|
6 | 6 | You can access them through ``brainpy.inputs.XXX``. |
7 | 7 | """ |
8 | 8 |
|
9 | | -import numpy as np |
10 | | - |
11 | | -from brainpy import math as bm |
12 | | - |
13 | | -__all__ = [ |
14 | | - 'section_input', |
15 | | - 'constant_input', 'constant_current', |
16 | | - 'spike_input', 'spike_current', |
17 | | - 'ramp_input', 'ramp_current', |
18 | | -] |
19 | | - |
20 | | - |
21 | | -def section_input(values, durations, dt=None, return_length=False): |
22 | | - """Format an input current with different sections. |
23 | | -
|
24 | | - For example: |
25 | | -
|
26 | | - If you want to get an input where the size is 0 bwteen 0-100 ms, |
27 | | - and the size is 1. between 100-200 ms. |
28 | | -
|
29 | | - >>> section_input(values=[0, 1], |
30 | | - >>> durations=[100, 100]) |
31 | | -
|
32 | | - Parameters |
33 | | - ---------- |
34 | | - values : list, np.ndarray |
35 | | - The current values for each period duration. |
36 | | - durations : list, np.ndarray |
37 | | - The duration for each period. |
38 | | - dt : float |
39 | | - Default is None. |
40 | | - return_length : bool |
41 | | - Return the final duration length. |
42 | | -
|
43 | | - Returns |
44 | | - ------- |
45 | | - current_and_duration : tuple |
46 | | - (The formatted current, total duration) |
47 | | - """ |
48 | | - assert len(durations) == len(values), f'"values" and "durations" must be the same length, while ' \ |
49 | | - f'we got {len(values)} != {len(durations)}.' |
50 | | - |
51 | | - dt = bm.get_dt() if dt is None else dt |
52 | | - |
53 | | - # get input current shape, and duration |
54 | | - I_duration = sum(durations) |
55 | | - I_shape = () |
56 | | - for val in values: |
57 | | - shape = bm.shape(val) |
58 | | - if len(shape) > len(I_shape): |
59 | | - I_shape = shape |
60 | | - |
61 | | - # get the current |
62 | | - start = 0 |
63 | | - I_current = bm.zeros((int(np.ceil(I_duration / dt)),) + I_shape, dtype=bm.float_) |
64 | | - for c_size, duration in zip(values, durations): |
65 | | - length = int(duration / dt) |
66 | | - I_current[start: start + length] = c_size |
67 | | - start += length |
68 | | - |
69 | | - if return_length: |
70 | | - return I_current, I_duration |
71 | | - else: |
72 | | - return I_current |
73 | | - |
74 | | - |
75 | | -def constant_input(I_and_duration, dt=None): |
76 | | - """Format constant input in durations. |
77 | | -
|
78 | | - For example: |
79 | | -
|
80 | | - If you want to get an input where the size is 0 bwteen 0-100 ms, |
81 | | - and the size is 1. between 100-200 ms. |
82 | | -
|
83 | | - >>> import brainpy.math as bm |
84 | | - >>> constant_input([(0, 100), (1, 100)]) |
85 | | - >>> constant_input([(bm.zeros(100), 100), (bm.random.rand(100), 100)]) |
86 | | -
|
87 | | - Parameters |
88 | | - ---------- |
89 | | - I_and_duration : list |
90 | | - This parameter receives the current size and the current |
91 | | - duration pairs, like `[(Isize1, duration1), (Isize2, duration2)]`. |
92 | | - dt : float |
93 | | - Default is None. |
94 | | -
|
95 | | - Returns |
96 | | - ------- |
97 | | - current_and_duration : tuple |
98 | | - (The formatted current, total duration) |
99 | | - """ |
100 | | - dt = bm.get_dt() if dt is None else dt |
101 | | - |
102 | | - # get input current dimension, shape, and duration |
103 | | - I_duration = 0. |
104 | | - I_shape = () |
105 | | - for I in I_and_duration: |
106 | | - I_duration += I[1] |
107 | | - shape = bm.shape(I[0]) |
108 | | - if len(shape) > len(I_shape): |
109 | | - I_shape = shape |
110 | | - |
111 | | - # get the current |
112 | | - start = 0 |
113 | | - I_current = bm.zeros((int(np.ceil(I_duration / dt)),) + I_shape, dtype=bm.float_) |
