|
| 1 | +--- |
| 2 | +pcx_content_type: get-started |
| 3 | +title: Get Started |
| 4 | +head: [] |
| 5 | +sidebar: |
| 6 | + order: 2 |
| 7 | +description: Learn how to enable the R2 Data Catalog on your bucket, load sample data, and run your first query. |
| 8 | +--- |
| 9 | + |
| 10 | +import { |
| 11 | + Render, |
| 12 | + PackageManagers, |
| 13 | + Steps, |
| 14 | + FileTree, |
| 15 | + Tabs, |
| 16 | + TabItem, |
| 17 | + TypeScriptExample, |
| 18 | + WranglerConfig, |
| 19 | + LinkCard, |
| 20 | +} from "~/components"; |
| 21 | + |
| 22 | +## Overview |
| 23 | + |
| 24 | +This guide will instruct you through: |
| 25 | + |
| 26 | +- Creating your first [R2 bucket](/r2/buckets/) and enabling its [data catalog](/r2/data-catalog/). |
| 27 | +- Creating an API token needed for query engines to authenticate with your data catalog. |
| 28 | +- Using [PyIceberg](https://py.iceberg.apache.org/) to create your first Iceberg table in a [marimo](https://marimo.io/) Python notebook. |
| 29 | +- Using [PyIceberg](https://py.iceberg.apache.org/) to load sample data into your table and query it. |
| 30 | + |
| 31 | +## Prerequisites |
| 32 | + |
| 33 | +<Render file="prereqs" product="workers" /> |
| 34 | + |
| 35 | +## 1. Create an R2 bucket |
| 36 | + |
| 37 | +<Tabs syncKey='CLIvDash'> |
| 38 | +<TabItem label='Wrangler CLI'> |
| 39 | + |
| 40 | +<Steps> |
| 41 | +1. If not already logged in, run: |
| 42 | + |
| 43 | + ``` |
| 44 | + npx wrangler login |
| 45 | + ``` |
| 46 | + |
| 47 | +2. Then, enable the catalog on your chosen R2 bucket: |
| 48 | + |
| 49 | + ``` |
| 50 | + npx wrangler r2 bucket r2-data-catalog-tutorial |
| 51 | + ``` |
| 52 | + |
| 53 | +</Steps> |
| 54 | + |
| 55 | +</TabItem> |
| 56 | +<TabItem label='Dashboard'> |
| 57 | + |
| 58 | +<Steps> |
| 59 | +1. From the Cloudflare dashboard, select **R2 Object Storage** from the sidebar. |
| 60 | +2. Select the bucket you want to enable as a data catalog. |
| 61 | +3. Switch to the **Settings** tab, scroll down to **R2 Data Catalog**, and select **Enable**. |
| 62 | +4. Once enabled, note the **Catalog URI** and **Warehouse name**. |
| 63 | +</Steps> |
| 64 | +</TabItem> |
| 65 | +</Tabs> |
| 66 | + |
| 67 | +## 2. Enable the data catalog for your bucket |
| 68 | + |
| 69 | +<Tabs syncKey='CLIvDash'> |
| 70 | +<TabItem label='Wrangler CLI'> |
| 71 | + |
| 72 | +Then, enable the catalog on your chosen R2 bucket: |
| 73 | + |
| 74 | + ``` |
| 75 | + npx wrangler r2 bucket catalog enable r2-data-catalog-tutorial |
| 76 | + ``` |
| 77 | + |
| 78 | +</TabItem> |
| 79 | +<TabItem label='Dashboard'> |
| 80 | + |
| 81 | +<Steps> |
| 82 | +1. From the Cloudflare dashboard, select **R2 Object Storage** from the sidebar. |
| 83 | +2. Select the bucket you want to enable as a data catalog. |
| 84 | +3. Switch to the **Settings** tab, scroll down to **R2 Data Catalog**, and select **Enable**. |
| 85 | +4. Once enabled, note the **Catalog URI** and **Warehouse name**. |
| 86 | +</Steps> |
| 87 | +</TabItem> |
| 88 | +</Tabs> |
| 89 | + |
| 90 | +## 3. Create an API token |
| 91 | + |
