-
Notifications
You must be signed in to change notification settings - Fork 11
Open
Description
Hey,
I tried running the WAM example in python with the following parameters for some benchmarks:
k=0
base_pose = Pose3(Rot3(np.identity(3)), np.asarray([0.0, 0, 0.346]))
arm = generateArm("WAMArm", base_pose)
n_states = 14
states = [list() for _ in range(n_states)]
states[0] = [0.04295548, 0.95584516, -0.96807816, 0.97116162, 0.9778903, 0.65763463, -2.2554430167948967]
states[1] = [0.16082985, 1.11182696, -0.92183762, 0.3794195, 1.23, 0.47523424, -1.8449310467948965]
states[2] = [0.09952304, 1.09863569, -0.88496722, 0.38292964, 1.23, 0.41536308, -1.9511107067948965]
states[3] = [0.10052545, 1.06389854, -1.09858978, 0.48121717, 0.76275836, 1.38780074, -0.7735178867948965]
states[4] = [-0.45014853, 1.59318377, 0.4554682, 0.6065858, -0.38585459, 0.53452102, -1.5629486467948965]
states[5] = [-0.34010213, 1.6881081, 0.98402557, 0.51367941, -2.39890266, -0.58455747, -0.5586590567948966]
states[6] = [-0.22101804, 1.66367157, 1.09508804, 0.56299024, -2.89040372, -0.59143963, -0.25602298679489666]
states[7] = [-0.67729868, 1.64146044, 1.12373694, 0.91912803, -3.17152523, -0.89928808, -0.1827793267948965]
states[8] = [-1.36399638, 1.91753362, 1.32779556, 2.07333031, 0.8333524, 0.08067977, 2.3950357303846896]
states[9] = [-0.87877812, 1.64645585, 1.34329545, 1.62880413, 0.84055928, -0.0062247, 2.42199736038469]
states[10] = [1.38153424, 1.78324208, 0.18278696, 0.43210283, -1.62168076, 1.01491547, 0.6125925832051036]
states[11] = [1.60174351, 1.74358664, 0.12658995, 0.20548551, -1.48280243, 0.92108951, 0.8164594632051037]
states[12] = [1.9937845, 1.52197993, 0.44538624, 1.10392873, -1.28498349, 1.32703383, 0.9266569532051037]
states[13] = [-1.29228216, -1.90587936, 1.65480383, 0.20854488, 0.6896924, 0.52053023, 2.2240916803846895]
indices = [list() for _ in range(20)]
indices[0] = [0, 7]
indices[1] = [7, 1]
indices[2] = [1, 8]
indices[3] = [8, 10]
indices[4] = [10, 9]
indices[5] = [9, 2]
indices[6] = [2, 5]
indices[7] = [5, 13]
indices[8] = [13, 6]
indices[9] = [6, 2]
indices[10] = [2, 12]
indices[11] = [12, 9]
indices[12] = [9, 3]
indices[13] = [3, 4]
indices[14] = [4, 11]
indices[15] = [11, 0]
indices[16] = [0, 6]
indices[17] = [6, 1]
indices[18] = [1, 10]
indices[19] = [10, 5]
q1, q2 = indices[k]
start_conf = np.asarray(states[q1]).reshape(-1, 1)
end_conf = np.asarray(states[q2]).reshape(-1, 1)And the rest of the code is the same. You can range k from 0 to 19. I'm not sure why but GPMP2 seems to not solve any of the problems and if I change the parameters I can get at most 3/20 problems solved. I know how the hyperparameters affect the algorithm but I find the behavior strange as I was expecting close to 100% with the slight elevation added.
The indices list shows the pairs to be taken from the states to define the start and end configuration.
Here's how the first pair should look, the top config is the start and bottom is the end.

When running with the parameters in the paper the trajectory just goes straight through the shelf.
Metadata
Metadata
Assignees
Labels
No labels