|
| 1 | +--- |
| 2 | +title: Use browser rendering with AI |
| 3 | +sidebar: |
| 4 | + order: 2 |
| 5 | +--- |
| 6 | + |
| 7 | +import { Aside } from "~/components"; |
| 8 | + |
| 9 | +The ability to browse websites can be crucial when building workflows with AI. Here, we provide an example where we use Browser Rendering to visit |
| 10 | +`https://news.ycombinator.com/` and then, using a machine learning model available in [Workers AI](/workers-ai/), extract the first post as JSON with a specified schema. |
| 11 | + |
| 12 | +## Prerequisites |
| 13 | + |
| 14 | +1. Use the `create-cloudflare` CLI to generate a new Hello World Cloudflare Worker script: |
| 15 | + |
| 16 | +```sh |
| 17 | +npm create cloudflare@latest -- browser-worker |
| 18 | +``` |
| 19 | + |
| 20 | +2. Install `@cloudflare/puppeteer`, which allows you to control the Browser Rendering instance: |
| 21 | + |
| 22 | +```sh |
| 23 | +npm i @cloudflare/puppeteer |
| 24 | +``` |
| 25 | + |
| 26 | +2. Install `zod` so we can define our output format and `zod-to-json-schema` so we can convert it into a JSON schema format: |
| 27 | + |
| 28 | +```sh |
| 29 | +npm i zod |
| 30 | +npm i zod-to-json-schema |
| 31 | +``` |
| 32 | + |
| 33 | +3. Activate the nodejs compatibility flag and add your Browser Rendering binding to your new `wrangler.toml` configuration: |
| 34 | + |
| 35 | +```toml |
| 36 | +compatibility_flags = [ "nodejs_compat" ] |
| 37 | +``` |
| 38 | + |
| 39 | +```toml |
| 40 | +[browser] |
| 41 | +binding = "MY_BROWSER" |
| 42 | +``` |
| 43 | + |
| 44 | +4. In order to use [Workers AI](/workers-ai/), you need to get your [Account ID and API token](/workers-ai/get-started/rest-api/#1-get-api-token-and-account-id). |
| 45 | +Once you have those, create a [`.dev.vars`](/workers/configuration/environment-variables/#add-environment-variables-via-wrangler) file and set them there: |
| 46 | + |
| 47 | +``` |
| 48 | +ACCOUNT_ID= |
| 49 | +API_TOKEN= |
| 50 | +``` |
| 51 | + |
| 52 | +We use `.dev.vars` here since it's only for local development, otherwise you'd use [Secrets](/workers/configuration/secrets/). |
| 53 | + |
| 54 | +## Load the page using Browser Rendering |
| 55 | + |
| 56 | +In the code below, we launch a browser using `await puppeteer.launch(env.MY_BROWSER)`, extract the rendered text and close the browser. |
| 57 | +Then, with the user prompt, the desired output schema and the rendered text, prepare a prompt to send to the LLM. |
| 58 | + |
| 59 | +Replace the contents of `src/index.ts` with the following skeleton script: |
| 60 | + |
| 61 | +```ts |
| 62 | +import { z } from "zod"; |
| 63 | +import puppeteer from "@cloudflare/puppeteer"; |
| 64 | +import zodToJsonSchema from "zod-to-json-schema"; |
| 65 | + |
| 66 | +export default { |
| 67 | + async fetch(request, env) { |
| 68 | + const url = new URL(request.url); |
| 69 | + if (url.pathname != "/") { |
| 70 | + return new Response("Not found"); |
| 71 | + } |
| 72 | + |
| 73 | + // Your prompt and site to scrape |
| 74 | + const userPrompt = "Extract the first post only."; |
| 75 | + const targetUrl = "https://labs.apnic.net/"; |
| 76 | + |
| 77 | + // Launch browser |
| 78 | + const browser = await puppeteer.launch(env.MY_BROWSER); |
| 79 | + const page = await browser.newPage(); |
| 80 | + await page.goto(targetUrl); |
| 81 | + |
| 82 | + // Get website text |
| 83 | + const renderedText = await page.evaluate(() => { |
| 84 | + // @ts-ignore js code to run in the browser context |
| 85 | + const body = document.querySelector("body"); |
| 86 | + return body ? body.innerText : ""; |
| 87 | + }); |
| 88 | + // Close browser since we no longer need it |
| 89 | + await browser.close(); |
| 90 | + |
| 91 | + // define your desired json schema |
