* '''Provable security''': Schnorr signatures are provably secure. In more detail, they are ''strongly unforgeable under chosen message attack (SUF-CMA)''<ref>Informally, this means that without knowledge of the secret key but given valid signatures of arbitrary messages, it is not possible to come up with further valid signatures.</ref> [https://www.di.ens.fr/~pointche/Documents/Papers/2000_joc.pdf in the random oracle model assuming the hardness of the elliptic curve discrete logarithm problem (ECDLP)] and [http://www.neven.org/papers/schnorr.pdf in the generic group model assuming variants of preimage and second preimage resistance of the used hash function]<ref>A detailed security proof in the random oracle model, which essentially restates [https://www.di.ens.fr/~pointche/Documents/Papers/2000_joc.pdf the original security proof by Pointcheval and Stern] more explicitly, can be found in [https://eprint.iacr.org/2016/191 a paper by Kiltz, Masny and Pan]. All these security proofs assume a variant of Schnorr signatures that use ''(e,s)'' instead of ''(R,s)'' (see Design above). Since we use a unique encoding of ''R'', there is an efficiently computable bijection that maps ''(R,s)'' to ''(e,s)'', which allows to convert a successful SUF-CMA attacker for the ''(e,s)'' variant to a successful SUF-CMA attacker for the ''(R,s)'' variant (and vice-versa). Furthermore, the proofs consider a variant of Schnorr signatures without key prefixing (see Design above), but it can be verified that the proofs are also correct for the variant with key prefixing. As a result, all the aforementioned security proofs apply to the variant of Schnorr signatures proposed in this document.</ref>. In contrast, the [https://nbn-resolving.de/urn:nbn:de:hbz:294-60803 best known results for the provable security of ECDSA] rely on stronger assumptions.
0 commit comments