Skip to content

Commit 6268912

Browse files
Sketch out first custom op registration
1 parent 8cd7793 commit 6268912

File tree

1 file changed

+141
-0
lines changed

1 file changed

+141
-0
lines changed

bitsandbytes/_ops.py

Lines changed: 141 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,141 @@
1+
import ctypes as ct
2+
from math import prod
3+
from typing import Optional
4+
5+
import torch
6+
7+
from .cextension import lib
8+
from .functional import CUBLAS_Context, _cuda_device_of, _get_tensor_stream, get_ptr, is_on_gpu
9+
10+
_IS_TORCH_GTE_24 = False
11+
12+
if hasattr(torch.library, "register_fake"):
13+
_IS_TORCH_GTE_24 = True
14+
register_fake = torch.library.register_fake
15+
register_kernel = torch.library.register_kernel
16+
else:
17+
# PyTorch <= 2.3
18+
register_fake = torch.library.impl_abstract
19+
register_kernel = torch.library.impl
20+
21+
# Define op
22+
# TODO: mutable output arg as alias of return can be challenging;
23+
# consider a separate op without aliased return:
24+
# int8_linear_matmul_out(
25+
# Tensor A, Tensor B, Tensor out, ScalarType dtype=int32
26+
# ) -> None
27+
torch.library.define(
28+
"bitsandbytes::int8_linear_matmul",
29+
"(Tensor A, Tensor B, Tensor(a!)? out=None, ScalarType dtype=int32) -> Tensor(a!)",
30+
)
31+
32+
33+
# Fake/abstract op
34+
@register_fake("bitsandbytes::int8_linear_matmul")
35+
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
36+
shapeC = (*A.shape[:-1], B.shape[0])
37+
if out is None:
38+
return torch.empty(shapeC, device=A.device, dtype=dtype)
39+
return out
40+
41+
42+
# CPU implementation
43+
@register_kernel("bitsandbytes::int8_linear_matmul", "cpu")
44+
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
45+
# Naive implementation: perform matmul in fp32
46+
result = torch.matmul(A.float(), B.float().t()).to(torch.int32)
47+
if out is not None:
48+
result = out.copy_(result)
49+
return result
50+
51+
52+
# MPS impl
53+
@register_kernel("bitsandbytes::int8_linear_matmul", "mps")
54+
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
55+
pass
56+
57+
58+
# XPU impl
59+
@register_kernel("bitsandbytes::int8_linear_matmul", "xpu")
60+
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
61+
pass
62+
63+
64+
# Ascend NPU impl
65+
@register_kernel("bitsandbytes::int8_linear_matmul", "npu")
66+
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
67+
pass
68+
69+
70+
# CUDA/ROCm impl
71+
@register_kernel("bitsandbytes::int8_linear_matmul", "cuda")
72+
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
73+
A, B = B, A
74+
75+
shapeA = A.shape
76+
shapeB = B.shape
77+
78+
assert A.dtype == torch.int8
79+
assert B.dtype == torch.int8
80+
assert A.ndim == 2, "Only two dimensional matrices are supported for argument B"
81+
assert B.ndim in [2, 3], "Only two or three dimensional matrices are supported for argument A"
82+
assert prod(shapeB) > 0, f"Input tensor dimensions need to be > 0: {shapeB}"
83+
assert out is None or out.dtype == dtype
84+
85+
shapeC = (*shapeB[:-1], shapeA[0])
86+
87+
k, m = shapeA
88+
n = prod(shapeB[:-1])
89+
lda = shapeA[-1] # Weights (outputs, inputs)
90+
ldb = shapeB[-1] # Activations (batch, tokens, inputs)
91+
ldc = shapeC[-1] # Output (batch, tokens, outputs)
92+
93+
assert (
94+
lda == ldb
95+
), f"int8_linear_matmul only supports B^T @ A. Inner dimensions do not match: B @ A = {shapeB} @ {shapeA}"
96+
97+
# cuBLASLt does not support int8 matmul with inner dimensions that are not divisible by 4.
98+
# We'll fall back to a slower fp32 calculation in this circumstance.
99+
# Fortunately, this should not be very common.
100+
if lda % 4 != 0:
101+
result = torch.matmul(B.float(), A.float().t()).to(torch.int32)
102+
if out is not None:
103+
result = out.copy_(result)
104+
return result
105+
106+
if out is None:
107+
out = torch.empty(shapeC, device=A.device, dtype=dtype)
108+
109+
is_on_gpu([A, B, out])
110+
111+
with _cuda_device_of(A):
112+
ctx = CUBLAS_Context.get_instance().get_context(A.device)
113+
ptrA = get_ptr(A)
114+
ptrB = get_ptr(B)
115+
ptrC = get_ptr(out)
116+
ptrRowScale = None
117+
m = ct.c_int32(m)
118+
n = ct.c_int32(n)
119+
k = ct.c_int32(k)
120+
lda = ct.c_int32(lda)
121+
ldb = ct.c_int32(ldb)
122+
ldc = ct.c_int32(ldc)
123+
stream = _get_tensor_stream(A)
124+
125+
if dtype == torch.int32:
126+
has_error = lib.cigemmlt_32(ctx, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc, stream)
127+
else:
128+
has_error = lib.cigemmlt_8(ctx, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc, stream)
129+
130+
if has_error == 100: # `ERR_NOT_IMPLEMENTED` is defined as 100 in `ops.cu`
131+
raise NotImplementedError("int8_linear_matmul not implemented!")
132+
133+
if has_error:
134+
raise RuntimeError(
135+
f"cublasLt ran into an error!\n"
136+
f"\t{shapeA=}, {shapeB=}, {shapeC=}\n"
137+
f"\t{(lda, ldb, ldc)=}\n"
138+
f"\t{(m, n, k)=}"
139+
)
140+
141+
return out

0 commit comments

Comments
 (0)