@@ -193,7 +193,7 @@ public void testCreateNestedKnnQuery() {
193193 for (int i = 0 ; i < dims ; i ++) {
194194 queryVector [i ] = randomFloat ();
195195 }
196- Query query = field .createKnnQuery (VectorData .fromFloats (queryVector ), 10 , 10 , 10 , null , null , null , producer );
196+ Query query = field .createKnnQuery (VectorData .fromFloats (queryVector ), 10 , 10 , null , null , null , producer );
197197 assertThat (query , instanceOf (DiversifyingChildrenFloatKnnVectorQuery .class ));
198198 }
199199 {
@@ -214,11 +214,11 @@ public void testCreateNestedKnnQuery() {
214214 floatQueryVector [i ] = queryVector [i ];
215215 }
216216 VectorData vectorData = new VectorData (null , queryVector );
217- Query query = field .createKnnQuery (vectorData , 10 , 10 , 10 , null , null , null , producer );
217+ Query query = field .createKnnQuery (vectorData , 10 , 10 , null , null , null , producer );
218218 assertThat (query , instanceOf (DiversifyingChildrenByteKnnVectorQuery .class ));
219219
220220 vectorData = new VectorData (floatQueryVector , null );
221- query = field .createKnnQuery (vectorData , 10 , 10 , 10 , null , null , null , producer );
221+ query = field .createKnnQuery (vectorData , 10 , 10 , null , null , null , producer );
222222 assertThat (query , instanceOf (DiversifyingChildrenByteKnnVectorQuery .class ));
223223 }
224224 }
@@ -283,7 +283,6 @@ public void testFloatCreateKnnQuery() {
283283 VectorData .fromFloats (new float [] { 0.3f , 0.1f , 1.0f , 0.0f }),
284284 10 ,
285285 10 ,
286- 10 ,
287286 null ,
288287 null ,
289288 null ,
@@ -308,7 +307,7 @@ public void testFloatCreateKnnQuery() {
308307 }
309308 e = expectThrows (
310309 IllegalArgumentException .class ,
311- () -> dotProductField .createKnnQuery (VectorData .fromFloats (queryVector ), 10 , 10 , 10 , null , null , null , null )
310+ () -> dotProductField .createKnnQuery (VectorData .fromFloats (queryVector ), 10 , 10 , null , null , null , null )
312311 );
313312 assertThat (e .getMessage (), containsString ("The [dot_product] similarity can only be used with unit-length vectors." ));
314313
@@ -324,7 +323,7 @@ public void testFloatCreateKnnQuery() {
324323 );
325324 e = expectThrows (
326325 IllegalArgumentException .class ,
327- () -> cosineField .createKnnQuery (VectorData .fromFloats (new float [BBQ_MIN_DIMS ]), 10 , 10 , 10 , null , null , null , null )
326+ () -> cosineField .createKnnQuery (VectorData .fromFloats (new float [BBQ_MIN_DIMS ]), 10 , 10 , null , null , null , null )
328327 );
329328 assertThat (e .getMessage (), containsString ("The [cosine] similarity does not support vectors with zero magnitude." ));
330329 }
@@ -345,7 +344,7 @@ public void testCreateKnnQueryMaxDims() {
345344 for (int i = 0 ; i < 4096 ; i ++) {
346345 queryVector [i ] = randomFloat ();
347346 }
348- Query query = fieldWith4096dims .createKnnQuery (VectorData .fromFloats (queryVector ), 10 , 10 , 10 , null , null , null , null );
347+ Query query = fieldWith4096dims .createKnnQuery (VectorData .fromFloats (queryVector ), 10 , 10 , null , null , null , null );
349348 assertThat (query , instanceOf (KnnFloatVectorQuery .class ));
350349 }
351350
@@ -365,7 +364,7 @@ public void testCreateKnnQueryMaxDims() {
365364 queryVector [i ] = randomByte ();
366365 }
367366 VectorData vectorData = new VectorData (null , queryVector );
368- Query query = fieldWith4096dims .createKnnQuery (vectorData , 10 , 10 , 10 , null , null , null , null );
