|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +from typing import Union, Optional |
| 4 | + |
| 5 | +import brainpylib as bl |
| 6 | +import jax |
| 7 | + |
| 8 | +from brainpy import (math as bm, |
| 9 | + initialize as init, |
| 10 | + connect) |
| 11 | +from brainpy.dyn.base import DynamicalSystem, SynSTP |
| 12 | +from brainpy.integrators.ode import odeint |
| 13 | +from brainpy.types import Initializer, ArrayType |
| 14 | + |
| 15 | +__all__ = [ |
| 16 | + 'Exponential', |
| 17 | +] |
| 18 | + |
| 19 | + |
| 20 | +class Exponential(DynamicalSystem): |
| 21 | + def __init__( |
| 22 | + self, |
| 23 | + conn: connect.TwoEndConnector, |
| 24 | + stp: Optional[SynSTP] = None, |
| 25 | + g_max: Union[float, Initializer] = 1., |
| 26 | + g_initializer: Union[float, Initializer] = init.ZeroInit(), |
| 27 | + tau: Union[float, ArrayType] = 8.0, |
| 28 | + method: str = 'exp_auto', |
| 29 | + mode: Optional[bm.Mode] = None, |
| 30 | + name: Optional[str] = None, |
| 31 | + ): |
| 32 | + super(Exponential, self).__init__(name=name, mode=mode) |
| 33 | + |
| 34 | + # component |
| 35 | + self.conn = conn |
| 36 | + self.stp = stp |
| 37 | + self.g_initializer = g_initializer |
| 38 | + assert self.conn.pre_num is not None |
| 39 | + assert self.conn.post_num is not None |
| 40 | + |
| 41 | + # parameters |
| 42 | + self.tau = tau |
| 43 | + if bm.size(self.tau) != 1: |
| 44 | + raise ValueError(f'"tau" must be a scalar or a tensor with size of 1. But we got {self.tau}') |
| 45 | + |
| 46 | + # connections and weights |
| 47 | + if isinstance(self.conn, connect.One2One): |
| 48 | + self.g_max = init.parameter(g_max, (self.conn.pre_num,), allow_none=False) |
| 49 | + |
| 50 | + elif isinstance(self.conn, connect.All2All): |
| 51 | + self.g_max = init.parameter(g_max, (self.conn.pre_num, self.conn.post_num), allow_none=False) |
| 52 | + |
| 53 | + else: |
| 54 | + self.conn_mask = self.conn.require('pre2post') |
| 55 | + self.g_max = init.parameter(g_max, self.conn_mask[0].shape, allow_none=False) |
| 56 | + |
| 57 | + # variables |
| 58 | + self.g = init.variable_(g_initializer, self.conn.post_num, self.mode) |
| 59 | + |
| 60 | + # function |
| 61 | + self.integral = odeint(lambda g, t: -g / self.tau, method=method) |
| 62 | + |
| 63 | + def reset_state(self, batch_size=None): |
| 64 | + self.g.value = init.variable_(bm.zeros, self.conn.post_num, batch_size) |
| 65 | + if self.stp is not None: |
| 66 | + self.stp.reset_state(batch_size) |
| 67 | + |
| 68 | + def _syn2post_with_one2one(self, syn_value, syn_weight): |
| 69 | + return syn_value * syn_weight |
| 70 | + |
| 71 | + def _syn2post_with_all2all(self, syn_value, syn_weight): |
| 72 | + if bm.ndim(syn_weight) == 0: |
| 73 | + if isinstance(self.mode, bm.BatchingMode): |
| 74 | + assert syn_value.ndim == 2 |
| 75 | + post_vs = bm.sum(syn_value, keepdims=True, axis=1) |
| 76 | + else: |
| 77 | + post_vs = bm.sum(syn_value) |
| 78 | + if not self.conn.include_self: |
| 79 | + post_vs = post_vs - syn_value |
| 80 | + post_vs = syn_weight * post_vs |
| 81 | + else: |
| 82 | + assert syn_weight.ndim == 2 |
| 83 | + if isinstance(self.mode, bm.BatchingMode): |
| 84 | + assert syn_value.ndim == 2 |
| 85 | + post_vs = syn_value @ syn_weight |
| 86 | + else: |
| 87 | + post_vs = syn_value @ syn_weight |
| 88 | + return post_vs |
| 89 | + |
| 90 | + def update(self, tdi, spike): |
| 91 | + t, dt = tdi['t'], tdi.get('dt', bm.dt) |
| 92 | + |
| 93 | + # update sub-components |
| 94 | + if self.stp is not None: |
| 95 | + self.stp.update(tdi, spike) |
| 96 | + |
| 97 | + # post values |
| 98 | + if isinstance(self.conn, connect.All2All): |
| 99 | + syn_value = bm.asarray(spike, dtype=bm.float_) |
| 100 | + if self.stp is not None: |
| 101 | + syn_value = self.stp(syn_value) |
| 102 | + post_vs = self._syn2post_with_all2all(syn_value, self.g_max) |
| 103 | + elif isinstance(self.conn, connect.One2One): |
| 104 | + syn_value = bm.asarray(spike, dtype=bm.float_) |
| 105 | + if self.stp is not None: |
| 106 | + syn_value = self.stp(syn_value) |
| 107 | + post_vs = self._syn2post_with_one2one(syn_value, self.g_max) |
| 108 | + else: |
| 109 | + if isinstance(self.mode, bm.BatchingMode): |
| 110 | + f = jax.vmap(bl.event_ops.event_csr_matvec, in_axes=(None, None, None, 0)) |
| 111 | + post_vs = f(self.g_max, self.conn_mask[0], self.conn_mask[1], spike, |
| 112 | + shape=(self.conn.pre_num, self.conn.post_num), transpose=True) |
| 113 | + else: |
| 114 | + post_vs = bl.event_ops.event_csr_matvec( |
| 115 | + self.g_max, self.conn_mask[0], self.conn_mask[1], spike, |
| 116 | + shape=(self.conn.pre_num, self.conn.post_num), transpose=True |
| 117 | + ) |
| 118 | + # updates |
| 119 | + self.g.value = self.integral(self.g.value, t, dt) + post_vs |
| 120 | + |
| 121 | + # output |
| 122 | + return self.g.value |
0 commit comments