Skip to content

Commit 31827c2

Browse files
Merge pull request #39 from m-muecke/pkg-docs
docs: remove trailing whitespace in package docs
2 parents 58e83de + dc71ca8 commit 31827c2

File tree

2 files changed

+101
-101
lines changed

2 files changed

+101
-101
lines changed

R/FDboost-package.R

Lines changed: 64 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -1,87 +1,87 @@
11
#################################################################################
22
#' FDboost: Boosting Functional Regression Models
3-
#'
4-
#' @description
5-
#' Regression models for functional data, i.e., scalar-on-function,
6-
#' function-on-scalar and function-on-function regression models, are fitted
3+
#'
4+
#' @description
5+
#' Regression models for functional data, i.e., scalar-on-function,
6+
#' function-on-scalar and function-on-function regression models, are fitted
77
#' by a component-wise gradient boosting algorithm.
8-
#'
9-
#' @details
10-
#' This package is intended to fit regression models with functional variables.
11-
#' It is possible to fit models with functional response and/or functional covariates,
12-
#' resulting in scalar-on-function, function-on-scalar and function-on-function regression.
8+
#'
9+
#' @details
10+
#' This package is intended to fit regression models with functional variables.
11+
#' It is possible to fit models with functional response and/or functional covariates,
12+
#' resulting in scalar-on-function, function-on-scalar and function-on-function regression.
1313
#' Furthermore, the package can be used to fit density-on-scalar regression models.
1414
#' Details on the functional regression models that can be fitted with \pkg{FDboost}
15-
#' can be found in Brockhaus et al. (2015, 2017, 2018) and Ruegamer et al. (2018).
16-
#' A hands-on tutorial for the package can be found
15+
#' can be found in Brockhaus et al. (2015, 2017, 2018) and Ruegamer et al. (2018).
16+
#' A hands-on tutorial for the package can be found
1717
#' in Brockhaus, Ruegamer and Greven (2020), see <doi:10.18637/jss.v094.i10>.
1818
#' For density-on-scalar regression models see Maier et al. (2021).
19-
#'
20-
#' Using component-wise gradient boosting as fitting procedure, \pkg{FDboost} relies on
21-
#' the R package \pkg{mboost} (Hothorn et al., 2017).
22-
#' A comprehensive tutorial to \pkg{mboost} is given in Hofner et al. (2014).
23-
#'
24-
#' The main fitting function is \code{\link{FDboost}}.
25-
#' The model complexity is controlled by the number of boosting iterations (mstop).
26-
#' Like the fitting procedures in \pkg{mboost}, the function \code{FDboost} DOES NOT
27-
#' select an appropriate stopping iteration. This must be chosen by the user.
28-
#' The user can determine an adequate stopping iteration by resampling methods like
29-
#' cross-validation or bootstrap.
30-
#' This can be done using the function \code{\link{applyFolds}}.
31-
#'
32-
#' Aside from common effect surface plots, tensor product factorization via the
33-
#' function \code{\link{factorize}} presents an alternative tool for visualization
34-
#' of estimated effects for non-linear function-on-scalar models
35-
#' (Stoecker, Steyer and Greven (2022), \url{https://arxiv.org/abs/2109.02624}).
36-
#' After factorization, effects are decomposed multiple scalar effects into
37-
#' functional main effect directions, which can be separately plotted allowing to
38-
#' visualize more complex effect structures.
39-
#'
40-
#'
41-
#' @references
19+
#'
20+
#' Using component-wise gradient boosting as fitting procedure, \pkg{FDboost} relies on
21+
#' the R package \pkg{mboost} (Hothorn et al., 2017).
22+
#' A comprehensive tutorial to \pkg{mboost} is given in Hofner et al. (2014).
23+
#'
24+
#' The main fitting function is \code{\link{FDboost}}.
25+
#' The model complexity is controlled by the number of boosting iterations (mstop).
26+
#' Like the fitting procedures in \pkg{mboost}, the function \code{FDboost} DOES NOT
27+
#' select an appropriate stopping iteration. This must be chosen by the user.
28+
#' The user can determine an adequate stopping iteration by resampling methods like
29+
#' cross-validation or bootstrap.
30+
#' This can be done using the function \code{\link{applyFolds}}.
