Skip to content

Commit 26337a2

Browse files
hyperlint-ai[bot]jonesphillip
authored andcommitted
[Ref Arch] Hyperlint Automation: Broken Link Fixes (#19857)
--------- Co-authored-by: hyperlint-ai[bot] <154288675+hyperlint-ai[bot]@users.noreply.github.com>
1 parent 245f43b commit 26337a2

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

src/content/docs/reference-architecture/diagrams/ai/ai-asset-creation.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -35,12 +35,12 @@ Example uses of such compositions of AI models can be employed to generation vis
3535

3636
1. **Client upload**: Send POST request with content to API endpoint.
3737
2. **Prompt generation**: Generate prompt for later-stage text-to-image model by calling [Workers AI](/workers-ai/) [text generation models](/workers-ai/models/) with content as input.
38-
3. **Safety check**: Check for compliance with safety guidelines by calling [Workers AI](/workers-ai/) [text classification models](/workers-ai/models/#text-classification) with the previously generated prompt as input.
39-
4. **Image generation**: Generate image by calling [Workers AI](/workers-ai/) [text-to-image models](/workers-ai/models/#text-to-image) previously generated prompt.
38+
3. **Safety check**: Check for compliance with safety guidelines by calling [Workers AI](/workers-ai/) [text classification models](/workers-ai/models/) with the previously generated prompt as input.
39+
4. **Image generation**: Generate image by calling [Workers AI](/workers-ai/) [text-to-image models](/workers-ai/models/) previously generated prompt.
4040

4141
## Related resources
4242

4343
- [Community project: content-based asset creation demo](https://auto-asset.pages.dev/)
4444
- [Workers AI: Text generation models](/workers-ai/models/)
45-
- [Workers AI: Text-to-image models](/workers-ai/models/#text-to-image)
45+
- [Workers AI: Text-to-image models](/workers-ai/models/)
4646
- [Workers AI: llamaguard-7b-awq](/workers-ai/models/llamaguard-7b-awq/)

src/content/docs/reference-architecture/diagrams/ai/ai-rag.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ In the context of Retrieval-Augmented Generation (RAG), knowledge seeding involv
3232
1. **Client upload**: Send POST request with documents to API endpoint.
3333
2. **Input processing**: Process incoming request using [Workers](/workers/) and send messages to [Queues](/queues/) to add processing backlog.
3434
3. **Batch processing**: Use [Queues](/queues/) to trigger a [consumer](/queues/reference/how-queues-works/#consumers) that process input documents in batches to prevent downstream overload.
35-
4. **Embedding generation**: Generate embedding vectors by calling [Workers AI](/workers-ai/) [text embedding models](/workers-ai/models/#text-embeddings) for the documents.
35+
4. **Embedding generation**: Generate embedding vectors by calling [Workers AI](/workers-ai/) [text embedding models](/workers-ai/models/) for the documents.
3636
5. **Vector storage**: Insert the embedding vectors to [Vectorize](/vectorize/).
3737
6. **Document storage**: Insert documents to [D1](/d1/) for persistent storage.
3838
7. **Ack/Retry mechanism**: Signal success/error by using the [Queues Runtime API](/queues/configuration/javascript-apis/#message) in the consumer for each document. [Queues](/queues/) will schedule retries, if needed.
@@ -42,13 +42,13 @@ In the context of Retrieval-Augmented Generation (RAG), knowledge seeding involv
4242
![Figure 2: Knowledge queries](~/assets/images/reference-architecture/rag-ref-architecture-diagrams/rag-architecture-query.svg "Figure 2: Knowledge queries")
4343

4444
1. **Client query**: Send GET request with query to API endpoint.
45-
2. **Embedding generation**: Generate embedding vectors by calling [Workers AI](/workers-ai/) [text embedding models](/workers-ai/models/#text-embeddings) for the incoming query.
45+
2. **Embedding generation**: Generate embedding vectors by calling [Workers AI](/workers-ai/) [text embedding models](/workers-ai/models/) for the incoming query.
4646
3. **Vector search**: Query [Vectorize](/vectorize/) using the vector representation of the query to retrieve related vectors.
4747
4. **Document lookup**: Retrieve related documents from [D1](/d1/) based on search results from [Vectorize](/vectorize/).
4848
5. **Text generation**: Pass both the original query and the retrieved documents as context to [Workers AI](/workers-ai/) [text generation models](/workers-ai/models/#text-generation) to generate a response.
4949

5050
## Related resources
5151

5252
- [Tutorial: Build a RAG AI](/workers-ai/tutorials/build-a-retrieval-augmented-generation-ai/)
53-
- [Workers AI: Text embedding models](/workers-ai/models/#text-embeddings)
53+
- [Workers AI: Text embedding models](/workers-ai/models/)
5454
- [Workers AI: Text generation models](/workers-ai/models/#text-generation)

0 commit comments

Comments
 (0)