| 92 | +Iceberg clients (including [PyIceberg](https://py.iceberg.apache.org/)) must authenticate to the catalog with a [Cloudflare API token](/fundamentals/api/get-started/create-token/) that has both R2 and catalog permissions. |
| 93 | + |
| 94 | +<Steps> |
| 95 | +1. From the Cloudflare dashboard, select **R2 Object Storage** from the sidebar. |
| 96 | + |
| 97 | +2. Expand the **API** dropdown and select **Manage API tokens**. |
| 98 | + |
| 99 | +3. Select **Create API token**. |
| 100 | + |
| 101 | +4. Select the **R2 Token** text to edit your API token name. |
| 102 | + |
| 103 | +5. Under **Permissions**, choose the **Admin Read & Write** permission. |
| 104 | + |
| 105 | +6. Select **Create API Token**. |
| 106 | + |
| 107 | +7. Note the **Token value**, you will need this. |
| 108 | + |
| 109 | +</Steps> |
| 110 | + |
| 111 | +## 4. Install uv |
| 112 | + |
| 113 | +Next, you'll need to install a Python package manager, in this guide we'll be using [uv](https://docs.astral.sh/uv/). If you don't already have uv installed, follow the [installing uv guide](https://docs.astral.sh/uv/getting-started/installation/). |
| 114 | + |
| 115 | +## 5. Install marimo |
| 116 | + |
| 117 | +We'll be using [marimo](https://github.com/marimo-team/marimo) as a Python notebook. |
| 118 | + |
| 119 | +<Steps> |
| 120 | +1. Create a directory where our notebook will live: |
| 121 | + |
| 122 | + ``` |
| 123 | + mkdir r2-data-catalog-notebook |
| 124 | + ``` |
| 125 | + |
| 126 | +2. Change into our new directory: |
| 127 | + |
| 128 | + ``` |
| 129 | + cd r2-data-catalog-notebook |
| 130 | + ``` |
| 131 | + |
| 132 | +3. Create a new Python virtual environment: |
| 133 | + |
| 134 | + ``` |
| 135 | + uv venv |
| 136 | + ``` |
| 137 | + |
| 138 | +4. Activate the Python virtual environment: |
| 139 | + |
| 140 | + ``` |
| 141 | + source .venv/bin/activate |
| 142 | + ``` |
| 143 | + |
| 144 | +5. Install marimo with uv: |
| 145 | + |
| 146 | + ```py |
| 147 | + uv pip install marimo |
| 148 | + ``` |
| 149 | + |
| 150 | +</Steps> |
| 151 | + |
| 152 | +## 6. Create a Python notebook to interact with our data warehouse |
| 153 | + |
| 154 | +<Steps> |
| 155 | +1. Create a file called `r2-data-catalog-tutorial.py`. |
| 156 | + |
| 157 | +2. Paste the following code snippet into your `r2-data-catalog-tutorial.py` file: |
| 158 | + |
| 159 | + ```py |
| 160 | + import marimo |
| 161 | + |
| 162 | + __generated_with = "0.11.31" |
| 163 | + app = marimo.App(width="medium") |
| 164 | + |
| 165 | + |
| 166 | + @app.cell |
| 167 | + def _(): |
| 168 | + import marimo as mo |
| 169 | + return (mo,) |
| 170 | + |
| 171 | + |
| 172 | + @app.cell |
| 173 | + def _(): |
| 174 | + import pandas |
| 175 | + import pyarrow as pa |
| 176 | + import pyarrow.compute as pc |
| 177 | + import pyarrow.parquet as pq |
| 178 | + |
| 179 | + from pyiceberg.catalog.rest import RestCatalog |
| 180 | + from pyiceberg.exceptions import NamespaceAlreadyExistsError |
| 181 | + |
| 182 | + # Define catalog connection details (replace variables) |
| 183 | + WAREHOUSE = "<WAREHOUSE>" |
| 184 | + TOKEN = "<TOKEN>" |
| 185 | + CATALOG_URL = f"https://catalog.cloudflarestorage.com/{WAREHOUSE}" |
| 186 | + |
| 187 | + # Connect to R2 Data Catalog |
