|
| 1 | +// Copyright (c) 2017-2020 The Bitcoin Core developers |
| 2 | +// Distributed under the MIT software license, see the accompanying |
| 3 | +// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
| 4 | + |
| 5 | +#include <crypto/muhash.h> |
| 6 | + |
| 7 | +#include <crypto/chacha20.h> |
| 8 | +#include <crypto/common.h> |
| 9 | +#include <hash.h> |
| 10 | + |
| 11 | +#include <cassert> |
| 12 | +#include <cstdio> |
| 13 | +#include <limits> |
| 14 | + |
| 15 | +namespace { |
| 16 | + |
| 17 | +using limb_t = Num3072::limb_t; |
| 18 | +using double_limb_t = Num3072::double_limb_t; |
| 19 | +constexpr int LIMB_SIZE = Num3072::LIMB_SIZE; |
| 20 | +constexpr int LIMBS = Num3072::LIMBS; |
| 21 | +/** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */ |
| 22 | +constexpr limb_t MAX_PRIME_DIFF = 1103717; |
| 23 | + |
| 24 | +/** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */ |
| 25 | +inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n) |
| 26 | +{ |
| 27 | + n = c0; |
| 28 | + c0 = c1; |
| 29 | + c1 = c2; |
| 30 | + c2 = 0; |
| 31 | +} |
| 32 | + |
| 33 | +/** [c0,c1] = a * b */ |
| 34 | +inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b) |
| 35 | +{ |
| 36 | + double_limb_t t = (double_limb_t)a * b; |
| 37 | + c1 = t >> LIMB_SIZE; |
| 38 | + c0 = t; |
| 39 | +} |
| 40 | + |
| 41 | +/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */ |
| 42 | +inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n) |
| 43 | +{ |
| 44 | + double_limb_t t = (double_limb_t)d0 * n + c0; |
| 45 | + c0 = t; |
| 46 | + t >>= LIMB_SIZE; |
| 47 | + t += (double_limb_t)d1 * n + c1; |
| 48 | + c1 = t; |
| 49 | + t >>= LIMB_SIZE; |
| 50 | + c2 = t + d2 * n; |
| 51 | +} |
| 52 | + |
| 53 | +/* [c0,c1] *= n */ |
| 54 | +inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n) |
| 55 | +{ |
| 56 | + double_limb_t t = (double_limb_t)c0 * n; |
| 57 | + c0 = t; |
| 58 | + t >>= LIMB_SIZE; |
| 59 | + t += (double_limb_t)c1 * n; |
| 60 | + c1 = t; |
| 61 | +} |
| 62 | + |
| 63 | +/** [c0,c1,c2] += a * b */ |
| 64 | +inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b) |
| 65 | +{ |
| 66 | + double_limb_t t = (double_limb_t)a * b; |
| 67 | + limb_t th = t >> LIMB_SIZE; |
| 68 | + limb_t tl = t; |
| 69 | + |
| 70 | + c0 += tl; |
| 71 | + th += (c0 < tl) ? 1 : 0; |
| 72 | + c1 += th; |
| 73 | + c2 += (c1 < th) ? 1 : 0; |
| 74 | +} |
| 75 | + |
| 76 | +/** [c0,c1,c2] += 2 * a * b */ |
| 77 | +inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b) |
| 78 | +{ |
| 79 | + double_limb_t t = (double_limb_t)a * b; |
| 80 | + limb_t th = t >> LIMB_SIZE; |
| 81 | + limb_t tl = t; |
| 82 | + |
| 83 | + c0 += tl; |
| 84 | + limb_t tt = th + ((c0 < tl) ? 1 : 0); |
| 85 | + c1 += tt; |
| 86 | + c2 += (c1 < tt) ? 1 : 0; |
| 87 | + c0 += tl; |
| 88 | + th += (c0 < tl) ? 1 : 0; |
| 89 | + c1 += th; |
| 90 | + c2 += (c1 < th) ? 1 : 0; |
| 91 | +} |
| 92 | + |
| 93 | +/** |
| 94 | + * Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest |
| 95 | + * limb of [c0,c1] into n, and left shift the number by 1 limb. |
| 96 | + * */ |
| 97 | +inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n) |
| 98 | +{ |
| 99 | + limb_t c2 = 0; |
