Skip to content

Commit a017e84

Browse files
committed
new links softwares
1 parent d301b6a commit a017e84

File tree

1 file changed

+12
-9
lines changed

1 file changed

+12
-9
lines changed

_pages/softwares.md

Lines changed: 12 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ Finally, the overall data-driven procedure is particularized to the estimation o
3838

3939
[GitHub](https://github.com/bpascal-fr/APURE-Estim-Epi) (Matlab toolbox)
4040

41-
Pascal, B., Vaiter, S. (2024, September). Risk Estimate under a Nonstationary Autoregressive Model for Data-Driven Reproduction Number Estimation. *Submitted*. [arXiv:2409.14937](https://arxiv.org/abs/2409.14937).
41+
Pascal, B., & Vaiter, S. (2025). Risk estimate under a time-varying autoregressive model for data-driven reproduction number estimation. *Signal Processing,* 110246. [arXiv:2409.14937](https://arXiv.org/abs/2409.14937).
4242

4343
## Estimation of Covid19 reproduction number via nonsmooth convex optimization
4444

@@ -64,9 +64,9 @@ Fast and memory efficient implementation of the nonsmooth convex optimization pr
6464

6565
[GitHub](https://github.com/bpascal-fr/Covid-Estim-R) (Matlab toolbox)
6666

67-
P. Abry, N. Pustelnik,S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas, É. Guichard, P. Borgnat, and N. Garnier, N. (2020). Spatial and temporal regularization to estimate COVID-19 reproduction number R (t): Promoting piecewise smoothness via convex optimization. *PlosOne*, 15(8), e0237901.
67+
P. Abry, N. Pustelnik,S. Roux, P. Jensen, P. Flandrin, R. Gribonval, C.-G. Lucas, É. Guichard, P. Borgnat, & N. Garnier, N. (2020). Spatial and temporal regularization to estimate COVID-19 reproduction number R (t): Promoting piecewise smoothness via convex optimization. *PlosOne*, 15(8), e0237901.
6868

69-
B. Pascal, P. Abry, N. Pustelnik, S. Roux, R. Gribonval, and P. Flandrin. (2022). Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data. *IEEE Transactions on Signal Processing*, 70, 2859-2868. [arxiv:2109.09595](https://arxiv.org/abs/2109.09595)
69+
B. Pascal, P. Abry, N. Pustelnik, S. Roux, R. Gribonval, & P. Flandrin. (2022). Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data. *IEEE Transactions on Signal Processing*, 70, 2859-2868. [arXiv:2109.09595](https://arXiv.org/abs/2109.09595)
7070

7171
## Musical Timbre Perception Models: From Perceptual to Learned Approaches
7272

@@ -76,7 +76,7 @@ Timbre, encompassing an intricate set of acoustic cues, is key to identify sound
7676

7777
[GitHub](https://github.com/bpascal-fr/timbre-metric-learning) (Python toolbox)
7878

79-
B. Pascal, and M. Lagrange. (2024). On the Robustness of Musical Timbre Perception Models: From Perceptual to Learned Approaches. *Submitted*. [hal-04501973](https://hal.science/hal-04501973v1/document)
79+
B. Pascal, & M. Lagrange. (2024). On the Robustness of Musical Timbre Perception Models: From Perceptual to Learned Approaches. *32nd European Signal Processing Conference,*, Aug. 24-30, Lyon, France. [hal-04501973](https://hal.science/hal-04501973v1/document)
8080

8181
## Signal detection based on the zeros of the *Kravchuk* spectrogram
8282
[kravchuk-transform-and-its-zeros](https://github.com/bpascal-fr/kravchuk-transform-and-its-zeros)
@@ -85,7 +85,7 @@ Recent work in time-frequency analysis proposed to switch the focus from the max
8585

8686
[GitHub](https://github.com/bpascal-fr/kravchuk-transform-and-its-zeros) (Python toolbox)
8787

