|
| 1 | +--- |
| 2 | +updated: 2025-02-04 |
| 3 | +difficulty: Beginner |
| 4 | +content_type: 📝 Tutorial |
| 5 | +pcx_content_type: tutorial |
| 6 | +title: Llama 3.2 11B Vision Instruct model on Cloudflare Workers AI |
| 7 | +tags: |
| 8 | + - AI |
| 9 | +--- |
| 10 | + |
| 11 | +import { Details, Render, PackageManagers } from "~/components"; |
| 12 | + |
| 13 | +## 1: Prerequisites |
| 14 | + |
| 15 | +Before you begin, ensure you have the following: |
| 16 | + |
| 17 | +1. A [Cloudflare account](https://dash.cloudflare.com/sign-up) with Workers and Workers AI enabled. |
| 18 | +2. Your `CLOUDFLARE_ACCOUNT_ID` and `CLOUDFLARE_AUTH_TOKEN`. |
| 19 | + - You can generate an API token in your Cloudflare dashboard under API Tokens. |
| 20 | +3. Node.js installed for working with Cloudflare Workers (optional but recommended). |
| 21 | + |
| 22 | +## 2: Agree to Meta's license |
| 23 | + |
| 24 | +The first time you use the [Llama 3.2 11B Vision Instruct](/workers-ai/models/llama-3.2-11b-vision-instruct) model, you need to agree to Meta's License and Acceptable Use Policy. |
| 25 | + |
| 26 | +```bash title="curl" |
| 27 | +curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/meta/llama-3.2-11b-vision-instruct \ |
| 28 | + -X POST \ |
| 29 | + -H "Authorization: Bearer $CLOUDFLARE_AUTH_TOKEN" \ |
| 30 | + -d '{ "prompt": "agree" }' |
| 31 | +``` |
| 32 | + |
| 33 | +Replace `$CLOUDFLARE_ACCOUNT_ID` and `$CLOUDFLARE_AUTH_TOKEN` with your actual account ID and token. |
| 34 | + |
| 35 | +## 3: Set up your Cloudflare Worker |
| 36 | + |
| 37 | +1. Create a Worker Project |
| 38 | + You will create a new Worker project using the `create-cloudflare` CLI (`C3`). This tool simplifies setting up and deploying new applications to Cloudflare. |
| 39 | + |
| 40 | + Run the following command in your terminal: |
| 41 | + <PackageManagers |
| 42 | + type="create" |
| 43 | + pkg="cloudflare@latest" |
| 44 | + args={"llama-vision-tutorial"} |
| 45 | +/> |
| 46 | + |
| 47 | +<Render |
| 48 | + file="c3-post-run-steps" |
| 49 | + product="workers" |
| 50 | + params={{ |
| 51 | + category: "hello-world", |
| 52 | + type: "Hello World Worker", |
| 53 | + lang: "JavaScript", |
| 54 | + }} |
| 55 | +/> |
| 56 | + |
| 57 | +After completing the setup, a new directory called `llama-vision-tutorial` will be created. |
| 58 | + |
| 59 | +3. Navigate to your application directory |
| 60 | + Change into the project directory: |
| 61 | + |
| 62 | + ```bash |
| 63 | + cd llama-vision-tutorial |
| 64 | + ``` |
| 65 | + |
| 66 | +4. Project structure |
| 67 | + Your `llama-vision-tutorial` directory will include: |
| 68 | + - A "Hello World" Worker at `src/index.ts`. |
| 69 | + - A `wrangler.toml` configuration file for managing deployment settings. |
| 70 | + |
| 71 | +## 4: Write the Worker code |
| 72 | + |
| 73 | +Edit the `src/index.ts` (or `index.js` if you're not using TypeScript) file and replace the content with the following code: |
| 74 | + |
| 75 | +```javascript |
| 76 | +export interface Env { |
| 77 | + AI: Ai; |
| 78 | +} |
| 79 | + |
| 80 | +export default { |
| 81 | + async fetch(request, env): Promise<Response> { |
| 82 | + const messages = [ |
| 83 | + { role: "system", content: "You are a helpful assistant." }, |
| 84 | + { role: "user", content: "Describe the image I'm providing." }, |
| 85 | + ]; |
| 86 | + |
| 87 | + // Replace this with your image data encoded as base64 or a URL |
| 88 | + const imageBase64 = "_DATA_HERE"; |
| 89 | + |
| 90 | + const response = await env.AI.run("@cf/meta/llama-3.2-11b-vision-instruct", { |
| 91 | + messages, |
| 92 | + image: imageBase64, |
| 93 | + }); |
| 94 | + |
| 95 | + return Response.json(response); |
| 96 | + }, |
| 97 | +} satisfies ExportedHandler<Env>; |
| 98 | +``` |
| 99 | + |
| 100 | +## 5: Bind Workers AI to your Worker |
| 101 | + |
| 102 | +1. Open `wrangler.toml` and add the following configuration: |
| 103 | + |
| 104 | +```toml |
| 105 | +[env] |
| 106 | +[ai] |
| 107 | +binding="AI" |
| 108 | +model = "@cf/meta/llama-3.2-11b-vision-instruct" |
| 109 | +``` |
| 110 | + |
| 111 | +2. Save the file. |
| 112 | + |
| 113 | +## 6: Deploy the Worker |
| 114 | + |
| 115 | +Run the following command to deploy your Worker: |
| 116 | + |
| 117 | +```bash |
| 118 | +wrangler deploy |
| 119 | +``` |
| 120 | + |
| 121 | +## 7: Test Your Worker |
| 122 | + |
| 123 | +1. After deployment, you will receive a unique URL for your Worker (e.g., `https://llama-vision-tutorial.<your-subdomain>.workers.dev`). |
| 124 | +2. Use a tool like `curl` or Postman to send a request to your Worker: |
| 125 | + |
| 126 | +```bash |
| 127 | +curl -X POST https://llama-vision-tutorial.<your-subdomain>.workers.dev \ |
| 128 | + -d '{ "image": "BASE64_ENCODED_IMAGE" }' |
| 129 | +``` |
| 130 | + |
| 131 | +Replace `BASE64_ENCODED_IMAGE` with an actual base64-encoded image string. |
| 132 | + |
| 133 | +## 8: Verify the Response |
| 134 | + |
| 135 | +The response will include the model's output, such as a description or answer to your prompt based on the image provided. |
| 136 | + |
| 137 | +Example response: |
| 138 | + |
| 139 | +```json |
| 140 | +{ |
| 141 | + "result": "This is a golden retriever sitting in a grassy park." |
| 142 | +} |
| 143 | +``` |
0 commit comments