| 100 | + |
| 101 | + // add |
| 102 | + c0 += a; |
| 103 | + if (c0 < a) { |
| 104 | + c1 += 1; |
| 105 | + |
| 106 | + // Handle case when c1 has overflown |
| 107 | + if (c1 == 0) |
| 108 | + c2 = 1; |
| 109 | + } |
| 110 | + |
| 111 | + // extract |
| 112 | + n = c0; |
| 113 | + c0 = c1; |
| 114 | + c1 = c2; |
| 115 | +} |
| 116 | + |
| 117 | +/** in_out = in_out^(2^sq) * mul */ |
| 118 | +inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul) |
| 119 | +{ |
| 120 | + for (int j = 0; j < sq; ++j) in_out.Square(); |
| 121 | + in_out.Multiply(mul); |
| 122 | +} |
| 123 | + |
| 124 | +} // namespace |
| 125 | + |
| 126 | +/** Indicates wether d is larger than the modulus. */ |
| 127 | +bool Num3072::IsOverflow() const |
| 128 | +{ |
| 129 | + if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false; |
| 130 | + for (int i = 1; i < LIMBS; ++i) { |
| 131 | + if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false; |
| 132 | + } |
| 133 | + return true; |
| 134 | +} |
| 135 | + |
| 136 | +void Num3072::FullReduce() |
| 137 | +{ |
| 138 | + limb_t c0 = MAX_PRIME_DIFF; |
| 139 | + limb_t c1 = 0; |
| 140 | + for (int i = 0; i < LIMBS; ++i) { |
| 141 | + addnextract2(c0, c1, this->limbs[i], this->limbs[i]); |
| 142 | + } |
| 143 | +} |
| 144 | + |
| 145 | +Num3072 Num3072::GetInverse() const |
| 146 | +{ |
| 147 | + // For fast exponentiation a sliding window exponentiation with repunit |
| 148 | + // precomputation is utilized. See "Fast Point Decompression for Standard |
| 149 | + // Elliptic Curves" (Brumley, Järvinen, 2008). |
| 150 | + |
| 151 | + Num3072 p[12]; // p[i] = a^(2^(2^i)-1) |
| 152 | + Num3072 out; |
| 153 | + |
| 154 | + p[0] = *this; |
| 155 | + |
| 156 | + for (int i = 0; i < 11; ++i) { |
| 157 | + p[i + 1] = p[i]; |
| 158 | + for (int j = 0; j < (1 << i); ++j) p[i + 1].Square(); |
| 159 | + p[i + 1].Multiply(p[i]); |
| 160 | + } |
| 161 | + |
| 162 | + out = p[11]; |
| 163 | + |
| 164 | + square_n_mul(out, 512, p[9]); |
| 165 | + square_n_mul(out, 256, p[8]); |
| 166 | + square_n_mul(out, 128, p[7]); |
| 167 | + square_n_mul(out, 64, p[6]); |
| 168 | + square_n_mul(out, 32, p[5]); |
| 169 | + square_n_mul(out, 8, p[3]); |
| 170 | + square_n_mul(out, 2, p[1]); |
| 171 | + square_n_mul(out, 1, p[0]); |
| 172 | + square_n_mul(out, 5, p[2]); |
| 173 | + square_n_mul(out, 3, p[0]); |
| 174 | + square_n_mul(out, 2, p[0]); |
| 175 | + square_n_mul(out, 4, p[0]); |
| 176 | + square_n_mul(out, 4, p[1]); |
| 177 | + square_n_mul(out, 3, p[0]); |
| 178 | + |
| 179 | + return out; |
| 180 | +} |
| 181 | + |
| 182 | +void Num3072::Multiply(const Num3072& a) |
| 183 | +{ |
| 184 | + limb_t c0 = 0, c1 = 0, c2 = 0; |
| 185 | + Num3072 tmp; |
| 186 | + |
| 187 | + /* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */ |
| 188 | + for (int j = 0; j < LIMBS - 1; ++j) { |
| 189 | + limb_t d0 = 0, d1 = 0, d2 = 0; |
| 190 | + mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]); |
| 191 | + for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]); |
| 192 | + mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF); |
| 193 | + for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]); |