31+
#'
32+
#' Aside from common effect surface plots, tensor product factorization via the
33+
#' function \code{\link{factorize}} presents an alternative tool for visualization
34+
#' of estimated effects for non-linear function-on-scalar models
35+
#' (Stoecker, Steyer and Greven (2022), \url{https://arxiv.org/abs/2109.02624}).
36+
#' After factorization, effects are decomposed multiple scalar effects into
37+
#' functional main effect directions, which can be separately plotted allowing to
38+
#' visualize more complex effect structures.
39+
#'
40+
#'
41+
#' @references
4242
#' Brockhaus, S., Ruegamer, D. and Greven, S. (2020):
43-
#' Boosting Functional Regression Models with FDboost.
43+
#' Boosting Functional Regression Models with FDboost.
4444
#' Journal of Statistical Software, 94(10), 1–50.
4545
#' <doi:10.18637/jss.v094.i10>
46-
#'
47-
#' Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015):
48-
#' The functional linear array model. Statistical Modelling, 15(3), 279-300.
49-
#'
50-
#' Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017):
51-
#' Boosting flexible functional regression models with a high number of functional historical effects,
52-
#' Statistics and Computing, 27(4), 913-926.
53-
#'
54-
#' Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2018):
55-
#' Signal regression models for location, scale and shape with an application to stock returns.
46+
#'
47+
#' Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015):
48+
#' The functional linear array model. Statistical Modelling, 15(3), 279-300.
49+
#'
50+
#' Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017):
51+
#' Boosting flexible functional regression models with a high number of functional historical effects,
52+
#' Statistics and Computing, 27(4), 913-926.
53+
#'
54+
#' Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2018):
55+
#' Signal regression models for location, scale and shape with an application to stock returns.
5656
#' Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, 665-686.
57-
#'
58-
#' Hothorn T., Buehlmann P., Kneib T., Schmid M., and Hofner B. (2017). mboost: Model-Based Boosting,
57+
#'
58+
#' Hothorn T., Buehlmann P., Kneib T., Schmid M., and Hofner B. (2017). mboost: Model-Based Boosting,
5959
#' R package version 2.8-1, \url{https://cran.r-project.org/package=mboost}
60-
#'
61-
#' Hofner, B., Mayr, A., Robinzonov, N., Schmid, M. (2014). Model-based Boosting in R:
62-
#' A Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29, 3-35.
60+
#'
61+
#' Hofner, B., Mayr, A., Robinzonov, N., Schmid, M. (2014). Model-based Boosting in R:
62+
#' A Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29, 3-35.
6363
#' \url{https://cran.r-project.org/package=mboost/vignettes/mboost_tutorial.pdf}
64-
#'
64+
#'
6565
#' Maier, E.-M., Stoecker, A., Fitzenberger, B., Greven, S. (2021):
6666
#' Additive Density-on-Scalar Regression in Bayes Hilbert Spaces with an Application to Gender Economics.
6767
#' arXiv preprint arXiv:2110.11771.
68-
#'
69-
#' Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018).
70-
#' Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals.
68+
#'
69+
#' Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018).
70+
#' Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals.
7171
#' Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, 621-642.
72-
#'
72+
#'
7373
#' Stoecker A., Steyer L., Greven S. (2022):
7474
#' Functional Additive Models on Manifolds of Planar Shapes and Forms.
7575
#' arXiv preprint arXiv:2109.02624.
76-
#'
77-
#' @author
76+
#'
77+
#' @author
7878
#' Sarah Brockhaus, David Ruegamer and Almond Stoecker
79-
#'
79+
#'
8080
#' @aliases FDboost_package package-FDboost FDboost-package
81-
#'
82-
#' @seealso
83-
#' \code{\link{FDboost}} for the main fitting function and
84-
#' \code{\link{applyFolds}} for model tuning via resampling methods.
85-
#'
81+
#'
82+
#' @seealso
83+
#' \code{\link{FDboost}} for the main fitting function and
84+
#' \code{\link{applyFolds}} for model tuning via resampling methods.
85+
#'
8686
"_PACKAGE"
87-
#> [1] "_PACKAGE"
87+

man/FDboost-package.Rd

Lines changed: 37 additions & 37 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)