| 92 | + const outputSchema = zodToJsonSchema( |
| 93 | + z.object({ title: z.string(), url: z.string(), date: z.string() }) |
| 94 | + ); |
| 95 | + |
| 96 | + // Example prompt |
| 97 | + const prompt = ` |
| 98 | + You are a sophisticated web scraper. You are given the user data extraction goal and the JSON schema for the output data format. |
| 99 | + Your task is to extract the requested information from the text and output it in the specified JSON schema format: |
| 100 | +
|
| 101 | + ${JSON.stringify(outputSchema)} |
| 102 | +
|
| 103 | + DO NOT include anything else besides the JSON output, no markdown, no plaintext, just JSON. |
| 104 | +
|
| 105 | + User Data Extraction Goal: ${userPrompt} |
| 106 | +
|
| 107 | + Text extracted from the webpage: ${renderedText}`; |
| 108 | + |
| 109 | + // TODO call llm |
| 110 | + //const result = await getLLMResult(env, prompt, outputSchema); |
| 111 | + //return Response.json(result); |
| 112 | + } |
| 113 | + |
| 114 | +} satisfies ExportedHandler<Env>; |
| 115 | + |
| 116 | +``` |
| 117 | + |
| 118 | +## Call an LLM |
| 119 | + |
| 120 | +Having the webpage text, the user's goal and output schema, we can now use an LLM to transform it to JSON according to the user's request. |
| 121 | +The example below uses `@hf/thebloke/deepseek-coder-6.7b-instruct-awq` but other [models](/workers-ai/models/), or services like OpenAI, could be used with minimal changes: |
| 122 | + |
| 123 | +```ts |
| 124 | +async getLLMResult(env, prompt: string, schema?: any) { |
| 125 | + const model = "@hf/thebloke/deepseek-coder-6.7b-instruct-awq" |
| 126 | + const requestBody = { |
| 127 | + messages: [{ |
| 128 | + role: "user", |
| 129 | + content: prompt |
| 130 | + } |
| 131 | + ], |
| 132 | + }; |
| 133 | + const aiUrl = `https://api.cloudflare.com/client/v4/accounts/${env.ACCOUNT_ID}/ai/run/${model}` |
| 134 | + |
| 135 | + const response = await fetch(aiUrl, { |
| 136 | + method: "POST", |
| 137 | + headers: { |
| 138 | + "Content-Type": "application/json", |
| 139 | + Authorization: `Bearer ${env.API_TOKEN}`, |
| 140 | + }, |
| 141 | + body: JSON.stringify(requestBody), |
| 142 | + }); |
| 143 | + if (!response.ok) { |
| 144 | + console.log(JSON.stringify(await response.text(), null, 2)); |
| 145 | + throw new Error(`LLM call failed ${aiUrl} ${response.status}`); |
| 146 | + } |
| 147 | + |
| 148 | + // process response |
| 149 | + const data = await response.json(); |
| 150 | + const text = data.result.response || ''; |
| 151 | + const value = (text.match(/```(?:json)?\s*([\s\S]*?)\s*```/) || [null, text])[1]; |
| 152 | + try { |
| 153 | + return JSON.parse(value); |
| 154 | + } catch(e) { |
| 155 | + console.error(`${e} . Response: ${value}`) |
| 156 | + } |
| 157 | + } |
| 158 | +``` |
| 159 | + |
| 160 | +If you want to use Browser Rendering with OpenAI instead you'd just need to change the `aiUrl` endpoint and `requestBody` (or check out the [llm-scraper-worker](https://www.npmjs.com/package/llm-scraper-worker) package). |
| 161 | + |
| 162 | +## Conclusion |
| 163 | + |
| 164 | +The full Worker script now looks as follows: |
| 165 | + |
| 166 | +```ts |
| 167 | +import { z } from "zod"; |
| 168 | +import puppeteer from "@cloudflare/puppeteer"; |
| 169 | +import zodToJsonSchema from "zod-to-json-schema"; |
| 170 | + |
| 171 | +export default { |
| 172 | + async fetch(request, env) { |
| 173 | + const url = new URL(request.url); |
| 174 | + if (url.pathname != "/") { |
| 175 | + return new Response("Not found"); |
| 176 | + } |
| 177 | + |
| 178 | + // Your prompt and site to scrape |
| 179 | + const userPrompt = "Extract the first post only."; |
| 180 | + const targetUrl = "https://labs.apnic.net/"; |
