|
| 1 | +// Copyright (c) 2017 Pieter Wuille |
| 2 | +// Distributed under the MIT software license, see the accompanying |
| 3 | +// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
| 4 | + |
| 5 | +#include "bech32.h" |
| 6 | + |
| 7 | +namespace |
| 8 | +{ |
| 9 | + |
| 10 | +typedef std::vector<uint8_t> data; |
| 11 | + |
| 12 | +/** The Bech32 character set for encoding. */ |
| 13 | +const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l"; |
| 14 | + |
| 15 | +/** The Bech32 character set for decoding. */ |
| 16 | +const int8_t CHARSET_REV[128] = { |
| 17 | + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 18 | + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 19 | + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 20 | + 15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1, |
| 21 | + -1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1, |
| 22 | + 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1, |
| 23 | + -1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1, |
| 24 | + 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1 |
| 25 | +}; |
| 26 | + |
| 27 | +/** Concatenate two byte arrays. */ |
| 28 | +data Cat(data x, const data& y) |
| 29 | +{ |
| 30 | + x.insert(x.end(), y.begin(), y.end()); |
| 31 | + return x; |
| 32 | +} |
| 33 | + |
| 34 | +/** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to |
| 35 | + * make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher |
| 36 | + * bits correspond to earlier values. */ |
| 37 | +uint32_t PolyMod(const data& v) |
| 38 | +{ |
| 39 | + // The input is interpreted as a list of coefficients of a polynomial over F = GF(32), with an |
| 40 | + // implicit 1 in front. If the input is [v0,v1,v2,v3,v4], that polynomial is v(x) = |
| 41 | + // 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that |
| 42 | + // [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...]. |
| 43 | + |
| 44 | + // The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of |
| 45 | + // v(x) mod g(x), where g(x) is the Bech32 generator, |
| 46 | + // x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way |
| 47 | + // that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a |
| 48 | + // window of 1023 characters. Among the various possible BCH codes, one was selected to in |
| 49 | + // fact guarantee detection of up to 4 errors within a window of 89 characters. |
| 50 | + |
| 51 | + // Note that the coefficients are elements of GF(32), here represented as decimal numbers |
| 52 | + // between {}. In this finite field, addition is just XOR of the corresponding numbers. For |
| 53 | + // example, {27} + {13} = {27 ^ 13} = {22}. Multiplication is more complicated, and requires |
| 54 | + // treating the bits of values themselves as coefficients of a polynomial over a smaller field, |
| 55 | + // GF(2), and multiplying those polynomials mod a^5 + a^3 + 1. For example, {5} * {26} = |
| 56 | + // (a^2 + 1) * (a^4 + a^3 + a) = (a^4 + a^3 + a) * a^2 + (a^4 + a^3 + a) = a^6 + a^5 + a^4 + a |
| 57 | + // = a^3 + 1 (mod a^5 + a^3 + 1) = {9}. |
| 58 | + |
| 59 | + // During the course of the loop below, `c` contains the bitpacked coefficients of the |
| 60 | + // polynomial constructed from just the values of v that were processed so far, mod g(x). In |
| 61 | + // the above example, `c` initially corresponds to 1 mod (x), and after processing 2 inputs of |
| 62 | + // v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value |
| 63 | + // for `c`. |
| 64 | + uint32_t c = 1; |
| 65 | + for (auto v_i : v) { |
| 66 | + // We want to update `c` to correspond to a polynomial with one extra term. If the initial |
| 67 | + // value of `c` consists of the coefficients of c(x) = f(x) mod g(x), we modify it to |
| 68 | + // correspond to c'(x) = (f(x) * x + v_i) mod g(x), where v_i is the next input to |
| 69 | + // process. Simplifying: |
| 70 | + // c'(x) = (f(x) * x + v_i) mod g(x) |
| 71 | + // ((f(x) mod g(x)) * x + v_i) mod g(x) |
| 72 | + // (c(x) * x + v_i) mod g(x) |
| 73 | + // If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute |
| 74 | + // c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x) |
| 75 | + // = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x) |
| 76 | + // = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i |
| 77 | + // If we call (x^6 mod g(x)) = k(x), this can be written as |
| 78 | + // c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x) |
