|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# XRT Blop Demo" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "1", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "For ophyd beamline setup see: https://github.com/NSLS-II/blop/blob/main/src/blop/sim/xrt_beamline.py and https://github.com/NSLS-II/blop/blob/main/src/blop/sim/xrt_kb_model.py" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "id": "2", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "from blop.utils import prepare_re_env # noqa\n", |
| 27 | + "%run -i $prepare_re_env.__file__ --db-type=temp\n", |
| 28 | + "bec.disable_plots()" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "id": "3", |
| 35 | + "metadata": {}, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "import sys, os\n", |
| 39 | + "from matplotlib import pyplot as plt\n", |
| 40 | + "from blop.sim.xrt_beamline import Beamline\n", |
| 41 | + "\n", |
| 42 | + "from blop import DOF, Objective, Agent\n", |
| 43 | + "from blop.digestion import beam_stats_digestion\n", |
| 44 | + "import time" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "id": "4", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "plt.ion()\n", |
| 55 | + "\n", |
| 56 | + "h_opt = 0\n", |
| 57 | + "dh = 5\n", |
| 58 | + "\n", |
| 59 | + "R1, dR1 = 40000, 10000\n", |
| 60 | + "R2, dR2 = 20000, 10000" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "id": "5", |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [], |
| 69 | + "source": [ |
| 70 | + "beamline = Beamline(name=\"bl\")\n", |
| 71 | + "time.sleep(1)\n", |
| 72 | + "dofs = [\n", |
| 73 | + " DOF(description=\"KBV R\",\n", |
| 74 | + " device=beamline.kbv_dsv,\n", |
| 75 | + " search_domain=(R1-dR1, R1+dR1)),\n", |
| 76 | + " DOF(description=\"KBH R\",\n", |
| 77 | + " device=beamline.kbh_dsh,\n", |
| 78 | + " search_domain=(R2-dR2, R2+dR2)),\n", |
| 79 | + "\n", |
| 80 | + "]" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": null, |
| 86 | + "id": "6", |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "objectives = [\n", |
| 91 | + " Objective(name=\"bl_det_sum\", \n", |
| 92 | + " target=\"max\",\n", |
| 93 | + " transform=\"log\",\n", |
| 94 | + " trust_domain=(20, 1e12)),\n", |
| 95 | + "\n", |
| 96 | + " Objective(name=\"bl_det_wid_x\",\n", |
| 97 | + " target=\"min\",\n", |
| 98 | + " transform=\"log\",\n", |
| 99 | + " # trust_domain=(0, 1e12),\n", |
| 100 | + " latent_groups=[(\"bl_kbh_dsh\", \"bl_kbv_dsv\")]),\n", |
| 101 | + " Objective(name=\"bl_det_wid_y\",\n", |
| 102 | + " target=\"min\",\n", |
| 103 | + " transform=\"log\",\n", |
| 104 | + " # trust_domain=(0, 1e12),\n", |
| 105 | + " latent_groups=[(\"bl_kbh_dsh\", \"bl_kbv_dsv\")]),\n", |
| 106 | + "]" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "7", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "agent = Agent(\n", |
| 117 | + " dofs=dofs,\n", |
| 118 | + " objectives=objectives,\n", |
| 119 | + " detectors=[beamline.det],\n", |
| 120 | + " digestion=beam_stats_digestion,\n", |
| 121 | + " digestion_kwargs={\"image_key\": \"bl_det_image\"},\n", |
| 122 | + " verbose=True,\n", |
| 123 | + " db=db,\n", |
| 124 | + " tolerate_acquisition_errors=False,\n", |
| 125 | + " enforce_all_objectives_valid=True,\n", |
| 126 | + " train_every=3,\n", |
| 127 | + ")" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "id": "8", |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "RE(agent.learn(\"qr\", n=16))\n", |
| 138 | + "RE(agent.learn(\"qei\", n=16, iterations=4))\n" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "id": "9", |
| 145 | + "metadata": {}, |
| 146 | + "outputs": [], |
| 147 | + "source": [ |
| 148 | + "agent.plot_objectives(axes=(0, 1))" |
| 149 | + ] |
| 150 | + } |
| 151 | + ], |
| 152 | + "metadata": { |
| 153 | + "kernelspec": { |
| 154 | + "display_name": "xrt-blop", |
| 155 | + "language": "python", |
| 156 | + "name": "python3" |
| 157 | + }, |
| 158 | + "language_info": { |
| 159 | + "codemirror_mode": { |
| 160 | + "name": "ipython", |
| 161 | + "version": 3 |
| 162 | + }, |
| 163 | + "file_extension": ".py", |
| 164 | + "mimetype": "text/x-python", |
| 165 | + "name": "python", |
| 166 | + "nbconvert_exporter": "python", |
| 167 | + "pygments_lexer": "ipython3", |
| 168 | + "version": "3.11.0" |
| 169 | + } |
| 170 | + }, |
| 171 | + "nbformat": 4, |
| 172 | + "nbformat_minor": 5 |
| 173 | +} |
0 commit comments