88-
B. Pascal, and R. Bardenet, (2022). A covariant, discrete time-frequency representation tailored for zero-based signal detection. *IEEE Transactions on Signal Processing*, 70, 2950-2961. [arxiv:2202.03835](https://arxiv.org/abs/2202.03835)
88+
B. Pascal, & R. Bardenet, (2022). A covariant, discrete time-frequency representation tailored for zero-based signal detection. *IEEE Transactions on Signal Processing*, 70, 2950-2961. [arXiv:2202.03835](https://arXiv.org/abs/2202.03835)
8989

9090
## Point processes and spatial statistics in time-frequency analysis
9191
[GeoSto-PP-for-TF](https://github.com/bpascal-fr/GeoSto-PP-for-TF)
@@ -94,15 +94,18 @@ Point processes in 2D or 3D have been major statistical models for spatial data
9494

9595
[GitHub](https://github.com/bpascal-fr/GeoSto-PP-for-TF) (Python toolbox)
9696

97-
R. Bardenet, and B. Pascal. Invited mini-course given at the *Stochastic Geometry Days*, November 15-19, 2021. Dunkerque, France
97+
R. Bardenet, & B. Pascal. Invited mini-course given at the *Stochastic Geometry Days*, November 15-19, 2021. Dunkerque, France.
98+
99+
Pascal, B., & Bardenet, R. (2025). Point Processes and spatial statistics in time-frequency analysis. In H. Biermé (Ed.), *Stochastic Geometry: Percolation, Tesselations, Gaussian Fields and Point Processes.* Springer. [arXiv:2402.19172](https://arxiv.org/abs/2402.19172)
100+
98101
## Automated texture segmentation
99102
[gsugar](https://github.com/bpascal-fr/gsugar)
100103

101104
Penalized Least Squares are widely used in signal and image processing. Yet, it suffers from a major limitation since it requires fine-tuning of the regularization parameters. Under assumptions on the noise probability distribution, Stein-based approaches provide unbiased estimator of the quadratic risk. The Generalized Stein Unbiased Risk Estimator is revisited to handle correlated Gaussian noise without requiring to invert the covariance matrix. Then, in order to avoid expansive grid search, it is necessary to design algorithmic scheme minimizing the quadratic risk with respect to regularization parameters. This work extends the Stein's Unbiased GrAdient estimator of the Risk of Deledalle *et al.* to the case of correlated Gaussian noise, deriving a general automatic tuning of regularization parameters. First, the theoretical asymptotic unbiasedness of the gradient estimator is demonstrated in the case of general correlated Gaussian noise. Then, the proposed parameter selection strategy is particularized to fractal texture segmentation, where problem formulation naturally entails inter-scale and spatially correlated noise. Numerical assessment is provided, as well as discussion of the practical issues.
102105

103106
[GitHub](https://github.com/bpascal-fr/gsugar) (Matlab toolbox)
104107

105-
B. Pascal, S. Vaiter, N. Pustelnik, and P. Abry (2021). Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation. *Journal of Mathematical Imaging and Vision,* 1–30. [arxiv:2004.09434](https://arxiv.org/abs/2004.09434)
108+
B. Pascal, S. Vaiter, N. Pustelnik, & P. Abry (2021). Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation. *Journal of Mathematical Imaging and Vision,* 1–30. [arXiv:2004.09434](https://arXiv.org/abs/2004.09434)
106109

107110
## Signal and image processing for nonlinear physics
108111
[stein-piecewise-filtering](https://github.com/bpascal-fr/stein-piecewise-filtering)
@@ -116,6 +119,6 @@ The interest and potential of these tools are illustrated at work on low-confine
116119

117120
[GitHub](https://github.com/bpascal-fr/stein-piecewise-filtering) (MATLAB toolbox)
118121

119-
B. Pascal, N. Pustelnik, P. Abry, J.-C. Géminard and V. Vidal (2020).
122+
B. Pascal, N. Pustelnik, P. Abry, J.-C. Géminard & V. Vidal (2020).
120123
Parameter-free and fast nonlinear piecewise fitering. Application to experimental physics.
121-
*Annals of Telecommunications,* 75(11), 655-671. [arxiv:2006.03297](https://arxiv.org/abs/2006.03297)
124+
*Annals of Telecommunications,* 75(11), 655-671. [arXiv:2006.03297](https://arXiv.org/abs/2006.03297)

0 commit comments

Comments
 (0)