Skip to content

Commit 44166bf

Browse files
Fix issue: WorkspaceTaskSubType.BROKEN_LINK
1 parent fa11541 commit 44166bf

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

src/content/docs/developer-spotlight/tutorials/creating-a-recommendation-api.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -173,7 +173,7 @@ Let's start implementing step-by-step.
173173

174174
### Bind Workers AI and Vectorize to your Worker
175175

176-
This API requires the use of Workers AI and Vectorize. To use these resources from a Worker, you will need to first create the resources then [bind](/workers/runtime-apis/bindings/#what-is-a-binding) them to a Worker. First, let's create a Vectorize index with Wrangler using the command `wrangler vectorize create {index_name} --dimensions={number_of_dimensions} --metric={similarity_metric}`. The values for `dimensions` and `metric` depend on the type of [Text Embedding Model](/workers-ai/models/#text-embeddings) you are using for data vectorization (Embedding). For example, if you are using the `bge-large-en-v1.5` model, the command is:
176+
This API requires the use of Workers AI and Vectorize. To use these resources from a Worker, you will need to first create the resources then [bind](/workers/runtime-apis/bindings/#what-is-a-binding) them to a Worker. First, let's create a Vectorize index with Wrangler using the command `wrangler vectorize create {index_name} --dimensions={number_of_dimensions} --metric={similarity_metric}`. The values for `dimensions` and `metric` depend on the type of [Text Embedding Model](/workers-ai/models/#) you are using for data vectorization (Embedding). For example, if you are using the `bge-large-en-v1.5` model, the command is:
177177

178178
```sh
179179
npx wrangler vectorize create stripe-products --dimensions=1024 --metric=cosine

0 commit comments

Comments
 (0)