You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: bip-schnorr.mediawiki
+6-2Lines changed: 6 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -72,7 +72,7 @@ Using the first option would be slightly more efficient for verification (around
72
72
'''Implicit Y coordinates''' In order to support efficient verification and batch verification, the Y coordinate of ''P'' and of ''R'' cannot be ambiguous (every valid X coordinate has two possible Y coordinates). We have a choice between several options for symmetry breaking:
73
73
# Implicitly choosing the Y coordinate that is in the lower half.
74
74
# Implicitly choosing the Y coordinate that is even<ref>Since ''p'' is odd, negation modulo ''p'' will map even numbers to odd numbers and the other way around. This means that for a valid X coordinate, one of the corresponding Y coordinates will be even, and the other will be odd.</ref>.
75
-
# Implicitly choosing the Y coordinate that is a quadratic residue (has a square root modulo the field size, or "is a square" for short)<ref>A product of two numbers is a square when either both or none of the factors are squares. As ''-1'' is not a square, and the two Y coordinates corresponding to a given X coordinate are each other's negation, this means exactly one of the two must be a square.</ref>.
75
+
# Implicitly choosing the Y coordinate that is a quadratic residue (has a square root modulo the field size, or "is a square" for short)<ref>A product of two numbers is a square when either both or none of the factors are squares. As ''-1'' is not a square modulo secp256k1's field size ''p'', and the two Y coordinates corresponding to a given X coordinate are each other's negation, this means exactly one of the two must be a square.</ref>.
76
76
77
77
In the case of ''R'' the third option is slower at signing time but a bit faster to verify, as it is possible to directly compute whether the Y coordinate is a square when the points are represented in
78
78
[https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates Jacobian coordinates] (a common optimization to avoid modular inverses
@@ -111,7 +111,11 @@ The following conventions are used, with constants as defined for [https://www.s
111
111
** The function ''int(x)'', where ''x'' is a 32-byte array, returns the 256-bit unsigned integer whose most significant byte first encoding is ''x''.
112
112
** The function ''is_square(x)'', where ''x'' is an integer, returns whether or not ''x'' is a quadratic residue modulo ''p''. Since ''p'' is prime, it is equivalent to the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(x / p) = x<sup>(p-1)/2</sup> mod p'' being equal to ''1''<ref>For points ''P'' on the secp256k1 curve it holds that ''y(P)<sup>(p-1)/2</sup> ≠ 0 mod p''.</ref>.
113
113
** The function ''has_square_y(P)'', where ''P'' is a point, is defined as ''not is_infinite(P) and is_square(y(P))''<ref>For points ''P'' on the secp256k1 curve it holds that ''has_square_y(P) = not has_square_y(-P)''.</ref>.
114
-
** The function ''lift_x(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x'' and ''has_square_y(P)'', or fails if no such point exists<ref>Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. Given a candidate ''x'', the valid Y coordinates are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = ±c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''. The [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''( c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. The Legendre symbol ''( y / p )'' is ''y<sup>(p-1)/2</sup> mod p = ±c<sup>((p+1)/4)((p-1)/2)</sup> mod p = ±1 mod p''. Therefore ''y = +c<sup>(p+1)/4</sup> mod p'' is a quadratic residue and ''-y mod p'' is not.</ref>. The function ''lift_x(x)'' is equivalent to the following pseudocode:
114
+
** The function ''lift_x(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref>
115
+
Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. The valid Y coordinates for a given candidate ''x'' are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = ±c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''.
116
+
</ref> and ''has_square_y(P)''<ref>
117
+
If ''P := lift_x(x)'' does not fail, then ''y := y(P) = c<sup>(p+1)/4</sup> mod p'' is square. Proof: If ''lift_x'' does not fail, ''y'' is a square root of ''c'' and therefore the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. Because the Legendre symbol ''(y / p)'' is ''y<sup>(p-1)/2</sup> mod p = c<sup>((p+1)/4)((p-1)/2)</sup> mod p = 1<sup>((p+1)/4)</sup> mod p = 1 mod p'', ''y'' is square.
118
+
</ref>, or fails if no such point exists. The function ''lift_x(x)'' is equivalent to the following pseudocode:
0 commit comments