diff --git a/rf.py b/rf.py index 5f7a770..2080d16 100644 --- a/rf.py +++ b/rf.py @@ -95,7 +95,7 @@ def sample(self, z, cond, null_cond=None, sample_steps=50, cfg=2.0): ).cuda() model_size = sum(p.numel() for p in model.parameters() if p.requires_grad) - print(f"Number of parameters: {model_size}, {model_size / 1e6}M") + print(f"Number of trainable parameters: {model_size}, {model_size / 1e6}M") rf = RF(model) optimizer = optim.Adam(model.parameters(), lr=5e-4) @@ -106,10 +106,10 @@ def sample(self, z, cond, null_cond=None, sample_steps=50, cfg=2.0): wandb.init(project=f"rf_{dataset_name}") - for epoch in range(100): + for epoch in tqdm(range(100), unit="epoch", leave=False, position=0): lossbin = {i: 0 for i in range(10)} losscnt = {i: 1e-6 for i in range(10)} - for i, (x, c) in tqdm(enumerate(dataloader)): + for i, (x, c) in tqdm(enumerate(dataloader), total=len(dataloader), unit="batch", leave=False, position=1): x, c = x.cuda(), c.cuda() optimizer.zero_grad() loss, blsct = rf.forward(x, c) @@ -123,10 +123,8 @@ def sample(self, z, cond, null_cond=None, sample_steps=50, cfg=2.0): lossbin[int(t * 10)] += l losscnt[int(t * 10)] += 1 - # log - for i in range(10): - print(f"Epoch: {epoch}, {i} range loss: {lossbin[i] / losscnt[i]}") - + time_bin_losses = [f"{i}:{lossbin[i]/losscnt[i]:.4f}" for i in range(10)] + tqdm.write(f"Epoch {epoch} time bin losses: {' '.join(time_bin_losses)}") wandb.log({f"lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}) rf.model.eval()