11# ################################################################################
22# ' FDboost: Boosting Functional Regression Models
3- # '
4- # ' @description
5- # ' Regression models for functional data, i.e., scalar-on-function,
6- # ' function-on-scalar and function-on-function regression models, are fitted
3+ # '
4+ # ' @description
5+ # ' Regression models for functional data, i.e., scalar-on-function,
6+ # ' function-on-scalar and function-on-function regression models, are fitted
77# ' by a component-wise gradient boosting algorithm.
8- # '
9- # ' @details
10- # ' This package is intended to fit regression models with functional variables.
11- # ' It is possible to fit models with functional response and/or functional covariates,
12- # ' resulting in scalar-on-function, function-on-scalar and function-on-function regression.
8+ # '
9+ # ' @details
10+ # ' This package is intended to fit regression models with functional variables.
11+ # ' It is possible to fit models with functional response and/or functional covariates,
12+ # ' resulting in scalar-on-function, function-on-scalar and function-on-function regression.
1313# ' Furthermore, the package can be used to fit density-on-scalar regression models.
1414# ' Details on the functional regression models that can be fitted with \pkg{FDboost}
15- # ' can be found in Brockhaus et al. (2015, 2017, 2018) and Ruegamer et al. (2018).
16- # ' A hands-on tutorial for the package can be found
15+ # ' can be found in Brockhaus et al. (2015, 2017, 2018) and Ruegamer et al. (2018).
16+ # ' A hands-on tutorial for the package can be found
1717# ' in Brockhaus, Ruegamer and Greven (2020), see <doi:10.18637/jss.v094.i10>.
1818# ' For density-on-scalar regression models see Maier et al. (2021).
19- # '
20- # ' Using component-wise gradient boosting as fitting procedure, \pkg{FDboost} relies on
21- # ' the R package \pkg{mboost} (Hothorn et al., 2017).
22- # ' A comprehensive tutorial to \pkg{mboost} is given in Hofner et al. (2014).
23- # '
24- # ' The main fitting function is \code{\link{FDboost}}.
25- # ' The model complexity is controlled by the number of boosting iterations (mstop).
26- # ' Like the fitting procedures in \pkg{mboost}, the function \code{FDboost} DOES NOT
27- # ' select an appropriate stopping iteration. This must be chosen by the user.
28- # ' The user can determine an adequate stopping iteration by resampling methods like
29- # ' cross-validation or bootstrap.
30- # ' This can be done using the function \code{\link{applyFolds}}.
31- # '
32- # ' Aside from common effect surface plots, tensor product factorization via the
33- # ' function \code{\link{factorize}} presents an alternative tool for visualization
34- # ' of estimated effects for non-linear function-on-scalar models
35- # ' (Stoecker, Steyer and Greven (2022), \url{https://arxiv.org/abs/2109.02624}).
36- # ' After factorization, effects are decomposed multiple scalar effects into
37- # ' functional main effect directions, which can be separately plotted allowing to
38- # ' visualize more complex effect structures.
39- # '
40- # '
41- # ' @references
19+ # '
20+ # ' Using component-wise gradient boosting as fitting procedure, \pkg{FDboost} relies on
21+ # ' the R package \pkg{mboost} (Hothorn et al., 2017).
22+ # ' A comprehensive tutorial to \pkg{mboost} is given in Hofner et al. (2014).
23+ # '
24+ # ' The main fitting function is \code{\link{FDboost}}.
25+ # ' The model complexity is controlled by the number of boosting iterations (mstop).
26+ # ' Like the fitting procedures in \pkg{mboost}, the function \code{FDboost} DOES NOT
27+ # ' select an appropriate stopping iteration. This must be chosen by the user.
28+ # ' The user can determine an adequate stopping iteration by resampling methods like
29+ # ' cross-validation or bootstrap.
30+ # ' This can be done using the function \code{\link{applyFolds}}.
