|
| 1 | +--- |
| 2 | +pcx_content_type: concept |
| 3 | +title: Recipes |
| 4 | +sidebar: |
| 5 | + order: 5 |
| 6 | +--- |
| 7 | + |
| 8 | +import { |
| 9 | + Badge, |
| 10 | + Description, |
| 11 | + Render, |
| 12 | + TabItem, |
| 13 | + Tabs, |
| 14 | + WranglerConfig, |
| 15 | + MetaInfo, |
| 16 | + Type, |
| 17 | +} from "~/components"; |
| 18 | + |
| 19 | +This section provides practical examples and recipes for common use cases. These examples are done using [Workers Binding](/autorag/usage/workers-binding/) but can be easely adapted to use the [REST API](/autorag/usage/rest-api/) instead. |
| 20 | + |
| 21 | +## Bring your own model |
| 22 | + |
| 23 | +This scenario allows you to leverage AutoRAG for chunk search, while asking a different model to answer the user question. |
| 24 | + |
| 25 | +```ts |
| 26 | +import {openai} from '@ai-sdk/openai'; |
| 27 | +import {generateText} from "ai"; |
| 28 | + |
| 29 | +export interface Env { |
| 30 | + AI: Ai; |
| 31 | + OPENAI_API_KEY: string; |
| 32 | +} |
| 33 | + |
| 34 | +export default { |
| 35 | + async fetch(request, env): Promise<Response> { |
| 36 | + const url = new URL(request.url) |
| 37 | + const userQuery = url.searchParams.get('query') ?? 'How do I train a llama to deliver coffee?' |
| 38 | + const searchResult = await env.AI.autorag('my-rag').search({query: userQuery}) |
| 39 | + |
| 40 | + if (searchResult.data.length === 0) { |
| 41 | + return Response.json({text: `No data found for query "${userQuery}"`}) |
| 42 | + } |
| 43 | + |
| 44 | + const chunks = searchResult.data.map((item) => { |
| 45 | + const data = item.content.map((content) => { |
| 46 | + return content.text |
| 47 | + }).join('\n\n') |
| 48 | + |
| 49 | + return `<file name="${item.filename}">${data}</file>` |
| 50 | + }).join('\n\n') |
| 51 | + |
| 52 | + const generateResult = await generateText({ |
| 53 | + model: openai("gpt-4o-mini"), |
| 54 | + messages: [ |
| 55 | + {role: 'system', content: 'You are a helpful assistant and your task is to answer the user question using the provided files.'}, |
| 56 | + {role: 'user', content: chunks}, |
| 57 | + {role: 'user', content: userQuery}, |
| 58 | + ], |
| 59 | + }); |
| 60 | + |
| 61 | + return Response.json({text: generateResult.text}); |
| 62 | + }, |
| 63 | +} satisfies ExportedHandler<Env>; |
| 64 | +``` |
| 65 | + |
| 66 | +## Simple search engine |
| 67 | + |
| 68 | +Using the `search` method you can a simple but fast search engine. |
| 69 | + |
| 70 | +To replicate this example remember to: |
| 71 | +- Disable `rewrite_query` as you want to match the original user query |
| 72 | +- Configure your AutoRAG to have small chunk sizes, usually 256 tokens is enough |
| 73 | + |
| 74 | +```ts |
| 75 | +export interface Env { |
| 76 | + AI: Ai; |
| 77 | +} |
| 78 | + |
| 79 | +export default { |
| 80 | + async fetch(request, env): Promise<Response> { |
| 81 | + const url = new URL(request.url) |
| 82 | + const userQuery = url.searchParams.get('query') ?? 'How do I train a llama to deliver coffee?' |
| 83 | + const searchResult = await env.AI.autorag('my-rag').search({query: userQuery, rewrite_query: false}) |
| 84 | + |
| 85 | + return Response.json({ |
| 86 | + files: searchResult.data.map((obj) => obj.filename) |
| 87 | + }) |
| 88 | + }, |
| 89 | +} satisfies ExportedHandler<Env>; |
| 90 | +``` |
0 commit comments