Skip to content

Commit 6221afa

Browse files
committed
v2023.12.8
1 parent 34d6ce0 commit 6221afa

File tree

4 files changed

+9655
-14372
lines changed

4 files changed

+9655
-14372
lines changed

Dockerfile

Lines changed: 0 additions & 49 deletions
This file was deleted.

README.md

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,9 @@
22

33
**A tutorial using Python and scientific libraries to implement pair correlation function (pCF) analysis of a big time series of images from fluorescence microscopy on a personal computer.**
44

5-
by [Christoph Gohlke](https://www.lfd.uci.edu/~gohlke/), Laboratory for Fluorescence Dynamics, University of California, Irvine
5+
by [Christoph Gohlke](https://www.cgohlke.com)
66

7-
Updated on March 10, 2021
7+
Updated on December 8, 2023
88

99
Presented at the [Big Data Image Processing & Analysis](http://bigdipa.ccbs.uci.edu/) BigDIPA workshops 2016, 2017, and 2018
1010

@@ -34,8 +34,8 @@ To follow this tutorial and run its code, the following prerequisites are needed
3434

3535
#### Familiarity with
3636

37-
* pair correlation function analysis of fluorescence fluctuations (e.g. Gratton and Digman lectures)
38-
* programming and nD-array computing (e.g. Matlab, numpy)
37+
* pair correlation function analysis of fluorescence fluctuations (for example Gratton and Digman lectures)
38+
* programming and nD-array computing (for example Matlab, numpy)
3939
* signal processing, time and frequency domain
4040

4141
#### Minimum computer specifications
@@ -45,29 +45,30 @@ To follow this tutorial and run its code, the following prerequisites are needed
4545
* 8 GB RAM
4646
* SSD drive with 50 GB free space
4747
* NVIDIA GPU with CUDA drivers
48-
* A modern web browser supporting WebSockets
48+
* Web browser supporting WebSockets
4949
* Disabled on-access antivirus scanning for the working and scratch directories
5050

5151
#### Python development environment
5252

53-
* CPython 3.8 64-bit with development header files and libraries
53+
* CPython 3.11 64-bit with development header files and libraries
5454
* Python packages: Jupyter, IPython, numpy, scipy, matplotlib, scikit-image, h5py, Cython, dask, numba, and CuPy (optional)
5555
* CUDA Toolkit (optional, used for CuPy)
56-
* A Python distutils compatible C compiler with OpenMP support: Visual Studio 2019 or gcc
56+
* A Python distutils compatible C compiler with OpenMP support: Visual Studio 2022 or gcc
5757

5858
#### Tutorial source code and data files
5959

6060
* Clone the source code from the [ipcf.ipynb](https://github.com/cgohlke/ipcf.ipynb) repository to a working directory:
6161

6262
git clone https://github.com/cgohlke/ipcf.ipynb
6363

64-
* Extract the example data files from the [Simulation_Channel.bin.zip](https://drive.google.com/open?id=1cQZezCCvjdmBsUAju7lbhRVLLpwgA6vx) and [nih3t3-egfp_2.zip](https://drive.google.com/open?id=15KvCU6ntCdBmq6j1QwDZRRFB8uf9wh0V) archives to the ipcf.ipynb directory:
64+
* Download and extract the following files from the [Zenodo record](https://zenodo.org/records/10289676) to the ipcf.ipynb directory:
6565

66-
unzip Simulation_Channel.bin.zip -d ipcf.ipynb
67-
unzip nih3t3-egfp_2.zip -d ipcf.ipynb
66+
Simulation_Channel.bin
67+
Simulation_Channel.ipcf.bin
68+
nih3t3-egfp_2.zip
6869

69-
* Open the `ipcf.ipynb` notebook from within the ipcf.ipynb directory, e.g. using locally installed jupyter or a docker image, e.g.:
70+
* Open the `ipcf.ipynb` notebook from within the ipcf.ipynb directory, for example, using locally installed jupyter or a docker image:
7071

71-
jupyter-nbclassic ipcf.ipynb
72+
jupyter-lab ipcf.ipynb
7273
73-
docker run --rm -p 8888:8888 -v ${PWD}/ipcf.ipynb:/home/jovyan/work/ipcf.ipynb jupyter/scipy-notebook:d990a62010ae
74+
docker run --rm -p 8888:8888 -v ${PWD}/ipcf.ipynb:/home/jovyan/work/ipcf.ipynb jupyter/scipy-notebook:python-3.11

0 commit comments

Comments
 (0)