* The '''public key is directly included in the output''' in contrast to typical earlier constructions which store a hash of the public key or script in the output. This has the same cost for senders and is more space efficient overall if the key-based spending path is taken. <ref>'''Why is the public key directly included in the output?''' While typical earlier constructions store a hash of a script or a public key in the output, this is rather wasteful when a public key is always involved. To guarantee batch verifiability, the public key must be known to every verifier, and thus only revealing its hash as an output would imply adding an additional 32 bytes to the witness. Furthermore, to maintain [https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-January/012198.html 128-bit collision security] for outputs, a 256-bit hash would be required anyway, which is comparable in size (and thus in cost for senders) to revealing the public key directly. While the usage of public key hashes is often said to protect against ECDLP breaks or quantum computers, this protection is very weak at best: transactions are not protected while being confirmed, and a very [https://twitter.com/pwuille/status/1108097835365339136 large portion] of the currency's supply is not under such protection regardless. Actual resistance to such systems can be introduced by relying on different cryptographic assumptions, but this proposal focuses on improvements that do not change the security model.</ref>
0 commit comments