31+ # '
32+ # ' Aside from common effect surface plots, tensor product factorization via the
33+ # ' function \code{\link{factorize}} presents an alternative tool for visualization
34+ # ' of estimated effects for non-linear function-on-scalar models
35+ # ' (Stoecker, Steyer and Greven (2022), \url{https://arxiv.org/abs/2109.02624}).
36+ # ' After factorization, effects are decomposed multiple scalar effects into
37+ # ' functional main effect directions, which can be separately plotted allowing to
38+ # ' visualize more complex effect structures.
39+ # '
40+ # '
41+ # ' @references
4242# ' Brockhaus, S., Ruegamer, D. and Greven, S. (2020):
43- # ' Boosting Functional Regression Models with FDboost.
43+ # ' Boosting Functional Regression Models with FDboost.
4444# ' Journal of Statistical Software, 94(10), 1–50.
4545# ' <doi:10.18637/jss.v094.i10>
46- # '
47- # ' Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015):
48- # ' The functional linear array model. Statistical Modelling, 15(3), 279-300.
49- # '
50- # ' Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017):
51- # ' Boosting flexible functional regression models with a high number of functional historical effects,
52- # ' Statistics and Computing, 27(4), 913-926.
53- # '
54- # ' Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2018):
55- # ' Signal regression models for location, scale and shape with an application to stock returns.
46+ # '
47+ # ' Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015):
48+ # ' The functional linear array model. Statistical Modelling, 15(3), 279-300.
49+ # '
50+ # ' Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017):
51+ # ' Boosting flexible functional regression models with a high number of functional historical effects,
52+ # ' Statistics and Computing, 27(4), 913-926.
53+ # '
54+ # ' Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2018):
55+ # ' Signal regression models for location, scale and shape with an application to stock returns.
5656# ' Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, 665-686.
57- # '
58- # ' Hothorn T., Buehlmann P., Kneib T., Schmid M., and Hofner B. (2017). mboost: Model-Based Boosting,
57+ # '
58+ # ' Hothorn T., Buehlmann P., Kneib T., Schmid M., and Hofner B. (2017). mboost: Model-Based Boosting,
5959# ' R package version 2.8-1, \url{https://cran.r-project.org/package=mboost}
60- # '
61- # ' Hofner, B., Mayr, A., Robinzonov, N., Schmid, M. (2014). Model-based Boosting in R:
62- # ' A Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29, 3-35.
60+ # '
61+ # ' Hofner, B., Mayr, A., Robinzonov, N., Schmid, M. (2014). Model-based Boosting in R:
62+ # ' A Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29, 3-35.
6363# ' \url{https://cran.r-project.org/package=mboost/vignettes/mboost_tutorial.pdf}
64- # '
64+ # '
6565# ' Maier, E.-M., Stoecker, A., Fitzenberger, B., Greven, S. (2021):
6666# ' Additive Density-on-Scalar Regression in Bayes Hilbert Spaces with an Application to Gender Economics.
6767# ' arXiv preprint arXiv:2110.11771.
68- # '
69- # ' Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018).
70- # ' Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals.
68+ # '
69+ # ' Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018).
70+ # ' Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals.
7171# ' Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, 621-642.
72- # '
72+ # '
7373# ' Stoecker A., Steyer L., Greven S. (2022):
7474# ' Functional Additive Models on Manifolds of Planar Shapes and Forms.
7575# ' arXiv preprint arXiv:2109.02624.
76- # '
77- # ' @author
76+ # '
77+ # ' @author
7878# ' Sarah Brockhaus, David Ruegamer and Almond Stoecker
79- # '
79+ # '
8080# ' @aliases FDboost_package package-FDboost FDboost-package
81- # '
82- # ' @seealso
83- # ' \code{\link{FDboost}} for the main fitting function and
84- # ' \code{\link{applyFolds}} for model tuning via resampling methods.
85- # '
81+ # '
82+ # ' @seealso
83+ # ' \code{\link{FDboost}} for the main fitting function and
84+ # ' \code{\link{applyFolds}} for model tuning via resampling methods.
85+ # '
8686" _PACKAGE"
87- # > [1] "_PACKAGE"
87+
0 commit comments