Skip to content

Commit 79798b6

Browse files
committed
Refactor square function. Use math.pow instead of multiplication.
1 parent edbd4f0 commit 79798b6

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

braininventory/get.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -774,33 +774,33 @@ def __get_species(df):
774774
return df["species"].value_counts().to_dict()
775775

776776

777-
def __get_cnbtaxonomy(df):
777+
def __get_ncbitaxonomy(df):
778778
"""
779-
Get a dictionary containing the count of occurrences of each unique CNB taxonomy.
779+
Get a dictionary containing the count of occurrences of each unique NCBI taxonomy.
780780
781781
This function takes a pandas DataFrame `df` as input and counts the occurrences of each
782-
unique value in the "cnbtaxonomy" column. The result is returned as a dictionary, where
783-
the keys represent unique CNB taxonomies, and the values represent the count of occurrences
782+
unique value in the "ncbitaxonomy" column. The result is returned as a dictionary, where
783+
the keys represent unique NCBI taxonomies, and the values represent the count of occurrences
784784
for each taxonomy.
785785
786786
Parameters:
787787
-----------
788788
df : pandas DataFrame
789-
The input DataFrame containing a column named "cnbtaxonomy" with CNB taxonomy information.
789+
The input DataFrame containing a column named "ncbitaxonomy" with CNB taxonomy information.
790790
791791
Returns:
792792
--------
793793
dict
794-
A dictionary where the keys represent unique CNB taxonomies, and the values represent
794+
A dictionary where the keys represent unique NCBI taxonomies, and the values represent
795795
the count of occurrences for each taxonomy.
796796
797797
Note:
798798
-----
799-
The input DataFrame `df` should have a column named "cnbtaxonomy" containing categorical data
800-
representing different CNB taxonomies. The function counts the occurrences of each unique CNB taxonomy
799+
The input DataFrame `df` should have a column named "ncbitaxonomy" containing categorical data
800+
representing different NCBI taxonomies. The function counts the occurrences of each unique CNB taxonomy
801801
and returns the result as a dictionary.
802802
"""
803-
return df["cnbtaxonomy"].value_counts().to_dict()
803+
return df["ncbitaxonomy"].value_counts().to_dict()
804804

805805

806806
def __get_genotypes(df):
@@ -1326,7 +1326,7 @@ def report():
13261326
report["affiliation"] = __get_affilation(df)
13271327
report["award_number"] = __get_award_number(df)
13281328
report["species"] = __get_species(df)
1329-
report["cnbtaxonomy"] = __get_cnbtaxonomy(df)
1329+
report["ncbitaxonomy"] = __get_ncbitaxonomy(df)
13301330
report["samplelocalid"] = __get_samplelocalid(df)
13311331
report["genotype"] = __get_genotype(df)
13321332
report["generalmodality"] = __get_generalmodality(df)

0 commit comments

Comments
 (0)