@@ -344,7 +344,7 @@ class RemoteAutoencoderKLSDv1Tests(
344344 512 ,
345345 512 ,
346346 )
347- endpoint = "https://bz0b3zkoojf30bhx .us-east-1.aws.endpoints.huggingface.cloud/"
347+ endpoint = "https://q1bj3bpq6kzilnsu .us-east-1.aws.endpoints.huggingface.cloud/"
348348 dtype = torch .float16
349349 scaling_factor = 0.18215
350350 shift_factor = None
@@ -354,105 +354,105 @@ class RemoteAutoencoderKLSDv1Tests(
354354 return_pt_slice = torch .tensor ([- 0.2177 , 0.0217 , - 0.2258 , 0.0412 , - 0.1687 , - 0.1232 , - 0.2416 , - 0.2130 , - 0.0543 ])
355355
356356
357- # class RemoteAutoencoderKLSDXLTests(
358- # RemoteAutoencoderKLMixin,
359- # unittest.TestCase,
360- # ):
361- # shape = (
362- # 1,
363- # 4,
364- # 128,
365- # 128,
366- # )
367- # out_hw = (
368- # 1024,
369- # 1024,
370- # )
371- # endpoint = "https://fagf07t3bwf0615i .us-east-1.aws.endpoints.huggingface.cloud/"
372- # dtype = torch.float16
373- # scaling_factor = 0.13025
374- # shift_factor = None
375- # processor_cls = VaeImageProcessor
376- # output_pt_slice = torch.tensor([104, 52, 23, 114, 61, 35, 108, 87, 38], dtype=torch.uint8)
377- # partial_postprocess_return_pt_slice = torch.tensor([77, 86, 89, 49, 60, 75, 52, 65, 78], dtype=torch.uint8)
378- # return_pt_slice = torch.tensor([-0.3945, -0.3289, -0.2993, -0.6177, -0.5259, -0.4119, -0.5898, -0.4863, -0.3845])
379-
380-
381- # class RemoteAutoencoderKLFluxTests(
382- # RemoteAutoencoderKLMixin,
383- # unittest.TestCase,
384- # ):
385- # shape = (
386- # 1,
387- # 16,
388- # 128,
389- # 128,
390- # )
391- # out_hw = (
392- # 1024,
393- # 1024,
394- # )
395- # endpoint = "https://fnohtuwsskxgxsnn .us-east-1.aws.endpoints.huggingface.cloud/"
396- # dtype = torch.bfloat16
397- # scaling_factor = 0.3611
398- # shift_factor = 0.1159
399- # processor_cls = VaeImageProcessor
400- # output_pt_slice = torch.tensor([110, 72, 91, 62, 35, 52, 69, 55, 69], dtype=torch.uint8)
401- # partial_postprocess_return_pt_slice = torch.tensor(
402- # [202, 203, 203, 197, 195, 193, 189, 188, 178], dtype=torch.uint8
403- # )
404- # return_pt_slice = torch.tensor([0.5820, 0.5962, 0.5898, 0.5439, 0.5327, 0.5112, 0.4797, 0.4773, 0.3984])
405-
406-
407- # class RemoteAutoencoderKLFluxPackedTests(
408- # RemoteAutoencoderKLMixin,
409- # unittest.TestCase,
410- # ):
411- # shape = (
412- # 1,
413- # 4096,
414- # 64,
415- # )
416- # out_hw = (
417- # 1024,
418- # 1024,
419- # )
420- # height = 1024
421- # width = 1024
422- # endpoint = "https://fnohtuwsskxgxsnn .us-east-1.aws.endpoints.huggingface.cloud/"
423- # dtype = torch.bfloat16
424- # scaling_factor = 0.3611
425- # shift_factor = 0.1159
426- # processor_cls = VaeImageProcessor
427- # # slices are different due to randn on different shape. we can pack the latent instead if we want the same
428- # output_pt_slice = torch.tensor([96, 116, 157, 45, 67, 104, 34, 56, 89], dtype=torch.uint8)
429- # partial_postprocess_return_pt_slice = torch.tensor(
430- # [168, 212, 202, 155, 191, 185, 150, 180, 168], dtype=torch.uint8
431- # )
432- # return_pt_slice = torch.tensor([0.3198, 0.6631, 0.5864, 0.2131, 0.4944, 0.4482, 0.1776, 0.4153, 0.3176])
433-
434-
435- # class RemoteAutoencoderKLHunyuanVideoTests(
436- # RemoteAutoencoderKLHunyuanVideoMixin,
437- # unittest.TestCase,
438- # ):
439- # shape = (
440- # 1,
441- # 16,
442- # 3,
443- # 40,
444- # 64,
445- # )
446- # out_hw = (
447- # 320,
448- # 512,
449- # )
450- # endpoint = "https://lsx2injm3ts8wbvv .us-east-1.aws.endpoints.huggingface.cloud/"
451- # dtype = torch.float16
452- # scaling_factor = 0.476986
453- # processor_cls = VideoProcessor
454- # output_pt_slice = torch.tensor([112, 92, 85, 112, 93, 85, 112, 94, 85], dtype=torch.uint8)