| 181 | + |
| 182 | + // Launch browser |
| 183 | + const browser = await puppeteer.launch(env.MY_BROWSER); |
| 184 | + const page = await browser.newPage(); |
| 185 | + await page.goto(targetUrl); |
| 186 | + |
| 187 | + // Get website text |
| 188 | + const renderedText = await page.evaluate(() => { |
| 189 | + // @ts-ignore js code to run in the browser context |
| 190 | + const body = document.querySelector("body"); |
| 191 | + return body ? body.innerText : ""; |
| 192 | + }); |
| 193 | + // Close browser since we no longer need it |
| 194 | + await browser.close(); |
| 195 | + |
| 196 | + // define your desired json schema |
| 197 | + const outputSchema = zodToJsonSchema( |
| 198 | + z.object({ title: z.string(), url: z.string(), date: z.string() }) |
| 199 | + ); |
| 200 | + |
| 201 | + // Example prompt |
| 202 | + const prompt = ` |
| 203 | + You are a sophisticated web scraper. You are given the user data extraction goal and the JSON schema for the output data format. |
| 204 | + Your task is to extract the requested information from the text and output it in the specified JSON schema format: |
| 205 | +
|
| 206 | + ${JSON.stringify(outputSchema)} |
| 207 | +
|
| 208 | + DO NOT include anything else besides the JSON output, no markdown, no plaintext, just JSON. |
| 209 | +
|
| 210 | + User Data Extraction Goal: ${userPrompt} |
| 211 | +
|
| 212 | + Text extracted from the webpage: ${renderedText}`; |
| 213 | + |
| 214 | + // call llm |
| 215 | + const result = await getLLMResult(env, prompt, outputSchema); |
| 216 | + return Response.json(result); |
| 217 | + } |
| 218 | + |
| 219 | +} satisfies ExportedHandler<Env>; |
| 220 | + |
| 221 | + |
| 222 | +async function getLLMResult(env, prompt: string, schema?: any) { |
| 223 | + const model = "@hf/thebloke/deepseek-coder-6.7b-instruct-awq" |
| 224 | + const requestBody = { |
| 225 | + messages: [{ |
| 226 | + role: "user", |
| 227 | + content: prompt |
| 228 | + } |
| 229 | + ], |
| 230 | + }; |
| 231 | + const aiUrl = `https://api.cloudflare.com/client/v4/accounts/${env.ACCOUNT_ID}/ai/run/${model}` |
| 232 | + |
| 233 | + const response = await fetch(aiUrl, { |
| 234 | + method: "POST", |
| 235 | + headers: { |
| 236 | + "Content-Type": "application/json", |
| 237 | + Authorization: `Bearer ${env.API_TOKEN}`, |
| 238 | + }, |
| 239 | + body: JSON.stringify(requestBody), |
| 240 | + }); |
| 241 | + if (!response.ok) { |
| 242 | + console.log(JSON.stringify(await response.text(), null, 2)); |
| 243 | + throw new Error(`LLM call failed ${aiUrl} ${response.status}`); |
| 244 | + } |
| 245 | + |
| 246 | + // process response |
| 247 | + const data = await response.json() as { result: { response: string }}; |
| 248 | + const text = data.result.response || ''; |
| 249 | + const value = (text.match(/```(?:json)?\s*([\s\S]*?)\s*```/) || [null, text])[1]; |
| 250 | + try { |
| 251 | + return JSON.parse(value); |
| 252 | + } catch(e) { |
| 253 | + console.error(`${e} . Response: ${value}`) |
| 254 | + } |
| 255 | +} |
| 256 | +``` |
| 257 | + |
| 258 | +You can run this script to test it using Wrangler's `--remote` flag: |
| 259 | + |
| 260 | +```sh |
| 261 | +npx wrangler dev --remote |
| 262 | +``` |
| 263 | + |
| 264 | +With your script now running, you can go to `http://localhost:8787/` and should see something like the following: |
| 265 | + |
| 266 | +```json |
| 267 | +{ |
| 268 | + "title": "IP Addresses in 2024", |
| 269 | + "url": "http://example.com/ip-addresses-in-2024", |
| 270 | + "date": "11 Jan 2025" |
| 271 | +} |
| 272 | +``` |
| 273 | + |
| 274 | +For more complex websites or prompts, you might need a better model. Check out the latest models in [Workers AI](/workers-ai/models/). |
0 commit comments