114 | | - for c_size, duration in I_and_duration: |
115 | | - length = int(duration / dt) |
116 | | - I_current[start: start + length] = c_size |
117 | | - start += length |
118 | | - return I_current, I_duration |
119 | | - |
120 | | - |
121 | | -constant_current = constant_input |
122 | | - |
123 | | - |
124 | | -def spike_input(sp_times, sp_lens, sp_sizes, duration, dt=None): |
125 | | - """Format current input like a series of short-time spikes. |
126 | | -
|
127 | | - For example: |
128 | | -
|
129 | | - If you want to generate a spike train at 10 ms, 20 ms, 30 ms, 200 ms, 300 ms, |
130 | | - and each spike lasts 1 ms and the spike current is 0.5, then you can use the |
131 | | - following funtions: |
132 | | -
|
133 | | - >>> spike_input(sp_times=[10, 20, 30, 200, 300], |
134 | | - >>> sp_lens=1., # can be a list to specify the spike length at each point |
135 | | - >>> sp_sizes=0.5, # can be a list to specify the current size at each point |
136 | | - >>> duration=400.) |
137 | | -
|
138 | | - Parameters |
139 | | - ---------- |
140 | | - sp_times : list, tuple |
141 | | - The spike time-points. Must be an iterable object. |
142 | | - sp_lens : int, float, list, tuple |
143 | | - The length of each point-current, mimicking the spike durations. |
144 | | - sp_sizes : int, float, list, tuple |
145 | | - The current sizes. |
146 | | - duration : int, float |
147 | | - The total current duration. |
148 | | - dt : float |
149 | | - The default is None. |
150 | | -
|
151 | | - Returns |
152 | | - ------- |
153 | | - current : bm.ndarray |
154 | | - The formatted input current. |
155 | | - """ |
156 | | - dt = bm.get_dt() if dt is None else dt |
157 | | - assert isinstance(sp_times, (list, tuple)) |
158 | | - if isinstance(sp_lens, (float, int)): |
159 | | - sp_lens = [sp_lens] * len(sp_times) |
160 | | - if isinstance(sp_sizes, (float, int)): |
161 | | - sp_sizes = [sp_sizes] * len(sp_times) |
162 | | - |
163 | | - current = bm.zeros(int(np.ceil(duration / dt)), dtype=bm.float_) |
164 | | - for time, dur, size in zip(sp_times, sp_lens, sp_sizes): |
165 | | - pp = int(time / dt) |
166 | | - p_len = int(dur / dt) |
167 | | - current[pp: pp + p_len] = size |
168 | | - return current |
169 | | - |
170 | | - |
171 | | -spike_current = spike_input |
172 | | - |
173 | | - |
174 | | -def ramp_input(c_start, c_end, duration, t_start=0, t_end=None, dt=None): |
175 | | - """Get the gradually changed input current. |
176 | | -
|
177 | | - Parameters |
178 | | - ---------- |
179 | | - c_start : float |
180 | | - The minimum (or maximum) current size. |
181 | | - c_end : float |
182 | | - The maximum (or minimum) current size. |
183 | | - duration : int, float |
184 | | - The total duration. |
185 | | - t_start : float |
186 | | - The ramped current start time-point. |
187 | | - t_end : float |
188 | | - The ramped current end time-point. Default is the None. |
189 | | - dt : float, int, optional |
190 | | - The numerical precision. |
191 | | -
|
192 | | - Returns |
193 | | - ------- |
194 | | - current : bm.ndarray |
195 | | - The formatted current |
196 | | - """ |
197 | | - dt = bm.get_dt() if dt is None else dt |
198 | | - t_end = duration if t_end is None else t_end |
199 | | - |
200 | | - current = bm.zeros(int(np.ceil(duration / dt)), dtype=bm.float_) |
201 | | - p1 = int(np.ceil(t_start / dt)) |
202 | | - p2 = int(np.ceil(t_end / dt)) |
203 | | - current[p1: p2] = bm.array(bm.linspace(c_start, c_end, p2 - p1), dtype=bm.float_) |
204 | | - return current |
205 | | - |
206 | | - |
207 | | -ramp_current = ramp_input |
| 9 | +from .currents import * |
208 | 10 |
|
0 commit comments