| 194 | + extract3(c0, c1, c2, tmp.limbs[j]); |
| 195 | + } |
| 196 | + |
| 197 | + /* Compute limb N-1 of a*b into tmp. */ |
| 198 | + assert(c2 == 0); |
| 199 | + for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]); |
| 200 | + extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]); |
| 201 | + |
| 202 | + /* Perform a second reduction. */ |
| 203 | + muln2(c0, c1, MAX_PRIME_DIFF); |
| 204 | + for (int j = 0; j < LIMBS; ++j) { |
| 205 | + addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]); |
| 206 | + } |
| 207 | + |
| 208 | + assert(c1 == 0); |
| 209 | + assert(c0 == 0 || c0 == 1); |
| 210 | + |
| 211 | + /* Perform up to two more reductions if the internal state has already |
| 212 | + * overflown the MAX of Num3072 or if it is larger than the modulus or |
| 213 | + * if both are the case. |
| 214 | + * */ |
| 215 | + if (this->IsOverflow()) this->FullReduce(); |
| 216 | + if (c0) this->FullReduce(); |
| 217 | +} |
| 218 | + |
| 219 | +void Num3072::Square() |
| 220 | +{ |
| 221 | + limb_t c0 = 0, c1 = 0, c2 = 0; |
| 222 | + Num3072 tmp; |
| 223 | + |
| 224 | + /* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */ |
| 225 | + for (int j = 0; j < LIMBS - 1; ++j) { |
| 226 | + limb_t d0 = 0, d1 = 0, d2 = 0; |
| 227 | + for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]); |
| 228 | + if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]); |
| 229 | + mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF); |
| 230 | + for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]); |
| 231 | + if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]); |
| 232 | + extract3(c0, c1, c2, tmp.limbs[j]); |
| 233 | + } |
| 234 | + |
| 235 | + assert(c2 == 0); |
| 236 | + for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]); |
| 237 | + extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]); |
| 238 | + |
| 239 | + /* Perform a second reduction. */ |
| 240 | + muln2(c0, c1, MAX_PRIME_DIFF); |
| 241 | + for (int j = 0; j < LIMBS; ++j) { |
| 242 | + addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]); |
| 243 | + } |
| 244 | + |
| 245 | + assert(c1 == 0); |
| 246 | + assert(c0 == 0 || c0 == 1); |
| 247 | + |
| 248 | + /* Perform up to two more reductions if the internal state has already |
| 249 | + * overflown the MAX of Num3072 or if it is larger than the modulus or |
| 250 | + * if both are the case. |
| 251 | + * */ |
| 252 | + if (this->IsOverflow()) this->FullReduce(); |
| 253 | + if (c0) this->FullReduce(); |
| 254 | +} |
| 255 | + |
| 256 | +void Num3072::SetToOne() |
| 257 | +{ |
| 258 | + this->limbs[0] = 1; |
| 259 | + for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0; |
| 260 | +} |
| 261 | + |
| 262 | +void Num3072::Divide(const Num3072& a) |
| 263 | +{ |
| 264 | + if (this->IsOverflow()) this->FullReduce(); |
| 265 | + |
| 266 | + Num3072 inv{}; |
| 267 | + if (a.IsOverflow()) { |
| 268 | + Num3072 b = a; |
| 269 | + b.FullReduce(); |
| 270 | + inv = b.GetInverse(); |
| 271 | + } else { |
| 272 | + inv = a.GetInverse(); |
| 273 | + } |
| 274 | + |
| 275 | + this->Multiply(inv); |
| 276 | + if (this->IsOverflow()) this->FullReduce(); |
| 277 | +} |
0 commit comments