diff --git a/src/content/docs/workers-ai/tutorials/llama-tutorial.mdx b/src/content/docs/workers-ai/tutorials/llama-tutorial.mdx
new file mode 100644
index 00000000000000..b0c80027b332cd
--- /dev/null
+++ b/src/content/docs/workers-ai/tutorials/llama-tutorial.mdx
@@ -0,0 +1,143 @@
+---
+updated: 2025-02-04
+difficulty: Beginner
+content_type: 📝 Tutorial
+pcx_content_type: tutorial
+title: Llama 3.2 11B Vision Instruct model on Cloudflare Workers AI
+tags:
+ - AI
+---
+
+import { Details, Render, PackageManagers } from "~/components";
+
+## 1: Prerequisites
+
+Before you begin, ensure you have the following:
+
+1. A [Cloudflare account](https://dash.cloudflare.com/sign-up) with Workers and Workers AI enabled.
+2. Your `CLOUDFLARE_ACCOUNT_ID` and `CLOUDFLARE_AUTH_TOKEN`.
+ - You can generate an API token in your Cloudflare dashboard under API Tokens.
+3. Node.js installed for working with Cloudflare Workers (optional but recommended).
+
+## 2: Agree to Meta's license
+
+The first time you use the [Llama 3.2 11B Vision Instruct](/workers-ai/models/llama-3.2-11b-vision-instruct) model, you need to agree to Meta's License and Acceptable Use Policy.
+
+```bash title="curl"
+curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/meta/llama-3.2-11b-vision-instruct \
+ -X POST \
+ -H "Authorization: Bearer $CLOUDFLARE_AUTH_TOKEN" \
+ -d '{ "prompt": "agree" }'
+```
+
+Replace `$CLOUDFLARE_ACCOUNT_ID` and `$CLOUDFLARE_AUTH_TOKEN` with your actual account ID and token.
+
+## 3: Set up your Cloudflare Worker
+
+1. Create a Worker Project
+ You will create a new Worker project using the `create-cloudflare` CLI (`C3`). This tool simplifies setting up and deploying new applications to Cloudflare.
+
+ Run the following command in your terminal:
+
+
+
+
+After completing the setup, a new directory called `llama-vision-tutorial` will be created.
+
+3. Navigate to your application directory
+ Change into the project directory:
+
+ ```bash
+ cd llama-vision-tutorial
+ ```
+
+4. Project structure
+ Your `llama-vision-tutorial` directory will include:
+ - A "Hello World" Worker at `src/index.ts`.
+ - A `wrangler.toml` configuration file for managing deployment settings.
+
+## 4: Write the Worker code
+
+Edit the `src/index.ts` (or `index.js` if you're not using TypeScript) file and replace the content with the following code:
+
+```javascript
+export interface Env {
+ AI: Ai;
+}
+
+export default {
+ async fetch(request, env): Promise {
+ const messages = [
+ { role: "system", content: "You are a helpful assistant." },
+ { role: "user", content: "Describe the image I'm providing." },
+ ];
+
+ // Replace this with your image data encoded as base64 or a URL
+ const imageBase64 = "_DATA_HERE";
+
+ const response = await env.AI.run("@cf/meta/llama-3.2-11b-vision-instruct", {
+ messages,
+ image: imageBase64,
+ });
+
+ return Response.json(response);
+ },
+} satisfies ExportedHandler;
+```
+
+## 5: Bind Workers AI to your Worker
+
+1. Open `wrangler.toml` and add the following configuration:
+
+```toml
+[env]
+[ai]
+binding="AI"
+model = "@cf/meta/llama-3.2-11b-vision-instruct"
+```
+
+2. Save the file.
+
+## 6: Deploy the Worker
+
+Run the following command to deploy your Worker:
+
+```bash
+wrangler deploy
+```
+
+## 7: Test Your Worker
+
+1. After deployment, you will receive a unique URL for your Worker (e.g., `https://llama-vision-tutorial..workers.dev`).
+2. Use a tool like `curl` or Postman to send a request to your Worker:
+
+```bash
+curl -X POST https://llama-vision-tutorial..workers.dev \
+ -d '{ "image": "BASE64_ENCODED_IMAGE" }'
+```
+
+Replace `BASE64_ENCODED_IMAGE` with an actual base64-encoded image string.
+
+## 8: Verify the Response
+
+The response will include the model's output, such as a description or answer to your prompt based on the image provided.
+
+Example response:
+
+```json
+{
+ "result": "This is a golden retriever sitting in a grassy park."
+}
+```
\ No newline at end of file