| 188 | + catalog = RestCatalog( |
| 189 | + name="my_catalog", |
| 190 | + warehouse=WAREHOUSE, |
| 191 | + uri=CATALOG_URL, |
| 192 | + token=TOKEN, |
| 193 | + ) |
| 194 | + return ( |
| 195 | + CATALOG_URL, |
| 196 | + NamespaceAlreadyExistsError, |
| 197 | + RestCatalog, |
| 198 | + TOKEN, |
| 199 | + WAREHOUSE, |
| 200 | + catalog, |
| 201 | + pa, |
| 202 | + pandas, |
| 203 | + pc, |
| 204 | + pq, |
| 205 | + ) |
| 206 | + |
| 207 | + |
| 208 | + @app.cell |
| 209 | + def _(NamespaceAlreadyExistsError, catalog): |
| 210 | + # Create default namespace if needed |
| 211 | + try: |
| 212 | + catalog.create_namespace("default") |
| 213 | + except NamespaceAlreadyExistsError: |
| 214 | + pass |
| 215 | + return |
| 216 | + |
| 217 | + |
| 218 | + @app.cell |
| 219 | + def _(pa): |
| 220 | + # Create simple PyArrow table |
| 221 | + df = pa.table({ |
| 222 | + "id": [1, 2, 3], |
| 223 | + "name": ["Alice", "Bob", "Charlie"], |
| 224 | + "score": [80.0, 92.5, 88.0], |
| 225 | + }) |
| 226 | + return (df,) |
| 227 | + |
| 228 | + |
| 229 | + @app.cell |
| 230 | + def _(catalog, df): |
| 231 | + # Create or load Iceberg table |
| 232 | + test_table = ("default", "people") |
| 233 | + if not catalog.table_exists(test_table): |
| 234 | + print(f"Creating table: {test_table}") |
| 235 | + table = catalog.create_table( |
| 236 | + test_table, |
| 237 | + schema=df.schema, |
| 238 | + ) |
| 239 | + else: |
| 240 | + table = catalog.load_table(test_table) |
| 241 | + return table, test_table |
| 242 | + |
| 243 | + |
| 244 | + @app.cell |
| 245 | + def _(df, table): |
| 246 | + # Append data |
| 247 | + table.append(df) |
| 248 | + return |
| 249 | + |
| 250 | + |
| 251 | + @app.cell |
| 252 | + def _(table): |
| 253 | + print("Table contents:") |
| 254 | + scanned = table.scan().to_arrow() |
| 255 | + print(scanned.to_pandas()) |
| 256 | + return (scanned,) |
| 257 | + |
| 258 | + |
| 259 | + @app.cell |
| 260 | + def _(): |
| 261 | + # Optional cleanup. To run uncomment and run cell |
| 262 | + # print(f"Deleting table: {test_table}") |
| 263 | + # catalog.drop_table(test_table) |
| 264 | + # print("Table dropped.") |
| 265 | + return |
| 266 | + |
| 267 | + |
| 268 | + if __name__ == "__main__": |
| 269 | + app.run() |
| 270 | + ``` |
| 271 | + |
| 272 | +3. Replace the `WAREHOUSE` and `TOKEN` variables with your values from sections **2** and **3** respectively. |
| 273 | + |
| 274 | +</Steps> |
| 275 | +In the Python notebook above, you: |
| 276 | + |
| 277 | +1. Connect to your catalog. |
| 278 | +2. Create the `default` namespace. |
| 279 | +3. Create a simple PyArrow table. |
| 280 | +4. Create (or load) the `people` table in the `default` namespace. |
| 281 | +5. Append sample data to the table. |
| 282 | +6. Print the contents of the table. |
| 283 | +7. (Optional) Drop the `people` table we created for this tutorial. |
| 284 | + |
| 285 | +## Learn more |
| 286 | + |
| 287 | +<LinkCard |
| 288 | + title="Configuration examples" |
| 289 | + href="/r2/data-catalog/config-examples/" |
| 290 | + description="Find detailed setup instructions for Apache Spark and other common query engines." |
| 291 | +/> |
0 commit comments