Skip to content

can't train on custom data #1

@mkarlan

Description

@mkarlan

Thanks for the implementation. I am trying to train on custom data. But I am getting following error.
Could you please help me to resolve this issue.

WARNING:tensorflow:Model was constructed with shape (None, 13, 13, 3, 6) for input Tensor("input_4:0", shape=(None, 13, 13, 3, 6), dtype=float32), but it was called on an input with incompatible shape (13, 13, 3, 6).
WARNING:tensorflow:Model was constructed with shape (None, 26, 26, 3, 6) for input Tensor("input_5:0", shape=(None, 26, 26, 3, 6), dtype=float32), but it was called on an input with incompatible shape (13, 13, 3, 6).
WARNING:tensorflow:Model was constructed with shape (None, 52, 52, 3, 6) for input Tensor("input_6:0", shape=(None, 52, 52, 3, 6), dtype=float32), but it was called on an input with incompatible shape (13, 13, 3, 6).
Traceback (most recent call last):
  File "train_keras.py", line 66, in <module>
    main();
  File "train_keras.py", line 57, in main
    yolov3.fit(train_dataset, epochs = 100, 
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 65, in _method_wrapper
    return method(self, *args, **kwargs)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 783, in fit
    tmp_logs = train_function(iterator)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 579, in __call__
    result = self._call(*args, **kwds)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 626, in _call
    self._initialize(args, kwds, add_initializers_to=initializers)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 506, in _initialize
    *args, **kwds))
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 2446, in _get_concrete_function_internal_garbage_collected
    graph_function, _, _ = self._maybe_define_function(args, kwargs)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 2777, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 2667, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 981, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 441, in wrapped_fn
    return weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "/home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 968, in wrapper
    raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:

    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:503 train_function  *
        outputs = self.distribute_strategy.experimental_run_v2(
    train_keras.py:28 loss  *
        return Loss((INPUT_SIZE,INPUT_SIZE,3,),NUM_CLASSES)([outputs[0], outputs[1], outputs[2], labels[0], labels[1], labels[2]]);
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:926 __call__  **
        outputs = call_fn(cast_inputs, *args, **kwargs)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/network.py:714 call
        convert_kwargs_to_constants=base_layer_utils.call_context().saving)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/network.py:883 _run_internal_graph
        output_tensors = layer(computed_tensors, **kwargs)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:926 __call__
        outputs = call_fn(cast_inputs, *args, **kwargs)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/keras/layers/core.py:888 call
        result = self.function(inputs, **kwargs)
    /tmp/tmpye1eh09b.py:35 <lambda>
        pos_loss = ag__.converted_call(ag__.converted_call(tf.keras.layers.Lambda, ((lambda x: ag__.converted_call(tf.math.reduce_sum, (ag__.converted_call(tf.keras.losses.MSE, (ag__.converted_call(tf.boolean_mask, (x[0], x[2]), None, fscope), ag__.converted_call(tf.boolean_mask, (x[1], x[2]), None, fscope)), None, fscope),), None, fscope)),), None, fscope), ([true_box, pred_box, object_mask],), None, fscope)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:180 wrapper  **
        return target(*args, **kwargs)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/ops/array_ops.py:1746 boolean_mask_v2
        return boolean_mask(tensor, mask, name, axis)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/ops/array_ops.py:1678 boolean_mask
        shape_tensor[axis:axis + ndims_mask].assert_is_compatible_with(shape_mask)
    /home/mkarikalan/anaconda3/envs/tf2/lib/python3.7/site-packages/tensorflow/python/framework/tensor_shape.py:1117 assert_is_compatible_with
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (None, 52, 52) and (13, 13, 3) are incompatible

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions