Skip to content

Commit f5582f0

Browse files
authored
Fix typos and improve text clarity in index.html
1 parent 3a2cf55 commit f5582f0

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

project-5/index.html

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ <h3>Images generated with num_inference_steps=20</h3>
100100
</div>
101101
</div>
102102

103-
Using stage 2, we can take the output of stage 1 and upscale them to 256x256 resolution:
103+
Using stage 2, we can take the output of stage 1 and upscale it to 256x256 resolution:
104104

105105
<div class="subsection" id="part-0-images">
106106
<div class="image-row">
@@ -119,7 +119,7 @@ <h3>Images generated with num_inference_steps=20</h3>
119119
</div>
120120
</div>
121121

122-
By increasing the inference steps, we can generate higher quality images at cost of more compute time. Below are the stage 2 outputs with the number of inference steps at 100:
122+
By increasing the inference steps, we can generate higher quality images at the cost of more compute time. Below are the stage 2 outputs with the number of inference steps at 100:
123123

124124
<div class="subsection" id="part-0-images">
125125
<h3>Images generated with num_inference_steps=100</h3>
@@ -194,7 +194,7 @@ <h4>t = 250</h4>
194194
</figure>
195195
<figure>
196196
<img src="images/250500750/campanile_250denoise_gaussian.png" alt="campanile_250denoise_gaussian.png" />
197-
<figcaption>Gaussian denoised (t = 250)</figcaption>
197+
<figcaption>5&times;5 Gaussian denoised (t = 250)</figcaption>
198198
</figure>
199199
</div>
200200

@@ -206,7 +206,7 @@ <h4>t = 500</h4>
206206
</figure>
207207
<figure>
208208
<img src="images/250500750/campanile_500denoise_gaussian.png" alt="campanile_500denoise_gaussian.png" />
209-
<figcaption>Gaussian denoised (t = 500)</figcaption>
209+
<figcaption>5&times;5 Gaussian denoised (t = 500)</figcaption>
210210
</figure>
211211
</div>
212212

@@ -218,7 +218,7 @@ <h4>t = 750</h4>
218218
</figure>
219219
<figure>
220220
<img src="images/250500750/campanile_750denoise_gaussian.png" alt="campanile_750denoise_gaussian.png" />
221-
<figcaption>Gaussian denoised (t = 750)</figcaption>
221+
<figcaption>5&times;5 Gaussian denoised (t = 750)</figcaption>
222222
</figure>
223223
</div>
224224
</div>
@@ -250,7 +250,7 @@ <h4>t = 250</h4>
250250
</figure>
251251
<figure>
252252
<img src="images/250500750/campanile_250noise.png" alt="campanile_250noise.png" />
253-
<figcaption>Noisy (t = 250)</figcaption>
253+
<figcaption>Noisy Campanile (t = 250)</figcaption>
254254
</figure>
255255
<figure>
256256
<img src="images/250500750/campanile_250denoise_onestep.png" alt="campanile_250denoise_onestep.png" />
@@ -266,7 +266,7 @@ <h4>t = 500</h4>
266266
</figure>
267267
<figure>
268268
<img src="images/250500750/campanile_500noise.png" alt="campanile_500noise.png" />
269-
<figcaption>Noisy (t = 500)</figcaption>
269+
<figcaption>Noisy Campanile (t = 500)</figcaption>
270270
</figure>
271271
<figure>
272272
<img src="images/250500750/campanile_500denoise_onestep.png" alt="campanile_500denoise_onestep.png" />
@@ -282,7 +282,7 @@ <h4>t = 750</h4>
282282
</figure>
283283
<figure>
284284
<img src="images/250500750/campanile_750noise.png" alt="campanile_750noise.png" />
285-
<figcaption>Noisy (t = 750)</figcaption>
285+
<figcaption>Noisy Campanile (t = 750)</figcaption>
286286
</figure>
287287
<figure>
288288
<img src="images/250500750/campanile_750denoise_onestep.png" alt="campanile_750denoise_onestep.png" />
@@ -298,7 +298,7 @@ <h4>t = 750</h4>
298298
<section id="part-1-4">
299299
<h2>Part 1.4 – Iterative Denoising</h2>
300300

301-
Instead of using one step, we can obtain better results by iterativly denoising from step <code>t</code> until step 0. However, this means running the diffusion model 1000 times in the worst case, which is slow and costly. Fortunately, we can speed up the computation by first defining series of strided timestamps, starting at close to 1000 and ending at 0. For the examples below, we will use <code>strided_timestamps = [990, 960, ..., 30, 0]</code>. Then, we can use the formula
301+
Instead of using one step, we can obtain better results by iteratively denoising from step <code>t</code> until step 0. However, this means running the diffusion model 1000 times in the worst case, which is slow and costly. Fortunately, we can speed up the computation by first defining a series of strided timestamps, starting at close to 1000 and ending at 0. For the examples below, we will use <code>strided_timestamps = [990, 960, ..., 30, 0]</code>. Then, we can use the formula
302302

303303
<div class="image-row">
304304
<figure>
@@ -572,7 +572,7 @@ <h4>Test Image 2 (St. Basil's Cathedral)</h4>
572572
<div class="subsection">
573573
<h3>1.7.1 – Editing Hand-Drawn and Web Images</h3>
574574

575-
The same procedure can also be done for images that are hand-drawn or nonrealistic:
575+
The same procedure can also be done for images that are hand-drawn or non-realistic:
576576

577577
<h4>Web Image (magic gauntlet from gdbrowser.com)</h4>
578578
<div class="image-row">
@@ -683,7 +683,7 @@ <h3>1.7.2 – Inpainting</h3>
683683

684684
<pre><code>masked_image = image * mask + forward(original_image, t).to(device).half() * (1 - mask)</code></pre>
685685

686-
Once <code>image</code> is replaced by <code>masked_image</code>, we replace all further occurences of <code>image</code> except for the last instance, as the image at each step still needs to be updated. Finally, we let our starting noise be purely random and start with an timestamp index of 0, so that the patch we want to change can be sufficiently denoised. Below are the reuslts on the Campanile image:
686+
Once <code>image</code> is replaced by <code>masked_image</code>, we replace all further occurrences of <code>image</code> except for the last instance, as the image at each step still needs to be updated. Finally, we let our starting noise be purely random and start with a timestamp index of 0, so that the patch we want to change can be sufficiently denoised. Below are the results on the Campanile image:
687687

688688
<h4>Campanile Inpainting</h4>
689689
<div class="image-row">

0 commit comments

Comments
 (0)