455- # partial_postprocess_return_pt_slice = torch.tensor(
456- # [149, 161, 168, 136, 150, 156, 129, 143, 149], dtype=torch.uint8
457- # )
458- # return_pt_slice = torch.tensor([0.1656, 0.2661, 0.3157, 0.0693, 0.1755, 0.2252, 0.0127, 0.1221, 0.1708])
357+ class RemoteAutoencoderKLSDXLTests (
358+ RemoteAutoencoderKLMixin ,
359+ unittest .TestCase ,
360+ ):
361+ shape = (
362+ 1 ,
363+ 4 ,
364+ 128 ,
365+ 128 ,
366+ )
367+ out_hw = (
368+ 1024 ,
369+ 1024 ,
370+ )
371+ endpoint = "https://x2dmsqunjd6k9prw .us-east-1.aws.endpoints.huggingface.cloud/"
372+ dtype = torch .float16
373+ scaling_factor = 0.13025
374+ shift_factor = None
375+ processor_cls = VaeImageProcessor
376+ output_pt_slice = torch .tensor ([104 , 52 , 23 , 114 , 61 , 35 , 108 , 87 , 38 ], dtype = torch .uint8 )
377+ partial_postprocess_return_pt_slice = torch .tensor ([77 , 86 , 89 , 49 , 60 , 75 , 52 , 65 , 78 ], dtype = torch .uint8 )
378+ return_pt_slice = torch .tensor ([- 0.3945 , - 0.3289 , - 0.2993 , - 0.6177 , - 0.5259 , - 0.4119 , - 0.5898 , - 0.4863 , - 0.3845 ])
379+
380+
381+ class RemoteAutoencoderKLFluxTests (
382+ RemoteAutoencoderKLMixin ,
383+ unittest .TestCase ,
384+ ):
385+ shape = (
386+ 1 ,
387+ 16 ,
388+ 128 ,
389+ 128 ,
390+ )
391+ out_hw = (
392+ 1024 ,
393+ 1024 ,
394+ )
395+ endpoint = "https://whhx50ex1aryqvw6 .us-east-1.aws.endpoints.huggingface.cloud/"
396+ dtype = torch .bfloat16
397+ scaling_factor = 0.3611
398+ shift_factor = 0.1159
399+ processor_cls = VaeImageProcessor
400+ output_pt_slice = torch .tensor ([110 , 72 , 91 , 62 , 35 , 52 , 69 , 55 , 69 ], dtype = torch .uint8 )
401+ partial_postprocess_return_pt_slice = torch .tensor (
402+ [202 , 203 , 203 , 197 , 195 , 193 , 189 , 188 , 178 ], dtype = torch .uint8
403+ )
404+ return_pt_slice = torch .tensor ([0.5820 , 0.5962 , 0.5898 , 0.5439 , 0.5327 , 0.5112 , 0.4797 , 0.4773 , 0.3984 ])
405+
406+
407+ class RemoteAutoencoderKLFluxPackedTests (
408+ RemoteAutoencoderKLMixin ,
409+ unittest .TestCase ,
410+ ):
411+ shape = (
412+ 1 ,
413+ 4096 ,
414+ 64 ,
415+ )
416+ out_hw = (
417+ 1024 ,
418+ 1024 ,
419+ )
420+ height = 1024
421+ width = 1024
422+ endpoint = "https://whhx50ex1aryqvw6 .us-east-1.aws.endpoints.huggingface.cloud/"
423+ dtype = torch .bfloat16
424+ scaling_factor = 0.3611
425+ shift_factor = 0.1159
426+ processor_cls = VaeImageProcessor
427+ # slices are different due to randn on different shape. we can pack the latent instead if we want the same
428+ output_pt_slice = torch .tensor ([96 , 116 , 157 , 45 , 67 , 104 , 34 , 56 , 89 ], dtype = torch .uint8 )
429+ partial_postprocess_return_pt_slice = torch .tensor (
430+ [168 , 212 , 202 , 155 , 191 , 185 , 150 , 180 , 168 ], dtype = torch .uint8
431+ )
432+ return_pt_slice = torch .tensor ([0.3198 , 0.6631 , 0.5864 , 0.2131 , 0.4944 , 0.4482 , 0.1776 , 0.4153 , 0.3176 ])
433+
434+
435+ class RemoteAutoencoderKLHunyuanVideoTests (
436+ RemoteAutoencoderKLHunyuanVideoMixin ,
437+ unittest .TestCase ,
438+ ):
439+ shape = (
440+ 1 ,
441+ 16 ,
442+ 3 ,
443+ 40 ,
444+ 64 ,
445+ )
446+ out_hw = (
447+ 320 ,
448+ 512 ,
449+ )
450+ endpoint = "https://o7ywnmrahorts457 .us-east-1.aws.endpoints.huggingface.cloud/"
451+ dtype = torch .float16
452+ scaling_factor = 0.476986
453+ processor_cls = VideoProcessor
454+ output_pt_slice = torch .tensor ([112 , 92 , 85 , 112 , 93 , 85 , 112 , 94 , 85 ], dtype = torch .uint8 )
455+ partial_postprocess_return_pt_slice = torch .tensor (
456+ [149 , 161 , 168 , 136 , 150 , 156 , 129 , 143 , 149 ], dtype = torch .uint8
457+ )
458+ return_pt_slice = torch .tensor ([0.1656 , 0.2661 , 0.3157 , 0.0693 , 0.1755 , 0.2252 , 0.0127 , 0.1221 , 0.1708 ])
0 commit comments