Skip to content

Commit ca6fd44

Browse files
add inference benchmark script
1 parent 213b10b commit ca6fd44

File tree

1 file changed

+134
-0
lines changed

1 file changed

+134
-0
lines changed
Lines changed: 134 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,134 @@
1+
"""
2+
Inference benchmarking tool.
3+
4+
Requirements:
5+
transformers
6+
accelerate
7+
bitsandbytes
8+
optimum-benchmark
9+
10+
Usage: python inference_benchmark.py model_id
11+
12+
options:
13+
-h, --help show this help message and exit
14+
--configs {bf16,fp16,nf4,nf4-dq,int8,int8-decomp} [{bf16,fp16,nf4,nf4-dq,int8,int8-decomp} ...]
15+
--bf16
16+
--fp16
17+
--nf4
18+
--nf4-dq
19+
--int8
20+
--int8-decomp
21+
--batches BATCHES [BATCHES ...]
22+
--input-length INPUT_LENGTH
23+
--out-dir OUT_DIR
24+
"""
25+
26+
import argparse
27+
from pathlib import Path
28+
29+
from optimum_benchmark import Benchmark, BenchmarkConfig, InferenceConfig, ProcessConfig, PyTorchConfig
30+
from optimum_benchmark.logging_utils import setup_logging
31+
import torch
32+
33+
BFLOAT16_SUPPORT = torch.cuda.get_device_capability()[0] >= 8
34+
35+
WEIGHTS_CONFIGS = {
36+
"fp16": {"torch_dtype": "float16", "quantization_scheme": None, "quantization_config": {}},
37+
"bf16": {"torch_dtype": "bfloat16", "quantization_scheme": None, "quantization_config": {}},
38+
"nf4": {
39+
"torch_dtype": "bfloat16" if BFLOAT16_SUPPORT else "float16",
40+
"quantization_scheme": "bnb",
41+
"quantization_config": {
42+
"load_in_4bit": True,
43+
"bnb_4bit_quant_type": "nf4",
44+
"bnb_4bit_use_double_quant": False,
45+
"bnb_4bit_compute_dtype": torch.bfloat16 if BFLOAT16_SUPPORT else "float16",
46+
},
47+
},
48+
"nf4-dq": {
49+
"torch_dtype": "bfloat16" if BFLOAT16_SUPPORT else "float16",
50+
"quantization_scheme": "bnb",
51+
"quantization_config": {
52+
"load_in_4bit": True,
53+
"bnb_4bit_quant_type": "nf4",
54+
"bnb_4bit_use_double_quant": True,
55+
"bnb_4bit_compute_dtype": torch.bfloat16 if BFLOAT16_SUPPORT else "float16",
56+
},
57+
},
58+
"int8-decomp": {
59+
"torch_dtype": "float16",
60+
"quantization_scheme": "bnb",
61+
"quantization_config": {
62+
"load_in_8bit": True,
63+
"llm_int8_threshold": 6.0,
64+
},
65+
},
66+
"int8": {
67+
"torch_dtype": "float16",
68+
"quantization_scheme": "bnb",
69+
"quantization_config": {
70+
"load_in_8bit": True,
71+
"llm_int8_threshold": 0.0,
72+
},
73+
},
74+
}
75+
76+
if __name__ == "__main__":
77+
setup_logging(level="INFO")
78+
79+
parser = argparse.ArgumentParser(description="bitsandbytes inference benchmark tool")
80+
81+
parser.add_argument("model_id", type=str, help="The model checkpoint to use.")
82+
83+
parser.add_argument(
84+
"--configs",
85+
nargs="+",
86+
choices=["bf16", "fp16", "nf4", "nf4-dq", "int8", "int8-decomp"],
87+
default=["nf4", "int8", "int8-decomp"],
88+
)
89+
parser.add_argument("--bf16", dest="configs", action="append_const", const="bf16")
90+
parser.add_argument("--fp16", dest="configs", action="append_const", const="fp16")
91+
parser.add_argument("--nf4", dest="configs", action="append_const", const="nf4")
92+
parser.add_argument("--nf4-dq", dest="configs", action="append_const", const="nf4-dq")
93+
parser.add_argument("--int8", dest="configs", action="append_const", const="int8")
94+
parser.add_argument("--int8-decomp", dest="configs", action="append_const", const="int8-decomp")
95+
96+
parser.add_argument("--batches", nargs="+", type=int, default=[1, 8, 16, 32])
97+
parser.add_argument("--input-length", type=int, default=64)
98+
99+
parser.add_argument("--out-dir", type=str, default="reports")
100+
101+
args = parser.parse_args()
102+
103+
out_dir = Path(args.out_dir)
104+
out_dir.mkdir(parents=True, exist_ok=True)
105+
106+
for batch_size in args.batches:
107+
print(f"Benchmarking batch size: {batch_size}")
108+
for config in args.configs:
109+
launcher_config = ProcessConfig(device_isolation=True, start_method="spawn")
110+
scenario_config = InferenceConfig(
111+
latency=True,
112+
memory=True,
113+
input_shapes={"batch_size": batch_size, "sequence_length": args.input_length},
114+
)
115+
backend_config = PyTorchConfig(
116+
device="cuda",
117+
device_ids="0",
118+
device_map="auto",
119+
no_weights=False,
120+
model=args.model_id,
121+
**WEIGHTS_CONFIGS[config],
122+
)
123+
benchmark_config = BenchmarkConfig(
124+
name=f"benchmark-{config}-bsz{batch_size}",
125+
scenario=scenario_config,
126+
launcher=launcher_config,
127+
backend=backend_config,
128+
)
129+
130+
out_path = out_dir / f"benchmark_{config}_bsz{batch_size}.json"
131+
132+
benchmark_report = Benchmark.launch(benchmark_config)
133+
benchmark_report.log()
134+
benchmark_report.save_json(out_path)

0 commit comments

Comments
 (0)