diff --git a/src/content/docs/workers-ai/tutorials/llama-tutorial.mdx b/src/content/docs/workers-ai/tutorials/llama-tutorial.mdx new file mode 100644 index 00000000000000..b0c80027b332cd --- /dev/null +++ b/src/content/docs/workers-ai/tutorials/llama-tutorial.mdx @@ -0,0 +1,143 @@ +--- +updated: 2025-02-04 +difficulty: Beginner +content_type: 📝 Tutorial +pcx_content_type: tutorial +title: Llama 3.2 11B Vision Instruct model on Cloudflare Workers AI +tags: + - AI +--- + +import { Details, Render, PackageManagers } from "~/components"; + +## 1: Prerequisites + +Before you begin, ensure you have the following: + +1. A [Cloudflare account](https://dash.cloudflare.com/sign-up) with Workers and Workers AI enabled. +2. Your `CLOUDFLARE_ACCOUNT_ID` and `CLOUDFLARE_AUTH_TOKEN`. + - You can generate an API token in your Cloudflare dashboard under API Tokens. +3. Node.js installed for working with Cloudflare Workers (optional but recommended). + +## 2: Agree to Meta's license + +The first time you use the [Llama 3.2 11B Vision Instruct](/workers-ai/models/llama-3.2-11b-vision-instruct) model, you need to agree to Meta's License and Acceptable Use Policy. + +```bash title="curl" +curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/meta/llama-3.2-11b-vision-instruct \ + -X POST \ + -H "Authorization: Bearer $CLOUDFLARE_AUTH_TOKEN" \ + -d '{ "prompt": "agree" }' +``` + +Replace `$CLOUDFLARE_ACCOUNT_ID` and `$CLOUDFLARE_AUTH_TOKEN` with your actual account ID and token. + +## 3: Set up your Cloudflare Worker + +1. Create a Worker Project + You will create a new Worker project using the `create-cloudflare` CLI (`C3`). This tool simplifies setting up and deploying new applications to Cloudflare. + + Run the following command in your terminal: + + + + +After completing the setup, a new directory called `llama-vision-tutorial` will be created. + +3. Navigate to your application directory + Change into the project directory: + + ```bash + cd llama-vision-tutorial + ``` + +4. Project structure + Your `llama-vision-tutorial` directory will include: + - A "Hello World" Worker at `src/index.ts`. + - A `wrangler.toml` configuration file for managing deployment settings. + +## 4: Write the Worker code + +Edit the `src/index.ts` (or `index.js` if you're not using TypeScript) file and replace the content with the following code: + +```javascript +export interface Env { + AI: Ai; +} + +export default { + async fetch(request, env): Promise { + const messages = [ + { role: "system", content: "You are a helpful assistant." }, + { role: "user", content: "Describe the image I'm providing." }, + ]; + + // Replace this with your image data encoded as base64 or a URL + const imageBase64 = "_DATA_HERE"; + + const response = await env.AI.run("@cf/meta/llama-3.2-11b-vision-instruct", { + messages, + image: imageBase64, + }); + + return Response.json(response); + }, +} satisfies ExportedHandler; +``` + +## 5: Bind Workers AI to your Worker + +1. Open `wrangler.toml` and add the following configuration: + +```toml +[env] +[ai] +binding="AI" +model = "@cf/meta/llama-3.2-11b-vision-instruct" +``` + +2. Save the file. + +## 6: Deploy the Worker + +Run the following command to deploy your Worker: + +```bash +wrangler deploy +``` + +## 7: Test Your Worker + +1. After deployment, you will receive a unique URL for your Worker (e.g., `https://llama-vision-tutorial..workers.dev`). +2. Use a tool like `curl` or Postman to send a request to your Worker: + +```bash +curl -X POST https://llama-vision-tutorial..workers.dev \ + -d '{ "image": "BASE64_ENCODED_IMAGE" }' +``` + +Replace `BASE64_ENCODED_IMAGE` with an actual base64-encoded image string. + +## 8: Verify the Response + +The response will include the model's output, such as a description or answer to your prompt based on the image provided. + +Example response: + +```json +{ + "result": "This is a golden retriever sitting in a grassy park." +} +``` \ No newline at end of file