| 79 | + |
| 80 | + // First, determine the value of c0: |
| 81 | + uint8_t c0 = c >> 25; |
| 82 | + |
| 83 | + // Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i: |
| 84 | + c = ((c & 0x1ffffff) << 5) ^ v_i; |
| 85 | + |
| 86 | + // Finally, for each set bit n in c0, conditionally add {2^n}k(x): |
| 87 | + if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18} |
| 88 | + if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13} |
| 89 | + if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26} |
| 90 | + if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29} |
| 91 | + if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19} |
| 92 | + } |
| 93 | + return c; |
| 94 | +} |
| 95 | + |
| 96 | +/** Convert to lower case. */ |
| 97 | +inline unsigned char LowerCase(unsigned char c) |
| 98 | +{ |
| 99 | + return (c >= 'A' && c <= 'Z') ? (c - 'A') + 'a' : c; |
| 100 | +} |
| 101 | + |
| 102 | +/** Expand a HRP for use in checksum computation. */ |
| 103 | +data ExpandHRP(const std::string& hrp) |
| 104 | +{ |
| 105 | + data ret; |
| 106 | + ret.reserve(hrp.size() + 90); |
| 107 | + ret.resize(hrp.size() * 2 + 1); |
| 108 | + for (size_t i = 0; i < hrp.size(); ++i) { |
| 109 | + unsigned char c = hrp[i]; |
| 110 | + ret[i] = c >> 5; |
| 111 | + ret[i + hrp.size() + 1] = c & 0x1f; |
| 112 | + } |
| 113 | + ret[hrp.size()] = 0; |
| 114 | + return ret; |
| 115 | +} |
| 116 | + |
| 117 | +/** Verify a checksum. */ |
| 118 | +bool VerifyChecksum(const std::string& hrp, const data& values) |
| 119 | +{ |
| 120 | + // PolyMod computes what value to xor into the final values to make the checksum 0. However, |
| 121 | + // if we required that the checksum was 0, it would be the case that appending a 0 to a valid |
| 122 | + // list of values would result in a new valid list. For that reason, Bech32 requires the |
| 123 | + // resulting checksum to be 1 instead. |
| 124 | + return PolyMod(Cat(ExpandHRP(hrp), values)) == 1; |
| 125 | +} |
| 126 | + |
| 127 | +/** Create a checksum. */ |
| 128 | +data CreateChecksum(const std::string& hrp, const data& values) |
| 129 | +{ |
| 130 | + data enc = Cat(ExpandHRP(hrp), values); |
| 131 | + enc.resize(enc.size() + 6); // Append 6 zeroes |
| 132 | + uint32_t mod = PolyMod(enc) ^ 1; // Determine what to XOR into those 6 zeroes. |
| 133 | + data ret(6); |
| 134 | + for (size_t i = 0; i < 6; ++i) { |
| 135 | + // Convert the 5-bit groups in mod to checksum values. |
| 136 | + ret[i] = (mod >> (5 * (5 - i))) & 31; |
| 137 | + } |
| 138 | + return ret; |
| 139 | +} |
| 140 | + |
| 141 | +} // namespace |
| 142 | + |
| 143 | +namespace bech32 |
| 144 | +{ |
| 145 | + |
| 146 | +/** Encode a Bech32 string. */ |
| 147 | +std::string Encode(const std::string& hrp, const data& values) { |
| 148 | + data checksum = CreateChecksum(hrp, values); |
| 149 | + data combined = Cat(values, checksum); |
| 150 | + std::string ret = hrp + '1'; |
| 151 | + ret.reserve(ret.size() + combined.size()); |
| 152 | + for (auto c : combined) { |
| 153 | + ret += CHARSET[c]; |
| 154 | + } |
| 155 | + return ret; |
| 156 | +} |
| 157 | + |
| 158 | +/** Decode a Bech32 string. */ |
| 159 | +std::pair<std::string, data> Decode(const std::string& str) { |
| 160 | + bool lower = false, upper = false; |
| 161 | + for (size_t i = 0; i < str.size(); ++i) { |
| 162 | + unsigned char c = str[i]; |
| 163 | + if (c < 33 || c > 126) return {}; |
| 164 | + if (c >= 'a' && c <= 'z') lower = true; |
| 165 | + if (c >= 'A' && c <= 'Z') upper = true; |
| 166 | + } |
| 167 | + if (lower && upper) return {}; |
| 168 | + size_t pos = str.rfind('1'); |
| 169 | + if (str.size() > 90 || pos == str.npos || pos == 0 || pos + 7 > str.size()) { |
| 170 | + return {}; |
| 171 | + } |
| 172 | + data values(str.size() - 1 - pos); |
| 173 | + for (size_t i = 0; i < str.size() - 1 - pos; ++i) { |
| 174 | + unsigned char c = str[i + pos + 1]; |
| 175 | + int8_t rev = (c < 33 || c > 126) ? -1 : CHARSET_REV[c]; |
| 176 | + if (rev == -1) { |
| 177 | + return {}; |
| 178 | + } |
| 179 | + values[i] = rev; |
| 180 | + } |
| 181 | + std::string hrp; |
| 182 | + for (size_t i = 0; i < pos; ++i) { |
| 183 | + hrp += LowerCase(str[i]); |
| 184 | + } |
| 185 | + if (!VerifyChecksum(hrp, values)) { |
| 186 | + return {}; |
| 187 | + } |
| 188 | + return {hrp, data(values.begin(), values.end() - 6)}; |
| 189 | +} |
| 190 | + |
| 191 | +} // namespace bech32 |
0 commit comments