|
| 1 | +#pragma once |
| 2 | + |
| 3 | +#include <ossia/network/value/value.hpp> |
| 4 | + |
| 5 | +#include <halp/audio.hpp> |
| 6 | +#include <halp/controls.hpp> |
| 7 | +#include <halp/meta.hpp> |
| 8 | +#include <halp/sample_accurate_controls.hpp> |
| 9 | + |
| 10 | +#include <cmath> |
| 11 | +#include <algorithm> |
| 12 | +#include <limits> |
| 13 | +#include <variant> |
| 14 | +#include <vector> |
| 15 | + |
| 16 | +namespace ao |
| 17 | +{ |
| 18 | + |
| 19 | +class MultiChoice |
| 20 | +{ |
| 21 | +public: |
| 22 | + halp_meta(name, "Multi-choice") |
| 23 | + halp_meta(c_name, "multi_choice") |
| 24 | + halp_meta(category, "Control/Mappings") |
| 25 | + halp_meta(uuid, "2c1d4578-7ef7-48b1-bbb8-c2b1c41063c9") |
| 26 | + halp_meta(author, "ossia score") |
| 27 | + halp_meta(description, "Choose a value according to multiple inputs") |
| 28 | + halp_meta(manual_url, "https://ossia.io/score-docs/processes/multi-choice.html") |
| 29 | + |
| 30 | + struct ins |
| 31 | + { |
| 32 | + struct : halp::val_port<"Inputs", std::vector<float>> |
| 33 | + { |
| 34 | + } nodes; |
| 35 | + |
| 36 | + halp::knob_f32<"Smooth", halp::range{.min = 0.01, .max = 1.0, .init = 0.1}> smooth; |
| 37 | + halp::knob_f32<"Threshold", halp::range{.min = 0.0, .max = 1.0, .init = 0.8}> threshold; |
| 38 | + halp::knob_f32<"Margin", halp::range{.min = 0.0, .max = 1.0, .init = 0.15}> margin; |
| 39 | + } inputs; |
| 40 | + |
| 41 | + struct outs |
| 42 | + { |
| 43 | + halp::val_port<"Output index", std::optional<int>> index; |
| 44 | + halp::val_port<"Current Weights", std::vector<float>> weights; |
| 45 | + } outputs; |
| 46 | + |
| 47 | + std::vector<float> m_state; |
| 48 | + std::optional<int> m_last_index; |
| 49 | + |
| 50 | + using tick = halp::tick; |
| 51 | + void operator()(halp::tick t) |
| 52 | + { |
| 53 | + const float alpha = this->inputs.smooth.value; |
| 54 | + const float threshold = 0.8f; |
| 55 | + const float margin = 0.15f; |
| 56 | + |
| 57 | + const std::vector<float>& input = this->inputs.nodes.value; |
| 58 | + if(input.empty()) |
| 59 | + { |
| 60 | + m_last_index = std::nullopt; |
| 61 | + outputs.index = std::nullopt; |
| 62 | + outputs.weights.value.clear(); |
| 63 | + return; |
| 64 | + } |
| 65 | + |
| 66 | + if(m_state.size() != input.size()) |
| 67 | + { |
| 68 | + m_state.resize(input.size(), 0.0f); |
| 69 | + outputs.weights.value.resize(input.size(), 0.0f); |
| 70 | + } |
| 71 | + |
| 72 | + for(size_t i = 0; i < input.size(); ++i) |
| 73 | + { |
| 74 | + m_state[i] += (input[i] - m_state[i]) * alpha; |
| 75 | + outputs.weights.value[i] = m_state[i]; |
| 76 | + } |
| 77 | + |
| 78 | + auto max_it = std::max_element(m_state.begin(), m_state.end()); |
| 79 | + int winner_idx = std::distance(m_state.begin(), max_it); |
| 80 | + float winner_val = *max_it; |
| 81 | + |
| 82 | + float runner_up_val = 0.0f; |
| 83 | + for(size_t i = 0; i < m_state.size(); ++i) |
| 84 | + { |
| 85 | + if((int)i != winner_idx) |
| 86 | + { |
| 87 | + if(m_state[i] > runner_up_val) |
| 88 | + runner_up_val = m_state[i]; |
| 89 | + } |
| 90 | + } |
| 91 | + |
| 92 | + if(winner_val > threshold && (winner_val - runner_up_val) > margin) |
| 93 | + { |
| 94 | + if(m_last_index != winner_idx) |
| 95 | + outputs.index = winner_idx; |
| 96 | + m_last_index = winner_idx; |
| 97 | + } |
| 98 | + else |
| 99 | + { |
| 100 | + outputs.index = std::nullopt; |
| 101 | + m_last_index = std::nullopt; |
| 102 | + } |
| 103 | + } |
| 104 | +}; |
| 105 | + |
| 106 | +} |
0 commit comments