|
1 |
| -/** |
2 |
| - * Creates a configured Fuse instance for token-based fuzzy search. |
3 |
| - * @param list Array of items to search |
4 |
| - * @param keys Keys in each item to index |
5 |
| - * @param options Optional Fuse.js options overrides |
6 |
| - */ |
7 |
| -export async function createFuzzySearcher<T>( |
8 |
| - list: T[], |
9 |
| - keys: Array<keyof T | string>, |
10 |
| - options?: any, |
11 |
| -): Promise<any> { |
12 |
| - const { default: Fuse } = await import("fuse.js"); |
| 1 | +// 1. Compute Levenshtein distance between two strings |
| 2 | +function levenshtein(a: string, b: string): number { |
| 3 | + const dp: number[][] = Array(a.length + 1) |
| 4 | + .fill(0) |
| 5 | + .map(() => Array(b.length + 1).fill(0)); |
| 6 | + for (let i = 0; i <= a.length; i++) dp[i][0] = i; |
| 7 | + for (let j = 0; j <= b.length; j++) dp[0][j] = j; |
13 | 8 |
|
14 |
| - const defaultOptions = { |
15 |
| - keys: keys as string[], |
16 |
| - threshold: 0.6, |
17 |
| - includeScore: true, |
18 |
| - useExtendedSearch: false, |
19 |
| - tokenize: true, |
20 |
| - matchAllTokens: false, |
21 |
| - ...options, |
22 |
| - }; |
| 9 | + for (let i = 1; i <= a.length; i++) { |
| 10 | + for (let j = 1; j <= b.length; j++) { |
| 11 | + dp[i][j] = Math.min( |
| 12 | + dp[i - 1][j] + 1, // deletion |
| 13 | + dp[i][j - 1] + 1, // insertion |
| 14 | + dp[i - 1][j - 1] + (a[i - 1] === b[j - 1] ? 0 : 1), // substitution |
| 15 | + ); |
| 16 | + } |
| 17 | + } |
| 18 | + return dp[a.length][b.length]; |
| 19 | +} |
23 | 20 |
|
24 |
| - return new Fuse(list, defaultOptions); |
| 21 | +// 2. Score one item against the query (normalized score 0–1) |
| 22 | +function scoreItem<T>( |
| 23 | + item: T, |
| 24 | + keys: Array<keyof T | string>, |
| 25 | + queryTokens: string[], |
| 26 | +): number { |
| 27 | + let best = Infinity; |
| 28 | + for (const key of keys) { |
| 29 | + const field = String(item[key as keyof T] ?? "").toLowerCase(); |
| 30 | + const fieldTokens = field.split(/\s+/); |
| 31 | + const tokenScores = queryTokens.map((qt) => { |
| 32 | + const minNormalized = Math.min( |
| 33 | + ...fieldTokens.map((ft) => { |
| 34 | + const rawDist = levenshtein(ft, qt); |
| 35 | + const maxLen = Math.max(ft.length, qt.length); |
| 36 | + return maxLen === 0 ? 0 : rawDist / maxLen; // normalized 0–1 |
| 37 | + }), |
| 38 | + ); |
| 39 | + return minNormalized; |
| 40 | + }); |
| 41 | + const avg = tokenScores.reduce((a, b) => a + b, 0) / tokenScores.length; |
| 42 | + best = Math.min(best, avg); |
| 43 | + } |
| 44 | + return best; |
25 | 45 | }
|
26 | 46 |
|
27 |
| -/** |
28 |
| - * Performs a fuzzy token search over any list, with dynamic keys and options. |
29 |
| - */ |
30 |
| -export async function fuzzySearch<T>( |
| 47 | +// 3. The search entrypoint |
| 48 | +export function customFuzzySearch<T>( |
31 | 49 | list: T[],
|
32 | 50 | keys: Array<keyof T | string>,
|
33 | 51 | query: string,
|
34 | 52 | limit: number = 5,
|
35 |
| - options?: any, |
36 |
| -): Promise<T[]> { |
37 |
| - const fuse = await createFuzzySearcher(list, keys, options); |
38 |
| - return fuse.search(query, { limit }).map((result: any) => result.item); |
| 53 | + maxDistance: number = 0.6, |
| 54 | +): T[] { |
| 55 | + const q = query.toLowerCase().trim(); |
| 56 | + const queryTokens = q.split(/\s+/); |
| 57 | + |
| 58 | + return list |
| 59 | + .map((item) => ({ item, score: scoreItem(item, keys, queryTokens) })) |
| 60 | + .filter((x) => x.score <= maxDistance) |
| 61 | + .sort((a, b) => a.score - b.score) |
| 62 | + .slice(0, limit) |
| 63 | + .map((x) => x.item); |
39 | 64 | }
|
0 commit comments