Skip to content

Commit ee60e56

Browse files
committed
Add merkle.{h,cpp}, generic merkle root/branch algorithm
1 parent 93e0514 commit ee60e56

File tree

3 files changed

+171
-0
lines changed

3 files changed

+171
-0
lines changed

src/Makefile.am

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -100,6 +100,7 @@ BITCOIN_CORE_H = \
100100
compat/sanity.h \
101101
compressor.h \
102102
consensus/consensus.h \
103+
consensus/merkle.h \
103104
consensus/params.h \
104105
consensus/validation.h \
105106
core_io.h \
@@ -268,6 +269,7 @@ libbitcoin_common_a_SOURCES = \
268269
chainparams.cpp \
269270
coins.cpp \
270271
compressor.cpp \
272+
consensus/merkle.cpp \
271273
core_read.cpp \
272274
core_write.cpp \
273275
hash.cpp \

src/consensus/merkle.cpp

Lines changed: 152 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,152 @@
1+
#include "merkle.h"
2+
#include "hash.h"
3+
#include "utilstrencodings.h"
4+
5+
/* WARNING! If you're reading this because you're learning about crypto
6+
and/or designing a new system that will use merkle trees, keep in mind
7+
that the following merkle tree algorithm has a serious flaw related to
8+
duplicate txids, resulting in a vulnerability (CVE-2012-2459).
9+
10+
The reason is that if the number of hashes in the list at a given time
11+
is odd, the last one is duplicated before computing the next level (which
12+
is unusual in Merkle trees). This results in certain sequences of
13+
transactions leading to the same merkle root. For example, these two
14+
trees:
15+
16+
A A
17+
/ \ / \
18+
B C B C
19+
/ \ | / \ / \
20+
D E F D E F F
21+
/ \ / \ / \ / \ / \ / \ / \
22+
1 2 3 4 5 6 1 2 3 4 5 6 5 6
23+
24+
for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and
25+
6 are repeated) result in the same root hash A (because the hash of both
26+
of (F) and (F,F) is C).
27+
28+
The vulnerability results from being able to send a block with such a
29+
transaction list, with the same merkle root, and the same block hash as
30+
the original without duplication, resulting in failed validation. If the
31+
receiving node proceeds to mark that block as permanently invalid
32+
however, it will fail to accept further unmodified (and thus potentially
33+
valid) versions of the same block. We defend against this by detecting
34+
the case where we would hash two identical hashes at the end of the list
35+
together, and treating that identically to the block having an invalid
36+
merkle root. Assuming no double-SHA256 collisions, this will detect all
37+
known ways of changing the transactions without affecting the merkle
38+
root.
39+
*/
40+
41+
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
42+
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
43+
if (pbranch) pbranch->clear();
44+
if (leaves.size() == 0) {
45+
if (pmutated) *pmutated = false;
46+
if (proot) *proot = uint256();
47+
return;
48+
}
49+
bool mutated = false;
50+
// count is the number of leaves processed so far.
51+
uint32_t count = 0;
52+
// inner is an array of eagerly computed subtree hashes, indexed by tree
53+
// level (0 being the leaves).
54+
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
55+
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
56+
// the last leaf. The other inner entries are undefined.
57+
uint256 inner[32];
58+
// Which position in inner is a hash that depends on the matching leaf.
59+
int matchlevel = -1;
60+
// First process all leaves into 'inner' values.
61+
while (count < leaves.size()) {
62+
uint256 h = leaves[count];
63+
bool matchh = count == branchpos;
64+
count++;
65+
int level;
66+
// For each of the lower bits in count that are 0, do 1 step. Each
67+
// corresponds to an inner value that existed before processing the
68+
// current leaf, and each needs a hash to combine it.
69+
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
70+
if (pbranch) {
71+
if (matchh) {
72+
pbranch->push_back(inner[level]);
73+
} else if (matchlevel == level) {
74+
pbranch->push_back(h);
75+
matchh = true;
76+
}
77+
}
78+
mutated |= (inner[level] == h);
79+
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
80+
}
81+
// Store the resulting hash at inner position level.
82+
inner[level] = h;
83+
if (matchh) {
84+
matchlevel = level;
85+
}
86+
}
87+
// Do a final 'sweep' over the rightmost branch of the tree to process
88+
// odd levels, and reduce everything to a single top value.
89+
// Level is the level (counted from the bottom) up to which we've sweeped.
90+
int level = 0;
91+
// As long as bit number level in count is zero, skip it. It means there
92+
// is nothing left at this level.
93+
while (!(count & (((uint32_t)1) << level))) {
94+
level++;
95+
}
96+
uint256 h = inner[level];
97+
bool matchh = matchlevel == level;
98+
while (count != (((uint32_t)1) << level)) {
99+
// If we reach this point, h is an inner value that is not the top.
100+
// We combine it with itself (Bitcoin's special rule for odd levels in
101+
// the tree) to produce a higher level one.
102+
if (pbranch && matchh) {
103+
pbranch->push_back(h);
104+
}
105+
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
106+
// Increment count to the value it would have if two entries at this
107+
// level had existed.
108+
count += (((uint32_t)1) << level);
109+
level++;
110+
// And propagate the result upwards accordingly.
111+
while (!(count & (((uint32_t)1) << level))) {
112+
if (pbranch) {
113+
if (matchh) {
114+
pbranch->push_back(inner[level]);
115+
} else if (matchlevel == level) {
116+
pbranch->push_back(h);
117+
matchh = true;
118+
}
119+
}
120+
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
121+
level++;
122+
}
123+
}
124+
// Return result.
125+
if (pmutated) *pmutated = mutated;
126+
if (proot) *proot = h;
127+
}
128+
129+
uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated) {
130+
uint256 hash;
131+
MerkleComputation(leaves, &hash, mutated, -1, NULL);
132+
return hash;
133+
}
134+
135+
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
136+
std::vector<uint256> ret;
137+
MerkleComputation(leaves, NULL, NULL, position, &ret);
138+
return ret;
139+
}
140+
141+
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
142+
uint256 hash = leaf;
143+
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
144+
if (nIndex & 1) {
145+
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
146+
} else {
147+
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
148+
}
149+
nIndex >>= 1;
150+
}
151+
return hash;
152+
}

src/consensus/merkle.h

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
// Copyright (c) 2015 The Bitcoin Core developers
2+
// Distributed under the MIT software license, see the accompanying
3+
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4+
5+
#ifndef BITCOIN_MERKLE
6+
#define BITCOIN_MERKLE
7+
8+
#include <stdint.h>
9+
#include <vector>
10+
11+
#include "uint256.h"
12+
13+
uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated = NULL);
14+
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position);
15+
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& branch, uint32_t position);
16+
17+
#endif

0 commit comments

Comments
 (0)