367+ Query query = fieldWith4096dims .createKnnQuery (vectorData , 10 , 10 , null , null , null , null );
369368 assertThat (query , instanceOf (KnnByteVectorQuery .class ));
370369 }
371370 }
@@ -383,7 +382,7 @@ public void testByteCreateKnnQuery() {
383382 );
384383 IllegalArgumentException e = expectThrows (
385384 IllegalArgumentException .class ,
386- () -> unindexedField .createKnnQuery (VectorData .fromFloats (new float [] { 0.3f , 0.1f , 1.0f }), 10 , 10 , 10 , null , null , null , null )
385+ () -> unindexedField .createKnnQuery (VectorData .fromFloats (new float [] { 0.3f , 0.1f , 1.0f }), 10 , 10 , null , null , null , null )
387386 );
388387 assertThat (e .getMessage (), containsString ("to perform knn search on field [f], its mapping must have [index] set to [true]" ));
389388
@@ -399,13 +398,13 @@ public void testByteCreateKnnQuery() {
399398 );
400399 e = expectThrows (
401400 IllegalArgumentException .class ,
402- () -> cosineField .createKnnQuery (VectorData .fromFloats (new float [] { 0.0f , 0.0f , 0.0f }), 10 , 10 , 10 , null , null , null , null )
401+ () -> cosineField .createKnnQuery (VectorData .fromFloats (new float [] { 0.0f , 0.0f , 0.0f }), 10 , 10 , null , null , null , null )
403402 );
404403 assertThat (e .getMessage (), containsString ("The [cosine] similarity does not support vectors with zero magnitude." ));
405404
406405 e = expectThrows (
407406 IllegalArgumentException .class ,
408- () -> cosineField .createKnnQuery (new VectorData (null , new byte [] { 0 , 0 , 0 }), 10 , 10 , 10 , null , null , null , null )
407+ () -> cosineField .createKnnQuery (new VectorData (null , new byte [] { 0 , 0 , 0 }), 10 , 10 , null , null , null , null )
409408 );
410409 assertThat (e .getMessage (), containsString ("The [cosine] similarity does not support vectors with zero magnitude." ));
411410 }
@@ -427,7 +426,6 @@ public void testRescoreOversampleUsedWithoutQuantization() {
427426 new VectorData (null , new byte [] { 1 , 4 , 10 }),
428427 10 ,
429428 100 ,
430- 10 ,
431429 randomFloatBetween (1.0F , 10.0F , false ),
432430 null ,
433431 null ,
@@ -464,21 +462,11 @@ public void testRescoreOversampleModifiesNumCandidates() {
464462 // Oversampling limits for num candidates
465463 checkRescoreQueryParameters (fieldType , 1000 , 1000 , randomInt (), 11.0F , null , 10000 , 1000 );
466464 checkRescoreQueryParameters (fieldType , 5000 , 7500 , randomInt (), 2.5F , null , 10000 , 5000 );
467-
468- // Check the same as the above, for null k - take request size
469- // Total results is k, internal k is multiplied by oversample
470- checkRescoreQueryParameters (fieldType , null , 200 , 25 , 2.5F , null , 500 , 25 );
471- // If numCands < k, update numCands to k
472- checkRescoreQueryParameters (fieldType , null , 20 , 25 , 2.5F , null , 50 , 25 );
473- // Oversampling limits for num candidates
474- checkRescoreQueryParameters (fieldType , null , 1000 , 25 , 11.0F , null , 10000 , 25 );
475- checkRescoreQueryParameters (fieldType , null , 7500 , 25 , 2.5F , null , 10000 , 25 );
476-
477465 }
478466
479467 private static void checkRescoreQueryParameters (
480468 DenseVectorFieldType fieldType ,
481- Integer k ,
469+ int k ,
482470 int candidates ,
483471 int requestSize ,
484472 float numCandsFactor ,
@@ -490,7 +478,6 @@ private static void checkRescoreQueryParameters(
490478 VectorData .fromFloats (new float [] { 1 , 4 , 10 }),
491479 k ,
492480 candidates ,
493- requestSize ,
494481 numCandsFactor ,
495482 null ,
496483 null ,
0 commit comments