@@ -128,11 +128,6 @@ def __init__(self):
128128
129129 def initialize (self ):
130130 self .context = {}
131- # prev_device = torch.cuda.current_device()
132- # for i in range(torch.cuda.device_count()):
133- # torch.cuda.set_device(torch.device('cuda', i))
134- # self.context.append(ct.c_void_p(lib.get_context()))
135- # torch.cuda.set_device(prev_device)
136131
137132 @classmethod
138133 def get_instance (cls ):
@@ -238,72 +233,8 @@ def create_linear_map(signed=True, total_bits=8, add_zero=True):
238233 return values
239234 else :
240235 l = values .numel ()// 2
241- #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
242236 return torch .Tensor (values [:l ].tolist () + [0 ]* gap + values [l :].tolist ())
243237
244- def create_custom_map (seed = 0 , scale = 0.01 ):
245- v = [12 , 10 , 8 , 6 , 3 , 2 , 1 ]
246- # 16-bit 7B 22.33, 4-bit best 22.88, FP4 23.25, 4-bit 95 22.97, 4-bit evo 22.45
247- # 16-bit 13B 70.35, 4-bit best 67.16, FP4 100.78, 4-bit-95 69.39, 4-bit evo 70.48
248-
249- # 13B 100 steps:
250- # - 4-bit evo: 86.02
251- # - 4-bit norm: 78.73
252- # - 4-bit FP4:
253- # - 16-bit:
254-
255- # interval search on normal distribution
256- #v = [3.090232306167813, 1.4589770349449647, 1.064410327932115, 0.7896806653244509, 0.5646884166925807, 0.3653406435875121, 0.17964844284441311] # 0.999 26.5
257- #v = [2.3263478740408408, 1.4050715603096329, 1.0364333894937898, 0.7721932141886848, 0.5533847195556727, 0.3584587932511938, 0.1763741647808615] # 0.99 24.99
258- #v = [1.6448536269514722, 1.2040469600267016, 0.9208229763683788, 0.6971414348463417, 0.5039653672113453, 0.3280721075316511, 0.16184416680396213] # 0.95 24.53 22.97
259- #v = [1.4050715603096329, 1.0803193408149558, 0.8416212335729143, 0.643345405392917, 0.4676987991145084, 0.3054807880993974, 0.1509692154967774] # 0.92 24.81
260- #v = [1.2815515655446004, 1.0062699858608395, 0.7916386077433746, 0.6084981344998837, 0.4438613119262478, 0.29050677112339396, 0.14372923370582416] # 0.9 24.68
261- #v = [1.8807936081512509, 1.2980047163986055, 0.9769954022693226, 0.7341502955472268, 0.5285136765472481, 0.343225833559403, 0.16910470304375366] # 0.97 25.03
262- #v = [1.7506860712521692, 1.2496468758017434, 0.9485350408266378, 0.7155233557034365, 0.5162006366043174, 0.3356393360829622, 0.16547334454641704] # 0.96 24.85 23.01
263- #v = [1.5547735945968535, 1.1608220210715001, 0.893800631179489, 0.6789921163940618, 0.4918050830048072, 0.3205236191093902, 0.15821711945563585] # 0.94 24.47
264- #v = [1.475791028179171, 1.1196635980209986, 0.8674156943957149, 0.6610637542614526, 0.4797170937629045, 0.31299335020578195, 0.15459215234139795] # 0.93 24.85
265- #v = [1.5981931399228175, 1.1821583959486879, 0.9072289939325966, 0.6880384454306778, 0.49787602226482025, 0.3242955535308664, 0.160030379970179] # 0.945 24.287
266- ##v = [1.6164363711150211, 1.1908453913294612, 0.9126463450304729, 0.6916727602238111, 0.5003095327012462, 0.3258056171348078, 0.1607558311941979] # 0.947 24.293
267- #v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.207
268- #v = [1.6118251211466303, 1.188665228776879, 0.9112895004060624, 0.690763326564427, 0.4997008778346997, 0.3254280317127771, 0.16057446047146948] # 0.9465 24.30
269- #v = [1.6027040905517569, 1.184321770169049, 0.9085808314549837, 0.6889461706317986, 0.4984841229538408, 0.32467299997597887, 0.1602117348657326] # 0.9455 24.293
270- #v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.37 22.88
271-
272- # 7B evo start
273- #v = [1.62129629, 1.18870191, 0.90848106, 0.69108646, 0.50515268, 0.34927819905, 0.14122701] # 22.06
274- #v = [1.6143079205628337, 1.1888081407660314, 0.8990131955745421, 0.694373759813679, 0.5083033257326773, 0.3452499746844963, 0.1148939728228951]
275- #v = [1.614442766030303, 1.189401918639665, 0.8998038168964273, 0.6953094818279475, 0.5073264599048384, 0.3449003790823619, 0.11428378427205564]
276-
277- # 13B evo start
278- #v = [1.6077535089716468, 1.1914902148179205, 0.8999752421085561, 0.6967904489387543, 0.4949093928311768, 0.30920472033044544, 0.15391602735952042]
279- #v = [1.586363722436466, 1.202610827188916, 0.9003332576346587, 0.6904888715206972, 0.49490974688233724, 0.2971151461329376, 0.15683230810738283]
280- v = [1.5842247437829478 , 1.2037228884260156 , 0.900369059187269 , 0.6898587137788914 , 0.4949097822874533 , 0.2959061887131868 , 0.15712393618216908 ]
281-
282- # mean evo 7B + 13B
283- #v = [1.5993337549066253, 1.1965624035328402, 0.9000864380418481, 0.6925840978034195, 0.5011181210961458, 0.32040328389777434, 0.13570386022711237]
284-
285- # theoretically optiomal (0.93333)
286- #v = [1.501085946044025, 1.1331700302595604, 0.8761428492468408, 0.6670160135425023, 0.48373855304610314, 0.3155014472579608, 0.15580024666388428] # 0.9333333333333333
287-
288- if seed > 0 :
289- v = np .array (v )
290- np .random .seed (seed )
291- v += np .random .randn (7 )* scale
292- print (v .tolist ())
293- #v[0] += (np.random.randn(1)*0.001)[0]
294- #v[-1] += (np.random.randn(1)*0.001)[0]
295- #print(v[0], v[-1])
296- v = v .tolist ()
297- values = v + [0 ]* (256 - 14 ) + \
298- v [::- 1 ]
299-
300- values = torch .Tensor (values )
301- values [0 :7 ] *= - 1
302- values = values .sort ().values
303- values /= values .max ()
304- assert values .numel () == 256
305- return values
306-
307238def create_normal_map (offset = 0.9677083 , use_extra_value = True ):
308239
309240 if use_extra_value :
0 commit comments