Skip to content

Commit c7da3f1

Browse files
authored
Update proj2.html
1 parent 2700e16 commit c7da3f1

File tree

1 file changed

+18
-26
lines changed

1 file changed

+18
-26
lines changed

project-2/proj2.html

Lines changed: 18 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -79,40 +79,32 @@ <h3>Part 1.2: Finite Difference Operator</h3>
7979
<img src="images/noblur.png" alt="noblur.png" width="50%">
8080
</div>
8181
<p>
82-
From the image above, the edges in the gradient magnitude image are brighter and clearer to see.
82+
From the image above, the edges in the gradient magnitude image are brighter and more distinct.
8383
</p>
8484

8585
</article>
8686

8787
<!-- 1.3 -->
8888
<article id="part1-3">
89-
<h3>Part 1.3. Gaussian &amp; DoG Filters; Cameraman Comparisons</h3>
89+
<h3>Part 1.3: Derivative of Gaussian (DoG) Filter</h3>
9090
<p>
91-
<strong>Goal:</strong> Construct Gaussian filters using <em>cv2.getGaussianKernel</em>, build Difference-of-Gaussians (DoG), visualize the filters, apply Gaussian smoothing and DoG to the cameraman image, and compare with finite difference results.
91+
To further improve edge visibility, we can first smooth out the noise by convolving the original image with a Gaussian filter. To generate one with dimensions <i>n &times; n</i>, we can take the outer product of 2 length <i>n</i> arrays. Below is the result of blurring the original image using a 5 &times; 5 Gaussian filter.
9292
</p>
93-
<h4>Filter Visualizations</h4>
94-
<figure>
95-
<img src="images/gaussian_filter_viz.png" alt="Gaussian filter visualization" />
96-
<figcaption>Gaussian filter visualization.</figcaption>
97-
</figure>
98-
<figure>
99-
<img src="images/dog_filter_viz.png" alt="DoG filter visualization" />
100-
<figcaption>Difference-of-Gaussians (DoG) visualization.</figcaption>
101-
</figure>
102-
<h4>Applications to Cameraman</h4>
103-
<figure>
104-
<img src="images/cameraman_gaussian.png" alt="Cameraman after Gaussian smoothing" />
105-
<figcaption>Cameraman after Gaussian smoothing.</figcaption>
106-
</figure>
107-
<figure>
108-
<img src="images/cameraman_dog.png" alt="Cameraman after DoG filtering" />
109-
<figcaption>Cameraman after DoG filtering.</figcaption>
110-
</figure>
111-
<figure>
112-
<img src="images/cameraman_finite_diff.png" alt="Cameraman finite difference results" />
113-
<figcaption>Finite difference method results for comparison.</figcaption>
114-
</figure>
115-
<p><strong>Comparison &amp; Discussion:</strong> [Analyze differences in edge localization, noise sensitivity, and parameter effects.]</p>
93+
<div align="center">
94+
<img src="images/orgfilter.png" alt="orgfilter.png" width="50%">
95+
</div>
96+
<p>
97+
Applying the same edge detection process above, we get:
98+
</p>
99+
<div align="center">
100+
<img src="images/blurclip.png" alt="blurclip.png" width="50%">
101+
</div>
102+
<p>
103+
To illustrate the improvements, below is a side-by-side comparison of the edge magnitudes for each of the 3 methods, in row-major order from least to most clarity:
104+
</p>
105+
<div align="center">
106+
<img src="images/gradmag.png" alt="gradmag.png" width="50%">
107+
</div>
116108
</article>
117109
</section>
118110

0 commit comments

Comments
 (0)