(m + 0)); |
| 206 | + x1 = XOR(x1, U8TO32_LITTLE(m + 4)); |
| 207 | + x2 = XOR(x2, U8TO32_LITTLE(m + 8)); |
| 208 | + x3 = XOR(x3, U8TO32_LITTLE(m + 12)); |
| 209 | + x4 = XOR(x4, U8TO32_LITTLE(m + 16)); |
| 210 | + x5 = XOR(x5, U8TO32_LITTLE(m + 20)); |
| 211 | + x6 = XOR(x6, U8TO32_LITTLE(m + 24)); |
| 212 | + x7 = XOR(x7, U8TO32_LITTLE(m + 28)); |
| 213 | + x8 = XOR(x8, U8TO32_LITTLE(m + 32)); |
| 214 | + x9 = XOR(x9, U8TO32_LITTLE(m + 36)); |
| 215 | + x10 = XOR(x10, U8TO32_LITTLE(m + 40)); |
| 216 | + x11 = XOR(x11, U8TO32_LITTLE(m + 44)); |
| 217 | + x12 = XOR(x12, U8TO32_LITTLE(m + 48)); |
| 218 | + x13 = XOR(x13, U8TO32_LITTLE(m + 52)); |
| 219 | + x14 = XOR(x14, U8TO32_LITTLE(m + 56)); |
| 220 | + x15 = XOR(x15, U8TO32_LITTLE(m + 60)); |
| 221 | + |
| 222 | + j12 = PLUSONE(j12); |
| 223 | + if (!j12) { |
| 224 | + j13 = PLUSONE(j13); |
| 225 | + /* stopping at 2^70 bytes per nonce is user's responsibility */ |
| 226 | + } |
| 227 | + |
| 228 | + U32TO8_LITTLE(c + 0, x0); |
| 229 | + U32TO8_LITTLE(c + 4, x1); |
| 230 | + U32TO8_LITTLE(c + 8, x2); |
| 231 | + U32TO8_LITTLE(c + 12, x3); |
| 232 | + U32TO8_LITTLE(c + 16, x4); |
| 233 | + U32TO8_LITTLE(c + 20, x5); |
| 234 | + U32TO8_LITTLE(c + 24, x6); |
| 235 | + U32TO8_LITTLE(c + 28, x7); |
| 236 | + U32TO8_LITTLE(c + 32, x8); |
| 237 | + U32TO8_LITTLE(c + 36, x9); |
| 238 | + U32TO8_LITTLE(c + 40, x10); |
| 239 | + U32TO8_LITTLE(c + 44, x11); |
| 240 | + U32TO8_LITTLE(c + 48, x12); |
| 241 | + U32TO8_LITTLE(c + 52, x13); |
| 242 | + U32TO8_LITTLE(c + 56, x14); |
| 243 | + U32TO8_LITTLE(c + 60, x15); |
| 244 | + |
| 245 | + if (bytes <= 64) { |
| 246 | + if (bytes < 64) { |
| 247 | + for (i = 0; i < bytes; ++i) |
| 248 | + ctarget[i] = c[i]; |
| 249 | + } |
| 250 | + x->input[12] = j12; |
| 251 | + x->input[13] = j13; |
| 252 | + return; |
| 253 | + } |
| 254 | + bytes -= 64; |
| 255 | + c += 64; |
| 256 | + m += 64; |
| 257 | + } |
| 258 | +} |
| 259 | + |
| 260 | +void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes) |
| 261 | +{ |
| 262 | + u32 i; |
| 263 | + for (i = 0; i < bytes; ++i) |
| 264 | + stream[i] = 0; |
| 265 | + ECRYPT_encrypt_bytes(x, stream, stream, bytes); |
| 266 | +} |
| 267 | + |
| 268 | +FUZZ_TARGET(crypto_diff_fuzz_chacha20) |
| 269 | +{ |
| 270 | + FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; |
| 271 | + |
| 272 | + ChaCha20 chacha20; |
| 273 | + ECRYPT_ctx ctx; |
| 274 | + // D. J. Bernstein doesn't initialise ctx to 0 while Bitcoin Core initialises chacha20 to 0 in the constructor |
| 275 | + for (int i = 0; i < 16; i++) { |
| 276 | + ctx.input[i] = 0; |
| 277 | + } |
| 278 | + |
| 279 | + if (fuzzed_data_provider.ConsumeBool()) { |
| 280 | + const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange<size_t>(16, 32)); |
| 281 | + chacha20 = ChaCha20{key.data(), key.size()}; |
| 282 | + ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); |
| 283 | + // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does |
| 284 | + uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 285 | + ECRYPT_ivsetup(&ctx, iv); |
| 286 | + } |
| 287 | + |
| 288 | + LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) { |
| 289 | + CallOneOf( |
| 290 | + fuzzed_data_provider, |
| 291 | + [&] { |
| 292 | + const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange<size_t>(16, 32)); |
| 293 | + chacha20.SetKey(key.data(), key.size()); |
| 294 | + ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); |
| 295 | + // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does |
| 296 | + uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 297 | + ECRYPT_ivsetup(&ctx, iv); |
| 298 | + }, |
| 299 | + [&] { |
| 300 | + uint64_t iv = fuzzed_data_provider.ConsumeIntegral<uint64_t>(); |
| 301 | + chacha20.SetIV(iv); |
| 302 | + ctx.input[14] = iv; |
| 303 | + ctx.input[15] = iv >> 32; |
| 304 | + }, |
| 305 | + [&] { |
| 306 | + uint64_t counter = fuzzed_data_provider.ConsumeIntegral<uint64_t>(); |
| 307 | + chacha20.Seek(counter); |
| 308 | + ctx.input[12] = counter; |
| 309 | + ctx.input[13] = counter >> 32; |
| 310 | + }, |
| 311 | + [&] { |
| 312 | + uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096); |
| 313 | + std::vector<uint8_t> output(integralInRange); |
| 314 | + chacha20.Keystream(output.data(), output.size()); |
| 315 | + std::vector<uint8_t> djb_output(integralInRange); |
| 316 | + ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size()); |
| 317 | + if (output.data() != NULL && djb_output.data() != NULL) { |
| 318 | + assert(memcmp(output.data(), djb_output.data(), integralInRange) == 0); |
| 319 | + } |
| 320 | + }, |
| 321 | + [&] { |
| 322 | + uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096); |
| 323 | + std::vector<uint8_t> output(integralInRange); |
| 324 | + const std::vector<uint8_t> input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size()); |
| 325 | + chacha20.Crypt(input.data(), output.data(), input.size()); |
| 326 | + std::vector<uint8_t> djb_output(integralInRange); |
| 327 | + ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size()); |
| 328 | + }); |
| 329 | + } |
| 330 | +} |
0 commit comments